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Introduction

The 2015 Conference on Computational Natural Language Learning is the nineteenth in the series of
annual meetings organized by SIGNLL, the ACL special interest group on natural language learning.
CONLL 2015 will be held in Beijing, China on July 30-31, 2015, in conjunction with ACL-IJCNLP
2015.

For the first time this year, CoNLL 2015 has accepted both long (9 pages of content plus 2 additional
pages of references) and short papers (5 pages of content plus 2 additional pages of references). We
received 144 submissions in total, of which 81 were long and 61 were short papers, and 17 were
eventually withdrawn. Of the remaining 127 papers, 29 long and 9 short papers were selected to appear
in the conference program, resulting in an overall acceptance rate of almost 30%. All accepted papers
appear here in the proceedings.

As in previous years, CoNLL 2015 has a shared task, this year on Shallow Discourse Parsing. Papers
accepted for the shared task are collected in a companion volume of CoNLL 2015.

To fit the paper presentations in a 2-day program, 16 long papers were selected for oral presentation and
the remaining 13 long and the 9 short papers were presented as posters. The papers selected for oral
presentation are distributed in four main sessions, each consisting of 4 talks. Each of these sessions also
includes 3 or 4 spotlights of the long papers selected for the poster session. In contrast, the spotlights
for short papers are presented in a single session of 30 minutes. The remaining sessions were used for
presenting a selection of 4 shared task papers, two invited keynote speeches and a single poster session,
including long, short and shared task papers.

We would like to thank all the authors who submitted their work to CoNLL 2015, as well as the program
committee for helping us select the best papers out of many high-quality submissions. We are also
grateful to our invited speakers, Paul Smolensky and Eric Xing, who graciously agreed to give talks at
CoNLL.

Special thanks are due to the SIGNLL board members, Xavier Carreras and Julia Hockenmaier, for
their valuable advice and assistance in putting together this year’s program, and to Ben Verhoeven, for
redesigning and maintaining the CoNLL 2015 web page. We are grateful to the ACL organization for
helping us with the program, proceedings and logistics. Finally, our gratitude goes to our sponsors,
Google Inc. and Microsoft Research, for supporting the best paper award and student scholarships at
CoNLL 2015.

We hope you enjoy the conference!

Afra Alishahi and Alessandro Moschitti

CoNLL 2015 conference co-chairs
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Keynote Talk

On Spectral Graphical Models, and a New Look at Latent Variable Modeling in Natural
Language Processing

Eric Xing

Carnegie Mellon University

epxing@cs.cmu.edu

Abstract

Latent variable and latent structure modeling, as widely seen in parsing systems, machine translation
systems, topic models, and deep neural networks, represents a key paradigm in Natural Language Pro-
cessing, where discovering and leveraging syntactic and semantic entities and relationships that are not
explicitly annotated in the training set provide a crucial vehicle to obtain various desirable effects such
as simplifying the solution space, incorporating domain knowledge, and extracting informative features.
However, latent variable models are difficult to train and analyze in that, unlike fully observed models,
they suffer from non-identifiability, non-convexity, and over-parameterization, which make them often
hard to interpret, and tend to rely on local-search heuristics and heavy manual tuning.

In this talk, I propose to tackle these challenges using spectral graphical models (SGM), which view
latent variable models through the lens of linear algebra and tensors. I show how SGMs exploit the
connection between latent structure and low rank decomposition, and allow one to develop models and
algorithms for a variety of latent variable problems, which unlike traditional techniques, enjoy provable
guarantees on correctness and global optimality, can straightforwardly incorporate additional modern
techniques such as kernels to achieve more advanced modeling power, and empirically offer a 1-2 orders
of magnitude speed up over existing methods while giving comparable or better performance.

This is joint work with Ankur Parikh, Carnegie Mellon University.
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Biography of the Speaker

Dr. Eric Xing is a Professor of Machine Learning in the School of Computer Science at Carnegie Mellon
University, and Director of the CMU/UPMC Center for Machine Learning and Health. His principal re-
search interests lie in the development of machine learning and statistical methodology, and large-scale
computational system and architecture; especially for solving problems involving automated learning,
reasoning, and decision-making in high-dimensional, multimodal, and dynamic possible worlds in artifi-
cial, biological, and social systems. Professor Xing received a Ph.D. in Molecular Biology from Rutgers
University, and another Ph.D. in Computer Science from UC Berkeley. He servers (or served) as an asso-
ciate editor of the Annals of Applied Statistics (AOAS), the Journal of American Statistical Association
(JASA), the IEEE Transaction of Pattern Analysis and Machine Intelligence (PAMI), the PLoS Journal
of Computational Biology, and an Action Editor of the Machine Learning Journal (MLJ), the Journal of
Machine Learning Research (JMLR). He was a member of the DARPA Information Science and Tech-
nology (ISAT) Advisory Group, a recipient of the NSF Career Award, the Sloan Fellowship, the United
States Air Force Young Investigator Award, and the IBM Open Collaborative Research Award. He is the
Program Chair of ICML 2014.
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Keynote Talk

Does the Success of Deep Neural Network Language Processing Mean – Finally! – the
End of Theoretical Linguistics?

Paul Smolensky

Johns Hopkins University

smolensky@jhu.edu

Abstract

Statistical methods in natural-language processing that rest on heavily empirically-based language learn-
ing – especially those centrally deploying neural networks – have witnessed dramatic improvement in
the past few years, and their success restores the urgency of understanding the relationship between (i)
these neural/statistical language systems and (ii) the view of linguistic representation, processing, and
structure developed over centuries within theoretical linguistics.

Two hypotheses concerning this relationship arise from our own mathematical and experimental results
from past work, which we will present. These hypotheses can guide – we will argue – important future
research in the seemingly sizable gap separating computational linguistics from linguistic theories of
human language acquisition. These hypotheses are:

1. The internal representational format used in deep neural networks for language – numerical vectors
– is covertly an implementation of a system of discrete, symbolic, structured representations which
are processed so as to optimally meet the demands of a symbolic grammar recognizable from the
perspective of theoretical linguistics.

2. It will not be successes but rather the *failures* of future machine learning approaches to language
acquisition which will be most telling for determining whether such approaches capture the crucial
limitations on human language learning – limitations, documented in recent artificial-grammar-
learning experimental results, which support the nativist Chomskian hypothesis asserting that

• reliably and efficiently learning human grammars from available evidence requires

• that the hypothesis space entertained by the child concerning the set of possible (or likely)
human languages

• be limited by abstract, structure-based constraints;

• these constraints can then also explain (in principle at least) the many robustly-respected
universals observed in cross-linguistic typology.

This is joint work with Jennifer Culbertson, University of Edinburgh.
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Biography of the Speaker

Paul Smolensky is the Krieger-Eisenhower Professor of Cognitive Science at Johns Hopkins University
in Baltimore, Maryland, USA. He studies the mutual implications between the theories of neural com-
putation and of universal grammar and has published in distinguished venues including Science and the
Proceedings of the National Academy of Science USA. He received the David E. Rumelhart Prize for
Outstanding Contributions to the Formal Analysis of Human Cognition (2005), the Chaire de Recherche
Blaise Pascal (2008—9), and the Sapir Professorship of the Linguistic Society of America (2015). Pri-
mary results include:

• Contradicting widely-held convictions, (i) structured symbolic and (ii) neural network models of
cognition are mutually compatible: formal descriptions of the same systems, the mind/brain, at (i)
a highly abstract, and (ii) a more physical, level of description. His article “On the proper treatment
of connectionism” (1988) was until recently one of the 10-most cited articles in The Behavioral
and Brain Sciences, itself the most-cited journal of all the behavioral sciences.

• That the theory of neural computation can in fact strengthen the theory of universal grammar is
attested by the revolutionary impact in theoretical linguistics (within phonology in particular) of
Optimality Theory, a neural- network-derived symbolic grammar formalism that he developed with
Alan Prince (in a book widely released 1993, officially published 2004).

• The learnability theory for Optimality Theory was founded at nearly the same time as the theory
itself, in joint work of Smolensky and his PhD student Bruce Tesar (TR 1993; article in the pre-
mier linguistic theory journal, Linguistic Inquiry 1998; MIT Press book 2000). This work laid
the foundation upon which rests most of the flourishing formal theory of learning in Optimality
Theory.

• There is considerable power in formalizing neural network computation as statistical inference/opti-
mization within a dynamical system. Smolensky’s Harmony Theory (1981–6) analyzed network
computation as Harmony Maximization (an independently-developed homologue to Hopfield’s
“energy minimization” formulation) and first deployed principles of statistical inference for pro-
cessing and learning in the bipartite network structure later to be known as the ‘Restricted Boltz-
mann Machine’ in the initial work on deep neural network learning (Hinton et al., 2006–).

• Powerful recursive symbolic computation can be achieved with massive parallelism in neural net-
works designed to process tensor product representations (TR 1987; journal article in Artificial
Intelligence 1990). Related uses of the tensor product to structure numerical vectors is currently
under rapid development in the field of distributional vector semantics.

Most recently, as argued in Part 1 of the talk, his work shows the value for theoretical and psycho-
linguistics of representations that share both the discrete structure of symbolic representations and the
continuous variation of activity levels in neural network representations (initial results in an article in
Cognitive Science by Smolensky, Goldrick & Mathis 2014).
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Abstract

We present a theoretical analysis of online
parameter tuning in statistical machine
translation (SMT) from a coactive learn-
ing view. This perspective allows us to
give regret and generalization bounds for
latent perceptron algorithms that are com-
mon in SMT, but fall outside of the stan-
dard convex optimization scenario. Coac-
tive learning also introduces the concept of
weak feedback, which we apply in a proof-
of-concept experiment to SMT, showing
that learning from feedback that consists
of slight improvements over predictions
leads to convergence in regret and transla-
tion error rate. This suggests that coactive
learning might be a viable framework for
interactive machine translation. Further-
more, we find that surrogate translations
replacing references that are unreachable
in the decoder search space can be inter-
preted as weak feedback and lead to con-
vergence in learning, if they admit an un-
derlying linear model.

1 Introduction

Online learning has become the tool of choice for
large scale machine learning scenarios. Compared
to batch learning, its advantages include memory
efficiency, due to parameter updates being per-
formed on the basis of single examples, and run-
time efficiency, where a constant number of passes
over the training sample is sufficient for conver-
gence (Bottou and Bousquet, 2004). Statistical
Machine Translation (SMT) has embraced the po-
tential of online learning, both to handle millions
of features and/or millions of data in parameter

tuning via online structured prediction (see Liang
et al. (2006) for seminal early work), and in in-
teractive learning from user post-edits (see Cesa-
Bianchi et al. (2008) for pioneering work on on-
line computer-assisted translation). Online learn-
ing algorithms can be given a theoretical analy-
sis in the framework of online convex optimiza-
tion (Shalev-Shwartz, 2012), however, the appli-
cation of online learning techniques to SMT sac-
rifices convexity because of latent derivation vari-
ables, and because of surrogate translations replac-
ing human references that are unreachable in the
decoder search space. For example, the objective
function actually optimized in Liang et al.’s (2006)
application of Collins’ (2002) structure perceptron
has been analyzed by Gimpel and Smith (2012)
as a non-convex ramp loss function (McAllester
and Keshet, 2011; Do et al., 2008; Collobert et al.,
2006). Since online convex optimization does not
provide convergence guarantees for the algorithm
of Liang et al. (2006), Gimpel and Smith (2012)
recommend CCCP (Yuille and Rangarajan, 2003)
instead for optimization, but fail to provide a the-
oretical analysis of Liang et al.’s (2006) actual al-
gorithm under the new objective.

The goal of this paper is to present an alternative
theoretical analysis of online learning algorithms
for SMT from the viewpoint of coactive learning
(Shivaswamy and Joachims, 2012). This frame-
work allows us to make three main contributions:
• Firstly, the proof techniques of Shivaswamy

and Joachims (2012) are a simple and elegant tool
for a theoretical analysis of perceptron-style al-
gorithms that date back to the perceptron mistake
bound of Novikoff (1962). These techniques pro-
vide an alternative to an online gradient descent
view of perceptron-style algorithms, and can eas-
ily be extended to obtain regret bounds for a la-
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tent perceptron algorithm at a rate of O
�

1p
T

�
, with

possible improvements by using re-scaling. This
bound can be directly used to derive generalization
guarantees for online and online-to-batch conver-
sions of the algorithm, based on well-known con-
centration inequalities. Our analysis covers the ap-
proach of Liang et al. (2006) and supersedes Sun
et al. (2013)’s analysis of the latent perceptron by
providing simpler proofs and by adding a general-
ization analysis. Furthermore, an online learning
framework such as coactive learning covers prob-
lems such as changing n-best lists after each up-
date that were explicitly excluded from the batch
analysis of Gimpel and Smith (2012) and consid-
ered fixed in the analysis of Sun et al. (2013).

• Our second contribution is an extension of
the online learning scenario in SMT to include a
notion of “weak feedback” for the latent percep-
tron: Coactive learning follows an online learning
protocol, where at each round t, the learner pre-
dicts a structured object yt for an input xt, and
the user corrects the learner by responding with
an improved, but not necessarily optimal, object
ȳt with respect to a utility function U . The key as-
set of coactive learning is the ability of the learner
to converge to predictions that are close to opti-
mal structures y⇤t , although the utility function is
unknown to the learner, and only weak feedback
in form of slightly improved structures ȳt is seen
in training. We present a proof-of-concept ex-
periment in which translation feedback of varying
grades is chosen from the n-best list of an “opti-
mal” model that has access to full information. We
show that weak feedback structures correspond to
improvements in TER (Snover et al., 2006) over
predicted structures, and that learning from weak
feedback minimizes regret and TER.

• Our third contribution is to show that cer-
tain practices of computing surrogate references
actually can be understood as a form of weak
feedback. Coactive learning decouples the learner
(performing prediction and updates) from the user
(providing feedback in form of an improved trans-
lation) so that we can compare different surro-
gacy modes as different ways of approximate util-
ity maximization. We show experimentally that
learning from surrogate “hope” derivations (Chi-
ang, 2012) minimizes regret and TER, thus fa-
voring surrogacy modes that admit an underly-
ing linear model, over “local” updates (Liang et
al., 2006) or “oracle” derivations (Sokolov et al.,

2013), for which learning does not converge.
It is important to note that the goal of our ex-

periments is not to present improvements of coac-
tive learning over the “optimal” full-information
model in terms of standard SMT performance. In-
stead, our goal is to present experiments that serve
as a proof-of-concept of the feasibility of coactive
learning from weak feedback for SMT, and to pro-
pose a new perspective on standard practices of
learning from surrogate translations. The rest of
this paper is organized as follows. After a review
of related work (Section 2), we present a latent
percpetron algorithm and analyze its convergence
and generalization properties (Section 3). Our first
set of experiments (Section 4.1) confirms our the-
oretical analysis by showing convergence in regret
and TER for learning from weak and strong feed-
back. Our second set of experiments (Section 4.2)
analyzes the relation of different surrogacy modes
to minimization of regret and TER.

2 Related Work

Our work builds on the framework of coactive
learning, introduced by Shivaswamy and Joachims
(2012). We extend their algorithms and proofs to
the area of SMT where latent variable models are
appropriate, and additionally present generaliza-
tion guarantees and an online-to-batch conversion.
Our theoretical analysis is easily extendable to the
full information case of Sun et al. (2013). We
also extend our own previous work (Sokolov et al.,
2015) with theory and experiments for online-to-
batch conversion, and with experiments on coac-
tive learning from surrogate translations.

Online learning has been applied for discrimi-
native training in SMT, based on perceptron-type
algorithms (Shen et al. (2004), Watanabe et al.
(2006), Liang et al. (2006), Yu et al. (2013), inter
alia), or large-margin approaches (Tillmann and
Zhang (2006), Watanabe et al. (2007), Chiang et
al. (2008), Chiang et al. (2009), Chiang (2012), in-
ter alia). The latest incarnations are able to handle
millions of features and millions of parallel sen-
tences (Simianer et al. (2012), Eidelmann (2012),
Watanabe (2012), Green et al. (2013), inter alia).
Most approaches rely on hidden derivation vari-
ables, use some form of surrogate references, and
involve n-best lists that change after each update.

Online learning from post-edits has mostly been
confined to “simulated post-editing” where inde-
pendently created human reference translations,
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or post-edits on the output from similar SMT
systems, are used as for online learning (Cesa-
Bianchi et al. (2008), López-Salcedo et al. (2012),
Martı́nez-Gómez et al. (2012), Saluja et al. (2012),
Saluja and Zhang (2014), inter alia). Recent
approaches extend online parameter updating by
online phrase extraction (Wäschle et al. (2013),
Bertoldi et al. (2014), Denkowski et al. (2014),
Green et al. (2014), inter alia). We exclude dy-
namic phrase table extension, which has shown to
be important in online learning for post-editing, in
our theoretical analysis (Denkowski et al., 2014).

Learning from weak feedback is related to bi-
nary response-based learning where a meaning
representation is “tried out” by iteratively generat-
ing system outputs, receiving feedback from world
interaction, and updating the model parameters.
Such world interaction consists of database access
in semantic parsing (Kwiatowski et al. (2013), Be-
rant et al. (2013), or Goldwasser and Roth (2013),
inter alia). Feedback in response-based learning
is given by a user accepting or rejecting system
predictions, but not by user corrections.

Lastly, feedback in form of numerical utility
values for actions is studied in the frameworks of
reinforcement learning (Sutton and Barto, 1998)
or in online learning with limited feedback, e.g.,
multi-armed bandit models (Cesa-Bianchi and Lu-
gosi, 2006). Our framework replaces quantitative
feedback with immediate qualitative feedback in
form of a structured object that improves upon the
utility of the prediction.

3 Coactive Learning for Online Latent
Structured Prediction

3.1 Notation and Background
Let X denote a set of input examples, e.g.,
sentences, and let Y(x) denote a set of structured
outputs for x 2 X , e.g., translations. We define
Y = [xY(x). Furthermore, by H(x, y) we
denote a set of possible hidden derivations for a
structured output y 2 Y(x), e.g., for phrase-based
SMT, the hidden derivation is determined by a
phrase segmentation and a phrase alignment be-
tween source and target sentences. Every hidden
derivation h 2 H(x, y) deterministically identifies
an output y 2 Y(x). We define H = [x,yH(x, y).
Let � : X⇥Y⇥H! Rd denote a feature function
that maps a triplet (x, y, h) to a d-dimensional
vector. For phrase-based SMT, we use 14 fea-
tures, defined by phrase translation probabilities,

Algorithm 1 Feedback-based Latent Perceptron

1: Initialize w  0

2: for t = 1, . . . , T do
3: Observe xt

4: (yt, ht) arg max(y,h) w

>
t �(xt, y, h)

5: Obtain weak feedback ȳt

6: if yt 6= ȳt then
7: ¯

ht  arg maxh w

>
t �(xt, ȳt, h)

8: wt+1  wt+�h̄t,ht

�
�(xt, ȳt,

¯

ht)��(xt, yt, ht)
�

language model probability, distance-based and
lexicalized reordering probabilities, and word
and phrase penalty. We assume that the fea-
ture function has a bounded radius, i.e. that
k�(x, y, h)k  R for all x, y, h. By �h,h0 we
denote a distance function that is defined for any
h, h0 2 H, and is used to scale the step size of
updates during learning. In our experiments, we
use the ordinary Euclidean distance between the
feature vectors of derivations. We assume a linear
model with fixed parameters w⇤ such that each
input example is mapped to its correct deriva-
tion and structured output by using (y⇤, h⇤) =

arg maxy2Y(x),h2H(x,y) w⇤>�(x, y, h). We define
for each given input x, its highest scoring deriva-
tion over all outputs Y(x) such that h(x;w) =

arg maxh02H(x,y) maxy2Y(x) w>�(x, y, h0)
and the highest scoring derivation for
a given output y 2 Y(x) such that
h(x|y;w) = arg maxh02H(x,y) w>�(x, y, h0). In
the following theoretical exposition we assume
that the arg max operation can be computed
exactly.

3.2 Feedback-based Latent Perceptron

We assume an online setting, in which examples
are presented one-by-one. The learner observes
an input xt, predicts an output structure yt, and
is presented with feedback ȳt about its prediction,
which is used to make an update to an existing pa-
rameter vector. Algorithm 1 is called ”Feedback-
based Latent Perceptron” to stress the fact that
it only uses weak feedback to its predictions for
learning, but does not necessarily observe optimal
structures as in the full information case (Sun et
al., 2013). Learning from full information can be
recovered by setting the informativeness parame-
ter ↵ to 1 in Equation (2) below, in which case
the feedback structure ȳt equals the optimal struc-
ture y⇤t . Algorithm 1 differs from the algorithm
of Shivaswamy and Joachims (2012) by a joint
maximization over output structures y and hid-
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den derivations h in prediction (line 4), by choos-
ing a hidden derivation ¯h for the feedback struc-
ture ȳ (line 7), and by the use of the re-scaling
factor �h̄t,ht

in the update (line 8), where ¯ht =

h(xt|ȳt;wt) and ht = h(xt;wt) are the deriva-
tions of the feedback structure and the prediction
at time t, respectively. In our theoretical exposi-
tion, we assume that ȳt is reachable in the search
space of possible outputs, that is, ȳt 2 Y(xt).

3.3 Feedback of Graded Utility
The key in the theoretical analysis in Shivaswamy
and Joachims (2012) is the notion of a linear utility
function, determined by parameter vector w⇤, that
is unknown to the learner:

Uh(x, y) = w⇤>�(x, y, h).

Upon a system prediction, the user approximately
maximizes utility, and returns an improved object
ȳt that has higher utility than the predicted yt s.t.

U(xt, ȳt) > U(xt, yt)

where for given x 2 X , y 2 Y(x), and h⇤ =

arg maxh2H(x,y) Uh(x, y), we define U(x, y) =

Uh⇤(x, y) and drop the subscript unless h 6= h⇤.
Importantly, the feedback is typically not the opti-
mal structure y⇤t that is defined as

y⇤t = arg max

y2Y(xt)
U(xt, y).

While not receiving optimal structures in training,
the learning goal is to predict objects with util-
ity close to optimal structures y⇤t . The regret that
is suffered by the algorithm when predicting ob-
ject yt instead of the optimal object y⇤t is

REGT =

1

T

TX

t=1

�
U(xt, y

⇤
t )� U(xt, yt)

�
. (1)

To quantify the amount of information in the
weak feedback, Shivaswamy and Joachims (2012)
define a notion of ↵-informative feedback, which
we generalize as follows for the case of latent
derivations. We assume that there exists a deriva-
tion ¯ht for the feedback structure ȳt, such that
for all predictions yt, the (re-scaled) utility of the
weak feedback ȳt is higher than the (re-scaled)
utility of the prediction yt by a fraction ↵ of the
maximum possible utility range (under the given
utility model). Thus 8t,9¯ht,8h and for ↵ 2 (0, 1]:

�
Uh̄t

(xt,ȳt)� Uh(xt, yt)
�
⇥�h̄t,h

� ↵
�
U(xt, y

⇤
t )� U(xt, yt)

�
� ⇠t, (2)

where ⇠t � 0 are slack variables allowing for vio-
lations of (2) for given ↵. For slack ⇠t = 0, user
feedback is called strictly ↵-informative.

3.4 Convergence Analysis
A central theoretical result in learning from weak
feedback is an analysis that shows that Algo-
rithm 1 minimizes an upper bound on the average
regret (1), despite the fact that optimal structures
are not used in learning:
Theorem 1. Let DT =

PT
t=1 �

2
h̄t,ht

. Then the
average regret of the feedback-based latent per-
ceptron can be upper bounded for any ↵ 2 (0, 1],
for any w⇤ 2 Rd:

REGT 
1

↵T

TX

t=1

⇠t +

2Rkw⇤k
↵

p
DT

T
.

A proof for Theorem 1 is similar to the proof
of Shivaswamy and Joachims (2012) and the orig-
inal mistake bound for the perceptron of Novikoff
(1962).1 The theorem can be interpreted as fol-
lows: we expect lower average regret for higher
values of ↵; due to the dominant term T , regret
will approach the minimum of the accumulated
slack (in case feedback structures violate Equa-
tion (2)) or 0 (in case of strictly ↵-informative
feedback). The main difference between the above
result and the result of Shivaswamy and Joachims
(2012) is the term DT following from the re-
scaled distance of latent derivations. Their anal-
ysis is agnostic of latent derivations, and can be
recovered by setting this scaling factor to 1. This
yields DT = T , and thus recovers the main fac-
tor

p
DT
T =

1p
T

in their regret bound. In our al-
gorithm, penalizing large distances of derivations
can help to move derivations ht closer to ¯ht, there-
fore decreasing DT as learning proceeds. Thus in
case DT < T , our bound is better than the original
bound of Shivaswamy and Joachims (2012) for a
perceptron without re-scaling. As we will show
experimentally, re-scaling leads to a faster conver-
gence in practice.

3.5 Generalization Analysis
Regret bounds measure how good the average pre-
diction of the current model is on the next example
in the given sequence, thus it seems plausible that
a low regret on a sequence of examples should im-
ply good generalization performance on the entire
domain of examples.

1Short proofs are provided in the appendix.
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Generalization for Online Learning. First we
present a generalization bound for the case of on-
line learning on a sequence of random examples,
based on generalization bounds for expected aver-
age regret as given by Cesa-Bianchi et al. (2004).
Let probabilities P and expectations E be de-
fined with respect to the fixed unknown underly-
ing distribution according to which all examples
are drawn. Furthermore, we bound our loss func-
tion `t = U(xt, y⇤t )�U(xt, yt) to [0, 1] by adding
a normalization factor 2R||w⇤|| s.t. REGT =

1
T

PT
t=1 `t. Plugging the bound on REGT of The-

orem 1 directly into Proposition 1 of Cesa-Bianchi
et al. (2004) gives the following theorem:
Theorem 2. Let 0 < � < 1, and let x1, . . . , xT be
a sequence of examples that Algorithm 1 observes.
Then with probability at least 1� �,

E[REGT ]  1

↵T

TX

t=1

⇠t +

2Rkw⇤k
↵

p
DT

T

+ 2||w⇤||R
r

2

T
ln

1

�
.

The generalization bound tells us how far the
expected average regret E[REGT ] (or average
risk, in terms of Cesa-Bianchi et al. (2004)) is from
the average regret that we actually observe in a
specific instantiation of the algorithm.

Generalization for Online-to-Batch Conver-
sion. In practice, perceptron-type algorithms are
often applied in a batch learning scenario, i.e.,
the algorithm is applied for K epochs to a train-
ing sample of size T and then used for predic-
tion on an unseen test set (Freund and Schapire,
1999; Collins, 2002). The difference to the online
learning scenario is that we treat the multi-epoch
algorithm as an empirical risk minimizer that se-
lects a final weight vector wT,K whose expected
loss on unseen data we would like to bound. We
assume that the algorithm is fed with a sequence
of examples x1, . . . , xT , and at each epoch k =

1, . . . ,K it makes a prediction yt,k. The correct
label is y⇤t . For k = 1, . . . ,K and t = 1, . . . , T ,
let `t,k = U(xt, y⇤t ) � U(xt, yt,k), and denote by
�t,k and ⇠t,k the distance at epoch k for example
t, and the slack at epoch k for example t, respec-
tively. Finally, we denote by DT,K =

PT
t=1 �

2
t,K ,

and by wT,K the final weight vector returned after
K epochs. We state a condition of convergence2:

2This condition is too strong for large datasets. However,
we believe that a weaker condition based on ideas from the

Condition 1. Algorithm 1 has converged on train-
ing instances x1, . . . , xT after K epochs if the
predictions on x1, . . . , xT using the final weight
vector wT,K are the same as the predictions on
x1, . . . , xT in the Kth epoch.

Denote by EX(`(x)) the expected loss on
unseen data when using wT,K where `(x) =

U(x, y⇤) � U(x, y0), y⇤ = arg maxy U(x, y) and
y0 = arg maxy maxh w>

T,K�(x, y, h). We can
now state the following result:

Theorem 3. Let 0 < � < 1, and let x1, . . . , xT

be a sample for the multiple-epoch perceptron al-
gorithm such that the algorithm converged on it
(Condition 1). Then, with probability at least 1��,
the expected loss of the feedback-based latent per-
ceptron satisfies:

EX(`(x))  1

↵T

TX

t=1

⇠t,K +

2Rkw⇤k
↵

p
DT,K

T

+ Rkw⇤k

s
8 ln

2
�

T
.

The theorem can be interpreted as a bound on
the generalization error (lefthand-side) by the em-
pirical error (the first two righthand-side terms)
and the variance caused by the finite sample (the
third term in the theorem). The result follows di-
rectly from McDiarmid’s concentration inequality.

4 Experiments

We used the LIG corpus3 which consists of 10,881
tuples of French-English post-edits (Potet et al.,
2012). The corpus is a subset of the news-
commentary dataset provided at WMT4 and con-
tains input French sentences, MT outputs, post-
edited outputs and English references. To prepare
SMT outputs for post-editing, the creators of the
corpus used their own WMT10 system (Potet et
al., 2010), based on the Moses phrase-based de-
coder (Koehn et al., 2007) with dense features.
We replicated a similar Moses system using the
same monolingual and parallel data: a 5-gram
language model was estimated with the KenLM
toolkit (Heafield, 2011) on news.en data (48.65M
sentences, 1.13B tokens), pre-processed with the
tools from the cdec toolkit (Dyer et al., 2010).

perceptron cycling theorem (Block and Levin, 1970; Gelfand
et al., 2010) should suffice to show a similar bound.

3http://www-clips.imag.fr/geod/User/marion.potet/
index.php?page=download

4http://statmt.org/wmt10/translation-task.html
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Figure 1: Regret and TER vs. iterations for ↵-informative feedback ranging from weak (↵ = 0.1) to
strong (↵ = 1.0) informativeness, with (lower part) and without re-scaling (upper part).

Parallel data (europarl+news-comm, 1.64M sen-
tences) were similarly pre-processed and aligned
with fast align (Dyer et al., 2013). In all ex-
periments, training is started with the Moses de-
fault weights. The size of the n-best list, where
used, was set to 1,000. Irrespective of the use of
re-scaling in perceptron training, a constant learn-
ing rate of 10

�5 was used for learning from simu-
lated feedback, and 10

�4 for learning from surro-
gate translations.

Our experiments on online learning require
a random sequence of examples for learning.
Following the techniques described in Bertsekas
(2011) to generate random sequences for incre-
mental optimization, we compared cyclic order (K
epochs of T examples in fixed order), randomized
order (sampling datapoints with replacement), and
random shuffling of datapoints after each cycle,
and found nearly identical regret curves for all
three scenarios. In the following, all figures are
shown for sequences in the cyclic order, with re-
decoding after each update. Furthermore note that
in all three definitions of sequence, we never see
the fixed optimal feedback y⇤t in training, but in-
stead in general a different feedback structure ȳt

(and a different prediction yt) every time we see
the same input xt.

4.1 Idealized Weak and Strong Feedback

In a first experiment, we apply Algorithm 1 to
user feedback of varying utility grade. The goal of

strict (⇠t = 0) slack (⇠t > 0)

# datapoints 5,725 1,155

TER(ȳt) < TER(yt) 52.17% 32.55%
TER(ȳt) = TER(yt) 23.95% 20.52%
TER(ȳt) > TER(yt) 23.88% 46.93%

Table 1: Improved utility vs. improved TER dis-
tance to human post-edits for ↵-informative feed-
back ȳt compared to prediction yt using default
weights at ↵ = 0.1.

this experiment is to confirm our theoretical anal-
ysis by showing convergence in regret for learn-
ing from weak and strong feedback. We select
feedback of varying grade by directly inspecting
the optimal w⇤, thus this feedback is idealized.
However, the experiment also has a realistic back-
ground since we show that ↵-informative feedback
corresponds to improvements under standard eval-
uation metrics such as lowercased and tokenized
TER, and that learning from weak and strong feed-
back leads to convergence in TER on test data.

For this experiment, the post-edit data from the
LIG corpus were randomly split into 3 subsets:
PE-train (6,881 sentences), PE-dev, and PE-test
(2,000 sentences each). PE-train was used for
our online learning experiments. PE-test was held
out for testing the algorithms’ progress on unseen
data. PE-dev was used to obtain w⇤ to define the
utility model. This was done by MERT optimiza-
tion (Och, 2003) towards post-edits under the TER
target metric. Note that the goal of our experi-
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% strictly ↵-informative

local 39.46%
filtered 47.73%
hope 83.30%

Table 2: ↵-informativeness of surrogacy modes.

ments is not to improve SMT performance over
any algorithm that has access to full information to
compute w⇤. Rather, we want to show that learn-
ing from weak feedback leads to convergence in
regret with respect to the optimal model, albeit
at a slower rate than learning from strong feed-
back. The feedback data in this experiment were
generated by searching the n-best list for transla-
tions that are ↵-informative at ↵ 2 {0.1, 0.5, 1.0}
(with possible non-zero slack). This is achieved
by scanning the n-best list output for every input
xt and returning the first ȳt 6= yt that satisfies
Equation (2).5 This setting can be thought of as an
idealized scenario where a user picks translations
from the n-best list that are considered improve-
ments under the optimal w⇤.

In order to verify that our notion of graded util-
ity corresponds to a realistic concept of graded
translation quality, we compared improvements in
utility to improved TER distance to human post-
edits. Table 1 shows that for predictions under
default weights, we obtain strictly ↵-informative
(for ↵ = 0.1) feedback for 5,725 out of 6,881
datapoints in PE-train. These feedback structures
improve utility per definition, and they also yield
better TER distance to post-edits in the majority
of cases. A non-negative slack has to be used in
1,155 datapoins. Here the majority of feedback
structures do not improve TER distance.

Convergence results for different learning sce-
narios are shown in Figure 1. The left upper part
of Figure 1 shows average utility regret against
iterations for a setup without re-scaling, i.e., set-
ting �h̄,h = 1 in the definition of ↵-informative
feedback (Equation (2)) and in the update of Al-
gorithm 1 (line 8). As predicted by our regret
analysis, higher ↵ leads to faster convergence, but
all three curves converge towards a minimal re-
gret. Also, the difference between the curves for

5Note that feedback provided in this way might be
stronger than required at a particular value of ↵ since for all
� � ↵, strictly �-informative feedback is also strictly ↵-
informative. On the other hand, because of the limited size of
the n-best list, we cannot assume strictly ↵-informative user
feedback with zero slack ⇠t. In experiments where updates
are only done if feedback is strictly ↵-informative we found
similar convergence behavior.
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Figure 3: Average loss `t on heldout and train data.

↵ = 0.1 and ↵ = 1.0 is much smaller than a fac-
tor of ten. As expected from the correspondence of
↵-informative feedback to improvements in TER,
similar relations are obtained when plotting TER
scores on test data for training from weak feed-
back at different utility grades. This is shown in
the right upper part of Figure 1.

The left lower part of Figure 1 shows average
utility regret plotted against iterations for a setup
that uses re-scaling. We define �h̄t,h by the `2-
distance between the feature vectors �(xt, ȳt, ¯ht)

of the derivation of the feedback structure and the
feature vector �(xt, yt, ht) of the derivation of the
predicted structure. We see that the curves for all
grades of feedback converge faster than the corre-
sponding curves for un-scaled feedback shown in
the upper part Figure 1. Furthermore, as shown in
the right lower part of Figure 1, TER is decreased
on test data as well at a faster rate.6

Lastly, we present an experimental validation of
the online-to-batch application of our algorithm.
That is, we would like to evaluate predictions that
use the final weight vector wT,K by comparing the
generalization error with the empirical error stated
in Theorem 3. The standard way to do this is to
compare the average loss on heldout data with the
the average loss on the training sequence. Fig-
ure 3 shows these results for models trained on
↵-informative feedback of ↵ 2 {0.1, 0.5, 1.0} for
10 epochs. Similar to the online learning setup,
higher ↵ results in faster convergence. Further-
more, curves for training and heldout evaluation
converge at the same rate.

4.2 Feedback from Surrogate Translations
In this section, we present experiments on learn-
ing from real human post-edits. The goal of
this experiment is to investigate whether the stan-

6We also conducted online-to-batch experiments for sim-
ulated feedback at ↵ 2 {0.1, 0.5, 1.0}. Similar to the online
learning setup, higher ↵ results in faster convergence.
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Figure 2: Regret and TER for online learning from oracles, local, filtered, and hope surrogates.

dard practices for extracting feedback from ob-
served user post-edits for discriminative SMT can
be matched with the modeling assumptions of
the coactive learning framework. The custom-
ary practice in discriminative learning for SMT is
to replace observed user translations by surrogate
translations since the former are often not reach-
able in the search space of the SMT decoder. In
our case, only 29% of the post-edits in the LIG-
corpus were reachable by the decoder. We com-
pare four heuristics of generating surrogate trans-
lations: oracles are generated using the lattice or-
acle approach of Sokolov et al. (2013) which re-
turns the closest path in the decoder search graph
as reachable surrogate translation.7 A local sur-
rogate ỹ is chosen from the n-best list of the
linear model as the translation that achieves the
best TER score with respect to the actual post-
edit y: ỹ = arg miny02n-best(xt;wt) TER(y0, y).
This corresponds to the local update mode of
Liang et al. (2006). A filtered surrogate trans-
lation ỹ is found by scanning down the n-best
list, and accepting the first translation as feed-
back that improves TER score with respect to the
human post-edit y over the 1-best prediction yt

of the linear model: TER(ỹ, y) < TER(yt, y).
Finally, a hope surrogate is chosen from the n-
best list as the translation that jointly maximizes
model score under the linear model and nega-
tive TER score with respect to the human post-
edit: ỹ = arg maxy02n-best(xt;wt)(�TER(y0, y) +

w>
t �(xt, y0, h)). This corresponds to what Chi-

ang (2012) termed “hope derivations”. Informally,
oracles are model-agnostic, as they can pick a
surrogate even from outside of the n-best list;
local is constrained to the n-best list, though
still ignoring the ordering according to the linear

7While the original algorithm is designed to maximize the
BLEU score of the returned path, we tuned its two free pa-
rameters to maximize TER.

model; finally, filtered and hope represent dif-
ferent ways of letting the model score influence
the selected surrogate.

As shown in Figure 2, regret and TER de-
crease with the increased amount of information
about the assumed linear model that is induced by
the surrogate translations: Learning from oracle

surrogates does not converge in regret and TER.
The local surrogates extracted from 1,000-best
lists still do not make effective use of the linear
model, while filtered surrogates enforce an im-
provement over the prediction under TER towards
the human post-edit, and improve convergence in
learning. Empirically, convergence is achieved
only for hope surrogates that jointly maximize
negative TER and linear model score, with a con-
vergence behavior that is very similar to learning
from weak ↵-informative feedback at ↵ ' 0.1.
We quantify this in Table 2 where we see that the
improvement in TER over the prediction that holds
for any hope derivation, corresponds to an im-
provement in ↵-informativeness: hope surrogates
are strictly ↵-informative in 83.3% of the cases
in our experiment, whereas we find a correspon-
dence to strict ↵-informativeness only in 45.74%

or 39.46% of the cases for filtered and local

surrogates, respectively.

5 Discussion

We presented a theoretical analysis of online
learning for SMT from a coactive learning per-
spective. This viewpoint allowed us to give regret
and generalization bounds for perceptron-style on-
line learners that fall outside the convex opti-
mization scenario because of latent variables and
changing feedback structures. We introduced the
concept of weak feedback into online learning for
SMT, and provided proof-of-concept experiments
whose goal was to show that learning from weak
feedback converges to minimal regret, albeit at a
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slower rate than learning from strong feedback.
Furthermore, we showed that the SMT standard
of learning from surrogate hope derivations can to
be interpreted as a search for weak improvements
under the assumed linear model. This justifies
the importance of admitting an underlying linear
model in computing surrogate derivations from a
coactive learning perspective.

Finally, we hope that our analysis motivates fur-
ther work in which the idea of learning from weak
feedback is taken a step further. For example,
our results could perhaps be strengthened by ap-
plying richer feature sets or dynamic phrase table
extension in experiments on interactive SMT. Our
theory would support a new post-editing scenario
where users pick translations from the n-best list
that they consider improvements over the predic-
tion. Furthermore, it would be interesting to see if
“light” post-edits that are better reachable and eas-
ier elicitable than “full” post-edits provide a strong
enough signal for learning.
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Appendix: Proofs of Theorems
Proof of Theorem 1
Proof. First we bound w

>
T+1wT+1 from above:

w

>
T+1wT+1 = w

>
T wT

+ 2w

>
T

�
�(xT , ȳT ,

¯

hT )� �(xT , yT , hT )

�
�h̄T ,hT

+

�
�(xT , ȳT ,

¯

hT )� �(xT , yT , hT )

�>
�h̄T ,hT�

�(xT , ȳT ,

¯

hT )� �(xT , yT , hT )

�
�h̄T ,hT

 w

>
T wT + 4R

2
�

2
h̄T ,hT

 4R

2
DT . (3)

The first equality uses the update rule from Algorithm
1. The second uses the fact that w

>
T (�(xT , ȳT ,

¯

hT ) �

�(xT , yT , hT ))  0 by definition of (yT , hT ) in Algo-
rithm 1. By assumption k�(x, y, h)k  R, 8x, y, h and
by the triangle inequality, k�(x, y, h) � �(x, y

0
, h

0
)k 

k�(x, y, h)k + k�(x, y

0
, h

0
)k  2R. Finally, DT =PT

t=1 �

2
h̄t,ht

by definition, and the last inequality follows
by induction.

The connection to average regret is as follows:

w

>
T+1w⇤ = w

>
T w⇤

+ �h̄T ,hT

�
�(xT , ȳT ,

¯

hT ))� �(xT , yT , hT )

�>
w⇤

=

TX

t=1

�h̄t,ht

�
�(xt, ȳt,

¯

ht)� �(xt, yt, ht)
�>

w⇤

=

TX

t=1

�h̄t,ht

�
Uh̄t

(xt, ȳt)� Uht(xt, yt)
�
. (4)

The first equality again uses the update rule from Algorithm
1. The second follows by induction. The last equality applies
the definition of utility.

Next we upper bound the utility difference:

TX

t=1

�h̄t,ht

�
Uh̄t

(xt, ȳt)� Uht(xt, yt)
�

 kw⇤kkwT+1k  kw⇤k2R

p

DT . (5)

The first inequality follows from applying the Cauchy-
Schwartz inequality w

>
T+1w⇤  kw⇤kkwT+1k to Equa-

tion (4). The seond follows from applying Equation (3) to
kwT+1k =

q
w

>
T+1wT+1.

The final result is obtained simply by lower bounding
Equation (5) using the assumption in Equation (2).

kw⇤k2R

p

DT

�

TX

t=1

�h̄t,ht

�
Uh̄t

(xt, ȳt)� Uht(xt, yt)
�

� ↵

TX

t=1

�
U(xt, y

⇤
t )� U(xt, yt)

�
�

TX

t=1

⇠t

= ↵ T REGT �

TX

t=1

⇠t.

Proof of Theorem 3
Proof. The theorem can be shown by an application of Mc-
Diarmid’s concentration inequality:

Theorem 4 (McDiarmid, 1989). Let Z1, . . . , Zm be a set
of random variables taking value in a set Z . Further, let
f : Z

m
! R be a function that satisfies for all i and

z1, . . . , zm, z

0
i 2 Z:

|f(z1, . . . , zi, . . . , zm)

� f(z1, . . . , z
0
i, . . . , zm)|  c, (6)

for some c. Then for all ✏ > 0,

P(|f � E(f)| > ✏)  2 exp(�

2✏

2

mc

2
). (7)

Let f be the average loss for predicting yt on example xt

in epoch K: f(x1, . . . , xT ) = REGT,K =

1
T

PT
t=1 `t,K .

Because of the convergence condition (Condition 1), `t,K =

`(xt). The expectation of f is E(f) =

1
T

PT
t=1 E[`t,k] =

1
T

PT
t=1 E[`(xt)] = EX(`(x)).

The first and second term on the righthand-side of Theo-
rem 3 follow from upper bounding REGT in the Kth epochs,
using Theorem 1. The third term is derived by calculating c

in Equation (6) as follows:

|f(x1, . . . , xt, . . . , xT )� f(x1, . . . , x
0
t, . . . , xT )|

= |

1

T

TX

t=1

`t,K �
1

T

TX

t=1

`

0
t,K | = |

1

T

TX

t=1

�
`t,K � `

0
t,K

�
|



1

T

TX

t=1

�
|`t,k| + |`

0
t,K |

�


4Rkw⇤k

T

= c.

The first inequality uses the triangle inequality; the sec-
ond uses the upper bound |`t,k|  2R||w⇤||. Setting the
righthand-side of Equation (7) to at least � and solving for ✏,
using c, concludes the proof.
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Francisco-Javier López-Salcedo, Germán Sanchis-
Trilles, and Francisco Casacuberta. 2012. Online
learning of log-linear weights in interactive machine
translation. In IberSpeech, Madrid, Spain.
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Besacier, and Hervé Blanchon. 2012. Collection
of a large database of French-English SMT output
corrections. In LREC, Istanbul, Turkey.

Avneesh Saluja and Ying Zhang. 2014. On-
line discriminative learning for machine translation
with binary-valued feedback. Machine Translation,
28:69–90.

Avneesh Saluja, Ian Lane, and Ying Zhang. 2012.
Machine translation with binary feedback: A large-
margin approach. In AMTA, San Diego, CA.

Shai Shalev-Shwartz. 2012. Online learning and on-
line convex optimization. Foundations and Trends
in Machine Learning, 4(2):107–194.

Libin Shen, Anoop Sarkar, and Franz Josef Och. 2004.
Discriminative reranking for machine translation. In
NAACL, Boston, MA.

Pannaga Shivaswamy and Thorsten Joachims. 2012.
Online structured prediction via coactive learning.
In ICML, Edinburgh, UK.

Patrick Simianer, Stefan Riezler, and Chris Dyer. 2012.
Joint feature selection in distributed stochastic learn-
ing for large-scale discriminative training in SMT.
In ACL, Jeju, Korea.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study of
translation edit rate with targeted human annotation.
In AMTA, Cambridge, MA.

Artem Sokolov, Guillaume Wisniewski, and François
Yvon. 2013. Lattice BLEU oracles in machine
translation. Transactions on Speech and Language
Processing, 10(4):18.

Artem Sokolov, Stefan Riezler, and Shay B. Cohen.
2015. Coactive learning for interactive machine
translation. In ICML Workshop on Machine Learn-
ing for Interactive Systems (MLIS), Lille, France.

Xu Sun, Takuya Matsuzaki, and Wenjie Li. 2013.
Latent structured perceptrons for large scale learn-
ing with hidden information. IEEE Transactions
on Knowledge and Data Engineering, 25(9):2064–
2075.

Richard S. Sutton and Andrew G. Barto. 1998. Re-
inforcement Learning. An Introduction. The MIT
Press.

Christoph Tillmann and Tong Zhang. 2006. A discrim-
inative global training algorithm for statistical MT.
In COLING-ACL, Sydney, Australia.
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Abstract
In coreference resolution, a fair amount of
research treats mention detection as a pre-
processed step and focuses on developing
algorithms for clustering coreferred men-
tions. However, there are significant gaps
between the performance on gold mentions
and the performance on the real problem,
when mentions are predicted from raw text
via an imperfect Mention Detection (MD)
module. Motivated by the goal of reduc-
ing such gaps, we develop an ILP-based
joint coreference resolution and mention
head formulation that is shown to yield sig-
nificant improvements on coreference from
raw text, outperforming existing state-of-
art systems on both the ACE-2004 and the
CoNLL-2012 datasets. At the same time,
our joint approach is shown to improve men-
tion detection by close to 15% F1. One
key insight underlying our approach is that
identifying and co-referring mention heads
is not only sufficient but is more robust than
working with complete mentions.

1 Introduction
Mention detection is rarely studied as a stand-alone
research problem (Recasens et al. (2013) is one
key exception). Most coreference resolution work
simply mentions it in passing as a module in the
pipelined system (Chang et al., 2013; Durrett and
Klein, 2013; Lee et al., 2011; Björkelund and Kuhn,
2014). However, the lack of emphasis is not due to
this being a minor issue, but rather, we think, its dif-
ficulty. Indeed, many papers report results in terms
of gold mentions versus system generated mentions,
as shown in Table 1. Current state-of-the-art sys-
tems show a very significant drop in performance
when running on system generated mentions. These
performance gaps are worrisome, since the real goal
of NLP systems is to process raw data.

System Dataset Gold Predict Gap
Illinois CoNLL-12 77.05 60.00 17.05
Illinois CoNLL-11 77.22 60.18 17.04
Illinois ACE-04 79.42 68.27 11.15
Berkeley CoNLL-11 76.68 60.42 16.26
Stanford ACE-04 81.05 70.33 10.72

Table 1: Performance gaps between using gold mentions
and predicted mentions for three state-of-the-art corefer-
ence resolution systems. Performance gaps are always larger
than 10%. Illinois’s system (Chang et al., 2013) is evaluated
on CoNLL (2012, 2011) Shared Task and ACE-2004 datasets.
It reports an average F1 score of MUC, B3 and CEAFe met-
rics using CoNLL v7.0 scorer. Berkeley’s system (Durrett and
Klein, 2013) reports the same average score on the CoNLL-
2011 Shared Task dataset. Results of Stanford’s system (Lee et
al., 2011) are for B3 metric on ACE-2004 dataset.

This paper focuses on improving end-to-end
coreference performance. We do this by: 1) De-
veloping a new ILP-based joint learning and infer-
ence formulation for coreference and mention head
detection. 2) Developing a better mention head can-
didate generation algorithm. Importantly, we focus
on heads rather than mention boundaries since those
can be identified more robustly and used effectively
in an end-to-end system. As we show, this results
in a dramatic improvement in the quality of the MD
component and, consequently, a significant reduc-
tion in the performance gap between coreference on
gold mentions and coreference on raw data.

Existing coreference systems usually consider a
pipelined system, where the mention detection step
is followed by that of clustering mentions into coref-
erence chains. Higher quality mention identification
naturally leads to better coreference performance.
Standard methods define mentions as boundaries of
text, and expect exact boundaries as input in the
coreference step. However, mentions have an intrin-
sic structure, in which mention heads carry the cru-
cial information. Here, we define a mention head as
the last token of a syntactic head, or the whole syn-
tactic head for proper names.1 For example, in “the

1Here, we follow the ACE annotation guideline. Note that
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incumbent [Barack Obama]” and “[officials] at the
Pentagon”, “Barack Obama” and “officials” serve
as mention heads, respectively. Mention heads can
be used as auxiliary structures for coreference. In
this paper, we first identify mention heads, and then
detect mention boundaries based on heads. We rely
heavily on the first, head identification, step, which
we show to be sufficient to support coreference deci-
sions. Moreover, this step also provides enough in-
formation for “understanding” the coreference out-
put, and can be evaluated more robustly (since mi-
nor disagreements on mention boundaries are often
a reason for evaluation issues when dealing with
predicted mentions). We only identify the mention
boundaries at the end, after we make the coreference
decisions, to be consistent with current evaluation
standards in the corefernce resolution community.
Consider the following example2:

[Multinational companies investing in [China]]
had become so angry that [they] recently
set up an anti-piracy league to pressure [the
[Chinese] government] to take action. [Do-
mestic manufacturers, [who] are also suffering],
launched a similar body this month. [They] hope
[the government] can introduce a new law in-
creasing fines against [producers of fake goods]
from the amount of profit made to the value of the
goods produced.

Here, phrases in the brackets are mentions and
the underlined simple phrases are mention heads.
Moreover, mention boundaries can be nested (the
boundary of a mention is inside the boundary of
another mention), but mention heads never overlap.
This property also simplifies the problem of mention
head candidate generation. In the example above,
the first “they” refers to “Multinational companies
investing in China” and the second “They” refers
to “Domestic manufacturers, who are also suffer-
ing”. In both cases, the mention heads are sufficient
to support the decisions: ”they” refers to ”compa-
nies”, and ”They” refers to ”manufacturers”. In
fact, most of the features3 implemented in existing
coreference resolution systems rely solely on men-
tion heads (Bengtson and Roth, 2008).

Furthermore, consider the possible mention can-
didate “league” (italic in the text). It is not cho-
sen as a mention because the surrounding context
is not focused on “anti-piracy league”. So, mention

the CoNLL-2012 dataset is built from OntoNotes-5.0 corpus.
2This example is chosen from the ACE-2004 corpus.
3All features except for those that rely on modifiers.

Figure 1: Comparison between a traditional pipelined sys-
tem and our proposed system. We split up mention detection
into two steps: mention head candidate generation and (an op-
tional) mention boundary detection. We feed mention heads
rather than complete mentions into the coreference model. Dur-
ing the joint head-coreference process, we reject some mention
head candidates and then recover complete mention boundaries
after coreference decisions are made.

detection can be viewed as a global decision prob-
lem, which involves considering the relevance of a
mention to its context. The fact that the coreference
decision provides a way to represent this relevance,
further motivates considering mention detection and
coreference jointly. The insight here is that a men-
tion candidate will be more likely to be valid when
it has more high confidence coreference links.

This paper develops a joint coreference resolution
and mention head detection framework as an Inte-
ger Linear Program (ILP) following Roth and Yih
(2004). Figure 1 compares a traditional pipelined
system with our proposed system. Our joint for-
mulation includes decision variables both for coref-
erence links between pairs of mention heads, and
for all mention head candidates, and we simultane-
ously learn the ILP coefficients for all these vari-
ables. During joint inference, some of the mention
head candidates will be rejected (that is, the corre-
sponding variables will be assigned ’0’), contribut-
ing to improvement both in MD and in coreference
performance. The aforementioned joint approach
builds on an algorithm that generates mention head
candidates. Our candidate generation process con-
sists of a statistical component and a component that
makes use of existing resources, and is designed to
ensure high recall on head candidates.

Ideally, after making coreference decisions, we
extend the remaining mention heads to complete
mentions; we employ a binary classifier, which
shares all features with the mention head detection
model in the joint step.

Our proposed system can work on both ACE and
OntoNotes datasets, even though their styles of an-
notation are different. There are two main differ-
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ences to be addressed. First, OntoNotes removes
singleton mentions, even if they are valid mentions.
This causes additional difficulty in learning a good
mention detector in a pipelined framework. How-
ever, our joint framework can adapt to it by rejecting
those singleton mentions. More details will be dis-
cussed in Sec. 2. Second, ACE uses shortest deno-
tative phrases to identify mentions while OntoNotes
tends to use long text spans. This makes identifying
mention boundaries unnecessarily hard. Our system
focuses on mention heads in the coreference stage to
ensure robustness. As OntoNotes does not contain
head annotations, we preprocess the data to extract
mention heads which conform with the ACE style.

Results on ACE-2004 and CoNLL-2012 datasets
show that our system4 reduces the performance gap
for coreference by around 25% (measured as the ra-
tio of performance improvement over performance
gap) and improves the overall mention detection by
over 10 F1 points. With such significant improve-
ments, we achieve the best end-to-end coreference
resolution results reported so far.

The main contributions of our work can be sum-
marized as follows:

1. We develop a new, end-to-end, coreference ap-
proach that is based on a joint learning and in-
ference model for mention heads and corefer-
ence decisions.

2. We develop an improved mention head candi-
date generation module and a mention bound-
ary detection module.

3. We achieve the best coreference results on pre-
dicted mentions and reduce the performance
gap compared to using gold mentions.

The rest of the paper is organized as follows. We
explain the joint head-coreference learning and in-
ference framework in Sec. 2. Our mention head
candidate generation module and mention boundary
detection module are described in Sec. 3. We report
our experimental results in Sec. 4, review related
work in Sec. 5 and conclude in Sec. 6.

2 A Joint Head-Coreference Framework

This section describes our joint coreference resolu-
tion and mention head detection framework. Our
work is inspired by the latent left-linking model in
Chang et al. (2013) and the ILP formulation from
Chang et al. (2011). The joint learning and infer-
ence model takes as input mention head candidates

4Available at http://cogcomp.cs.illinois.
edu/page/software_view/Coref

(Sec. 3) and jointly (1) determines if they are indeed
mention heads and (2) learns a similarity metric be-
tween mentions. This is done by simultaneously
learning a binary mention head detection classifier
and a mention-pair coreference classifier. The men-
tion head detection model here is mainly trained to
differentiate valid mention heads from invalid ones.
By learning and making decisions jointly, it also
serves as a singleton mention head classifier, build-
ing on insights from Recasens et al. (2013). This
joint framework aims to improve performance on
both mention head detection and on coreference.

We first describe the formualtion of the men-
tion head detection and the ILP-based mention-pair
coreference separately, and then propose the joint
head-coreference framework.

2.1 Mention Head Detection
The mention head detection model is a binary classi-
fier gm = w>

1 j(m), in which j(m) is a feature vector
for mention head candidate m and w1 is the corre-
sponding weight vector. We identify a candidate m
as a mention head if gm > 0. The features utilized in
the vector j(m) consist of: 1) Gazetteer features 2)
Part-Of-Speech features 3) Wordnet features 4) Fea-
tures from the previous and next tokens 5) Length of
mention head. 6) Normalized Pointwise Mutual In-
formation (NPMI) on the tokens across a mention
head boundary 7) Feature conjunctions. Altogether
there are hundreds of thousands of sparse features.

2.2 ILP-based Mention-Pair Coreference
Let M be the set of all mentions. We train a corefer-
ence model by learning a pairwise mention scoring
function. Specifically, given a mention-pair (u,v)
(u,v 2 M, u is the antecedent of v), we learn a left-
linking scoring function fu,v = w>

2 f(u,v), where
f(u,v) is a pairwise feature vector and w2 is the
weight vector. The inference algorithm is inspired
by the best-left-link approach (Chang et al., 2011),
where they solve the following ILP problem:

argmax
y Â

u<v,u,v2M
fu,vyu,v,

s.t. Â
u<v

yu,v  1, 8v 2M,

yu,v 2 {0,1} 8u,v 2M.

(1)

Here, yu,v = 1 iff mentions u,v are directly linked.
Thus, we can construct a forest and the mentions
in the same connected component (i.e., in the same
tree) are co-referred. For this mention-pair corefer-
ence model f(u,v), we use the same set of features
used in Bengtson and Roth (2008).
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2.3 Joint Inference Framework
We extend expression (1) to facilitate joint inference
on mention heads and coreference as follows:

argmax
y Â

u<v,u,v2M
fu,vyu,v + Â

m2M
gmym,

s.t. Â
u<v

yu,v  1, 8v 2M0,

Â
u<v

yu,v  yv, 8v 2M0,

yu,v 2 {0,1}, ym 2 {0,1} 8u,v,m 2M0.

Here, M0 is the set of all mention head candidates.
ym is the decision variable for mention head candi-
date m. ym = 1 if and only if the mention head m
is chosen. To consider coreference decisions and
mention head decisions together, we add the con-
straint Âu<v yu,v  yv, which ensures that if a candi-
date mention head v is not chosen, then it will not
have coreference links with other mention heads.

2.4 Joint Learning Framework
To support joint learning of the parameters w1 and
w2 described above, we define a joint training objec-
tive function C(w1,w2) for mention head detection
and coreference, which uses a max-margin approach
to learn both weight vectors. Suppose we have a col-
lection of documents D, and we generate nd men-
tion head candidates for each document d (d 2 D).
We use an indicator function d (u,m) to represent
whether mention heads u,m are in the same corefer-
ence cluster based on gold annotations (d (u,m) = 1
iff they are in the same cluster). Similarly, W(m) is
an indicator funtion representing whether mention
head m is valid in the gold annotations.

For simplicity, we first define

u0 = argmax
u<m

(w>
2 f(u,m)�d (u,m)),

u00 = arg max
u<m,d (u,m)=1

w>
2 f(u,m)W(m).

We then minimize the following joint training ob-
jective function C(w1,w2).

C(w1,w2) =

1
|D| Â

d2D

1
nd

Â
m

(Ccore f ,m(w2)

+Clocal,m(w1)+Ctrans,m(w1))+R(w1,w2).

C(w1,w2) is composed of four parts. The first part
is the loss function for coreference, where we have

Ccore f ,m(w2) =�w>
2 f(u00,m)W(m)

+(w>
2 f(u0,m)�d (u0,m))(W(m)_W(u0)).

It is similar to the loss function for a latent left-
linking coreference model5. As the second com-
ponent, we have the quadratic loss for the mention
head detection model,

Clocal,m(w1) =

1
2
(w>

1 j(m)�W(m))

2.

Using the third component, we further maximize the
margin between valid and invalid mention head can-
didates when they are selected as the best-left-link
mention heads for any valid mention head. It can be
represented as

Ctrans,m(w1) =

1
2
(w>

1 j(u0)�W(u0))2W(m).

The last part is the regularization term

R(w1,w2) =

l1

2
||w1||2 +

l2

2
||w2||2.

2.5 Stochastic Subgradient Descent for Joint
Learning

For joint learning, we choose stochastic subgradi-
ent descent (SGD) approach to facilitate performing
SGD on a per mention head basis. Next, we de-
scribe the weight update algorithm by defining the
subgradients.

The partial subgradient w.r.t. mention head m for
the head weight vector w1 is given by

—w1,mC(w1,w2) =

1
|D|nd

(—Clocal,m(w1)+—Ctrans,m(w1))+l1w1, (2)

where
—Clocal,m(w1) = (w>

1 j(m)�W(m))j(m),

—Ctrans,m(w1) = (w>
1 j(u0)�W(u0))j(u0)W(m).

The partial subgradient w.r.t. mention head m for
the coreference weight vector w2 is given by

—w2,mC(w1,w2) = l2w2+
8
><

>:

f(u0,m)�f(u00,m) if W(m) = 1,

f(u0,m) if W(m) = 0 and W(u0) = 1,

0 if W(m) = 0 and W(u0) = 0.

(3)

Here l1 and l2 are regularization coefficients
which are tuned on the development set. To learn
the mention head detection model, we consider two
different parts of the gradient in expression (2).
—Clocal,m(w1) is exactly the local gradient of men-
tion head m while we add —Ctrans,m(w1) to represent

5More details can be found in Chang et al. (2013). The
difference here is that we also consider the validity of mention
heads using W(u),W(m)
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the gradient for mention head u0, the mention head
chosen by the current best-left-linking model for m.
This serves to maximize the margin between valid
mention heads and invalid ones. As invalid mention
heads will not be linked to any other mention head,
—trans is zero when m is invalid. When training the
mention-pair coreference model, we only consider
gradients when at least one of the two mention heads
m,u0 is valid, as shown in expression (3). When
mention head m is valid (W(m) = 1), the gradient
is the same as local training for best-left-link of m
(first condition in expression (3)). When m is not
valid while u0 is valid, we only demote the coref-
erence link between them (second condition in ex-
pression (3)). We consider only the gradient from
the regularization term when both m,u0 are invalid.

As mentioned before, our framework can han-
dle annotations with or without singletion mentions.
When the gold data contains no singleton mentions,
we have W(m) = 0 for all singleton mention heads
among mention head candidates. Then, our men-
tion head detection model partly serves as a single-
ton head detector, and tries to reject singletons in
the joint decisions with coreference. When the gold
data contains singleton mentions, we have W(m) = 1
for all valid singleton mention heads. Our mention
head detection model then only learns to differenti-
ate invalid mention heads from valid ones, and thus
has the ability to preserve valid singleton heads.

Most of the head mentions proposed by the al-
gorithms described in Sec. 3 are positive exam-
ples. We ensure a balanced training of the men-
tion head detection model by adding sub-sampled
invalid mention head candidates as negative exam-
ples. Specifically, after mention head candidate gen-
eration (described in Sec. 3), we train on a set of
candidates with precision larger than 50%. We then
use Illinois Chunker (Punyakanok and Roth, 2001)6

to extract more noun phrases from the text and em-
ploy Collins head rules (Collins, 1999) to identify
their heads. When these extracted heads do not
overlap with gold mention heads, we treat them as
negative examples.

We note that the aforementioned joint framework
can take as input either complete mention candi-
dates or mention head candidates. However, in this
paper we only feed mention heads into it. Our ex-
perimental results support our intuition that this pro-
vides better results.

6http://cogcomp.cs.illinois.edu/page/
software_view/Chunker

3 Mention Detection Modules

This section describes the module that generates our
mention head candidates, and then how the mention
heads are expanded to complete mentions.

3.1 Mention Head Candidate Generation
The goal of the mention head candidate genera-
tion process is to acquire candidates from multiple
sources to ensure high recall, given that our joint
framework acts as a filter and increases precision.
We view the sources as independent components
and merge all mention heads generated. A sequence
labelling component and a named entity recogni-
tion component employ statistical learning methods.
These are augmented by additional heads that we
acquire from Wikipedia and a “known heads” re-
source, which we incorporate utilizing string match-
ing algorithms.

3.1.1 Statistical Components
Sequence Labelling Component We use the fol-
lowing notations. Let O =< o1,o2, · · · ,on > repre-
sent an input token sequence over an alphabet W. A
mention is a substring of consecutive input tokens
mi, j =< oi,oi+1, · · · ,o j > for 1  i  j  n. We
consider the positions of mentions in the text: two
mentions with an identical sequence of tokens that
differ in position are considered different mentions.

The sequence labeling component builds on the
following assumption:
Assumption Different mentions have different
heads, and heads do not overlap with each other.
That is, for each mi, j, we have a corresponding
head ha,b where i  a  b  j. Moreover, for an-
other head ha0,b0 , we have the satisfying condition
a�b0 > 0 or b�a0 < 0 8ha,b,ha0,b0 .

Based on this assumption, the problem of
identifying mention heads is a sequential phrase
identification problem, and we choose to em-
ploy the BILOU-representation as it has advan-
tages over traditional BIO-representation, as shown,
e.g. in Ratinov and Roth (2009). The BILOU-
representation suggests learning classifiers that
identify the Beginning, Inside and Last tokens of
multi-token chunks as well as Unit-length chunks.
The problem is then transformed into a simple, but
constrained, 5-class classification problem.

The BILOU-classifier shares all features with the
mention head detection model described in Sec. 2.1
except for two: length of mention heads and NPMI
over head boundary. For each instance, the feature
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vector is sparse and we use sparse perceptron (Jack-
son and Craven, 1996) for supervised training. We
also apply a two layer prediction aggregation. First,
we apply a baseline BILOU-classifier, and then use
the resulting predictions as additional features in a
second level of inference to take interactions into
account in an efficient manner. A similar technique
has been applied in Ratinov and Roth (2009), and
has shown favorable results over other ”standard”
sequential prediction models.
Named Entity Recognition Component We use
existing tools to extract named entities as additional
mention head candidates. We choose the state-of-
the-art “Illinois Named Entity Tagger” package7.
It uses distributional word representations that im-
prove its generalization. This package gives the
standard Person/Location/Organization/Misc labels
and we take all output named entities as candidates.

3.1.2 Resource-Driven Matching Components
Wikipedia Many mention heads can be directly
matched to a Wikipedia title. We get 4,045,764
Wikipedia titles from Wikipedia dumps and use all
of them as potential mention heads. The Wikipedia
matching component includes an efficient hashing
algorithm implemented via a DJB2 hash function8.
One important advantage of using Wikipedia is
that it keeps updating. This component can con-
tribute steadily to ensure a good coverage of men-
tion heads. We first run this matching component
on training documents and compute the precision of
entries that appear in the text (the probability of ap-
pearing as mention heads). We then get the set of en-
tries with precision higher than a threshold a , which
is tuned on the development set using F1-score. We
use them as candidates for mention head matching.
Known Head Some mention heads appear repeat-
edly in the text. To fully utilize the training data, we
construct a known mention head candidate set and
identify them in the test documents. To balance be-
tween recall and precision, we set a parameter b > 0
as a precision threshold and only allow those men-
tion heads with precision larger than b on the train-
ing set. Please note that threshold b is also tuned on
the development set using F1-score.

We also employ a simple word variation tolerance
algorithm in our matching components, to general-
ize over small variations (plural/singular, etc.).

7http://cogcomp.cs.illinois.edu/page/
software_view/NETagger

8http://www.cse.yorku.ca/˜oz/hash.html

3.2 Mention Boundary Detection
Once the joint learning and inference process deter-
mines the set of mention heads (and their corefer-
ence chains), we extend the heads to complete men-
tions. Note that this process may not be necessary,
since in many applications, the head clusters often
provide enough information. However, for consis-
tency with existing coreference resolution systems,
we describe below how we expand the heads to
complete mentions.

We learn a binary classifier to expand mentions,
which determines if the mention head should in-
clude the token to its left and to its right. We fol-
low the notations in Sec. 2.1. We construct pos-
itive examples as (op,ha,b,dir), 8mi, j(ha,b). Here
p 2 {i, i + 1, · · · ,a� 1}[ {b + 1,b + 2, · · · , j} and
when p = i, i + 1, · · · ,a� 1, dir = L; when p =

b + 1,b + 2, · · · , j, dir = R. We construct negative
examples as (oi�1,ha,b,L) and (o j+1,ha,b,R). Once
trained, the binary classifier takes in the head, a to-
ken and the direction of the token relative to the
head, and decides whether the token is inside or out-
side the mention corresponding to the head. At test
time, this classifier is used around each confirmed
head to determine the mention boundaries. The fea-
tures used here are similar to the mention head de-
tection model described in Sec. 2.1.

4 Experiments

We present experiments on the two standard coref-
erence resolution datasets, ACE-2004 (NIST, 2004)
and OntoNotes-5.0 (Hovy et al., 2006). Our ap-
proach results in a substantial reduction in the coref-
erence performance gap between gold and pre-
dicted mentions, and significantly outperforms ex-
isting stat-of-the-art results on coreference resolu-
tion; in addition, it achieves significant performance
improvement on MD for both datasets.

4.1 Experimental Setup
Datasets The ACE-2004 dataset contains 443 doc-
uments. We use a standard split of 268 training doc-
uments, 68 development documents, and 106 test-
ing documents (Culotta et al., 2007; Bengtson and
Roth, 2008). The OntoNotes-5.0 dataset, which is
released for the CoNLL-2012 Shared Task (Prad-
han et al., 2012), contains 3,145 annotated docu-
ments. These documents come from a wide range of
sources which include newswire, bible, transcripts,
magazines, and web blogs. We report results on the
test documents for both datasets.
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MUC B3 CEAFe AVG
GoldM/H 78.17 81.64 78.45 79.42
StanfordM 63.89 70.33 70.21 68.14
PredictedM 64.28 70.37 70.16 68.27
H-M-CorefM 65.81 71.97 71.14 69.64
H-Joint-MM 67.28 73.06 73.25 71.20
StanfordH 70.28 73.93 73.04 72.42
PredictedH 71.35 75.33 74.02 73.57
H-M-CorefH 71.81 75.69 74.45 73.98
H-Joint-MH 72.74 76.69 75.18 74.87

Table 2: Performance of coreference resolution for all sys-
tems on the ACE-2004 dataset. Subscripts (M , H ) indicate
evaluations on (mentions, mention heads) respectively. For
gold mentions and mention heads, they yield the same per-
formance for coreference. Our proposed H-Joint-M system
achieves the highest performance. Parameters of our proposed
system are tuned as a = 0.9, b = 0.8, l1 = 0.2 and l2 = 0.3.

The ACE-2004 dataset is annotated with both
mention and mention heads, while the OntoNotes-
5.0 dataset only has mention annotations. There-
fore, we preprocess Ontonote-5.0 to derive men-
tion heads using Collins head rules (Collins, 1999)
with gold constituency parsing information and gold
named entity information. The parsing information9

is only needed to generate training data for the men-
tion head candidate generator and named entities are
directly set as heads. We set these extracted heads
as gold, which enables us to train the two layer
BILOU-classifier described in Sec. 3.1.1. The non-
overlapping mention head assumption in Sec. 3.1.1
can be verified empirically on both ACE-2004 and
OntoNotes-5.0 datasets.
Baseline Systems We choose three publicly avail-
able state-of-the-art end-to-end coreference systems
as our baselines: Stanford system (Lee et al., 2011),
Berkeley system (Durrett and Klein, 2014) and
HOTCoref system (Björkelund and Kuhn, 2014).
Developed Systems Our developed system is built
on the work by Chang et al. (2013), using Con-
strained Latent Left-Linking Model (CL3M) as our
mention-pair coreference model in the joint frame-
work10. When the CL3M coreference system uses
gold mentions or heads, we call the system Gold;
when it uses predicted mentions or heads, we call
the system Predicted. The mention head candidate
generation module along with mention boundary
detection module can be grouped together to form
a complete mention detection system, and we call
it H-M-MD. We can feed the predicted mentions
from H-M-MD directly into the mention-pair coref-

9No parsing information is needed at evaluation time.
10We use Gurobi v5.0.1 as our ILP solver.

MUC B3 CEAFe AVG
GoldM/H 82.03 70.59 66.76 73.12
StanfordM 64.62 51.89 48.23 54.91
HotCorefM 70.74 58.37 55.47 61.53
BerkeleyM 71.24 58.71 55.18 61.71
PredictedM 69.63 57.46 53.16 60.08
H-M-CorefM 70.95 59.11 54.98 61.68
H-Joint-MM 72.22 60.50 56.37 63.03
StanfordH 68.53 56.68 52.36 59.19
HotCorefH 72.94 60.27 57.53 63.58
BerkeleyH 73.05 60.39 57.43 63.62
PredictedH 72.11 60.12 55.68 62.64
H-M-CorefH 73.22 61.42 56.21 63.62
H-Joint-MH 74.83 62.77 57.93 65.18

Table 3: Performance of coreference resolution for all sys-
tems on the CoNLL-2012 dataset. Subscripts (M , H ) indi-
cate evaluations on (mentions, mention heads) respectively. For
gold mentions and mention heads, they yield the same per-
formance for coreference. Our proposed H-Joint-M system
achieves the highest performance. Parameters of our proposed
system are tuned as a = 0.9, b = 0.9, l1 = 0.25 and l2 = 0.2.

erence model that we implemented, resulting in a
traditional pipelined end-to-end coreference system,
namely H-M-Coref. We name our new proposed
end-to-end coreference resolution system incorpo-
rating both the mention head candidate generation
module and the joint framework as H-Joint-M.
Evaluation Metrics We compare all systems us-
ing three popular metrics for coreference resolution:
MUC (Vilain et al., 1995), B3 (Bagga and Bald-
win, 1998), and Entity-based CEAF (CEAFe) (Luo,
2005). We use the average F1 scores (AVG) of these
three metrics as the main metric for comparison.
We use the v7.0 scorer provided by CoNLL-2012
Shared Task11. We also evaluate the mention de-
tection performance based on precision, recall and
F1 score. As mention heads are important for both
mention detection and coreference resolution, we
also report results evaluated on mention heads.

4.2 Performance for Coreference Resolution
Performance of coreference resolution for all sys-
tems on the ACE-2004 and CoNLL-2012 datasets is
shown in Table 2 and Table 3 respectively.12 These
results show that our developed system H-Joint-M

11The latest scorer is version v8.01, but MUC, B3, CEAFe
and CoNLL average scores are not changed. For evaluation on
ACE-2004, we convert the system output and gold annotations
into CoNLL format.

12We do not provide results from Berkeley and HOTCoref on
ACE-2004 dataset as they do not directly support ACE input.
Results for HOTCoref are slightly different from the results re-
ported in Björkelund and Kuhn (2014). For Berkeley system,
we use the reported results from Durrett and Klein (2014).
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shows significant improvement on all metrics for
both datasets. Existing systems only report results
on mentions. Here, we also show their performance
evaluated on mention heads. When evaluated on
mention heads rather than mentions13, we can al-
ways expect a performance increase for all systems
on both datasets. Even though evaluating on men-
tions is more common in the literature, it is often
enough to identify just mention heads in corefer-
ence chains (as shown in the example from Sec.
1). H-M-Coref can already bring substantial perfor-
mance improvement, which indicates that it is help-
ful for coreference to just identify high quality men-
tion heads. Our proposed H-Joint-M system out-
performs all baselines and achieves the best results
reported so far.

4.3 Performance for Mention Detection
The performance of mention detection for all sys-
tems on the ACE-2004 and CoNLL-2012 datasets
is shown in Table 4. These results show that our
developed system exhibits significant improvement
on precision and recall for both datasets. H-M-MD
mainly improves on recall, indicating, as expected,
that the mention head candidate generation mod-
ule ensures high recall on mention heads. H-Joint-
M mainly improves on precision, indicating, as ex-
pected, that the joint framework correctly rejects
many of the invalid mention head candidates during
joint inference. Our joint model can adapt to anno-
tations with or without singleton mentions. Based
on training data, our system has the ability to pre-
serve true singleton mentions in ACE while reject-
ing many singleton mentions in OntoNotes14. Note
that we have better mention detection results on
ACE-2004 dataset than on OntoNotes-5.0 dataset.
We believe that this is due to the fact that extract-
ing mention heads in the OntoNotes dataset is some-
what noisy.

4.4 Analysis of Performance Improvement
The improvement of our H-Joint-M system is due to
two distinct but related modules: the mention head
candidate generation module (“Head”) and the joint
learning and inference framework (“Joint”).15 We

13Here, we treat mention heads as mentions. Thus, in the
evaluation script, we set the boundary of a mention to be the
boundary of its correponding mention head.

14Please note that when evaluating on OntoNotes, we even-
tually remove all singleton mentions from the output.

15“Joint” rows are computed as “H-Joint-M” rows minus
“Head” rows. They reflect the contribution of the joint frame-
work to mention detection (by rejecting some mention heads).

Systems Precision Recall F1-score
ACE-2004

PredictedM 75.11 73.03 74.06
H-M-MDM 77.45 92.97 83.90
H-Joint-MM 85.34 91.73 88.42
PredictedH 76.84 86.99 79.87
H-M-MDH 80.82 93.45 86.68
H-Joint-MH 88.85 92.27 90.53

CoNLL-2012
PredictedM 65.28 63.41 64.33
H-M-MDM 70.09 76.72 73.26
H-Joint-MM 78.51 75.52 76.99
PredictedH 76.38 74.02 75.18
H-M-MDH 77.73 83.99 80.74
H-Joint-MH 85.07 82.31 83.67

Table 4: Performance of mention detection for all systems
on the ACE-2004 and CoNLL-2012 datasets. Subscripts (M ,
H ) indicate evaluations on (mentions, mention heads) respec-
tively. Our proposed H-Joint-M system dramatically improves
the MD performance.

evaluate the effect of these two modules in terms
of Mention Detection Error Reduction (MDER) and
Performance Gap Reduction (PGR) for coreference.
MDER is computed as the ratio of performance im-
provement for mention detection over the original
mention detection error rate, while PGR is com-
puted as the ratio of performance improvement for
coreference over the performance gap for corefer-
ence. Results on the ACE-2004 and CoNLL-2012
datasets are shown in Table 5.16

The mention head candidate generation module
has a bigger impact on MDER compared to the joint
framework. However, they both have the same level
of positive effects on PGR for coreference resolu-
tion. On both datasets, we achieve more than 20%
performance gap reduction for coreference.

5 Related Work

Coreference resolution has been extensively stud-
ied, with several state-of-the-art approaches ad-
dressing this task (Lee et al., 2011; Durrett and
Klein, 2013; Björkelund and Kuhn, 2014; Song et
al., 2012). Many of the early rule-based systems
like Hobbs (1978) and Lappin and Leass (1994)
gained considerable popularity. The early designs
were easy to understand and the rules were designed
manually. Machine learning approaches were intro-
duced in many works (Connolly et al., 1997; Ng and

16We use bootstrapping resampling (10 times from the test
data) with signed rank test. All the improvements shown are
statistically significant.
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ACE-2004 MDER PGR(AVG)
HeadM 37.93 12.29
JointM 17.43 13.99
H-Joint-MM 55.36 26.28
HeadH 34.00 7.01
JointH 19.22 15.21
H-Joint-MH 53.22 22.22
CoNLL-2012 MDER PGR(AVG)
HeadM 25.04 12.16
JointM 10.45 10.44
H-Joint-MM 35.49 22.60
HeadH 22.40 10.58
JointH 11.81 13.75
H-Joint-MH 34.21 24.33

Table 5: Analysis of performance improvement in terms
of Mention Detection Error Reduction (MDER) and Perfor-
mance Gap Reduction (PGR) for coreference resolution on
the ACE-2004 and CoNLL-2012 datasets. “Head” represents
the mention head candidate generation module, “Joint” repre-
sents the joint learning and inference framework, and “H-Joint-
M” indicates the end-to-end system.

Cardie, 2002; Bengtson and Roth, 2008; Soon et al.,
2001). The introduction of ILP methods has influ-
enced the coreference area too (Chang et al., 2011;
Denis and Baldridge, 2007). In this paper, we use
the Constrained Latent Left-Linking Model (CL3M)
described in Chang et al. (2013) in our experiments.

The task of mention detection is closely related
to Named Entity Recognition (NER). Punyakanok
and Roth (2001) thoroughly study phrase identifica-
tion in sentences and propose three different general
approaches. They aim to learn several different lo-
cal classifiers and combine them to optimally satisfy
some global constraints. Cardie and Pierce (1998)
propose to select certain rules based on a given
corpus, to identify base noun phrases. However,
the phrases detected are not necessarily mentions
that we need to discover. Ratinov and Roth (2009)
present detailed studies on the task of named entity
recognition, which discusses and compares different
methods on multiple aspects including chunk repre-
sentation, inference method, utility of non-local fea-
tures, and integration of external knowledge. NER
can be regarded as a sequential labeling problem,
which can be modeled by several proposed mod-
els, e.g. Hidden Markov Model (Rabiner, 1989) or
Conditional Random Fields (Sarawagi and Cohen,
2004). The typical BIO representation was intro-
duced in Ramshaw and Marcus (1995); OC repre-
sentations were introduced in Church (1988), while
Finkel and Manning (2009) further study nested
named entity recognition, which employs a tree

structure as a representation of identifying named
entities within other named entities.

The most relevant study on mentions in the con-
text of coreference was done in Recasens et al.
(2013); this work studies distinguishing single men-
tions from coreferent mentions. Our joint frame-
work provides similar insights, where the added
mention decision variable partly reflects if the men-
tion is singleton or not.

Several recent works suggest studying corefer-
ence jointly with other tasks. Lee et al. (2012)
model entity coreference and event coreference
jointly; Durrett and Klein (2014) consider joint
coreference and entity-linking. The work closest
to ours is that of Lassalle and Denis (2015), which
studies a joint anaphoricity detection and corefer-
ence resolution framework. While their inference
objective is similar, their work assumes gold men-
tions are given and thus their modeling is very dif-
ferent.

6 Conclusion

This paper proposes a joint inference approach to
the end-to-end coreference resolution problem. By
moving to identify mention heads rather than men-
tions, and by developing an ILP-based, joint, online
learning and inference approach, we close a signif-
icant fraction of the existing gap between corefer-
ence systems’ performance on gold mentions and
their performance on raw data. At the same time,
we show substantial improvements in mention de-
tection. We believe that our approach will gener-
alize well to many other NLP problems, where the
performance on raw data (the result that really mat-
ters) is still significantly lower than the performance
on gold data.
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Abstract

Combinatory Categorial Grammar (CCG)
is a lexicalized grammar formalism in
which words are associated with cate-
gories that specify the syntactic configura-
tions in which they may occur. We present
a novel parsing model with the capacity to
capture the associative adjacent-category
relationships intrinsic to CCG by param-
eterizing the relationships between each
constituent label and the preterminal cat-
egories directly to its left and right, bi-
asing the model toward constituent cate-
gories that can combine with their con-
texts. This builds on the intuitions of
Klein and Manning’s (2002) “constituent-
context” model, which demonstrated the
value of modeling context, but has the ad-
vantage of being able to exploit the prop-
erties of CCG. Our experiments show that
our model outperforms a baseline in which
this context information is not captured.

1 Introduction

Learning parsers from incomplete or indirect su-
pervision is an important component of moving
NLP research toward new domains and languages.
But with less information, it becomes necessary to
devise ways of making better use of the informa-
tion that is available. In general, this means con-
structing inductive biases that take advantage of
unannotated data to train probabilistic models.

One important example is the constituent-
context model (CCM) of Klein and Manning
(2002), which was specifically designed to cap-
ture the linguistic observation made by Radford
(1988) that there are regularities to the contexts
in which constituents appear. This phenomenon,
known as substitutability, says that phrases of the
same type appear in similar contexts. For example,

the part-of-speech (POS) sequence ADJ NOUN fre-
quently occurs between the tags DET and VERB.
This DET—VERB context also frequently applies
to the single-word sequence NOUN and to ADJ ADJ
NOUN. From this, we might deduce that DET—
VERB is a likely context for a noun phrase. CCM
is able to learn which POS contexts are likely,
and does so via a probabilistic generative model,
providing a statistical, data-driven take on substi-
tutability. However, since there is nothing intrin-
sic about the POS pair DET—VERB that indicates
a priori that it is a likely constituent context, this
fact must be inferred entirely from the data.

Baldridge (2008) observed that unlike opaque,
atomic POS labels, the rich structures of Combina-
tory Categorial Grammar (CCG) (Steedman, 2000;
Steedman and Baldridge, 2011) categories reflect
universal grammatical properties. CCG is a lexi-
calized grammar formalism in which every con-
stituent in a sentence is associated with a struc-
tured category that specifies its syntactic relation-
ship to other constituents. For example, a cate-
gory might encode that “this constituent can com-
bine with a noun phrase to the right (an object)
and then a noun phrase to the left (a subject) to
produce a sentence” instead of simply VERB. CCG
has proven useful as a framework for grammar in-
duction due to its ability to incorporate linguis-
tic knowledge to guide parser learning by, for ex-
ample, specifying rules in lexical-expansion al-
gorithms (Bisk and Hockenmaier, 2012; 2013)
or encoding that information as priors within a
Bayesian framework (Garrette et al., 2015).

Baldridge observed is that, cross-linguistically,
grammars prefer simpler syntactic structures when
possible, and that due to the natural correspon-
dence of categories and syntactic structure, bias-
ing toward simpler categories encourages simpler
structures. In previous work, we were able to
incorporate this preference into a Bayesian pars-
ing model, biasing PCFG productions toward sim-
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pler categories by encoding a notion of category
simplicity into a prior (Garrette et al., 2015).
Baldridge further notes that due to the natural as-
sociativity of CCG, adjacent categories tend to be
combinable. We previously showed that incorpo-
rating this intuition into a Bayesian prior can help
train a CCG supertagger (Garrette et al., 2014).

In this paper, we present a novel parsing model
that is designed specifically for the capacity to
capture both of these universal, intrinsic proper-
ties of CCG. We do so by extending our pre-
vious, PCFG-based parsing model to include pa-
rameters that govern the relationship between con-
stituent categories and the preterminal categories
(also known as supertags) to the left and right.
The advantage of modeling context within a CCG
framework is that while CCM must learn which
contexts are likely purely from the data, the CCG
categories give us obvious a priori information
about whether a context is likely for a given con-
stituent based on whether the categories are com-
binable. Biasing our model towards both sim-
ple categories and connecting contexts encourages
learning structures with simpler syntax and that
have a better global “fit”.

The Bayesian framework is well-matched to our
problem since our inductive biases — those de-
rived from universal grammar principles, weak su-
pervision, and estimations based on unannotated
data — can be encoded as priors, and we can
use Markov chain Monte Carlo (MCMC) infer-
ence procedures to automatically blend these bi-
ases with unannotated text that reflects the way
language is actually used “in the wild”. Thus, we
learn context information based on statistics in the
data like CCM, but have the advantage of addi-
tional, a priori biases. It is important to note that
the Bayesian setup allows us to use these universal
biases as soft constraints: they guide the learner
toward more appropriate grammars, but may be
overridden when there is compelling contradictory
evidence in the data.

Methodologically, this work serves as an ex-
ample of how linguistic-theoretical commitments
can be used to benefit data-driven methods, not
only through the construction of a model family
from a grammar, as done in our previous work, but
also when exploiting statistical associations about
which the theory is silent. While there has been
much work in computational modeling of the in-
teraction between universal grammar and observ-

able data in the context of studying child language
acquisition (e.g., Villavicencio, 2002; Goldwater,
2007), we are interested in applying these princi-
ples to the design of models and learning proce-
dures that result in better parsing tools. Given our
desire to train NLP models in low-supervision sce-
narios, the possibility of constructing inductive bi-
ases out of universal properties of language is en-
ticing: if we can do this well, then it only needs to
be done once, and can be applied to any language
or domain without adaptation.

In this paper, we seek to learn from only raw
data and an incomplete dictionary mapping some
words to sets of potential supertags. In order to
estimate the parameters of our model, we develop
a blocked sampler based on that of Johnson et
al. (2007) to sample parse trees for sentences in
the raw training corpus according to their poste-
rior probabilities. However, due to the very large
sets of potential supertags used in a parse, com-
puting inside charts is intractable, so we design a
Metropolis-Hastings step that allows us to sample
efficiently from the correct posterior. Our experi-
ments show that the incorporation of supertag con-
text parameters into the model improves learning,
and that placing combinability-preferring priors
on those parameters yields further gains in many
scenarios.

2 Combinatory Categorial Grammar

In the CCG formalism, every constituent, including
those at the lexical level, is associated with a struc-
tured CCG category that defines that constituent’s
relationships to the other constituents in the sen-
tence. Categories are defined by a recursive struc-
ture, where a category is either atomic (possibly
with features), or a function from one category to
another, as indicated by a slash operator:

C ! {s, sdcl, sadj, sb, np, n, nnum, pp, ...}
C ! {(C/C), (C \C)}

Categories of adjacent constituents can be com-
bined using one of a set of combination rules to
form categories of higher-level constituents, as
seen in Figure 1. The direction of the slash op-
erator gives the behavior of the function. A cat-
egory (s\np)/pp might describe an intransitive
verb with a prepositional phrase complement; it
combines on the right (/) with a constituent with
category pp, and then on the left (\) with a noun
phrase (np) that serves as its subject.
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np

np/n n

s\np

(s\np)/pp
pp

pp/np np
The man walks to work

Figure 1: CCG parse for “The man walks to work.”

We follow Lewis and Steedman (2014) in allow-
ing a small set of generic, linguistically-plausible
unary and binary grammar rules. We further add
rules for combining with punctuation to the left
and right and allow for the merge rule X ! X X
of Clark and Curran (2007).

3 Generative Model

In this section, we present our novel supertag-
context model (SCM) that augments a standard
PCFG with parameters governing the supertags to
the left and right of each constituent.

The CCG formalism is said to be naturally as-
sociative since a constituent label is often able
to combine on either the left or the right. As a
motivating example, consider the sentence “The
lazy dog sleeps”, as shown in Figure 2. The
word lazy, with category n/n, can either com-
bine with dog (n) via the Forward Application rule
(>), or with The (np/n) via the Forward Compo-
sition (>B) rule. Baldridge (2008) showed that
this tendency for adjacent supertags to be com-
binable can be used to bias a sequence model in
order to learn better CCG supertaggers. However,
we can see that if the supertags of adjacent words
lazy (n/n) and dog (n) combine, then they will
produce the category n, which describes the en-
tire constituent span “lazy dog”. Since we have
produced a new category that subsumes that en-
tire span, a valid parse must next combine that
n with one of the remaining supertags to the left
or right, producing either (The·(lazy·dog))·sleeps
or The·((lazy·dog)·sleeps). Because we know that
one (or both) of these combinations must be valid,
we will similarly want a strong prior on the con-
nectivity between lazy·dog and its supertag con-
text: The$(lazy·dog)$sleeps.

Assuming T is the full set of known categories,
the generative process for our model is:

np/n n/n n s\np

The lazy dog sleeps

n

Figure 2: Higher-level category n subsumes the
categories of its constituents. Thus, n should have
a strong prior on combinability with its adjacent
supertags np/n and s\np.

Parameters:
✓ROOT ⇠ Dir(↵ROOT, ✓ROOT-0

)

✓BIN
t ⇠ Dir(↵BIN, ✓BIN-0

) 8t 2 T
✓UN

t ⇠ Dir(↵UN, ✓UN-0
) 8t 2 T

✓TERM
t ⇠ Dir(↵TERM, ✓TERM-0

t ) 8t 2 T
�t ⇠ Dir(↵�, �0

) 8t 2 T
✓LCTX

t ⇠ Dir(↵LCTX, ✓LCTX-0
t ) 8t 2 T

✓RCTX
t ⇠ Dir(↵RCTX, ✓RCTX-0

t ) 8t 2 T
Sentence:

do s ⇠ Cat(✓ROOT
)

y | s ⇠ SCM(s)
until the tree y is valid

where h`, y, ri | t ⇠ SCM(t) is defined as:
z ⇠ Cat(�t)

if z = B : hu,vi | t ⇠ Cat(✓BIN
t )

yL | u ⇠ SCM(u), yR | v ⇠ SCM(v)

y = hyL, yRi
if z = U : hui | t ⇠ Cat(✓UN

t )

y | u ⇠ SCM(u)

if z = T : w | t ⇠ Cat(✓TERM
t )

y = w

` | t ⇠ Cat(✓LCTX
t ), r | t ⇠ Cat(✓RCTX

t )

The process begins by sampling the parameters
from Dirichlet distributions: a distribution ✓ROOT

over root categories, a conditional distribution ✓BIN
t

over binary branching productions given category
t, ✓UN

t for unary rewrite productions, ✓TERM
t for ter-

minal (word) productions, and ✓LCTX
t and ✓RCTX

t for
left and right contexts. We also sample parame-
ters �t for the probability of t producing a binary
branch, unary rewrite, or terminal word.

Next we sample a sentence. This begins by sam-
pling first a root category s and then recursively
sampling subtrees. For each subtree rooted by a
category t, we generate a left context supertag `

and a right context supertag r. Then, we sam-
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Aij

Bik Ckj

ti-1 tjti tj-1tk-1 tk

Figure 3: The generative process starting with
non-terminal Aij , where tx is the supertag for wx,
the word at position x, and “A ! B C” is a valid
production in the grammar. We can see that non-
terminal Aij generates nonterminals Bik and Ckj

(solid arrows) as well as generating left context ti-1
and right context tj (dashed arrows); likewise for
Bik and Ckj . The triangle under a non-terminal
indicates the complete subtree rooted by the node.

ple a production type z corresponding to either a
(B) binary, (U) unary, or (T) terminal production.
Depending on z, we then sample either a binary
production hu,vi and recurse, a unary production
hui and recurse, or a terminal word w and end that
branch. A tree is complete when all branches end
in terminal words. See Figure 3 for a graphical de-
piction of the generative behavior of the process.
Finally, since it is possible to generate a supertag
context category that does not match the actual
category generated by the neighboring constituent,
we must allow our process to reject such invalid
trees and re-attempt to sample.

Like CCM, this model is deficient since the same
supertags are generated multiple times, and parses
with conflicting supertags are not valid. Since we
are not generating from the model, this does not
introduce difficulties (Klein and Manning, 2002).

One additional complication that must be ad-
dressed is that left-frontier non-terminal categories
— those whose subtree span includes the first
word of the sentence — do not have a left-side su-
pertag to use as context. For these cases, we use
the special sentence-start symbol hSi to serve as
context. Similarly, we use the end symbol hEi for
the right-side context of the right-frontier.

We next discuss how the prior distributions are
constructed to encode desirable biases, using uni-
versal CCG properties.

3.1 Non-terminal production prior means

For the root, binary, and unary parameters, we
want to choose prior means that encode our bias

toward cross-linguistically-plausible categories.
To formalize the notion of what it means for a
category to be more “plausible”, we extend the
category generator of our previous work, which
we will call PCAT. We can define PCAT using a
probabilistic grammar (Garrette et al., 2014). The
grammar may first generate a start or end category
(hSi,hEi) with probability pse or a special token-
deletion category (hDi; explained in §5) with prob-
ability pdel, or a standard CCG category C:

X!hSi | hEi pse

X!hDi pdel

X!C (1� (2pse + pdel)) ·PC(C)

For each sentence s, there will be one hSi and one
hEi, so we set pse = 1/(25 + 2), since the average
sentence length in the corpora is roughly 25. To
discourage the model from deleting tokens (only
applies during testing), we set pdel = 10

�100.
For PC, the distribution over standard cate-

gories, we use a recursive definition based on the
structure of a CCG category. If p = 1� p, then:1

C!a pterm ·patom(a)

C!A/A pterm ·pfwd · ( pmod ·PC(A) +

pmod ·PC(A)

2
)

C!A/B pterm ·pfwd · pmod ·PC(A) ·PC(B)

C!A\A pterm ·pfwd · ( pmod ·PC(A) +

pmod ·PC(A)

2
)

C!A\B pterm ·pfwd · pmod ·PC(A) ·PC(B)

The category grammar captures important as-
pects of what makes a category more or less
likely: (1) simplicity is preferred, with a higher
pterm meaning a stronger emphasis on simplic-
ity;2 (2) atomic types may occur at different rates,
as given by patom; (3) modifier categories (A/A
or A\A) are more likely than similar-complexity
non-modifiers (such as an adverb that modifies a
verb); and (4) operators may occur at different
rates, as given by pfwd.

We can use PCAT to define priors on our produc-
tion parameters that bias our model toward rules

1Note that this version has also updated the probability
definitions for modifiers to be sums, incorporating the fact
that any A/A is also a A/B (likewise for A\A). This ensures
that our grammar defines a valid probability distribution.

2The probability distribution over categories is guaranteed
to be proper so long as pterm >

1
2 since the probability of the

depth of a tree will decrease geometrically (Chi, 1999).
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that result in a priori more likely categories:3

✓ROOT-0
(t) = PCAT(t)

✓BIN-0
(hu,vi) = PCAT(u) · PCAT(v)

✓UN-0
(hui) = PCAT(u)

For simplicity, we assume the production-type
mixture prior to be uniform: �0

= h1
3 , 1

3 , 1
3i.

3.2 Terminal production prior means
We employ the same procedure as our previous
work for setting the terminal production prior dis-
tributions ✓TERM-0

t (w) by estimating word-given-
category relationships from the weak supervision:
the tag dictionary and raw corpus (Garrette and
Baldridge, 2012; Garrette et al., 2015).4 This pro-
cedure attempts to automatically estimate the fre-
quency of each word/tag combination by divid-
ing the number of raw-corpus occurrences of each
word in the dictionary evenly across all of its asso-
ciated tags. These counts are then combined with
estimates of the “openness” of each tag in order to
assess its likelihood of appearing with new words.

3.3 Context parameter prior means
In order to encourage our model to choose trees
in which the constituent labels “fit” into their
supertag contexts, we want to bias our con-
text parameters toward context categories that are
combinable with the constituent label.

The right-side context of a non-terminal cate-
gory — the probability of generating a category
to the right of the current constituent’s category
— corresponds directly to the category transitions
used for the HMM supertagger of Garrette et al.
(2014). Thus, the right-side context prior mean
✓RCTX-0

t can be biased in exactly the same way as
the HMM supertagger’s transitions: toward context
supertags that connect to the constituent label.

To encode a notion of combinability, we fol-
low Baldridge’s (2008) definition. Briefly, let
(t, u) 2 {0, 1} be an indicator of whether t com-
bines with u (in that order). For any binary rule
that can combine t to u, (t, u)=1. To ensure that
our prior captures the natural associativity of CCG,
we define combinability in this context to include
composition rules as well as application rules. If

3For our experiments, we normalize PCAT by dividing byP
c2T PCAT(c). This allows for experiments contrasting with

a uniform prior (1/|T |) without adjusting ↵ values.
4We refer the reader to the previous work (Garrette et al.,

2015) for a fuller discussion and implementation details.

atoms have features associated, then the atoms are
allowed to unify if the features match, or if at least
one of them does not have a feature. In defining ,
it is also important to ignore possible arguments
on the wrong side of the combination since they
can be consumed without affecting the connection
between the two. To achieve this for (t, u), it is
assumed that it is possible to consume all preced-
ing arguments of t and all following arguments of
u. So (np, (s\np)/np) = 1. This helps to en-
sure the associativity discussed earlier. For “com-
bining” with the start or end of a sentence, we
define (hSi, u)=1 when u seeks no left-side ar-
guments (since there are no tags to the left with
which to combine) and (t, hEi)=1 when t seeks
no right-side arguments. So (hSi, np/n)=1, but
(hSi, s\np)=0. Finally, due to the frequent use
of the unary rule that allows n to be rewritten
as np, the atom np is allowed to unify with n
if n is the argument. So (n, s\np) = 1, but
(np/n, np) = 0.

The prior mean of producing a right-context su-
pertag r from a constituent category t, P right

(r | t),
is defined so that combinable pairs are given
higher probability than non-combinable pairs. We
further experimented with a prior that biases to-
ward both combinability and category likelihood,
replacing the uniform treatment of categories with
our prior over categories, yielding P right

CAT (r | t). If
T is the full set of known CCG categories:

P right
(r | t) =

⇢
� · 1/|T | if (t, r) � > 1

1/|T | otherwise

P right
CAT (r | t) =

⇢
� · PCAT(r) if (t, r) � > 1

PCAT(r) otherwise

Distributions P left
(` | t) and P left

CAT(` | t) are de-
fined in the same way, but with the combinability
direction flipped: (`, t), since the left context su-
pertag precedes the constituent category.

4 Posterior Inference

We wish to infer the distribution over CCG parses,
given the model we just described and a corpus of
sentences. Since there is no way to analytically
compute these modes, we resort to Gibbs sam-
pling to find an approximate solution. Our strat-
egy is based on the approach presented by John-
son et al. (2007). At a high level, we alternate be-
tween resampling model parameters (✓ROOT, ✓BIN,
✓UN, ✓TERM, �, ✓LCTX, ✓RCTX) given the current set
of parse trees and resampling those trees given the
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current model parameters and observed word se-
quences. To efficiently sample new model param-
eters, we exploit Dirichlet-multinomial conjugacy.
By repeating these alternating steps and accumu-
lating the productions, we obtain an approxima-
tion of the required posterior quantities.

Our inference procedure takes as input the dis-
tribution prior means, along with the raw corpus
and tag dictionary. During sampling, we restrict
the tag choices for a word w to categories allowed
by the tag dictionary. Since real-world learning
scenarios will always lack complete knowledge of
the lexicon, we, too, want to allow for unknown
words; for these, we assume the word may take
any known supertag. We refer to the sequence of
word tokens as w and a non-terminal category cov-
ering the span i through j � 1 as yij .

While it is technically possible to sample di-
rectly from our context-sensitive model, the high
number of potential supertags available for each
context means that computing the inside chart for
this model is intractable for most sentences. In
order to overcome this limitation, we employ an
accept/reject Metropolis-Hastings (MH) step. The
basic idea is that we sample trees according to a
simpler proposal distribution Q that approximates
the full distribution and for which direct sampling
is tractable, and then choose to accept or reject
those trees based on the true distribution P .

For our model, there is a straightforward and
intuitive choice for the proposal distribution: the
PCFG model without our context parameters:
(✓ROOT, ✓BIN, ✓UN, ✓TERM, �), which is known to
have an efficient sampling method. Our accep-
tance step is therefore based on the remaining pa-
rameters: the context (✓LCTX, ✓RCTX).

To sample from our proposal distribution, we
use a blocked Gibbs sampler based on the one
proposed by Goodman (1998) and used by John-
son et al. (2007) that samples entire parse trees.
For a sentence w, the strategy is to use the Inside
algorithm (Lari and Young, 1990) to inductively
compute, for each potential non-terminal position
spanning words wi through wj�1 and category t,
going “up” the tree, the probability of generating
wi, . . . , wj�1 via any arrangement of productions
that is rooted by yij = t.

p(wi | yi,i+1 = t) = �
t

(T) · ✓TERM
t

(wi)

+

P
t!u

�
t

(U) · ✓UN
t

(hui)
· p(wi:j�1 | yij = u)

p(wi:j�1 | yij = t) =

P
t!u

�
t

(U) · ✓UN
t

(hui)
· p(wi:j�1 | yij = u)

+

P
t!u v

P
i<k<j �

t

(B) · ✓BIN
t

(hu,vi)
· p(wi:k�1 | yik = u)

· p(wk:j�1 | ykj = v)

We then pass “downward” through the chart, sam-
pling productions until we reach a terminal word
on all branches.

y0n ⇠ ✓ROOT
t

· p(w0:n�1 | y0n = t)

x | yij ⇠
⌦
✓BIN
yij

(hu,vi) · p(wi:k�1 | yik = u)

· p(wk:j�1 | ykj = v)

8 yik, ykj when j > i + 1,

✓UN
yij

(hui) · p(wi:j�1 | y0ij = u) 8 y0ij ,

✓TERM
yij

(wi) when j = i + 1

↵

where x is either a split point k and pair of cate-
gories yik, ykj resulting from a binary rewrite rule,
a single category y0ij resulting from a unary rule, or
a word w resulting from a terminal rule.

The MH procedure requires an acceptance dis-
tribution A that is used to accept or reject a tree
sampled from the proposal Q. The probability of
accepting new tree y0 given the previous tree y is:

A(y0 | y) = min

✓
1,

P (y0)
P (y)

Q(y)

Q(y0)

◆

Since Q is defined as a subset of P ’s parameters,
it is the case that:

P (y) = Q(y) · p(y | ✓LCTX, ✓RCTX
)

After substituting this for each P in A, all of the Q
factors cancel, yielding the acceptance distribution
defined purely in terms of context parameters:

A(y0 | y) = min

✓
1,

p(y0 | ✓LCTX, ✓RCTX
)

p(y | ✓LCTX, ✓RCTX
)

◆

For completeness, we note that the probability
of a tree y given only the context parameters is:5

p(y | ✓LCTX, ✓RCTX
) =

Y

0i<jn

✓LCTX
(yi�1,i | yij) · ✓RCTX

(yj,j+1 | yij)

5Note that there may actually be multiple yij due to unary
rules that “loop back” to the same position (i, j); all of these
much be included in the product.
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Before we begin sampling, we initialize each
distribution to its prior mean (✓ROOT

=✓ROOT-0,
✓BIN

t =✓BIN-0, etc). Since MH requires an initial set
of trees to begin sampling, we parse the raw corpus
with probabilistic CKY using these initial parame-
ters (excluding the context parameters) to guess an
initial tree for each raw sentence.

The sampler alternates sampling parse trees for
the entire corpus of sentences using the above pro-
cedure with resampling the model parameters. Re-
sampling the parameters requires empirical counts
of each production. These counts are taken from
the trees resulting from the previous round of sam-
pling: new trees that have been “accepted” by the
MH step, as well as existing trees for sentences in
which the newly-sampled tree was rejected.
✓

ROOT
⇠ Dir(h↵

ROOT
· ✓

ROOT-0
(t) + Croot(t) it2T )

✓

BIN
t ⇠ Dir(h↵

BIN
· ✓

BIN-0
(hu,vi) + C(t!hu,vi) iu,v2T )

✓

UN
t ⇠ Dir(h↵

UN
· ✓

UN-0
(hui) + C(t!hui) iu2T )

✓

TERM
t ⇠ Dir(h↵

TERM
· ✓

TERM-0
t (w) + C(t ! w) iw2V )

�t ⇠ Dir(h↵� · �

0
(B) +

P
u,v2T C(t!hu,vi),

↵� · �

0
(U) +

P
u2T C(t!hui),

↵� · �

0
(T) +

P
w2V C(t!w) i)

✓

LCTX
t ⇠ Dir(h↵

LCTX
· ✓

LCTX-0
t (`) + Cleft (t, `)i`2T )

✓

RCTX
t ⇠ Dir(h↵

RCTX
· ✓

RCTX-0
t (r) + Cright(t, r)ir2T )

It is important to note that this method of re-
sampling allows the draws to incorporate both the
data, in the form of counts, and the prior mean,
which includes all of our carefully-constructed bi-
ases derived from both the intrinsic, universal CCG
properties as well as the information we induced
from the raw corpus and tag dictionary.

After all sampling iterations have completed,
the final model is estimated by pooling the trees
resulting from each sampling iteration, including
trees accepted by the MH steps as well as the dupli-
cated trees retained due to rejections. We use this
pool of trees to compute model parameters using
the same procedure as we used directly above to
sample parameters, except that instead of drawing
a Dirichlet sample based on the vector of counts,
we simply normalize those counts. However, since
we require a final model that can parse sentences
efficiently, we drop the context parameters, mak-
ing the model a standard PCFG, which allows us to
use the probabilistic CKY algorithm.

5 Experiments
In our evaluation we compared our supertag-
context approach to (our reimplementation of) the

best-performing model of our previous work (Gar-
rette et al., 2015), which SCM extends. We evalu-
ated on the English CCGBank (Hockenmaier and
Steedman, 2007), which is a transformation of the
Penn Treebank (Marcus et al., 1993); the CTB-
CCG (Tse and Curran, 2010) transformation of the
Penn Chinese Treebank (Xue et al., 2005); and the
CCG-TUT corpus (Bos et al., 2009), built from the
TUT corpus of Italian text (Bosco et al., 2000).

Each corpus was divided into four distinct data
sets: a set from which we extract the tag dictionar-
ies, a set of raw (unannotated) sentences, a devel-
opment set, and a test set. We use the same splits
as Garrette et al. (2014). Since these treebanks
use special representations for conjunctions, we
chose to rewrite the trees to use conjunction cate-
gories of the form (X\X)/X rather than introduc-
ing special conjunction rules. In order to increase
the amount of raw data available to the sampler,
we supplemented the English data with raw, unan-
notated newswire sentences from the NYT Giga-
word 5 corpus (Parker et al., 2011) and supple-
mented Italian with the out-of-domain WaCky cor-
pus (Baroni et al., 1999). For English and Italian,
this allowed us to use 100k raw tokens for train-
ing (Chinese uses 62k). For Chinese and Italian,
for training efficiency, we used only raw sentences
that were 50 words or fewer (note that we did not
drop tag dictionary set or test set sentences).

The English development set was used to tune
hyperparameters using grid search, and the same
hyperparameters were then used for all three lan-
guages. For the category grammar, we used
ppunc=0.1, pterm=0.7, pmod=0.2, pfwd=0.5. For
the priors, we use ↵ROOT

=1, ↵BIN
=100, ↵UN

=100,
↵TERM

=10

4, ↵�=3, ↵LCTX
=↵RCTX

=10

3.6 For the
context prior, we used �=10

5. We ran our sampler
for 50 burn-in and 50 sampling iterations.

CCG parsers are typically evaluated on the de-
pendencies they produce instead of their CCG
derivations directly since there can be many differ-
ent CCG parse trees that all represent the same de-
pendency relationships (spurious ambiguity), and
CCG-to-dependency conversion can collapse those
differences. To convert a CCG tree into a de-
pendency tree, we follow Lewis and Steedman

6In order to ensure that these concentration parameters,
while high, were not dominating the posterior distributions,
we ran experiments in which they were set much higher
(including using the prior alone), and found that accuracies
plummeted in those cases, demonstrating that there is a good
balance with the prior.
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Size of the corpus (tokens) from which the tag dictionary is extracted
250k 200k 150k 100k 50k 25k

English no context 60.43 61.22 59.69 58.61 56.26 54.70
context (uniform) 64.02 63.89 62.58 61.80 59.44 57.08
+P left / P right 65.44 63.26 64.28 62.90 59.63 57.86
+P left

CAT / P right
CAT 59.34 59.89 59.32 58.47 57.85 55.77

Chinese no context 32.70 32.07 28.99
context (uniform) 36.02 33.84 32.55
+P left / P right 35.34 33.04 31.48
+P left

CAT / P right
CAT 35.15 34.04 33.53

Italian no context 51.54
context (uniform) 53.57
+P left / P right 52.54
+P left

CAT / P right
CAT 53.29

Table 1: Experimental results in three languages. For each language, four experiments were executed:
(1) a no-context model baseline, Garrette et al. (2015) directly; (2) our supertag-context model, with uni-
form priors on contexts; (3) supertag-context model with priors that prefer combinability; (4) supertag-
context model with priors that prefer combinability and simpler categories. Results are shown for six
different levels of supervision, as determined by the size of the corpus used to extract a tag dictionary.

(2014). We traverse the parse tree, dictating at ev-
ery branching node which words will be the de-
pendents of which. For binary branching nodes of
forward rules, the right side—the argument side—
is the dependent, unless the left side is a modi-
fier (X/X) of the right, in which case the left is
the dependent. The opposite is true for backward
rules. For punctuation rules, the punctuation is al-
ways the dependent. For merge rules, the right side
is always made the parent. The results presented
in this paper are dependency accuracy scores: the
proportion of words that were assigned the correct
parent (or “root” for the root of a tree).

When evaluating on test set sentences, if the
model is unable to find a parse given the con-
straints of the tag dictionary, then we would have
to take a score of zero for that sentence: every de-
pendency would be “wrong”. Thus, it is impor-
tant that we make a best effort to find a parse. To
accomplish this, we implemented a parsing back-
off strategy. The parser first tries to find a valid
parse that has either sdcl or np at its root. If
that fails, then it searches for a parse with any
root. If no parse is found yet, then the parser at-
tempts to strategically allow tokens to subsume a
neighbor by making it a dependent (first with a re-
stricted root set, then without). This is similar to
the “deletion” strategy employed by Zettlemoyer
and Collins (2007), but we do it directly in the
grammar. We add unary rules of the form hDi!u

for every potential supertag u in the tree. Then,
at each node spanning exactly two tokens (but no
higher in the tree), we allow rules t!hhDi, vi and
t!hv, hDii. Recall that in §3.1, we stated that hDi
is given extremely low probability, meaning that
the parser will avoid its use unless it is absolutely
necessary. Additionally, since u will still remain
as the preterminal, it will be the category exam-
ined as the context by adjacent constituents.

For each language and level of supervision, we
executed four experiments. The no-context base-
line used (a reimplementation of) the best model
from our previous work (Garrette et al., 2015):
using only the non-context parameters (✓ROOT,
✓BIN, ✓UN, ✓TERM, �) along with the category prior
PCAT to bias toward likely categories throughout
the tree, and ✓TERM-0

t estimated from the tag dictio-
nary and raw corpus. We then added the supertag-
context parameters (✓LCTX, ✓RCTX

), but used uni-
form priors for those (still using PCAT for the rest).
Then, we evaluated the supertag-context model
using context parameter priors that bias toward
categories that combine with their contexts: P left

and P right (see §3.3). Finally, we evaluated the
supertag-context model using context parameter
priors that bias toward combinability and toward
a priori more likely categories, based on the cate-
gory grammar (P left

CAT and P right
CAT ).

Because we are interested in understanding how
our models perform under varying amounts of su-
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pervision, we executed sequences of experiments
in which we reduced the size of the corpus from
which the tag dictionary is drawn, thus reducing
the amount of information provided to the model.
As this information is reduced, so is the size of the
full inventory of known CCG categories that can be
used as supertags. Additionally, a smaller tag dic-
tionary means that there will be vastly more un-
known words; since our model must assume that
these words may take any supertag from the full
set of known labels, the model must contend with
a greatly increased level of ambiguity.

The results of our experiments are given in Ta-
ble 1. We find that the incorporation of supertag-
context parameters into a CCG model improves
performance in every scenario we tested; we see
gains of 2–5% across the board. Adding context
parameters never hurts, and in most cases, using
priors based on intrinsic, cross-lingual aspects of
the CCG formalism to bias those parameters to-
ward connectivity provides further gains. In par-
ticular, biasing the model toward trees in which
constituent labels are combinable with their adja-
cent supertags frequently helps the model.

However, for English, we found that addition-
ally biasing context priors toward simpler cate-
gories using P left

CAT/P right
CAT degraded performance.

This is likely due to the fact that the priors on pro-
duction parameters (✓BIN, ✓UN

) are already biasing
the model toward likely categories, and that hav-
ing the context parameters do the same ends up
over-emphasizing the need for simple categories,
preventing the model from choosing more com-
plex categories when they are needed. On the
other hand, this bias helps in Chinese and Italian.

6 Related Work

Klein and Manning (2002)’s CCM is an unla-
beled bracketing model that generates the span of
part-of-speech tags that make up each constituent
and the pair of tags surrounding each constituent
span (as well as the spans and contexts of each
non-constituent). They found that modeling con-
stituent context aids in parser learning because it
is able to capture the observation that the same
contexts tend to appear repeatedly in a corpus,
even with different constituents. While CCM is
designed to learn which tag pairs make for likely
contexts, without regard for the constituents them-
selves, our model attempts to learn the relation-
ships between context categories and the types of

the constituents, allowing us to take advantage of
the natural a priori knowledge about which con-
texts fit with which constituent labels.

Other researchers have shown positive results
for grammar induction by introducing relatively
small amounts of linguistic knowledge. Naseem
et al. (2010) induced dependency parsers by hand-
constructing a small set of linguistically-universal
dependency rules and using them as soft con-
straints during learning. These rules were use-
ful for disambiguating between various structures
in cases where the data alone suggests multiple
valid analyses. Boonkwan and Steedman (2011)
made use of language-specific linguistic knowl-
edge collected from non-native linguists via a
questionnaire that covered a variety of syntactic
parameters. They were able to use this infor-
mation to induce CCG parsers for multiple lan-
guages. Bisk and Hockenmaier (2012; 2013) in-
duced CCG parsers by using a smaller number of
linguistically-universal principles to propose syn-
tactic categories for each word in a sentence, al-
lowing EM to estimate the model parameters. This
allowed them to induce the inventory of language-
specific types from the training data, without prior
language-specific knowledge.

7 Conclusion

Because of the structured nature of CCG categories
and the logical framework in which they must as-
semble to form valid parse trees, the CCG formal-
ism offers multiple opportunities to bias model
learning based on universal, intrinsic properties
of the grammar. In this paper we presented a
novel parsing model with the capacity to capture
the associative adjacent-category relationships in-
trinsic to CCG by parameterizing supertag con-
texts, the supertags appearing on either side of
each constituent. In our Bayesian formulation, we
place priors on those context parameters to bias
the model toward trees in which constituent labels
are combinable with their contexts, thus preferring
trees that “fit” together better. Our experiments
demonstrate that, across languages, this additional
context helps in weak-supervision scenarios.
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Abstract

This paper presents a synchronous-graph-
grammar-based approach for string-to-
AMR parsing. We apply Markov Chain
Monte Carlo (MCMC) algorithms to
learn Synchronous Hyperedge Replace-
ment Grammar (SHRG) rules from a for-
est that represents likely derivations con-
sistent with a fixed string-to-graph align-
ment. We make an analogy of string-to-
AMR parsing to the task of phrase-based
machine translation and come up with an
efficient algorithm to learn graph gram-
mars from string-graph pairs. We pro-
pose an effective approximation strategy
to resolve the complexity issue of graph
compositions. We also show some useful
strategies to overcome existing problems
in an SHRG-based parser and present pre-
liminary results of a graph-grammar-based
approach.

1 Introduction

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) is a semantic formalism
where the meaning of a sentence is encoded as a
rooted, directed graph. Figure 1 shows an exam-
ple of the edge-labeled representation of an AMR
graph where the edges are labeled while the nodes
are not. The label of the leaf edge going out of
a node represents the concept of the node, and
the label of a non-leaf edge shows the relation be-
tween the concepts of the two nodes it connects to.
This formalism is based on propositional logic and
neo-Davidsonian event representations (Parsons,
1990; Davidson, 1967). AMR does not encode
quantifiers, tense and modality, but it jointly en-
codes a set of selected semantic phenomena which
renders it useful in applications like question an-
swering and semantics-based machine translation.

want-01
believe-01

ARG1

ARG0

girl

boy

ARG0

ARG1

Figure 1: An example of AMR graph representing
the meaning of: “The boy wants the girl to believe
him”

The task of AMR graph parsing is to map nat-
ural language strings to AMR semantic graphs.
Flanigan et al. (2014) propose a two-stage pars-
ing algorithm which first maps meaningful contin-
uous spans on the string side to concept fragments
on the graph side, and then in the second stage
adds additional edges to make all these fragments
connected. Concept identification (Flanigan et al.,
2014; Pourdamghani et al., 2014) can be consid-
ered as an important first step to relate components
of the string to components in the graph.

Wang et al. (2015) also present a two-stage pro-
cedure where they first use a dependency parser
trained on a large corpus to generate a depen-
dency tree for each sentence. In the second step,
a transition-based algorithm is used to greedily
modify the dependency tree into an AMR graph.
The benefit of starting with a dependency tree in-
stead of the original sentence is that the depen-
dency structure is more linguistically similar to an
AMR graph and provides more direct feature in-
formation within limited context.

Hyperedge replacement grammar (HRG) is a
context-free rewriting formalism for generating
graphs (Drewes et al., 1997). Its synchronous
counterpart, SHRG, can be used for transforming
a graph from/to another structured representation
such as a string or tree structure. HRG has great
potential for applications in natural language un-

32



derstanding and generation, and also semantics-
based machine translation.

Given a graph as input, finding its derivation of
HRG rules is NP-complete (Drewes et al., 1997).
Chiang et al. (2013) describe in detail a graph
recognition algorithm and present an optimization
scheme which enables the parsing algorithm to run
in polynomial time when the treewidth and degree
of the graph are bounded. However, there is still
no real system available for parsing large graphs.

An SHRG can be used for AMR graph pars-
ing where each SHRG rule consists of a pair of
a CFG rule and an HRG rule, which can gener-
ate strings and AMR graphs in parallel. Jones et
al. (2012) present a Syntactic Semantic Algorithm
that learns SHRG by matching minimal parse con-
stituents to aligned graph fragments and incremen-
tally collapses them into hyperedge nonterminals.
The basic idea is to use the string-to-graph align-
ment and syntax information to constrain the pos-
sible HRGs.

Learning SHRG rules from fixed string-to-
graph alignments is a similar problem to extracting
machine translation rules from fixed word align-
ments, where we wish to automatically learn the
best granularity for the rules with which to ana-
lyze each sentence. Chung et al. (2014) present
an MCMC sampling schedule to learn Hiero-style
SCFG rules (Chiang, 2007) by sampling tree frag-
ments from phrase decomposition forests, which
represent all possible rules that are consistent with
a set of fixed word alignments, making use of the
property that each SCFG rule in the derivation is in
essence the decomposition of a larger phrase pair
into smaller ones.

In this paper, we make an analogy to treat frag-
ments in the graph language as phrases in the natu-
ral language string and SHRG rules as decomposi-
tions of larger substring, graph fragment pairs into
smaller ones. Graph language is different from
string language in that there is no explicit order
to compose the graph and there is an exponen-
tial number of possible compositions. We pro-
pose a strategy that uses the left-to-right order of
the string to constrain the structure of the deriva-
tion forest and experiment with different tactics in
dealing with unaligned words on the string side
and unaligned edges on the graph side.

Specifically, we make the following contribu-
tions:

1. We come up an alternative SHRG-based

want-01
believe-01

ARG1

ARG0
girl

boy

ARG0

ARG1

ARG0

X0
X2

X3

X1

X3

1 2

want-01

1

ARG1
2

X1 boy

ARG0
ARG1

X2
boy

X2
X3

X11 1

ARG0
ARG1

boy

X3

X1

ARG0X3

2 2

ARG1
1

X1 girl

1

want-01

want-01
believe-01

Figure 2: The series of HRG rules applied to de-
rive the AMR graph of “The boy wants the girl to
believe him”. The first rule is directly shown. The
other HRG rules are either above or below each
right arrow. The white circle shows the root of
each hyperedge. The indexes in each rule show
the one-to-one mapping between the attachment
nodes of l.h.s. nonterminal edges and the external
nodes of the r.h.s. subgraph

AMR parsing strategy and present a reason-
able preliminary result without additional de-
pendency information and global features,
showing promising future applications when
a language model is applied or larger datasets
are available.

2. We present the novel notion of fragment de-
composition forest and come up with an ef-
ficient algorithm to construct the forest from
fixed string-to-graph alignment.

3. We propose an MCMC algorithm which sam-
ples a special type of SHRG rules which
helps maintain the properties of AMR graphs,
which should be able to generalize to learning
other synchronous grammar with a CFG left
side.

4. We augment the concept identification proce-
dure of Flanigan et al. (2014) with a phrase-
to-graph-fragment alignment table which
makes use of the dependency between con-
cepts.

5. We discovered that an SHRG-based approach
is especially sensitive to missing alignment
information. We present some simple yet ef-
fective ways motivated by the AMR guide-
line to deal with this issue.

2 Hyperedge Replacement Grammar

Hyperedge replacement grammar (HRG) is a
context-free rewriting formalism for graph gener-
ation (Drewes et al., 1997). HRG is like CFG in
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that it rewrites nonterminals independently. While
CFG generates natural language strings by suc-
cessively rewriting nonterminal tokens, the non-
terminals in HRG are hyperedges, and each rewrit-
ing step in HRG replaces a hyperedge nonterminal
with a subgraph instead of a span of a string.

2.1 Definitions

In this paper we only use edge-labeled graphs be-
cause using both node and edge labels complicates
the definitions in our HRG-based approach. Fig-
ure 2 shows a series of HRG rules applied to derive
the AMR graph shown in Figure 1.

We start with the definition of hypergraphs. An
edge-labeled, directed hypergraph is a tuple H =

hV,E, l, Xi, where V is a finite set of nodes, E ✓
V + is a finite set of hyperedges, each of which will
connect to one or more nodes in V . l : E ! L de-
fines a mapping from each hyperedge to its label
from a finite set L. Each hyperedge is an atomic
item with an ordered list of nodes it connects to,
which are called attachment nodes. The type of a
hyperedge is defined as the number of its attach-
ment nodes. X 2 V ⇤ defines an ordered list of
distinct nodes called external nodes. The ordered
external nodes specify how to fuse a hypergraph
with another graph, as we will see below. In this
paper, we alternately use the terms of hypergraph
and graph, hyperedge and edge, and also phrase,
substring and span for brevity.

An HRG is a rewriting formalism G =

hN,T, P, Si, where N and T define two disjoint
finite sets called nonterminals and terminals. S 2
N is a special nonterminal called the start sym-
bol. P is a finite set of productions of the form
A ! R, where A 2 N and R is a hypergraph
with edge labels over N [ T and with nonempty
external nodes XR. We have the constraint that
the type of the hyperedge with label A should co-
incide with the number of nodes in XR. In our
grammar, each nonterminal has the form of Xn,
where n indicates the type of the hyperedge. Our
special start symbol is separately denoted as X0.

The rewriting mechanism replaces a nontermi-
nal hyperedge with the graph fragment specified
by a production’s righthand side (r.h.s), attaching
each external node of the r.h.s. to the correspond-
ing attachment node of the lefthand side. Take
Figure 2 as an example. Starting from our initial
hypergraph with one edge labeled with the start
symbol “X0”, we select one edge with nontermi-

[X0-1]   The [X1-1, 1] [X3-100, 2] the [X2-10, 3] him  | 

[X1-1] girl    | 

[X1-1] boy    | 

wants   |[X3-100]

believe  | [X3-100]

[X1-1, 1] to [X3-100, 2] |  [X2-10]

[X2-10,3]

[X3-100,2]

[X1-1,1]

1

want-01
ARG0

ARG1
2

[X3-100, 2]

[X1-1, 1]1

boy

2
ARG0

believe-01 ARG1
1

girl

Figure 3: A series of symbol-refined SHRG rules
used to derive the AMR graph for the sentence
“The boy wants the girl to believe him”.

nal label in our current hypergraph, and rewrite it
using a rule in our HRG. The first rule rewrites the
start symbol with a subgraph shown on the r.h.s..
We continue the rewriting steps until there are no
more nonterminal-labeled edges.

The synchronous counterpart of HRG can be
used for transforming graphs from/to another form
of natural language representation. Productions
have the form (A ! hS, Ri,⇠), where A 2 N
and S and R are called the source and the target
and at least one of them should be hypergraphs
over N [ T . ⇠ is a bijection linking nonterminals
mentions in S and R. In our case, the source side
is a CFG and the target side is an HRG. Given
such a synchronous grammar and a string as in-
put, we can parse the string with the CFG side
and then derive the counterpart graph by deduc-
tion from the derivation. The benefit of parsing
with SHRG is that the complexity is bounded by a
CFG-like parsing.

2.2 SHRG-based AMR graph parsing
We write down AMR graphs as rooted, directed,
edge-labeled graphs. There is exactly one leaf
edge going out of each node, the label of which
represents the concept of the node. We define this
leaf edge as concept edge. In Figure 1, for ex-
ample, the edge labeled with “boy”, “want-01”,
“girl” or “believe-01” connects to only one node
in the AMR graph and each label represents the
concept of that node. AMR concepts are either En-
glish words (“boy”), PropBank framesets (“want-
01”), or special keywords like special entity types,
quantities, and logical conjunctions. The label of
each non-leaf edge shows the relation between the
AMR concepts of the two nodes it connects to.

The constraint of having exactly one concept
edge for each node is not guaranteed in general
SHRG. Our strategy for maintaining the AMR
graph structure is to refine the edge nontermi-
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nal label with an extra binary flag, representing
whether it will have a concept edge in the final
rewriting result, for each external node. The ba-
sic intuition is to explicitly enforce the one con-
cept edge constraint in each nonterminal so that no
additional concept edge is introduced after apply-
ing each rule. The graph derived from this type of
SHRG is guaranteed to have exactly one concept
edge at each node.

Figure 3 shows one example of our symbol-
refined SHRG. For each nonterminal Xi-b1 · · · bi,
i defines the type of the nonterminal, while each bi

indicates whether the i-th external node will have
a concept edge in the rewriting result.1 The sec-
ond rule, for example, rewrites nonterminal X3-
100 with wants on the string side and a hypergraph
with three external nodes where the root has a con-
cept edge :want-01 as the first binary flag 1 indi-
cates, while the other two external nodes do not
with the binary flag 0. This guarantees that when
we integrate the r.h.s. into another graph, it will in-
troduce the concept edge :want-01 to the first fus-
ing position and no concept edge to the next two.

While this refinement might result in an expo-
nential number of nonterminals with respect to the
maximum type of hyperedges, we found in our ex-
periment that most of the nonterminals do not ap-
pear in our grammar. We use a maximum edge
type of 5, which also results in a relatively small
nonterminal set.

3 Sampling SHRG from forests

The fragment decomposition forest provides a
compact representation of all possible SHRG rules
that are consistent with a fixed string-to-graph
alignment. Each SHRG rule in the derivation is in
essence the decomposition of larger phrase, graph
fragment pairs on the left hand side (l.h.s.) into
smaller ones on the r.h.s. and is encoded in a tree
fragment in the forest. Our goal is to learn an
SHRG from this forest. We first build a forest rep-
resentation of possible derivations and then use an
MCMC algorithm to sample tree fragments from
this forest representing each rule in the derivation.

3.1 Fragment Decomposition Forest
We first proceed to define the fragment decompo-
sition forest. The fragment decomposition forest
is a variation of the phrase decomposition forest

1
X0-1 is different as X0 is the start symbol of type one

and should always have a concept edge at the root

defined by Chung et al. (2014) where the target
side is a graph instead of a string.

;z}|{
The

boy

z}|{
boy

want-01
z }| {
wants

;z}|{
the

girl

z}|{
girl

;z}|{
to

believe-01
z }| {
believe

;z}|{
him

A phrase p = [i, j] is a set of continuous word
indices {i, i + 1, . . . , j � 1}. A fragment f is
a hypergraph with external nodes Xf . A string-
to-graph alignment h : P ! F defines the map-
ping from spans in the sentence to fragments in the
graph. Our smallest phrase-fragment pairs are the
string-to-graph alignments extracted using heuris-
tic rules from Flanigan et al. (2014). The figure
above shows an example of the alignments for
the sentence “The boy wants the girl to believe
him”. The symbol ; represents that the word is
not aligned to any concept in the AMR graph and
this word is called an unaligned word. After this
alignment, there are also left-over edges that are
not aligned from any substrings, which are called
unaligned edges.

Given an aligned string, AMR graph pair, a
phrase-fragment pair n is a pair ([i, j], f) which
defines a pair of a phrase [i, j] and a fragment f
such that words in positions [i, j] are only aligned
to concepts in the fragment f and vice versa (with
unaligned words and edges omitted). A fragment
forest H = hV,Ei is a hypergraph made of a set
of hypernodes V and hyperedges E. Each node
n = ([i, j], f) is tight on the string side similar to
the definition by Koehn et al. (2003), i.e., n con-
tains no unaligned words at its boundaries. Note
here we do not have the constraint that f should be
connected or single rooted, but we will deal with
these constraints separately in the sampling proce-
dure.

We define two phrases [i1, j1], [i2, j2] to be ad-
jacent if word indices {j1, j1 + 1, . . . , i2 � 1}
are all unaligned. We also define two fragments
f1 = hV1, E1i, f2 = hV2, E2i to be disjoint if
E1 \ E2 = ;. And f1 and f2 are adjacent if they
are disjoint and f = hV1 [ V2, E1 [ E2i is con-
nected. We also define the compose operation of
two nodes: it takes two nodes n1 = ([i1, j1], f1)

and n2 = ([i2, j2], f2) (j1  i2) as input, and com-
putes f = hV1 [ V2, E1 [ E2i, the output is a
composed node n = ([i1, j2], f). We say n1 and
n2 are immediately adjacent if f is connected and
single-rooted.

We keep composing larger phrase-fragment
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Figure 4: The fragment decomposition forest for
the (sentence, AMR graph) pair for “The boy
wants the girl to believe him”

pairs (each one kept in a node of the forest) from
smaller ones until we reach the root of the forest
whose phrase side is the whole sentence and the
fragment side is the complete AMR graph. We de-
fine fragment decomposition forest to be made
of all possible phrase-fragments pairs that can be
decomposed from the sentence AMR graph pair.
The fragment decomposition forest has the im-
portant property that any SHRG rule consistent
with the string-to-graph alignment corresponds to
a continuous tree fragment of a complete tree
found in the forest.

While we can compose larger phrases from
smaller ones from left to right, there is no explicit
order of composing the graph fragments. Also, the
number of possible graph fragments is highly ex-
ponential as we need to make a binary decision to
decide each boundary node of the fragment and
also choose the edges going out of each boundary
node of the fragment, unlike the polynomial num-
bers of phrases for fixed string alignment.

Our bottom-up construction procedure starts
from the smallest phrase-fragment pairs. We
first index these smallest phrase-fragment pairs
([ik, jk], fk), k = 1, 2, . . . , n based on ascending
order of their start positions on the string side, i.e.,
jk  ik+1 for k = 1, 2, . . . , n � 1. Even with
this left-to-right order constraint from the string
side, the complexity of building the forest is still
exponential due to the possible choices in attach-
ing graphs edges that are not aligned to the string.
Our strategy is to deterministically attach each un-
aligned relation edge to one of the identified con-
cept fragments it connects to. We attach ARGs and
ops to its head node and each other types of un-

Algorithm 1 A CYK-like algorithm for building a
fragment decomposition forest
1: For each smallest phrase-fragment pairs ([ik, jk], fk), k

= 1, 2, . . . , n, attach unaligned edges to fragment fk, de-
noting the result as f

0
k. Build a node for ([ik, jk], f

0
k) and

add it to chart item c[k][k + 1].
2: Extract all the remaining unaligned fragments, build a

special unaligned node for each of them and add it to
unaligned node set unaligned nodes

3: Keep composing unaligned nodes with nodes in different
chart items if they are immediate adjacent and add it to
the same chart item

4: for span from 2 to n do
5: for i from 1 to n-span+1 do
6: j = i + span

7: for k from i + 1 to j � 1 do
8: for n1 = ([start1, end1], f1) in c[i][k] do
9: for n2 = ([start2, end2], f2) in c[k][j] do

10: if f1 and f2 are disjoint then
11: new node = compose(n1, n2)

12: add incoming edge (n1, n2) to
new node

13: if n1 and n2 are not immediate adja-
cent then

14: new node.nosample cut=True
15: insert node(new node, c[i][j])

aligned relations to its tail node.2

Algorithm 1 shows our CYK-like forest con-
struction algorithm. We maintain the length 1
chart items according to the order of each smallest
phrase-fragment pair instead of its position in the
string.3 In line 1, we first attach unaligned edges
to the smallest phrase-fragment pairs as stated be-
fore. After this procedure, we build a node for
the k-th phrase-fragment (with unaligned edges
added) pair and add it to chart item c[k][k + 1].
Note here that we still have remaining unaligned
edges; in line 2 we attach all unaligned edges go-
ing out from the same node as a single fragment
and build a special unaligned node with empty
phrase side and add it to unaligned nodes set.
In line 3, we try to compose each unaligned node
with one of the nodes in the length 1 chart items
c[k][k + 1]. If they are immediately adjacent, we
add the composed node to c[k][k + 1]. The al-
gorithm then composes smaller phrase-fragment
pairs into larger ones (line 4). When we have com-
posed two nodes n1, n2, we need to keep track

2Our intuition is that the ARG types for verbs and ops
structure usually go with the concept of the head node. We
assume that other relations are additional introduced to the
head node, which resembles a simple binarization step for
other relations.

3We use this strategy mainly because the alignments avail-
able do not have overlapping alignments, while our algo-
rithm could still be easily adapted to a version that maintains
the chart items with string positions when overlapping align-
ments are available

36



of this incoming edge. We have the constraint in
our grammar that the r.h.s. hypergraph of each rule
should be connected and single rooted.4 Lines 13
to 14 enforce this constraint by marking this node
with a nosample cut flag, which we will use in
the MCMC sampling stage. The insert node
function will check if the node already exists in
the chart item. If it already exists, then we only
update the incoming edges for that node. Other-
wise we will add it to the chart item.

For some sentence-AMR pairs where there are
too many nodes with unaligned edges going out,
considering all possible compositions would re-
sult in huge complexity overhead. One solution
we have adopted is to disallow disconnected graph
fragments and do not add them to the chart items
(Line 15). In practice, this pruning procedure does
not affect much of the final performance in our
current setting. Figure 4 shows the procedure of
building the fragment decomposition forest for the
sentence “The boy wants the girl to believe him”.

3.2 MCMC sampling

Sampling methods have been used to learn Tree
Substitution Grammar (TSG) rules from deriva-
tion trees (Cohn et al., 2009; Post and Gildea,
2009) for TSG learning. The basic intuition is
to automatically learn the best granularity for the
rules with which to analyze our data. Our prob-
lem, however, is different in that we need to sam-
ple rules from a compact forest representation.
We need to sample one tree from the forest, and
then sample one derivation from this tree structure,
where each tree fragment represents one rule in the
derivation. Sampling tree fragments from forests
is described in detail in Chung et al. (2014) and
Peng and Gildea (2014).

We formulate the rule sampling procedure with
two types of variables: an edge variable en rep-
resenting which incoming hyperedge is chosen at
a given node n in the forest (allowing us to sam-
ple one tree from a forest) and a cut variable zn

representing whether node n in forest is a bound-
ary between two SHRG rules or is internal to an
SHRG rule (allowing us to sample rules from a
tree). Figure 5 shows one sampled derivation from
the forest. We have sampled one tree from the for-
est using the edge variables. We also have a 0-1
variable at each node in this tree where 0 repre-

4We should be able to get rid of both constraints as we are
parsing on the string side.

boy
ARG0

ARG1
ARG0

ARG1girl

ARG0
ARG1

boy ARG0
ARG1

girl

ARG0

ARG1want-01

ARG0
ARG1

believe-01

girl
boy

   The boy                                    wants        the                           girl   to                                 believe him.

1

0
1

1 1 1 1

want-01

want-01

believe-01

believe-01

Figure 5: The sampled derivation for the (sen-
tence, AMR graph) pair for “The boy wants the
girl to believe him”

sents the current node is internal to an SHRG rule,
while 1 represents the current node is the boundary
of two SHRG rules.

Let all the edge variables form the random vec-
tor Y and all the cut variables form the random
vector Z. Given an assignment y to the edge vari-
ables and assignment z to the cut variables, our de-
sired distribution is proportional to the product of
weights of the rules specified by the assignment:

Pt(Y = y, Z = z) /
Y

r2⌧(y,z)

w(r) (1)

where ⌧(y, z) is the set of rules identified by the
assignment and w(r) is the weight for each indi-
vidual rule. We use a generative model based on
a Dirichlet Process (DP) defined over composed
rules. We draw a distribution G over rules from a
DP, and then rules from G.

G | ↵, P0 ⇠Dir(↵, P0)

r | G ⇠G

We define two rules to have the same rule type
if they have the same string and hypergraph rep-
resentation (including order of external nodes) on
the r.h.s..For the base distribution P0, we use a uni-
form distribution where all rules of the same size
have equal probability. By marginalizing out G
we get a simple posterior distribution over rules
which can be derived using the Chinese Restaurant
Process (CRP). We define a table of counts N =

{NC}C2I which memorizes different categories
of counts in the previous assignments, where I
is an index set for different categories of counts.
Each NC is a vector of counts for category C. We
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have the following probability over rule r given
the previous count table N :

P (ri = r|N) =

NR(r) + ↵P0(r)

n + ↵
(2)

here in the case of DP, I = {R}, where R is the
index for the category of rule counts.

We use the top-down sampling algorithm of
Chung et al. (2014) which samples cut and edge
variables from top down and one at a time. For
each node n, we denote the composed rule type
that we get when we set the cut of node n to 0 as
r1 and the two split rule types that we get when we
set the cut to 1 as r2, r3. We sample the cut value
zi of the current node according to the posterior
probability:

P (zi = z|N) =

(
P (r1|N)

P (r1|N)+P (r2|N)P (r3|N 0) if z = 0

P (r2|N)P (r3|N 0)
P (r1|N)+P (r2|N)P (r3|N 0) otherwise

(3)

where the posterior probability P (ri|N) is accord-
ing to a DP, and N,N 0 are tables of counts. In the
case of DP, N,N 0 differ only in the rule counts of
r2, where N 0

R(r2) = NR(r2) + 1.
As for edge variables ei, we refer to the set of

composed rules turned on below n including the
composed rule fragments having n as an internal
or root node as {r1, . . . , rm}. We have the follow-
ing posterior probability over the edge variable ei:

P (ei = e|N) /
mY

i=1

P (ri|N i�1
)

Y

v2⌧(e)\in(n)

deg(v) (4)

where deg(v) is the number of incoming edges for
node v, in(n) is the set of nodes in all subtrees
under n, and ⌧(e) is the tree specified when we
set ei = e. N0 to Nm are tables of counts where
N0

= N , N i
R(ri) = N i�1

R (ri) + 1 in the case of
DP.

After we have sampled one SHRG derivation
from the forest, we still need to keep track of the
place where each nonterminal edge attaches. As
we have maintained the graph fragment it repre-
sents in each node of the forest, we can retrieve
the attachment nodes of each hyperedge in the
r.h.s. by tracing at which graph nodes two frag-
ments fuse with each other. We perform this rule
extraction procedure from top-down and maintain
the order of attachment nodes of each r.h.s. non-
terminal edge. When we further rewrite a nonter-
minal edge, we need to make sure that it keeps the
order of the attachment nodes in its parent rule.

As for the unaligned words, we just insert all the
omitted unaligned words in the composition pro-
cedure. We also add additional rules including the
surrounding 2 unaligned words context to make
sure there are terminals on the string side.

3.3 Phrase-to-Graph-Fragment Alignment
Extraction

Aside from the rules sampled using the MCMC
algorithm, we also extract a phrase-to-graph-
fragment alignment table from the fragment de-
composition forest. This step can be considered as
a mapping of larger phrases made of multiple iden-
tified spans (plus unaligned words) to a larger frag-
ments made of multiple concept fragments (plus
the way they connect using unaligned edges).

Our extraction happens along with the forest
construction procedure. In line 1 of Algorithm 1
we extract one rule for each smallest phrase-
fragment pairs before and after the unaligned
edges are attached. We also extract one rule for
each newly constructed node after line 11 if the
fragment side of the node is single-rooted.5 We do
not extract rules after line 2 because it usually in-
troduces additional noise of meaningful concepts
which are unrecognized in the concepts identifica-
tion stage.

4 Decoding

4.1 Concept identification

During the decoding stage, first we need to iden-
tify meaningful spans in the sentence and map
them to graph fragments on the graph side. Then
we use SHRG rules to parse each sentence from
bottom up and left to right, which is similar to con-
stituent parsing. The recall of the concept identi-
fication stage from Flanigan et al. (2014) is 0.79,
which means 21% of the meaningful concepts are
already lost at the beginning of the next stage.

Our strategy is to use lemma and POS tags in-
formation after the concept identification stage,
we use it to recall some meaningful concepts.
We find that, except for some special function
words, most nouns, verbs and, adjectives should
be aligned. We use the lemma information to re-
trieve unaligned words whose morphological form
does not appear in our training data. We also use

5Here we will also look at the surrounding 2 unaligned
words to fix partial alignment and noise introduced by mean-
ingful unaligned words
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POS tag information to deal with nouns and quan-
tities. Motivated by the fact that AMR makes ex-
tensive use of PropBank framesets, we look up
the argument structure of the verbs from the Prop-
Bank. Although the complicated abstraction of
AMR makes it hard to get the correct concept for
each word, the more complete structure can reduce
the propagation of errors along the derivation tree.

4.2 AMR graph parsing
We use Earley algorithm with cube-pruning (Chi-
ang, 2007) for the string-to-AMR parsing. For
each synchronous rule with N nonterminals on
its l.h.s., we build an N + 1 dimensional cube
and generate top K candidates. Out of all the
hypotheses generated by all satisfied rules within
each span (i, j),we keep at most K candidates for
this span. Our glue rules will create a pseudo
R/ROOT concept and use ARGs relations to
connect disconnected components to make a con-
nected graph.

We use the following local features:
1. StringToGraphProbability: the probability of a hyper-

graph given the input string

2. RuleCount: number of rules used to compose the AMR
graph

3. RuleEdgeCount: the number of edges in the r.h.s. hy-
pergraph

4. EdgeType: the type of the l.h.s. nonterminal. For rules
with same source side tokens, we prefer rules with
smaller edge types.

5. AllNonTerminalPunish: one for rules which only have
non-terminals on the source side.

6. GlueCount: one for glue rules.

As our forest structure is highly binarized, it is
hard to capture the :opn structure when n is large
because we limit the number of external nodes to
5. The most common :op structure in the AMR
annotation is the coordinate structure of items sep-
arated by “;” or separated by “,” along with and.
We add the following two rules:

[X1-1]� > [X1-1, 1]; [X1-1, 2]; · · · ; [X1-1, n] |

(. :a/and :op1 [X1-1, 1] :op2 [X1-1, 2] · · · :opn [X1-1, n])

[X1-1]� > [X1-1, 1], [X1-1, 2], · · · and [X1-1, n] |

(. :a/and :op1 [X1-1, 1] :op2 [X1-1, 2] · · · :opn [X1-1, n])

where the HRG side is a :a/and coordinate struc-
ture of X1-1s connected with relation :ops.

5 Experiments
We use the same newswire section of
LDC2013E117 as Flanigan et al. (2014), which

Precision Recall F-score
Concept id only 0.37 0.53 0.44
+ MCMC 0.57 0.53 0.55
+ MCMC + phrase table 0.60 0.54 0.57
+ All 0.59 0.58 0.58

Table 1: Comparisons of different strategies of ex-
tracting lexical rules on dev.

consists of 3955 training sentences, 2132 dev
sentences and 2132 test sentences. We also use
the string-to-graph alignment from Flanigan et al.
(2014) to construct the fragment decomposition
forest and to extract the phrase-to-fragment table.

In the fragment decomposition forest construc-
tion procedure, we have experimented with differ-
ent ways of dealing with the unaligned edges. First
we have tried to directly use the alignment, and
group all unaligned edges going out from the same
node as an unaligned fragment. Using this con-
straint would take a few hours or longer for some
sentences. The reason for this is because the many
number of unaligned edges can connect to each
branch of the aligned or unaligned fragments be-
low it. And there is no explicit order of composi-
tion with each branch. Another constraint we have
tried is to attach all unaligned edges to the head
node concept. The problem with this constraint is
that it is very hard to generalize and introduces a
lot of additional redundant relation edges.

As for sampling, we initialize all cut variables
in the forest as 1 (except for nodes that are marked
as nosample cut, which indicates we initialize it
with 0 and keep it fixed) and uniformly sample an
incoming edge for each node. We evaluate the per-
formance of our SHRG-based parser using Smatch
v1.0 (Cai and Knight, 2013), which evaluates the
precision, recall and F1 of the concepts and rela-
tions all together. Table 1 shows the dev results of
our sampled grammar using different lexical rules
that maps substrings to graph fragments. Concept
id only is the result of using the concepts identi-
fied by Flanigan et al. (2014). From second line,
we replace the concept identification result with
the lexical rules we have extracted from the train-
ing data (except for named entities and time ex-
pressions). +MCMC shows the result using ad-
ditional alignments identified using our sampling
approach. We can see that using the phrase to
graph fragment alignment learned from our train-
ing data can significantly improve the smatch. We
have also tried extracting all phrase-to-fragment
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Precision Recall F-score
JAMR 0.67 0.58 0.62
Wang et al. 0.64 0.62 0.63
Our approach 0.59 0.57 0.58

Table 2: Comparisons of smatch score results

alignments of length 6 on the string side from
our constructed forest. We can see that using this
alignment table further improves the smatch score.
This is because the larger phrase-fragment pairs
can make better use of the dependency informa-
tion between continuous concepts. The improve-
ment is not much in comparison with MCMC, this
is perhaps MCMC can also learn some meaning
blocks that frequently appear together. As the
dataset is relatively small, so there are a lot of
meaningful concepts that are not aligned. We use
lemma as a backoff strategy to find the alignment
for the unaligned words. We have also used the
POS tag information to retrieve some unaligned
nouns and a PropBank dictionary to retrieve the
argument structure of the first sense of the verbs.
+All shows the result after using lemma, POS tag
and PropBank information, we can see that fixing
the alignment can improve the recall, but the pre-
cision does not change much.

Table 2 shows our result on test data. JAMR
is the baseline result from Flanigan et al. (2014).
Wang et al. (2015) shows the current state-of-
art for string-to-AMR parsing. Without the de-
pendency parse information and complex global
features, our SHRG-based approach can already
achieve competitive results in comparison with
these two algorithms.

6 Discussion

In comparison to the spanning tree algorithm of
Flanigan et al. (2014), an SHRG-based approach
is more sensitive to the alignment. If a lot of the
meaningful concepts are not aligned, then the lost
information would break down the structure of our
grammar. Using more data would definitely help
ease this issue. Building overlapping alignments
for the training data with more concepts alignment
would also be helpful.

Another thing to note is that Flanigan et al.
(2014) have used path information of dependency
arc labels and part of speech tags. Using these
global information can help the predication of the
relation edge labels. One interesting way to in-
clude such kind of path information is to add

a graph language model into our CFG decoder,
which should also help improve the performance.

All the weights of the local features mentioned
in Section 4.2 are tuned by hand. We have tried
tuning with MERT (Och, 2003), but the computa-
tion of smatch score for the k-best list has become
a major overhead. This issue might come from the
NP-Completeness of the problem smatch tries to
evaluate, unlike the simple counting of N-grams
in BLEU (Papineni et al., 2001). Parallelization
might be a consideration for tuning smatch score
with MERT.

7 Conclusion

We presented an MCMC sampling schedule for
learning SHRG rules from a fragment decompo-
sition forest constructed from a fixed string-to-
AMR-graph alignment. While the complexity of
building a fragment decomposition forest is highly
exponential, we have come up with an effective
constraint from the string side that enables an effi-
cient construction algorithm. We have also eval-
uated our sampled SHRG on a string-to-AMR
graph parsing task and achieved some reasonable
result without using a dependency parse. Inter-
esting future work might include adding language
model on graph structure and also learning SHRG
from overlapping alignments.
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Abstract

In this paper, we present a hybrid approach
for performing token and sentence levels
Dialect Identification in Arabic. Specifi-
cally we try to identify whether each to-
ken in a given sentence belongs to Modern
Standard Arabic (MSA), Egyptian Dialec-
tal Arabic (EDA) or some other class and
whether the whole sentence is mostly EDA
or MSA. The token level component re-
lies on a Conditional Random Field (CRF)
classifier that uses decisions from several
underlying components such as language
models, a named entity recognizer and
and a morphological analyzer to label each
word in the sentence. The sentence level
component uses a classifier ensemble sys-
tem that relies on two independent under-
lying classifiers that model different as-
pects of the language. Using a feature-
selection heuristic, we select the best set of
features for each of these two classifiers.
We then train another classifier that uses
the class labels and the confidence scores
generated by each of the two underlying
classifiers to decide upon the final class
for each sentence. The token level compo-
nent yields a new state of the art F-score of
90.6% (compared to previous state of the
art of 86.8%) and the sentence level com-
ponent yields an accuracy of 90.8% (com-
pared to 86.6% obtained by the best state
of the art system).

1 Introduction

In this age of social media ubiquity, we note the
pervasive presence of informal language mixed in
with formal language. Degree of mixing formal
and informal language registers varies across lan-
guages making it ever harder to process. The prob-

lem is quite pronounced in Arabic where the dif-
ference between the formal modern standard Ara-
bic (MSA) and the informal dialects of Arabic
(DA) could add up to a difference in language
morphologically, lexically, syntactically, seman-
tically and pragmatically, exacerbating the chal-
lenges for almost all NLP tasks. MSA is used
in formal settings, edited media, and education.
On the other hand the spoken, and, currently writ-
ten in social media and penetrating formal me-
dia, are the informal vernaculars. There are mul-
tiple dialects corresponding to different parts of
the Arab world: (1) Egyptian, (2) Levantine, (3)
Gulf, (4) Moroccan, and, (5) Iraqi. For each one of
these sub-dialectal variants exist. Speakers/writers
code switch between the two forms of the lan-
guage especially in social media text both inter
and intra sententially. Automatically identifying
code-switching between variants of the same lan-
guage (Dialect Identification) is quite challeng-
ing due to the lexical overlap and significant se-
mantic and pragmatic variation yet it is crucial
as a preprocessing step before building any Ara-
bic NLP tool. MSA trained tools perform very
badly when applied directly to DA or to intrasen-
tential code-switched DA and MSA text (ex. Al-
fryq fAz bAlEAfyp bs tSdr qA}mp Aldwry, where
the words correspond to MSA MSA DA DA MSA
MSA MSA, respectively)1. Dialect Identification
has been shown to be an important preprocess-
ing step for statistical machine Translation (SMT).
(Salloum et al., 2014) explored the impact of us-
ing Dialect Identification on the performance of
MT and found that it improves the results. They
trained four different SMT systems; (a) DA-to-
English SMT, (b) MSA-to-English SMT, (c) DA +
MSA-to-English SMT, and (d) DA-to-English hy-
brid MT system and treated the task of choosing

1We use Buckwalter transliteration scheme to repre-
sent Arabic in Romanized script throughout the paper.
http://www.qamus.org/transliteration.htm
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which SMT system to invoke as a classification
task. They built a classifier that uses various fea-
tures derived from the input sentence and that in-
dicate, among other things, how dialectal the input
sentence is and found that this approach improved
the performance by 0.9% BLEU points.

In this paper, we address the problem of to-
ken and sentence levels dialect identification in
Arabic, specifically between Egyptian Arabic and
MSA. For the token level task, we treat the prob-
lem as a sequence labeling task by training a CRF
classifier that relies on the decisions made by a
language model, a morphological analyzer, a shal-
low named entity recognition system, a modality
lexicon and other features pertaining to the sen-
tence statistics to decide upon the class of each to-
ken in the given sentence. For the sentence level
task we resort to a classifier ensemble approach
that combines independent decisions made by two
classifiers and use their decisions to train a new
one. The proposed approaches for both tasks sig-
nificantly beat the current state of the art perfor-
mance with a significant margin, while creating a
pipelined system.

2 Related Work

Dialect Identification in Arabic has recently
gained interest among Arabic NLP researchers.
Early work on the topic focused on speech data.
Biadsy et al. (2009) presented a system that identi-
fies dialectal words in speech through acoustic sig-
nals. More recent work targets textual data. The
main task for textual data is to decide the class of
each word in a given sentence; whether it is MSA,
EDA or some other class such as Named-Entity
or punctuation and whether the whole sentence is
mostly MSA or EDA. The first task is referred to
as “Token Level Dialect Identification” while the
second is “Sentence Level Dialect Identification”.

For sentence level dialect identification in Ara-
bic, the most recent works are (Zaidan and
Callison-Burch, 2011), (Elfardy and Diab, 2013),
and (Cotterell and Callison-Burch, 2014a). Zaidan
and Callison-Burch (2011) annotate MSA-DA
news commentaries on Amazon Mechanical Turk
and explore the use of a language-modeling based
approach to perform sentence-level dialect identi-
fication. They target three Arabic dialects; Egyp-
tian, Levantine and Gulf and develop different
models to distinguish each of them against the oth-
ers and against MSA. They achieve an accuracy of

80.9%, 79.6%, and 75.1% for the Egyptian-MSA,
Levantine-MSA, and Gulf-MSA classification, re-
spectively. These results support the common as-
sumption that Egyptian, relative to the other Ara-
bic dialectal variants, is the most distinct dialect
variant of Arabic from MSA. Elfardy and Diab
(2013) propose a supervised system to perform
Egyptian Arabic Sentence Identification. They
evaluate their approach on the Egyptian part of the
dataset presented by Zaidan and Callison-Burch
(2011) and achieve an accuracy of 85.3%. Cot-
terell and Callison-Burch (2014b) extend Zaidan
and Callison-Burch (2011) work by handling two
more dialects (Iraqi and Moroccan) and targeting a
new genre, specifically tweets. Their system out-
performs Zaidan and Callison-Burch (2011) and
Elfardy and Diab (2013), achieving a classifica-
tion accuracy of 89%, 79%, and 88% on the same
Egyptian, Levantine and Gulf datasets. For token
level dialect identification, King et al. (2014) use a
language-independent approach that utilizes char-
acter n-gram probabilities, lexical probabilities,
word label transition probabilities and existing
named entity recognition tools within a Markov
model framework.

Jain and Bhat (2014) use a CRF based token
level language identification system that uses a set
of easily computable features (ex. isNum, isPunc,
etc.). Their analysis showed that the most impor-
tant features are the word n-gram posterior proba-
bilities and word morphology.

Lin et al. (2014) use a CRF model that relies
on character n-grams probabilities (tri and quad
grams), prefixes, suffixes, unicode page of the first
character, capitalization case, alphanumeric case,
and tweet-level language ID predictions from two
off-the-shelf language identifiers: cld22 and ldig.3

They increase the size of the training data using a
semi supervised CRF autoencoder approach (Am-
mar et al., 2014) coupled with unsupervised word
embeddings.

MSR-India (Chittaranjan et al., 2014) use char-
acter n-grams to train a maximum entropy classi-
fier that identifies whether a word is MSA or EDA.
The resultant labels are then used together with
word length, existence of special characters in the
word, current, previous and next words to train a
CRF model that predicts the token level classes of
words in a given sentence/tweet.

2https://code.google.com/p/cld2/
3https://github.com/shuyo/ldig
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Figure 1: Token-level identification pipeline

In our previously published system AIDA (El-
fardy et al., 2014) we use a weakly supervised rule
based approach that relies on a language model to
tag each word in the given sentence to be MSA,
EDA, or unk. We then use the LM decision for
each word in the given sentence/tweet and com-
bine it with other morphological information, in
addition to a named entity gazetteer to decide upon
the final class of each word.

3 Approach

We introduce AIDA2. This is an improved version
of our previously published tool AIDA (Elfardy et
al., 2014). It tackles the problems of dialect iden-
tification in Arabic both on the token and sentence
levels in mixed modern standard Arabic MSA and
Egyptian dialect EDA text. We first classify each
word in the input sentence to be one of the fol-
lowing six tags as defined in the shared task for
“Language Identification in Code-Switched Data”
in the first workshop on computational approaches
to code-switching [ShTk](Solorio et al., 2014):

• lang1: If the token is MSA (ex. AlwAqE, “The
reality”)

• lang2: If the token is EDA (ex. m$, “Not”)
• ne: If the token is a named entity (ex. >mrykA,

“America”)
• ambig: If the given context is not sufficient to

identify the token as MSA or EDA (ex. slAm
Elykm, “Peace be upon you”)

• mixed: If the token is of mixed morphology (ex.
b>myT meaning “I’m always removing”)

• other: If the token is or is attached to any non
Arabic token (ex. numbers, punctuation, Latin
character, emoticons, etc)

The fully tagged tokens in the given sentence
are then used in addition to some other features to
classify the sentence as being mostly MSA or EDA.

3.1 Token Level Identification
Identifying the class of a token in a given sentence
requires knowledge of its surrounding tokens since

these surrounding tokens can be the trigger for
identifying a word as being MSA or EDA. This
suggests that the best way to approach the prob-
lem is by treating it as a sequence labeling task.
Hence we use a Conditional Random Field (CRF)
classifier to classify each token in the input sen-
tence. The CRF is trained using decisions from
the following underlying components:

• MADAMIRA: is a publicly available tool for
morphological analysis and disambiguation of
EDA and MSA text (Pasha et al., 2014).4

MADAMIRA uses SAMA (Maamouri et al.,
2010) to analyze the MSA words and CAL-
IMA (Habash et al., 2012) for the EDA words.
We use MADAMIRA to tokenize both the lan-
guage model and input sentences using D3
tokenization-scheme, the most detailed level of
tokenization provided by the tool (ex. bAlfryq,
“By the team” becomes “b+ Al+ fryq”)(Habash
and Sadat, 2006). This is important in order
to maximize the Language Models (LM) cov-
erage. Furthermore, we also use MADAMIRA
to tag each token in the input sentence as MSA
or EDA by tagging the source of the morpho-
logical analysis, if MADAMIRA. analyses the
word using SAMA, then the token is tagged MSA
while if the analysis comes from CALIMA, the
token is tagged EDA. Out of vocabulary words
are tagged unk.

• Language Model: is a D3-tokenized 5-grams
language model. It is built using the 119K man-
ually annotated words of the training data of the
shared task ShTk in addition to 8M words from
weblogs data (4M from MSA sources and 4M
from EDA ones). The weblogs are automati-
cally annotated based on their source, namely, if
the source of the data is dialectal, all the words
from this source are tagged as EDA. Otherwise
they are tagged MSA. Since we are using a D3-
tokenized data, all D3 tokens of a word are as-
signed the same tag of their corresponding word
(ex. if the word “bAlfryq” is tagged MSA, then
each of “b+”, “Al+”, and “fryq” is tagged MSA).
During runtime, the Language Model classifier
module creates a lattice of all possible tags for
each word in the input sentence after it is be-
ing tokenized by MADAMIRA. Viterbi search
algorithm (Forney, 1973) is then used to find
the best sequence of tags for the given sentence.
If the input sentence contains out of vocabulary
4http://nlp.ldeo.columbia.edu/madamira/
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words, they are being tagged as unk. This mod-
ule also provides a binary flag called “isMixed”.
It is “true” only if the LM decisions for the pre-
fix, stem, and suffix are not the same.

• Modality List: ModLex (Al-Sabbagh et al.,
2013) is a manually compiled lexicon of Arabic
modality triggers (i.e. words and phrases that
convey modality). It provides the lemma with a
context and the class of this lemma (MSA, EDA,
or both) in that context. In our approach, we
match the lemma of the input word that is pro-
vided by MADAMIRA and its surrounding con-
text with an entry in ModLex. Then we assign
this word the corresponding class from the lexi-
con. If we find more than one match, we use the
class of the longest matched context. If there
is no match, the word takes unk tag. Ex. the
word “Sdq” which means ”told the truth” gets
the class “both” in this context “>flH An Sdq”
meaning “He will succeed if he told the truth”.

• NER: this is a shallow named entity recognition
module. It provides a binary flag “isNE” for
each word in the input sentence. This flag is set
to “true” if the input word has been tagged as ne.
It uses a list of all sequences of words that are
tagged as ne in the training data of ShTk in ad-
dition to the named-entities from ANERGazet
(Benajiba et al., 2007) to identify the named-
entities in the input sentence. This module
also checks the POS provided by MADAMIRA
for each input word. If a token is tagged as
noun prop POS, then the token is classified as
ne.

Using these four components, we generate the fol-
lowing features for each word:.

• MADAMIRA-features: the input word, prefix,
stem, suffix, POS, MADAMIRA decision, and as-
sociated confidence score;

• LM-features: the “isMixed” flag in addition to
the prefix-class, stem-class, suffix-class and the
confidence score for each of them as provided by
the language model;

• Modality-features: the Modality List decision;
• NER-features: the “isNE” flag from the NER;
• Meta-features: “isOther” is a binary flag that is

set to “true” only if the input word is a non Ara-
bic token. And “hasSpeechEff” which is another
binary flag set to “true” only if the input word
has speech effects (i.e. word lengthening).

Token&Level&Iden,fica,on

D3#Tokenized,
MSA#LM,

Comp&Cl

D3#Tokenized,
EDA#LM,

Input 
Data

Abs&Cl

Surface(Level,
MSA(LM,

Surface(Level,
EDA(LM,

DT7
Ensemble

Output

Figure 2: Sentence-level identification pipeline

We then use these features to train a CRF classi-
fier using CRF++ toolkit (Sha and Pereira, 2003)
and we set the window size to 16.5 Figure 1 illus-
trates the different components of the token-level
system.

3.2 Sentence Level Identification
For this level of identification, we rely on a clas-
sifier ensemble to generate the class label for
each sentence. The underlying classifiers are
trained on gold labeled data with sentence level
binary decisions of either being MSA or EDA. Fig-
ure 2 shows the pipeline of the sentence level
identification component. The pipeline consists
of two main pathways with some pre-processing
components. The first classifier (Comprehensive
Classifier/Comp-Cl) is intended to cover dialectal
statistics, token statistics, and writing style while
the second one (Abstract Classifier/Abs-Cl) covers
semantic and syntactic relations between words.
The decisions from the two classifiers are fused
together using a decision tree classifier to predict
the final class of the input sentence.6

3.2.1 Comprehensive Classifier
The first classifier is intended to explicitly model
detailed aspects of the language. We identify mul-
tiple features that are relevant to the task and we
group them into different sets. Using the D3 tok-
enized version of the input data in addition to the
classes provided by the “Token Level Identifica-
tion” module for each word in the given sentence,
we conduct a suite of experiments using the deci-
sion tree implementation by WEKA toolkit (Hall
et al., 2009) to exhaustively search over all fea-
tures in each group in the first phase, and then ex-
haustively search over all of the remaining features

5The window size is set empirically, we experimented
with window sizes of 2, 4, 6, 8, 12.

6We experiment with different classifiers: Naive Bayes
and Bayesian Network classifiers, but Decision Trees yielded
the best results
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from all groups to find the best combination of fea-
tures that maximizes 10-fold cross-validation on
the training data. We explore the same features
used by Elfardy and Diab (2013) in addition to
three other features that we refer to as “Modality
Features”. The full list of features include:

• Perplexity-Features [PF]: We run the tokenized
input sentence through a tokenized MSA and
a tokenized EDA 5-grams LMs to get sen-
tence perplexity from each LM (msaPPL and
edaPPL). These two LMs are built using the
same data and the same procedure for the LMs
used in the “Token Level Identification” mod-
ule;

• Dia-Statistics-Features [DSF]:

– The percentage of words tagged as EDA in the
input sentence by the “Token Level Identifica-
tion” module (diaPercent);

– The percentage of words tagged as EDA and
MSA by MADAMIRA in the input sentence
(calimaWords and samaWords, respectively).
And the percentage of words found in a pre-
compiled EDA lexicon egyWords used and
provided by (Elfardy and Diab, 2013);

– hasUnk is a binary feature set to “true” only if
the language model of the “Token Level Iden-
tification” module yielded at least one unk tag
in the input sentence;

– Modality features: The percentage of words
tagged as EDA, MSA, and both (modEDA,
modMSA, and modBoth, respectively) using
the Modality List component in the “Token
Level Identification” module.

• Sentence-Statistics-Features [SSF]: The per-
centage of Latin words, numbers, and punctu-
ation (latinPercent, numPercent, and puncPer-
cent, respectively) in the input sentence. In ad-
dition to the average word length (avgWordLen)
and the total number of words (sentLength) in
the same sentence;

• Sentence-decoration-features [SDF]: Some
binary features of whether the sentence
has/doesn’t have diacritics (hasDiac), speech
effects (hasSpeechEff), presence of excla-
mation mark (hasExMark), presence of
emoticons (hasEmot), presence of question
mark (hasQuesMark), presence of decoration
effects (hasDecEff) (ex: ****), or repeated
punctuation (hasRepPunc).

3.2.2 Abstract Classifier
The second classifier, Abs-Cl, is intended to cover
the implicit semantic and syntactic relations be-
tween words. It runs the input sentence in its sur-
face form without tokenization through a surface
form MSA and a surface form EDA 5-gram LMs to
get sentence probability from each of the respec-
tive LM (msaProb and edaProb). These two LMs
are built using the same data used in the “Token
Level Identification” module LM, but without to-
kenization.

This classifier complements the information
provided by Comp-Cl. While Comp-Cl yields de-
tailed and specific information about the tokens
as it uses tokenized-level LMs, Abs-Cl is able to
capture better semantic and syntactic relations be-
tween words since it can see longer context in
terms of the number of words compared to that
seen by Comp-Cl (on average a span of two words
in the surface-level LM corresponds to almost five
words in the tokenized-level LM) (Rashwan et al.,
2011).

3.2.3 DT Ensemble
In the final step, we use the classes and confidence
scores of the preceding two classifiers on the train-
ing data to train a decision tree classifier. Accord-
ingly, an input test sentence goes through Comp-
Cl and Abs-Cl, where each classifier assigns the
sentence a label and a confidence score for this la-
bel. It then uses the two labels and the two confi-
dence scores to provide its final classification for
the input sentence.

4 Experimental Setup

4.1 Data

To our knowledge, there is no publicly available
standard dataset that is annotated for both token
and sentence levels to be used for evaluating both
levels of classifications. Accordingly we use two
separate standard datasets for both tasks.

For the token level identification, we use the
training and test data that is provided by the shared
task ShTk. Additionally, we manually annotate
more token-level data using the same guidelines
used to annotate this dataset and use this additional
data for training and tuning our system.

• tokTrnDB: is the ShTk training set. It consists
of 119,326 words collected from Twitter;
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• tokTstDB: is the ShTk test set. It consists of
87,373 words of tweets collected from some un-
seen users in the training set and 12,017 words
of sentences collected from Arabic commen-
taries;

• tokDevDB: 42,245 words collected from we-
blogs and manually annotated in house using the
same guidelines of the shared task.7 We only
use this set for system tuning to decide upon the
best configuration;

• tokTrnDB2: 171,419 words collected from we-
blogs and manually annotated in house using the
same guidelines of the shared task. We use it as
an extra training set in addition to tokTrnDB to
study the effect of increasing training data size
on the system performance.8

Table 1 shows the distribution of each of these sub-
sets of the token-level dataset.

lang1 lang2 ambig ne other mixed
tokTrnDB 79,059 16,291 1,066 14,110 8,688 15
tokTstDB 57,740 21,871 240 11,412 8,121 6
tokTrnDB2 77,856 69,407 46 14,902 9,190 18
tokDevDB 23,733 11,542 34 4,017 2,916 3

Table 1: Tag distribution in the datasets used in
our token level identification component.

For sentence level dialect identification, we use
the code-switched EDA-MSA portion of the crowd
source annotated dataset (Zaidan and Callison-
Burch, 2011). The dataset consists of user
commentaries on Egyptian news articles. The
data is split into training (sentTrnDB) and test
(sentTstDB) using the same split reported by El-
fardy and Diab (2013). Table 2 shows the statistics
for that data.

MSA Sent. EDA Sent. MSA Tok. EDA Tok.
sentTrnDB 12,160 11,274 300,181 292,109
sentTstDB 1,352 1,253 32,048 32,648

Table 2: Number of EDA and MSA sentences and
tokens in the training and test sets.

4.2 Baselines
4.2.1 Token Level Baselines
For the token level task, we evaluate our approach
against the results reported by all systems partic-

7The task organizers kindly provided the guidelines for
the task.

8We are expecting to release both tokDevDB and tok-
TrnDB2 in addition to some other data are still under devel-
opment to the community by 2016

ipating in ShTk evaluation test bed. These base-
lines include:

• IUCL: The best results obtained by King et al.
(2014);

• IIIT: The best results obtained by Jain and Bhat
(2014);

• CMU: The best results obtained by Lin et al.
(2014);

• MSR-India: The best results obtained by Chit-
taranjan et al. (2014);

• AIDA: The best results obtained by us using the
older version AIDA (Elfardy et al., 2014).

4.2.2 Sentence Level Baselines
For the sentence level component, we evaluate our
approach against all published results on the Ara-
bic “Online Commentaries (AOC)” publicly avail-
able dataset (Zaidan and Callison-Burch, 2011).
The sentence level baselines include:

• Zidan et al: The best results obtained by Zaidan
and Callison-Burch (2011);

• Elfardy et al: The best results obtained by El-
fardy and Diab (2013);

• Cotterell et al: The best result obtained by Cot-
terell and Callison-Burch (2014a);

• All Features: This baseline combines all fea-
tures from Comp-Cl and Abs-Cl to train a single
decision tree classifier.

5 Evaluation

5.1 Token Level Evaluation
Table 3 compares our token level identification ap-
proach to all baselines. It shows, our proposed
approach significantly outperforms all baselines
using the same training and test sets. AIDA2
achieves 90.6% weighted average F-score while
the nearest baseline gets 86.8% (this is 28.8% er-
ror reduction from the best published approach).
By using both tokTrnDB and tokTrnDB2 for train-
ing, the weighted average F-score is further im-
proved by 2.3% as shown in the last row of the
table.

5.2 Sentence Level Evaluation
For all experiments, we use a decision-tree clas-
sifier as implemented in WEKA (Hall et al.,
2009) toolkit. Table 4 shows the 10-folds cross-
validation results on the sentTrnDB.

• “Comp-Cl” shows the results of the best se-
lected set of features from each group. (The
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Baseline lang1 lang2 ambig ne other mixed Avg-F
AIDA 89.4 76.0 0.0 87.9 99.0 0.0 86.8
CMU 89.9 81.1 0.0 72.5 98.1 0.0 86.4
IIIT 86.2 52.9 0.0 70.1 84.2 0.0 76.6

IUCL 81.1 59.5 0.0 5.8 1.2 0.0 61.0
MSR-India 86.0 56.4 0.7 49.6 74.8 0.0 74.2

AIDA2 92.9 82.9 0.0 89.5 99.3 0.0 90.6
AIDA2+ 94.6 88.3 0.0 90.2 99.4 0.0 92.9

Table 3: F-score on held-out test-set tokTstDB us-
ing our best setup against the baselines. AIDA2+
shows the the results of training our system using
tokTrnDB and tokTrnDB2

Group Accuracy
Perplexity-Features 80.0%

Dia-Statistics-Features 85.1%
Comp-Cl Sentence-Statistics-Features 61.6%

Sentence-decoration-features 53.1%
Best of all groups 87.3%

Abs-Cl 78.4%
DT Ensemble 89.9%

Table 4: Cross-validation accuracy on the sent-
TrnDB using the best selected features in each
group

ones that yield best cross-validation results of
sentTrnDB. “Best-of-all-groups” shows the re-
sult of the best selected features from the re-
tained feature groups which in turn is the fi-
nal set of features for the comprehensive clas-
sifier. In our case the best selected features
are msaPPL, edaPPL, diaPercent, hasUnk, cal-
imaWords, modEDA, egyWords, latinPercent,
puncPercent, avgWordLen, and hasDiac.

• “Abs-Cl” shows the results and best set of fea-
tures (msaProb and edaProb) for the abstract
classifier.

• “DT Ensemble” reflect the results of combining
the labels and confidence scores from Comp-Cl
and Abs-Cl using a decision tree classifier.

Among the different configurations, the ensemble
system yields the best 10-fold cross-validation ac-
curacy of 89.9%. We compare the performance
of this best setup to our baselines on both the
cross-validation and held-out test sets. As Table
5 shows, the proposed approach significantly out-
performs all baselines on all sets.

6 Results Discussion

6.1 Token Level Results Discussion
Last row in table 3 shows that the system results
in 24.5% error reduction by adding 171K words

Baseline sentTrnDB sentTstDB sentTrnDB + sentTstDB
Zidan et al N/A N/A 80.9

Elfardy et al 85.3 83.3 85.5
Cotterell et al N/A N/A 86.6
All Features 85.8 85.3 85.5

DT Ensemble 89.9 87.3 90.8
Table 5: Results of using our best setup (DT En-
semble) against baselines

of gold data to the training set. This shows that
the system did not reach the saturation state yet,
which means that adding more gold data can in-
crease performance.

Table 6 shows the confusion matrix of our best
setup for all six labels over the tokTstDB. The
table shows that the highest confusability is be-
tween lang1 and lang2 classes; 2.9% are classi-
fied as lang1 instead of lang2 and 1.6% are clas-
sified as lang2 instead of lang1. This accounts for
63.8% of the total errors. The Table also shows
that our system does not produce the mixed class at
all probably because of the tiny number of mixed
cases in the training data (only 33 words out of
270.7K words). The same case applies to the am-
big class as it represents only 0.4% of the whole
training data. lang1 and ne are also quite highly
confusable. Most of ne words have another non-
named entity meaning and in most cases these
other meanings tend to be MSA. Therefore, we ex-
pect that a more sophisticated NER system will
help in identifying these cases.

Predicted
lang1 lang2 ambig ne other mixed

lang1 55.7% 1.6% 0.0% 0.9% 0.0% 0.0%
lang2 2.9% 18.9% 0.0% 0.2% 0.0% 0.0%

Gold ambig 0.1% 0.1% 0.0% 0.0% 0.0% 0.0%
ne 0.8% 0.2% 0.0% 10.3% 0.1% 0.0%

other 0.0% 0.0% 0.0% 0.0% 8.2% 0.0%
mixed 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Table 6: Token-level confusion matrix for the best
performing setup on tokTstDB

Table 7 shows examples of the words that are
misclassified by our system. The misclassified
word in the first examples (bED meaning “each
other”) has a gold class other. However, the gold
label is incorrect and our system predicted it cor-
rectly as lang2 given the context. In the second
example, the misclassified named entity refers to
the name of a charitable organization but the word
also means “message” which is a lang1 word. The
third example shows a lang1 word that is incor-
rectly classified by our system as lang2. Similarly,
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in the last example our system incorrectly classi-
fied a lang2 word as a lang1.

Sentence Word Gold Pred
tlt twytr mzwr . nSh AkwntAt m$
$gAlh w AlbAqy mblkyn bED

bED

⌘Å” ⇣H A⇣J  KÒª @ Èí  � . P   Q” Q⇣�K⌦ Ò⇣K ⇣I ⇣K ë™K.  ·�⌦∫ J. ” ⌦̇
⇣Ø AJ. À @  ⇣ÈÀ A  ™ ⌘É

 ë™K. other lang2

One third of twitter is forged. Half of
the accounts are not working while the
rest block each other..

each other

kmA Anny mTlE Ely mA tqwmwn
bh fy mxtlf AljmEyAt wAlAn$Tp
AlAhlyp . mvl rsAlp .

rsAlp

⌦̇
 Ø ÈK.  ‡ Ò”Ò ⇣Æ⇣K A” ⌦̇Œ´ © ¢” ⌦̇

 G @ A“ª
. ⇣ÈJ⌦ Î B @ ⇣È¢ ⌘Ç  � B @ ⇣H AJ⌦™“m.Ã '@  ≠ ⇣Jm◊
. ⇣ÈÀ AÉP …⌘J”

⇣ÈÀ AÉP ne lang1

Also I know what you are doing in dif-
ferent domains and civil activities like
Resala.

Resala

>nA bxyr . SHty wAlHmd llh fy
>fDl HAl .

SHty

…  í  Ø @ ⌦̇
 Ø È✏<À Y“mÃ '@ ⌦̇

⇣Êm⇡ï Q�⌦  m⇢'. A  K @
. » Ag

⌦̇
⇣Êm⇡ï lang1 lang2

I am fine. Thank God, my health is in
best condition.

my health

lm Aqr> AlbyAn w qrrt AEtrD Elyh
glAsp

AEtrD

È J⌦   ´  êQ⇣� ´ @ ⇣HP ✏Q ⇣Ø   ‡ A J⌦ J. À @
�
@Q ⇣Ø @ ’À⇣ÈÉ C  ́

 êQ⇣�´ @ lang2 lang1

I did not read the statement and de-
cided to object to it just to be annoy-
ing

object

Table 7: Examples of the words that were misclas-
sified by our system

6.2 Sentence Level Results Discussion

The best selected features shows that Comp-Cl
benefits most from using only 11 features. By
studying the excluded features we found that:

• Five features (hasSpeechEff, hasEmot, hasDe-
cEff, hasExMark, and hasQuesMark) are zeros
for most records, hence extremely sparse, which
explains why they are not selected as relevant
distinctive features. However, it should be noted
that the hasSpeechEff and hasEmot features are
markers of informal language especially in the
social media (not to ignore the fact that users
write in MSA using these features as well but
much less frequently). Accordingly we antici-
pate that if the data has more of these features,
they would have significant impact on modeling
the phenomena;

• Five features are not strong indicators of dialec-
talness. For the sentLength feature, the aver-
age length of the MSA, and EDA sentences in
the training data is almost the same. While, the
numPercent, modMSA, modBoth, and hasRep-
Punc features are almost uniformly distributed
across the two classes;

• The initial assumption was that SAMA is ex-
clusively MSA while CALIMA is exclusively
EDA, thereby the samaWords feature will be a
strong indicator for MSA sentences and the cali-
maWords feature will be a strong indicator for
EDA sentences. Yet by closer inspection, we
found that in 96.5% of the EDA sentences, cal-
imaWords is higher than samaWords. But, in
only 23.6% of the MSA sentences, samaWords
is higher than calimaWords. This means that
samaWords feature is not able to distinguish the
MSA sentences efficiently. Accordingly sama-
Words feature was not selected as a distinctive
feature in the final feature selection process.

Although modEDA is selected as one of the rep-
resentative features, it only occurs in a small per-
centage of the training data (10% of the EDA sen-
tences and 1% of the MSA sentences). Accord-
ingly, we repeated the best setup (DT Ensemble)
without the modality features, as an ablation study,
to measure the impact of modality features on
the performance. In the 10-fold-cross-validation
on the sentTrnDB using Comp-Cl alone, we note
that performance results slightly decreased (from
87.3% to 87.0%). However given the sparsity of
the feature (it occurs in less than 1% of the tokens
in the EDA sentences), 0.3% drop in performance
is significant. This shows that if the modality lex-
icon has more coverage, we will observe a more
significant impact.

Table 8 shows some examples for our system
predictions. The first example is correctly clas-
sified with a high confidence (92%). Example 2
is quite challenging. The second word is a typo
where two words are concatenated due to a miss-
ing white space, while the first and third words can
be used in both MSA and EDA contexts. There-
fore, the system gives a wrong prediction with a
low confidence score (59%). In principle this sen-
tence could be either EDA or MSA. The last exam-
ple should be tagged as EDA. However, our system
tagged it as MSA with a very high confidence score
of (94%).

49



Input sentence Gold Pred Conf
wlA AElAnAt fY Altlyfzywn nAfEp w
lA jrArAt jdydp nAfEp.. w bEdyn.

B ⇣È ™  Ø A  K  ‡ Ò K⌦  Q  Æ   ⇣J À @ ⌦̇
 Ø ⇣H A  K C ´ @ B

.  ·K⌦ Y™K.  . . ⇣È™  Ø A  K ⇣Ë YK⌦ Yg. ⇣H @P @Qk.

EDA EDA 92%

Neither TV commercials nor new trac-
tors work. So now what.
Allhm AgfrlhA wArHmhA

AÍ‘gP @ AÍÀQ  Æ  ́ @ —Í
✏
 À @

MSA EDA 59%

May God forgive her and have mercy on
her.
tsmHly >qwlk yAbAbA?

? AK. AK. AK⌦ ΩÀÒ⇣Ø @ ⌦̇Œj“Ç⇣�
EDA MSA 94%

Do you allow me to call you father?

Table 8: Examples of the sentences that were mis-
classified by our system

7 Conclusion

We presented AIDA2, a hybrid system for token
and sentence levels dialectal identification in code
switched Modern Standard and Egyptian Dialectal
Arabic text. The proposed system uses a classifier
ensemble approach to perform dialect identifica-
tion on both levels. In the token level module, we
run the input sentence through four different clas-
sifiers. Each of which classify each word in the
sentence. A CRF model is then used to predict the
final class of each word using the provided infor-
mation from the underlying four classifiers. The
output from the token level module is then used to
train one of the two underlying classifiers of the
sentence level module. A decision tree classifier is
then used to to predict the final label of any new in-
put sentence using the predictions and confidence
scores of two underlying classifiers. The sentence
level module also uses a heuristic features selec-
tion approach to select the best features for each
of its two underlying classifiers by maximizing the
accuracy on a cross-validation set. Our approach
significantly outperforms all published systems on
the same training and test sets. We achieve 90.6%
weighted average F-score on the token level iden-
tification compared to 86.8% for state of the art
using the same data sets. Adding more training
data results in even better performance to 92.9%.
On the sentence level, AIDA2 yields an accuracy
of 90.8% using cross-validation compared to the
latest state of the art performance of 86.6% on the
same data.

References
Rania Al-Sabbagh, Jana Diesner, and Roxana Girju.

2013. Using the semantic-syntactic interface for re-
liable arabic modality annotation. In Proceedings
of the Sixth International Joint Conference on Nat-
ural Language Processing, pages 410–418, Nagoya,
Japan, October. Asian Federation of Natural Lan-
guage Processing.

Waleed Ammar, Chris Dyer, and Noah A Smith. 2014.
Conditional random field autoencoders for unsu-
pervised structured prediction. In Z. Ghahramani,
M. Welling, C. Cortes, N.D. Lawrence, and K.Q.
Weinberger, editors, Advances in Neural Informa-
tion Processing Systems 27, pages 3311–3319. Cur-
ran Associates, Inc.

Yassine Benajiba, Paolo Rosso, and Jos Miguel Bene-
druiz. 2007. Anersys: An arabic named entity
recognition system based on maximum entropy. In
In Proceedings of CICLing-2007.

Fadi Biadsy, Julia Hirschberg, and Nizar Habash.
2009. Spoken arabic dialect identification using
phonotactic modeling. In Proceedings of the Work-
shop on Computational Approaches to Semitic Lan-
guages at the meeting of the European Associa-
tion for Computational Linguistics (EACL), Athens,
Greece.

Gokul Chittaranjan, Yogarshi Vyas, Kalika Bali, and
Monojit Choudhury, 2014. Proceedings of the First
Workshop on Computational Approaches to Code
Switching, chapter Word-level Language Identifica-
tion using CRF: Code-switching Shared Task Report
of MSR India System, pages 73–79. Association for
Computational Linguistics.

Ryan Cotterell and Chris Callison-Burch. 2014a. A
multi-dialect, multi-genre corpus of informal written
arabic. In Nicoletta Calzolari (Conference Chair),
Khalid Choukri, Thierry Declerck, Hrafn Lofts-
son, Bente Maegaard, Joseph Mariani, Asuncion
Moreno, Jan Odijk, and Stelios Piperidis, editors,
Proceedings of the Ninth International Conference
on Language Resources and Evaluation (LREC’14),
Reykjavik, Iceland, may. European Language Re-
sources Association (ELRA).

Ryan Cotterell and Chris Callison-Burch. 2014b. A
multi-dialect, multi-genre corpus of informal written
arabic. In Proceedings of the Language Resources
and Evaluation Conference (LREC).

Heba Elfardy and Mona Diab. 2013. Sentence-Level
Dialect Identification in Arabic. In Proceedings of
ACL2013, Sofia, Bulgaria, August.

Heba Elfardy, Mohamed Al-Badrashiny, and Mona
Diab, 2014. Proceedings of the First Workshop
on Computational Approaches to Code Switching,
chapter AIDA: Identifying Code Switching in In-
formal Arabic Text, pages 94–101. Association for
Computational Linguistics.

50



Jr. Forney, G.D. 1973. The viterbi algorithm. Pro-
ceedings of the IEEE, 61(3):268–278, March.

Nizar Habash and Fatiha Sadat. 2006. Arabic prepro-
cessing schemes for statistical machine translation.
Proceedings of the 7th Meeting of the North Amer-
icanChapter of the Association for Computational
Linguistics/Human Language Technologies Confer-
ence (HLT-NAACL06).

Nizar Habash, Ramy Eskander, and AbdelAti
Hawwari. 2012. A Morphological Analyzer for
Egyptian Arabic. In NAACL-HLT 2012 Workshop
on Computational Morphology and Phonology
(SIGMORPHON2012), pages 1–9.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H Witten.
2009. The weka data mining software: an update.
ACM SIGKDD Explorations Newsletter, 11(1).

Naman Jain and Ahmad Riyaz Bhat, 2014. Pro-
ceedings of the First Workshop on Computational
Approaches to Code Switching, chapter Language
Identification in Code-Switching Scenario, pages
87–93. Association for Computational Linguistics.

Levi King, Eric Baucom, Timur Gilmanov, Sandra
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Abstract

Supervised machine learning classifica-
tion algorithms assume both train and test
data are sampled from the same domain
or distribution. However, performance
of the algorithms degrade for test data
from different domain. Such cross do-
main classification is arduous as features
in the test domain may be different and
absence of labeled data could further ex-
acerbate the problem. This paper proposes
an algorithm to adapt classification model
by iteratively learning domain specific fea-
tures from the unlabeled test data. More-
over, this adaptation transpires in a simi-
larity aware manner by integrating similar-
ity between domains in the adaptation set-
ting. Cross-domain classification exper-
iments on different datasets, including a
real world dataset, demonstrate efficacy of
the proposed algorithm over state-of-the-
art.

1 Introduction

A fundamental assumption in supervised statis-
tical learning is that training and test data are
independently and identically distributed (i.i.d.)
samples drawn from a distribution. Otherwise,
good performance on test data cannot be guar-
anteed even if the training error is low. In real
life applications such as business process automa-
tion, this assumption is often violated. While re-
searchers develop new techniques and models for
machine learning based automation of one or a
handful business processes, large scale adoption is
hindered owing to poor generalized performance.
In our interactions with analytics software devel-
opment teams, we noticed such pervasive diver-
sity of learning tasks and associated inefficiency.
Novel predictive analytics techniques on standard

datasets (or limited client data) did not general-
ize across different domains ( new products & ser-
vices) and has limited applicability. Training mod-
els from scratch for every new domain requires hu-
man annotated labeled data which is expensive and
time consuming, hence, not pragmatic.
On the other hand, transfer learning techniques

allow domains, tasks, and distributions used in
training and testing to be different, but related. It
works in contrast to traditional supervised tech-
niques on the principle of transferring learned
knowledge across domains. While transfer learn-
ing has generally proved useful in reducing the
labelled data requirement, brute force techniques
suffer from the problem of negative transfer (Pan
and Yang, 2010a). One cannot use transfer learn-
ing as the proverbial hammer, but needs to gauge
when to transfer and also how much to transfer.
To address these issues, this paper proposes

a domain adaptation technique for cross-domain
text classification. In our setting for cross-domain
classification, a classifier trained on one domain
with sufficient labelled training data is applied to
a different test domain with no labelled data. As
shown in Figure 1, this paper proposes an iterative
similarity based adaptation algorithm which starts
with a shared feature representation of source and
target domains. To adapt, it iteratively learns do-
main specific features from the unlabeled target
domain data. In this process, similarity between
two domains is incorporated in the adaptation set-
ting for similarity-aware transfer. The major con-
tributions of this research are:

• An iterative algorithm for learning domain
specific discriminative features from unla-
beled data in the target domain starting with
an initial shared feature representation.

• Facilitating similarity-aware domain adapta-
tion by seamlessly integrating similarity be-
tween two domains in the adaptation settings.
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Figure 1: Outlines different stages of the proposed
algorithm i.e. shared feature representation, do-
main similarity, and the iterative learning process.

To the best of our knowledge, this is the first-of-
its-kind approach in cross-domain text classifica-
tion which integrates similarity between domains
in the adaptation setting to learn domain specific
features in an iterative manner. The rest of the
paper is organized as follows: Section 2 summa-
rizes the related work, Section 3 presents details
about the proposed algorithm. Section 4 presents
databases, experimental protocol, and results. Fi-
nally, Section 5 concludes the paper.

2 Related Work
Transfer learning in text analysis (domain adapta-
tion) has shown promising results in recent years
(Pan and Yang, 2010a). Prior work on domain
adaptation for text classification can be broadly
classified into instance re-weighing and feature-
representation based adaptation approaches.
Instance re-weighing approaches address the

difference between the joint distributions of ob-
served instances and class labels in source do-
main with that of target domain. Towards this di-
rection, Liao et al. (2005) learned mismatch be-
tween two domains and used active learning to
select instances from the source domain to en-
hance adaptability of the classifier. Jiang and Zhai
(2007) proposed instance weighing scheme for do-
main adaptation in NLP tasks which exploit inde-
pendence between feature mapping and instance
weighing approaches. Saha et al. (2011) lever-
aged knowledge from source domain to actively
select the most informative samples from the tar-
get domain. Xia et al. (2013) proposed a hybrid
method for sentiment classification task that also
addresses the challenge of mutually opposite ori-
entation words.
A number of domain adaptation techniques are

based on learning common feature representation
(Pan and Yang, 2010b; Blitzer et al., 2006; Ji et

al., 2011; Daumé III, 2009) for text classification.
The basic idea being identifying a suitable fea-
ture space where projected source and target do-
main data follow similar distributions and hence,
a standard supervised learning algorithm can be
trained on the former to predict instances from
the latter. Among them, Structural Correspon-
dence Learning (SCL) (Blitzer et al., 2007) is the
most representative one, explained later. Daumé
(2009) proposed a heuristic based non-linear map-
ping of source and target data to a high dimen-
sional space. Pan et al. (2008) proposed a di-
mensionality reduction method Maximum Mean
Discrepancy Embedding to identify a latent space.
Subsequently, Pan et al. (2010) proposed to map
domain specific words into unified clusters using
spectral clustering algorithm. In another follow
up work, Pan et al. (2011) proposed a novel fea-
ture representation to perform domain adaptation
via Reproducing Kernel Hilbert Space using Max-
imum Mean Discrepancy. A similar approach,
based on co-clustering (Dhillon et al., 2003), was
proposed in Dai et al. (2007) to leverage common
words as bridge between two domains. Bollegala
et al. (2011) used sentiment sensitive thesaurus to
expand features for cross-domain sentiment clas-
sification. In a comprehensive evaluation study, it
was observed that their approach tends to increase
the adaptation performance when multiple source
domains were used (Bollegala et al., 2013).

Domain adaptation based on iterative learning
has been explored by Chen et al. (2011) and
Garcia-Fernandez et al. (2014) and are similar to
the philosophy of the proposed approach in ap-
pending pseudo-labeled test data to the training
set. The first approach uses an expensive fea-
ture split to co-train two classifiers while the for-
mer presents a single classifier self-training based
setting. However, the proposed algorithm offers
novel contributions in terms of 1) leveraging two
independent feature representations capturing the
shared and target specific representations, 2) an
ensemble of classifiers that uses labelled source
domain and pseudo labelled target domain in-
stances carefully moderated based on similarity
between two domains. Ensemble based domain
adaptation for text classification was first pro-
posed by Aue and Gammon (2005) though their
approach could not achieve significant improve-
ments over baseline. Later, Zhao et al. (2010)
proposed online transfer learning (OTL) frame-
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work which forms the basis of our ensemble based
domain adaptation. However, the proposed algo-
rithm differs in the following ways: 1) an unsuper-
vised approach that transforms unlabeled data into
pseudo labeled data unlike OTL which is super-
vised, and 2) incorporates similarity in the adapta-
tion setting for gradual transfer.

3 Iterative Similarity based Adaptation

The philosophy of our algorithm is gradual trans-
fer of knowledge from the source to the target do-
main while being cognizant of similarity between
two domains. To accomplish this, we have devel-
oped a technique based on ensemble of two classi-
fiers. Transfer occurs within the ensemble where
a classifier learned on shared representation trans-
forms unlabeled test data into pseudo labeled data
to learn domain specific classifier. Before explain-
ing the algorithm, we highlight its salient features:
Common Feature Space Representation: Our
objective is to find a good feature representation
which minimizes divergence between the source
and target domains as well as the classification
error. There have been several works towards
feature-representation-transfer approach such as
(Blitzer et al., 2007; Ji et al., 2011) which derives a
transformation matrix Q that gives a shared repre-
sentation between the source and target domains.
One of the widely used approaches is Structural
Correspondence Learning (SCL) (Blitzer et al.,
2006) which aims to learn the co-occurrence be-
tween features expressing similar meaning in dif-
ferent domains. Top k Eigenvectors of matrix, W ,
represent the principal predictors for weight space,
Q. Features from both domains are projected on
this principal predictor space,Q, to obtain a shared
representation. Source domain classifier in our ap-
proach is based on this SCL representation. In
Section 4, we empirically show how our algorithm
generalizes to different shared representations.
Iterative Building of Target Domain Labeled
Data: If we have enough labeled data from the
target domain then a classifier can be trained with-
out the need for adaptation. Hence, we wanted
to explore if and how (pseudo) labeled data for
the target domain can be created. Our hypothe-
sis is that certain target domain instances are more
similar to source domain instances than the rest.
Hence a classifier trained on (a suitably chosen
transformed representation of) source domain in-
stances will be able to categorize similar target do-

main instances confidently. Such confidently pre-
dicted instances can be considered as pseudo la-
beled data which are then used to initialize a clas-
sifier in target domain.

Only handful of instances in the target domain
can be confidently predicted using the shared rep-
resentation, therefore, we further iterate to create
pseudo labeled instances in target domain. In the
next round of iterations, remaining unlabeled tar-
get domain instances are passed through both the
classifiers and their output are suitably combined.
Again, confidently labeled instances are added to
the pool of pseudo labeled data and the classi-
fier in the target domain is updated. This pro-
cess is repeated till all unlabeled data is labeled
or certain maximum number of iterations is per-
formed. This way we gradually adapt the target
domain classifier on pseudo labeled data using the
knowledge transferred from source domain. In
Section 4, we empirically demonstrate effective-
ness of this technique compared to one-shot adap-
tation approaches.

Domain Similarity-based Aggregation: Perfor-
mance of domain adaptation is often constrained
by the dissimilarity between the source and target
domains (Luo et al., 2012; Rosenstein et al., 2005;
Chin, 2013; Blitzer et al., 2007). If the two do-
mains are largely similar, the knowledge learned in
the source domain can be aggressively transferred
to the target domain. On the other hand, if the two
domains are less similar, knowledge learned in the
source domain should be transferred in a conserva-
tive manner so as to mitigate the effects of negative
transfer. Therefore, it is imperative for domain
adaptation techniques to account for similarity be-
tween domains and transfer knowledge in a simi-
larity aware manner. While this may sound obvi-
ous, we do not see many works in domain adapta-
tion literature that leverage inter-domain similar-
ity for transfer of knowledge. In this work, we use
the cosine similarity measure to compute similar-
ity between two domains and based on that gradu-
ally transfer knowledge from the source to the tar-
get domain. While it would be interesting to com-
pare how different similarity measures compare
towards preventing negative transfer but that is not
the focus of this work. In Section 4, we empiri-
cally show marginal gains of transferring knowl-
edge in a similarity aware manner.
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Table 1: Notations used in this research.
Symbol Description
{xs

i , y

s
i }i=1:ns ; x

s
i 2

R

d; ys
i 2 {�1, +1}

Labeled source domain instances

{xt
i}i=1:nt ; ŷi 2

{�1, +1}
Unlabeled target domain instances and pre-
dicted label for target domain

Q Co-occurrence based projection matrix

Pu , Ps
Pool of unlabeled and pseudo-labeled target
domain instances respectively

Cs, Ct ; function from
Classifier Cs is trained on {(Qxs

i , y

s
i )};

classifier Ct is trained on {xt
i, ŷ

t
i} where

x

t
i 2 Ps and ŷ is the pseudo label

R

d ! {�1, +1} predicted labels by EnsembleE

↵ confidence of prediction
E Weighted ensemble of Cs andCt

✓1, ✓2 confidence threshold for Cs and ensembleE

w

s, wt Weights for Cs andCt respectively

3.1 Algorithm
Table 1 lists the notations used in this research. In-
puts to the algorithm are labeled source domain in-
stances {xs

i , y
s
i }i=1:ns and a pool of unlabeled tar-

get domain instances {xt
i}i=1:nt , denoted by Pu.

As shown in Figure 2, the steps of the algorithm
are as follows:

1. Learn Q, a shared representation projection
matrix from the source and target domains,
using any of the existing techniques. SCL is
used in this research.

2. Learn Cs on SCL-based representation of la-
beled source domain instances {Qxs

i , y
s
i }.

3. Use Cs to predict labels, ŷi, for instances
in Pu using the SCL-based representation
Qxti. Instances which are predicted with con-
fidence greater than a pre-defined threshold,
✓1, are moved from Pu to Ps with pseudo la-
bel, ŷ.

4. Learn Ct from instances in Ps 2 {xt
i, ŷ

t
i} to

incorporate target specific features. Ps only
contains instances added in step-3 and will
be growing iteratively (hence the training set
here is small).

5. Cs and Ct are combined in an ensemble, E,
as a weighted combination with weights as
ws and wt which are both initialized to 0.5.

6. Ensemble E is applied to all remaining in-
stances in Pu to obtain the label ŷi as:

E(x
t
i) ! ŷi ! w

s
Cs(Qx

t
i) + w

t
Ct(x

t
i) (1)

(a) If the ensemble classifies an instance
with confidence greater than the thresh-
old ✓2, then it is moved from Pu to Ps

along with pseudo label ŷi.

Figure 2: Illustrates learning of the initial classi-
fiers and iterative learning process of the proposed
similarity-aware domain adaptation algorithm.

(b) Repeat step-6 for all xt
i 2 Pu.

7. Weights ws and wt are updated as shown in
Eqs. 2 and 3. This update facilitates knowl-
edge transfer within the ensemble guided by
the similarity between domains.

w

s
(l+1) =

(sim ⇤ w

s
l ⇤ I(Cs))

(sim ⇤ w

s
l ⇤ I(Cs) + (1� sim) ⇤ w

t
l ⇤ I(Ct))

(2)

w

t
(l+1) =

((1� sim) ⇤ w

t
l ⇤ I(Ct))

(sim ⇤ w

s
l
⇤ I(Cs) + (1� sim) ⇤ w

t
l
⇤ I(Ct))

(3)

where, l is the iteration, sim is the similarity
score between domains computed using co-
sine similarity metric as shown in Eq. 4

sim =
a · b

||a||||b||
(4)

where a & b are normalized vector represen-
tations for the two domains. I(·) is the loss
function to measure the errors of individual
classifiers in each iteration:

I(·) = exp{�⌘l(C, Y )} (5)

where, ⌘ is learning rate set to 0.1, l(y, ŷ) =

(y � ŷ)

2 is the square loss function, y is the
label predicted by the classifier and ŷ is the
label predicted by the ensemble.

8. Re-train classifier Ct on Ps.

9. Repeat step 6� 8 until Pu is empty or maxi-
mum number of iterations is reached.
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In this iterative manner, the proposed algorithm
transforms unlabeled data in the test domain into
pseudo labeled data and progressively learns clas-
sifier Ct. Confidence of prediction, ↵i for ith in-
stance, is measured as the distance from the de-
cision boundary (Hsu et al., 2003) which is com-
puted as shown in Eq. 6.

↵ =
R

|v|
(6)

where R is the un-normalized output from the
support vector machine (SVM) classifier, v is the
weight vector for support vectors and |v| = vT v.
Weights of individual classifiers in the ensem-
ble are updated with each iteration that gradu-
ally shifts emphasis from the classifier learned on
shared representation to the classifier learned on
target domain. Algorithm 1 illustrates the pro-
posed iterative learning algorithm.

Algorithm 1 Iterative Learning Algorithm
Input: Cs trained on shared co-occurrence
based representation Qx, Ct initiated on TFIDF
representation from Ps, Pu remaining unlabeled
target domain instances.
Iterate: l = 0 : till Pu = {�} or l  iterMax
Process: Construct ensemble E as weighted
combination of Cs and Ct with initials weights
ws

l and wt
l as 0.5 and sim = similarity between

domains.
for i = 1 to n (size of Pu) do
Predict labels: E(Qxi, xi)! ŷi; calculate ↵i

if ↵i > ✓2 then
Remove ith instance from Pu and add to
Ps with pseudo label ŷi.

end if.
end for. Retrain Ct on Ps and update ws

l and
wt

l .
end iterate.
Output: Updated Ct, ws

l and wt
l .

4 Experimental Results
The efficacy of the proposed algorithm is eval-
uated on different datasets for cross-domain text
classification (Blitzer et al., 2007), (Dai et al.,
2007). In our experiments, performance is eval-
uated on two-class classification task and reported
in terms of classification accuracy.

4.1 Datasets & Experimental Protocol
The first dataset is the Amazon review dataset
(Blitzer et al., 2007) which has four different

domains, Books, DVDs, Kitchen appliances and
Electronics. Each domain comprises 1000 pos-
itive and 1000 negative reviews. In all experi-
ments, 1600 labeled reviews from the source and
1600 unlabeled reviews from the target domains
are used in training and performance is reported
on the non-overlapping 400 reviews from the tar-
get domain.
The second dataset is the 20 Newsgroups

dataset (Lang, 1995) which is a text collection
of approximately 20, 000 documents evenly par-
titioned across 20 newsgroups. For cross-domain
text classification on the 20 Newsgroups dataset,
we followed the protocol of Dai et al. (2007)
where it is divided into six different datasets and
the top two categories in each are picked as the two
classes. The data is further segregated based on
sub-categories, where each sub-category is con-
sidered as a different domain. Table 2 lists how
different sub-categories are combined to represent
the source and target domains. In our experiments,
4/5th of the source and target data is used to learn
shared feature representation and results are re-
ported on the remaining 1/5th of the target data.

Table 2: Elaborates data segregation on the 20

Newsgroups dataset for cross-domain classifica-
tion.

dataset Ds Dt

comp vs rec

comp.graphics comp.os.ms-windows.misc
comp.sys.ibm.pc.hardware comp.windows.x
comp.sys.mac.hardware rec.autos

rec.motorcycles rec.sport.baseball
rec.sport.hockey

comp vs sci

comp.graphics comp.sys.ibm.pc.hardware
comp.os.ms-windows.misc comp.sys.mac.hardware

sci.crypt comp.windows.x
sci.electronics sci.med

sci.space

comp vs talk

comp.graphics comp.os.ms-windows.miscnewline
comp.sys.mac.hardware comp.sys.ibm.pc.hardware
comp.windows.x talk.politics.guns
talk.politics.mideast talk.politics.misc
talk.religion.misc

rec vs sci

rec.autos rec.motorcycles
rec.sport.baseball rec.sport.hockey

sci.med sci.crypt
sci.space sci.electronics

rec vs talk

rec.autos rec.sport.baseball
rec.motorcycles rec.sport.hockey
talk.politics.guns talk.politics.mideast
talk.politics.misc talk.religion.misc

sci vs talk

sci.electronics sci.crypt
sci.med sci.space

talk.politics.misc talk.politics.guns
talk.religion.misc talk.politics.mideast

The third dataset is a real world dataset com-
prising tweets about the products and services
in different domains. The dataset comprises
tweets/posts from three collections, Coll1 about
gaming, Coll2 about Microsoft products and
Coll3 about mobile support. Each collection has
218 positive and negative tweets. These tweets
are collected based on user-defined keywords cap-
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tured in a listening engine which then crawls the
social media and fetches comments matching the
keywords. This dataset being noisy and compris-
ing short-text is more challenging than the previ-
ous two datasets.
All datasets are pre-processed by converting to

lowercase followed by stemming. Feature selec-
tion based on document frequency (DF = 5)
reduces the number of features as well as speed
up the classification task. For Amazon review
dataset, TF is used for feature weighing whereas
TFIDF is used for feature weighing in other two
datasets. In all our experiments, constituent clas-
sifiers used in the ensemble are support vector ma-
chines (SVMs) with radial basis function kernel.
Performance of the proposed algorithm for cross-
domain classification task is compared with dif-
ferent techniques1including 1) in-domain classi-
fier trained and tested on the same domain data, 2)
baseline classifier which is trained on the source
and directly tested on the target domain, 3) SCL2,
a widely used domain adaptation technique for
cross-domain text classification, 4) ‘Proposed w/o
sim’, removing similarity from Eqs. 2 & 3.

4.2 Results and Analysis
For cross-domain classification, the performance
degrades mainly due to 1) feature divergence and
2) negative transfer owing to largely dissimilar do-
mains. Table 3 shows the accuracy of individ-
ual classifiers and the ensemble for cross-domain
classification on the Amazon review dataset. The
ensemble has better accuracy than the individual
classifiers, therefore, in our experiments the fi-
nal reported performance is the accuracy of the
ensemble. The combination weights in the en-
semble represent the contributions of individual
classifiers toward classification accuracy. In our
experiments, the maximum number of iterations
(iterMax) is set to 30. It is observed that at the
end of the iterative learning process, the target spe-
cific classifier is assigned more weight mass as
compared to the classifier trained on the shared
representation. On average, the weights for the
two classifiers converge to ws

= 0.22 and wt
=

0.78 at the end of the iterative learning process.
1We also compared our performance with sentiment sen-

sitive thesaurus (SST) proposed by (Bollegala et al., 2013)
and our algorithm outperformed on our protocol. However,
we did not include comparative results because of difference
in experimental protocol as SST is tailored for using multiple
source domains and our protocol uses single source domain.

2Our implementation of SCL is used in this paper.

Table 3: Comparing the performance of individual
classifiers and the ensemble for training on Books
domain and test across different domains. Cs and
Ct are applied on the test domain data before per-
forming the iterating learning process.

SD! TD Cs Ct Ensemble
B! D 63.1 34.8 72.1
B! E 64.5 39.1 75.8
B! K 68.4 42.3 76.2

Table 4: List some examples of domain specific
discriminative features learned by the proposed al-
gorithm on the Amazon review dataset.

Domain Domain specific features
Books pictures illustrations, more detail, to read
DvDs Definite buy, delivery prompt
Kitchen invaluable resource, rust, delicious
Electronics Bargain, Energy saving, actually use

This further validates our assertion that the tar-
get specific features are more discriminative than
the shared features in classifying target domain in-
stances, which are efficiently captured by the pro-
posed algorithm. Key observations and analysis
from the experiments on different datasets is sum-
marized below.

4.2.1 Results on the Amazon Review dataset
To study the effects of different components of the
proposed algorithm, comprehensive experiments
are performed on the Amazon review dataset3.
1) Effect of learning target specific features: Re-
sults in Figure 3 show that iteratively learning tar-
get specific feature representation (slow transfer as
opposed to one-shot transfer) yields better perfor-
mance across different cross-domain classification
tasks as compared to SCL, SFA (Pan et al., 2010)4
and the baseline. Unlike SCL and SFA, the pro-
posed approach uses shared and target specific fea-
ture representations for the cross-domain classifi-
cation task. Table 4 illustrates some examples of
the target specific discriminative features learned
by the proposed algorithm that leads to enhanced
performance. At 95% confidence, parametric t-
test suggests that the proposed algorithm and SCL
are significantly (statistically) different.
2) Effect of similarity on performance: It is ob-
served that existing domain adaptation techniques
enhance the accuracy for cross-domain classifica-
tion, though, negative transfer exists in camou-

3Due to space restrictions, we show this analysis only on
one dataset; however similar conclusions were drawn from
other datasets as well.

4We directly compared our results with the performance
reported in (Pan et al., 2010).
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Figure 3: Comparing the performance of the proposed approach with existing techniques for cross-
domain classification on Amazon review dataset.
flage. Results in Figure 3(b) (for the case K! B)
describes an evident scenario for negative trans-
fer where the adaptation performance with SCL
descends lower than the baseline. However, the
proposed algorithm still sustains the performance
by transferring knowledge proportionate to simi-
larity between the two domains. To further an-
alyze the effect of similarity, we segregated the
12 cross-domain classification cases into two cat-
egories based on similarity between two the par-
ticipating domains i.e. 1) > 0.5 and 2) < 0.5.
Table 5 shows that for 6 out of 12 cases that fall
in the first category, the average accuracy gain is
10.8% as compared to the baseline. While for
the remaining 6 cases that fall in the second cat-
egory, the average accuracy gain is 15.4% as com-
pared to the baseline. This strongly elucidates that
the proposed similarity-based iterative algorithm
not only adapts well when the domain similarity
is high but also yields gain in the accuracy when
the domains are largely dissimilar. Figure 4 also
shows how weight for the target domain classi-
fier wt varies with the number of iterations. It
further strengthens our assertion that if domains
are similar, algorithm can readily adapt and con-
verges in a few iterations. On the other hand for
dissimilar domains, slow iterative transfer, as op-
posed to one-shot transfer, can achieve similar per-
formance; however, it may take more iterations
to converge.While the effect of similarity on do-
main adaptation performance is evident, this work
opens possibilities for further investigations.

3) Effect of varying threshold ✓1 & ✓2: Figure
5(a) explains the effect of varying ✓1 on the final
classification accuracy. If ✓1 is low, Ct may get
trained on incorrectly predicted pseudo labeled in-
stances; whereas, if ✓1 is high, Ct may be defi-
cient of instances to learn a good decision bound-
ary. On the other hand, ✓2 influences the number
of iterations required by the algorithm to reach the

Table 5: Effect of similarity on accuracy gain for
cross-domain classification on the Amazon review
dataset.

Category SD! TD Sim Gain Avg. (SD)

> 0.5

E! K 0.78 13.1

10.8 (4.9)

K! E 0.78 10.6
B! K 0.54 8.0
K! B 0.54 2.9
B! E 0.52 13.1
E! B 0.52 17.2

< 0.5

K! D 0.34 8.9

15.4 (4.4)

D! K 0.34 21.6
E! D 0.33 14.5
D! E 0.33 14.5
B! D 0.29 14.1
D! B 0.29 19.1

Figure 4: Illustrates how the weight (wt) for tar-
get domain classifiers varies for the most and least
similar domains with number of iterations.

stopping criteria. If this threshold is low, the algo-
rithm converges aggressively (in a few iterations)
and does not benefit from the iterative nature of
learning the target specific features. Whereas a
high threshold tends to make the algorithm con-
servative. It hampers the accuracy because of the
unavailability of sufficient instances to update the
classifier after each iteration which also leads to
large number of iterations to converge (may not
even converge).

✓1 and ✓2 are set empirically on a held-out
set, with values ranging from zero to distance of
farthest classified instance from the SVM hyper-
plane (Hsu et al., 2003). The knee-shaped curve
on the graphs in Figure 5 shows that there exists
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Figure 5: Bar plot shows % of data that crosses
confidence threshold, lower and upper part of the
bar represents % correctly and wrongly predicted
pseudo labels. The black line shows how the final
classification accuracy is effected with threshold.

an optimal value for ✓1 and ✓2 which yields the
best accuracy. We observed that the best accuracy
is obtained when the thresholds are set to the dis-
tance between the hyper plane and the farthest sup-
port vector in each class.
4) Effect of using different shared represen-
tations in ensemble: To study the generaliza-
tion ability of the proposed algorithm to differ-
ent shared representations, experiments are per-
formed using three different shared representa-
tions on the Amazon review dataset. Apart from
using the SCL representation, the accuracy is
compared with the proposed algorithm using two
other representations, 1) common features be-
tween the two domains (“common”) and 2) multi-
view principal component analysis based repre-
sentation (“MVPCA”) (Ji et al., 2011) as they are
previously used for cross-domain sentiment clas-
sification on the same dataset. Table 6 shows that
the proposed algorithm yields significant gains in
cross-domain classification accuracy with all three
representations and is not restricted to any spe-
cific representation. The final accuracy depends
on the initial classifier trained on the shared repre-
sentation; therefore, if a shared representation suf-
ficiently captures the characteristics of both source
and target domains, the proposed algorithm can
be built on any such representation for enhanced
cross-domain classification accuracy.

4.2.2 Results on 20 Newsgroups data
Results in Figure 6 compares the accuracy of pro-
posed algorithm with existing approaches on the
20 Newsgroups dataset. Since different domain
are crafted out from the sub-categories of the
same dataset, domains are exceedingly similar and
therefore, the baseline accuracy is relatively better

Table 6: Comparing the accuracy of proposed al-
gorithm built on different shared representations.

SD! TD Common MVPCA SCL
B! D 66.8 76.4 78.2
B! E 69.0 79.2 80.6
B! K 71.4 79.2 79.8
D! B 64.5 78.4 79.3
D! E 62.8 76.4 76.2
D! K 64.3 80.9 82.4
E! B 68.9 77.8 78.5
E! D 65.7 77.0 77.3
E! K 75.1 85.4 86.2
K! B 71.3 71.0 71.1
K! D 70.4 75.0 76.1
K! E 76.7 85.7 86.4

Figure 6: Results comparing the accuracy of pro-
posed approach with existing techniques for cross
domain categorization on 20 Newsgroups dataset.

than that on the other two datasets. The proposed
algorithm still yields an improvement of at least
10.8% over the baseline accuracy. As compared to
other existing domain adaptation approaches like
SCL(Blitzer et al., 2007) and CoCC (Dai et al.,
2007), the proposed algorithm outperforms by at
least 4% and 1.9% respectively. This also vali-
dates our assertion that generally domain adapta-
tion techniques accomplishes well when the par-
ticipating domains are largely similar; however,
the similarity aggregation and the iterative learn-
ing offer the proposed algorithm an edge over one-
shot adaptation algorithms.

4.2.3 Results on real world data
Results in Figure 7 exhibit challenges associated
with real world dataset. The baseline accuracy
for cross-domain classification task is severely af-
fected for this dataset. SCL based domain adap-
tation does not yields generous improvements as
selecting the pivot features and computing the co-
occurrence statistics with noisy short text is ardu-
ous and inept. On the other hand, the proposed
algorithm iteratively learns discriminative target
specific features from such perplexing data and
translates it to an improvement of at least 6.4%
and 3.5% over the baseline and the SCL respec-
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Figure 7: Results comparing the accuracy of the
proposed approach with existing techniques for
cross domain categorization on the real world
dataset.

tively.

5 Conclusion

The paper presents an iterative similarity-aware
domain adaptation algorithm that progressively
learns domain specific features from the unlabeled
test domain data starting with a shared feature rep-
resentation. In each iteration, the proposed algo-
rithm assigns pseudo labels to the unlabeled data
which are then used to update the constituent clas-
sifiers and their weights in the ensemble. Updating
the target specific classifier in each iteration helps
better learn the domain specific features and thus,
results in enhanced cross-domain classification ac-
curacy. Similarity between the two domains is ag-
gregated while updating weights of the constituent
classifiers which facilitates gradual shift of knowl-
edge from the source to the target domain. Finally,
experimental results for cross-domain classifica-
tion on different datasets show the efficacy of the
proposed algorithm as compared to other existing
approaches.
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Abstract

We study the impact of source length and
verbosity of the tuning dataset on the per-
formance of parameter optimizers such as
MERT and PRO for statistical machine
translation. In particular, we test whether
the verbosity of the resulting translations
can be modified by varying the length
or the verbosity of the tuning sentences.
We find that MERT learns the tuning set
verbosity very well, while PRO is sensi-
tive to both the verbosity and the length
of the source sentences in the tuning set;
yet, overall PRO learns best from high-
verbosity tuning datasets.

Given these dependencies, and potentially
some other such as amount of reorder-
ing, number of unknown words, syntac-
tic complexity, and evaluation measure, to
mention just a few, we argue for the need
of controlled evaluation scenarios, so that
the selection of tuning set and optimiza-
tion strategy does not overshadow scien-
tific advances in modeling or decoding.
In the mean time, until we develop such
controlled scenarios, we recommend us-
ing PRO with a large verbosity tuning set,
which, in our experiments, yields highest
BLEU across datasets and language pairs.

1 Introduction

Statistical machine translation (SMT) systems
nowadays are complex and consist of many com-
ponents such as a translation model, a reorder-
ing model, a language model, etc., each of which
could have several sub-components. All compo-
nents and their elements work together to score
full and partial hypotheses proposed by the SMT
system’s search algorithms.

Thus, putting them together requires assigning
them relative weights, e.g., how much weight we
should give to the translation model vs. the lan-
guage model vs. the reordering table. These rela-
tive weights are typically learned discriminatively
in a log-linear framework, and their values are op-
timized to maximize some automatic metric, typi-
cally BLEU, on a tuning dataset.

Given this setup, it is clear that the choice of a
tuning set and its characteristics, can have signif-
icant impact on the SMT system’s performance:
if the experimental framework (training data, tun-
ing set, and test set) is highly consistent, i.e.,
there is close similarity in terms of genre, domain
and verbosity,1 then translation quality can be im-
proved by careful selection of tuning sentences
that exhibit high degree of similarity to the test set
(Zheng et al., 2010; Li et al., 2010).

In our recent work (Nakov et al., 2012), we have
studied the relationship between optimizers such
as MERT, PRO and MIRA, and we have pointed
out that PRO tends to generate relatively shorter
translations, which could lead to lower BLEU
scores on testing. Our solution there was to fix
the objective function being optimized: PRO uses
sentence-level smoothed BLEU+1, as opposed to
the standard dataset-level BLEU.

Here we are interested in a related but dif-
ferent question: the relationship between prop-
erties of the tuning dataset and the optimizer’s
performance. More specifically, we study how
the verbosity, i.e., the average target/source sen-
tence length ratio, learned by optimizers such as
MERT and PRO depends on the nature of the tun-
ing dataset. This could potentially allow us to ma-
nipulate the verbosity of the translation hypotheses
generated at test time by changing some character-
istics of the tuning dataset.

1Verbosity also depends on the translator; it is often a
stylistic choice. and not necessarily related to fluency or ade-
quacy. This aspect is beyond the scope of the present work.
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2 Related Work

Tuning the parameters of a log-linear model for
statistical machine translation is an active area of
research. The standard approach is to use mini-
mum error rate training, or MERT, (Och, 2003),
which optimizes BLEU directly.

Recently, there has been a surge in new opti-
mization techniques for SMT. Two parameter op-
timizers that have recently become popular in-
clude the margin-infused relaxed algorithm or
MIRA (Watanabe et al., 2007; Chiang et al.,
2008; Chiang et al., 2009), which is an on-line
sentence-level perceptron-like passive-aggressive
optimizer, and pairwise ranking optimization or
PRO (Hopkins and May, 2011), which operates in
batch mode and sees tuning as ranking.

A number of improved versions thereof have
been proposed in the literature including a batch
version of MIRA (Cherry and Foster, 2012), with
local updates (Liu et al., 2012), a linear regression
version of PRO (Bazrafshan et al., 2012), and a
non-sampling version of PRO (Dreyer and Dong,
2015); another example is Rampeon (Gimpel and
Smith, 2012). We refer the interested reader to
three recent overviews on parameter optimization
for SMT: (McAllester and Keshet, 2011; Cherry
and Foster, 2012; Gimpel and Smith, 2012).

Still, MERT remains the de-facto standard in
the statistical machine translation community. Its
stability has been of concern, and is widely stud-
ied. Suggestions to improve it include using
regularization (Cer et al., 2008), random restarts
(Moore and Quirk, 2008), multiple replications
(Clark et al., 2011), and parameter aggregation
(Cettolo et al., 2011).

With the emergence of new optimization tech-
niques there have been also studies that compare
stability between MIRA–MERT (Chiang et al.,
2008; Chiang et al., 2009; Cherry and Foster,
2012), PRO–MERT (Hopkins and May, 2011),
MIRA–PRO–MERT (Cherry and Foster, 2012;
Gimpel and Smith, 2012; Nakov et al., 2012).
Pathological verbosity was reported when using
MERT on recall-oriented metrics such as ME-
TEOR (Lavie and Denkowski, 2009; Denkowski
and Lavie, 2011), as well as large variance with
MIRA (Simianer et al., 2012). However, we are
not aware of any previous studies of the impact of
sentence length and dataset verbosity across opti-
mizers.

3 Method

For the following analysis, we need to define the
following four quantities:

• source-side length: the number of words in
the source sentence;

• length ratio: the ratio of the number of words
in the output hypothesis to those in the refer-
ence;2

• verbosity: the ratio of the number of words in
the reference to those in the source;3

• hypothesis verbosity: the ratio of the num-
ber of words in the hypothesis to those in the
source.

Naturally, the verbosity varies across differ-
ent tuning/testing datasets, e.g., because of style,
translator choice, etc. Interestingly, verbosity can
also differ across sentences with different source
lengths drawn from the same dataset. This is illus-
trated in Figure 1, which plots the average sam-
ple source length vs. the average verbosity for
100 samples, each containing 500 randomly se-
lected sentence pairs, drawn from the concatena-
tion of the MT04, MT05, MT06, MT09 datasets
for Arabic-English and of newstest2008-2011 for
Spanish-English.4

We can see that for Arabic-English, the English
translations are longer than the Arabic source sen-
tences, i.e., the verbosity is greater than one. This
relationship is accentuated by length: verbosity in-
creases with sentence length: see the slightly pos-
itive slope of the regression line. Note that the
increasing verbosity can be observed in single-
reference sets (we used the first reference), and to
a lesser extent in multiple-reference sets (five ref-
erences for MT04 and MT05, and four for MT06
and MT09). For Spanish-English, the story is
different: here the English sentences tend to be
shorter than the Spanish ones, and the verbosity
decreases as the sentence length increases. Over-
all, in all three cases, the verbosity appears to be
length-dependent.

2For multi-reference sets, we use the length of the refer-
ence that is closest to the length of the hypothesis. This is
the best match length from the original paper on BLEU (Pap-
ineni et al., 2002); it is default in the NIST scoring tool v13a,
which we use in our experiments.

3When dealing with multi-reference sets, we use the aver-
age reference length.

4The datasets we experiment with are described in more
detail in Section 4 below.
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Figure 1: Average source sentence length (x axis) vs. average verbosity (y axis) for 100 random samples,
each with 500 sentence pairs extracted from NIST (Left: Arabic-English, multi- and single-reference)
and from WMT (Right: Spanish-English, single-reference) data.

The main research question we are interested
in, and which we will explore in this paper, is
whether the SMT parameter optimizers are able
to learn the verbosity from the tuning set. We
are also interested in the question of how the hy-
pothesis verbosity learned by optimizers such as
MERT and PRO depends on the nature of the tun-
ing dataset, i.e., its verbosity. Understanding this
could potentially allow us to manipulate the hy-
pothesis verbosity of the translations generated at
test time simply by changing the characteristics of
the tuning dataset in a systematic and controlled
way. While controlling the verbosity of a tuning
set might be an appealing idea, this is unrealistic
in practice, given that the verbosity of a test set is
always unknown. However, the results in Figure 1
suggest that it is possible to manipulate verbosity
by controlling the average source sentence length
of the dataset (and the source-side length is always
known for any test set). Thus, in our study, we use
the source-side sentence length as a data selection
criterion; still, we also report results for selection
based on verbosity.

In order to shed some light on our initial ques-
tion (whether the SMT parameter optimizers are
able to learn the verbosity from the tuning dataset),
we contrast the verbosity that two different opti-
mizers, MERT and PRO, learn as a function of
the average length of the sentences in the tuning
dataset.5

5In this work, we consider both optimizers, MERT and
PRO, as black-boxes. For a detailed analysis of how their
inner workings can affect optimization, see our earlier work
(Nakov et al., 2012).

4 Experiments and Evaluation

We experimented with single-reference and multi-
reference tuning and testing datasets for two
language pairs: Spanish-English and Arabic-
English. For Spanish-English, we used the
single-reference datasets newstest2008, new-
stest2009, newstest2010, and newstest2011 from
the WMT 2012, Workshop on Machine Transla-
tion Evaluation.6 For Arabic-English, we used
the multi-reference datasets MT04, MT05, MT06,
and MT09 from the NIST 2012 OpenMT Eval-
uation;7 we further experimented with single-
reference versions of the MT0x datasets, using the
first reference only.

In addition to the above datasets, we con-
structed tuning sets of different source-side sen-
tence lengths: short, middle and long. Given an
original tuning dataset, we selected 50% of its sen-
tence pairs: shortest 50%, middle 50%, or longest
50%. This yielded tuning datasets with the same
number of sentence pairs but with different num-
ber of words, e.g., for our Arabic-English datasets,
longest has about twice as many English words
as middle, and about four times as many words
as shortest. Constructing tuning datasets with the
same number of sentences instead of the same
number of tokens is intentional as we wanted to
ensure that in each of the conditions, the SMT pa-
rameter optimizers learn on the same number of
training examples.

6www.statmt.org/wmt12/
7www.nist.gov/itl/iad/mig/openmt12.cfm
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4.1 Experimental Setup

We experimented with the phrase-based SMT
model (Koehn et al., 2003) as implemented in
Moses (Koehn et al., 2007). For Arabic-English,
we trained on all data that was allowed for use
in the NIST 2012 except for the UN corpus. For
Spanish-English, we used all WMT12 data, again
except for the UN data.

We tokenized and truecased the English and the
Spanish side of all bi-texts and also the monolin-
gual data for language modeling using the stan-
dard tokenizer of Moses. We segmented the words
on the Arabic side using the MADA ATB segmen-
tation scheme (Roth et al., 2008). We built our
phrase tables using the Moses pipeline with max-
phrase-length 7 and Kneser-Ney smoothing. We
also built a lexicalized reordering model (Koehn
et al., 2005): msd-bidirectional-fe. We used
a 5-gram language model trained on GigaWord
v.5 with Kneser-Ney smoothing using KenLM
(Heafield, 2011).

On tuning and testing, we dropped the unknown
words for Arabic-English, and we used monotone-
at-punctuation decoding for Spanish-English. We
tuned using MERT and PRO. We used the standard
implementation of MERT from the Moses toolkit,
and a fixed version of PRO, as we recommended
in (Nakov et al., 2013), which solves instability
issues when tuning on the long sentences; we will
discuss our PRO fix and the reasons it is needed in
Section 5 below. In order to ensure convergence,
we allowed both MERT and PRO to run for up to
25 iterations (default: 16); we further used 1000-
best lists (default: 100).

In our experiments below, we perform three re-
runs of parameter optimization, tuning on each of
the twelve tuning datasets; in the figures, we plot
the results of the three reruns, while in the tables,
we report BLEU averaged over the three reruns, as
suggested by Clark et al. (2011).

4.2 Learning Verbosity

We performed parameter optimization using
MERT and PRO on each dataset, and we used the
resulting parameters to translate the same dataset.
The purpose of this experiment was to study the
ability of the optimizers to learn the verbosity of
the tuning sets. Getting the hypothesis verbosity
right means that it is highly correlated with the
tuning set verbosity , which in turn is determined
by the dataset source length.

The results are shown in Figure 2. In each
graph, there are 36 points (many of them very
close and overlapping) since we performed three
reruns with our twelve tuning datasets (three
length-based subsets for each of the four original
tuning datasets). There are several observations
that we can make:

(1) MERT is fairly stable with respect to the
length of the input tuning sentences. Note how
the MERT regression lines imitate those in Fig-
ure 1. In fact, the correlation between the verbosity
and the hypothesis verbosity for MERT is r=0.980.
PRO, on the other hand, has harder time learning
the tuning set verbosity, and the correlation with
the hypothesis verbosity is only r=0.44. Interest-
ingly, its length ratio is more sensitive to the in-
put length (r=0.67): on short sentences, it learns
to output translations that are slightly shorter than
the reference, while on long sentences, it yields
increasingly longer translations. The dependence
of PRO on source length can be explained by the
sentence-level smoothing in BLEU+1 and the bro-
ken balance between BLEU’s precision compo-
nent and BP (Nakov et al., 2012). The problem is
bigger for short sentences since there +1 is added
to smaller counts; this results in preference for
shorter translations.

(2) Looking at the results for Arabic-English,
we observe that having multiple references makes
both MERT and PRO appear more stable, allowing
them to generate hypotheses that are less spread,
and closer to 1. This can be attributed to the best
match reference length, which naturally dampens
the effect of verbosity during optimization by se-
lecting the reference that is closest to the respec-
tive hypothesis.

Overall, we can conclude that MERT learns the
tuning set’s verbosity more accurately than PRO.
PRO learns verbosity that is more dependent on
the source side length of the sentences in the tun-
ing dataset.

4.3 Performance on the Test Dataset

Next, we study the performance of MERT and
PRO when testing on datasets that are different
from the one used for tuning. First, we test the
robustness of the parameters obtained for spe-
cific tuning datasets when testing on various test
datasets. Second, we test whether selecting a
tuning dataset based on the length of the testing
dataset (i.e., closest) is a good strategy.
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Figure 2: Source-side length vs. hypothesis verbosity for the tuning dataset. There are 36 points per
language pair: four tuning sets, each split into three datasets (short, middle, and long) times three reruns.

For this purpose, we perform a grid comparison
of tuning and testing on all our datasets: we tune
on each short/middle/long dataset, and we test on
the remaining short/middle/long datasets.

The results are shown in Table 1, where each
cell is an average over 36 BLEU scores: four
tuning sets times three test sets times three re-
runs. For example, 49.63 in row 1 (tune: short),
column 2 (test: middle), corresponds to the av-
erage over three reruns of (i) tune on MT04-
short and test on MT05-middle, MT06-middle,
and MT09-middle, (ii) tune on MT05-short and
test on MT04-middle, MT06-middle, and MT09-
middle, (iii) tune on MT06-short and test on
MT04-middle, MT05-middle, and MT09-middle,
and (iv) tune on MT09-short and test on MT04-
middle, MT05-middle, and MT06-middle. We
further include two statistics: (1) the range of
values (max-min), measuring test BLEU variance
depending on the tuning set, and (2) the loss in
BLEU when tuning on closest instead of on the
best-performing dataset.

There are several interesting observations:
(1) PRO and MERT behave quite differently

with respect to the input tuning set. For MERT,
tuning on a specific length condition yields the
best results when testing on a similar condition,
i.e., zero-loss. This is a satisfactory result since it
confirms the common wisdom that tuning datasets
should be as similar as possible to test-time input
in terms of source side length. In contrast, PRO
behaves better when tuning on mid-length tuning
sets. However, the average loss incurred by apply-
ing the closest strategy with PRO is rather small,
and in practice, choosing a tuning set based on test
set’s average length is a good strategy.

(2) MERT has higher variance than PRO and
fluctuates more depending on the input tuning set.
PRO on the contrary, tends to perform more con-
sistently, regardless of the length of the tuning set.

(3) MERT yields the best BLEU across datasets
and language pairs. Thus, when several tuning sets
are available, we recommend choosing the one
closest in length to the test set and using MERT.

66



test

Arabic-English (multi-ref) Arabic-English (1-ref) WMT Spanish-English
tuning short mid long short mid long short mid long avg

MERT
short 47.26⇤ 50.71 50.82 26.69⇤ 28.14 27.49 25.17⇤ 25.94 27.64
mid 46.53 51.11⇤ 51.31 26.22 28.39⇤ 27.96 24.96 26.27⇤ 27.97
long 46.23 50.84 51.74⇤ 25.80 28.20 28.27⇤ 24.57 26.08 28.29⇤

max-min 1.04 0.40 0.91 0.89 0.25 0.78 0.59 0.34 0.65 0.65
loss if using closest 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

PRO-fix
short 46.74 50.57 50.97 25.95 27.66 27.28 24.66 25.83 27.89
mid 46.59 50.83 51.41 25.98 28.23 28.19 24.67 25.81 27.64
long 46.08 50.56 51.18 25.87 28.11 28.05 24.58 25.77 27.81

max-min 0.66 0.27 0.44 0.11 0.58 0.92 0.09 0.06 0.25 0.38
loss if using closest 0.00 0.00 0.23 0.02 0.00 0.15 0.01 0.00 0.08 0.06

Table 1: Average test BLEU when tuning on each short/mid/long dataset, and testing on the remaining
short/mid/long datasets. Each cell represents the average over 36 scores (see the text). The best score for
either MERT or PRO is bold; the best overall score is marked with a ⇤.

4.3.1 Performance vs. Length and Verbosity

The above results give rise to some interesting
questions: What if we do not know the source-
side length of the test set? What if we can choose
a tuning set based on its verbosity? Would it then
be better to choose based on length or based on
verbosity?

To answer these questions, we analyzed the av-
erage results according to two orthogonal views:
one based on the tuning set length (using the above
50% length-based subsets of tuning: short, mid,
long), and another one based on the tuning set
verbosity (using new 50% subsets verbosity-based
subsets of tuning: low-verb, mid-verb, high-verb).
This time, we translated the full test datasets (e.g.,
MT06, MT09); the results are shown in Table 2.
We can make the following observations:

(1) The best results for PRO are better than the
best results for MERT, in all conditions.

(2) Length-based tuning subsets: With a sin-
gle reference, PRO performs best when tuning on
short sentences, but with multiple references, it
works best with mid-length sentences. MERT, on
the other hand, prefers tuning on long sentences
for all testing datasets.

(3) Verbosity-based tuning subsets: PRO yields
best results when the tuning sets have high ver-
bosity; in fact, the best verbosity-based results in
the table are obtained with this setting. With mul-
tiple references, MERT performs best when tuning
on high-verbosity datasets; however, with a single
reference, it prefers mid-verbosity.

Based on the above results, we recommend that,
whenever we have no access to the input side of
the testing dataset beforehand, we should tune on
datasets with high verbosity.

4.4 Test vs. Tuning Verbosity and Source
Length

In the previous subsection, we have seen that
MERT and PRO perform differently in terms of
BLEU, depending on the characteristics of the tun-
ing dataset. Here, we study a different aspect:
i.e. how they behave with respect to verbosity and
source side length.

We have seen that MERT and PRO perform dif-
ferently in terms of BLEU depending on the char-
acteristics of the tuning dataset. Below we study
how other characteristics of the output of PRO and
MERT are affected by tuning set verbosity and
source side length.

4.4.1 MERT – Sensitive to Verbosity
Figure 3 shows a scatter plot of tuning verbosity
vs. test hypothesis verbosity when using MERT
to tune under different conditions, and testing on
each of the unseen full datasets. We test on full
datasets to avoid the verbosity bias that might oc-
cur for specific conditions (see Section 3).

We can see strong positive correlation between
the tuning set verbosity and the hypothesis ver-
bosity on the test datasets. The average correla-
tion for Arabic-English is r=0.95 with multiple
references and r=0.98 with a single reference; for
Spanish-English, it is r=0.97.
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test

Arabic-English (multi-ref) Arabic-English (1-ref) WMT Spanish-English
tuning MERT PRO-fix MERT PRO-fix MERT PRO-fix

length
short 48.71 49.12 26.74 27.35 26.79 27.07
mid 49.27 49.59 26.97 27.23 26.99 26.88
long 49.35 49.20 27.23 27.28 27.02 26.84
verbosity
low-verb 47.90 47.60 25.89 25.88 26.70 26.61
mid-verb 49.16 49.52 27.69 27.95 27.09 26.81
high-verb 50.28 50.79⇤ 27.36 28.03⇤ 27.01 27.38⇤

Table 2: Average test BLEU scores when tuning on different length- and verbosity-based datasets, and
testing on the remaining full datasets. Each cell represents the average over 36 scores. The best score for
either MERT or PRO is bold; the best overall score is marked with a ⇤.
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Figure 3: Tuning set verbosity vs. test hypothesis verbosity when using MERT. Each point represents the
result for an unseen testing dataset, given a specific tuning condition. The linear regressions show the
tendencies for each of the test datasets (note that they all overlap for Es-En and look like a single line).

These are very strong positive correlations and
they show that MERT tends to learn SMT pa-
rameters that yield translations preserving the ver-
bosity, e.g., lower verbosity on the tuning dataset
will yield test-time translations that are less ver-
bose, while higher verbosity on the tuning dataset
will yield test-time translations that are more ver-
bose. In other words, MERT learns to generate
a fixed number of words per input word. This
can be explained by the fact that MERT optimizes
BLEU score directly, and thus learns to output the
“right” verbosity on the tuning dataset (in contrast,
PRO optimizes sentence-level BLEU+1, which is
an approximation to BLEU, but it is not the actual
BLEU). This explains why MERT performs best
when the tuning conditions and the testing condi-
tions are in sync. Yet, this makes it dependent on
a parameter that we do not necessarily control or
have access to beforehand: the length of the test
references.

4.4.2 PRO – Sensitive to Source Length
Figure 4 shows the tuning set average source-side
length vs. the testing hypothesis/reference length
ratio when using PRO to tune on short, middle,
and long and testing on each of the unseen full
datasets, as in the previous subsection. We can see
that there is positive correlation between the tun-
ing set average source side length and the testing
hypothesis/reference length ratio. For Spanish-
English, it is quite strong (r=0.64), and for Arabic-
English, it is more clearly expressed with one
(r=0.42) than with multiple references (r=0.34).
The correlation is significant (p < 0.001) when
we take into account the contribution of the tuning
set verbosity in the model. This suggests that for
PRO, both source length and verbosity influence
the hypotheses lengths, i.e., PRO learns the tuning
set’s verbosity, much like MERT; yet, the contri-
bution of the length of the source sentences from
the tuning dataset is not negligible.
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Figure 4: Tuning set average source length vs. test hypothesis/reference length ratio for PRO. Each
point represents the result for an unseen testing dataset, given a specific tuning condition. The linear
regressions shows the tendencies across each of the testing datasets.

Finally, note the “stratification” effect for the
Arabic-English single-reference data. We attribute
it to the differences across test datasets. These
differences are attenuated with multiple references
due to the closest-match reference length.

5 Discussion

We have observed that high-verbosity tuning sets
yield better results with PRO. We have further seen
that we can manipulate verbosity by adjusting the
average length of the tuning dataset. This leads to
the natural question: can this yield better BLEU?
It turns out that the answer is “yes”. Below, we
present an example that makes this evident.

First, recall that for Arabic-English longer tun-
ing datasets have higher verbosity. Moreover, our
previous findings suggest that for PRO, higher-
verbosity tuning datasets will perform better in
this situation. Therefore, we should expect that
longer tuning datasets could yield better BLEU.
Table 3 presents the results for PRO with Arabic-
English when tuning on MT06, or subsets thereof,
and testing on MT09. The table shows the re-
sults for both multi- and single-reference experi-
ments; naturally, manipulating the tuning set has
stronger effect with a single reference. Lines 1-
3 show that as the average length of the tuning
dataset increases, so does the length ratio, which
means better brevity penalty for BLEU and thus
higher BLEU score. Line 4 shows that selecting
a random-50% subset (included here to show the
effect of using mixed-length sentences) yields re-
sults that are very close to those for middle.

Comparing line 3 to lines 4 and 5, we can see
that tuning on long yields longer translations and
also higher BLEU, compared to tuning on the full
dataset or on random.

Next, lines 6 and 7 show the results when apply-
ing our smoothing fix for sentence-level BLEU+1
(Nakov et al., 2012), which prevents translations
from becoming too short; we can see that long
yields very comparable results. Yet, manipulat-
ing the tuning dataset might be preferable since it
allows (i) faster tuning, by using part of the tun-
ing dataset, (ii) flexibility in the selection of the
desired verbosity, and (iii) applicability to other
MT evaluation measures. Point (ii) is illustrated
on Figure 5, which shows that there is direct pos-
itive correlation between verbosity, length ratio,
and BLEU; note that the tuning set size does not
matter much: in fact, better results are obtained
when using less tuning data.
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Figure 5: PRO, Arabic-English, 1-ref: tune on
N% longest sentences from MT06, test on MT09.
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multi-ref 1-ref
Tuning BLEU len. ratio BLEU len. ratio

1 tune-short 46.38 0.961 27.44 0.894
2 tune-mid 47.44 0.977 29.11 0.950
3 tune-long 47.47 0.980 29.51 0.969

4 tune-random 47.43 0.978 28.96 0.941

5 tune-full 47.18 0.972 28.88 0.934

6 tune-full, BP-smooth=1 47.52 0.984 29.43 0.962
7 tune-full, BP-smooth=1, grounded 47.61 0.991 29.68 0.979

Table 3: PRO, Arabic-English: tuning on MT06, or subsets thereof, and testing on MT09. Statistically
significant improvements over tune-full are in bold: using the sign test (Collins et al., 2005), p < 0.05.

6 Conclusion and Future Work

Machine translation has, and continues to, benefit
immensely from automatic evaluation measures.
However, we frequently observe delicate depen-
dencies between the evaluation metric, the system
optimization strategy, and the pairing of tuning
and test datasets. This leaves us with the situation
that getting lucky in the selection of tuning datasets
and optimization strategy overshadows scientific
advances in modeling or decoding. Understand-
ing these dependencies in detail puts us in a bet-
ter position to construct tuning sets that match the
test datasets in such a way that improvements in
models, training, and decoding algorithms can be
measured more reliably.

To this end, we have studied the impact that
source-side length and verbosity of tuning sets
have on the performance of the translation system
when tuning the system with different optimizers
such as MERT and PRO. We observed that MERT
learns the verbosity of the tuning dataset very well,
but this can be a disadvantage because we do not
know the verbosity of unseen test sentences. In
contrast, PRO is affected by both the verbosity and
the source-side length of the tuning dataset.

There may be other characteristics of test
datasets, e.g., amount of reordering, number of
unknown words, complexity of the sentences in
terms of syntactic structure, etc. that could have
similar effects of creating good or bad luck when
deciding how to tune an SMT system. Until
we have such controlled evaluation scenarios, our
short-term recommendations are as follows:

• Know your tuning datasets: Different lan-
guage pairs and translation directions may
have different source-side length – verbosity
dependencies.

• When optimizing with PRO: select or con-
struct a high-verbosity dataset as this could
potentially compensate for PROs tendency
to yield too short translations. Note that
for Arabic-English, higher verbosity means
longer tuning sentences, while for Spanish-
English, it means shorter ones; translation di-
rection might matter too.

• When optimizing with MERT: If you know
beforehand the test set, select the closest tun-
ing set. Otherwise, tune on longer sentences.

We plan to extend this study in a number of di-
rections. First, we would like to include other pa-
rameter optimizers such as Rampeon (Gimpel and
Smith, 2012) and MIRA. Second, we want to ex-
periment with other metrics, such as TER (Snover
et al., 2006), which typically yields short trans-
lations, and METEOR (Lavie and Denkowski,
2009), which yields too long translations. Third,
we would like to explore other SMT models such
as hierarchical (Chiang, 2005) and syntax-based
(Galley et al., 2004; Quirk et al., 2005), and other
decoders such as cdec (Dyer et al., 2010), Joshua
(Li et al., 2009), and Jane (Vilar et al., 2010).

A long-term objective would be to design a met-
ric that measures the closeness between tuning and
test datasets, which includes the different char-
acteristics, such as length distribution, verbosity
distribution, syntactic complexity, etc., to guaran-
tee a more stable evaluation situations, but which
would also allow to systematically test the robust-
ness of translation systems, when deviating from
the matching conditions.
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2005. Clause restructuring for statistical machine
translation. In Proceedings of the 43rd Annual
Meeting on Association for Computational Linguis-
tics, ACL ’05, pages 531–540, Ann Arbor, Michi-
gan.

Michael Denkowski and Alon Lavie. 2011. Meteor-
tuned phrase-based SMT: CMU French-English and
Haitian-English systems for WMT 2011. Techni-
cal report, Technical Report CMU-LTI-11-011, Lan-
guage Technologies Institute, Carnegie Mellon Uni-
versity.

Markus Dreyer and Yuanzhe Dong. 2015. APRO:
All-pairs ranking optimization for MT tuning. In
Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
NAACL-HLT ’15, pages 1018–1023, Denver, Col-
orado, USA.

Chris Dyer, Adam Lopez, Juri Ganitkevitch, Jonathan
Weese, Ferhan Ture, Phil Blunsom, Hendra Seti-
awan, Vladimir Eidelman, and Philip Resnik. 2010.
cdec: A decoder, alignment, and learning framework
for finite-state and context-free translation models.
In Proceedings of the ACL 2010 System Demonstra-
tions, ACL ’10, pages 7–12, Uppsala, Sweden.

Michel Galley, Mark Hopkins, Kevin Knight, and
Daniel Marcu. 2004. What’s in a translation
rule? In Proceedings of the 2004 Annual Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT ’04, pages 273–
280, Boston, Massachusetts, USA.

Kevin Gimpel and Noah A. Smith. 2012. Struc-
tured ramp loss minimization for machine transla-
tion. In Proceedings of the 2012 Annual Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT ’12, pages 221–
231, Montréal, Canada.
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Abstract
Cross-lingual dependency parsing aims
to train a dependency parser for an
annotation-scarce target language by ex-
ploiting annotated training data from an
annotation-rich source language, which is
of great importance in the field of nat-
ural language processing. In this paper,
we propose to address cross-lingual de-
pendency parsing by inducing latent cross-
lingual data representations via matrix
completion and annotation projections on
a large amount of unlabeled parallel sen-
tences. To evaluate the proposed learn-
ing technique, we conduct experiments on
a set of cross-lingual dependency parsing
tasks with nine different languages. The
experimental results demonstrate the effi-
cacy of the proposed learning method for
cross-lingual dependency parsing.

1 Introduction
The natural language processing (NLP) commu-
nity has witnessed an enormous development of
multilingual resources, which draws increasing at-
tention to developing cross-lingual NLP adapta-
tion systems. Cross-lingual dependency parsing
aims to train a dependency parser for a target lan-
guage where labeled data is rare or unavailable
by exploiting the abundant annotated data from a
source language. Cross-lingual dependency pars-
ing can effectively reduce the expensive manual
annotation effort in individual languages and has
been increasingly studied in the multilingual com-
munity. Previous works have demonstrated the
success of cross-lingual dependency parsing for a
variety of languages (Durrett et al., 2012; McDon-
ald et al., 2013; Täckström et al., 2013; Søgaard
and Wulff, 2012).

One fundamental issue of cross-lingual depen-
dency parsing lies in how to effectively transfer the

annotation information from the source language
domain to the target language domain. Due to the
language divergence over the word-level represen-
tations and the sentence structures, simply training
a monolingual dependency parser on the labeled
source language data without adaptation learn-
ing will fail to produce a dependency parser that
works in the target language domain. To tackle
this problem, a variety of works in the literature
have designed better algorithms to exploit the an-
notated resources in the source languages, includ-
ing the cross-lingual annotation projection meth-
ods (Hwa et al., 2005; Smith and Eisner, 2009;
Zhao et al., 2009), the cross-lingual direct trans-
fer with linguistic constraints methods (Ganchev
et al., 2009; Naseem et al., 2010; Naseem et al.,
2012), and the cross-lingual representation learn-
ing methods (Durrett et al., 2012; Täckström et al.,
2012; Zhang et al., 2012).

In this work, we propose a novel representation
learning method to address cross-lingual depen-
dency parsing, which exploits annotation projec-
tions on a large amount of unlabeled parallel sen-
tences to induce latent cross-lingual features via
matrix completion. It combines the advantages
of the cross-lingual annotation projection meth-
ods, which project labeled information into the tar-
get language domain, and the cross-lingual rep-
resentation learning methods, which learn latent
interlingual features. Specifically, we first train
a dependency parser on the labeled source lan-
guage data and use it to infer labels for the un-
labeled source language sentences of the parallel
resources. We then project the annotations from
the source language to the target language via the
word alignments on the parallel sentences. Af-
terwards, we define a set of interlingual features
and construct a word-feature matrix by associat-
ing each word with these language-independent
features. We then use the original labeled source
language data and the predicted (or projected) la-
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beled information on the parallel sentences to fill
in the observed entries of the word-feature matrix,
while matrix completion is performed to fill the
remaining missing entries. The completed word-
feature matrix provides a set of consistent cross-
lingual representation features for the words in
both languages. We use these features as augment-
ing features to train a dependency parsing system
on the labeled data in the source language and per-
form prediction on the test sentences in the tar-
get language. To evaluate the proposed learning
method, we conduct experiments on eight cross-
lingual dependency parsing tasks with nine differ-
ent languages. The experimental results demon-
strate the superior performance of the proposed
cross-lingual transfer learning method, comparing
to other approaches.

2 Related Work

A variety of cross-lingual dependency parsing
methods have been developed in the literature. We
provide a brief review over the related works in
this section.

Much work developed in the literature is based
on annotation projection (Hwa et al., 2005; Liu
et al., 2013; Smith and Eisner, 2009; Zhao et al.,
2009). Basically, they exploit parallel sentences
and first project the annotations of the source lan-
guage sentences to the corresponding target lan-
guage sentences via the word level alignments.
Then, they train a dependency parser in the target
language by using the target language sentences
with projected annotations. The performance of
annotation projection-based methods can be af-
fected by the quality of word-level alignments and
the specific projection schema. Therefore, Hwa
et al. (2005) proposed to heuristically correct or
modify the projected annotations in order to in-
crease the projection performance while Smith
and Eisner (2009) used a more robust projec-
tion method, quasi-synchronous grammar projec-
tion, to address cross-lingual dependency parsing.
Moreover, Liu et al. (2013) proposed to project the
discrete dependency arcs instead of the treebank
as the training set. These works however assume
that the parallel sentences are already available, or
can be obtained by using free machine translation
tools. Instead, Zhao et al. (2009) considered the
cost of machine translation and used a bilingual
lexicon to obtain a translated treebank with pro-
jected annotations from the source language.

A number of works are developed based on
representation learning (Durrett et al., 2012;
Täckström et al., 2012; Zhang et al., 2012; Xiao
and Guo, 2014). In general, these methods first au-
tomatically learn some language-independent fea-
tures and then train a dependency parser in this
interlingual feature space with labeled data in the
source language and apply it on the data in the tar-
get language. Durrett et al. (2012) used a bilingual
lexicon, which can be manually constructed or in-
duced on parallel sentences, to learn language-
independent projection features for cross-lingual
dependency parsing. Täckström et al. (2012)
used unlabeled parallel sentences to induce cross-
lingual word clusterings and used these word clus-
terings as interlingual features. Both (Durrett et
al., 2012) and (Täckström et al., 2012) assumed
that the twelve universal part-of-speech (POS)
tags (Petrov et al., 2012) are available and used
them as the basic interlingual features. Moreover,
Zhang et al. (2012) proposed to automatically map
language-specific POS tags to universal POS tags
to address cross-lingual dependency parsing, in-
stead of using the manually defined mapping rules.
Recently, Xiao and Guo (2014) used a set of bilin-
gual word pairs as pivots to learn interlingual dis-
tributed word representations via deep neural net-
works as augmenting features for cross-lingual de-
pendency parsing.

Some other works are proposed based on mul-
tilingual linguistic constraints (Ganchev et al.,
2009; Gillenwater et al., 2010; Naseem et al.,
2010; Naseem et al., 2012). Basically, they first
construct a set of linguistic constrains and then
train a dependency parsing system by incorporat-
ing the linguistic constraints via posterior regular-
ization. The constraints are expected to bridge the
language differences. Ganchev et al. (2009) au-
tomatically learned the constraints by using par-
allel data while some other works manually con-
structed them by using the universal dependency
rules (Naseem et al., 2010) or the typological fea-
tures (Naseem et al., 2012).

3 Proposed Approach

In this section, we present a novel representa-
tion learning method for cross-lingual dependency
parsing, which combines annotation projection
and matrix completion-based feature representa-
tion learning together to produce effective inter-
lingual features.
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Figure 1: The architecture of the proposed cross-
lingual representation learning framework, which
consists of two steps, cross-lingual annotation pro-
jection and cross-lingual representation learning.

We consider the following cross-lingual depen-
dency parsing setting. We have a large amount
of labeled sentences in the source language and a
set of unlabeled sentences in the target language.
In addition, we also have a large set of auxiliary
unlabeled parallel sentences across the two lan-
guages. We aim to learn interlingual feature rep-
resentations such that a dependency parser trained
in the source language sentences can be applied in
the target language domain. The framework for
the proposed cross-lingual representation learn-
ing system is given in Figure 1. The system has
two steps: cross-lingual annotation projection and
cross-lingual representation learning. We present
each of the two steps below.

3.1 Cross-Lingual Annotation Projection

In the first step, we employ a large amount of un-
labeled parallel sentences to transfer dependency
relations from the source language to the target
language. We first train a lexicalized dependency
parser with the labeled training data in the source
language. Then we use this parser to produce
parse trees on the source language sentences of
the auxiliary parallel data. Simultaneously, we
perform word-level alignments on the unlabeled
parallel sentences using existing alignment tools.
Finally, we project the predicted dependency re-
lations of the source language sentences to their

Figure 2: An example of cross-lingual annotation
projection, where a partial word-level alignment
is shown to demonstrate two cases of annotation
projection.

parallel counterparts in the target language via the
word-level alignments. Instead of projecting the
whole dependency trees, which requires more so-
phisticated algorithms, we simply project each de-
pendency arc on the source sentences to the target
language side.

We now use a specific example in Figure 2 to
illustrate the projection step. This example con-
tains an English sentence and its parallel sentence
in German. The English sentence is fully labeled
with each dependency relation indicated by a solid
directed arc. The dashed lines between the En-
glish sentence and the German sentence show the
alignments between them. For each dependency
arc instance, we consider the following properties:
the parent word, the child word, the parent POS,
the child POS, the dependency direction, and the
dependency distances. The projection of the de-
pendency relations from the source language to the
target language is conducted based on the word-
level alignment. There are two different scenar-
ios. The first scenario is that the two source lan-
guage words involved in the dependency relation
are aligned to two different words in the corre-
sponding target sentence. For example, the En-
glish words “the” and “quota” are aligned to Ger-
man words “die” and “Quote” separately. We then
copy this dependency relation into the target lan-
guage side. The second scenario is that a source
language word is aligned to a word in the target
language sentence and has a dependency relation
with the “<root>” word. For example, the En-
glish word “want” is aligned to “wollen” and it has
a dependency arc with “<root>”. We then project
the dependency relation from the English side to
the German side as well. Moreover, we also di-
rectly project the POS tags of the source language
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Figure 3: Example of how to collect queries for
each specific dependency relation and how to ob-
tain the abstract signatures (adapted from (Durrett
et al., 2012)).

words onto the target language words. Since the
word order for each aligned word pair in parallel
sentences can be different, we recalculate the de-
pendency direction and the dependency distance
for the projected dependency arc instance. Note
the example in Figure 2 only shows a partial word-
level alignment to demonstrate the two cases of the
annotation projection. The word alignment tool
can align more words than shown in the example.

3.2 Cross-Lingual Representation Learning

After cross-lingual annotation projection, we have
a set of projected dependency arc instances in
the target language. However, the sentences in
the target language are not fully labeled. De-
pendency relation related features are not readily
available for all the words in the target language
domain. Hence, in this step, we first generate a set
of interlingual features and then automatically fill
the missing feature values for the target language
words with matrix completion based on the pro-
jected feature values.

3.2.1 Generating Interlingual Features
We use the signature method in (Durrett et al.,
2012) to construct a set of interlingual features
for the words in the source and target language
domains . The signatures proposed in (Dur-
rett et al., 2012) for dependency parsing are
universal across different languages, and have
numerical values that are computed in specific
dependency relations. Here we illustrate the

signature generation process by using an example
in Figure 3, which is adapted from (Durrett et
al., 2012). Note for each dependency relation
between a parent (also known as the head) word
and a child (also known as the dependent) word,
we can collect a number of queries based on
the dependency properties. For example, given
the dependency arc between “want” and “to” in
the English sentence in Figure 3, and assuming
we consider the child word “to”, we produce
queries by considering a non-empty subset of
the dependency properties (the parent POS, the
dependency direction, the dependency distance),
which provides us 7 queries: “VERB!to”, “!to,
RIGHT”, “!to, 1”, “VERB !to, RIGHT”,
“VERB!to, 1”, “!to, RIGHT, 1”, “VERB!to,
RIGHT, 1”, where VERB is the parent POS tag,
RIGHT is the dependency direction and 1 is
the dependency distance. Then we can abstract
the specific queries to generate the signatures
by replacing the considered word (“to”) with its
POS tag (“PRT”), and replacing the parent POS
tag with “PARENT”, the specific dependency
distance with “DIST” and the dependency direc-
tion with “DIR”. This produces the following 7
signatures: “PARENT![PRT]”, “![PRT], DIR”,
“![PRT], DIST”, “PARENT![PRT], DIST”,
“PARENT![PRT], DIST”, “![PRT], DIR,
DIST”, and “PARENT![PRT], DIR, DIST”,
where the brackets indicate the POS tags are for
the considered word. Similarly, we can perform
the same abstraction process for the parent word
“want” and get another 7 signatures (see Table 1).
Since each signature contains one POS tag and
there are 13 different POS types (12 universal
POS tags and 1 special type for the “<root>”
word), we can get a total of 7 ⇥ 2 ⇥ 13 = 182

signatures. These signatures are independent of
specific languages, though their numerical values
should be computed in a specific dependency
relation for each considered target word.

A set of interlingual features can then be gener-
ated from these abstractive signatures by consid-
ering different instantiations of their items. For a
given target word with an observed POS tag, it has
14 signatures (see Table 1). For each signature,
we consider all possible instantiations of its other
items given the fixed target word. For example, for
the target word “to”, its signature “![PRT], DIR”
can be instantiated into 2 features: “! LEFT” and
“! RIGHT”. Similarly, its signature “![PRT],
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Signatures # Features
[PRT]! DIR 2
[PRT]! DIST 5
[PRT]! CHILD 13
[PRT]! DIR, DIST 10
[PRT]! CHILD, DIR 26
[PRT]! CHILD, DIST 65
[PRT]! CHILD, DIR, DIST 130
! [PRT], DIR 2
! [PRT], DIST 5
PARENT! [PRT] 13
! [PRT], DIR, DIST 10
PARENT! [PRT], DIR 26
PARENT! [PRT], DIST 65
PARENT! [PRT], DIR, DIST 130
Total 502

Table 1: The number of induced “features” of each
signature for a given word.

DIST” can be instantiated into 5 features since
DIST has 5 different values ({1, 2, 3–5, 6–10,
11+}), and its signature “[PRT]!CHILD” can be
instantiated into 13 features since CHILD denotes
the child word’s POS tags and can have 13 differ-
ent values. Hence as shown in Table 1, we can get
502 features from the 14 signatures.

3.2.2 Learning Feature Values with Matrix
Completion

The signature-based 502 interlingual features to-
gether with the 13 universal POS tag features can
be used as language independent features for all
the words in the vocabulary constructed across the
source and target language domains. In particular,
we can form a word-feature matrix with the con-
structed vocabulary and the total 515 language in-
dependent features. For each word that appeared
in the dependency relation arcs, we can use the
number of appearances of its interlingual features
as the corresponding feature values. However, the
sentences in the target language are not fully la-
beled. Some words in the target language domain
may not be observed in the projected dependency
arc instances, and we cannot compute their feature
values for the 502 interlingual features, though the
13 universal POS tag features are available for all
words. Moreover, since we only have a limited
number of projected dependency arc instances in
the target language, even for some target words
that appeared in the projected arc instances of the
parallel data, we may only observe a subset of
features among the total 502 interlingual features,
with the rest features missing. Hence the con-
structed word-feature matrix is only partially ob-

Figure 4: The word-feature matrix. There are
three parts of words: the source language words,
target language words from the projected depen-
dency arc instances, and additional target language
words. The signature features are the 502 interlin-
gual features and the POS features are the 13 uni-
versal POS tags. Solid lines indicate observed en-
tries, dashed lines indicate partially observed en-
tries, while empty indicates missing entries.

served, as shown in Figure 4. Furthermore, there
could also be some noise in the observed feature
values as some word features may not have re-
ceived sufficient observations.

To solve the missing feature problem and si-
multaneously perform data denoising, we exploit
a feature correlation assumption: the 502 con-
structed interlingual features and the 13 univer-
sal POS tags are not mutually independent; they
usually contain a lot statistical correlation infor-
mation. For example, for a word “want” with
POS tag “VERB”, its feature value for “VERB!
want, RIGHT” is likely to be very small such as
zero, while its feature value for “want! NOUN,
LEFT” is likely to be large. Moreover, the exis-
tence of any one of the two interlingual features in
this example can also indicate the non-existence
of the other feature. The existence of feature cor-
relations establishes the low-rank property of the
word-feature matrix. We hence propose to fill the
missing feature values and reduce the noise in the
word-feature matrix by performing matrix com-
pletion. Low-rank matrix completion has been
successfully used in many applications to fill miss-
ing entries of partially observed low-rank matri-
ces and perform matrix denoising (Cabral et al.,
2011; Xiao and Guo, 2013) by exploiting the fea-
ture correlations and underlying low-dimensional
representations. Following the same principle, we
expect to automatically discover the missing fea-
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ture values in our word-feature matrix and perform
denoising through low-rank matrix completion.

Let M0 2 Rn⇥k denote the partially observed
word-feature matrix in Figure 4, where n is the
number of words and k is the dimensionality of
the feature set, which is 515 in this study. Let ⌦

denote the set of indices for the observed entries.
Hence for each observed entry (i, j) 2 ⌦, M0

ij
contains the frequency collected for the j-th fea-
ture of the i-th word. We then formulate matrix
completion as the following optimization problem
to recover a full matrix M from the partially ob-
served matrix M0:

min

M�0
�kMk⇤+↵kMk1,1+

X

(i,j)2⌦

(Mij�M0
ij)

2 (1)

where the trace norm kMk⇤ enforces the low-rank
property of the matrix, and kMk1,1 denotes the
entrywise L1 norm. Since many words usually
only have observed values for a small subset of the
502 interlingual features due to the simple fact that
they are only associated with very few POS tags,
a fully observed word-feature matrix is typically
sparse and contains many zero entries. Hence we
use the L1 norm regularizer to encode the spar-
sity of the matrix M . The nonnegativity constraint
M � 0 encodes the fact that our frequency based
feature values in the word-feature matrix are all
nonnegative. The minimization problem in Eq (1)
can be solved using a standard projected gradient
descent algorithm (Xiao and Guo, 2013).

3.3 Cross-Lingual Dependency Parsing
After matrix completion, we can get a set of in-
terlingual features for all the words in the word-
feature matrix. We then use the interlingual fea-
tures for each word as augmenting features and
train a delexicalized dependency parser on the la-
beled sentences in the source language. The parser
is then applied to perform prediction on the test
sentences in the target language, which are also
delexicalized and augmented with the interlingual
features.

4 Experiments

4.1 Datasets
We used the multilingual dependency parsing
dataset from the CoNLL-X shared tasks (Buch-
holz and Marsi, 2006; Nivre et al., 2007) and ex-
perimented with nine different languages: Dan-
ish (Da), Dutch (Nl), English (En), German (De),

Greek (El), Italian (It), Portuguese (Pt), Span-
ish (Es) and Swedish (Sv). For each language,
the original dataset contains a training set and a
test set. We constructed eight cross-lingual de-
pendency parsing tasks, by using English as the
label-rich source language and using each of the
other eight languages as the label-poor target lan-
guage. For example, the task En2Da means that
we used English sentences as the source language
data and Danish sentences as the target language
data. For each task, we used the original training
set in English as the labeled source language data,
and used the original training set in the target lan-
guage as unlabeled training data and the original
test set in the target language as test sentences.
Each sentence from the dataset is labeled with
gold standard POS tags. We manually mapped
these language-specific POS tags to 12 univer-
sal POS tags: NOUN (nouns), NUM (numerals),
PRON (pronouns), ADJ (adjectives), ADP (prepo-
sitions or postpositions), ADV (adverbs), CONJ
(conjunctions), DET (determiners), PRT (parti-
cles), PUNC (punctuation marks), VERB (verbs)
and X (for others).

We used the unlabeled parallel sentences from
the European parliament proceedings parallel
corpus (Koehn, 2005), which contains parallel
sentences between multiple languages, as auxil-
iary unlabeled parallel sentences in our experi-
ments. For the representation learning over each
cross-lingual dependency parsing task, we used
all the parallel sentences for the given language
pair from this corpus. The number of parallel sen-
tences for the eight language pairs ranges from
1, 235, 976 to 1, 997, 775, and the number of to-
kens involved in these sentences in each language
ranges from 31, 929, 703 to 50, 602, 994.

4.2 Representation Learning

For the proposed representation learning, we first
trained a lexicalized dependency parser on the la-
beled source language data using the MSTParser
tool (proj with the first order set) (McDonald et
al., 2005) and used it to predict the parsing annota-
tions of the source language sentences in the unla-
beled parallel dataset. The sentences of the paral-
lel data only contain sequences of words, without
additional POS tag information. We then used an
existing POS tagging tool (Collobert et al., 2011)
to infer POS tags for them. Next we produced
word-level alignments on the unlabeled parallel
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Basic Conj with dist Conj with dir Conj with dist and dir
upos h dist, upos h dir, upos h dist, dir, upos h
upos d dist, upos d dir, upos d dist, dir, upos d
upos h, upos d, dist, upos h, upos d dir, upos h, upos d dist, dir, upos h, upos d

Table 2: Feature templates for training a basic delexicalized dependency parser. upos stands for the
universal POS tag, h stands for the head word, d stands for the dependent word, dist stands for the
dependency distance, which has five values {1, 2, 3� 5, 6� 10, 11+}, and dir stands for the dependency
direction, which has two values {left, right}.

Tasks Wikitionary Parallel Data
Delex Proj1 r DNN r Proj2 r RLAP r X-lingual

En2Da 36.5 41.3 4.8 42.6 6.1 42.9 6.4 43.6 7.1 38.7
En2De 46.2 49.2 3.0 49.5 3.3 49.7 3.5 50.5 4.3 50.7
En2El 61.5 62.4 0.9 63.0 1.5 63.5 2.0 64.3 2.8 63.0
En2Es 52.1 54.5 2.4 55.7 3.6 56.2 4.1 56.3 4.2 62.9
En2It 56.4 57.7 1.3 59.1 2.7 59.2 2.8 60.4 4.0 68.8
En2Nl 62.0 64.4 2.4 65.1 3.1 64.9 2.9 66.1 4.1 54.3
En2Pt 68.7 71.5 2.8 72.4 3.7 71.9 3.2 72.8 4.1 71.0
En2Sv 57.8 61.0 3.2 61.9 4.1 62.9 5.1 63.7 5.9 56.9
Average 55.2 57.8 2.6 58.7 3.5 58.9 3.8 59.7 4.6 58.3

Table 3: Comparison results in terms of unlabeled attachment score (UAS) for the eight cross-lingual
dependency parsing tasks (English is used as the source language). The evaluation results are on all
the test sentences. The Delex method uses no auxiliary resource, Proj1 and DNN use Wikitionary as
auxiliary resource, Proj2, RLAP, and X-lingual use parallel sentences as auxiliary resources. r denotes
the improvements of each method over the baseline Delex method. The bottom row contains the average
results over the eight tasks.

sentences by using the Berkeley alignment tool
(Liang et al., 2006). With the word alignments,
we then projected the predicted dependency rela-
tions from the source language sentences of the
parallel data to the target language side, which
produces a set of dependency arc instances in the
target language. Finally, we constructed the par-
tially observed word-feature matrix from these la-
beled data and conducted matrix completion to re-
cover the whole matrix. For matrix completion,
we used the first task En2Da to perform param-
eter selection based on the test performance. We
selected � from {0.1, 1, 10} and selected ↵ from
{10

3, 10

4, 10

5}. The selected values � = 1 and
↵ = 10

�4 were then used for all the experiments.

4.3 Experimental Results

4.3.1 Test Results on All the Test Sentences
We first compared the proposed representa-
tion learning with annotation projection method,
RLAP, to the following methods in our experi-

ments: Delex, Proj1, Proj2, DNN and X-lingual.
The Delex method is a baseline method, which re-
places the language-specific word sequence with
the universal POS tag sequence and then trains
a delexicalized dependency parser. We listed the
feature templates used in this baseline delexical-
ized dependency parser in Table 2. The Proj1
and Proj2 methods are from (Durrett et al., 2012).
Durrett et al. (2012) proposed to use bilingual lex-
icon to learn cross-lingual features and provided
two ways to construct the bilingual lexicon, one
is based on Wikitionary and the other is based on
unlabeled parallel sentences with observed word-
level alignments. We used these two ways sepa-
rately to construct the bilingual lexicon between
the languages for learning cross-lingual features,
which are then used as augmenting features for
training delexicalized dependency parsers. We
denote the Wikitionary-based method as Proj1
and the parallel-sentence-based method as Proj2.
The DNN method, developed in (Xiao and Guo,
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Tasks Delex Proj2 r RLAP r USR PGI PR MLC
En2Da 46.7 54.6 7.9 55.7 9.0 51.9 41.6 44.0 -
En2De 62.0 63.0 1.0 64.0 2.0 - - 39.6 62.8
En2El 60.9 61.9 1.0 63.2 2.3 - - - 61.4
En2Es 55.2 58.3 3.1 59.6 4.4 67.2 58.4 62.4 57.3
En2It 55.5 56.9 1.4 58.3 2.8 - - - 56.2
En2Nl 60.3 62.5 2.2 63.7 3.4 - 45.1 37.9 62.0
En2Pt 80.2 84.5 4.3 85.7 5.5 71.5 63.0 47.8 83.8
En2Sv 73.4 76.0 2.6 76.4 3.0 63.3 58.3 42.2 74.9
Average 61.8 64.7 2.9 65.8 4.1 - - - -

Table 4: Comparison results on the short test sentences with length of 10 or less in terms of unlabeled
attachment score (UAS).r denotes the improvements of each method over the baseline Delex method.

# of Labeled Target Instances
0 500 1000 1500

U
A

S

35

36

37

38

39

40

41

42

43

44

En2Da

Delex
Proj2
RLAP

# of Labeled Target Instances
0 500 1000 1500

U
A

S

45

46

47

48

49

50

51

En2De

Delex
Proj2
RLAP

# of Labeled Target Instances
0 500 1000 1500

U
A

S

60

60.5

61

61.5

62

62.5

63

63.5

64

64.5

65

En2El

Delex
Proj2
RLAP

# of Labeled Target Instances
0 500 1000 1500

U
A

S

51

52

53

54

55

56

57

En2Es

Delex
Proj2
RLAP

# of Labeled Target Instances
0 500 1000 1500

U
A

S

55

56

57

58

59

60

61

En2It

Delex
Proj2
RLAP

# of Labeled Target Instances
0 500 1000 1500

U
A

S

60

61

62

63

64

65

66

67

En2Nl

Delex
Proj2
RLAP

# of Labeled Target Instances
0 500 1000 1500

U
A

S

67

68

69

70

71

72

73

En2Pt

Delex
Proj2
RLAP

# of Labeled Target Instances
0 500 1000 1500

U
A

S
56

57

58

59

60

61

62

63

64

En2Sv

Delex
Proj2
RLAP

Figure 5: Unlabeled attachment score (UAS) on the whole test sentences in the target language by varying
the number of labeled training sentences in the target language.

2014), uses Wikitionary to construct bilingual
word pairs and then uses a deep neural network to
learn interlingual word embeddings as augment-
ing features for training delexicalized dependency
parsers. The X-lingual method uses unlabeled par-
allel sentences to induce cross-lingual word clus-
ters as augmenting features for delexicalized de-
pendency parser (Täckström et al., 2012). For X-
lingual, we cited its results reported in its original
paper. For other methods, we used the MSTParser
(McDonald et al., 2005) as the underlying depen-
dency parsing tool. To train the MSTParser, we
set the number of maximum iterations for the per-
ceptron training as 10 and set the number of best-k
dependency tree candidates as 1.

We evaluated the empirical performance of each
comparison method on all the test sentences. The
comparison results on the eight cross-lingual de-
pendency parsing tasks in terms of unlabeled at-
tachment score (UAS) are reported in Table 3. We
can see that the baseline method, Delex, performs

poorly across the eight tasks. This is not surprising
since the sequence of universal POS tags are not
discriminative enough for the dependency parsing
task. Note even for two sentences with the exact
same sequence of POS tags, they may have differ-
ent dependency trees. By using auxiliary bilingual
word pairs via Wikitionary, the two cross-lingual
representation learning methods, Proj1 and DNN,
outperform Delex across all the eight tasks. Be-
tween these two methods, DNN consistently out-
performs Proj1, which suggests the interlingual
word embeddings induced by deep neural net-
works are very effective. By using unlabeled par-
allel sentences as an auxiliary resource, the two
methods, Proj2 and RLAP, consistently outper-
form the baseline Delex method, while X-lingual
outperforms Delex on six tasks. Moreover, Proj2
outperforms its variant Proj1 across all the eight
tasks and achieves comparable performance with
the deep neural network based method DNN. This
suggests that unlabeled parallel sentences form

80



a stronger auxiliary resource than the free Wiki-
tionary. Our proposed approach, RLAP, which has
the capacity of exploiting the unlabeled parallel
sentences, consistently outperforms the four com-
parison methods, Delex, Proj1, DNN and Proj2,
across all the eight tasks. It also outperforms the
X-lingual method on five tasks. The average UAS
over all the eight tasks for the RLAP method is
1.4 higher than the X-lingual method. All these
results demonstrated the effectiveness of the pro-
posed representation learning method for cross-
lingual dependency parsing.

4.3.2 Test Results on Short Test Sentences
We also conducted empirical evaluations on short
test sentences (with length of 10 or less). We
compared Delex, Proj2 and RLAP with four other
methods, USR, PGI, PR and MLC. The USR
method is a cross-lingual direct transfer method
which uses universal dependency rules to con-
struct linguistic constraints (Naseem et al., 2010).
The PGI method is a phylogenetic grammar induc-
tion model (Berg-Kirkpatrick and Klein, 2010).
The PR method is a posterior regularization ap-
proach (Gillenwater et al., 2010). The MLC
method is the multilingual linguistic constraints-
based method which uses typological features for
cross-lingual dependency parsing (Naseem et al.,
2012). Here we used this method in our setting
with only one source domain. Moreover, since we
do not have typological features for Danish, we
did not conduct experiment on the first task with
MLC. For the methods of USR, PGI and PR, we
cited their results reported in their original papers.
All the cited results are also produced on the short
sentences of the CoNLL-X shard task dataset. We
cited them as references on measuring the progress
of cross-lingual dependency parsing on each given
target language.

The comparison results are reported in Table 4.
We can see that the results on the short test sen-
tences are in general better than on the whole test
set (in Table 3) for the same method across most
tasks. This suggests that it is easier to infer the
dependency tree for a short sentence than for a
long sentence. Nevertheless, Proj2 consistently
outperforms Delex and RLAP consistently outper-
forms Proj2 across all the tasks. Moreover, RLAP
achieves the highest test scores in seven out of the
eight cross-lingual tasks among all the compari-
son systems. This again demonstrated the efficacy
of the proposed approach for cross-lingual depen-

dency parsing.

4.4 Impact of Labeled Training Data in
Target Language

We have also conducted experiments for the learn-
ing scenarios where a small set of labeled train-
ing sentences from the target language is available.
Specifically, we conducted experiments with a few
different numbers of additional labeled training
sentences from the target language, {500, 1000,
1500}, using three methods, RLAP, Delex and
Proj2. The comparison results on all the test sen-
tences are reported in Figure 5. We can see that the
performance of all three methods increases very
slow but in a similar trend with more additional la-
beled training instances from the target language.
However, both Proj2 and RLAP outperform Delex
with large margins across all experiments. More-
over, the proposed method, RLAP, produces the
best results across all the eight tasks. The results
again verified the efficacy of the proposed method,
demonstrated that filling the missing feature val-
ues with matrix completion is indeed useful.

5 Conclusion

In this paper, we proposed a novel representation
learning method with annotation projection to ad-
dress cross-lingual dependency parsing. The pro-
posed approach exploits unlabeled parallel sen-
tences and combines cross-lingual annotation pro-
jection and matrix completion-based interlingual
feature learning together to automatically induce
a set of language-independent numerical features.
We used these interlingual features as augmenting
features to train a delexicalized dependency parser
on the labeled sentences in the source language
and tested it in the target language domain. Our
experimental results on eight cross-lingual depen-
dency parsing tasks showed the proposed repre-
sentation learning method outperforms a number
of comparison methods.
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Abstract
Word embeddings — distributed word
representations that can be learned from
unlabelled data — have been shown to
have high utility in many natural language
processing applications. In this paper, we
perform an extrinsic evaluation of four
popular word embedding methods in the
context of four sequence labelling tasks:
part-of-speech tagging, syntactic chunk-
ing, named entity recognition, and multi-
word expression identification. A particu-
lar focus of the paper is analysing the ef-
fects of task-based updating of word rep-
resentations. We show that when using
word embeddings as features, as few as
several hundred training instances are suf-
ficient to achieve competitive results, and
that word embeddings lead to improve-
ments over out-of-vocabulary words and
also out of domain. Perhaps more sur-
prisingly, our results indicate there is little
difference between the different word em-
bedding methods, and that simple Brown
clusters are often competitive with word
embeddings across all tasks we consider.

1 Introduction
Recently, distributed word representations have
grown to become a mainstay of natural language
processing (NLP), and have been shown to have
empirical utility in a myriad of tasks (Collobert
and Weston, 2008; Turian et al., 2010; Baroni et
al., 2014; Andreas and Klein, 2014). The un-
derlying idea behind distributed word representa-
tions is simple: to map each word w in vocabu-
lary V onto a continuous-valued vector of dimen-
sionality d ⌧ |V |. Words that are similar (e.g.,

with respect to syntax or lexical semantics) will
ideally be mapped to similar regions of the vec-
tor space, implicitly supporting both generalisa-
tion across in-vocabulary (IV) items, and counter-
ing the effects of data sparsity for low-frequency
and out-of-vocabulary (OOV) items.

Without some means of automatically deriv-
ing the vector representations without reliance on
labelled data, however, word embeddings would
have little practical utility. Fortunately, it has
been shown that they can be “pre-trained” from
unlabelled text data using various algorithms to
model the distributional hypothesis (i.e., that
words which occur in similar contexts tend to be
semantically similar). Pre-training methods have
been refined considerably in recent years, and
scaled up to increasingly large corpora.

As with other machine learning methods, it is
well known that the quality of the pre-trained word
embeddings depends heavily on factors including
parameter optimisation, the size of the training
data, and the fit with the target application. For
example, Turian et al. (2010) showed that the op-
timal dimensionality for word embeddings is task-
specific. One factor which has received relatively
little attention in NLP is the effect of “updating”
the pre-trained word embeddings as part of the
task-specific training, based on self-taught learn-
ing (Raina et al., 2007). Updating leads to word
representations that are task-specific, but often at
the cost of over-fitting low-frequency and OOV
words.

In this paper, we perform an extensive evalu-
ation of four recently proposed word embedding
approaches under fixed experimental conditions,
applied to four sequence labelling tasks: part-of-
speech (POS) tagging, full-text chunking, named
entity recognition (NER), and multiword expres-
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sion (MWE) identification.1 We build on previous
empirical studies (Collobert et al., 2011; Turian et
al., 2010; Pennington et al., 2014) in considering
a broader range of word embedding approaches
and evaluating them over more sequence labelling
tasks. In addition, we explore the following re-
search questions:
RQ1: are word embeddings better than baseline

approaches of one-hot unigram2 features
and Brown clusters?

RQ2: do word embeddings require less training
data (i.e., generalise better) than one-hot
unigram features? If so, to what degree can
word embeddings reduce the amount of la-
belled data?

RQ3: what is the impact of updating word em-
beddings in sequence labelling tasks, both
empirically over the target task and geo-
metrically over the vectors?

RQ4: what is the impact of these word embed-
dings (with and without updating) on both
OOV items (relative to the training data)
and out-of-domain data?

RQ5: overall, are some word embeddings better
than others in a sequence labelling context?

2 Word Representations

2.1 Types of Word Representations

Turian et al. (2010) identifies three varieties
of word representations: distributional, cluster-
based, and distributed.

Distributional representation methods map
each word w to a context word vector Cw,
which is constructed directly from co-occurrence
counts between w and its context words. The
learning methods either store the co-occurrence
counts between two words w and i directly
in Cwi (Sahlgren, 2006; Turney and Pantel,
2010; Honkela, 1997) or project the concur-
rence counts between words into a lower dimen-
sional space (Řehůřek and Sojka, 2010; Lund and
Burgess, 1996), using dimensionality reduction
techniques such as SVD (Dumais et al., 1988) or
LDA (Blei et al., 2003).

1MWEs are lexicalized combinations of two or more sim-
plex words that are exceptional enough to be considered as
single units in the lexicon (Baldwin and Kim, 2010; Schnei-
der et al., 2014a), e.g., pick up or part of speech.

2Word vectors with one-hot representation are binary vec-
tors with a single dimension per word in the vocabulary (i.e.,
d = |V |), with the single dimension corresponding to the
target word set to 1 and all other dimensions set to 0.

Cluster-based representation methods build
clusters of words by applying either soft or hard
clustering algorithms (Lin and Wu, 2009; Li and
McCallum, 2005). Some of them also rely on
a co-occurrence matrix of words (Pereira et al.,
1993). The Brown clustering algorithm (Brown
et al., 1992) is the best-known method in this cat-
egory.

Distributed representation methods usu-
ally map words into dense, low-dimensional,
continuous-valued vectors, with x 2 Rd, where d
is referred to as the word dimension.

2.2 Selected Word Representations
Over a range of sequence labelling tasks, we eval-
uate four methods for inducing word represen-
tations: Brown clustering (Brown et al., 1992)
(“BROWN”), the continuous bag-of-words model
(“CBOW”) (Mikolov et al., 2013a), the continu-
ous skip-gram model (“SKIP-GRAM”) (Mikolov et
al., 2013b), and Global vectors (“GLOVE”) (Pen-
nington et al., 2014). All have been shown to be
at or near state-of-the-art in recent empirical stud-
ies (Turian et al., 2010; Pennington et al., 2014).3

The training of these word representations is un-
supervised: the common underlying idea is to pre-
dict the occurrence of words in the neighbour-
ing context. Their training objectives share the
same form, which is a sum of local training fac-
tors J(w, ctx(w)),

L =

X

w2T

J(w, ctx(w))

where T is the set of tokens in a given corpus, and
ctx(w) denotes the local context of word w. The
local context of a word is conventionally its pre-
ceding m words, or alternatively the m words sur-
rounding it. Local training factors are designed
to capture the relationship between w and its lo-
cal contexts of use, either by predicting w based
on its local context, or using w to predict the con-
text words. Other than BROWN, which utilises a
cluster-based representation, all the other methods
employ a distributed representation.

The starting point for CBOW and SKIP-GRAM
is to employ softmax to predict word occurrence:

J(w, ctx(w)) = � log

 
exp(v

T
wvctx(w))P

j2V exp(v

T
j vctx(w))

!

3The word embedding approach proposed in Collobert et
al. (2011) is not considered because it was found to be inferior
to our four target word embedding approaches in previous
work.
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where vctx(w) denotes the distributed representa-
tion of the local context of word w, and V is the
vocabulary of a given corpus. CBOW derives
vctx(w) based on averaging over the context words.
That is, it estimates the probability of each w given
its local context. In contrast, SKIP-GRAM applies
softmax to each context word of a given occur-
rence of word w. In this case, vctx(w) corresponds
to the representation of one of its context words.
This model can be characterised as predicting con-
text words based on w. In practice, softmax is
too expensive to compute over large corpora, and
thus Mikolov et al. (2013b) use hierarchical soft-
max and negative sampling to scale up the train-
ing.

GLOVE assumes the dot product of two word
embeddings should be similar to the logarithm of
the co-occurrence count Xij of the two words. As
such, the local factor J(w, ctx(w)) becomes:

g(Xij)(v
T
i vj + bi + bj � log(Xij))

2

where bi and bj are the bias terms of words i and
j, respectively, and g(Xij) is a weighting function
based on the co-occurrence count. This weight-
ing function controls the degree of agreement be-
tween the parametric function v

T
i vj + bi + bj and

log(Xij). Frequently co-occurring word pairs will
have larger weight than infrequent pairs, up to a
threshold.

BROWN partitions words into a finite set of
word classes V . The conditional probability of
seeing the next word is defined to be:

p(wk|wk�1
k�m) = p(wk|hk)p(hk|hk�1

k�m)

where hk denotes the word class of the word
wk, wk�1

k�m are the previous m words, and
hk�1

k�m are their respective word classes. Then
J(w, ctx(w)) = � log p(wk|wk�1

k�m). Since there
is no tractable method to find an optimal parti-
tion of word classes, the method uses only a bi-
gram class model, and utilises hierarchical clus-
tering as an approximation method to find a suffi-
ciently good partition of words.

2.3 Building Word Representations
To ensure the comparison of different word rep-
resentations is fair, we train BROWN, CBOW,
SKIP-GRAM, and GLOVE on a fixed corpus, com-
prised of freely available corpora, as detailed in
Table 1. The joint corpus was preprocessed with

Data set Size Words
UMBC (Han et al., 2013) 48.1GB 3G
One Billion (Chelba et al., 2013) 4.1GB 1G
English Wikipedia 49.6GB 3G

Table 1: Corpora used to pre-train the word em-
beddings

Figure 1: Linear-chain graph transformer

the Stanford CoreNLP sentence splitter and to-
keniser. All consecutive digit substrings were
replaced by NUMf, where f is the length of
the digit substring (e.g., 10.20 is replaced by
NUM2.NUM2.

The dimensionality of the word embeddings
and the size of the context window are the key hy-
perparameters when learning distributed represen-
tations. We use all combinations of the following
values to train word embeddings on the combined
corpus:

• Embedding dim. d 2 {25, 50, 100, 200}

• Context window size m 2 {1, 5, 10}

BROWN requires only the number of clusters
as a hyperparameter. Here, we perform clustering
with b 2 {250, 500, 1000, 2000, 4000} clusters.

3 Sequence Labelling Tasks

We evaluate the different word representations
over four sequence labelling tasks: POS tagging
(POS tagging), full-text chunking (Chunking),
NER (NER), and MWE identification (MWE).
For each task, we fed features into a first-order
linear-chain graph transformer (Collobert et al.,
2011) made up of two layers: the upper layer is
identical to a linear-chain CRF (Lafferty et al.,
2001), and the lower layer consists of word rep-
resentation and hand-crafted features. If we treat
word representations as fixed, the graph trans-
former is a simple linear-chain CRF. On the other
hand, if we can treat the word representations as
model parameters, the model is equivalent to a
neural network with word embeddings as the input
layer, as shown in Figure 1. We trained all models
using AdaGrad (Duchi et al., 2011).

As in Turian et al. (2010), at each word position,
we construct word representation features from
the words in a context window of size two to either
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side of the target word, based on the pre-trained
representation of each word type. For BROWN,
the features are the prefix features extracted from
word clusters in the same way as Turian et al.
(2010). As a baseline (and to test RQ1), we in-
clude a one-hot representation (which is equiva-
lent to a linear-chain CRF with only lexical con-
text features).

Our hand-crafted features for POS tagging,
Chunking and MWE, are those used by Collobert
et al. (2011), Turian et al. (2010) and Schneider
et al. (2014b), respectively. For NER, we use the
same feature space as Turian et al. (2010), except
for the previous two predictions, because we want
to evaluate all word representations with the same
type of model — a first-order graph transformer.

In training the distributed word representations,
we consider two settings: (1) the word represen-
tations are fixed during sequence model training;
and (2) the graph transformer updated the token-
level word representations during training.

As outlined in Table 2, for each sequence la-
belling task, we experiment over the de facto cor-
pus, based on pre-existing training–dev–test splits
where available:4

POS tagging: the Wall Street Journal portion
of the Penn Treebank (Marcus et al. (1993):
“WSJ”) with Penn POS tags

Chunking: the Wall Street Journal portion of the
Penn Treebank (“WSJ”), converted into IOB-
style full-text chunks using the CoNLL con-
version scripts for training and dev, and the
WSJ-derived CoNLL-2000 full text chunk-
ing test data for testing (Tjong Kim Sang and
Buchholz, 2000)

NER: the English portion of the CoNLL-2003
English Named Entity Recognition data set,
for which the source data was taken from
Reuters newswire articles (Tjong Kim Sang
and De Meulder (2003): “Reuters”)

MWE: the MWE dataset of Schneider et al.
(2014b), over a portion of text from the En-
glish Web Treebank5 (“EWT”)

For all tasks other than MWE,6 we additionally
have an out-of-domain test set, in order to eval-
uate the out-of-domain robustness of the different

4For the MWE dataset, no such split pre-existed, so we
constructed our own.

5https://catalog.ldc.upenn.edu/
LDC2012T13

6Unfortunately, there is no second domain which has been
hand-tagged with MWEs using the method of Schneider et al.
(2014b) to use as an out-of-domain test corpus.

word representations, with and without updating.
These datasets are as follows:
POS tagging: the English Web Treebank with

Penn POS tags (“EWT”)
Chunking: the Brown Corpus portion of the

Penn Treebank (“Brown”), converted into
IOB-style full-text chunks using the CoNLL
conversion scripts

NER: the MUC-7 named entity recognition cor-
pus7 (“MUC7”)

For reproducibility, we tuned the hyperparam-
eters with random search over the development
data for each task (Bergstra and Bengio, 2012).
In this, we randomly sampled 50 distinct hyper-
parameter sets with the same random seed for the
non-updating models (i.e., the models that don’t
update the word representation), and sampled 100
distinct hyperparameter sets for the updating mod-
els (i.e., the models that do). For each set of hy-
perparameters and task, we train a model over its
training set and choose the best one based on its
performance on development data (Turian et al.,
2010). We also tune the word representation hy-
perparameters — namely, the word vector size d
and context window size m (distributed represen-
tations), and in the case of Brown, the number of
clusters.

For the updating models, we found that the re-
sults over the test data were always inferior to
those that do not update the word representations,
due to the higher number of hyperparameters and
small sample size (i.e., 100). Since the two-layer
model of the graph transformer contains a distinct
set of hyperparameters for each layer, we reuse the
best-performing hyperparameter settings from the
non-updating models, and only tune the hyperpa-
rameters of AdaGrad for the word representation
layer. This method requires only 32 additional
runs and achieves consistently better results than
100 random draws.

In order to test the impact of the volume of
training data on the different models (RQ2), we
split the training set into 10 partitions based on
a base-2 log scale (i.e., the second smallest par-
tition will be twice the size of the smallest parti-
tion), and created 10 successively larger training
sets by merging these partitions from the smallest
one to the largest one, and used each of these to
train a model. From these, we construct learning

7https://catalog.ldc.upenn.edu/
LDC2001T02
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Training Development In-domain Test Out-of-domain Test
POS tagging WSJ Sec. 0-18 WSJ Sec. 19–21 WSJ Sec. 22–24 EWT

Chunking WSJ WSJ (1K sentences) WSJ (CoNLL-00 test) Brown
NER Reuters (CoNLL-03 train) Reuters (CoNLL-03 dev) Reuters (CoNLL-03 test) MUC7
MWE EWT (500 docs) EWT (100 docs) EWT (123 docs) —

Table 2: Training, development and test (in- and out-of-domain) data for each sequence labelling task.

curves over each task.
For ease of comparison with previous results,

we evaluate both in- and out-of-domain using
chunk/entity/expression-level F1-measure (“F1”)
for all tasks except POS tagging, for which we
use token-level accuracy (“ACC”). To test perfor-
mance over OOV (unknown) tokens — i.e., the
words that do not occur in the training set — we
use token-level accuracy for all tasks (e.g., for
Chunking, we evaluate whether the full IOB tag
is correct or not), because chunks/NEs/MWEs can
consist of a mixture of in-vocabulary and OOV to-
kens, which makes the use of chunk-based evalu-
ation measures inappropriate.

4 Experimental Results and Discussion

We structure our evaluation by stepping through
each of our five research questions (RQ1–5) from
the start of the paper. In this, we make reference
to: (1) the best-performing method both in- and
out-of-domain vs. the state-of-the-art (Table 3);
(2) a heat map for each task indicating the con-
vergence rate for each word representation, with
and without updating (Figure 2); (3) OOV accu-
racy both in-domain and out-of-domain for each
task (Figure 3); and (4) visualisation of the impact
of updating on word embeddings, based on t-SNE
(Figure 4).

RQ1: Are the selected word embeddings better
than one-hot unigram features and Brown clus-
ters? As shown in Table 3, the best-performing
method for every task except in-domain Chunk-
ing is a word embedding method, although the
precise method varies greatly. Figure 2, on the
other hand, tells a more subtle story: the difference
between UNIGRAM and the other word represen-
tations is relatively modest, esp. as the amount of
training data increases. Additionally, the differ-
ence between BROWN and the word embedding
methods is modest across all tasks. So, the over-
all answer would appear to be: yes, word embed-
dings are better than unigrams when there is little
training data, but they are not markedly better than
Brown clusters.

RQ2: Do word embedding features require
less training data? Figure 2 shows that for
POS tagging and NER, with only several hun-
dred training instances, word embedding fea-
tures achieve superior results to UNIGRAM. For
example, when trained with 561 instances, the
POS tagging model using SKIP-GRAM+UP em-
beddings is 5.3% above UNIGRAM; and when
trained with 932 instances, the NER model us-
ing SKIP-GRAM is 11.7% above UNIGRAM. Sim-
ilar improvements are also found for other types
of word embeddings and BROWN, when the train-
ing set is small. However, all word representa-
tions perform similarly for Chunking regardless
of training data size. For MWE, BROWN performs
slightly better than the other methods when trained
with approximately 25% of the training instances.
Therefore, we conjecture that the POS tagging
and NER tasks benefit more from distributional
similarity than Chunking and MWE.

RQ3: Does task-specific updating improve all
word embeddings across all tasks? Based on
Figure 2, updating of word representations can
equally correct poorly-learned word representa-
tions, and harm pre-trained representations, due to
overfitting. For example, GLOVE performs sub-
stantially worse than SKIP-GRAM for both POS
tagging and NER without updating, but with up-
dating, the relative empirical gap between the best
performing method becomes smaller. In contrast,
SKIP-GRAM performs worse over the test data
with updating, despite the results on the develop-
ment set improving by 1%.

To further investigate the effects of updating,
we sampled 60 words and plotted the changes in
their word embeddings under updating, using 2-
d vector fields generated using matplotlib and t-
SNE (van der Maaten and Hinton, 2008). Half
of the words were chosen manually to include
known word clusters such as days of the week and
names of countries; the other half were selected
randomly. Additional plots with 100 randomly-
sampled words and the top-100 most frequent
words, for all the methods and all the tasks, can
be found in the supplementary material and at
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Task Benchmark In-domain Test set Out-of-domain Test set
POS tagging (ACC) 0.972 (Toutanova et al., 2003) 0.959 (SKIP-GRAM+UP) 0.910 (SKIP-GRAM)
Chunking (F1) 0.942 (Sha and Pereira, 2003) 0.938 (BROWNb=2000) 0.676 (GLOVE)
NER (F1) 0.893 (Ando and Zhang, 2005) 0.868 (SKIP-GRAM) 0.736 (SKIP-GRAM)
MWE (F1) 0.625 (Schneider et al., 2014a) 0.654 (CBOW+UP) —

Table 3: State-of-the-art results vs. our best results for in-domain and out-of-domain test sets.

(a) POS tagging (ACC) (b) Chunking (F1)

(c) NER (F1) (d) MWE (F1)
Figure 2: Results for each type of word representation over POS tagging, Chunking, NER and MWE,
optionally with updating (“+UP”). The y-axis indicates the training data sizes (on a log scale). Green
= high performance, and red = low performance, based on a linear scale of the best- to worst-result for
each task.

https://goo.gl/Y8bk2w. In each plot, a
single arrow signifies one word, pointing from the
position of the original word embedding to the up-
dated representation.

In Figure 4, we show vector fields plots for
Chunking and NER using SKIP-GRAM embed-
dings. For Chunking, most of the vectors were
changed with similar magnitude, but in very dif-
ferent directions, including within the clusters of
days of the week and country names. In contrast,
for NER, there was more homogeneous change in
word vectors belonging to the same cluster. This
greater consistency is further evidence that seman-
tic homogeneity appears to be more beneficial for

NER than Chunking.

RQ4: What is the impact of word embeddings
cross-domain and for OOV words? As shown
in Table 3, results predictably drop when we eval-
uate out of domain. The difference is most pro-
nounced for Chunking, where there is an absolute
drop in F1 of around 30% for all methods, indi-
cating that word embeddings and unigram features
provide similar information for Chunking.

Another interesting observation is that updating
often hurts out-of-domain performance because
the distribution between domains is different. This
suggests that, if the objective is to optimise per-
formance across domains, it is best not to perform
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Figure 3: ACC over out-of-vocabulary (OOV) words for in-domain and out-of-domain test sets.

(a) Chunking (b) NER
Figure 4: A t-SNE plot of the impact of updating on SKIP-GRAM

updating.

We also analyze performance on OOV words
both in-domain and out-of-domain in Figure 3.

As expected, word embeddings and BROWN excel
in out-of-domain OOV performance. Consistent
with our overall observations about cross-domain
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generalisation, the OOV results are better when
updating is not performed.

RQ5 Overall, are some word embeddings bet-
ter than others? Comparing the different word
embedding techniques over our four sequence la-
belling tasks, for the different evaluations (overall,
out-of-domain and OOV), there is no clear winner
among the word embeddings — for POS tagging,
SKIP-GRAM appears to have a slight advantage,
but this does not generalise to other tasks.

While the aim of this paper was not to achieve
the state of the art over the respective tasks, it is
important to concede that our best (in-domain) re-
sults for NER, POS tagging and Chunking are
slightly worse than the state of the art (Table 3).
The 2.7% difference between our NER system
and the best performing system is due to the fact
that we use a first-order instead of a second-order
CRF (Ando and Zhang, 2005), and for the other
tasks, there are similarly differences in the learner
and the complexity of the features used. Another
difference is that we tuned the hyperparameters
with random search, to enable replication using
the same random seed. In contrast, the hyperpa-
rameters for the state-of-the-art methods are tuned
more extensively by experts, making them more
difficult to reproduce.

5 Related Work

Collobert et al. (2011) proposed a unified neural
network framework that learns word embeddings
and applied it to POS tagging, Chunking, NER
and semantic role labelling. When they combined
word embeddings with hand-crafted features (e.g.,
word suffixes for POS tagging; gazetteers for
NER) and applied other tricks like cascading and
classifier combination, they achieved state-of-the-
art performance. Similarly, Turian et al. (2010)
evaluated three different word representations on
NER and Chunking, and concluded that unsu-
pervised word representations improved NER and
Chunking. They also found that combining dif-
ferent word representations can further improve
performance. Guo et al. (2014) also explored dif-
ferent ways of using word embeddings for NER.
Owoputi et al. (2013) and Schneider et al. (2014a)
found that BROWN clustering enhances Twitter
POS tagging and MWE, respectively. Compared
to previous work, we consider more word rep-
resentations including the most recent work and
evaluate them on more sequence labelling tasks,

wherein the models are trained with training sets
of varying size.

Bansal et al. (2014) reported that direct use of
word embeddings in dependency parsing did not
show improvement. They achieved an improve-
ment only when they performed hierarchical clus-
tering of the word embeddings, and used features
extracted from the cluster hierarchy. In a simi-
lar vein, Andreas and Klein (2014) explored the
use of word embeddings for constituency pars-
ing and concluded that the information contained
in word embeddings might duplicate the one ac-
quired by a syntactic parser, unless the training set
is extremely small. Other syntactic parsing studies
that reported improvements by using word embed-
dings include Koo et al. (2008), Koo et al. (2010),
Haffari et al. (2011), Tratz and Hovy (2011) and
Chen and Manning (2014).

Word embeddings have also been applied to
other (non-sequential NLP) tasks like grammar in-
duction (Spitkovsky et al., 2011), and semantic
tasks such as semantic relatedness, synonymy de-
tection, concept categorisation, selectional prefer-
ence learning and analogy (Baroni et al., 2014;
Levy and Goldberg, 2014; Levy et al., 2015).

Huang and Yates (2009) demonstrated that us-
ing distributional word representations methods
(like TF-IDF and LSA) as features, improves the
labelling of OOV, when test for POS tagging and
Chunking. In our study, we evaluate the labelling
performance of OOV words for updated vs. non-
updated word embedding representations, relative
to the training set and with out-of-domain data.

6 Conclusions

We have performed an extensive extrinsic evalua-
tion of four word embedding methods under fixed
experimental conditions, and evaluated their ap-
plicability to four sequence labelling tasks: POS
tagging, Chunking, NER and MWE identifica-
tion. We found that word embedding features re-
liably outperformed unigram features, especially
with limited training data, but that there was rela-
tively little difference over Brown clusters, and no
one embedding method was consistently superior
across the different tasks and settings. Word em-
beddings and Brown clusters were also found to
improve out-of-domain performance and for OOV
words. We expected a performance gap between
the fixed and task-updated embeddings, but the ob-
served difference was marginal. Indeed, we found
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that updating can result in overfitting. We also car-
ried out preliminary analysis of the impact of up-
dating on the vectors, a direction which we intend
to pursue further.
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Abstract

This work examines the impact of cross-
linguistic transfer on grammatical errors in
English as Second Language (ESL) texts.
Using a computational framework that for-
malizes the theory of Contrastive Analy-
sis (CA), we demonstrate that language
specific error distributions in ESL writ-
ing can be predicted from the typologi-
cal properties of the native language and
their relation to the typology of English.
Our typology driven model enables to ob-
tain accurate estimates of such distribu-
tions without access to any ESL data for
the target languages. Furthermore, we
present a strategy for adjusting our method
to low-resource languages that lack typo-
logical documentation using a bootstrap-
ping approach which approximates native
language typology from ESL texts. Fi-
nally, we show that our framework is in-
strumental for linguistic inquiry seeking
to identify first language factors that con-
tribute to a wide range of difficulties in
second language acquisition.

1 Introduction

The study of cross-linguistic transfer, whereby
properties of a native language influence perfor-
mance in a foreign language, has a long tradi-
tion in Linguistics and Second Language Acqui-
sition (SLA). Much of the linguistic work on this
topic was carried out within the framework of
Contrastive Analysis (CA), a theoretical approach
that aims to explain difficulties in second language
learning in terms of the relations between struc-
tures in the native and foreign languages.

The basic hypothesis of CA was formulated by
Lado (1957), who suggested that “we can predict
and describe the patterns that will cause difficulty

in learning, and those that will not cause difficulty,
by comparing systematically the language and cul-
ture to be learned with the native language and
culture of the student”. In particular, Lado pos-
tulated that divergences between the native and
foreign languages will negatively affect learning
and lead to increased error rates in the foreign lan-
guage. This and subsequent hypotheses were soon
met with criticism, targeting their lack of ability to
provide reliable predictions, leading to an ongoing
debate on the extent to which foreign language er-
rors can be explained and predicted by examining
native language structure.

Differently from the SLA tradition, which em-
phasizes manual analysis of error case studies
(Odlin, 1989), we address the heart of this contro-
versy from a computational data-driven perspec-
tive, focusing on the issue of predictive power. We
provide a formalization of the CA framework, and
demonstrate that the relative frequency of gram-
matical errors in ESL can be reliably predicted
from the typological properties of the native lan-
guage and their relation to the typology of English
using a regression model.

Tested on 14 languages in a leave-one-out fash-
ion, our model achieves a Mean Average Error
(MAE) reduction of 21.8% in predicting the lan-
guage specific relative frequency of the 20 most
common ESL structural error types, as compared
to the relative frequency of each of the error types
in the training data, yielding improvements across
all the languages and the large majority of the er-
ror types. Our regression model also outperforms
a stronger, nearest neighbor based baseline, that
projects the error distribution of a target language
from its typologically closest language.

While our method presupposes the existence of
typological annotations for the test languages, we
also demonstrate its viability in low-resource sce-
narios for which such annotations are not avail-
able. To address this setup, we present a bootstrap-
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ping framework in which the typological features
required for prediction of grammatical errors are
approximated from automatically extracted ESL
morpho-syntactic features using the method of
(Berzak et al., 2014). Despite the noise intro-
duced in this process, our bootstrapping strategy
achieves an error reduction of 13.9% compared to
the average frequency baseline.

Finally, the utilization of typological features as
predictors, enables to shed light on linguistic fac-
tors that could give rise to different error types
in ESL. For example, in accordance with com-
mon linguistic knowledge, feature analysis of the
model suggests that the main contributor to in-
creased rates of determiner omission in ESL is the
lack of determiners in the native language. A more
complex case of missing pronouns is intriguingly
tied by the model to native language subject pro-
noun marking on verbs.

To summarize, the main contribution of this
work is a CA inspired computational framework
for learning language specific grammatical error
distributions in ESL. Our approach is both predic-
tive and explanatory. It enables us to obtain im-
proved estimates for language specific error distri-
butions without access to ESL error annotations
for the target language. Coupling grammatical
errors with typological information also provides
meaningful explanations to some of the linguistic
factors that drive the observed error rates.

The paper is structured as follows. Section 2
surveys related linguistic and computational work
on cross-linguistic transfer. Section 3 describes
the ESL corpus and the typological data used in
this study. In section 4 we motivate our native lan-
guage oriented approach by providing a variance
analysis for ESL errors across native languages.
Section 5 presents the regression model for pre-
diction of ESL error distributions. The bootstrap-
ping framework which utilizes automatically in-
ferred typological features is described in section
6. Finally, we present the conclusion and direc-
tions for future work in section 7.

2 Related Work

Cross linguistic-transfer was extensively studied
in SLA, Linguistics and Psychology (Odlin, 1989;
Gass and Selinker, 1992; Jarvis and Pavlenko,
2007). Within this area of research, our work is
most closely related to the Contrastive Analysis
(CA) framework. Rooted in the comparative lin-

guistics tradition, CA was first suggested by Fries
(1945) and formalized by Lado (1957). In essence,
CA examines foreign language performance, with
a particular focus on learner difficulties, in light
of a structural comparison between the native and
the foreign languages. From its inception, CA was
criticized for the lack of a solid predictive theory
(Wardhaugh, 1970; Whitman and Jackson, 1972),
leading to an ongoing scientific debate on the rele-
vance of comparison based approaches. Important
to our study is that the type of evidence used in
this debate typically relies on small scale manual
case study analysis. Our work seeks to reexamine
the issue of predictive power of CA based methods
using a computational, data-driven approach.

Computational work touching on cross-
linguistic transfer was mainly conducted in
relation to the Native Language Identification
(NLI) task, in which the goal is to determine the
native language of the author of an ESL text.
Much of this work focuses on experimentation
with different feature sets (Tetreault et al., 2013),
including features derived from the CA frame-
work (Wong and Dras, 2009). A related line of
inquiry which is closer to our work deals with the
identification of ESL syntactic patterns that are
specific to speakers of different native languages
(Swanson and Charniak, 2013; Swanson and
Charniak, 2014). Our approach differs from this
research direction by focusing on grammatical
errors, and emphasizing prediction of language
specific patterns rather than their identification.

Previous work on grammatical error correction
that examined determiner and preposition errors
(Rozovskaya and Roth, 2011; Rozovskaya and
Roth, 2014) incorporated native language specific
priors in models that are otherwise trained on stan-
dard English text. Our work extends the native
language tailored treatment of grammatical errors
to a much larger set of error types. More impor-
tantly, this approach is limited by the availabil-
ity of manual error annotations for the target lan-
guage in order to obtain the required error counts.
Our framework enables to bypass this annotation
bottleneck by predicting language specific priors
from typological information.

The current investigation is most closely re-
lated to studies that demonstrate that ESL sig-
nal can be used to infer pairwise similarities be-
tween native languages (Nagata and Whittaker,
2013; Berzak et al., 2014) and in particular, tie
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the similarities to the typological characteristics of
these languages (Berzak et al., 2014). Our work
inverts the direction of this analysis by starting
with typological features, and utilizing them to
predict error patterns in ESL. We also show that
the two approaches can be combined in a boot-
strapping strategy by first inferring typological
properties from automatically extracted morpho-
syntactic ESL features, and in turn, using these
properties for prediction of language specific error
distributions in ESL.

3 Data

3.1 ESL Corpus
We obtain ESL essays from the Cambridge First
Certificate in English (FCE) learner corpus (Yan-
nakoudakis et al., 2011), a publicly available sub-
set of the Cambridge Learner Corpus (CLC)1. The
corpus contains upper-intermediate level essays
by native speakers of 16 languages2. Discarding
Swedish and Dutch, which have only 16 docu-
ments combined, we take into consideration the
remaining following 14 languages, with the cor-
responding number of documents in parenthesis:
Catalan (64), Chinese (66), French (146), Ger-
man (69), Greek (74), Italian (76), Japanese (82),
Korean (86), Polish (76), Portuguese (68), Rus-
sian (83), Spanish (200), Thai (63) and Turkish
(75). The resulting dataset contains 1228 docu-
ments with an average of 379 words per document.

The FCE corpus has an elaborate error anno-
tation scheme (Nicholls, 2003) and high quality
of error annotations, making it particularly suit-
able for our investigation. The annotation scheme
encompasses 75 different error types, covering a
wide range of grammatical errors on different lev-
els of granularity. As the typological features used
in this work refer mainly to structural properties,
we filter out spelling errors, punctuation errors and
open class semantic errors, remaining with a list of
grammatical errors that are typically related to lan-
guage structure. We focus on the 20 most frequent
error types3 in this list, which are presented and

1http://www.cambridge.org/gb/elt/
catalogue/subject/custom/item3646603

2We plan to extend our analysis to additional proficiency
levels and languages when error annotated data for these
learner profiles will be publicly available.

3Filtered errors that would have otherwise appeared in the
top 20 list, with their respective rank in brackets: Spelling (1),
Replace Punctuation (2), Replace Verb (3), Missing Punctu-
ation (7), Replace (8), Replace Noun (9) Unnecessary Punc-
tuation (13), Replace Adjective (18), Replace Adverb (20).

exemplified in table 1. In addition to concentrat-
ing on the most important structural ESL errors,
this cutoff prevents us from being affected by data
sparsity issues associated with less frequent errors.

3.2 Typological Database
We use the World Atlas of Language Structures
(WALS; Dryer and Haspelmath, 2013), a repos-
itory of typological features of the world’s lan-
guages, as our source of linguistic knowledge
about the native languages of the ESL corpus au-
thors. The features in WALS are divided into
11 categories: Phonology, Morphology, Nominal
Categories, Nominal Syntax, Verbal Categories,
Word Order, Simple Clauses, Complex Sentences,
Lexicon, Sign Languages and Other. Table 2
presents examples of WALS features belonging to
different categories. The features can be associ-
ated with different variable types, including bi-
nary, categorical and ordinal, making their encod-
ing a challenging task. Our strategy for addressing
this issue is feature binarization (see section 5.3).

An important challenge introduced by the
WALS database is incomplete documentation.
Previous studies (Daumé III, 2009; Georgi et
al., 2010) have estimated that only 14% of all
the language-feature combinations in the database
have documented values. While this issue is most
acute for low-resource languages, even the well
studied languages in our ESL dataset are lacking a
significant portion of the feature values, inevitably
hindering the effectiveness of our approach.

We perform several preprocessing steps in or-
der to select the features that will be used in this
study. First, as our focus is on structural fea-
tures that can be expressed in written form, we
discard all the features associated with the cate-
gories Phonology, Lexicon4, Sign Languages and
Other. We further discard 24 features which either
have a documented value for only one language,
or have the same value in all the languages. The
resulting feature-set contains 119 features, with an
average of 2.9 values per feature, and 92.6 docu-
mented features per language.

4 Variance Analysis of Grammatical
Errors in ESL

To motivate a native language based treatment of
grammatical error distributions in ESL, we begin

4The discarded Lexicon features refer to properties such
as the number of words in the language that denote colors,
and identity of word pairs such as “hand” and “arm”.
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Rank Code Name Example Count KW MW
1 TV Verb Tense I hope I give have given you enough details 3324 ** 34
2 RT Replace Preposition on in July 3311 ** 31
3 MD Missing Determiner I went for the interview 2967 ** 57
4 FV Wrong Verb Form had time to played play 1789 ** 21
5 W Word Order Probably our homes will probably be 1534 ** 34
6 MT Missing Preposition explain to you 1435 ** 22
7 UD Unnecessary Determiner a course at the Cornell University 1321
8 UT Unnecessary Preposition we need it on each minute 1079
9 MA Missing Pronoun because it is the best conference 984 ** 33
10 AGV Verb Agreement the teachers was were very experienced 916 ** 21
11 FN Wrong Form Noun because of my study studies 884 ** 24
12 RA Replace Pronoun she just met Sally, which who 847 ** 17
13 AGN Noun Agreement two month months ago 816 ** 24
14 RD Replace Determiner of a the last few years 676 ** 35
15 DJ Wrongly Derived Adjective The mother was pride proud 608 * 8
16 DN Wrongly Derived Noun working place workplace 536
17 DY Wrongly Derived Adverb Especial Especially 414 ** 14
18 UA Unnecessary Pronoun feel ourselves comfortable 391 * 9
19 MC Missing Conjunction reading, and playing piano at home 346 * 11
20 RC Replace Conjunction not just the car, and but also the train 226

Table 1: The 20 most frequent error types in the FCE corpus that are related to language structure. In
the Example column, words marked in italics are corrections for the words marked in bold. The Count
column lists the overall count of each error type in the corpus. The KW column depicts the result of
the Kruskal-Wallis test whose null hypothesis is that the relative error frequencies for different native
languages are drawn from the same distribution. Error types for which this hypothesis is rejected with
p < 0.01 are denoted with ‘*’. Error types with p < 0.001 are marked with ‘**’. The MW column
denotes the number of language pairs (out of the total 91 pairs) which pass the post-hoc Mann-Whitney
test with p < 0.01.

ID Category Name Values
23A Morphology Locus of No case marking,

Marking Core cases only,
in the Core and non-core,
Clause No syncretism

67A Verbal The Future Inflectional future,
Categories Tense No inflectional

future.
30A Nominal Number of None, Two, Three,

Categories Genders Four, Five or more.
87A Word Order Order of AN, NA, No

Adjective dominant order,
and Noun Only internally

headed relative
clauses.

Table 2: Examples of WALS features.

by examining whether there is a statistically sig-
nificant difference in ESL error rates based on the
native language of the learners. This analysis pro-
vides empirical justification for our approach, and
to the best of our knowledge was not conducted in
previous studies.

To this end, we perform a Kruskal-Wallis (KW)
test (Kruskal and Wallis, 1952) for each error

type5. We treat the relative error frequency per
word in each document as a sample6 (i.e. the rel-
ative frequencies of all the error types in a docu-
ment sum to 1). The samples are associated with
14 groups, according to the native language of the
document’s author. For each error type, the null
hypothesis of the test is that error fraction sam-
ples of all the native languages are drawn from the
same underlying distribution. In other words, re-
jection of the null hypothesis implies a significant
difference between the relative error frequencies
of at least one language pair.

As shown in table 1, we can reject the null hy-
pothesis for 16 of the 20 grammatical error types
with p < 0.01, where Unnecessary Determiner,
Unnecessary Preposition, Wrongly Derived Noun,
and Replace Conjunction are the error types that
do not exhibit dependence on the native language.

5We chose the non-parametric KW rank-based test over
ANOVA, as according to the Shapiro-Wilk (1965) and Lev-
ene (1960) tests, the assumptions of normality and homo-
geneity of variance do not hold for our data. In practice, the
ANOVA test yields similar results to those of the KW test.

6We also performed the KW test on the absolute error fre-
quencies (i.e. raw counts) per word, obtaining similar results
to the ones reported here on the relative frequencies per word.
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Furthermore, the null hypothesis can be rejected
for 13 error types with p < 0.001. These results
suggest that the relative error rates of the major-
ity of the common structural grammatical errors
in our corpus indeed differ between native speak-
ers of different languages.

We further extend our analysis by perform-
ing pairwise post-hoc Mann-Whitney (MW) tests
(Mann and Whitney, 1947) in order to determine
the number of language pairs that significantly dif-
fer with respect to their native speakers’ error frac-
tions in ESL. Table 1 presents the number of lan-
guage pairs that pass this test with p < 0.01 for
each error type. This inspection suggests Miss-
ing Determiner as the error type with the strongest
dependence on the author’s native language, fol-
lowed by Replace Determiner, Verb Tense, Word
Order, Missing Pronoun and Replace Preposition.

5 Predicting Language Specific Error
Distributions in ESL

5.1 Task Definition
Given a language l 2 L, our task is to predict for
this language the relative error frequency yl,e of
each error type e 2 E, where L is the set of all na-
tive languages, E is the set of grammatical errors,
and

P
e yl,e = 1.

5.2 Model
In order to predict the error distribution of a native
language, we train regression models on individ-
ual error types:

ŷ0l,e = ✓l,e · f(tl, teng) (1)

In this equation ŷ0l,e is the predicted relative fre-
quency of an error of type e for ESL documents
authored by native speakers of language l, and
f(tl, teng) is a feature vector derived from the ty-
pological features of the native language tl and the
typological features of English teng.

The model parameters ✓l,e are obtained using
Ordinary Least Squares (OLS) on the training data
D, which consists of typological feature vectors
paired with relative error frequencies of the re-
maining 13 languages:

D = {(f(tl0 , teng), ye,l0)|l0 2 L, l0 6= l} (2)

To guarantee that the individual relative error fre-
quency estimates sum to 1 for each language, we

renormalize them to obtain the final predictions:

ŷl,e =

ŷ0l,eP
e ŷ0l,e

(3)

5.3 Features
Our feature set can be divided into two subsets.
The first subset, used in a version of our model
called Reg, contains the typological features of the
native language. In a second version of our model,
called RegCA, we also utilize additional features
that explicitly encode differences between the ty-
pological features of the native language, and the
and the typological features of English.

5.3.1 Typological Features
In the Reg model, we use the typological fea-
tures of the native language that are documented
in WALS. As mentioned in section 3.2, WALS
features belong to different variable types, and are
hence challenging to encode. We address this is-
sue by binarizing all the features. Given k possible
values vk for a given WALS feature ti, we generate
k binary typological features of the form:

fi,k(tl, teng) =

(
1 if tl,i = vk

0 otherwise
(4)

When a WALS feature of a given language does
not have a documented value, all k entries of the
feature for that language are assigned the value of
0. This process transforms the original 119 WALS
features into 340 binary features.

5.3.2 Divergences from English
In the spirit of CA, in the model RegCA, we also
utilize features that explicitly encode differences
between the typological features of the native lan-
guage and those of English. These features are
also binary, and take the value 1 when the value of
a WALS feature in the native language is different
from the corresponding value in English:

fi(tl, teng) =

(
1 if tl,i 6= teng,i

0 otherwise
(5)

We encode 104 such features, in accordance with
the typological features of English available in
WALS. The features are activated only when a ty-
pological feature of English has a corresponding
documented feature in the native language. The
addition of these divergence features brings the to-
tal number of features in our feature set to 444.
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5.4 Results
We evaluate the model predictions using two met-
rics. The first metric, Absolute Error, measures the
distance between the predicted and the true rela-
tive frequency of each grammatical error type7:

Absolute Error = |ŷl,e � yl,e| (6)

When averaged across different predictions we re-
fer to this metric as Mean Absolute Error (MAE).

The second evaluation score is the Kullback-
Leibler divergence DKL, a standard measure for
evaluating the difference between two distribu-
tions. This metric is used to evaluate the pre-
dicted grammatical error distribution of a native
language:

DKL(yl||ŷl) =

X

e

yl,e ln

yl,e

ŷl,e
(7)

Base NN Reg RegCA
MAE 1.28 1.11 1.02 1.0
Error Reduction - 13.3 20.4 21.8
#Languages - 9/14 12/14 14/14
#Mistakes - 11/20 15/20 14/20
AVG D

KL

0.052 0.046 0.033 0.032
#Languages - 10/14 14/14 14/14

Table 3: Results for prediction of relative error fre-
quencies using the MAE metric across languages
and error types, and the DKL metric averaged
across languages. #Languages and #Mistakes de-
note the number of languages and grammatical er-
ror types on which a model outperforms Base.

Table 3 summarizes the grammatical error pre-
diction results8. The baseline model Base sets the
relative frequencies of the grammatical errors of a
test language to the respective relative error fre-
quencies in the training data. We also consider
a stronger, language specific model called Near-
est Neighbor (NN), which projects the error distri-
bution of a target language from the typologically
closest language in the training set, according to
the cosine similarity measure. This baseline pro-
vides a performance improvement for the majority

7For clarity of presentation, all the reported results on this
metric are multiplied by 100.

8As described in section 5.2, we report the performance
of regression models trained and evaluated on relative error
frequencies obtained by normalizing the rates of the different
error types. We also experimented with training and evaluat-
ing the models on absolute error counts per word, obtaining
results that are similar to those reported here.

of the languages and error types, with an average
error reduction of 13.3% on the MAE metric com-
pared to Base, and improving from 0.052 to 0.046
on the KL divergence metric, thus emphasizing the
general advantage of a native language adapted ap-
proach to ESL error prediction.

Our regression model introduces further sub-
stantial performance improvements. The Reg
model, which uses the typological features of the
native language for predicting ESL relative er-
ror frequencies, achieves 20.4% MAE reduction
over the Base model. The RegCA version of
the regression model, which also incorporates dif-
ferences between the typological features of the
native language and English, surpasses the Reg
model, reaching an average error reduction of
21.8% from the Base model, with improvements
across all the languages and the majority of the
error types. Strong performance improvements
are also obtained on the KL divergence measure,
where the RegCA model scores 0.032, compared
to the baseline score of 0.052.

To illustrate the outcome of our approach, con-
sider the example in table 4, which compares the
top 10 predicted errors for Japanese using the Base
and RegCA models. In this example, RegCA cor-
rectly places Missing Determiner as the most com-
mon error in Japanese, with a significantly higher
relative frequency than in the training data. Sim-
ilarly, it provides an accurate prediction for the
Missing Preposition error, whose frequency and
rank are underestimated by the Base model. Fur-
thermore, RegCA correctly predicts the frequency
of Replace Preposition and Word Order to be
lower than the average in the training data.

5.5 Feature Analysis

An important advantage of our typology-based ap-
proach are the clear semantics of the features,
which facilitate the interpretation of the model. In-
spection of the model parameters allows us to gain
insight into the typological features that are poten-
tially involved in causing different types of ESL
errors. Although such inspection is unlikely to
provide a comprehensive coverage of all the rel-
evant causes for the observed learner difficulties,
it can serve as a valuable starting point for ex-
ploratory linguistic analysis and formulation of a
cross-linguistic transfer theory.

Table 5 lists the most salient typological fea-
tures, as determined by the feature weights aver-
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Rank Base Frac. RegCA Frac. True Frac.
1 Replace Preposition 0.14 Missing Determiner 0.18 Missing Determiner 0.20
2 Tense Verb 0.14 Tense Verb 0.12 Tense Verb 0.12
3 Missing Determiner 0.12 Replace Preposition 0.12 Replace Preposition 0.10
4 Wrong Verb Form 0.07 Missing Preposition 0.08 Missing Preposition 0.08
5 Word Order 0.06 Unnecessary Determiner 0.06 Unnecessary Preposition 0.06
6 Missing Preposition 0.06 Wrong Verb Form 0.05 Unnecessary Determiner 0.05
7 Unnecessary Determiner 0.06 Unnecessary Preposition 0.05 Replace Determiner 0.05
8 Unnecessary Preposition 0.04 Wrong Noun Form 0.05 Wrong Verb Form 0.05
9 Missing Pronoun 0.04 Word Order 0.05 Word Order 0.04
10 Wrong Noun Form 0.04 Verb Agreement 0.04 Wrong Noun Form 0.06

Table 4: Comparison between the fractions and ranks of the top 10 predicted error types by the Base
and RegCA models for Japanese. As opposed to the Base method, the RegCA model correctly predicts
Missing Determiner to be the most frequent error committed by native speakers of Japanese. It also
correctly predicts Missing Preposition to be more frequent and Replace Preposition and Word Order to
be less frequent than in the training data.

aged across the models of different languages, for
the error types Missing Determiner and Missing
Pronoun. In the case of determiners, the model
identifies the lack of definite and indefinite arti-
cles in the native language as the strongest factors
related to increased rates of determiner omission.
Conversely, features that imply the presence of an
article system in the native language, such as ‘In-
definite word same as one’ and ‘Definite word dis-
tinct from demonstrative’ are indicative of reduced
error rates of this type.

A particularly intriguing example concerns the
Missing Pronoun error. The most predictive typo-
logical factor for increased pronoun omissions is
pronominal subject marking on the verb in the na-
tive language. Differently from the case of deter-
miners, it is not the lack of the relevant structure in
the native language, but rather its different encod-
ing that seems to drive erroneous pronoun omis-
sion. Decreased error rates of this type correlate
most strongly with obligatory pronouns in subject
position, as well as a verbal person marking sys-
tem similar to the one in English.

6 Bootstrapping with ESL-based
Typology

Thus far, we presupposed the availability of sub-
stantial typological information for our target lan-
guages in order to predict their ESL error distribu-
tions. However, the existing typological documen-
tation for the majority of the world’s languages is
scarce, limiting the applicability of this approach
for low-resource languages.

We address this challenge for scenarios in
which an unannotated collection of ESL texts au-

Missing Determiner
37A Definite Articles: Different from English .057
38A Indefinite Articles: No definite or indefinite article .055
37A Definite Articles: No definite or indefinite article .055
49A Number of Cases: 6-7 case .052

100A Alignment of Verbal Person Marking: Accusative -.073
38A Indefinite Article: Indefinite word same as ’one’ -.050
52A Comitatives and Instrumentals: Identity -.044
37A Definite Articles: -.036
Definite word distinct from demonstrative

Missing Pronoun
101A Expression of Pronominal Subjects: .015
Subject affixes on verb
71A The Prohibitive: Different from English .012
38A Indefinite Articles: Indefinite word same as ’one’ .011
71A The Prohibitive: Special imperative + normal negative .010

104A Order of Person Markers on the Verb: -.016
A & P do not or do not both occur on the verb
102A Verbal Person Marking: Only the A argument -.013
101A Expression of Pronominal Subjects: -.011
Obligatory pronouns in subject position
71A The Prohibitive: Normal imperative + normal negative -.010

Table 5: The most predictive typological features
of the RegCA model for the errors Missing De-
terminer and Missing Pronoun. The right column
depicts the feature weight averaged across all the
languages. Missing determiners are related to the
absence of a determiner system in the native lan-
guage. Missing pronouns are correlated with sub-
ject pronoun marking on the verb.

thored by native speakers of the target language is
available. Given such data, we propose a boot-
strapping strategy which uses the method pro-
posed in (Berzak et al., 2014) in order to approx-
imate the typology of the native language from
morpho-syntactic features in ESL. The inferred ty-
pological features serve, in turn, as a proxy for the
true typology of that language in order to predict
its speakers’ ESL grammatical error rates with our
regression model.
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To put this framework into effect, we use the
FCE corpus to train a log-linear model for native
language classification using morpho-syntactic
features obtained from the output of the Stanford
Parser (de Marneffe et al., 2006):

p(l|x; ✓) =

exp(✓ · f(x, l))P
l02L exp(✓ · f(x, l0))

(8)

where l is the native language, x is the observed
English document and ✓ are the model parameters.
We then derive pairwise similarities between lan-
guages by averaging the uncertainty of the model
with respect to each language pair:

S0
ESLl,l0

=

8
<

:

1
|Dl|

P
(x,l)2Dl

p(l0|x; ✓) if l0 6= l

1 otherwise

(9)

In this equation, x is an ESL document, ✓ are
the parameters of the native language classifica-
tion model and Dl is a set of documents whose
native language is l. For each pair of languages l
and l0 the matrix S0

ESL contains an entry S0
ESLl,l0

which represents the average probability of con-
fusing l for l0, and an entry S0

ESLl0,l
, which cap-

tures the opposite confusion. A similarity estimate
for a language pair is then obtained by averaging
these two scores:

SESLl,l0 = SESLl0,l
=

1

2

(S

0
ESLl,l0

+ S

0
ESLl0,l

) (10)

As shown in (Berzak et al., 2014), given the simi-
larity matrix SESL, one can obtain an approxima-
tion for the typology of a native language by pro-
jecting the typological features from its most sim-
ilar languages. Here, we use the typology of the
closest language, an approach that yields 70.7%
accuracy in predicting the typological features of
our set of languages.

In the bootstrapping setup, we train the regres-
sion models on the true typology of the languages
in the training set, and use the approximate typol-
ogy of the test language to predict the relative error
rates of its speakers in ESL.

6.1 Results
Table 6 summarizes the error prediction results us-
ing approximate typological features for the test
languages. As can be seen, our approach contin-
ues to provide substantial performance gains de-
spite the inaccuracy of the typological informa-
tion used for the test languages. The best per-
forming method, RegCA reduces the MAE of Base

by 13.9%, with performance improvements for
most of the languages and error types. Perfor-
mance gains are also obtained on the DKL met-
ric, whereby RegCA scores 0.041, compared to the
Base score of 0.052, improving on 11 out of our 14
languages.

Base NN Reg RegCA
MAE 1.28 1.12 1.13 1.10
Error Reduction - 12.6 11.6 13.9
#Languages - 11/14 11/14 11/14
#Mistakes - 10/20 10/20 11/20
AVG D

KL

0.052 0.048 0.043 0.041
#Languages - 10/14 11/14 11/14

Table 6: Results for prediction of relative error fre-
quencies using the bootstrapping approach. In this
setup, the true typology of the test language is sub-
stituted with approximate typology derived from
morpho-syntactic ESL features.

7 Conclusion and Future Work

We present a computational framework for pre-
dicting native language specific grammatical er-
ror distributions in ESL, based on the typological
properties of the native language and their compat-
ibility with the typology of English. Our regres-
sion model achieves substantial performance im-
provements as compared to a language oblivious
baseline, as well as a language dependent near-
est neighbor baseline. Furthermore, we address
scenarios in which the typology of the native lan-
guage is not available, by bootstrapping typologi-
cal features from ESL texts. Finally, inspection of
the model parameters allows us to identify native
language properties which play a pivotal role in
generating different types of grammatical errors.

In addition to the theoretical contribution, the
outcome of our work has a strong potential to be
beneficial in practical setups. In particular, it can
be utilized for developing educational curricula
that focus on the areas of difficulty that are charac-
teristic of different native languages. Furthermore,
the derived error frequencies can be integrated as
native language specific priors in systems for au-
tomatic error correction. In both application ar-
eas, previous work relied on the existence of error
tagged ESL data for the languages of interest. Our
approach paves the way for addressing these chal-
lenges even in the absence of such data.
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Abstract

Most computational sociolinguistics stud-
ies have focused on phonological and
lexical variation. We present the first
large-scale study of syntactic variation
among demographic groups (age and gen-
der) across several languages. We har-
vest data from online user-review sites and
parse it with universal dependencies. We
show that several age and gender-specific
variations hold across languages, for ex-
ample that women are more likely to use
VP conjunctions.

1 Introduction

Language varies between demographic groups.
To detect this variation, sociolinguistic studies
require both a representative corpus of text and
meta-information about the speakers. Tradition-
ally, this data was collected from a combination of
interview transcriptions and questionnaires. Both
methods are time-consuming, so population sizes
have been small, sometimes including less than
five subjects (Rickford and Price, 2013). While
these resources enable detailed qualitative analy-
ses, small sample sizes may lead to false research
findings (Button et al., 2013). Sociolinguistic
studies, in other words, often lack statistical
power to establish relationships between language
use and socio-economic variables.

Obtaining large enough data sets becomes even
more challenging the more complex the target
variables are. So while syntactic variation has
been identified as an important factor of variation
(Cheshire, 2005), it was not approached, due to its
high complexity. This paper addresses the issue
systematically on a large scale. In contrast to pre-
vious work in both sociolinguistics and NLP, we
consider syntactic variation across groups at the
level of treelets, as defined by dependency struc-

tures, and make use of a large corpus that includes
demographic information on both age and gender.

The impact of such findings goes beyond soci-
olinguistic insights: knowledge about systematic
differences among demographic groups can help
us build better and fairer NLP tools. Volkova et al.
(2013), Hovy and Søgaard (2015), Jørgensen et al.
(2015), and Hovy (2015) have shown the impact
of demographic factors on NLP performance.
Recently, the company Textio introduced a tool to
help phrase job advertisements in a gender-neutral
way.1 While their tool addresses lexical variation,
our results indicate that linguistic differences
extend to the syntactic level.

Previous work on demographic variation in both
sociolinguistics and NLP has begun to rely on cor-
pora from social media, most prominently Twitter.
Twitter offers a sufficiently large data source with
broad coverage (albeit limited to users with access
to social media). Indeed, results show that this
resource reflects the phonological and morpho-
lexical variation of spoken language (Eisenstein,
2013b; Eisenstein, 2013a; Doyle, 2014).

However, Twitter is not well-suited for the
study of syntactic variation for two reasons.
First, the limited length of the posts compels
the users to adopt a terse style that leaves out
many grammatical markers. As a consequence,
performance of syntactic parsers is prohibitive for
linguistic analysis in this domain. Second, Twitter
provides little meta-information about the users,
except for regional origin and time of posting.
Existing work has thus been restricted to these
demographic variables. One line of research has
focused on predictive models for age and gender
(Alowibdi et al., 2013; Ciot et al., 2013) to add
meta-data on Twitter, but again, error rates are too
high for use in sociolinguistic hypothesis testing.

We use a new source of data, namely the user
1http://recode.net/2015/04/20/

textio-spell-checks-for-gender-bias/
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review site Trustpilot. The meta-information
on Trustpilot is both more prevalent and more
reliable, and textual data is not restricted in length
(see Table 2). We use state-of-the-art dependency
parsers trained on universal treebanks (McDonald
et al., 2013) to obtain comparable syntactic
analyses across several different languages and
demographics.

Contributions We present the first study of
morpho-syntactic variation with respect to demo-
graphic variables across several languages at a
large scale. We collect syntactic features within
demographic groups and analyze them to retrieve
the most significant differences. For the analysis
we use a method that preserves statistical power,
even when the number of possible syntactic
features is very large. Our results show that demo-
graphic differences extend beyond lexical choice.

2 Data collection

The TRUSTPILOT CORPUS consists of user re-
views from the Trustpilot website. On Trustpilot,
users can review company websites and leave a
one to five star rating, as well as a written review.
The data is available for 24 countries, using 13 dif-
ferent languages (Danish, Dutch, English, Finnish,
French, German, Italian, Norwegian, Polish, Por-
tuguese, Russian, Spanish, Swedish). In our study,
we are limited by the availability of comparable
syntactically annotated corpora (McDonald et
al., 2013) for five languages used in eleven
countries, i.e., English (Australia, Canada, UK,
and US), French (Belgium and France), German
(Switzerland and Germany), Italian, Spanish, and
Swedish. We treat the different variants of these
languages separately in the experiments below.2

Many users opt to provide a public profile.
There are no mandatory fields, other than name,
but many also supply their birth year, gender,
and location. We crawl the publicly available
information on the web site for users and reviews,
with different fields. Table 1 contains a list of the
fields that are available for each type of entity.
For more information on the data as a source for
demographic information, see Hovy et al. (2015).

We enhance the data set for our analysis by
adding gender information based on first names.
In order to add missing gender information, we

2While this might miss some dialectal idiosyncrasies, it
is based on standard NLP practice, e.g., when using WSJ-
trained parsers in translation of (British) Europarl.

Users Name, ID, profile text, location (city
and country), gender, year of birth

Reviews Title, text, rating (1–5), User ID, Com-
pany ID, Date and time of review

Table 1: Meta-information in TRUSTPILOT data

measure the distribution over genders for each
name. If a name occurs with sufficient frequency
and is found predominantly in one gender, we
propagate this gender to all occurrences of the
name that lack gender information. In our ex-
periments, we used a gender-purity factor of 0.95
(name occurs with one gender 95% of the time)
and a minimum frequency of 3 (name appears
at least 3 times in the data). Since names are
language-specific (Angel is male in Spanish, but
female in English), we run this step separately on
each language. On average, this measure doubled
the amount of gender information for a language.

Note that the domain (reviews) potentially
introduces a bias, but since our analysis is largely
at the syntactic level, we expect the effect to be
limited. While there is certainly a domain effect
at the lexical level, we assume that the syntactic
findings generalize better to other domains.

Users Age Gender Place All

UK 1,424k 7% 62% 5% 4%
France 741k 3% 53% 2% 1%
Denmark 671k 23% 87% 17% 16%
US 648k 8% 59% 7% 4%
Netherlands 592k 9% 39% 7% 5%
Germany 329k 8% 47% 6% 4%
Sweden 170k 5% 64% 4% 3%
Italy 132k 10% 61% 8% 6%
Spain 56k 6% 37% 5% 3%
Norway 51k 5% 50% 4% 3%
Belgium 36k 13% 42% 11% 8%
Australia 31k 8% 36% 7% 5%
Finland 16k 6% 36% 5% 3%
Austria 15k 10% 43% 7% 5%
Switzerland 14k 8% 41% 7% 4%
Canada 12k 10% 19% 9% 4%
Ireland 12k 8% 30% 7% 4%

Table 2: No. of users per variable per country (af-
ter augmentations), for countries with 10k+ users.

3 Methodology

For each language, we train a state-of-the-art
dependency parser (Martins et al., 2013) on a
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treebank annotated with the Stanford dependency
labels (McDonald et al., 2013) and universal POS
tag set (Petrov et al., 2011). This gives us syntac-
tic analyses across all languages that describe the
same syntactic phenomena the same way. Figure
1 shows two corpus sentences annotated with this
harmonized representation.

The style of the reviews is much more canonical
than social web data, say Twitter. Expected parse
performance can be estimated from the SANCL
2012 shared task on dependency parsing of web
data (Petrov and McDonald, 2012). The best
result on the review domain there was 83.86 LAS
and 88.31 UAS, close to the average over all web
domains (83.45 LAS and 87.62 UAS).

From the parses, we extract all subtrees
of up to three tokens (treelets). We do not
distinguish between right- and left-branching
relations: the representation is basically a “bag
of relations”. The purpose of this is to increase
comparability across languages with different
word orderings (Naseem et al., 2012). A one-
token treelet is simply the POS tag of the token,
e.g. NOUN or VERB. A two-token treelet is a
typed relation between head and dependent, e.g.
VERB

NSUBJ����!NOUN. Treelets of three tokens
have two possible structures. Either the head
directly dominates two tokens, or the tokens are
linked together in a chain, as shown below:

NOUN . . . VERB . . . NOUN

nsubj dobj

PRON . . . NOUN . . . VERB

nsubjposs

3.1 Treelet reduction

We extract between 500,000 to a million distinct
treelets for each language. In principle, we
could directly check for significant differences
in the demographic groups and use Bonferroni
correction to control the family-wise error (i.e.,
the probability of obtaining a false positive).
However, given the large number of treelets,
the correction for multiple comparisons would
underpower our analyses and potentially cause us
to miss many significant differences. We therefore
reduce the number of treelets by two methods.

First, we set the minimum number of occur-
rences of a feature in each language to 50. We
apply this heuristic both to ensure statistical power
and to focus our analyses on prevalent rather than
rare syntactic phenomena.

Second, we perform feature selection using L1

randomized logistic regression models, with age
or gender as target variable, and the treelets as
input features. However, direct feature selection
with L1 regularized models (Ng, 2004) is prob-
lematic when variables are highly correlated (as
in our treelets, where e.g. three-token structures
can subsume smaller ones). As a result, small and
inessential variations in the dataset can determine
which of the variables are selected to represent the
group, so we end up with random within-group
feature selection.

We therefore use stability selection (Mein-
shausen and Bühlmann, 2010). Stability selection
mitigates the correlation problem by fitting the
logistic regression model hundreds of times
with perturbed data (75% subsampling and
feature-wise regularization scaling). Features
that receive non-zero weights across many runs
can be assumed to be highly indicative. Stability
selection thus gives all features a chance to be
selected. It controls the false positive rate, which
is less conservative than family-wise error. We
use the default parameters of a publicly available
stability selection implementation3, run it on the
whole data set, and discard features selected less
than 50% of the time.

With the reduced feature set, we check for
usage differences in demographic groups (age and
gender) using a �2 test. We distinguish two age
groups: speakers that are younger than 35, and
speakers older than 45. These thresholds were
chosen to balance the size of both groups. At
this stage we set the desired p-value at 0.02 and
apply Bonferroni correction, effectively dividing
the p-value threshold by the number of remaining
treelets.4

Note, finally, that the average number of words
written by a reviewer differs between the demo-
graphic groups (younger users tend to write more
than older ones, women more than men). To coun-
teract this effect, the expected counts in our null
hypothesis use the proportion of words written by
people in a group, rather than the proportion of
people in the group (which would skew the results
towards the groups with longer reviews).

3http://scikit-learn.org/
4Choosing a p-value is somewhat arbitrary. Effectively,

our p-value cutoff is several orders of magnitude lower than
0.02, due to the Bonferroni correction.
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My husband especially likes the bath oils
PRON NOUN ADV VERB DET NOUN NOUN

poss

nsubj

advmod

dobj

det

compmod

Je recommande vivement ce site
PRON VERB ADV DET NOUN

nsubj advmod

dobj

det

Figure 1: Universal dependency relations for an English and a French sentence, both with adverbial
modifiers.

Signif. in Effect

# lang. Rank Feature High By Subsumes

11 1 NUM M 32 %
2 PRON F 11 %
3 NOUN M 6 %

10 4 VERB
ACOMP�����! ADJ F 22 % 5

5 VERB F 6 %
9 6 ADJ

ACOMP ����� VERB
CONJ����! VERB F 36 % 4 , 5 , 14

7 VERB
ACOMP�����! ADJ

ADVMOD������! ADV F 35 % 4 , 5

8 NOUN
COMPMOD�������! NOUN M 22 % 3

9 VERB
NSUBJ����! PRON F 14 % 2 , 5

8 10 VERB
CONJ����! VERB

ACOMP�����! ADJ F 40 % 4 , 5 , 14

11 VERB
ACOMP�����! ADJ

CONJ����! ADJ F 36 % 4 , 5

12 ADJ
ACOMP ����� VERB

CC��! CONJ F 28 % 4 , 5

13 CONJ
CC �� VERB

CONJ����! VERB F 16 % 5 , 14

14 VERB
CONJ����! VERB F 14 % 5

15 ADP
ADPMOD ������ VERB

NSUBJ����! NOUN M 14 % 3 , 5

16 NOUN
ADPMOD������! ADP

ADPOBJ�����! NOUN M 13 % 3 , 17

17 NOUN
ADPMOD������! ADP M 13 % 3

18 VERB
AUX���! VERB F 10 % 5

7 19 ADP
ADPOBJ�����! NUM M 43 % 1

20 ADJ
ACOMP ����� VERB

NSUBJ����! PRON F 41 % 2 , 4 , 5 , 9

Table 3: Gender comparison: Significant syntactic features across languages. Features ordered by
number of languages in which they are significant. Right-hand side shows the gender for which the
feature is indicative, by which margin, and whether it subsumes other features (indexed by rank)

4 Results

We are interested in robust syntactic variation
across languages; that is, patterns that hold across
most or all of the languages considered here.
We therefore score each of the identified treelets
by the number of languages with a significant
difference in occurrence between the groups of
the given demographic variable. Again, we use
a rather conservative non-parametric hypothesis
test, with Bonferroni correction.

Tables 3 and 4 show the results for age and
gender, respectively. The first column shows
the number of languages in which the treelet
(third column) is significant. The fourth and fifth
column indicate for which age or gender subgroup
the feature is indicative, and how much larger the
rate of occurrence is there in percent. The indices

in the last column represent containment relation-
ships, i.e., when a treelet is strictly contained in
another treelet (indexed by the rank given in the
second column).

In the case of gender, three atomic treelets
(parts of speech) correlate significantly across
all 11 languages. Two treelets correlate signifi-
cantly across 10 languages. For age, five treelets
correlate significantly across 10 languages.

In sum, men seem to use numerals and nouns
more than women across languages, whereas
women use pronouns and verbs more often. Men
use nominal compounds more often than women
in nine out of eleven languages. Women, on the
other hand, use VP coordinations more in eight
out of eleven languages.

For age, some of the more striking patterns
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involve prepositional phrases, which see higher
use in the older age group. In atomic treelets, noun
use is slightly higher in the older group, while pro-
nouns are more often used by younger reviewers.

Our results address a central question in varia-
tional linguistics, namely whether syntax plays a
role in language variation among groups. While
this has been long suspected, it was never empir-
ically researched due to the perceived complexity.
Our findings are the first to corroborate the
hypotheses that language variation goes beyond
the lexical level.

FR DE IT ES SE UK US

FR 592 42% 73% 88% 46% 47% 38%
DE 365 46% 56% 45% 52% 43%
IT 138 50% 32% 72% 65%
ES 78 28% 79% 73%
SE 182 49% 45%
UK 1056 88%
US 630

FR DE UK US

FR 108 57% 53% 35%
DE 237 46% 27%
UK 370 56%
US 173

Table 5: Gender (top) and age (bottom): Pair-
wise overlap in significant features. Languages
with 50 or less significant features were left out.
Diagonal gives the number of features per lan-
guage.

We also present the pairwise overlap in signif-
icant treelets between (a subset of the) languages.
See Table 5. Their diagonal values give the
number of significant treelets for that language.
Percentages in the pairwise comparisons are nor-
malized by the smallest of the pair. For instance,
the 49 % overlap between Sweden (SE) and
United Kingdom (UK) in Table 5 means that 49 %
of the 182 SE treelets were also significant in UK.

We observe that English variants (UK and US)
share many features. The Romance languages
also share many features with each other, but
Italian and Spanish also share many features with
English. In Section 5, we analyze our results in
more depth.

5 Analysis of syntactic variation

Due to space constraints, we restrict our analysis
to a few select treelets with good coverage and
interpretable results.

5.1 Gender differences

The top features for gender differences are mostly
atomic (pre-terminals), indicating that we observe
the same effect as mentioned previously in the
literature (Schler et al., 2006), namely that certain
parts-of-speech are prevalent in one gender.

1 , 2 , 3 For all languages, the use of numerals
and nouns is significantly correlated with men,
while pronouns and verbs are more indicative of
women. When looking at the types of pronouns
used by men and women, we see very similar
distributions, but men tend to use impersonal
pronouns (it, what) more than women do. Nouns
and numbers are associated with the alleged
“information emphasis” of male language use
(Schler et al., 2006). Numbers typically indicate
prices or model numbers, while nouns are usually
company names.

The robustness of POS features could to some
extent be explained by the different company cat-
egories reviewed by each gender: in COMPUTER
& ACCESSORIES and CAR LIGHTS the reviews
are predominately by men, while the reviews in
the PETS and CLOTHES & FASHION categories
are mainly posted by women. Using numerals
and nouns is more likely when talking about
computers and car lights than when talking about
pets and clothing, for example.

4 In English, this treelet is instantiated by ex-
amples such as:

(1) is/was/are great/quick/easy and
is/was/arrived

In German, the corresponding examples would be:

(2) bin/war zufrieden und werde/würde wieder
bestellen (am/was satisfied and will/would
order again)

8 This feature mainly encompasses noun com-
pounds, incl., company names. Again, this feature
is indicative of male language use. This may be a
side-effect of male use of nouns, but note that the
effect is much larger with noun compounds.
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Signif. in Effect

# lang. Rank Feature High By Subsumes

8 1 NOUN >45 5 %
7 2 ADP

ADPOBJ�����! NOUN
ADPMOD������! ADP >45 20 % 1 , 5 , 9

3 NOUN
ADPMOD������! ADP

ADPOBJ�����! NOUN >45 14 % 1 , 5 , 9

4 VERB
ADVMOD������! ADV <35 12 %

5 ADP
ADPOBJ�����! NOUN >45 8 % 1

6 6 ADV
ADVMOD ������ VERB

CONJ����! VERB <35 34 % 4 , 19

7 VERB
ADVCL ����� VERB

ADVMOD������! ADV <35 27 % 4 , 20

8 VERB
CC��! CONJ <35 15 %

9 NOUN
ADPMOD������! ADP >45 12 % 1

10 PRON <35 10 %
5 11 ADP

ADPMOD ������ NOUN
COMPMOD�������! NOUN >45 40 % 1 , 9 , 18

12 VERB
CONJ����! VERB

NSUBJ����! PRON <35 32 % 10 , 19

13 ADV
ADVMOD ������ VERB

CC��! CONJ <35 25 % 4 , 8

14 ADP
ADPOBJ�����! NOUN

COMPMOD�������! NOUN >45 23 % 1 , 5 , 18

15 CONJ
CC �� VERB

NSUBJ����! PRON <35 21 % 8 , 10

16 CONJ
CC �� VERB

CONJ����! VERB <35 20 % 8 , 19

17 ADV
ADVMOD ������ VERB

NSUBJ����! PRON <35 19 % 4 , 10

18 NOUN
COMPMOD�������! NOUN >45 17 % 1

19 VERB
CONJ����! VERB <35 16 %

20 VERB
ADVCL�����! VERB <35 11 %

Table 4: Age group comparison: Significant syntactic features across languages. Layout as in Table 3

5.2 Age differences

For age, features vary a lot more than for gender,
i.e., there is less support for each than there was for
the gender features. A few patterns still stand out.

2 This pattern, which is mostly used by the
> 45 age group, is often realized in English to
express temporal relations, such as

(1) (with)in a couple/days/hours of
(2) in time for

In German, it is mostly used to express compar-
isons

(1) im Vergleich/Gegensatz zu (compared/in
contrast to)

(2) auf Suche nach (in search of)
(3) in Höhe/im Wert von (valued at)

3 This pattern, which is indicative of the > 45

age group, is mostly realized in English to express
a range of prepositional phrases, some of them
overlapping with the previous pattern:

(1) value for money
(2) couple of days
(3) range of products

German also shows prepositional phrases, yet no
overlap with 2

(1) Qualität zu Preisen (quality for price)

(2) Auswahl an Weinen/Hotels (selection of
wines/hotels)

In French, this mostly talks about delivery
(1) délai(s) de livraison (delivery)
(2) rapidité de livraison (speed of delivery)

And in Spanish, the main contenders are complex
(and slightly more formal) expressions

(1) gastos de envı́o (shipping)
(2) atención al cliente (customer service)

4 This pattern is mostly used by the younger
group, and realized to express positive recommen-
dations in all languages:

(1) use again/definitely
(2) recommend highly/definitely

German:
(1) empfehle nur/sehr (just recommend)
(2) bestelle wieder/dort/schon (order

again/there/already)
French:

(1) recommande vivement (vividly recom-
mend)

(2) emballé/passé/fait bien (pack-
aged/delivered/made well)

5 This pattern is again predominant in the older
group, and mostly used in English to complement
the prepositional phrases in 3
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(1) at price
(2) with service

In German, it is mostly used to express compar-
isons

(1) in Ordnung (alright)
(2) am Tag (on the day)

6 Semantic variation within syntactic
categories

Given that a number of the indicative features are
single treelets (POS tags), we wondered whether
there are certain semantic categories that fill these
slots. Since we work across several languages, we
are looking for semantically equivalent classes.
We collect the most significant adjectives and
adverbs for each gender for each language and
map the words to all of their possible lexical
groups in BabelNet (Navigli and Ponzetto, 2010).
This creates lexical equivalence classes. Table 6
shows the results. We purposefully exclude nouns
and verbs here, as there is too much variation to
detect any patterns.

The number of languages that share lexical
items from the same BabelNet class is typically
smaller than the number of languages that share a
treelet. Nevertheless, we observe certain patterns.

The results for gender are presented in Table
6. For adverbs, the division seems to be about
intensity: men use more downtoners (approx-
imately; almost; still), while women use more
intensifiers (actually; really; truly; quite; lots).
This finding is new, in that it directly contradicts
the perceived wisdom of female language as being
more restrained and hedging.

In their use of adjectives, on the other hand,
men highlight “factual” properties of the subject,
such as price (inexpensive) and quality (cheap;
best; professional), whereas women use more
qualitative adjectives that express the speaker’s
opinion about the subject (fantastic; amazing;
pretty) or their own state (happy), although we
also find the “factual” assessment simple.

Table 7 shows the results for age. There are
not many adjectives that group together, and they
do not show a clear pattern. Most of the adverbs
are indicative of the younger group, although
there is overlap with the older group (this is due
to different sets of words mapping to the same
class). We did not find any evidence for pervasive
age effects across languages.

Langs. BABELNET class Highest

Adverbs

5 just about; approximately M
actually; indeed F
real; really; very F
really; truly; genuinely F
quite F

4 almost; nearly; virtually M
still M
however; still; nevertheless M
soon; presently; shortly F
a good deal; lots; very much F

Adjectives

6 fantastic; wondrous; wonderful F
5 inexpensive; cheap; economic M

amazing; awesome; marvelous F
tinny; bum; cheap M

4 happy F
best (quality) M
professional M
pretty F
easy; convenient; simple F
okay; o.k.; all right M

Table 6: Gender: equivalence classes in BabelNet

7 Related Work

Sociolinguistic studies investigate the relation
between a speaker’s linguistic choices and
socio-economic variables. This includes regional
origin (Schmidt and Herrgen, 2001; Nerbonne,
2003; Wieling et al., 2011), age (Barke, 2000;
Barbieri, 2008; Rickford and Price, 2013), gender
(Holmes, 1997; Rickford and Price, 2013), social
class (Labov, 1964; Milroy and Milroy, 1992;
Macaulay, 2001; Macaulay, 2002), and ethnicity
(Carter, 2013; Rickford and Price, 2013). We
focus on age and gender in this work.

Corpus-based studies of variation have largely
been conducted either by testing for the presence
or absence of a set of pre-defined words (Pen-
nebaker et al., 2001; Pennebaker et al., 2003), or
by analysis of the unigram distribution (Barbieri,
2008). This approach restricts the findings to
the phenomena defined in the hypothesis, in this
case the word list used. In contrast, our approach
works beyond the lexical level, is data-driven and
thus unconstrained by prior hypotheses.

Eisenstein et al. (2011) use multi-output
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Langs. BABELNET class Highest

Adverbs

5 actually; really; in fact <35
truly; genuinely; really <35

4 however; nevertheless <35
however <35

3 merely; simply; just <35
reasonably; moderately; fairly <35
very >45
in truth; really <35
very; really; real >45
very; really; real <35

Adjectives

3 easy; convenient; simple <35
quick; speedy >45
costly; pricy; expensive <35
simple <35
excellent; first-class >45

2 spacious; wide <35
expensive <35
simple (unornamented) <35
new >45
best <35

Table 7: Age: Lexical equivalences in BabelNet

regression to predict demographic attributes
from term frequencies, and vice versa. Using
sparsity-inducing priors, they identify key lexical
variations between linguistic communities. While
they mention syntactic variation as possible future
work, their method has not yet been applied
to syntactically parsed data. Our method is
simpler than theirs, yet goes beyond words. We
learn demographic attributes from raw counts of
syntactic treelets rather than term frequencies,
and test for group differences between the most
predictive treelets and the demographic variables.
We also use a sparsity-inducing regularizer.

Kendall et al. (2011) study dative alternations
on a 250k-words corpus of transcribed spoken
Afro-American Vernacular English. They use
logistic regression to correlate syntactic features
and dialect, similar to Eisenstein et al. (2011), but
their study differs from ours in using manually
annotated data, studying only one dialect and
demographic variable, and using much less data.

Stewart (2014) uses POS tags to study morpho-
syntactic features of Afro-American Vernacular
English on Twitter, such as copula deletion, ha-

bitual be, null genitive marking, etc. Our study is
different from his in using full syntactic analyses,
studying variation across age and gender rather
than ethnicity, and in studying syntactic variation
across several languages.

8 Conclusion

Syntax has been identified as an important factor
in language variation among groups, but not
addressed. Previous work has been limited by
data size or availability of demographic meta-data.
Existing studies on variation have thus mostly
focused on lexical and phonological variation.

In contrast, we study the effect of age and
gender on syntactic variation across several
languages. We use a large-scale data source
(international user-review websites) and parse
the data, using the same formalisms to maximize
comparability. We find several highly significant
age- and gender-specific syntactic patterns.

As NLP applications for social media become
more widespread, we need to address their
performance issues. Our findings suggest that
including extra-linguistic factors (which become
more and more available) could help improve
performance of these systems. This requires a
discussion of approaches to corpora construction
and the development of new models.
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Abstract
Cross-lingual transfer has been shown to
produce good results for dependency pars-
ing of resource-poor languages. Although
this avoids the need for a target language
treebank, most approaches have still used
large parallel corpora. However, parallel
data is scarce for low-resource languages,
and we report a new method that does
not need parallel data. Our method learns
syntactic word embeddings that generalise
over the syntactic contexts of a bilingual
vocabulary, and incorporates these into a
neural network parser. We show empir-
ical improvements over a baseline delex-
icalised parser on both the CoNLL and
Universal Dependency Treebank datasets.
We analyse the importance of the source
languages, and show that combining mul-
tiple source-languages leads to a substan-
tial improvement.

1 Introduction
Dependency parsing is a crucial component of
many natural language processing (NLP) systems
for tasks such as relation extraction (Bunescu
and Mooney, 2005), statistical machine transla-
tion (Xu et al., 2009), text classification (Özgür
and Güngör, 2010), and question answering (Cui
et al., 2005). Supervised approaches to depen-
dency parsing have been very successful for many
resource-rich languages, where relatively large
treebanks are available (McDonald et al., 2005a).
However, for many languages, annotated tree-
banks are not available, and are very costly to cre-
ate (Böhmová et al., 2001). This motivates the
development of unsupervised approaches that can
make use of unannotated, monolingual data. How-
ever, purely unsupervised approaches have rela-
tively low accuracy (Klein and Manning, 2004;
Gelling et al., 2012).

Most recent work on unsupervised dependency
parsing for low-resource languages has used the
idea of delexicalized parsing and cross-lingual
transfer (Zeman et al., 2008; Søgaard, 2011; Mc-
Donald et al., 2011; Ma and Xia, 2014). In
this setting, a delexicalized parser is trained on a
resource-rich source language, and is then applied
directly to a resource-poor target language. The
only requirement here is that the source and tar-
get languages are POS tagged must use the same
tagset. This assumption is pertinent for resource-
poor languages since it is relatively quick to man-
ually POS tag the data. Moreover, there are many
reports of high accuracy POS tagging for resource-
poor languages (Duong et al., 2014; Garrette et
al., 2013; Duong et al., 2013b). The cross-lingual
delexicalized approach has been shown to signif-
icantly outperform unsupervised approaches (Mc-
Donald et al., 2011; Ma and Xia, 2014).

Parallel data can be used to boost the perfor-
mance of a cross-lingual parser (McDonald et al.,
2011; Ma and Xia, 2014). However, parallel data
may be hard to acquire for truly resource-poor lan-
guages.1 Accordingly, we propose a method to
improve the performance of a cross-lingual delex-
icalized parser using only monolingual data.

Our approach is based on augmenting the delex-
icalized parser using syntactic word embeddings.
Words from both source and target language are
mapped to a shared low-dimensional space based
on their syntactic context, without recourse to par-
allel data. While prior work has struggled to ef-
ficiently incorporate word embedding information
into the parsing model (Bansal et al., 2014; An-
dreas and Klein, 2014; Chen et al., 2014), we
present a method for doing so using a neural net-

1Note that most research in this area (as do we) evalu-
ates on simulated low-resource languages, through selective
use of data in high-resource languages. Consequently paral-
lel data is plentiful, however this is often not the case in the
real setting, e.g., for Tagalog, where only scant parallel data
exists (e.g., dictionaries, Wikipedia and the Bible).
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work parser. We train our parser using a two stage
process: first learning cross-lingual syntactic word
embeddings, then learning the other parameters of
the parsing model using a source language tree-
bank. When applied to the target language, we
show consistent gains across all studied languages.

This work is a stepping stone towards the more
ambitious goal of a universal parser that can ef-
ficiently parse many languages with little modi-
fication. This aspiration is supported by the re-
cent release of the Universal Dependency Tree-
bank (Nivre et al., 2015) which has consensus de-
pendency relation types and POS annotation for
many languages.

When multiple source languages are available,
we can attempt to boost performance by choosing
the best source language, or combining informa-
tion from several source languages. To the best
of our knowledge, no prior work has proposed a
means for selecting the best source language given
a target language. To address this, we introduce
two metrics which outperform the baseline of al-
ways picking English as the source language. We
also propose a method for combining all available
source languages which leads to substantial im-
provement.

The rest of this paper is organized as fol-
lows: Section 2 reviews prior work on unsuper-
vised cross-lingual dependency parsing. Section 3
presents the methods for improving the delexi-
calized parser using syntactic word embeddings.
Section 4 describes experiments on the CoNLL
dataset and Universal Dependency Treebank. Sec-
tion 5 presents methods for selecting the best
source language given a target language.

2 Unsupervised Cross-lingual
Dependency Parsing

There are two main approaches for building de-
pendency parsers for resource-poor languages
without using target-language treebanks: delexi-
calized parsing and projection (Hwa et al., 2005;
Ma and Xia, 2014; Täckström et al., 2013; Mc-
Donald et al., 2011).

The delexicalized approach was proposed
by Zeman et al. (2008). They built a delexi-
calized parser from a treebank in a resource-rich
source language. This parser can be trained us-
ing any standard supervised approach, but with-
out including any lexical features, then applied di-
rectly to parse sentences from the resource-poor

language. Delexicalized parsing relies on the fact
that parts-of-speech are highly informative of de-
pendency relations. For example, an English lex-
icalized discriminative arc-factored dependency
parser achieved 84.1% accuracy, whereas a delex-
icalized version achieved 78.9% (McDonald et al.,
2005b; Täckström et al., 2013). Zeman et al.
(2008) build a parser for Swedish using Danish,
two closely-related languages. Søgaard (2011)
adapt this method for less similar languages by
choosing sentences from the source language that
are similar to the target language. Täckström et al.
(2012) additionally use cross-lingual word cluster-
ing as a feature for their delexicalized parser. Also
related is the work by Naseem et al. (2012) and
Täckström et al. (2013) who incorporated linguis-
tic features from the World Atlas of Language
Structures (WALS; Dryer and Haspelmath (2013))
for joint modelling of multi-lingual syntax.

In contrast, projection approaches use paral-
lel data to project source language dependency
relations to the target language (Hwa et al.,
2005). Given a source-language parse tree along
with word alignments, they generate the target-
language parse tree by projection. However, their
approach relies on many heuristics which would
be difficult to adapt to other languages. McDon-
ald et al. (2011) exploit both delexicalized parsing
and parallel data, using an English delexicalized
parser as the seed parser for the target languages,
and updating it according to word alignments. The
model encourages the target-language parse tree
to look similar to the source-language parse tree
with respect to the head-modifier relation. Ma and
Xia (2014) use parallel data to transfer source lan-
guage parser constraints to the target side via word
alignments. For the null alignment, they used a
delexicalized parser instead of the source language
lexicalized parser.

In summary, existing work generally starts with
a delexicalized parser, and uses parallel data ty-
pological information to improve it. In contrast,
we want to improve the delexicalized parser, but
without using parallel data or any explicit linguis-
tic resources.

3 Improving Delexicalized Parsing

We propose a novel method to improve the per-
formance of a delexicalized cross-lingual parser
without recourse to parallel data. Our method uses
no additional resources and is designed to com-
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plement other methods. The approach is based on
syntactic word embeddings where a word is rep-
resented as a low-dimensional vector in syntactic
space. The idea is simple: we want to relexicalize
the delexicalized parser using word embeddings,
where source and target language lexical items are
represented in the same space.

Word embeddings typically capture both syn-
tactic and semantic information. However, we hy-
pothesize (and later show empirically) that for de-
pendency parsing, word embeddings need to bet-
ter reflect syntax. In the next subsection, we re-
view some cross-lingual word embedding meth-
ods and propose our syntactic word embeddings.
Section 4 empirically compares these word em-
beddings when incorporated into a dependency
parser.

3.1 Cross-lingual word embeddings

We review methods that can represent words
in both source and target languages in a low-
dimensional space. There are many benefits of us-
ing a low-dimensional space. Instead of the tra-
ditional “one-hot” representation with the number
of dimensions equal to vocabulary size, words are
represented using much fewer dimensions. This
confers the benefit of generalising over the vocab-
ulary to alleviate issues of data sparsity, through
learning representations encoding lexical relations
such as synonymy.

Several approaches have sought to learn cross-
lingual word embeddings from parallel data (Her-
mann and Blunsom, 2014a; Hermann and Blun-
som, 2014b; Xiao and Guo, 2014; Zou et al., 2013;
Täckström et al., 2012). Hermann and Blunsom
(2014a) induced a cross-lingual word representa-
tion based on the idea that representations for par-
allel sentences should be close together. They
constructed a sentence level representation as a
bag-of-words summing over word-level represen-
tations, and then optimized a hinge loss function
to match a latent representation of both sides of
a parallel sentence pair. While this might seem
well suited to our needs as a word representation
in cross-lingual parsing, it may lead to overly se-
mantic embeddings, which are important for trans-
lation, but less useful for parsing. For example,
“economic” and “economical” will have a simi-
lar representation despite having different syntac-
tic features.

Also related is (Täckström et al., 2012) who

3URQRXQ���1RXQ���������9HUE�����������$GM

����7X������PDVFRWD�����SDUHFH������DGRUDEOH

�'HW�������1RXQ������9HUE������$GM���������1RXQ

����7KH������ZHDWKHU�����LV������KRUULEOH����WRGD\�����

Figure 1: Examples of the syntactic word embed-
dings for Spanish and English. In each case, the
highlighted tags are predicted by the highlighted
word. The Spanish sentence means “your pet
looks lovely”.

build cross-lingual word representations using a
variant of the Brown clusterer (Brown et al., 1992)
applied to parallel data. Bansal et al. (2014)
and Turian et al. (2010) showed that for monolin-
gual dependency parsing, the simple Brown clus-
tering based algorithm outperformed many word
embedding techniques. In this paper we compare
our approach to forming cross-lingual word em-
beddings with those of both Hermann and Blun-
som (2014a) and Täckström et al. (2012).

3.2 Syntactic Word Embedding
We now propose a novel approach for learning
cross-lingual word embeddings that is more heav-
ily skewed towards syntax. Word embedding
methods typically exploit word co-occurrences,
building on traditional techniques for distribu-
tional similarity, e.g., the co-occurrences of words
in a context window about a central word. Bansal
et al. (2014) suggested that for dependency pars-
ing, word embeddings be trained over dependency
relations, instead of adjacent tokens, such that
embeddings capture head and modifier relations.
They showed that this strategy performed much
better than surface embeddings for monolingual
dependency parsing. However, their method is
not applicable to our low resource setting, as it
requires a parse tree for training. Instead we
consider a simpler representation, namely part-of-
speech contexts. This requires only POS tagging,
rather than full parsing, while providing syntactic
information linking words to their POS context,
which we expect to be informative for characteris-
ing dependency relations.
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Algorithm 1 Syntactic word embedding
1: Match the source and target tagsets to the Uni-

versal Tagset.
2: Extract word n-gram sequences for both the

source and target language.
3: For each n-gram, keep the middle word, and

replace the other words by their POS.
4: Train a skip-gram word embedding model on

the resulting list of word and POS sequences
from both the source and target language

We assume the same POS tagset is used for both
the source and target language,2 and learn word
embeddings for each word type in both languages
into the same syntactic space of nearby POS con-
texts. In particular, we develop a predictive model
of the tags to the left and right of a word, as il-
lustrated in Figure 1 and outlined in Algorithm 1.
Figure 1 illustrates two training contexts extracted
from our English source and Spanish target lan-
guage, where the highlighted fragments reflect the
tags being predicted around each focus word. Note
that for this example, the POS contexts for the En-
glish and Spanish verbs are identical, and there-
fore the model would learn similar word embed-
dings for these terms, and bias the parser to gener-
ate similar dependency structures for both terms.

There are several motivations for our approach:
(1) POS tags are too coarse-grained for accurate
parsing, but with access to local context they can
be made more informative; (2) leaving out the
middle tag avoids duplication because this is al-
ready known to the parser; (3) dependency edges
are often local, as shown in Figure 1, i.e., there
are dependency relations between most words and
their immediate neighbours. Consequently, train-
ing our embeddings to predict adjacent tags is
likely to learn similar information to training over
dependency edges.3 Bansal et al. (2014) stud-
ied the effect of word embeddings on dependency
parsing, and found that larger embedding win-
dows captured more semantic information, while
smaller windows better reflected syntax. There-
fore we choose a small ±1 word window in our ex-
periments. We also experimented with bigger win-

2Later we consider multiple source languages, but for now
assume a single source language.

3For the 16 languages in the CoNLL-X and CoNLL-07
datasets we observed that approx. 50% of dependency rela-
tions span a distance of one word and 20% span two words.
Thus our POS context of a ±1 word window captures the
majority of dependency relations.
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Figure 2: Neural Network Parser Architecture
from Chen and Manning (2014)

dows (±2,±3) but observed performance degra-
dation in these cases, supporting the argument
above.

Step 4 of Algorithm 1 finds the word embed-
dings as a side-effect of training a neural language
model. We use the skip-gram model (Mikolov et
al., 2013), trained to predict context tags for each
word. The model is formulated as a simple bilin-
ear logistic classifier

P (tc|w) =

exp(u>tcvw)

PT
z=1 exp(u>z vw)

(1)

where tc is the context tag around the current
word w, U 2 RT⇥D is the tag embedding matrix,
V 2 RV⇥D is the word embedding matrix, with T
the number of tags, V is the total number of word
types over both languages and D the capacity of
the embeddings. Given a training set of word and
POS contexts, (tLi , wi, tRi )

N
i=1,4 we maximize the

log-likelihood
PN

i=1 log P (tLi |wi)+log P (tRi |wi)

with respect to U and V using stochastic gradient
descent. The learned V matrix of word embed-
dings is later used in parser training (the source
word embeddings) and inference (the target word
embeddings).

3.3 Parsing Algorithm
In this Section, we show how to incorporate the
syntactic word embeddings into a parsing model.
Our parsing model is built based on the work
of Chen and Manning (2014). They built a
transition-based dependency parser using a neural-
network. The neural network classifier will decide
which transition is applied for each configuration.

4Note that w here can be a word type in either the source
or target language, such that both embeddings will be learned
for all word types in both languages.
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The architecture of the parser is illustrated in Fig-
ure 2, where each layer is fully connected to the
layer above.

For each configuration, the selected list of
words, POS tags and labels from the Stack, Queue
and Arcs are extracted. Each word, POS or label is
mapped to a low-dimension vector representation
(embedding) through the Mapping Layer. This
layer simply concatenates the embeddings which
are then fed into a two-layer neural network clas-
sifier to predict the next parsing action. The set
of parameters for the neural network classifier is
Eword, Epos, Elabels for the mapping layer, W1 for
the hidden layer and W2 for the soft-max output
layer. We incorporate the syntactic word embed-
dings into the neural network model by setting
Eword to the syntactic word embeddings, which
remain fixed during training so as to retain the
cross-lingual mapping.5

3.4 Model Summary

To apply the parser to a resource-poor target lan-
guage, we start by building syntactic word em-
beddings between source and target languages as
shown in algorithm 1. Next we incorporate syn-
tactic word embeddings using the algorithm pro-
posed in Section 3.3. The third step is to substitute
source- with target-language syntactic word em-
beddings. Finally, we parse the target language
using this substituted model. In this way, the
model will recognize lexical items for the target
language.

4 Experiments

We test our method of incorporating syntactic
word embeddings into a neural network parser, for
both the existing CoNLL dataset (Buchholz and
Marsi, 2006; Nivre et al., 2007) and the newly-
released Universal Dependency Treebank (Nivre
et al., 2015). We employed the Unlabeled Attach-
ment Score (UAS) without punctuation for com-
parison with prior work on the CoNLL dataset.
Where possible we also report Labeled Attach-
ment Score (LAS) without punctuation. We use
English as the source language for this experiment.

5This is a consequence of only training the parser on the
source language. If we were to update embeddings during
parser training this would mean they no longer align with the
target language embeddings.

4.1 Experiments on CoNLL Data
In this section we report experiments involving
the CoNLL-X and CoNLL-07 datasets. Run-
ning on this dataset makes our model comparable
with prior work. For languages included in both
datasets, we use the newer one only. Crucially, for
the delexicalized parser we map language-specific
tags to the universal tagset (Petrov et al., 2012).
The syntactic word embeddings are trained using
POS information from the CoNLL data.

There are two baselines for our experiment. The
first one is the unsupervised dependency parser
of Klein and Manning (2004), the second one is
the delexicalized parser of Täckström et al. (2012).
We also compare our syntactic word embedding
with the cross-lingual word embeddings of Her-
mann and Blunsom (2014a). These word em-
beddings are induced by running each language
pair using Europarl (Koehn, 2005). We incor-
porated Hermann and Blunsom (2014a)’s cross-
lingual word embeddings into the parsing model
in the same way as for the syntactic word em-
beddings. Table 1 shows the UAS for 8 lan-
guages for several models. The first observation
is that the direct transfer delexicalized parser out-
performed the unsupervised approach. This is
consistent with many prior studies. Our imple-
mentation of the direct transfer model performed
on par with Täckström et al. (2012) on average.
Table 1 also shows that using HB embeddings im-
prove the performance over the Direct Transfer
model. Our model using syntactic word embed-
ding consistently out-performed the Direct Trans-
fer model and HB embedding across all 8 lan-
guages. On average, it is 1.5% and 1.3% better. 6

The improvement varies across languages com-
pared with HB embedding, and falls in the range
of 0.3 to 2.6%. This confirms our initial hypoth-
esis that we need word embeddings that capture
syntactic instead of semantic information.

It is not strictly fair to compare our method
with prior approaches to unsupervised dependency
parsing, since they have different resource require-
ment, i.e. parallel data or typological resources.
Compared with the baseline of the direct transfer
model, our approach delivered a 1.5% mean per-
formance gain, whereas Täckström et al. (2012)
and McDonald et al. (2011) report approximately
3% gain, Ma and Xia (2014) and Naseem et al.
(2012) report an approximately 6% gain. As we

6All performance comparisons in this paper are absolute.
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da de el es it nl pt sv Avg

Unsupervised 33.4 18.0 39.9 28.5 43.1 38.5 20.1 44.0 33.2
Täckström et al. (2012) DT 36.7 48.9 59.5 60.2 64.4 52.8 66.8 55.4 55.6
Our Direct Transfer 44.1 44.9 63.3 52.2 57.7 59.7 67.5 55.4 55.6
Our Model + HB embedding 45.0 44.5 63.8 52.2 56.7 59.8 68.7 55.6 55.8
Our Model + Syntactic embedding 45.9 45.9 64.1 52.9 59.1 61.1 69.5 58.1 57.1

Table 1: Comparative results on the CoNLL corpora showing UAS for several parsers: unsupervised
induction Klein and Manning (2004), Direct Transfer (DT) delexicalized parser of Täckström et al.
(2012), our implementation of Direct Transfer and our neural network parsing model using cross-lingual
embeddings Hermann and Blunsom (2014a) (HB) and our proposed syntactic embeddings.

cs de en es fi fr ga hu it sv

Train 1173.3 269.6 204.6 382.4 162.7 354.7 16.7 20.8 194.1 66.6
Dev 159.3 12.4 25.1 41.7 9.2 38.9 3.2 3.0 10.5 9.8
Test 173.9 16.6 25.1 8.5 9.1 7.1 3.8 2.7 10.2 20.4
Total 1506.5 298.6 254.8 432.6 181 400.7 23.7 26.5 214.8 96.8

Table 2: Number of tokens (⇥ 1000) for each language in the Universal Dependency Treebank.

have stated above, our approach is complementary
to the approaches used in these other systems. For
example, we could incorporate the cross-lingual
word clustering feature (Täckström et al., 2012)
or WALS features (Naseem et al., 2012) into our
model, or use our improved delexicalized parser as
the reference model for Ma and Xia (2014), which
we expect would lead to better results yet.

4.2 Experiments with Universal Dependency
Treebank

We also experimented with the Universal Depen-
dency Treebank V1.0, which has many desirable
properties for our system, e.g. dependency types
and coarse POS are the same across languages.
This removes the need for mapping the source and
target language tagsets to a common tagset, as was
done for the CoNLL data. Secondly, instead of
only reporting UAS we can report LAS, which is
impossible on CoNLL dataset where the depen-
dency edge labels differed among languages.

Table 2 shows the size in thousands of tokens
for each language in the treebank. The first thing
to observe is that some languages have abundant
amount of data such as Czech (cs), French (fr) and
Spanish (es). However, there are languages with
modest size i.e. Hungarian (hu) and Irish (ga).

We ran our model with and without syntactic
word embeddings for all languages with English
as the source language. The results are shown in
Table 3. The first observation is that our model

using syntactic word embeddings out-performed
direct transfer for all the languages on both UAS
and LAS. We observed an average improvement
of 3.6% (UAS) and 3.1% (LAS). This consistent
improvement shows the robustness of our method
of incorporating syntactic word embedding to the
model. The second observation is that the gap be-
tween UAS and LAS is as big as 13% on average
for both models. This reflects the increase diffi-
culty of labelling the edges, with unlabelled edge
prediction involving only a 3-way classification7

while labelled edge prediction involves an 81-way
classification.8 Narrowing the gap between UAS
and LAS for resource-poor languages is an impor-
tant research area for future work.

5 Different Source Languages

In the previous sections, we used English as the
source language. However, English might not be
the best choice. For the delexicalized parser, it is
crucial that the source and target languages have
similar syntactic structures. Therefore a differ-
ent choice of source language might substantially
change the performance, as observed in prior stud-
ies (Täckström et al., 2013; Duong et al., 2013a;
McDonald et al., 2011).

7Since there are only 3 transitions: SHIFT, LEFT-ARC,
RIGHT-ARC.

8Since the Universal Dependency Treebank has 40 uni-
versal relations, each relation is attached to LEFT-ARC or
RIGHT-ARC. The number 81 comes from 1 (SHIFT) + 40
(LEFT-ARC) + 40 (RIGHT-ARC).
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cs de es fi fr ga hu it sv UAS LAS

Direct Transfer 47.2 57.9 64.7 44.9 64.8 49.1 47.8 64.9 55.5 55.2 42.7
Our Model + Syntactic embedding 50.2 60.9 67.9 51.4 66.0 51.6 52.3 69.2 59.6 58.8 45.8

Table 3: Results comparing a direct transfer parser and our model with syntactic word embeddings.
Evaluating UAS over the Universal Dependency Treebank. (We observed a similar pattern for LAS.) The
rightmost UAS and LAS columns shows the average scores for the respective metric across 9 languages.

TARGET LANGUAGE

SO
U

R
C

E
L

A
N

G
U

A
G

E

cs de en es fi fr ga hu it sv UAS LAS

cs 76.8 65.9 60.8 70.0 53.7 66.8 59.0 55.2 70.7 56.8 62.1 38.7
de 60.0 78.2 61.7 63.1 52.4 60.6 49.8 56.7 64.0 59.5 58.6 45.5
en 50.2 60.9 81.0 67.9 51.4 66.0 51.6 52.3 69.2 59.6 58.8 45.8
es 60.5 58.5 60.4 80.9 45.7 73.3 53.8 46.9 77.4 55.3 59.1 46.2
fi 49.0 41.8 44.5 33.6 71.5 35.2 24.4 44.6 31.7 43.1 38.7 25.5
fr 54.2 55.7 63.2 74.8 43.6 79.2 54.7 44.3 76.2 54.8 57.9 46.3
ga 32.8 35.3 39.8 56.3 23.5 52.6 72.3 26.0 58.3 32.6 39.7 26.7
hu 42.3 53.4 45.4 43.8 53.3 42.1 29.2 72.1 41.2 42.5 43.7 22.7
it 57.6 53.4 53.2 72.1 42.7 71.4 54.7 42.2 85.9 54.2 55.7 45.0
sv 49.1 59.2 54.9 59.8 47.9 55.7 48.5 52.7 62.2 78.4 54.4 41.2

Table 4: UAS for each language pair in the Universal Dependency Treebank using our best model. The
UAS/LAS column show the average UAS/LAS for all target languages, excluding the source language.
The best UAS for each target language is shown in bold.

In this section we assume that we have multi-
ple source languages. To see how the performance
changes when using a different source language,
we run our best model (i.e., using syntactic em-
beddings) for each language pair in the Universal
Dependency Treebank. Table 4 shows the UAS for
each language pair, and the average across all tar-
get languages for each source language. We also
considered LAS, but observed similar trends, and
therefore only report the average LAS for each
source language. Observe that English is rarely
the best source language; Czech and French give a
higher average UAS and LAS, respectively. Inter-
estingly, while Czech gives high UAS on average,
it performs relatively poorly in terms of LAS.

One might expect that the relative performance
from using different source languages is affected
by the source corpus size, which varies greatly.
We tested this question by limiting the source cor-
pora 66K sentences (and excluded the very small
ga and hu datasets), which resulted in a slight re-
duction in scores but overall a near identical pat-
tern of results to the use of the full sized source
corpora reported in Table 4. Only in one instance
did the best source language change (for target fi
with source de not cs), and the average rankings

by UAS and LAS remained unchanged.
The ten languages considered belong to five

families: Romance (French, Spanish, Italian),
Germanic (German, English, Swedish), Slavic
(Czech), Uralic (Hungarian, Finnish), and Celtic
(Irish). At first glance it seems that language
pairs in the same family tend to perform well.
For example, the best source language for both
French and Italian is Spanish, while the best
source language for Spanish is French. However,
this doesn’t hold true for many target languages.
For example, the best source language for both
Finnish and German is Czech. It appears that the
best choice of an appropriate source language is
not predictable from language family information.

We therefore propose two methods to predict
the best source language for a given target lan-
guage. In devising these methods we assume that
for a given resource-poor target language we do
not have access to any parsed data, as this is ex-
pensive to construct. The first method is based on
the Jensen-Shannon divergence between the dis-
tributions of POS n-grams (1 < n < 6) in a pair
of languages. The second method converts each
language into a vector of binary features based
on word-order information from WALS, the World

119



cs de en es fi fr ga hu it sv UAS LAS

English 50.2 60.9 — 67.9 51.4 66.0 51.6 52.3 69.2 59.6 58.8 45.8
WALS 50.2 59.2 44.5 72.1 51.4 73.3 53.8 44.6 77.4 59.6 60.2 47.1
POS 49.1 58.5 53.2 74.8 53.7 73.3 53.8 56.7 76.2 56.8 61.4 47.7
Oracle 60.5 65.9 63.2 74.8 53.7 73.3 59.0 56.7 77.4 59.6 64.5 50.8
Combined 61.1 67.5 64.4 75.1 54.2 72.8 58.7 57.9 76.7 60.5 64.9 52.0

Table 5: UAS for target languages where the source language is selected in different ways. English uses
English as the source language. WALS and POS choose the best source language using the WALS or
POS ngrams based methods, respectively. Oracle always uses the best source language. Combined is the
model that combines information from all available sources language. The UAS/LAS columns show the
UAS/LAS average performance across 9 languages (English is excluded).

Atlas of Language Structures (Dryer and Haspel-
math, 2013). These features include the relative
order of adjective and noun, etc, and we compute
the cosine similarity between the vectors for a pair
of languages.

As an alternative to selecting a single source
language, we further propose a method to combine
information from all available source languages to
build a parser for a target language. To do so we
first train the syntactic word embeddings on all the
languages. After this step, lexical items from all
source languages and the target language will be
in the same space. We train our parser with syn-
tactic word embeddings on the combined corpus
of all source languages. This parser is then applied
to the target language directly. The intuition here
is that training on multiple source languages limits
over-fitting to the source language, and learns the
“universal” structure of languages.

Table 5 shows the performance of each target
language with the source language given by the
model (in the case of models that select a sin-
gle source language). Always choosing English
as the source language performs worst. Using
WALS features out-performs English on 7 out of
9 languages. Using POS ngrams out-performs the
WALS feature model on average for both UAS
and LAS, although the improvement is small. The
combined model, which combines information
from all available source languages, out-performs
choosing a single source language. Moreover, this
model performs even better than the oracle model,
which always chooses the single best source lan-
guage, especially for LAS. Compared with the
baseline of always choosing English, our com-
bined model gives an improvement about 6% for
both UAS and LAS.

6 Conclusions

Most prior work on cross-lingual transfer depen-
dency parsing has relied on large parallel corpora.
However, parallel data is scarce for resource-poor
languages. In the first part of this paper we investi-
gated building a dependency parser for a resource-
poor language without parallel data. We improved
the performance of a delexicalized parser using
syntactic word embeddings using a neural net-
work parser. We showed that syntactic word em-
beddings are better at capturing syntactic infor-
mation, and particularly suitable for dependency
parsing. In contrast to the state-of-the-art for un-
supervised cross-lingual dependency parsing, our
method does not rely on parallel data. Although
the state-of-the-art achieves bigger gains over the
baseline than our method, our approach could be
more-widely applied to resource-poor languages
because of its lower resource requirements. More-
over, we have described how our method could be
used to complement previous approaches.

The second part of this paper studied ways of
improving performance when multiple source lan-
guages are available. We proposed two methods
to select a single source language that both lead
to improvements over always choosing English as
the source language. We then showed that we can
further improve performance by combining infor-
mation from all the source languages. In summary,
without any parallel data, we managed to improve
the direct transfer delexicalized parser by about
10% for both UAS and LAS on average, for 9 lan-
guages in the Universal Dependency Treebank.

In this paper we focused only on word em-
beddings, however, in future work we could also
build the POS embeddings and the arc-label em-
beddings across languages. This could help our
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system to move more freely across languages, fa-
cilitating not only the development of NLP for
resource-poor languages, but also cross-language
comparisons.
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Abstract
Two questions asking the same thing could
be too different in terms of vocabulary and
syntactic structure, which makes identify-
ing their semantic equivalence challeng-
ing. This study aims to detect semanti-
cally equivalent questions in online user
forums. We perform an extensive number
of experiments using data from two differ-
ent Stack Exchange forums. We compare
standard machine learning methods such
as Support Vector Machines (SVM) with a
convolutional neural network (CNN). The
proposed CNN generates distributed vec-
tor representations for pairs of questions
and scores them using a similarity metric.
We evaluate in-domain word embeddings
versus the ones trained with Wikipedia,
estimate the impact of the training set
size, and evaluate some aspects of do-
main adaptation. Our experimental re-
sults show that the convolutional neural
network with in-domain word embeddings
achieves high performance even with lim-
ited training data.

1 Introduction
Question-answering (Q&A) community sites,
such as Yahoo! Answers,1 Quora2 and Stack Ex-
change,3 have gained a lot of attention in the recent
years. Most Q&A community sites advise users to
search the forum for an answer before posting a
new question. However, this is not always an easy
task because different users could formulate the
same question in completely different ways. Some
user forums, such as those of the Stack Exchange
online community, have a duplication policy. Ex-
act duplicates, such as copy-and-paste questions,

1 https://answers.yahoo.com/
2 http://www.quora.com
3 http://stackexchange.com/

and nearly exact duplicates are usually quickly de-
tected, closed and removed from the forum. Nev-
ertheless, some duplicate questions are kept. The
main reason for that is that there are many ways
to ask the same question, and a user might not be
able to find the answer if they are asking it a dif-
ferent way.4

In this study we define two questions as seman-
tically equivalent if they can be adequately an-
swered by the exact same answer. Table 1 presents
an example of a pair of such questions from Ask
Ubuntu forum. Detecting semantically equivalent
questions is a very difficult task due to two main
factors: (1) the same question can be rephrased in
many different ways; and (2) two questions could
be asking different things but look for the same
solution. Therefore, traditional similarity mea-
sures based on word overlap such as shingling and
Jaccard coefficient (Broder, 1997) and its varia-
tions (Wu et al., 2011) are not able to capture many
cases of semantic equivalence.

In this paper, we propose a convolutional neural
network architecture to detect semantically equiv-
alent questions. The proposed CNN first trans-
forms words into word embeddings (Mikolov et
al., 2013), using a large collection of unlabeled
data, and then applies a convolutional network to
build distributed vector representations for pairs of
questions. Finally, it scores the questions using
a similarity metric. Pairs of questions with simi-
larity above a threshold, defined based on a held-
out set, are considered duplicates. CNN is trained
using positive and negative pairs of semantically
equivalent questions. During training, CNN is in-
duced to produce similar vector representations
for questions that are semantically equivalent.

We perform an extensive number of experi-
ments using data from two different Stack Ex-
change forums. We compare CNN performance
with a traditional classification algorithm (Support

4 http://stackoverflow.com/help/duplicates
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Title: I can’t download anything and I can’t watch videos Title: How can I install Windows software or games?
Body: Two days ago I tried to download skype and it says
an error occurred it says end of central directory signature
not found Either this file is not a zipfile, or it constitutes
one disk of a multi-part archive. In the latter case the cen-
tral directory and zipfile comment will be found on the last
disk(s) of this archive. zipinfo: cannot find zipfile directory
in one of /home/maria/Downloads/SkypeSetup-aoc-jd.exe or
/home/maria/Downloads/SkypeSetup-aoc-jd.exe.zip, and can-
not find /home/maria/Downloads/SkypeSetup-aoc-jd.exe.ZIP
pe... this happens whenever I try to download anything like
games and also i can’t watch videoss it’s looking for plug ins
but it doesn’t find them i hate this [sic!]

Body: Can .exe and .msi files (Windows software) be in-
stalled in Ubuntu? [sic!]

Link: http://askubuntu.com/questions/364350 http://askubuntu.com/questions/988
Possible Answer (Shortened version): .exe files are not binary-compatible with Ubuntu. There are, however, compat-
ibility layers for Linux, such as Wine, that are capable of running .exe.

Table 1: An example of semantically equivalent questions from Ask Ubuntu community.

Vector Machines (Cortes and Vapnik, 1995)) and
a duplicate detection approach (shingling (Broder,
1997)). The results show CNN outperforms the
baselines by a large margin.

We also investigate the impact of different word
embeddings by analyzing the performance of the
network with: (1) word embeddings pre-trained on
in-domain data and all of the English Wikipedia;
(2) word vectors of different dimensionalities; (3)
training sets of different sizes; and (4) out-of-
domain training data and in-domain word embed-
dings. The numbers show that: (1) word embed-
dings pre-trained on domain-specific data achieve
very high performance; (2) bigger word embed-
dings obtain higher accuracy; (3) in-domain word
embeddings provide better performance indepen-
dent of the training set size; and (4) in-domain
word embeddings achieve relatively high accuracy
even using out-of-domain training data.

2 Task

This work focuses on the task of predicting seman-
tically equivalent questions in online user forums.
Following the duplication policy of the Stack Ex-
change online community,5 we define semanti-
cally equivalent questions as follows:

Definition 1. Two questions are semantically
equivalent if they can be adequately answered by
the exact same answer.

Since our definition of semantically equivalent
questions corresponds to the rules of the Stack
Exchange duplication policy, we assume that all

5 http://blog.stackoverflow.com/2010/11/dr-strangedupe-
or-how-i-learned-to-stop-worrying-and-love-duplication/;
http://meta.stackexchange.com/questions/32311/do-not-
delete-good-duplicates

questions of this community that were marked as
duplicates are semantically equivalent. An exam-
ple of such questions is given in Table 1. These
questions vary significantly in vocabulary, style,
length and content quality. However, both ques-
tions require the exact same answer.

The exact task that we approach in this study
consists in, given two problem definitions, predict-
ing if they are semantically equivalent. By prob-
lem definition we mean the concatenation of the
title and the body of a question. Throughout this
paper we use the term question as a synonym of
problem definition.

3 Related Work

The development of CNN architectures for tasks
that involve sentence-level and document-level
processing is currently an area of intensive re-
search in natural language processing and infor-
mation retrieval, with many recent encouraging re-
sults.

Kim (2014) proposes a simple CNN for sen-
tence classification built on top of word2vec
(2013). A multichannel variant which combines
static word vectors from word2vec and word
vectors which are fine-tuned via backpropagation
is also proposed. Experiments with different vari-
ants are performed on a number of benchmarks
for sentence classification, showing that the sim-
ple CNN performs remarkably well, with state-of-
the-art results in many of the benchmarks, high-
lighting the importance of using unsupervised pre-
training of word vectors for this task.

Hu et al.(2014) propose a CNN architecture
for hierarchical sentence modeling and, based
on that, two architectures for sentence matching.
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They train the latter networks using a ranking-
based loss function on three sentence match-
ing tasks of different nature: sentence comple-
tion, response matching and paraphrase identifica-
tion. The proposed architectures outperform pre-
vious work for sentence completion and response
matching, while the results are slightly worse than
the state-of-the-art in paraphrase identification.

Yih et al.(2014) focus on the task of answering
single-relation factual questions, using a novel se-
mantic similarity model based on a CNN architec-
ture. Using this architecture, they train two mod-
els: one for linking a question to an entity in the
DB and the other mapping a relation pattern to a
relation in the DB. Both models are then combined
for inferring the entity that is the answer. This ap-
proach leads to a higher precision on Q&A data
from the WikiAnswers corpus than the existing
rules-based approach for this task.

Dos Santos & Gatti (2014) developed a CNN
architecture for sentiment analysis of short texts
that jointly uses character-level, word-level and
sentence-level information, achieving state-of-the-
art results on well known sentiment analysis
benchmarks.

For the specific task of semantically equivalent
questions detection that we address in this pa-
per, we are not aware of any previous work using
CNNs. Muthmann and Petrova (2014) approach
the task of identifying topical near-duplicate re-
lations between questions from social media as
a classification task. They use a simple lexico-
syntactical feature set and different classifiers are
evaluated, with logistic regression reported as the
best performing one. However, it is not possible to
directly compare our results to theirs because their
experimental methodology is not clearly described
in the paper.

There are several tasks related to identifying se-
mantically equivalent questions. These tasks in-
clude near-duplicate detection, paraphrase iden-
tification and textual semantic similarity estima-
tion. In what follows, we outline the differences
between these tasks and the one addressed in this
work.

Duplicate and Near-Duplicate Detection aims
to detect exact copies or almost exact copies of
the same document in corpora. Duplicate detec-
tion is an important component of systems for Web
crawling and Web search, where it is important to
identify redundant data in large corpora. Common

techniques to detect duplicate documents include
shingling (Broder, 1997; Alonso et al., 2013) and
fingerprinting (Manku et al., 2007). State-of-the-
art work also focuses on the efficiency issues of
the task (Wu et al., 2011). It is worth noting
that even though all duplicate and near-duplicate
questions are also semantically equivalent, the re-
verse is not true. Semantically equivalent ques-
tions could have small or no word overlap (see Ta-
ble 1 for an example), and thus, are not duplicates.

Paraphrase Identification is the task of exam-
ining two sentences and determining whether they
have the same meaning (Socher et al., 2011). If
two questions are paraphrases, they are also se-
mantically equivalent. However, many seman-
tically equivalent questions are not paraphrases.
The questions shown in Table 1 significantly differ
in the details they provide, and thus, could not be
considered as having the same meaning. State-of-
the-art approaches to paraphrase identification in-
clude using Machine Translation evaluation met-
rics (Madnani et al., 2012) and Deep Learning
techniques (Socher et al., 2011).

Textual Semantic Similarity is the task of
measuring the degree of semantic similarity be-
tween two texts, usually on a graded scale from
0 to 5, with 5 being the most similar (Agirre et al.,
2013) and meaning that the texts are paraphrases.
All semantically equivalent questions are some-
what semantically similar, but semantic equiva-
lence of questions defined here does not corre-
spond to the highest value of the textual semantic
similarity for the same reasons these questions are
not always paraphrases.

4 Neural Network Architecture

In this section, we present our neural-network
strategy for detecting semantically equivalent
questions.

4.1 Feed Forward Processing

As detailed in Figure 1, the input for the network
is tokenized text strings of the two questions. In
the first step, the CNN transforms words into real-
valued feature vectors, also known as word em-
beddings or word representations. Next, a convo-
lutional layer is used to construct two distributed
vector representations rq1 and rq2 , one for each in-
put question. Finally, the CNN computes a simi-
larity score between rq1 and rq2 . Pairs of questions
with similarity above a threshold, defined based on
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Figure 1: Convolutional neural network for se-
mantically equivalent questions detection.

a heldout set, are considered duplicates.

4.2 Word Representations
The first layer of the network transforms words
into representations that capture syntactic and
semantic information about the words. Given
a question consisting of N words q =

{w1, w2, ..., wN}, every word wn is converted into
a real-valued vector rwn . Therefore, for each ques-
tion, the input to the next NN layer is a sequence
of real-valued vectors qemb

= {rw1 , rw2 , ..., rwN }
Word representations are encoded by column

vectors in an embedding matrix W 0 2 Rd⇥|V |,
where V is a fixed-sized vocabulary. Each column
W 0

i 2 Rd corresponds to the word embedding of
the i-th word in the vocabulary. We transform a
word w into its word embedding rw by using the
matrix-vector product:

rw
= W 0vw (1)

where vw is a vector of size |V | which has value
1 at index w and zero in all other positions. The
matrix W 0 is a parameter to be learned, and the
size of the word embedding d is a hyper-parameter
to be chosen by the user.

4.3 Question Representation and Scoring
The next step in the CNN consists in creating dis-
tributed vectors from word embeddings represen-
tations of the input questions. To perfom this task,
the CNN must deal with two main challenges: dif-
ferent questions can have different sizes; and im-
portant information can appear at any position in

the question. The convolutional approach (Waibel
et al., 1989) is a natural choice to tackle these
challenges. In recent work, convolutional ap-
proaches have been used to solve similar prob-
lems when creating representations for text seg-
ments of different sizes (dos Santos and Gatti,
2014) and character-level representations of words
of different sizes (dos Santos and Zadrozny, 2014).
Here, we use a convolutional layer to compute
the question-wide distributed vector representa-
tions rq1 and rq2 . For each question, the convo-
lutional layer first produces local features around
each word in the question. Then, it combines these
local features using a sum operation to create a
fixed-sized feature vector (representation) for the
question.

Given a question q1, the convolutional layer
applies a matrix-vector operation to each win-
dow of size k of successive windows in qemb

1 =

{rw1 , rw2 , ..., rwN }. Let us define the vector zn 2
Rdk as the concatenation of a sequence of k word
embeddings, centralized in the n-th word:6

zn = (rwn�(k�1)/2 , ..., rwn+(k�1)/2
)

T

The convolutional layer computes the j-th ele-
ment of the vector rq1 2 Rclu as follows:

[rq1 ]j = f

 
X

1<n<N

⇥
f
�
W 1zn + b1

�⇤
j

!
(2)

where W 1 2 Rclu⇥dk is the weight matrix of the
convolutional layer and f is the hyperbolic tangent
function. The same matrix is used to extract local
features around each word window of the given
question. The global fixed-sized feature vector for
the question is obtained by using the sum over all
word windows.7 Matrix W 1 and vector b1 are pa-
rameters to be learned. The number of convolu-
tional units clu (which corresponds to the size of
the question representation), and the size of the
word context window k are hyper-parameters to
be chosen by the user.

Given rq1 and rq2 , the representations for the
input pair of questions (q1, q2), the last layer of the
CNN computes a similarity score between q1 and
q2. In our experiments we use the cosine similarity
s(q1, q2) =

~rq1 . ~rq2
k ~rq1kk ~rq2k .

6 Words with indices outside of the sentence boundaries
use a common padding embedding.

7 Using max operation instead of sum produces very
similar results.
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4.4 Training Procedure
Our network is trained by minimizing the mean-
squared error over the training set D. Given a
question pair (q1, q2), the network with param-
eter set ✓ computes a similarity score s✓(q1, q2).
Let y(q1,q2) be the correct label of the pair, where
its possible values are 1 (equivalent questions) or
0 (not equivalent questions). We use stochastic
gradient descent (SGD) to minimize the mean-
squared error with respect to ✓:

✓ 7!
X

(x,y)2D

1

2

(y � s✓(x))

2 (3)

where x = (q1, q2) corresponds to a question pair
in the training set D and y represents its respective
label y(q1,q2).

We use the backpropagation algorithm to com-
pute gradients of the network. In our experiments,
we implement the CNN architecture and the back-
propagation algorithm using Theano (Bergstra et
al., 2010).

5 Experimental Setup

5.1 Data
In our experiments we use data from the
Ask Ubuntu Community Questions and Answers
(Q&A) site.8 Ask Ubuntu is a community for
Ubuntu users and developers, and it is part of the
Stack Exchange9 Q&A communities. The users
of these communities can ask and answer ques-
tions, and vote up and down both questions and
answers. Users with high reputation become mod-
erators and can label a new question as a dupli-
cate to an existing question.10 Usually it takes five
votes from different moderators to close a question
or to mark it as a duplicate.

We use the Ask Ubuntu data dump provided in
May 2014. We extract all question pairs linked as
duplicates. The data dump we use contains 15277
such pairs. For our experiments, we randomly se-
lect a training set of 24K pairs, a test set of 6K and
a validation set of 1K, making sure there are no
overlaps between the sets. Half of each set con-
tains pairs of semantically equivalent questions
(positive pairs) and half are pairs of questions that
are not semantically equivalent. The latter pairs

8 http://askubuntu.com/
9 http://stackexchange.com

10 More information about Stack Exchange communities
could be found here: http://stackexchange.com/
tour

are randomly generated from the corpus. The data
was tokenized with NLTK (Bird et al., 2009), and
all links were replaced by a unique string.

For the experiments on a different domain (see
Section 6.4) we use the Meta Stack Exchange11

data dump provided in September 2014. Meta
Stack Exchange (Meta) is used to discuss the
Stack Exchange community itself. People ask
questions about the rules, features and possible
bugs. The data dump we use contains 67746 ques-
tions, where 19456 are marked as duplicates. For
the experiments on this data set, we select random
balanced disjoint sets of 20K pairs for training, 1K
for validation and 4K for testing. We prepare the
data in exactly the same manner as the Ask Ubuntu
data.

5.2 Baselines

We explore three main baselines: a method based
on the Jaccard coefficient which was reported to
provide high accuracy for the task of duplicate de-
tection (Wu et al., 2011), a Support Vector Ma-
chines (SVM) classifier (Cortes and Vapnik, 1995)
and the combination of the two.

For the first baseline, documents are first repre-
sented as sets of shingles of lengths from one to
four, and then the Jaccard coefficient for a pair of
documents is calculated as follows:

J(S(d1), S(d2)) =

S(d1) \ S(d2)

S(d1) [ S(d2)
,

where S(di) is the set of shingles generated from
the ith document. High values of the Jaccard co-
efficient denote high similarity between the docu-
ments. If the value exceeds a threshold T , the doc-
uments are considered semantically equivalent. In
this case, the training data is used to select the op-
timal threshold T .

For the SVM baseline, we represent documents
with n-grams of length up to four. For each pair
of questions and each n-gram we generate three
features: (1) if the n-gram is present in the first
question; (2) if the n-gram is present in the second
question; (3) the overall normalized count of the
n-gram in the two questions. We use the RBF ker-
nel and perform grid search to optimize the val-
ues of C and � parameters. We use a frequency
threshold12 to reduce the number of features. The

11 meta.stackexchange.com
12 Several values (2, 5, 35 and 100) were tried with cross-

validation, the threshold with value 5 was selected
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implementation provided by LibSVM (Chang and
Lin, 2011) is used.

In order to combine the two baselines, for a pair
of questions we calculate the values of the Jaccard
coefficient with shingles size up to four, and then
add these values as additional features used by the
SVM classifier.

5.3 Word Embeddings
The word embeddings used in our experiments are
initialized by means of unsupervised pre-training.
We perform pre-training using the skip-gram NN
architecture (Mikolov et al., 2013) available in the
word2vec13 tool. Two different corpora are used
to train word embeddings for most of the experi-
ments: the English Wikipedia and the Ask Ubuntu
community data. The experiments presented in
Section 6.4 also use word embeddings trained on
the Meta Stack Exchange community data.

In the experiments with the English Wikipedia
word embeddings, we use the embeddings pre-
viously produced by dos Santos & Gatti (2014).
They have used the December 2013 snapshot of
the English Wikipedia corpus to obtain word em-
beddings with word2vec.

In the experiments with Ask Ubuntu and Meta
Stack Exchange word embeddings, we use the
Stack Exchange data dump provided in May 2014
to train word2vec. Three main steps are used to
process all questions and answers from these Stack
Exchange dumps: (1) tokenization of the text us-
ing the NLTK tokenizer; (2) image removal, URL
replacement and prefixing/removal of the code if
necessary (see Section 6.1 for more information);
(3) lowercasing of all tokens. The resulting cor-
pora contains about 121 million and 19 million to-
kens for Ask Ubuntu and Meta Stack Exchange,
respectively.

6 Experimental Results

6.1 Comparison with Baselines
Ask Ubuntu community gives users an opportu-
nity to format parts of their posts as code by us-
ing code tags (an example is in italic in Table 1).
It includes not only programming code, but com-
mands, paths to directories, names of packages, er-
ror messages and links. Around 30% of all posts
in the data dump contain code tags. Since the rules
for code formatting are not well defined, it was not
clear if a learning algorithm would benefit from

13 http://code.google.com/p/word2vec/

System Valid. Acc. Test Acc.
SVM + shingles 85.5 82.4

CNN + Askubuntu 93.4 92.9

Table 3: CNN and SVM accuracy on the valida-
tion and the test set using the full training set.

including it or not. Therefore, for each algorithm
we tested three different approaches to handling
code: keeping it as text; removing it; and prefix-
ing it with a special tag. The latter is done in order
to distinguish between the same term used within
text or within code or a command (e.g., a for as
a preposition and a for in a for loop). When cre-
ating the word embeddings, the same approach to
the code as for the training data was followed.

The 1K example validation set is used to tune
the hyper-parameters of the algorithms. In order
to speed up computations, we perform our initial
experiments using a 4K examples balanced subset
of the training set. The best validation accuracies
are reported in Table 2.

We test the shingling-based approach with dif-
ferent shingle sizes. As Table 2 indicates, the
accuracy decreases with the increase of the shin-
gle size. The fact that much better accuracy is
achieved when comparing questions based on sim-
ple word overlap (shingle size 1), suggests that se-
mantically equivalent questions are not duplicates
but rather have topical similarity. The SVM base-
line performs well only when combined with the
shingling approach by using the values of the Jac-
card coefficient for shingle size up to four as ad-
ditional features. A possible reason for this is that
n-gram representations do not capture enough in-
formation about semantic equivalence. The CNN
with word embeddings outperforms the baselines
by a significant margin.

The results presented in Table 2 indicate that the
algorithms do not benefit from including the code.
This is probably because the code tags are not al-
ways used appropriately and some code examples
include long error messages, which make the user
generated data even more noisy. Therefore, in the
following experiments the code is removed.

The validation accuracy and the test accuracy
using the full 24K training set is presented in Ta-
ble 3. The SVM with four additional shingling
features is found best among the baselines (see Ta-
ble 2) and is used as a baseline in this experiment.
Again, the CNN with word embeddings outper-
forms the best baseline by a significant margin.
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Algorithm Features Code Best validation acc. Optimal hyper-parameters
SVM-RBF binary + freq. kept 66.2 C=8.0, � ⇡3.05e-05
SVM-RBF binary + freq. removed 66.53 C=2.0, � ⇡1.2e-04
SVM-RBF binary + freq. prefixed 66.53 C=8.0, � ⇡3.05e-05

Shingling (size 1) - kept 72.35 -
Shingling (size 1) - removed 72.65 -
Shingling (size 1) - prefixed 70.94 -
Shingling (size 2) - kept 69.24 -
Shingling (size 2) - removed 66.83 -
Shingling (size 2) - prefixed 67.74 -
Shingling (size 3) - kept 65.23 -
Shingling (size 3) - removed 62.93 -
Shingling (size 3) - prefixed 64.43 -

SVM-RBF binary + freq. + shingles kept 74.0 C=32.0, � ⇡3.05e-05
SVM-RBF binary + freq. + shingles removed 77.4 C=32.0, � ⇡3.05e-05
SVM-RBF binary + freq. + shingles prefixed 73.6 C=32.0, � ⇡3.05e-05

CNN Askubuntu word vectors kept 91.3
CNN Askubuntu word vectors removed 92.4 d=200, k=3, clu=300, �=0.005
CNN Askubuntu word vectors prefixed 91.4

Table 2: Validation Accuracy and best parameters for the baselines and the Convolutional Neural Net-
work.

6.2 Impact of Domain-Specific Word
Embeddings

We perform two experiments to evaluate the im-
pact of the word embeddings on the CNN accu-
racy. In the first experiment, we gradually increase
the dimensionality of word embeddings from 50
to 400. The results are presented in Figure 2.
The vertical axis corresponds to validation accu-
racy and the horizontal axis represents the training
time in epochs. As has been shown in (Mikolov et
al., 2013), word embeddings of higher dimension-
ality trained on a large enough data set capture se-
mantic information better than those of smaller di-
mensionality. The experimental results presented
in Figure 2 correspond to these findings: we can
see improvements in the neural network perfor-
mance when increasing the word embeddings di-
mensionality from 50 to 100 and from 100 to 200.
However, the Ask Ubuntu data set containing ap-
proximately 121M tokens is not big enough for an
improvement when increasing the dimensionality
from 200 to 400.

In the second experiment, we evaluate the im-
pact of in-domain word embeddings on the net-
work’s performance. We obtain word embeddings
trained on two different corpora: Ask Ubuntu
community data and English Wikipedia (see Sec-
tion 5.3). Both word embeddings have 200 dimen-
sions. The results presented in Table 4 show that
training on in-domain data is more beneficial for
the network, even though the corpus used to cre-
ate word embeddings is much smaller.

Figure 2: CNN accuracy depending on the size of
word embeddings

Word Embeddings Num.tokens Valid.Acc.
Wikipedia ⇡1.6B 85.5
AskUbuntu ⇡121M 92.4

Table 4: Validation Accuracy of the CNN with
word embeddings pre-trained on different corpora.

6.3 Impact of Training Set Size
In order to measure the impact of the training set
size, we perform experiments using subsets of the
training data, starting from 100 question pairs and
gradually increasing the size to the full 24K train-
ing set.14 Figure 3 compares the learning curves
for the SVM baseline (with parameters and fea-
tures described in Section 6.1) and for the CNN
with word embeddings trained on Ask Ubuntu and
English Wikipedia. The vertical axis corresponds
to the validation accuracy, and the horizontal axis
represents the training set size. As Figure 3 indi-
cates, increasing the size of the training set pro-

14 We use sets of 100, 1000, 4000, 12000 and 24000 ques-
tion pairs.
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vides improvements. Nonetheless, the difference
in accuracy when training with the full 24K train-
ing set and 4K subset is about 9% for SVM and
only about 1% for the CNN. This difference is
small for both word embeddings pre-trained on
Ask Ubuntu and Wikipedia but, the in-domain
word embeddings provide better performance in-
dependently of the training set size.

Figure 3: Validation accuracy for the baseline and
the CNN depending on the size of training set.

6.4 Domain Adaptation
Muthmann and Petrova (2014) report that the
Meta Stack Exchange Community15 is one of the
hardest for finding semantically equivalent ques-
tions.

We perform the same experiments described in
previous sections using the Meta data set. In Ta-
ble 5, we can see that the CNN accuracy on Meta
test data (92.68%) is similar to the one for Ask
Ubuntu community on test data (92.4%) (see Ta-
ble 3).

Also, in Table 5, we show results of a domain
adaptation experiment in which we do not use
training data from the Meta forum. In this case,
the CNN is trained using Ask Ubuntu data only.
The numbers show that even in this case using in-
domain word embeddings helps to achieve rela-
tively high accuracy: 83.35% on the test set.

7 Error Analysis
As we have expected, the CNN with in-domain
word vectors outperforms the vocabulary-based
baselines in identifying semantically equivalent
questions that are too different in terms of vo-
cabulary. The CNN is also better at distinguish-
ing questions with similar vocabulary but differ-
ent meanings. For example, the question pair, (q1)

15 http://meta.stackexchange.com/

Train.Data Size Word Vect. Val.Acc. Test.Acc.
META 4K META 91.1 89.97
META 4K Wikipedia 86.9 86.27
META 20K META 92.8 92.68
META 20K Wikipedia 90.6 90.52

AskUbuntu 24K META 83.9 83.35
AskUbuntu 24K AskUbuntu 76.8 80.0

Table 5: Convolutional Neural Network Accuracy
tested on Meta Stack Exchange community data.

How can I install Ubuntu without removing Win-
dows? and (q2) How do I upgrade from x86 to x64
without losing settings?16 is erroneously classi-
fied as a positive pair by the SVM, while the CNN
classifies it correctly as a negative pair.

There are some cases where both CNN and
SVM fail to identify semantic equivalence. Some
of these cases include questions where essen-
tial information is presented as an image, e.g.,
a screenshot, which was removed during prepro-
cessing.17

8 Conclusions and Future Work

In this paper, we propose a method for identify-
ing semantically equivalent questions based on a
convolutional neural network. We experimentally
show that the proposed CNN achieves very high
accuracy especially when the word embeddings
are pre-trained on in-domain data. The perfor-
mance of an SVM-based approach to this task was
shown to depend highly on the size of the training
data. In contrast, the CNN with in-domain word
embeddings provides very high performance even
with limited training data. Furthermore, experi-
ments on a different domain have demonstrated
that the neural network achieves high accuracy in-
dependently of the domain.

The next step in our research is building a sys-
tem for retrieval of semantically equivalent ques-
tions. In particular, given a corpus and a question,
the task is to find all questions that are semanti-
cally equivalent to the given one in the corpus. We
believe that a CNN architecture similar to the one
proposed in this paper might be a good fit to tackle
this problem.
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Abstract

Although entity linking is a widely re-
searched topic, the same cannot be said for
entity linking geared for languages other
than English. Several limitations includ-
ing syntactic features and the relative lack
of resources prevent typical approaches to
entity linking to be used as e↵ectively for
other languages in general. We describe
an entity linking system that leverage se-
mantic relations between entities within an
existing knowledge base to learn and per-
form entity linking using a minimal en-
vironment consisting of a part-of-speech
tagger. We measure the performance of
our system against Korean Wikipedia ab-
stract snippets, using the Korean DBpe-
dia knowledge base for training. Based on
these results, we argue both the feasibil-
ity of our system and the possibility of ex-
tending to other domains and languages in
general.

1 Introduction

A crucial step in creating the Web of Data is
the process of extracting structured data, or RDF
(Adida et al., 2012) from unstructured text. This
step enables machines to read and understand
unstructured Web pages that consist the major-
ity of the Web. Three tasks play a part in ex-
tracting RDF from unstructured text: Named en-
tity recognition(NER), where strings representing
named entities are extracted from the given text;
entity linking(EL), where each named entity rec-
ognized from NER is mapped to a appropriate re-
source from a knowledge base; and relation ex-
traction(Usbeck et al., 2014). Although entity
linking is an extensively researched field, most
research done is aimed primarily for the English
language. Research about entity linking for lan-

guages other than English have also been per-
formed (Jakob et al., 2013), but most state-of-art
entity linking systems are not fully language inde-
pendent.

The reason for this is two-fold. Firstly, most
entity linking systems depend on an existing sys-
tem to perform named entity recognition before-
hand. For instance, the system proposed by Us-
beck (2014) uses FOX (Speck et al., 2014) to
perform named entity recognition as the starting
point. The problem with this approach is that
an existing named entity recognition system is re-
quired, and thus the performance of entity linking
is bound by the performance of the named entity
recognition system. Named entity recognition sys-
tems for English achieve high performance even
by utilizing a simple dictionary-based approach
augmented by part-of-speech annotations, but this
approach does not work in all languages in gen-
eral. CJK1 languages in particular are di�cult to
perform named entity recognition on because lan-
guage traits such as capitalization and strict token
separation by white-space do not exist. Other ap-
proaches to named entity recognition such as sta-
tistical models or projection models respectively
require a large amount of annotated training data
and an extensive parallel corpus to work, but the
cost of creating these resources is also non-trivial.
Some approaches to entity linking utilizing su-
pervised and semi-supervised learning also su↵er
from the lack of manually annotated training data
for some languages. Currently, there is no proper
golden standard dataset for entity linking for the
Korean language.

In this paper, we present an entity linking sys-
tem for Korean that overcomes these obstacles
with an unsupervised learning approach utilizing
semantic relations between entities obtained from
a given knowledge base. Our system uses these
semantic relations as hints to learn feature values

1Chinese, Japanese, Korean
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for both named entity recognition and entity link-
ing. In Section 3, we describe the requirements
of our system, and present the architecture of both
the training and actual entity linking processes. In
Section 4, we compare the performance of our sys-
tem against both a rule-based baseline and the cur-
rent state-of-art system based on Kim’s (2014) re-
search.

2 Related Work

The current state-of-art entity linking system for
Korean handles both named entity recognition and
entity linking as two separate steps (Kim et al.,
2014). This system uses hyperlinks within the Ko-
rean Wikipedia and a small amount of text man-
ually annotated with entity information as train-
ing data. It employs a SVM model trained with
character-based features to perform named entity
recognition, and uses the TF*ICF (Mendes et al.,
2011) and LDA metrics to disambiguate between
entity resources during entity linking. Kim (2014)
reports an F1-score of 75.66% for a simplified task
in which only surface forms and entities which ap-
pear as at least one hyperlink within the Korean
Wikipedia are recognized as potential entity can-
didates.

Our system utilizes relations between entities,
which can be said to be a graph-based approach
to entity linking. There have been recent research
about entity linking that exploit the graph struc-
ture of both the named entities within text and
RDF knowledge bases. Han (2011) uses a graph-
based collective method which can model and ex-
ploit the global interdependence between di↵erent
entity linking decisions. Alhelbawy (2014) uses
graph ranking combined with clique partitioning.
Moro (2014) introduces Babelfy, a unified graph-
based approach to entity linking and word sense
disambiguation based on a loose identification of
candidate meanings coupled with a densest sub-
graph heuristic which selects high-coherence se-
mantic interpretations. Usbeck (2014) combines
the Hypertext-Induced Topic Search (HITS) algo-
rithm with label expansion strategies and string
similarity measures.

There also has been research about named en-
tity recognition for Korean. Kim (2012) pro-
poses a method to automatically label multi-
lingual data with named entity tags, combin-
ing Wikipedia meta-data with information ob-
tained through English-foreign language parallel

Wikipedia sentences. We do not use this approach
in our system because our scope of entities is
wider than the named entity scope defined in the
MUC-7 annotation guidelines, which is the scope
of Kim’s research.

3 The System

Due to the limitations of performing entity linking
for the Korean language described in Section 1,
our system is designed with some requirements in
mind. The requirements are:

• The system should be able to be trained and
ran within a minimal environment, which we
define as an existing RDF knowledge base
containing semantic relations between enti-
ties, and a part-of-speech tagger. In this pa-
per, we use the 2014 Korean DBpedia RDF
knowledge base and the ETRI Korean part-
of-speech tagger.

• The system should be able to perform en-
tity linking without using external informa-
tion not derived from the knowledge base.

We define the task of our system as follows:
Given a list of entity uniform resource identi-
fiers(URI) derived from the knowledge base, an-
notate any given text with the appropriate entity
URIs and their positions within the text.

3.1 Preprocessing
The preprocessing step of our system consists
of querying the knowledge base to build a dic-
tionary of entity URIs and their respective sur-
face forms. As we are using the Korean DB-
pedia as our knowledge base, we define all re-
sources with a URI starting with the names-
pace ‘http://ko.dbpedia.org/resource/’ and which
are not mapped to disambiguation nor redirection
Wikipedia pages as valid entities. For each entity,
we define all literal strings connected via the prop-
erty ‘rdfs:label’ to the entity and all entities that
disambiguate or redirect to the entity as possible
surface forms.

The dictionary that results from preprocessing
contains 303,779 distinct entity URIs and 569,908
entity URI-surface form pairs.

3.2 Training
After the preprocessing step, our system performs
training by adjusting feature values based on data
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from a large amount of unannotated text docu-
ments. As the given text is not annotated with en-
tity data, we use the following assumption to help
distinguish potential entities within the text:

Assumption. Entity candidates which have a high
degree of semantic relations with nearby en-
tity candidates are likely actual entities. We
define an ‘entity candidate’ of a document as
a substring-entity URI pair in which the sub-
string appears at a specific position within the
document and the pair exists in the dictionary
created during preprocessing, and a ‘seman-
tic relation’ between two entity candidates c1,
c2 (RelPred(c1, c2)) as an undirected relation
consisting of all predicates in the knowledge
base that connect the entity URIs of the entity
candidates.

The basis for this assumption is that some men-
tions of ‘popular’(having a high degree within
the knowledge base RDF graph) entity URIs will
be accompanied with related terms, and that the
knowledge base will have RDF triples connecting
the entity to the other entity URIs representing the
related terms. Thus we assume that by selecting all
entity candidates with a high degree of semantic
relations, these candidates display features more
representative of actual entities than the remaining
entity candidates do.

For each document in the training set, we first
perform part-of-speech tagging to split the text
into individual morphemes. Because the concate-
nation of the morphemes of a Korean word is not
always identical to the word itself, we transform
the morphemes into ‘atomic’ sub-strings which
represent minimal building blocks for entity can-
didates and can have multiple POS tags.

After part-of-speech tagging is complete, we
then gather a set of entity candidates from the
document. We first find all non-overlapping sub-
strings within the document that correspond to
entity surface forms. It is possible for these
sub-strings to overlap with each other([[Chicago]
Bulls]); and because the average length of entity
surface forms in Korean is very short(between 2
to 3 characters), we opt to reduce the problem size
of the training process by choosing only the sub-
string with the longest length when multiple sub-
strings overlap with each other.

As to further reduce the number of entity candi-
dates we consider for training, we only use the en-
tity candidate with the most ‘popular’ entity URI

Figure 1: All possible entity candidates within the
text fragment ‘Gyeongjong of Goryeo is’ (Kim et
al., 2014)

per group of candidates that share the same sub-
string within the document. We define the ‘popu-
larity’ of an entity URI in terms of the RDF triples
in the knowledge base that has the URI as the ob-
ject. More formally, we define UriPop(c) for an
entity candidate c with the entity URI cu with the
equations below. A larger UriPop value means a
more ‘popular’ entity URI, and Pred is meant to
prevent overly frequent predicates in the knowl-
edge base from dominating UriPop.

(1)
UriPop(c) = log(

X

p2KBpredicates

Pred(p)

⇥ |{s|(s, p, cu) 2 KB}|)

(2)Pred(p) = 1 � |{(s, o)|(s, p, o) 2 KB}|
|{(s, p, o) 2 KB}|

At this stage of the training process, we have
a set of non-overlapping entity candidates. We
now classify these candidates into two classes:
eT (entity) and eF(non-entity) according to our
previous assumption. We measure the degree
of semantic relations of an entity candidate c,
S emRel(c), with the following equation where Nc
is the set of entity candidates which are within 20
words from the target candidate in the document:

(3)S emRel(c) =
P

c02Nc

P
p2RelPred(c,c0) Pred(p)
|Nc|

Since we do not have enough evidence at this
point to distinguish entities from non-entities,
we use semantic relations from all nearby en-
tity candidates to calculate S emRel. We order
the entity candidates into a list in decreasing or-
der of S emRel, and classify entity candidates
from the start of the list into eT until either 1)

eT
document word # > lw or 2) S emRel(c) < ls are
satisfied, where both lw and ls are constants that
continuously get adjusted during the training pro-
cess. The remaining entity candidates all get clas-
sified into eF .

134



We now update the current feature values based
on the entity candidates in eT and eF . For each
feature f , we first define two sub-classes e f T =

{e|e has f ^ e 2 eT } and e f F = {e|e has f ^ e 2 eF}.
We then update the feature value of f from ↵

� to
↵+|e f T |

�+|e f T |+|e f F | , which represents the probability of an
entity candidate having feature f to be classified
into eT (is an entity). The full list of features we
used is shown below:

f1: String length The length (in characters) of
the sub-string of the candidate.

f2: POS tag The POS tag(s) of the sub-string of
the candidate. If multiple POS tags exist, we
take the average of the f2 values for each tag
as the representive f2 value.

f3: Head POS tag The first POS tag of the sub-
string of the candidate.

f4: Tail POS tag The last POS tag of the sub-
string of the candidate.

f5: Previous POS tag The POS tag of the sub-
string right before the candidate. If the can-
didate is preceded by white-space, we use the
special tag ‘BLANK’.

f6: Next POS tag The POS tag of the sub-string
right after the candidate. If the candidate is
followed by white-space, we use the special
tag ‘BLANK’.

f7: UriPop The UriPop score of the entity URI
of the candidate. Since UriPop has a con-
tinuous range, we keep separate features for
UriPop score intervals of 0.2.

Given these features, we define IndS core(c) of
an entity candidate c, which represents the overall
probability c would be classified in eT indepen-
dently of its surrounding context, as the average
of the feature values for c.

We also define WeightedS emRel(c) as the
amount of evidence via semantic relations c has
of being classified in eT . We define this score in
terms of semantic relations relative to the UriPop
score of c in order to positively consider entity
candidates which have more semantic relations
than their entity URIs would normally have.

Finally, we define EntityS core(c) representing
the overall evidence for c to be in eT . The respec-
tive equations for these scores are shown below.

WeightedS emRel(c)

=

P
c02Nc

P
p2RelPred(c,c0) Pred(p) ⇥ UriPop(c0)

UriPop(c)
(4)

(5)EntityS core(c) = IndS core(c)
+WeightedS emRel(c)

As we want to assign stronger evidence for se-
mantic relations with entity candidates that are
likely actual entities (as opposed to relations with
non-entities), we define WeightedS emRel to be
have a recursive relation with EntityS core.

We end the training process for a single doc-
ument by computing the EntityS core for each
entity candidate in eT and eF , and adding these
scores respectively into the lists of scores distT
and distF . As the EntityS core for the same en-
tity candidate will change as training proceeds, we
only maintain the 10,000 most recent scores for
both lists.

3.3 Entity Linking
Since the actual entity linking process is also about
selecting entity candidates from the given docu-
ment, the process itself is similar to the training
process. We list the di↵erences of the entity link-
ing process compared to training below.

When we choose the initial entity candidates,
we do not remove candidates with overlapping
sub-strings. Although we do limit the number of
candidates that map to the same sub-string, we
choose the top 3 candidates based on UriPop in-
stead of just 1.

We compute the EntityS core for each entity
candidate without performing candidate classifica-
tion nor feature value updates. Although the value
of EntityS core(c) is intended to be proportional
to the possibility the candidate c is actually an en-
tity, we need a way to define a threshold constant
to determine which candidates to actually classify
as entities. Thus, we then normalize any given
EntityS core(c) score of an entity candidate c into
a confidence score Con f (c), which represents the
relative probability of c being a member of eT
against being a member of eF . This is computed
by comparing the score against the lists distT and
distF , as shown in the following equations:

Con f T (c) =
|{x|x 2 distT ^ x < EntityS core(c)}|

|distT |
(6)
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Con f F(c) =
|{x|x 2 distF ^ x > EntityS core(c)}|

|distF |
(7)

(8)Con f (c) =
Con f T (c)

Con f T (c) +Con f F(c)

Con f is a normalized score which satisfies 0 
Con f (c)  1 for any entity candidate c. This gives
us the flexibility to define a threshold 0  �  1 so
that only entity candidates satisfying Con f (c) � �
are classified as entities.

Algorithm 1 The entity selection algorithm
E  []
for all c 2 C do

if Con f (c) � � then
unsetE  []
valid = true
for all e 2 E do

if sub-string of c contains e then
unsetE  unsetE + e

else if sub-string of c overlaps with e
then
valid = false

end if
end for
if valid is true then

E  E + c
for all e 2 unsetE do

E  E � e
end for

end if
end if

end for
return E

Algorithm 1 shows the entity selection process,
where C is initialized as a list of all entity candi-
dates ordered by decreasing score of Con f . We
only select entity candidates which have a confi-
dence score of at least �. When the sub-strings of
multiple entity candidates overlap with each other,
we prioritize the candidate with the highest con-
fidence with the exception of candidates that con-
tain(one is completely covered by the other, with-
out the two being identical) other candidates in
which we choose the candidate that contains the
other candidates.

4 Experiments

4.1 Entity Linking for Korean

4.1.1 The Dataset
Although the dataset used by Kim (2014) exists,
we do not use this dataset because it is for a sim-
plified version of the entity linking problem as dis-
cussed in Section 2. We instead have created a
new dataset intended to serve as answer data for
the entity linking for Korean task, based on guide-
lines that were derived from the TAC KBP 20142

guidelines. The guidelines used to annotate text
for our dataset are shown below:

• All entities must be tagged with an entity
URI that exists in the 2014 Korean DBpedia
knowledge base.

• All entities must be tagged with an entity URI
which is correct to appear within the context
of the entity.

• All entity URIs must identify a single thing,
not a group of things.

• Verbs and adjectives that have an equiva-
lent noun that is identified by an entity URI
should not be tagged as entities.

• Only words that directly identify the entity
should be tagged.

• If several possible entities are contained
within each other, the entity that contains all
other entities should be tagged.

• If several consecutive words each can be rep-
resented by the same entity URI, these words
must be tagged as a single entity, as opposed
to tagging each separate word.

• Indirect mentions of entity URIs (ex: pro-
nouns) should not be tagged even if co-
resolution can be performed in order to iden-
tify the entity URI the mention stands for.

Our dataset consists of 60 Korean Wikipedia ab-
stract documents annotated by 3 di↵erent annota-
tors.

2http://nlp.cs.rpi.edu/kbp/2014/elquery.pdf
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4.1.2 Evaluation
We evaluate our system against the work of Kim
(2014) in terms of precision, recall, and F1-score
metrics. As Kim’s (2014) system(which we will
refer to as KEL2014) was originally trained with
the Korean Wikipedia, it required only slight ad-
justments to properly operate for our dataset.

We first train our system using 4,000 documents
randomly gathered from the Korean Wikipedia.
We then evaluate our system with our dataset,
while adjusting the confidence threshold � from
0.01 to 0.99 in increments of 0.01. We compare
our results with those of the best-performing set-
tings of KEL2014.

4.1.3 Results

Figure 2: The distribution of distT and distF after
training with 4,000 documents

The results of the training process is shown in
Figure 2. We can see that the EntityS core values
of entity candidates classified in eT are generally
higher than those in eF . This can be seen as evi-
dence to our claim that the features of entities with
a high degree of semantic relations can be used to
distinguish entities from non-entities in general.

We show additional evidence to this claim with
Table 1, which lists the feature values for the fea-
ture f1(sub-string length) after the training process
is complete. We observe that this feature gives rel-
atively little weight to entity candidates with a sub-
string of length 1, which is consistent with our ini-
tial observation that most of these candidates are
not entities.

Figure 3 shows the performance of our sys-
tem compared to the performance of KEL2014
against our dataset. As we increase the confidence
threshold, the recall decreases and the precision
increases. The maximum F1-score of our system
using our dataset, 0.630, was obtained with the
confidence threshold � = 0.79. This is an im-
provement over KEL2014 which scored an F1-

Length eT eT + eF Value
1 37629 312543 0.120
2 41355 168672 0.245
3 20164 41098 0.490
4 12542 19619 0.637
5 13953 19722 0.704
6 5299 7503 0.698
7 3223 4187 0.753
8 2686 4282 0.616
9 2346 3034 0.751

10 922 1099 0.774
11 917 1011 0.830
12 477 546 0.750
13 249 276 0.687
14 218 274 0.615
15 155 170 0.618
16 109 116 0.567
17 99 118 0.523
18 48 52 0.434
19 49 55 0.433
20 34 40 0.384

Table 1: Feature values of the feature f1 after train-
ing with 4,000 documents

score of 0.598. Although the performance dif-
ference itself is small, this shows that our system
trained with unannotated text documents performs
better than KEL2014, which is trained with both
partially annotated documents (Wikipedia articles)
and a small number of documents completely an-
notated with entity data. This also shows that
KEL2014 does not perform as well outside the
scope of the simplified version of entity linking it
was designed for.

Our system currently is implemented as a sim-
ple RESTful service where both training and ac-
tual entity linking are initiated via POST requests.
Our system can be deployed to a server at its initial
state or at a pre-trained state.

4.2 Alternative Methods and Deviations
4.2.1 Using Feature Subsets
In order to test the e↵ectiveness of each feature we
use in training, we compare the results obtained in
Section 4.1.3 against the performance of our sys-
tem trained with smaller subsets of the features
shown in Section 3.2. Using the same training data
as in Section 4.1.2, we evaluate the performance of
our system using two di↵erent subsets of features
as shown below:

137



Figure 3: The performance of our system against
KEL2014. The dots represent the results of our
system, and the cross represents the results of
KEL2014.

Figure 4: A temporary web interface for our sys-
tem showing entity linking results for a sample
text snippet

Dev1 All features except POS-related ones: f1,
f7.

Dev2 All POS-related features only: f2, f3, f4, f5,
f6.

Figures 5 and 6 shows the performance of our
system using the feature subsets Dev1 and Dev2.
For the feature subset Dev1, our system displays
a maximum F1-score of 0.433 with � = 0.99; for
the features subset Dev2, our system performs best
with � = 0.98 for an F1-score of 0.568.

As expected, both deviations perform worse
than our system trained with the full set of fea-
tures. We observe that the performance of Dev1
is significantly worse than that of Dev2. This sug-
gests that POS-based features are more important

Figure 5: The performance of our system using the
feature subset Dev1.

Figure 6: The performance of our system using the
feature subset Dev2.

in distinguishing entities from non-entities than
the other features.

4.2.2 Using SVM Models
Kim (2014) e↵ectively utilized trained SVM mod-
els to detect entities within text. Based on Kim’s
experiments, we investigate whether SVM can be
also used to raise performance of our system.

Although we now need to base entity predic-
tions with a trained SVM model instead of the
confidence metric Con f , the training process de-
scribed in Section 3.2 is mostly unaltered because
it the classification of entity candidate into eT and
eF results in the training data required to train a
SVM binary classification model. The di↵erences
in the training process are shown below:

• After we process each document, a list of fea-
tures is produced for each entity candidate
classified as eT or eF . Instead of appending
the EntityS core values of these entity candi-
dates to distT and distF , we append the fea-
ture lists of each entity candidate themselves
into two lists of lists, listT and listF . These
lists still contain only the data of the newest
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10,000 entity candidates.

• After the entire training set is processed, we
use the list of feature lists in listT and listF
to train the SVM model. As the original fea-
tures are not all numbers, we transform each
list of features into 7-dimensional vectors by
replacing each feature key into the feature
value of the respective feature.

We use the same training data as in Section
4.1.2, and train a SVM model with a 3-degree
polynomial kernel. We choose this kernel accord-
ing to Kim’s (2014) work, where Kim compares
the performance of SVM for the task of entity link-
ing for Korean using multiple kernels.

Our system, using a trained SVM model results
in a F1-score of 0.569, which is about 0.07 lower
than the best performance of our system using the
confidence model. One possible reason our sys-
tem performed worse using SVM classification is
that the training data that we feed to the classi-
fier is not correctly classified, but rather based on
the semantic relations assumption in Section 3.2.
As this assumption does not cover any character-
istics of non-entities, the e↵ectiveness of SVM de-
creases as many entity candidates which are actual
entities get classified as eF due to them not having
enough semantic relations.

4.3 Application on Other Languages

As our system does not explicitly exploit any char-
acteristics of the Korean language, it theoretically
is a language-independent entity linking system.
We investigate this point using Japanese as a sam-
ple language, and MeCab3 as the part-of-speech
tagger.

As no proper dataset for the entity linking for
Korean task exists, we have created a new dataset
in order to measure the performance of our sys-
tem. As we believe many other languages will
also lack a proper dataset, we must devise an al-
ternative method to measure the performance of
our system for other languages in general.

We use Wikipedia documents and the links an-
notated within them as the dataset to use for mea-
suring performance of our system for languages
other than Korean. Although the manually anno-
tated links within Wikipedia documents do rep-
resent actual entities and their surface forms, we

3http://taku910.github.io/mecab/

cannot completely rely on these links as answer
data because of the following reasons:

• The majority of entities within a Wikipedia
document are not actually tagged as links.
This includes self-references (entities that ap-
pear within the document describing that en-
tity), frequently appearing entities that were
tagged as links for their first few occurrences
but were not tagged afterwards, and entities
that were not considered important enough to
tag as links by the annotators. Due to the
existence of so many untagged entities, we
e↵ectively cannot use precision as a perfor-
mance measure.

• Some links represent entities that are out-
side the scope of our research. This includes
links that point to non-existent Wikipedia
pages (‘red links’), and links that require co-
resolution to resolve.

Due to these problems, we only use the recall
metric to measure the approximate performance
of our system when using Wikipedia documents
as answer data. We compare the performance of
our system for Korean and Japanese by first train-
ing our system with 3,000 Wikipedia docuem-
nts, and measuring the recall of our system for
100 Wikipedia documents for both respective lan-
guages while adjusting the confidence threshold �
from 0.01 to 0.99 in increments of 0.01.

Figure 7: The recall of our system against Korean
and Japanese Wikipedia documents

Figure 7 shows the recall of our system against
Korean and Japanese Wikipedia documents. For
the confidence threshold optimized via the exper-
iments performed in Section 4.1 (� = 0.79), our
system shows a large di↵erence of recall between
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Korean and Japanese. Although this does not ac-
curately represent the actual performance of our
system, we leave the task of improving our system
to display consistent performance across multiple
languages as future work.

5 Future Work

As our system currently only uses labels of en-
tity URIs to determine surface forms of entities, it
can not detect entities with irregular surface forms.
For instance, the entity ‘Steve˙Jobs’ has the labels
‘Steve Jobs’ and ‘Jobs’ within the Korean DBpe-
dia knowledge base, but does not have the label
‘Steve’. This results in the inability of our system
to detect certain entities within our dataset, regard-
less of training. We plan to improve our system
to handle derivative surface forms such as ‘Steve’
for ‘Steve˙Jobs’, without relying on external dic-
tionaries if possible.

Kim (2014) shows that a SVM classifier using
character-based features trained with Wikipedia
articles achieves better named entity recogni-
tion performance than a rule-based classifier us-
ing part-of-speech tags. Although our system
uses trained features based on part-of-speech tags
rather than a rule-based method, we may be able to
remove even the part-of-speech tagger from the re-
quirements of our system by substituting these fea-
tures with the character-based features suggested
in Kim’s (2014) work.

Finally, future work must be performed about
replacing the part-of-speech tagger currently used
in our system with a chunking algorithm that does
not utilize supervised training. Our system cur-
rently utilizes the list of morphemes and their re-
spective POS tags that are produced from the part-
of-speech tagger. Since our system does not re-
quire this information to be completely accurate,
a dictionary-based approach to chunking might be
applicable as well.

6 Conclusion

In this paper, we present an entity linking system
for Korean that utilizes several features trained
with plain text documents. By taking an unsu-
pervised learning approach, our system is able to
perform entity linking with a minimal environ-
ment consisting of an RDF knowledge base and
a part-of-speech tagger. We compare the perfor-
mance of our system against the state-of-art sys-
tem KEL2014, and show that our system outper-

forms KEL2014 in terms of F1-score. We also
briefly describe variations to our system training
process, such as using feature subsets and utilizing
SVM models instead of our confidence metric.

Many languages including Korean are not as
rich in resources as the English language, and the
lack of resources might prohibit the state-of-art
systems for entity linking for English from per-
forming as well in other languages. By utilizing
a minimal amount of resources, our system may
provide a firm starting point for research about en-
tity linking for these languages.
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Abstract

We propose a discriminatively trained re-
current neural network (RNN) that pre-
dicts the actions for a fast and accurate
shift-reduce dependency parser. The RNN
uses its output-dependent model struc-
ture to compute hidden vectors that en-
code the preceding partial parse, and uses
them to estimate probabilities of parser ac-
tions. Unlike a similar previous generative
model (Henderson and Titov, 2010), the
RNN is trained discriminatively to opti-
mize a fast beam search. This beam search
prunes after each shift action, so we add
a correctness probability to each shift ac-
tion and train this score to discriminate be-
tween correct and incorrect sequences of
parser actions. We also speed up pars-
ing time by caching computations for fre-
quent feature combinations, including dur-
ing training, giving us both faster training
and a form of backoff smoothing. The re-
sulting parser is over 35 times faster than
its generative counterpart with nearly the
same accuracy, producing state-of-art de-
pendency parsing results while requiring
minimal feature engineering.

1 Introduction and Motivation

There has been significant interest recently in ma-
chine learning and natural language processing
community in models that learn hidden multi-
layer representations to solve various tasks. Neu-
ral networks have been popular in this area as a
powerful and yet efficient models. For example,
feed forward neural networks were used in lan-
guage modeling (Bengio et al., 2003; Collobert
and Weston, 2008), and recurrent neural networks
(RNNs) have yielded state-of-art results in lan-
guage modeling (Mikolov et al., 2010), language

generation (Sutskever et al., 2011) and language
understanding (Yao et al., 2013).

1.1 Neural Network Parsing

Neural networks have also been popular in pars-
ing. These models can be divided into those
whose design are motivated mostly by inducing
useful vector representations (e.g. (Socher et al.,
2011; Socher et al., 2013; Collobert, 2011)), and
those whose design are motivated mostly by ef-
ficient inference and decoding (e.g. (Henderson,
2003; Henderson and Titov, 2010; Henderson et
al., 2013; Chen and Manning, 2014)).

The first group of neural network parsers are all
deep models, such as RNNs, which gives them the
power to induce vector representations for com-
plex linguistic structures without extensive feature
engineering. However, decoding in these models
can only be done accurately if they are used to re-
rank the best parse trees of another parser (Socher
et al., 2013).

The second group of parsers use a shift-reduce
parsing architecture so that they can use search
based decoding algorithms with effective pruning
strategies. The more accurate parsers also use a
RNN architecture (see Section 6), and use gener-
ative models to allow beam search. These mod-
els are accurate but are relatively slow, and accu-
racy degrades when you choose decoding settings
to optimize speed. Because they are generative,
they need to predict the words as the parse pro-
ceeds through the sentence, which requires nor-
malization over all the vocabulary of words. Also,
the beam search must maintain many candidates
in the beam in order to check how well each one
predicts future words. Recently (Chen and Man-
ning, 2014) propose a discriminative neural net-
work shift-reduce parser, which is very fast but
less accurate (see Section 6). However, this parser
uses a feed-forward neural network with a large set
of hand-coded features, making it of limited inter-
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est for inducing vector representations of complex
linguistic structures.

1.2 Incremental Recurrent Neural Network
Architecture

In both approaches to neural network parsing,
RNN models have the advantage that they need
minimal feature engineering and therefore they
can be used with little effort for a variety of lan-
guages and applications. As with other deep neu-
ral network architectures, RNNs induce complex
features automatically by passing induced (hid-
den) features as input to other induced features
in a recursive structure. This is a particular ad-
vantage for domain adaptation, multi-task learn-
ing, transfer learning, and semi-supervised learn-
ing, where hand-crafted feature engineering is of-
ten particularly difficult. The information that is
transferred from one task to another is embedded
in the induced feature vectors in a shared latent
space, which is input to another hidden layer for
the target model (Henderson et al., 2013; Raina
et al., 2007; Collobert et al., 2011; Glorot et al.,
2011). This transferred information has proven
to be particularly useful when it comes from very
large datasets, such as web-scale text corpora, but
learning and inference on such datasets is only
practical with efficient algorithms.

In this work, we propose a fast discriminative
RNN model of shift-reduce dependency parsing.
We choose a left-to-right shift-reduce dependency
parsing architecture to benefit from efficient de-
coding. It also easily supports incremental in-
terpretation in dialogue systems, or incremental
language modeling for speech recognition. We
choose a RNN architecture to benefit from the au-
tomatic induction of informative vector represen-
tations of complex linguistic structures and the re-
sulting reduction in the required feature engineer-
ing. This hidden vector representation is trained to
encode the partial parse tree that has been built by
the preceding parse, and is used to predict the next
parser action conditioned on this history.

As our RNN architecture, we use the neural
network approximation of ISBNs (Henderson and
Titov, 2010), which we refer to as an Incremental
Neural Network (INN). INNs are a kind of RNN
where the model structure is built incrementally
as a function of the values of previous output vari-
ables. In our case, the hidden vector used to make
the current parser decision is connected to the hid-

den vector from previous decisions based on the
partial parse structure that has been built by the
previous decisions. So any information about the
unbounded parse history can potentially be passed
to the current decision through a chain of hidden
vectors that reflects locality in the parse tree, and
not just locality in the derivation sequence (Hen-
derson, 2003; Titov and Henderson, 2007b). As in
all deep neural network architectures, this chain-
ing of nonlinear vector computations gives the
model a very powerful mechanism to induce com-
plex features from combinations of features in the
history, which is difficult to replicate with hand-
coded features.

1.3 Search-based Discriminative Training

We propose a discriminative model because it al-
lows us to use lookahead instead of word predic-
tion. As mentioned above, generative word pre-
diction is costly, both to compute and because it
requires larger beams to be effective. With looka-
head, it is possible to condition on words that
are farther ahead in the string, and thereby avoid
hypothesizing parses that are incompatible with
those future words. This allows the parser to prune
much more aggressively without losing accuracy.
Discriminative learning further improves this ag-
gressive pruning, because it can optimize for the
discrete choice of whether to prune or not (Huang
et al., 2012; Zhang and Clark, 2011).

Our proposed model primarily differs from pre-
vious discriminative models of shift-reduce de-
pendency parsing in the nature of the discrimina-
tive choices that are made and the way these deci-
sions are modeled and learned. Rather than learn-
ing to make pruning decisions at each parse ac-
tion, we learn to choose between sequences of ac-
tions that occur in between two shift actions. This
way of grouping action sequences into chunks as-
sociated with each word has been used previously
for efficient pruning strategies in generative pars-
ing (Henderson, 2003), and for synchronizing syn-
tactic parsing and semantic role labeling in a joint
model (Henderson et al., 2013). We show empiri-
cally that making discriminative parsing decisions
at the scale of these chunks also provides a good
balance between grouping decisions so that more
context can be used to make accurate parsing de-
cisions and dividing decisions so that the space of
alternatives for each decision can be considered
quickly (see Figure 4 below).
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In line with this pruning strategy, we define a
score called the correctness probability for every
shift action. This score is trained discriminatively
to indicate whether the entire parse prefix is cor-
rect or not. This gives us a score function that is
trained to optimize the pruning decisions during
search (c.f. (Daumé III and Marcu, 2005)). By
combining the scores for all the shift actions in
each candidate parse, we can also discriminate be-
tween multiple parses in a beam of parses, thereby
giving us the option of using beam search to im-
prove accuracy in cases where bounded lookahead
does not provide enough information to make a de-
terministic decision. The correctness probability
is estimated by only looking at the hidden vector at
its shift action, which encourages the hidden units
to encode any information about the parse history
that is relevant to deciding whether this is a good
or bad parse, including long distance features.

1.4 Feature Decomposition and Caching

Another popular method of previous neural net-
work models that we use and extend in this paper
is the decomposition of input feature parameters
using vector-matrix multiplication (Bengio et al.,
2003; Collobert et al., 2011; Collobert and We-
ston, 2008). As the previous work shows, this de-
composition overcomes the features sparsity com-
mon in NLP tasks and also enables us to use un-
labeled data effectively. For example, the param-
eter vector for the feature word-on-top-of-stack is
decomposed into the multiplication of a parame-
ter vector representing the word and a parameter
matrix representing top-of-stack. But sparsity is
not always a problem, since the frequency of such
features follows a power law distribution, so there
are some very frequent feature combinations. Pre-
vious work has noticed that the vector-matrix mul-
tiplication of these frequent feature combinations
takes most of the computation time during test-
ing, so they cache these computations (Bengio et
al., 2003; Devlin et al., 2014; Chen and Manning,
2014).

We note that these computations also take most
of the computation time during training, and that
the abundance of data for these feature combina-
tions removes the statistical motivation for decom-
posing them. We propose to treat the cached vec-
tors for high frequency feature combinations as
parameters in their own right, using them both dur-
ing training and during testing.

In summary, this paper makes several contri-
butions to neural network parsing by consider-
ing different scales in the parse sequence and in
the parametrization. We propose a discrimina-
tive recurrent neural network model of depen-
dency parsing that is trained to optimize an effi-
cient form of beam search that prunes based on
the sub-sequences of parser actions between two
shifts, rather than pruning after each parser ac-
tion. We cache high frequency parameter compu-
tations during both testing and training, and train
the cached vectors as separate parameters. As
shown in section 6, these improvements signifi-
cantly reduce both training and testing times while
preserving accuracy.

2 History Based Neural Network Parsing

In this section we briefly specify the action se-
quences that we model and the neural network ar-
chitecture that we use to model them.

2.1 The Parsing Model

In shift-reduce dependency parsing, at each step of
the parse, the configuration of the parser consists
of a stack S of words, the queue Q of words and
the partial labeled dependency trees constructed
by the previous history of parser actions. The
parser starts with an empty stack S and all the in-
put words in the queue Q, and terminates when it
reaches a configuration with an empty queue Q.
We use an arc-eager algorithm, which has 4 ac-
tions that all manipulate the word s on top of the
stack S and the word q on the front of the queue
Q: The decision Left-Arcr adds a dependency arc
from q to s labeled r. Word s is then popped from
the stack. The decision Right-Arcr adds an arc
from s to q labeled r. The decision Reduce pops
s from the stack. The decision Shift shifts q from
the queue to the stack. For more details we refer
the reader to (Nivre et al., 2004). In this paper we
chose the exact definition of the parse actions that
are used in (Titov and Henderson, 2007b).

At each step of the parse, the parser needs to
choose between the set of possible next actions.
To train a classifier to choose the best actions,
previous work has proposed memory-based clas-
sifiers (Nivre et al., 2004), SVMs (Nivre et al.,
2006), structured perceptron (Huang et al., 2012;
Zhang and Clark, 2011), two-layer neural net-
works (Chen and Manning, 2014), and Incremen-
tal Sigmoid Belief Networks (ISBN) (Titov and

144



Henderson, 2007b), amongst other approaches.
We take a history based approach to model these

sequences of parser actions, which decomposes
the conditional probability of the parse using the
chain rule:

P (T |S) = P (D1· · ·Dm|S)

=

Y

t

P (Dt|D1· · ·Dt�1, S)

where T is the parse tree, D1· · ·Dm is its equiva-
lent sequence of shift-reduce parser actions and S
is the input sentence. The probability of Left-Arcr

and Right-Arcr include both the probability of the
attachment decision and the chosen label r. But
unlike in (Titov and Henderson, 2007b), the prob-
ability of Shift does not include a probability pre-
dicting the next word, since all the words S are
included in the conditioning.

2.2 Estimating Action Probabilities

To estimate each P (Dt|D1· · ·Dt�1, S), we
need to handle the unbounded nature of both
D1· · ·Dt�1 and S. We can divide S into the words
that have already been shifted, which are handled
as part of our encoding of D1· · ·Dt�1, and the
words on the queue. To condition on the words
in the queue, we use a bounded lookahead:

P (T |S) ⇡
Y

t

P (Dt|D1· · ·Dt�1, wt
a1
· · ·wt

ak
)

where wt
a1
· · ·wt

ak
is the first k words on the front

of the queue at time t. At every Shift action the
lookahead changes, moving one word onto the
stack and adding a new word from the input.

To estimate the probability of a decision at time
t conditioned on the history of actions D1· · ·Dt�1,
we overcome the problem of conditioning on an
unbounded amount of information by using a neu-
ral network to induce hidden representations of the
parse history sequence. The relevant information
about the whole parse history at time t is encoded
in its hidden representation, denoted by the vector
ht of size d.
Y

t

P (Dt|D1· · ·Dt�1, wt
a1
· · ·wt

ak
) =

Y

t

P (Dt|ht
)

The hidden representation at time t is induced
from hidden representations of the relevant previ-
ous states, plus pre-defined features F computed

from the previous decision and the current queue
and stack:

ht
= �(

X

c2C
htcW c

HH +

X

f2F
WIH(f, :))

In which C is the set of link types for the previous
relevant hidden representations, htc is the hidden
representation of time tc<t that is relevant to ht by
the relation c, W c

HH is the hidden to hidden tran-
sition weights for the link type c, and WIH is the
weights from features F to hidden representations.
� is the sigmoid function and W (i, :) shows row
i of matrix W . F and C are the only hand-coded
parts of the model.

The decomposition of features has attracted a
lot of attention in NLP tasks, because it overcomes
feature sparsity. There is transfer learning from the
same word (or POS tag, Dependency label, etc.) in
different positions or to similar words. Also unsu-
pervised training of word embeddings can be used
effectively within decomposed features. The use
of unsupervised word embeddings in various nat-
ural language processing tasks has received much
attention (Bengio et al., 2003; Collobert and We-
ston, 2008; Collobert, 2011). Word embeddings
are real-valued feature vectors that are induced
from large corpora of unlabeled text data. Using
word embeddings with a large dictionary improves
domain adaptation, and in the case of a small train-
ing set can improve the performance of the model.

Given these advantages, we use feature decom-
positions to define the input-to-hidden weights
WIH .

WIH(f, :) = Wemb.(val(f), :)W f
HH

Every row in Wemb. is an embedding for a feature
value, which may be a word, lemma, pos tag, or
dependency relation. val(f) is the index of the
value for feature type f , for example the particular
word that is at the front of the queue. Matrix W f

HH
is the transition matrix from the feature value em-
beddings to the hidden vector, for the given feature
type f . For simplicity, we assume here that the
size of the embeddings and the size of the hidden
representations of the INN are the same.

In this way, the parameters of the embedding
matrix Wemb. is shared among various feature in-
put link types f , which can improve the model in
the case of sparse features. It also allows the use of
word embeddings that are available on the web to
improve coverage of sparse features, but we leave
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this investigation to future work since it is orthog-
onal to the contributions of this paper.

Finally, the probability of each decision is nor-
malized across other alternative decisions, and
only conditioned on the hidden representation
(softmax layer):

P (Dt
=d|ht

) =

ehtWHO(:,d)

P
d0 ehtWHO(:,d0)

where WHO is the weight matrix from hidden rep-
resentations to the outputs.

3 Discrimination of Partial Parses

Unlike in a generative model, the above formulas
for computing the probability of a tree make inde-
pendence assumptions in that words to the right of
wt

ak
are assumed to be independent of Dt. And

even for words in the lookahead it can be diffi-
cult to learn dependencies with the unstructured
lookahead string. The generative model first con-
structs a structure and then uses word prediction
to test how well that matches the next word. If
a discriminative model uses normalized estimates
for decisions, then once a wrong decision is made
there is no way for the estimates to express that
this decision has lead to a structure that is incom-
patible with the current or future lookahead string
(see (Lafferty et al., 2001) for more discussion).
More generally, any discriminative model that is
trained to predict individual actions has this prob-
lem. In this section we discuss how to overcome
this issue.

3.1 Discriminating Correct Parse Chunks
Due to this problem, discriminative parsers typi-
cally make irrevocable choices for each individual
action in the parse. We propose a method for train-
ing a discriminative parser which addresses this
problem in two ways. First, we train the model
to discriminate between larger sub-sequences of
actions, namely the actions between two Shift ac-
tions, which we call chunks. This allows the parser
to delay choosing between actions that occur early
in a chunk until all the structure associated with
that chunk has been built. Second, the model’s
score can be used to discriminate between two
parses long after they have diverged, making it ap-
propriate for a beam search.

We employ a search strategy where we prune
at each shift action, but in between shift actions
we consider all possible sequences of actions,
similarly to the generative parser in (Henderson,

2003). The INN model is discriminatively trained
to choose between these chunks of sequences of
actions.

The most straightforward way to model these
chunk decisions would be to use unnormalized
scores for the decisions in a chunk and sum these
scores to make the decision, as would be done for a
structured perceptron or conditional random field.
Preliminary experiments applying this approach to
our INN parser did not work as well as having lo-
cal normalization of action decisions. We hypoth-
esize that the main reason for this result is that
updating on entire chunks does not provide a suf-
ficiently focused training signal. With a locally
normalized action score, such as softmax, increas-
ing the score of the correct chunk has the effect
of decreasing the score of all the incorrect actions
at each individual action decision. This update
is an approximation to a discriminative update on
all incorrect parses that continue from an incor-
rect decision (Henderson, 2004). Another pos-
sible reason is that local normalization prevents
one action’s score from dominating the score of
the whole parse, as can happen with high fre-
quency decisions. In general, this problem can
not be solved just by using norm regularization on
weights.

The places in a parse where the generative up-
date and the discriminative update differ substan-
tially are at word predictions, where the genera-
tive model considers that all words are possible but
a discriminative model already knows what word
comes next and so does not need to predict any-
thing. We discriminatively train the INN to choose
between chunks of actions by adding a new score
at these places in the parse. After each shift ac-
tion, we introduce a correctness probability that
is trained to discriminate between cases where the
chunk of actions since the previous shift is cor-
rect and those where this chunk is incorrect. Thus,
the search strategy chooses between all possible
sequences of actions between two shifts using a
combination of the normalized scores for each ac-
tion and the correctness probability.

In addition to discriminative training at the
chunk level, the correctness probability allows us
to search using a beam of parses. If a correct de-
cision can not be disambiguated, because of the
independence assumptions with words beyond the
lookahead or because of the difficulty of inferring
from an unstructured lookahead, the correctness
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Figure 1: INN computations for one decision

probability score will drop whenever the mistake
becomes evident. This means that we can not only
compare two partial parses that differ in the most
recent chunk, but we can also compare two partial
parses that differ in earlier chunks. This allows
us to use beam search decoding. Instead of deter-
ministically choosing a single partial parse at each
shift action, we can maintain a small beam of al-
ternatives and choose between them based on how
compatible they are with future lookahead strings
by comparing their respective correctness proba-
bilities for those future shifts.

We combine this correctness probability with
the action probabilities by simply multiplying:

P (T |S) ⇡
Y

t

P (Dt|ht
)P (Correct|ht

)

where we train P (Correct|ht
) to be the correct-

ness probability for the cases where Dt is a shift
action, and define P (Correct|ht

) = 1 otherwise.
For the shift actions, P (Correct|ht

) is defined us-
ing the sigmoid function:

P (Correct|ht
) = �(htWCor)

In this way, the hidden representations are trained
not only to choose the right action, but also to en-
code correctness of the partial parses. Figure 1
shows the model schematically.

3.2 Training the Parameters

We want to train the correctness probabilities to
discriminate correct parses from incorrect parses.
The correct parses can be extracted from the train-
ing treebank by converting each dependency tree
into its equivalent sequence of arc-eager shift-
reduce parser actions (Nivre et al., 2004; Titov

and Henderson, 2007b). These sequences of ac-
tions provide us with positive examples. For dis-
criminative training, we also need incorrect parses
to act as the negative examples. In particular, we
want negative examples that will allow us to opti-
mize the pruning decisions made by the parser.

To optimize the pruning decisions made by the
parsing model, we use the parsing model itself
to generate the negative examples (Collins and
Roark, 2004). Using the current parameters of the
model, we apply our search-based decoding strat-
egy to find our current approximation to the high-
est scoring complete parse, which is the output of
our current parsing model. If this parse differs
from the correct one, then we train the parameters
of all the correctness probabilities in each parse
so as to increase the score of the correct parse and
decrease the score of the incorrect output parse.
By repeatedly decreasing the score of the incorrect
best parse as the model parameters are learned,
training will efficiently decreases the score of all
incorrect parses.

As discussed above, we train the scores of in-
dividual parser actions to optimize the locally-
normalized conditional probability of the correct
action. Putting this together with the above train-
ing of the correctness probabilities P (Correct|ht

),
we get the following objective function:

argmax�X

T2Tpos

X

t2T

logP (dt|ht
) + logP (Correct|ht

)

�
X

T2T �
neg

X

t2T

logP (Correct|ht
)

where � is the set of all parameters of the model
(namely WHH , Wemb., WHO, and WCor), Tpos

is the set of correct parses, and T �
neg is the set

of incorrect parses which the model � scores
higher than their corresponding correct parses.
The derivative of this objective function is the er-
ror signal that the neural network learns to mini-
mize. This error signal is illustrated schematically
in Figure 2.

We optimize the above objective using stochas-
tic gradient descent. For each parameter update,
a positive tree is chosen randomly and a negative
tree is built using the above strategy. The resulting
error signals are backpropagated through the INN
to compute the derivatives for gradient descent.

147



Figure 2: Positive and negative derivation branches and their training signals

(a) Log-Log frequency by
rank of features

(b) Cumulative fraction of
features ranked by frequency

Figure 3: Feature frequency distributions

4 Caching Frequent Features

Decomposing the parametrization of input fea-
tures using vector-matrix multiplication, as was
described in section 2, overcomes the features
sparsity common in NLP tasks and also makes it
possible to use unlabeled data effectively. But it
adds a huge amount of computation to both the
training and decoding, since for every input fea-
ture a vector-matrix multiplication is needed. This
problem is even more severe in our algorithm be-
cause at every training iteration we search for the
best incorrect parse.

The frequency of features follows a power law
distribution; there are a few very frequent features,
and a long tail of infrequent features. Previous
work has noticed that the vector-matrix multiplica-
tion of the frequent features takes most of the com-
putation time during testing, so they cache these
computations (Bengio et al., 2003; Devlin et al.,
2014; Chen and Manning, 2014). For example
in the Figure 3(b), only 2100 features are respon-
sible of 90% of the computations among ⇠400k
features, so cashing these computations can have
a huge impact on speed. We note that these com-
putations also take most of the computation time
during training. First, this computation is the dom-

inant part of the forward and backward error com-
putations. Second, at every iteration we need to
decode to find the highest scoring incorrect parse.

We propose to treat the cached vectors for high
frequency features as parameters in their own
right, using them both during training and during
testing. This speeds up training because it is no
longer necessary to do the high-frequency vector-
matrix multiplications, neither to do the forward
error computations nor to do the backpropagation
through the vector-matrix multiplications. Also,
the cached vectors used in decoding do not need to
be recomputed every time the parameters change,
since the vectors are updated directly by the pa-
rameter updates.

Another possible motivation for treating the
cached vectors as parameters is that it results in
a kind of backoff smoothing; high frequency fea-
tures are given specific parameters, and for low
frequency features we back off to the decomposed
model. Results from smoothing methods for sym-
bolic statistical models indicate that it is better to
smooth low frequency features with other low fre-
quency features, and treat high frequency features
individually. In this paper we do not systemati-
cally investigate this potential advantage, leaving
this for future work.

In our experiments we cache features that make
up to 90% of the feature frequencies. This gives
us about a 20 times speed up during training and
about a 7 times speed up during testing, while per-
formance is preserved.

5 Parsing Complexity

If the length of the latent vectors is d, for a sen-
tence of length L, and beam B, the decoding com-
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Figure 4: Histogram of number of candidate ac-
tions between shifts

plexity is O(L⇥M ⇥B ⇥ (|F| + |C|)⇥ d2
).1 If

we choose the best partial parse tree at every shift,
then B = 1. M is the total number of actions in
the candidate chunks that are generated between
two shifts, so L ⇥M is the total number of can-
didate actions in a parse. For shift-reduce depen-
dency parsing, the total number of chosen actions
is necessarily linear in L, but because we are ap-
plying best-first search in between shifts, M is not
necessarily independent of L. To investigate the
impact of M on the speed of the parser, we em-
pirically measure the number of candidate actions
generated by the parser between 33368 different
shifts. The resulting distribution is plotted in Fig-
ure 4. We observe that it forms a power law distri-
bution. Most of the time the number of actions is
very small (2 or 3), with the maximum number be-
ing 40, and the average being 2.25. We conclude
from this that the value of M is not a major factor
in the parser’s speed.

Remember that |F| is the number of input fea-
ture types. Caching 90% of the input feature com-
putations allows us to reasonably neglect this term.
Because |C| is the number of hidden-to-hidden
connection types, we cannot apply caching to re-
duce this term. However, |C| is much smaller
than |F| (here |C|=3). This is why caching in-
put feature computations has such a large impact
on parser speed.

1For this analysis, we assume that the output computation
is negligable compared to the hidden representation compu-
tation, because the output computation grows with d while
the hidden computation grows with d

2.

6 Experimental Results

We used syntactic dependencies from the English
section of the CoNLL 2009 shared task dataset
(Hajič et al., 2009). Standard splits of training,
development and test sets were used. We compare
our model to the generative INN model (Titov and
Henderson, 2007b), MALT parser, MST parser,
and the feed-forward neural network parser of
(Chen and Manning, 2014) (“C&M”). All these
models and our own models are trained only on the
CoNLL 2009 syntactic data; they use no external
word embeddings or other unsupervised training
on additional data. This is one reason for choos-
ing these models for comparison. In addition, the
generative model (“Generative INN, large beam”
in Table 1) was compared extensively to state-of-
art parsers on various languages and tasks in pre-
vious work (Titov and Henderson, 2007b; Titov
and Henderson, 2007a; Henderson et al., 2008).
Therefore, here our objective is not repeating an
extensive comparison to the available parsers.

Table 1 shows the labeled and unlabeled ac-
curacy of attachments for these models. The
MALT and MST parser scores come from (Sur-
deanu and Manning, 2010), which compared dif-
ferent parsing models using CoNLL 2008 shared
task dataset, which is the same as CoNLL 2009
for English syntactic parsing. The results for the
generative INN with a large beam were taken from
(Henderson and Titov, 2010), which uses an archi-
tecture with 80 hidden units. We replicate this set-
ting for the other generative INN results and our
discriminative INN results. The parser of (Chen
and Manning, 2014) was run with their architec-
ture of 200 hidden units with dropout training
(“C&M”). All parsing speeds were computed us-
ing the latest downloadable versions of the parsers,
on a single 3.4GHz CPU.

Our model with beam 1 (i.e. deterministic
choices of chunks) (“DINN, beam 1”) produces
state-of-the-art results while it is over 35 times
faster than the generative model with beam size
10. Moreover, we are able to achieve higher ac-
curacies using larger beams (“DINN, beam 10”).
The discriminative training of the correctness
probabilities to optimize search is crucial to these
levels of accuracy, as indicated by the relatively
poor performance of our model when this training
is removed (“Discriminative INN, no search train-
ing”). Previous deterministic shift-reduce parsers
(“MALTAE” and “C&M”) are around twice as fast
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Model LAA UAA wrd/sec
MALTAE 85.96 88.64 7549
C&M 86.49 89.17 9589
MST 87.07 89.95 290
MALT-MST 87.45 90.22 NA

Generative INN,
beam 1 77.83 81.49 1122
beam 10 87.67 90.61 107
large beam 88.65 91.44 NA

Discriminative INN,
no search training 85.28 88.98 4012
DINN, beam 1 87.26 90.13 4035
DINN, beam 10 88.14 90.75 433

Table 1: Labelled and unlabelled attachment accu-
racies and speeds on the test set.

Model German Spanish Czech
LAA UAA LAA UAA LAA UAA

C&M 82.5 86.1 81.5 85.4 58.6 70.6
MALT 80.7 83.1 82.4 86.6 67.3 77.4
MST 84.1 87.6 82.7 87.3 73.4 81.7
DINN 86.0 89.6 85.4 88.3 77.5 85.2

Table 2: Labelled and unlabelled attachment accu-
racies on the test set of CoNLL 2009.

as our beam 1 model, but at the cost of significant
reductions in accuracy.

To evaluate our RNN model’s ability to induce
informative features automatically, we trained our
deterministic model, MALT, MST and C&M on
three diverse languages from CoNLL 2009, using
the same features as used in the above experiments
on English (model “DINN, beam 1”). We did no
language-specific feature engineering for any of
these parsers. Table 2 shows that our RNN model
generalizes substantially better than all these mod-
els to new languages, demonstrating the power of
this model’s feature induction.

7 Conclusion

We propose an efficient and accurate recurrent
neural network dependency parser that uses neu-
ral network hidden representations to encode arbi-
trarily large partial parses for predicting the next
parser action. This parser uses a search strategy
that prunes to a deterministic choice at each shift
action, so we add a correctness probability to each
shift operation, and train this score to discriminate
between correct and incorrect sequences of parser
actions. All other probability estimates are trained

to optimize the conditional probability of the parse
given the sentence. We also speed up both pars-
ing and training times by only decomposing infre-
quent features, giving us both a form of backoff
smoothing and twenty times faster training.

The discriminative training for this pruning
strategy allows high accuracy to be preserved
while greatly speeding up parsing time. The re-
current neural network architecture provides pow-
erful automatic feature induction, resulting in high
accuracy on diverse languages without tuning.
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Abstract

Scarcity of annotated corpora for many
languages is a bottleneck for training fine-
grained sentiment analysis models that can
tag aspects and subjective phrases. We pro-
pose to exploit statistical machine transla-
tion to alleviate the need for training data
by projecting annotated data in a source
language to a target language such that a
supervised fine-grained sentiment analysis
system can be trained. To avoid a nega-
tive influence of poor-quality translations,
we propose a filtering approach based on
machine translation quality estimation mea-
sures to select only high-quality sentence
pairs for projection. We evaluate on the
language pair German/English on a corpus
of product reviews annotated for both lan-
guages and compare to in-target-language
training. Projection without any filtering
leads to 23 % F1 in the task of detecting
aspect phrases, compared to 41 % F1 for
in-target-language training. Our approach
obtains up to 47 % F1. Further, we show
that the detection of subjective phrases is
competitive to in-target-language training
without filtering.

1 Introduction

An important task in fine-grained sentiment anal-
ysis and opinion mining is the extraction of men-
tioned aspects, evaluative subjective phrases and
the relation between them. For instance, in the
sentence

“I really like the display but the battery
seems weak to me.”

the task is to detect evaluative (subjective) phrases
(in this example “really like” and “seems weak”)
and aspects (“display” and “battery”) as well as
their relation (that “really like” refers to “display”
and “seems weak” refers to “battery”).

Annotating data for learning a model to extract
such detailed information is a tedious and time-
consuming task. Therefore, given the scarcity of
such annotated corpora in most languages, it is in-
teresting to generate models which can be applied
on languages without manually created training
data. In this paper, we perform annotation pro-
jection, which is one of the two main categories
for cross-language model induction (next to direct
model transfer (Agić et al., 2014)).

Figure 1 shows an example of a sentence to-
gether with its automatically derived translation
(source language on top, target language on bot-
tom) and the alignment between both. Such an
alignment can be used to project annotations across
languages, e. g., from a source to target language,
to produce data to train a system for the target lan-
guage. As shown in the example, translation errors
as well as alignment errors can occur. When using
a projection-based approach, the performance of a
system on the target language crucially depends on
the quality of the translation and the alignment. In
this paper we address two questions:

• What is the performance on the task when
training data for the source language is pro-
jected into a target language, compared to an
approach where training data for the target
language is available?

• Can the performance be increased by selecting
only high-quality translations and alignments?

Towards answering these questions, we present the
following contributions:
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Es gibt mit Sicherheit bessere Maschinen , aber die bietet das beste Preis-Leistungs-Verhältnis .

There are certainly better machines , but o�ers the best price-performance ratio .

Figure 1: Example for the projection of an annotation from the source language to the target language.
The translation has been generated with the Google translate API (https://cloud.google.com/translate/).
The alignment is induced with FastAlign (Dyer et al., 2013).

• We propose to use a supervised approach to in-
duce a fine-grained sentiment analysis model
to predict aspect and subjective phrases on
some target language, given training data in
some source language. This approach relies
on automatic translation of source training
data and projection of annotations to the tar-
get language data.

• We present an instance selection method that
only selects sentences with a certain trans-
lation quality. For this, we incorporate dif-
ferent measures of translation and alignment
confidence. We show that such an instance
selection method leads to increased perfor-
mance compared to a system without instance
selection for the prediction of aspects. Re-
markably, for the prediction of aspects the
performance is comparable to an upper base-
line using manually annotated target language
data for training (we refer to the latter setting
as in-target-language training).

• In contrast, for the prediction of subjective
phrases, we show that, while a competitive re-
sult compared to target language training can
be observed when training with the projected
training data, there is no beneficial effect of
the filtering.

In the following, we describe our methodology
in detail, including the description of the machine
translation, annotation projection, and quality esti-
mation methods (Section 2), and present the evalu-
ation on manually annotated data (Section 3). Re-
lated work is discussed in Section 4. We conclude
with Section 5 and mention promising future steps.

2 Methods

2.1 Supervised Model for Aspect and
Subjective Phrase Detection

We use a supervised model induced from training
data to detect aspect phrases, subjective (evaluative)

phrases and their relations. The structure follows
the proposed pipeline approach by Klinger and
Cimiano (2013).1 However, in contrast to their
work, we focus on the detection of phrases only,
and exploit the detection of relations only during
inference, such that the detection of relations has
an effect on the detection of phrases, but is not
evaluated directly.

The phrase detection follows the idea of semi-
Markov conditional random fields (Sarawagi and
Cohen, 2004; Yang and Cardie, 2012) and models
phrases as spans over tokens as variables. Factor
templates for spans of type aspect and subjective
take into account token strings, prefixes, suffixes,
the inclusion of digits, and part-of-speech tags,
both as full string and as bigrams, for the spans
and their vicinity. In addition, the length of the
span is modeled by cumulative binning. The rela-
tion template indicates how close an aspect is to a
subjective phrase based on token distance and on
the length of the shortest path in the dependency
tree. The edge names of the shortest path are also
included as features. It is further checked if no
other noun than the aspect is close to the subjective
phrase.

Inference during training and testing is done via
Markov Chain Monte Carlo (MCMC). In each sam-
pling step (with options of adding a span, removing
a span, adding an aspect as target to a subjective
phrase), the respective factors lead to an associated
model score. The model parameters are adapted
based on sample rank (Wick et al., 2011) using an
objective function which computes the fraction of
correctly predicted tokens in a span. For details
on the model configuration and its implementation
in FACTORIE (McCallum et al., 2009), we refer to
the description in the original paper (Klinger and
Cimiano, 2013). The objective function to evaluate
a span r during training is

f(r) = max

g2s

|r \ g|
|g| � ↵ · |r\g| ,

1https://bitbucket.org/rklinger/jfsa
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where g is the set of all gold spans, and |r \ g|
is the number of tokens shared by gold and pre-
dicted span and |r\g| the number of predicted to-
kens which are not part of the gold span. The
parameter ↵ is set to 0.1 as in the original paper.2.
The objective for the predictions in a whole sen-
tence s containing spans is f(s) =

P
r2s f(r).

This model does not take into account language-
specific features and can therefore be trained for
different languages. In the following, we explain
our procedure for inducing a model for a target
language for which no annotations are available.

2.2 Statistical Machine Translation and
Annotation Projection

Annotating textual corpora with fine-grained sen-
timent information is a time-consuming and there-
fore costly process. In order to adapt a model to a
new domain and to a new language, corresponding
training data is needed. In order to circumvent the
need for additional training data when addressing
a new language, we project training data automati-
cally from a source to a target language. As input
to our approach we require a corpus annotated for
some source language and a translation from the
source to a target language. As the availability
of a parallel training corpus cannot be assumed
in general, we use statistical machine translation
(SMT) methods, relying on phrase-based transla-
tion models that use large amounts of parallel data
for training (Koehn, 2010).

While using an open-source system such as
Moses3 would have been an option, we note that
the quality would be limited by whether the sys-
tem can be trained on a representative corpus. A
standard dataset that SMT systems are trained on
is EuroParl (Koehn, 2005). EuroParl covers 21 lan-
guages and contains 1.920.209 sentences for the
pair German/English. The corpus includes only 4
sentences with the term “toaster”, 12 with “knives”
(mostly in the context of violence), 6 with “dish-
washer” (in the context of regulations) and 0 with
“trash can”. The terms “camera” and “display” are
more frequent, with 208 and 1186 mentions, respec-
tively, but they never occur together.4 The corpus
is thus not representative for product reviews as we
consider in this paper.

2Note that the learning is independent from the actual value
for all 0 < ↵ < (maxg2Corpus |g|)

�1.
3www.statmt.org/moses/
4These example domains are taken from the USAGE cor-

pus (Klinger and Cimiano, 2014), which is used in Section 3.

Thus, we opt for using a closed translation sys-
tem that is trained on larger amounts of data, that is
Google Translate, through the available API5. The
alignment is then computed as a post processing
step relying on FastAlign (Dyer et al., 2013), a
reparametrization of IBM Model 2 with a reduced
set of parameters. It is trained in an unsupervised
fashion via expectation maximization.

Projecting the annotations from the source to the
target language works as follows: given an anno-
tated sentence in the source language s1, . . . , sn

and some translation of this sentence t1, . . . , tm
into the target language, we induce an inductive
mapping a : [1 . . . n] ! [1 . . . m] using FastAlign.
For a source language phrase si,j = si, . . . , sj we
refer by a(si,j) to the set of tokens that some to-
ken in si,j has been aligned to, that is: a(si,j) =

[ikj{a(k)}. Note that the tokens in a(si,j) are
not necessarily consecutive, therefore the annota-
tion in the target language is defined as the minimal
sequence including all tokens tk 2 a(si,j), i. e., the
most left and most right tokens define the span of
the target annotation.

This procedure leads to the same number of span
annotations in source and target language with the
only exception that we exclude projected annota-
tions for which |n�m| > 10.

2.3 Quality Estimation-based Instance
Filtering

The performance of an approach relying on pro-
jection of training data from a source to a target
language and using this automatically projected
data to train a supervised model crucially depends
on the quality of the translations and alignments.
In order to reduce the impact of spurious transla-
tions, we filter out low-quality sentence pairs. To
estimate this quality, we take three measures into
consideration (following approaches described by
Shah and Specia (2014), in addition to a manual
assessment of the translation quality as an upper
baseline):

1. The probability of the sentence in the source
language given a language model build on
unannotated text in the source language (mea-
suring if the language to be translated is typi-
cal, referred to as Source LM).

2. The probability of the machine translated sen-
tence given a language model built on unanno-

5https://cloud.google.com/translate/
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# reviews
en de

coffee machine 75 108
cutlery 49 72
microwave 100 100
toaster 100 4
trash can 100 99
vacuum cleaner 51 140
washing machine 49 88
dish washer 98 0

Table 1: Frequencies of the corpus used in our
experiments (Klinger and Cimiano, 2014).

tated text in the target language (measuring if
the translation is typical, referred to as Target
LM).

3. The likelihood that the alignment is correct,
directly computed on the basis of the align-
ment probability (referred to as Alignment):
p(e | f) =

Q
i=1m p(ei | f , m, n), where e

and f are source and target sentences and m
and n denote the sentence lengths (Dyer et al.,
2013, Eq. 1f.).

For building the language models, we employ the
toolkit SRILM (Stolcke, 2002; Stolcke et al., 2011).
The likelihood for the alignment as well as the
language model probability are normalized by the
number of tokens in the sentence.

3 Experiments

3.1 Corpus and Setting
The proposed approach is evaluated on the lan-
guage pair German/English in both directions (pro-
jecting German annotations into an automatically
generated English corpus and testing on English
annotations and vice versa). As a resource, we
use the recently published USAGE corpus (Klinger
and Cimiano, 2014), which consists of 622 En-
glish and 611 German product reviews from http:
//www.amazon.com/ and http://www.amazon.de/,
respectively. The reviews are on coffee machines,
cutlery sets, microwaves, toasters, trash cans, vac-
uum cleaners, washing machines, and dish washers.
Frequencies of entries in the corpus are summa-
rized in Table 1. Each review has been annotated
by two annotators. We take into account the data
generated by the first annotator in this work to
avoid the design of an aggregation procedure. The

corpus is unbalanced between the product classes.
The average numbers of annotated aspects in each
review in the German corpus (10.4) is smaller than
in English (13.7). The average number of sub-
jective phrases is more similar with 8.6 and 8.3,
respectively. The total number of aspects is 8545
for English and 6340 in German, the number of
subjective phrases is 5321 and 5086, respectively.

The experiments are performed in a leave-one-
domain-out setting, e. g., testing on coffee machine
reviews is based on a model trained on all other
products except coffee machines. This holds for
the cross-language and the in-target-language train-
ing results and leads therefore to comparable set-
tings. We use exact match precision, recall and
F1-measure for evaluation. However, it should be
noted that partial matching scores are also com-
monly applied in fine-grained sentiment analysis
due to the fact that boundaries of annotations can
differ substantially between annotators. For sim-
plicity, we limit ourselves to the more strict evalua-
tion measure.

The language models are trained on 7,413,774
German and 9,650,633 English sentences sampled
from Amazon product reviews concerning the prod-
uct categories in the USAGE corpus. The FastAlign
model is trained on the EuroParl corpus and the
automatically translated USAGE corpus in both di-
rections (German translated to English and English
translated to German).

3.2 Results

We evaluate and compare the impact of the three
automatic quality estimation methods and compare
them to a manual sentence-based judgement for
the language projection from German to English
(testing on English). The manual judgement was
performed by assigning values ranging from 0 (not
understandable), over 1 and 2 (slightly understand-
able) to 8 (some flaws in translation), 9 (minor
flaws in translation) to 10 (perfect translation).6

Figure 2 shows the results for all four methods
(including manual quality assessment) from Ger-
man to English for the product category of coffee
machines compared to in-target-language training
results. The x-axis corresponds to different values
for the filtering threshold. Thus, when increasing
the threshold, the number of sentences used for
training decreases. For all quality estimation meth-

6This annotated data is available at http://www.
romanklinger.de/translation-quality-review-corpus
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Figure 2: Complete results for the reviews for coffee machines for the projection direction German to
English.

ods except for the language model for the source
language, the performance on the target language
increases significantly for the prediction of aspect
phrases. The English in-target-language training
performance represents an upper baseline, result-
ing from training the system on manually annotated
data for the target language (F1 = 0.42). Without
any instance filtering, relying on all automatically
produced translations to induce projected annota-
tions for the target language, an F1 measure of
0.21 is reached. With filtering based on the manu-
ally assigned translation quality estimation, a result
of F1 = 0.43 is reached. Using the alignment as
quality score for filtering, the best result obtained
is F1 = 0.48. However, results start decreasing
from this threshold value on, which is likely due
to the fact that the positive effect of instance filter-
ing is outweighed by the performance drop due to
training with a smaller dataset. The filtering based
on the target language model leads to F1 = 0.42,
while the source language model cannot filter the
training instances such that the performance in-
creases over the initial value.

Surprisingly, instance filtering has no impact on
the detection of subjective phrases. Without any
filtering, for the prediction of subjective phrases we
get an F1 of 0.42, which is close to the performance

of in-target-language training of F1 = 0.49. For
the case of phrase detection, the difference between
training with all data (21%) and in-target-language
training (42%) is considerably higher. Decreas-
ing the size of the training set by filtering only
decreases the F1 measure.

Figure 3 shows the macro-average results sum-
marizing the different domains in precision, recall
and F1 measure. The thresholds for the filtering
have been fixed to the best result of the product
coffee machine for all products. The manual qual-
ity estimation as well as the alignment and target
language model lead to comparable (or superior)
results compared to target language training for
aspect detection. This holds for nearly all prod-
uct domains, only for trash cans and cutlery the
performance achieved by filtering is slightly lower
for the direction German-to-English. The initial
performance for the whole data set is on average
higher for the projection direction English to Ger-
man; therefore the values for the source language
model are comparably higher than for the other
projection direction.

For the aspect detection, all filtering methods
except using the source language model lead to an
improvement over the baseline (without filtering)
that is significant according to a Welch t-test (↵ =
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Figure 3: Macro-average results of cross-language training over the different domains showing precision,
recall and F1 measure. Significant differences of the F1 results to the no-filter-baseline are marked with a
star (Welch t-test comparing the different separate domain results, p < 0.05).

0.05). For English to German, in-target-language
training and the target language model filtering
provide improved results over the baseline that are
significant. For subjective phrase detection, the
in-language training is significantly better than the
baseline.

It is notable that in all experiments the model’s
performance without filtering is mainly limited in
recall, which drops the performance in F1. In-
stance filtering therefore has mainly an effect on
the recall.

3.3 Discussion
Our results show that an approach based on au-
tomatic training data projection across languages
is feasible and provides competitive results com-

pared to training on manually annotated target lan-
guage data. We have in particular quantified the
loss of performance of such an automatic approach
compared to using a system trained on manually
annotated data in the target language. We have
shown that the performance of aspect detection
of a system using all available projected training
data yields a drop of ⇡ 50 % in F1-measure com-
pared to a model trained using manually annotated
data in the target language. The instance filter-
ing approaches in which only the sentences with
highest quality are selected to project training data
to the target language using a threshold has a sig-
nificant positive impact on the performance of a
model trained on automatically projected training
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data when predicting aspect phrases on the target
language, increasing results from 23 % to 47 % on
average. Our approach relying on instance filtering
comes close to results produced by a system trained
on manually annotated data for the target language
on the task of predicting aspect phrases.

In contrast to these results for the aspect phrase
recognition, the impact of filtering training in-
stances is negligible for the detection of subjective
phrases. The highest performance is achieved with
the full set of training instances. Therefore, it may
be concluded that for aspect name detection, high
quality training is crucial. For subjective phrase
detection, a greater training set is crucial. In con-
trast to aspect recognition, the drop in subjective
phrase recognition performance is comparatively
low when training on all instances.

Filtering translations by manually provided trans-
lation scores (as an upper baseline for the filtering)
yields comparable results to using the alignment
and the language model on the target language. Us-
ing the language model on the source language for
filtering does not lead to any improvement. Predict-
ing the quality of translation relying on the proba-
bility of the source sentence via a source language
model therefore seems not to be a viable approach
on the task in question. Using the target language
model as a filter leads to the most consistent results
and is therefore to be preferred over the source
language model and the alignment score.

Including more presumably noisy instances by
using a smaller filtering threshold leads to a de-
creased recall throughout all methods in aspect de-
tection and to a lesser extent for subjective phrase
detection. The precision is affected to a smaller
degree. This can as well be observed in the number
of predictions the models based on different thresh-
olds generate: While the number of true positive
aspects for the coffee machine subdomain is 1100,
only 221 are predicted with a threshold of the man-
ual quality assignment of 0. However, a treshold
of 9 leads to 560 predictions and a threshold of 10
to 1291. This effect can be observed for subjective
phrases as well. It increases from 465 to 827 while
the gold number is 676. These observations hold
for all filtering methods analogously.

4 Related Work

In-target-language training approaches for fine-
grained sentiment analysis include those targeting
the extraction of phrases or modelling it as text

classification (Choi et al., 2010; Johansson and
Moschitti, 2011; Yang and Cardie, 2012; Hu and
Liu, 2004; Li et al., 2010; Popescu and Etzioni,
2005; Jakob and Gurevych, 2010b). Such models
are typically trained or optimized on manually an-
notated data (Klinger and Cimiano, 2013; Yang and
Cardie, 2012; Jakob and Gurevych, 2010a; Zhang
et al., 2011). The necessary data, at least containing
fine-grained annotations for aspects and subjective
phrases instead of only an overall polarity score,
are mainly available for the English language to a
sufficient extent. Popular corpora used for training
are for instance the J.D. Power and Associates Sen-
timent Corpora (Kessler et al., 2010) or the MPQA
corpora (Wilson and Wiebe, 2005).

Non-English resources are scarce. Examples are
a YouTube corpus consisting of English and Italian
comments (Uryupina et al., 2014), a not publicly
available German Amazon review corpus of 270
sentences (Boland et al., 2013), in addition to the
USAGE corpus (Klinger and Cimiano, 2014) we
have used in this work, consisting of German and
English reviews. The (non-fine-grained annotated)
Spanish TASS corpus consists of Twitter messages
(Saralegi and Vicente, 2012). The “Multilingual
Subjectivity Analysis Gold Standard Data Set” fo-
cuses on subjectivity in the news domain (Balahur
and Steinberger, 2009). A Chinese corpus anno-
tated at the aspect and subjective phrase level is
described by Zhao et al. (2014).

There has not been too much work on ap-
proaches to transfer a model either directly or via
annotation projection in the area of sentiment anal-
ysis. One example is based on sentence level anno-
tations which are automatically translated to yield
a resource in another language. This approach has
been proven to work well across several languages
(Banea et al., 2010; Mihalcea et al., 2007; Balahur
and Turchi, 2014). Recent work approached multi-
lingual opinion mining on the above-mentioned
multi-lingual Youtube corpus with tree kernels pre-
dicting the polarity of a comment and whether it
concerns the product or the video in which the
product is featured. (Severyn et al., 2015). Brooke
et al. (2009) compare dictionary and classification
transfer from English to Spanish in a similar classi-
fication setting.

While cross-lingual annotation projection has
been investigated in the context of polarity com-
putation, we are only aware of two approaches
exploiting cross-lingual annotation projection on
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the task of identifying aspects specifically with an
evaluation on manually annotated data in more than
one language. The CLOpinionMiner (Zhou et al.,
2015) uses an English data set which is transfered
to Chinese. Models are further improved by co-
training. Xu et al. (2013) perform self-training
based on a projected corpus from English to Chi-
nese to detect opinion holders. Due to the lack
of existing manually annotated resources, to our
knowledge no cross-language projection approach
for fine-grained annotation at the level of aspect
and subjective phrases has been proposed before.

The projection of annotated data sets has been
investigated in a variety of applications. Early work
includes an approach to the projection of part-of-
speech tags and noun phrases (Yarowsky et al.,
2001; Yarowsky and Ngai, 2001) and parsing infor-
mation (Hwa et al., 2005) on a parallel corpus. Es-
pecially in syntactic and semantic parsing, heuris-
tics to remove or correct spuriously projected an-
notations have been developed (Padó and Lapata,
2009; Agić et al., 2014). It is typical for these
approaches to be applied on existing parallel cor-
pora (one counter example is the work by Basili et
al. (2009) who perform postprocessing of machine
translated resources to improve the annotation for
training semantic role labeling models). In cases
in which no such parallel resources are available
containing pertinent annotations, models can be
transfered after training. Early work includes a
cross-lingual parser adaption (Zeman and Resnik,
2008). A recent example is the projection of a
metaphor detection model using a bilingual dictio-
nary (Tsvetkov et al., 2014). A combination of
model transfer and annotation projection for depen-
dency parsing has been proposed by Kozhevnikov
and Titov (2014).

To improve quality of the overall corpus of pro-
jected annotations, the selection of data points for
dependency parsing has been studied (Søgaard,
2011). Similarly, Axelrod et al. (2011) improve
the average quality of machine translation systems
by selection of promising training examples and
show that such a selection approach has a positive
impact. Related to the latter, a generic instance
weighting scheme has been proposed for domain
adaptation (Jiang and Zhai, 2007).

Other work has attempted to exploit information
available in multiple languages to induce a model
for a language for which sufficient training data is
not available. For instance, universal tag sets take

advantage of annotations that are aligned across
languages (Snyder et al., 2008). Delexicalization
allows for applying a model to other languages
(McDonald et al., 2011).

Focusing on cross-lingual sentiment analysis,
joint training of classification models on multiple
languages shows an improvement over separated
models. Balahur and Turchi (2014) analyzed the
impact of using different machine translation ap-
proaches in such settings. Differences in sentiment
expressions have been analyzed between English
and Dutch (Bal et al., 2011). Co-training with non-
annotated corpora has been shown to yield good
results for Chinese (Wan, 2009). Ghorbel (2012)
analyzed the impact of automatic translation on
sentiment analysis.

Finally, SentiWordNet has been used for multi-
lingual sentiment analysis (Denecke, 2008). Build-
ing dictionaries for languages with scarce resources
can be supported by bootstrapping approaches
(Banea et al., 2008).

Estimating the quality of machine translation can
be understood as a ranking problem and thus be
modeled as regression or classification. An impor-
tant research focus is on investigating the impact of
different features on predicting translation quality.
For instance, sentence length, the output probabil-
ity, number of unknown words of a target language
as well as parsing-based features have been used
(Avramidis et al., 2011). The alignment context
can also be taken into account (Bach et al., 2011).
An overview on confidence measures for machine
translation is for instance provided by Ueffing et al.
(2003). The impact of different features has been
analyzed by Shah et al. (2013). A complete system
and framework for quality estimation (including
a list of possible features) is QuEst (Specia et al.,
2013).

For an overview of other cross-lingual applica-
tions and methods, we refer to Bikel and Zitouni
(2012).

5 Conclusion and Future Work

We have presented an approach that alleviates the
need of training data for a target language when
adapting a fine-grained sentiment analysis system
to a new language. Our approach relies on training
data available for a source language and on auto-
matic machine translation, in particular statistical
methods, to project training data to the target lan-
guage, thus creating a training corpus on which
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a supervised sentiment analysis approach can be
trained on. We have in particular shown that our
results are competitive to training with manually
annotated data in the target language, both for the
prediction of aspect phrases as well as subjective
phrases. We have further shown that performance
for aspect detection can be almost doubled by es-
timating the quality of translations and selecting
only the translations with highest quality for train-
ing. Such an effect cannot be observed in the pre-
diction of subjective phrases, which nevertheless
delivers results comparable to training using tar-
get language data using all automatically projected
training data. Predicting translation quality by both
the alignment probability and the target language
model probability have been shown to deliver good
results, while an approach exploiting source lan-
guage model probability does not perform well.

Our hypothesis for the failure of translation filter-
ing for the prediction of subjective phrases is that
translation quality for subjective phrases is gener-
ally higher as their coverage in standard parallel
corpora is reasonable and they are often domain-
independent. A further possible explanation is that
subjective phrases have a more complex structure
(for instance, their average length is 2.38 tokens
in English and 2.57 tokens in German, while the
aspect length is 1.6 and 1.3, respectively). There-
fore, translation as well as filtering might be more
challenging. These hypotheses should be verified
and investigated further in future work.

Further work should also be devoted to the in-
vestigation of other quality estimation procedures,
in particular combinations of those investigated in
this paper. Preliminary experiments have shown
that the correlation between the filters incorporated
in this paper is low. Thus, their combination could
indeed have an additional impact. Similarly, the
projection quality can be affected by the transla-
tion itself and by the alignment. These two aspects
should be analyzed separately.

In addition, instead of Boolean filtering (using
an instance or not), weighting the impact of the in-
stance in the learning procedure might be beneficial
as lower-quality instances can still be taken into
account, although with a lower impact proportional
to their corresponding score or probability.

In addition to the presented approach of pro-
jecting annotations, a comparison to directly trans-
ferring a trained model across languages would
allow for a deeper understanding of the processes

involved. Finally, it is an important and promis-
ing step to apply the presented methods on other
languages.
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Željko Agić, Jörg Tiedemann, Danijela Merkler, Si-

mon Krek, Kaja Dobrovoljc, and Sara Moze. 2014.
Cross-lingual dependency parsing of related lan-
guages with rich morphosyntactic tagsets. In Work-
shop on Language Technology for Closely Related
Languages and Language Variants, EMNLP.

Eleftherios Avramidis, Maja Popović, David Vilar, and
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Abstract

We present labeled morphological
segmentation—an alternative view of
morphological processing that unifies sev-
eral tasks. We introduce a new hierarchy
of morphotactic tagsets and CHIPMUNK,
a discriminative morphological segmen-
tation system that, contrary to previous
work, explicitly models morphotactics.
We show improved performance on three
tasks for all six languages: (i) morpho-
logical segmentation, (ii) stemming and
(iii) morphological tag classification. For
morphological segmentation our method
shows absolute improvements of 2-6
points F1 over a strong baseline.

1 Introduction

Morphological processing is often an overlooked
problem since many well-studied languages (e.g.,
Chinese and English) are morphologically impov-
erished. But for languages with complex mor-
phology (e.g., Finnish and Turkish) morphological
processing is essential. A specific form of mor-
phological processing, morphological segmenta-
tion, has shown its utility for machine translation
(Dyer et al., 2008), sentiment analysis (Abdul-
Mageed et al., 2014), bilingual word alignment
(Eyigöz et al., 2013), speech processing (Creutz et
al., 2007b) and keyword spotting (Narasimhan et
al., 2014), inter alia. We advance the state-of-the-
art in supervised morphological segmentation by
describing a high-performance, data-driven tool
for handling complex morphology, even in low-
resource settings.

In this work, we make the distinction between
unlabeled morphological segmentation (UMS )
(often just called “morphological segmentation”)
and labeled morphological segmentation (LMS).
The labels in our supervised discriminative model

for LMS capture the distinctions between different
types of morphemes and directly model the mor-
photactics. We further create a hierarchical uni-
versal tagset for labeling morphemes, with differ-
ent levels appropriate for different tasks. Our hi-
erarchical tagset was designed by creating a stan-
dard representation from heterogeneous resources
for six languages. This allows us to use a single
unified framework to obtain strong performance
on three common morphological tasks that have
typically been viewed as separate problems and
addressed using different methods. We give an
overview of the tasks addressed in this paper in
Figure 1. The figure shows the expected output
for the Turkish word gençleşmelerin ‘of rejuvenat-
ings’. In particular, it shows the full labeled mor-
phological segmentation, from which three repre-
sentations can be directly derived: the unlabeled
morphological segmentation, the stem/root 1 and
the structured morphological tag containing POS
and inflectional features.

We model these tasks with CHIPMUNK, a semi-
Markov conditional random field (semi-CRF)
(Sarawagi and Cohen, 2004), a model that is well-
suited for morphology. We provide a robust eval-
uation and analysis on six languages and CHIP-
MUNK yields strong results on all three tasks, in-
cluding state-of-the-art accuracy on morphologi-
cal segmentation.

Section 2 presents our LMS framework and the
morphotactic tagsets we use, i.e., the labels of the
sequence prediction task CHIPMUNK solves. Sec-
tion 3 introduces our semi-CRF model. Section 4
presents our novel features. Section 5 compares
CHIPMUNK to previous work. Section 6 presents
experiments on the three complementary tasks of
segmentation (UMS), stemming, and morpholog-

1Terminological notes: We use root to refer to a mor-
pheme with concrete meaning, stem to refer to the concate-
nation of all roots and derivational affixes, root detection to
refer to stripping both derivational and inflectional affixes,
and stemming to refer to stripping only inflectional affixes.
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gençleşmelerin
UMS genç leş me ler in
Gloss young -ate -ion -s GENITIVE MARKER

LMS genç leş me ler in
ROOT:ADJECTIVAL SUFFIX:DERIV:VERB SUFFIX:DERIV:NOUN SUFFIX:INFL:NOUN:PLURAL SUFFIX:INFL:NOUN:GENITIVE

Root genç Stem gençleşme Morphological Tag PLURAL:GENITIVE

Figure 1: Examples of the tasks addressed for the Turkish word gençleşmelerin ‘of rejuvenatings’: Traditional unlabeled
segmentation (UMS), Labeled morphological segmentation (LMS), stemming / root detection and (inflectional) morphological
tag classification. The morphotactic annotations produced by LMS allow us to solve these tasks using a single model.

ical tag classification. Section 7 briefly discusses
finite-state morphology. Section 8 concludes.

The datasets created in this work, additional
description of our novel tagsets and CHIPMUNK
can be found at http://cistern.cis.lmu.de/

chipmunk.

2 Labeled Segmentation and Tagset

We define the framework of labeled morphologi-
cal segmentation (LMS), an enhancement of mor-
phological segmentation that—in addition to iden-
tifying the boundaries of segments—assigns a
fine-grained morphotactic tag to each segment.
LMS leads to both better modeling of segmenta-
tion and subsumes several other tasks, e.g., stem-
ming.

Most previous approaches to morphological
segmentation are either unlabeled or use a small,
coarse-grained set such as prefix, root, suffix. In
contrast, our labels are fine-grained. This finer
granularity has two advantages. (i) The labels are
needed for many tasks, for instance in sentiment
analysis detecting morphologically encoded nega-
tion, as in Turkish, is crucial. In other words,
for many applications UMS is insufficient. (ii)
The LMS framework allows us to learn a prob-
abilistic model of morphotactics. Working with
LMS results in higher UMS accuracy. So even in
applications that only need segments and no la-
bels, LMS is beneficial. Note that the concate-
nation of labels across segments yields a bundle
of morphological attributes similar to those found
in the CoNLL datasets often used to train mor-
phological taggers (Buchholz and Marsi, 2006)—
thus LMS helps to unify UMS and morphological
tagging. We believe that LMS is a needed exten-
sion of current work in morphological segmenta-
tion. Our framework concisely allows the model
to capture interdependencies among various mor-
phemes and model relations between entire mor-

pheme classes—a neglected aspect of the problem.
We first create a hierarchical tagset with in-

creasing granularity, which we created by analyz-
ing the heterogeneous resources for the six lan-
guages we work on. The optimal level of gran-
ularity is task and language dependent: the level
is a trade-off between simplicity and expressivity.
We illustrate our tagset with the decomposition of
the German word Enteisungen ‘defrostings’ (Fig-
ure 2).

The level 0 tagset involves a single tag indi-
cating a segment. It ignores morphotactics com-
pletely and is similar to previous work. The level
1 tagset crudely approximates morphotactics: it
consists of the tags {PREFIX, ROOT, SUFFIX}.
This scheme has been successfully used by un-
supervised segmenters, e.g., MORFESSOR CAT-
MAP (Creutz et al., 2007a). It allows the model
to learn simple morphotactics, for instance that a
prefix cannot be followed by a suffix. This makes
a decomposition like reed ! re+ed unlikely. We
also add an additional UNKNOWN tag for mor-
phemes that do not fit into this scheme. The level
2 tagset splits affixes into DERIVATIONAL and IN-
FLECTIONAL, effectively increasing the maximal
tagset size from 4 to 6. These tags can encode
that many languages allow for transitions from
derivational to inflectional endings, but rarely the
opposite. This makes the incorrect decomposi-
tion of German Offenheit ‘openness’ into Off, in-
flectional en and derivational heit unlikely2. This
tagset is also useful for building statistical stem-
mers. The level 3 tagset adds POS, i.e., whether a
root is VERBAL, NOMINAL or ADJECTIVAL, and
the POS of the word that an affix derives. The
level 4 tagset includes the inflectional feature a
suffix adds, e.g., CASE or NUMBER. This is help-
ful for certain agglutinative languages, in which,

2Like en in English open, en in German Offen is part of
the root.
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5 PREFIX:DERIV:VERB ROOT:NOUN SUFFIX:DERIV:NOUN SUFFIX:INFL:NOUN:PLURAL
4 PREFIX:DERIV:VERB ROOT:NOUN SUFFIX:DERIV:NOUN SUFFIX:INFL:NOUN:NUMBER
3 PREFIX:DERIV:VERB ROOT:NOUN SUFFIX:DERIV:NOUN SUFFIX:INFL:NOUN
2 PREFIX:DERIV ROOT SUFFIX:DERIV SUFFIX:INFL
1 PREFIX ROOT SUFFIX SUFFIX
0 SEGMENT SEGMENT SEGMENT SEGMENT

German Ent eis ung en
English de frost ing s

Figure 2: Example of the different morphotactic tagset granularities for German Enteisungen ‘defrostings’.

level: 0 1 2 3 4
English 1 4 5 13 16
Finnish 1 4 6 14 17
German 1 4 6 13 17
Indonesian 1 4 4 8 8
Turkish 1 3 4 10 20
Zulu 1 4 6 14 17

Table 1: Morphotactic tagset size at each level of granularity.

e.g., CASE must follow NUMBER. The level 5
tagset adds the actual value of the inflectional fea-
ture, e.g., PLURAL, and corresponds to the anno-
tation in the datasets. In preliminary experiments
we found that the level 5 tagset is too rich and does
not yield consistent improvements, we thus do not
explore it. Table 1 shows tagset sizes for the six
languages.3

3 Model

CHIPMUNK is a supervised model implemented
using the well-understood semi-Markov condi-
tional random field (semi-CRF) (Sarawagi and
Cohen, 2004) that naturally fits the task of
LMS. Semi-CRFs generalize linear-chain CRFs
and model segmentation jointly with sequence la-
beling. Just as linear-chain CRFs are discrimina-
tive adaptations of hidden Markov models (Laf-
ferty et al., 2001), semi-CRFs are an analogous
adaptation of hidden semi-Markov models (Mur-
phy, 2002). Semi-CRFs allow us to elegantly inte-
grate new features that look at complete segments,
this is not possible with CRFs, making semi-CRFs
a natural choice for morphology.

A semi-CRF represents w (a word) as a se-
quence of segments s = hs1, . . . , sni, each of
which is assigned a label `i. The concatenation
of all segments equals w. We seek a log-linear
distribution p✓(s, ` | w) over all possible segmen-
tations and label sequences for w, where ✓ is the

3As converting segmentation datasets to tagsets is not al-
ways straightforward, we include tags that lack some fea-
tures, e.g., some level 4 German tags lack POS because our
German data does not specify it.

parameter vector. Note that we recover the stan-
dard CRF if we restrict the segment length to 1.
Formally, we define p✓ as

p✓(s, ` | w)

def
=

1

Z✓(w)

Y

i

e✓
T f(si,`i,`i�1,i), (1)

where f is the feature function and Z✓(w) is the
partition function. To keep the notation unclut-
tered, we will write f without all its arguments in
the future. We use a generalization of the forward-
backward algorithm for efficient gradient compu-
tation (Sarawagi and Cohen, 2004). Inspection of
the semi-Markov forward recursion,

↵(t, l) =

X

i

X

`0

e✓
T f · ↵(t� i, `0

), (2)

shows that algorithm runs in O(n2·L2
) time where

n is the length of the word w and L is the number
of labels (size of the tagset).

We employ the maximum-likelihood criterion
to estimate the parameters with L-BFGS (Liu and
Nocedal, 1989), a gradient-based optimization al-
gorithm. As in all exponential family models, the
gradient of the log-likelihood takes the form of the
difference between the observed and expected fea-
tures counts (Wainwright and Jordan, 2008) and
can be computed efficiently with the semi-Markov
extension of the forward-backward algorithm. We
use L2 regularization with a regularization coeffi-
cient tuned during cross-validation.

We note that semi-Markov models have the po-
tential to obviate typical errors made by standard
Markovian sequence models with an IOB label-
ing scheme over characters. For instance, con-
sider the incorrect segmentation of the English
verb sees into se+es. These are reasonable split
positions as many English stems end in se (e.g.,
consider abuse-s). Semi-CRFs have a major ad-
vantage here as they can have segmental features
that allow them to learn se is not a good morph.
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# Affixes Random Examples
English 394 -ard -taxy -odon -en -otic -fold
Finnish 120 -tä -llä -ja -t -nen -hön -jä -ton
German 112 -nomie -lichenes -ell -en -yl -iv
Indonesian 5 -kau -an -nya -ku -mu
Turkish 263 -ten -suz -mek -den -t -ünüz
Zulu 72 i- u- za- tsh- mi- obu- olu-

Table 2: Sizes of the various affix gazetteers.

4 Features

We introduce several novel features for LMS. We
exploit existing resources, e.g., spell checkers and
Wiktionary, to create straightforward and effective
features and we incorporate ideas from related ar-
eas: named-entity recognition (NER) and morpho-
logical tagging.

Affix Features and Gazetteers. In contrast to
syntax and semantics, the morphology of a lan-
guage is often simple to document and a list of the
most common morphs can be found in any good
grammar book. Wiktionary, for example, con-
tains affix lists for all the six languages used in
our experiments.4 Providing a supervised learner
with such a list is a great boon, just as gazetteer
features aid NER (Smith and Osborne, 2006)—
perhaps even more so since suffixes and prefixes
are generally closed-class; hence these lists are
likely to be comprehensive. These features are
binary and fire if a given substring occurs in the
gazetteer list. In this paper, we simply use suffix
lists from English Wiktionary, except for Zulu, for
which we use a prefix list, see Table 2.

We also include a feature that fires on the con-
junction of tags and substrings observed in the
training data. In the level 5 tagset this allows us
to link all allomorphs of a given morpheme. In the
lower level tagsets, this links related morphemes.
Virpioja et al. (2010) explored this idea for un-
supervised segmentation. Linking allomorphs to-
gether under a single tag helps combat sparsity in
modeling the morphotactics.

Stem Features. A major problem in statistical
segmentation is the reluctance to posit morphs not
observed in training; this particularly affects roots,
which are open-class. This makes it nearly im-
possible to correctly segment compounds that con-
tain unseen roots, e.g., to correctly segment home-
work you need to know that home and work are
independent English words. We solve this prob-
lem by incorporating spell-check features: binary

4A good example of such a resource is en.wiktio-
nary.org/wiki/Category:Turkish_suffixes.

English 119,839
Finnish 6,690,417
German 364,564
Indonesian 35,269
Turkish 80,261
Zulu 73,525

Table 3: Number of words covered by the respective ASPELL
dictionary

features that fire if a segment is valid for a given
spell checker. Spell-check features function effec-
tively as a proxy for a “root detector”. We use
the open-source ASPELL dictionaries as they are
freely available in 91 languages. Table 3 shows
the coverage of these dictionaries.

Integrating the Features. Our model uses the
features discussed in this section and addition-
ally the simple n-gram context features of Ruoko-
lainen et al. (2013). The n-gram features look at
variable length substrings of the word on both the
right and left side of each potential boundary. We
create conjunctive features from the cross-product
between the morphotactic tagset (Section 2) and
the features.

5 Related Work

Van den Bosch and Daelemans (1999) and Marsi
et al. (2005) present memory-based approaches to
discriminative learning of morphological segmen-
tation. This is the previous work most similar to
our work. They address the problem of LMS. We
distinguish our work from theirs in that we define
a cross-lingual schema for defining a hierarchical
tagset for LMS. Morever, we tackle the problem
with a feature-rich log-linear model, allowing us
to easily incorporate disparate sources of knowl-
edge into a single framework, as we show in our
extensive evaluation.

UMS has been mainly addressed by unsu-
pervised algorithms. LINGUISTICA (Goldsmith,
2001) and MORFESSOR (Creutz and Lagus, 2002)
are built around an idea of optimally encoding the
data, in the sense of minimal description length
(MDL). MORFESSOR CAT-MAP (Creutz et al.,
2007a) formulates the model as sequence predic-
tion based on HMMs over a morph dictionary
and MAP estimation. The model also attempts
to induce basic morphotactic categories (PREFIX,
ROOT, SUFFIX). Kohonen et al. (2010a,b) and
Grönroos et al. (2014) present variations of MOR-
FESSOR for semi-supervised learning. Poon et

167



al. (2009) introduces a Bayesian state-space model
with corpus-wide priors. The model resembles a
semi-CRF, but dynamic programming is no longer
possible due to the priors. They employ the three-
state tagset of Creutz and Lagus (2004) (row 1
in Figure 2) for Arabic and Hebrew UMS. Their
gradient and objective computation is based on an
enumeration of a heuristically chosen subset of the
exponentially many segmentations. This limits its
applicability to language with complex concatena-
tive morphology, e.g., Turkish and Finnish.

Ruokolainen et al. (2013) present an averaged
perceptron (Collins, 2002), a discriminative struc-
tured prediction method, for UMS. The model out-
performs the semi-supervised model of Poon et al.
(2009) on Arabic and Hebrew morpheme segmen-
tation as well as the semi-supervised model of Ko-
honen et al. (2010a) on English, Finnish and Turk-
ish.

Finally, Ruokolainen et al. (2014) get further
consistent improvements by using features ex-
tracted from large corpora, based on the letter suc-
cessor variety (LSV) model (Harris, 1995) and on
unsupervised segmentation models such as Mor-
fessor CatMAP (Creutz et al., 2007a). The idea
behind LSV is that for example talking should be
split into talk and ing, because talk can also be fol-
lowed by different letters then i such as e (talked)
and s (talks).

Chinese word segmentation (CWS) is related
to UMS. Andrew (2006) successfully apply semi-
CRFs to CWS. The problem of joint CWS and
POS tagging (Ng and Low, 2004; Zhang and
Clark, 2008) is related to LMS. To our knowl-
edge, joint CWS and POS tagging has not been
addressed by a simple single semi-CRF, possi-
bly because POS tagsets typically used in Chinese
treebanks are much bigger than our morphotactic
tagsets and the morphological poverty of Chinese
makes higher-order models necessary and the di-
rect application of semi-CRFs infeasible.

6 Experiments

We experimented on six languages from diverse
language families. The segmentation data for En-
glish, Finnish and Turkish was taken from Mor-
phoChallenge 2010 (Kurimo et al., 2010).5 De-
spite typically being used for UMS tasks, the Mor-
phoChallenge datasets do contain morpheme level

5http://research.ics.aalto.fi/events/
morphochallenge2010/

Un. Data Train+Tune+Dev Test
Train Tune Dev

English 878k 800 100 100 694
Finnish 2,928k 800 100 100 835
German 2,338k 800 100 100 751
Indonesian 88k 800 100 100 2500
Turkish 617k 800 100 100 763
Zulu 123k 800 100 100 9040

Table 4: Dataset sizes (number of types).

labels. The German data was extracted from the
CELEX2 collection (Baayen et al., 1993). The
Zulu data was taken from the Ukwabelana cor-
pus (Spiegler et al., 2010). Finally, the Indone-
sian portion was created applying the rule-based
analyzer MORPHIND (Larasati et al., 2011) to the
Indonesian portion of an Indonesian-English bilin-
gual corpus.6

We did not have access to the MorphoChallenge
test set and thus used the original development set
as our final evaluation set (Test). We developed
CHIPMUNK using 10-fold cross-validation on the
1000 word training set and split every fold into
training (Train), tuning (Tune) and development
sets (Dev).7 For German, Indonesian and Zulu we
randomly selected 1000 word forms as training set
and used the rest as evaluation set. For our final
evaluation we trained CHIPMUNK on the concate-
nation of Train, Tune and Dev (the original 1000
word training set), using the optimal parameters
from the cross-evaluation and tested on Test.

One of our baselines also uses unlabeled train-
ing data. MorphoChallenge provides word lists for
English, Finnish, German and Turkish. We use the
unannotated part of Ukwabelana for Zulu; and for
Indonesian, data from Wikipedia and the corpus of
Krisnawati and Schulz (2013).

Table 4 shows the important statistics of our
datasets.

In all evaluations, we use variants of the stan-
dard MorphoChallenge evaluation approach. Im-
portantly, for word types with multiple correct
segmentations, this involves finding the maximum
score by comparing our hypothesized segmenta-
tion with each correct segmentation, as is stan-
dardly done in MorphoChallenge.

6https://github.com/desmond86/
Indonesian-English-Bilingual-Corpus

7We used both Tune and Dev in order to both optimize
hyperparameters on held-out data (Tune) and perform quali-
tative error analysis on separate held-out data (Dev).
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English Finnish Indonesian German Turkish Zulu
CRF-MORPH 83.23 81.98 93.09 84.94 88.32 88.48
CRF-MORPH +LSV 84.45 84.35 93.50 86.90 89.98 89.06
First-order CRF 84.66 85.05 93.31 85.47 90.03 88.99
Higher-order CRF 84.66 84.78 93.88 85.40 90.65 88.85
CHIPMUNK 84.40 84.40 93.76 85.53 89.72 87.80
CHIPMUNK +Morph 83.27 84.71 93.17 84.84 90.48 90.03
CHIPMUNK +Affix 83.81 86.02 93.51 85.81 89.72 89.64
CHIPMUNK +Dict 86.10 86.11 95.39 87.76 90.45 88.66
CHIPMUNK +Dict,+Affix,+Morph 86.31 88.38 95.41 87.85 91.36 90.16

Table 5: Test F1 for UMS. Features: LSV = letter successor variety, Affix = affix, Dict = dictionary, Morph = optimal (on Tune)
morphotactic tagset.

6.1 UMS Experiments
We first evaluate CHIPMUNK on UMS, by pre-
dicting LMS and then discarding the labels. Our
primary baseline is the state-of-the-art super-
vised system CRF-MORPH of Ruokolainen et al.
(2013). We ran the version of the system that the
authors published on their website.8 We optimized
the model’s two hyperparameters on Tune: the
number of epochs and the maximal length of n-
gram character features. The system also supports
Harris’s letter successor variety (LSV) features
(Section 5), extracted from large unannotated cor-
pora, our second baseline. For completeness, we
also compare CHIPMUNK with a first-order CRF
and a higher-order CRF (Müller et al., 2013), both
used the same n-gram features as CRF-MORPH,
but without the LSV features.9 We evaluate all
models using the traditional macro F1 of the seg-
mentation boundaries.

Discussion. The UMS results on held-out data
are displayed in Table 5. Our most complex model
beats the best baseline by between 1 (German) and
3 (Finnish) points F1 on all six languages. We
additionally provide extensive ablation studies to
highlight the contribution of our novel features.
We find that the properties of each specific lan-
guage highly influences which features are most
effective. For the agglutinative languages, i.e,
Finnish, Turkish and Zulu, the affix based features
(+Affix) and the morphotactic tagset (+Morph)
yield consistent improvements over the semi-CRF
models with a single state. Improvements for the
affix features range from 0.2 for Turkish to 2.14
for Zulu. The morphological tagset yields im-

8http://users.ics.tkk.fi/tpruokol/
software/crfs_morph.zip

9Model order, maximal character n-gram length and reg-
ularization coefficients were optimized on Tune.

provements of 0.77 for Finnish, 1.89 for Turkish
and 2.10 for Zulu. We optimized tagset granularity
on Tune and found that levels 4 and level 2 yielded
the best results for the three agglutinative and the
three other languages, respectively.

The dictionary features (+Dict) help universally,
but their effects are particularly salient in lan-
guages with productive compounding, i.e., En-
glish, Finnish and German, where we see improve-
ments of > 1.7.

In comparison with previous work (Ruoko-
lainen et al., 2013) we find that our most complex
model yields consistent improvements over CRF-
MORPH +LSV for all languages: The improve-
ments range from > 1 for German over > 1.5 for
Zulu, English, and Indonesian to > 2 for Turkish
and > 4 for Finnish.

To illustrate the effect of modeling morphotac-
tics through the larger morphotactic tagset on per-
formance, we provide a detailed analysis of Turk-
ish. See Table 6. We consider three different fea-
ture sets and increase the size of the morphotactic
tagsets depicted in Figure 2. The results evince the
general trend that improved morphotactic model-
ing benefits segmentation. Additionally, we ob-
serve that the improvements are complementary to
those from the other features.

As discussed earlier, a key problem in UMS, es-
pecially in low-resource settings, is the detection
of novel roots and affixes. Since many of our fea-
tures were designed to combat this problem specif-
ically, we investigated this aspect independently.
Table 7 shows the number of novel roots and af-
fixes found by our best model and the baseline. In
all languages, CHIPMUNK correctly identifies be-
tween 5% (English) and 22% (Finnish) more novel
roots than the baseline. We do not see major im-
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+Affix +Dict,+Affix
Level 0 90.11 90.13 91.66
Level 1 90.73 90.68 92.80
Level 2 89.80 90.46 92.04
Level 3 91.03 90.83 92.31
Level 4 91.80 92.19 93.21

Table 6: Example of the effect of larger tagsets (Figure 2)
on Turkish segmentation measured on our development set.
As Turkish is an agglutinative language with hundreds of af-
fixes, the efficacy of our approach is expected to be partic-
ularly salient here. Recall we optimized for the best tagset
granularity for our experiments on Tune.

Figure 3: This figure represents a comparative analysis of un-
dersegmentation. Each column (labels at the bottom) shows
how often CRF-MORPH +LSV (top number in heatmap) and
CHIPMUNK (bottom number in heatmap) select a segment
that is two separate segments in the gold standard. E.g., Rt-
Sx indicates how a root and a suffix were treated as a sin-
gle segment. The color depends on the difference of the two
counts.

provements for affixes, but this is of less interest
as there are far fewer novel affixes.

We further explore how CHIPMUNK and the
baseline perform on different boundary types by
looking at missing boundaries between different
morphotactic types; this error type is also known
as undersegmentation. Figure 3 shows a heatmap
that overviews errors broken down by morphotac-
tic tag. We see that most errors are caused between
root and suffixes across all languages. This is re-
lated to the problem of finding new roots, as a new
root is often mistaken as a root-affix composition.

6.2 Root Detection and Stemming
Root detection1 and stemming1 are two important
NLP problems that are closely related to morpho-
logical segmentation and used in applications such
as MT, information retrieval, parsing and infor-
mation extraction. Here we explore the utility of
CHIPMUNK as a statistical stemmer and root de-

CRF-MORPH CHIPMUNK
Roots Affixes Roots Affixes

English 614 6 644 12
Finnish 502 10 613 11
German 360 6 414 9
Indonesian 593 0 639 0
Turkish 435 22 514 19
Zulu 146 10 160 11

Table 7: Dev number of unseen root and affix types cor-
rectly identified by CRF-MORPH +LSV and CHIPMUNK
+Affix,+Dict,+Morph.

tector.
Stemming is closely related to the task of

lemmatization, which involves the additional step
of normalizing to the canonical form.10 Con-
sider the German particle verb participle auf-
ge-schrieb-en ‘written down’. The participle is
built by applying an alternation to the verbal root
schreib ‘write’ adding the participial circumfix ge-
en and finally adding the verb particle auf. In our
segmentation-based definition, we would consider
schrieb ‘write’ as its root and auf-schrieb as its
stem. In order to additionally to restore the lemma,
we would also have to reverse the stem alternation
that replaced ei with ie and add the infinitival end-
ing en yielding the infinitive auf-schreib-en.

Our baseline MORFETTE (Chrupala et al., 2008)
is a statistical transducer that first extracts edit
paths between input and output and then uses a
perceptron classifier to decide which edit path to
apply. In short, MORFETTE treats the task as a
string-to-string transduction problem, whereas we
view it as a labeled segmentation problem.11 Note,
that MORFETTE would in principle be able to han-
dle stem alternations, although these usually lead
to an increase in the number of edit paths. We use
level 2 tagsets for all experiments—the smallest
tagsets complex enough for stemming—and ex-
tract the relevant segments.

Discussion. Our results are shown in Table 8.
We see consistent improvements across all tasks.
For the fusional languages (English, German and
Indonesian) we see modest gains in performance
on both root detection and stemming. However,
for the agglutinative languages (Finnish, Turkish
and Zulu) we see absolute gains as high as 50%

10Thus in our experiments there are no stem alternations.
The output is equivalent to that of the Porter stemmer (Porter,
1980).

11Note that MORFETTE is a pipeline that first tags and then
lemmatizes. We only make use of this second part of MOR-
FETTE for which it is a strong string-to-string transduction
baseline.
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English Finnish German Indonesian Turkish Zulu
Root MORFETTE 62.82 39.28 43.81 86.00 26.08 30.76
Detection CHIPMUNK 70.31 69.85 67.37 90.00 75.62 62.23
Stemming MORFETTE 91.35 51.74 79.49 86.00 28.57 58.12

CHIPMUNK 94.24 79.23 85.75 89.36 85.06 67.64

Table 8: Test Accuracies for root detection and stemming.

Finnish Turkish
F1 MaxEnt 75.61 69.92

MaxEnt +Split 74.02 76.61
CHIPMUNK +All 80.34 85.07

Acc. MaxEnt 60.96 37.88
MaxEnt +Split 59.04 44.30
CHIPMUNK +All 65.00 56.06

Table 9: Test F-Scores / accuracies for morphological tag
classification.

(Turkish) in accuracy. This significant improve-
ment is due to the complexity of the tasks in
these languages—their productive morphology in-
creases sparsity and makes the unstructured string-
to-string transduction approach suboptimal. We
view this as solid evidence that labeled segmen-
tation has utility in many components of the NLP
pipeline.

6.3 Morphological Tag Classification

The joint modeling of segmentation and morpho-
tactic tags allows us to use CHIPMUNK for a crude
form of morphological analysis: the task of mor-
phological tag classification , which we define as
annotation of a word with its most likely inflec-
tional features.12 To be concrete, our task is to
predict the inflectional features of word type based
only on its character sequence and not its sen-
tential context. To this end, we take Finnish and
Turkish as two examples of languages that should
suit our approach particularly well as both have
highly complex inflectional morphologies. We use
our most fine-grained tagset and replace all non-
inflectional tags with a simple segment tag. The
tagset sizes are listed in Table 10.

We use the same experimental setup as in Sec-
tion 6.2 and compare CHIPMUNK to a maximum
entropy classifier (MaxEnt), whose features are
character n-grams of up to a maximal length of

12We recognize that this task is best performed with sen-
tential context (token-based). Integration with a POS tagger,
however, is beyond the scope of this paper.

Morpheme Tags Full Word Tags
Finnish 43 172
Turkish 50 636

Table 10: Number of full word and morpheme tags in the
datasets.

k. 13 The maximum entropy classifier is L1-
regularized and its regularization coefficient as
well as the value for k are optimized on Tune.
As a second, stronger baseline we use a MaxEnt
classifier that splits tags into their constituents and
concatenates the features with every constituent as
well as the complete tag (MaxEnt +Split). Both
of the baselines in Table 9 are 0th-order versions
of the state-of-the-art CRF-based morphological
tagger MARMOT (Müller et al., 2013) (since our
model is type-based), making this a strong base-
line. We report full analysis accuracy and macro
F1 on the set of individual inflectional features.

Discussion. The results in Table 9 show that our
proposed method outperforms both baselines on
both performance metrics. We see gains of over
6% in accuracy in both languages. This is evi-
dence that our proposed approach could be suc-
cessfully integrated into a morphological tagger to
give a stronger character-based signal.

7 Comparison to Finite-State
Morphology

A morphological finite-state analyzer is customar-
ily a hand-crafted tool that generates all the pos-
sible morphological readings with their associated
features. We believe that, for many applications,
high quality finite-state morphological analysis is
superior to our techniques. Finite-state morpho-
logical analyzers output a small set of linguis-
tically valid analyses of a type, typically with
only limited overgeneration. However, there are
two significant problems. The first is that signif-
icant effort is required to develop the transducers
modeling the “grammar” of the morphology and

13Prefixes and suffixes are explicitly marked.
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there is significant effort in creating and updating
the lexicon. The second is, it is difficult to use
finite-state morphology to guess analyses involv-
ing roots not covered in the lexicon.14 In fact,
this is usually solved by viewing it as a different
problem, morphological guessing, where linguis-
tic knowledge similar to the features we have pre-
sented is used to try to guess POS and morpholog-
ical analysis for types with no analysis.

In contrast, our training procedure learns a
probabilistic transducer, which is a soft version of
the type of hand-engineered grammar that is used
in finite-state analyzers. The 1-best labeled mor-
phological segmentation our model produces of-
fers a simple and clean representation which will
be of great use in many downstream applications.
Furthermore our model unifies analysis and guess-
ing into a single simple framework. Nevertheless,
finite-state morphologies are still extremely use-
ful, high-precision tools. A primary goal of fu-
ture work will be to use CHIPMUNK to attempt
to induce higher-quality morphological processing
systems.

8 Conclusion and Future Work

We have presented labeled morphological seg-
mentation (LMS) in this paper, a new ap-
proach to morphological processing. LMS uni-
fies three tasks that were solved before by differ-
ent methods—unlabeled morphological segmenta-
tion, stemming, and morphological tag classifica-
tion. LMS annotation itself has great potential for
use in downstream NLP applications. Our hierar-
chy of labeled morphological segmentation tagsets
can be used to map the heterogeneous data in six
languages we work with to universal representa-
tions of different granularities. We plan future cre-
ation of gold standard segmentations in more lan-
guages using our annotation scheme.

We further presented CHIPMUNK a semi-CRF-
based model for LMS that allows for the integra-
tion of various linguistic features and consistently
out-performs previously presented approaches to
unlabeled morphological segmentation. An im-
portant extension of CHIPMUNK is embedding it
in a context-sensitive POS tagger. Current state-
of-the-art models only employ character level n-
gram features to model word-internals (Müller et
al., 2013). We have demonstrated that our struc-

14While one can in theory put in wildcard root states, this
does not work in practice due to overgeneration.

tured approach outperforms this baseline. We
leave this natural extension to future work.

The datasets used in this work, additional de-
scription of our novel tagsets and CHIPMUNK
can be found at http://cistern.cis.lmu.de/

chipmunk.
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Abstract

Massive knowledge resources, such as
Wikidata, can provide valuable informa-
tion for lexical inference, especially for
proper-names. Prior resource-based ap-
proaches typically select the subset of each
resource’s relations which are relevant for
a particular given task. The selection
process is done manually, limiting these
approaches to smaller resources such as
WordNet, which lacks coverage of proper-
names and recent terminology. This paper
presents a supervised framework for auto-
matically selecting an optimized subset of
resource relations for a given target infer-
ence task. Our approach enables the use
of large-scale knowledge resources, thus
providing a rich source of high-precision
inferences over proper-names.1

1 Introduction

Recognizing lexical inference is an important
component in semantic tasks. Various lexical-
semantic relations, such as synonomy, class-
membership, part-of, and causality may be used
to infer the meaning of one word from another,
in order to address lexical variability. For in-
stance, a question answering system asked “which
artist’s net worth is $450 million?” might re-
trieve the candidates Beyoncé Knowles and
Lloyd Blankfein, who are both worth $450 mil-
lion. To correctly answer the question, the appli-
cation needs to know that Beyoncé is an artist, and
that Lloyd Blankfein is not.

1Our code and data are available at:
https://github.com/vered1986/LinKeR

Corpus-based methods are often employed to
recognize lexical inferences, based on either co-
occurrence patterns (Hearst, 1992; Turney, 2006)
or distributional representations (Weeds and Weir,
2003; Kotlerman et al., 2010). While earlier meth-
ods were mostly unsupervised, recent trends intro-
duced supervised methods for the task (Baroni et
al., 2012; Turney and Mohammad, 2015; Roller
et al., 2014). In these settings, a targeted lexical
inference relation is implicitly defined by a train-
ing set of term-pairs, which are annotated as posi-
tive or negative examples of this relation. Several
such datasets have been created, each representing
a somewhat different flavor of lexical inference.

While corpus-based methods usually enjoy high
recall, their precision is often limited, hinder-
ing their applicability. An alternative common
practice is to mine high-precision lexical in-
ferences from structured resources, particularly
WordNet (Fellbaum, 1998). Nevertheless, Word-
Net is an ontology of the English language,
which, by definition, does not cover many proper-
names (Beyoncé ! artist) and recent termi-
nology (Facebook ! social network). A po-
tential solution may lie in rich and up-to-date
structured knowledge resources such as Wikidata
(Vrandečić, 2012), DBPedia (Auer et al., 2007),
and Yago (Suchanek et al., 2007). In this paper, we
investigate how these resources can be exploited
for lexical inference over proper-names.

We begin by examining whether the common
usage of WordNet for lexical inference can be ex-
tended to larger resources. Typically, a subset of
WordNet relations is manually selected (e.g. all
synonyms and hypernyms). By nature, each ap-
plication captures a different aspect of lexical in-
ference, and thus defines different relations as in-
dicative of its particular flavor of lexical infer-
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Resource Relation Example
position held David Petraeus ! Director of CIA

performer Sheldon Cooper ! Jim Parsons
operating system iPhone ! iOS

Table 1: Examples of Wikidata relations that are indicative of
lexical inference.

ence. For instance, the hypernym relation is
indicative of the is a flavor of lexical inference
(e.g. musician ! artist), but does not indicate
causality.

Since WordNet has a relatively simple schema,
manually finding such an optimal subset is fea-
sible. However, structured knowledge resources’
schemas contain thousands of relations, dozens of
which may be indicative. Many of these are not
trivial to identify by hand, as shown in Table 1.
A manual effort to construct a distinct subset for
each task is thus quite challenging, and an auto-
mated method is required.

We present a principled supervised framework,
which automates the selection process of resource
relations, and optimizes this subset for a given
target inference relation. This automation al-
lows us to leverage large-scale resources, and ex-
tract many high-precision inferences over proper-
names, which are absent from WordNet. Finally,
we show that our framework complements state-
of-the-art corpus-based methods. Combining the
two approaches can particularly benefit real-world
tasks in which proper-names are prominent.

2 Background

2.1 Common Use of WordNet for Inference
WordNet (Fellbaum, 1998) is widely used for
identifying lexical inference. It is usually used in
an unsupervised setting where the relations rele-
vant for each specific inference task are manually
selected a priori.

One approach looks for chains of these prede-
fined relations (Harabagiu and Moldovan, 1998),
e.g. dog ! mammal using a chain of hy-
pernyms: dog ! canine ! carnivore !
placental mammal ! mammal. Another ap-
proach is via WordNet Similarity (Pedersen et al.,
2004), which takes two synsets and returns a nu-
meric value that represents their similarity based
on WordNet’s hierarchical hypernymy structure.

While there is a broad consensus that synonyms
entail each other (elevator $ lift) and hy-
ponyms entail their hypernyms (cat ! animal),
other relations, such as meronymy, are not agreed

Resource #Entities #Properties Version
DBPedia 4,500,000 1,367 July 2014
Wikidata 6,000,000 1,200 July 2014

Yago 10,000,000 70 December 2014
WordNet 150,000 13 3.0

Table 2: Structured resources explored in this work.

upon, and may vary depending on task and context
(e.g. living in London ! living in England,
but leaving London 6! leaving England).
Overall, there is no principled way to select the
subset of relevant relations, and a suitable subset
is usually tailored to each dataset and task. This
work addresses this issue by automatically learn-
ing the subset of relations relevant to the task.

2.2 Structured Knowledge Resources

While WordNet is quite extensive, it is hand-
crafted by expert lexicographers, and thus cannot
compete in terms of scale with community-built
knowledge bases such as Wikidata (Vrandečić,
2012), which connect millions of entities through
a rich variety of structured relations (properties).

Using these resources for various NLP tasks has
become exceedingly popular (Wu and Weld, 2010;
Rahman and Ng, 2011; Unger et al., 2012; Be-
rant et al., 2013). Little attention, however, was
given to leveraging them for identifying lexical in-
ference; the exception being Shnarch et al. (2009),
who used structured data from Wikipedia for this
purpose.

In this paper, we experimented with such re-
sources, in addition to WordNet. DBPedia (Auer
et al., 2007) contains structured information from
Wikipedia: info boxes, redirections, disambigua-
tion links, etc. Wikidata (Vrandečić, 2012) con-
tains facts edited by humans to support Wikipedia
and other Wikimedia projects. Yago (Suchanek et
al., 2007) is a semantic knowledge base derived
from Wikipedia, WordNet, and GeoNames.2

Table 2 compares the scale of the resources we
used. The massive scale of the more recent re-
sources and their rich schemas can potentially in-
crease the coverage of current WordNet-based ap-
proaches, yet make it difficult to manually select
an optimized subset of relations for a task. Our
method automatically learns such a subset, and
provides lexical inferences on entities that are ab-
sent from WordNet, particularly proper-names.

2We also considered Freebase, but it required significantly
larger computational resources to work in our framework,
which, at the time of writing, exceeded our capacity. §4.1
discusses complexity.
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“Beyoncé” Beyoncé
Knowles musician artist “artist”

term to concept occupation subclass of concept to term

Figure 1: An excerpt of a resource graph (Wikidata) connecting “Beyoncé” to “artist”. Resource graphs contain two types of
nodes: terms (ellipses) and concepts (rectangles).

3 Task Definition and Representation

We wish to leverage the information in structured
resources to identify whether a certain lexical-
inference relation R holds between a pair of terms.
Formally, we wish to classify whether a term-pair
(x, y) satisfies the relation R. R is implicitly de-
fined by a training set of (x, y) pairs, annotated as
positive or negative examples. We are also given
a set of structured resources, which we will utilize
to classify (x, y).

Each resource can be naturally viewed as a di-
rected graph G (Figure 1). There are two types
of nodes in G: term (lemma) nodes and con-
cept (synset) nodes. The edges in G are each la-
beled with a property (edge type), defining a wide
range of semantic relations between concepts (e.g.
occupation, subclass of). In addition, terms are
mapped to the concepts they represent via term-
concept edge types.

When using multiple resources, G is a dis-
connected graph composed of a subgraph per re-
source, without edges connecting nodes from dif-
ferent resources. One may consider connect-
ing multiple resource graphs at the term nodes.
However, this may cause sense-shifts, i.e. con-
nect two distinct concepts (in different resources)
through the same term. For example, the concept
January 1

st in Wikidata is connected to the con-
cept fruit in WordNet through the polysemous
term date. The alternative, aligning resources in
the concept space, is not trivial. Some partial map-
pings exist (e.g. Yago-WordNet), which can be ex-
plored in future work.

4 Algorithmic Framework

We present an algorithmic framework for learning
whether a term-pair (x, y) satisfies a relation R,
given an annotated set of term-pairs and a resource
graph G. We first represent (x, y) as the set of
paths connecting x and y in G (§4.1). We then
classify each such path as indicative or not of R,
and decide accordingly whether xRy (§4.2).

4.1 Representing Term-Pairs as Path-Sets
We represent each (x, y) pair as the set of paths
that link x and y within each resource. We retain

only the shortest paths (all paths x ; y of minimal
length) as they yielded better performance.

Resource graphs are densely connected, and
thus have a huge branching factor b. We thus lim-
ited the maximum path length to ` = 8 and em-
ployed bidirectional search (Russell and Norvig,
2009, Ch.3) to find the shortest paths. This algo-
rithm runs two simultaneous instances of breadth-
first search (BFS), one from x and another from y,
halting when they meet in the middle. It is much
more efficient, having a complexity of O(b`/2

) =

O(b4
) instead of BFS’s O(b`

) = O(b8
).

To further reduce complexity, we split the
search to two phases: we first find all nodes along
the shortest paths between x and y, and then re-
construct the actual paths. Searching for rele-
vant nodes ignores edge types, inducing a sim-
pler resource graph, which can be represented as
a sparse adjacency matrix and manipulated effi-
ciently with matrix operations (elaborated in ap-
pendix A). Once the search space is limited to rel-
evant nodes alone, path-finding becomes trivial.

4.2 Classification Framework
We consider edge types that typically connect be-
tween concepts in R to be “indicative”; for exam-
ple, the occupation edge type is indicative of the
is a relation, as in “Beyoncé is a musician”. Our
framework’s goal is to learn which edge types are
indicative of a given relation R, and use that infor-
mation to classify new (x, y) term-pairs.

Figure 2 presents the dependencies between
edge types, paths, and term-pairs. As discussed in
the previous section, we represent each term-pair
as a set of paths. In turn, we represent each path as
a “bag of edges”, a vector with an entry for each
edge type.3 To model the edges’ “indicativeness”,
we assign a parameter to each edge type, and learn
these parameters from the term-pair level supervi-
sion provided by the training data.

In this work, we are not only interested in opti-
mizing accuracy or F1, but in exploring the entire
recall-precision trade-off. Therefore, we optimize

3We add special markers to the first and last edges within
each path. This allows the algorithm to learn that applying
term-to-concept and concept-to-term edge types in the middle
of a path causes sense-shifts.
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x ! y p2
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e2
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supervision

parameters

Figure 2: The dependencies between term-pairs (x ! y),
paths (pj), and edge types (ei).

the F� objective, where �2 balances the recall-
precision trade-off.4 In particular, we expect struc-
tured resources to facilitate high-precision infer-
ences, and are thus more interested in lower values
of �2, which emphasize precision over recall.

4.2.1 Weighted Edge Model
A typical neural network approach is to assign a
weight wi to each edge type ei, where more in-
dicative edge types should have higher values of
wi. The indicativeness of a path (p̂) is modeled
using logistic regression: p̂ , �(~w · ~�), where ~�
is the path’s “bag of edges” representation, i.e. a
feature vector of each edge type’s frequency in the
path.

The probability of a term-pair being positive
can be determined using either the sum of all
path scores or the score of its most indicative
path (max-pooling). We trained both variants with
back-propagation (Rumelhart et al., 1986) and
gradient ascent. In particular, we optimized F�

using a variant of Jansche’s (2005) derivation of
F�-optimized logistic regression (see suplemen-
tary material5 for full derivation).

This model can theoretically quantify how in-
dicative each edge type is of R. Specifically,
it can differentiate weakly indicative edges (e.g.
meronyms) from those that contradict R (e.g.
antonyms). However, on our datasets, this model
yielded sub-optimal results (see §6.1), and there-
fore serves as a baseline to the binary model pre-
sented in the following section.

4.2.2 Binary Edge Model
Preliminary experiments suggested that in most
datasets, each edge type is either indicative or
non-indicative of the target relation R. We there-
fore developed a binary model, which defines a

4
F� =

(1+�2)·precision·recall
�2·precision+recall

5http://u.cs.biu.ac.il/%7enlp/wp-content/uploads/LinKeR-sup.pdf

global set of edge types that are indicative of R:
a whitelist.

Classification We represent each path p as a
binary “bag of edges” �, i.e. the set of edge
types that were applied in p. Given a term-pair
(x, y) represented as a path-set paths(x, y), and a
whitelist w, the model classifies (x, y) as positive
if:

9� 2 paths(x, y) : � ✓ w (1)

In other words:

1. A path is classified as indicative if all its edge
types are whitelisted.

2. A term-pair is classified as positive if at least
one of its paths is indicative.6

The first design choice essentially assumes that R
is a transitive relation. This is usually the case in
most inference relations (e.g. hypernymy, causal-
ity). In addition, notice that the second modeling
assumption is unidirectional; in some cases xRy,
yet an indicative path between them does not ex-
ist. This can happen, for example, if the relation
between them is not covered by the resource, e.g.
causality in WordNet.

Training Learning the optimal whitelist over a
training set can be cast as a subset selection prob-
lem: given a set of possible edge types E =

{e1, ..., en} and a utility function u : 2

E ! R,
find the subset (whitelist) w ✓ E that maximizes
the utility, i.e. w⇤

= arg maxw u(w). In our case,
the utility u is the F� score over the training set.

Structured knowledge resources contain hun-
dreds of different edge types, making E very large,
and an exhaustive search over its powerset infea-
sible. The standard approach to this class of sub-
set selection problems is to apply local search al-
gorithms, which find an approximation of the op-
timal subset. We tried several local search algo-
rithms, and found that genetic search (Russell and
Norvig, 2009, Ch.4) performed well. In general,
genetic search is claimed to be a preferred strategy
for subset selection (Yang and Honavar, 1998).

In our application of genetic search, each in-
dividual (candidate solution) is a whitelist, repre-
sented by a bit vector with a bit for each edge type.
We defined the fitness function of a whitelist w ac-
cording to the F� score of w over the training set.

6As a corollary, if x⇢Ry, then every path between them is
non-indicative.
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Dataset #Instances #Positive #Negative
kotlerman2010 2,940 880 2,060
turney2014 1,692 920 772
levy2014 12,602 945 11,657

proper2015 1,500 750 750

Table 3: Datasets evaluated in this work.

We also applied L2 regularization to reduce the fit-
ness of large whitelists.

The binary edge model works well in practice,
successfully replicating the common practice of
manually selected relations from WordNet (see
§6.1). In addition, the model outputs a human-
interpretable set of indicative edges.

Although the weighted model’s hypothesis
space subsumes the binary model’s, the binary
model performed better on our datasets. We con-
jecture that this stems from the limited amount of
training instances, which prevents a more general
model from converging into an optimal solution.

5 Datasets

We used 3 existing common-noun datasets and
one new proper-name dataset. Each dataset con-
sists of annotated (x, y) term-pairs, where both x
and y are noun phrases. Since each dataset was
created in a slightly different manner, the underly-
ing semantic relation R varies as well.

5.1 Existing Datasets
kotlerman2010 (Kotlerman et al., 2010) is
a manually annotated lexical entailment dataset
of distributionally similar nouns. turney2014
(Turney and Mohammad, 2015) is based on a
crowdsourced dataset of semantic relations, from
which we removed non-nouns and lemmatized
plurals. levy2014 (Levy et al., 2014) was gen-
erated from manually annotated entailment graphs
of subject-verb-object tuples. Table 3 provides
metadata on each dataset.

Two additional datasets were created using
WordNet (Baroni and Lenci, 2011; Baroni et al.,
2012), whose definition of R can be trivially cap-
tured by a resource-based approach using Word-
Net. Hence, they are omitted from our evaluation.

5.2 A New Proper-Name Dataset
An important linguistic component that is miss-
ing from these lexical-inference datasets is proper-
names. We conjecture that much of the added
value in utilizing structured resources is the abil-
ity to cover terms such as celebrities (Lady Gaga)

and recent terminology (social networks) that do
not appear in WordNet. We thus created a new
dataset of (x, y) pairs in which x is a proper-name,
y is a common noun, and R is the is a relation.
For instance, (Lady Gaga, singer) is true, but
(Lady Gaga, film) is false.

To construct the dataset, we sampled 70 articles
in 9 different topics from a corpus of recent events
(online magazines). As candidate (x, y) pairs, we
extracted 24,000 pairs of noun phrases x and y
that belonged to the same paragraph in the orig-
inal text, selecting those in which x is a proper-
name. These pairs were manually annotated by
graduate students, who were instructed to use their
world knowledge and the original text for disam-
biguation (e.g. England ! team in the context
of football). The agreement on a subset of 4,500
pairs was  = 0.954.

After annotation, we had roughly 800 positive
and 23,000 negative pairs. To balance the dataset,
we sampled negative examples according to the
frequency of y in positive pairs, creating “harder”
negative examples, such as (Sherlock, lady) and
(Kylie Minogue, vice president).

6 Results

We first validate our framework by checking
whether it can automatically replicate the com-
mon manual usage of WordNet. We then evaluate
it on the proper-name dataset using additional re-
sources. Finally, we compare our method to state-
of-the-art distributional methods.

Experimental Setup While F1 is a standard
measure of performance, it captures only one point
on the recall-precision curve. Instead, we present
the entire curve, while expecting the contribution
of structured resources to be in the high-precision
region. To create these curves, we optimized our
method and the baselines using F� with 40 values
of �2 2 (0, 2).

We randomly split each dataset into 70% train,
25% test and 5% validation.7 We applied L2 regu-
larization to our method and the baselines, tuning
the regularization parameter on the validation set.

6.1 Performance on WordNet
We examine whether our algorithm can replicate
the common use of WordNet (§2.1), by manually
constructing 4 whitelists based on the literature

7Since our methods do not use lexical features, we did not
use lexical splits as in (Levy et al., 2015).

179



Figure 3: Recall-precision curve of each dataset with Word-
Net as the only resource. Each point in the graph stands for
the performance on a certain value of �. Notice that in some
of the graphs, different � values yield the same performance,
causing less points to be displayed.

(see Table 4), and evaluating their performance us-
ing the classification methods in §4.2. In addition,
we compare our method to Resnik’s (1995) Word-
Net similarity, which scores each pair of terms
based on their lowest common hypernym. This
score was used as a single feature in F�-optimized
logistic regression to create a classifier.

Figure 4: Recall-precision curve for proper2015.

Name Edge Types
basic {synonym, hypernym, instance hypernym}

+holo basic [ {holonym}

+mero basic [ {meronym}

+hypo basic [ {hyponym}

Table 4: The manual whitelists commonly used in WordNet.

Figure 3 compares our algorithm to Word-
Net’s baselines, showing that our binary model
always replicates the best-performing manually-
constructed whitelists, for certain values of �2.
Synonyms and hypernyms are often selected,
and additional edges are added to match the
semantic flavor of each particular dataset. In
turney2014, for example, where meronyms are
common, our binary model learns that they are in-
dicative by including meronymy in its whitelist. In
levy2014, however, where meronyms are less
indicative, the model does not select them.

We also observe that, in most cases, our algo-
rithm outperforms Resnik’s similarity. In addition,
the weighted model does not perform as well as
the binary model, as discussed in §4.2. We there-
fore focus our presentation on the binary model.

6.2 Lexical Inference over Proper-Names
We evaluated our model on the new proper-name
dataset proper2015 described in §5.2. This
time, we incorporated all the resources described
in §2.2 (including WordNet) into our framework,
and compared the performance to that of using
WordNet alone. Indeed, our algorithm is able to
exploit the information in the additional resources
and greatly increase performance, particularly re-
call, on this dataset (Figure 4).8

8We also evaluated our algorithm on the common-nouns
datasets with all resources, but apparently, adding resources
did not significantly improve performance.
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Figure 5: Recall-precision curve of each dataset using: (1) Supervised word2vec (2) Our binary model.

The binary model yields 97% precision at 29%

recall, at the top of the “precision cliff”. The
whitelist learnt at this point contains 44 edge
types, mainly from Wikidata and Yago. Even
though the is a relation implicitly defined in
proper2015 is described using many different
edge types, our binary model still manages to learn
which of the over 2,500 edge types are indicative.
Table 5 shows some of the learnt edge types (see
the supplementary material for the complete list).

The performance boost in proper2015
demonstrates that community-built resources have
much added value when considering proper-
names. As expected, many proper-names do not
appear in WordNet (Doctor Who). That said,
even when both terms appear in WordNet, they
often lack important properties covered by other
resources (Louisa May Alcott is a woman).

6.3 Comparison to Corpus-based Methods
Lexical inference has been thoroughly explored
in distributional semantics, with recent supervised
methods (Baroni et al., 2012; Turney and Mo-
hammad, 2015) showing promising results. While

Edge Type Example
occupation Daniel Radcliffe! actor

sex or gender Louisa May Alcott! woman
instance of Doctor Who! series

acted in Michael Keaton! Beetlejuice
genre Touch! drama

position played on team Jason Collins! center

Table 5: An excerpt of the whitelist learnt for proper2015
by the binary model with accompanying true-positives that
do not have an indicative path in WordNet.

these methods leverage huge corpora to increase
coverage, they often introduce noise that affects
their precision. Structured resources, on the other
hand, are precision-oriented. We therefore expect
our approach to complement distributional meth-
ods in high-precision scenarios.

To represent term-pairs with distributional fea-
tures, we downloaded the pre-trained word2vec
embeddings.9 These vectors were trained over
a huge corpus (100 billion words) using a state-
of-the-art embedding algorithm (Mikolov et al.,
2013). Since each vector represents a single term
(either x or y), we used 3 state-of-the-art meth-

9http://code.google.com/p/word2vec/
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ods to construct a feature vector for each term-
pair: concatenation ~x � ~y (Baroni et al., 2012),
difference ~y � ~x (Roller et al., 2014; Fu et al.,
2014; Weeds et al., 2014), and similarity ~x · ~y.
We then used F�-optimized logistic regression to
train a classifier. Figure 5 compares our methods
to concatenation, which was the best-performing
corpus-based method.10

In turney2014 and proper2015, the
embeddings retain over 80% precision while
boasting higher recall than our method’s. In
turney2014, it is often a result of the more
associative relations prominent in the dataset
(football ! playbook), which seldom are ex-
pressed in structured resources. In proper2015,
the difference in recall seems to be from miss-
ing terminology (Twitter ! social network).
However, the corpus-based method’s precision
does not exceed the low 80’s, while our bi-
nary algorithm yields 93% @ 27% precision-at-
recall on turney2014 and 97% @ 29% on
proper2015.

In levy2014, there is an overwhelming ad-
vantage to our resource-based method over the
corpus-based method. This dataset contains
healthcare terms and might require a domain-
specific corpus to train the embeddings. Having
said that, many of its examples are of an ontologi-
cal nature (drug x treats disease y), which may be
more suited to our resource-based approach, re-
gardless of domain.

7 Error Analysis

Since resource-based methods are precision-
oriented, we analyzed our binary model by select-
ing the setting with the highest attainable recall
that maintains high precision. This point is often
at the top of a “precision cliff” in Figures 3 and 4.
These settings are presented in Table 6.

The high-precision settings we chose resulted
in few false positives, most of which are caused
by annotation errors or resource errors. Naturally,
regions of higher recall and lower precision will
yield more false positives and less false negatives.
We thus focus the rest of our discussion on false
negatives (Table 7).

While structured resources cover most terms,
10Note that the corpus-based method benefits from lexical

memorization (Levy et al., 2015), overfitting for the lexical
terms in the training set, while our resource-based method
does not. This means that Figure 5 paints a relatively opti-
mistic picture of the embeddings’ actual performance.

Dataset � Whitelist Prec. Rec.
kotlerman2010 0.05 basic 83% 9%

turney2014 0.05 +mero 93% 27%

levy2014 10

�5 basic 87% 37%

proper2015 0.3
44 edge types

97% 29%from all resources
(see supplementary material)

Table 6: The error analysis setting of each dataset.

Error Type kotlerman levy turney proper
2010 2014 2014 2015

Not Covered 2% 12% 4% 13%

No Indicative Paths 35% 48% 73% 75%

Whitelist Error 6% 3% 5% 8%

Resource Error 15% 11% 7% 0%

Annotation Error 40% 23% 7% 1%

Other 2% 3% 4% 3%

Table 7: Analysis of false negatives in each dataset. We ob-
served the following errors: (1) One of the terms is out-of-
vocabulary (2) All paths are not indicative (3) An indicative
path exists, but discarded by the whitelist (4) The resource
describes an inaccurate relation between the terms (5) The
term-pair was incorrectly annotated as positive.

the majority of false negatives stem from the
lack of indicative paths between them. Many
important relations are not explicitly covered by
the resources, such as noun-quality (saint !
holiness), which are abundant in turney2014,
or causality (germ ! infection), which appear
in levy2014. These examples are occasionally
captured by other (more specific) relations, and
tend to be domain-specific.

In kotlerman2010, we found that many
false negatives are caused by annotation errors in
this dataset. Pairs are often annotated as positive
based on associative similarity (e.g. transport!
environment, financing ! management),
making it difficult to even manually construct a co-
herent whitelist for this dataset. This may explain
the poor performance of our method and other
baselines on this dataset.

8 Conclusion and Future Work

In this paper, we presented a supervised frame-
work for utilizing structured resources to rec-
ognize lexical inference. We demonstrated that
our framework replicates the common practice of
WordNet and can increase the coverage of proper-
names by exploiting larger structured resources.
Compared to the prior practice of manually identi-
fying useful relations in structured resources, our
contribution offers a principled learning approach
for automating and optimizing this common need.

While our method enjoys high-precision, its re-
call is limited by the resources’ coverage. In fu-
ture work, combining our method with high-recall
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corpus-based methods may have synergistic re-
sults. Another direction for increasing recall is
to use cross-resource mappings to allow cross-
resource paths (connected at the concept-level).

Finally, our method can be extended to become
context-sensitive, that is, deciding whether the lex-
ical inference holds in a given context. This may
be done by applying a resource-based WSD ap-
proach similar to (Brody et al., 2006; Agirre et al.,
2014), detecting the concept node that matches the
term’s sense in the given context.
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Appendix A Efficient Path-Finding

We split the search to two phases: we first find all
nodes along the shortest paths between x and y,
and then reconstruct the actual paths. The first
phase ignores edge types, inducing a simpler re-
source graph, which we represent as a sparse adja-
cency matrix and manipulate efficiently with ma-
trix operations (Algorithm 1). Once the search
space is limited to relevant nodes only, the second
phase becomes trivial.

Algorithm 1 Find Relevant Nodes
1: function NODESINPATH(~nx,~ny, len)
2: if len == 1 then
3: return ~nx [ ~ny

4: for 0 < k  len do
5: if k is odd then
6: ~nx = ~nx · A

7: else
8: ~ny = ~ny · A

T

9: if ~nx · ~ny > 0 then
10: ~nxy = ~nx \ ~ny

11: ~nforward = nodesInPath(~nx,~nxy, d

k
2 e)

12: ~nbackward = nodesInPath(~nxy,~ny, b

k
2 c)

13: return ~nforward [ ~nbackward

14: return ~

0

The algorithm finds all nodes in the paths between x and y

subject to the maximum length (len). A is the resource adja-
cency matrix and ~nx,~ny are one-hot vectors of x, y.
At each iteration, we either make a forward (line 6) or a back-
ward (8) step. If the forward and backward search meet (9),
we recursively call the algorithm for each side (11-12), and
merge their results (13). The stop conditions are len = 0, re-
turning an empty set when no path was found, and len = 1,
merging both sides when they are connected by single edges.
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Abstract
This paper describes a set of methods to
link entities across images and text. As
a corpus, we used a data set of images,
where each image is commented by a short
caption and where the regions in the im-
ages are manually segmented and labeled
with a category. We extracted the entity
mentions from the captions and we com-
puted a semantic similarity between the
mentions and the region labels. We also
measured the statistical associations be-
tween these mentions and the labels and
we combined them with the semantic sim-
ilarity to produce mappings in the form
of pairs consisting of a region label and
a caption entity. In a second step, we
used the syntactic relationships between
the mentions and the spatial relationships
between the regions to rerank the lists
of candidate mappings. To evaluate our
methods, we annotated a test set of 200
images, where we manually linked the im-
age regions to their corresponding men-
tions in the captions. Eventually, we could
match objects in pictures to their correct
mentions for nearly 89 percent of the seg-
ments, when such a matching exists.

1 Introduction
Linking an object in an image to a mention of that
object in an accompanying text is a challenging
task, which we can imagine useful in a number
of settings. It could, for instance, improve im-
age retrieval by complementing the geometric re-
lationships extracted from the images with textual
descriptions from the text. A successful mapping
would also make it possible to translate knowledge
and information across image and text.

In this paper, we describe methods to link men-
tions of entities in captions to labeled image seg-

ments and we investigate how the syntactic struc-
ture of a caption can be used to better understand
the contents of an image. We do not address the
closely related task of object recognition in the im-
ages. This latter task can be seen as a complement
to entity linking across text and images. See Rus-
sakovsky et al. (2015) for a description of progress
and results to date in object detection and classifi-
cation in images.

2 An Example
Figure 1 shows an example of an image from the
Segmented and Annotated IAPR TC-12 data set
(Escalantea et al., 2010). It has four regions la-
beled cloud, grass, hill, and river, and the caption:

a flat landscape with a dry meadow in
the foreground, a lagoon behind it and
many clouds in the sky

containing mentions of five entities that we iden-
tify with the words meadow, landscape, lagoon,
cloud, and sky. A correct association of the men-
tions in the caption to the image regions would

Figure 1: Image from the Segmented and Anno-
tated IAPR TC-12 data set with the caption: a flat
landscape with a dry meadow in the foreground, a
lagoon behind it and many clouds in the sky
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map clouds to the region labeled cloud, meadow
to grass, and lagoon to river.

This image, together with its caption, illustrates
a couple of issues: The objects or regions labelled
or visible in an image are not always mentioned
in the caption, and for most of the images in the
data set, more entities are mentioned in the cap-
tions than there are regions in the images. In addi-
tion, for a same entity, the words used to mention
it are usually different from the words used as la-
bels (the categories), as in the case of grass and
meadow.

3 Previous Work

Related work includes the automatic generation
of image captions that describes relevant objects
in an image and their relationships. Kulkarni et
al. (2011) assign each detected image object a vi-
sual attribute and a spatial relationship to the other
objects in the image. The spatial relationships
are translated into selected prepositions in the re-
sulting captions. Elliott and Keller (2013) used
manually segmented and labeled images and intro-
duced visual dependency representations (VDRs)
that describe spatial relationships between the im-
age objects. The captions are generated using tem-
plates. Both Kulkarni et al. (2011) and Elliott and
Keller (2013) used the BLEU-score and human
evaluators to assess grammatically the generated
captions and on how well they describe the image.

Although much work has been done to link
complete images to a whole text, there are only a
few papers on the association of elements inside a
text and an image. Naim et al. (2014) analyzed
parallel sets of videos and written texts, where
the videos show laboratory experiments. Written
instructions are used to describe how to conduct
these experiments. The paper describes models for
matching objects detected in the video with men-
tions of those objects in the instructions. The au-
thors mainly focus on objects that get touched by a
hand in the video. For manually annotated videos,
Naim et al. (2014) could match objects to nouns
nearly 50% of the time.

Karpathy et al. (2014) proposed a system for re-
trieving related images and sentences. They used
neural networks and they show that the results are
improved if image objects and sentence fragments
are included in the model. Sentence fragments
are extracted from dependency graphs, where each
edge in the graphs corresponds to a fragment.

4 Entity Pairs

4.1 Data Set

We used the Segmented and Annotated IAPR TC-
12 Benchmark data set (Escalantea et al., 2010)
that consists of about 20,000 photographs with
a wide variety of themes. Each image has a
short caption that describes its content, most often
consisting of one to three sentences separated by
semicolons. The images are manually segmented
into regions with, on average, about 5 segments in
each image.

Each region is labelled with one out of 275
predefined image labels. The labels are arranged
in a hierarchy, where all the nodes are available
as labels and where object is the top node.
The labels humans, animals, man-made,
landscape/nature, food, and other form
the next level.

4.2 Entities and Mentions

An image caption describes a set of entities, the
caption entities CE, where each entity CEi is
referred to by a set of mentions M . To detect
them, we applied the Stanford CoreNLP pipeline
(Toutanova et al., 2003) that consists of a part-
of-speech tagger, lemmatizer, named entity recog-
nizer (Finkel et al., 2005), dependency parser, and
coreference solver. We considered each noun in
a caption as an entity candidate. If an entity CEi

had only one mention Mj , we identified it by the
head noun of its mention. We represented the en-
tities mentioned more than once by the head noun
of their most representative mention. We applied
the entity extraction to all the captions in the data
set, and we found 3,742 different nouns or noun
compounds to represent the entities.

In addition to the caption entities, each image
has a set of labeled segments (or regions) corre-
sponding to the image entities, IE. The Carte-
sian product of these two sets results in pairs P
generating all the possible mappings of caption
entities to image labels. We considered a pair
(IEi, CEj) a correct mapping, if the image la-
bel IEi and the caption entity CEj referred to the
same entity. We represented a pair by the region
label and the identifier of the caption entity, i.e.
the head noun of the entity mention. In Fig. 1, the
correct pairs are (grass, meadow), (river, lagoon),
and (cloud, clouds).
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4.3 Building a Test Set
As the Segmented and Annotated IAPR TC-12
data set does not provide information on links be-
tween the image regions and the mentions, we
annotated a set of 200 randomly selected images
from the data set to evaluate the automatic linking
accuracy. We assigned the image regions to enti-
ties in the captions and we excluded these images
from the training set. The annotation does not al-
ways produce a 1:1 mapping of caption entities to
regions. In many cases, objects are grouped or di-
vided into parts differently in the captions and in
the segmentation. We created a set of guidelines
to handle these mappings in a consistent way. Ta-
ble 1 shows the sizes of the different image sets
and the fraction of image regions that have a cor-
responding entity mention in the caption.

Set Files Regions Mappings %
Data set 19,176 – – –
Train. set 18,976 – – –
Test set 200 928 730 78.7

Table 1: The sizes of the different image sets.

5 Ranking Entity Pairs

To identify the links between the regions of an im-
age and the entity identifiers in its caption, we
first generated all the possible pairs. We then
ranked these pairs using a semantic distance de-
rived from WordNet (Miller, 1995), statistical as-
sociation metrics, and finally, a combination of
both techniques.

5.1 Semantic Distance
The image labels are generic English words that
are semantically similar to those used in the cap-
tions. In Fig. 1, cloud and clouds are used both
as label and in the caption, but the region labeled
grass is described as a meadow and the region la-
beled river, as a lagoon. We used the WordNet
Similarity for Java library, (WS4J), (Shima, 2014)
to compute the semantic similarity of the region
labels and the entity identifiers. WS4J comes with
a number of metrics that approximate similarity as
distances between WordNet synsets: PATH, WUP
(Wu and Palmer, 1994), RES, (Resnik, 1995), JCN
(Jiang and Conrath, 1997), HSO (Hirst and St-
Onge, 1998), LIN (Lin, 1998), LCH (Leacock
and Chodorow, 1998), and LESK (Banerjee and
Banerjee, 2002).

We manually lemmatized and simplified the im-
age labels and the entity mentions so that they are
compatible with WordNet entries. It resulted in a
smaller set of labels: 250 instead of the 275 orig-
inal labels. We also simplified the named entities
from the captions. When a person or location was
not present in WordNet, we used its named entity
type as identifier. In some cases, it was not possi-
ble to find an entity identifier in WordNet, mostly
due to misspellings in the caption, like buldings,
or buidling, or because of POS-tagging errors. We
chose to identify these entities with the word en-
tity. The normalization reduced the 3,742 entity
identifiers to 2,216 unique ones.

Finally, we computed a 250⇥ 2216 matrix con-
taining the similarity scores for each (image label,
entity identifier) pair for each of the WS4J seman-
tic similarity metrics.

5.2 Statistical Associations

We used three functions to reflect the statistical
association between an image label and an entity
identifier:

• Co-occurrence counts, i.e. the frequencies of
the region labels and entity identifiers that oc-
cur together in the pictures of the training set;

• Pointwise mutual information (PMI) (Fano,
1961) that compares the joint probability of
the occurrence of a (image label, entity iden-
tifier) pair to the independent probability of
the region label and the caption entity occur-
ring by themselves; and finally

• The simplified Student’s t-score as described
in Church and Mercer (1993).

As with the semantic similarity scores, we used
matrices to hold the scores for all the (image la-
bel, entity identifier) pairs for the three association
metrics.

5.3 The Mapping Algorithm

To associate the region labels of an image to the
entities in its caption, we mapped the label Li to
the caption entity Ej that had the highest score
with respect to Li. We did this for the three associ-
ation scores and the eight semantic metrics. Note
that a region label is not systematically paired with
the same caption entity, since each caption con-
tains different sets of entities.
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Background and foreground are two of the most
frequent words in the captions and they were fre-
quently assigned to image regions. Since they
rarely represent entities, but merely tell where the
entities are located, we included them in a list of
stop words, as well as middle, left, right, and front
that we removed from the identifiers.

We applied the linking algorithm to the anno-
tated set. We formed the Cartesian product of the
image labels and the entity identifiers and, for each
image region, we ranked the caption entities using
the individual scoring functions. This results in an
ordered list of entity candidates for each region.
Table 2 shows the average ranks of the correct can-
didate for each of the scoring functions and the to-
tal number of correct candidates at different ranks.

6 Reranking

The algorithm in Sect. 5.3 determines the relation-
ship holding between a pair of entities, where one
element in the pair comes from the image and the
other from the caption. The entities on each side
are considered in isolation. We extended their de-
scription with relationships inside the image and
the caption. Weegar et al. (2014) showed that pairs
of entities in a text that were linked by the preposi-
tions on, at, with, or in, often corresponded to pairs
of segments that were close to each other. We fur-
ther investigated the idea that spatial relationships
in the image relate to syntactical relationships in
the captions and we implemented it in the form of
a reranker.

For each label-identifier pair, we included the
relationship between the image segment in the pair
and the closest segment in the image. As in Wee-
gar et al. (2014), we defined the closeness as the
Euclidean distance between the gravity centers of
the bounding boxes of the segments. We also
added the relationship between the caption entity
in the label-identifier pair and the entity mentions
which were the closest in the caption. We parsed
the captions and we measured the distance as the
number of edges between the two entities in the
dependency graph.

6.1 Spatial Features

The Segmented and Annotated IAPR TC-12 data
set comes with annotations for three different
types of spatial relationships holding between the
segment pairs in each image: Topological, hori-
zontal, and vertical (Hernández-Gracidas and Su-

car, 2007). The possible values are adjacent or
disjoint for the topological category, beside or hor-
izontally aligned for the horizontal one, and finally
above, below, or vertically aligned for the vertical
one.

6.2 Syntactic Features
The syntactic features are all based on the struc-
ture of the sentences’ dependency graphs. We fol-
lowed the graph from the caption-entity in the pair
to extract its closest ancestors and descendants.
We only considered children to the right of the
candidate. We also included all the prepositions
between the entity and these ancestor and descen-
dant.

Figure 2: Dependency graph of the sentence a flat
landscape with a dry meadow in the foreground

Figure 2 shows the dependency graph of the
sentence a flat landscape with a dry meadow in
the foreground. The descendants of the landscape
entity are meadow and foreground linked respec-
tively by the prepositions with and in. Its an-
cestor is the root node and the distance between
landscape and meadow is 2. The syntactic fea-
tures we extract for the entities in this sentence ar-
ranged in the order ancestor, distance to ancestor,
preposition, descendant, distance to descendant,
and preposition are for landscape, (root, 1, null,
meadow, 2, with) and (root, 1, null, foreground,
2, in), for meadow, (landscape, 2, with, null, –,
null), and for foreground, (landscape, 2, in, null,
–, null). We discard foreground as it is part of the
stop words.

6.3 Pairing Features
The single features consist of the label, entity iden-
tifier, and score of the pair. To take interaction
into account, we also paired features characteriz-
ing properties across image and text. The list of
these features is (Table 3):

1. The label of the image region and the identi-
fier of the caption entity. In Fig 2, we create
grass meadow from (grass, meadow).

2. The label of the closest image segment to the
ancestor of the caption entity. The closest
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Scoring function Average rank Rank = 1 Rank  2 Rank  3 Rank  4
co-occurrence 1.58 338 525 609 667
PMI 1.61 340 527 624 673
t-scores 1.59 337 540 623 669
PATH 1.19 559 604 643 668
HSO 1.18 574 637 666 691
JCN 1.22 535 580 626 653
LCH 1.19 559 604 643 668
LESK 1.19 560 609 646 670
LIN 1.19 542 581 623 652
RES 1.17 559 611 638 665
WUP 1.21 546 599 640 663

Table 2: Average rank of the correct candidate obtained by each scoring function on the 200 annotated
images of the test set, and number of correct candidates that are ranked first, first or second, etc. The
ceiling is 730

Label: Simplified segment label Entity: Identifier for the caption en-
tity

Label Entity: Label and entity
features combined

Score: Score given by the current
scoring function

Anc ClosestSeg: Closest segment
label with the ancestor of the caption
entity

Desc ClosestSeg: Closest seg-
ment label with the descendant of the
caption entity

AncDist: Distance between the an-
cestor and the caption entity, and dis-
tance between segments

DescDist: Distance between the de-
scendant and the caption entity, and
distance between the segments

TopoRel DescPreps: Topological
relationship between segments and the
prepositions linking the caption entity
with its descendant

TopoRel AncPreps: Topological
relationship between the segments and
the prepositions linking the caption en-
tity with its ancestor

XRel DescPreps: Horizontal re-
lationship between segments and the
prepositions linking the caption entity
with its descendant

XRel AncPreps: Horizontal rela-
tionship between segments and the
prepositions linking the caption entity
with its ancestor

YRel DescPreps: Vertical relation-
ship between segments and the prepo-
sitions linking the caption entity with
its descendant

YRel AncPreps: Vertical relation-
ship between segments and the prepo-
sitions linking the caption entity with
its ancestor

SegmentDist: Distance (in pix-
els) between the gravity center of the
bounding boxes framing the two clos-
est segments

Table 3: The reranking features using the current segment and its closest segment in the image

segment of the grass segment is river and the
ancestor of meadow is landscape. This gives
the paired feature meadow landscape.
The labels of the segments closest to the cur-
rent segment and the descendant of meadow
are also paired.

3. The distance between the segment pairs in
the image divided into seven intervals with
the distance between the caption entities. We
measured the distance in pixels since all the
images have the same pixel dimensions.

4. The spatial relationships of the closest seg-
ments with the prepositions found between
their corresponding caption entities. The seg-
ments grass and river in the image are ad-
jacent and horizontally aligned and grass
is located below the segment labeled river.
Each of the spatial features is paired with the
prepositions for both the ancestor and the de-

scendant.

We trained the reranking models from the pairs
of labeled segments and caption entities, where
the correct mappings formed the positive exam-
ples and the rest, the negative ones. In Fig. 1,
the mapping (grass, meadow) is marked as correct
for the region labeled grass, while the mappings
(grass, lagoon) and (grass, cloud) are marked as
incorrect. We used the manually annotated images
(200 images, Table 1) as training data, a leave-one-
out cross-validation, and L2-regularized logistic
regression from LIBLINEAR (Fan et al., 2008).
We applied a cutoff of 3 for the list of candidates
in the reranking and we multiplied the original
score of the label-identifier pairs with the rerank-
ing probability.

6.4 Reranking Example
Table 4, upper part, shows the two top candidates
obtained from the co-occurrence scores for the
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Label Entity 1 Score Entity 2 Score
cloud sky 2207 cloud 1096
grass sky 1489 meadow 887
hill sky 861 cloud 327
river sky 655 cloud 250
cloud cloud 769 sky 422
grass meadow 699 landscape 176
hill landscape 113 cloud 28
river cloud 37 meadow 10

Table 4: An example of an assignment before (up-
per part) and after (lower part) reranking. The cap-
tion entities are ranked according to the number of
co-occurrences with the label. We obtain the new
score for a label-identifier pair by multiplying the
original score by the output of the reranker for this
pair

four regions in Fig. 1. The column Entity 1 shows
that the scoring function maps the caption entity
sky to all of the regions. We created a reranker’s
feature vector for each of the 8 label-identifier
pairs. Table 5 shows two of them corresponding
to the pairs (grass, sky) and (grass, meadow). The
pair (grass, meadow) is a correct mapping, but it
has a lower co-occurrence score than the incorrect
pair (grass, sky).

In the cross-validation evaluation, we applied
the classifier to these vectors and we obtained the
reranking scores of 0.0244 for (grass, sky) and
0.79 for (grass, meadow) resulting in the respec-
tive final scores of 36 and 699. Table 4, lower
part, shows the new rankings, where the high-
est scores correspond to the associations: (cloud,
cloud), (grass, meadow), (hill, landscape), and
(river, cloud), which are all correct except the last
one.

7 Results

7.1 Individual Scoring Functions
We evaluated the three scoring functions: Co-
occurrence, mutual information, and t-score, and
the semantic similarity functions. Each labeled
segment in the annotated set was assigned the
caption-entity that gave the highest scoring label-
identifier pair.

To confront the lack of annotated data we also
investigated a self-training method. We used the
statistical associations we derived from the train-
ing set and we applied the mapping procedure in
Sect. 5.3 to this set. We repeated this procedure

Feature (grass, meadow) (grass, sky)
Label grass grass
Entity meadow sky
Label Entity grass meadow grass sky
Score 881 1,477
Anc ClosestSeg landscape river cloud river
Desc ClosestSeg lagoon river null river
AncDist 2 a 2 a
DescDist 1 a 100 a
TopoRel DescPrep adj null adj null
TopoRel AncPrep adj with adj in
XRel DescPrep horiz null horiz null
XRel AncPrep horiz with horiz in
YRel DescPrep below null below null
YRel AncPrep below with below in
SegmentDist 24 24
Classification correct incorrect

Table 5: Feature vectors for the pairs (grass,
meadow) and (grass, sky). The ancestor distance
2 a means that there are two edges in the depen-
dency graph between the words meadow and land-
scape, and a represents the smallest of the distance
intervals, meaning that the two segments grass and
river are less than 50 pixels apart

with the three statistical scoring functions. We
counted all the mappings we obtained between the
region labels and the caption identifiers and we
used these counts to create three new scoring func-
tions denoted with a

P
sign.

Table 6 shows the performance comparison be-
tween the different functions. The second column
shows how many correct mappings were found
by each function. The fourth column shows the
improved score when the stop words were re-
moved. The removal of the stop words as en-
tity candidates improved the co-occurrence and t-
score scoring functions considerably, but provided
only marginal improvement for the scoring func-
tions based on semantic similarity and pointwise
mutual information. The percentage of correct
mappings is based on the 730 regions that have a
matching caption entity in the annotated test set.

The semantic similarity functions – PATH,
HSO, JCN, LCH, LESK, LIN, RES and WUP –
outperform the statistical one and the self-trained
versions of the statistical scoring functions yield
better results than the original ones.

We applied an ensemble voting procedure with
the individual scoring functions, where each func-
tion was given a number of votes to place on its
preferred label-identifier pair. We counted the
votes and the entity that received the majority of
the votes was selected as the mapping for the
current label. Table 7 shows the results, where
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With stop words Without stop words
Function # correct % # correct %
co-oc. 208 28.5 338 46.3
PMI 339 46.4 340 46.6
t-score 241 33.0 337 46.1P

co-oc. 226 30.0 387 53.0P
PMI 457 62.6 458 62.7P
t-score 247 33.8 397 54.4

PATH 552 75.6 559 76.6
HSO 562 77.0 574 78.6
JCN 527 72.2 535 73.3
LCH 552 75.6 559 76.6
LESK 549 75.2 560 76.7
LIN 532 72.9 542 74.2
RES 539 73.8 559 76.6
WUP 540 74.0 546 74.8

Table 6: Comparison of the individual scoring
functions. This test is performed on the annotated
set of 200 images, with 730 possible correct map-
pings

we reached a maximum 79.45% correct mappings
when all the functions were used together with one
vote each.

Scoring function Number of votes
co-oc. 1 0 1
PMI 1 0 1
t-score 1 0 1P

co-oc. 1 0 1P
PMI 1 0 1P
t-score 1 0 1

PATH 0 1 1
HSO 0 1 1
JCN 0 1 1
LCH 0 1 1
LESK 0 1 1
LIN 0 1 1
RES 0 1 1
WUP 0 1 1
number correct 382 569 580
percent correct 52 78 79

Table 7: Results of ensemble voting on the anno-
tated set

7.2 Reranking
We reranked all the scoring functions using the
methods described in Sect. 6. We used the three
label-identifier pairs with the highest score for
each segment and function to build the model and
we also reranked the top three label-identifier pairs
for each of the assignments. Table 8 shows the re-
sults we obtained with the reranker compared to
the original scoring functions. The reranking pro-
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Figure 3: A comparison of the number of correctly
assigned labels when using the different scoring
functions. The leftmost bars show the results of
the original functions, the middle bars show the
performance when the stop words are removed,
and the rightmost ones show the performance of
the reranked functions

cedure improves the performance of all the scoring
functions, especially the statistical ones, where the
maximal improvement reaches 58%.

Function correct correct rerank. % Improv.
co-oc. 338 515 52.4
PMI 340 515 51.5
t-score 337 532 57.9P

co-oc. 387 506 30.7P
PMI 458 552 20.5P
t-score 397 521 31.2

PATH 559 587 5.0
HSO 574 587 2.3
JCN 535 558 4.3
LCH 559 586 4.8
LESK 560 563 0.5
LIN 542 558 3.0
RES 559 585 4.7
WUP 546 565 3.5

Table 8: The performance of the reranked scoring
functions compared to the original scoring func-
tions

Figure 3 shows the comparison between the
original scoring functions, the scoring functions
without stop words, and the reranked versions.
There is a total of 928 segments, where 730 have
a matching entity in the caption.

We applied an ensemble voting with the
reranked functions (Table 9). Reranking yields a
significant improvement for the statistical scoring
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functions. When they get one vote each in the en-
semble voting, the results increase from 52% cor-
rect mappings to 75%. When used in an ensemble
with the semantic similarity scoring functions, the
results improve further.

Scoring function Number of votes
Reranked co-oc. 1 0 1
Reranked PMI 1 0 1
Reranked t-score 1 0 1
Reranked

P
co-oc. 1 0 1

Reranked
P

PMI 1 0 1
Reranked

P
t-score 1 0 1

Reranked PATH 0 1 1
Reranked HSO 0 1 1
Reranked JCN 0 1 1
Reranked LCH 0 1 1
Reranked LESK 0 1 1
Reranked LIN 0 1 1
Reranked RES 0 1 1
Reranked WUP 0 1 1
number correct 546 594 633
percent correct 75 81 87

Table 9: Results of ensemble voting with reranked
assignments segments

We also evaluated ensemble voting with differ-
ent numbers of votes for the different functions.
We tested all the permutations of integer weights
in the interval {0,3} on the development set. Ta-
ble 10 shows the best result for both the original
assignments and the reranked assignments on the
test set. The reranked assignments gave the best
results, 88.76% correct mappings, and this is also
the best result we have been able to reach.

8 Conclusion and Future Work

The extraction of relations across text and image
is a new area for research. We showed in this pa-
per that we could use semantic and statistical func-
tions to link the entities in an image to mentions of
the same entities in captions describing this image.
We also showed that using the syntactic structure
of the caption and the spatial structure of the image
improves linking accuracy. Eventually, we man-
aged to map correctly nearly 89% of the image
segments in our data set, counting only segments
that have a matching entity in the caption.

The semantic similarity functions form the most
accurate mapping tool, when using functions in
isolation. The statistical functions improve sig-

Number of votes
Scoring function Original Reranked
co-oc. 0 0
PMI 2 3
t-score 0 0P

co-oc. 0 1P
PMI 2 1P
t-score 0 1

PATH 1 1
HSO 2 3
JCN 0 0
LCH 0 0
LESK 1 0
LIN 2 0
RES 0 0
WUP 0 0
number correct 298 316
percent correct 83.71 88.76

Table 10: Results of weighted ensemble voting.

nificantly their results when they are used in an
ensemble. This shows that it is preferable to use
multiple scoring functions, as their different prop-
erties contribute to the final score.

Including the syntactic structures of the cap-
tions and pairing them with the spatial structures
of the images is also useful when mapping entities
to segments. By training a model on such features
and using this model to rerank the assignments,
the ordering of entities in the assignments is im-
proved with a better precision for all the scoring
functions.

Although we used images manually annotated
with segments and labels, we believe the meth-
ods we described here can be applied on automati-
cally segmented and labeled images. Using image
recognition would then certainly introduce incor-
rectly classified image regions and thus probably
decrease the linking scores.
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Abstract

Corpus labeling projects frequently use
low-cost workers from microtask market-
places; however, these workers are often
inexperienced or have misaligned incen-
tives. Crowdsourcing models must be ro-
bust to the resulting systematic and non-
systematic inaccuracies. We introduce a
novel crowdsourcing model that adapts the
discrete supervised topic model sLDA to
handle multiple corrupt, usually conflict-
ing (hence “confused”) supervision sig-
nals. Our model achieves significant gains
over previous work in the accuracy of de-
duced ground truth.

1 Modeling Annotators and Abilities

Supervised machine learning requires labeled
training corpora, historically produced by labo-
rious and costly annotation projects. Microtask
markets such as Amazon’s Mechanical Turk and
Crowdflower have turned crowd labor into a com-
modity that can be purchased with relatively lit-
tle overhead. However, crowdsourced judgments
can suffer from high error rates. A common solu-
tion to this problem is to obtain multiple redundant
human judgments, or annotations,1 relying on the
observation that, in aggregate, non-experts often
rival or exceed experts by averaging over individ-
ual error patterns (Surowiecki, 2005; Snow et al.,
2008; Jurgens, 2013).

A crowdsourcing model harnesses the wisdom
of the crowd and infers labels based on the ev-
idence of the available annotations, imperfect

1In this paper, we call human judgments annotations to
distinguish them from gold standard class labels.

though they be. A common baseline crowd-
sourcing method aggregates annotations by ma-
jority vote, but this approach ignores important
information. For example, some annotators are
more reliable than others and their judgments
ought to be upweighted accordingly. State-of-
the-art crowdsourcing methods account for anno-
tator expertise, often through a probabilistic for-
malism. Compounding the challenge, assessing
unobserved annotator expertise is tangled with es-
timating ground truth from imperfect annotations;
thus, joint inference of these interrelated quantities
is necessary. State-of-the-art models also take the
data into account, because data features can help
ratify or veto human annotators.

We introduce a model that improves on state
of the art crowdsourcing algorithms by modeling
not only the annotations but also the features of
the data (e.g., words in a document). Section 2
identifies modeling deficiencies affecting previous
work and proposes a solution based on topic mod-
eling; Section 2.4 presents inference for the new
model. Experiments that contrast the proposed
model with select previous work on several text
classification datasets are presented in Section 3.
In Section 4 we highlight additional related work.

2 Latent Representations that Reflect
Labels and Confusion

Most crowdsourcing models extend the item-
response model of Dawid and Skene (1979). The
Bayesian version of this model, referred to here as
ITEMRESP, is depicted in Figure 1. In the gen-
erative story for this model, a confusion matrix
�j is drawn for each human annotator j. Each
row �jc of the confusion matrix �j is drawn from
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j = 1 . . . J

Figure 1: ITEMRESP as a plate diagram. Round
nodes are random variables. Rectangular nodes
are free parameters. Shaded nodes are observed.
D,J,C are the number of documents, annotators,
and classes, respectively.

a symmetric Dirichlet distribution Dir(b(�)
jc ) and

encodes a categorical probability distribution over
label classes that annotator j is apt to choose when
presented with a document whose true label is c.
Then for each document d an unobserved docu-
ment label yd is drawn. Annotations are generated
as annotator j corrupts the true label yd according
to the categorical distribution Cat(�jyd).

2.1 Leveraging Data
Some extensions to ITEMRESP model the features
of the data (e.g., words in a document). Many
data-aware crowdsourcing models condition the
labels on the data (Jin and Ghahramani, 2002;
Raykar et al., 2010; Liu et al., 2012; Yan et al.,
2014), possibly because discriminative classifiers
dominate supervised machine learning. Others
model the data generatively (Bragg et al., 2013;
Lam and Stork, 2005; Felt et al., 2014; Simp-
son and Roberts, 2015). Felt et al. (2015) argue
that generative models are better suited than condi-
tional models to crowdsourcing scenarios because
generative models often learn faster than their
conditional counterparts (Ng and Jordan, 2001)—
especially early in the learning curve. This advan-
tage is amplified by the annotation noise typical of
crowdsourcing scenarios.

Extensions to ITEMRESP that model document
features generatively tend to share a common
high-level architecture. After the document class
label yd is drawn for each document d, features are
drawn from class-conditional distributions. Felt et
al. (2015) identify the MOMRESP model, repro-
duced in Figure 2, as a strong representative of
generative crowdsourcing models. In MOMRESP,

✓

�jc�c

b(✓)

b(�) b(�)

yd

xd adj

d = 1 . . . D

c = 1 . . . C

j = 1 . . . J

j = 1 . . . J

c = 1 . . . C

Figure 2: MOMRESP as a plate diagram. |xd| =

V , the size of the vocabulary. Documents with
similar feature vectors x tend to share a common
label y. Reduces to mixture-of-multinomials clus-
tering when no annotations a are observed.

the feature vector xd for document d is drawn from
the multinomial distribution with parameter vector
�yd . This class-conditional multinomial model of
the data inherits many of the strengths and weak-
nesses of the naı̈ve Bayes model that it resem-
bles. Strengths include easy inference and a strong
inductive bias which helps the model be robust
to annotation noise and scarcity. Weaknesses in-
clude overly strict conditional independence as-
sumptions among features, leading to overconfi-
dence in the document model and thereby caus-
ing the model to overweight feature evidence and
underweight annotation evidence. This imbalance
can result in degraded performance in the presence
of high quality or many annotations.

2.2 Confused Supervised LDA (CSLDA)

We solve the problem of imbalanced feature and
annotation evidence observed in MOMRESP by re-
placing the class-conditional structure of previous
generative crowdsourcing models with a richer
generative story where documents are drawn first
and class labels yd are obtained afterwards via a
log-linear mapping. This move towards condi-
tioning classes on documents content is sensible
because in many situations document content is
authored first, whereas label structure is not im-
posed until afterwards. It is plausible to assume
that there will exist some mapping from a latent
document structure to the desired document label
distinctions. Moreover, by jointly modeling top-
ics and the mapping to labels, we can learn the
latent document representations that best explain
how best to predict and correct annotator errors.
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Term Definition
Nd Size of document d
Ndt

P
n (zdn = t)

Nt
P

d,n (zdn = t)
Njcc0

P
d adjc0

(yd = c)
Njc hNjc1 · · · NjcCi
Nvt

P
dn (wdn = v ^ zdn = t)

Nt
P

dn (zdn = t)
ˆN Count excludes variable being sampled
z̄d Vector where z̄dt =

1
Nd

P
n (zdn = t)

ˆz̄d Excludes the zdn being sampled

Table 1: Definition of counts and select notation.
(·) is the indicator function.

We call our model confused supervised LDA
(CSLDA, Figure 3), based on supervised topic
modeling. Latent Dirichlet Allocation (Blei et
al., 2003, LDA) models text documents as ad-
mixtures of word distributions, or topics. Al-
though pre-calculated LDA topics as features can
inform a crowdsourcing model (Levenberg et al.,
2014), supervised LDA (sLDA) provides a prin-
cipled way of incorporating document class la-
bels and topics into a single model, allowing topic
variables and response variables to co-inform one
another in joint inference. For example, when
sLDA is given movie reviews labeled with sen-
timent, inferred topics cluster around sentiment-
heavy words (Mcauliffe and Blei, 2007), which
may be quite different from the topics inferred by
unsupervised LDA. One way to view CSLDA is as
a discrete sLDA in settings with noisy supervision
from multiple, imprecise annotators.

The generative story for CSLDA is:

1. Draw per-topic word distributions �t from
Dir(b(✓)

).
2. Draw per-class regression parameters ⌘c from

Gauss(µ,⌃).
3. Draw per-annotator confusion matrices �j

with row �jc drawn from Dir(b(�)
jc ).

4. For each document d,
(a) Draw topic vector ✓d from Dir(b(✓)

).
(b) For each token position n, draw topic

zdn from Cat(✓d) and word wdn from
Cat(�zdn).

(c) Draw class label yd with probability pro-
portional to exp[⌘|

yd z̄d].
(d) For each annotator j draw annotation

vector adj from �jyd .

✓d

�jc

�t

⌘c
b(✓)

b(�)

b(�)

µ

⌃

yd

zdn

wdn adj

d = 1 . . . D

n =

1 . . . Nd
c = 1 . . . C

j = 1 . . . J

c =

1 . . . C

j = 1 . . . J

t = 1 . . . T

Figure 3: CSLDA as a plate diagram. D,J,C, T
are the number of documents, annotators, classes,
and topics, respectively. Nd is the size of docu-
ment d. |�t| = V , the size of the vocabulary. ⌘c

is a vector of regression parameters. Reduces to
LDA when no annotations a are observed.

2.3 Stochastic EM

We use stochastic expectation maximization (EM)
for posterior inference in CSLDA, alternating be-
tween sampling values for topics z and document
class labels y (the E-step) and optimizing values
of regression parameters ⌘ (the M-step). To sam-
ple z and y efficiently, we derive the full condi-
tional distributions of z and y in a collapsed model
where ✓, �, and � have been analytically integrated
out. Omitting multiplicative constants, the col-
lapsed model joint probability is

p(z, w, y, a|⌘) = p(z)p(w|z)p(y|z, ⌘)p(a|y) (1)

/M(a)·
 
Y

d

B(Nd+b(✓)
)

!
·
 
Y

t

B(Nt+b(�)
t )

!

·
 
Y

d

exp(⌘|
yd z̄d)P

c exp(⌘|
c z̄d)

!
·

0

@
Y

j

Y

c

B(Njc+b(�)
jc )

1

A

where B(·) is the Beta function (multivariate as
necessary), counts N and related symbols are de-
fined in Table 1, and M(a) =

Q
d,j M(adj) where

M(adj) is the multinomial coefficient.
Simplifying Equation 1 yields full conditionals

for each word zdn,

p(zdn = t|ẑ, w, y, a, ⌘) /
⇣

ˆNdt + b(✓)
t

⌘
(2)

·
ˆNwdnt + b(�)

wdn

ˆNt + |b(�)|1
·

exp(

⌘ydt

Nd
)

P
c exp(

⌘ct
Nd

+ ⌘|
c ˆz̄d)

,
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and similarly for document label yd:

p(yd = c|z, w, y, a, ⌘) / exp(⌘|
c z̄d)P

c0 exp(⌘|
c0 z̄d)

(3)

·
Y

j

Q
c0

⇣
ˆNjcc0

+ b(�)
⌘adjc0

⇣P
c0 ˆNjcc0

+ b(�)
jcc0

⌘P
c0 adjc0

,

where xk , x(x + 1) · · · (x + k � 1) is the rising
factorial. In Equation 2 the first and third terms
are independent of word n and can be cached at
the document level for efficiency.

For the M-step, we train the regression param-
eters ⌘ (containing one vector per class) by opti-
mizing the same objective function as for training
a logistic regression classifier, assuming that class
y is given:

p(y = c|z, ⌘) =

Y

d

exp(⌘|
c z̄d)P

c0 exp(⌘|
c0 z̄d)

. (4)

We optimize the objective (Equation 4) using L-
BFGS and a regularizing Gaussian prior with µ =

0, �2
= 1.

While EM is sensitive to initialization, CSLDA
is straightforward to initialize. Majority vote is
used to set initial y values ỹ. Corresponding initial
values for z and ⌘ are obtained by clamping y to ỹ
and running stochastic EM on z and ⌘.

2.4 Hyperparameter Optimization
Ideally, we would test CSLDA performance under
all of the many algorithms available for inference
in such a model. Although that is not feasible,
Asuncion et al. (2009) demonstrate that hyperapa-
rameter optimization in LDA topic models helps
to bring the performance of alternative inference
algorithms into approximate agreement. Accord-
ingly, in Section 2.4 we implement hyperparame-
ter optimization for CSLDA to make our results as
general as possible.

Before moving on, however, we take a moment
to validate that the observation of Asuncion et al.
generalizes from LDA to the ITEMRESP model,
which, together with LDA, comprises CSLDA.
Figure 4 demonstrates that three ITEMRESP infer-
ence algorithms, Gibbs sampling (Gibbs), mean-
field variational inference (Var), and the iter-
ated conditional modes algorithm (ICM) (Besag,
1986), are brought into better agreement after opti-
mizing their hyperparameters via grid search. That
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(b) Hyperparameters optimized via grid search on validation
data

Figure 4: Differences among the inferred label ac-
curacy learning curves of three ITEMRESP infer-
ence algorithms are reduced when hyperparame-
ters are optimized.

is, the algorithms in Figure 4b are in better agree-
ment, particularly near the extremes, than the algo-
rithms in Figure 4a. This difference is subtle, but it
holds to an equal and greater extent in other simu-
lation conditions we tested (experiment details are
similar to those reported in Section 3).

Fixed-point Hyperparameter Updates
Although a grid search is effective, it is not prac-
tical for a model with many hyperparameters such
as CSLDA. For efficiency, therefore, we use the
fixed-point updates of Minka (2000). Our up-
dates differ slightly from Minka’s since we tie hy-
perparameters, allowing them to be learned more
quickly from less data. In our implementation the
matrices of hyperparameters b(�) and b(✓) over the
Dirichlet-multinomial distributions are completely
tied such that b(�)

tv = b(�)8t, v and b(✓)
t = b(✓)8t.

This leads to

b(�) b(�)·
P

t,v[ (Ntv+b(�)
)]�TV (b(�)

)

V [ (Nt+V b(�)
)� (V b(�)

)]

(5)

and

b(✓) b(✓)·
P

d,t[ (Ndt+b(✓)
)]�NT (b(✓)

)

T [ (Nd+Tb(✓)
)� (Tb(✓)

)]

. (6)

The updates for b(�) are slightly more involved
since we choose to tie the diagonal entries b(�)

d and
separately the off-diagonal entries b(�)

o , updating
each separately:

b(�)
d  b(�)

d ·
P

j,c[ (Njcc+b(�)
d )]�JC (b(�)

d )

Z(b(�)
)

(7)
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and b(�)
o  

b(�)
o ·

X

j,c,c0 6=c

[ (Njcc0
+b(�)

o )]�JC(C�1) (b(�)
o )]

(C�1)Z(b(�)
)

(8)
where

Z(b(�)
) =

X

j,c

[ (Njc + b(�)
d + (C � 1)b(�)

o )]

� JC (b(�)
d + (C � 1)b(�)

o ).

As in the work of Asuncion et al. (2009), we add
an algorithmic gamma prior (b(·) ⇠ G(↵,�)) for
smoothing by adding ↵�1

b(·)
to the numerator and �

to the denominator of Equations 5-8. Note that
these algorithmic gamma “priors” should not be
understood as first-class members of the CSLDA
model (Figure 3). Rather, they are regularization
terms that keep our hyperparameter search algo-
rithm from straying towards problematic values
such as 0 or1.

3 Experiments
For all experiments we set CSLDA’s number of
topics T to 1.5 times the number of classes in each
dataset. We found that model performance was
reasonably robust to this parameter. Only when
T drops below the number of label classes does
performance suffer. As per Section 2.3, z and ⌘
values are initialized with 500 rounds of stochas-
tic EM, after which the full model is updated with
1000 additional rounds. Predictions are generated
by aggregating samples from the last 100 rounds
(the mode of the approximate marginal posterior).

We compare CSLDA with (1) a majority vote
baseline, (2) the ITEMRESP model, and rep-
resentatives of the two main classes of data-
aware crowdsourcing models, namely (3) data-
generative and (4) data-conditional. MOMRESP
represents a typical data-generative model (Bragg
et al., 2013; Felt et al., 2014; Lam and Stork, 2005;
Simpson and Roberts, 2015). Data-conditional ap-
proaches typically model data features condition-
ally using a log-linear model (Jin and Ghahramani,
2002; Raykar et al., 2010; Liu et al., 2012; Yan et
al., 2014). For the purposes of this paper, we re-
fer to this model as LOGRESP. For ITEMRESP,
MOMRESP, and LOGRESP we use the variational
inference methods presented by Felt et al. (2015).
Unlike that paper, in this work we have augmented
inference with the in-line hyperparameter updates
described in Section 2.4.
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Figure 5: Inferred label accuracy of models on
sentiment-annotated weather tweets.

3.1 Human-generated Annotations

To gauge the effectiveness of data-aware crowd-
sourcing models, we use the sentiment-annotated
tweet dataset distributed by CrowdFlower as a
part of its “data for everyone” initiative.2 In the
“Weather Sentiment” task, 20 annotators judged
the sentiment of 1000 tweets as either positive,
negative, neutral, or unrelated to the weather.
In the secondary “Weather Sentiment Evaluated”
task, 10 additional annotators judged the correct-
ness of each consensus label. We construct a
gold standard from the consensus labels that were
judged to be correct by 9 of the 10 annotators in
the secondary task.

Figure 5 plots learning curves of the accuracy
of model-inferred labels as annotations are added
(ordered by timestamp). All methods, including
majority vote, converge to roughly the same accu-
racy when all 20,000 annotations are added. When
fewer annotations are available, statistical mod-
els beat majority vote, and CSLDA is consider-
ably more accurate than other approaches. Learn-
ing curves are bumpy because annotation order is
not random and because inferred label accuracy is
calculated only over documents with at least one
annotation. Learning curves collectively increase
when average annotation depth (the number of an-
notations per item) increases and decrease when
new documents are annotated and average anno-
tation depth decreases. CSLDA stands out by be-
ing more robust to these changes than other algo-
rithms, and also by maintaining a higher level of
accuracy across the board. This is important be-
cause high accuracy using fewer annotations trans-
lates to decreased annotations costs.

2http://www.crowdflower.com/data-for-everyone
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D C V 1
N

P
d Nd

20 News 16,995 20 22,851 111
WebKB 3,543 4 5,781 131
Reuters8 6,523 8 6,776 53
Reuters52 7,735 52 5,579 58
CADE12 34,801 12 41,628 110
Enron 3,854 32 14,069 431

Table 2: Dataset statistics. D is number of doc-
uments, C is number of classes, V is number of
features, and 1

N

P
d Nd is average document size.

Values are calculated after setting aside 15% as
validation data and doing feature selection.

3.2 Synthetic Annotations

Datasets including both annotations and gold stan-
dard labels are in short supply. Although plenty
of text categorization datasets have been anno-
tated, common practice reflects that initial noisy
annotations be discarded and only consensus la-
bels be published. Consequently, we follow pre-
vious work in achieving broad validation by con-
structing synthetic annotators that corrupt known
gold standard labels. We base our experimen-
tal setup on the annotations gathered by Felt et
al. (2015),3 who paid CrowdFlower annotators to
relabel 1000 documents from the well-known 20
Newsgroups classification dataset. In that exper-
iment, 136 annotators contributed, each instance
was labeled an average of 6.9 times, and anno-
tator accuracies were distributed approximately
according to a Beta(3.6, 5.1) distribution. Ac-
cordingly we construct 100 synthetic annotators,
each parametrized by an accuracy drawn from
Beta(3.6, 5.1) and with errors drawn from a sym-
metric Dirichlet Dir(1). Datasets are annotated
by selecting an instance (at random without re-
placement) and then selecting K annotators (at
random without replacement) to annotate it before
moving on. We choose K = 7 to mirror the em-
pirical average in the CrowdFlower annotation set.

We evaluate on six text classification datasets,
summarized in Table 2. The 20 Newsgroups, We-
bKB, Cade12, Reuters8, and Reuters52 datasets
are described in more detail by Cardoso-Cachopo
(2007). The LDC-labeled Enron emails dataset is
described by Berry et al. (2001). Each dataset is

3The dataset is available via git at git://nlp.cs.
byu.edu/plf1/crowdflower-newsgroups.git
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Figure 6: Inferred label accuracy of models on
synthetic annotations. The first instance is anno-
tated 7 times, then the second, and so on.

preprocessed via Porter stemming and by removal
of the stopwords from MALLET’s stopword list
(McCallum, 2002). Features occurring fewer than
5 times in the corpus are discarded. In the case
of MOMRESP, features are fractionally scaled so
that each document is the same length, in keep-
ing with previous work in multinomial document
models (Nigam et al., 2006).

Figure 6 plots learning curves on three repre-
sentative datasets (Enron resembles Cade12, and
the Reuters datasets resemble WebKB). CSLDA
consistently outperforms LOGRESP, ITEMRESP,
and majority vote. The generative models
(CSLDA and MOMRESP) tend to excel in low-
annotation portions of the learning curve, par-
tially because generative models tend to converge
quickly and partially because generative models
naturally learn from unlabeled documents (i.e.,
semi-supervision). However, MOMRESP tends to
quickly reach a performance plateau after which
additional annotations do little good. The perfor-
mance of MOMRESP is also highly dataset de-
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95% Accuracy CSLDA MOMRESP LOGRESP ITEMRESP Majority
20 News 85 (5.0x) 150 (8.8x) 152 (8.9x) 168 (9.9x) 233 (13.7x)
WebKB 31 (8.8x) - 46 (13.0x) 46 (13.0x) -
Reuters8 25 (3.8x) - 73 (11.2x) 62 (9.5x) -
Reuters52 33 (4.3x) 73 (9.4x) 67.5 (8.7x) 60 (7.8x) 87 (11.2x)
CADE12 250 (7.2x) - 295 (8.5x) 290 (8.3x) 570 (16.4x)
Enron 31 (8.0x) - 40 (10.4x) 38 (9.9x) 47 (12.2x)

Table 3: The number of annotations ⇥1000 at which the algorithm reaches 95% inferred label accuracy
on the indicated dataset (average annotations per instance are in parenthesis). All instances are annotated
once, then twice, and so on. Empty entries (’-’) do not reach 95% even with 20 annotations per instance.

pendent: it is good on 20 Newsgroups, mediocre
on WebKB, and poor on CADE12. By contrast,
CSLDA is relatively stable across datasets.

To understand the different behavior of the two
generative models, recall that MOMRESP is iden-
tical to ITEMRESP save for its multinomial data
model. Indeed, the equations governing infer-
ence of label y in MOMRESP simply sum together
terms from an ITEMRESP model and terms from
a mixture of multinomials clustering model (and
for reasons explained in Section 2.1, the multino-
mial data model terms tend to dominate). There-
fore when MOMRESP diverges from ITEMRESP
it is because MOMRESP is attracted toward a y as-
signment that satisfies the multinomial data model,
grouping similar documents together. This can
both help and hurt. When data clusters and la-
bel classes are misaligned, MOMRESP falters (as
in the case of the Cade12 dataset). In contrast,
CSLDA’s flexible mapping from topics to labels
is less sensitive: topics can diverge from label
classes so long as there exists some linear trans-
formation from the topics to the labels.

Many corpus annotation projects are not com-
plete until the corpus achieves some target level of
quality. We repeat the experiment reported in Fig-
ure 6, but rather than simulating seven annotations
for each instance before moving on, we simulate
one annotation for each instance, then two, and so
on until each instance in the dataset is annotated
20 times. Table 3 reports the minimal number of
annotations before an algorithm’s inferred labels
reach an accuracy of 95%, a lofty goal that can re-
quire significant amounts of annotation when us-
ing poor quality annotations. CSLDA achieves
95% accuracy with fewer annotations, correspond-
ing to reduced annotation cost.
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Figure 7: Joint inference for CSLDA vs pipeline
inference (CSLDA-P).

3.3 Joint vs Pipeline Inference

To isolate the effectiveness of joint inference in
CSLDA, we compare against the pipeline alterna-
tive where topics are inferred first and then held
constant during inference (Levenberg et al., 2014).
Joint inference yields modest but consistent bene-
fits over a pipeline approach. Figure 7 highlights
a portion of the learning curve on the Newsgroups
dataset (based on the experiments summarized in
Table 3). This trend holds across all of the datasets
that we examined.

3.4 Error Analysis

Class-conditional models like MOMRESP include
a feature that data-conditional models like CSLDA
lack: an explicit prior over class prevalence. Fig-
ure 8a shows that CSLDA performs poorly on the
CrowdFlower-annotated Newsgroups documents
described at the beginning of Section 3 (not the
synthetic annotations). Error analysis uncovers
that CSLDA lumps related classes together in this
dataset. This is because annotators could specify
up to 3 simultaneous labels for each annotation,
so that similar labels (e.g., “talk.politics.misc”
and “talk.politics.mideast”) are usually chosen in
blocks. Suppose each member of a set of doc-
uments with similar topical content is annotated
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(b) After combining frequently co-annotated label classes

Figure 8: An illustrative failure case. CSLDA,
lacking a class label prior, prefers to combine label
classes that are highly co-annotated.

with both label A and B. In this scenario it is ap-
parent that CSLDA will achieve its best fit by in-
ferring all documents to have the same label either
A or B. By contrast, MOMRESP’s uniform prior
distribution over ✓ leads it to prefer solutions with
a balance of A and B.

The hypothesis that class combination explains
CSLDA’s performance is supported by Figure 8b,
which shows that CSLDA recovers after com-
bining the classes that were most frequently co-
annotated. We greedily combine label class pairs
to maximize Krippendorf’s ↵ until only 10 la-
bels were left: “alt.atheism,” religion, and poli-
tics classes were combined; also, “sci.electronics”
and the computing classes. The remaining eight
classes were unaltered. However, one could also
argue that the original behavior of CSLDA is in
some ways desirable. That is, if two classes of
documents are mostly the same both topically and
in terms of annotator decisions, perhaps those
classes ought to be collapsed. We are not overly
concerned that MOMRESP beats CSLDA in Fig-
ure 8, since this result is consistent with early rel-
ative performance in simulation.

4 Additional Related Work

This section reviews related work not already dis-
cussed. A growing body of work extends the item-
response model to account for variables such as
item difficulty (Whitehill et al., 2009; Passonneau

and Carpenter, 2013; Zhou et al., 2012), anno-
tator trustworthiness (Hovy et al., 2013), corre-
lation among various combinations of these vari-
ables (Zhou et al., 2014), and change in annotator
behavior over time (Simpson and Roberts, 2015).

Welinder et al. (2010) carefully model the pro-
cess of annotating objects in images, including
variables for item difficulty, item class, and class-
conditional perception noise. In follow-up work,
Liu et al. (2012) demonstrate that similar levels
of performance can be achieved with the sim-
ple item-response model by using variational in-
ference rather than EM. Alternative inference al-
gorithms have been proposed for crowdsourcing
models (Dalvi et al., 2013; Ghosh et al., 2011;
Karger et al., 2013; Zhang et al., 2014). Some
crowdsourcing work regards labeled data not as an
end in itself, but rather as a means to train clas-
sifiers (Lin et al., 2014). The fact-finding litera-
ture assigns trust scores to assertions made by un-
trusted sources (Pasternack and Roth, 2010).

5 Conclusion and Future Work

We describe CSLDA, a generative, data-aware
crowdsourcing model that addresses important
modeling deficiencies identified in previous work.
In particular, CSLDA handles data in which the
natural document clusters are at odds with the
intended document labels. It also transitions
smoothly from situations in which few annotations
are available to those in which many annotations
are available. Because of the flexible mapping in
CSLDA to class labels, many structural variants
are possible in future work. For example, this
mapping could depend not just on inferred topi-
cal content but also directly on data features (c.f.
Nguyen et al. (2013)) or learned embedded feature
representations.

The large number of parameters in the learned
confusion matrices of crowdsourcing models
present difficulty at scale. This could be addressed
by modeling structure both inside of the annotators
and classes. Redundant annotations give unique
insights into both inter-annotator and inter-class
relationships and could be used to induce anno-
tator or label class hierarchies with parsimonious
representations. Simpson et al. (2013) identify an-
notator clusters using community detection algo-
rithms but do not address annotator hierarchy or
scalable confusion representations.
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Abstract

We propose MVCNN, a convolution neu-
ral network (CNN) architecture for sen-
tence classification. It (i) combines di-
verse versions of pretrained word embed-
dings and (ii) extracts features of multi-
granular phrases with variable-size convo-
lution filters. We also show that pretrain-
ing MVCNN is critical for good perfor-
mance. MVCNN achieves state-of-the-art
performance on four tasks: on small-scale
binary, small-scale multi-class and large-
scale Twitter sentiment prediction and on
subjectivity classification.

1 Introduction

Different sentence classification tasks are crucial
for many Natural Language Processing (NLP) ap-
plications. Natural language sentences have com-
plicated structures, both sequential and hierarchi-
cal, that are essential for understanding them. In
addition, how to decode and compose the features
of component units, including single words and
variable-size phrases, is central to the sentence
classification problem.

In recent years, deep learning models have
achieved remarkable results in computer vision
(Krizhevsky et al., 2012), speech recognition
(Graves et al., 2013) and NLP (Collobert and We-
ston, 2008). A problem largely specific to NLP is
how to detect features of linguistic units, how to
conduct composition over variable-size sequences
and how to use them for NLP tasks (Collobert et
al., 2011; Kalchbrenner et al., 2014; Kim, 2014).
Socher et al. (2011a) proposed recursive neural
networks to form phrases based on parsing trees.
This approach depends on the availability of a well
performing parser; for many languages and do-
mains, especially noisy domains, reliable parsing
is difficult. Hence, convolution neural networks

(CNN) are getting increasing attention, for they
are able to model long-range dependencies in sen-
tences via hierarchical structures (Dos Santos and
Gatti, 2014; Kim, 2014; Denil et al., 2014). Cur-
rent CNN systems usually implement a convolu-
tion layer with fixed-size filters (i.e., feature detec-
tors), in which the concrete filter size is a hyper-
parameter. They essentially split a sentence into
multiple sub-sentences by a sliding window, then
determine the sentence label by using the domi-
nant label across all sub-sentences. The underly-
ing assumption is that the sub-sentence with that
granularity is potentially good enough to represent
the whole sentence. However, it is hard to find the
granularity of a “good sub-sentence” that works
well across sentences. This motivates us to imple-
ment variable-size filters in a convolution layer in
order to extract features of multigranular phrases.

Breakthroughs of deep learning in NLP are also
based on learning distributed word representations
– also called “word embeddings” – by neural lan-
guage models (Bengio et al., 2003; Mnih and Hin-
ton, 2009; Mikolov et al., 2010; Mikolov, 2012;
Mikolov et al., 2013a). Word embeddings are de-
rived by projecting words from a sparse, 1-of-V
encoding (V : vocabulary size) onto a lower di-
mensional and dense vector space via hidden lay-
ers and can be interpreted as feature extractors that
encode semantic and syntactic features of words.

Many papers study the comparative perfor-
mance of different versions of word embed-
dings, usually learned by different neural net-
work (NN) architectures. For example, Chen et
al. (2013) compared HLBL (Mnih and Hinton,
2009), SENNA (Collobert and Weston, 2008),
Turian (Turian et al., 2010) and Huang (Huang
et al., 2012), showing great variance in quality
and characteristics of the semantics captured by
the tested embedding versions. Hill et al. (2014)
showed that embeddings learned by neural ma-
chine translation models outperform three repre-

204



sentative monolingual embedding versions: skip-
gram (Mikolov et al., 2013b), GloVe (Pennington
et al., 2014) and C&W (Collobert et al., 2011) in
some cases. These prior studies motivate us to ex-
plore combining multiple versions of word embed-
dings, treating each of them as a distinct descrip-
tion of words. Our expectation is that the com-
bination of these embedding versions, trained by
different NNs on different corpora, should contain
more information than each version individually.
We want to leverage this diversity of different em-
bedding versions to extract higher quality sentence
features and thereby improve sentence classifica-
tion performance.

The letters “M” and “V” in the name
“MVCNN” of our architecture denote the multi-
channel and variable-size convolution filters, re-
spectively. “Multichannel” employs language
from computer vision where a color image has red,
green and blue channels. Here, a channel is a de-
scription by an embedding version.

For many sentence classification tasks, only rel-
atively small training sets are available. MVCNN
has a large number of parameters, so that overfit-
ting is a danger when they are trained on small
training sets. We address this problem by pre-
training MVCNN on unlabeled data. These pre-
trained weights can then be fine-tuned for the spe-
cific classification task.

In sum, we attribute the success of MVCNN
to: (i) designing variable-size convolution filters
to extract variable-range features of sentences and
(ii) exploring the combination of multiple pub-
lic embedding versions to initialize words in sen-
tences. We also employ two “tricks” to further en-
hance system performance: mutual learning and
pretraining.

In remaining parts, Section 2 presents related
work. Section 3 gives details of our classification
model. Section 4 introduces two tricks that en-
hance system performance: mutual-learning and
pretraining. Section 5 reports experimental re-
sults. Section 6 concludes this work.

2 Related Work

Much prior work has exploited deep neural net-
works to model sentences.

Blacoe and Lapata (2012) represented a sen-
tence by element-wise addition, multiplication, or
recursive autoencoder over embeddings of com-
ponent single words. Yin and Schütze (2014) ex-

tended this approach by composing on words and
phrases instead of only single words.

Collobert and Weston (2008) and Yu et al.
(2014) used one layer of convolution over phrases
detected by a sliding window on a target sentence,
then used max- or average-pooling to form a sen-
tence representation.

Kalchbrenner et al. (2014) stacked multiple lay-
ers of one-dimensional convolution by dynamic k-
max pooling to model sentences. We also adopt
dynamic k-max pooling while our convolution
layer has variable-size filters.

Kim (2014) also studied multichannel repre-
sentation and variable-size filters. Differently,
their multichannel relies on a single version of
pretrained embeddings (i.e., pretrained Word2Vec
embeddings) with two copies: one is kept stable
and the other one is fine-tuned by backpropaga-
tion. We develop this insight by incorporating di-
verse embedding versions. Additionally, their idea
of variable-size filters is further developed.

Le and Mikolov (2014) initialized the represen-
tation of a sentence as a parameter vector, treat-
ing it as a global feature and combining this vec-
tor with the representations of context words to
do word prediction. Finally, this fine-tuned vec-
tor is used as representation of this sentence. Ap-
parently, this method can only produce generic
sentence representations which encode no task-
specific features.

Our work is also inspired by studies that com-
pared the performance of different word embed-
ding versions or investigated the combination of
them. For example, Turian et al. (2010) compared
Brown clusters, C&W embeddings and HLBL em-
beddings in NER and chunking tasks. They found
that Brown clusters and word embeddings both
can improve the accuracy of supervised NLP sys-
tems; and demonstrated empirically that combin-
ing different word representations is beneficial.
Luo et al. (2014) adapted CBOW (Mikolov et
al., 2013a) to train word embeddings on differ-
ent datasets: free text documents from Wikipedia,
search click-through data and user query data,
showing that combining them gets stronger results
than using individual word embeddings in web
search ranking and word similarity task. How-
ever, these two papers either learned word repre-
sentations on the same corpus (Turian et al., 2010)
or enhanced the embedding quality by extending
training corpora, not learning algorithms (Luo et
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al., 2014). In our work, there is no limit to the
type of embedding versions we can use and they
leverage not only the diversity of corpora, but also
the different principles of learning algorithms.

3 Model Description

We now describe the architecture of our model
MVCNN, illustrated in Figure 1.

Multichannel Input. The input of MVCNN in-
cludes multichannel feature maps of a considered
sentence, each is a matrix initialized by a differ-
ent embedding version. Let s be sentence length,
d dimension of word embeddings and c the to-
tal number of different embedding versions (i.e.,
channels). Hence, the whole initialized input is a
three-dimensional array of size c⇥d⇥s. Figure 1
depicts a sentence with s = 12 words. Each word
is initialized by c = 5 embeddings, each com-
ing from a different channel. In implementation,
sentences in a mini-batch will be padded to the
same length, and unknown words for correspond-
ing channel are randomly initialized or can acquire
good initialization from the mutual-learning phase
described in next section.

Multichannel initialization brings two advan-
tages: 1) a frequent word can have c representa-
tions in the beginning (instead of only one), which
means it has more available information to lever-
age; 2) a rare word missed in some embedding
versions can be “made up” by others (we call it
“partially known word”). Therefore, this kind of
initialization is able to make use of information
about partially known words, without having to
employ full random initialization or removal of
unknown words. The vocabulary of the binary
sentiment prediction task described in experimen-
tal part contains 5232 words unknown in HLBL
embeddings, 4273 in Huang embeddings, 3299 in
GloVe embeddings, 4136 in SENNA embeddings
and 2257 in Word2Vec embeddings. But only
1824 words find no embedding from any chan-
nel! Hence, multichannel initialization can con-
siderably reduce the number of unknown words.

Convolution Layer (Conv). For convenience,
we first introduce how this work uses a convo-
lution layer on one input feature map to gener-
ate one higher-level feature map. Given a sen-
tence of length s: w1, w2, . . . , ws; wi 2 Rd de-
notes the embedding of word wi; a convolution
layer uses sliding filters to extract local features
of that sentence. The filter width l is a param-

Figure 1: MVCNN: supervised classification and
pretraining.

eter. We first concatenate the initialized embed-
dings of l consecutive words (wi�l+1, . . . ,wi) as
ci 2 Rld

(1  i < s + l), then generate the fea-
ture value of this phrase as pi (the whole vector
p 2 Rs+l�1 contains all the local features) using
a tanh activation function and a linear projection
vector v 2 Rld as:

pi = tanh(v

T
ci + b) (1)

More generally, convolution operation can deal
with multiple input feature maps and can be
stacked to yield feature maps of increasing layers.
In each layer, there are usually multiple filters of
the same size, but with different weights (Kalch-
brenner et al., 2014). We refer to a filter with a
specific set of weights as a kernel. The goal is
often to train a model in which different kernels
detect different kinds of features of a local region.
However, this traditional way can not detect the
features of regions of different granularity. Hence

206



we keep the property of multi-kernel while extend-
ing it to variable-size in the same layer.

As in CNN for object recognition, to increase
the number of kernels of a certain layer, multiple
feature maps may be computed in parallel at the
same layer. Further, to increase the size diversity
of kernels in the same layer, more feature maps
containing various-range dependency features can
be learned. We denote a feature map of the ith

layer by Fi, and assume totally n feature maps ex-
ist in layer i � 1: F

1
i�1, . . . ,F

n
i�1. Considering

a specific filter size l in layer i, each feature map
F

j
i,l is computed by convolving a distinct set of fil-

ters of size l, arranged in a matrix V

j,k
i,l , with each

feature map F

k
i�1 and summing the results:

F

j
i,l =

nX

k=1

V

j,k
i,l ⇤ F

k
i�1 (2)

where ⇤ indicates the convolution operation and
j is the index of a feature map in layer i. The
weights in V form a rank 4 tensor.

Note that we use wide convolution in this work:
it means word representations wg for g  0 or
g � s+1 are actually zero embeddings. Wide con-
volution enables that each word can be detected by
all filter weights in V.

In Figure 1, the first convolution layer deals
with an input with n = 5 feature maps.1 Its filters
have sizes 3 and 5 respectively (i.e., l = 3, 5), and
each filter has j = 3 kernels. This means this con-
volution layer can detect three kinds of features of
phrases with length 3 and 5, respectively.

DCNN in (Kalchbrenner et al., 2014) used one-
dimensional convolution: each higher-order fea-
ture is produced from values of a single dimen-
sion in the lower-layer feature map. Even though
that work proposed folding operation to model
the dependencies between adjacent dimensions,
this type of dependency modeling is still lim-
ited. Differently, convolution in present work is
able to model dependency across dimensions as
well as adjacent words, which obviates the need
for a folding step. This change also means our
model has substantially fewer parameters than the
DCNN since the output of each convolution layer
is smaller by a factor of d.

1A reviewer expresses surprise at such a small number of
maps. However, we will use four variable sizes (see below),
so that the overall number of maps is 20. We use a small
number of maps partly because training times for a network
are on the order of days, so limiting the number of parameters
is important.

Dynamic k-max Pooling. Kalchbrenner et al.
(2014) pool the k most active features compared
with simple max (1-max) pooling (Collobert and
Weston, 2008). This property enables it to con-
nect multiple convolution layers to form a deep
architecture to extract high-level abstract features.
In this work, we directly use it to extract features
for variable-size feature maps. For a given feature
map in layer i, dynamic k-max pooling extracts ki

top values from each dimension and ktop top val-
ues in the top layer. We set

ki = max(ktop, d
L� i

L
se) (3)

where i 2 {1, 2, . . . L} is the order of convolution
layer from bottom to top in Figure 1; L is the total
numbers of convolution layers; ktop is a constant
determined empirically, we set it to 4 as (Kalch-
brenner et al., 2014).

As a result, the second convolution layer in Fig-
ure 1 has an input with two same-size feature
maps, one results from filter size 3, one from filter
size 5. The values in the two feature maps are for
phrases with different granularity. The motivation
of this convolution layer lies in that a feature re-
flected by a short phrase may be not trustworthy
while the longer phrase containing the short one is
trustworthy, or the long phrase has no trustworthy
feature while its component short phrase is more
reliable. This and even higher-order convolution
layers therefore can make a trade-off between the
features of different granularity.

Hidden Layer. On the top of the final k-
max pooling, we stack a fully connected layer to
learn sentence representation with given dimen-
sion (e.g., d).

Logistic Regression Layer. Finally, sentence
representation is forwarded into logistic regression
layer for classification.

In brief, our MVCNN model learns from
(Kalchbrenner et al., 2014) to use dynamic k-
max pooling to stack multiple convolution layers,
and gets insight from (Kim, 2014) to investigate
variable-size filters in a convolution layer. Com-
pared to (Kalchbrenner et al., 2014), MVCNN
has rich feature maps as input and as output of
each convolution layer. Its convolution opera-
tion is not only more flexible to extract features
of variable-range phrases, but also able to model
dependency among all dimensions of representa-
tions. MVCNN extends the network in (Kim,
2014) by hierarchical convolution architecture and
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further exploration of multichannel and variable-
size feature detectors.

4 Model Enhancements

This part introduces two training tricks that en-
hance the performance of MVCNN in practice.

Mutual-Learning of Embedding Versions.
One observation in using multiple embedding ver-
sions is that they have different vocabulary cover-
age. An unknown word in an embedding version
may be a known word in another version. Thus,
there exists a proportion of words that can only
be partially initialized by certain versions of word
embeddings, which means these words lack the
description from other versions.

To alleviate this problem, we design a mutual-
learning regime to predict representations of un-
known words for each embedding version by
learning projections between versions. As a result,
all embedding versions have the same vocabulary.
This processing ensures that more words in each
embedding version receive a good representation,
and is expected to give most words occurring in a
classification dataset more comprehensive initial-
ization (as opposed to just being randomly initial-
ized).

Let c be the number of embedding versions in
consideration, V1, V2, . . . , Vi, . . . , Vc their vocab-
ularies, V ⇤

= [c
i=1Vi their union, and V �

i =

V ⇤\Vi (i = 1, . . . , c) the vocabulary of unknown
words for embedding version i. Our goal is to
learn embeddings for the words in V �

i by knowl-
edge from the other c� 1 embedding versions.

We use the overlapping vocabulary between Vi

and Vj , denoted as Vij , as training set, formalizing
a projection fij from space Vi to space Vj (i 6=
j; i, j 2 {1, 2, . . . , c}) as follows:

ŵj = Mijwi (4)

where Mij 2 Rd⇥d, wi 2 Rd denotes the rep-
resentation of word w in space Vi and ŵj is the
projected (or learned) representation of word w in
space Vj . Squared error between wj and ŵj is the
training loss to minimize. We use ˆ

wj = fij(wi)

to reformat Equation 4. Totally c(c� 1)/2 projec-
tions fij are trained, each on the vocabulary inter-
section Vij .

Let w be a word that is unknown in Vi, but is
known in V1, V2, . . . , Vk. To compute an embed-
ding for w in Vi, we first compute the k projections
f1i(w1), f2i(w2), . . ., fki(wk) from the source

spaces V1, V2, . . . , Vk to the target space Vi. Then,
the element-wise average of f1i(w1), f2i(w2), . . .,
fki(wk) is treated as the representation of w in Vi.
Our motivation is that – assuming there is a true
representation of w in Vi (e.g., the one we would
have obtained by training embeddings on a much
larger corpus) and assuming the projections were
learned well – we would expect all the projected
vectors to be close to the true representation. Also,
each source space contributes potentially comple-
mentary information. Hence averaging them is a
balance of knowledge from all source spaces.

As discussed in Section 3, we found that for
the binary sentiment classification dataset, many
words were unknown in at least one embedding
version. But of these words, a total of 5022 words
did have coverage in another embedding version
and so will benefit from mutual-learning. In the
experiments, we will show that this is a very ef-
fective method to learn representations for un-
known words that increases system performance if
learned representations are used for initialization.

Pretraining. Sentence classification systems
are usually implemented as supervised training
regimes where training loss is between true la-
bel distribution and predicted label distribution. In
this work, we use pretraining on the unlabeled data
of each task and show that it can increase the per-
formance of classification systems.

Figure 1 shows our pretraining setup. The
“sentence representation” – the output of “Fully
connected” hidden layer – is used to predict the
component words (“on” in the figure) in the sen-
tence (instead of predicting the sentence label Y/N
as in supervised learning). Concretely, the sen-
tence representation is averaged with representa-
tions of some surrounding words (“the”, “cat”,
“sat”, “the”, “mat”, “,” in the figure) to predict the
middle word (“on”).

Given sentence representation s 2 Rd and ini-
tialized representations of 2t context words (t left
words and t right words): wi�t, . . ., wi�1, wi+1,
. . ., wi+t; wi 2 Rd, we average the total 2t + 1

vectors element-wise, depicted as “Average” op-
eration in Figure 1. Then, this resulting vector is
treated as a predicted representation of the mid-
dle word and is used to find the true middle word
by means of noise-contrastive estimation (NCE)
(Mnih and Teh, 2012). For each true example, 10
noise words are sampled.

Note that in pretraining, there are three places
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where each word needs initialization. (i) Each
word in the sentence is initialized in the “Multi-
channel input” layer to the whole network. (ii)
Each context word is initialized as input to the av-
erage layer (“Average” in the figure). (iii) Each tar-
get word is initialized as the output of the “NCE”
layer (“on” in the figure). In this work, we use
multichannel initialization for case (i) and random
initialization for cases (ii) and (iii). Only fine-
tuned multichannel representations (case (i)) are
kept for subsequent supervised training.

The rationale for this pretraining is similar
to auto-encoder: for an object composed of
smaller-granular elements, the representations of
the whole object and its components can learn
each other. The CNN architecture learns sentence
features layer by layer, then those features are jus-
tified by all constituent words.

During pretraining, all the model parameters,
including mutichannel input, convolution parame-
ters and fully connected layer, will be updated un-
til they are mature to extract the sentence features.
Subsequently, the same sets of parameters will be
fine-tuned for supervised classification tasks.

In sum, this pretraining is designed to produce
good initial values for both model parameters and
word embeddings. It is especially helpful for pre-
training the embeddings of unknown words.

5 Experiments

We test the network on four classification tasks.
We begin by specifying aspects of the implemen-
tation and the training of the network. We then
report the results of the experiments.

5.1 Hyperparameters and Training
In each of the experiments, the top of the net-
work is a logistic regression that predicts the
probability distribution over classes given the in-
put sentence. The network is trained to mini-
mize cross-entropy of predicted and true distri-
butions; the objective includes an L2 regulariza-
tion term over the parameters. The set of param-
eters comprises the word embeddings, all filter
weights and the weights in fully connected layers.
A dropout operation (Hinton et al., 2012) is put be-
fore the logistic regression layer. The network is
trained by back-propagation in mini-batches and
the gradient-based optimization is performed us-
ing the AdaGrad update rule (Duchi et al., 2011)

In all data sets, the initial learning rate is 0.01,

dropout probability is 0.8, L2 weight is 5 · 10

�3,
batch size is 50. In each convolution layer, filter
sizes are {3, 5, 7, 9} and each filter has five kernels
(independent of filter size).

5.2 Datasets and Experimental Setup

Standard Sentiment Treebank (Socher et al.,
2013). This small-scale dataset includes two tasks
predicting the sentiment of movie reviews. The
output variable is binary in one experiment and
can have five possible outcomes in the other:
{negative, somewhat negative, neutral, somewhat
positive, positive}. In the binary case, we use
the given split of 6920 training, 872 development
and 1821 test sentences. Likewise, in the fine-
grained case, we use the standard 8544/1101/2210
split. Socher et al. (2013) used the Stanford Parser
(Klein and Manning, 2003) to parse each sentence
into subphrases. The subphrases were then labeled
by human annotators in the same way as the sen-
tences were labeled. Labeled phrases that occur
as subparts of the training sentences are treated
as independent training instances as in (Le and
Mikolov, 2014; Kalchbrenner et al., 2014).

Sentiment1402 (Go et al., 2009). This is a
large-scale dataset of tweets about sentiment clas-
sification, where a tweet is automatically labeled
as positive or negative depending on the emoticon
that occurs in it. The training set consists of 1.6
million tweets with emoticon-based labels and the
test set of about 400 hand-annotated tweets. We
preprocess the tweets minimally as follows. 1)
The equivalence class symbol “url” (resp. “user-
name”) replaces all URLs (resp. all words that
start with the @ symbol, e.g., @thomasss). 2) A
sequence of k > 2 repetitions of a letter c (e.g.,
“cooooooool”) is replaced by two occurrences of
c (e.g., “cool”). 3) All tokens are lowercased.

Subj. Subjectivity classification dataset3 re-
leased by (Pang and Lee, 2004) has 5000 sub-
jective sentences and 5000 objective sentences.
We report the result of 10-fold cross validation as
baseline systems did.

5.2.1 Pretrained Word Vectors
In this work, we use five embedding versions, as
shown in Table 1, to initialize words. Four of
them are directly downloaded from the Internet.

2http://help.sentiment140.com/for-students
3http://www.cs.cornell.edu/people/pabo/movie-review-

data/
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Set Training Data Vocab Size Dimensionality Source
HLBL Reuters English newswire 246,122 50 download
Huang Wikipedia (April 2010 snapshot) 100,232 50 download
Glove Twitter 1,193,514 50 download

SENNA Wikipedia 130,000 50 download
Word2Vec English Gigawords 418,129 50 trained from scratch

Table 1: Description of five versions of word embedding.

Binary Fine-grained Senti140 Subj
HLBL 5,232 5,562 344,632 8,621
Huang 4,273 4,523 327,067 6,382
Glove 3,299 3,485 257,376 5,237
SENNA 4,136 4,371 323,501 6,162
W2V 2257 2,409 288,257 4,217
Voc size 18,876 19,612 387,877 23,926
Full hit 12,030 12,357 30,010 13,742
Partial hit 5,022 5,312 121,383 6,580
No hit 1,824 1,943 236,484 3,604

Table 2: Statistics of five embedding versions for
four tasks. The first block with five rows provides
the number of unknown words of each task when
using corresponding version to initialize. Voc size:
vocabulary size. Full hit: embedding in all 5 ver-
sions. Partial hit: embedding in 1–4 versions, No
hit: not present in any of the 5 versions.

(i) HLBL. Hierarchical log-bilinear model pre-
sented by Mnih and Hinton (2009) and released
by Turian et al. (2010);4 size: 246,122 word em-
beddings; training corpus: RCV1 corpus, one year
of Reuters English newswire from August 1996 to
August 1997. (ii) Huang.5 Huang et al. (2012) in-
corporated global context to deal with challenges
raised by words with multiple meanings; size:
100,232 word embeddings; training corpus: April
2010 snapshot of Wikipedia. (iii) GloVe.6 Size:
1,193,514 word embeddings; training corpus: a
Twitter corpus of 2B tweets with 27B tokens. (iv)
SENNA.7 Size: 130,000 word embeddings; train-
ing corpus: Wikipedia. Note that we use their 50-
dimensional embeddings. (v) Word2Vec. It has
no 50-dimensional embeddings available online.
We use released code8 to train skip-gram on En-
glish Gigaword Corpus (Parker et al., 2009) with

4http://metaoptimize.com/projects/wordreprs/
5http://ai.stanford.edu/ ehhuang/
6http://nlp.stanford.edu/projects/glove/
7http://ml.nec-labs.com/senna/
8http://code.google.com/p/word2vec/

setup: window size 5, negative sampling, sam-
pling rate 10

�3, threads 12. It is worth empha-
sizing that above embeddings sets are derived on
different corpora with different algorithms. This is
the very property that we want to make use of to
promote the system performance.

Table 2 shows the number of unknown words
in each task when using corresponding embed-
ding version to initialize (rows “HLBL”, “Huang”,
“Glove”, “SENNA”, “W2V”) and the number of
words fully initialized by five embedding versions
(“Full hit” row), the number of words partially
initialized (“Partial hit” row) and the number of
words that cannot be initialized by any of the em-
bedding versions (“No hit” row).

About 30% of words in each task have partially
initialized embeddings and our mutual-learning is
able to initialize the missing embeddings through
projections. Pretraining is expected to learn good
representations for all words, but pretraining is es-
pecially important for words without initialization
(“no hit”); a particularly clear example for this is
the Senti140 task: 236,484 of 387,877 words or
61% are in the “no hit” category.

5.2.2 Results and Analysis

Table 3 compares results on test of MVCNN and
its variants with other baselines in the four sen-
tence classification tasks. Row 34, “MVCNN
(overall)”, shows performance of the best config-
uration of MVCNN, optimized on dev. This ver-
sion uses five versions of word embeddings, four
filter sizes (3, 5, 7, 9), both mutual-learning and
pretraining, three convolution layers for Senti140
task and two convolution layers for the other tasks.
Overall, our system gets the best results, beating
all baselines.

The table contains five blocks from top to bot-
tom. Each block investigates one specific config-
urational aspect of the system. All results in the
five blocks are with respect to row 34, “MVCNN
(overall)”; e.g., row 19 shows what happens when

210



Model Binary Fine-grained Senti140 Subj

baselines

1 RAE (Socher et al., 2011b) 82.4 43.2 – –
2 MV-RNN (Socher et al., 2012) 82.9 44.4 – –
3 RNTN (Socher et al., 2013) 85.4 45.7 – –
4 DCNN (Kalchbrenner et al., 2014) 86.8 48.5 87.4 –
5 Paragraph-Vec (Le and Mikolov, 2014) 87.7 48.7 – –
6 CNN-rand (Kim, 2014) 82.7 45.0 – 89.6
7 CNN-static (Kim, 2014) 86.8 45.5 – 93.0
8 CNN-non-static (Kim, 2014) 87.2 48.0 – 93.4
9 CNN-multichannel (Kim, 2014) 88.1 47.4 – 93.2

10 NBSVM (Wang and Manning, 2012) – – – 93.2
11 MNB (Wang and Manning, 2012) – – – 93.6
12 G-Dropout (Wang and Manning, 2013) – – – 93.4
13 F-Dropout (Wang and Manning, 2013) – – – 93.6
14 SVM (Go et al., 2009) – – 81.6 –
15 BINB (Go et al., 2009) – – 82.7 –
16 MAX-TDNN (Kalchbrenner et al., 2014) – – 78.8 –
17 NBOW (Kalchbrenner et al., 2014) – – 80.9 –
18 MAXENT (Go et al., 2009) – – 83.0 –

versions

19 MVCNN (-HLBL) 88.5 48.7 88.0 93.6
20 MVCNN (-Huang) 89.2 49.2 88.1 93.7
21 MVCNN (-Glove) 88.3 48.6 87.4 93.6
22 MVCNN (-SENNA) 89.3 49.1 87.9 93.4
23 MVCNN (-Word2Vec) 88.4 48.2 87.6 93.4

filters

24 MVCNN (-3) 89.1 49.2 88.0 93.6
25 MVCNN (-5) 88.7 49.0 87.5 93.4
26 MVCNN (-7) 87.8 48.9 87.5 93.1
27 MVCNN (-9) 88.6 49.2 87.8 93.3

tricks 28 MVCNN (-mutual-learning) 88.2 49.2 87.8 93.5
29 MVCNN (-pretraining) 87.6 48.9 87.6 93.2

layers

30 MVCNN (1) 89.0 49.3 86.8 93.8
31 MVCNN (2) 89.4 49.6 87.6 93.9
32 MVCNN (3) 88.6 48.6 88.2 93.1
33 MVCNN (4) 87.9 48.2 88.0 92.4
34 MVCNN (overall) 89.4 49.6 88.2 93.9

Table 3: Test set results of our CNN model against other methods. RAE: Recursive Autoencoders
with pretrained word embeddings from Wikipedia (Socher et al., 2011b). MV-RNN: Matrix-Vector
Recursive Neural Network with parse trees (Socher et al., 2012). RNTN: Recursive Neural Tensor Net-
work with tensor-based feature function and parse trees (Socher et al., 2013). DCNN, MAX-TDNN,
NBOW: Dynamic Convolution Neural Network with k-max pooling, Time-Delay Neural Networks with
Max-pooling (Collobert and Weston, 2008), Neural Bag-of-Words Models (Kalchbrenner et al., 2014).
Paragraph-Vec: Logistic regression on top of paragraph vectors (Le and Mikolov, 2014). SVM, BINB,
MAXENT: Support Vector Machines, Naive Bayes with unigram features and bigram features, Maxi-
mum Entropy (Go et al., 2009). NBSVM, MNB: Naive Bayes SVM and Multinomial Naive Bayes with
uni-bigrams from Wang and Manning (2012). CNN-rand/static/multichannel/nonstatic: CNN with
word embeddings randomly initialized / initialized by pretrained vectors and kept static during training
/ initialized with two copies (each is a “channel”) of pretrained embeddings / initialized with pretrained
embeddings while fine-tuned during training (Kim, 2014). G-Dropout, F-Dropout: Gaussian Dropout
and Fast Dropout from Wang and Manning (2013). Minus sign “-” in MVCNN (-Huang) etc. means
“Huang” is not used. “versions / filters / tricks / layers” denote the MVCNN variants with differ-
ent setups: discard certain embedding version / discard certain filter size / discard mutual-learning or
pretraining / different numbers of convolution layer.
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HLBL is removed from row 34, row 28 shows
what happens when mutual learning is removed
from row 34 etc.

The block “baselines” (1–18) lists some sys-
tems representative of previous work on the cor-
responding datasets, including the state-of-the-art
systems (marked as italic). The block “versions”
(19–23) shows the results of our system when one
of the embedding versions was not used during
training. We want to explore to what extend dif-
ferent embedding versions contribute to perfor-
mance. The block “filters” (24–27) gives the re-
sults when individual filter width is discarded. It
also tells us how much a filter with specific size
influences. The block “tricks” (28–29) shows the
system performance when no mutual-learning or
no pretraining is used. The block “layers” (30–33)
demonstrates how the system performs when it has
different numbers of convolution layers.

From the “layers” block, we can see that our
system performs best with two layers of convo-
lution in Standard Sentiment Treebank and Sub-
jectivity Classification tasks (row 31), but with
three layers of convolution in Sentiment140 (row
32). This is probably due to Sentiment140 being a
much larger dataset; in such a case deeper neural
networks are beneficial.

The block “tricks” demonstrates the effect of
mutual-learning and pretraining. Apparently, pre-
training has a bigger impact on performance than
mutual-learning. We speculate that it is be-
cause pretraining can influence more words and all
learned word embeddings are tuned on the dataset
after pretraining.

The block “filters” indicates the contribution of
each filter size. The system benefits from filters
of each size. Sizes 5 and 7 are most important for
high performance, especially 7 (rows 25 and 26).

In the block “versions”, we see that each em-
bedding version is crucial for good performance:
performance drops in every single case. Though it
is not easy to compare fairly different embedding
versions in NLP tasks, especially when those em-
beddings were trained on different corpora of dif-
ferent sizes using different algorithms, our results
are potentially instructive for researchers making
decision on which embeddings to use for their own
tasks.

6 Conclusion

This work presented MVCNN, a novel CNN ar-
chitecture for sentence classification. It com-
bines multichannel initialization – diverse ver-
sions of pretrained word embeddings are used –
and variable-size filters – features of multigranu-
lar phrases are extracted with variable-size convo-
lution filters. We demonstrated that multichannel
initialization and variable-size filters enhance sys-
tem performance on sentiment classification and
subjectivity classification tasks.

7 Future Work

As pointed out by the reviewers the success of the
multichannel approach is likely due to a combina-
tion of several quite different effects.

First, there is the effect of the embedding learn-
ing algorithm. These algorithms differ in many as-
pects, including in sensitivity to word order (e.g.,
SENNA: yes, word2vec: no), in objective func-
tion and in their treatment of ambiguity (explicitly
modeled only by Huang et al. (2012).

Second, there is the effect of the corpus. We
would expect the size and genre of the corpus to
have a big effect even though we did not analyze
this effect in this paper.

Third, complementarity of word embeddings is
likely to be more useful for some tasks than for
others. Sentiment is a good application for com-
plementary word embeddings because solving this
task requires drawing on heterogeneous sources
of information, including syntax, semantics and
genre as well as the core polarity of a word. Other
tasks like part of speech (POS) tagging may bene-
fit less from heterogeneity since the benefit of em-
beddings in POS often comes down to making a
correct choice between two alternatives – a single
embedding version may be sufficient for this.

We plan to pursue these questions in future
work.
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Abstract

We present an approach for opinion role
induction for verbal predicates. Our model
rests on the assumption that opinion verbs
can be divided into three different types
where each type is associated with a char-
acteristic mapping between semantic roles
and opinion holders and targets. In sev-
eral experiments, we demonstrate the rel-
evance of those three categories for the
task. We show that verbs can easily be
categorized with semi-supervised graph-
based clustering and some appropriate
similarity metric. The seeds are obtained
through linguistic diagnostics. We evalu-
ate our approach against a new manually-
compiled opinion role lexicon and perform
in-context classification.

1 Introduction

While there has been much research in senti-
ment analysis on subjectivity detection and po-
larity classification, there has been less work on
the extraction of opinion roles, i.e. entities that
express an opinion (opinion holders), and enti-
ties or propositions at which sentiment is directed
(opinion targets). Previous research relies on large
amounts of labeled training data or leverages gen-
eral semantic resources which are expensive to
construct, e.g. FrameNet (Baker et al., 1998).

In this paper, we present an approach to induce
opinion roles of verbal predicates. The input is a
set of opinion verbs that can be found in a com-
mon sentiment lexicon. Our model rests on the
assumption that those verbs can be divided into
three different types. Each type has a character-
istic mapping between semantic roles and opinion
holders and targets. Thus, the problem of opinion
role induction is reduced to automatically catego-
rizing opinion verbs.

We frame the task of opinion role extraction as
a triple (pred , const , role) where pred is a predi-
cate evoking an opinion (we exclusively focus on
opinion verbs), const is some constituent bearing
a semantic role assigned by pred , and role is the
opinion role that is assigned to const .

Our work assumes the knowledge of opinion
words. We do not cover polarity classification.
Many lexicons with that kind of information al-
ready exist. Our sole interest is the assignment of
opinion holder and target given some opinion verb.
There does not exist any publicly available lexical
resource specially designed for this task.

For the induction of opinion verb types, we con-
sider semi-supervised graph clustering with some
appropriate similarity metric. We also propose an
effective method for deriving seeds automatically
by applying some linguistic diagnostics.

Our approach is evaluated in a supervised learn-
ing scenario on a set of sentences with annotated
opinion holders and targets. We employ differ-
ent kinds of features, including features derived
from a semantic parser based on FrameNet. We
also compare our proposed model based on the
three opinion verb types against a new manually-
compiled lexicon in which the semantic roles of
opinion holders and targets for each individual
verb have been explicitly enumerated.

We also evaluate our approach in the context of
cross-domain opinion holder extraction. Thus we
demonstrate the importance of our approach in the
context of previous datasets and classifiers.

This is the first work that proposes to induce
both opinion holders and targets evoked by opin-
ion verbs with data-driven methods. Unlike previ-
ous work, we are able to categorize all verbs of a
pre-specified set of opinion verbs. Our approach
is a low-resource approach that is also applicable
to languages other than English. We demonstrate
this on German. A by-product of our study are
new resources including a verb lexicon specifying
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semantic roles for holders and targets.

2 Lexicon-based Opinion Role
Extraction

Opinion holder and target extraction is a hard task
(Ruppenhofer et al., 2008). Conventional syntac-
tic or semantic levels of representation do not cap-
ture sufficient information that allows a reliable
prediction of opinion holders and targets. This is
illustrated by (1) and (2) which show that, even
with common semantic roles, i.e. agent and pa-
tient1, assigned to the entities, one may not be able
to discriminate between the opinion roles.

(1) Peteragent criticized Marypatient .
(criticize, Peter, holder) & (criticize, Mary, target)

(2) Peteragent disappoints Marypatient .
(disappoint, Peter, target) & (disappoint, Mary, holder)

We assume that it is lexical information that de-
cides what semantic role an opinion holder or
opinion target takes. As a consequence, we built a
gold-standard lexicon for verbs that encodes such
information. For example, it states that the target
of criticize is its patient, while for disappoint, the
target is its agent. This fine-grained lexicon also
accounts for the fact that a constituent can have
several roles given the same opinion verb. An ex-
treme case is:

(3) [Peter]1 persuades [Mary]2 [to accept his invitation]3 .

The sentence conveys that:
• Peter wants Mary to do something. (view1)
• Mary is influenced by Peter. (view2)
• Peter has some attitude towards Mary accepting his invitation. (view3)
• Mary has some attitude towards accepting Peter’s invitation. (view4)

This corresponds to the role assignments:
• view1: (persuade, [1], holder), (persuade, [2], target)

• view2: (persuade, [2], holder), (persuade, [1], target)

• view3: (persuade, [1], holder), (persuade, [3], target)

• view4: (persuade, [2], holder), (persuade, [3], target)

(in short: 2 opinion holders and 3 opinion targets).
Our lexicon also includes another dimension

neglected in many previous works. Many opinion
verbs predominantly express the sentiment of the
speaker of the utterance (or some nested source)
(4). This concept is also known as expressive sub-
jectivity (Wiebe et al., 2005) or speaker subjectiv-
ity (Maks and Vossen, 2012). In such opinions, the
opinion holder is not realized as a dependent of the
opinion verb.

(4) At my work, [they]1 are constantly gossiping.
(gossip, speaker,holder) & (gossip, [1], target)

1By agent and patient, we mean constituents labeled as
A0 and A1 in PropBank (Kingsbury and Palmer, 2002).

Our lexicon covers the 1175 verb lemmas con-
tained in the Subjectivity Lexicon (Wilson et al.,
2005). We annotated the semantic roles similar to
the format of PropBank (Kingsbury and Palmer,
2002). The basis of the annotation were online
dictionaries (e.g. Macmillan Dictionary) which
provide both a verb definition and example sen-
tences. We do not annotate implicature-related in-
formation about effects (Deng and Wiebe, 2014)
but inherent sentiment (the data release2 includes
more details regarding the annotation process and
our notion of holders and targets).

On a sample of 400 verbs, we measured an in-
terannotation agreement of Cohen’s  = 60.8 for
opinion holders,  = 62.3 for opinion targets and
 = 59.9 for speaker views. This agreement is
mostly substantial (Landis and Koch, 1977).

3 The Three Verb Categories

Rather than induce the opinion roles for individ-
ual verbs, we group verbs that share similar opin-
ion role subcategorization. Thus, the main task for
induction is to decide which type an opinion verb
belongs to. Once the verb type has been estab-
lished, the typical semantic roles for opinion hold-
ers and targets can be derived from that type. The
verb categorization is motivated by the semantic
roles of the three common views (Table 1) that an
opinion holder can take. In our lexicon, all of the
opinion holders were observed with either of these
semantic roles. For facilitating induction, we as-
sume that those types are disjoint (see also §3.4).

3.1 Verbs with Agent View (AG)

Verbs with an agent view, such as criticize, love
and believe, convey the sentiment of its agent.
Therefore, those verbs take the agent as opinion
holder and the patient as opinion target. Table 1
also exemplifies semantic role labels as a suitable
basis to align opinion holders and targets within a
particular verb type. For example, targets of AG-
verbs align to the patient, yet the patient can take
the form of various phrase types (i.e. NPs, PPs or
infinitive/complement phrases3).

2available at: www.coli.uni-saarland.de/
˜miwieg/conll_2015_op_roles_data.tgz

3Note that infinitive and complement clauses may rep-
resent a semantic role other than patient (e.g. the infinitive
clause in (3)). As these types of clauses are fairly unambigu-
ous, we marked them as targets even if they are no patients.
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Type Example Holder Target

AG [They]
agent

like [the idea]
patient

. agent pat.
[The guests]

agent

complained [about noise]
patient

.
[They]

agent

argue [that this plan is infeasible]
patient

.
PT [The noise]

agent

irritated [the guests]
patient

. pat. agent
[That gift]

agent

pleased [her]
patient

very much.
SP [They]

agent

cheated [in the exam]
adjunct

. -N/A- agent,
[He]

agent

besmirched [the King’s name]
patient

. (pat.)

Table 1: Verb types for opinion role extraction.

3.2 Verbs with Patient View (PT)
Verbs with a patient view (irritate, upset and dis-
appoint) are opposite to AG-verbs in that those
verbs have the patient as opinion holder and the
agent as opinion target.

3.3 Verbs with Speaker View (SP)
The third type we consider comprises all verbs
whose perspective is that of the speaker. That is,
these are verbs whose sentiment is primarily that
of the speaker of the utterance rather than persons
involved in the action to which is referred. Typical
examples are gossip, improve or cheat.

While the agent is usually the target of the senti-
ment of the speaker, it depends on the specific verb
whether its patient is also a target or not (in Table
1, only the patient of the second SP-verb, i.e. be-
smirch, is considered a target4). Since we aim at a
precise induction approach, we will always (only)
mark the agent of an induced SP-verb as a target.

3.4 Relation to Fine-Grained Lexicon
Table 2 provides statistics as to how clear-cut the
three prototypical verb types are in the manually-
compiled fine-grained lexicon. These numbers
suggest that many verbs evoke several opinion
views (e.g. a verb with an AG-view may also
evoke a PT-view). While the fine-grained lexi-
con is fairly exhaustive in listing semantic roles
for opinion holders and targets, it may also oc-
casionally overgenerate. One major reason for
this is that we do not annotate on the sense-level
(word-sense disambiguation (Wiebe and Mihal-
cea, 2006) is still in its infancy) but on the lemma-
level. Accordingly, we attribute all views to all
senses, whereas actually certain views pertain only
to specific senses. However, we found that usually
one view is conveyed by most (if not all) senses of
a word. For example, the lexicon lists both an AG-
view and a PT-view for appease. This is correct

4We consider the patient a target since the speaker has a
positive (non-defeasible) sentiment towards that entity.

Type Freq Type Freq
verbs with AG-view 868 verbs with PT-view 392
verbs with exclusive AG-view 371 verbs with exclusive PT-view 117
verbs with AG- and SP-view 352 verbs with PT- and AG-view 226
verbs with AG- and PT-view 226 verbs with PT- and SP-view 139
verbs with SP-view 537
verbs with exclusive SP-view 134
verbs with SP- and AG-view 352
verbs with SP- and PT-view 139

Table 2: Verb types in the fine-grained lexicon.

Agent (AG) Patient (PT) Speaker (SP)
Freq Percent Freq Percent Freq Percent
450 38.3 188 16.0 537 45.7

Table 3: Verb types in the coarse-grained lexicon.

for (5) but wrong for (6). The AG-view is derived
from a definition to give your opponents what they
want. (6) does not convey an agent’s volitional ac-
tion. Here, the verb just conveys make someone
feel less angry. Similarly, the lexicon lists an SP-
view and an AG-view for degrade, which is right
for (7) but wrong for (8). The AG-view is derived
from a lexicon definition to treat someone in a way
that makes them stop respecting themselves. (8)
does not convey an agent’s volitional action. The
verb just conveys to make something worse. That
is, neither (6) nor (8) evoke an AG-view. We found
that these variations regularly occur. We adopt
the heuristic that verbs with an SP-view and AG-
or PT-view preserve the SP-view across their uses
(7)-(8). Verbs with both PT- and AG-view pre-
serve their PT-view (5)-(6). Following these ob-
servations, we converted our fine-grained lexicon
into a gold standard coarse-grained lexicon (only
3% of the verbs needed to be manually corrected
after the automatic conversion) in which a verb is
classified as AG, PT or SP according to its domi-
nant view. The final class distribution of this lexi-
con is shown in Table 3. In §5.2, we show through
an in-context evaluation that our coarse-grained
representation preserves most of the information
captured by the fine-grained representation.

(5) [Chamberlain]
agent

appeased [Hitler]
patient

.
(6) [The orange juice]

agent

appeased [him]
patient

for a while.
(7) [Mary]

agent

degrades [Henrietta]
patient

.
(8) [This technique]

agent

degrades [the local water supply]
patient

.

4 Induction of Verb Categories

The task is to categorize each verb as a predom-
inant AG-, PT-, or SP-verb. Our approach com-
prises two steps. In the first step, seeds for the dif-
ferent verb types are extracted (§4.1). In the sec-
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AG argue, contend, speculate, fear, doubt, complain, con-
sider, praise, recommend, view, acknowledge, hope

PT interest, surprise, please, excite, disappoint, delight, im-
press, shock, trouble, embarrass, annoy, distress

SP murder, plot, incite, blaspheme, bewitch, bungle, de-
spoil, plagiarize, prevaricate, instigate, molest, conspire

Table 4: The top 12 extracted verb seeds.

ond step, a similarity metric (§4.2) is employed in
order to propagate the verb type labels from the
seeds to the remaining opinion verbs (§4.3). The
North American News Text Corpus is used for seed
extraction and computation of verb similarities.

Wiegand and Klakow (2012) proposed methods
for extracting AG- and PT-verbs. We will re-use
these methods for generating seeds. A major con-
tribution of this paper is the introduction of the
third dimension, i.e. SP-verbs, in the context of
induction. We show that in combination with this
third dimension, one can categorize all opinion
verbs contained in a sentiment lexicon. Further-
more, given this three-way classification, we also
obtain better results on the detection of AG-verbs
and PT-verbs than by just detecting those verbs
in isolation without graph clustering (this will be
shown in Table 7 and discussed in §5.1).

A second major contribution of this work is that
we show that these methods are also equally im-
portant for opinion target extraction. So far, the
significance of AG- and PT-verbs has only been
demonstrated for opinion holder extraction.

In this work, we exclusively focus on the set of
1175 opinion verbs from the Subjectivity Lexicon.
However, this is owed solely to the effort required
to generate larger sets of evaluation data. In prin-
ciple, our induction approach is applicable to any
set of opinion verbs of arbitrary (e.g. larger) size.

4.1 Pattern-based Seed Initialization
For AG-verbs, we rely on the findings of Wiegand
and Klakow (2012) who suggest that verbs predic-
tive for opinion holders can be induced with the
help of prototypical opinion holders. These com-
mon nouns, e.g. opponents (9) or critics (10), act
like opinion holders and, therefore, can be seen
as a proxy. Verbs co-occurring with prototypical
opinion holders do not represent the entire range
of opinion verbs but coincide with AG-verbs.

(9) Opponents claim these arguments miss the point.
(10) Critics argued that the proposed limits were unconstitutional.

For PT-verbs, we make use of the adjective heuris-
tic proposed by Wiegand and Klakow (2012). The

authors make use of the observation that morpho-
logically related adjectives exist for PT-verbs, un-
like for AG- and SP-verbs. Therefore, in order
to extract PT-verbs, one needs to check whether
a verb in its past participle form, such as up-
set in (11), is identical to some predicate adjec-
tive (12).

(11) He had upset
verb

me.
(12) I am upset

adj

.

We are not aware of any previously published
approach effectively inducing SP-verbs. Noticing
that many of those verbs contain some form of re-
proach, we came up with the patterns accused of
X

VBG

and blamed for X
VBG

as in (13) and (14).
(13) He was accused of falsifying the documents.
(14) The UN was blamed for misinterpreting climate data.

Table 4 lists for each of the verb types the 12

seeds most frequently occurring with the respec-
tive patterns. We observed that the SP-verb seeds
are exclusively negative polar expressions. That
is why we also extracted seeds from an additional
pattern help to X

VB

producing prototypical posi-
tive SP-verbs, such as stabilize, allay or heal.

4.2 Similarity Metrics
4.2.1 Word Embeddings
Recent research in machine learning has focused
on inducing vector representations of words. As
an example of a competitive word embedding
method, we induce vectors for our opinion verbs
with Word2Vec (Mikolov et al., 2013). Baroni et
al. (2014) showed that this method outperforms
count vector representations on a variety of tasks.
For the similarity between two verbs, we compute
the cosine-similarity between their vectors.

4.2.2 WordNet::Similarity
We use WordNet::Similarity (Pedersen et al.,
2004) as an alternative source for similarity met-
rics. The metrics are based on WordNet’s graph
structure (Miller et al., 1990). Various relations
within WordNet have been shown to be effective
for polarity classification (Esuli and Sebastiani,
2006; Rao and Ravichandran, 2009).

4.2.3 Coordination
Another method to measure similarity is ob-
tained by leveraging coordination. Coordination
is known to be a syntactic relation that also pre-
serves great semantic coherence (Ziering et al.,
2013), e.g. (15). It has been successfully applied
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not only to noun categorization (Riloff and Shep-
herd, 1997; Roark and Charniak, 1998) but also
to different tasks in sentiment analysis, includ-
ing polarity classification (Hatzivassiloglou and
McKeown, 1997), the induction of patient polarity
verbs (Goyal et al., 2010) and connotation learn-
ing (Kang et al., 2014). We use the dependency
relation from Stanford parser (Klein and Manning,
2003) to detect coordination (16).

(15) They criticize and hate him.
(16) conj(criticize,hate)

As a similarity function, we simply take the
absolute frequency of observing two words w1

and w2 in a conjunction, i.e. sim(w1, w2) =

freq(conj(w1, w2)).

4.2.4 Dependency-based Similarity

The metric proposed by Lin (1998) exploits the
rich set of dependency-relation labels in the con-
text of distributional similarity. Moreover, it has
been effectively used for the related task of ex-
tending frames of unknown predicates in semantic
parsing (Das and Smith, 2011).

The metric is based on dependency triples
(w, r,w0

) where w and w0 are words and r is a
dependency relation (e.g. (argue-V, nsubj,
critics-N)). The metric is defined as:
sim(w1 , w2) =

∑
(r,w)2T (w1)\T (w2)(I(w1 ,r,w)+I(w2,r,w))

∑
(r,w)2T (w1) I(w1,r,w)+

∑
(r,w)2T (w2) I(w2,r,w)

where I(w, r, w0) = log kw,r,w0k⇥k⇤,r,⇤k
kw,r,⇤k⇥k⇤,r,w0k and T (w) is

defined as the set of pairs (r,w0
) such that

log kw,r,w0k⇥k⇤,r,⇤k
kw,r,⇤k⇥k⇤,r,w0k > 0.

4.3 Propagation Methods

We use the k nearest neighbour classifier (kNN)
(Cover and Hart, 1967) as a simple method for
propagating labels from seeds to other instances.
Alternatively, we consider verb categorization as a
clustering task on a graph G = (V,E,W ) where
V is the set of nodes (i.e. our opinion verbs), E
is the set of edges connecting them with weights
W : E ! R+. W can be directly derived from
any of the similarity metrics (§4.2.1-§4.2.4). The
aim is that all nodes v 2 V are assigned a la-
bel l 2 {AG,PT, SP}. Initially, only the verb
seeds are labeled. We then use the Adsorption la-
bel propagation algorithm from junto (Talukdar et
al., 2008) in order propagate the labels from the
seeds to the remaining verbs.

Acc Prec Rec F1
Baselines Majority Class 45.7 14.2 33.3 20.9

Only Seeds 8.9 87.0 9.8 17.6
Coordination kNN 45.2 61.5 47.3 53.4

graph 42.7 68.7 39.7 50.4
WordNet kNN 52.8 51.5 50.7 51.1

graph 51.1 51.9 51.5 51.5
Embedding kNN 59.3 58.4 61.0 59.7

graph 64.0 70.5 59.4 64.5
Dependency kNN 65.7 63.8 65.4 64.5

graph 70.3 72.0 68.0 70.6

Table 5: Eval. of similarity metrics and classifiers.

5 Experiments

5.1 Evaluation of the Induced Lexicon

Table 5 compares the performance of the differ-
ent similarity metrics when incorporated in either
kNN or graph clustering. The resulting catego-
rizations are compared against the gold standard
coarse-grained lexicon (§3.4). For kNN, we set
k = 3 for which we obtained best performance in
all our experiments.

As seeds, we took the top 40 AG-verbs, 30 PT-
verbs and 50 SP-verbs produced by the respective
initialization methods (§4.1). The seed propor-
tions should vaguely correspond to the actual class
distribution (Table 3). Large increases of the seed
sets do not improve the quality (as shown below).
10 of the 50 SP-verbs are extracted from the posi-
tive SP-patterns, while the remaining verbs are ex-
tracted from the negative SP-patterns (§4.1).

As baselines, we include a classifier only em-
ploying the seeds and a majority class classifier
always predicting an SP-verb. For word embed-
dings (§4.2.1) and WordNet::Similarity (§4.2.2),
we only report the performance of the best met-
ric/configuration, i.e. for embeddings, the con-
tinuous bag-of-words model with 500 dimensions
and for WordNet::Similarity, the Wu & Palmer
measure (Wu and Palmer, 1994).

Table 5 shows that the baselines can be out-
performed by large margins. The performance
of the different similarity metrics varies. The
dependency-based metric performs notably better
than the other metrics. Together with word embed-
dings, it is the only metric for which graph cluster-
ing produces a notable improvement over kNN.

Table 6 illustrates the quality of the similar-
ity metrics for the present task. The table shows
that the dependency-based similarity metric pro-
vides the most suitable output. The poor qual-
ity of coordination may come as a surprise. That
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Coordin. appear, believe, refuse, vow, want, offend, shock, help, ex-
hilarate, challenge, support, distort

WordNet appal, scandalize, anger, rage, sicken, temper, hate, fear,
love, alarm, dread, tingle

Embedd. anger, dismay, disgust, protest, alarm, enrage, shock, regret,
concern, horrify, appal, sorrow

Depend. anger, infuriate, alarm, shock, stun, enrage, incense, dis-
may, upset, appal, offend, disappoint

Table 6: The 12 most similar verbs to outrage
(PT-verb) according to the different metrics (verbs
other than PT-verbs are underlined).

AG-verbs PT-verbs SP-verbs
no graph graph no graph graph no graph graph

(Wiegand 2012) (Wiegand 2012)

55.45 69.12 38.59 67.66 52.16 72.03

Table 7: F-scores of entire output of pattern-based
extraction (§4.1) where no propagation is applied
(no graph) vs. best proposed induction method
from Table 5 (graph).

method suffers from data-sparsity. In our corpus,
the frequency of verbs co-occurring with outrage
in a conjunction is 5 or lower.5 The table also
shows that WordNet may not be appropriate for
our present verb categorization task. However, it
may be suitable for other subtasks in sentiment
analysis, particularly polarity classification. If we
consider the similar entries of outrage provided by
that metric, we find that polarity is largely pre-
served (10 out of 12 verbs are negative). This ob-
servation is consistent with Esuli and Sebastiani
(2006) and Rao and Ravichandran (2009).

In Table 5 we only used the top 40/30/50 verbs
from the initialization methods as seeds. We can
also compare the output of these methods (com-
bined with propagation, i.e. graph clustering) with
the entire verb lists produced by these pattern-
based initialization methods where no propagation
is applied. As far as AG- and PT-verbs are con-
cerned, the entire lists of these initialization meth-
ods correspond to the original approach of Wie-
gand and Klakow (2012). Table 7 shows the result.
The new graph-induction always outperforms the
original induction method by a large margin.

In Table 8, we compare our automatically gen-
5We found that for frequently occurring opinion verbs,

this similarity metric produces more reasonable output.

Pattern
half

Pattern Pattern
double

Gold
half

Gold Gold
double

68.71 70.59 66.50 66.21 70.31 73.77

Table 8: Comparison of automatic and gold seeds
(evaluation measure: macro-average F-score).

Coordin. WordNet Embedd. Depend.
Major. kNN graph kNN graph kNN graph kNN graph

English 20.9 53.4 50.4 51.1 51.5 59.7 64.5 64.5 70.6
German 22.9 43.8 48.9 53.2 59.9 54.3 60.9 58.3 63.1

Table 9: Comparison of English and German data
(evaluation measure: macro-average F-score).

erated seeds using the patterns from §4.1 (Pat-
tern) with seeds extracted from our gold stan-
dard (Gold). We rank those verbs by fre-
quency. Size and verb type distribution are pre-
served. We also examine what impact doubling
the size of seeds (Gold|Pattern

double

) and halv-
ing them (Gold|Pattern

half

) has on classification.
Dependency-based similarity and graph clustering
is used for all configurations. Only if we double
the amount of seeds are the gold seeds notably bet-
ter than the automatically generated seeds.

Since our induction approach just requires a
sentiment lexicon and aims at low-resource lan-
guages, we replicated the experiments for Ger-
man, as shown in Table 9. We use the PolArt-
sentiment lexicon (Klenner et al., 2009) (1416 en-
tries). (As a gold standard, we manually annotated
that lexicon according to our three verb types.)
As an unlabeled corpus, we chose the Huge Ger-
man Corpus6. As a parser, we used ParZu (Sen-
nrich et al., 2009). Instead of WordNet, we used
GermaNet (Hamp and Feldweg, 1997). The au-
tomatically generated seeds were manually trans-
lated from English to German. Table 9 shows
that as on English data, dependency-based similar-
ity combined with graph clustering performs best.
The fact that we can successfully replicate our
approach in another language supports the gen-
eral applicability of our proposed categorization of
verbs into three types for opinion role extraction.

5.2 In-Context Evaluation

We now evaluate our induced knowledge in the
task of extracting opinion holders and targets from
actual text. For this in-context evaluation, we sam-
pled sentences from the North American News
Corpus in which our opinion verbs occurred. We
annotated all holders and targets of those verbs.
(A constituent may have several roles for the same
verb (§2).) The dataset contains about 1100 sen-
tences. We need to rely on this dataset since it
is the only corpus in which our opinion verbs are

6www.ims.uni-stuttgart.de/forschung/
ressourcen/korpora/hgc.html
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Features Description
cand lemma head lemma of candidate (phrase)
cand pos part-of-speech tag of head of candidate phrase
cand phrase phrase label of candidate
cand person is candidate a person
verb lemma verb lemmatized
verb pos part-of-speech tag of verb
word bag of words: all words within the sentence
pos part-of-speech sequence between cand. and verb
distance token distance between candidate and verb
const path from constituency parse tree from cand. to verb
subcat subcategorization frame of verb
srl

propbank

/dep semantic role/dependency path between cand. and
verb (semantic roles based on PropBank)

brown Brown-clusters of cand word/verb word/word
srl

framenet

frame element name assigned to candidate and the
frame name (to which frame element belongs)

fine-grain lex is candidate holder/target/targetspeaker according
to the fine-grained lexicon

coarse-grain lex is candidate holder/target/targetspeaker according
to the coarse-grained lexicon

inducgraph is candidate holder/target/targetspeaker according
to the coarse-grained lexicon automatically induced
with graph clustering (and induced seeds (§4.1))

Table 10: Feature set for in-context classification.

widely represented and both holders and targets
are annotated.

We solve this task with supervised learning. As
a classifier, we employ Support Vector Machines
as implemented in SVMlight (Joachims, 1999).
The task is to extract three different entities: opin-
ion holders, opinion targets and opinion targets
evoked by speaker views. All those entities are al-
ways put into the relation to a specific opinion verb
in the sentence. The instance space thus consists
of tuples (verb, const), where verb is the mention
of an opinion verb and const is any possible (syn-
tactic) constituent in the respective sentence. The
dataset contains 753 holders, 745 targets and 499

targets of a speaker view. Since a constituent may
have several roles at the same time, we train three
binary classifiers for either of the entity types. On
a sample of 200 sentences, we measured an in-
terannotation agreement of Cohen’s  = 0.69 for
holders, =0.63 for targets and also =0.63 for
targets of a speaker view.

Table 10 shows the features used in our super-
vised classifier. They have been previously found
effective (Choi et al., 2005; Jakob and Gurevych,
2010; Wiegand and Klakow, 2012; Yang and
Cardie, 2013). The standard features are the fea-
tures from cand word to brown. For semantic role
labeling of PropBank-structures, we used mate-
tools (Björkelund et al., 2009). For person detec-
tion, we employ named-entity tagging (Finkel et

Features Holder Target Target
Speaker

standard 63.59 54.18 40.06
+srl

framenet

65.44⇤ 55.70⇤ 42.14
+inducgraph 68.06⇤� 59.61⇤� 46.66⇤�

+srl
framenet

+inducgraph 69.70⇤� 60.47⇤� 47.33⇤�

+coarse-grain lex 68.56⇤� 59.89⇤� 54.31⇤�†

+srl
framenet

+coarse-grain lex 69.70⇤� 60.68⇤� 54.06⇤�†

+fine-grain lex 69.83⇤�† 62.89⇤�† 56.71⇤�†

+srl
framenet

+fine-grain lex 70.80⇤�† 63.72⇤�† 56.64⇤�†

statistical significance testing (paired t-test, significance level p < 0.05) ⇤:
better than standard; �: better than +srl

framenet

; †: better than +inducgraph

Table 11: In-context evaluation (eval.: F-score).

al., 2005) and WordNet (Miller et al., 1990).
For semantic role labeling of FrameNet-

structures (srl
framenet

), we used Semafor (Das et
al., 2010) with the argument identification based
on dual decomposition (Das et al., 2012). We run
the configuration that also assigns frame structures
to unknown predicates (Das and Smith, 2011).
This is necessary as 45% of our opinion verbs are
not contained in FrameNet (v1.5). FrameNet has
been shown to enable a correct role assignment for
AG- and PT-verbs (Bethard et al., 2004; Kim and
Hovy, 2006). For instance, in (17) and (18), the
opinion holder is assigned to the same frame el-
ement EXPERIENCER. However, the PropBank
representation does not produce a correct align-
ment: In (17), the opinon holder is the agent of
the opinion verb, while in (18), the opinion holder
is the patient of the opinion verb.

(17) PeterEXPERIENCER
agent dislikes Marypatient .

(dislike, Peter, holder)

(18) Peteragent disappoints MaryEXPERIENCER
patient .

(disappoint, Mary, holder)

With the feature fine-grain lex, we want to val-
idate that our manually-compiled opinion role lex-
icon for verbs (§2), i.e. the lexicon that also allows
multiple opinion roles for the same semantic roles,
is effective for in-context evaluation. Coarse-
grain lex is derived from the fine-grained lexicon
(§3.4). With this feature, we measure how much
we lose by dropping the fine-grained representa-
tion. Inducgraph induces the verb types of the
coarse representation automatically by employing
the best induction method obtained in Table 5.

Table 11 compares the different features on 10-
fold crossvalidation. The table shows that the fea-
tures encoding opinion role information, including
our induction approach, are more effective than
srl

framenet

. Even though the fine-grained lexicon
produces the best results, we almost reach that per-
formance with the coarse-grained lexicon. This is
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manual lexicons
Features inducgraph coarse-grain fine-grain
lexicon feature only (⇡ unsuperv.) 52.38 55.81 60.68
lexicon with all other features 59.90⇤ 61.71⇤ 63.92�

statistical significance testing (paired t-test, significance level p < 0.05) ⇤:
better than lexicon feature only; �: only significant on 2 out of 3 roles

Table 12: Lexical resources and the impact
of other (not lexicon-based) features (evaluation
measure: macro-average F-score).

Distribution of Verb Types
Corpus AG PT SP # sentences
MPQA (training+test) 77.5 7.7 14.8 15, 753

FICTION (test) 67.5 15.1 17.3 614

VERB (test) 34.8 14.0 52.7 1, 073

Table 13: Statistics on the different corpora used.

further evidence that our proposed three-way verb
categorization, which is also the basis of our in-
duction approach, is adequate.

Table 12 compares the performance of the dif-
ferent lexicons in isolation (this is comparable
with an unsupervised classifier, as each lexicon
feature has three values each predicting either of
the opinion roles) and in combination with the
standard (+srl

framenet

) features. The table shows
that all lexicon features are strong features on their
own. The score of induction is lowest but this fea-
ture has been created without manual supervision.
Moreover, the improvement by adding the other
features is much larger for induction than for the
manually-built fine-grained lexicon. This means
that we can compensate some lexical knowledge
missing in induction by standard features.

Since we could substantially outperform the
features relying on FrameNet with our new lex-
ical resources, we looked closer at the predicted
frame structures. Beside obvious errors in auto-
matic frame assignment, we also found that there
are problems inherent in the frame design. Particu-
larly, the notion of SP-verbs (§3.3) is not properly
reflected. Many frames, such as SCRUTINY, typi-
cally devised for AG-verbs, such as investigate or
analyse, also contain SP-verbs like pry. This ob-
servation is in line with Ruppenhofer and Rehbein
(2012) who claim that extensions to FrameNet are
necessary to properly represent opinions evoked
by verbal predicates.

5.3 Comparison to Previous Cross-Domain
Opinion Holder Extraction

We now compare our proposed induction ap-
proach with previous work on opinion holder ex-

in domain out of domain
Config MPQA FICTION VERB
MultiRel 72.54⇤� 53.02 44.80
CK 62.98 52.91 43.88
CK + induc

Wiegand 2012

65.15 57.33⇤ 50.83⇤

CK + inducgraph 66.06⇤ 65.03⇤� 60.91⇤�

CK + coarse-grain lex 66.82⇤ 64.13⇤� 63.72⇤�†

CK + fine-grain lex 66.16⇤ 64.98⇤� 70.85⇤�†‡

statistical significance testing (permutation test, significance level p < 0.05)
⇤: better than CK; �: better than CK + induc

Wiegand 2012

; †: better than
CK + induc

graph

; ‡: better than CK + coarse-grain lex

Table 14: Evaluation on opinion holder extraction
on various corpora (evaluation measure: F-score).

traction. We replicate several classifiers and com-
pare them to our new approach. (Because of the
limited space of this paper, we cannot also address
cross-domain opinion target extraction.) We con-
sider three different corpora as shown in Table 13.
MPQA (Wiebe et al., 2005) is the standard corpus
for fine-grained sentiment analysis. FICTION,
introduced in Wiegand and Klakow (2012), is a
collection of summaries of classic literary works.
VERB is the new corpus used in the previous
evaluation (§5.2). VERB and MPQA both orig-
inate from the news domain but VERB is sam-
pled in such a way that mentions of all opinion
verbs of the Subjectivity Lexicon are represented.
The other corpora consist of contiguous sentences.
They will have a bias towards only those opinion
verbs frequently occurring in that particular do-
main. This also results in different distributions
of verb types as shown in Table 13. For example,
SP-verbs are rare in MPQA. However, there ex-
ist plenty of them (Table 3). Other domains may
have much more frequent SP-verbs (just as FIC-
TION has more PT-verbs than MPQA). A robust
domain-independent classifier should therefore be
able to cope equally well with all three verb types.

MPQA is also the largest corpus. Following
Wiegand and Klakow (2012), this corpus is cho-
sen as a training set.7 Despite its size, however,
almost every second opinion verb from our set of
opinion verbs is not contained in that corpus.

In the evaluation, we only consider the opinion
holders of our opinion verbs. (Other opinion hold-
ers, both in the gold standard and the predictions
of the classifiers are ignored.) Recall that we take
the knowledge of what is an opinion verb as given.
Our graph-based induction can be arbitrarily ex-
tended by increasing the set of opinion verbs.

7The split-up of training and test set on the MPQA corpus
follows the specification of Johansson and Moschitti (2013).
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For classifiers, we consider convolution ker-
nels CK from Wiegand and Klakow (2012) and
the sequence labeler from Johansson and Mos-
chitti (2013) MultiRel that incorporates relational
features taking into account interactions between
multiple opinion cues. It is currently the most so-
phisticated opinion holder extractor. CK can be
combined with additional knowledge. We com-
pare inducgraph with induc

Wiegand 2012

, which
employs the word lists induced for AG- and PT-
verbs in the fashion of Wiegand and Klakow
(2012), i.e. without graph clustering. As an upper
bound for the induction methods, coarse grain lex
and fine grain lex are used.8 The combination
of CK with this additional knowledge follows the
best settings from Wiegand and Klakow (2012).9

Table 14 shows the results. MultiRel produces
the best performance on MPQA but suffers simi-
larly from a domain-mismatch as CK on FICTION
and VERB. MultiRel and CK cannot handle many
PT- and SP-verbs in those corpora, simply because
many of them do not occur in MPQA. On MPQA,
only the new induction approach and the lexicons
significantly improve CK. The knowledge of opin-
ion roles has a lower impact on MPQA. In that cor-
pus, most opinion verbs take their opinion holder
as an agent. Given the large size of MPQA, this
information can be easily learned from the train-
ing data. The situation is different for FICTION
and VERB where the knowledge from induction
largely improves classification. In these corpora,
opinion holders as agents are much less frequent
than on MPQA. The new induction proposed in
this paper also notably outperforms the induction
from Wiegand and Klakow (2012).

Although the fine-grained lexicon is among the
top performing systems, we only note large im-
provements on VERB. VERB has the highest pro-
portion of PT- and SP-verbs (Table 13). Knowl-
edge about role-assignment is most critical here.

6 Related Work

Most approaches for opinion role extraction em-
ploy supervised learning. The feature design is

8Wiegand and Klakow (2012) use a lexicon Lex which
just comprises the notion of AG and PT verbs, so our manual
lexicons are more accurate and harder to beat.

9For in-domain evaluation (i.e. MPQA) the trees (tree
structures are the input to CK) are augmented with verb cat-
egory information. For out-of-domain evaluation (i.e. FIC-
TION and VERB), we add to the predictions of CK the pre-
diction of a rule-based classifier using the opinion role assign-
ment according to the respective lexicon or induction method.

mainly inspired by semantic role labeling (Bethard
et al., 2004; Li et al., 2012). Some work also em-
ploys information from existing semantic role la-
belers based on FrameNet (Kim and Hovy, 2006)
or PropBank (Johansson and Moschitti, 2013;
Wiegand and Klakow, 2012). Although those re-
sources give extra information for opinion role ex-
traction in comparison to syntactic or other surface
features, we showed in this work that further task-
specific knowledge, i.e. either opinion verb types
or a manually-built opinion role lexicon, provide
even more accurate information.

There has been a substantial amount of research
on opinion target extraction. It focuses, however,
on the extraction of topic-specific opinion terms
(Jijkoun et al., 2010; Qiu et al., 2011) rather than
the variability of semantic roles for opinion hold-
ers and targets. Mitchell et al. (2013) present
a low-resource approach for target extraction but
their aim is to process Twitter messages without
using general syntax tools. In this work, we use
such tools. Our notion of low resources is different
in that we mean the absence of semantic resources
helpful for our task (e.g. FrameNet).

7 Conclusion

We presented an approach for opinion role in-
duction for verbal predicates. We assume that
those predicates can be divided into three differ-
ent verb types where each type is associated with
a characteristic mapping between semantic roles
and opinion holders and targets. In several ex-
periments, we demonstrated the relevance of those
three types. We showed that verbs can effectively
be categorized with graph clustering given a suit-
able similarity metric. The seeds are automatically
selected. Our proposed induction approach out-
performs both a previous induction approach and
features derived from semantic role labelers. We
also pointed out the importance of the knowledge
gained by induction in supervised cross-domain
classification.
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Abstract

Typically, visually-grounded language
learning systems only accept feature
data about objects in the environment
that are explicitly mentioned, whether
through annotation labels or direct ref-
erence through natural language. We
show that when objects are described
ambiguously using natural language, a
system can use a combination of the
pragmatic principles of Contrast and
Conventionality, and multiple-instance
learning to learn from ambiguous exam-
ples in an online fashion. Applying child
language learning strategies to visual
learning enables more effective learning
in real-time environments, which can
lead to enhanced teaching interactions
with robots or grounded systems in
multi-object environments.

1 Introduction

As opposed to the serial nature of labeled data
presented to a machine learning classifier, chil-
dren and robots “in the wild” must learn object
names and attributes like color, size, and shape
while being surrounded by a number of stimuli
and possible referents. When a child hears “the red
ball”, they must first identify the object mentioned,
then use existing knowledge to identify that “red”
and “ball” are distinct concepts, and over time,
learn that objects called “red” share some sim-
ilarity in color while objects called “ball” share
some similarity in shape. Learning for them there-
fore requires both identification and establishing
joint attention with the speaker before assigning
a label to an object, while also applying other
language learning strategies to narrow down the
search space of possible referents, as illustrated by
Quine’s “gavagai” problem (1964).

Trying to learn attributes and objects without
non-linguistic cues such as pointing and gaze
might seem an insurmountable challenge. Yet a
child experiences many such situations and can
nevertheless learn grounded concepts over time.
Fortunately, adult speakers tend to understand
the limitation of these cues in certain situations
and adjust their speech in accordance to Grice’s
Maxim of Quantity when referring to objects : be
only as informative as necessary (Grice, 1975).
We therefore treat the language describing a par-
ticular object in a scene as an expression of an it-
erative process, where the speaker is attempting to
guide the listener towards the referent in a way that
avoids both ambiguity and unnecessary verbosity.

Language learners additionally make use of the
pragmatic assumptions of Conventionality, that
speakers agree upon the meaning of a word, and
Contrast, that different words have different mean-
ings (Clark, 2009). The extension of these princi-
ples to grounded language learning yields the as-
sumptions that the referents picked out by a refer-
ring expression will have some similarity (percep-
tual in our domain), and will be dissimilar com-
pared to objects not included in the reference.
Children will eventually generalize learned con-
cepts or accept synonyms in a way that violates
these principles (Baldwin, 1992), but these as-
sumptions aid in the initial acquisition of concepts.
In our system, we manifest these principles us-
ing distance metrics and thereby allow significant
flexibility in the implementation of object and at-
tribute representations while allowing a classifier
to aid in reference resolution.

When faced with unresolvable ambiguity in de-
termining the correct referent, past, ambiguous
experiences can be called upon to resolve ambi-
guity in the current situation in a strategy called
Cross-Situational Learning (XSL). There is some
debate over whether people use XSL, as it re-
quires considerable memory and computational
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load (Trueswell et al., 2013). However, other ex-
periments show evidence for XSL in adults and
children in certain situations (Smith and Yu, 2008;
Smith et al., 2011). We believe these instances
that show evidence of XSL certainly merit an im-
plementation both for better understanding lan-
guage learning and for advancing grounded lan-
guage learning in the realm of robotics where such
limitations do not exist. We show that by reason-
ing over multiple ambiguous learning instances
and constraining possibilities with pragmatic in-
ferences, a system can quickly learn attributes and
names of objects without a single unambiguous
training example.

Our overarching research goal is to learn com-
positional models of grounded attributes towards
describing an object in a scene, rather than just
identifying it. That is, we do not only learn
to recognize instances of objects, but also learn
attributes constrained to feature spaces that will
be compatible with contextual modifiers such as
dark/light in terms of color, or small/large in terms
of size and object classification. Therefore, we
approach the static, visual aspects of the symbol
grounding problem with an eye towards ensur-
ing that our grounded representations of attributes
can be composed in the same way that their se-
mantic analogues can. We continue our previous
work (Perera and Allen, 2013) with two evalua-
tions to demonstrate the effectiveness of applying
the principles of Quantity, Contrast, and Conven-
tionality, as well as incorporating quantifier con-
straints, negative information, and classification
in the training step. Our first evaluation is ref-
erence resolution to determine how well the sys-
tem identifies the correct objects to attend to, and
our second is description generation to determine
how well the system uses those training examples
to understand attributes and object classes.

2 Related Work

Our algorithm for reference resolution and XSL
fits into our previous work on a situated language
learning system for grounding linguistic symbols
in perception. The integration of language in a
multi-modal task is a burgeoning area of research,
with the grounded data being any of a range of
possible situations, from objects on a table (Ma-
tuszek et al., 2012) to wetlab experiments (Naim
et al., 2014). Our end goal of using natural lan-
guage to learn from visual scenes is similar to

work by Krishnamurthy and Kollar (2013) and Yu
and Siskind (2013), and our emphasis on attributes
is related to work by Farhadi et al. (2009). How-
ever, our focus is on learning from situations that
a child would be exposed to, without using anno-
tated data, and to test implementations of child
language learning strategies in a computational
system.

We use a tutor-directed approach to training our
system where the speaker presents objects to the
system and describes them, as in work by Skocaj
et al. (2011). The focus of this work is in evaluat-
ing referring expressions as in work by Mohan et
al. (2013), although without any dialogue for dis-
ambiguation. Kollar et al. (2013) also incorporate
quantifier and pragmatic constraints on reference
resolution in a setting similar to ours. In this work,
we undertake a more detailed analysis of the ef-
fects of different pragmatic constraints on system
performance.

The task of training a classifier from “bags”
of instances with a label applying to only some
of the instances contained within is referred to
as Multiple-Instance Learning (MIL) (Dietterich,
1997), and is the machine-learning analogue of
cross-situational learning. There is a wide range
of methods used in MIL and a number of differ-
ent assumptions that can be made to fit the task at
hand (Foulds and Frank, 2010). Online MIL meth-
ods so far have been used for object tracking (Li et
al., 2010), and Dindo and Zambuto (2010) apply
MIL to grounded language learning, but we are not
aware of any research that investigates the applica-
tion of online MIL to studying cognitive models of
incremental grounded language learning. In addi-
tion, we find that we must relax many assumptions
used in MIL to handle natural language references,
such as the 1-of-N assumption used by Dindo and
Zambuto. The lack of appropriate algorithms for
handling this task motivates our development of a
novel algorithm for language learning situations.

3 Experimental Design

3.1 Learning Environment and Data
Collection

Our environment in this experiment consists of a
table with blocks of nine different shapes and two
toy cars, with the objects spanning four colors. A
person stands behind the table, places a randomly
chosen group of objects in a designated demon-
stration area on the table as shown in Figure 1,
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Figure 1: One of the training examples, described
as “The two red blocks [left-most two blocks in
this figure] are next to the other blocks.”

and describes one or more of the objects directly
while possibly mentioning some relation to the
surrounding objects. The goal of this setup is to
facilitate object descriptions that more closely ap-
proximate child-directed speech, compared to the
language in captioned images. Audio is recorded
and transcribed by hand with timestamps at the ut-
terance level, but there are no other annotations be-
yond timestamps. We use these intervals to match
the spoken descriptions to the video data, which
is recorded using the Microsoft Kinect to obtain
RGB + Depth information.

3.2 Training and Test Instances
All training instances involved multiple objects,
with an average of 2.8 objects per demonstration.
The subject could select any set of objects to de-
scribe (often with respect to the other objects).
References to objects varied in detail, from “the
cube” to “a tall yellow rectangle”. Since a set
of objects might have different shapes, the most
common descriptor was “block”. The majority
(80%) of the quantifiers were definite or numeric,
and 85% of the demonstrations referred to a sin-
gle object. Test instances consisted solely of sin-
gle objects presented one at a time. 20% of the
objects used as test instances appeared in training
because of the limited set of objects available, yet
the objects were placed in slightly different ori-
entations and at different locations, deforming the
shape contour due to perspective.

3.3 Prior System Knowledge
We encode some existing linguistic and percep-
tual knowledge into the system to aid in learn-
ing from unconstrained object descriptions. The
representative feature, defined as the system’s fea-
ture space assigned to a property name (e.g., color

for “white”, or shape for “round”), was precho-
sen for the task’s vocabulary to reduce the number
of factors affecting the evaluation of the system.
In previous work, we showed that the accuracy
of the system’s automatic choice of representative
features can reach 78% after about 50 demonstra-
tions of objects presented one at a time (Perera and
Allen, 2013). In addition, we developed an ex-
tension to a semantic parser that distinguishes be-
tween attributes and object names using syntactic
constructions.

3.4 Language Processing

The transcribed utterances are passed through the
TRIPS parser (Allen et al., 2008) for simultane-
ous lexicon learning and recognition of object de-
scriptions. The parser outputs generalized quanti-
fiers and numeric constraints (capturing singular/-
plural instances, as well as specific numbers) in
referring expressions, which are used for applying
quantifier constraints to the possibilities of the ref-
erent object or group of objects. The parser’s abil-
ity to distinguish between attributes and objects
through syntax greatly increases learning perfor-
mance, as demonstrated in our previous work (Per-
era and Allen, 2013). We extract the speech act
(for detecting when an utterance is demonstrating
a new object or adding additional information to
a known object) and the referring expression from
the TRIPS semantic output. Figure 2 shows the
format of such a referring expression.

(MENTIONED : ID ONT : : V11915
:TERMS

( (TERM ONT : : V11915 : CLASS ( : ⇤
ONT : : REFERENTIAL�SEM W: : BLOCK)

: PROPERTIES ( ( : ⇤
ONT : : MODIFIER W: : YELLOW) )

:QUAN ONT : : THE) ) )

Figure 2: Primary referring expression extraction
from the semantic parse for ”The yellow block is
next to the others”.

Although there may be many objects or groups
of objects mentioned, we only store the properties
of the reference that is the subject of the sentence.
For example, in, “Some blue cars are next to the
yellow ones”, we will extract that there exists at
least two blue cars. Because it is an indefinite
reference, we cannot draw any further inference
about whether the reference set includes all exam-
ples of blue cars.
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3.5 Feature Extraction
To extract features, we first perform object seg-
mentation using Kinect depth information, which
provides a pixel-level contour around each of the
objects in the scene. Then for each object, we
record its dimensions and location, extract visual
features corresponding to color, shape, size, color
variance, and texture. No sophisticated track-
ing algorithm is needed as the objects are sta-
tionary on the table. Color is represented in
LAB space for perceptual similarity to humans
using Euclidean distance, shape is captured us-
ing scale- and rotation-invariant 25-dimensional
Zernike moments (Khotanzad and Hong, 1990),
and texture is captured using 13-dimensional Har-
alick features (Haralick et al., 1973).

3.6 Classification and Distance Measures
To determine the similarity of new properties and
objects to the system’s previous knowledge of
such descriptors, we use a k-Nearest Neighbor
classifier (k-NN) with Mahalanobis distance met-
ric (Mahalanobis, 1936), distance weighting, and
class weighting using the method described in
Brown and Koplowitz (1979).

Our k-NN implementation allows negative ex-
amples so as to incorporate information that we
infer about unmentioned objects. We do not train
the system with any explicit negative information
(i.e., we have no training examples described as
“This is not a red block.”, but if the system is confi-
dent that an object is not red, it can mark a training
example as such). A negative example contributes
a weight to the voting equal and opposite to what
its weight would have been if it were a positive
example of that class.

The Mahalanobis distance provides a way to
incorporate a k-nearest neighbor classifier into a
probabilistic framework. Because the squared Ma-
halanobis distance is equal to the number of stan-
dard deviations from the mean of the data assum-
ing a normal distribution (Rencher, 2003), we can
convert the Mahalanobis distance to a probability
measure to be used in probabilistic reasoning.

4 The Reference Lattice

To learn from underspecified training examples,
we must resolve the referring expression and as-
sign the properties and object name in the expres-
sion to the correct referents. To incorporate exist-
ing perceptual knowledge, semi-supervised meth-

ods, and pragmatic constraints in the reference res-
olution task, we use a probabilistic lattice structure
that we call the reference lattice.

The reference lattice consists of nodes corre-
sponding to possible partitions of the scene for
each descriptor (either property or object name).
There is one column of nodes for each descriptor,
with the object name as the final column. Edges
signify the set-intersection of the connected nodes
along a path.

Paths through the lattice correspond to a suc-
cessive application of these set-intersections, ul-
timately resulting in a set of objects correspond-
ing to the hypothesized referent group. In this
way, paths represent a series of steps in referring
expression generation where the speaker provides
salient attributes sequentially to eventually make
the referent set clear.

Figure 3: Three examples of paths in the ref-
erence lattice for the referring expression “the
white square”, when the visible objects are a grey
square, white square, and a white triangle.

4.1 Lattice Generation
For each descriptor, we generate a node for ev-
ery possible partition of the scene into positive and
negative examples of that descriptor. For example,
if the descriptor is “red”, each node is a hypoth-
esized split that attempts to put red objects in the
positive set and non-red objects in the negative set.
For each column there are 2

n � 1 nodes, where n
is the number of objects in the scene (the empty
set is not included, as it would lead to an empty
reference set). We then generate lattice edges be-
tween every pair of partitions in adjacent columns.
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We can discard a large proportion of these edges,
as many will correspond to the intersection of dis-
joint partitions and will therefore be empty. Fi-
nally, we generate all possible paths through the
lattice, and, if using quantifier constraints, discard
any paths with a final output referent set that does
not agree with the number constraints on the men-
tioned referent group.

The structure of the lattice is shown in Figure
3. In this figure, partitions are represented by split
boxes in the first two columns, with positive exam-
ples in solid lines and negative examples in dotted
lines. Not shown are edges connecting each parti-
tion in one column with each partition in the next
and the paths they create. The intersection of the
partitions in path (a) lead to a null set, and the path
is removed from the lattice. Path (b) is the ground
truth path, as the individual partitions accurately
describe the composition of the attributes. Path
(c) contains an overspecified edge and achieves the
correct referent set albeit using incorrect assump-
tions about the attributes. The result sets from
both (b) and (c) agree with the quantifier constraint
(definite singular).

4.2 Node Probabilities

We consider two probabilities for determining the
probability of a partition: that which can be deter-
mined from distance data (considering distances
between objects in the partition), and that which
requires previous labeled data to hypothesize a
class using the classifier (considering distances
from each object to the mean of the data labeled
with the descriptor).

The distance probability, our implementation of
the principle of Contrast, is a prior that enforces
minimum intraclass distance for the positive ex-
amples and maximum interclass distance across
the partition. The motivation and implementation
shares some similarities with the Diverse Density
framework for multiple instance learning (Maron
and Lozano-Pérez, 1998), although here it also
acts as an unsupervised clustering for determining
the best reference set. It is the product of the min-
imum probability that any two objects in the pos-
itive examples are in the same set multiplied by
the complement of the maximum probability that
any two objects across the partition are in the same
class. Therefore, for partition N with positive ex-
amples + and negative examples �:

Pintra = min

x,y 2+
P (xc = yc)

Pinter =

(
maxx2+,y2� P (xc = yc) if |�| > 0

1 if |�| = 0

Pdistance = Pintra ⇥ (1� Pinter)

The classifier probability is similar, except
rather than comparing objects to other objects in
the partition, the objects are compared to the mean
of the column’s descriptor C in the descriptor’s
representative feature. If the descriptor is a class
name, we instead choose the Zernike shape fea-
ture, implementing the shape bias children show
in word learning (Landau et al., 1998).

If there is insufficient labeled data to use, then
the classifier probability is set to 1 for the entire
column, meaning only the distance probabilities
will affect the probabilities of the nodes. For a
given descriptor C, the classifier probabilities are
as follows:

Ppos(C) = min

x2+
P (xc = C)

Pneg(C) =

(
maxx2� P (xc = C) if |�| > 0

1 if |�| = 0

Pclassifier(C) = Ppos(C)⇥ (1� Pneg(C))

The final probability of a partition is the product
of the distance probability and the classifier prob-
ability, and the node probabilities are normalized
for each column.

4.3 Overspecification and Edge Probabilities

Edges have a constant transition probability equal
to the overspecification probability if overspec-
ified, or equal to the complement otherwise.
We use these probabilities to incorporate the
phenomenon of overspecification in our model,
where, contrary to a strict interpretation of Grice’s
Maxim of Quantity, speakers will give more in-
formation than is needed to identify a referent
(Koolen et al., 2011). An edge is considered over-
specified if the hypothesis for the objects that sat-
isfy the next descriptor does not add additional in-
formation, i.e., the set-intersection it corresponds
to does not remove any possible objects from the
referent set. Thus the model will prefer hypothe-
ses for the next descriptor that narrow down the
hypothesized set of referents.
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4.4 Path Probabilities

The probability of each path is the product of prob-
abilities of each of the partitions along its path and
the edge (overspecification) probabilities. If there
is a single path with a probability greater than all
others by an amount ✏, the labels of the parti-
tions along that path are assigned to the positive
examples while also being assigned as negative
properties for the negative examples. We perform
this updating step after each utterance to simulate
incremental continuous language learning and to
provide the most current knowledge available for
resolving new ambiguous data.

If there are multiple best paths within ✏ of the
highest probability path, then the learning example
is considered ambiguous and saved in memory to
resolve with information from future examples.

4.5 Multiple-Instance Learning

In many cases, especially in the system’s first
learning instances, there is not enough information
to unambiguously learn from the demonstration.
Without any unambiguous examples, our system
would struggle to learn no matter how much data
was available to it. An ambiguous training exam-
ple yields more than one highest probability path.
Our goal is to use new information from each new
training demonstration to reevaluate these paths
and determine a singular best path, which allows
us to update our knowledge accordingly.

To do this, we independently consider columns
for each unknown descriptors from unresolved
demonstrations containing that descriptor and
combine them to form super-partitions which are
then evaluated using our distance probability func-
tion. For example, consider two instances de-
scribed with “the red box”. The first has a red
and a blue box, while the second has a red and
a green box. Individually they are ambiguous to
a system that does not know what “red” means
and therefore each demonstration would have two
paths with equal probability. If we combine the
partitions across the two demonstrations into four
super-partitions, the highest probability will be
generated when the two red boxes are in the pos-
itive set. This probability is stored in each of the
constituent partitions as a meta-probability, which
is otherwise 1 when multiple-instance learning
is not required to resolve ambiguity. The meta-
probability allows us to find the most probable
path given previous instances.

5 System Pipeline

5.1 Training

To train the system on a video, we transcribe the
video with sentence-level timestamps, and extract
features from the demonstration video. The sys-
tem takes as input the feature data aligned with
utterances from the demonstration video. It then
finds the most likely path through the reference
lattice and adds all hypothesized positive exam-
ples for the descriptor as class examples for the
classifier. If there is more than one likely path, it
saves the lattice for later resolution using multiple-
instance learning.

5.2 Description Generation

During testing, the system generates a description
for an object in the test set by finding examples of
properties and objects similar to it in previously
seen objects. For properties, the system checks
each feature space separately to find previous ex-
amples of objects similar in that feature space and
adds each found property label to the k-NN voting
set, weighted by the distance. If the majority la-
bel does not have the matching representative fea-
ture, the system skips this feature space for adding
a property to the description. The object name is
chosen using a distance generated from the sum
of the distances (normalized and weighted through
the Mahalanobis distance metric) to the most sim-
ilar previous examples. More details about the de-
scription generation process can be found in our
previous paper (Perera and Allen, 2013).

6 Evaluation

To evaluate our system, we use two metrics: our
evaluation method used in previous work for rat-
ing the quality of generated descriptions (Perera
and Allen, 2013), and a standard precision/recall
measurement to determine the accuracy of refer-
ence resolution.

The description generated by the system is com-
pared with a number of possible ground truth de-
scriptions which are generated using precision and
recall equivalence classes from our previous work.
Precision is calculated according to which words
in the description could be found in a ground truth
description, while recall is calculated according to
which words in the closest ground truth descrip-
tion were captured by the system’s description. As
an example, a system output of “red rectangle”
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Figure 4: F-Score for Description Generation in
grey and Reference Resolution in black for vari-
ous configurations of the system run on 4 under-
specificed videos. Error bars are one standard de-
viation.

when the ground truth description is “red square”
or “red cube” would have a precision score of 1
(because both “red” and “rectangle” are accurate
descriptors of the object) but a recall of .5 (because
the square-ness was not captured by the system’s
description).

In the reference resolution evaluation, precision
and recall are calculated on the training set accord-
ing to the standard measures by comparing the ref-
erent set obtained by the system and the ground
truth referent set (those objects actually referred
to by the speaker). Training instances lacking fea-
ture data because of an error in recording were ex-
cluded from the F1-score for reference resolution.

Each underspecified demonstration video con-
sisted of 15-20 demonstrations containing one or
more focal objects referenced in the description
and, in most cases, distractor objects that are not
mentioned. We used the same test video from our
previous work with objects removed that could not
be described using terms used in the training set,
leaving 15 objects.

We tested eight different system configurations.
The baseline system simply guessed at a path
through the lattice without any multiple-instance
learning (G). We then added multiple instance
learning (M), distance probabilities (D), classifier
probabilities (C), quantifier constraints (Q), and
negative information (N). We show the data for
these different methods in Figure 4.

7 Results and Discussion

7.1 Learning Methods
Rather than comparing our language learning sys-
tem to others on a common dataset, we choose to

focus our analysis on how our implementations of
pragmatic inference and child language learning
strategies affected performance of reference reso-
lution and description generation.

The relatively strong naming performance of G
can be attributed to the fact that many demon-
strations had similarities among the objects pre-
sented that could be learned from choosing any of
the objects. However, reference resolution perfor-
mance for G averaged a .34 F1-score compared
with a .70 F1-score for our best performing con-
figuration. Adding quantifier constraints (GQ)
did not help, although quantifier constraints with
multiple-instance learning (GMQ) led to a signifi-
cant increase in reference resolution performance.

Multiple-instance learning provided a signifi-
cant gain in reference resolution performance, and
with quantifier constraints also yielded the highest
naming performance (QDM and QDML). The rel-
ative lower performance by inclusion of classifier
probabilities with this limited training data is due
to errors in classification that compound in this
online-learning framework. In multiple-instance
cases where there are a number of previous exam-
ples to draw from, then the information provided
by classifier probability is redundant and less ac-
curate. However, as the approach scales and re-
taining previous instances is intractable, the classi-
fier probabilities provide a more concise represen-
tation of knowledge to be used in future learning.

We found that negative information hurt perfor-
mance in this framework (QDMCN vs. QDMC)
for two reasons. First, the risk of introducing neg-
ative information is high compared to its possible
reward. While it promises to remove some errors
in classification, an accurate piece of negative in-
formation only removes one class from consider-
ation when multiple other alternatives exist, while
an inaccurate piece of negative information con-
tributes to erroneous classification.

Second, situations where negative information
might be inferred are induced by a natural lan-
guage description which, by Grice’s Maxims, will
attempt to be as clear as possible given the lis-
tener’s information. This means that, adhering
to the Contrast principle, negative examples are
likely already far from the positive examples for
the class.

Figure 5 shows results from the averaging of
random combinations of 4 underspecified videos,
using our highest-scoring configuration QDM to
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Figure 5: Description generation results from
training according to the number of training videos
with standard error bars. The solid line is the
QDM’s performance learning from underspecified
videos. The dashed line is the system’s perfor-
mance learning from videos where objects are pre-
sented one at a time. The dotted line is the baseline
(G). F1-score for reference resolution in the under-
specified case was consistent across videos (mean
.7, SD .01).

show the increase in performance as more training
data is provided to the system. We compare our re-
sults on videos with multiple objects to the perfor-
mance of the system with objects presented one at
a time and with the baseline G. Because the train-
ing objects are slightly different, we present results
on a subset of objects where at least a ground truth
object name was present in the training data. Our
results show that while the performance is lower in
the ambiguous case, the general learning rate per
video is comparable with the single-object case. In
the 1-video case, guessing is equally as effective as
our method due to the system being too tentative
with assigning labels to objects without more in-
formation to minimize errors affecting learning in
later demonstrations.

We did see an effect of the order in which videos
were presented to the system on performance, sug-
gesting that learning the correct concepts early
on can have long-term ramifications for an online
learning process. Possible ways to mitigate this
effect include a memory model with forgetting or
a more robust classifier. We leave such efforts to
future work.

7.2 Running Time Performance

While the number of nodes and paths in the lat-
tice is exponential in the number of objects in the
scene, our system can still perform quickly enough
to serve as a language learning agent suitable for
real-time interaction. The pragmatic constraints

on possible referent sets allow us to remove a large
number of paths, which is especially important
when there are many objects in the scene or when
the referring expression contains a number of de-
scriptors. In situations with more than 4-5 objects,
we expect that other cues can establish joint atten-
tion with enough resolution to remove some ob-
jects from consideration.

Visual features can be extracted from video at
3 frames per second, which is acceptable for real-
time interaction as only 5 frames are needed for
training or testing. Not including the feature ex-
traction (performed separately), the QUM config-
uration processed our 55 demonstrations in about
1 minute on a 2.3 GHz Intel Core i7.

7.3 Relation Between Evaluation Metrics
We compared our results from the description gen-
eration metric with the reference resolution metric
to evaluate how the quality of reference resolution
affected learning performance. The description
generation F-score was more strongly positively
correlated with the reference resolution precision
than with the recall. We found a reference resolu-
tion F-score with � = .7 (as opposed to the stan-
dard � = 1) had the highest Pearson correlation
with the F-score (r = .63, p < .0001), indicat-
ing that reference resolution precision is roughly
1.4 times more important than recall in predicting
learning performance in this system.

This result provides evidence that the quality
of the first data in a limited data learning algo-
rithm can be critical in establishing long-term per-
formance, especially in an online learning system,
and suggests that our results could be improved
by correcting hypotheses that once appeared rea-
sonable to the system. It also suggests that F1-
score may not be the most appropriate measure for
performance of a component that is relied upon to
give accurate data for further learning.

7.4 Overspecification
Accounting for overspecification in the model
more closely approximates human speech at the
expense of a strict interpretation of the Maxim of
Quantity. It allows us to use graded pragmatic con-
straints that admit helpful heuristics for learning
without treating them as a rule. In our training
data, the speaker was typically over-descriptive,
leading to a high optimal overspecification. Figure
6 shows the effect of different values for the over-
specification probability on the performance of the
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Figure 6: Effect of varying overspecification prob-
ability on the F1 score for both Description Gen-
eration (black dashed) and Reference Resolution
(grey solid), calculated on a dataset with hand lo-
cation information.

system. The strong dip in reference resolution per-
formance at an overspecification probability of 0
shows the significant negative effect a strict inter-
pretation of the Maxim of Quantity would have in
this situation. The correct value for overspecifica-
tion probability for a given situation depends on
a number of factors such as scene complexity and
descriptor type (Koolen et al., 2011), but we have
not yet incorporated these factors into our over-
specification probability in this work.

7.5 Comparison to Other Multi-Instance
Learning Methods

Our multi-instance learning procedure can be clas-
sified as instance-level with witnesses, which
means that we identify the positive examples that
lead to the label of the “bag”, or demonstration in
this case. In addition, we relax the assumption that
there is only a single positive instance correspond-
ing to the label of the demonstration. This relax-
ation increases the complexity of cross-instance
relationships, but allows for references to multiple
objects simultaneously and therefore faster train-
ing than a sequential presentation would allow. In
accounting for overspecification, we also must es-
tablish a dependence on the labels of the image
via the edges of the lattice. This adds additional
complexity, but our results show that accounting
for overspecification can lead to increased perfor-
mance.

8 Future Work

Work on this system is ongoing, with extensions
planned for improving performance, generating
more complete symbol grounding, and allowing

more flexibility in both environment and language.
While the parser in our system can interpret

phrases such as “the tall block”, we do not have
a way of resolving the non-intersective predicate
“tall” in our current framework. Non-intersective
predicates add complexity to the system because
their reference point is not necessarily the other
objects in the scene - it may be a reference to other
objects in the same class (i.e., blocks).

Also, our set of features is rather rudimen-
tary and could be improved, as we chose low-
dimensional, continuous features in an attempt to
facilitate a close connection between language and
vision. The use of continuous features ensures
that primitive concepts are grounded solely in per-
ception and not higher-order conceptual models
(Perera and Allen, 2014). Initial results using 3D
shape features show a considerable performance
increase on a kitchen dataset we are developing.

9 Conclusion

We have proposed a probabilistic framework for
using pragmatic inference to learn from under-
specified visual descriptions. We show that this
system can use pragmatic assumptions attenuated
by overspecification probability to learn attributes
and object names from videos that include a num-
ber of distractors. We also analyzed various learn-
ing methods in an attempt to gain a deeper under-
standing of the theoretical and practical consider-
ations of situated language learning, finding that
Conventionality and Contrast learning strategies
with quantifiers and overspecification probabilities
yielded the best performing system. These results
support the idea that an understanding of how hu-
mans learn and communicate can lead to better vi-
sually grounded language learning systems. We
believe this work is an important step towards sys-
tems in which natural language not only stands in
for manual annotation, but also enables new meth-
ods of training robots and other situated systems.

10 Acknowledgements

This work was funded by The Office of Naval
Research (N000141210547), the Nuance Founda-
tion, and DARPA Big Mechanism program under
ARO contract W911NF-14-1-0391.

234



References
J. Allen, Mary Swift, and Will de Beaumont. 2008.

Deep Semantic Analysis of Text. In Symp. Semant.
Syst. Text Process., volume 2008, pages 343–354,
Morristown, NJ, USA. Association for Computa-
tional Linguistics.

D A Baldwin. 1992. Clarifying the role of shape in
children’s taxonomic assumption. J. Exp. Child Psy-
chol., 54(3):392–416.

T Brown and J Koplowitz. 1979. The Weighted
Nearest Neighbor Rule for Class Dependent Sample
Sizes. IEEE Trans. Inf. Theory, I(5):617–619.

Eve V. Clark. 2009. On the pragmatics of contrast. J.
Child Lang., 17(02):417, February.

T Dietterich. 1997. Solving the multiple instance
problem with axis-parallel rectangles. Artif. Intell.,
89:31–71.

Haris Dindo and Daniele Zambuto. 2010. A prob-
abilistic approach to learning a visually grounded
language model through human-robot interaction.
IEEE/RSJ 2010 Int. Conf. Intell. Robot. Syst. IROS
2010 - Conf. Proc., pages 790–796.

A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth. 2009.
Describing objects by their attributes. 2009 IEEE
Conf. Comput. Vis. Pattern Recognit., pages 1778–
1785, June.

James Foulds and Eibe Frank. 2010. A review of
multi-instance learning assumptions. Knowl. Eng.
Rev., 25:1.

HP Grice. 1975. Logic and conversation. In Peter
Cole and Jerry L. Morgan, editors, Syntax Semant.,
pages 41–58. Academic Press.

Robert M. Haralick, K. Shanmugam, and Its’hak Din-
stein. 1973. Textural features for image classifica-
tion. IEEE Trans. Syst. Man, Cybern. SMC-3.

A Khotanzad and Y H Hong. 1990. Invariant Image
Recognition by Zernike Moments. IEEE Trans. Pat-
tern Anal. Mach. Intell., 12(5):489–497, May.

Thomas Kollar, Jayant Krishnamurthy, and Grant
Strimel. 2013. Toward interactive grounded lan-
guage acquisition. Proc. Robot. Sci. Syst.

Ruud Koolen, Albert Gatt, Martijn Goudbeek, and
Emiel Krahmer. 2011. Factors causing over-
specification in definite descriptions. J. Pragmat.,
43(13):3231–3250, October.

Jayant Krishnamurthy and Thomas Kollar. 2013.
Jointly Learning to Parse and Perceive: Connecting
Natural Language to the Physical World. Trans. As-
soc. Comput. Linguist., 1:193–206.

Barbara Landau, Linda Smith, and Susan Jones. 1998.
Object Shape, Object Function, and Object Name.
J. Mem. Lang., 38(1):1–27, January.

Mu Li, James T. Kwok, and Bao Liang Lu. 2010.
Online multiple instance learning with no regret.
Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit., pages 1395–1401.

PC C Mahalanobis. 1936. On The Generalized Dis-
tance in Statistics. Proc. Natl. Inst. Sci. India, pages
49–55.

Oded Maron and Tomás Lozano-Pérez. 1998. A
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Abstract

Software system development is guided by
the evolution of requirements. In this pa-
per, we address the task of requirements
traceability, which is concerned with pro-
viding bi-directional traceability between
various requirements, enabling users to
find the origin of each requirement and
track every change made to it. We pro-
pose a knowledge-rich approach to the
task, where we extend a supervised base-
line system with (1) additional training
instances derived from human-provided
annotator rationales; and (2) additional
features derived from a hand-built ontol-
ogy. Experiments demonstrate that our ap-
proach yields a relative error reduction of
11.1–19.7%.

1 Introduction

Software system development is guided by the
evolution and refinement of requirements. Re-
quirements specifications, which are mostly doc-
umented using natural language, are refined with
additional design details and implementation in-
formation as the development life cycle pro-
gresses. A crucial task throughout the entire de-
velopment life cycle is requirements traceability,
which is concerned with linking requirements in
which one is a refinement of the other.

Specifically, one is given a set of high-level
(coarse-grained) requirements and a set of low-
level (fine-grained) requirements, and the goal of
requirements traceability is to find for each high-
level requirement all the low-level requirements
that refine it. Note that the resulting mapping be-
tween high- and low-level requirements is many-

to-many, because a low-level requirement can po-
tentially refine more than one high-level require-
ment. As an example, consider the three high-
level requirements and two low-level requirements
shown in Figure 1 about the well-known Pine
email system. In this example, three traceabil-
ity links should be established: (1) HR01 is re-
fined by UC01 (because UC01 specifies the short-
cut key for saving an entry in the address book);
(2) HR02 is refined by UC01 (because UC01 spec-
ifies how to store contacts in the address book);
and (3) HR03 is refined by UC02 (because both of
them are concerned with the help system).

From a text mining perspective, requirements
traceability is a very challenging task. First, there
could be abundant information irrelevant to the
establishment of a link in one or both of the re-
quirements. For instance, all the information un-
der the Description section in UC01 is irrelevant
to the establishment of the link between UC01
and HR02. Worse still, as the goal is to induce
a many-to-many mapping, information irrelevant
to the establishment of one link could be rele-
vant to the establishment of another link involv-
ing the same requirement. For instance, while
the Description section is irrelevant when linking
UC01 and HR02, it is crucial for linking UC01 and
HR01. Above all, a link can exist between a pair
of requirements (HR01 and UC01) even if they do
not possess any overlapping or semantically simi-
lar content words.

Virtually all existing approaches to the require-
ments traceability task were developed in the soft-
ware engineering (SE) research community. Re-
lated work on this task can be broadly divided into
two categories. In manual approaches, require-
ments traceability links are recovered manually by
developers. Automated approaches, on the other
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Figure 1: Samples of high- and low-level requirements.

hand, have relied on information retrieval (IR)
techniques, which recover links based on comput-
ing the similarity between a given pair of require-
ments. Hence, such similarity-based approaches
are unable to recover links between those pairs that
do not contain overlapping or semantically similar
words or phrases.

In light of this weakness, we recast require-
ments traceability as a supervised binary classifi-
cation task, where we classify each pair of high-
and low-level requirements as positive (having a
link) or negative (not having a link). In particular,
we propose a knowledge-rich approach to the task,
where we extend a supervised baseline employ-
ing only word pairs and LDA-induced topics as
features (see Section 4) with two types of human-
supplied knowledge. First, we employ annotator
rationales. In the context of requirements trace-
ability, rationales are human-annotated words or
phrases in a pair of high- and low-level require-
ments that motivated a human annotator to estab-
lish a link between the two. In other words, ra-
tionales contain the information relevant to the es-
tablishment of a link. Therefore, using them could
allow a learner to focus on the relevant portions of
a requirement. Motivated by Zaidan et al. (2007),
we employ rationales to create additional training
instances for the learner.

Second, we employ an ontology hand-built by
a domain expert. A sample ontology built for the
Pine domain is shown in Table 1. As we can see,
the ontology contains a verb clustering and a noun
clustering: the verbs are clustered by the function
they perform, whereas a noun cluster corresponds
to a (domain-specific) semantic type. We employ

the ontology to derive additional features.
There are at least two reasons why the ontology-

based features might be useful for identifying
traceability links. First, since only those verbs
and nouns that (1) appear in the training data and
(2) are deemed relevant by the domain expert for
link identification are included in the ontology,
it provides guidance to the learner as to which
words/phrases in the requirements it should fo-
cus on in the learning process.1 Second, the verb
and noun clusters provide a robust generalization
of the words/phrases in the requirements. For in-
stance, a word pair that is relevant for link identifi-
cation may still be ignored by the learner due to its
infrequency of occurrence. The features computed
based on these clusters, on the other hand, will be
more robust to the infrequency problem and could
therefore provide better generalizations.

Our contributions are three-fold. First, the
knowledge-rich approach we propose for require-
ments traceability significantly outperforms a su-
pervised baseline on two traceability datasets, Pine
and WorldVistA. Second, we increase the NLP
community’s awareness of this under-studied,
challenging, yet important problem in SE, which
could lead to fruitful inter-disciplinary collabora-
tion. Third, to facilitate future research on this
problem, we make our annotated resources, in-
cluding the datasets, the rationales, and the ontolo-

1Note that both the rationales and the words/phrases in the
ontology could help the learner by allowing it to focus on rel-
evant materials in a given pair of requirements. Nevertheless,
they are not identical: rationales are words/phrases that are
relevant to the establishment of a particular traceability link,
whereas the words/phrases in the ontology are relevant to link
establishment in general in the given domain.
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Category Terms
Message mail, message, email, e-mail, PDL, subjects
Contact contact, addresses, multiple addresses
Folder folder, folder list, tree structure
Location address book, address field, entry, address
Platform windows,unix,window system,unix system
Module help system, spelling check, Pico, shell
Protocol MIME,SMTP
Command shortcut key, ctrl+c, ctrl+m, ctrl+p, ctrl+x

(a) Noun clustering

Category Terms
System Operation evoke, operate, set up, activate, log
Message Search search, find
Contact
Manipulation add, store, capture

Message
Manipulation compose, delete, edit, save, print

Folder
Manipulation create, rename, delete, nest

Message
Communication reply, send, receive, forward, cc, bcc

User Input input, type, enter, press, hit, choose
Visualization display, list, show, prompt, highlight
Movement move,navigate
Function support, have, perform, allow, use

(b) Verb clustering

Table 1: Manual ontology for Pine.

gies, publicly available.2

2 Related Work

Related work on traceability link prediction can be
broadly divided into two categories, manual ap-
proaches and automatic approaches.
Manual requirement tracing. Traditional man-
ual requirements tracing is usually accomplished
by system analysts with the help of requirement
management tools, where analysts visually exam-
ine each pair of requirements documented in the
requirement management tools to build the Re-
quirement Traceability Matrix (RTM). Most ex-
isting requirement management tools (e.g., Ra-
tional DOORS3, Rational RequisitePro4, CASE5)
support traceability analysis. Manual tracing is
often based on observing the potential relevance
between a pair of requirements belonging to dif-
ferent categories or at different levels of detail.
The manual process is human-intensive and error-
prone given a large set of requirements.

2See our website at http://lyle.smu.edu/
˜lghuang/research/Traceability/ for these
annotated resources.

3http://www-03.ibm.com/software/
products/en/ratidoor

4http://www.ibm.com/developerworks/
downloads/r/rrp

5http://www.analysttool.com

Automated requirement tracing. Automated
or semi-automated requirements traceability, on
the other hand, generates traceability links auto-
matically, and hence significantly increases effi-
ciency. Pierce (1978) designed a tool that main-
tains a requirements database to aid automated re-
quirements tracing. Jackson (1991) proposed a
keyphrase-based approach for tracing a large num-
ber of requirements of a large Surface Ship Com-
mand System. More advanced approaches rely-
ing on information retrieval (IR) techniques, such
as the tf-idf-based vector space model (Sundaram
et al., 2005), Latent Semantic Indexing (Lormans
and Van Deursen, 2006; De Lucia et al., 2007;
De Lucia et al., 2009), probabilistic networks
(Cleland-Huang et al., 2005), and Latent Dirichlet
Allocation (Port et al., 2011), have been investi-
gated, where traceability links were generated by
calculating the textual similarity between require-
ments using similarity measures such as Dice, Jac-
card, and Cosine coefficients (Dag et al., 2002).
All these methods were developed based on either
matching keywords or identifying similar words
across a pair of requirements, and none of them
have studied the feasibility of employing super-
vised learning to accomplish this task, unlike ours.

3 Datasets

For evaluation, we employ two publicly-available
datasets annotated with traceability links. The first
dataset, annotated by Sultanov and Hayes (2010),
involves the Pine email system developed at the
University of Washington. The second dataset, an-
notated by Cleland-Huang et al. (2010), involves
WorldVistA, an electronic health information sys-
tem developed by the USA Veterans Administra-
tion. Statistics on these datasets are shown in Ta-
ble 2. For Pine, 2499 instances can be created
by pairing the 49 high-level requirements with the
51 low-level use cases. For WorldVistA, 9193
instances can be created by pairing the 29 high-
level requirements with the 317 low-level specifi-
cations. As expected, these datasets have skewed
class distributions: only 10% (Pine) and 4.3%
(WorldVistA) of the pairs are linked.

While these datasets have been annotated with
traceability links, they are not annotated with an-
notator rationales. Consequently, we employed
a software engineer specializing in requirements
traceability to perform rationale annotation. We
asked him to annotate rationales for a pair of re-
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Datasets Pine WorldVistA
# of (high-level) requirements 49 29
# of (low-level) specifications 51 317
Avg. # of words per requirement 17 18
Avg. # of words per specification 148 26
Avg. # of links per requirement 5.1 13.6
Avg. # of links per specification 4.9 1.2
# of pairs that have links 250 394
# of pairs that do not have links 2249 8799

Table 2: Statistics on the datasets.

quirements only if he believed that there should
be a traceability link between them. The reason
is that in traceability prediction, the absence of a
traceability link between two requirements is at-
tributed to the lack of evidence that they should be
linked, rather than the presence of evidence that
they should not be linked. More specifically, we
asked the annotator to identify as rationales all the
words/phrases in a pair of requirements that mo-
tivated him to label the pair as positive. For in-
stance, for the link between HR01 and UC01 in
Figure 1, he identified two rationales from HR01
(“shortcut key” and “control and the shortcut key
are pressed”) and one from UC01 (“press ctrl+x”).

4 Hand-Building the Ontologies

A traceability link prediction ontology is com-
posed of a verb clustering and a noun cluster-
ing. We asked a software engineer with exper-
tise in requirements traceability to hand-build the
ontology for each of the two datasets. Using his
domain expertise, the engineer first identified the
noun categories and verb categories that are rele-
vant for traceability prediction. Then, by inspect-
ing the training data, he manually populated each
noun/verb category with words and phrases col-
lected from the training data.

As will be discussed in Section 8, we evalu-
ate our approach using five-fold cross validation.
Since the nouns/verbs in the ontology were col-
lected only from the training data, the software
engineer built five ontologies for each dataset, one
for each fold experiment. Hence, nouns/verbs that
appear in only the test data in a fold experiment
are not included in that experiment’s ontology. In
other words, our test data are truly held-out w.r.t.
the construction of the ontology. Tables 1 and 3
show the complete lists of noun and verb cate-
gories identified for Pine and WorldVistA, respec-
tively, as well as sample nouns and verbs that pop-
ulate each category. Note that the five ontologies
employ the same set of noun and verb categories,

Category Terms
Signature signature, co-signature, identity
Prescription prescription, electronic prescription
Authorization authorized users, administrator
Patient Info patient data, health summary
General Info information, data
Component platform, interface, integration
Laboratory lab test results, laboratory results
Customization individual customization,customization
Discharge discharge, discharge instruction
Records progress note, final note, saved note
Details specifications, order details
Medication medications, drug
Side-effect allergy, drug-drug interaction, reaction
Code ICD-9, standards, management code
User user class hierarchy, roles, user roles
Order orderable file, order, medication order
List problem list,problem/diagnosis list
Rules business rules, C32, HITSP C32
Document documents, level 2 CCD documents
Schedule appointments, schedule, reminders
Warning warning, notice warning
Encounter encounter, encounter data
Hospitalization hospitalization data,procedure data
Arrangement templates, clinical templates, data entry
Immunization immunization, immunization record
Protocol protocol,HL7,HTTP,FTP,HL7-ASTM
System data codified data,invalid data,data elements
Key key, security key, computer key
Identity social security number,account number
Audit audit log, audit records, audit trail
Duty assignment, task

(a) Noun clustering

Category Terms
Interface actions click, select, search, browse
Authentication sign, co-sign, cosign, authenticate
Customization fit, customize, individualize
Notification check, alert
Security control control, prevent, prohibit, protect
Data manipulation capture,associate,document,create
Visualization display, view, provide, generate
Recording audit, log
Data retrieval export, retrieve
Deletion remove, delete
System operation 1 save, retain
System operation 2 abort, restrict, delay, lock
Search find, query
Communication forward, redirect

(b) Verb clustering

Table 3: Manual ontology for WorldVistA.

differing only w.r.t. the nouns and verbs that pop-
ulate each category. As we can see, for Pine, eight
groups of nouns and ten groups of verbs are de-
fined, and for WorldVistA, 31 groups of nouns and
14 groups of verbs are defined. Each noun cate-
gory represents a domain-specific semantic class,
and each verb category corresponds to a function
performed by the action underlying a verb.
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5 Baseline Systems

In this section, we describe three baseline systems
for traceability prediction.

5.1 Unsupervised Baselines
The Tf-idf baseline. We employ tf-idf as our
first unsupervised baseline. Each document is
represented as a vector of unigrams. The value
of each vector entry is its associated word’s tf-
idf value. Cosine similarity is used to compute
the similarity between two documents. Any pair
of requirements whose similarity exceeds a given
threshold is labeled as positive.
The LDA baseline. We employ LDA (Blei et
al., 2003) as our second unsupervised baseline.
We train an LDA model on our data to produce
n topics. For Pine, we set n to 10, 20, . . ., 50. For
WorldVistA, because of its larger size, we set n
to 50, 60, . . ., 100. We then represent each docu-
ment as a vector of length n, with each entry set to
the probability that the document belongs to one
of the topics. Cosine similarity is used as the sim-
ilarity measure. Any pair of requirements whose
similarity exceeds a given threshold is labeled as
positive.

5.2 Supervised Baseline
Each instance corresponds to a high-level require-
ment and a low-level requirement. Hence, we cre-
ate instances by pairing each high-level require-
ment with each low-level requirement. The class
value of an instance is positive if the two require-
ments involved should be linked; otherwise, it is
negative. Each instance is represented using two
types of features:
Word pairs. We create one binary feature for
each word pair (wi, wj) collected from the train-
ing instances, where wi and wj are words appear-
ing in a high-level requirement and a low-level re-
quirement respectively. Its value is 1 if wi and wj

appear in the high-level and low-level pair under
consideration, respectively.
LDA-induced topic pairs. Motivated by previ-
ous work, we create features based on the top-
ics induced by an LDA model for a requirement.
Specifically, we first train an LDA model on our
data to obtain n topics, where n is to be tuned
jointly with C on the development (dev) set.6

Then, we create one binary feature for each topic
6As in the LDA baseline, for Pine we set n to 10, 20, . . .,

50, and for WorldVistA, we set n to 50, 60, . . ., 100.

pair (ti, tj), where ti and tj are the topics corre-
sponding to a high-level requirement and a low-
level requirement, respectively. Its value is 1 if ti
and tj are the most probable topics of the high-
level and low-level pair under consideration, re-
spectively.

We employ LIBSVM (Chang and Lin, 2011) to
train a binary SVM classifier on the training set.
We use a linear kernel, setting all learning param-
eters to their default values except for the C (reg-
ularization) parameter, which we tune jointly with
n (the number of LDA-induced topics) to maxi-
mize F-score on the dev set.7 Since we conduct
five-fold cross validation, in all experiments that
require a dev set, we use three folds for training,
one fold for dev, and one fold for evaluation.

6 Exploiting Rationales

In this section, we describe our first extension to
the baseline: exploiting rationales to generate ad-
ditional training instances for the SVM learner.

6.1 Background

The idea of using annotator rationales to improve
binary text classification was proposed by Zaidan
et al. (2007). A rationale is a human-annotated
text fragment that motivated an annotator to as-
sign a particular label to a training document. In
their work on classifying the sentiment expressed
in movie reviews as positive or negative, Zaidan
et al. generate additional training instances by re-
moving rationales from documents. Since these
pseudo-instances lack information that the anno-
tators thought was important, an SVM learner
should be less confident about the labels of these
weaker instances, and should therefore place the
hyperplane closer to them. A learner that suc-
cessfully learns this difference in confidence as-
signs a higher importance to the pieces of text that
are present only in the original instances. Thus
the pseudo-instances help the learner both by in-
dicating which parts of the documents are impor-
tant and by increasing the number of training in-
stances.

6.2 Application to Traceability Prediction

Unlike in sentiment analysis, where rationales can
be identified for both positive and negative train-
ing reviews, in traceability prediction, rationales

7
C was selected from the set {1, 10, 100, 1000, 10000}.
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can only be identified for the positive training in-
stances (i.e., pairs with links). As noted before, the
reason is that in traceability prediction, an instance
is labeled as negative because of the absence of ev-
idence that the two requirements involved should
be linked, rather than the presence of evidence that
they should not be linked.

Using these rationales, we can create positive
pseudo-instances. Note, however, that we cannot
employ Zaidan et al.’s method to create positive
pseudo-instances. According to their method, we
would (1) take a pair of linked requirements, (2)
remove the rationales from both of them, (3) create
a positive pseudo-instance from the remaining text
fragments, and (4) add a constraint to the SVM
learner forcing it to classify it less confidently than
the original positive instance. Creating positive
pseudo-instances in this way is problematic for our
task. The reason is simple: as discussed previ-
ously, a negative instance in our task stems from
the absence of evidence that the two requirements
should be linked. In other words, after removing
the rationales from a pair of linked requirements,
the pseudo-instance created from the remaining
text fragments should be labeled as negative.

Given this observation, we create a positive
pseudo-instance from each pair of linked require-
ments by removing any text fragments from the
pair that are not part of a rationale. In other
words, we use only the rationales to create positive
pseudo-instances. This has the effect of amplify-
ing the information present in the rationales.

As mentioned above, while Zaidan et al.’s
method cannot be used to create positive pseudo-
instances, it can be used to create negative pseudo-
instances. For each pair of linked requirements,
we create three negative pseudo-instances. The
first one is created by removing all and only the
rationales from the high-level requirement in the
pair. The second one is created by removing all
and only the rationales from the low-level require-
ment in the pair. The third one is created by re-
moving all the rationales from both requirements
in the pair.

To better understand our annotator rationale
framework, let us define it more formally. Recall
that in a standard soft-margin SVM, the goal is to
find w and ⇠ to minimize

1

2

|w|2 + C
X

i

⇠i

subject to

8i : ciw · xi � 1� ⇠i, ⇠i > 0

where xi is a training example; ci 2 {�1, 1} is the
class label of xi; ⇠i is a slack variable that allows
xi to be misclassified if necessary; and C > 0 is
the misclassification penalty (a.k.a. the regulariza-
tion parameter).

To enable this standard soft-margin SVM to also
learn from the positive pseudo-instances, we add
the following constraints:

8i : w · vi � µ(1� ⇠i),

where vi is the positive pseudo-instance created
from positive example xi, ⇠i � 0 is the slack vari-
able associated with vi, and µ is the margin size
(which controls how confident the classifier is in
classifying the pseudo-instances).

Similarly, to learn from the negative pseudo-
instances, we add the following constraints:

8i, j : w · uij  µ(1� ⇠ij),

where uij is the jth negative pseudo-instance cre-
ated from positive example xi, ⇠ij � 0 is the slack
variable associated with uij , and µ is the margin
size.

We let the learner decide how confidently it
wants to classify these additional training in-
stances based on the dev data. Specifically, we
tune this confidence parameter µ jointly with the
C value to maximize F-score on the dev set.8

7 Extension 2: Exploiting an Ontology
Next, we describe our second extension to the
baseline: exploiting ontology-based features.

7.1 Ontology-Based Features
As mentioned before, we derive additional fea-
tures for the SVM learner from the verb and noun
clusters in the hand-built ontology. Specifically,
we derive five types of features:
Verb pairs. We create one binary feature for
each verb pair (vi, vj) collected from the training
instances, where (1) vi and vj appear in a high-
level requirement and a low-level requirement re-
spectively, and (2) both verbs appear in the ontol-
ogy. Its value is 1 if vi and vj appear in the high-
level and low-level pair under consideration, re-
spectively. Using these verb pairs as features may

8
C was selected from the set {1, 10, 100, 100, 10000},

and µ was selected from the set {0.2, 0.3, 1, 3, 5}.
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allow the learner to focus on verbs that are relevant
to traceability prediction.
Verb group pairs. For each verb pair feature de-
scribed above, we create one binary feature by re-
placing each verb in the pair with its cluster id in
the ontology. Its value is 1 if the two verb groups
in the pair appear in the high-level and low-level
pair under consideration, respectively. These fea-
tures may enable the resulting classifier to provide
robust generalizations in cases where the learner
chooses to ignore certain useful verb pairs owing
to their infrequency of occurrence.
Noun pairs. We create one binary feature for
each noun pair (ni, nj) collected from the training
instances, where (1) ni and nj appear in a high-
level requirement and a low-level requirement re-
spectively, and (2) both nouns appear in the on-
tology. Its value is computed in the same manner
as the verb pairs. These noun pairs may help the
learner to focus on verbs that are relevant to trace-
ability prediction.
Noun group pairs. For each noun pair feature
described above, we create one binary feature by
replacing each noun in the pair with its cluster id
in the ontology. Its value is computed in the same
manner as the verb group pairs. These features
may enable the classifier to provide robust gener-
alizations in cases where the learner chooses to ig-
nore certain useful noun pairs owing to their infre-
quency of occurrence.
Dependency pairs. In some cases, the
noun/verb pairs may not provide sufficient
information for traceability prediction. For
example, the verb pair feature (delete, delete) is
suggestive of a positive instance, but the instance
may turn out to be negative if one requirement
concerns deleting messages and the other con-
cerns deleting folders. As another example, the
noun pair feature (folder, folder) is suggestive of a
positive instance, but the instance may turn out to
be negative if one requirement concerns creating
folders and the other concerns deleting folders.

In other words, we need to develop features that
encode the relationship between verbs and nouns.
To do so, we first parse each requirement using
the Stanford dependency parser (de Marneffe et
al., 2006), and collect each noun-verb pair (ni,vj)
connected by a dependency relation. We then cre-
ate binary features by pairing each related noun-
verb pair found in a high-level training require-
ment with each related noun-verb pair found in a

low-level training requirement. The feature value
is 1 if the two noun-verb pairs appear in the pair of
requirements under consideration. To enable the
learner to focus on learning from relevant verbs
and nouns, only verbs and nouns that appear in the
ontology are used to create these features.

7.2 Learning the Ontology
An interesting question is: is it possible to learn an
ontology rather than hand-building it? This ques-
tion is of practical relevance, as hand-constructing
the ontology is a time-consuming and error-prone
process. Below we describe the steps we propose
for ontology learning.
Step 1: Verb/Noun selection. We select the
nouns, noun phrases (NPs) and verbs in the train-
ing set to be clustered. Specifically, we select a
verb/noun/NP if (1) it appears more than once in
the training data; (2) it contains at least three char-
acters (thus avoiding verbs such as be); and (3) it
appears in the high-level but not the low-level re-
quirements and vice versa.
Step 2: Verb/Noun representation. We repre-
sent each noun/NP/verb as a feature vector. Each
verb v is represented using the set of nouns/NPs
collected in Step 1. The value of each feature is
binary: 1 if the corresponding noun/NP occurs as
the direct or indirect object of v in the training
data (as determined by the Stanford dependency
parser), and 0 otherwise. Similarly, each noun n is
represented using the set of verbs collected in Step
1. The value of each feature is binary: 1 if n serves
as the direct or indirect object of the corresponding
verb in the training data, and 0 otherwise.
Step 3: Clustering. To produce a verb cluster-
ing and a noun clustering, we cluster the verbs
and the nouns/NPs separately using the single-link
algorithm. Single-link is an agglomerative algo-
rithm where each object to be clustered is initially
in its own cluster. In each iteration, it merges the
two most similar clusters and stops when the de-
sired number of clusters is reached. Since we are
using single-link clustering, the similarity between
two clusters is the similarity between the two most
similar objects in the two clusters. We compute
the similarity between two objects by taking the
dot product of their feature vectors.

Since we do not know the number of clusters to
be produced a priori, for Pine we produce three
noun clusterings and three verb clusterings (with
10, 15, and 20 clusters each). For WorldVistA,
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given its larger size, we produce five noun cluster-
ings and five verb clusterings (with 10, 20, 30, 40,
and 50 clusters each). We then select the combi-
nation of noun clustering, verb clustering, and C
value that maximizes F-score on the dev set, and
apply the resulting combination on the test set.

To compare the usefulness of the hand-built and
induced ontologies, in our evaluation we will per-
form separate experiments in which each ontology
is used to derive the features from Section 7.1.

8 Evaluation

8.1 Experimental Setup
We employ as our evaluation measure F-score,
which is the unweighted harmonic mean of recall
and precision. Recall (R) is the percentage of links
in the gold standard that are recovered by our sys-
tem. Precision (P) is the percentage of links recov-
ered by our system that are correct. We preprocess
each document by removing stopwords and stem-
ming the remaining words. All results are obtained
via five-fold cross validation.

8.2 Results and Discussion
Results on Pine and WorldVistA are shown in Ta-
ble 4(a) and Table 4(b), respectively.

8.2.1 No Pseudo-instances
The “No pseudo” column of Table 4 shows the re-
sults when the learner learns from only real train-
ing instances (i.e., no pseudo-instances). Specifi-
cally, rows 1 and 2 show the results of the two un-
supervised baselines, tf-idf and LDA, respectively.

Recall from Section 5.1 that in both baselines,
we compute the cosine similarity between a pair
of requirements, positing them as having a trace-
ability link if and only if their similarity score ex-
ceeds a threshold that is tuned based on the test
set. By doing so, we are essentially giving both
unsupervised baselines an unfair advantage in the
evaluation. As we can see from rows 1 and 2
of the table, tf-idf achieves F-scores of 54.5% on
Pine and 46.5% on WorldVistA. LDA performs
significantly worse than tf-idf, achieving F-scores
of 34.2% on Pine and 15.1% on WorldVistA.9

Row 3 shows the results of the supervised base-
line described in Section 5.2. As we can see,
this baseline achieves F-scores of 57.5% on Pine
and 63.3% on WorldVistA, significantly outper-
forming the better unsupervised baseline (tf-idf)

9All significance tests are paired t-tests (p < 0.05).

on both datasets. When this baseline is aug-
mented with features derived from manual clusters
(row 4), the resulting system achieves F-scores of
62.6% on Pine and 64.2% on WorldVistA, outper-
forming the supervised baseline by 5.1% and 0.9%
in F-score on these datasets. These results repre-
sent significant improvements over the supervised
baseline on both datasets, suggesting the useful-
ness of the features derived from manual clusters
for traceability link prediction. When employing
features derived from induced rather than manual
clusters (row 5), the resulting system achieves F-
scores of 61.7% on Pine and 64.6% on World-
VistA, outperforming the supervised baseline by
4.2% and 1.3% in F-score on these datasets. These
results also represent significant improvements
over the supervised baseline on both datasets. In
addition, the results obtained using manual clus-
ters (row 4) and induced clusters (row 5) are statis-
tically indistinguishable. This result suggests that
the ontologies we induced can potentially be used
in lieu of the manually constructed ontologies for
traceability link prediction.

8.2.2 Using Positive Pseudo-instances
The “Pseudo pos only” column of Table 4 shows
the results when each of the systems is trained with
additional positive pseudo-instances.

Comparing the first two columns, we can
see that employing positive pseudo-instances in-
creases performance on Pine (F-scores rise by 0.7–
1.1%) but decreases performance on WorldVistA
(F-scores drop by 0.3–2.1%). Nevertheless, the
corresponding F-scores in all but one case (Pine,
induced) are statistically indistinguishable. These
results seem to suggest that the addition of posi-
tive pseudo-instances is not useful for traceability
link prediction.

Note that the addition of features derived from
manual/induced clusters to the supervised baseline
no longer consistently improves its performance:
while F-scores still rise significantly by 4.6–5.5%
on Pine, they drop insignificantly by 0.1–0.5% on
WorldVistA.

8.2.3 Using Positive and Negative
Pseudo-instances

The “Pseudo pos+neg” column of Table 4 shows
the results when each of the systems is trained with
additional positive and negative pseudo-instances.

Comparing these results with the correspond-
ing “Pseudo pos only” results, we can see that
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No pseudo Pseudo pos only Pseudo pos+neg Pseudo residual
System R P F R P F R P F R P F

1 Tf-idf baseline 73.6 43.3 54.5 – – – – – – – – –
2 LDA baseline 30.4 39.2 34.2 – – – – – – – – –
3 Supervised baseline 50.4 67.0 57.5 51.2 67.3 58.2 53.9 73.8 62.3 31.6 68.6 43.2
4 + manual clusters 54.4 73.9 62.6 55.6 74.7 63.7 57.6 77.0 65.9 30.0 72.1 42.3
5 + induced clusters 53.6 72.8 61.7 54.8 73.6 62.8 55.2 75.0 63.6 30.0 73.5 42.6

(a) Pine

No pseudo Pseudo pos only Pseudo pos+neg Pseudo residual
System R P F R P F R P F R P F

1 Tf-idf baseline 60.4 37.8 46.5 – – – – – – – – –
2 LDA baseline 25.9 10.6 15.1 – – – – – – – – –
3 Supervised baseline 52.5 79.9 63.3 52.2 79.2 63.0 55.9 80.6 66.0 49.2 71.5 58.3
4 + manual clusters 52.5 82.8 64.2 51.5 80.8 62.9 57.1 83.0 67.6 47.7 76.1 58.6
5 + induced clusters 52.8 83.2 64.6 51.0 80.7 62.5 57.1 82.1 67.4 47.7 76.4 58.7

(b) WorldVistA

Table 4: Results of supervised systems on the Pine and WorldVistA datasets.

additionally employing negative pseudo-instances
consistently improves performance: F-scores rise
by 0.8–4.1% on Pine and 3.0–4.9% on World-
VistA. In particular, the improvements in F-score
in three of the six cases (Pine/Baseline, World-
VistA/manual, WorldVistA/induced) are statisti-
cally significant. These results suggest that the ad-
ditional negative pseudo-instances provide useful
information for traceability link prediction.

In addition, the use of features derived from
manual/induced clusters to the supervised baseline
consistently improves its performance: F-scores
rise significantly by 1.3–3.6% on Pine and signifi-
cantly by 1.4–1.6% on WorldVistA.

Finally, the best results in our experiments are
achieved when both positive and negative pseudo-
instances are used in combination with man-
ual/induced clusters: F-scores reach 63.6–65.9%
on Pine and 67.4–67.6% on WorldVistA. These
results translate to significant improvements in F-
score over the supervised baseline by 6.1–8.4% on
Pine and 4.1–4.3% on WorldVistA, or relative er-
ror reductions of 14.3–19.7% on Pine and 11.1–
11.7% on WorldVistA.

8.2.4 Pseudo-instances from Residuals
Recall that Zaidan et al. (2007) created pseudo-
instances from the text fragments that remain after
the rationales are removed. In Section 6.3, we ar-
gued that their method of creating positive pseudo-
instances for our requirements traceability task is
problematic. In this subsection, we empirically
verify the correctness of this claim.

Specifically, the “Pseudo residual” column of
Table 4 shows the results when each of the “No
pseudo” systems is additionally trained on the pos-

itive pseudo-instances created using Zaidan et al.’s
method. Comparing these results with the corre-
sponding “Pseudo pos+neg” results, we see that
replacing our method of creating positive pseudo-
instances with Zaidan et al.’s method causes the
F-scores to drop significantly by 7.7–23.6% in all
cases. In fact, comparing these results with the
corresponding “No pseudo” results, we see that
except for the baseline system, employing posi-
tive pseudo-instances created from Zaidan et al.’s
method yields significantly worse results than not
employing pseudo-instances at all. These results
provide suggestive evidence for our claim.

9 Conclusion
We investigated a knowledge-rich approach to an
important yet under-studied SE task that presents
a lot of challenges to NLP researchers: traceabil-
ity prediction. Experiments on two evaluation
datasets showed that (1) in comparison to a su-
pervised baseline, this method reduces relative er-
ror by 11.1–19.7%; and (2) results obtained us-
ing induced clusters were competitive with those
obtained using manual clusters. To stimulate re-
search on this task, we make our annotated re-
sources publicly available.
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Abstract

One of the most common features across
all known languages is their variability
in word order. We show that differences
in the prenominal and postnominal place-
ment of adjectives in the noun phrase
across five main Romance languages is
not only subject to heaviness effects, as
previously reported, but also to subtler
structural interactions among dependen-
cies that are better explained as effects of
the principle of dependency length min-
imisation. These effects are almost purely
structural and show lexical conditioning
only in highly frequent collocations.

1 Introduction

One of the most widely observed characteristics
of all languages is the variability in the linear or-
der of their words, both across and within a single
language. In this study, we concentrate on word
order alternations where one structure can be lin-
earised in two different ways. Consider, for exam-
ple, the case when a phrasal verb (V + particle)
has a direct object (NP), in English. Two alter-
native orders are possible: VP1 = V NP Prt, and
VP2 = V Prt NP. If the NP is heavy, as defined in
number of words or number of syllables, it will be
frequently placed after the Prt, yielding the V-Prt-
NP order. Compare, for instance Call me up! to
Call up the customer who called yesterday. This
tendency is also formulated as a Principle of End
Weight, where phrases are presented in order of
increasing weight (Wasow, 2002). Cases of heavy
NP-shift (Stallings et al., 1998), dative alternation
(Bresnan et al., 2007) and other alternation pref-
erences among verbal dependents are traditionally
evoked to argue in favour of the “heaviness” effect.

In this work, we study the alternations in the
noun-phrase domain, much less investigated in

Figure 1: Percent of postnominal simple (green)
and heavy (red) adjectives across seventeen lan-
guages.

connection with the heaviness effect. Abeillé and
Godard (2000) introduce the heaviness of adjec-
tive phrases as a principle explaining their post-
nominal placement compared to ‘light’ adjectives
in French. Their observations have been recently
confirmed in a corpus study by Thuilier (2012).
Cross-linguistically, the data that we have col-
lected across many languages and several families,
presented in Figure 1, confirm the heaviness effect
for adjectives1. By extracting relevant statistics
from gold dependency annotated corpora, we can
observe that heavy adjectives (adjective phrases of
at least two words) appear more frequently post-
nominally than simple adjectives.

While the effect of size or heaviness is well-
documented, this statistics is very coarse and it
confounds various linguistic factors, such as types

1We use the following languages and treebanks: English,
Czech, Spanish, Chinese, Catalan, German, Italian (Hajič et
al., 2009), Danish, Dutch, Portuguese, Swedish (Buchholz
and Marsi, 2006), Latin, Ancient Greek (Haug and Jøhndal,
2008), Hungarian (Csendes et al., 2005), Polish (Woliński et
al., 2011), Arabic (Zeman et al., 2012), French (McDonald et
al., 2013). The extraction is based on the conversion to the
universal part-of-speech tags (Petrov et al., 2012).
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of adjectives, and annotation conventions of dif-
ferent corpora. From a typological perspective,
the formulation needs to be refined from a pref-
erence of end weight to a preference for all el-
ements being closer to the governing head: lan-
guages with Verb-Object dominant order tend to
put constituents in ‘short before long’ order, while
Object-Verb languages, like Japanese or Korean,
do the reverse (Hawkins, 1994; Wasow, 2002).
A more general explanation for the weight effect
has been sought in a general tendency to minimise
the length of the dependency between two related
words, called Dependency Length Minimisation
(DLM, Temperley (2007), Gildea and Temperley
(2007)).

In this paper, we look at the structural factors,
such as DLM, and lexical factors that play a role
in adjective-noun word order alternations in Ro-
mance languages and the predictions they make
on prenominal or postnominal placement of adjec-
tives. We concentrate on a smaller set of languages
than those shown in Figure 1 to be able to study
finer-grained effects than what can be observed at
a very large scale and across many different cor-
pus annotation schemes. We choose Romance lan-
guages because they show a good amount of vari-
ation in the word order of the noun phrase.

The DLM principle can be stated as follows:
if there exist possible alternative orderings of a
phrase, the one with the shortest overall depen-
dency length (DL) is preferred.

Consider, again, the case when a phrasal verb
(verb + particle) has a direct object (NP). Two al-
ternative orders are possible: VP1 = V NP Prt,
whose length is DL1 and VP2 = V Prt NP, whose
length is DL2. DL1 is DL(V-NP)+DL(V-Prt) =

|NP| + 1; DL2 is DL(V-NP) + DL(V-Prt) =

|Prt| + 1. If DL1 is bigger than DL2, then VP2

is preferred over VP1. Unlike the principle of End
Weight, this explanation applies also to languages
with a different word order than English.

The observation that human languages appear
to minimise the distance between related words is
well documented in sentence processing (Gibson,
1998; Hawkins, 1994; Hawkins, 2004), in cor-
pus properties of treebanks (Gildea and Temper-
ley, 2007; Futrell et al., 2015), in diachronic lan-
guage change (Tily, 2010). It is usually interpreted
as a means to reduce memory load and support ef-
ficient communication. Dependency length min-
imisation has been demonstrated on a large scale

in the verbal domain and at the sentence level, but
has not yet been investigated in the more limited
nominal domain, where dependencies are usually
shorter and might create lighter processing loads
that do not need to be minimised. In applying the
general principle of DLM to the dependency struc-
ture of noun phrases, our goal is to test to what
extent the DLM principle predicts the observed
adjective-noun word order alternation patterns.

In this paper, we develop and discuss a more
complex variant of a model described previously
(Gulordava et al., 2015) and extend its analysis.
First, we investigate whether the more complex
DLM principle is necessary to explain our findings
or if the simpler heaviness effect demonstrated for
many languages in Figure 1 is sufficient. The
answer is positive: the complexity introduced by
DLM is necessary. Then, we develop a more de-
tailed analysis of the only prediction of the model
that is only weakly confirmed, showing that this
result still holds under different definitions of de-
pendency length. We also present an in-depth
study to show that the DLM effect is structural, as
assumed, and not lexical. While it is well-known
that in French prenominal and post-nominal place-
ment of adjectives is sometimes lexically-specific
and meaning-dependent, this is not often the case
in other languages like Italian, and does not ex-
plain the extent of the variation.

2 Dependency length minimisation in the
noun phrase

In this section, we summarise the model in Gulor-
dava et al. (2015). In the next section we propose
a more complex model and study some factors in
depth. Gulordava et al. (2015) consider a proto-
typical noun phrase with an adjective phrase as a
modifier. They assume a simplified noun phrase
with only one adjective modifier adjacent to the
noun and two possible placements for an adjective
phrase: post-nominal and prenominal. The adjec-
tive modifier can be a complex phrase with both
left and right dependents (↵ and �, respectively).
The noun phrase can have parents and right mod-
ifiers (X and Y, respectively). The structures for
the possible cases are shown in Figure 2.

These structures correspond to examples like
those shown in (1), in Italian (X=‘vede’,
Adj=‘bella’, N=‘casa’, Y= ‘al mare’).
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DL1: X [NP [AP ↵ Adj � ] N Y ]
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(a) Left external dependent, prenominal adjective

DL2: X [NP N [AP ↵ Adj � ] Y ]
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(b) Left external dependent, postnominal adjective

DL1: [NP [AP ↵ Adj � ] N Y ] X
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(c) Right external dependent, prenominal adjective

DL2: [NP N [AP ↵ Adj � ] Y ] X

d

00
1

d

00
2

d

00
3

(d) Right external dependent, postnominal adjective

Figure 2: Noun phrase structure variants and the
dependencies relevant for the DLM calculation
with right noun dependent Y.

RightNP=Yes RightNP=No
X=Left |�|� |↵| 2|�| + 1

X=Right �3|↵|� 2 �2|↵|� 1

Table 1: Dependency length difference for differ-
ent types of noun phrases. By convention, we al-
ways calculate DL1 �DL2.

(1) a. ...vede la bella casa al mare.

(’..sees the beautiful house at the sea’)

b. ...vede la casa bella al mare.

(’..sees the house beautiful at the sea’)

c. La bella casa al mare è vuota.

(’the beautiful house at the sea is empty.’)

d. La casa bella al mare è vuota.

(’the house beautiful at the sea is empty.’)

The differences in dependency lengths pre-
dicted by DLM are summarized in Table 1. DLM
makes predictions on adjective placement with re-
spect to the noun —prenominal or postnominal—

given the dependents of the adjectives, ↵ and �,
and given the dependent of the noun Y.

The column RightNP=No shows the depen-
dency length difference for the two cases where
the noun does not have a right dependent Y. Given
that the calculation of DL differences is always
calculated as DL1 � DL2, the fact that the cell
(X=Left, RightNP=No) holds a positive value in-
dicates that DL1 > DL2 and that the differ-
ence in length depends only on � and not on
↵. Conversely, the negative value of (X=Right,
RightNP=No) shows that DL1 < DL2 and that
the difference in length does not depend on �,
but only on ↵. This is not intuitive: intuitively,
one would expect that whether the Adjective is
left or right of the Noun depends on the relative
lengths of ↵ and �, but instead if we look at all
the dependencies that come into play for a noun
phrase in a larger structure, the adjective position
depends on only one of the two dependents. The
table also shows that, on average, across all the
cells, the weights of ↵ are less than zero while the
weights of � are greater than zero. This indicates
that DL1 < DL2, which means that globally the
prenominal adjective order is preferred.

DLM also makes predictions on adjective place-
ment with respect to the noun given the depen-
dents of the noun. Here the predictions of DLM
are not intuitive. DLM predicts that when the ex-
ternal dependency is right (the dependency from
the noun to its parent, X=right), then the adjective
is prenominal, else it is postnominal. To spell this
out, DLM predicts that, for example, we should
find more prenominal adjectives in subject NPs
than in NPs in object position. We discuss this
odd prediction below.

Another prediction that will be investigated in
detail is that when the noun has a right depen-
dent, the prenominal adjective position is more
preferred than when there is no right dependent, as
evinced by the fact that the RightNP = Yes column
is always greater than the RightNP = No column.

Gulordava et al. (2015) develop a mixed-effects
model to test which of the fine-grained predictions
derived from DLM are confirmed by the data pro-
vided by the dependency annotated corpora of five
main Romance languages. The different elements
in the DLM configuration are encoded as four fac-
tors: corresponding to the factors illustrated in
Figure 2 and example (1), represented as binary
or real-valued variables: LeftAP - the cumulative
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length (in words) of all left dependents of the ad-
jective, indicated as ↵ in Figure 2; RightAP - the
cumulative length (in words) of all right depen-
dents of the adjective, indicated as � in Figure 2;
ExtDep - the direction of the arc from the noun to
its parent X, an indicator variable; RightNP - the
indicator variable representing the presence or ab-
sence of the right dependent of the noun, indicated
as Y in Figure 2. 2

Their findings partly confirm the predictions
about adjective placement with respect to the noun
given the adjective dependents. The DLM predic-
tions about the position of the noun with respect
to its parent are instead not confirmed. Finally, the
prediction related to the presence of a right depen-
dent of the noun on the placement of the adjective
are confirmed.

In the next two sections, we replicate and inves-
tigate in more detail these results. First, we de-
velop and discuss a more detailed model, where
not only the factors, but also their interactions are
taken into account. Then, we compare the pre-
dictions of the DLM model to the predictions of
a simpler heaviness account, and confirm that the
complexity of DLM is needed, as a simpler model
based on heaviness of the adjective does not yield
the same effects. Then, we discuss the external
dependency factor, which, in the more complex
model with interactions, is a significant factor. Fi-
nally, the RightNP factor is significant in the fitted
model. The presence of a noun dependent on the
right of the noun favours a prenominal placement,
as predicted by DLM. We investigate the lexical
aspects of this result in a more detailed case study.

3 Analysis of Dependency Minimisation
Factors

The analysis that we develop here is based on the
assumption that DLM is exhibited by the depen-
dencies in the avalailable dependency-annotated
corpora for the five Romance languages.

3.1 Materials: Dependency treebanks
The dependency annotated corpora of five Ro-
mance languages are used: Catalan, Spanish, Ital-
ian (Hajič et al., 2009), French (McDonald et

2In addition, to account for lexical variation, they include
adjective tokens (or lemmas when available) as grouping vari-
ables introducing random effects. For example, the instances
of adjective-noun order for a particular adjective will share
the same weight value � for the adjective variable, but across
different adjectives this value can vary.

al., 2013), and Portuguese (Buchholz and Marsi,
2006).

Noun phrases containing adjectives are ex-
tracted using part-of-speech information and de-
pendency arcs from the gold annotation. Specif-
ically, all treebanks are converted to coarse uni-
versal part-of-speech tags, using existing conven-
tional mappings from the original tagset to the uni-
versal tagset (Petrov et al., 2012). All adjectives
are identified using the universal PoS tag ‘ADJ’,
whose dependency head is a noun, tagged using
the universal PoS tag ‘NOUN’. All elements of
the dependency subtree, the noun phrase, rooted
in this noun are collected. For all languages where
this information is available, we extract lemmas
of adjective and noun tokens. The only treebank
without lemma annotation is French, for which we
extract token forms.3 A total of around 64’000 in-
stances of adjectives in noun phrases is collected,
ranging from 2’800 for Italian to 20’000 for Span-
ish.

3.2 Method: Mixed-Effects models

The interactions of several dependency factors are
analysed using a logit mixed effect models (Bates
et al., 2014). Mixed-effect logistic regression
models (logit models) are a type of Generalized
Linear Mixed Models with the logit link function
and are designed for binomially distributed out-
comes such as Order, in our case.

3.3 Factors and their interactions

While the original model in Gulordava et al.
(2015) represents the four main factors involved
in DLM in the noun phrase — ↵, �, RightNP and
ExtDep — the predictions described above often
mention interactions, which are not directly mod-
elled in the original proposal. We introduce inter-
actions, so that the model is more faithful to the
DLM predictions, as shown in (2) and in Table 2.
We do not take directly represent the interaction
between the LeftAP and RightAP because in our
corpora these two factors were both greater than
zero in only 1% of the cases.

3During preprocessing, we exclude all adjectives and
nouns with non-lower case and non-alphabetic symbols
which can include common names. Compounds (in Span-
ish and Catalan treebanks), and English borrowings are also
excluded. Neither do we include in our analysis noun phrases
which have their elements separated by punctuation (for ex-
ample, commas or parentheses) to ensure that the placement
of the adjective is not affected by an unusual structure of the
noun phrase.
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Predictor � SE Z p
Intercept -0.157 0.117 -1.33 0.182
LeftAP 2.129 0.183 11.63 < .001

RightAP 0.887 0.091 9.79 < .001

RightNP -0.794 0.056 -14.24 < .001

ExtDep -0.243 0.118 -2.06 0.039
RightNP:ExtDep 0.296 0.149 1.98 0.047
RightAP:RightNP:ExtDep -0.639 0.353 -1.81 0.070

Random effects Var
Adjective 1.989
Language 0.023

Table 2: Summary of the fixed and random effects in the mixed-effects logit model with interactions
(N = 15842), shown in (2). Non-significant factors are not shown.

Model Df AIC BIC logLik deviance �2 Df p
Without interactions 7 12137 12190 -6061.3 12123
With interactions 14 12134 12241 -6052.9 12106 16.847 7 0.018⇤

Table 3: Comparison of the fits of two models: the model with interactions (2) and a simpler model
without any interactions between the factors RightAP, LeftAP, RightNP and ExtDep.

yij = (LeftAP + RightAP ) · RightNP ·
· ExtDep⇥ � + �Adji + �Langj

(2)

Contrary to the model without interactions (Gu-
lordava et al., 2015), both the ExtDep factor and
its interaction with the RightNP factor are signifi-
cant. This interaction corresponds to the four dif-
ferent NP contexts presented in Table 1. Its sig-
nificance, then, can be taken as preliminary con-
firming evidence for the distinction of these con-
texts, as predicted by DLM. A direct comparison
of the two models, with and without interactions,
shows, however, that the effects of these interac-
tions are rather small (Table 3). The log-likelihood
test shows that the model with interactions fits the
data significantly better (�2

= 16.8, p = 0.02),
but the comparison of the Bayesian Information
Criterion scores of the two models — criterion
which strongly penalises the number of parame-
ters — suggests that the model without interac-
tions should be preferred.

3.4 Comparison of DLM and heaviness
model

Dependency length minimisation was introduced,
as mentioned in the introduction, to better explain
processing effects at the sentence level for which
heaviness accounts were inadequate. However,
noun phrases are small and relatively simple do-
mains. We ask, then, if a model is sufficient where
the AP is not divided into LeftAP and RightAP, but

holistically represented by the size of the whole
AP.

Specifically, a simpler Heaviness model does
not make a difference between left and right de-
pendent of adjectives: all heavy adjectives are pre-
dicted to move post-nominally. Heaviness would
also not predict the interaction between placement
and the existence of a noun dependent to the right.

We compare, then, two minimally different
models. Since neither the external dependency
factor nor the interactions were shown to be highly
significant, we compare a simplified DLM model
shown in (3) to a model where AP is represented
only by its heaviness (number of words) as in (4).

yij = LeftAP · �LAP + RightAP · �RAP

+ RightNP · �RNP + �Adji + �Langj

(3)

yij = SizeAP · �HV + RightNP · �RNP

+ �Adji + �Langj

(4)

The DLM model that distinguishes LeftAP
from RightAP in (3) fits the data better than a
model where AP is represented only by its heav-
iness as in (4), as can be seen in Table 4 and
from the difference in AIC values of two mod-
els (�AIC = 146). This result confirms that the
complexity introduced by DLM minimisation is
needed, and confirms DLM as a property of lan-
guage, also in noun phrases. The main conceptual
difference between heaviness accounts and DLM
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Df AIC BIC logLik deviance �2 Df p
Model with SizeAP 5 12518 12557 -6254.1 12508
Model with LeftAP, RightAP 6 12372 12418 -6179.8 12360 148.5 1 < .001

Table 4: Comparison of the simplified DLM model in (3) and the heaviness model in (4).

accounts resides in the fact that the former do
not take into account the structure and the nature
of the context of the heavy element, while DLM
does. This model comparison shows that adjective
placement is not independent of its context.

Prediction for External Dependencies The ex-
pected effect of the external dependency of the
noun predicted by the DLM is borne out only
marginally. This factor predicts a difference be-
tween noun phrases that precede their head, for ex-
ample subjects, and noun phrases that follow their
head, for example objects. The prediction is unex-
pected, while the result that the factor is not highly
significant less so, as it is not immediately clear
why nouns preceding heads should behave differ-
ently from nouns that follow heads.

A possible explanation for this mismatch of
the predictions and the observed data patterns lies
in the assumptions underlying the DLM princi-
ple. We have assumed a definition of dependency
length as the number of words between the head
and the dependent, as found in the corpus annota-
tion. Our data are annotated using a content-head
rule, which assumes that the noun is the head of
the noun phrase. Hawkins (1994), in his well-
developed variant of DLM, postulates that min-
imisation occurs on the dependencies between the
head and the edge of the dependent phrase. For
noun phrases, the relevant dependencies will span
between the determiner which unambiguously de-
fines the left edge of the noun phrase and the head
of NP (e.g., a verb). The predictions of Hawkins’
theory for adjective placement will therefore differ
from the DLM predictions based on our definition.
As can be observed from Figure 2, the d0

1 and d00
1

dependencies to the left edge of the NP will be
of equal length in cases (a) and (b) (similarly to
d0

2 and d00
2 in cases (c) and (d)). The external de-

pendency is predicted therefore not to affect the
resulting adjective placement, as observed in the
data. This result lends weak support to a theory
where in this case the relevant dependency is be-
tween the parent and the edge of the dependent.

A question remains of what dependencies are

minimised when the noun phrase does not have a
determiner and the left edge of the noun phrase is
ambiguous.4 This issue is difficult to test in prac-
tice in our corpora. First, there are many more
cases (84% versus 16%) with left ExtDep (X is
on the right, e.g. for object NPs) than with right
ExtDep (X is on the left, e.g. for subjects) in Ro-
mance languages. This is because all of them, ex-
cept French, can optionally omit subjects. More-
over, the function of the NP, subject or object, and
therefore the ExtDep variable, correlates with the
definiteness of the NP. NPs in object position take
an article 75% of time while NPs in subject po-
sition take an article 96% of time. Consequently,
NPs without articles and on the left of the head are
observed only 135 times in our data sample (across
all languages). This small number of cases did not
allow us to develop a model.

4 In-depth study of the RightNP
dependency factor

The most novel result of the model in Gulordava
et al. (2015), extended here to the more complex
model (2) concerns the interaction between the ad-
jective position and the RightNP. This effect would
not be predicted by a heaviness explanation and
even in the DLM framework it is surprising that
minimisation should apply to such a short depen-
dency. We investigate this interaction in more de-
tail and ask two questions: is this effect evenly
spread across different nouns and adjectives or is it
driven by some lexical outliers? what are the lexi-
cal effects of the noun and its dependent? We anal-
yse a large amount of data constructed to be a rep-
resentative sample of adjective variation for sev-
eral nouns (around thirty for each language) and
very many adjectives and investigate noun phrases
with a right dependent introduced by the preposi-
tion ‘de/di’5.

4In one of his analyses, Hawkins claims that adjectives
define unambiguously the left edge of the NP, but this as-
sumption is controversial.

5For Italian, the preposition is ‘di’, while for other three
languages it is ‘de’. We do not consider complex prepositions
such as ‘du’ in French or ‘do’ in Portuguese.
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4.1 Data extracted from large PoS-tagged
corpora

We extract the data by querying automatically
a collection of corpora brought together by the
SketchEngine project (Kilgarriff et al., 2014).
This web-interface-based collection allows par-
tially restricted access to billion-word corpora of
Italian (4 billions of words), French (11 billions),
Spanish (8.7 billions) and Portuguese (4.5 bil-
lions). The corpora are collected by web-crawling
and automatically PoS-tagged. A similar Catalan
corpus was not available through this service.

First, we define the set of seed nouns that will be
queried. For each language, we use our treebanks
to find the list of the two-hundred most frequent
nouns which take the ‘di/de’ preposition as a com-
plement. A noun has ‘di/de’ as its right dependent
if there is a direct head-dependent link between
these elements in the gold annotation. Nouns in
the list which could be ambiguous between dif-
ferent types of parts of speech are replaced man-
ually. We randomly sample around thirty nouns,
based on the percentage of their co-occurrence
with ‘di/de’. Given the list of seed nouns, we
automatically queried the four corpora with sim-
ple regular patterns containing these nouns to ex-
tract cases of prenominal and postnominal noun-
adjective co-occurrences.6

For each noun, we collected a maximum of
100’000 matches for each of the two patterns,
which is the SketchEngine service limit. These
matches include left and right contexts of the pat-
tern and allow to extract the token following the
pattern, which can be ‘di/de’ or nothing.

We modeled the data using the Logit mixed ef-
fect models, with the Order as a response vari-
able, one fixed effect (Di) and nouns and adjec-
tives as random effects. We fit the maximal model
with both slope and intercept parameters, as shown
in model (5).

y = Di · (�Di + �Adji + �Nounj )

+ �Adji + �Nounj

(5)

We fit our models on a sample of data of around
200’000 instances of adjective-noun alternations
for each language, equally balanced for noun
phrases with Di = True and Di = False.

6Our patterns were of the type ‘[tag=”ADJ”] noun’ and
‘noun [tag=”ADJ”]’, where the tag field is specified for the
PoS tag of a token. In our case, ‘A.’ was the tag for adjectives
in , and ‘ADJ’ in Italian, French and Spanish.

Figure 3: Percent postnominal placement for the
thirty most frequent adjectives in French. (Noun
phrase has a right ‘de’-complement (green) and it
does not (red).

4.2 Results
The data shows that the Di effect is small, but
highly significant for all languages. The resulting
values are similar: for French �Di = �0.84, Por-
tuguese �Di = �0.95, Italian �Di = �1.14 and
Spanish �Di = �1.65 (all p < 0.001).

Figure 3 illustrates the Di effect for French (cu-
mulative for all nouns). We observe that most
of the adjectives appear more frequently prenom-
inally in noun phrases with a ‘de’ complement
than in noun phrases without a ‘de’ complement
(green columns are smaller than corresponding red
columns). Importantly, we observe a very similar
picture cross-linguistically for all four languages
and for the adjective alternation across the major-
ity of the nouns (if considered independently), as
shown in Figure 4.

This result agrees with our predictions, and
shows that DLM effects show up even in short
spans, where they are not necessarily expected.
If a postnominal adjective intervenes between the
noun and the dependent, the dependency length in-
creases only by one word (with respect to the noun
phrase with the prenominal adjective). Our results
nevertheless suggest that even such short depen-
dencies are consistently minimised. This effect is
confirmed in all languages.

4.3 Lexical effects on adjective placement
One of the lexical factors that could play a con-
founding role for the prenominal placement of ad-
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Figure 4: Percent postnominal placement for the thirty most frequent adjectives in Italian, Spanish, and
Portuguese (in this order). (Noun phrase has a right ‘de/di’-complement (green) and it does not (red).

jectives in Di constructions is the strength of the
‘Noun + di/de + Complement’ collocation. For ex-
ample, in the French compound ‘taux de chomage’
(‘unemployement rate’) the placement of an ad-
jective after the compound — ‘taux de chomage
important’ — is preferred in our corpora to the
adjacent postnominal placement (‘taux important
de chomage’). In our analysis, we do not extract
these types of post-NP adjectives. From this per-
spective, a drop in the percentage of postnominal
adjectives in ‘di’ cases could indicate that adjec-
tives prefer not to intervene between nouns and
their complements. We hypothesize that this de-
pendency is more strongly minimised than other
dependencies in the noun phrase because of this
strong lexical link.

We confirm that the Di effect is an interaction of
the DLM principle and lexical properties of com-
pounds by a further preliminary analysis of col-
locations. From the French data, we selected a
subset with the most frequent ‘Noun + de + Com-
plement’ sequences (10 for each seed noun) and a
subset with infrequent sequences (100 random de-
complements for each seed noun). We assume that
the frequency of the sequence is an indicator of the
collocational strength, so that highly frequent se-
quences are collocations while low frequency se-
quences are non-collocational combinations. The
first subset has a proportion of 78% prenominal
and 22% postnominal adjectives, while the second
subset has 61% prenominal and 39% postnominal
adjectives. We confirm, then, that in the frequent
collocations there is a substantial lexical effect in
adjective placement. However, we also observe a
preference of prenominal placement for the infre-
quent ‘Noun + de + Complement’ sequences that
are not collocational combinations, since prenom-
inal placement is still much higher than what is

observed for French adjectives, on average (46%
prenominal and 54% postnominal in our sample
of data). These numbers suggest that the Di effect
reported in the previous section is not a result of
mere lexical collocation effects and that, for low
frequency combinations at least, DLM is at play.

A different kind of lexical effect is shown in
Figure 5. Here we plot the percent postnominal
placement of the adjective, if the noun has a com-
plement introduced by di (of), che (that), per (for),
in Italian. We notice that adjective placement is
no longer as majoritarily prenominal for the right
dependent introduced by che and per as it is for
di. The main difference between di (of) and che
(that), per (for) is that the former introduces a PP
that is inside the NP that selects it, while che and
per usually do not, they are adjuncts, or infiniti-
vals or clauses. In the linguistic literature, this is
a distinction between arguments and adjuncts of
the noun and it is represented structurally. This
distinction is, then, a lexically-induced structural
distinction, and not simply a collocation.

5 Related work
Our work occupies the middle ground between
detailed linguistic investigations of weight effect
in chosen constructions of well-studied languages
and large scale demonstrations of the dependency
length minimisation principle.

Gildea and Temperley (2007) demonstrated that
DLM applies for the dependency annotated cor-
pora in English and German. They calculate ran-
dom and optimal dependency lengths for each
sentence given its unordered dependency tree
and compare these values to actual dependency
lengths. English lengths are shown to be close
to optimal, but for German this tendency is not as
clear. A recent study of Futrell et al. (2015) applies
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Figure 5: Percent postnominal placement for thirty most frequent adjectives in Italian, followed by
function word di, che, per, in this order. (Noun phrase has a right ‘di/per/che’-complement (green)
and it does not (red)).

this analysis on a large-scale, for more than thirty
languages that have dependency treebanks. Their
results also confirm the correspondence between
the dependency annotation and the experimental
data, something that has been reported previously
(Merlo, 1994; Roland and Jurafsky, 2002).

Much work in theoretical linguistics addresses
the adjective-noun order in Romance languages.
Such work typically concentrates on lexico-
semantic aspects of adjective placement (Cinque,
2010; Alexiadou, 2001). In our work, we account
for the strong lexical prenominal or postnominal
preferences of adjectives by including them as ran-
dom effects in our models.

Closest to our paper is the theoretical work of
Abeillé and Godard (2000) on the placement of
adjective phrases in French and recent corpus-
based work by Fox and Thuilier (2012) and
Thuilier (2012). Fox and Thuilier (2012) use a
dependency annotated corpus of French to extract
cases of adjective-noun variation and their syntac-
tic contexts. They model the placement of an ad-
jective as a lexical, syntactic and semantic multi-
factorial variation. They find, for example, that
phonologically heavy simple adjectives tend to be
postnominal. This result highlights the distinc-
tion between phonological weight and syntactic
weight, a topic which we do not address in the cur-
rent work.

6 Conclusion
In this paper, we have shown that differences in the
prenominal and postnominal placement of adjec-
tives in the noun phrase across five main Romance
languages is not only subject to heaviness effects,
but to subtler dependency length minimisation ef-
fects. These effects are almost purely structural

and show lexical conditioning only in highly fre-
quent collocations.

The subtle interactions found in this work raise
questions about the exact definition of what depen-
dencies are minimised and to what extent a given
dependency annotation captures these distinctions.
Future work will investigate more refined defini-
tions of dependency length minimisation, that dis-
tinguish different kinds of dependencies with dif-
ferent weights.
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Zhang, Oscar Täckström, Claudia Bedini, Núria
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Abstract

We present a novel word level vector rep-
resentation based on symmetric patterns
(SPs). For this aim we automatically ac-
quire SPs (e.g., “X and Y”) from a large
corpus of plain text, and generate vectors
where each coordinate represents the co-
occurrence in SPs of the represented word
with another word of the vocabulary. Our
representation has three advantages over
existing alternatives: First, being based on
symmetric word relationships, it is highly
suitable for word similarity prediction.
Particularly, on the SimLex999 word simi-
larity dataset, our model achieves a Spear-
man’s ⇢ score of 0.517, compared to 0.462
of the state-of-the-art word2vec model. In-
terestingly, our model performs exception-
ally well on verbs, outperforming state-
of-the-art baselines by 20.2–41.5%. Sec-
ond, pattern features can be adapted to the
needs of a target NLP application. For ex-
ample, we show that we can easily control
whether the embeddings derived from SPs
deem antonym pairs (e.g. (big,small)) as
similar or dissimilar, an important distinc-
tion for tasks such as word classification
and sentiment analysis. Finally, we show
that a simple combination of the word sim-
ilarity scores generated by our method and
by word2vec results in a superior predic-
tive power over that of each individual
model, scoring as high as 0.563 in Spear-
man’s ⇢ on SimLex999. This emphasizes
the differences between the signals cap-
tured by each of the models.

1 Introduction

In the last decade, vector space modeling (VSM)
for word representation (a.k.a word embedding),

has become a key tool in NLP. Most approaches to
word representation follow the distributional hy-
pothesis (Harris, 1954), which states that words
that co-occur in similar contexts are likely to have
similar meanings.

VSMs differ in the way they exploit word co-
occurrence statistics. Earlier works (see (Turney et
al., 2010)) encode this information directly in the
features of the word vector representation. More
Recently, Neural Networks have become promi-
nent in word representation learning (Bengio et
al., 2003; Collobert and Weston, 2008; Collobert
et al., 2011; Mikolov et al., 2013a; Pennington et
al., 2014, inter alia). Most of these models aim
to learn word vectors that maximize a language
model objective, thus capturing the tendencies of
the represented words to co-occur in the training
corpus. VSM approaches have resulted in highly
useful word embeddings, obtaining high quality
results on various semantic tasks (Baroni et al.,
2014).

Interestingly, the impressive results of these
models are achieved despite the shallow linguis-
tic information most of them consider, which is
limited to the tendency of words to co-occur to-
gether in a pre-specified context window. Particu-
larly, very little information is encoded about the
syntactic and semantic relations between the par-
ticipating words, and, instead, a bag-of-words ap-
proach is taken.1

This bag-of-words approach, however, comes
with a cost. As recently shown by Hill et al.
(2014), despite the impressive results VSMs that
take this approach obtain on modeling word as-
sociation, they are much less successful in model-
ing word similarity. Indeed, when evaluating these
VSMs with datasets such as wordsim353 (Finkel-
stein et al., 2001), where the word pair scores re-

1A few recent VSMs go beyond the bag-of-words as-
sumption and consider deeper linguistic information in word
representation. We address this line of work in Section 2.
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flect association rather than similarity (and there-
fore the (cup,coffee) pair is scored higher than
the (car,train) pair), the Spearman correlation be-
tween their scores and the human scores often
crosses the 0.7 level. However, when evaluat-
ing with datasets such as SimLex999 (Hill et al.,
2014), where the pair scores reflect similarity, the
correlation of these models with human judgment
is below 0.5 (Section 6).

In order to address the challenge in model-
ing word similarity, we propose an alternative,
pattern-based, approach to word representation. In
previous work patterns were used to represent a
variety of semantic relations, including hyponymy
(Hearst, 1992), meronymy (Berland and Charniak,
1999) and antonymy (Lin et al., 2003). Here, in
order to capture similarity between words, we use
Symmetric patterns (SPs), such as “X and Y” and
“X as well as Y”, where each of the words in the
pair can take either the X or the Y position. Sym-
metric patterns have shown useful for representing
similarity between words in various NLP tasks in-
cluding lexical acquisition (Widdows and Dorow,
2002), word clustering (Davidov and Rappoport,
2006) and classification of words to semantic cat-
egories (Schwartz et al., 2014). However, to the
best of our knowledge, they have not been applied
to vector space word representation.

Our representation is constructed in the follow-
ing way (Section 3). For each word w, we con-
struct a vector v of size V , where V is the size of
the lexicon. Each element in v represents the co-
occurrence in SPs of w with another word in the
lexicon, which results in a sparse word represen-
tation. Unlike most previous works that applied
SPs to NLP tasks, we do not use a hard coded set
of patterns. Instead, we extract a set of SPs from
plain text using an unsupervised algorithm (Davi-
dov and Rappoport, 2006). This substantially re-
duces the human supervision our model requires
and makes it applicable for practically every lan-
guage for which a large corpus of text is available.

Our SP-based word representation is flexible.
Particularly, by exploiting the semantics of the
pattern based features, our representation can be
adapted to fit the specific needs of target NLP ap-
plications. In Section 4 we exemplify this prop-
erty through the ability of our model to con-
trol whether its word representations will deem
antonyms similar or dissimilar. Antonyms are
words that have opposite semantic meanings (e.g.,

(small,big)), yet, due to their tendency to co-occur
in the same context, they are often assigned sim-
ilar vectors by co-occurrence based representa-
tion models (Section 6). Controlling the model
judgment of antonym pairs is highly useful for
NLP tasks: in some tasks, like word classification,
antonym pairs such as (small,big) belong to the
same class (size adjectives), while in other tasks,
like sentiment analysis, identifying the difference
between them is crucial. As discussed in Section
4, we believe that this flexibility holds for various
other pattern types and for other lexical semantic
relations (e.g. hypernymy, the is-a relation, which
holds in word pairs such as (dog,animal)).

We experiment (Section 6) with the SimLex999
dataset (Hill et al., 2014), consisting of 999 pairs
of words annotated by human subjects for similar-
ity. When comparing the correlation between the
similarity scores derived from our learned repre-
sentation and the human scores, our representation
receives a Spearman correlation coefficient score
(⇢) of 0.517, outperforming six strong baselines,
including the state-of-the-art word2vec (Mikolov
et al., 2013a) embeddings, by 5.5–16.7%. Our
model performs particularly well on the verb por-
tion of SimLex999 (222 verb pairs), achieving a
Spearman score of 0.578 compared to scores of
0.163–0.376 of the baseline models, an astonish-
ing improvement of 20.2–41.5%. Our analysis re-
veals that the antonym adjustment capability of
our model is vital for its success.

We further demonstrate that the word pair
scores produced by our model can be combined
with those of word2vec to get an improved pre-
dictive power for word similarity. The combined
scores result in a Spearman’s ⇢ correlation of
0.563, a further 4.6% improvement compared to
our model, and a total of 10.1–21.3% improve-
ment over the baseline models. This suggests that
the models provide complementary information
about word semantics.

2 Related Work

Vector Space Models for Lexical Semantics.
Research on vector spaces for word representation
dates back to the early 1970’s (Salton, 1971). In
traditional methods, a vector for each word w is
generated, with each coordinate representing the
co-occurrence of w and another context item of in-
terest – most often a word but possibly also a sen-
tence, a document or other items. The feature rep-
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resentation generated by this basic construction is
sometimes post-processed using techniques such
as Positive Pointwise Mutual Information (PPMI)
normalization and dimensionality reduction. For
recent surveys, see (Turney et al., 2010; Clark,
2012; Erk, 2012).

Most VSM works share two important charac-
teristics. First, they encode co-occurrence statis-
tics from an input corpus directly into the word
vector features. Second, they consider very lit-
tle information on the syntactic and semantic rela-
tions between the represented word and its context
items. Instead, a bag-of-words approach is taken.

Recently, there is a surge of work focusing on
Neural Network (NN) algorithms for word repre-
sentations learning (Bengio et al., 2003; Collobert
and Weston, 2008; Mnih and Hinton, 2009; Col-
lobert et al., 2011; Dhillon et al., 2011; Mikolov
et al., 2013a; Mnih and Kavukcuoglu, 2013; Le-
bret and Collobert, 2014; Pennington et al., 2014).
Like the more traditional models, these works also
take the bag-of-words approach, encoding only
shallow co-occurrence information between lin-
guistic items. However, they encode this informa-
tion into their objective, often a language model,
rather than directly into the features.

Consider, for example, the successful word2vec
model (Mikolov et al., 2013a). Its continuous-bag-
of-words architecture is designed to predict a word
given its past and future context. The resulted ob-
jective function is:

max

TX

t=1

log p(wt|wt�c, . . . , wt�1, wt+1, . . . , wt+c)

where T is the number of words in the corpus,
and c is a pre-determined window size. Another
word2vec architecture, skip-gram, aims to predict
the past and future context given a word. Its ob-
jective is:

max

TX

t=1

X

�cjc,j 6=0

log p(wt+j |wt)

In both cases the objective function relates to the
co-occurrence of words within a context window.

A small number of works went beyond the bag-
of-words assumption, considering deeper relation-
ships between linguistic items. The Strudel sys-
tem (Baroni et al., 2010) represents a word using
the clusters of lexico-syntactic patterns in which
it occurs. Murphy et al. (2012) represented words
through their co-occurrence with other words in
syntactic dependency relations, and then used the

Non-Negative Sparse Embedding (NNSE) method
to reduce the dimension of the resulted represen-
tation. Levy and Goldberg (2014) extended the
skip-gram word2vec model with negative sam-
pling (Mikolov et al., 2013b) by basing the word
co-occurrence window on the dependency parse
tree of the sentence. Bollegala et al. (2015) re-
placed bag-of-words contexts with various pat-
terns (lexical, POS and dependency).

We introduce a symmetric pattern based ap-
proach to word representation which is particu-
larly suitable for capturing word similarity. In ex-
periments we show the superiority of our model
over six models of the above three families: (a)
bag-of-words models that encode co-occurrence
statistics directly in features; (b) NN models that
implement the bag-of-words approach in their ob-
jective; and (c) models that go beyond the bag-of-
words assumption.

Similarity vs. Association Most recent VSM
research does not distinguish between association
and similarity in a principled way, although no-
table exceptions exist. Turney (2012) constructed
two VSMs with the explicit goal of capturing ei-
ther similarity or association. A classifier that
uses the output of these models was able to pre-
dict whether two concepts are associated, sim-
ilar or both. Agirre et al. (2009) partitioned
the wordsim353 dataset into two subsets, one fo-
cused on similarity and the other on association.
They demonstrated the importance of the associ-
ation/similarity distinction by showing that some
VSMs perform relatively well on one subset while
others perform comparatively better on the other.

Recently, Hill et al. (2014) presented the Sim-
Lex999 dataset consisting of 999 word pairs
judged by humans for similarity only. The partic-
ipating words belong to a variety of POS tags and
concreteness levels, arguably providing a more re-
alistic sample of the English lexicon. Using their
dataset the authors show the tendency of VSMs
that take the bag-of-words approach to capture as-
sociation much better than similarity. This obser-
vation motivates our work.

Symmetric Patterns. Patterns (symmetric or
not) were found useful in a variety of NLP
tasks, including identification of word relations
such as hyponymy (Hearst, 1992), meronymy
(Berland and Charniak, 1999) and antonymy (Lin
et al., 2003). Patterns have also been applied to
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tackle sentence level tasks such as identification
of sarcasm (Tsur et al., 2010), sentiment analysis
(Davidov et al., 2010) and authorship attribution
(Schwartz et al., 2013).

Symmetric patterns (SPs) were employed in var-
ious NLP tasks to capture different aspects of word
similarity. Widdows and Dorow (2002) used SPs
for the task of lexical acquisition. Dorow et al.
(2005) and Davidov and Rappoport (2006) used
them to perform unsupervised clustering of words.
Kozareva et al. (2008) used SPs to classify proper
names (e.g., fish names, singer names). Feng et
al. (2013) used SPs to build a connotation lexicon,
and Schwartz et al. (2014) used SPs to perform
minimally supervised classification of words into
semantic categories.

While some of these works used a hand crafted
set of SPs (Widdows and Dorow, 2002; Dorow et
al., 2005; Kozareva et al., 2008; Feng et al., 2013),
Davidov and Rappoport (2006) introduced a fully
unsupervised algorithm for the extraction of SPs.
Here we apply their algorithm in order to reduce
the required human supervision and demonstrate
the language independence of our approach.

Antonyms. A useful property of our model is
its ability to control the representation of antonym
pairs. Outside the VSM literature several works
identified antonyms using word co-occurrence
statistics, manually and automatically induced pat-
terns, the WordNet lexicon and thesauri (Lin et al.,
2003; Turney, 2008; Wang et al., 2010; Moham-
mad et al., 2013; Schulte im Walde and Koper,
2013; Roth and Schulte im Walde, 2014). Re-
cently, Yih et al. (2012), Chang et al. (2013)
and Ono et al. (2015) proposed word represen-
tation methods that assign dissimilar vectors to
antonyms. Unlike our unsupervised model, which
uses plain text only, these works used the WordNet
lexicon and a thesaurus.

3 Model

In this section we describe our approach for gener-
ating pattern-based word embeddings. We start by
describing symmetric patterns (SPs), continue to
show how SPs can be acquired automatically from
text, and, finally, explain how these SPs are used
for word embedding construction.

3.1 Symmetric Patterns
Lexico-syntactic patterns are sequences of words
and wildcards (Hearst, 1992). Examples of pat-

Candidate Examples of Instances
“X of Y” “point of view”, “years of age”
“X the Y” “around the world”, “over the past”
“X to Y” “nothing to do”, “like to see”

“X and Y” “men and women”, “oil and gas”
“X in Y” “keep in mind”, “put in place”

“X of the Y” “rest of the world”, “end of the war”

Table 1:
The six most frequent pattern candidates that contain exactly

two wildcards and 1-3 words in our corpus.

terns include “X such as Y”, “X or Y” and “X is
a Y”. When patterns are instantiated in text, wild-
cards are replaced by words. For example, the pat-
tern “X is a Y”, with the X and Y wildcards, can
be instantiated in phrases like “Guffy is a dog”.

Symmetric patterns are a special type of patterns
that contain exactly two wildcards and that tend
to be instantiated by wildcard pairs such that each
member of the pair can take the X or the Y posi-
tion. For example, the symmetry of the pattern “X
or Y” is exemplified by the semantically plausible
expressions “cats or dogs” and “dogs or cats”.

Previous works have shown that words that co-
occur in SPs are semantically similar (Section 2).
In this work we use symmetric patterns to repre-
sent words. Our hypothesis is that such represen-
tation would reflect word similarity (i.e., that sim-
ilar vectors would represent similar words). Our
experiments show that this is indeed the case.

Symmetric Patterns Extraction. Most works
that used SPs manually constructed a set of such
patterns. The most prominent patterns in these
works are “X and Y” and “X or Y” (Widdows and
Dorow, 2002; Feng et al., 2013). In this work we
follow (Davidov and Rappoport, 2006) and apply
an unsupervised algorithm for the automatic ex-
traction of SPs from plain text.

This algorithm starts by defining an SP template
to be a sequence of 3-5 tokens, consisting of ex-
actly two wildcards, and 1-3 words. It then tra-
verses a corpus, looking for frequent pattern can-
didates that match this template. Table 1 shows the
six most frequent pattern candidates, along with
common instances of these patterns.

The algorithm continues by traversing the pat-
tern candidates and selecting a pattern p if a large
portion of the pairs of words wi, wj that co-occur
in p co-occur both in the (X = wi,Y = wj) form
and in the (X = wj ,Y = wi) form. Consider, for
example, the pattern candidate “X and Y”, and the
pair of words “cat”,“dog”. Both pattern instances
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“cat and dog” and “dog and cat” are likely to be
seen in a large corpus. If this property holds for a
large portion2 of the pairs of words that co-occur
in this pattern, it is selected as symmetric. On the
other hand, the pattern candidate “X of Y” is in
fact asymmetric: pairs of words such as “point”,
“view” tend to come only in the (X = “point”,Y
= “view”) form and not the other way around.
The reader is referred to (Davidov and Rappoport,
2006) for a more formal description of this algo-
rithm. The resulting pattern set we use in this pa-
per is “X and Y”, “X or Y”, “X and the Y”, “from
X to Y”, “X or the Y”, “X as well as Y”, “X or a
Y”,“X rather than Y”, “X nor Y”, “X and one Y”,
“either X or Y”.

3.2 SP-based Word Embeddings

In order to generate word embeddings, our model
requires a large corpus C , and a set of SPs P . The
model first computes a symmetric matrix M of
size V ⇥ V (where V is the size of the lexicon).
In this matrix, Mi,j is the co-occurrence count of
both wi,wj and wj ,wi in all patterns p 2 P . For
example, if wi,wj co-occur 1 time in p1 and 3
times in p5, while wj ,wi co-occur 7 times in p9,
then Mi,j = Mj,i = 1 + 3 + 7 = 11. We then
compute the Positive Pointwise Mutual Informa-
tion (PPMI) of M , denoted by M⇤.3 The vector
representation of the word wi (denoted by vi) is
the ith row in M⇤.

Smoothing. In order to decrease the sparsity of
our representation, we apply a simple smoothing
technique. For each word wi, W n

i denotes the top
n vectors with the smallest cosine-distance from
vi. We define the word embedding of wi to be

v0i = vi + ↵ ·
X

v2W n
i

v

where ↵ is a smoothing factor.4 This process re-
duces the sparsity of our vector representation. For
example, when n = 0 (i.e., no smoothing), the
average number of non-zero values per vector is
only 0.3K (where the vector size is⇠250K). When
n = 250, this number reaches ⇠14K.

2We use 15% of the pairs of words as a threshold.
3PPMI was shown useful for various co-occurrence mod-

els (Baroni et al., 2014).
4We tune n and ↵ using a development set (Section 5).

Typical values for n and ↵ are 250 and 7, respectively.

4 Antonym Representation

In this section we show how our model allows us
to adjust the representation of pairs of antonyms to
the needs of a subsequent NLP task. This property
will later be demonstrated to have a substantial im-
pact on performance.

Antonyms are pairs of words with an opposite
meaning (e.g., (tall,short)). As the members of
an antonym pair tend to occur in the same con-
text, their word embeddings are often similar. For
example, in the skip-gram model (Mikolov et al.,
2013a), the score of the (accept,reject) pair is 0.73,
and the score of (long,short) is 0.71. Our SP-based
word embeddings also exhibit a similar behavior.

The question of whether antonyms are simi-
lar or not is not a trivial one. On the one hand,
some NLP tasks might benefit from representing
antonyms as similar. For example, in word classi-
fication tasks, words such as “big” and “small” po-
tentially belong to the same class (size adjectives),
and thus representing them as similar is desired.
On the other hand, antonyms are very dissimilar
by definition. This distinction is crucial in tasks
such as search, where a query such as “tall build-
ings” might be poorly processed if the representa-
tions of “tall” and “short” are similar.

In light of this, we construct our word embed-
dings to be controllable of antonyms. That is, our
model contains an antonym parameter that can be
turned on in order to generate word embeddings
that represent antonyms as dissimilar, and turned
off to represent them as similar.

To implement this mechanism, we follow (Lin
et al., 2003), who showed that two patterns are par-
ticularly indicative of antonymy – “from X to Y”
and “either X or Y” (e.g., “from bottom to top”,
“either high or low”). As it turns out, these two
patterns are also symmetric, and are discovered by
our automatic algorithm. Henceforth, we refer to
these two patterns as antonym patterns.

Based on this observation, we present a variant
of our model, which is designed to assign dissim-
ilar vector representations to antonyms. We de-
fine two new matrices: MSP and MAP , which are
computed similarly to M⇤ (see Section 3.2), only
with different SP sets. MSP is computed using
the original set of SPs, excluding the two antonym
patterns, while MAP is computed using the two
antonym patterns only.

Then, we define an antonym-sensitive, co-
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occurrence matrix M+AN to be
M+AN

= MSP � � · MAP

where � is a weighting parameter.5 Similarly to
M⇤, the antonym-sensitive word representation of
the ith word is the ith row in M+AN .

Discussion. The case of antonyms presented in
this paper is an example of one relation that a
pattern based representation model can control.
This property can be potentially extended to addi-
tional word relations, as long as they can be iden-
tified using patterns. Consider, for example, the
hypernymy relation (is-a, as in the (apple,fruit)
pair). This relation can be accurately identified
using patterns such as “X such as Y” and “X like
Y” (Hearst, 1992). Consequently, it is likely that
a pattern-based model can be adapted to control
its predictions with respect to this relation using
a method similar to the one we use to control
antonym representation. We consider this a strong
motivation for a deeper investigation of pattern-
based VSMs in future work.

We next turn to empirically evaluate the perfor-
mance of our model in estimating word similarity.

5 Experimental Setup

5.1 Datasets
Evaluation Dataset. We experiment with the
SimLex999 dataset (Hill et al., 2014),6 consisting
of 999 pairs of words. Each pair in this dataset
was annotated by roughly 50 human subjects, who
were asked to score the similarity between the pair
members. SimLex999 has several appealing prop-
erties, including its size, part-of-speech diversity,
and diversity in the level of concreteness of the
participating words.

We follow a 10-fold cross-validation experi-
mental protocol. In each fold, we randomly sam-
ple 25% of the SimLex999 word pairs (⇠250
pairs) and use them as a development set for pa-
rameter tuning. We use the remaining 75% of the
pairs (⇠750 pairs) as a test set. We report the av-
erage of the results we got in the 10 folds.

Training Corpus. We use an 8G words corpus,
constructed using the word2vec script.7 Through
this script we also apply a pre-processing step

5We tune � using a development set (Section 5). Typical
values are 7 and 10.

6www.cl.cam.ac.uk/˜fh295/simlex.html
7code.google.com/p/word2vec/source/

browse/trunk/demo-train-big-model-v1.sh

which employs the word2phrase tool (Mikolov
et al., 2013c) to merge common word pairs and
triples to expression tokens. Our corpus consists
of four datasets: (a) The 2012 and 2013 crawled
news articles from the ACL 2014 workshop on sta-
tistical machine translation (Bojar et al., 2014);8

(b) The One Billion Word Benchmark of Chelba
et al. (2013);9 (c) The UMBC corpus (Han et al.,
2013);10 and (d) The September 2014 dump of the
English Wikipedia.11

5.2 Baselines
We compare our model against six baselines: one
that encodes bag-of-words co-occurrence statistics
into its features (model 1 below), three NN models
that encode the same type of information into their
objective function (models 2-4), and two mod-
els that go beyond the bag-of-words assumption
(models 5-6). Unless stated otherwise, all models
are trained on our training corpus.

1. BOW. A simple model where each coordi-
nate corresponds to the co-occurrence count of the
represented word with another word in the train-
ing corpus. The resulted features are re-weighted
according to PPMI. The model’s window size pa-
rameter is tuned on the development set.12

2-3. word2vec. The state-of-the-art word2vec
toolkit (Mikolov et al., 2013a)13 offers two
word embedding architectures: continuous-bag-
of-words (CBOW) and skip-gram. We follow the
recommendations of the word2vec script for set-
ting the parameters of both models, and tune the
window size on the development set.14

4. GloVe. GloVe (Pennington et al., 2014)15 is
a global log-bilinear regression model for word
embedding generation, which trains only on the
nonzero elements in a co-occurrence matrix. We
use the parameters suggested by the authors, and
tune the window size on the development set.16

8http://www.statmt.org/wmt14/training-
monolingual-news-crawl/

9http://www.statmt.org/lm-benchmark/
1-billion-word-language-modeling-
benchmark-r13output.tar.gz

10http://ebiquity.umbc.edu/redirect/to/
resource/id/351/UMBC-webbase-corpus

11dumps.wikimedia.org/enwiki/latest/
enwiki-latest-pages-articles.xml.bz2

12The value 2 is almost constantly selected.
13https://code.google.com/p/word2vec/
14Window size 2 is generally selected for both models.
15nlp.stanford.edu/projects/glove/
16Window size 2 is generally selected.
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5. NNSE. The NNSE model (Murphy et al.,
2012). As no full implementation of this model
is available online, we use the off-the-shelf em-
beddings available at the authors’ website,17 tak-
ing the full document and dependency model with
2500 dimensions. Embeddings were computed us-
ing a dataset about twice as big as our corpus.

6. Dep. The modified, dependency-based, skip-
gram model (Levy and Goldberg, 2014). To gen-
erate dependency links, we use the Stanford POS
Tagger (Toutanova et al., 2003)18 and the MALT
parser (Nivre et al., 2006).19 We follow the pa-
rameters suggested by the authors.

5.3 Evaluation

For evaluation we follow the standard VSM litera-
ture: the score assigned to each pair of words by a
model m is the cosine similarity between the vec-
tors induced by m for the participating words. m’s
quality is evaluated by computing the Spearman
correlation coefficient score (⇢) between the rank-
ing derived from m’s scores and the one derived
from the human scores.

6 Results

Main Result. Table 2 presents our results. Our
model outperforms the baselines by a margin of
5.5–16.7% in the Spearman’s correlation coeffi-
cient (⇢). Note that the capability of our model to
control antonym representation has a substantial
impact, boosting its performance from ⇢ = 0.434
when the antonym parameter is turned off to ⇢ =

0.517 when it is turned on.

Model Combination. We turn to explore
whether our pattern-based model and our best
baseline, skip-gram, which implements a bag-of-
words approach, can be combined to provide an
improved predictive power.

For each pair of words in the test set, we take a
linear combination of the cosine similarity score
computed using our embeddings and the score
computed using the skip-gram (SG) embeddings:
f+

(wi, wj) = �·fSP (wi, wj)+(1��)·fSG(wi, wj)

In this equation f<m>(wi, wj) is the cosine
similarity between the vector representations of
words wi and wj according to model m, and � is a

17http://www.cs.cmu.edu/˜bmurphy/NNSE/
18nlp.stanford.edu/software/
19http://www.maltparser.org/index.html

Model Spearman’s ⇢

GloVe 0.35
BOW 0.423

CBOW 0.43
Dep 0.436

NNSE 0.455
skip-gram 0.462

SP(�) 0.434
SP(+) 0.517

Joint (SP(+), skip-gram) 0.563
Average Human Score 0.651

Table 2:
Spearman’s ⇢ scores of our SP-based model with the antonym
parameter turned on (SP(+)) or off (SP(�)) and of the base-
lines described in Section 5.2. Joint (SP(+), skip-gram) is
an interpolation of the scores produced by skip-gram and our
SP(+) model. Average Human Score is the average correla-
tion of a single annotator with the average score of all anno-
tators, taken from (Hill et al., 2014).

weighting parameter tuned on the development set
(a common value is 0.8).

As shown in Table 2, this combination forms the
top performing model on SimLex999, achieving a
Spearman’s ⇢ score of 0.563. This score is 4.6%
higher than the score of our model, and a 10.1–
21.3% improvement compared to the baselines.

wordsim353 Experiments. The wordsim353
dataset (Finkelstein et al., 2001) is frequently used
for evaluating word representations. In order to
be compatible with previous work, we experiment
with this dataset as well. As our word embeddings
are designed to support word similarity rather than
relatedness, we focus on the similarity subset of
this dataset, according to the division presented in
(Agirre et al., 2009).

As noted by (Hill et al., 2014), the word pair
scores in both subsets of wordsim353 reflect word
association. This is because the two subsets cre-
ated by (Agirre et al., 2009) keep the original
wordsim353 scores, produced by human evalua-
tors that were instructed to score according to as-
sociation rather than similarity. Consequently, we
expect our model to perform worse on this dataset
compared to a dataset, such as SimLex999, whose
annotators were guided to score word pairs ac-
cording to similarity.

Contrary to SimLex999, wordsim353 treats
antonyms as similar. For example, the similarity
score of the (life,death) and (profit,loss) pairs are
7.88 and 7.63 respectively, on a 0-10 scale. Con-
sequently, we turn the antonym parameter off for
this experiment.

Table 3 presents the results. As expected, our
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Model Spearman’s ⇢

GloVe 0.677
Dep 0.712

BOW 0.729
CBOW 0.734
NNSE 0.78

skip-gram 0.792
SP(�) 0.728

Average Human Score 0.756

Table 3:
Spearman’s ⇢ scores for the similarity portion of wordsim353
(Agirre et al., 2009). SP(�) is our model with the antonym
parameter turned off. Other abbreviations are as in Table 2.

Model Adj. Nouns Verbs
GloVe 0.571 0.377 0.163
Dep 0.54 0.449 0.376

BOW 0.548 0.451 0.276
CBOW 0.579 0.48 0.252
NNSE 0.594 0.487 0.318

skip-gram 0.604 0.501 0.307
SP(+) 0.663 0.497 0.578

Table 4:
A POS-based analysis of the various models. Numbers are
the Spearman’s ⇢ scores of each model on each of the respec-
tive portions of SimLex999.

model is not as successful on a dataset that doesn’t
reflect pure similarity. Yet, it still crosses the ⇢ =

0.7 score, a quite high performance level.

Part-of-Speech Analysis. We next perform a
POS-based evaluation of the participating models,
using the three portions of the SimLex999: 666
pairs of nouns, 222 pairs of verbs, and 111 pairs of
adjectives. Table 4 indicates that our SP(+) model
is exceptionally successful in predicting verb and
adjective similarity. On verbs, SP(+) obtains a
score of ⇢ = 0.578, a 20.2–41.5% improvement
over the baselines. On adjectives, SP(+) performs
even better (⇢ = 0.663), an improvement of 5.9–
12.3% over the baselines. On nouns, SP(+) is
second only to skip-gram, though with very small
margin (0.497 vs. 0.501), and is outperforming the
other baselines by 1–12%. The lower performance
of our model on nouns might partially explain its
relatively low performance on wordsim353, which
is composed exclusively of nouns.

Analysis of Antonyms. We now turn to a qual-
itative analysis, in order to understand the im-
pact of our modeling decisions on the scores of
antonym word pairs. Table 5 presents examples of
antonym pairs taken from the SimLex999 dataset,
along with their relative ranking among all pairs
in the set, as judged by our model (SP(+) with
� = 10 or SP(�) with � = �1) and by the best

Pair of Words SP skip-gram+AN -AN
new - old 1 6 6

narrow - wide 1 7 8
necessary - unnecessary 2 2 9

bottom - top 3 8 10
absence - presence 4 7 9

receive - send 1 9 8
fail - succeed 1 8 6

Table 5:
Examples of antonym pairs and their decile in the similarity
ranking of our SP model with the antonym parameter turned
on (+AN, �=10) or off (-AN, �=-1), and of the skip-gram
model, the best baseline. All examples are judged in the low-
est decile (1) by SimLex999’s annotators.

baseline representation (skip-gram). Each pair of
words is assigned a score between 1 and 10 by
each model, where a score of M means that the
pair is ranked at the M ’th decile. The examples
in the table are taken from the first (lowest) decile
according to SimLex999’s human evaluators. The
table shows that when the antonym parameter is
off, our model generally recognizes antonyms as
similar. In contrast, when the parameter is on,
ranks of antonyms substantially decrease.

Antonymy as Word Analogy. One of the most
notable features of the skip-gram model is that
some geometric relations between its vectors
translate to semantic relations between the repre-
sented words (Mikolov et al., 2013c), e.g.:

vwoman � vman + vking ⇡ vqueen

It is therefore possible that a similar method can
be applied to capture antonymy – a useful property
that our model was demonstrated to have.

To test this hypothesis, we generated a set of
200 analogy questions of the form ”X - Y + Z =
?” where X and Y are antonyms, and Z is a word
with an unknown antonym.20 Example questions
include: “stupid - smart + life = ?” (death) and
“huge - tiny + arrive = ?” (leave). We applied
the standard word analogy evaluation (Mikolov et
al., 2013c) on this dataset with the skip-gram em-
beddings, and found that results are quite poor:
3.5% accuracy (compared to an average 56% ac-
curacy this model obtains on a standard word anal-
ogy dataset (Mikolov et al., 2013a)). Given these
results, the question of whether skip-gram is capa-

20Two human annotators selected a list of potential
antonym pairs from SimLex999 and wordsim353. We took
the intersection of their selections (26 antonym pairs) and
randomly generated 200 analogy questions, each containing
two antonym pairs. The dataset can be found in www.cs.
huji.ac.il/˜roys02/papers/sp_embeddings/
antonymy_analogy_questions.zip
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ble of accounting for antonyms remains open.

7 Conclusions
We presented a symmetric pattern based model for
word vector representation. On SimLex999, our
model is superior to six strong baselines, including
the state-of-the-art word2vec skip-gram model by
as much as 5.5–16.7% in Spearman’s ⇢ score. We
have shown that this gain is largely attributed to
the remarkably high performance of our model on
verbs, where it outperforms all baselines by 20.2–
41.5%. We further demonstrated the adaptabil-
ity of our model to antonym judgment specifica-
tions, and its complementary nature with respect
to word2vec.

In future work we intend to extend our pattern-
based word representation framework beyond
symmetric patterns. As discussed in Section 4,
other types of patterns have the potential to further
improve the expressive power of word vectors. A
particularly interesting challenge is to enhance our
pattern-based approach with bag-of-words infor-
mation, thus enjoying the provable advantages of
both frameworks.
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Ondřej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Christof Monz, Matt
Post, and Lucia Specia, editors. 2014. Proc. of the
Ninth Workshop on Statistical Machine Translation.

Danushka Bollegala, Takanori Maehara, Yuichi
Yoshida, and Ken ichi Kawarabayashi. 2015.
Learning word representations from relational
graphs. In Proc. of AAAI.

Kai-wei Chang, Wen-tau Yih, and Christopher Meek.
2013. Multi-Relational Latent Semantic Analysis.
In Proc. of EMNLP.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, and Phillipp Koehn. 2013. One
billion word benchmark for measuring progress in
statistical language modeling. CoRR.

Stephen Clark. 2012. Vector space models of lexi-
cal meaning. Handbook of Contemporary Seman-
ticssecond edition, pages 1–42.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Proc. of
ICML.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
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Abstract

We present a novel learning method for
word embeddings designed for relation
classification. Our word embeddings are
trained by predicting words between noun
pairs using lexical relation-specific fea-
tures on a large unlabeled corpus. This al-
lows us to explicitly incorporate relation-
specific information into the word embed-
dings. The learned word embeddings are
then used to construct feature vectors for
a relation classification model. On a well-
established semantic relation classification
task, our method significantly outperforms
a baseline based on a previously intro-
duced word embedding method, and com-
pares favorably to previous state-of-the-art
models that use syntactic information or
manually constructed external resources.

1 Introduction

Automatic classification of semantic relations has
a variety of applications, such as information ex-
traction and the construction of semantic net-
works (Girju et al., 2007; Hendrickx et al., 2010).
A traditional approach to relation classification is
to train classifiers using various kinds of features
with class labels annotated by humans. Carefully
crafted features derived from lexical, syntactic,
and semantic resources play a significant role in
achieving high accuracy for semantic relation clas-
sification (Rink and Harabagiu, 2010).

In recent years there has been an increasing in-
terest in using word embeddings as an alternative
to traditional hand-crafted features. Word embed-
dings are represented as real-valued vectors and
capture syntactic and semantic similarity between

words. For example, word2vec1 (Mikolov et al.,
2013b) is a well-established tool for learning word
embeddings. Although word2vec has successfully
been used to learn word embeddings, these kinds
of word embeddings capture only co-occurrence
relationships between words (Levy and Gold-
berg, 2014). While simply adding word embed-
dings trained using window-based contexts as ad-
ditional features to existing systems has proven
valuable (Turian et al., 2010), more recent studies
have focused on how to tune and enhance word
embeddings for specific tasks (Bansal et al., 2014;
Boros et al., 2014; Chen et al., 2014; Guo et al.,
2014; Nguyen and Grishman, 2014) and we con-
tinue this line of research for the task of relation
classification.

In this work we present a learning method for
word embeddings specifically designed to be use-
ful for relation classification. The overview of
our system and the embedding learning process
are shown in Figure 1. First we train word em-
beddings by predicting each of the words between
noun pairs using lexical relation-specific features
on a large unlabeled corpus. We then use the word
embeddings to construct lexical feature vectors for
relation classification. Lastly, the feature vectors
are used to train a relation classification model.

We evaluate our method on a well-established
semantic relation classification task and compare
it to a baseline based on word2vec embeddings
and previous state-of-the-art models that rely on
either manually crafted features, syntactic parses
or external semantic resources. Our method sig-
nificantly outperforms the word2vec-based base-
line, and compares favorably with previous state-
of-the-art models, despite relying only on lexi-

1https://code.google.com/p/word2vec/.

268



Figure 1: The overview of our system (a) and the embedding learning method (b). In the example
sentence, each of are, caused, and by is treated as a target word to be predicted during training.

cal level features and no external annotated re-
sources. Furthermore, our qualitative analysis of
the learned embeddings shows that n-grams of our
embeddings capture salient syntactic patterns sim-
ilar to semantic relation types.

2 Related Work

A traditional approach to relation classification is
to train classifiers in a supervised fashion using a
variety of features. These features include lexical
bag-of-words features and features based on syn-
tactic parse trees. For syntactic parse trees, the
paths between the target entities on constituency
and dependency trees have been demonstrated to
be useful (Bunescu and Mooney, 2005; Zhang et
al., 2006). On the shared task introduced by Hen-
drickx et al. (2010), Rink and Harabagiu (2010)
achieved the best score using a variety of hand-
crafted features which were then used to train a
Support Vector Machine (SVM).

Recently, word embeddings have become popu-
lar as an alternative to hand-crafted features (Col-
lobert et al., 2011). However, one of the limita-
tions is that word embeddings are usually learned
by predicting a target word in its context, leading
to only local co-occurrence information being cap-
tured (Levy and Goldberg, 2014). Thus, several
recent studies have focused on overcoming this
limitation. Le and Mikolov (2014) integrated para-
graph information into a word2vec-based model,
which allowed them to capture paragraph-level in-
formation. For dependency parsing, Bansal et
al. (2014) and Chen et al. (2014) found ways to
improve performance by integrating dependency-
based context information into their embeddings.

Bansal et al. (2014) trained embeddings by defin-
ing parent and child nodes in dependency trees as
contexts. Chen et al. (2014) introduced the con-
cept of feature embeddings induced by parsing a
large unannotated corpus and then learning em-
beddings for the manually crafted features. For
information extraction, Boros et al. (2014) trained
word embeddings relevant for event role extrac-
tion, and Nguyen and Grishman (2014) employed
word embeddings for domain adaptation of rela-
tion extraction. Another kind of task-specific word
embeddings was proposed by Tang et al. (2014),
which used sentiment labels on tweets to adapt
word embeddings for a sentiment analysis tasks.
However, such an approach is only feasible when
a large amount of labeled data is available.

3 Relation Classification Using Word
Embedding-based Features

We propose a novel method for learning word
embeddings designed for relation classification.
The word embeddings are trained by predicting
each word between noun pairs, given the corre-
sponding low-level features for relation classifi-
cation. In general, to classify relations between
pairs of nouns the most important features come
from the pairs themselves and the words between
and around the pairs (Hendrickx et al., 2010). For
example, in the sentence in Figure 1 (b) there is
a cause-effect relationship between the two nouns
conflicts and players. To classify the relation, the
most common features are the noun pair (conflicts,
players), the words between the noun pair (are,
caused, by), the words before the pair (the, exter-
nal), and the words after the pair (playing, tiles,
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to, ...). As shown by Rink and Harabagiu (2010),
the words between the noun pairs are the most ef-
fective among these features. Our main idea is to
treat the most important features (the words be-
tween the noun pairs) as the targets to be predicted
and other lexical features (noun pairs, words out-
side them) as their contexts. Due to this, we expect
our embeddings to capture relevant features for
relation classification better than previous models
which only use window-based contexts.

In this section we first describe the learning pro-
cess for the word embeddings, focusing on lexical
features for relation classification (Figure 1 (b)).
We then propose a simple and powerful technique
to construct features which serve as input for a
softmax classifier. The overview of our proposed
system is shown in Figure 1 (a).

3.1 Learning Word Embeddings

Assume that there is a noun pair n = (n1, n2) in
a sentence with Min words between the pair and
Mout words before and after the pair:

• win = (win
1 , . . . , win

Min
) ,

• wbef = (wbef
1 , . . . , wbef

Mout
) , and

• waft = (waft
1 , . . . , waft

Mout
) .

Our method predicts each target word win
i 2 win

using three kinds of information: n, words around
win

i in win, and words in wbef and waft. Words
are embedded in a d-dimensional vector space and
we refer to these vectors as word embeddings. To
discriminate between words in n from those in
win, wbef , and waft, we have two sets of word
embeddings: N 2 Rd⇥|N | and W 2 Rd⇥|W|. W
is a set of words and N is also a set of words but
contains only nouns. Hence, the word cause has
two embeddings: one in N and another in W. In
general cause is used as a noun and a verb, and
thus we expect the noun embeddings to capture
the meanings focusing on their noun usage. This
is inspired by some recent work on word represen-
tations that explicitly assigns an independent rep-
resentation for each word usage according to its
part-of-speech tag (Baroni and Zamparelli, 2010;
Grefenstette and Sadrzadeh, 2011; Hashimoto et
al., 2013; Hashimoto et al., 2014; Kartsaklis and
Sadrzadeh, 2013).

A feature vector f 2 R2d(2+c)⇥1 is constructed
to predict win

i by concatenating word embeddings:

f = [N(n1);N(n2);W(win
i�1); . . . ;W(win

i�c);

W(win
i+1); . . . ;W(win

i+c);

1

Mout

MoutX

j=1

W(wbef
j );

1

Mout

MoutX

j=1

W(waft
j )] .

(1)

N(·) and W(·) 2 Rd⇥1 corresponds to each word
and c is the context size. A special NULL token is
used if i� j is smaller than 1 or i+ j is larger than
Min for each j 2 {1, 2, . . . , c}.

Our method then estimates a conditional prob-
ability p(w|f) that the target word is a word w
given the feature vector f , using a logistic regres-
sion model:

p(w|f) = �(

˜

W(w) · f + b(w)) , (2)

where ˜

W(w) 2 R2d(2+c)⇥1 is a weight vector for
w, b(w) 2 R is a bias for w, and �(x) =

1
1+e�x

is the logistic function. Each column vector in
˜

W 2 R2d(c+1)⇥|W| corresponds to a word. That
is, we assign a logistic regression model for each
word, and we can train the embeddings using the
one-versus-rest approach to make p(win

i |f) larger
than p(w0|f) for w0 6= win

i . However, naively opti-
mizing the parameters of those logistic regression
models would lead to prohibitive computational
cost since it grows linearly with the size of the vo-
cabulary.

When training we employ several procedures
introduced by Mikolov et al. (2013b), namely,
negative sampling, a modified unigram noise dis-
tribution and subsampling. For negative sampling
the model parameters N, W, ˜

W, and b are learned
by maximizing the objective function Junlabeled:

X

n

MinX

i=1

0

@
log(p(win

i |f)) +

kX

j=1

log(1� p(w0
j |f))

1

A ,

(3)
where w0

j is a word randomly drawn from the uni-
gram noise distribution weighted by an exponent
of 0.75. Maximizing Junlabeled means that our
method can discriminate between each target word
and k noise words given the target word’s context.
This approach is much less computationally ex-
pensive than the one-versus-rest approach and has
proven effective in learning word embeddings.
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To reduce redundancy during training we use
subsampling. A training sample, whose tar-
get word is w, is discarded with the probability
Pd(w) = 1�

q
t

p(w) , where t is a threshold which

is set to 10

�5 and p(w) is a probability corre-
sponding to the frequency of w in the training cor-
pus. The more frequent a target word is, the more
likely it is to be discarded. To further emphasize
infrequent words, we apply the subsampling ap-
proach not only to target words, but also to noun
pairs; concretely, by drawing two random numbers
r1 and r2, a training sample whose noun pair is
(n1, n2) is discarded if Pd(n1) is larger than r1 or
Pd(n2) is larger than r2.

Since the feature vector f is constructed as de-
fined in Eq. (1), at each training step, ˜

W(w) is
updated based on information about what pair of
nouns surrounds w, what word n-grams appear in
a small window around w, and what words appear
outside the noun pair. Hence, the weight vector
˜

W(w) captures rich information regarding the tar-
get word w.

3.2 Constructing Feature Vectors
Once the word embeddings are trained, we can use
them for relation classification. Given a noun pair
n = (n1, n2) with its context words win, wbef ,
and waft, we construct a feature vector to classify
the relation between n1 and n2 by concatenating
three kinds of feature vectors:

gn the word embeddings of the noun pair,

gin the averaged n-gram embeddings between the
pair, and

gout the concatenation of the averaged word em-
beddings in wbef and waft.

The feature vector gn 2 R2d⇥1 is the concate-
nation of N(n1) and N(n2):

gn = [N(n1);N(n2)] . (4)

Words between the noun pair contribute to clas-
sifying the relation, and one of the most common
ways to incorporate an arbitrary number of words
is treating them as a bag of words. However, word
order information is lost for bag-of-words features
such as averaged word embeddings. To incorpo-
rate the word order information, we first define n-
gram embeddings hi 2 R4d(1+c)⇥1 between the

noun pair:

hi = [W(win
i�1); . . . ;W(win

i�c);

W(win
i+1); . . . ;W(win

i+c);
˜

W(win
i )] .

(5)

Note that ˜

W can also be used and that the value
used for n is (2c+1). As described in Section 3.1,
˜

W captures meaningful information about each
word and after the first embedding learning step
we can treat the embeddings in ˜

W as features for
the words. Mnih and Kavukcuoglu (2013) have
demonstrated that using embeddings like those in
˜

W is useful in representing the words. We then
compute the feature vector gin by averaging hi:

gin =

1

Min

MinX

i=1

hi . (6)

We use the averaging approach since Min depends
on each instance. The feature vector gin allows us
to represent word sequences of arbitrary lengths as
fixed-length feature vectors using the simple oper-
ations: concatenation and averaging.

The words before and after the noun pair are
sometimes important in classifying the relation.
For example, in the phrase “pour n1 into n2”, the
word pour should be helpful in classifying the re-
lation. As with Eq. (1), we use the concatenation
of the averaged word embeddings of words before
and after the noun pair to compute the feature vec-
tor gout 2 R2d⇥1:

gout =

1

Mout
[

MoutX

j=1

W(wbef
j );

MoutX

j=1

W(waft
j )] .

(7)
As described above, the overall feature vector

e 2 R4d(2+c)⇥1 is constructed by concatenating
gn, gin, and gout. We would like to emphasize
that we only use simple operations: averaging and
concatenating the learned word embeddings. The
feature vector e is then used as input for a soft-
max classifier, without any complex transforma-
tion such as matrix multiplication with non-linear
functions.

3.3 Supervised Learning
Given a relation classification task we train a soft-
max classifier using the feature vector e described
in Section 3.2. For each k-th training sample with
a corresponding label lk among L predefined la-
bels, we compute a conditional probability given
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its feature vector ek:

p(lk|ek) =

exp(o(lk))PL
i=1 exp(o(i))

, (8)

where o 2 RL⇥1 is defined as o = Sek + s, and
S 2 RL⇥4d(2+c) and s 2 RL⇥1 are the softmax
parameters. o(i) is the i-th element of o. We then
define the objective function as:

Jlabeled =

KX

k=1

log(p(lk|ek))�
�

2

k✓k2 . (9)

K is the number of training samples and � con-
trols the L-2 regularization. ✓ = (N,W, ˜

W,S, s)
is the set of parameters and Jlabeled is maximized
using AdaGrad (Duchi et al., 2011). We have
found that dropout (Hinton et al., 2012) is help-
ful in preventing our model from overfitting. Con-
cretely, elements in e are randomly omitted with a
probability of 0.5 at each training step. Recently
dropout has been applied to deep neural network
models for natural language processing tasks and
proven effective (Irsoy and Cardie, 2014; Paulus
et al., 2014).

In what follows, we refer to the above method
as RelEmb. While RelEmb uses only low-level
features, a variety of useful features have been
proposed for relation classification. Among them,
we use dependency path features (Bunescu and
Mooney, 2005) based on the untyped binary de-
pendencies of the Stanford parser to find the short-
est path between target nouns. The dependency
path features are computed by averaging word em-
beddings from W on the shortest path, and are
then concatenated to the feature vector e. Fur-
thermore, we directly incorporate semantic infor-
mation using word-level semantic features from
Named Entity (NE) tags and WordNet hypernyms,
as used in previous work (Rink and Harabagiu,
2010; Socher et al., 2012; Yu et al., 2014). We
refer to this extended method as RelEmbFULL.
Concretely, RelEmbFULL uses the same binary
features as in Socher et al. (2012). The features
come from NE tags and WordNet hypernym tags
of target nouns provided by a sense tagger (Cia-
ramita and Altun, 2006).

4 Experimental Settings
4.1 Training Data
For pre-training we used a snapshot of the En-
glish Wikipedia2 from November 2013. First,

2http://dumps.wikimedia.org/enwiki/.

we extracted 80 million sentences from the orig-
inal Wikipedia file, and then used Enju3 (Miyao
and Tsujii, 2008) to automatically assign part-of-
speech (POS) tags. From the POS tags we used
NN, NNS, NNP, or NNPS to locate noun pairs in
the corpus. We then collected training data by list-
ing pairs of nouns and the words between, before,
and after the noun pairs. A noun pair was omit-
ted if the number of words between the pair was
larger than 10 and we consequently collected 1.4
billion pairs of nouns and their contexts 4. We used
the 300,000 most frequent words and the 300,000
most frequent nouns and treated out-of-vocabulary
words as a special UNK token.

4.2 Initialization and Optimization
We initialized the embedding matrices N and W

with zero-mean gaussian noise with a variance of
1
d . ˜

W and b were zero-initialized. The model pa-
rameters were optimized by maximizing the ob-
jective function in Eq. (3) using stochastic gradi-
ent ascent. The learning rate was set to ↵ and lin-
early decreased to 0 during training, as described
in Mikolov et al. (2013a). The hyperparameters
are the embedding dimensionality d, the context
size c, the number of negative samples k, the initial
learning rate ↵, and Mout, the number of words
outside the noun pairs. For hyperparameter tun-
ing, we first fixed ↵ to 0.025 and Mout to 5, and
then set d to {50, 100, 300}, c to {1, 2, 3}, and
k to {5, 15, 25}.

At the supervised learning step, we initialized S

and s with zeros. The hyperparameters, the learn-
ing rate for AdaGrad, �, Mout, and the number of
iterations, were determined via 10-fold cross val-
idation on the training set for each setting. Note
that Mout can be tuned at the supervised learning
step, adapting to a specific dataset.

5 Evaluation

5.1 Evaluation Dataset
We evaluated our method on the SemEval 2010
Task 8 data set5 (Hendrickx et al., 2010), which
involves predicting the semantic relations between

3Despite Enju being a syntactic parser we only use the
POS tagger component. The accuracy of the POS tagger is
about 97.2% on the WSJ corpus.

4The training data, the training code, and the learned
model parameters used in this paper are publicly available at
http://www.logos.t.u-tokyo.ac.jp/˜hassy/
publications/conll2015/

5http://docs.google.com/View?docid=
dfvxd49s_36c28v9pmw.
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noun pairs in their contexts. The dataset, contain-
ing 8,000 training and 2,717 test samples, defines
nine classes (Cause-Effect, Entity-Origin, etc.) for
ordered relations and one class (Other) for other
relations. Thus, the task can be treated as a 19-
class classification task. Two examples from the
training set are shown below.

(a) Financial [stress]E1 is one of the main causes
of [divorce]E2

(b) The [burst]E1 has been caused by water ham-
mer [pressure]E2

Training example (a) is classified as Cause-
Effect(E1, E2) which denotes that E2 is an effect
caused by E1, while training example (b) is classi-
fied as Cause-Effect(E2, E1) which is the inverse
of Cause-Effect(E1, E2). We report the official
macro-averaged F1 scores and accuracy.

5.2 Models
To empirically investigate the performance of our
proposed method we compared it to several base-
lines and previously proposed models.

5.2.1 Random and word2vec Initialization
Rand-Init. The first baseline is RelEmb itself,
but without applying the learning method on the
unlabeled corpus. In other words, we train the
softmax classifier from Section 3.3 on the labeled
training data with randomly initialized model pa-
rameters.

W2V-Init. The second baseline is RelEmb us-
ing word embeddings learned by word2vec. More
specifically, we initialize the embedding matrices
N and W with the word2vec embeddings. Re-
lated to our method, word2vec has a set of weight
vectors similar to ˜

W when trained with negative
sampling and we use these weight vectors as a re-
placement for ˜

W. We trained the word2vec em-
beddings using the CBOW model with subsam-
pling on the full Wikipedia corpus. As with our
experimental settings, we fix the learning rate to
0.025, and investigate several hyperparameter set-
tings. For hyperparameter tuning we set the em-
bedding dimensionality d to {50, 100, 300}, the
context size c to {1, 3, 9}, and the number of neg-
ative samples k to {5, 15, 25}.

5.2.2 SVM-Based Systems
A simple approach to the relation classification
task is to use SVMs with standard binary bag-

of-words features. The bag-of-words features in-
cluded the noun pairs and words between, before,
and after the pairs, and we used LIBLINEAR6 as
our classifier.

5.2.3 Neural Network Models
Socher et al. (2012) used Recursive Neural Net-
work (RNN) models to classify the relations.
Subsequently, Ebrahimi and Dou (2015) and
Hashimoto et al. (2013) proposed RNN models to
better handle the relations. These methods rely on
syntactic parse trees.

Yu et al. (2014) introduced their novel Factor-
based Compositional Model (FCM) and presented
results from several model variants, the best per-
forming being FCMEMB and FCMFULL. The for-
mer only uses word embedding information and
the latter relies on dependency paths and NE fea-
tures, in addition to word embeddings.

Zeng et al. (2014) used a Convolutional Neu-
ral Network (CNN) with WordNet hypernyms.
Noteworthy in relation to the RNN-based meth-
ods, the CNN model does not rely on parse trees.
More recently, dos Santos et al. (2015) have in-
troduced CR-CNN by extending the CNN model
and achieved the best result to date. The key point
of CR-CNN is that it improves the classification
score by omitting the noisy class “Other” in the
dataset described in Section 5.1. We call CR-CNN
using the “Other” class CR-CNNOther and CR-
CNN omitting the class CR-CNNBest.

5.3 Results and Discussion

The scores on the test set for SemEval 2010 Task 8
are shown in Table 1. RelEmb achieves 82.8% of
F1 which is better than those of almost all models
compared and comparable to that of the previous
state of the art, except for CR-CNNBest. Note that
RelEmb does not rely on external semantic fea-
tures and syntactic parse features7. Furthermore,
RelEmbFULL achieves 83.5% of F1. We calcu-
lated a confidence interval (82.0, 84.9) (p < 0.05)
using bootstrap resampling (Noreen, 1989).

5.3.1 Comparison with the Baselines
RelEmb significantly outperforms not only the
Rand-Init baseline, but also the W2V-Init baseline.

6http://www.csie.ntu.edu.tw/˜cjlin/
liblinear/.

7While we use a POS tagger to locate noun pairs, RelEmb
does not explicitly use POS features at the supervised learn-
ing step.
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Features for classifiers F1 / ACC (%)
RelEmbFULL embeddings, dependency paths, WordNet, NE 83.5 / 79.9
RelEmb embeddings 82.8 / 78.9
RelEmb (W2V-Init) embeddings 81.8 / 77.7
RelEmb (Rand-Init) embeddings 78.2 / 73.5
SVM bag of words 76.5 / 72.0
SVM bag of words, POS, dependency paths, WordNet, 82.2 / 77.9(Rink and Harabagiu, 2010) paraphrases, TextRunner, Google n-grams, etc.
CR-CNNBest (dos Santos et al., 2015) embeddings, word position embeddings 84.1 / n/a
FCMFULL (Yu et al., 2014) embeddings, dependency paths, NE 83.0 / n/a
CR-CNNOther (dos Santos et al., 2015) embeddings, word position embeddings 82.7 / n/a
CRNN (Ebrahimi and Dou, 2015) embeddings, parse trees, WordNet, NE, POS 82.7 / n/a
CNN (Zeng et al., 2014) embeddings, WordNet 82.7 / n/a
MVRNN (Socher et al., 2012) embeddings, parse trees, WordNet, NE, POS 82.4 / n/a
FCMEMB (Yu et al., 2014) embeddings 80.6 / n/a
RNN (Hashimoto et al., 2013) embeddings, parse trees, phrase categories, etc. 79.4 / n/a

Table 1: Scores on the test set for SemEval 2010 Task 8.

These results show that our task-specific word em-
beddings are more useful than those trained using
window-based contexts. A point that we would
like to emphasize is that the baselines are un-
expectedly strong. As was noted by Wang and
Manning (2012), we should carefully implement
strong baselines and see whether complex models
can outperform these baselines.

5.3.2 Comparison with SVM-Based Systems
RelEmb performs much better than the bag-of-
words-based SVM. This is not surprising given
that we use a large unannotated corpus and embed-
dings with a large number of parameters. RelEmb
also outperforms the SVM system of Rink and
Harabagiu (2010), which demonstrates the effec-
tiveness of our task-specific word embeddings, de-
spite our only requirement being a large unanno-
tated corpus and a POS tagger.

5.3.3 Comparison with Neural Network
Models

RelEmb outperforms the RNN models. In our pre-
liminary experiments, we have found some un-
desirable parse trees when computing vector rep-
resentations using RNN-based models and such
parsing errors might hamper the performance of
the RNN models.

FCMFULL, which relies on dependency paths
and NE features, achieves a better score than that
of RElEmb. Without such features, RelEmb out-
performs FCMEMB by a large margin. By incor-
porating external resources, RelEmbFULL outper-
forms FCMFULL.

RelEmb compares favorably to CR-CNNOther,
despite our method being less computationally ex-
pensive than CR-CNNOther. When classifying an
instance, the number of the floating number mul-
tiplications is 4d(2 + c)L in our method since
our method requires only one matrix-vector prod-
uct for the softmax classifier as described in Sec-
tion 3.3. c is the window size, d is the word
embedding dimensionality, and L is the number
of the classes. In CR-CNNOther, the number is
(Dc(d + 2d0)N + DL), where D is the dimen-
sionality of the convolution layer, d0 is the posi-
tion embedding dimensionality, and N is the av-
erage length of the input sentences. Here, we
omit the cost of the hyperbolic tangent function
in CR-CNNOther for simplicity. Using the best
hyperparameter settings, the number is roughly
3.8 ⇥ 10

4 in our method, and 1.6 ⇥ 10

7 in CR-
CNNOther assuming N is 10. dos Santos et al.
(2015) also boosted the score of CR-CNNOther

by omitting the noisy class “Other” by a ranking-
based classifier, and achieved the best score (CR-
CNNBest). Our results may also be improved by
using the same technique, but the technique is
dataset-dependent, so we did not incorporate the
technique.

5.4 Analysis on Training Settings
We perform analysis of the training procedure fo-
cusing on RelEmb.

5.4.1 Effects of Tuning Hyperparameters
In Tables 2 and 3, we show how tuning the hyper-
parameters of our method and word2vec affects
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c d k = 5 k = 15 k = 25

1

50 80.5 81.0 80.9
100 80.9 81.3 81.2

2

50 80.9 81.3 81.3
100 81.3 81.6 81.7

3

50 81.0 81.0 81.5
100 81.3 81.9 82.2
300 - - 82.0

Table 2: Cross-validation results for RelEmb.

c d k = 5 k = 15 k = 25

1

50 80.5 80.7 80.9
100 81.1 81.2 81.0
300 81.2 81.3 81.2

3

50 80.4 80.7 80.8
100 81.0 81.0 80.9

9

50 80.0 79.8 80.2
100 80.3 80.4 80.1

Table 3: Cross-validation results for the W2V-Init.

the classification results using 10-fold cross vali-
dation on the training set. The same split is used
for each setting, so all results are comparable to
each other. The best settings for the cross vali-
dation are used to produce the results reported in
Table 1.

Table 2 shows F1 scores obtained by RelEmb.
The results for d = 50, 100 show that RelEmb
benefits from relatively large context sizes. The
n-gram embeddings in RelEmb capture richer in-
formation by setting c to 3 compared to setting c
to 1. Relatively large numbers of negative sam-
ples also slightly boost the scores. As opposed
to these trends, the score does not improve using
d = 300. We use the best setting (c = 3, d = 100,
k = 25) for the remaining analysis. We note that
RelEmbFULL achieves an F1-score of 82.5.

We also performed similar experiments for the
W2V-Init baseline, and the results are shown in
Table 3. In this case, the number of negative sam-
ples does not affect the scores, and the best score
is achieved by c = 1. As discussed in Bansal et al.
(2014), the small context size captures the syntac-
tic similarity between words rather than the top-
ical similarity. This result indicates that syntactic
similarity is more important than topical similarity
for this task. Compared to the word2vec embed-
dings, our embeddings capture not only local con-
text information using word order, but also long-

gn gin g

0
in gn,gin gn,gin,gout

61.8 70.2 68.2 81.1 82.2

Table 4: Cross-validation results for ablation tests.

Method Score
RelEmb N 0.690
RelEmb W 0.599
W2V-Init 0.687

Table 5: Evaluation on the WordSim-353 dataset.

range co-occurrence information by being tailored
for the specific task.

5.4.2 Ablation Tests
As described in Section 3.2, we concatenate three
kinds of feature vectors, gn, gin, and gout, for
supervised learning. Table 4 shows classification
scores for ablation tests using 10-fold cross val-
idation. We also provide a score using a sim-
plified version of gin, where the feature vector
g

0
in is computed by averaging the word embed-

dings [W(win
i );

˜

W(win
i )] of the words between

the noun pairs. This feature vector g

0
in then serves

as a bag-of-words feature.
Table 4 clearly shows that the averaged n-gram

embeddings contribute the most to the semantic
relation classification performance. The differ-
ence between the scores of gin and g

0
in shows the

effectiveness of our averaged n-gram embeddings.

5.4.3 Effects of Dropout
At the supervised learning step we use dropout to
regularize our model. Without dropout, our per-
formance drops from 82.2% to 81.3% of F1 on the
training set using 10-fold cross validation.

5.4.4 Performance on a Word Similarity Task
As described in Section 3.1, we have the noun-
specific embeddings N as well as the standard
word embeddings W. We evaluated the learned
embeddings using a word-level semantic evalua-
tion task called WordSim-353 (Finkelstein et al.,
2001). This dataset consists of 353 pairs of nouns
and each pair has an averaged human rating which
corresponds to a semantic similarity score. Evalu-
ation is performed by measuring Spearman’s rank
correlation between the human ratings and the co-
sine similarity scores of the embeddings. Table 5
shows the evaluation results. We used the best set-
tings reported in Table 2 and 3 since our method
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Cause-Effect(E1,E2) Content-Container(E1,E2) Message-Topic(E1,E2)
resulted poverty caused the inside was inside a discuss magazines relating to
caused stability caused the in was in a explaining to discuss aspects
generated coast resulted in hidden hidden in a discussing concerned about NULL
cause fire caused due was was inside the relating interview relates to
causes that resulted in stored was hidden in describing to discuss the

Cause-Effect(E2,E1) Content-Container(E2,E1) Message-Topic(E2,E1)
after caused by radiation full NULL full of subject were related in
from caused by infection included was full of related was related in
caused stomach caused by contains a full NULL discussed been discussed in
triggered caused by genetic contained a full and documented is related through
due anger caused by stored a full forty received the subject of

Table 6: Top five unigrams and trigrams with the highest scores for six classes.

is designed for relation classification and it is not
clear how to tune the hyperparameters for the word
similarity task. As shown in the result table, the
noun-specific embeddings perform better than the
standard embeddings in our method, which indi-
cates the noun-specific embeddings capture more
useful information in measuring the semantic sim-
ilarity between nouns. The performance of the
noun-specific embeddings is roughly the same as
that of the word2vec embeddings.

5.5 Qualitative Analysis on the Embeddings
Using the n-gram embeddings hi in Eq. (5), we in-
spect which n-grams are relevant to each relation
class after the supervised learning step of RelEmb.
When the context size c is 3, we can use at most
7-grams. The learned weight matrix S in Sec-
tion 3.3 is used to detect the most relevant n-grams
for each class. More specifically, for each n-gram
embedding (n = 1, 3) in the training set, we com-
pute the dot product between the n-gram embed-
ding and the corresponding components in S. We
then select the pairs of n-grams and class labels
with the highest scores. In Table 6 we show the top
five n-grams for six classes. These results clearly
show that the n-gram embeddings capture salient
syntactic patterns which are useful for the relation
classification task.

6 Conclusions and Future Work

We have presented a method for learning word em-
beddings specifically designed for relation classi-
fication. The word embeddings are trained using
large unlabeled corpora to capture lexical features
for relation classification. On a well-established
semantic relation classification task our method
significantly outperforms the baseline based on
word2vec. Our method also compares favorably to
previous state-of-the-art models that rely on syn-

tactic parsers and external semantic resources, de-
spite our method requiring only access to an unan-
notated corpus and a POS tagger. For future work,
we will investigate how well our method performs
on other domains and datasets and how relation la-
bels can help when learning embeddings in a semi-
supervised learning setting.
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and Brigitte Grau. 2014. Event Role Extrac-
tion using Domain-Relevant Word Representations.
In Proceedings of the 2014 Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP), pages 1852–1857.

Razvan Bunescu and Raymond Mooney. 2005. A
Shortest Path Dependency Kernel for Relation Ex-
traction. In Proceedings of Human Language Tech-
nology Conference and Conference on Empirical
Methods in Natural Language Processing, pages
724–731.

Wenliang Chen, Yue Zhang, and Min Zhang. 2014.
Feature Embedding for Dependency Parsing. In

276



Proceedings of COLING 2014, the 25th Interna-
tional Conference on Computational Linguistics:
Technical Papers, pages 816–826.

Massimiliano Ciaramita and Yasemin Altun. 2006.
Broad-Coverage Sense Disambiguation and Infor-
mation Extraction with a Supersense Sequence Tag-
ger. In Proceedings of the 2006 Conference on Em-
pirical Methods in Natural Language Processing,
pages 594–602.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
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Abstract

As documents tend to contain temporal
information, extracting such information
is attracting much research interests re-
cently. In this paper, we propose a hybrid
method that combines machine-learning
models and hand-crafted rules for the task
of extracting temporal information from
unstructured Korean texts. We address
Korean-specific research issues and pro-
pose a new probabilistic model to generate
complementary features. The performance
of our approach is demonstrated by exper-
iments on the TempEval-2 dataset, and the
Korean TimeBank dataset which we built
for this study.

1 Introduction

Due to the increasing number of unstructured
documents available on the Web and from other
sources, developing techniques that automatically
extract knowledge from the documents has been
of paramount importance. Among many aspects
of extracting knowledge from documents, the ex-
traction of temporal information is recently draw-
ing much attention, since the documents usually
incorporate temporal information that is useful
for further applications such as Information Re-
trieval (IR) and Question Answering (QA) sys-
tems. Given a simple question, “who was the pres-
ident of the U.S. 8 years ago?”, for example, a
QA system may have a difficulty in finding the
right answer without the correct temporal informa-
tion about when the question is posed and what ‘8
years ago’ refers to.

There have been many studies for temporal in-
formation extraction, but most of them are appli-
cable only to their target languages. The main rea-
son for this limitation is that some parts of tem-
poral information are difficult to predict without

the use of language-specific processing. For ex-
ample, the normalized value ‘1983-03-08’ can be
represented by ‘March 8, 1983’ in English, while
it can be represented by ‘1983Dº‘8|’ in Ko-
rean. The order of date representation in Korean is
usually different from that of English, and the digit
expression in Korean is more complex than that of
English. This implies that it is necessary to inves-
tigate language-specific difficulties for developing
a method to extract temporal information.

In this paper, we propose a method for tem-
poral information extraction from Korean texts.
The contributions of this paper are as follows:
we (1) show how the Korean-specific issues (e.g.,
morpheme-level tagging, various ways of digit ex-
pression, uses of lunar calendar, and so on) are ad-
dressed, (2) propose a hybrid method that com-
bines a set of hand-crafted rules and machine-
learning models, (3) propose a data-driven proba-
bilistic model to generate complementary features,
and (4) create a new dataset, the Korean Time-
Bank, that consists of more than 3,700 manually
annotated sentences.

The rest of the paper is organized as follows.
Section 2 describes the background of the re-
search. Section 3 presents the details of the pro-
posed method, the Korean TimeBank dataset, and
how we apply the probabilistic model for generat-
ing features. Section 4 shows experimental results,
and Section 5 concludes the paper.

2 Background

TempEval is a series of shared tasks for temporal
information extraction (Verhagen et al., 2009; Ver-
hagen et al., 2010; UzZaman et al., 2013). There
have been many studies related to the shared tasks
(Chambers et al., 2007; Yoshikawa et al., 2009;
UzZaman and Allen, 2010; Ling and Weld, 2010;
Mirroshandel and Ghassem-Sani, 2012; Bethard,
2013b), which are based on the Time Mark-up
Language (TimeML) (Pustejovsky et al., 2003).
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The shared tasks can be summarized into three ex-
traction tasks: (1) extraction of timex3 tags, (2) ex-
traction of event and makeinstance tags, and (3)
extraction of tlink tags. The timex3 tag is asso-
ciated with expressions of temporal information
such as ‘May 1973’ and ‘today’. The event tag
and makeinstance tag represent some eventual ex-
pressions which can be related to temporal infor-
mation. The makeinstance tag is an instance of
the event tag. For example, the sentence, “I go
to school on Mondays and Tuesdays”, contains
one event tag on ‘go’ and two makeinstance tags
as the action ‘go’ occurs twice on Mondays and
Tuesdays. The tlink tag represents a linkage be-
tween two tags. The tlink can be a linkage between
two timex3 tags (TT tlink), two makeinstance tags
(MM tlink), a timex3 tag and a makeinstance tag
(TM tlink), or Document Creation Time and a
makeinstance tag (DM tlink). Note that the tlink
takes makeinstance tags as arguments, but not the
event tags, as the event tags are merely templates
for them. For the above sentence, there will be two
TM tlinks: go-Tuesdays and go-Mondays. The TT
tlink is assumed to be easy to extract, so TempEval
does not incorporate the TT tlink into the task of
extracting tlink tags.

Among many related studies, there are sev-
eral leading ones. HeidelTime is proposed for
extraction of timex3 tags (Strotgen and Gertz,
2010). It strongly depends on hand-crafted rules,
and showed the best performance in TempEval-
2. Llorens et al. (2010) proposed TIPSem for
all of the three extraction tasks. It employs Con-
ditional Random Fields (CRF) (Lafferty et al.,
2001) for capturing patterns of texts, and defines
a set of hand-crafted rules for determining sev-
eral attributes of the tags. ClearTK is another work
proposed for all three extraction tasks (Bethard,
2013a); it utilizes machine-learning models such
as Support Vector Machines (SVM) (Boser et al.,
1992; Cortes and Vapnik, 1995) and Logistic Re-
gressions (LR), and shows the best performance in
TempEval-3.

Although the existing approaches show good re-
sults, most of them are applicable only to their
target languages. The first reason is that there
are several attributes which are difficult to pre-
dict without the use of language-specific process-
ing. For instance, the attribute value of timex3
tag has a normalized form of time (e.g., 1999-
04-12) following ISO-8601. This is not accurately

predictable by relying solely on data-driven ap-
proaches. The second reason is that they depend
on some language-specific resources (e.g., Word-
Net) or tools. Unless the same quality of resources
or tools is achieved for other languages, the exist-
ing works would not be available to the other lan-
guages. To alleviate this limitation, a language in-
dependent parser for extracting timex3 tags is pro-
posed (Angeli and Uszkoreit, 2013). Its portability
is demonstrated by experiments with TempEval-
2 dataset of six languages: English, Spanish, Ital-
ian, Chinese, Korean, and French. However, the
performance in English and Spanish datasets are
about twice as high as the other languages, since
the method highly depends on the feature defi-
nition and language-specific preprocessing (e.g.,
morphological analysis). This implies that it is
necessary to address language-specific difficulties
in order to achieve high performance.

Korean language has many subtle rules and ex-
ceptions on word spacing. Korean is an aggluti-
native language, where verbs are formed by at-
taching various endings to the stem. There are
usually multiple morphemes for each token, and
empty elements appear very often because sub-
jects and objects are dropped to avoid duplication.
Temporal expressions often take the lunar calendar
representation as a tradition. Moreover, the same
temporal information can have various forms due
to a complex system of digit expression. For in-
stance, a digit 30 can be represented as ‘30’, ‘ºÌ
[sam-sib]’, or ‘⌧x[seo-run]’. Most of these is-
sues stem from the Chinese language, as a large
number of Chinese words and letters have become
an integral part of Korean vocabulary due to his-
torical contact. All these issues hinder the perfor-
mance of the existing approaches when applied to
Korean documents.

In this paper, we show how these issues are ad-
dressed in our Korean-specific hybrid method. To
the best of our knowledge, this is the first Korean-
specific study which addresses all of the three ex-
traction tasks.

3 Proposed Method

3.1 Korean TimeBank
Although there is a Korean dataset provided by
TempEval-2, we chose not to use it because it is
small in size and has many annotation errors. In
TempEval-2 Korean dataset, there are missing val-
ues of timex3 tags, and multiple tags that must be
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Figure 1: Example of extent representation by to-
ken indices and letter indices.

merged into one. Please refer to the examples in
the 11th sentence of the 2nd training document
of the TempEval-2 Korean dataset. Thus, we con-
structed a new dataset called Korean TimeBank.

The new dataset is based on TimeML but with
several differences. The tags of the new dataset
are represented using a stand-off scheme, keep-
ing the original sentences unharmed. As there are
often multiple morphemes within each token in
Korean, the tags are annotated in letter-level. The
letter-level annotation allows multiple annotations
to appear within a single token. This also makes
the dataset independent of morphological analy-
sis, so it is not required to update the dataset when
the morphological analyzer is updated. To enable
the letter-level annotation, we introduce several at-
tributes for timex3 tag and event tag: text, begin,
end, e begin, and e end. The attributes e begin and
e end indicate token indices, while begin and end
indicate letter indices of the extent. The attribute
text contains the string of the extent. For example,
the sentence, “I work today” in Fig. 1, contains one
timex3 tag whose text is ‘today’, where e begin=2,
e end=2, begin=0, and end=4.

Since temporal expressions following the lunar
calendar representation appear often in Korean,
we add an attribute calendar. The value of the cal-
endar can be LUNAR or other types of calendar,
and its default value is GREGORIAN when it is
not explicitly clarified. We also add two values for
the attribute mod of timex3 tag: START OR MID
and MID OR END, as these expressions appear
often in Korean. For example, ‘�⌘⇠[cho-joong-
ban]’ represents beginning or middle phase of a
period, and ‘⌘ƒ⇠[joong-hoo-ban]’ represents
middle or ending phase of a period.

The source of the Korean TimeBank includes
Wikipedia documents and hundreds of manually
generated question-answer pairs. The domains of
the Wikipedia documents are personage, music,
university, and history. The documents are anno-
tated by two trained annotators and a supervisor,
all majoring in computer science. The annotated
tags of each document is saved in an XML file.

Figure 2: Overall process of temporal information
extraction from Korean texts.

3.2 Temporal Information Extraction from
Korean Texts

Our proposed method addresses all of the three
tasks: (1) extraction of timex3 tags, (2) extraction
of event and makeinstance tags, and (3) extraction
of tlink tags. The proposed method also extracts
additional attributes of timex3 tag, such as freq, be-
ginPoint, endPoint, mod, and calendar. The over-
all process is depicted in Fig. 2, where the solid
line represents training process and the dotted line
represents testing process. The Korean analyzer
at the center of the figure takes Korean texts as
an input and generates several raw features as an
output, such as results of morphological analysis,
Part-Of-Speech (POS) tags, Named-Entity (NE)
tags, and results of dependency parsing (Lim et
al., 2006). The number of possible POS tags is
45, which follows the definition of Sejong Tree-
bank1. The number of possible NE tags is 178,
where each of them belongs to one of 15 super NE
tags.

The generated raw features are used to define a
set of features for machine-learning models and a
set of hand-crafted rules. The rules are designed by
examining the training dataset and the errors that
the proposed method generates with the valida-
tion dataset. We employ several machine-learning
methods that have shown the best performance
in the TempEval shared tasks, such as Maximum
Entropy Model (MEM), Support Vector Machine
(SVM), Conditional Random Fields (CRF), and
Logistic Regression (LR).

Fig. 2 introduces Temporal Information Extrac-
tor (TIE) which consists of four sub-extractors:

1Korean Language Institute, http://www.sejong.or.kr
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timex3 extractor, event extractor, makeinstance ex-
tractor, and tlink extractor. The timex3 extrac-
tor and the event extractor work independently,
and the makeinstance extractor uses the predicted
event tags. The tlink extractor makes use of the
predicted makeinstance tags and predicted timex3
tags. Thus, the performance of timex3 extractor
and event extractor will strongly influence the per-
formance of makeinstance extractor and tlink ex-
tractor. These four sub-extractors as a whole give
predicted tags as an output, where the tags are rep-
resented in morpheme-level. The extent converter
at the center of the figure changes the morpheme-
level tags into letter-level and vice versa by check-
ing ASCII values of each letter and each mor-
pheme. In training process, the annotated tags of
Korean TimeBank are converted into morpheme-
level through the extent converter, and used to train
the TIE.

3.2.1 Timex3 extractor
The goal of timex3 extractor is to predict whether
each morpheme belongs to the extent of a timex3
tag or not, and finds appropriate attributes of the
tag. There are five types of timex3 tag: DATE,
TIME, DURATION, SET, and NONE. The NONE
represents that the corresponding morpheme does
not belong to the extent of a timex3 tag, and
the other four types follow the same definition
of TimeML. This is essentially a morpheme-level
classification over 5 classes.

We basically take two approaches: a set of 100
hand-crafted rules and machine-learning models.
Examples of the rules for extent and type are listed
in Table 1. In the second rule of the table, the first
condition is satisfied when the sequence of two
morphemes is a digit followed by a morpheme ‘‘
[wol]’(month), ‘|[il]’(day), or ‘¸[joo]’(week).
The various ways of digit expressions are also con-
sidered. The second condition is satisfied when the
morpheme next to the extent is ‘–[eh]’(at) or ‘»
‰[ma-da]’(every) followed by ‘à[beon]’(times)
or ‘å[hoi]’(times), and there must be no other
tags between the two morphemes. If these two
conditions are satisfied, then the sequence of mor-
phemes becomes the extent of timex3 tag whose
type is SET. If one of the rules is satisfied, then
the remaining rules are skipped for the target mor-
pheme.

We compare two machine-learning models,
CRF and MEM, for timex3 tag by experiments. We
defined a set of features based on the raw features

Table 1: Examples of the rules for extent and type
of timex3 tags.

Type Conditions
DATE Extent=(digit,D)

SET
Extent=(digit,‘_|_¸),
Next morps=
(–_»‰,no other tags,à_å)

Table 2: Examples of the rules for value of timex3
tag.

Operations Conditions

Month=digit
Context updated

Type=DATE_TIME
Surrounding morps=

(digit,‘)

Year=context
Type=DATE_TIME
Surrounding morps=

(,t_tàt)

obtained from the Korean analyzer. The defined
features include morphemes, POS tags, NE tags,
morpheme-level features of dependency parsing,
given a particular window size. The morpheme-
level features of dependency parsing are generated
by following approaches in Sang and Buchholz
(2000).

To predict other attributes of each predicted
timex3 tag, we also define sets of rules: 112 rules
for value, 7 rules for beginPoint/endPoint, 9 rules
for freq, 10 rules for mod, and 1 rule for calen-
dar. Especially, the rules for value and freq take
a temporal context into account. For instance, the
sentence “We go there tomorrow”, makes it hard
to predict value of ‘tomorrow’ without considering
the temporal context. We assume that the temporal
context of each sentence depends on the previous
sentence. For each document, the temporal con-
text is initialized with Document Creation Time
(DCT), and the context is updated when a normal-
ized value appears in a certain condition.

Examples of the rules are described in Table 2.
If the first rule in the table is satisfied, then the
month of value is changed to the corresponding
digit and the temporal context is updated.

As there can be multiple clues for determining
value within an extent, all of the rules are checked
for each timex3 tag. To avoid overwriting value by
multiple satisfied rules, the rules are listed in as-
cending order of temporal unit. That is, the rules
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for seconds or minutes are listed before the rules
for hours or days. This allows value to be changed
from smaller temporal unit to bigger unit, thereby
avoiding overwriting wrong value. The rules for
different attributes are listed in separate files, and
are written in a systematic way similar to regular
expressions. Such format enables rules to be easily
manipulated.

3.2.2 Event extractor
The goal of event extractor is to predict whether
each morpheme belongs to the extent of an event
tag or not, and finds appropriate class of the tag.
There are 7 classes of event tag: OCCURRENCE,
PERCEPTION, REPORTING, STATE, I STATE,
I ACTION, and NONE. The NONE represents
that the corresponding morpheme does not be-
long to the extent, and the other classes follow
the same definition of TimeML. Similar to the
timex3 extractor, we take two approaches: a set of
26 rules and machine-learning models (e.g., CRF
and MEM), based on the set of features used in the
timex3 extractor.

There are several verbs that often appear within
the extents of event tags, although they do not
carry any meaning. For example, in the sen-
tence, “òîıÄ|X‰”(I study), the verb ‘X
[ha]’(do) has no meaning while the noun ‘ıÄ
[gong-bu]’(study) has eventual meaning. We de-
fine a set of such verbal morphemes (e.g., ‘⌅
X[wi-ha]’(for), and ‘µX[tong-ha]’(through)), to
avoid generating meaningless event tags.

3.2.3 Makeinstance extractor
The goal of makeinstance extractor is to generate
at least one makeinstance tag for each event tag,
and find appropriate attributes. As we observed
that there is only one makeinstance tag for each
event tag in most cases, the makeinstance extractor
simply generates one makeinstance tag for each
event tag. For the attribute POS, we simply take
the POS tags obtained from the Korean analyzer.
We define a set of 5 rules for the attribute tense,
and 2 rules for the attribute polarity.

3.2.4 Tlink extractor
The goal of tlink extractor is to make a linkage be-
tween two tags, and find appropriate types of the
links. For each pair of tags, it determines whether
there must be a linkage between them, and finds
the most appropriate relType. There are 11 rel-
Types: BEFORE, AFTER, INCLUDES, DUR-

Table 3: Features in the two kinds of classifiers.
Features for TM tlink
Surrounding morphemes of the argument tags
Linear order of the argument tags
Attribute type of timex3 tag
Attribute class of event tag
Attribute polarity of makeinstance tag
Attribute tense of makeinstance tag
Whether tlink tag is non-consuming tag or not
Does timex3 tag exist between argument tags?
Does event tag exist between argument tags?
Is event tag an objective of other event tag
in dependency tree?
Features for MM tlink
Surrounding morphemes of event tags
Linear order of event tags
Attribute class of event tags
Attribute polarity of makeinstance tags
Attribute tense of makeinstance tags
Does timex3 tag exist between event tags?
Does event tag exist between event tags?

ING, DURING INV, SIMULTANEOUS, IDEN-
TITY, BEGINS, ENDS, OVERLAP, and NONE.
The NONE represents that there is no linkage be-
tween the two argument tags, and the OVERLAP
means that the temporal intervals of two tags are
overlapping. The other relTypes follow the same
definition of TimeML. Thus, it is essentially a
classification over 11 classes for each pair of two
argument tags.

The tlink extractor generates intra-sentence
tlinks and inter-sentence tlinks. For the intra-
sentence tlinks, we take two approaches: a set of
19 rules and machine-learning models (e.g., SVM
and LR). Among the four kinds of tlinks (e.g.,
TT tlink, TM tlink, MM tlink, and DM tlink), our
tlink extractor generates the first three kinds of
tlinks. The reason for excluding DM tlink is that
we maintain the temporal context initialized with
DCT in the timex3 extractor, so it is not necessary
to generate DM tlinks. The TT tlinks are extracted
by comparing normalized values of two timex3
tags. Two models are independently trained for
predicting TM tlinks and MM tlinks, respectively.
We tried many possible combinations of features
to reach better performance, and obtained sets of
features as described in Table 3.

Given a pair of two makeinstance tags, it is
straight forward to derive relType when the two
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event tags are linked with timex3 tags. Thus, firstly
we predict TT tlinks, and thereafter predict TM
tlinks and MM tlinks. For the inter-sentence tlinks,
we generate MM tlinks between adjacent sen-
tences when there is a particular expression at
the beginning of a sentence, such as ‘¯ ƒ[geu-
hoo]’(afterward), ‘¯ ⌅[geu-jeon]’(beforehand),
or ‘¯‰L[geu-da-eum]’(thereafter).

3.3 Online LIFE

As the performance of the Korean analyzer is not
stable, we need complementary features to make
better classifiers. Jeong and Choi (2015) proposed
Language Independent Feature Extractor (LIFE)
which generates a pair of class label and topic la-
bel for each Letter-Sequence (LS), where LS rep-
resents frequently appeared letter sequence. The
class labels can be used as syntactic features, while
the topic labels can be used as semantic features.
The concept of LS makes it language indepen-
dent, so it is basically applicable to any language.
This is especially helpful to some languages that
have no stable feature extractors. Korean is one of
such languages, so we employ the LIFE to gener-
ate complementary features.

The temporal information extractor must work
online because it usually takes a stream of docu-
ments as an input. However, as the LIFE is origi-
nally designed to work offline, we propose an ex-
tended version of the LIFE, namely, Online LIFE
(O-LIFE), whose parameters are estimated incre-
mentally. When we design O-LIFE, the LS con-
cept of LIFE becomes a problem because the LS
dictionary changes. For example, if the LS dictio-
nary has only one LS goes and a new token go
comes in, then the LS dictionary may contain go
and es. Note that the LS goes does not exist in
the new dictionary. This issue is addressed by our
proposed algorithm which basically distributes the
values of previously estimated parameters to new
prior parameters of overlapping LSs. For the above
example, �k,‘goes0 will be distributed to �k,‘go0 and
�k,‘es0 , where k is a topic index.

The formal algorithm of O-LIFE is shown in Al-
gorithm 1, where C is the number of classes and T
is the number of topics. Sstream is the number of
streams, and Ss is s-th stream of Ds documents.
The four parameters a, bt, g and bc are default val-
ues of the priors ↵, �, � and �. The three threshold
parameters t1, t2, and t3 are used to generate LS
dictionary.

Algorithm 1 Online LIFE
1: INPUT: a;bt;g;bc;wp;Ss;t1;t2;t3
2: for s=1 to Sstream do
3: Dic

s = DictionaryGenerator(t1,t2,t3)
4: if s=1 then
5: �s

t =bt, 1tT
6: �s

c=bc, 1cC
7: else
8: �s

t,w=bt, w 2Dic

s

9: �s
c,w=bc, w 2Dic

s

10: for each item wi 2Dic

s�1 do
11: if wi 2Dic

s then
12: �s

t,wi
+=B

s�1
t,wi

wp, 1tT
13: �s

c,wi
+=D

s�1
c,wi

wp, 1cC
14: end if
15: for each w0

i 2Dic

s do
16: �s

t,w0
i
+=B

s�1
t,wi

wp, 1tT

17: �s
c,w0

i
+=D

s�1
c,wi

wp, 1cC

18: end for
19: for each w00

i 2Dic

s do
20: r=|woverlap|/|wi|
21: �s

t,w00
i

+=B

s�1
t,wi

rwp, 1tT

22: �s
c,w00

i
+=D

s�1
c,wi

rwp, 1cC

23: end for
24: end for
25: end if
26: ↵s

d=a, 1dDs

27: �s
c =g, 1cC

28: initilize �s, ⌘s, ⇡s, and ✓s to zeros
29: initilize class/topic assignments
30: [�s,⌘s,⇡s,✓s] =
31: ParameterEstimation(Ss,↵s,�s,�s,�s)
32: B

s
t =B

s�1
t

S
�s

t , 1tT
33: D

s
t =D

s�1
t

S
⌘s

c , 1cC
34: end for

The LS dictionary of O-LIFE is updated as it
reads data. That is, |Dic

prev|  |Dic

cur| and
Dic

prev 6✓ Dic

cur, where Dic

prev is the pre-
vious dictionary and Dic

cur is the current dictio-
nary. To handle this change in dictionary, the two
parameters (e.g., �, �) are updated by four steps,
based on an assumption that every unique LS wi

of the previous dictionary should contribute to the
new dictionary as much as possible. Firstly, as de-
scribed in 8th line of the algorithm, the two pa-
rameters are initialized with default values. Sec-
ondly, if a particular LS wi of the previous dic-
tioanry exists in the new dictionary, then the two
parameters increase by B

s�1
t,wi

wp and D

s�1
c,wi

wp, re-
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Table 4: The statistics of Korean TimeBank, where
the digits represent the number of corresponding
items.

Training Validation Test
documents 536 131 173
sentences 2357 466 879

timex3 1245 253 494
event 6594 1145 2609

makeinstance 6615 1155 2613
tlink 1295 374 674

spectively. B

s�1
t denotes an evolutionary matrix

whose columns are LS-topic distribution �s�1
t ,

and D

s�1
c means an evolutionary matrix whose

columns are LS-class distribution ⌘s�1
t . By multi-

plying them with the weight vector wp, the contri-
bution in initializing priors is determined for each
time slice. We call this value, the weighted con-
tribution. Thirdly, for every w0

i which contains wi,
the two parameters increase by the weighted con-
tribution. Lastly, for every w00

i which overlaps with
wi, the two parameters increase by r times of the
weighted contribution, where woverlap is the over-
lapping part.

The class labels and topic labels are converted
to morpheme-level features by concatenating la-
bels of LSs overlapping with a given morpheme.
We call these features as LIFE features, and these
are used to train machine-learning models, to-
gether with the features based on the raw features.

4 Experiments

The Korean TimeBank is divided into a training
dataset, a validation dataset, and a test dataset. The
statistics of the dataset are described in Table 4. As
shown in the table, only one makeinstance tag ex-
ists for each event tag in most cases, which follows
the assumption of makeinstance extractor.

4.1 Timex3 prediction
For the extent and type prediction, only the exactly
predicted extents and types are regarded as correct,
and the results are summarized in Table 5, where
MEM is trained only with the features generated
from raw features, and MEML is trained with both
of the features and LIFE features. We employ the
CRF++ library2 and MEM toolkit3. The optimal

2http://crfpp.googlecode.com/svn/trunk/doc/index.html
3http://homepages.inf.ed.ac.uk/lzhang10/maxent toolkit

parameter settings are found by a grid search with
the validation set. The optimal setting for CRF is
as follows: L1-regularization, c=0.6, and f=1. The
MEM shows its best performance without Gaus-
sian prior smoothing. Both models give generally
better performance when window size is 2. The
parameter setting for O-LIFE is as follows: a=0.1,
bt=0.1, g=0.1, bc=0.1, wp

=(1), C=10, T=10,
t1=0.4, t2=0.4, t3=0.7, and the number of iter-
ations for estimation is 1000.

As shown in the table, CRF gives generally bet-
ter performance than MEM and rules. We tried
a combination of the rules and machine-learning
models, and the combination led to an increase in
the performance. For example, the combination of
CRF and rules gives better performance than us-
ing only CRF. This can be explained that there
are some patterns that the machine-learning mod-
els could not capture, so the combination with the
rules can deal with the patterns. Note that using the
LIFE features dramatically increases the perfor-
mance. We believe that this is due to the raw fea-
tures of Korean (e.g., POS tagger) being unstable.
The LIFE features complement these unstable fea-
tures by capturing syntactic/semantic patterns that
are inherent in the given documents. Furthermore,
we observed that the combination of the rules
and machine-learning models trained with LIFE
features does not contribute to the performance.
This implies that using LIFE features allows the
machine-learning models to capture the patterns
that could not be captured by the machine-learning
models without LIFE features. The CRFL is dis-
covered to be the best, and the other remaining at-
tributes are predicted using the rules. The perfor-
mance is measured in a sequential manner, so the
performance generally decreases from the top to
bottom of the table.

Another experiments of timex3 prediction us-
ing TempEval-2 Korean dataset are conducted to
compare with the existing method of Angeli and
Uszkoreit (2013). The existing method makes use
of a latent parse conveying a language-flexible
representation of time, and extract features over
both the parse and associated temporal semantics.
The results of comparison are shown in Table 6,
where our method uses CRFL for type and rules
for value. For a fair comparison, both methods are
trained and tested using only TempEval-2 Korean
dataset. As mentioned before, TempEval-2 Korean
dataset contained errors, so we corrected them and
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Table 5: Timex3 prediction results, where P repre-
sents precision, R means recall, F represents F1
score, points represent beginPoint/endPoint, and
cal represents calendar.

Attri-
butes

Performances
Comb P R F

extent

Rules 74.79 70.95 72.82
MEM 31.79 25.1 28.05
CRF 80.34 65.42 72.11

MEM,Rules 70.61 70.75 70.68
CRF,Rules 73.05 72.33 72.69
MEML 33.51 41.34 37.02
CRF

L

81.15 72.33 76.49

type

Rules 72.71 68.97 70.79
MEM 30.26 23.89 26.7
CRF 78.88 64.23 70.81

MEM,Rules 68.64 68.77 68.71
CRF,Rules 71.06 70.36 70.7
MEML 31.88 39.16 35.15
CRF

L

75.83 67.59 71.47
value Rules 71.18 63.44 67.08
points Rules 71.18 63.44 67.08
freq Rules 71.18 63.44 67.08
mod Rules 70.07 62.45 66.04
cal Rules 70.07 62.45 66.04

Table 6: Results of timex3 prediction with
TempEval-2 Korean dataset, where the digits rep-
resent accuracy.

Attributes Angeli’s method Our method
type 82.0 100.0
value 42.0 100.0

used for this experiment. As shown in the table,
our method gives much better accuracy than the
existing method.

4.2 Event prediction

The results of event prediction are summarized in
Table 7, which are similar to the results of timex3
prediction. By a grid search, the optimal param-
eter settings are found to be the same as that of
the timex3 extractor. Employing the LIFE features
again increases the performance, and the CRFL is
discovered to be the best.

Table 7: Event prediction results.

Attri-
butes

Performances
Comb P R F

extent

Rules 75.62 44.0 55.63
MEM 33.22 15.07 20.73
CRF 45.33 35.72 39.96

MEM,Rules 43.57 47.15 45.29
CRF,Rules 72.67 64.32 68.24
MEML 37.49 56.34 45.02
CRF

L

86.49 78.5 82.3

class

Rules 63.97 37.22 47.06
MEM 31.11 14.12 19.41
CRF 34.63 27.29 30.53

MEM,Rules 36.91 39.94 38.37
CRF,Rules 61.15 54.12 57.42
MEML 34.74 51.46 41.48
CRF

L

78.63 71.37 74.82

Table 8: Makeinstance prediction results.

Attri-
butes

Performances
P R F

eventID 86.28 78.19 82.03
polarity 93.59 73.17 82.13

tense 71.03 51.97 60.02

4.3 Makeinstance prediction
All the attributes of makeinstance tag are predicted
through hand-crafted rules. The performance is
summarized in Table 8. The measurement of the
attribute POS is excluded because we simply take
the results of the Korean analyzer.

4.4 Tlink prediction
By performing a grid search with the validation
set, we found that Support Vector Machine (SVM)
of C-SVC type with Radial Basis Function (RBF)
gives the best performance when � of kernel func-
tion is 1/number of features. It is also found that
the L1-regularized Logistic Regression (LR) with
C=1 gives the best performance. We observed that
both models give better performance when a win-
dow size is 1.

There are two cases of tlink prediction: (1) tlink
prediction given correct other tags, and (2) tlink
prediction given predicted other tags. The results
of the first case are summarized in Table 9, where
the performance is measured in a sequential man-
ner. As shown in the table, we tried a combina-
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Table 9: Tlink prediction results given correct
timex3, event, and makeinstance tags.

Attri-
butes

Performances
Comb P R F

link-
age

SVM 63.84 16.72 26.49
LR 20.02 63.91 30.49

Rules 39.11 59.76 47.28
SVM,Rules 39.04 61.69 47.82

LR,Rules 21.13 77.22 33.19

rel-
Type

SVM 63.84 16.72 26.49
LR 19.18 61.24 29.22

Rules 37.27 56.95 45.06
SVM,Rules 37.27 58.88 45.64

LR,Rules 20.2 73.82 31.72

Table 10: Tlink prediction results of the combina-
tion of SVM and rules, given timex3, event, and
makeinstance tags which are predicted using LIFE
features.

Attributes Performances
P R F

linkage 34.39 38.46 36.31
relType 32.94 36.83 34.77

tion of the rules and machine-learning models,
and the combination of SVM and rules performed
the best. Note that we do not use the LIFE fea-
tures for tlink prediction because we observed that
the LIFE features do not contribute to the perfor-
mance for tlink prediction. We believe that this is
because the LIFE features represent only the syn-
tactic/semantic patterns of the given terms, but not
arbitrary relations between the terms.

The results of the second case are obtained us-
ing the best combination, and are shown in Ta-
ble 10. Note that the tlink tags are predicted with-
out the LIFE features, while the other tags (e.g.,
timex3, event, makeinstance) are obtained using
the LIFE features. To measure the impact of the
LIFE features, we also conduct the experiment of
the second case given the predicted tags without
using the LIFE features, and the results are shown
in Table 11. As shown in Table 10 and Table 11,
using the LIFE features increases the F1 score
about 6 percents.

Table 11: Tlink prediction results of the combina-
tion of SVM and rules, given the tags predicted
without using the LIFE features.

Attributes Performances
P R F

linkage 25.41 36.69 30.02
relType 24.18 34.91 28.57

5 Conclusion

We introduced a new method for extracting tem-
poral information from unstructured Korean texts.
Korean language has a complex grammar, so there
were many research issues to address prior to
achieving our goal. We presented such issues and
our solutions to them. Experimental results il-
lustrated the effectiveness of our method, espe-
cially when we adopted the extended probabilis-
tical model, Online LIFE (O-LIFE), to gener-
ate complementary features for training machine-
learning models. In addition, as there were no suf-
ficient data for this study, we have manually con-
structed the Korean TimeBank consisting of more
than 3,700 annotated sentences. We will extend
our study to interact with Knowledge-Base for
achieving better prediction of temporal informa-
tion.
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Abstract

We present a transition-based arc-eager
model to parse spinal trees, a dependency-
based representation that includes phrase-
structure information in the form of con-
stituent spines assigned to tokens. As a
main advantage, the arc-eager model can
use a rich set of features combining depen-
dency and constituent information, while
parsing in linear time. We describe a set
of conditions for the arc-eager system to
produce valid spinal structures. In experi-
ments using beam search we show that the
model obtains a good trade-off between
speed and accuracy, and yields state of the
art performance for both dependency and
constituent parsing measures.

1 Introduction

There are two main representations of the syntac-
tic structure of sentences, namely constituent and
dependency-based structures. In terms of statisti-
cal modeling, an advantage of dependency repre-
sentations is that they are naturally lexicalized, and
this allows the statistical model to capture a rich
set of lexico-syntactic features. The recent liter-
ature has shown that such lexical features greatly
favor the accuracy of statistical models for pars-
ing (Collins, 1999; Nivre, 2003; McDonald et al.,
2005). Constituent structure, on the other hand,
might still provide valuable syntactic information
that is not captured by standard dependencies.

In this work we investigate transition-based sta-
tistical models that produce spinal trees, a rep-
resentation that combines dependency and con-
stituent structures. Statistical models that use both
representations jointly were pioneered by Collins
(1999), who used constituent trees annotated with
head-child information in order to define lexical-
ized PCFG models, i.e. extensions of classic

constituent-based PCFG that make a central use
of lexical dependencies.

An alternative approach is to view the com-
bined representation as a dependency structure
augmented with constituent information. This ap-
proach was first explored by Collins (1996), who
defined a dependency-based probabilistic model
that associates a triple of constituents with each
dependency. In our case, we follow the representa-
tions proposed by Carreras et al. (2008), which we
call spinal trees. In a spinal tree (see Figure 1 for
an example), each token is associated with a spine
of constituents, and head-modifier dependencies
are attached to nodes in the spine, thus combin-
ing the two sources of information in a tight man-
ner. Since spinal trees are inherently dependency-
based, it is possible to extend dependency mod-
els for such representations, as shown by Carreras
et al. (2008) using a so-called graph-based model.
The main advantage of such models is that they
allow a large family of rich features that include
dependency features, constituent features and con-
junctions of the two. However, the consequence
is that the additional spinal structure greatly in-
creases the number of dependency relations. Even
though a graph-based model remains parseable in
cubic time, it is impractical unless some pruning
strategy is used (Carreras et al., 2008).

In this paper we propose a transition-based
parser for spinal parsing, based on the arc-eager
strategy by Nivre (2003). Since transition-based
parsers run in linear time, our aim is to speed
up spinal parsing while taking advantage of the
rich representation it provides. Thus, the re-
search question underlying this paper is whether
we can accurately learn to take greedy parsing
decisions for rich but complex structures such as
spinal trees. To control the trade-off, we use
beam search for transition-based parsing, which
has been shown to be successful (Zhang and Clark,
2011b). The main contributions of this paper are
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the following:

• We define an arc-eager statistical model for
spinal parsing that is based on the triplet re-
lations by Collins (1996). Such relations, in
conjunction with the partial spinal structure
available in the stack of the parser, provide a
very rich set of features.

• We describe a set of conditions that an arc-
eager strategy must guarantee in order to pro-
duce valid spinal structures.

• In experiments using beam search we show
that our method obtains a good trade-
off between speed and accuracy for both
dependency-based attachment scores and
constituent measures.

2 Background

2.1 Spinal Trees

A spinal tree is a generalization of a dependency
tree that adds constituent structure to the depen-
dencies in the form of spines. In this section we
describe the spinal trees used by Carreras et al.
(2008). A spine is a sequence of constituent nodes
associated with a word in the sentence. From a
linguistic perspective, a spine corresponds to the
projection of the word in the constituent tree. In
other words, the spine of a word consists of the
constituents whose head is the word. See Figure
1 for an example of a sentence and its constituent
and spinal trees. In the example the spine of each
token is the vertical sequence on top of it.

Formally a spinal tree for a sentence x1:n is a
pair (V,E), where V is a sequence of n spinal
nodes and E is a set of n spinal dependencies. The
i-th node in V is a pair (xi, �i), where xi is the i-th
word of the sentence and �i is its spine.

A spine � is a vertical sequence of constituent
nodes. We denote by N the set of constituent
nodes, and we use ? 62 N to denote a special ter-
minal node. We denote by l(�) the length of a
spine. A spine � is always non-empty, l(�) � 1,
its first node is always ?, and for any 2  j  l(�)

the j-th node of the spine is an element of N .
A spinal dependency is a tuple hh, d, pi that rep-

resents a directed dependency from the p-th node
of �h to the d-th node of V . Thus, a spinal de-
pendency is a regular dependency between a head
token h and a dependent token d augmented with

a position p in the head spine. It must be that
1  h, d  n and that 1 < p  l(�h).

The set of spinal dependencies E satisfies the
standard conditions of forming a rooted directed
projected tree (Kübler et al., 2009). Plus, E satis-
fies that the dependencies are correctly nested with
respect to the constituent structure that the spines
represent. Formally, let (h, d1, p1) and (h, d2, p2)

be two spinal dependencies associated with the
same head h. For left dependencies, correct nest-
ing means that if d1 < d2 < h then p1 � p2. For
right dependents, if h < d1 < d2 then p1  p2.

In practice, it is straightforward to obtain spinal
trees from a treebank of constituent trees with
head-child annotations in each constituent (Car-
reras et al., 2008): starting from a token, its spine
consists of the non-terminal labels of the con-
stituents whose head is the token; the parent node
of the top of the spine gives information about the
lexical head (by following the head children of the
parent) and the position where the spine attaches
to. Given a spinal tree it is trivial to recover the
constituent and dependency trees.

2.2 Arc-Eager Transition-Based Parsing

The arc-eager transition-based parser (Nivre,
2003) parses a sentence from left to right in linear
time. It makes use of a stack that stores tokens that
are already processed (partially built dependency
structures) and it chooses the highest-scoring pars-
ing action at each point. The arc-eager algorithm
adds every arc at the earliest possible opportunity
and it can only parse projective trees.

The training process is performed with an ora-
cle (a set of transitions to a parse for a given sen-
tence, (see Figure 2)) and it learns the best transi-
tion given a configuration. The SHIFT transition
removes the first node from the buffer and puts
it on the stack. The REDUCE transition removes
the top node from the stack. The LEFT-ARCt tran-
sition introduces a labeled dependency edge be-
tween the first element of the buffer and the top
element of the stack with the label t. The top el-
ement is removed from the stack (reduce transi-
tion). The RIGHT-ARCt transition introduces a la-
beled dependency edge between the top element of
the stack and the first element in the buffer with a
label d, and it performs a shift transition. Each ac-
tion can have constraints (Nivre et al., 2014), Fig-
ure 2 and Section 3.2 describe the constraints of
the spinal parser.
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Figure 1: (a) A constituent tree for This market has been very badly damaged. For each constituent, the
underlined child annotates the head child of the constituent. (b) The corresponding spinal tree.

In this paper, we took the already existent im-
plementation of arc-eager from ZPar1 (Zhang and
Clark, 2009) which is a beam-search parser imple-
mented in C++ focused on efficiency. ZPar gives
competitive accuracies, yielding state-of-the-art
results, and very fast parsing speeds for depen-
dency parsing. In the case of ZPar, the parsing
process starts with a root node at the top of the
stack (see Figure 3) and the buffer contains the
words/tokens to be parsed.

3 Transition-based Spinal Parsing

In this section we describe an arc-eager transition
system that produces spinal trees. Figure 3 shows
a parsing example. In essence, the strategy we
propose builds the spine of a token by pieces, by
adding a piece of spine each time the parser pro-
duces a dependency involving such token.

We first describe a labeling of dependencies that
encodes a triplet of constituent labels, and it is the
basis for defining an arc-eager statistical model.
Then we describe a set of constraints that guaran-

1http://sourceforge.net/projects/zpar/

tees that the arc-eager derivations we produce cor-
respond to spinal trees. Finally we discuss how to
map arc-eager derivations to spinal trees.

3.1 Constituent Triplets
We follow Collins (1996) and define a labeling for
dependencies based on constituent triplets.

Consider a spinal tree (V,E) for a sentence
x1:n. A constituent triplet of a spinal dependency
(h, d, p) 2 E is a tuple ha, b, ci where:

• a 2 N is the node at position p of �h (parent
label)

• b 2 N [ {?} is the node at position p� 1 of
�h (head label)

• c 2 N [{?} is the top node of �d (dependent
label)

For example, a dependency labeled with
hS,VP,NPi is a subject relation, while the triplet
hVP, ?,NPi represents an object relation. Note
that a constituent triplet, in essence, corresponds
to a context-free production in a head-driven
PCFG (i.e. a ! bc, where b is the head child of a).
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Initial configuration Ci = h[ ], [x1 . . . xn], ;, i
Terminal configuration Cf 2 {C |C = h⌃, [ ], Ai}
SHIFT h⌃, i|B,Ai ) h⌃|i, B,Ai
REDUCE h⌃|i, B,Ai ) h⌃, B,Ai

if 9j, t : {j

t
! i} 2 A

LEFT-ARC(ha, b, ci) h⌃|i, j|B,Ai ) h⌃, j|B,A [ {j ha,b,ci! i}i
if ¬9k, t : {i

t
! k} 2 A

(1) if (c 6= ?) _ ¬(9k : {i

t
! k} 2 A)

(3) if b = ? ) 8{i

ha0,b0,c0i
! k} 2 A, a = a

0
^ b = b

0

RIGHT-ARC(ha, b, ci) h⌃|i, j|B,Ai ) h⌃|i|j, B, A [ {i ha,b,ci! j}i
(1) if (c 6= ?) _ ¬(9k : {j

t
! k} 2 A)

(2) if ¬(9k, ha

0
, b

0
, c

0
i : {k

ha0,b0,c0i
! i} 2 A ^ c

0
= ? )

(4) if b = ? ) 8{j

ha0,b0,c0i
! k} 2 A such that j < k, a = a

0
^ b = b

0

(5) if b = ? ) 8{j

ha0,b0,c0i
! k} 2 A such that k < j ^ b

0
= ?, a = a

0

Figure 2: Arc-eager transition system with spinal constraints. ⌃ represents the stack, B represents the
buffer, A represents the set of arcs, t represents a given triplet when its components are not relevant,
ha, b, ci represents a given triplet when its components are relevant and i, j and k represent tokens of the
sentence. The constraints labeled with (1) . . . (5) are described in Section 3.2. The constraints that are
not labeled are standard constraints of the arc-eager parsing algorithm (Nivre, 2003).

In the literature, these triplets have been shown to
provide very rich parameterizations of statistical
models for parsing (Collins, 1996; Collins, 1999;
Carreras et al., 2008).

For our purposes, we associate with each spinal
dependency (h, d, p) 2 E a triplet dependency
(h, d, ha, b, ci), where the triplet is defined as
above. We then define a standard statistical model
for arc-eager parsing that uses constituent triplets
as dependency labels. An important advantage of
this model is that left-arc and right-arc transitions
can have feature descriptions that combine stan-
dard dependency features with phrase-structure in-
formation in the form of constituent triplets. As
shown by Carreras et al. (2008), this rich set of
features can obtain significant gains in parsing ac-
curacy.

3.2 Spinal Arc-Eager Constraints

We now describe constraints that guarantee that
any derivation produced by a triplet-based arc-
eager model corresponds to a spinal structure.

Let us make explicit some properties that relate
a derivation D with a token i, the arcs in D involv-
ing i, and its spine �i:

• D has at most a single arc (h, i, ha, b, ci)
where i is in the dependent position. The de-
pendent label c of this triplet defines the top
of �i. If c = ? then �i = ?, and i can not
have dependants.

• Consider the subsequence of D of left arcs
with head i, of the form (i, j, ha, b, ci). In an
arc-eager derivation this subsequence follows
a head-outwards order. Each of these arcs has
in its triplet a pair of contiguous nodes b�a of
�i. We call such pairs spinal edges. The sub-
sequence of spinal edges is ordered bottom-
up, because arcs appear head-outwards. In
addition, sibling arcs may attach to the same
position in �i. Thus, the subsequence of left
spinal edges of i in D is a subsequence with
repeats of the sequence of edges of �i.

• Analogously, the subsequence of right spinal
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Transition Stack Buffer Added Arc
[Root] [This, market, has, been, very, badly, damaged, .]

SHIFT [Root, This] [market, has, been, very, badly, damaged, .]

L-A(hNP, ?, ?i) [Root] [market, has, been, very, badly, damaged, .] market
hNP,?,?i�! This

SHIFT [Root, market] [has, been, very, badly, damaged, .]

L-A(hS, VP, NPi) [Root] [has, been, very, badly, damaged, .] has
hS,VP,NPi�! market

R-A(hTOP, ?, Si) [Root, has] [been, very, badly, damaged, .] Root
hTOP,?,Si�! has

R-A(hVP, ?, VPi) [Root, has, been] [very, badly, damaged, .] has
hVP,?,VPi�! been

SHIFT [Root, has,been, very] [badly, damaged, .]

R-A(hADVP, ?, ?i) [Root, has, been, very, badly] [damaged, .] very
hADVP,?,?i�! badly

REDUCE [Root, has, been, very] [damaged, .]

L-A(hVP, ?, ADVPi) [Root, has, been] [damaged, .] damaged
hVP,?,ADVPi�! very

R-A(hVP, ?, VPi) [Root, has, been, damaged] [.] been
hVP,?,VPi�! damaged

REDUCE [Root, has, been] [.]
REDUCE [Root, has] [.]

R-A(hS, VP, ?i) [Root, has, .] [ ] has
hS,VP,?i�! .

Figure 3: Transition sequence for This market has been very badly damaged.

edges of i in D is a subsequence with repeats
of the edges of �i. In D, right spinal edges
appear after left spinal edges.

We constrain the arc-eager transition process
such that these properties hold. Recall that a well-
formed spine starts with a terminal node ?, and so
does the first edge of the spine and only the first.
Let C be a configuration, i.e. a partial derivation.
The constraints are:

(1) An arc (h, i, ha, b, ?i) is not valid if i has de-
pendents in C.

(2) An arc (i, j, ha, b, ci) is not valid if
C contains a dependency of the form
(h, i, ha0, b0, ?i).

(3) A left arc (i, j, ha, ?, ci) is only valid if
all sibling left arcs in C are of the form
(i, j0, ha, ?, c0i).

(4) Analogous to (3) for right arcs.

(5) If C has a left arc (i, j, ha, ?, ci), then a right
arc (i, j0, ha0, ?, ci) is not valid if a 6= a0.

In essence, constraints 1-2 relate the top of a
spine with the existence of descendants, while
constraints 3-5 enforce that the bottom of the
spine is well formed. We enforce no further con-
straints looking at edges in the middle of the spine.
This means that left and right arc operations can
add spinal edges in a free manner, without ex-
plicitly encoding how these edges relate to each
other. In other words, we rely on the statistical
model to correctly build a spine by adding left and

right spinal edges along the transition process in a
bottom-up fashion.

It is easy to see that these constraints do not pre-
vent the transition process from ending. Specif-
ically, even though the constraints invalidate arc
operations, the arc-eager process can always finish
by leaving tokens in the buffer without any head
assigned, in which case the resulting derivation is
a forest of several projective trees.

3.3 Mapping Derivations to Spinal Trees
The constrained arc-eager derivations correspond
to spinal structures, but not necessarily to sin-
gle spinal trees, for two reasons. First, from the
derivation we can extract two subsequences of left
and right spinal edges, but the derivation does not
encode how these sequences should merge into a
spine. Second, as in the basic arc-eager process,
the derivation might be a forest rather than a single
tree. Next we describe processes to turn a spinal
arc-eager derivation into a tree.

Forming spines. For each token i we depart
from the top of the spine t, a sequence L of left
spinal edges, and a sequence R of right spinal
edges. The goal is to form a spine �i, such that
its top is t, and that L and R are subsequences
with repeats of the edges of �i. We look for the
shortest spine satisfying these properties. For ex-
ample, consider the derivation in Figure 3 and the
third token has:

• Top t: S

• Left edges L: VP� S

• Right edges R: ?�VP, VP� S
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In this case the shortest spine that is consistent
with the edges and the top is ?�V P � S. Our
method runs in two steps:

1. Collapse. Traverse each sequence of edges
and replace any contiguous subsequence of
identical edges by a single occurrence. The
assumption is that identical contiguous edges
correspond to sibling dependencies that at-
tach to the same node in the spine.2

2. Merge the left L and right R sequences of
edges overlapping them as much as possible,
i.e. looking for the shortest spine. We do this
in O(nm), where n and m are the lengths of
the two sequences. Whenever multiple short-
est spines are compatible with the left and
right edge sequences, we give preference to
the spine that places left edges to the bottom.

The result of this process is a spine �i with left and
right dependents attached to positions of the spine.
Note that this strategy has some limitations: (a)
it can not recover non-terminal spinal nodes that
do not participate in any triplet; and (b) it flattens
spinal structures that involve contiguous identical
spinal edges. 3

Rooting Forests. The arc-eager transition sys-
tem is not guaranteed to generate a single root
in a derivation (though see (Nivre and Fernández-
González, 2014) for a solution). Thus, after map-
ping a derivation to a spinal structure, we might
get a forest of projective spinal trees. In this case,
to produce a constituent tree from the spinal for-
est, we promote the last tree and place the rest of
trees as children of its top node.

4 Experiments

In this section we describe the performance of the
transition-based spinal parser by running it with
different sizes of the beam and by comparing it

2However, this is not always the case. For example, in the
Penn Treebank adjuncts create an additional constituent level
in the verb-phrase structure, and this can result in a series
of contiguous VP spinal nodes. The effect of flattening such
structures is mild, see below.

3These limitations have relatively mild effects on recov-
ering constituent trees in the style of the Penn Treebank. To
measure the effect, we took the correct spinal trees of the
development section and mapped them to the corresponding
arc-eager derivation. Then we mapped the derivation back to
a spinal tree using this process and recovered the constituent
tree. This process obtained 98.4% of bracketing recall, 99.5%
of bracketing precision, and 99.0 of F1 measure.

with the state-of-the-art. We used the ZPar imple-
mentation modified to incorporate the constraints
for spinal arc-eager parsing. We used the exact
same features as Zhang and Nivre (2011), which
extract a rich set of features that encode higher-
order interactions betwen the current action and
elements of the stack. Since our dependency la-
bels are constituent triplets, these features encode
a mix of constituent and dependency structure.

4.1 Data

We use the WSJ portion of the Penn Treebank4,
augmented with head-dependant information us-
ing the rules of Yamada and Matsumoto (2003).
This results in a total of 974 different constituent
triplets, which we use as dependency labels in the
spinal arc-eager model. We use predicted part-of-
speech tags5.

4.2 Results in the Development Set

In Table 1 we show the results of our parser for
the dependency trees, the table shows unlabeled
attachment score (UAS) , triplet accuracy (TA,
which would be label accuracy, LA) and triplet at-
tachment score (TAS), and spinal accuracy (SA)
(the spinal accuracy is the percentage of complete
spines that the parser correctly predicts). In or-
der to be fully comparable, for the dependency-
based metrics we report results including and ex-
cluding punctuation symbols for evaluation. The
table also shows the speed (sentences per second)
in standard hardware. We trained the parser with
different beam values, we run a number of itera-
tions until the model converges and we report the
results of the best iteration.

As it can be observed the best model is the one
trained with beam size 64, and greater sizes of the
beam help to improve the results. Nonetheless, it
also makes the parser slower. This result is ex-
pected since the number of dependency labels, i.e.
triplets, is 974 so a higher size of the beam al-
lows to test more of them when new actions are in-
cluded in the agenda. This model already provides
high results over 92.34% UAS and it can also pre-
dict most of the triplets that label the dependency

4We use the standard partition: sections 02-21 for train-
ing, section 22 for development, and section 23 for testing.

5We use the same setting as in (Carreras et al., 2008) by
training over a treebank with predicted part-of-speech tags
with mxpost (Ratnaparkhi, 1996) (accuracy: 96.5) and we
test on the development set and test set with predicted part-
of-speech tags of Collins (1997) (accuracy: 96.8).
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Dep. (incl punct) Dep. (excl punct) Const Speed
Beam-size UAS TA TAS SA UAS TA TAS LR LP F1 Sent/Sec

8 91.39 90.47 88.78 95.60 92.32 91.21 89.73 88.6 88.4 88.5 7.8
16 91.81 90.95 89.28 95.84 92.70 91.65 90.21 89.0 89.1 89.1 3.9
32 92.08 91.14 89.52 95.96 92.91 91.77 90.38 89.4 89.5 89.5 1.7
64 92.34 91.45 89.84 96.13 93.12 92.04 90.65 89.5 89.7 89.7 0.8

Table 1: UAS with predicted part-of-speech tags for the dev.set including and excluding punctuation
symbols. Constituent results for the development set. Parsing speed in sentences per second (an estimate
that varies depending on the machine). TA and TAS refer to label accuracy and labeled attachment score
where the labels are the different constituent triplets described in Section 3. SA is the spinal accuracy.

arcs (91.45 TA and 89.84 TAS) (including punctu-
ation symbols for evaluation).

Table 1 also shows the results of the parser in
the development set after transforming the depen-
dency trees by following the method described in
Section 3. The result even surpasses 89.5% F1
which is a competitive accuracy. As we can see,
the parser also provides a good trade-off between
parsing speed and accuracy.6

In order to test whether the number of depen-
dency labels is an issue for the parser, we also
trained a model on dependency trees labeled with
Yamada and Matsumoto (2003) rules, and the re-
sults are comparable to ours. For a beam of size
64, the best model with dependency labels pro-
vides 92.3% UAS for the development set includ-
ing punctuation and 93.0% excluding punctuation,
while our spinal parser for the same beam size
provides 92.3% UAS including punctuation and
93.1% excluding punctuation. This means that the
beam-search arc-eager parser is capable of coping
with the dependency triplets, since it even pro-
vides slightly better results for unlabeled attach-
ment scores. However, unlike (Carreras et al.,
2008), the arc-eager parser does not substantially
benefit of using the triplets during training.

4.3 Final Results and State-of-the-art
Comparison

Our best model (obtained with beam=64) provides
92.14 UAS, 90.91 TA and 89.32 TAS in the test
set including punctuation and 92.78 UAS, 91.53

6However, in absolute terms, our running times are slower
than typical shift-reduce parsers. Our purpose is to show a re-
lation between speed and accuracy, and we opted for a simple
implementation rather than an engineered one. As one exam-
ple, our parser considers all dependency triplets (974) in all
cases, which is somehow absurd since most of these can be
ruled out given the parts-of-speech of the candidate depen-
dency. Incorporating a filtering strategy of this kind would
result in a speedup factor constant to all beam sizes.

Parser UAS
McDonald et al. (2005) 90.9
McDonald and Pereira (2006) 91.5
Huang and Sagae (2010) 92.1
Zhang and Nivre (2011) 92.9
Koo and Collins (2010)* 93.0
Bohnet and Nivre (2012) 93.0
Koo et al. (2008) †* 93.2
Martins et al. (2010) 93.3
Ballesteros and Bohnet (2014) 93.5
Carreras et al. (2008) †* 93.5
Suzuki et al. (2009) †* 93.8
this work (beam 64) †* 92.1
this work (beam 64) † 92.8

Table 2: State-of-the-art comparison for unlabeled
attachment score for WSJ-PTB with Y&M rules.
Results marked with † use other kind of infor-
mation, and are not directly comparable. Results
marked with * include punctuation for evaluation.

TA and 90.11 TAS excluding punctuation. Table
2 compares our results with the state-of-the-art.
Our model obtains comptetitive dependency accu-
racies when compared to other systems.

In terms of constituent structure, our best model
(beam=64) obtains 88.74 LR, 89.21 LP and 88.97
F1. Table 3 compares our model with other con-
stituent parsers, including shift-reduce parsers as
ours. Our best model is competitive compared
with the rest.

5 Related Work

Collins (1996) defined a statistical model for
dependency parsing based on using constituent
triplets in the labels, which forms the basis of our
arc-eager model. In that work, a chart-based al-
gorithm was used for parsing, while here we use
greedy transition-based parsing.
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Beam-size LR LP F1
Sagae and Lavie (2005)* 86.1 86.0 86.0

Ratnaparkhi (1999) 86.3 87.5 86.9
Sagae and Lavie (2006)* 87.8 88.1 87.9

Collins (1999) 88.1 88.3 88.2
Charniak (2000) 89.5 89.9 89.5

Zhang and Clark (2009)* 90.0 89.9 89.9
Petrov and Klein (2007) 90.1 90.2 90.1

Zhu et al. (2013)-1* 90.2 90.7 90.4
Carreras et al. (2008) 90.7 91.4 91.1
Zhu et al. (2013)-2†* 91.1 91.5 91.3

Huang (2008) 91.2 91.8 91.5
Charniak (2000) 91.2 91.8 91.5

Huang et al. (2010) 91.2 91.8 91.5
McClosky et al. (2006) 91.2 91.8 91.5
this work (beam 64)* 88.7 89.2 89.0

Table 3: State-of-the-art comparison in the test
set for phrase structure parsing. Results marked
with † use additional information, such as semi-
supervised models, and are not directly compara-
ble to the others. Results marked with * are shift-
reduce parsers.

Carreras et al. (2008) was the first to use spinal
representations to define an arc-factored depen-
dency parsing model based on the Eisner algo-
rithm, that parses in cubic time. Our work can
be seen as the transition-based counterpart of that,
with a greedy parsing strategy that runs in linear
time. Because of the extra complexity of spinal
structures, they used three probabilistic non-spinal
dependency models to prune the search space of
the spinal model. In our work, we show that a sin-
gle arc-eager model can obtain very competitive
results, even though the accuracies of our model
are lower than theirs.

In terms of parsing spinal structures, Rush et al.
(2010) introduced a dual decomposition method
that uses constituent and dependency parsing rou-
tines to parse a combined spinal structure.

In a similar style to our method Hall et al.
(2007), Hall and Nivre (2008) and Hall (2008)
introduced an approach for parsing Swedish and
German, in which MaltParser (Nivre et al., 2007)
is used to predict dependency trees, whose depen-
dency labels are enriched with constituency labels.
They used tuples that encode dependency labels,
constituent labels, head relations and the attach-
ment. The last step is to make the inverse transfor-
mation from a dependency graph to a constituent

structure.

Recently Kong et al. (2015) proposed a struc-
tured prediction model for mapping dependency
trees to constituent trees, using the CKY algo-
rithm. They assume a fixed dependency tree used
as a hard constraint. Also recently, Fernández-
González and Martins (2015) proposed an arc-
factored dependency model for constituent pars-
ing. In that work dependency labels encode the
constituent node where the dependency arises as
well as the position index of that node in the head
spine. In contrast, we use constituent triplets as
dependency labels.

Our method is based on constraining a shift-
reduce parser using the arc-eager strategy. Nivre
(2003) and Nivre (2004) establish the basis for
arc-eager algorithm and arc-standard parsing algo-
rithms, which are central to most recent transition-
based parsers (Zhang and Clark, 2011b; Zhang
and Nivre, 2011; Bohnet and Nivre, 2012). These
parsers are very fast, because the number of pars-
ing actions is linear in the length of the sentence,
and they obtain state-of-the-art-performance, as
shown in Section 4.3.

For shift-reduce constituent parsing, Sagae
and Lavie (2005; 2006) presented a shift-reduce
phrase structure parser. The main difference to
ours is that their models do not use lexical de-
pendencies. Zhang and Clark (2011a) presented
a shift-reduce parser based on CCG, and as such
is lexicalized. Both spinal and CCG represen-
tations are very expressive. One difference is
that spinal trees can be directly obtained from
constituent treebanks with head-child information,
while CCG derivations are harder to obtain.

More recently, Zhang and Clark (2009) and the
subsequent work of Zhu et al. (2013) described
a beam-search shift-reduce parsers obtaining very
high results. These models use dependency in-
formation via stacking, by running a dependency
parser as a preprocess. In the literature, stacking
is a common technique to improve accuracies by
combining dependency and constituent informa-
tion, in both ways (Wang and Zong, 2011; Farkas
and Bohnet, 2012). Our model differs from stack-
ing approaches in that it natively produces the two
structures jointly, in such a way that a rich set of
features is available.
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6 Conclusions and Future Work

There are several lessons to learn from this paper.
First, we show that a simple modification to the
arc-eager strategy results in a competitive greedy
spinal parser which is capable of predicting depen-
dency and constituent structure jointly. In order
to make it work, we introduce simple constraints
to the arc-eager strategy that ensure well-formed
spinal derivations. Second, by doing this, we are
providing a good trade-off between speed and ac-
curacy, while at the same time we are providing
a dependency structure which can be really useful
for downstream applications. Even if the depen-
dency model needs to cope with a huge amount
of dependency labels (in the form of constituent
triplets), the unlabeled attachment accuracy does
not drop and the labeling accuracy (for the triplets)
is good enough for getting a good phrase-structure
parse. Overall, our work shows that greedy strate-
gies to dependency parsing can be successfuly
augmented to include constituent structure.

In the future, we plan to explore spinal deriva-
tions in new transition-based dependency parsers
(Chen and Manning, 2014; Dyer et al., 2015;
Weiss et al., 2015; Zhou et al., 2015). This would
allow to explore the spinal derivations in new ways
and to test their potentialities.
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Arc-eager parsing with the tree constraint. Compu-
tational Linguistics, 40(2):259–267.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas
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Abstract

We propose a method that learns a cross-
lingual projection of word representations
from one language into another. Our
method utilizes translatable context pairs
as bonus terms of the objective function.
In the experiments, our method outper-
formed existing methods in three language
pairs, (English, Spanish), (Japanese, Chi-
nese) and (English, Japanese), without us-
ing any additional supervisions.

1 Introduction

Vector-based representations of word meanings,
hereafter word vectors, have been widely used in
a variety of NLP applications including synonym
detection (Baroni et al., 2014), paraphrase detec-
tion (Erk and Padó, 2008), and dialogue analy-
sis (Kalchbrenner and Blunsom, 2013). The ba-
sic idea behind those representation methods is
the distributional hypothesis (Harris, 1954; Firth,
1957) that similar words are likely to co-occur
with similar context words.

A problem with the word vectors is that they
are not meant for capturing the similarity between
words in different languages, i.e., translation pairs
such as “gato” and “cat.” The meaning represen-
tations of such word pairs are usually dissimilar,
because the vast majority of the context words are
from the same language as the target words (e.g.,
Spanish for “gato” and English for “cat”). This
prevents using word vectors in multi-lingual appli-
cations such as cross-lingual information retrieval
and machine translation.

Several approaches have been made so far to
address this problem (Fung, 1998; Klementiev et

al., 2012; Mikolov et al., 2013b). In particular,
Mikolov et al. (2013b) recently explored learning
a linear transformation between word vectors of
different languages from a small amount of train-
ing data, i.e., a set of bilingual word pairs.

This study explores incorporating prior knowl-
edge about the correspondence between dimen-
sions of word vectors to learn more accurate trans-
formation, when using count-based word vectors
(Baroni et al., 2014). Since the dimensions of
count-based word vectors are explicitly associated
with context words, we can partially be aware of
the cross-lingual correspondence between the di-
mensions of word vectors by diverting the training
data. Also, word surface forms present noisy yet
useful clues on the correspondence when targeting
the language pairs that have exchanged their vo-
cabulary (e.g., “cocktail” in English and “cóctel”
in Spanish). Although apparently useful, how to
exploit such knowledge within the learning frame-
work has not been addressed so far.

We evaluated the proposed method in three lan-
guage pairs. Compared with baselines including
a method that uses vectors learned by neural net-
works, our method gave better results.

2 Related Work

Neural networks (Mikolov et al., 2013a; Bengio
et al., 2003) have recently gained much attention
as a way of inducing word vectors. Although the
scope of our study is currently limited to the count-
based word vectors, our experiment demonstrated
that the proposed method performs significantly
better than strong baselines including neural net-
works. This suggests that count-based word vec-
tors have a great advantage when learning a cross-
lingual projection. As a future work, we are also
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interested in extending the method presented here
to apply word vectors learned by neural networks.

There are also methods that directly inducing
meaning representations shared by different lan-
guages (Klementiev et al., 2012; Lauly et al.,
2014; Xiao and Guo, 2014; Hermann and Blun-
som, 2014; Faruqui and Dyer, 2014; Gouws and
Søgaard, 2015), rather than learning transforma-
tion between different languages (Fung, 1998;
Mikolov et al., 2013b; Dinu and Baroni, 2014).
However, the former approach is unable to handle
words not appearing in the training data, unlike the
latter approach.

3 Proposed Method

3.1 Learning cross-lingual projection
We begin by introducing the previous method of
learning a linear transformation from word vectors
in one language into another, which are hereafter
referred to as source and target language.

Suppose we have a training data of n examples
{(x1,z1), (x2,z2), . . . (xn,zn)}, where xi is the
count-based vector representation of a word in the
source language (e.g., “gato”), and zi is the word
vector of its translation in the target language (e.g.,
“cat”). Then, we seek for a translation matrix, W ,
such that Wxi approximates zi, by solving the
following optimization problem.

W

?
=argmin

W

nX

i=1

kWxi � zik2 +

�

2

kW k2.(1)

The second term is the L2 regularizer. Although
the regularization term does not appear in the orig-
inal formalization (Mikolov et al., 2013b), we take
this as a starting point of our investigation because
the regularizer can prevent over-fitting and gener-
ally helps learn better models.

3.2 Exploiting translatable context pairs
Within the learning framework above, we propose
exploiting the fact that dimensions of count-based
word vectors are associated with context words,
and some dimensions in the source language are
translations of those in the target language.

For illustration purpose, suppose count-based
word vectors of Spanish and English. The Span-
ish word vectors would have dimensions associ-
ated with context words such as “amigo,” “comer,”
“importante,” while the dimensions of the English
word vectors are associated with “eat,” “run,”

“small” and “importance,” and so on. Since,
for example, “friend” is a English translation of
“amigo,” the Spanish dimension associated with
“amigo” is likely to be mapped to the English di-
mension associated with “friend.” Such knowl-
edge about the cross-lingual correspondence be-
tween dimensions is considered beneficial for
learning accurate translation matrix.

We take two approaches to obtaining such cor-
respondence. Firstly, since we have already as-
sumed that a small amount of training data is avail-
able for training the translation matrix, it can also
be used for finding the correspondence between
dimensions (referred to as Dtrain). Note that it is
natural that some words in a language have many
translations in another language. Thus, for ex-
ample, Dtrain may include (“amigo”, “friend”),
(“amigo”, “fan”) and (“amigo”, “supporter”).

Secondly, since languages have evolved over
the years while often deriving or borrowing words
(or concepts) from those in other languages, those
words have similar or even the same spelling.
We take advantage of this to find the correspon-
dence between dimensions. We specifically define
function DIST(r, s) that measures the surface-level
similarity, and regard all context word pairs (r, s)
having smaller distance than a threshold1 as trans-
latable ones (referred to as Dsim).

DIST(r, s)=
Levenshtein(r, s)

min(len(r), len(s))

where function Levenshtein(r, s) represents the
Levenshtein distance between the two words, and
len(r) represents the length of the word.

3.3 New objective function
We incorporate the knowledge about the corre-
spondence between the dimensions into the learn-
ing framework. Since the correspondence ob-
tained by the methods presented above can be
noisy, we want to treat it as a soft constraint. This
consideration leads us to develop the following
new objective function:

W

?
=argmin

W

nX

i=1

kWxi � zik2 +

�

2

kW k2

��train

X

(j,k)2Dtrain

wjk � �sim

X

(j,k)2Dsim

wjk.

The third and fourth terms are newly added to
guide the learning process to strengthen wjk when

1The threshold was fixed to 0.5.
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k-th dimension in the source language corre-
sponds to j-th dimension in the target language.
Dtrain and Dsim are sets of dimension pairs found
by the two methods. �train and �sim are param-
eters representing the strength of the new terms,
and are tuned on held-out development data.

3.4 Optimization
We use Pegasos algorithm (Shalev-Shwartz et al.,
2011), an instance of the stochastic gradient de-
scent (Bottou, 2004), to optimize the new objec-
tive. Given ⌧ -th learning sample (x⌧ ,z⌧ ), we up-
date translation matrix W as follows:

W W � ⌘⌧rE⌧ (W )

where ⌘⌧ represents the learning rate and is set to
⌘⌧ =

1
�⌧ , and rE⌧ (W ) is the gradient which is

calculated from ⌧ -th sample (x⌧ ,z⌧ ):

2(Wx⌧ � z⌧ )x
T
⌧ � �trainA� �simB + �W .

A and B are gradients corresponding to the two
new terms. A is a matrix in which ajk = 1 if
(j, k) 2 Dtrain otherwise 0. B is defined simi-
larly.

4 Experiments

We evaluate our method on translation among
word vectors in four languages: English (En),
Spanish (Es), Japanese (Jp) and Chinese (Cn). We
have chosen three language pairs: (En, Es), (Jp,
Cn) and (En, Jp), for the translation, so that we
can examine the impact of each type of translat-
able context pairs integrated into the learning ob-
jective.

4.1 Setup
First, we prepared source text in the four lan-
guages from Wikipedia2 dumps following (Baroni
et al., 2014). We extracted plain text from the
XML dumps by using wp2txt.3 Since words are
concatenated in Japanese and Chinese, we used
MeCab4 and Stanford Word Segmenter5 to tok-
enize the text. Since inflection occurs in English,
Spanish, and Japanese, we used Stanford POS tag-
ger,6 Pattern,7 and MeCab to lemmatize the text.

2http://dumps.wikimedia.org/
3https://github.com/yohasebe/wp2txt/
4http://taku910.github.io/mecab/
5http://nlp.stanford.edu/software/segmenter.shtml
6http://nlp.stanford.edu/software/tagger.shtml
7http://www.clips.ua.ac.be/pages/pattern

Next, we induced count-based word vectors
from the obtained text. We considered context
windows of five words to both sides of the tar-
get word. The function words are then excluded
from the extracted context words. Since the count
vectors are very high-dimensional and sparse, we
selected top-10k frequent words as contexts words
(in other words, the number of dimensions of the
word vectors). We converted the counts into pos-
itive point-wise mutual information (Church and
Hanks, 1990) and normalized the resulting vectors
to remove the bias that is introduced by the differ-
ence of the word frequency.

Then, we compiled a seed bilingual dictionary
(a set of bilingual word pairs) for each language
pair that is used to learn and evaluate the transla-
tion matrix. We utilized cross-lingual synsets in
the Open Multilingual Wordnet8 to obtain bilin-
gual pairs.

Since our method aims to be used in expand-
ing bilingual dictionaries, we designed datasets as-
suming such a situation. Considering that more
frequent words are likely to be registered in a dic-
tionary, we sorted words in the source language
by frequency and used the top-11k words and
their translations in the target language as a train-
ing/development data, and used the subsequent 1k
words and their translations as a test data.

We have compared our method with the follow-
ing three methods:

Baseline learns a translation matrix using Eq. 1
for the same count-based word vectors as the
proposed method. Comparison between the
proposed method and this method reveals the
impact of incorporating the cross-lingual cor-
respondences between dimensions.

CBOW learns a translation matrix using Eq. 1
for word vectors learned by a neural net-
work (specifically, continuous bag-of-words
(CBOW)) (Mikolov et al., 2013b). Compari-
son between this method and the above base-
line reveals the impact of the vector repre-
sentation. Note that the CBOW-based word
vectors take rare context words as well as
the top-10k frequent words into account. We
used word2vec9 to obtain the vectors for each
language.10 Since Mikolov et al. (2013b)

8http://compling.hss.ntu.edu.sg/omw/
9https://code.google.com/p/word2vec/

10The threshold of sub-sampling of words was set to 1e-3
to reduce the effect of very frequent words, e.g., “a” or “the.”
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Table 1: Experimental results: the accuracy of the translation.
Testset Baseline CBOW Direct Mapping Proposedw/o surface Proposed

P@1 P@5 P@1 P@5 P@1 P@5 P@1 P@5 P@1 P@5
Es!En 0.1% 0.5% 7.5% 22.0% 45.7% 61.1% 46.6% 62.4% 54.7% 67.6%
Es En 0.1% 0.6% 7.1% 18.9% 11.9% 26.1% 28.7% 45.7% 31.3% 49.6%
Jp !Cn 0.6% 1.6% 5.4% 13.8% 9.3% 22.2% 11.1% 26.2% 15.5% 34.0%
Jp  Cn 0.3% 1.2% 2.9% 11.3% 11.6% 26.8% 7.8% 21.6% 13.1% 27.9%
En! Jp 0.3% 1.1% 4.9% 13.3% 5.4% 13.9% 18.5% 36.4% 19.3% 37.1%
En Jp 0.2% 1.0% 6.5% 19.1% 22.3% 37.4% 32.3% 51.0% 32.5% 51.9%

reported the accurate translation can be ob-
tained when the vectors in the source lan-
guage is 2-4x larger than that in the target
language, we prepared m-dimensional (m =

100, 200, 300) vectors for the target language
and n-dimensional (n = 2m, 3m, 4m) vec-
tors for the source language, and optimized
their combinations on the development data.

Direct Mapping exploits the training data to map
each dimension in a word vector in the source
language to the corresponding dimension in
a word vector in the target language, refer-
ring to the bilingual pairs in the training data
(Fung, 1998). To deal with words that have
more than one translation, we weighted each
translation by a reciprocal rank of its fre-
quency among the translations in the target
language, as in (Prochasson et al., 2009).

Note that all methods, including the proposed
methods, use the same amount of supervision
(training data) and thereby they are completely
comparable with each other.

Evaluation procedure For each word vector in
the source language, we translate it into the target
language and evaluate the quality of the translation
as in (Mikolov et al., 2013b): i) measure the cosine
similarity between the resulting word vector and
all the vectors in the test data (in the target lan-
guage), ii) next choose the top-n (n = 1, 5) word
vectors that have the highest similarity against the
resulting vector, and iii) then examine whether the
chosen vectors include the correct one.

4.2 Results
Table 1 shows results of the translation between
word vectors in each language pair. Proposed sig-
nificantly improved the translation quality against
Baseline, and performed the best among all of
the methods. Although the use of CBOW-based
word vectors (CBOW) has improved the trans-
lation quality against Baseline, the performance

Figure 1: The impact of the size of training data
(Es! En).

gain is smaller than that obtained by our new ob-
jective. Proposedw/o surface uses only the training
data to find translatable context pairs by setting
�sim = 0. Thus, its advantage over Direct Map-
ping confirms the importance of learning a trans-
lation matrix. In addition, the greater advantage of
Proposed over Proposedw/o surface in the transla-
tion between (En, Es) or (Jp, Cn) conforms to our
expectation that surface-level similarity is more
useful for translation between the language pairs
which have often exchanged their vocabulary.

Figure 1 shows P@1 (Es! En) plotted against
the size of training data. Remember that the train-
ing data is not only used to learn a translation ma-
trix in the methods other than Direct Mapping but
also is used to map dimensions in Direct Mapping
and the proposed methods. Proposed performs
the best among all methods regardless the size of
training data. Comparison between Direct Map-
ping and Proposedw/o surface reveals that learning
a translation matrix is not always effective when
the size of the training data is small, since it may
be suffered from over-fitting (the size of the trans-
lation matrix is too large for the size of training
data). We can see that surface-level similarity is
beneficial especially when the size of training data
is small.
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5 Conclusion

We have proposed the use of prior knowledge
in accurately translating word vectors. We have
specifically exploited two types of translatable
context pairs, which are taken from the training
data and guessed by surface-level similarity, to de-
sign a new objective function in learning the trans-
lation matrix. Experimental results confirmed that
our method significantly improved the translation
among word vectors in four languages, and the ad-
vantage was greater than that obtained by the use
of a word vector learned by a neural network.
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Abstract

Neural language models (NLMs) have
been able to improve machine translation
(MT) thanks to their ability to generalize
well to long contexts. Despite recent suc-
cesses of deep neural networks in speech
and vision, the general practice in MT
is to incorporate NLMs with only one or
two hidden layers and there have not been
clear results on whether having more lay-
ers helps. In this paper, we demonstrate
that deep NLMs with three or four lay-
ers outperform those with fewer layers in
terms of both the perplexity and the trans-
lation quality. We combine various tech-
niques to successfully train deep NLMs
that jointly condition on both the source
and target contexts. When reranking n-
best lists of a strong web-forum baseline,
our deep models yield an average boost
of 0.5 TER / 0.5 BLEU points compared
to using a shallow NLM. Additionally, we
adapt our models to a new sms-chat do-
main and obtain a similar gain of 1.0 TER
/ 0.5 BLEU points.1

1 Introduction

Deep neural networks (DNNs) have been success-
ful in learning more complex functions than shal-
low ones (Bengio, 2009) and exceled in many
challenging tasks such as in speech (Hinton et al.,
2012) and vision (Krizhevsky et al., 2012). These
results have sparked interest in applying DNNs
to natural language processing problems as well.
Specifically, in machine translation (MT), there

1Our code and related materials are publicly available at
http://stanford.edu/˜lmthang/nlm.

has been an active body of work recently in uti-
lizing neural language models (NLMs) to improve
translation quality. However, to the best of our
knowledge, work in this direction only makes use
of NLMs with either one or two hidden layers. For
example, Schwenk (2010, 2012) and Son et al.
(2012) used shallow NLMs with a single hidden
layer for reranking. Vaswani et al. (2013) consid-
ered two-layer NLMs for decoding but provided
no comparison among models of various depths.
Devlin et al. (2014) reported only a small gain
when decoding with a two-layer NLM over a sin-
gle layer one. There have not been clear results on
whether adding more layers to NLMs helps.

In this paper, we demonstrate that deep NLMs
with three or four layers are better than those
with fewer layers in terms of the perplexity and
the translation quality. We detail how we com-
bine various techniques from past work to suc-
cessfully train deep NLMs that condition on both
the source and target contexts. When reranking n-
best lists of a strong web-forum MT baseline, our
deep models achieve an additional improvement
of 0.5 TER / 0.5 BLEU compared to using a shal-
low NLM. Furthermore, by fine-tuning general in-
domain NLMs with out-of-domain data, we obtain
a similar boost of 1.0 TER / 0.5 BLEU points over
a strong domain-adapted sms-chat baseline com-
pared to utilizing a shallow NLM.

2 Neural Language Models

We briefly describe the NLM architecture and
training objective used in this work as well as com-
pare our approach to other related work.
Architecture. Neural language models are fun-
damentally feed-forward networks as described in
(Bengio et al., 2003), but not necessarily lim-
ited to only a single hidden layer. Like any
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other language model, NLMs specify a distribu-
tion, p(w|c), to predict the next word w given a
context c. The first step is to lookup embeddings
for words in the context and concatenate them to
form an input, h(0), to the first hidden layer. We
then repeatedly build up hidden representations as
follows, for l = 1, . . . , n:

h(l)
= f

⇣
W (l)h(l�1)

+ b(l)
⌘

(1)

where f is a non-linear fuction such as tanh. The
predictive distribution, p(w|c), is then derived us-
ing the standard softmax:

s = W (sm)h(n)
+ b(sm)

p(w|c) =

exp(sw)P
w2V exp(sw)

(2)

Objective. The typical way of training NLMs is
to maximize the training data likelihood, or equiv-
alently, to minimize the cross-entropy objective of
the following form:

P
(c,w)2T � log p(w|c).

Training NLMs can be prohibitively slow due
to the computationally expensive softmax layer.
As a result, past works have tried to use a more
efficient version of the softmax such as the hi-
erarchical softmax (Morin, 2005; Mnih and Hin-
ton, 2007; Mnih and Hinton, 2009) or the class-
based one (Mikolov et al., 2010; Mikolov et al.,
2011). Recently, the noise-contrastive estimation
(NCE) technique (Gutmann and Hyvärinen, 2012)
has been applied to train NLMs in (Mnih and Teh,
2012; Vaswani et al., 2013) to avoid explicitly
computing the normalization factors.

Devlin et al. (2014) used a modified version
of the cross-entropy objective, the self-normalized
one. The idea is to not only improve the predic-
tion, p(w|c), but also to push the normalization
factor per context, Zc, close to 1:

J =

X

(c,w)2T

� log p(w|c) + ↵ log

2
(Zc) (3)

While self-normalization does not lead to speed up
in training, it allows trained models to be applied
efficiently at test time without computing the nor-
malization factors. This is similar in flavor to NCE
but allows for flexibility (through ↵) in how hard
we want to “squeeze” the normalization factors.
Training deep NLMs. We follow (Devlin et al.,
2014) to train self-normalized NLMs, condition-
ing on both the source and target contexts. Unlike

(Devlin et al., 2014), we found that using the recti-
fied linear function, max{0, x}, proposed in (Nair
and Hinton, 2010), works better than tanh. The
rectified linear function was used in (Vaswani et
al., 2013) as well. Furthermore, while these works
use a fixed learning rate throughout, we found that
having a simple learning rate schedule is useful
in training well-performing deep NLMs. This has
also been demonstrated in (Sutskever et al., 2014;
Luong et al., 2015) and is detailed in Section 3.
We do not perform any gradient clipping and no-
tice that learning is more stable when short sen-
tences of length less than or equal to 2 are re-
moved. Bias terms are used for all hidden layers
as well as the softmax layer as described earlier,
which is slightly different from other work such as
(Vaswani et al., 2013). All these details contribute
to our success in training deep NLMs.

For simplicity, the same vocabulary is used for
both the embedding and the softmax matrices.2 In
addition, we adopt the standard softmax to take ad-
vantage of GPUs in performing large matrix mul-
tiplications. All hyperparameters are given later.

3 Experiments

3.1 Data

We use the Chinese-English bitext in the DARPA
BOLT (Broad Operational Language Translation)
program, with 11.1M parallel sentences (281M
Chinese words and 307M English words). We re-
serve 585 sentences for validation, i.e., choosing
hyperparameters, and 1124 sentences for testing.3

3.2 NLM Training

We train our NLMs described in Section 2 with
SGD, using: (a) a source window of size 5, i.e.,
11-gram source context4, (b) a 4-word target his-
tory, i.e., 5-gram target LM, (c) a self-normalized
weight ↵ = 0.1, (d) a mini-batch of size 128, and
(e) a learning rate of 0.1 (training costs are nor-
malized by the mini-batch size). All weights are
uniformly initialized in [�0.01, 0.01]. We train
our models for 4 epochs (after 2 epochs, the learn-
ing rate is halved every 0.5 epoch). The vocab-
ularies are limited to the top 40K frequent words
for both Chinese and English. All words not in

2Some work (Schwenk, 2010; Schwenk et al., 2012) uti-
lize a smaller softmax vocabulary, called short-list.

3The test set is from BOLT and labeled as p1r6 dev.
4We used an alignment heuristic similar to Devlin et al.

(2014) but applicable to our phrase-based MT system.
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Models Valid Test | log Z|
1 layer 9.39 8.99 0.51
2 layers 9.20 8.96 0.50
3 layers 8.64 8.13 0.43
4 layers 8.10 7.71 0.35

Table 1: Training NLMs – validation and test
perplexities achieved by self-normalized NLMs of
various depths. We report the | log Z| value (base
e), similar to Devlin et al. (2014), to indicate how
good each model is in pushing the log normaliza-
tion factors towards 0. All perplexities are derived
by explicitly computing the normalization factors.

these vocabularies are replaced by a universal un-
known symbol. Embeddings are of size 256 and
all hidden layers have 512 units each. Our train-
ing speed on a single Tesla K40 GPU device is
about 1000 target words per second and it gener-
ally takes about 10-14 days to fully train a model.

We present the NLM training results in Table 1.
With more layers, the model succeeds in learning
more complex functions; the prediction, hence,
becomes more accurate as evidenced by smaller
perplexities for both the validation and test sets.
Interestingly, we observe that deeper nets can learn
self-normalized NLMs better: the mean log nor-
malization factor, | log Z| in Eq. (3), is driven to-
wards 0 as the depth increases.5

3.3 MT Reranking with NLMs
Our MT models are built using the Phrasal MT
toolkit (Cer et al., 2010). In addition to the stan-
dard dense feature set6, we include a variety of
sparse features for rules, word pairs, and word
classes, as described in (Green et al., 2014). Our
decoder uses three language models.7 We use a
tuning set of 396K words in the newswire and web
domains and tune our systems using online ex-
pected error rate training as in (Green et al., 2014).
Our tuning metric is (BLEU-TER)/2.

We run a discriminative reranker on the 1000-
best output of a decoder with MERT. The features
used in reranking include all the dense features,

5As a reference point, though not directly comparable,
Devlin et al. (2014) achieved 0.68 for | log Z| on a different
test set with the same self-normalized constant ↵=0.1.

6Consisting of forward and backward translation mod-
els, lexical weighting, linear distortion, word penalty, phrase
penalty and language model.

7One is trained on the English side of the bitext, one
is trained on a 16.3-billion-word monolingual corpus taken
from various domains, and one is a class-based language
model trained on the same large monolingual corpus.

System dev test1 test2
T# B" T# B" T# B"

baseline 53.7 33.1 55.1 31.3 63.5 16.5
Reranking

1 layer 52.9 34.3 54.5 32.0 63.1 16.7
2 layers 52.7 34.1 54.3 31.9 63.0 16.8
3 layers 52.5 34.5 54.3 32.3 62.5 17.3
4 layers 52.6 34.7 54.1 32.4 62.7 17.2
vs. baseline +1.2† +1.6† +1.0† +1.1† +1.0† +0.8†

vs. 1 layer +0.4† +0.4† +0.4† +0.4† +0.6† +0.6†

Table 2: Web-forum Results – TER (T)
and BLEU (B) scores on both the dev set
(dev10wb dev), used to tune reranking weights,
and the test sets (dev10wb syscomtune and
p1r6 dev accordingly). Relative improvements
between the best system and the baseline as well
as the 1-layer model are bolded. † marks improve-
ments that are statistically significant (p<0.05).

an aggregate decoder score, and an NLM score.
We learn the reranker weights on a second tuning
set, different from the decoder tuning set, to make
the reranker less biased towards the dense features.
This second tuning set consists of 33K words of
web-forum text and is important to obtain good
improvements with reranking.

3.4 Results

As shown in Table 2, it is not obvious if the depth-
2 model is better than the single layer one, both
of which are what past work used. In contrast,
reranking with deep NLMs of three or four lay-
ers are clearly better, yielding average improve-
ments of 1.0 TER / 1.0 BLEU points over the base-
line and 0.5 TER / 0.5 BLEU points over the sys-
tem reranked with the 1-layer model, all of which
are statisfically significant according to the test de-
scribed in (Riezler and Maxwell, 2005).

The fact that the improvements in terms of the
intrinsic metrics listed in Table 1 do translate into
gains in translation quality is interesting. It rein-
forces the trend reported in (Luong et al., 2015)
that better source-conditioned perplexities lead to
better translation scores. This phenomon is a use-
ful result as in the past, many intrinsic metrics,
e.g., alignment error rate, do not necessarily cor-
relate with MT quality metrics.

3.5 Domain Adaptation

For the sms-chat domain, we use a tune set of
260K words in the newswire, web, and sms-chat
domains to tune the decoder weights and a sepa-
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System dev test
T# B" T# B"

baseline 62.2 18.7 57.3 23.3
Reranking

1 layer (5.42, 0.51) 60.1 22.0 56.2 25.9
2 layers (5.50, 0.51) 60.7 21.5 56.3 26.0
3 layers (5.34 0.43) 59.9 21.4 55.2 26.4
vs. baseline +2.3‡ +3.3‡ +2.1‡ +3.1‡

vs. 1 layer +0.2 -0.6 +1.0‡ +0.5

Table 3: Domain-adaptation Results – transla-
tion scores for the sms-chat domain similar to
Table 2. We use p2r2smscht dev for dev and
p2r2smscht syscomtune for test. The test perplex-
ities and the | log Z| values of our domain-adapted
NLMs are shown in italics. ‡ marks improvements
that are statistically significant (p<0.01).

rate small, 8K words set to tune reranking weights.
To train adapted NLMs, we use models previously
trained on general in-domain data and further fine-
tune with out-domain data for about 4 hours.8

Similar to the web-forum domain, for sms-chat,
Table 3 shows that on the test set, our deep NLM
with three layers yields a significant gain of 2.1
TER / 3.1 BLEU points over the baseline and 1.0
TER / 0.5 BLEU points over the 1-layer reranked
system. It is worth pointing out that for such a
small amount of out-domain training data, depth
becomes less effective as exhibited through the in-
significant BLEU gain in test and a drop in dev
when comparing between the 1- and 3-layer mod-
els. We exclude the 4-layer NLM as it seems to
have overfitted the training data. Nevertheless, we
still achieve decent gains in using NLMs for MT
domain adaptation.

4 Analysis

4.1 NLM Training
We show in Figure 1 the learning curves for vari-
ous NLMs, demonstrating that deep nets are better
than the shallow NLM with a single hidden layer.
Starting from minibatch 20K, the ranking is gen-
erally maintained that deeper NLMs have better
cross-entropies. The gaps become less discernible
from minibatch 30K onwards, but numerically, as
the model becomes deeper, the average gaps, in
perplexities, are consistently 40.1, 1.1, and 2.0.

8Our sms-chat corpus consists of 146K sentences (1.6M
Chinese and 1.9M English words). We randomly select 3000
sentences for validation and 3000 sentences for test. Models
are trained for 8 iterations with the same hyperparameters.
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Figure 1: NLM Learning Curve – test cross-
entropies (loge perplexities) for various NLMs.

4.2 Reranking Settings
In Table 4, we compare reranking using all dense
features (All) to conditions which use only dense
LM features (LM) and optionally, include a word
penalty (WP) feature. All these settings include
an NLM score and an aggregate decoder score. As
shown, it is best to include all dense features at
reranking time.

All LMs + WP LMs
1 layer 11.3 11.3 11.4
2 layers 11.2 11.4 11.5
3 layers 11.0 11.1 11.4
4 layers 10.9 11.2 11.3

Table 4: Reranking Conditions – (TER-BLEU)/2
scores when reranking the web-forum baseline.

5 Related Work

It is worth mentioning another active line of re-
search in building end-to-end neural MT systems
(Kalchbrenner and Blunsom, 2013; Sutskever et
al., 2014; Bahdanau et al., 2015; Luong et al.,
2015; Jean et al., 2015). These methods have
not yet demonstrated success on challenging lan-
guage pairs such as English-Chinese. Arsoy et al.
(2012) have preliminarily examined deep NLMs
for speech recognition, however, we believe, this
is the first work that puts deep NLMs into the con-
text of MT.

6 Conclusion

In this paper, we have bridged the gap that past
work did not show, that is, neural language mod-
els with more than two layers can help improve
translation quality. Our results confirm the trend
reported in (Luong et al., 2015) that source-
conditioned perplexity strongly correlates with
MT performance. We have also demonstrated the
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use of deep NLMs to obtain decent gains in out-
of-domain conditions.
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Sébastien Jean, Kyunghyun Cho, Roland Memisevic,
and Yoshua Bengio. 2015. On using very large tar-
get vocabulary for neural machine translation. In
ACL.

N. Kalchbrenner and P. Blunsom. 2013. Recurrent
continuous translation models. In EMNLP.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. 2012.
ImageNet classification with deep convolutional
neural networks. In NIPS.

M.-T. Luong, I. Sutskever, Q. V. Le, O. Vinyals, and
W. Zaremba. 2015. Addressing the rare word prob-
lem in neural machine translation. In ACL.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan
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Abstract
The emergence of user forums in elec-
tronic news media has given rise to
the proliferation of opinion manipulation
trolls. Finding such trolls automatically
is a hard task, as there is no easy way to
recognize or even to define what they are;
this also makes it hard to get training and
testing data. We solve this issue pragmati-
cally: we assume that a user who is called
a troll by several people is likely to be one.
We experiment with different variations of
this definition, and in each case we show
that we can train a classifier to distinguish
a likely troll from a non-troll with very
high accuracy, 82–95%, thanks to our rich
feature set.

1 Introduction
With the rise of social media, it became normal
for people to read and follow other users’ opinion.
This created the opportunity for corporations, gov-
ernments and others to distribute rumors, misin-
formation, speculation and to use other dishonest
practices to manipulate user opinion (Derczynski
and Bontcheva, 2014a). They could consistently
use trolls (Cambria et al., 2010), write fake posts
and comments in public forums, thus making ve-
racity one of the challenges in digital social net-
working (Derczynski and Bontcheva, 2014b).

The practice of using opinion manipulation
trolls has been reality since the rise of Internet and
community forums. It has been shown that user
opinions about products, companies and politics
can be influenced by posts by other users in online
forums and social networks (Dellarocas, 2006).
This makes it easy for companies and political par-
ties to gain popularity by paying for “reputation
management” to people or companies that write in
discussion forums and social networks fake opin-
ions from fake profiles.

In Europe, the problem has emerged in the con-
text of the crisis in Ukraine.12 There have been a
number of publications in news media describing
the behavior of organized trolls that try to manipu-
late other users’ opinion.345 Still, it is hard for fo-
rum administrators to block them as trolls try not
to violate the forum rules.

2 Related Work

Troll detection and offensive language use are un-
derstudied problems (Xu and Zhu, 2010). They
have been addressed using analysis of the seman-
tics and sentiment in posts to filter out trolls (Cam-
bria et al., 2010); there have been also studies of
general troll behavior (Herring et al., 2002; Buck-
els et al., 2014). Another approach has been to
use lexico-syntactic features about user’s writing
style, structure and specific cyber-bullying con-
tent (Chen et al., 2012); cyber-bullying was de-
tected using sentiment analysis (Xu et al., 2012);
graph-based approaches over signed social net-
works have been used as well (Ortega et al., 2012;
Kumar et al., 2014). A related problem is that of
trustworthiness of statements on the Web (Rowe
and Butters, 2009). Yet another related problem
is Web spam detection, which has been addressed
as a text classification problem (Sebastiani, 2002),
e.g., using spam keyword spotting (Dave et al.,
2003), lexical affinity of arbitrary words to spam
content (Hu and Liu, 2004), frequency of punc-
tuation and word co-occurrence (Li et al., 2006).
See (Castillo and Davison, 2011) for an overview
on adversarial web search.

1
http://www.forbes.com/sites/peterhimler/2014/05/06/

russias-media-trolls/
2
http://www.theguardian.com/commentisfree/2014/may/04/

pro-russia-trolls-ukraine-guardian-online
3
http://www.washingtonpost.com/

news/the-intersect/wp/2014/06/04/
hunting-for-paid-russian-trolls-in-the-washington-post-comments-section/

4
http://www.theguardian.com/world/2015/apr/02/

putin-kremlin-inside-russian-troll-house
5
http://www.theguardian.com/commentisfree/2014/may/04/

pro-russia-trolls-ukraine-guardian-online
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Object Count
Publications 34,514
Comments 1,930,818
-of which replies 897,806
User profiles 14,598
Topics 232
Tags 13,575

Table 1: Statistics about our dataset.

3 Data

We crawled the largest Internet community forum
of a Bulgarian media, that of Dnevnik.bg,6 a daily
newspaper that requires users to be signed in in
order to comment, which makes it easy to track
them. The platform allows users to comment on
news, to reply to other users’ comments and to
vote on them with thumbs up or thumbs down. In
the forum, the official language is Bulgarian and
all comments are written in Bulgarian.

Each publication has a category, a subcategory,
and a list of manually selected tags (keywords).
We crawled all publications in the Bulgaria, Eu-
rope, and World categories, which turned out to be
mostly about politics, for the period 01-Jan-2013
to 01-Apr-2015, together with the comments and
the corresponding user profiles as seen in Table 1.

We considered as trolls users who were called
such by at least n distinct users, and non-trolls if
they have never been called so. Requiring that a
user should have at least 100 comments in order to
be interesting for our experiments left us with 317
trolls and 964 non-trolls. Here are two examples
(translated):

“To comment from ”Historama”: Murzi7, you
know that you cannot manipulate public opinion,
right?”

“To comment from ”Rozalina”: You, trolls, are
so funny :) I saw the same signature under other
comments:)”

6http://dnevnik.bg
7Murzi is the short for murzilka. According to series of re-

cent publications in Bulgarian media, Russian Internet users
reportedly use the term murzilka to refer to Internet trolls. As
a result, this term was adopted by some pro-Western Bulgar-
ian forum users as a way to refer to users that they perceive
as pro-Russian opinion manipulation trolls. Despite the term
being now in circulation in Bulgaria, it is not really in use in
Russia. In fact, the vast majority of Russian Internet users
have never heard that murzilka, the name of a cute monkey-
like children’s toy and of a popular Soviet-time children’s
journal, could possibly be used to refer to Internet trolls.

4 Method

Our features are motivated by several publications
about troll behavior mentioned above.

For each user, we extract statistics such as num-
ber of comments posted, number of days in the
forum, number of days with at least one comment,
and number of publications commented on. All
(other) features are scaled with respect to these
statistics, which makes it possible to handle users
that registered only recently. Our features can be
divided in the following groups:

Vote-based features. We calculate the num-
ber of comments with positive and negative votes
for each user. This is useful as we assume that
non-trolls are likely to disagree with trolls, and to
give them negative votes. We use the sum from
all comments as a feature. We also count sepa-
rately the comments with high, low and medium
positive to negative ratio. Here are some ex-
ample features: the number of comments where
(positive/negative) < 0.25, and the number of
comments where (positive/negative) < 0.50.

Comment-to-publication similarity. These
features measure the similarity between comments
and publications. We use cosine and TF.IDF-
weighted vectors for the comment and for the pub-
lication. The idea is that trolls might try to change
or blurr the topic of the publication if it differs
from his/her views or agenda.

Comment order-based features. We count
how many user comments the user has among the
first k. The idea is that trolls might try to be among
the first to comment to achieve higher impact.

Top loved/hated comments. We calculate the
number of times the user’s comments were among
the top 1, 3, 5, 10 most loved/hated comments
in some thread. The idea is that in the comment
thread below many publications there are some
trolls that oppose all other users, and usually their
comments are among the most hated.

Comment replies-based features. These are
features that count how many user comments are
replies to other comments, how many are replies
to replies, and so on. The assumption here is that
trolls try to post the most comments and want to
dominate the conversation, especially when de-
fending a specific cause. We further generate com-
plex features that mix comment reply features and
vote counts-based features, thus generating even
more features that model the relationship between
replies and user agreement/disagreement.
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Time-based features. We generate features
from the number of comments posted during dif-
ferent time periods on a daily or on a weekly ba-
sis. We assume that users that write comments on
purpose could be paid, or could be activists of po-
litical parties, and they probably have some usual
times to post, e.g., maybe they do it as a full-time
job. On the other hand, most non-trolls work from
9:00 to 18:00, and thus we could expect that they
should probably post less comments during this
part of the day. We have time-based features that
count the number of comments from 9:00 to 9:59,
from 12:00 to 12:59, during working hours 9:00-
18:00, etc.

All the above features are scaled, i.e., divided
by the number of comments, the number of days
in the forum, the number of days with more than
one comment. Overall, we have a total of 338 such
scaled features. In addition, we define a new set of
features, which are non-scaled.

Non-scaled features. The non-scaled features
are features based on the same statistics as above,
but just not divided by the number of comments /
number of days in the forum / number of days with
more that one comment, etc. For example, one
non-scaled feature is the number of times a com-
ment by the target user was voted negatively, i.e.,
as thumbs down, by other users. As a non-scaled
feature, we would use this number directly, while
above we would scale it by dividing it by the total
number of user’s comments, by the total number of
publications the user has commented on, etc. Ob-
viously, there is a danger in using non-scaled fea-
tures: older users are likely to have higher values
for them compared to recently-registered users.

5 Experiments and Evaluation

As we mentioned above, in our experiments,
we focus on users with at least 100 comments.
This includes 317 trolls and 964 non-trolls. For
each user, we extract the above-described features,
scaled and non-scaled, and we normalize them in
the -1 to 1 interval. We then use a support vector
machine (SVM) classifier (Chang and Lin, 2011)
with an RBF kernel with C=32 and g=0.0078125
as this was the best-performing configuration. In
order to avoid overfitting, we used 5-fold cross-
validation. The results are shown in Tables 2 and
3, where the Accuracy column shows the cross-
validation accuracy and the Diff column shows the
improvement over the majority class baseline.

Features Accuracy Diff
AS + Non-scaled 94.37(+3.74) 19.13
AS � total comments 91.17(+0.54) 15.93
AS � comment order 91.10(+0.46) 15.85
AS � similarity 91.02(+0.39) 15.77
AS � time day of week 90.78(+0.15) 15.53
AS � trigg rep range 90.78(+0.15) 15.53
AS � time all 90.71(+0.07) 15.46
All scaled (AS) 90.63 15.38
AS � top loved/hated 90.55(-0.07) 15.30
AS � time hours 90.47(-0.15) 15.22
AS � vote u/down rep 90.47(-0.15) 15.22
AS � similarity top 90.32(-0.31) 15.07
AS � triggered cmnts 90.32(-0.31) 15.07
AS � is rep to has rep 90.08(-0.54) 14.83
AS � vote up/down all 89.69(-0.93) 14.44
AS � is reply 89.61(-1.01) 14.36
AS � up/down votes 88.29(-2.34) 13.04

Table 2: Results for classifying 317 mentioned
trolls vs. 964 non-trolls for All Scaled (AS) ‘–’
(minus) some scaled feature group. The Accuracy
column shows the cross-validation accuracy, and
the Diff column shows the improvement over the
majority class baseline.

Table 2 presents the results when using all fea-
tures, as well as when using all features but ex-
cluding/adding one feature group. Here All scaled
(AS) refers to the features from all groups ex-
cept for those in the non-scaled features group de-
scribed last in the previous section.

We can see that the best feature set is the
one that includes all features, including the Non-
scaled features group: adding this group con-
tributes +3.74 to accuracy. We further see that ex-
cluding features based on time, e.g., AS� time day
of week and AS � time all, improves the accuracy,
which means that time of posting is not so impor-
tant as a feature. Similarly, we see that it hurts
accuracy to use as features the total number or the
order of comments. Finally, the most important
features turn out to be those based on replies and
on thumbs up/down votes.

Next, Table 3 shows results of experiments
when using different feature groups in isolation.
As expected, the features that hurt most when ex-
cluded from the All scaled feature set, perform
best when used alone. Here, the similarity features
perform worst, which suggests that trolls tend not
to change the topic.
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Features Accuracy Diff
All Non-scaled 93.21 17.95
Only vote up/down 87.67 12.41
Only vote up/down totals 87.20 11.94
Only reply up/down voted 86.10 10.85
Only time hours 84.93 9.68
Only time all 84.31 9.06
Only is reply with rep 82.83 7.57
Only triggered rep range 82.83 7.57
Only day of week 82.28 7.03
Only total comments 82.28 7.03
Only reply status 80.72 5.46
Only triggered replies 80.33 5.07
Only comment order 80.09 4.84
Only top loved/hated 79.39 4.14
Only pub similarity top 75.25 0.00
Only pub similarity 75.25 0.00

Table 3: Results for classifying 317 mentioned
trolls vs. 964 non-trolls for individual feature
groups (all scaled, except for line 1). The Accu-
racy column shows the cross-validation accuracy,
and the Diff column shows the improvement over
the majority class baseline.

6 Discussion

We considered as trolls people who try to manipu-
late other users’ opinion. Our positive and neg-
ative examples are based on trolls having been
called such by at least n other users (we used
n = 5).

However, this is much of a witch hunt and
despite our good overall results, the data needs
some manual checking in future work. We are
also aware that some trolls can actually accuse
non-trolls of being trolls, and we cannot be sure
whether this is true or not unless we have some-
one to check it manually. In fact, we do have a list
of trolls that are known to have been paid (as ex-
posed in Bulgarian media), but there are only 15
of them, and we could not build a good classifier
using only them due to the severe class imbalance.

As the choice of a minimum number of accu-
sations for a user of being a troll that we used to
define a troll, namely n = 5, might be seen as
arbitrary, we also experimented with n = 3, 4, 5,
6, while keeping the required minimum number of
comments per user to be 100 as before. The re-
sults are shown in Table 4. We can see that as the
number of troll mentions/accusations increases, so
does the cross-validation accuracy.

min mentions 3 4 5 6
trolls 545 419 317 260
non-troll 964 964 964 964
Accuracy 85.49 87.85 90.87 92.32
Diff +21.60 +18.15 +15.61 +13.56

Table 4: Results for classifying mentioned trolls
vs. non-trolls, using different numbers of mini-
mum troll accusations to define a troll (users with
100 comments or more only). The Accuracy col-
umn shows the cross-validation accuracy, and the
Diff column shows the improvement over the ma-
jority class baseline.

However, this is partly due to the increased class
imbalance of trolls vs. non-trolls, which can be
seen by the decrease in the improvement of our
classifier compared to the majority class baseline.

We also ran experiments with a fixed number of
minimum mentions for the trolls (namely 5 as be-
fore), but with varying minimum number of com-
ments per user: 10, 25, 50, 100. The results are
shown in Figure 1. We can see that as the min-
imum number of comments increases, the cross-
validation accuracy for both the baseline and for
our classifier decreases (as the troll-vs-non-troll
ratio becomes more balanced); yet, the improve-
ment of our classifier over the baseline increases,
which means that the more we know about a user,
the better we can predict whether s/he will be seen
as a troll by other users.

Figure 1: Results for classifying mentioned trolls
vs. non-trolls for users with a different minimal
number of comments (trolls were accused of be-
ing such by 5 or more different users). Shown are
results for our classifier and for the majority class
baseline.
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7 Conclusion and Future Work

We have presented experiments in trying to dis-
tinguish trolls vs. non-trolls in news community
forums. We have experimented with a large num-
ber of features, both scaled and non-scaled, and
we have achieved very strong overall results using
statistics such as number of comments, of posi-
tive and negative votes, of posting replies, activity
over time, etc. The nature of our features means
that our troll detection works best for “elder trolls”
with at least 100 comments in the forum. In future
work, we plan to add content features such as key-
words, topics, named entities, part of speech, and
named entities, which should help detect “fresh”
trolls. Our ultimate objective is to be able to find
and expose paid opinion manipulation trolls.
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Abstract
Using automatic measures such as labeled
and unlabeled attachment scores is com-
mon practice in dependency parser evalu-
ation. In this paper, we examine whether
these measures correlate with human judg-
ments of overall parse quality. We ask lin-
guists with experience in dependency an-
notation to judge system outputs. We mea-
sure the correlation between their judg-
ments and a range of parse evaluation met-
rics across five languages. The human-
metric correlation is lower for dependency
parsing than for other NLP tasks. Also,
inter-annotator agreement is sometimes
higher than the agreement between judg-
ments and metrics, indicating that the stan-
dard metrics fail to capture certain aspects
of parse quality, such as the relevance of
root attachment or the relative importance
of the different parts of speech.

1 Introduction
In dependency parser evaluation, the standard ac-
curacy metrics—labeled and unlabeled attachment
scores—are defined simply as averages over cor-
rect attachment decisions. Several authors have
pointed out problems with these metrics; they are
both sensitive to annotation guidelines (Schwartz
et al., 2012; Tsarfaty et al., 2011), and they fail
to say anything about how parsers fare on rare,
but important linguistic constructions (Nivre et al.,
2010). Both criticisms rely on the intuition that
some parsing errors are more important than oth-
ers, and that our metrics should somehow reflect
that. There are sentences that are hard to anno-
tate because they are ambiguous, or because they
contain phenomena peripheral to linguistic theory,
such as punctuation, clitics, or fragments. Man-
ning (2011) discusses similar issues for part-of-
speech tagging.

To measure the variable relevance of parsing
errors, we present experiments with human judg-
ment of parse output quality across five languages:
Croatian, Danish, English, German, and Spanish.
For the human judgments, we asked professional
linguists with dependency annotation experience
to judge which of two parsers produced the bet-
ter parse. Our stance here is that, insofar ex-
perts are able to annotate dependency trees, they
are also able to determine the quality of a pre-
dicted syntactic structure, which we can in turn
use to evaluate parser evaluation metrics. Even
though downstream evaluation is critical in as-
sessing the usefulness of parses, it also presents
non-trivial challenges in choosing the appropriate
downstream tasks (Elming et al., 2013), we see
human judgments as an important supplement to
extrinsic evaluation.

To the best of our knowledge, no prior study
has analyzed the correlation between dependency
parsing metrics and human judgments. For a range
of other NLP tasks, metrics have been evaluated
by how well they correlate with human judgments.
For instance, the standard automatic metrics for
certain tasks—such as BLEU in machine trans-
lation, or ROUGE-N and NIST in summariza-
tion or natural language generation—were evalu-
ated, reaching correlation coefficients well above
.80 (Papineni et al., 2002; Lin, 2004; Belz and Re-
iter, 2006; Callison-Burch et al., 2007).

We find that correlations between evaluation
metrics and human judgments are weaker for
dependency parsing than other NLP tasks—our
correlation coefficients are typically between .35
and .55—and that inter-annotator agreement is
sometimes higher than human-metric agreement.
Moreover, our analysis (§5) reveals that humans
have a preference for attachment over labeling de-
cisions, and that attachments closer to the root are
more important. Our findings suggest that the cur-
rently employed metrics are not fully adequate.
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Contributions We present i) a systematic com-
parison between a range of available dependency
parsing metrics and their correlation with human
judgments; and ii) a novel dataset1 of 984 sen-
tences (up to 200 sentences for each of the 5 lan-
guages) annotated with human judgments for the
preferred automatically parsed dependency tree,
enabling further research in this direction.

2 Metrics

We evaluate seven dependency parsing metrics,
described in this section.

Given a labeled gold tree G = hV,EG, lG(·)i
and a labeled predicted tree P = hV,EP , lP (·)i,
let E ⇢ V ⇥ V be the set of directed edges from
dependents to heads, and let l : V ⇥ V ! L be the
edge labeling function, with L the set of depen-
dency labels.

The three most commonly used metrics
are those from the CoNLL 2006–7 shared
tasks (Buchholz and Marsi, 2006): unlabeled at-
tachment score (UAS), label accuracy (LA), both
introduced by Eisner (1996), and labeled attach-
ment score (LAS), the pivotal dependency parsing
metric introduced by Nivre et al. (2004).

UAS =

|{e | e 2 EG \ EP }|

|V |

LAS =

|{e | lG(e) = lP (e), e 2 EG \ EP }|

|V |

LA =

|{v | v 2 V, lG(v, ·) = lP (v, ·)}|

|V |

We include two further metrics—namely, la-
beled (LCP) and unlabeled (UCP) complete
predications—to give account for the relevance of
correct predicate prediction for parsing quality.

LCP is inspired by the complete predicates met-
ric from the SemEval 2015 shared task on seman-
tic parsing (Oepen et al., 2015).2 LCP is triggered
by a verb (i.e., set of nodes Vverb) and checks
whether all its core arguments match, i.e., all out-
going dependency edges except for punctuation.
Since LCP is a very strict metric, we also evaluate
UCP, its unlabeled variant. Given a function cX(v)

that retrieves the set of child nodes of a node v
from a tree X , we first define UCP as follows, and
then incorporate the label matching for LCP:

1The dataset is publicly available at https://
bitbucket.org/lowlands/release

2http://alt.qcri.org/semeval2015/

UCP =

|{v | Vverb, cG(v) = cP (v)}|

|Vverb|

LCP =

|{v | Vverb, cG(v) = cP (v) ^ lG(v, ·) = lP (v, ·)}|

|Vverb|

For the final figure of seven different parsing
metrics, on top of the previous five, in our exper-
iments we also include the neutral edge direction
metric (NED) (Schwartz et al., 2011), and tree edit
distance (TED) (Tsarfaty et al., 2011; Tsarfaty et
al., 2012).3

3 Experiment

In our analysis, we compare the metrics with hu-
man judgments. We examine how well the auto-
matic metrics correlate with each other, as well
as with human judgments, and whether inter-
annotator agreement exceeds annotator-metric
agreement.

LANG TYPE SENT SL TD ANN RAW 

da CDT 200 22.7 8.1 2-3 .77 .53
de UD 200 18.0 4.4 2 .67 .33
en UD 200 23.4 5.4 4 .73 .45
es UD 184 32.5 6.7 4 .60 .20
hr PDT 200 28.5 7.8 2 .80 .59

Table 1: Data characteristics and agreement statis-
tics. TD: tree depth; SL: sentence length.

Data In our experiments we use data from five
languages: The English (en), German (de) and
Spanish (es) treebanks from the Universal Depen-
dencies (UD v1.0) project (Nivre et al., 2015), the
Copenhagen Dependency Treebank (da) (Buch-
Kromann, 2003), and the Croatian Dependency
Treebank (hr) (Agić and Merkler, 2013). We keep
the original POS tags for all datasets (17 tags in
case of UD, 13 tags for Croatian, and 23 for Dan-
ish). Data characteristics are in Table 1.

For the parsing systems, we follow McDon-
ald and Nivre (2007) and use the second or-
der MST (McDonald et al., 2005), as well as
Malt parser with pseudo-projectivization (Nivre
and Nilsson, 2005) and default parameters. For
each language, we train the parsers on the canoni-
cal training section. We randomly select 200 sen-
tences from the test sections, where our two de-

3http://www.tsarfaty.com/unipar/
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LANG PARSER LAS UAS LA NED TED LCP UCP

en Malt 79.17 82.31 87.88 84.34 85.20 41.27 47.17
MST 78.30 82.91 86.80 84.72 83.49 36.05 45.58

es Malt 78.72 82.85 87.34 82.90 84.20 34.00 43.00
MST 79.51 84.97 86.95 85.00 83.16 31.83 44.00

da Malt 79.28 83.40 85.92 83.39 77.50 47.69 55.23
MST 82.75 87.00 88.42 87.01 78.39 52.31 62.31

de Malt 69.09 75.70 82.05 75.54 80.37 19.72 30.45
MST 72.07 80.29 82.22 80.13 78.94 19.38 33.22

hr Malt 63.21 72.34 76.66 71.94 71.64 23.18 31.03
MST 65.98 76.20 79.01 75.89 72.82 24.71 34.29

Avg Malt 73.84 79.32 83.97 76.62 79.78 33.17 43.18
MST 75.72 82.27 84.68 82.55 79.36 32.86 44.08

Table 2: Parsing performance of Malt and MST.

pendency parsers do not agree on the correct anal-
ysis, after removing punctuation.4 We do not con-
trol for predicted trees matching the gold standard.

Annotation task A total of 7 annotators were
involved in the annotation task. All the annota-
tors are either native or fluent speakers, and well-
versed in dependency syntax analysis.

For each language, we present the selected
200 sentences with their two predicted depen-
dency structures to 2–4 annotators and ask them
to rank which of the two parses is better. They
see graphical representations of the two de-
pendency structures, visualized with the What’s
Wrong With My NLP? tool.5 The annotators
were not informed of what parser produced which
tree, nor had they access to the gold stan-
dard. The dataset of 984 sentences is available
at: https://bitbucket.org/lowlands/
release (folder CoNLL2015).

4 Results

First, we perform a standard evaluation in order to
see how the parsers fare, using our range of depen-
dency evaluation measures. In addition, we com-
pute correlations between metrics to assess their
similarity. Finally, we correlate the measures with
human judgements, and compare average annota-
tor and human-system agreements.

Table 2 presents the parsing performances with
respect to the set of metrics. We see that using
LAS, Malt performs better on English, while MST
performs better on the remaining four languages.

Table 3 presents Spearman’s ⇢ between metrics
across the 5 languages. Some metrics are strongly

4For Spanish, we had fewer analyses where the two
parsers disagreed, i.e., 184.

5https://code.google.com/p/whatswrong/

⇢ UAS LA NED TED LCP UCP

LAS .755 .622 .743 .556 .236 .286
UAS – .436 .869 .512 .211 .342
LA – – .436 .419 .206 .154
NED – – – .499 .216 .339
TED – – – – .175 .219
LCP – – – – – .352

Table 3: Correlations between metrics.

⇢ en es da de hr All

LAS .547 .478 .297 .466 .540 .457
UAS .541 .437 .331 .453 .397 .425
LA .387* .250* .232 .310 .467 .324*
NED .541 .469 .318 .501 .446 .448
TED .372* .404 .323 .331 .405* .361*
LCP .022* .230* .171 .120* .120* .126*
UCP .249* .195* .223 .190* .143* .195*

Table 4: Correlations between human judgments
and metrics (micro avg). * means significantly
different from LAS ⇢ using Fisher’s z-transform.
Bold: highest correlation per language.

correlated, e.g., LAS and LA, and UAS and NED,
but some exhibit very low correlation coefficients.

Next we study correlations with human judg-
ments (Table 4). In order to aggregate over the an-
notations, we use an item-response model (Hovy
et al., 2013). The correlations are relatively weak
compared to similar findings for other NLP tasks.
For instance, ROUGE-1 (Lin, 2004) correlates
strongly with perceived summary quality, with a
coefficient of 0.99. The same holds for BLEU and
human judgments of machine translation quality
(Papineni et al., 2002).

We find that, overall, LAS is the metric that cor-
relates best with human judgments. It is closely
followed by UAS, which does not differ signifi-
cantly from LAS, albeit the correlations for UAS
are slightly lower on average. NED is in turn
highly correlated with UAS. The correlations for
the predicate-based measures (LCP, UCP) are the
lowest, as they are presumably too strict, and very
different to LAS.

Motivated by the fact that people prefer the
parse that gets the overall structure right (§5), we
experimented with weighting edges proportionally
to their log-distance to root. However, the sig-
nal was fairly weak; the correlations were only
slightly higher for English and Danish: .552 and
.338, respectively.

Finally, we compare the mean agreement be-
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ANN LAS UAS LA NED TED LCP UCP

da .768 .838 .848 .808 .828 .828 .745 .765
de .670 .710 .690 .635 .710 .630 .575 .565
en .728 .715 .705 .660 .700 .658 .525 .600
es .601 .663 .644 .603 .652 .635 .581 .554
hr .800 .755 .700 .735 .730 .705 .570 .580

Table 5: Average mean agreement between anno-
tators, and between annotators and metrics.

tween humans with the mean agreement between
humans and standard metrics, cf. Table 5. For two
languages (English and Croatian), humans agree
more with each other than with the standard met-
rics, suggesting that metrics are not fully adequate.
The mean agreement between humans is .728 for
English, with slightly lower scores for the met-
rics (LAS: .715, UAS: .705, NED: .660). The
difference between mean agreement of annotators
and human-metric was higher for Croatian: .80
vs .755. For Danish, German and Spanish, how-
ever, average agreement between metrics and hu-
man judgments is higher than our inter-annotator
agreement.

5 Analysis

In sum, our experiments show that metrics corre-
late relatively weakly with human judgments, sug-
gesting that some errors are more important to hu-
mans than others, and that the relevance of these
errors are not captured by the metrics.

To better understand this, we first consider the
POS-wise correlations between human judgments
and LAS, cf. Table 6. In English, for example, the
correlation between judgments and LAS is signif-
icantly stronger for content words6 (⇢c = 0.522)
than for function words (⇢f = 0.175). This also
holds for the other UD languages, namely Ger-
man (⇢c = 0.423 vs ⇢f = 0.263) and Spanish
(⇢c = 0.403 vs ⇢f = 0.228). This is not the
case for the non-UD languages, Croatian and Dan-
ish, where the difference between content-POS
and function-POS correlations is not significantly
different. In Danish, function words head nouns,
and are thus more important than in UD, where
content-content word relations are annotated, and
function words are leaves in the dependency tree.
This difference in dependency formalism is shown
by the higher correlation for ⇢f for Danish.

The greater correlation for content words for
English, German and Spanish suggests that errors

6Tagged as ADJ, NOUN, PROPN, VERB.

⇢ content function

en .522 .175
de .423 .263
es .403 .228
da .148 .173
hr .340 .306

Table 6: Correlations between human judgements
and POS-wise LAS (content ⇢c vs function ⇢f pos-
wise LAS correlations).

in attaching or labeling content words mean more
to human judges than errors in attaching or label-
ing function words. We also observe that longer
sentences do not compromise annotation quality,
with a ⇢ between�0.07 and 0.08 across languages
regarding sentence length and agreement.

For the languages for which we had 4 annota-
tors, we analyzed the subset of trees where hu-
mans and system (by LAS) disagreed, but where
there was majority vote for one tree. We obtained
35 dependency instances for English and 27 for
Spanish (cf. Table 7). Two of the authors deter-
mined whether humans preferred labeling over at-
tachment, or otherwise.

attachment labeling items

en 86% 14% 35
es 67% 33% 27

Table 7: Preference of attachment or labeling for
items where humans and system disagreed and hu-
man agreement � 0.75.

Table 7 shows that there is a prevalent prefer-
ence for attachment over labeling for both lan-
guages. For Spanish, there is proportionally
higher label preference. Out of the attach-
ment preferences, 36% and 28% were related to
root/main predicate attachments, for English and
Spanish respectively. The relevance of the root-
attachment preference indicates that attachment is
more important than labeling for our annotators.

Figure 5 provides three examples from the data
where human and system disagree. Parse i) in-
volves a coordination as well as a (local) adver-
bial, where humans voted for correct coordination
(red) and thus unanimously preferred attachment
over labeling. Yet, LAS was higher for the analy-
sis in blue because “certainly” is attached to “Eu-
ropeans” in the gold standard. Parse ii) is another
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Figure 1: Examples where human and system (LAS) disagree. Human choice: i) red; ii) red; iii) blue.

example where humans preferred attachment (in
this case root attachment), while iii) shows a Span-
ish example (“waiter is needed”) where the subject
label (nsubj) of “camarero” (“waiter”) was the de-
cisive trait.

6 Related Work
Parsing metrics are sensitive to the choice of an-
notation scheme (Schwartz et al., 2012; Tsarfaty
et al., 2011) and fail to capture how parsers fare
on important linguistic constructions (Nivre et al.,
2010). In other NLP tasks, several studies have
examined how metrics correlate with human judg-
ments, including machine translation, summariza-
tion and natural language generation (Papineni
et al., 2002; Lin, 2004; Belz and Reiter, 2006;
Callison-Burch et al., 2007). Our study is the first
to assess the correlation of human judgments and
dependency parsing metrics. While previous stud-
ies reached correlation coefficients over 0.80, this
is not the case for dependency parsing, where we
observe much lower coefficients.

7 Conclusions
We have shown that out of seven metrics, LAS
correlates best with human jugdments. Neverthe-
less, our study shows that there is an amount of
human preference that is not captured with LAS.
Our analysis on human versus system disagree-
ment indicates that attachment is more important
than labeling, and that humans prefer a parse that
gets the overall structure right. For some lan-
guages, inter-annotator agreement is higher than
annotator-metric (LAS) agreement, and content-
POS is more important than function-POS, indi-
cating there is an amount of human preference that

is not captured with our current metrics. These
observations raise the important question on how
to incorporate our observations into parsing met-
rics that provide a better fit to human judgments.
We do not propose a better metric here, but simply
show that while LAS seems to be the most ade-
quate metric, there is still a need for better metrics
to complement downstream evaluation.

We outline a number of extensions for future
research. Among those, we would aim at aug-
menting the annotations by obtaining more de-
tailed judgments from human annotators. The cur-
rent evaluation would ideally encompass more (di-
verse) domains and languages, as well as the many
diverse annotation schemes implemented in vari-
ous publicly available dependency treebanks that
were not included in our experiment.
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We thank Muntsa Padró and Miguel Ballesteros
for their help and the three anonymous reviewers
for their valuable feedback.

References
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Abstract

Text classification tasks suffer from curse of
dimensionality due to large feature space.
Short text data further exacerbates the prob-
lem due to their sparse and noisy nature. Fea-
ture selection thus becomes an important step
in improving the classification performance.
In this paper, we propose a novel feature se-
lection method using Wavelet Packet Trans-
form. Wavelet Packet Transform (WPT) has
been used widely in various fields due to its
efficiency in encoding transient signals. We
demonstrate how short text classification task
can be benefited by feature selection using
WPT due to their sparse nature. Our technique
chooses the most discriminating features by
computing inter-class distances in the trans-
formed space. We experimented extensively
with several short text datasets. Compared to
well known techniques our approach reduces
the feature space size and improves the overall
classification performance significantly in all
the datasets.

1 Introduction
Text classification task consists of assigning a docu-
ment to one or more classes. This can be done us-
ing machine learning techniques by training a model
with labelled documents. Documents are usually repre-
sented as vectors with a variety of techniques like bag-
of-words(unigram, bigram), TFIDF representation, etc.
Typically, text corpora have very high dimensional
document representation equal to the size of vocabu-
lary. This leads to curse of dimensionality1 in machine
learning models, thereby degrading the performance.

Short text corpora, like SMS, tweets, etc., in partic-
ular suffer from sparse high dimensional feature space,
due to large vocabulary and short document length. To
give an idea as to how these factors affect the size
of the feature space we compare Reuters with Twitter
data corpus. In Reuters-21578 corpus there are approx-
imately 2.5 Million words in total and 14506 unique
vocabulary entries after standard preprocessing steps

1https://en.wikipedia.org/wiki/Curse_
of_dimensionality

(which is the dimensionality of the feature space).
However, Twitter 1 corpus, we used for experiments
has approximately 15,000 words in total and feature
space size of 7423 words. Additionally, the average
length of an English tweet is 10-12 words whereas the
average length of a document in Reuters-21578 news
classification corpus is 200 words. Therefore, the di-
mensionality is extremely high even for small corpora
with short texts. In addition, the average number of
words in a document is significantly less in short text
data leading to higher sparsity of feature space repre-
sentation of documents.

Owing to this high dimensionality problem, one of
the important steps in text classification workflows is
feature selection. Feature selection techniques for tradi-
tional documents have been aplenty and a few seminal
survey articles have been written on this topic (Blitzer,
2008). In contrast, for short text there is much less
work on statistical feature selection but more focus has
gone to feature engineering towards word normaliza-
tion, canonicalization etc. (Han and Baldwin, 2011).

In this paper, we propose a dimensionality reduc-
tion technique for short text using Wavelet packet trans-
form called Improvised Adaptive Discriminant Wavelet
Packet Transform (IADWPT). IAWDPT does dimen-
sionality reduction by selecting discriminative features
(wavelet coefficients) from the Wavelet Packet Trans-
form (WPT) representation. Short text data resembles
transient signals in vector representation and WPT en-
codes transient signals (signals lasting for very short
duration) well (Learned and Willsky, 1995), using very
few coefficients. This leads to considerable decrease in
the dimensionality of the feature space along with in-
crease in classification accuracy. Additionally, we op-
timise the procedure to select the most discriminative
features from WPT representation. To the best of our
knowledge this is the first attempt to apply an algorithm
based on wavelet packet transform to the feature selec-
tion in short text classification.

2 Related Work
Feature selection has been widely adopted for dimen-
sionality reduction of text datasets in the past. Yim-
ing Yang et al. (Yang and Pedersen, 1997) performed
a comparative study of some of these methods includ-
ing, document frequency, information gain(IG), mutual
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information(MI), �2-test(CHI) and term strength(TS).
They concluded that IG and CHI are the most effective
in aggressive dimensionality reduction. The mRMR
technique proposed by (Peng et al., 2005) selects the
best feature subset by increasing relevancy of feature
with target class and reducing redundancy between
chosen features.

Wavelet transform provides time-frequency repre-
sentation of a given signal. The time-frequency rep-
resentation is useful for describing signals with time
varying frequency content. Detailed explanation of
wavelet transform theory is beyond the scope of
this paper. For detailed theory, refer to Daubechies
(Daubechies, 2006; Daubechies, 1992; Coifman and
Wickerhauser, 2006) and Robi Polikar (Polikar, ). First
use of wavelet transform for compression was proposed
by Ronald R Coifman et al. (Coifman et al., 1994).
Hammad Qureshi et al. (Qureshi et al., 2008) pro-
posed an adaptive discriminant wavelet packet trans-
form(ADWPT) for feature reduction.

In past wavelet transform has been applied to natural
language processing tasks. A survey on wavelet appli-
cations in data mining (Li et al., 2002), discusses the
basics and properties of wavelets which make it a very
effective technique in Data Mining. CC Aggarwal (Ag-
garwal, 2002) uses wavelets for strings classification.
He notes that wavelet technique creates a hierarchical
decomposition of the data which can capture trends at
varying levels of granularity and thus helps classifica-
tion task with the new representation. Geraldo Xexeo
et al. (Xexeo et al., 2008) used wavelet transform to
represent documents for classification.

3 Wavelet Packet Transform for
Short-text Dimensionality Reduction

Feature selection performs compression of feature
space to preserve maximum discriminative power of
features for classification. We use this analogy to do
compression of document feature space using Wavelet
Packet Transform. Vector format(e.g. dictionary en-
coded vector) representation of a document is equiv-
alent to a digital representation. This vector format
can then be processed using wavelet transform to get
a compressed representation of the document in terms
of wavelet coefficients. Document features are trans-
formed into wavelet coefficients. Wavelet coefficients
are ranked and selected based on their discrimination
power between classes. Classification model is trained
on these highly informative coefficients. Results show
a considerable improvement in model accuracy using
our dimensionality reduction technique.

Typically, vector representation of short text will
have very few non-zero entries due to short length of
the documents. If we plot count of each word in the dic-
tionary on y-axis v/s distinct words on x-axis. Just like
transient signals, the resulting graph will have very few
spikes. Transient signals last for a very little time in the
whole duration of the observation. (Learned and Will-

sky, 1995) show the efficacy of wavelet packet trans-
form in representing transient signal. This motivates
our use of Wavelet Packet Transform to encode short
text.

Wavelet transform is a popular choice for feature
representation in image processing. Our approach is in-
spired by a related work by (Qureshi et al., 2008). They
propose Adaptive Discriminant Wavelet Packet Trans-
form (ADWPT) based representation for meningioma
subtype classfication. ADWPT obtains a wavelet based
representation by optimising the discrimination power
of the various features. Proposed technique IADWPT
differs from ADWPT in the way discriminative fea-
ture are selected. Next section provides details about
the proposed approach IADWPT.

4 IADWPT - Improvised Adaptive
Discriminant Wavelet Packet
Transform

This section presents the proposed short text feature
selection technique IADWPT. IADWPT uses wavelet
packet transform of the data to extract useful discrimi-
native features from the sub-bands at various depths.

Natural language processing tasks usually represent
their documents in dictionary encoded bag-of-words
representation. This numerical vector representation of
a document is equivalent to signal representation. In or-
der to get IADWPT representation of the document fol-
lowing steps should be computed:

1) Compute full wavelet packet transform of the doc-
ument vector representation.

2) Compute the discrimination power of each coeffi-
cient in wavelet packet transform representation.

3) Select the most discriminative coefficients to rep-
resent all the documents in the corpus.

Once the 1-D wavelet transform is computed at a de-
sired level l, wavelet packet transform (WPT) produces
2

l different sets of coefficients (nodes in WPT tree).
These coefficients represent the magnitude of various
frequencies present in the signal at a given time. We
select the most discriminative coefficients to represent
all the documents in the corpus by calculating the dis-
criminative power of each coefficient.

The classification task consists of c classes with d
documents. 1-D Wavelet Packet Transform of the dth

k

document yields l levels with f sub bands consisting
of m coefficients in each sub band. x

m,f,l

represent
the coefficients of Wavelet Packet Transform. Follow-
ing terms are defined for Algorithm 1.

• probability density estimates (S
m,f,l

) of a partic-
ular sub-band in a level l a training sample docu-
ment di

k

of a given Class c
i

is given by:

Sk

m,f,l

=

(xk
m,f,l)

2

P
j
(xk

j,f,l
)2

Here, x
m,f,l

is the mth coefficient in f th sub-
band of lth level of document d

k

. Where, j varies
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Algorithm 1 IADWPT Algorithm for best discriminative feature selection
1: for all classes C do
2: Calculate Wavelet Packet Transform for all the documents d

k

in class c
i

3: for all Documents d
k

do
4: Calculate probability density estimates Sk

m,f,l

5: end for
6: for all Levels of WPT l and their sub bands f do
7: for all Wavelet Packet Transform Coefficients m in subband f do
8: Calculate average probability density Aci

m,f,l

9: end for
10: end for
11: end for
12: for all Class Pairs c

a

, c
b

do
13: Calculate discriminative power Da,b

m,f,l

14: end for
15: Select top m0 coefficients for representing documents in corpus

over the length of sub-band. Wavelet supports vary
with the bands, Normalization ensures that the
feature selection done gives uniform weightage to
the features from different bands. This step cal-
culates the normalised value of coefficients in a
sub-band.

• Average probability density (Aci
m,f,l

) estimates are
derived using all the training samples d

k

in a given
class c

i

.

Aci
m,f,l

=

P
k

S

k
m,f,l

d

for, coefficient m in sub-band f for class c
i

and
d is the total number of documents in the class. k
varies over the number of documents in the class.
It measures the average value of a coefficient in all
the documents belonging to a class.

• Discriminative power (Da,b

m,f,l

) of each coefficient
in lth level’s f th sub band’s mth coefficient, be-
tween classes a and b is defined as follows:

Da,b

m,f,l

= |
q

Aa

m,f,l

�
q

Ab

m,f,l

|

Discriminative power is the hellinger distance be-
tween the average probability density estimates
of a coefficient for the two classes. It quantifies
the difference in the average value of a coeffi-
cient between a pair of classes. More the differ-
ence, better the discriminative power of the coef-
ficient. Thus discriminative features tend to have
a higher average probability density in one of the
classes whereas redundant features cancel out in
taking the difference in computing the distance.
(Rajpoot, 2003) have shown efficacy of Hellinger
distance applied to ADWPT.

Selecting coefficients with greater discriminative
power helps the classifier perform well. Full algorithm
is mentioned in algorithm 1.

Multi class classification can then be handled in this
framework using one-vs-one classification. We select

the top m0 features from the wavelet representation for
representing the data in the classification task. Time
complexity of the algorithm is polynomial. The method
is based on adaptive discriminant wavelet packet trans-
form (ADWPT) (Qureshi et al., 2008). Therefore, we
name it as improvised adaptive discriminant wavelet
packet transform (IADWPT). ADWPT uses best basis
for classification which is a union of the various sub-
bands selected that can span the transformed space, so
noise is still retained in the signal whereas IADWPT
selects coefficients from the sub-band having maximal
discriminative power thus improving the classification
results. As opposed to ADWPT, IADWPT is a one way
transform, original signal cannot be recovered from the
transform domain. Experimental results confirm that
IADWPT performs better than ADWPT in short text
datasets.

4.1 IADWPT Example
Figure 1 Gives intuition of the workings of IAD-
WPT transform. Uppermost graph displays the Aver-
age probability density in positive class samples. Mid-
dle graph in the Figure 1 shows the Average probabil-
ity density in negative class samples. These two energy
values are then subtracted, resulting values are shown
in the bottom most component of Figure 1. Peak posi-
tive and negative values in the bottommost graph rep-
resent the most discriminant features. Absolute value
of the discriminative power can then be used to select
the most discriminative features to represent each doc-
ument in corpus.

5 Experiments and Results
We used multiple short text datasets to prove efficacy of
proposed algorithm against state of the art algorithms
for feature selection.

1) Twitter 1: This dataset is a part of the SemEval
2013 task B dataset (Nakov et al., ) for two class senti-
ment classification. We gathered 624 examples in pos-
itive and negative class each for our experiments.
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Figure 1: x-axis represents the wavelet packet transform coefficients, y-axis represents amplitude. From top to
bottom, 1) Average probability density Aa
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value of coefficients in positive class a), 2) Average probability
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value of coefficients in negative class (b), 3) Difference between Aa
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Table 1: CLASSIFICATION RESULTS - SUPPORT VECTOR MACHINE (SVM) AND LOGISTIC REGRESSION (LR)
Dataset Baseline MI-avg �2 PCA ADWPT IADWPT
Classification accuracy - SVM
Twitter 1 47.04 47.57 45.62 59.28 46 63.44
SMS Spam 1 - HAM Accuracy 99.82 99.71 99.77 99.87 99.63 99.94
SMS Spam 1 - SPAM Accuracy 83.10 83.32 82.96 83.81 83.57 83.92
SMS Spam 2 - HAM Accuracy 55.2 56.31 55.62 81.12 54.1 87.7
SMS Spam 2 - SPAM Accuracy 46.6 46.7 46.49 92.39 47.3 99.42
Total dimensions in best classification accuracy result - SVM
Twitter 1 7423 2065 515 540 7423 23
SMS Spam 1 9394 3540 550 750 9394 815
SMS Spam 2 10681 2985 490 855 1068 250
Classification accuracy - Logistic Regression
Twitter 1 75.8 74.97 75.21 76.28 68.2 76.72
SMS Spam 1 - HAM Accuracy 97.91 94.67 95.28 98.71 98.03 99.61
SMS Spam 1 - SPAM Accuracy 95.48 85.34 86.37 91.37 82.2 87.54
SMS Spam 2 - HAM Accuracy 96.02 89.54 92.76 71.21 95.09 98.5
SMS Spam 2 - SPAM Accuracy 91.2 88.37 91.38 89.15 92.2 94.51
Total dimensions in best classification accuracy result - Logistic Regression
Twitter 1 7423 5600 3250 3575 7423 2749
SMS Spam 1 9394 7545 1755 2350 9394 1680
SMS Spam 2 10681 6550 3000 3050 10681 9981

2) SMS Spam 1: UCI spam dataset (Almeida, )
consists of 5,574 instances of SMS classified into
SPAM and HAM classes. SPAM class is defined as
messages which are not useful and HAM is the class
of useful messages. We compare our results with the
results they published in their paper (Almeida et al.,
2013). Therefore, we followed the same experiment
procedure as cited in the paper. First 30% samples were
used in train and the rest in test set as reported in the
paper.

3) SMS Spam 2: The dataset was published by Ya-
dav et al. (Yadav et al., 2011). It consists of 2000 SMS,
1000 SPAM and 1000 HAM messages. Experiment set-
tings are same as that of dataset SMS Spam 1.

The goal of our experiments is to examine the ef-
fectiveness of the proposed algorithm in feature selec-
tion for short text datasets. We measure the effective-
ness of the feature selection technique with respect to
the increase in accuracy in the final machine learning
task. Our method does not depend on a specific classi-
fier used in the final classification. Therefore, we used
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Figure 2: Spam Classification Accuracy comparison
across various feature selection algorithm for SMS
Spam 2 dataset
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Figure 3: Ham Classification Accuracy comparison
across various feature selection algorithm for SMS
Spam 2 dataset

popular classifiers like Support Vector Machine (RBF
kernel with grid search) (Cortes and Vapnik, 1995) and
Logistic Regression with and without dimensionality
reduction for unigram representation to benchmark the
performance. All the experiments were done with 10
fold cross validation and grid search on C parameter.
We report results with respect to classification accuracy
which is measured as #correctly classified datapoints

#total datapoints

.
We conducted detailed experiments comparing IAD-

WPT using Coiflets of order 2 with other feature selec-
tion techniques such as PCA, Mutual Information, �2,
mRMR (Peng et al., 2005) and ADWPT (Qureshi et
al., 2008). Results are reported in Table 1. The table
reports best accuracy values and respective feature set
size selected by the technique. It can be observed that
IADWPT gives best accuracy in most of the cases with
very few features.

We compared performance of our algorithm with
mRMR. Results for SMS Spam 2 dataset are shown
in Figure 2 and Figure 3. The plots prove efficacy of
our algorithm versus state of the art mRMR algorithm.
mRMR technique could not finish execution for the rest
of the datasets. It can also be observed from results
in Table 1 and Figure 1,2 that performance of feature
selection algorithms follow consistent pattern in short
text. Following is observed order of performance of al-
gorithms in decreasing order, IADWPT, mRMR, PCA,
Chi Square, MI. Further, it is observed that IADWPT
performs well at feature selection without losing dis-
criminative information, even when the dimensional-
ity of feature space is reduced to as far as 1/40th of
original feature space and steadily maintains the ac-
curacy as dimensionality is reduced, which makes it a
suitable technique for aggressive dimensionality reduc-
tion. This also helps in learning ML (machine learn-
ing) models faster due to reduced dimensionality. We
plotted the discrimination power of coefficients in each
dataset. Plot suggested that very few coefficients con-
tained most of the discriminative power. And, therefore
just working with these coefficients can help in getting
good accuracies resulting in aggressive dimensionality
reduction. Results establish the effectiveness of IAD-
WPT for applicability in compressing short text feature
representation and reducing noise to improve classifi-

Figure 4: Plot of Discriminative Power (Da,b

m,f,l

) ar-
ranged in descending order

cation accuracy.

5.1 IADWPT Effectiveness
Short text data is noisy and consists of many features
which are irrelevant to the task of classification of data.
IADWPT effectively gets rid of the noise in approxima-
tions(as Signal strength is greater than the noise), the
feature selection step at the sub-band level as described
in Algorithm 1, it enforces selection of good discrim-
inative features and thus improves classifier accuracy,
reducing feature space dimensionality at the same time.
Features from sub-bands of the signal are chosen based
on their discriminative power, therefore, the original
signal information is lost and the transform is not re-
versible.

IADWPT gives good compression of data and with-
out losing discriminative information, even when the
dimensionality of space is reduced to as far as 1/40th
of original feature space and is thus steadily maintain-
ing the accuracy as dimensionality is reduced, which
makes it a suitable technique for dimensionality re-
duction. This also helps learning machine learning
models faster due to reduced dimensionality. Figure
4 shows the plot of Discriminative Power Da,b

m,f,l

val-
ues for coefficients arranged in descending order for
SMS Spam 2 dataset. Other datasets displayed similar
graph for Discriminative Power. From the figure it can
be observed that few coefficients hold most of the dis-
criminative power, and thus aggressive dimensionality
reduction is possible with IADWPT algorithm. Results
establish the effectiveness of IADWPT for applicabil-
ity in compressing short text feature representation and
reducing noise.

6 Conclusion and Future Work
In this paper, we have proposed IADWPT algorithm
for effective dimensionality reduction for short text cor-
pus. The algorithm can be used in a number of scenar-
ios where high dimensionality and sparsity pose chal-
lenge. Experiments prove efficacy of IADWPT based
dimensionality reduction for short text data. This tech-
nique can prove useful to a number of social media data
analysis applications. In future, we would like to ex-
plore theoretical bounds on best number of dimensions
to choose from wavelet representation.
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Abstract

We present a compositional distributional
semantic model which is an implementa-
tion of the tensor-based framework of Co-
ecke et al. (2011). It is an extended skip-
gram model (Mikolov et al., 2013) which
we apply to adjective-noun combinations,
learning nouns as vectors and adjectives
as matrices. We also propose a novel
measure of adjective similarity, and show
that adjective matrix representations lead
to improved performance in adjective and
adjective-noun similarity tasks, as well as
in the detection of semantically anomalous
adjective-noun pairs.

1 Introduction

A number of approaches have emerged for com-
bining compositional and distributional seman-
tics. Some approaches assume that all words and
phrases are represented by vectors living in the
same semantic space, and use mathematical op-
erations such as vector addition and element-wise
multiplication to combine the constituent vectors
(Mitchell and Lapata, 2008). In these relatively
simple methods, the composition function does
not typically depend on its arguments or their syn-
tactic role in the sentence.

An alternative which makes more use of gram-
matical structure is the recursive neural network
approach of Socher et al. (2010). Constituent vec-
tors in a phrase are combined using a matrix and
non-linearity, with the resulting vector living in the
same vector space as the inputs. The matrices can
be parameterised by the syntactic type of the com-
bining words or phrases (Socher et al., 2013; Her-
mann and Blunsom, 2013). Socher et al. (2012)
extend this idea by representing the meanings of
words and phrases as both a vector and a matrix,
introducing a form of lexicalisation into the model.

A further extension, which moves us closer to
formal semantics (Dowty et al., 1981), is to build
a semantic representation in step with the syntac-
tic derivation, and have the embeddings of words
be determined by their syntactic type. Coecke et
al. (2011) achieve this by treating relational words
such as verbs and adjectives as functions in the
semantic space. The functions are assumed to
be multilinear maps, and are therefore realised as
tensors, with composition being achieved through
tensor contraction.1 While the framework speci-
fies the “shape” or semantic type of these tensors,
it makes no assumption about how the values of
these tensors should be interpreted (nor how they
can be learned).

A proposal for the case of adjective-noun com-
binations is given by Baroni and Zamparelli
(2010) (and also Guevara (2010)). Their model
represents adjectives as matrices over noun space,
trained via linear regression to approximate the
“holistic” adjective-noun vectors from the corpus.

In this paper we propose a new solution to the
problem of learning adjective meaning represen-
tations. The model is an implementation of the
tensor framework of Coecke et al. (2011), here
applied to adjective-noun combinations as a start-
ing point. Like Baroni and Zamparelli (2010), our
model also learn nouns as vectors and adjectives as
matrices, but uses a skip-gram approach with neg-
ative sampling (Mikolov et al., 2013), extended to
learn matrices.

We also propose a new way of quantifying ad-
jective similarity, based on the action of adjec-
tives on nouns (consistent with the view that ad-
jectives are functions). We use this new measure
instead of the naive cosine similarity function ap-
plied to matrices, and obtain competitive perfor-
mance compared to the baseline skip-gram vec-
tors (Mikolov et al., 2013) on an adjective simi-
larity task. We also perform competitively on the

1Baroni et al. (2014) have developed a similar approach.
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Figure 1: Learning the vector for apple in the con-
text pick one ripe apple from the tree. The vector
for apple is updated in order to increase the inner
product with green vectors and decrease it with red
ones, which are negatively sampled.

adjective-noun similarity dataset from Mitchell
and Lapata (2010). Finally, the tensor-based skip-
gram model also leads to improved performance in
the detection of semantically anomalous adjective-
noun phrases, compared to previous work.

2 A tensor-based skip-gram model

Our model treats adjectives as linear maps over the
vector space of noun meanings, encoded as matri-
ces. The algorithm works in two stages: the first
stage learns the noun vectors, as in a standard skip-
gram model, and the second stage learns the adjec-
tive matrices, given fixed noun vectors.

2.1 Training of nouns

To learn noun vectors, we use a skip-gram model
with negative sampling (Mikolov et al., 2013).
Each noun n in the vocabulary is assigned two d-
dimensional vectors: a content vector n, which
constitutes the embedding, and a context vector
n

1. For every occurrence of a noun n in the corpus,
the embeddings are updated in order to maximise
the objective function

ÿ

c1PC
log �pn ¨ c

1q `
ÿ

c1PC
log �p´n ¨ c

1q, (1)

where C is a set of contexts for the current noun,
and C is a set of negative contexts. The contexts
are taken to be the vectors of words in a fixed win-
dow around the noun, while the negative contexts
are vectors for k words sampled from a unigram
distribution raised to the power of 3{4 (Goldberg,
2014). In our experiments, we have set k “ 5.

UNRIPE APPLE
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SAYS
BRAILLE

OMEN

=

Figure 2: Learning the matrix for unripe in the
context the green small unripe apple tasted very
sour. The matrix for unripe is updated to increase
the inner product of the vector for unripe apple
with green vectors and decrease it with red ones.

After each step, both content and context vec-
tors are updated via back-propagation. This pro-
cedure leads to noun embeddings (content vectors)
which have a high inner product with the vectors
of words in the context of the noun, and a low
inner product with vectors of negatively sampled
words. Fig. 1 shows this intuition.

2.2 Training of adjectives
Each adjective a in the vocabulary is assigned a
matrix A, initialised to the identity plus uniform
noise. First, all adjective-noun phrases pa, nq are
extracted from the corpus. For each pa, nq pair, the
corresponding adjective matrix A and noun vec-
tor n are multiplied to compute the adjective-noun
vector An. The matrix A is then updated to max-
imise the objective function

ÿ

c1PC
log �pAn ¨ c

1q `
ÿ

c1PC
log �p´An ¨ c

1q. (2)

The contexts C are taken to be the vectors of words
in a window around the adjective-noun phrase,
while the negative contexts C are again vectors of
randomly sampled words. Matrices are initialised
to the identity, while the context vectors C are the
results of Section 2.1.

Finally, the matrix A is updated via back-
propagation. Equation 2 means that the induced
matrices will have the following property: when
multiplying the matrix with a noun vector, the re-
sulting adjective-noun vector will have a high in-
ner product with words in the context window of
the adjective-noun phrase, and low inner product
for negatively sampled words. This is exemplified
in Figure 2.
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2.3 Similarity measure
The similarity of two vectors n and m is gener-
ally measured using the cosine similarity function
(Turney and Pantel, 2010; Baroni et al., 2014),

vecsimpn,mq “ n ¨ m

}n} }m} .

Based on tests using a development set, we found
that using cosine to measure the similarity of ad-
jective matrices leads to no correlation with gold-
standard similarity judgements. Cosine similarity,
while suitable for vectors, does not capture any in-
formation about the function of matrices as linear
maps. We postulate that a suitable measure of the
similarity of two adjectives should be related to
how similarly they transform nouns.

Consider two adjective matrices A and B. If
An and Bn are similar vectors for every noun
vector n, then we deem the adjectives to be simi-
lar. Therefore, one possible measure involves cal-
culating the cosine distance between the images of
all nouns under the two adjectives, and taking the
average or median of these distances. Rather than
working on every noun in the vocabulary, which
is expensive, we instead take the most frequent
nouns, cluster them, and use the cluster centroids
(obtained in our case using k-means). The result-
ing distance function is given by

matsimpA,Bq “ median

nPN
vecsimpAn,Bnq,

(3)
where the median is taken over the set of cluster
centroids N .2

3 Evaluation
The model is trained on a dump of the English
Wikipedia, automatically parsed with the C&C
parser (Clark and Curran, 2007). The corpus con-
tains around 200 million noun examples, and 30
million adjective-noun examples. For every con-
text word in the corpus, 5 negative words are sam-
pled from the unigram distribution. Subsampling
is used to decrease the number of frequent words
(Mikolov et al., 2013). We train 100-dimensional
noun vectors and 100ˆ100-dimensional adjective
matrices.

3.1 Word Similarity
First we test word, rather than phrase, similarity
on the MEN test collection (Bruni et al., 2014),

2We chose the median instead of the average as it is more
resistant to outliers in the data.

MODEL CORRELATION

SKIPGRAM-300 0.776
TBSG-100 0.769

Table 1: Spearman rank correlation on noun simi-
larity task.

MODEL CORRELATION

TBSG-100ˆ100 0.645
SKIPGRAM-300 0.638

Table 2: Spearman rank correlation on adjective
similarity task.

which contains a set of POS-tagged word pairs to-
gether with gold-standard human similarity judge-
ments. We use the POS tags to select all noun-
noun and adjective-adjective pairs, leaving us with
a set of 643 noun-noun pairs and 96 adjective-
adjective pairs. For the noun-noun dataset, we are
testing the quality of the 100-dimensional noun
vectors from the first stage of the tensor-based
skip-gram model (TBSG), which is essentially
word2vec applied to just learning noun vectors.
These are compared to the 300-dimensional SKIP-
GRAM vectors available from the word2vec
page (which have been trained on a very large
news corpus).3

The adjective-adjective pairs are used to test
the 100 ˆ 100 matrices obtained from our TBSG
model, again compared to the 300-dimensional
SKIPGRAM vectors. The Spearman correlations
between human judgements and the similarity of
vectors are reported in Tables 1 and 2. Note that
for adjectives we used the similarity measure de-
scribed in Section 2.3. Table 1 shows that the
noun vectors we use are of a high quality, perform-
ing comparably to the SKIPGRAM noun vectors
on the noun-noun similarity data. Table 2 shows
our TBSG adjective matrices, plus new similarity
measure, to also perform comparably to the SKIP-
GRAM adjective vectors on the adjective-adjective
similarity data.

3.2 Phrase Similarity
The TBSG model aims to learn matrices that act
in a compositional manner. Therefore, a more in-
teresting evaluation of its performance is to test
how well the matrices combine with noun vectors.

3http://word2vec.googlecode.com/
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MODEL CORRELATION

TBSG-100 0.50
SKIPGRAM-300 (add) 0.48
SKIPGRAM-300 (N only) 0.43
TBSG-100 (N only) 0.42
REG-600 0.37
humans 0.52

Table 3: Spearman rank correlation on adjective-
noun similarity task.

We use the Mitchell and Lapata (2010) adjective-
noun similarity dataset, which contains pairs of
adjective-noun phrases such as last number – vast
majority together with gold-standard human simi-
larity judgements. For the evaluation, we calculate
the Spearman correlation between non-averaged
human similarity judgements and the cosine simi-
larity of the vectors produced by various composi-
tional models.

The results in Table 3 show that TBSG has
the best correlation with human judgements of
the other models tested. It outperforms SKIP-
GRAM vectors with both addition and element-
wise multiplication as composition functions (the
latter not shown in that table, as it is worse than
addition). Also reported is the baseline perfor-
mance of SKIPGRAM and TBSG when using only
nouns to compute similarity (ignoring the adjec-
tives). It is interesting to note that TBSG also out-
performs the result of the matrix-vector linear re-
gression method (REG-600) of Baroni and Zam-
parelli (2010) as reported by Vecchi et al. (2015)
on the same dataset. Their method trains a matrix
for every adjective via linear regression to approx-
imate corpus-extracted “holistic” adjective-noun
vectors, and is therefore similar in spirit to TBSG.

3.3 Semantic Anomaly
Finally, we use the model to distinguish between
semantically acceptable and anomalous adjective-
noun phrases, using the data from Vecchi et al.
(2011). The data consists of two sets: a set of un-
observed acceptable phrases (e.g. ethical statute)
and one of deviant phrases (e.g. cultural acne).
Following Vecchi et al. (2011) we use two indices
of semantic anomaly. The first, denoted COSINE,
is the cosine between the adjective-noun vector
and the noun vector. This is based on the hypothe-
sis that deviant adjective-noun vectors will form a
wider angle with the noun vector. The second in-

COSINE DENSITY
MODEL t sig. t sig.

TBSG-100 5.16 ˚˚˚ 5.72 ˚˚˚
ADD-300 0.31 2.63 ˚˚
MUL-300 -0.56 2.68 ˚˚
REG-300 0.48 3.12 ˚˚

Table 4: Correlation on test data for semantic
anomalies. Significance levels are marked ˚˚˚ for
p † 0.001, ˚˚ for p † 0.01.

dex, denoted DENSITY, is the average cosine dis-
tance between the adjective-noun vector and its 10
nearest noun neighbours. This measure is based
on the hypothesis that nonsensical adjective-nouns
should not have many neighbours in the space
of (meaningful) nouns.4 These two measures are
computed for the acceptable and deviant sets, and
compared using a two-tailed Welch’s t-test.

Table 4 compares the performance of TBSG
with the results of count-based vectors using
addition (ADD) and element-wise multiplication
(MUL) reported by Vecchi et al. (2011), as well as
the matrix-vector linear regression method (REG-
300) of Baroni and Zamparelli (2010). TBSG ob-
tains the highest scores with both measures.

4 Conclusions

In this paper we have implemented the tensor-
based framework of Coecke et al. (2011) in the
form of a skip-gram model extended to learn
higher-order embeddings, in this case adjectives as
matrices. While adjectives and nouns are learned
separately in this study, an obvious extension is
to learn embeddings jointly. We find the tensor-
based skip-gram model particularly attractive for
the obvious ways in which it can be extended to
other parts-of-speech (Maillard et al., 2014). For
example, in this framework transitive verbs are
third-order tensors which yield a sentence vector
when contracted with subject and object vectors.
Assuming contextual representations of sentences,
these could be learned by the tensor-based skip-
gram as a straghtforward extension from second-
order (matrices) to third-order tensors (and poten-
tially beyond for words requiring even higher or-
der tensors).

4Vecchi et al. (2011) also use a third index of semantic
anomaly, based on the length of adjective-noun vectors. We
omit this measure as we deem it unsuitable for models not
based on context counts and elementwise vector operations.
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Abstract

Model selection (picking, for example, the
feature set and the regularization strength)
is crucial for building high-accuracy NLP
models. In supervised learning, we can es-
timate the accuracy of a model on a subset
of the labeled data and choose the model
with the highest accuracy. In contrast,
here we focus on type-supervised learn-
ing, which uses constraints over the pos-
sible labels for word types for supervi-
sion, and labeled data is either not avail-
able or very small. For the setting where
no labeled data is available, we perform a
comparative study of previously proposed
and one novel model selection criterion on
type-supervised POS-tagging in nine lan-
guages. For the setting where a small la-
beled set is available, we show that the set
should be used for semi-supervised learn-
ing rather than for model selection only –
using it for model selection reduces the er-
ror by less than 5%, whereas using it for
semi-supervised learning reduces the error
by 44%.

1 Introduction

Fully supervised training of NLP models (e.g.,
part-of-speech taggers, named entity recognizers,
relation extractors) works well when plenty of la-
beled examples are available. However, manu-
ally labeled corpora are expensive to construct
in many languages and domains, whereas an al-
ternative, if weaker, supervision is often read-
ily available. For example, corpora labeled with
POS tags at the token level are only available for
around 35 languages, while tag dictionaries of the

⇤This research was conducted during the author’s intern-
ship at Microsoft Research.

form displayed in Fig. 1 are available for many
more languages, either in commercial dictionar-
ies or community created resources such as Wik-
tionary. Tag dictionaries provide type-level super-
vision for word types in the lexicon. Similarly,
while sentences labeled with named entities are
scarce, gazetteers and databases are more readily
available (Bollacker et al., 2008).

There has been substantial research on how best
to build models using such type-level supervision,
for POS tagging, super sense tagging, NER, and
relation extraction (Craven et al., 1999; Smith and
Eisner, 2005; Carlson et al., 2009; Mintz et al.,
2009; Johannsen et al., 2014), inter alia, focussing
on parametric forms and loss functions for model
training. However, there has been little research on
the practically important aspect of model selection
for type-supervised learning. While some previ-
ous work used criteria based on the type-level su-
pervision only (Smith and Eisner, 2005; Goldwa-
ter and Griffiths, 2007), much prior work used a la-
beled set for model selection (Vaswani et al., 2010;
Soderland and Weld, 2014). We are not aware of
any prior work aiming to compare or improve ex-
isting type-supervised model selection criteria.

For POS tagging, there is also work on us-
ing both type-level supervision from lexicons, and
projection from another language (Täckström et
al., 2013). Methods for training with a small
labeled set have also been developed (Søgaard,
2011; Garrette and Baldridge, 2013; Duong et al.,
2014), but there have not been studies on the util-
ity of a small labeled set for model selection ver-
sus model training. Our contributions are: 1) a
simple and generally applicable model selection
criterion for type-supervised learning, 2) the first
multi-lingual systematic evaluation of model se-
lection criteria for type-supervised models, 3) em-
pirical evidence that, if a small labeled set is avail-
able, the set should be used for semi-supervised
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αυτούς ' 'det., pron.'
σταθερά ' 'adj., adv., noun'
μετέδωσα 'verb'
ανάπαυση 'noun'
παλιά  ' 'adj., adv.'

Greek tag dictionary 

ενός    ' 'det., num.'
γαλακτικέ 'adj.'

train!
lexicon!

dev !
lexicon!

Figure 1: A tag dictionary (lexicon) for Greek. The splits
into lextrain and lexdev are discussed in §2.

learning and not only for model selection.

2 Model selection and training for
type-supervised learning

Notation. In type-supervised learning, we have
unlabeled text T = {x} of token sequences, and
a lexicon lex which lists possible labels for word
types. Model training finds the model param-
eters ✓ which minimize a training loss function
L(✓; lex, T ,h). We use h to represent the config-
urations and modeling decisions (also known as
hyperparameters). Examples include the depen-
dency structure between variables, feature tem-
plates, and regularization strengths. Given a set
of fully-specified hyperparameter configurations
{h1, . . . ,hM}, model selection aims to find the
configuration hm̂ that maximizes the expected
performance of the corresponding model ✓m̂ ac-
cording to a suitable accuracy measure. x is a to-
ken sequence, y is a label sequence, and lex[x] is
the set of label sequences compatible with token
sequence x according to lex.

Task. For the application in this paper, the task
is type-supervised POS tagging, and the paramet-
ric model family we consider is that of featurized
first order HMMs (Berg-Kirkpatrick et al., 2010).
The hyperparameters specify the feature set used
and the strength of an L2 regularizer on the pa-
rameters.

Evaluation function. The evaluation function
used in model selection is the main focus of this
work. We use a function eval(m, Tdev) to esti-
mate the performance of the model trained with
hyperparameters hm on a development set Tdev. In
the following subsections, we discuss definitions
of eval when the development set Tdev is labeled
and when it is unlabeled, respectively.

2.1 Tdev is labeled

When the development set Tdev is labeled, a nat-
ural choice of eval is token-level prediction accu-

racy:

evalsup(m, Tdev) =

|Tdev |X

i=1

1(ym[i] = ygold[i])

|Tdev|

Here, we use i to index all tokens in Tdev; ygold[i]
denotes the correct POS tag, and ym[i] denotes the
predicted POS tag of the i-th token obtained with
hyperparameters hm.

2.2 Tdev is unlabeled
When token-supervision is not available, we can-
not compute evalsup. Instead, previous work on
POS tagging with type supervision (Smith and
Eisner, 2005) used:

evalcond(m, Tdev) =

X

x2Tdev

log

X

y2lex[x]

p✓m(y | x),

evaljoint(m, Tdev) =

X

x2Tdev

log

X

y2lex[x]

p✓m(x,y)

evalcond estimates the conditional log-likelihood
of “lex-compatible” labels given token sequences,
while evaljoint estimates the joint log-likelihood
of lex-compatible labels and token sequences.

The held-out lexicon criterion. We propose a
new model selection criterion which estimates pre-
diction accuracy more directly and is applicable to
any model type, without requiring that the model
define conditional or joint probabilities of label se-
quences. The idea behind this proposed criterion
is simple: we hold out a portion of the lexicon en-
tries and use it to estimate model performance as
follows:

evaldevlex(m, T ) =

|T |X

i=1:xi2lexdev

1(ym[i] 2 lex[xi])

|lex[xi]|⇥ |Tx2lexdev
|

where lexdev is the held-out portion of the lexicon
entries, and xi is the i-th token in T .

The remainder of this section details the theory
behind this criterion. The expected token-level ac-
curacy of a model trained with hyperparameters
hm is defined as E(x,ygold,ym)sD [1(ym = ygold)];
where D is a joint distribution over tokens x (in
context), their gold labels ygold, and the predicted
labels ym (for the configuration hm). Since when
no labeled data is available we do not have access
to samples from D, we derive an approximation to
this distribution using lex and T .

We first split the full lexicon into a training
lexicon lextrain and a held-out (or development)
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lexicon lexdev (see Fig. 1), by sampling words ac-
cording to their token frequency c(x) in T , and
placing them in the development or training por-
tions of the lexicon such that lexdev covers 25%
of the tokens in T . The goal of the sampling pro-
cess is to make the distribution of word tags for
words in the development lexicon representative
of the tag distribution for all words.

Given hm, we train a tagging model using
lextrain and use it to predict labels ym for all to-
kens in T . We then use the word tokens covered
by the development lexicon and their predicted
tags ym to approximate D by letting P (ygold | x)

be a uniform distribution over gold labels consis-
tent with the lexicon for x, resulting in the follow-
ing approximation PD(x, ygold, ym) /

c(x, ym)⇥ 1(x 2 lexdev, ygold 2 lexdev[x])

|lexdev[x]|

We then compute the expected accuracy as
evaldevlex = ED [1(ygold = ym)], and select
the hyperparameter configuration m̂ which max-
imizes this criterion, then re-train the model with
the full lexicon lex.1

3 How to best use a small labeled set TL?

Several prior works used a labeled set for super-
vised hyper-parameter selection even when only
type-level supervision is assumed to be available
for training (Vaswani et al., 2010; Soderland and
Weld, 2014). In this section, we want to an-
swer the question: if a small labeled set is avail-
able, what are the potential gains from using it
for model selection only, versus using it for both
model training and model selection?

A simple way to use a small labeled set for
parameter training together with a larger unla-
beled set in our type-supervised learning setting,
is to do semi-supervised model training as follows
(Nigam et al., 2000): Starting with our training
loss function defined using a lexicon lex and unla-
beled set TU L(✓; lex, TU ,hm), we define a com-
bined loss function using both the unlabeled set
TU and the labeled set TL: L(✓; lex, TU ,hm) +

�L(✓; lex, TL,hm). We then select parameters
✓m to minimize the new loss function, where �
is now an additional hyperparameter that usually

1Note that this criterion underestimates the performance
of all models in consideration by virtue of evaluating model
versions trained using a subset of the full lexicon, but it can
still be useful for ranking the models.

gives more weight to the labeled set. An advan-
tage of this method is that it can be applied to any
type-supervised model using less than 100 lines
of code.2 We implement this method for semi-
supervised training, and we use the labeled set
both for semi-supervised model training and for
hyper-parameter selection using a standard five-
fold cross-validation approach.3

4 Experiments

We evaluate the introduced methods for model se-
lection and training with type supervision in two
type-supervised settings: when no labeled exam-
ples are available, and when a small number of la-
beled examples are available.

We use a feature-rich first-order HMM
model (Berg-Kirkpatrick et al., 2010) with an
L2 prior on feature weights.4 Instead of using a
multinomial distribution for the local emissions
and transitions, this model uses a log-linear distri-
bution (i.e., p(xi | yi) / exp �>f(xi, yi)) with a
feature vector f and a weight vector �. We use the
feature set described in (Li et al., 2012): transition
features, word-tag features (hyi, xii) (lowercased
words with frequency greater than a threshold),
whether the word contains a hyphen and/or
starts with a capital letter, character suffixes, and
whether the word contains a digit. We initialize
the transition and emission distributions of the
HMM using unambiguous words as proposed
by (Zhang and DeNero, 2014). Data. We use
the Danish, Dutch, German, Greek, English,
Italian, Portuguese, Spanish and Swedish datasets
from CoNLL-X and CoNLL-2007 shared tasks
(Buchholz and Marsi, 2006; Nivre et al., 2007).
We map the POS labels in the CoNLL datasets
to the universal POS tagset (Petrov et al., 2012).
We use the tag dictionaries provided by Li et
al. (2012). Model configurations. For each

2The labeled data loss is the negative joint log-
likelihood of the observed token sequences and labels:
�

P
x,y2TL

log p✓(x,y).
3We split the labeled set into five folds, and for each set-

ting of the hyper-parameters train five different models on
4
5 -ths of the data, estimating accuracy on the remaining 1

5 -th.
We average the accuracy estimates from different folds and
use this as a combined estimate of the accuracy of a model
trained using the full labeled and unlabeled set, given these
hyperparameters. After selecting a configuration of hyperpa-
rameters using cross-validation, we then use this configura-
tion and retrain the model on all available data.

4We used a first-order HMM for simplicity, but it is pos-
sible to obtain better results using a second-order HMM (Li
et al., 2012).
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Figure 2: Token-level accuracy when doing training and model selection with no labeled data. Model selection with different
criteria (left to right): conditional log-likelihood, joint log-likelihood, held-out lexicon, and English-labeled.
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Figure 3: Token-level accuracy with (left to right): no labeled data, model selection on labeled data (300 sentences), semi-
supervised training + model selection on labeled data (300 sentences).

language, we consider M = 15 configurations
of the hyperparameters which vary in the L2

regularization strength (5 values), and the min-
imum word frequency for word-tag features (3
values). When a small labeled set is available we
additionally choose one of 3 values for the weight
of the labeled set (see Section 3). We report final
performance of models selected using different
criteria using token-level accuracy on an unseen
test set.

No labeled examples. When no labeled exam-
ples are available, we do model training and se-
lection using only unlabeled text T and a tagging
lexicon lex. We compare three type-supervised

model selection criteria: conditional likelihood,
joint likelihood, and the held-out lexicon criterion
evaldevlex. Additionally, we include the perfor-
mance of a method which selects the hyperpa-
rameters using labeled data in English and uses
these (same) hyperparameters for English and all
other languages (we call this method “English La-
beled”). Fig. 2 shows the accuracy of the models
chosen by each of the four criteria on nine lan-
guages, as well as the average accuracy across lan-
guages. The lower (upper) bounds on average per-
formance obtained by always choosing the worst
(best) hyperparameters is 82.77 (85.83). evaljoint

outperformed evalcond on eight out of the nine
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languages and achieved a significantly higher av-
erage accuracy (85.05 vs 83.70). evaldevlex out-
performed evaljoint on six out of nine languages,
but did significantly worse on one language (Ger-
man), which resulted in a slightly lower average
accuracy. Choosing the hyper-parameters using
English labeled data and using the same hyper-
parameters for all languages performed compara-
bly to evaljoint, with slightly higher average ac-
curacy even when limited to the non-English lan-
guages (85.0 vs 84.9). Overall the results showed
that the conditional log-likelihood criterion was
dominated by the other three, which were com-
parable in average accuracy. Looking at the eight
languages excluding English (since one criterion
uses labeled data for English), the newly proposed
held-out lexicon criterion was the winning method
on five out of eight languages, evalcond was best
on one language, evaljoint was best (or tied for
best) on two, and English-labeled was tied for best
on one language.

Few labeled examples. We consider two ways
of leveraging the labeled examples: (i) type-
supervised model training + supervised model se-
lection: only use unlabeled examples to optimize
model parameters, then use the labeled exam-
ples for supervised model selection with evalsup,
and (ii) semi-supervised model training + super-
vised model selection (see Section 3 for details).
Fig. 3 shows how much we can improve on the
method with highest average accuracy from Fig-
ure 2 (evaljoint), when a small number of ex-
amples is available. Using the 300 labeled sen-
tences for semi-supervised training and model se-
lection reduced the error by 44.6% (comparing to
the model with best average accuracy using only
type-level supervision with average performance
of 85.05, the semi-supervised average is 91.8). In
contrast, using the 300 sentences to select hyper-
parameters only reduced the error by less than 5%

(the average accuracy was 85.75). Even when only
50 labeled sentences are used for semi-supervised
training and supervised model selection, we still
see a boost to average accuracy of 89% (results
not shown in the Figure).

5 Conclusion

We presented the first comparative evaluation of
model selection criteria for type-supervised POS-
tagging on many languages. We introduced a
novel, generally applicable model selection cri-

terion which outperformed previously proposed
ones for a majority of languages. We evaluated the
utility of a small labeled set for model selection
versus model training, and showed that when such
labeled set is available, it should not be used solely
for supervised model selection, because using it
additionally for model parameter training provides
strikingly larger accuracy gains.
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Abstract

Supervised word sense disambiguation
(WSD) systems are usually the best per-
forming systems when evaluated on stan-
dard benchmarks. However, these systems
need annotated training data to function
properly. While there are some publicly
available open source WSD systems, very
few large annotated datasets are available
to the research community. The two main
goals of this paper are to extract and an-
notate a large number of samples and re-
lease them for public use, and also to eval-
uate this dataset against some word sense
disambiguation and induction tasks. We
show that the open source IMS WSD sys-
tem trained on our dataset achieves state-
of-the-art results in standard disambigua-
tion tasks and a recent word sense induc-
tion task, outperforming several task sub-
missions and strong baselines.

1 Introduction

Identifying the meaning of a word automatically
has been an interesting research topic for a few
decades. The approaches used to solve this prob-
lem can be roughly categorized into two main
classes: Word Sense Disambiguation (WSD) and
Word Sense Induction (WSI) (Navigli, 2009). For
word sense disambiguation, some systems are
based on supervised machine learning algorithms
(Lee et al., 2004; Zhong and Ng, 2010), while oth-
ers use ontologies and other structured knowledge
sources (Ponzetto and Navigli, 2010; Agirre et al.,
2014; Moro et al., 2014).

There are several sense-annotated datasets for
WSD (Miller et al., 1993; Ng and Lee, 1996; Pas-
sonneau et al., 2012). However, these datasets
either include few samples per word sense or
only cover a small set of polysemous words.

To overcome these limitations, automatic meth-
ods have been developed for annotating training
samples. For example, Ng et al. (2003), Chan
and Ng (2005), and Zhong and Ng (2009) used
Chinese-English parallel corpora to extract sam-
ples for training their supervised WSD system.
Diab (2004) proposed an unsupervised bootstrap-
ping method to automatically generate a sense-
annotated dataset. Another example of auto-
matically created datasets is the semi-supervised
method used in (Kübler and Zhekova, 2009),
which employed a supervised classifier to label in-
stances.

The two main contributions of this paper are
as follows. First, we employ the same method
used in (Ng et al., 2003; Chan and Ng, 2005) to
semi-automatically annotate one million training
samples based on the WordNet sense inventory
(Miller, 1995) and release the annotated corpus for
public use. To our knowledge, this annotated set of
sense-tagged samples is the largest publicly avail-
able dataset for word sense disambiguation. Sec-
ond, we train an open source supervised WSD sys-
tem, IMS (Zhong and Ng, 2010), using our data
and evaluate it against standard WSD and WSI
benchmarks. We show that our system outper-
forms other state-of-the-art systems in most cases.

As any WSD system is also a WSI system when
we treat the pre-defined sense inventory of the
WSD system as the induced word senses, a WSD
system can also be evaluated and used for WSI.
Some researchers believe that, in some cases, WSI
methods may perform better than WSD systems
(Jurgens and Klapaftis, 2013; Wang et al., 2015).
However, we argue that WSI systems have few
advantages compared to WSD methods and ac-
cording to our results, disambiguation systems
consistently outperform induction systems. Al-
though there are some cases where WSI systems
can be useful (e.g., for resource-poor languages),
in most cases WSD systems are preferable because
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of higher accuracy and better interpretability of
output.

The rest of this paper is composed of the follow-
ing sections. Section 2 explains our methodology
for creating the training data. We evaluate the ex-
tracted data in Section 3 and finally, we conclude
the paper in Section 4.

2 Training Data

In order to train a supervised word sense disam-
biguation system, we extract and sense-tag data
from a freely available parallel corpus, in a semi-
automatic manner. To increase the coverage and
therefore the ultimate performance of our WSD
system, we also make use of existing sense-tagged
datasets. This section explains each step in detail.

Since the main purpose of this paper is to build
and release a publicly available training set for
word sense disambiguation systems, we selected
the MultiUN corpus (MUN) (Eisele and Chen,
2010) produced in the EuroMatrixPlus project1.
This corpus is freely available via the project
website and includes seven languages. An auto-
matically sentence-aligned version of this dataset
can be downloaded from the OPUS website2 and
therefore we decided to extract samples from this
sentence-aligned version.

To extract training data from the MultiUN par-
allel corpus, we follow the approach described
in (Chan and Ng, 2005) and select the Chinese-
English part of the MultiUN corpus. The extrac-
tion method has the following steps:

1. Tokenization and word segmentation: The
English side of the corpus is tokenized us-
ing the Penn TreeBank tokenizer3, while the
Chinese side of the corpus is segmented us-
ing the Chinese word segmenter of (Low et
al., 2005).

2. Word alignment: After tokenizing the texts,
GIZA++ (Och and Ney, 2000) is used to align
English and Chinese words.

3. Part-of-speech (POS) tagging and lemmati-
zation: After running GIZA++, we use the
OpenNLP POS tagger4 and then the Word-
Net lemmatizer to obtain POS tags and word
lemmas of the English sentence.

1http://www.euromatrixplus.eu/multi-un
2http://opus.lingfil.uu.se/MultiUN.php
3http://www.cis.upenn.edu/⇠treebank/tokenization.html
4http://opennlp.apache.org

4. Annotation: In order to assign a WordNet
sense tag to an English word we in a sen-
tence, we make use of the aligned Chinese
translation wc of we, based on the automatic
word alignment formed by GIZA++. For
each sense i of we in the WordNet sense in-
ventory (WordNet 1.7.1), a list of Chinese
translations of sense i of we has been manu-
ally created. If wc matches one of these Chi-
nese translations of sense i, then we is tagged
with sense i.

The average time needed to manually assign
Chinese translations to the word senses of one
word type for noun, adjective, and verb is 20, 25,
and 40 minutes respectively (Chan, 2008). The
above procedure annotates the top 60% most fre-
quent word types (nouns, verbs, and adjectives) in
English, selected based on their frequency in the
Brown corpus. This set of selected word types in-
cludes 649 nouns, 190 verbs, and 319 adjectives.

Since automatic sentence and word alignment
can be noisy, and a Chinese word wc can occa-
sionally be a valid translation of more than one
sense of an English word we, the senses tagged
using the above procedure may be erroneous. To
get an idea of the accuracy of the senses tagged
with this procedure, we manually evaluated a sub-
set of 1,000 randomly selected sense-tagged in-
stances. Although the sense inventory is fine-
grained (WordNet 1.7.1), the sense-tag accuracy
achieved is 83.7%. We also performed an error
analysis to identify the sources of errors. We found
that only 4% of errors are caused by wrong sen-
tence or word alignment. However, 69% of er-
roneous sense-tagged instances are the result of a
Chinese word associated with multiple senses of
a target English word. In such cases, the Chinese
word is linked to multiple sense tags and therefore,
errors in sense-tagged data are introduced. Our re-
sults are similar to those reported in (Chan, 2008).

To speed up the training process, we perform
random sampling on the sense tags with more than
500 samples and limit the number of samples per
sense to 500. However, all samples of senses with
fewer than 500 samples are included in the train-
ing data. This sampling method ensures that rare
sense tags also have training samples during the
selection process.

In order to improve the coverage of the training
set, we augment it by adding samples from SEM-
COR (SC) (Miller et al., 1993) and the DSO cor-
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Avg. # samples
per word type

MUN (before sampling) 19,837.6
MUN 852.5
MUN+SC 55.4
MUN+SC+DSO 63.7

Table 3: Average number of samples per word
type (WordNet 1.7.1)

pus (Ng and Lee, 1996). We only add the 28 most
frequent adverbs from SEMCOR because we ob-
serve almost no improvement when adding all ad-
verbs. We notice that the DSO corpus generally
improves the performance of our system. How-
ever, since the annotated DSO corpus is copy-
righted, we are unable to release a dataset in-
cluding the DSO corpus. Therefore, we experi-
ment with two different configurations, one with
the DSO corpus and one without, although the re-
leased dataset will not include the DSO corpus.

Since some shared tasks use newer WordNet
versions, we convert the training set sense labels
using the sense mapping files provided by Word-
Net5. As replicating our results requires WordNet
versions 1.7.1, 2.1, and 3.0, we release our sense-
tagged dataset in all three versions. Some statistics
about the sense-tagged training set can be found in
Table 1 to Table 3.

3 Evaluation

For the WSD system, we use IMS (Zhong and
Ng, 2010) in our experiments. IMS is a super-
vised WSD system based on support vector ma-
chines (SVM). This WSD system comes with out-
of-the-box pre-trained models. However, since the
original training set is not released, we use our
own training set (see Section 2) to train IMS and
then evaluate it on standard WSD and WSI bench-
marks. This section presents the results obtained
on four WSD and one WSI shared tasks. The four
all-words WSD shared tasks are SensEval-2 (Ed-
monds and Cotton, 2001), SensEval-3 task 1 (Sny-
der and Palmer, 2004), and both the fine-grained
task 17 and coarse-grained task 7 of SemEval-
2007 (Pradhan et al., 2007; Navigli et al., 2007).
These all-words WSD shared tasks provide no
training data to the participants. The selected
word sense induction task in our experiments is

5http://wordnet.princeton.edu/wordnet/download/current-
version/

SemEval-2013 task 13 (Jurgens and Klapaftis,
2013).

3.1 WSD All-Words Tasks
The results of our experiments on WSD tasks are
presented in Table 4. For the SensEval-2 and
SensEval-3 test sets, we use the training set with
the WordNet 1.7.1 sense inventory and for the
SemEval-2007 test sets, we use training data with
the WordNet 2.1 sense inventory.

In Table 4, IMS (original) refers to the IMS sys-
tem trained with the original training instances as
reported in (Zhong and Ng, 2010). We also com-
pare our systems with two other configurations ob-
tained from training IMS on SEMCOR, and SEM-
COR plus DSO datasets. In Table 4, these two set-
tings are shown by IMS (SC) and IMS (SC+DSO),
respectively. Finally, Rank 1 and Rank 2 are the
top two participating systems in the respective all-
words tasks.

As shown in Table 4, our systems (both with
and without the DSO corpus as training instances)
perform competitively with and in some cases
even better than the original IMS and also the
best shared task submissions. This shows that
our training set is of high quality and training a
supervised WSD system using our training data
achieves state-of-the-art results on the all-words
tasks. Since the MUN dataset does not cover all
target word types in the all-words shared tasks,
the accuracy achieved with MUN alone is lower
than the SC and SC+DSO settings. However, the
evaluation results show that IMS trained on MUN
alone often performs better than or is competi-
tive with the WordNet Sense 1 baseline. Finally,
it can be seen that adding the training instances
from MUN (that is, IMS (MUN+SC) and IMS
(MUN+SC+DSO)) often achieves higher accuracy
than without MUN instances (IMS (SC) and IMS
(SC+DSO)).

3.2 SemEval-2013 Word Sense Induction
Task

In order to evaluate our system on a word sense
induction task, we selected SemEval-2013 task 13,
the latest WSI shared task. Unlike most other tasks
that assume a single sense is sufficient for repre-
senting word senses, this task allows each instance
to be associated with multiple sense labels with
their applicability weights. This WSI task con-
siders 50 lemmas, including 20 nouns, 20 verbs,
and 10 adjectives, annotated with the WordNet 3.1
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noun verb adjective adverb total
MUN (before sampling) 649 190 319 0 1,158
MUN 649 190 319 0 1,158
MUN+SC 11,446 4,705 5,129 28 21,308
MUN+SC+DSO 11,446 4,705 5,129 28 21,308

Table 1: Number of word types in each part-of-speech (WordNet 1.7.1)

number of training samples
noun verb adjective adverb total size

MUN (before sampling) 14,492,639 4,400,813 4,078,543 0 22,971,995 17.7 GB
MUN 503,408 265,785 218,046 0 987,239 745 MB
MUN+SC 582,028 341,141 251,362 6,207 1,180,738 872 MB
MUN+SC+DSO 687,871 412,482 251,362 6,207 1,357,922 939 MB

Table 2: Number of training samples in each part-of-speech (WordNet 1.7.1). The size column shows
the total size of each dataset in megabytes or gigabytes.

sense inventory. We use WordNet 3.0 in our ex-
periments on this task.

We evaluated our system using all measures
used in the shared task. The results are presented
in Table 5. The columns in this table denote the
scores of the various systems according to the dif-
ferent evaluation metrics used in the WSI shared
task, which are Jaccard Index, Ksim

� , WNDCG,
Fuzzy NMI, and Fuzzy B-Cubed. See (Jurgens
and Klapaftis, 2013) for details of the evaluation
metrics.

This table also includes the top two systems in
the shared task, AI-KU (Baskaya et al., 2013) and
Unimelb (Lau et al., 2013), as well as Wang-15
(Wang et al., 2015). AI-KU uses a language
model to find the most likely substitutes for a tar-
get word to represent the context. The clustering
method used in AI-KU is K-means and the sys-
tem gives good performance in the shared task.
Unimelb relies on Hierarchical Dirichlet Process
(Teh et al., 2006) to identify the sense of a tar-
get word using positional word features. Finally,
Wang-15 uses Latent Dirichlet Allocation (LDA)
(Blei et al., 2003) to model the word sense and
topic jointly. This system obtains high scores, ac-
cording to Fuzzy B-Cubed and Fuzzy NMI mea-
sures. The last three rows are some baseline
systems: grouping all instances into one cluster,
grouping each instance into a cluster of its own,
and assigning the most frequent sense in SEM-
COR to all instances. As shown in Table 5, train-
ing IMS on our training data outperforms all other
systems on three out of five evaluation metrics,

and performs competitively on the remaining two
metrics.

IMS trained on MUN alone (IMS (MUN))
outperforms IMS (SC) and IMS (SC+DSO) in
terms of the first three evaluation measures, and
achieves comparable Fuzzy NMI and Fuzzy B-
Cubed scores. Moreover, the evaluation results
show that IMS (MUN) often performs better than
the SEMCOR most frequent sense baseline. Fi-
nally, it can be observed that in most cases, adding
training instances from MUN significantly im-
proves IMS (SC) and IMS (SC+DSO).

4 Conclusion
One of the major problems in building supervised
word sense disambiguation systems is the train-
ing data acquisition bottleneck. In this paper,
we semi-automatically extracted and sense-tagged
an English corpus containing one million sense-
tagged instances. This large sense-tagged cor-
pus can be used for training any supervised WSD
systems. We then evaluated the performance of
IMS trained on our sense-tagged corpus in several
WSD and WSI shared tasks. Our sense-tagged
dataset has been released publicly6. We believe
our dataset is the largest publicly available anno-
tated dataset for WSD at present.

After training a supervised WSD system using
our training set, we evaluated the system using
standard benchmarks. The evaluation results show
that our sense-tagged corpus can be used to build a
WSD system that performs competitively with the

6http://www.comp.nus.edu.sg/⇠nlp/corpora.html
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SensEval-2 SensEval-3 SemEval-2007
Fine-grained Fine-grained Fine-grained Coarse-grained

IMS (MUN) 64.5 60.6 52.7 78.7
IMS (MUN+SC) 68.2 67.4 58.5 81.6
IMS (MUN+SC+DSO) 68.0 66.6 58.9 82.3
IMS (original) 68.2 67.6 58.3 82.6
IMS (SC) 66.1 67.0 58.7 81.9
IMS (SC+DSO) 66.5 67.0 57.8 81.6
Rank 1 69.0 65.2 59.1 82.5
Rank 2 63.6 64.6 58.7 81.6
WordNet Sense 1 61.9 62.4 51.4 78.9

Table 4: Accuracy (in %) on all-words word sense disambiguation tasks

Jac. Ind. Ksim
� WNDCG Fuzzy NMI Fuzzy B-Cubed

IMS (MUN) 24.6 64.9 33.0 6.9 57.1
IMS (MUN+SC) 25.0 65.4 34.2 9.1 55.9
IMS (MUN+SC+DSO) 25.5 65.4 35.1 9.7 55.4
IMS (original) 23.4 64.5 34.0 8.6 59.0
IMS (SC) 22.9 63.5 32.4 6.8 57.3
IMS (SC+DSO) 23.4 63.6 32.9 7.1 57.6
Wang-15 (ukWac) - - - 9.7 54.5
Wang-15 (actual) - - - 9.4 59.1
AI-KU (base) 19.7 62.0 38.7 6.5 39.0
AI-KU (add1000) 19.7 60.6 21.5 3.5 32.0
AI-KU (remove5-add1000) 24.4 64.2 33.2 3.9 45.1
Unimelb (5p) 21.8 61.4 36.5 5.6 45.9
Unimelb (50k) 21.3 62.0 37.1 6.0 48.3
all-instances-1cluster 19.2 60.9 28.8 0.0 62.3
each-instance-1cluster 0.0 0.0 0.0 7.1 0.0
SEMCOR most freq sense 19.2 60.9 28.8 0.0 62.3

Table 5: Supervised and unsupervised evaluation results (in %) on SemEval-2013 word sense induction
task

top performing WSD systems in the SensEval-2,
SensEval-3, and SemEval-2007 fine-grained and
coarse-grained all-words tasks, as well as the top
systems in the SemEval-2013 WSI task.
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Eneko Agirre, Oier López de Lacalle, and Aitor Soroa.

2014. Random walks for knowledge-based word
sense disambiguation. Computational Linguistics,
40(1):57–84.

Osman Baskaya, Enis Sert, Volkan Cirik, and Deniz
Yuret. 2013. AI-KU: using substitute vectors and
co-occurrence modeling for word sense induction
and disambiguation. In Proceedings of the Sev-
enth International Workshop on Semantic Evalua-
tion (SemEval 2013), pages 300–306.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent Dirichlet allocation. Journal of Ma-
chine Learning Research, 3:993–1022.

Yee Seng Chan and Hwee Tou Ng. 2005. Scaling
up word sense disambiguation via parallel texts. In

342



Proceedings of the 20th National Conference on Ar-
tificial Intelligence, pages 1037–1042.

Yee Seng Chan. 2008. Word Sense Disambiguation:
Scaling up, Domain Adaptation, and Application to
Machine Translation. Ph.D. thesis, National Univer-
sity of Singapore.

Mona Diab. 2004. Relieving the data acquisition bot-
tleneck in word sense disambiguation. In Proceed-
ings of the 42nd Annual Meeting of the Association
for Computational Linguistics, pages 303–310.

Philip Edmonds and Scott Cotton. 2001. SENSEVAL-
2: Overview. In Proceedings of the Second Interna-
tional Workshop on Evaluating Word Sense Disam-
biguation Systems, pages 1–5.

Andreas Eisele and Yu Chen. 2010. MultiUN: A
multilingual corpus from United Nation documents.
In Proceedings of the Seventh International Confer-
ence on Language Resources and Evaluation, pages
2868–2872.

David Jurgens and Ioannis Klapaftis. 2013. Semeval-
2013 task 13: Word sense induction for graded
and non-graded senses. In Proceedings of the Sev-
enth International Workshop on Semantic Evalua-
tion (SemEval 2013), pages 290–299.
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Abstract

It is well-known that readers are less likely
to fixate their gaze on closed class syn-
tactic categories such as prepositions and
pronouns. This paper investigates to what
extent the syntactic category of a word in
context can be predicted from gaze fea-
tures obtained using eye-tracking equip-
ment. If syntax can be reliably predicted
from eye movements of readers, it can
speed up linguistic annotation substan-
tially, since reading is considerably faster
than doing linguistic annotation by hand.
Our results show that gaze features do dis-
criminate between most pairs of syntactic
categories, and we show how we can use
this to annotate words with part of speech
across domains, when tag dictionaries en-
able us to narrow down the set of potential
categories.

1 Introduction
Eye movements during reading is a well-
established proxy for cognitive processing, and it
is well-known that readers are more likely to fixate
on words from open syntactic categories (verbs,
nouns, adjectives) than on closed category items
like prepositions and conjunctions (Rayner, 1998;
Nilsson and Nivre, 2009). Generally, readers seem
to be most likely to fixate and re-fixate on nouns
(Furtner et al., 2009). If reading behavior is af-
fected by syntactic category, maybe reading be-
havior can, conversely, also tell us about the syn-
tax of words in context.

This paper investigates to what extent gaze data
can be used to predict syntactic categories. We
show that gaze data can effectively be used to dis-
criminate between a wide range of part of speech

(POS) pairs, and gaze data can therefore be used to
significantly improve type-constrained POS tag-
gers. This is potentially useful, since eye-tracking
data becomes more and more readily available
with the emergence of eye trackers in mainstream
consumer products (San Agustin et al., 2010).
With the development of robust eye-tracking in
laptops, it is easy to imagine digital text providers
storing gaze data, which could then be used to im-
prove automated analysis of their publications.
Contributions We are, to the best of our knowl-
edge, the first to study reading behavior of syntac-
tically annotated, natural text across domains, and
how gaze correlates with a complete set of syntac-
tic categories. We use logistic regression to show
that gaze features discriminate between POS pairs,
even across domains. We then show how gaze fea-
tures can improve a cross-domain supervised POS
tagger. We show that gaze-based predictions are
robust, not only across domains, but also across
subjects.

2 Experiment
In our experiment, 10 subjects read syntactically
annotated sentences from five domains.

Data The data consists of 250 sentences: 50
sentences (min. 3 tokens, max. 120 characters),
randomly sampled from each of five different,
manually annotated corpora: Wall Street Jour-
nal articles (WSJ), Wall Street Journal headlines
(HDL), emails (MAI), weblogs (WBL), and Twit-
ter (TWI). WSJ and HDL syntactically annotated
sentences come from the OntoNotes 4.0 release of
the English Penn Treebank.1 The MAI and WBL
sections come from the English Web Treebank.2

1catalog.ldc.upenn.edu/LDC2011T03
2catalog.ldc.upenn.edu/LDC2012T13
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Figure 1: Fixation probability boxplots across five
domains

The TWI data comes from the work of Foster et
al. (2011). We mapped the gold labels to the 12
Universal POS (Petrov et al., 2011), but discarded
the category X due to data sparsity.
Experimental design The 250 items were read
by all 10 participants, but participants read the
items in one of five randomized orders. Neither
the source domain for the sentence, nor the POS
tags were revealed to the participant at any time.
One sentence was presented at a time in black on a
light gray background. Font face was Verdana and
font size was 25 pixels. Sentences were centered
vertically, and all sentences could fit into one line.
All sentences were preceded by a fixation cross.
The experiment was self-paced. To switch to a
new sentence and to ensure that the sentence was
actually processed by the participant, participants
rated the immediate interest towards the sentence
on a scale from 1-6 by pressing the corresponding
number on the numeric keypad. Participants were
instructed to read and continue to the next sentence
as quickly as possible. The actual experiment was
preceded by 25 practice sentences to familiarize
the participant with the experimental setup.

Our apparatus was a Tobii X120 eye tracker
with a 15” monitor. Sampling rate was 120 Hz
binocular. Participants were seated on a chair ap-
proximately 65 cm from the display. We recruited

10 participants (7 male, mean age 31.30 ±4.74))
from campus. All were native English speakers.
Their vision was normal or corrected to normal,
and none were diagnosed with dyslexia. All were
skilled readers. Minimum educational level was
an ongoing MA. Each session lasted around 40
minutes. One participant had no fixations on a few
sentences. We believe that erroneous key strokes
caused the participant to skip a few sentences.

Features There are many different features for
exploring cognitive load during reading (Rayner,
1998). We extracted a broad selection of cognitive
effort features from the raw eye-tracking data in
order to determine which are more fit for the task.
The features are inspired by Salojärvi et al. (2003),
who used a similarly exploratory approach. We
wanted to cover both oculomotor features, such as
fixations on previous and subsequent words, and
measures relating to early (e.g. first fixation du-
ration) and late processing (e.g. regression desti-
nations / departure points and total fixation time).
We also included reading speed and reading depth
features, such as fixation probability and total fix-
ation time per word. In total, we have 32 gaze
features, where some are highly correlated (such
as number of fixations on a word and total fixation
time per sentence).

Dundee Corpus The main weakness of the exper-
iment is the small dataset. As future work, we
plan to replicate the experiment with a $99 eye
tracker for subjects to use at home. This will
make it easy to collect thousands of sentences,
leading to more robust gaze-based POS models.
Here, instead, we include an experiment with the
Dundee corpus (Kennedy and Pynte, 2005). The
Dundee corpus is a widely used dataset in re-
search on reading and consists of gaze data for
10 subjects reading 20 newswire articles (about
51,000 words). We extracted the same word-based
features as above, except probability for 1st and
2nd fixation, and sentence-level features (in the
Dundee corpus, subjects are exposed to multiple
sentences per screen window), and used them as
features in our POS tagging experiments (§3).

Learning experiments In our experiments, we
used type-constrained logistic regression with
L2-regularization and type-constrained (averaged)
structured perceptron (Collins, 2002; Täckström
et al., 2013). In all experiments, unless otherwise
stated, we trained our models on four domains and
evaluated on the fifth to avoid over-fitting to the
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Rank Feature % of votes

0 Fixation prob 19.0
1 Previous word fixated binary 13.7
2 Next word fixated binary 13.2
3 nFixations 12.2
4 First fixation duration on every word 9.1
5 Previous fixation duration 7.0
6 Mean fixation duration per word 6.6
7 Re-read prob 5.7
8 Next fixation duration 2.0
9 Total fixation duration per word 2.0

Table 1: 10 most used features by stability selec-
tion from logistic regression classification of all
POS pairs on all domains, 5-fold cross validation.

(a) Content words (b) Function words

Figure 2: Scatter plot of frequency and fixation
probability for content words (NOUN, VERB,
ADJ, NUM) and function words (PRON, CONJ,
ADP, DET, PRT)

characteristics of a specific domain. Our tag dic-
tionary is from Wiktionary3 and covers 95% of all
tokens.

3 Results
Domain differences Our first observation is that
the gaze characteristics differ slightly across do-
mains, but more across POS. Figure 1 presents the

3https://code.google.com/p/
wikily-supervised-pos-tagger/downloads/
list

Figure 3: Error reduction of logistic regression
over a majority baseline. All domains

fixation probabilities across the 11 parts of speech.
While the overall pattern is similar across the five
domains (open category items are more likely to
be fixated), we see domain differences. For ex-
ample, pronouns are more likely to be fixated in
headlines. The explanation could lie in the dif-
ferent distributions of function words and content
words. It is established and unchallenged that
function words are fixated on about 35% of the
time and content words are fixated on about 85%
of the time (Rayner and Duffy, 1988). In our data,
these numbers vary among the domains according
to frequency of that word class, see Figure 2. Fig-
ure 2a shows that there is a strong linear correla-
tion between content word frequency and content
word fixation probability among the different do-
mains: Pearson’s ⇢ = 0.909. From Figure 2b,
there is a negative correlation between function
word frequency and function word fixation proba-
bility: Pearson’s ⇢ = �0.702.
Predictive gaze features To investigate which
gaze features were more predictive of part of
speech, we used stability selection (Meinshausen
and Bühlmann, 2010) with logistic regression
classification on all binary POS classifications.
Fixation probability was the most informative fea-
ture, but also whether the words around the word
is fixated is important along with number of fixa-
tions. In our binary discrimination and POS tag-
ging experiments, using L2-regularization or av-
eraging with all features was superior (on Twitter
data) to using stability selection for feature selec-
tion. We also asked a psycholinguist to select a
small set of relatively independent gaze features fit
for the task (first fixation duration, fixation proba-
bility and re-read probability), but again, using all
features with L2-regularization led to better per-
formance on the Twitter data.
Binary discrimination First, we trained L2-
regularized logistic regression models to discrim-
inate between all pairs of POS tags only using
gaze features. In other words, for example we
selected all words annotated as NOUN or VERB,
and trained a logistic regression model to discrim-
inate between the two in a five-fold cross valida-
tion setup. We report error reduction acc�baseline

1�baseline
in Figure 3.
POS tagging We also tried evaluating our gaze
features directly in a supervised POS tagger.4 We

4https://github.com/coastalcph/
rungsted
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SP +GAZE +DGAZE +FREQLEN +DGAZE+FREQLEN

HDL 0.807 0.822 0.822 0.826 0.843
MAI 0.791 0.831 0.834 0.795 0.831
TWI 0.771 0.787 0.800 0.772 0.793
WBL 0.836 0.854 0.858 0.850 0.861
WSJ 0.831 0.837 0.838 0.831 0.859

Macro-av 0.807 0.826 0.830 0.815 0.837
Table 2: POS tagging results on different test sets using 200 out-of-domain sentences for training.
DGAZE is using gaze features from Dundee. Best result for each row in bold face

trained a type-constrained (averaged) perceptron
model with drop-out and a standard feature model
(from Owoputi et al. (2013)) augmented with the
above gaze features. The POS tagger was trained
on a very small seed of data (200 sentences), doing
20 passes over the data, and evaluated on out-of-
domain test data; training on four domains, testing
on one. For the gaze features, instead of using to-
ken gaze features, we first built a lexicon with av-
erage word type statistics from the training data.
We normalize the gaze matrix by dividing with
its standard deviation. This is the normalizer in
Turian et al. (2010) with � = 1.0. We condition
on the gaze features of the current word, only. We
compare performance using gaze features to us-
ing only word frequency, estimating from the (un-
labeled) English Web Treebank corpus, and word
length (FREQLEN).

The first three columns in Table 2 show, that
gaze features help POS tagging, at least when
trained on very small seeds of data. Error reduc-
tion using gaze features from the Dundee corpus
(DGAZE) is 12%. We know that gaze features cor-
relate with word frequency and word length, but
using these features directly leads to much smaller
performance gains. Concatenating the two fea-
tures sets leads to the best performance, with an
error reduction of 16%.

In follow-up experiments, we observe that aver-
aging over 10 subjects when collecting gaze fea-
tures does not seem as important as we expected.
Tagging accuracies on raw (non-averaged) data are
only about 1% lower. Finally, we also tried run-
ning logistic regression experiments across sub-
jects rather than domains. Here, tagging accura-
cies were again comparable to our set-up, suggest-
ing that gaze features are also robust across sub-
jects.

4 Related work
Matthies and Søgaard (2013) present results that
suggest that individual variation among (academ-
ically trained) subjects’ reading behavior was not
a greater source of error than variation within sub-
jects, showing that it is possible to predict fixations
across readers. Our work relates to such work,
studying the robustness of reading models across
domains and readers, but it also relates in spirit to
research on using weak supervision in NLP, e.g.,
work on using HTML markup to improve depen-
dency parsers (Spitkovsky, 2013) or using click-
through data to improve POS taggers (Ganchev et
al., 2012).

5 Conclusions
We have shown that it is possible to use gaze
features to discriminate between many POS pairs
across domains, even with only a small dataset and
a small set of subjects. We also showed that gaze
features can improve the performance of a POS
tagger trained on small seeds of data.
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