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Introduction

The 2015 Conference on Computational Natural Language Learning is the nineteenth in the series of
annual meetings organized by SIGNLL, the ACL special interest group on natural language learning.
CONLL 2015 will be held in Beijing, China on July 30-31, 2015, in conjunction with ACL-IJCNLP
2015.

For the first time this year, CoONLL 2015 has accepted both long (9 pages of content plus 2 additional
pages of references) and short papers (5 pages of content plus 2 additional pages of references). We
received 144 submissions in total, of which 81 were long and 61 were short papers, and 17 were
eventually withdrawn. Of the remaining 127 papers, 29 long and 9 short papers were selected to appear
in the conference program, resulting in an overall acceptance rate of almost 30%. All accepted papers
appear here in the proceedings.

As in previous years, CoNLL 2015 has a shared task, this year on Shallow Discourse Parsing. Papers
accepted for the shared task are collected in a companion volume of CoNLL 2015.

To fit the paper presentations in a 2-day program, 16 long papers were selected for oral presentation and
the remaining 13 long and the 9 short papers were presented as posters. The papers selected for oral
presentation are distributed in four main sessions, each consisting of 4 talks. Each of these sessions also
includes 3 or 4 spotlights of the long papers selected for the poster session. In contrast, the spotlights
for short papers are presented in a single session of 30 minutes. The remaining sessions were used for
presenting a selection of 4 shared task papers, two invited keynote speeches and a single poster session,
including long, short and shared task papers.

We would like to thank all the authors who submitted their work to CoNLL 2015, as well as the program
committee for helping us select the best papers out of many high-quality submissions. We are also
grateful to our invited speakers, Paul Smolensky and Eric Xing, who graciously agreed to give talks at
CoNLL.

Special thanks are due to the SIGNLL board members, Xavier Carreras and Julia Hockenmaier, for
their valuable advice and assistance in putting together this year’s program, and to Ben Verhoeven, for
redesigning and maintaining the CoNLL 2015 web page. We are grateful to the ACL organization for
helping us with the program, proceedings and logistics. Finally, our gratitude goes to our sponsors,
Google Inc. and Microsoft Research, for supporting the best paper award and student scholarships at
CoNLL 2015.

We hope you enjoy the conference!

Afra Alishahi and Alessandro Moschitti

CoNLL 2015 conference co-chairs
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Keynote Talk

On Spectral Graphical Models, and a New Look at Latent Variable Modeling in Natural
Language Processing

Eric Xing

Carnegie Mellon University

epxingl@cs.cmu.edu

Abstract

Latent variable and latent structure modeling, as widely seen in parsing systems, machine translation
systems, topic models, and deep neural networks, represents a key paradigm in Natural Language Pro-
cessing, where discovering and leveraging syntactic and semantic entities and relationships that are not
explicitly annotated in the training set provide a crucial vehicle to obtain various desirable effects such
as simplifying the solution space, incorporating domain knowledge, and extracting informative features.
However, latent variable models are difficult to train and analyze in that, unlike fully observed models,
they suffer from non-identifiability, non-convexity, and over-parameterization, which make them often
hard to interpret, and tend to rely on local-search heuristics and heavy manual tuning.

In this talk, I propose to tackle these challenges using spectral graphical models (SGM), which view
latent variable models through the lens of linear algebra and tensors. I show how SGMs exploit the
connection between latent structure and low rank decomposition, and allow one to develop models and
algorithms for a variety of latent variable problems, which unlike traditional techniques, enjoy provable
guarantees on correctness and global optimality, can straightforwardly incorporate additional modern
techniques such as kernels to achieve more advanced modeling power, and empirically offer a 1-2 orders
of magnitude speed up over existing methods while giving comparable or better performance.

This is joint work with Ankur Parikh, Carnegie Mellon University.
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Biography of the Speaker

Dr. Eric Xing is a Professor of Machine Learning in the School of Computer Science at Carnegie Mellon
University, and Director of the CMU/UPMC Center for Machine Learning and Health. His principal re-
search interests lie in the development of machine learning and statistical methodology, and large-scale
computational system and architecture; especially for solving problems involving automated learning,
reasoning, and decision-making in high-dimensional, multimodal, and dynamic possible worlds in artifi-
cial, biological, and social systems. Professor Xing received a Ph.D. in Molecular Biology from Rutgers
University, and another Ph.D. in Computer Science from UC Berkeley. He servers (or served) as an asso-
ciate editor of the Annals of Applied Statistics (AOAS), the Journal of American Statistical Association
(JASA), the IEEE Transaction of Pattern Analysis and Machine Intelligence (PAMI), the PLoS Journal
of Computational Biology, and an Action Editor of the Machine Learning Journal (MLJ), the Journal of
Machine Learning Research (JMLR). He was a member of the DARPA Information Science and Tech-
nology (ISAT) Advisory Group, a recipient of the NSF Career Award, the Sloan Fellowship, the United
States Air Force Young Investigator Award, and the IBM Open Collaborative Research Award. He is the
Program Chair of ICML 2014.
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Keynote Talk

Does the Success of Deep Neural Network Language Processing Mean — Finally! — the

End of Theoretical Linguistics?

Paul Smolensky

Johns Hopkins University

smolensky@jhu.edu

Abstract

Statistical methods in natural-language processing that rest on heavily empirically-based language learn-
ing — especially those centrally deploying neural networks — have witnessed dramatic improvement in
the past few years, and their success restores the urgency of understanding the relationship between (i)
these neural/statistical language systems and (ii) the view of linguistic representation, processing, and
structure developed over centuries within theoretical linguistics.

Two hypotheses concerning this relationship arise from our own mathematical and experimental results
from past work, which we will present. These hypotheses can guide — we will argue — important future
research in the seemingly sizable gap separating computational linguistics from linguistic theories of
human language acquisition. These hypotheses are:

1. The internal representational format used in deep neural networks for language — numerical vectors
— is covertly an implementation of a system of discrete, symbolic, structured representations which
are processed so as to optimally meet the demands of a symbolic grammar recognizable from the
perspective of theoretical linguistics.

2. It will not be successes but rather the *failures* of future machine learning approaches to language
acquisition which will be most telling for determining whether such approaches capture the crucial
limitations on human language learning — limitations, documented in recent artificial-grammar-
learning experimental results, which support the nativist Chomskian hypothesis asserting that

reliably and efficiently learning human grammars from available evidence requires

that the hypothesis space entertained by the child concerning the set of possible (or likely)
human languages

be limited by abstract, structure-based constraints;

these constraints can then also explain (in principle at least) the many robustly-respected
universals observed in cross-linguistic typology.

This is joint work with Jennifer Culbertson, University of Edinburgh.
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Biography of the Speaker

Paul Smolensky is the Krieger-Eisenhower Professor of Cognitive Science at Johns Hopkins University
in Baltimore, Maryland, USA. He studies the mutual implications between the theories of neural com-
putation and of universal grammar and has published in distinguished venues including Science and the
Proceedings of the National Academy of Science USA. He received the David E. Rumelhart Prize for
Outstanding Contributions to the Formal Analysis of Human Cognition (2005), the Chaire de Recherche
Blaise Pascal (2008—9), and the Sapir Professorship of the Linguistic Society of America (2015). Pri-
mary results include:

Contradicting widely-held convictions, (i) structured symbolic and (ii) neural network models of
cognition are mutually compatible: formal descriptions of the same systems, the mind/brain, at (i)
a highly abstract, and (ii) a more physical, level of description. His article “On the proper treatment
of connectionism” (1988) was until recently one of the 10-most cited articles in The Behavioral
and Brain Sciences, itself the most-cited journal of all the behavioral sciences.

That the theory of neural computation can in fact strengthen the theory of universal grammar is
attested by the revolutionary impact in theoretical linguistics (within phonology in particular) of
Optimality Theory, a neural- network-derived symbolic grammar formalism that he developed with
Alan Prince (in a book widely released 1993, officially published 2004).

The learnability theory for Optimality Theory was founded at nearly the same time as the theory
itself, in joint work of Smolensky and his PhD student Bruce Tesar (TR 1993; article in the pre-
mier linguistic theory journal, Linguistic Inquiry 1998; MIT Press book 2000). This work laid
the foundation upon which rests most of the flourishing formal theory of learning in Optimality
Theory.

There is considerable power in formalizing neural network computation as statistical inference/opti-
mization within a dynamical system. Smolensky’s Harmony Theory (1981-6) analyzed network
computation as Harmony Maximization (an independently-developed homologue to Hopfield’s
“energy minimization” formulation) and first deployed principles of statistical inference for pro-
cessing and learning in the bipartite network structure later to be known as the ‘Restricted Boltz-
mann Machine’ in the initial work on deep neural network learning (Hinton et al., 2006-).

Powerful recursive symbolic computation can be achieved with massive parallelism in neural net-
works designed to process tensor product representations (TR 1987; journal article in Artificial
Intelligence 1990). Related uses of the tensor product to structure numerical vectors is currently
under rapid development in the field of distributional vector semantics.

Most recently, as argued in Part 1 of the talk, his work shows the value for theoretical and psycho-
linguistics of representations that share both the discrete structure of symbolic representations and the
continuous variation of activity levels in neural network representations (initial results in an article in
Cognitive Science by Smolensky, Goldrick & Mathis 2014).
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Abstract

We present a theoretical analysis of online
parameter tuning in statistical machine
translation (SMT) from a coactive learn-
ing view. This perspective allows us to
give regret and generalization bounds for
latent perceptron algorithms that are com-
mon in SMT, but fall outside of the stan-
dard convex optimization scenario. Coac-
tive learning also introduces the concept of
weak feedback, which we apply in a proof-
of-concept experiment to SMT, showing
that learning from feedback that consists
of slight improvements over predictions
leads to convergence in regret and transla-
tion error rate. This suggests that coactive
learning might be a viable framework for
interactive machine translation. Further-
more, we find that surrogate translations
replacing references that are unreachable
in the decoder search space can be inter-
preted as weak feedback and lead to con-
vergence in learning, if they admit an un-
derlying linear model.

1 Introduction

Online learning has become the tool of choice for
large scale machine learning scenarios. Compared
to batch learning, its advantages include memory
efficiency, due to parameter updates being per-
formed on the basis of single examples, and run-
time efficiency, where a constant number of passes
over the training sample is sufficient for conver-
gence (Bottou and Bousquet, 2004). Statistical
Machine Translation (SMT) has embraced the po-
tential of online learning, both to handle millions
of features and/or millions of data in parameter
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tuning via online structured prediction (see Liang
et al. (2006) for seminal early work), and in in-
teractive learning from user post-edits (see Cesa-
Bianchi et al. (2008) for pioneering work on on-
line computer-assisted translation). Online learn-
ing algorithms can be given a theoretical analy-
sis in the framework of online convex optimiza-
tion (Shalev-Shwartz, 2012), however, the appli-
cation of online learning techniques to SMT sac-
rifices convexity because of latent derivation vari-
ables, and because of surrogate translations replac-
ing human references that are unreachable in the
decoder search space. For example, the objective
function actually optimized in Liang et al.’s (2006)
application of Collins’ (2002) structure perceptron
has been analyzed by Gimpel and Smith (2012)
as a non-convex ramp loss function (McAllester
and Keshet, 2011; Do et al., 2008; Collobert et al.,
2006). Since online convex optimization does not
provide convergence guarantees for the algorithm
of Liang et al. (2006), Gimpel and Smith (2012)
recommend CCCP (Yuille and Rangarajan, 2003)
instead for optimization, but fail to provide a the-
oretical analysis of Liang et al.’s (2006) actual al-
gorithm under the new objective.

The goal of this paper is to present an alternative
theoretical analysis of online learning algorithms
for SMT from the viewpoint of coactive learning
(Shivaswamy and Joachims, 2012). This frame-
work allows us to make three main contributions:

o Firstly, the proof techniques of Shivaswamy
and Joachims (2012) are a simple and elegant tool
for a theoretical analysis of perceptron-style al-
gorithms that date back to the perceptron mistake
bound of Novikoff (1962). These techniques pro-
vide an alternative to an online gradient descent
view of perceptron-style algorithms, and can eas-
ily be extended to obtain regret bounds for a la-
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tent perceptron algorithm at a rate of O (ﬁ) , with
possible improvements by using re-scaling. This
bound can be directly used to derive generalization
guarantees for online and online-to-batch conver-
sions of the algorithm, based on well-known con-
centration inequalities. Our analysis covers the ap-
proach of Liang et al. (2006) and supersedes Sun
et al. (2013)’s analysis of the latent perceptron by
providing simpler proofs and by adding a general-
ization analysis. Furthermore, an online learning
framework such as coactive learning covers prob-
lems such as changing n-best lists after each up-
date that were explicitly excluded from the batch
analysis of Gimpel and Smith (2012) and consid-
ered fixed in the analysis of Sun et al. (2013).

e Our second contribution is an extension of
the online learning scenario in SMT to include a
notion of “weak feedback™ for the latent percep-
tron: Coactive learning follows an online learning
protocol, where at each round ¢, the learner pre-
dicts a structured object y; for an input x;, and
the user corrects the learner by responding with
an improved, but not necessarily optimal, object
4 with respect to a utility function U. The key as-
set of coactive learning is the ability of the learner
to converge to predictions that are close to opti-
mal structures y;, although the utility function is
unknown to the learner, and only weak feedback
in form of slightly improved structures g is seen
in training. We present a proof-of-concept ex-
periment in which translation feedback of varying
grades is chosen from the n-best list of an “opti-
mal” model that has access to full information. We
show that weak feedback structures correspond to
improvements in TER (Snover et al., 2006) over
predicted structures, and that learning from weak
feedback minimizes regret and TER.

e Our third contribution is to show that cer-
tain practices of computing surrogate references
actually can be understood as a form of weak
feedback. Coactive learning decouples the learner
(performing prediction and updates) from the user
(providing feedback in form of an improved trans-
lation) so that we can compare different surro-
gacy modes as different ways of approximate util-
ity maximization. We show experimentally that
learning from surrogate “hope” derivations (Chi-
ang, 2012) minimizes regret and TER, thus fa-
voring surrogacy modes that admit an underly-
ing linear model, over “local” updates (Liang et
al., 2006) or “oracle” derivations (Sokolov et al.,

2013), for which learning does not converge.

It is important to note that the goal of our ex-
periments is not to present improvements of coac-
tive learning over the “optimal” full-information
model in terms of standard SMT performance. In-
stead, our goal is to present experiments that serve
as a proof-of-concept of the feasibility of coactive
learning from weak feedback for SMT, and to pro-
pose a new perspective on standard practices of
learning from surrogate translations. The rest of
this paper is organized as follows. After a review
of related work (Section 2), we present a latent
percpetron algorithm and analyze its convergence
and generalization properties (Section 3). Our first
set of experiments (Section 4.1) confirms our the-
oretical analysis by showing convergence in regret
and TER for learning from weak and strong feed-
back. Our second set of experiments (Section 4.2)
analyzes the relation of different surrogacy modes
to minimization of regret and TER.

2 Related Work

Our work builds on the framework of coactive
learning, introduced by Shivaswamy and Joachims
(2012). We extend their algorithms and proofs to
the area of SMT where latent variable models are
appropriate, and additionally present generaliza-
tion guarantees and an online-to-batch conversion.
Our theoretical analysis is easily extendable to the
full information case of Sun et al. (2013). We
also extend our own previous work (Sokolov et al.,
2015) with theory and experiments for online-to-
batch conversion, and with experiments on coac-
tive learning from surrogate translations.

Online learning has been applied for discrimi-
native training in SMT, based on perceptron-type
algorithms (Shen et al. (2004), Watanabe et al.
(2006), Liang et al. (2006), Yu et al. (2013), inter
alia), or large-margin approaches (Tillmann and
Zhang (2006), Watanabe et al. (2007), Chiang et
al. (2008), Chiang et al. (2009), Chiang (2012), in-
ter alia). The latest incarnations are able to handle
millions of features and millions of parallel sen-
tences (Simianer et al. (2012), Eidelmann (2012),
Watanabe (2012), Green et al. (2013), inter alia).
Most approaches rely on hidden derivation vari-
ables, use some form of surrogate references, and
involve n-best lists that change after each update.

Online learning from post-edits has mostly been
confined to “simulated post-editing” where inde-
pendently created human reference translations,



or post-edits on the output from similar SMT
systems, are used as for online learning (Cesa-
Bianchi et al. (2008), Lépez-Salcedo et al. (2012),
Martinez-G6émez et al. (2012), Saluja et al. (2012),
Saluja and Zhang (2014), inter alia). Recent
approaches extend online parameter updating by
online phrase extraction (Wischle et al. (2013),
Bertoldi et al. (2014), Denkowski et al. (2014),
Green et al. (2014), inter alia). We exclude dy-
namic phrase table extension, which has shown to
be important in online learning for post-editing, in
our theoretical analysis (Denkowski et al., 2014).

Learning from weak feedback is related to bi-
nary response-based learning where a meaning
representation is “tried out” by iteratively generat-
ing system outputs, receiving feedback from world
interaction, and updating the model parameters.
Such world interaction consists of database access
in semantic parsing (Kwiatowski et al. (2013), Be-
rant et al. (2013), or Goldwasser and Roth (2013),
inter alia). Feedback in response-based learning
is given by a user accepting or rejecting system
predictions, but not by user corrections.

Lastly, feedback in form of numerical utility
values for actions is studied in the frameworks of
reinforcement learning (Sutton and Barto, 1998)
or in online learning with limited feedback, e.g.,
multi-armed bandit models (Cesa-Bianchi and Lu-
gosi, 2006). Our framework replaces quantitative
feedback with immediate qualitative feedback in
form of a structured object that improves upon the
utility of the prediction.

3 Coactive Learning for Online Latent
Structured Prediction

3.1 Notation and Background

Let X denote a set of input examples, e.g.,
sentences, and let )(x) denote a set of structured
outputs for z € X, e.g., translations. We define
Y = UgY(z). Furthermore, by H(z,y) we
denote a set of possible hidden derivations for a
structured output y € )(z), e.g., for phrase-based
SMT, the hidden derivation is determined by a
phrase segmentation and a phrase alignment be-
tween source and target sentences. Every hidden
derivation h € H(x,y) deterministically identifies
an output y € Y (z). We define H = U, , H(x,y).
Let ¢: X x ) x H — R? denote a feature function
that maps a triplet (z,y,h) to a d-dimensional
vector. For phrase-based SMT, we use 14 fea-
tures, defined by phrase translation probabilities,

Algorithm 1 Feedback-based Latent Perceptron

1: Initialize w < 0

2: fort=1,...,7T do
3:  Observe x¢

4 (yo, he) — argmax, ) wi ¢(xs,y,h)
5:  Obtain weak feedback 7

6: if Yt 75 th then

7

8

hi — arg max,, w, ¢(x, Jt, h)
w1 — we+ Ay, p, (e, Tey he) — d(@e, e, b))

language model probability, distance-based and
lexicalized reordering probabilities, and word
and phrase penalty. We assume that the fea-
ture function has a bounded radius, i.e. that
lo(z,y,h)|| < R for all z,y,h. By App we
denote a distance function that is defined for any
h,h' € H, and is used to scale the step size of
updates during learning. In our experiments, we
use the ordinary Euclidean distance between the
feature vectors of derivations. We assume a linear
model with fixed parameters w, such that each
input example is mapped to its correct deriva-
tion and structured output by using (y*,h*) =
arg MaXycy(z) heH(z,y) ws " P(z,y, h). We define
for each given input z, its highest scoring deriva-
tion over all outputs Y(z) such that h(x;w) =
ATg MAXy cpy(g,y) MAXyey(a) W G2, Y, h')

and the highest scoring derivation for
a given output y €  Y(z) such that
haly;w) = argmaxy ey 0" é(z,y, /). In
the following theoretical exposition we assume
that the argmax operation can be computed
exactly.

3.2 Feedback-based Latent Perceptron

We assume an online setting, in which examples
are presented one-by-one. The learner observes
an input x, predicts an output structure ¥, and
is presented with feedback ¢, about its prediction,
which is used to make an update to an existing pa-
rameter vector. Algorithm 1 is called “Feedback-
based Latent Perceptron” to stress the fact that
it only uses weak feedback to its predictions for
learning, but does not necessarily observe optimal
structures as in the full information case (Sun et
al., 2013). Learning from full information can be
recovered by setting the informativeness parame-
ter o to 1 in Equation (2) below, in which case
the feedback structure 4; equals the optimal struc-
ture y;. Algorithm 1 differs from the algorithm
of Shivaswamy and Joachims (2012) by a joint
maximization over output structures y and hid-



den derivations h in prediction (line 4), by choos-
ing a hidden derivation h for the feedback struc-
ture ¢ (line 7), and by the use of the re-scaling
factor Ay, ;,, in the update (line 8), where hy =
h(x¢|ge; wy) and hy = h(xy; wy) are the deriva-
tions of the feedback structure and the prediction
at time ¢, respectively. In our theoretical exposi-
tion, we assume that i is reachable in the search
space of possible outputs, that is, 7; € V().

3.3 Feedback of Graded Utility

The key in the theoretical analysis in Shivaswamy
and Joachims (2012) is the notion of a linear utility
function, determined by parameter vector w, that
is unknown to the learner:

Uh(x7 y) = w*T(;ﬁ(x, Y, h)

Upon a system prediction, the user approximately
maximizes utility, and returns an improved object
1, that has higher utility than the predicted y; s.t.

U(zt, yt) > Ulxe, i)

where for given x € X, y € )Y(z), and h* =
arg MaXpey(z,y) Un(2,y), we define U(z,y) =
Up+(x,y) and drop the subscript unless h # h*.
Importantly, the feedback is typically not the opti-
mal structure y; that is defined as
y; = argmax U (x4, y).
yeYV(xt)
While not receiving optimal structures in training,
the learning goal is to predict objects with util-
ity close to optimal structures y;. The regret that
is suffered by the algorithm when predicting ob-
ject y; instead of the optimal object ¥ is
T

1
REGr = T Z (U, yr) = Ulze,me)). (1)
=1

To quantify the amount of information in the
weak feedback, Shivaswamy and Joachims (2012)
define a notion of a-informative feedback, which
we generalize as follows for the case of latent
derivations. We assume that there exists a deriva-
tion h; for the feedback structure 9, such that
for all predictions y;, the (re-scaled) utility of the
weak feedback y; is higher than the (re-scaled)
utility of the prediction y; by a fraction « of the
maximum possible utility range (under the given
utility model). Thus V¢, 3hy, Vh and for o € (0, 1]:

(Un, (@6,5¢) — Un(ze,y1)) X Ap,
> a(U(ze,y7) — Ul ye)) — &, (2)

where & > 0 are slack variables allowing for vio-
lations of (2) for given «. For slack & = 0, user
feedback is called strictly a-informative.

3.4 Convergence Analysis

A central theoretical result in learning from weak
feedback is an analysis that shows that Algo-
rithm 1 minimizes an upper bound on the average
regret (1), despite the fact that optimal structures
are not used in learning:

Theorem 1. Let Dy = Y|, A3 .- Then the
average regret of the feedback-based latent per-
ceptron can be upper bounded for any o € (0, 1],
for any w, € R%:

T

1 2R|w.|| vDr
REGy < aT;& =

A proof for Theorem 1 is similar to the proof
of Shivaswamy and Joachims (2012) and the orig-
inal mistake bound for the perceptron of Novikoff
(1962).! The theorem can be interpreted as fol-
lows: we expect lower average regret for higher
values of «; due to the dominant term 7', regret
will approach the minimum of the accumulated
slack (in case feedback structures violate Equa-
tion (2)) or O (in case of strictly a-informative
feedback). The main difference between the above
result and the result of Shivaswamy and Joachims
(2012) is the term Dy following from the re-
scaled distance of latent derivations. Their anal-
ysis is agnostic of latent derivations, and can be
recovered by setting this scaling factor to 1. This
yields Dy = T, and thus recovers the main fac-
tor \/,_],37 = % in their regret bound. In our al-
gorithm, penalizing large distances of derivations
can help to move derivations h; closer to hy, there-
fore decreasing D as learning proceeds. Thus in
case D7 < T, our bound is better than the original
bound of Shivaswamy and Joachims (2012) for a
perceptron without re-scaling. As we will show
experimentally, re-scaling leads to a faster conver-
gence in practice.

3.5 Generalization Analysis

Regret bounds measure how good the average pre-
diction of the current model is on the next example
in the given sequence, thus it seems plausible that
a low regret on a sequence of examples should im-
ply good generalization performance on the entire
domain of examples.

!Short proofs are provided in the appendix.



Generalization for Online Learning. First we
present a generalization bound for the case of on-
line learning on a sequence of random examples,
based on generalization bounds for expected aver-
age regret as given by Cesa-Bianchi et al. (2004).
Let probabilities P and expectations [E be de-
fined with respect to the fixed unknown underly-
ing distribution according to which all examples
are drawn. Furthermore, we bound our loss func-
tion ¢, = U(xy, y;) — U(xy, ) to [0, 1] by adding
a normalization factor 2R||w.|| st. REGr =
% Zthl ;. Plugging the bound on REG of The-
orem 1 directly into Proposition 1 of Cesa-Bianchi
et al. (2004) gives the following theorem:

Theorem 2. Let 0 < § < 1, and let x1,. .., xT be
a sequence of examples that Algorithm I observes.
Then with probability at least 1 — 9,

T

1 2R||w.|| v Dr
EREGr] <— I VT
[REG] ~al &~ S+, T

2
+ 2w, || Ry 1o

i

The generalization bound tells us how far the
expected average regret E[REGy| (or average
risk, in terms of Cesa-Bianchi et al. (2004)) is from
the average regret that we actually observe in a
specific instantiation of the algorithm.

Generalization for Online-to-Batch Conver-
sion. In practice, perceptron-type algorithms are
often applied in a batch learning scenario, i.e.,
the algorithm is applied for K epochs to a train-
ing sample of size 7" and then used for predic-
tion on an unseen test set (Freund and Schapire,
1999; Collins, 2002). The difference to the online
learning scenario is that we treat the multi-epoch
algorithm as an empirical risk minimizer that se-
lects a final weight vector wr x whose expected
loss on unseen data we would like to bound. We
assume that the algorithm is fed with a sequence
of examples 1, ..., 2z, and at each epoch k =
1,..., K it makes a prediction y; . The correct
label is y;. Fork =1,...,Kandt =1,...,T,
let ¢y, = U(xt,y;) — U(zt, y1.k), and denote by
Ay i and & ;. the distance at epoch £ for example
t, and the slack at epoch k for example ¢, respec-
tively. Finally, we denote by Dy jc = 3/, A7k,
and by wr g the final weight vector returned after

K epochs. We state a condition of convergence?:

2This condition is too strong for large datasets. However,
we believe that a weaker condition based on ideas from the

Condition 1. Algorithm I has converged on train-
ing instances xi,...,xT after K epochs if the
predictions on x1,...,xr using the final weight
vector wr i are the same as the predictions on
X1, ...,x7 in the Kth epoch.

Denote by Ex(¢(z)) the expected loss on
unseen data when using wr g where /(z) =
U(z,y*) — U(z,y), y* = argmax, U(z,y) and

y = argmax, maxy, w; ¢(x,y,h). We can
now state the following result:
Theorem 3. Let 0 < § < 1, and let x1,...,x7

be a sample for the multiple-epoch perceptron al-
gorithm such that the algorithm converged on it
(Condition 1). Then, with probability at least 1—4,
the expected loss of the feedback-based latent per-
ceptron satisfies:

The theorem can be interpreted as a bound on
the generalization error (lefthand-side) by the em-
pirical error (the first two righthand-side terms)
and the variance caused by the finite sample (the
third term in the theorem). The result follows di-
rectly from McDiarmid’s concentration inequality.

4 [Experiments

We used the LIG corpus® which consists of 10,881
tuples of French-English post-edits (Potet et al.,
2012). The corpus is a subset of the news-
commentary dataset provided at WMT* and con-
tains input French sentences, MT outputs, post-
edited outputs and English references. To prepare
SMT outputs for post-editing, the creators of the
corpus used their own WMT10 system (Potet et
al., 2010), based on the Moses phrase-based de-
coder (Koehn et al., 2007) with dense features.
We replicated a similar Moses system using the
same monolingual and parallel data: a 5-gram
language model was estimated with the KenLM
toolkit (Heafield, 2011) on news.en data (48.65M
sentences, 1.13B tokens), pre-processed with the
tools from the cdec toolkit (Dyer et al., 2010).
perceptron cycling theorem (Block and Levin, 1970; Gelfand

et al., 2010) should suffice to show a similar bound.

3http://www—clips.imag.fr/geod/User/marion.potet/
index.php?page=download

http://statmt.org/wmtl0/translation-task.html
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strong (o« = 1.0) informativeness, with (lower part) and without re-scaling (upper part).

Parallel data (europarl+news-comm, 1.64M sen-
tences) were similarly pre-processed and aligned
with fast_align (Dyer et al., 2013). In all ex-
periments, training is started with the Moses de-
fault weights. The size of the n-best list, where
used, was set to 1,000. Irrespective of the use of
re-scaling in perceptron training, a constant learn-
ing rate of 10~° was used for learning from simu-
lated feedback, and 10~ for learning from surro-
gate translations.

Our experiments on online learning require
a random sequence of examples for learning.
Following the techniques described in Bertsekas
(2011) to generate random sequences for incre-
mental optimization, we compared cyclic order ()
epochs of T" examples in fixed order), randomized
order (sampling datapoints with replacement), and
random shuffling of datapoints after each cycle,
and found nearly identical regret curves for all
three scenarios. In the following, all figures are
shown for sequences in the cyclic order, with re-
decoding after each update. Furthermore note that
in all three definitions of sequence, we never see
the fixed optimal feedback y; in training, but in-
stead in general a different feedback structure %
(and a different prediction y;) every time we see
the same input x;.

4.1 Idealized Weak and Strong Feedback

In a first experiment, we apply Algorithm 1 to
user feedback of varying utility grade. The goal of

strict (§; = 0)  slack (&; > 0)

# datapoints 5,725 1,155

TER(7:) < TER(y¢) 52.17% 32.55%
TER(:) = TER(y¢) 23.95% 20.52%
TER(7:) > TER(y:) 23.88% 46.93%

Table 1: Improved utility vs. improved TER dis-
tance to human post-edits for a-informative feed-
back y; compared to prediction y; using default
weights at « = 0.1.

this experiment is to confirm our theoretical anal-
ysis by showing convergence in regret for learn-
ing from weak and strong feedback. We select
feedback of varying grade by directly inspecting
the optimal w,, thus this feedback is idealized.
However, the experiment also has a realistic back-
ground since we show that a-informative feedback
corresponds to improvements under standard eval-
uation metrics such as lowercased and tokenized
TER, and that learning from weak and strong feed-
back leads to convergence in TER on test data.

For this experiment, the post-edit data from the
LIG corpus were randomly split into 3 subsets:
PE-train (6,881 sentences), PE-dev, and PE-test
(2,000 sentences each). PE-train was used for
our online learning experiments. PE-test was held
out for testing the algorithms’ progress on unseen
data. PE-dev was used to obtain w, to define the
utility model. This was done by MERT optimiza-
tion (Och, 2003) towards post-edits under the TER
target metric. Note that the goal of our experi-



% strictly a-informative

local 39.46%
filtered 47.73%
hope 83.30%

Table 2: a-informativeness of surrogacy modes.

ments is not to improve SMT performance over
any algorithm that has access to full information to
compute w,. Rather, we want to show that learn-
ing from weak feedback leads to convergence in
regret with respect to the optimal model, albeit
at a slower rate than learning from strong feed-
back. The feedback data in this experiment were
generated by searching the n-best list for transla-
tions that are a-informative at o € {0.1,0.5,1.0}
(with possible non-zero slack). This is achieved
by scanning the n-best list output for every input
x; and returning the first 4, # 1, that satisfies
Equation (2).> This setting can be thought of as an
idealized scenario where a user picks translations
from the n-best list that are considered improve-
ments under the optimal w,.

In order to verify that our notion of graded util-
ity corresponds to a realistic concept of graded
translation quality, we compared improvements in
utility to improved TER distance to human post-
edits. Table 1 shows that for predictions under
default weights, we obtain strictly a-informative
(for o = 0.1) feedback for 5,725 out of 6,881
datapoints in PE-train. These feedback structures
improve utility per definition, and they also yield
better TER distance to post-edits in the majority
of cases. A non-negative slack has to be used in
1,155 datapoins. Here the majority of feedback
structures do not improve TER distance.

Convergence results for different learning sce-
narios are shown in Figure 1. The left upper part
of Figure 1 shows average utility regret against
iterations for a setup without re-scaling, i.e., set-
ting Ay, ;, = 1 in the definition of a-informative
feedback (Equation (2)) and in the update of Al-
gorithm 1 (line 8). As predicted by our regret
analysis, higher « leads to faster convergence, but
all three curves converge towards a minimal re-
gret. Also, the difference between the curves for

>Note that feedback provided in this way might be
stronger than required at a particular value of « since for all
B > a, strictly S-informative feedback is also strictly a-
informative. On the other hand, because of the limited size of
the n-best list, we cannot assume strictly a-informative user
feedback with zero slack &;. In experiments where updates
are only done if feedback is strictly a-informative we found
similar convergence behavior.
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Figure 3: Average loss /; on heldout and train data.

a = 0.1 and a = 1.0 is much smaller than a fac-
tor of ten. As expected from the correspondence of
a-informative feedback to improvements in TER,
similar relations are obtained when plotting TER
scores on test data for training from weak feed-
back at different utility grades. This is shown in
the right upper part of Figure 1.

The left lower part of Figure 1 shows average
utility regret plotted against iterations for a setup
that uses re-scaling. We define Ay, ;, by the {o-
distance between the feature vectors ¢(x, gt, hyt)
of the derivation of the feedback structure and the
feature vector ¢(z¢, yt, he) of the derivation of the
predicted structure. We see that the curves for all
grades of feedback converge faster than the corre-
sponding curves for un-scaled feedback shown in
the upper part Figure 1. Furthermore, as shown in
the right lower part of Figure 1, TER is decreased
on test data as well at a faster rate.®

Lastly, we present an experimental validation of
the online-to-batch application of our algorithm.
That is, we would like to evaluate predictions that
use the final weight vector wr, i by comparing the
generalization error with the empirical error stated
in Theorem 3. The standard way to do this is to
compare the average loss on heldout data with the
the average loss on the training sequence. Fig-
ure 3 shows these results for models trained on
a-informative feedback of o € {0.1,0.5, 1.0} for
10 epochs. Similar to the online learning setup,
higher « results in faster convergence. Further-
more, curves for training and heldout evaluation
converge at the same rate.

4.2 Feedback from Surrogate Translations

In this section, we present experiments on learn-
ing from real human post-edits. The goal of
this experiment is to investigate whether the stan-

®We also conducted online-to-batch experiments for sim-
ulated feedback at o € {0.1,0.5,1.0}. Similar to the online
learning setup, higher « results in faster convergence.
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Figure 2: Regret and TER for online learning from oracles, local, filtered, and hope surrogates.

dard practices for extracting feedback from ob-
served user post-edits for discriminative SMT can
be matched with the modeling assumptions of
the coactive learning framework. The custom-
ary practice in discriminative learning for SMT is
to replace observed user translations by surrogate
translations since the former are often not reach-
able in the search space of the SMT decoder. In
our case, only 29% of the post-edits in the LIG-
corpus were reachable by the decoder. We com-
pare four heuristics of generating surrogate trans-
lations: oracles are generated using the lattice or-
acle approach of Sokolov et al. (2013) which re-
turns the closest path in the decoder search graph
as reachable surrogate translation.” A 1ocal sur-
rogate y is chosen from the n-best list of the
linear model as the translation that achieves the
best TER score with respect to the actual post-
edit y: § = argming e, pes(zyw,) TER(Y,Y)-
This corresponds to the local update mode of
Liang et al. (2006). A filtered surrogate trans-
lation g is found by scanning down the n-best
list, and accepting the first translation as feed-
back that improves TER score with respect to the
human post-edit y over the 1-best prediction y;
of the linear model: TER(7,y) < TER(y,y).
Finally, a hope surrogate is chosen from the n-
best list as the translation that jointly maximizes
model score under the linear model and nega-
tive TER score with respect to the human post-
edit: § = arg maXy’En-best(xt;wt)(_TER(y,7y) +
w,' ¢(x¢, ', h)). This corresponds to what Chi-
ang (2012) termed “hope derivations”. Informally,
oracles are model-agnostic, as they can pick a
surrogate even from outside of the n-best list;
local is constrained to the n-best list, though
still ignoring the ordering according to the linear

"While the original algorithm is designed to maximize the
BLEU score of the returned path, we tuned its two free pa-
rameters to maximize TER.

model; finally, filtered and hope represent dif-
ferent ways of letting the model score influence
the selected surrogate.

As shown in Figure 2, regret and TER de-
crease with the increased amount of information
about the assumed linear model that is induced by
the surrogate translations: Learning from oracle
surrogates does not converge in regret and TER.
The 1ocal surrogates extracted from 1,000-best
lists still do not make effective use of the linear
model, while filtered surrogates enforce an im-
provement over the prediction under TER towards
the human post-edit, and improve convergence in
learning. Empirically, convergence is achieved
only for hope surrogates that jointly maximize
negative TER and linear model score, with a con-
vergence behavior that is very similar to learning
from weak a-informative feedback at  ~ 0.1.
We quantify this in Table 2 where we see that the
improvement in TER over the prediction that holds
for any hope derivation, corresponds to an im-
provement in a-informativeness: hope surrogates
are strictly a-informative in 83.3% of the cases
in our experiment, whereas we find a correspon-
dence to strict a-informativeness only in 45.74%
or 39.46% of the cases for filtered and local
surrogates, respectively.

5 Discussion

We presented a theoretical analysis of online
learning for SMT from a coactive learning per-
spective. This viewpoint allowed us to give regret
and generalization bounds for perceptron-style on-
line learners that fall outside the convex opti-
mization scenario because of latent variables and
changing feedback structures. We introduced the
concept of weak feedback into online learning for
SMT, and provided proof-of-concept experiments
whose goal was to show that learning from weak
feedback converges to minimal regret, albeit at a



slower rate than learning from strong feedback.
Furthermore, we showed that the SMT standard
of learning from surrogate hope derivations can to
be interpreted as a search for weak improvements
under the assumed linear model. This justifies
the importance of admitting an underlying linear
model in computing surrogate derivations from a
coactive learning perspective.

Finally, we hope that our analysis motivates fur-
ther work in which the idea of learning from weak
feedback is taken a step further. For example,
our results could perhaps be strengthened by ap-
plying richer feature sets or dynamic phrase table
extension in experiments on interactive SMT. Our
theory would support a new post-editing scenario
where users pick translations from the n-best list
that they consider improvements over the predic-
tion. Furthermore, it would be interesting to see if
“light” post-edits that are better reachable and eas-
ier elicitable than “full” post-edits provide a strong
enough signal for learning.
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Appendix: Proofs of Theorems

Proof of Theorem 1

Proof. First we bound wy- +1wr+1 from above:

T T
Wr1Wr+1 = Wrwr
+ 2w ($(xr, §r, hr) — (a1, Y7, h1)) Abp
_ = T
+ (¢(@r, yr, hr) — (e, yr,h1)) Dfiye oy
(¢(@r,yr, hr) — ¢p(zr,y7, b)) Afy 1y

<wrwr +4R°A}_, < AR’Dr. 3)
The first equality uses the update rule from Algorithm
1. The second uses the fact that ws (¢(zr,gr, hr) —
¢(xr,yr,hr)) < 0 by definition of (yr,hr) in Algo-
rithm 1. By assumption ||¢(x,y, h)| < R,Vz,y,h and
by the triangle inequality, ||¢(x,y,h) — é(x,y’, h)]|
¢z, y, DIl + ll¢(z,y",h)[| < 2R. Finally, Dr =
Ethl A%t’ n, Dy definition, and the last inequality follows

by induction.
The connection to average regret is as follows:

T T
'LUT+1'LU* = W Wk

+ ABT he (0(@r, g, hr))

= ZAh, h,

T
Z vy (Un, (@, 5e) — Uny (@, 1)) - )]

- QS(:ETa yr, h’T))Tw*

It,?]tjbt) — (e, yt, ht))T’w*

The first equality again uses the update rule from Algorithm
1. The second follows by induction. The last equality applies
the definition of utility.

Next we upper bound the utility difference:

T
> Ay U, (e, 5) —

t=1

Uh, (xtv yt))

< Jlws[l[wrsa ]l < flwel|2Rv D1 )

The first inequality follows from applying the Cauchy-
Schwartz inequality wq,;wsx [lws||lwrs1]l to Equa-
tion (4). The seond follows from applying Equation (3) to

lwrsi|| = yfwg wri.
The final result is obtained simply by lower bounding

Equation (5) using the assumption in Equation (2).

lw.[|12Rv/Dr
T
> ZAEt,ht (Un, (@e, 5t) = Uny (z1,91))
t=1
T
2 Z xt:yt xhyt Z‘gt
=a T REGr — th. m
t=1

Proof of Theorem 3

Proof. The theorem can be shown by an application of Mc-
Diarmid’s concentration inequality:

Theorem 4 (McDiarmid, 1989). Let Zi,..., Zm be a set
of random variables taking value in a set Z. Further, let
f: Z™ — R be a function that satisfies for all i and
Z1y.e. s Zm, 2 € Z:

[f(z1, oy 2y vy Zm)
_f(217...,Z7I;,.4.7Z,,L)‘SC, (6)
for some c. Then for all € > 0,
P(|f —E(f)| > €) < 2exp(— 2¢ ) )
- -

Let f be the average loss for predicting y; on example x;
in epoch K: f(x1,...,27) = REGr,x = % Zthl by K.
Because of the convergence condition (Condition 1), ¢; x =
Z( ) The expectation of f is E(f) = £ 37 E[l:s] =
7 2iey Elf(21)] = Ex (U(z)).

The first and second term on the righthand-side of Theo-
rem 3 follow from upper bounding REG~ in the Kth epochs,
using Theorem 1. The third term is derived by calculating c
in Equation (6) as follows:
flxa, ..., :c;,l.w:vT)\

|f(x1,..., :ct,l.w:vT)—

T
Z&K TZ£tK|_| Z&K ZtK'
t=1 t=1

T
AR||w.
Z il + 1 ]) < 2l

The first inequality uses the triangle inequality; the sec-
ond uses the upper bound [¢ x| < 2R||ws]||. Setting the
righthand-side of Equation (7) to at least ¢ and solving for e,
using c, concludes the proof. O
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Abstract

In coreference resolution, a fair amount of
research treats mention detection as a pre-
processed step and focuses on developing
algorithms for clustering coreferred men-
tions. However, there are significant gaps
between the performance on gold mentions
and the performance on the real problem,
when mentions are predicted from raw text
via an imperfect Mention Detection (MD)
module. Motivated by the goal of reduc-
ing such gaps, we develop an ILP-based
joint coreference resolution and mention
head formulation that is shown to yield sig-
nificant improvements on coreference from
raw text, outperforming existing state-of-
art systems on both the ACE-2004 and the
CoNLL-2012 datasets. At the same time,
our joint approach is shown to improve men-
tion detection by close to 15% F1. One
key insight underlying our approach is that
identifying and co-referring mention heads
is not only sufficient but is more robust than
working with complete mentions.

1 Introduction

Mention detection is rarely studied as a stand-alone
research problem (Recasens et al. (2013) is one
key exception). Most coreference resolution work
simply mentions it in passing as a module in the
pipelined system (Chang et al., 2013; Durrett and
Klein, 2013; Lee et al., 2011; Bjorkelund and Kuhn,
2014). However, the lack of emphasis is not due to
this being a minor issue, but rather, we think, its dif-
ficulty. Indeed, many papers report results in terms
of gold mentions versus system generated mentions,
as shown in Table 1. Current state-of-the-art sys-
tems show a very significant drop in performance
when running on system generated mentions. These
performance gaps are worrisome, since the real goal
of NLP systems is to process raw data.
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System | Dataset Gold | Predict | Gap

Illinois CoNLL-12 | 77.05 | 60.00 | 17.05
Ilinois CoNLL-11 | 77.22 | 60.18 | 17.04
linois ACE-04 79.42 | 68.27 | 11.15
Berkeley | CoNLL-11 | 76.68 | 60.42 | 16.26
Stanford | ACE-04 81.05 | 70.33 | 10.72

Table 1: Performance gaps between using gold mentions
and predicted mentions for three state-of-the-art corefer-
ence resolution systems. Performance gaps are always larger
than 10%. Illinois’s system (Chang et al., 2013) is evaluated
on CoNLL (2012, 2011) Shared Task and ACE-2004 datasets.
It reports an average F1 score of MUC, B3 and CEAF, met-
rics using CoNLL v7.0 scorer. Berkeley’s system (Durrett and
Klein, 2013) reports the same average score on the CoNLL-
2011 Shared Task dataset. Results of Stanford’s system (Lee et
al., 2011) are for B3 metric on ACE-2004 dataset.

This paper focuses on improving end-to-end
coreference performance. We do this by: 1) De-
veloping a new ILP-based joint learning and infer-
ence formulation for coreference and mention head
detection. 2) Developing a better mention head can-
didate generation algorithm. Importantly, we focus
on heads rather than mention boundaries since those
can be identified more robustly and used effectively
in an end-to-end system. As we show, this results
in a dramatic improvement in the quality of the MD
component and, consequently, a significant reduc-
tion in the performance gap between coreference on
gold mentions and coreference on raw data.

Existing coreference systems usually consider a
pipelined system, where the mention detection step
is followed by that of clustering mentions into coref-
erence chains. Higher quality mention identification
naturally leads to better coreference performance.
Standard methods define mentions as boundaries of
text, and expect exact boundaries as input in the
coreference step. However, mentions have an intrin-
sic structure, in which mention heads carry the cru-
cial information. Here, we define a mention head as
the last token of a syntactic head, or the whole syn-
tactic head for proper names.! For example, in “the

Here, we follow the ACE annotation guideline. Note that
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incumbent [Barack Obama]” and “[officials] at the
Pentagon”, “Barack Obama” and “officials” serve
as mention heads, respectively. Mention heads can
be used as auxiliary structures for coreference. In
this paper, we first identify mention heads, and then
detect mention boundaries based on heads. We rely
heavily on the first, head identification, step, which
we show to be sufficient to support coreference deci-
sions. Moreover, this step also provides enough in-
formation for “understanding” the coreference out-
put, and can be evaluated more robustly (since mi-
nor disagreements on mention boundaries are often
a reason for evaluation issues when dealing with
predicted mentions). We only identify the mention
boundaries at the end, after we make the coreference
decisions, to be consistent with current evaluation
standards in the corefernce resolution community.
Consider the following example?:

[Multinational companies investing in [China]]
had become so angry that [they] recently
set up an anti-piracy league to pressure [the
[Chinese] government] to take action. [Do-
mestic manufacturers, [who] are also suffering],
launched a similar body this month. [They] hope
[the government] can introduce a new law in-
creasing fines against [producers of fake goods]
from the amount of profit made to the value of the
goods produced.

Here, phrases in the brackets are mentions and
the underlined simple phrases are mention heads.
Moreover, mention boundaries can be nested (the
boundary of a mention is inside the boundary of
another mention), but mention heads never overlap.
This property also simplifies the problem of mention
head candidate generation. In the example above,
the first “they” refers to “Multinational companies
investing in China” and the second “They” refers
to “Domestic manufacturers, who are also suffer-
ing”. In both cases, the mention heads are sufficient
to support the decisions: “they” refers to “compa-
nies”, and “They” refers to “manufacturers”. In
fact, most of the features® implemented in existing
coreference resolution systems rely solely on men-
tion heads (Bengtson and Roth, 2008).

Furthermore, consider the possible mention can-
didate “league” (italic in the text). It is not cho-
sen as a mention because the surrounding context
is not focused on “anti-piracy league”. So, mention

the CoNLL-2012 dataset is built from OntoNotes-5.0 corpus.
2This example is chosen from the ACE-2004 corpus.
3 All features except for those that rely on modifiers.
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Figure 1: Comparison between a traditional pipelined sys-
tem and our proposed system. We split up mention detection
into two steps: mention head candidate generation and (an op-
tional) mention boundary detection. We feed mention heads
rather than complete mentions into the coreference model. Dur-
ing the joint head-coreference process, we reject some mention
head candidates and then recover complete mention boundaries
after coreference decisions are made.

detection can be viewed as a global decision prob-
lem, which involves considering the relevance of a
mention to its context. The fact that the coreference
decision provides a way to represent this relevance,
further motivates considering mention detection and
coreference jointly. The insight here is that a men-
tion candidate will be more likely to be valid when
it has more high confidence coreference links.

This paper develops a joint coreference resolution
and mention head detection framework as an Inte-
ger Linear Program (ILP) following Roth and Yih
(2004). Figure 1 compares a traditional pipelined
system with our proposed system. Our joint for-
mulation includes decision variables both for coref-
erence links between pairs of mention heads, and
for all mention head candidates, and we simultane-
ously learn the ILP coefficients for all these vari-
ables. During joint inference, some of the mention
head candidates will be rejected (that is, the corre-
sponding variables will be assigned ’0’), contribut-
ing to improvement both in MD and in coreference
performance. The aforementioned joint approach
builds on an algorithm that generates mention head
candidates. Our candidate generation process con-
sists of a statistical component and a component that
makes use of existing resources, and is designed to
ensure high recall on head candidates.

Ideally, after making coreference decisions, we
extend the remaining mention heads to complete
mentions; we employ a binary classifier, which
shares all features with the mention head detection
model in the joint step.

Our proposed system can work on both ACE and
OntoNotes datasets, even though their styles of an-
notation are different. There are two main differ-



ences to be addressed. First, OntoNotes removes
singleton mentions, even if they are valid mentions.
This causes additional difficulty in learning a good
mention detector in a pipelined framework. How-
ever, our joint framework can adapt to it by rejecting
those singleton mentions. More details will be dis-
cussed in Sec. 2. Second, ACE uses shortest deno-
tative phrases to identify mentions while OntoNotes
tends to use long text spans. This makes identifying
mention boundaries unnecessarily hard. Our system
focuses on mention heads in the coreference stage to
ensure robustness. As OntoNotes does not contain
head annotations, we preprocess the data to extract
mention heads which conform with the ACE style.

Results on ACE-2004 and CoNLL-2012 datasets
show that our system* reduces the performance gap
for coreference by around 25% (measured as the ra-
tio of performance improvement over performance
gap) and improves the overall mention detection by
over 10 F1 points. With such significant improve-
ments, we achieve the best end-to-end coreference
resolution results reported so far.

The main contributions of our work can be sum-
marized as follows:

1. We develop a new, end-to-end, coreference ap-
proach that is based on a joint learning and in-
ference model for mention heads and corefer-
ence decisions.

2. We develop an improved mention head candi-
date generation module and a mention bound-
ary detection module.

3. We achieve the best coreference results on pre-
dicted mentions and reduce the performance
gap compared to using gold mentions.

The rest of the paper is organized as follows. We
explain the joint head-coreference learning and in-
ference framework in Sec. 2. Our mention head
candidate generation module and mention boundary
detection module are described in Sec. 3. We report
our experimental results in Sec. 4, review related
work in Sec. 5 and conclude in Sec. 6.

2 A Joint Head-Coreference Framework

This section describes our joint coreference resolu-
tion and mention head detection framework. Our
work is inspired by the latent left-linking model in
Chang et al. (2013) and the ILP formulation from
Chang et al. (2011). The joint learning and infer-
ence model takes as input mention head candidates

4Available at http://cogcomp.cs.illinois.
edu/page/software_view/Coref
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(Sec. 3) and jointly (1) determines if they are indeed
mention heads and (2) learns a similarity metric be-
tween mentions. This is done by simultaneously
learning a binary mention head detection classifier
and a mention-pair coreference classifier. The men-
tion head detection model here is mainly trained to
differentiate valid mention heads from invalid ones.
By learning and making decisions jointly, it also
serves as a singleton mention head classifier, build-
ing on insights from Recasens et al. (2013). This
joint framework aims to improve performance on
both mention head detection and on coreference.

We first describe the formualtion of the men-
tion head detection and the ILP-based mention-pair
coreference separately, and then propose the joint
head-coreference framework.

21

The mention head detection model is a binary classi-
fier g, =w| @(m), in which @(m) is a feature vector
for mention head candidate m and w; is the corre-
sponding weight vector. We identify a candidate m
as a mention head if g,, > 0. The features utilized in
the vector @(m) consist of: 1) Gazetteer features 2)
Part-Of-Speech features 3) Wordnet features 4) Fea-
tures from the previous and next tokens 5) Length of
mention head. 6) Normalized Pointwise Mutual In-
formation (NPMI) on the tokens across a mention
head boundary 7) Feature conjunctions. Altogether
there are hundreds of thousands of sparse features.

Mention Head Detection

2.2 ILP-based Mention-Pair Coreference

Let M be the set of all mentions. We train a corefer-
ence model by learning a pairwise mention scoring
function. Specifically, given a mention-pair (u,v)
(u,v € M, u is the antecedent of v), we learn a left-
linking scoring function f,, = WZT ¢ (u,v), where
¢(u,v) is a pairwise feature vector and w, is the
weight vector. The inference algorithm is inspired
by the best-left-link approach (Chang et al., 2011),
where they solve the following ILP problem:

argmax fu,vyu,w
u<v,u,veM
s.t. Z)’u,v <1, WeM, (D)
u<v

Yuy € {0,1} VM,VEM.

Here, y,, = 1 iff mentions u, v are directly linked.
Thus, we can construct a forest and the mentions
in the same connected component (i.e., in the same
tree) are co-referred. For this mention-pair corefer-
ence model ¢ (u,v), we use the same set of features
used in Bengtson and Roth (2008).



2.3 Joint Inference Framework

We extend expression (1) to facilitate joint inference
on mention heads and coreference as follows:

Y vt Y gmvm,

u<v,u,veM meM

s.t. Zyw <1, WweM,

u<y

Zy,w <y, WweM,

u<y

Yuy € {0,1}, yn €{0,1} Yu,yymeM'.

arg max
)

Here, M’ is the set of all mention head candidates.
Ym 1s the decision variable for mention head candi-
date m. y, = 1 if and only if the mention head m
is chosen. To consider coreference decisions and
mention head decisions together, we add the con-
straint ), yu» < ¥y, which ensures that if a candi-
date mention head v is not chosen, then it will not
have coreference links with other mention heads.

2.4 Joint Learning Framework

To support joint learning of the parameters w; and
wy described above, we define a joint training objec-
tive function C(w;,w;) for mention head detection
and coreference, which uses a max-margin approach
to learn both weight vectors. Suppose we have a col-
lection of documents D, and we generate n; men-
tion head candidates for each document d (d € D).
We use an indicator function &(u,m) to represent
whether mention heads u,m are in the same corefer-
ence cluster based on gold annotations (8 (u,m) = 1
iff they are in the same cluster). Similarly, Q(m) is
an indicator funtion representing whether mention
head m is valid in the gold annotations.
For simplicity, we first define

6 (u,m)),

u' = argmax(w, ¢ (u,m) —
u<m

max
u<m,0(u,m)=1

u' = arg wy ¢ (u,m)Q(m).

We then minimize the following joint training ob-
jective function C (w1 wa).

Z Z coref,m W2

|D| deD nq m
+Clocal,m (Wl) + Ctrans,m(wl )) + R(WI , WZ)-

C(wi,wma) =

C(w1,w) is composed of four parts. The first part
is the loss function for coreference, where we have

corefm(WZ) _W;q)(ull m)‘Q(m)
+ (w3 ¢ (u',m) — & (' ,m)) (Q(m) v Q).
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It is similar to the loss function for a latent left-
linking coreference model’. As the second com-
ponent, we have the quadratic loss for the mention
head detection model,

Clocal,m(wl) =

Using the third component, we further maximize the
margin between valid and invalid mention head can-
didates when they are selected as the best-left-link
mention heads for any valid mention head. It can be
represented as

1
Ctrans,m(wl) = E(WIT(P(M,) - Q(u,))zg(m)
The last part is the regularization term
A A
R(wi,w2) = [ [wil[* + [ [wa [

2.5 Stochastic Subgradient Descent for Joint
Learning

For joint learning, we choose stochastic subgradi-
ent descent (SGD) approach to facilitate performing
SGD on a per mention head basis. Next, we de-
scribe the weight update algorithm by defining the
subgradients.

The partial subgradient w.r.t. mention head m for
the head weight vector wy is given by

le,mC(W17W2) =
1
m (Vclocahm (Wl) + VCtrcms,m (Wl )) +Aiwy )
where
VClocal,m(""] ) = (WIF(P(m) - 'Q(m))(P(m)?
VCtrans,m(wl) = (WT(P(M,) - Q(u’))(p(u')Q(m)

The partial subgradient w.r.t. mention head m for
the coreference weight vector w, is given by

VWz,mC(WlaWZ) = Aowo+
o(u',m) — o (u”,m)

o(u';m) if Q(m) =
0 if Q(m) =

if Q(m) =
0and Q) =1,
Oand Q(«') =

3

Here A; and A, are regularization coefficients
which are tuned on the development set. To learn
the mention head detection model, we consider two
different parts of the gradient in expression (2).
VCiocar,m(w) is exactly the local gradient of men-
tion head m while we add VG, (w1 ) to represent

SMore details can be found in Chang et al. (2013). The
difference here is that we also consider the validity of mention
heads using Q(u),Q(m)



the gradient for mention head «’, the mention head
chosen by the current best-left-linking model for m.
This serves to maximize the margin between valid
mention heads and invalid ones. As invalid mention
heads will not be linked to any other mention head,
Virans 18 zero when m is invalid. When training the
mention-pair coreference model, we only consider
gradients when at least one of the two mention heads
m,u’ is valid, as shown in expression (3). When
mention head m is valid (Q(m) = 1), the gradient
is the same as local training for best-left-link of m
(first condition in expression (3)). When m is not
valid while «’ is valid, we only demote the coref-
erence link between them (second condition in ex-
pression (3)). We consider only the gradient from
the regularization term when both m,u’ are invalid.
As mentioned before, our framework can han-
dle annotations with or without singletion mentions.
When the gold data contains no singleton mentions,
we have Q(m) = 0 for all singleton mention heads
among mention head candidates. Then, our men-
tion head detection model partly serves as a single-
ton head detector, and tries to reject singletons in
the joint decisions with coreference. When the gold
data contains singleton mentions, we have Q(m) =1
for all valid singleton mention heads. Our mention
head detection model then only learns to differenti-
ate invalid mention heads from valid ones, and thus
has the ability to preserve valid singleton heads.

Most of the head mentions proposed by the al-
gorithms described in Sec. 3 are positive exam-
ples. We ensure a balanced training of the men-
tion head detection model by adding sub-sampled
invalid mention head candidates as negative exam-
ples. Specifically, after mention head candidate gen-
eration (described in Sec. 3), we train on a set of
candidates with precision larger than 50%. We then
use Illinois Chunker (Punyakanok and Roth, 2001)°
to extract more noun phrases from the text and em-
ploy Collins head rules (Collins, 1999) to identify
their heads. When these extracted heads do not
overlap with gold mention heads, we treat them as
negative examples.

We note that the aforementioned joint framework
can take as input either complete mention candi-
dates or mention head candidates. However, in this
paper we only feed mention heads into it. Our ex-
perimental results support our intuition that this pro-
vides better results.

Shttp://cogcomp.cs.illinois.edu/page/
software_view/Chunker
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3 Mention Detection Modules

This section describes the module that generates our
mention head candidates, and then how the mention
heads are expanded to complete mentions.

3.1 Mention Head Candidate Generation

The goal of the mention head candidate genera-
tion process is to acquire candidates from multiple
sources to ensure high recall, given that our joint
framework acts as a filter and increases precision.
We view the sources as independent components
and merge all mention heads generated. A sequence
labelling component and a named entity recogni-
tion component employ statistical learning methods.
These are augmented by additional heads that we
acquire from Wikipedia and a “known heads” re-
source, which we incorporate utilizing string match-
ing algorithms.

3.1.1 Statistical Components

Sequence Labelling Component We use the fol-
lowing notations. Let O =< 01,02, ,0, > repre-
sent an input token sequence over an alphabet Q. A
mention is a substring of consecutive input tokens
m; j =< 0i,0i41, "+ ,0j > for 1 <i< ] <n. We
consider the positions of mentions in the text: two
mentions with an identical sequence of tokens that
differ in position are considered different mentions.

The sequence labeling component builds on the

following assumption:
Assumption Different mentions have different
heads, and heads do not overlap with each other.
That is, for each m;;, we have a corresponding
head h,p where i < a < b < j. Moreover, for an-
other head hy 3, we have the satisfying condition
a—b'>0 or b—d <0 Yhyp,hyp.

Based on this assumption, the problem of
identifying mention heads is a sequential phrase
identification problem, and we choose to em-
ploy the BILOU-representation as it has advan-
tages over traditional B/ O-representation, as shown,
e.g. in Ratinov and Roth (2009). The BILOU-
representation suggests learning classifiers that
identify the Beginning, Inside and Last tokens of
multi-token chunks as well as Unit-length chunks.
The problem is then transformed into a simple, but
constrained, 5-class classification problem.

The BILOU -classifier shares all features with the
mention head detection model described in Sec. 2.1
except for two: length of mention heads and NPMI
over head boundary. For each instance, the feature



vector is sparse and we use sparse perceptron (Jack-
son and Craven, 1996) for supervised training. We
also apply a two layer prediction aggregation. First,
we apply a baseline BILOU -classifier, and then use
the resulting predictions as additional features in a
second level of inference to take interactions into
account in an efficient manner. A similar technique
has been applied in Ratinov and Roth (2009), and
has shown favorable results over other “standard”
sequential prediction models.

Named Entity Recognition Component We use
existing tools to extract named entities as additional
mention head candidates. We choose the state-of-
the-art “Illinois Named Entity Tagger” package’.
It uses distributional word representations that im-
prove its generalization. This package gives the
standard Person/Location/Organization/Misc labels
and we take all output named entities as candidates.

3.1.2 Resource-Driven Matching Components

Wikipedia Many mention heads can be directly
matched to a Wikipedia title. We get 4,045,764
Wikipedia titles from Wikipedia dumps and use all
of them as potential mention heads. The Wikipedia
matching component includes an efficient hashing
algorithm implemented via a DJB2 hash function®.
One important advantage of using Wikipedia is
that it keeps updating. This component can con-
tribute steadily to ensure a good coverage of men-
tion heads. We first run this matching component
on training documents and compute the precision of
entries that appear in the text (the probability of ap-
pearing as mention heads). We then get the set of en-
tries with precision higher than a threshold o, which
is tuned on the development set using F1-score. We
use them as candidates for mention head matching.
Known Head Some mention heads appear repeat-
edly in the text. To fully utilize the training data, we
construct a known mention head candidate set and
identify them in the test documents. To balance be-
tween recall and precision, we set a parameter 3 > 0
as a precision threshold and only allow those men-
tion heads with precision larger than 3 on the train-
ing set. Please note that threshold f3 is also tuned on
the development set using F1-score.

We also employ a simple word variation tolerance
algorithm in our matching components, to general-
ize over small variations (plural/singular, etc.).

Thttp://cogcomp.cs.illinois.edu/page/
software_view/NETagger
8http://www.cse.yorku.ca/~oz/hash.html
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3.2 Mention Boundary Detection

Once the joint learning and inference process deter-
mines the set of mention heads (and their corefer-
ence chains), we extend the heads to complete men-
tions. Note that this process may not be necessary,
since in many applications, the head clusters often
provide enough information. However, for consis-
tency with existing coreference resolution systems,
we describe below how we expand the heads to
complete mentions.

We learn a binary classifier to expand mentions,
which determines if the mention head should in-
clude the token to its left and to its right. We fol-
low the notations in Sec. 2.1. We construct pos-
itive examples as (0, hqp,dir), Ym; j(h,p). Here
pe{ii+l,---;,a—1}U{b+1,b+2,---,j} and
when p =i,i+1,---,a— 1, dir = L; when p =
b+1,b+2,---,j, dir =R. We construct negative
examples as (0;—1,/qp,L) and (0j11,hqp,R). Once
trained, the binary classifier takes in the head, a to-
ken and the direction of the token relative to the
head, and decides whether the token is inside or out-
side the mention corresponding to the head. At test
time, this classifier is used around each confirmed
head to determine the mention boundaries. The fea-
tures used here are similar to the mention head de-
tection model described in Sec. 2.1.

4 Experiments

We present experiments on the two standard coref-
erence resolution datasets, ACE-2004 (NIST, 2004)
and OntoNotes-5.0 (Hovy et al., 2006). Our ap-
proach results in a substantial reduction in the coref-
erence performance gap between gold and pre-
dicted mentions, and significantly outperforms ex-
isting stat-of-the-art results on coreference resolu-
tion; in addition, it achieves significant performance
improvement on MD for both datasets.

4.1 Experimental Setup

Datasets The ACE-2004 dataset contains 443 doc-
uments. We use a standard split of 268 training doc-
uments, 68 development documents, and 106 test-
ing documents (Culotta et al., 2007; Bengtson and
Roth, 2008). The OntoNotes-5.0 dataset, which is
released for the CoNLL-2012 Shared Task (Prad-
han et al., 2012), contains 3,145 annotated docu-
ments. These documents come from a wide range of
sources which include newswire, bible, transcripts,
magazines, and web blogs. We report results on the
test documents for both datasets.



MUC | B’ CEAF, | AVG MUC | B? CEAF, | AVG
Goldy, /g 78.17 | 81.64 | 78.45 79.42 Goldy, /gy 82.03 | 70.59 | 66.76 73.12
Stanfordy, 63.89 | 70.33 | 70.21 68.14 Stanford,, 64.62 | 51.89 | 48.23 54.91
Predictedy, 64.28 | 70.37 | 70.16 68.27 HotCorefy, 70.74 | 58.37 | 55.47 61.53
H-M-Corefy, | 65.81 | 71.97 | 71.14 69.64 Berkeleyy, 71.24 | 58.71 | 55.18 61.71
H-Joint-M,, | 67.28 | 73.06 | 73.25 | 71.20 Predictedy, 69.63 | 57.46 | 53.16 | 60.08
Stanfordy 70.28 | 73.93 | 73.04 72.42 H-M-Corefy, | 70.95 | 59.11 | 54.98 61.68
Predictedy | 71.35 | 75.33 | 74.02 | 73.57 H-Joint-My, | 72.22 | 60.50 | 56.37 | 63.03
H-M-Corefy | 71.81 | 75.69 | 74.45 73.98 Stanfordy 68.53 | 56.68 | 52.36 59.19
H-Joint-My | 72.74 | 76.69 | 75.18 74.87 HotCorefy 72.94 | 60.27 | 57.53 63.58
Table 2: Performance of coreference resolution for all sys- Berkeleyy 73.05 | 60.39 | 57.43 63.62
tems on the ACE-2004 dataset. Subscripts (7, ) indicate Predicted 72.11 1 60.12 | 55.68 62.64
evaluations on (mentions, mention heads) respectively. For H . - - -
gold mentions and mention heads, they yield the same per- H-M-Corefy | 73.22 | 61.42 | 56.21 63.62
formance for coreference. Our proposed H-Joint-M system H-Joint-My | 74.83 | 62.77 | 57.93 65.18

achieves the highest performance. Parameters of our proposed
system are tuned as @ = 0.9, § = 0.8, 4 = 0.2 and 1, = 0.3.

The ACE-2004 dataset is annotated with both
mention and mention heads, while the OntoNotes-
5.0 dataset only has mention annotations. There-
fore, we preprocess Ontonote-5.0 to derive men-
tion heads using Collins head rules (Collins, 1999)
with gold constituency parsing information and gold
named entity information. The parsing information’
is only needed to generate training data for the men-
tion head candidate generator and named entities are
directly set as heads. We set these extracted heads
as gold, which enables us to train the two layer
BILOU -classifier described in Sec. 3.1.1. The non-
overlapping mention head assumption in Sec. 3.1.1
can be verified empirically on both ACE-2004 and
OntoNotes-5.0 datasets.

Baseline Systems We choose three publicly avail-
able state-of-the-art end-to-end coreference systems
as our baselines: Stanford system (Lee et al., 2011),
Berkeley system (Durrett and Klein, 2014) and
HOTCoref system (Bjorkelund and Kuhn, 2014).

Developed Systems Our developed system is built
on the work by Chang et al. (2013), using Con-
strained Latent Left-Linking Model (CL>M) as our
mention-pair coreference model in the joint frame-
work!?. When the CL*M coreference system uses
gold mentions or heads, we call the system Gold,;
when it uses predicted mentions or heads, we call
the system Predicted. The mention head candidate
generation module along with mention boundary
detection module can be grouped together to form
a complete mention detection system, and we call
it H-M-MD. We can feed the predicted mentions
from H-M-MD directly into the mention-pair coref-

9No parsing information is needed at evaluation time.
10%We use Gurobi v5.0.1 as our ILP solver.
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Table 3: Performance of coreference resolution for all sys-
tems on the CoNLL-2012 dataset. Subscripts (37, g) indi-
cate evaluations on (mentions, mention heads) respectively. For
gold mentions and mention heads, they yield the same per-
formance for coreference. Our proposed H-Joint-M system
achieves the highest performance. Parameters of our proposed
system are tuned as @ = 0.9, § = 0.9, 4 =0.25and A, =0.2.

erence model that we implemented, resulting in a
traditional pipelined end-to-end coreference system,
namely H-M-Coref. We name our new proposed
end-to-end coreference resolution system incorpo-
rating both the mention head candidate generation
module and the joint framework as H-Joint-M.

Evaluation Metrics We compare all systems us-
ing three popular metrics for coreference resolution:
MUC (Vilain et al., 1995), B? (Bagga and Bald-
win, 1998), and Entity-based CEAF (CEAF,) (Luo,
2005). We use the average F1 scores (AVG) of these
three metrics as the main metric for comparison.
We use the v7.0 scorer provided by CoNLL-2012
Shared Task!'. We also evaluate the mention de-
tection performance based on precision, recall and
F1 score. As mention heads are important for both
mention detection and coreference resolution, we
also report results evaluated on mention heads.

4.2 Performance for Coreference Resolution

Performance of coreference resolution for all sys-
tems on the ACE-2004 and CoNLL-2012 datasets is
shown in Table 2 and Table 3 respectively.'> These
results show that our developed system H-Joint-M

UThe latest scorer is version v8.01, but MUC, B3, CEAF,
and CoNLL average scores are not changed. For evaluation on
ACE-2004, we convert the system output and gold annotations
into CoNLL format.

12We do not provide results from Berkeley and HOTCoref on
ACE-2004 dataset as they do not directly support ACE input.
Results for HOTCoref are slightly different from the results re-
ported in Bjorkelund and Kuhn (2014). For Berkeley system,
we use the reported results from Durrett and Klein (2014).



shows significant improvement on all metrics for
both datasets. Existing systems only report results
on mentions. Here, we also show their performance
evaluated on mention heads. When evaluated on
mention heads rather than mentions'?, we can al-
ways expect a performance increase for all systems
on both datasets. Even though evaluating on men-
tions is more common in the literature, it is often
enough to identify just mention heads in corefer-
ence chains (as shown in the example from Sec.
1). H-M-Coref can already bring substantial perfor-
mance improvement, which indicates that it is help-
ful for coreference to just identify high quality men-
tion heads. Our proposed H-Joint-M system out-
performs all baselines and achieves the best results
reported so far.

4.3 Performance for Mention Detection

The performance of mention detection for all sys-
tems on the ACE-2004 and CoNLL-2012 datasets
is shown in Table 4. These results show that our
developed system exhibits significant improvement
on precision and recall for both datasets. H-M-MD
mainly improves on recall, indicating, as expected,
that the mention head candidate generation mod-
ule ensures high recall on mention heads. H-Joint-
M mainly improves on precision, indicating, as ex-
pected, that the joint framework correctly rejects
many of the invalid mention head candidates during
joint inference. Our joint model can adapt to anno-
tations with or without singleton mentions. Based
on training data, our system has the ability to pre-
serve true singleton mentions in ACE while reject-
ing many singleton mentions in OntoNotes'4. Note
that we have better mention detection results on
ACE-2004 dataset than on OntoNotes-5.0 dataset.
We believe that this is due to the fact that extract-
ing mention heads in the OntoNotes dataset is some-
what noisy.

4.4 Analysis of Performance Improvement

The improvement of our H-Joint-M system is due to
two distinct but related modules: the mention head
candidate generation module (“Head”) and the joint
learning and inference framework (“Joint”).!> We

I3Here, we treat mention heads as mentions. Thus, in the
evaluation script, we set the boundary of a mention to be the
boundary of its correponding mention head.

14please note that when evaluating on OntoNotes, we even-
tually remove all singleton mentions from the output.

15«Joint” rows are computed as “H-Joint-M” rows minus
“Head” rows. They reflect the contribution of the joint frame-
work to mention detection (by rejecting some mention heads).
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Systems Precision ‘ Recall ‘ F1-score
ACE-2004
Predictedy, 75.11 73.03 | 74.06
H-M-MDy, | 77.45 92.97 | 83.90
H-Joint-M,, | 85.34 91.73 | 88.42
Predictedy 76.84 86.99 | 79.87
H-M-MDgy 80.82 93.45 | 86.68
H-Joint-Mp | 88.85 92.27 | 90.53
CoNLL-2012
Predictedy, 65.28 63.41 | 64.33
H-M-MD,, | 70.09 76.72 | 73.26
H-Joint-M,, | 78.51 75.52 | 76.99
Predictedy 76.38 74.02 | 75.18
H-M-MDy 77.73 83.99 | 80.74
H-Joint-My | 85.07 82.31 | 83.67

Table 4: Performance of mention detection for all systems
on the ACE-2004 and CoNLL-2012 datasets. Subscripts (y/,
y) indicate evaluations on (mentions, mention heads) respec-
tively. Our proposed H-Joint-M system dramatically improves
the MD performance.

evaluate the effect of these two modules in terms
of Mention Detection Error Reduction (MDER) and
Performance Gap Reduction (PGR) for coreference.
MDER is computed as the ratio of performance im-
provement for mention detection over the original
mention detection error rate, while PGR is com-
puted as the ratio of performance improvement for
coreference over the performance gap for corefer-
ence. Results on the ACE-2004 and CoNLL-2012
datasets are shown in Table 5.

The mention head candidate generation module
has a bigger impact on MDER compared to the joint
framework. However, they both have the same level
of positive effects on PGR for coreference resolu-
tion. On both datasets, we achieve more than 20%
performance gap reduction for coreference.

5 Related Work

Coreference resolution has been extensively stud-
ied, with several state-of-the-art approaches ad-
dressing this task (Lee et al., 2011; Durrett and
Klein, 2013; Bjorkelund and Kuhn, 2014; Song et
al., 2012). Many of the early rule-based systems
like Hobbs (1978) and Lappin and Leass (1994)
gained considerable popularity. The early designs
were easy to understand and the rules were designed
manually. Machine learning approaches were intro-
duced in many works (Connolly et al., 1997; Ng and

16We use bootstrapping resampling (10 times from the test

data) with signed rank test. All the improvements shown are
statistically significant.



ACE-2004 MDER | PGR(AVG)
Heady, 37.93 12.29
Jointy, 17.43 13.99
H-Joint-My, | 55.36 26.28
Heady 34.00 | 7.01

Jointy 19.22 15.21
H-Joint-My 53.22 22.22
CoNLL-2012 | MDER | PGR(AVG)
Head,, 25.04 12.16
Jointy, 10.45 10.44
H-Joint-My, | 35.49 22.60
Heady 22.40 10.58
Jointy 11.81 13.75
H-Joint-Mgy 34.21 24.33

Table 5: Analysis of performance improvement in terms
of Mention Detection Error Reduction (MDER) and Perfor-
mance Gap Reduction (PGR) for coreference resolution on
the ACE-2004 and CoNLL-2012 datasets. “Head” represents
the mention head candidate generation module, “Joint” repre-
sents the joint learning and inference framework, and “H-Joint-
M” indicates the end-to-end system.

Cardie, 2002; Bengtson and Roth, 2008; Soon et al.,
2001). The introduction of ILP methods has influ-
enced the coreference area too (Chang et al., 2011;
Denis and Baldridge, 2007). In this paper, we use
the Constrained Latent Left-Linking Model (CL*M)
described in Chang et al. (2013) in our experiments.

The task of mention detection is closely related
to Named Entity Recognition (NER). Punyakanok
and Roth (2001) thoroughly study phrase identifica-
tion in sentences and propose three different general
approaches. They aim to learn several different lo-
cal classifiers and combine them to optimally satisfy
some global constraints. Cardie and Pierce (1998)
propose to select certain rules based on a given
corpus, to identify base noun phrases. However,
the phrases detected are not necessarily mentions
that we need to discover. Ratinov and Roth (2009)
present detailed studies on the task of named entity
recognition, which discusses and compares different
methods on multiple aspects including chunk repre-
sentation, inference method, utility of non-local fea-
tures, and integration of external knowledge. NER
can be regarded as a sequential labeling problem,
which can be modeled by several proposed mod-
els, e.g. Hidden Markov Model (Rabiner, 1989) or
Conditional Random Fields (Sarawagi and Cohen,
2004). The typical BIO representation was intro-
duced in Ramshaw and Marcus (1995); OC repre-
sentations were introduced in Church (1988), while
Finkel and Manning (2009) further study nested
named entity recognition, which employs a tree
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structure as a representation of identifying named
entities within other named entities.

The most relevant study on mentions in the con-
text of coreference was done in Recasens et al.
(2013); this work studies distinguishing single men-
tions from coreferent mentions. Our joint frame-
work provides similar insights, where the added
mention decision variable partly reflects if the men-
tion is singleton or not.

Several recent works suggest studying corefer-
ence jointly with other tasks. Lee et al. (2012)
model entity coreference and event coreference
jointly; Durrett and Klein (2014) consider joint
coreference and entity-linking. The work closest
to ours is that of Lassalle and Denis (2015), which
studies a joint anaphoricity detection and corefer-
ence resolution framework. While their inference
objective is similar, their work assumes gold men-
tions are given and thus their modeling is very dif-
ferent.

6 Conclusion

This paper proposes a joint inference approach to
the end-to-end coreference resolution problem. By
moving to identify mention heads rather than men-
tions, and by developing an ILP-based, joint, online
learning and inference approach, we close a signif-
icant fraction of the existing gap between corefer-
ence systems’ performance on gold mentions and
their performance on raw data. At the same time,
we show substantial improvements in mention de-
tection. We believe that our approach will gener-
alize well to many other NLP problems, where the
performance on raw data (the result that really mat-
ters) is still significantly lower than the performance
on gold data.
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Abstract

Combinatory Categorial Grammar (CCG)
is a lexicalized grammar formalism in
which words are associated with cate-
gories that specify the syntactic configura-
tions in which they may occur. We present
a novel parsing model with the capacity to
capture the associative adjacent-category
relationships intrinsic to CCG by param-
eterizing the relationships between each
constituent label and the preterminal cat-
egories directly to its left and right, bi-
asing the model toward constituent cate-
gories that can combine with their con-
texts. This builds on the intuitions of
Klein and Manning’s (2002) “constituent-
context” model, which demonstrated the
value of modeling context, but has the ad-
vantage of being able to exploit the prop-
erties of CCG. Our experiments show that
our model outperforms a baseline in which
this context information is not captured.

1 Introduction

Learning parsers from incomplete or indirect su-
pervision is an important component of moving
NLP research toward new domains and languages.
But with less information, it becomes necessary to
devise ways of making better use of the informa-
tion that is available. In general, this means con-
structing inductive biases that take advantage of
unannotated data to train probabilistic models.
One important example is the constituent-
context model (ccM) of Klein and Manning
(2002), which was specifically designed to cap-
ture the linguistic observation made by Radford
(1988) that there are regularities to the contexts
in which constituents appear. This phenomenon,
known as substitutability, says that phrases of the
same type appear in similar contexts. For example,
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the part-of-speech (POS) sequence ADJ NOUN fre-
quently occurs between the tags DET and VERB.
This DET—VERB context also frequently applies
to the single-word sequence NOUN and to ADJ ADJ
NOUN. From this, we might deduce that DET—
VERB is a likely context for a noun phrase. CCM
is able to learn which POS contexts are likely,
and does so via a probabilistic generative model,
providing a statistical, data-driven take on substi-
tutability. However, since there is nothing intrin-
sic about the POS pair DET—VERB that indicates
a priori that it is a likely constituent context, this
fact must be inferred entirely from the data.

Baldridge (2008) observed that unlike opaque,
atomic POS labels, the rich structures of Combina-
tory Categorial Grammar (CCG) (Steedman, 2000;
Steedman and Baldridge, 2011) categories reflect
universal grammatical properties. CCG is a lexi-
calized grammar formalism in which every con-
stituent in a sentence is associated with a struc-
tured category that specifies its syntactic relation-
ship to other constituents. For example, a cate-
gory might encode that “this constituent can com-
bine with a noun phrase to the right (an object)
and then a noun phrase to the left (a subject) to
produce a sentence” instead of simply VERB. CCG
has proven useful as a framework for grammar in-
duction due to its ability to incorporate linguis-
tic knowledge to guide parser learning by, for ex-
ample, specifying rules in lexical-expansion al-
gorithms (Bisk and Hockenmaier, 2012; 2013)
or encoding that information as priors within a
Bayesian framework (Garrette et al., 2015).

Baldridge observed is that, cross-linguistically,
grammars prefer simpler syntactic structures when
possible, and that due to the natural correspon-
dence of categories and syntactic structure, bias-
ing toward simpler categories encourages simpler
structures. In previous work, we were able to
incorporate this preference into a Bayesian pars-
ing model, biasing PCFG productions toward sim-
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pler categories by encoding a notion of category
simplicity into a prior (Garrette et al., 2015).
Baldridge further notes that due to the natural as-
sociativity of CCG, adjacent categories tend to be
combinable. We previously showed that incorpo-
rating this intuition into a Bayesian prior can help
train a CCG supertagger (Garrette et al., 2014).

In this paper, we present a novel parsing model
that is designed specifically for the capacity to
capture both of these universal, intrinsic proper-
ties of CCG. We do so by extending our pre-
vious, PCFG-based parsing model to include pa-
rameters that govern the relationship between con-
stituent categories and the preterminal categories
(also known as supertags) to the left and right.
The advantage of modeling context within a CCG
framework is that while CCM must learn which
contexts are likely purely from the data, the CCG
categories give us obvious a priori information
about whether a context is likely for a given con-
stituent based on whether the categories are com-
binable. Biasing our model towards both sim-
ple categories and connecting contexts encourages
learning structures with simpler syntax and that
have a better global “fit”.

The Bayesian framework is well-matched to our
problem since our inductive biases — those de-
rived from universal grammar principles, weak su-
pervision, and estimations based on unannotated
data — can be encoded as priors, and we can
use Markov chain Monte Carlo (MCMC) infer-
ence procedures to automatically blend these bi-
ases with unannotated text that reflects the way
language is actually used “in the wild”. Thus, we
learn context information based on statistics in the
data like ccM, but have the advantage of addi-
tional, a priori biases. It is important to note that
the Bayesian setup allows us to use these universal
biases as soft constraints: they guide the learner
toward more appropriate grammars, but may be
overridden when there is compelling contradictory
evidence in the data.

Methodologically, this work serves as an ex-
ample of how linguistic-theoretical commitments
can be used to benefit data-driven methods, not
only through the construction of a model family
from a grammar, as done in our previous work, but
also when exploiting statistical associations about
which the theory is silent. While there has been
much work in computational modeling of the in-
teraction between universal grammar and observ-
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able data in the context of studying child language
acquisition (e.g., Villavicencio, 2002; Goldwater,
2007), we are interested in applying these princi-
ples to the design of models and learning proce-
dures that result in better parsing tools. Given our
desire to train NLP models in low-supervision sce-
narios, the possibility of constructing inductive bi-
ases out of universal properties of language is en-
ticing: if we can do this well, then it only needs to
be done once, and can be applied to any language
or domain without adaptation.

In this paper, we seek to learn from only raw
data and an incomplete dictionary mapping some
words to sets of potential supertags. In order to
estimate the parameters of our model, we develop
a blocked sampler based on that of Johnson et
al. (2007) to sample parse trees for sentences in
the raw training corpus according to their poste-
rior probabilities. However, due to the very large
sets of potential supertags used in a parse, com-
puting inside charts is intractable, so we design a
Metropolis-Hastings step that allows us to sample
efficiently from the correct posterior. Our experi-
ments show that the incorporation of supertag con-
text parameters into the model improves learning,
and that placing combinability-preferring priors
on those parameters yields further gains in many
scenarios.

2 Combinatory Categorial Grammar

In the cCG formalism, every constituent, including
those at the lexical level, is associated with a struc-
tured CCG category that defines that constituent’s
relationships to the other constituents in the sen-
tence. Categories are defined by a recursive struc-
ture, where a category is either atomic (possibly
with features), or a function from one category to
another, as indicated by a slash operator:

}

C — {8, Sdcl» Sadj> Sbs NP, N, Num; PP; ---
C —{(C/C),(C\C)}

Categories of adjacent constituents can be com-
bined using one of a set of combination rules to
form categories of higher-level constituents, as
seen in Figure 1. The direction of the slash op-
erator gives the behavior of the function. A cat-
egory (s\np)/pp might describe an intransitive
verb with a prepositional phrase complement; it
combines on the right (/) with a constituent with
category pp, and then on the left (\) with a noun
phrase (np) that serves as its subject.



s
s
np pp
np/n n  (s\np)/pp pp/nf\np
The man walks to work

Figure 1: cCG parse for “The man walks to work.”

We follow Lewis and Steedman (2014) in allow-
ing a small set of generic, linguistically-plausible
unary and binary grammar rules. We further add
rules for combining with punctuation to the left
and right and allow for the merge rule X — X X
of Clark and Curran (2007).

3 Generative Model

In this section, we present our novel supertag-
context model (SCM) that augments a standard
PCFG with parameters governing the supertags to
the left and right of each constituent.

The cCG formalism is said to be naturally as-
sociative since a constituent label is often able
to combine on either the left or the right. As a
motivating example, consider the sentence “The
lazy dog sleeps”, as shown in Figure 2. The
word lazy, with category n/n, can either com-
bine with dog (n) via the Forward Application rule
(>), or with The (np/n) via the Forward Compo-
sition (>B) rule. Baldridge (2008) showed that
this tendency for adjacent supertags to be com-
binable can be used to bias a sequence model in
order to learn better CCG supertaggers. However,
we can see that if the supertags of adjacent words
lazy (n/n) and dog (n) combine, then they will
produce the category n, which describes the en-
tire constituent span “lazy dog”. Since we have
produced a new category that subsumes that en-
tire span, a valid parse must next combine that
n with one of the remaining supertags to the left
or right, producing either (The-(lazy-dog))-sleeps
or The-((lazy-dog)-sleeps). Because we know that
one (or both) of these combinations must be valid,
we will similarly want a strong prior on the con-
nectivity between lazy-dog and its supertag con-
text: The«(lazy-dog)<—sleeps.

Assuming 7 is the full set of known categories,
the generative process for our model is:
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np/n s\np

The lazy dog sleeps

Figure 2: Higher-level category n subsumes the
categories of its constituents. Thus, n should have
a strong prior on combinability with its adjacent
supertags np/n and s\np.

Parameters:

gROOT Dir(aROOT’ QROOT—O)

OB~ Dir(a®N, 9¥N0)  vte T
O ~ Dir(a"N, §™N0) Vte T
HtTERM ~ Dir(aTERM’ QtTERM-O) Vte T
A ~Dir(ay, A Vte T
G#CTX ~ Dir(aLCTX7 QtLCTx-O) Vte T
HECTX ~ Dir(aRCTX’ QFCTX-()) Vte T

Sentence:
do s ~ Cat(6R°°T)
y | s ~ SCM(s)
until the treey is valid
where (£,y,r) |t ~ SCM(t) is defined as:
z ~ Cat(\)
ifz=B: (u,v)|t~ Cat(6™)
Yo [w~seM(u), yg [V~ scM(y)

y= <YL7 YR>

ifz=u: (u)|t~ Cat(6")
y | u~ scMm(u)

ifz=T1: w]|t~ Cat(6{"M)
y=w

£t~ Cat(6;™), r|t~ Cat(65™)

The process begins by sampling the parameters
from Dirichlet distributions: a distribution §*°°T
over root categories, a conditional distribution 6¢'™
over binary branching productions given category
t, 0™ for unary rewrite productions, 6{ **™ for ter-
minal (word) productions, and 6™ and 6§ for
left and right contexts. We also sample parame-
ters A¢ for the probability of t producing a binary
branch, unary rewrite, or terminal word.

Next we sample a sentence. This begins by sam-
pling first a root category s and then recursively
sampling subtrees. For each subtree rooted by a
category t, we generate a left context supertag £
and a right context supertag r. Then, we sam-



Figure 3: The generative process starting with
non-terminal A;;, where ., is the supertag for w,,
the word at position x, and “A — B C” is a valid
production in the grammar. We can see that non-
terminal A;; generates nonterminals B;; and Cy;
(solid arrows) as well as generating left context ¢;.;
and right context ¢; (dashed arrows); likewise for
Bir and Cg;. The triangle under a non-terminal
indicates the complete subtree rooted by the node.

ple a production type z corresponding to either a
(B) binary, (U) unary, or (T) terminal production.
Depending on z, we then sample either a binary
production (u, v) and recurse, a unary production
(u) and recurse, or a terminal word w and end that
branch. A tree is complete when all branches end
in terminal words. See Figure 3 for a graphical de-
piction of the generative behavior of the process.
Finally, since it is possible to generate a supertag
context category that does not match the actual
category generated by the neighboring constituent,
we must allow our process to reject such invalid
trees and re-attempt to sample.

Like ccM, this model is deficient since the same
supertags are generated multiple times, and parses
with conflicting supertags are not valid. Since we
are not generating from the model, this does not
introduce difficulties (Klein and Manning, 2002).

One additional complication that must be ad-
dressed is that left-frontier non-terminal categories
— those whose subtree span includes the first
word of the sentence — do not have a left-side su-
pertag to use as context. For these cases, we use
the special sentence-start symbol (S) to serve as
context. Similarly, we use the end symbol (E) for
the right-side context of the right-frontier.

We next discuss how the prior distributions are
constructed to encode desirable biases, using uni-
versal CCG properties.

3.1 Non-terminal production prior means

For the root, binary, and unary parameters, we
want to choose prior means that encode our bias
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toward cross-linguistically-plausible categories.
To formalize the notion of what it means for a
category to be more “plausible”, we extend the
category generator of our previous work, which
we will call Peyr. We can define P.,r using a
probabilistic grammar (Garrette et al., 2014). The
grammar may first generate a start or end category
((s),(E)) with probability p,, or a special token-
deletion category ({D); explained in §5) with prob-
ability pge;, or a standard CCG category C':

X—(s) | (E)  Pse
X—(D) Ddel
X—-C (1 - (2pse +pdel))'PC(C)

For each sentence s, there will be one (S) and one
(E), so we set ps, = 1/(25 + 2), since the average
sentence length in the corpora is roughly 25. To
discourage the model from deleting tokens (only
applies during testing), we set pg,; = 107100,

For P, the distribution over standard cate-
gories, we use a recursive definition based on the
structure of a CCG category. If p = 1 — p, then:!

C—a Prerm * Patom (@)

C—A/A" Do Ppwa* (Pmod Pe(A) +
Pmoa* Pe(A)?)

C—A/B  Drerm “Pfwd * Pmod " Pc(A)- Po(B)

C—A\A  Diopm Ppva* (Pmoa Pe(A) +
Pmoa” Pe(A)?)

C—A\B D “Phvd " DPmod " Pc(A)- P(B)

The category grammar captures important as-
pects of what makes a category more or less
likely: (1) simplicity is preferred, with a higher
Drerm Meaning a stronger emphasis on simplic-
ity;? (2) atomic types may occur at different rates,
as given by puom; (3) modifier categories (A/A
or A\ A) are more likely than similar-complexity
non-modifiers (such as an adverb that modifies a
verb); and (4) operators may occur at different
rates, as given by ppq.

We can use Pcar to define priors on our produc-
tion parameters that bias our model toward rules

"Note that this version has also updated the probability
definitions for modifiers to be sums, incorporating the fact
thatany A/Ais also a A/ B (likewise for A\ A). This ensures
that our grammar defines a valid probability distribution.

The probability distribution over categories is guaranteed
to be proper so long as preym > % since the probability of the
depth of a tree will decrease geometrically (Chi, 1999).



that result in a priori more likely categories:?

OROOTO() = Pear(t)
6°™NO((u,v)) = Pear(u) - Pear(V)
0" ((u)) = Pear(u)

For simplicity, we assume the production-type
mixture prior to be uniform: \’ = (3,1 1)
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3.2 Terminal production prior means

We employ the same procedure as our previous
work for setting the terminal production prior dis-
tributions OFF*-0(w) by estimating word-given-
category relationships from the weak supervision:
the tag dictionary and raw corpus (Garrette and
Baldridge, 2012; Garrette et al., 2015).* This pro-
cedure attempts to automatically estimate the fre-
quency of each word/tag combination by divid-
ing the number of raw-corpus occurrences of each
word in the dictionary evenly across all of its asso-
ciated tags. These counts are then combined with
estimates of the “openness” of each tag in order to
assess its likelihood of appearing with new words.

3.3 Context parameter prior means

In order to encourage our model to choose trees
in which the constituent labels “fit” into their
supertag contexts, we want to bias our con-
text parameters toward context categories that are
combinable with the constituent label.

The right-side context of a non-terminal cate-
gory — the probability of generating a category
to the right of the current constituent’s category
— corresponds directly to the category transitions
used for the HMM supertagger of Garrette et al.
(2014). Thus, the right-side context prior mean
ORCT-0 can be biased in exactly the same way as
the HMM supertagger’s transitions: toward context
supertags that connect to the constituent label.

To encode a notion of combinability, we fol-
low Baldridge’s (2008) definition. Briefly, let
k(t,u) € {0, 1} be an indicator of whether t com-
bines with u (in that order). For any binary rule
that can combine t to u, x(t,u)=1. To ensure that
our prior captures the natural associativity of CCG,
we define combinability in this context to include
composition rules as well as application rules. If

3For our experiments, we normalize Pexr by dividing by
> ce7 Pear(c). This allows for experiments contrasting with
a uniform prior (1/|7|) without adjusting « values.

“We refer the reader to the previous work (Garrette et al.,
2015) for a fuller discussion and implementation details.
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atoms have features associated, then the atoms are
allowed to unify if the features match, or if at least
one of them does not have a feature. In defining x,
it is also important to ignore possible arguments
on the wrong side of the combination since they
can be consumed without affecting the connection
between the two. To achieve this for x(t,u), it is
assumed that it is possible to consume all preced-
ing arguments of t and all following arguments of
u. So x(np,(s\np)/np) = 1. This helps to en-
sure the associativity discussed earlier. For “com-
bining” with the start or end of a sentence, we
define k((S),u)=1 when u seeks no left-side ar-
guments (since there are no tags to the left with
which to combine) and x(t, (E))=1 when t seeks
no right-side arguments. So x((s),np/n)=1, but
x((S),s\np)=0. Finally, due to the frequent use
of the unary rule that allows n to be rewritten
as np, the atom np is allowed to unify with n
if n is the argument. So x(n,s\np) = 1, but
k(np/n,np) = 0.

The prior mean of producing a right-context su-
pertag r from a constituent category t, P""(r | t),
is defined so that combinable pairs are given
higher probability than non-combinable pairs. We
further experimented with a prior that biases to-
ward both combinability and category likelihood,
replacing the uniform treatment of categories with
our prior over categories, yielding P78 (r | t). If
7T is the full set of known CCG categories:

right _J oo /17|  ifk(t,r) o>1
P [ 1) { 1/|T] otherwise

right . g - PCAT(I‘) if K/(t, l‘) o > 1
Fes (r9) = { Pear(r) otherwise

Distributions P/ (€ | t) and P/ (€ | t) are de-
fined in the same way, but with the combinability
direction flipped: x(#,t), since the left context su-
pertag precedes the constituent category.

4 Posterior Inference

We wish to infer the distribution over CCG parses,
given the model we just described and a corpus of
sentences. Since there is no way to analytically
compute these modes, we resort to Gibbs sam-
pling to find an approximate solution. Our strat-
egy is based on the approach presented by John-
son et al. (2007). At a high level, we alternate be-
tween resampling model parameters (ARO°T, BN,
OUN | GTERM )\ GLCTX  GRCTX) ojven the current set

of parse trees and resampling those trees given the



current model parameters and observed word se-
quences. To efficiently sample new model param-
eters, we exploit Dirichlet-multinomial conjugacy.
By repeating these alternating steps and accumu-
lating the productions, we obtain an approxima-
tion of the required posterior quantities.

Our inference procedure takes as input the dis-
tribution prior means, along with the raw corpus
and tag dictionary. During sampling, we restrict
the tag choices for a word w to categories allowed
by the tag dictionary. Since real-world learning
scenarios will always lack complete knowledge of
the lexicon, we, too, want to allow for unknown
words; for these, we assume the word may take
any known supertag. We refer to the sequence of
word tokens as w and a non-terminal category cov-
ering the span 7 through j — 1 as y;;.

While it is technically possible to sample di-
rectly from our context-sensitive model, the high
number of potential supertags available for each
context means that computing the inside chart for
this model is intractable for most sentences. In
order to overcome this limitation, we employ an
accept/reject Metropolis-Hastings (MH) step. The
basic idea is that we sample trees according to a
simpler proposal distribution () that approximates
the full distribution and for which direct sampling
is tractable, and then choose to accept or reject
those trees based on the true distribution P.

For our model, there is a straightforward and
intuitive choice for the proposal distribution: the
PCFG model without our context parameters:
(GROOT | GBIN QUN = 9TERM © A} which is known to
have an efficient sampling method. Our accep-
tance step is therefore based on the remaining pa-
rameters: the context (§-CTX, GRCTX),

To sample from our proposal distribution, we
use a blocked Gibbs sampler based on the one
proposed by Goodman (1998) and used by John-
son et al. (2007) that samples entire parse trees.
For a sentence w, the strategy is to use the Inside
algorithm (Lari and Young, 1990) to inductively
compute, for each potential non-terminal position
spanning words w; through w;_1 and category t,
going “up” the tree, the probability of generating
wj, ..., w;_1 via any arrangement of productions
that is rooted by y;; = t.

p(wi | Yiir1 = t) = Ag(T) - 057 (wy)
2t u A (U) - 0N (())
p(wij-1 | yij =)

27

p(wij—1 | yi; =t) =
Dt—u At(U) - 077 ((u))
p(wij—1 | yij =)
2t uv Dickes Ae(B) - 07 ((u,v))
p(Wik—1 | yir = 1)
p(Wrj-1 | Yrj = V)
We then pass “downward” through the chart, sam-

pling productions until we reach a terminal word
on all branches.

Yon ~ 027 - p(woin—1 | Yon = t)
T | yij ~ <922V(<U,V>) “p(wisk—1 | yar = 1)

(W1 | Yrj = V)

\v4 Yik> Yk;j Whenj >0+ 1,
Oy ((0) - p(wij—1 | yi; =w) Yy,
QTERM(wi) whenj=17+1 >

Yij
where z is either a split point k& and pair of cate-
gories y;x, Yk; resulting from a binary rewrite rule,
a single category y/ ; resulting from a unary rule, or
a word w resulting from a terminal rule.

The MH procedure requires an acceptance dis-
tribution A that is used to accept or reject a tree
sampled from the proposal (). The probability of
accepting new tree y’ given the previous tree y is:

P(y") Q(Y)>
)

" P(y) Q
Since () is defined as a subset of P’s parameters,

it is the case that:

P(y) Q(y) . p(y | QLCTX’ QRCTX)

After substituting this for each P in A, all of the )
factors cancel, yielding the acceptance distribution
defined purely in terms of context parameters:

)

For completeness, we note that the probability
of a tree y given only the context parameters is:

A(y' |'y) = min (1

p(y/ | QLCTX QRCTX)
p(y | QLCTX7 HRCTX)

Ay | y) = min (1,

GLCTX GRCTX) _
, =

H QLCTX(yZ__Li ‘ yij) . HRCTX(ij‘—‘rl ’ ?/z‘j)
0<i<j<n

p(y |

5Note that there may actually be multiple y; ; due to unary
rules that “loop back” to the same position (¢, 5); all of these
much be included in the product.



Before we begin sampling, we initialize each
distribution to its prior mean (GROOT=@ROOT-0
OP™N=0P™-0 etc). Since MH requires an initial set
of trees to begin sampling, we parse the raw corpus
with probabilistic CKY using these initial parame-
ters (excluding the context parameters) to guess an
initial tree for each raw sentence.

The sampler alternates sampling parse trees for
the entire corpus of sentences using the above pro-
cedure with resampling the model parameters. Re-
sampling the parameters requires empirical counts
of each production. These counts are taken from
the trees resulting from the previous round of sam-
pling: new trees that have been “accepted” by the
MH step, as well as existing trees for sentences in
which the newly-sampled tree was rejected.

0" ~ Dir((a"" - 0*°"°(t)  + Croun(t) JeeT)

0" o™ 0" ((u,v)) + C(t=(u, V) Juver)

0" o™ 0" () + C(t=(u)) Juer)
O ~ Dir((a™™ - 07" (w) + C(t — w) Juev)
ax-X(B) + X, ver Clt—(u,v)),
(U) + Xuer C(t—=(u)),

ax - A(1) + > wey Ct—w)

~ Dir((a"™ - 050 (8) + Clupe (1, £
~ Dir({a"™ - 0O (r) + Crign(t, r

)

LCTX
0 eeT)

)
o™ )reT)

It is important to note that this method of re-
sampling allows the draws to incorporate both the
data, in the form of counts, and the prior mean,
which includes all of our carefully-constructed bi-
ases derived from both the intrinsic, universal CCG
properties as well as the information we induced
from the raw corpus and tag dictionary.

After all sampling iterations have completed,
the final model is estimated by pooling the trees
resulting from each sampling iteration, including
trees accepted by the MH steps as well as the dupli-
cated trees retained due to rejections. We use this
pool of trees to compute model parameters using
the same procedure as we used directly above to
sample parameters, except that instead of drawing
a Dirichlet sample based on the vector of counts,
we simply normalize those counts. However, since
we require a final model that can parse sentences
efficiently, we drop the context parameters, mak-
ing the model a standard PCFG, which allows us to
use the probabilistic CKY algorithm.

S Experiments

In our evaluation we compared our supertag-
context approach to (our reimplementation of) the
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best-performing model of our previous work (Gar-
rette et al., 2015), which SCM extends. We evalu-
ated on the English CCGBank (Hockenmaier and
Steedman, 2007), which is a transformation of the
Penn Treebank (Marcus et al., 1993); the CTB-
CCG (Tse and Curran, 2010) transformation of the
Penn Chinese Treebank (Xue et al., 2005); and the
CCG-TUT corpus (Bos et al., 2009), built from the
TUT corpus of Italian text (Bosco et al., 2000).

Each corpus was divided into four distinct data
sets: a set from which we extract the tag dictionar-
ies, a set of raw (unannotated) sentences, a devel-
opment set, and a test set. We use the same splits
as Garrette et al. (2014). Since these treebanks
use special representations for conjunctions, we
chose to rewrite the trees to use conjunction cate-
gories of the form (X\ X')/ X rather than introduc-
ing special conjunction rules. In order to increase
the amount of raw data available to the sampler,
we supplemented the English data with raw, unan-
notated newswire sentences from the NYT Giga-
word 5 corpus (Parker et al., 2011) and supple-
mented Italian with the out-of-domain WaCky cor-
pus (Baroni et al., 1999). For English and Italian,
this allowed us to use 100k raw tokens for train-
ing (Chinese uses 62k). For Chinese and Italian,
for training efficiency, we used only raw sentences
that were 50 words or fewer (note that we did not
drop tag dictionary set or test set sentences).

The English development set was used to tune
hyperparameters using grid search, and the same
hyperparameters were then used for all three lan-
guages. For the category grammar, we used
Ppunc=0.1, Prerm=0.7, Pmoa=0.2, ppa=0.5. For
the priors, we use af°°T=1, a®#™ =100, a"N=100,
a™RM=10%, 0\ =3, aCX=aR™X=103.° For the
context prior, we used 0=10°. We ran our sampler
for 50 burn-in and 50 sampling iterations.

CCG parsers are typically evaluated on the de-
pendencies they produce instead of their CCG
derivations directly since there can be many differ-
ent CCG parse trees that all represent the same de-
pendency relationships (spurious ambiguity), and
CCG-to-dependency conversion can collapse those
differences. To convert a CCG tree into a de-
pendency tree, we follow Lewis and Steedman

®In order to ensure that these concentration parameters,
while high, were not dominating the posterior distributions,
we ran experiments in which they were set much higher
(including using the prior alone), and found that accuracies
plummeted in those cases, demonstrating that there is a good
balance with the prior.



Size of the corpus (tokens) from which the tag dictionary is extracted

250k 200k 150k 100k 50k 25k
English  no context 60.43 61.22 59.69 58.61 56.26 54.70
context (uniform) 64.02 63.89 62.58 61.80 59.44 57.08
+Pleft | pright 65.44 63.26 64.28 62.90 59.63 57.86
+PlL | P 59.34 5989 5932 5847 5785 5577
Chinese no context 32.70 32.07 28.99
context (uniform) 36.02 33.84 32.55
+Pleft | pright 35.34 33.04 31.48
+PL ) Pt 35.15 34.04  33.53
Italian no context 51.54
context (uniform) 53.57
+Pleft | pright 52.54
+PE | PLY! 53.29

Table 1: Experimental results in three languages. For each language, four experiments were executed:
(1) a no-context model baseline, Garrette et al. (2015) directly; (2) our supertag-context model, with uni-
form priors on contexts; (3) supertag-context model with priors that prefer combinability; (4) supertag-
context model with priors that prefer combinability and simpler categories. Results are shown for six
different levels of supervision, as determined by the size of the corpus used to extract a tag dictionary.

(2014). We traverse the parse tree, dictating at ev-
ery branching node which words will be the de-
pendents of which. For binary branching nodes of
forward rules, the right side—the argument side—
is the dependent, unless the left side is a modi-
fier (X/X) of the right, in which case the left is
the dependent. The opposite is true for backward
rules. For punctuation rules, the punctuation is al-
ways the dependent. For merge rules, the right side
is always made the parent. The results presented
in this paper are dependency accuracy scores: the
proportion of words that were assigned the correct
parent (or “root” for the root of a tree).

When evaluating on test set sentences, if the
model is unable to find a parse given the con-
straints of the tag dictionary, then we would have
to take a score of zero for that sentence: every de-
pendency would be “wrong”. Thus, it is impor-
tant that we make a best effort to find a parse. To
accomplish this, we implemented a parsing back-
off strategy. The parser first tries to find a valid
parse that has either Sqq or np at its root. If
that fails, then it searches for a parse with any
root. If no parse is found yet, then the parser at-
tempts to strategically allow tokens to subsume a
neighbor by making it a dependent (first with a re-
stricted root set, then without). This is similar to
the “deletion” strategy employed by Zettlemoyer
and Collins (2007), but we do it directly in the
grammar. We add unary rules of the form (D)—u
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for every potential supertag u in the tree. Then,
at each node spanning exactly two tokens (but no
higher in the tree), we allow rules t—((D), v) and
t—(v, (D)). Recall that in §3.1, we stated that (D)
is given extremely low probability, meaning that
the parser will avoid its use unless it is absolutely
necessary. Additionally, since u will still remain
as the preterminal, it will be the category exam-
ined as the context by adjacent constituents.

For each language and level of supervision, we
executed four experiments. The no-context base-
line used (a reimplementation of) the best model
from our previous work (Garrette et al., 2015):
using only the non-context parameters (6%°°T,
OP™N GUN 9TERM X} along with the category prior
Pear to bias toward likely categories throughout
the tree, and OfF*M-0 estimated from the tag dictio-
nary and raw corpus. We then added the supertag-
context parameters (-, ORTX) but used uni-
form priors for those (still using Pcar for the rest).
Then, we evaluated the supertag-context model
using context parameter priors that bias toward
categories that combine with their contexts: P'e"
and P"8" (see §3.3). Finally, we evaluated the
supertag-context model using context parameter
priors that bias toward combinability and toward
a priori more likely categories, based on the cate-
gory grammar (P(l;eAﬁT and Pé’ff h.

Because we are interested in understanding how
our models perform under varying amounts of su-



pervision, we executed sequences of experiments
in which we reduced the size of the corpus from
which the tag dictionary is drawn, thus reducing
the amount of information provided to the model.
As this information is reduced, so is the size of the
full inventory of known CCG categories that can be
used as supertags. Additionally, a smaller tag dic-
tionary means that there will be vastly more un-
known words; since our model must assume that
these words may take any supertag from the full
set of known labels, the model must contend with
a greatly increased level of ambiguity.

The results of our experiments are given in Ta-
ble 1. We find that the incorporation of supertag-
context parameters into a CCG model improves
performance in every scenario we tested; we see
gains of 2-5% across the board. Adding context
parameters never hurts, and in most cases, using
priors based on intrinsic, cross-lingual aspects of
the cCG formalism to bias those parameters to-
ward connectivity provides further gains. In par-
ticular, biasing the model toward trees in which
constituent labels are combinable with their adja-
cent supertags frequently helps the model.

However, for English, we found that addition-
ally biasing context priors toward simpler cate-
gories using P4 /P degraded performance.
This is likely due to the fact that the priors on pro-
duction parameters (9®™, YN) are already biasing
the model toward likely categories, and that hav-
ing the context parameters do the same ends up
over-emphasizing the need for simple categories,
preventing the model from choosing more com-
plex categories when they are needed. On the
other hand, this bias helps in Chinese and Italian.

6 Related Work

Klein and Manning (2002)’s CCM is an unla-
beled bracketing model that generates the span of
part-of-speech tags that make up each constituent
and the pair of tags surrounding each constituent
span (as well as the spans and contexts of each
non-constituent). They found that modeling con-
stituent context aids in parser learning because it
is able to capture the observation that the same
contexts tend to appear repeatedly in a corpus,
even with different constituents. While CCM is
designed to learn which tag pairs make for likely
contexts, without regard for the constituents them-
selves, our model attempts to learn the relation-
ships between context categories and the types of

30

the constituents, allowing us to take advantage of
the natural a priori knowledge about which con-
texts fit with which constituent labels.

Other researchers have shown positive results
for grammar induction by introducing relatively
small amounts of linguistic knowledge. Naseem
et al. (2010) induced dependency parsers by hand-
constructing a small set of linguistically-universal
dependency rules and using them as soft con-
straints during learning. These rules were use-
ful for disambiguating between various structures
in cases where the data alone suggests multiple
valid analyses. Boonkwan and Steedman (2011)
made use of language-specific linguistic knowl-
edge collected from non-native linguists via a
questionnaire that covered a variety of syntactic
parameters. They were able to use this infor-
mation to induce CCG parsers for multiple lan-
guages. Bisk and Hockenmaier (2012; 2013) in-
duced CCG parsers by using a smaller number of
linguistically-universal principles to propose syn-
tactic categories for each word in a sentence, al-
lowing EM to estimate the model parameters. This
allowed them to induce the inventory of language-
specific types from the training data, without prior
language-specific knowledge.

7 Conclusion

Because of the structured nature of CCG categories
and the logical framework in which they must as-
semble to form valid parse trees, the CCG formal-
ism offers multiple opportunities to bias model
learning based on universal, intrinsic properties
of the grammar. In this paper we presented a
novel parsing model with the capacity to capture
the associative adjacent-category relationships in-
trinsic to CCG by parameterizing supertag con-
texts, the supertags appearing on either side of
each constituent. In our Bayesian formulation, we
place priors on those context parameters to bias
the model toward trees in which constituent labels
are combinable with their contexts, thus preferring
trees that “fit” together better. Our experiments
demonstrate that, across languages, this additional
context helps in weak-supervision scenarios.
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Abstract

This paper presents a synchronous-graph-
grammar-based approach for string-to-
AMR parsing. We apply Markov Chain
Monte Carlo (MCMC) algorithms to
learn Synchronous Hyperedge Replace-
ment Grammar (SHRG) rules from a for-
est that represents likely derivations con-
sistent with a fixed string-to-graph align-
ment. We make an analogy of string-to-
AMR parsing to the task of phrase-based
machine translation and come up with an
efficient algorithm to learn graph gram-
mars from string-graph pairs. We pro-
pose an effective approximation strategy
to resolve the complexity issue of graph
compositions. We also show some useful
strategies to overcome existing problems
in an SHRG-based parser and present pre-
liminary results of a graph-grammar-based
approach.

1 Introduction

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) is a semantic formalism
where the meaning of a sentence is encoded as a
rooted, directed graph. Figure 1 shows an exam-
ple of the edge-labeled representation of an AMR
graph where the edges are labeled while the nodes
are not. The label of the leaf edge going out of
a node represents the concept of the node, and
the label of a non-leaf edge shows the relation be-
tween the concepts of the two nodes it connects to.
This formalism is based on propositional logic and
neo-Davidsonian event representations (Parsons,
1990; Davidson, 1967). AMR does not encode
quantifiers, tense and modality, but it jointly en-
codes a set of selected semantic phenomena which
renders it useful in applications like question an-
swering and semantics-based machine translation.
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want-01

Figure 1: An example of AMR graph representing
the meaning of: “The boy wants the girl to believe
him”

The task of AMR graph parsing is to map nat-
ural language strings to AMR semantic graphs.
Flanigan et al. (2014) propose a two-stage pars-
ing algorithm which first maps meaningful contin-
uous spans on the string side to concept fragments
on the graph side, and then in the second stage
adds additional edges to make all these fragments
connected. Concept identification (Flanigan et al.,
2014; Pourdamghani et al., 2014) can be consid-
ered as an important first step to relate components
of the string to components in the graph.

Wang et al. (2015) also present a two-stage pro-
cedure where they first use a dependency parser
trained on a large corpus to generate a depen-
dency tree for each sentence. In the second step,
a transition-based algorithm is used to greedily
modify the dependency tree into an AMR graph.
The benefit of starting with a dependency tree in-
stead of the original sentence is that the depen-
dency structure is more linguistically similar to an
AMR graph and provides more direct feature in-
formation within limited context.

Hyperedge replacement grammar (HRG) is a
context-free rewriting formalism for generating
graphs (Drewes et al., 1997). Its synchronous
counterpart, SHRG, can be used for transforming
a graph from/to another structured representation
such as a string or tree structure. HRG has great
potential for applications in natural language un-
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derstanding and generation, and also semantics-
based machine translation.

Given a graph as input, finding its derivation of
HRG rules is NP-complete (Drewes et al., 1997).
Chiang et al. (2013) describe in detail a graph
recognition algorithm and present an optimization
scheme which enables the parsing algorithm to run
in polynomial time when the treewidth and degree
of the graph are bounded. However, there is still
no real system available for parsing large graphs.

An SHRG can be used for AMR graph pars-
ing where each SHRG rule consists of a pair of
a CFG rule and an HRG rule, which can gener-
ate strings and AMR graphs in parallel. Jones et
al. (2012) present a Syntactic Semantic Algorithm
that learns SHRG by matching minimal parse con-
stituents to aligned graph fragments and incremen-
tally collapses them into hyperedge nonterminals.
The basic idea is to use the string-to-graph align-
ment and syntax information to constrain the pos-
sible HRGs.

Learning SHRG rules from fixed string-to-
graph alignments is a similar problem to extracting
machine translation rules from fixed word align-
ments, where we wish to automatically learn the
best granularity for the rules with which to ana-
lyze each sentence. Chung et al. (2014) present
an MCMC sampling schedule to learn Hiero-style
SCFG rules (Chiang, 2007) by sampling tree frag-
ments from phrase decomposition forests, which
represent all possible rules that are consistent with
a set of fixed word alignments, making use of the
property that each SCFG rule in the derivation is in
essence the decomposition of a larger phrase pair
into smaller ones.

In this paper, we make an analogy to treat frag-
ments in the graph language as phrases in the natu-
ral language string and SHRG rules as decomposi-
tions of larger substring, graph fragment pairs into
smaller ones. Graph language is different from
string language in that there is no explicit order
to compose the graph and there is an exponen-
tial number of possible compositions. We pro-
pose a strategy that uses the left-to-right order of
the string to constrain the structure of the deriva-
tion forest and experiment with different tactics in
dealing with unaligned words on the string side
and unaligned edges on the graph side.

Specifically, we make the following contribu-
tions:

1. We come up an alternative SHRG-based
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Figure 2: The series of HRG rules applied to de-
rive the AMR graph of “The boy wants the girl to
believe him”. The first rule is directly shown. The
other HRG rules are either above or below each
right arrow. The white circle shows the root of
each hyperedge. The indexes in each rule show
the one-to-one mapping between the attachment
nodes of L.h.s. nonterminal edges and the external
nodes of the r.h.s. subgraph

X3  believe-01| ARG1
/L.Za ARGO b
R —

“

AMR parsing strategy and present a reason-
able preliminary result without additional de-
pendency information and global features,
showing promising future applications when
a language model is applied or larger datasets
are available.

. We present the novel notion of fragment de-
composition forest and come up with an ef-
ficient algorithm to construct the forest from
fixed string-to-graph alignment.

. We propose an MCMC algorithm which sam-
ples a special type of SHRG rules which
helps maintain the properties of AMR graphs,
which should be able to generalize to learning
other synchronous grammar with a CFG left
side.

We augment the concept identification proce-
dure of Flanigan et al. (2014) with a phrase-
to-graph-fragment alignment table which
makes use of the dependency between con-
cepts.

. We discovered that an SHRG-based approach
is especially sensitive to missing alignment
information. We present some simple yet ef-
fective ways motivated by the AMR guide-
line to deal with this issue.

2 Hyperedge Replacement Grammar

Hyperedge replacement grammar (HRG) is a
context-free rewriting formalism for graph gener-
ation (Drewes et al., 1997). HRG is like CFG in



that it rewrites nonterminals independently. While
CFG generates natural language strings by suc-
cessively rewriting nonterminal tokens, the non-
terminals in HRG are hyperedges, and each rewrit-
ing step in HRG replaces a hyperedge nonterminal
with a subgraph instead of a span of a string.

2.1 Definitions

In this paper we only use edge-labeled graphs be-
cause using both node and edge labels complicates
the definitions in our HRG-based approach. Fig-
ure 2 shows a series of HRG rules applied to derive
the AMR graph shown in Figure 1.

We start with the definition of hypergraphs. An
edge-labeled, directed hypergraph is a tuple H =
(V,E,l, X), where V is a finite set of nodes, £ C
V' is a finite set of hyperedges, each of which will
connect to one or more nodesin V. [ : ¥ — L de-
fines a mapping from each hyperedge to its label
from a finite set L. Each hyperedge is an atomic
item with an ordered list of nodes it connects to,
which are called attachment nodes. The fype of a
hyperedge is defined as the number of its attach-
ment nodes. X € V* defines an ordered list of
distinct nodes called external nodes. The ordered
external nodes specify how to fuse a hypergraph
with another graph, as we will see below. In this
paper, we alternately use the terms of hypergraph
and graph, hyperedge and edge, and also phrase,
substring and span for brevity.

An HRG is a rewriting formalism G =
(N, T, P,S), where N and T define two disjoint
finite sets called nonterminals and terminals. S €
N is a special nonterminal called the start sym-
bol. P is a finite set of productions of the form
A — R, where A € N and R is a hypergraph
with edge labels over N U T" and with nonempty
external nodes Xr. We have the constraint that
the type of the hyperedge with label A should co-
incide with the number of nodes in Xg. In our
grammar, each nonterminal has the form of Xn,
where n indicates the type of the hyperedge. Our
special start symbol is separately denoted as X 0.

The rewriting mechanism replaces a nontermi-
nal hyperedge with the graph fragment specified
by a production’s righthand side (r.h.s), attaching
each external node of the r.h.s. to the correspond-
ing attachment node of the lefthand side. Take
Figure 2 as an example. Starting from our initial
hypergraph with one edge labeled with the start
symbol “X 07, we select one edge with nontermi-
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Figure 3: A series of symbol-refined SHRG rules
used to derive the AMR graph for the sentence
“The boy wants the girl to believe him”.

nal label in our current hypergraph, and rewrite it
using a rule in our HRG. The first rule rewrites the
start symbol with a subgraph shown on the r.h.s..
We continue the rewriting steps until there are no
more nonterminal-labeled edges.

The synchronous counterpart of HRG can be
used for transforming graphs from/to another form
of natural language representation. Productions
have the form (A — (S, R),~), where A € N
and S and R are called the source and the target
and at least one of them should be hypergraphs
over N UT'. ~ is a bijection linking nonterminals
mentions in S and R. In our case, the source side
is a CFG and the target side is an HRG. Given
such a synchronous grammar and a string as in-
put, we can parse the string with the CFG side
and then derive the counterpart graph by deduc-
tion from the derivation. The benefit of parsing
with SHRG is that the complexity is bounded by a
CFG-like parsing.

2.2 SHRG-based AMR graph parsing

We write down AMR graphs as rooted, directed,
edge-labeled graphs. There is exactly one leaf
edge going out of each node, the label of which
represents the concept of the node. We define this
leaf edge as concept edge. In Figure 1, for ex-
ample, the edge labeled with “boy”, “want-017,
“girl” or “believe-01” connects to only one node
in the AMR graph and each label represents the
concept of that node. AMR concepts are either En-
glish words (“boy”), PropBank framesets (‘“‘want-
017), or special keywords like special entity types,
quantities, and logical conjunctions. The label of
each non-leaf edge shows the relation between the
AMR concepts of the two nodes it connects to.
The constraint of having exactly one concept
edge for each node is not guaranteed in general
SHRG. Our strategy for maintaining the AMR
graph structure is to refine the edge nontermi-



nal label with an extra binary flag, representing
whether it will have a concept edge in the final
rewriting result, for each external node. The ba-
sic intuition is to explicitly enforce the one con-
cept edge constraint in each nonterminal so that no
additional concept edge is introduced after apply-
ing each rule. The graph derived from this type of
SHRG is guaranteed to have exactly one concept
edge at each node.

Figure 3 shows one example of our symbol-
refined SHRG. For each nonterminal X-b; - - - b;,
1 defines the type of the nonterminal, while each b;
indicates whether the ¢-th external node will have
a concept edge in the rewriting result.! The sec-
ond rule, for example, rewrites nonterminal X 3-
100 with wants on the string side and a hypergraph
with three external nodes where the root has a con-
cept edge :want-01 as the first binary flag 1 indi-
cates, while the other two external nodes do not
with the binary flag 0. This guarantees that when
we integrate the r.h.s. into another graph, it will in-
troduce the concept edge -want-01 to the first fus-
ing position and no concept edge to the next two.

While this refinement might result in an expo-
nential number of nonterminals with respect to the
maximum type of hyperedges, we found in our ex-
periment that most of the nonterminals do not ap-
pear in our grammar. We use a maximum edge
type of 5, which also results in a relatively small
nonterminal set.

3 Sampling SHRG from forests

The fragment decomposition forest provides a
compact representation of all possible SHRG rules
that are consistent with a fixed string-to-graph
alignment. Each SHRG rule in the derivation is in
essence the decomposition of larger phrase, graph
fragment pairs on the left hand side (1.h.s.) into
smaller ones on the r.h.s. and is encoded in a tree
fragment in the forest. Our goal is to learn an
SHRG from this forest. We first build a forest rep-
resentation of possible derivations and then use an
MCMC algorithm to sample tree fragments from
this forest representing each rule in the derivation.

3.1 Fragment Decomposition Forest

We first proceed to define the fragment decompo-
sition forest. The fragment decomposition forest
is a variation of the phrase decomposition forest

1X0-1 is different as X0 is the start symbol of type one
and should always have a concept edge at the root
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defined by Chung et al. (2014) where the target
side is a graph instead of a string.

believe-01
0

0 0 0
The boy wants the girl to  believe him
A phrase p = [i, j] is a set of continuous word

indices {i,i + 1,...,7 — 1}. A fragment f is
a hypergraph with external nodes Xy. A string-
to-graph alignment h : P — F' defines the map-
ping from spans in the sentence to fragments in the
graph. Our smallest phrase-fragment pairs are the
string-to-graph alignments extracted using heuris-
tic rules from Flanigan et al. (2014). The figure
above shows an example of the alignments for
the sentence “The boy wants the girl to believe
him”. The symbol ) represents that the word is
not aligned to any concept in the AMR graph and
this word is called an unaligned word. After this
alignment, there are also left-over edges that are
not aligned from any substrings, which are called
unaligned edges.

Given an aligned string, AMR graph pair, a
phrase-fragment pair n is a pair ([¢, ], f) which
defines a pair of a phrase [i, j] and a fragment f
such that words in positions [é, j] are only aligned
to concepts in the fragment f and vice versa (with
unaligned words and edges omitted). A fragment
forest H = (V, E) is a hypergraph made of a set
of hypernodes V' and hyperedges E. Each node
n = ([4, j], f) is tight on the string side similar to
the definition by Koehn et al. (2003), i.e., n con-
tains no unaligned words at its boundaries. Note
here we do not have the constraint that f should be
connected or single rooted, but we will deal with
these constraints separately in the sampling proce-
dure.

We define two phrases [i1, j1], [i2, j2] to be ad-
jacent if word indices {ji,j1 + 1,...,i2 — 1}
are all unaligned. We also define two fragments
fi = (Vl,E1>,f2 = <‘/2,E2> to be disjoint if
E1NEs = 0. And f; and f5 are adjacent if they
are disjoint and f = (V; U Vi, By U Es) is con-
nected. We also define the compose operation of
two nodes: it takes two nodes n1 = ([i1, j1], f1)
and ng = ([i2, jo], f2) (j1 < i2)as input, and com-
putes f = (V1 U Vo, By U Ej3), the output is a
composed node n = ([i1, j2, f). We say n; and
ng are immediately adjacent if f is connected and
single-rooted.

We keep composing larger phrase-fragment
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Figure 4: The fragment decomposition forest for
the (sentence, AMR graph) pair for “The boy
wants the girl to believe him”

pairs (each one kept in a node of the forest) from
smaller ones until we reach the root of the forest
whose phrase side is the whole sentence and the
fragment side is the complete AMR graph. We de-
fine fragment decomposition forest to be made
of all possible phrase-fragments pairs that can be
decomposed from the sentence AMR graph pair.
The fragment decomposition forest has the im-
portant property that any SHRG rule consistent
with the string-to-graph alignment corresponds to
a continuous tree fragment of a complete tree
found in the forest.

While we can compose larger phrases from
smaller ones from left to right, there is no explicit
order of composing the graph fragments. Also, the
number of possible graph fragments is highly ex-
ponential as we need to make a binary decision to
decide each boundary node of the fragment and
also choose the edges going out of each boundary
node of the fragment, unlike the polynomial num-
bers of phrases for fixed string alignment.

Our bottom-up construction procedure starts
from the smallest phrase-fragment pairs. We
first index these smallest phrase-fragment pairs
([iks dk)s fx), k& = 1,2,...,n based on ascending
order of their start positions on the string side, i.e.,
gk < ipyr for k = 1,2,...,n — 1. Even with
this left-to-right order constraint from the string
side, the complexity of building the forest is still
exponential due to the possible choices in attach-
ing graphs edges that are not aligned to the string.
Our strategy is to deterministically attach each un-
aligned relation edge to one of the identified con-
cept fragments it connects to. We attach ARGs and
ops to its head node and each other types of un-

Algorithm 1 A CYK-like algorithm for building a
fragment decomposition forest

1: For each smallest phrase-fragment pairs ([i, jx|, fx), k
=1,2,...,n, attach unaligned edges to fragment f}, de-
noting the result as f},. Build a node for ([ix, jx], f#) and
add it to chart item c[k][k + 1].

2: Extract all the remaining unaligned fragments, build a
special unaligned node for each of them and add it to
unaligned node set unaligned_nodes

3: Keep composing unaligned nodes with nodes in different
chart items if they are immediate adjacent and add it to
the same chart item

4. for span from 2 to n do

5 for ¢ from 1 to n-span+1 do

6: 7 =1+ span

7

8

for k fromi+ 1toj — 1 do
: for nl = ([start1, endi], f1) in c[i][k] do
9: for n2 = ([starts, ends], f2) in c[k][j] do

10: if f1 and f> are disjoint then

11: new_node = compose(nl, n2)

12: add incoming edge (nl,n2) to
new_node

13: if n1 and no are not immediate adja-
cent then

14: new_node.nosample_cut=True

15: insert_node(new_node, c[i][7])

aligned relations to its tail node.?

Algorithm 1 shows our CYK-like forest con-
struction algorithm. We maintain the length 1
chart items according to the order of each smallest
phrase-fragment pair instead of its position in the
string.® In line 1, we first attach unaligned edges
to the smallest phrase-fragment pairs as stated be-
fore. After this procedure, we build a node for
the k-th phrase-fragment (with unaligned edges
added) pair and add it to chart item c[k][k + 1].
Note here that we still have remaining unaligned
edges; in line 2 we attach all unaligned edges go-
ing out from the same node as a single fragment
and build a special unaligned node with empty
phrase side and add it to unaligned_nodes set.
In line 3, we try to compose each unaligned node
with one of the nodes in the length 1 chart items
clk][k + 1]. If they are immediately adjacent, we
add the composed node to c[k][k + 1]. The al-
gorithm then composes smaller phrase-fragment
pairs into larger ones (line 4). When we have com-
posed two nodes ni,ns, we need to keep track

2Qur intuition is that the ARG types for verbs and ops
structure usually go with the concept of the head node. We
assume that other relations are additional introduced to the
head node, which resembles a simple binarization step for
other relations.

3We use this strategy mainly because the alignments avail-
able do not have overlapping alignments, while our algo-
rithm could still be easily adapted to a version that maintains
the chart items with string positions when overlapping align-
ments are available



of this incoming edge. We have the constraint in
our grammar that the r.h.s. hypergraph of each rule
should be connected and single rooted.* Lines 13
to 14 enforce this constraint by marking this node
with a nosample_cut flag, which we will use in
the MCMC sampling stage. The insert_node
function will check if the node already exists in
the chart item. If it already exists, then we only
update the incoming edges for that node. Other-
wise we will add it to the chart item.

For some sentence-AMR pairs where there are
too many nodes with unaligned edges going out,
considering all possible compositions would re-
sult in huge complexity overhead. One solution
we have adopted is to disallow disconnected graph
fragments and do not add them to the chart items
(Line 15). In practice, this pruning procedure does
not affect much of the final performance in our
current setting. Figure 4 shows the procedure of
building the fragment decomposition forest for the
sentence “The boy wants the girl to believe him”.

3.2 MCMC sampling

Sampling methods have been used to learn Tree
Substitution Grammar (TSG) rules from deriva-
tion trees (Cohn et al., 2009; Post and Gildea,
2009) for TSG learning. The basic intuition is
to automatically learn the best granularity for the
rules with which to analyze our data. Our prob-
lem, however, is different in that we need to sam-
ple rules from a compact forest representation.
We need to sample one tree from the forest, and
then sample one derivation from this tree structure,
where each tree fragment represents one rule in the
derivation. Sampling tree fragments from forests
is described in detail in Chung et al. (2014) and
Peng and Gildea (2014).

We formulate the rule sampling procedure with
two types of variables: an edge variable e,, rep-
resenting which incoming hyperedge is chosen at
a given node n in the forest (allowing us to sam-
ple one tree from a forest) and a cut variable z,
representing whether node n in forest is a bound-
ary between two SHRG rules or is internal to an
SHRG rule (allowing us to sample rules from a
tree). Figure 5 shows one sampled derivation from
the forest. We have sampled one tree from the for-
est using the edge variables. We also have a 0-1
variable at each node in this tree where O repre-

“We should be able to get rid of both constraints as we are
parsing on the string side.
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The boy believe him.

girl to

Figure 5: The sampled derivation for the (sen-
tence, AMR graph) pair for “The boy wants the
girl to believe him”

sents the current node is internal to an SHRG rule,
while 1 represents the current node is the boundary
of two SHRG rules.

Let all the edge variables form the random vec-
tor Y and all the cut variables form the random
vector Z. Given an assignment y to the edge vari-
ables and assignment z to the cut variables, our de-
sired distribution is proportional to the product of
weights of the rules specified by the assignment:

P(Y=y,Z=2)x H w(r)
ret(y,z)

()

where 7(y, z) is the set of rules identified by the
assignment and w(r) is the weight for each indi-
vidual rule. We use a generative model based on
a Dirichlet Process (DP) defined over composed
rules. We draw a distribution G over rules from a
DP, and then rules from G.

G | a, Py ~Dir(a, Py)
r|G~G

We define two rules to have the same rule type
if they have the same string and hypergraph rep-
resentation (including order of external nodes) on
the r.h.s..For the base distribution P, we use a uni-
form distribution where all rules of the same size
have equal probability. By marginalizing out (7
we get a simple posterior distribution over rules
which can be derived using the Chinese Restaurant
Process (CRP). We define a table of counts N =
{Nc}cer which memorizes different categories
of counts in the previous assignments, where [
is an index set for different categories of counts.
Each N¢ is a vector of counts for category C. We



have the following probability over rule r given
the previous count table V:

NR(T) + OéP()(?”)
n—+ o

P(r; =r|N) = (2)
here in the case of DP, I = {R}, where R is the
index for the category of rule counts.

We use the fop-down sampling algorithm of
Chung et al. (2014) which samples cut and edge
variables from top down and one at a time. For
each node n, we denote the composed rule type
that we get when we set the cut of node n to 0 as
r1 and the two split rule types that we get when we
set the cut to 1 as 79, r3. We sample the cut value
z; of the current node according to the posterior
probability:

P(ry|N)

PN P N) PNy 12 =0
P(riIN)+P(ra]N) P(rs]7)  Otherwise

where the posterior probability P(r;|N) is accord-
ing to a DP, and N, N’ are tables of counts. In the
case of DP, N, N’ differ only in the rule counts of
12, where Np,(r2) = Ng(r2) + 1.

As for edge variables e;, we refer to the set of
composed rules turned on below n including the
composed rule fragments having n as an internal
or root node as {r1, ..., 7, }. We have the follow-
ing posterior probability over the edge variable e;:

P(e; =¢|N) x HP(ri|Ni71) H deg(v) (4)

i=1 ver(e)nin(n)

where deg(v) is the number of incoming edges for
node v, in(n) is the set of nodes in all subtrees
under n, and 7(e) is the tree specified when we
set e; = e. N?to N™ are tables of counts where
N° = N, Ni(r;) = N '(r;) + 1 in the case of
DP.

After we have sampled one SHRG derivation
from the forest, we still need to keep track of the
place where each nonterminal edge attaches. As
we have maintained the graph fragment it repre-
sents in each node of the forest, we can retrieve
the attachment nodes of each hyperedge in the
r.h.s. by tracing at which graph nodes two frag-
ments fuse with each other. We perform this rule
extraction procedure from top-down and maintain
the order of attachment nodes of each r.h.s. non-
terminal edge. When we further rewrite a nonter-
minal edge, we need to make sure that it keeps the
order of the attachment nodes in its parent rule.
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As for the unaligned words, we just insert all the
omitted unaligned words in the composition pro-
cedure. We also add additional rules including the
surrounding 2 unaligned words context to make
sure there are terminals on the string side.

3.3 Phrase-to-Graph-Fragment Alignment
Extraction

Aside from the rules sampled using the MCMC
algorithm, we also extract a phrase-to-graph-
fragment alignment table from the fragment de-
composition forest. This step can be considered as
a mapping of larger phrases made of multiple iden-
tified spans (plus unaligned words) to a larger frag-
ments made of multiple concept fragments (plus
the way they connect using unaligned edges).

Our extraction happens along with the forest
construction procedure. In line 1 of Algorithm 1
we extract one rule for each smallest phrase-
fragment pairs before and after the unaligned
edges are attached. We also extract one rule for
each newly constructed node after line 11 if the
fragment side of the node is single-rooted.> We do
not extract rules after line 2 because it usually in-
troduces additional noise of meaningful concepts
which are unrecognized in the concepts identifica-
tion stage.

4 Decoding

4.1 Concept identification

During the decoding stage, first we need to iden-
tify meaningful spans in the sentence and map
them to graph fragments on the graph side. Then
we use SHRG rules to parse each sentence from
bottom up and left to right, which is similar to con-
stituent parsing. The recall of the concept identi-
fication stage from Flanigan et al. (2014) is 0.79,
which means 21% of the meaningful concepts are
already lost at the beginning of the next stage.
Our strategy is to use lemma and POS tags in-
formation after the concept identification stage,
we use it to recall some meaningful concepts.
We find that, except for some special function
words, most nouns, verbs and, adjectives should
be aligned. We use the lemma information to re-
trieve unaligned words whose morphological form
does not appear in our training data. We also use

SHere we will also look at the surrounding 2 unaligned
words to fix partial alignment and noise introduced by mean-
ingful unaligned words



POS tag information to deal with nouns and quan-
tities. Motivated by the fact that AMR makes ex-
tensive use of PropBank framesets, we look up
the argument structure of the verbs from the Prop-
Bank. Although the complicated abstraction of
AMR makes it hard to get the correct concept for
each word, the more complete structure can reduce
the propagation of errors along the derivation tree.

4.2 AMR graph parsing

We use Earley algorithm with cube-pruning (Chi-
ang, 2007) for the string-to-AMR parsing. For
each synchronous rule with N nonterminals on
its Lh.s., we build an N + 1 dimensional cube
and generate top K candidates. Out of all the
hypotheses generated by all satisfied rules within
each span (i, j),we keep at most K candidates for
this span. Our glue rules will create a pseudo
R/ROOT concept and use ARGSs relations to
connect disconnected components to make a con-
nected graph.
We use the following local features:
1. StringToGraphProbability: the probability of a hyper-
graph given the input string
2. RuleCount: number of rules used to compose the AMR
graph
3. RuleEdgeCount: the number of edges in the r.h.s. hy-
pergraph

4. EdgeType: the type of the Lh.s. nonterminal. For rules
with same source side tokens, we prefer rules with
smaller edge types.

5. AllNonTerminalPunish: one for rules which only have
non-terminals on the source side.

6. GlueCount: one for glue rules.

As our forest structure is highly binarized, it is
hard to capture the :opn structure when n is large
because we limit the number of external nodes to
5. The most common :op structure in the AMR
annotation is the coordinate structure of items sep-
arated by “;” or separated by “,” along with and.

We add the following two rules:
[X1-1]— > [X1-1,1];[X1-1,2];- - ; [X1-1,7] |
(. :afand :opl [X1-1,1] :0p2 [X1-1,2] -+ :opn [X1-1,n])
[(X1-1]— > [X1-1,1],[X1-1,2],- - and [X1-1,n] |
(. :afand :opl [X1-1,1] :0p2 [X1-1,2] - -- :opn [X1-1,n])
where the HRG side is a ra/and coordinate struc-
ture of X1-1s connected with relation .ops.

S Experiments

We use the same newswire section of
LDC2013E117 as Flanigan et al. (2014), which

Precision | Recall | F-score
Concept id only 0.37 0.53 0.44
+ MCMC 0.57 0.53 0.55
+ MCMC + phrase table | 0.60 0.54 0.57
+ All 0.59 0.58 0.58

Table 1: Comparisons of different strategies of ex-
tracting lexical rules on dev.

consists of 3955 training sentences, 2132 dev
sentences and 2132 test sentences. We also use
the string-to-graph alignment from Flanigan et al.
(2014) to construct the fragment decomposition
forest and to extract the phrase-to-fragment table.

In the fragment decomposition forest construc-
tion procedure, we have experimented with differ-
ent ways of dealing with the unaligned edges. First
we have tried to directly use the alignment, and
group all unaligned edges going out from the same
node as an unaligned fragment. Using this con-
straint would take a few hours or longer for some
sentences. The reason for this is because the many
number of unaligned edges can connect to each
branch of the aligned or unaligned fragments be-
low it. And there is no explicit order of composi-
tion with each branch. Another constraint we have
tried is to attach all unaligned edges to the head
node concept. The problem with this constraint is
that it is very hard to generalize and introduces a
lot of additional redundant relation edges.

As for sampling, we initialize all cut variables
in the forest as 1 (except for nodes that are marked
as nosample_cut, which indicates we initialize it
with 0 and keep it fixed) and uniformly sample an
incoming edge for each node. We evaluate the per-
formance of our SHRG-based parser using Smatch
v1.0 (Cai and Knight, 2013), which evaluates the
precision, recall and F'1 of the concepts and rela-
tions all together. Table 1 shows the dev results of
our sampled grammar using different lexical rules
that maps substrings to graph fragments. Concept
id only is the result of using the concepts identi-
fied by Flanigan et al. (2014). From second line,
we replace the concept identification result with
the lexical rules we have extracted from the train-
ing data (except for named entities and time ex-
pressions). +MCMC shows the result using ad-
ditional alignments identified using our sampling
approach. We can see that using the phrase to
graph fragment alignment learned from our train-
ing data can significantly improve the smatch. We
have also tried extracting all phrase-to-fragment



Precision | Recall | F-score
JAMR 0.67 0.58 0.62
Wang et al. 0.64 0.62 0.63
Our approach | 0.59 0.57 0.58

Table 2: Comparisons of smatch score results

alignments of length 6 on the string side from
our constructed forest. We can see that using this
alignment table further improves the smatch score.
This is because the larger phrase-fragment pairs
can make better use of the dependency informa-
tion between continuous concepts. The improve-
ment is not much in comparison with MCMC, this
is perhaps MCMC can also learn some meaning
blocks that frequently appear together. As the
dataset is relatively small, so there are a lot of
meaningful concepts that are not aligned. We use
lemma as a backoff strategy to find the alignment
for the unaligned words. We have also used the
POS tag information to retrieve some unaligned
nouns and a PropBank dictionary to retrieve the
argument structure of the first sense of the verbs.
+All shows the result after using lemma, POS tag
and PropBank information, we can see that fixing
the alignment can improve the recall, but the pre-
cision does not change much.

Table 2 shows our result on test data. JAMR
is the baseline result from Flanigan et al. (2014).
Wang et al. (2015) shows the current state-of-
art for string-to-AMR parsing. Without the de-
pendency parse information and complex global
features, our SHRG-based approach can already
achieve competitive results in comparison with
these two algorithms.

6 Discussion

In comparison to the spanning tree algorithm of
Flanigan et al. (2014), an SHRG-based approach
is more sensitive to the alignment. If a lot of the
meaningful concepts are not aligned, then the lost
information would break down the structure of our
grammar. Using more data would definitely help
ease this issue. Building overlapping alignments
for the training data with more concepts alignment
would also be helpful.

Another thing to note is that Flanigan et al.
(2014) have used path information of dependency
arc labels and part of speech tags. Using these
global information can help the predication of the
relation edge labels. One interesting way to in-
clude such kind of path information is to add
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a graph language model into our CFG decoder,
which should also help improve the performance.

All the weights of the local features mentioned
in Section 4.2 are tuned by hand. We have tried
tuning with MERT (Och, 2003), but the computa-
tion of smatch score for the k-best list has become
a major overhead. This issue might come from the
NP-Completeness of the problem smatch tries to
evaluate, unlike the simple counting of N-grams
in BLEU (Papineni et al., 2001). Parallelization
might be a consideration for tuning smatch score
with MERT.

7 Conclusion

We presented an MCMC sampling schedule for
learning SHRG rules from a fragment decompo-
sition forest constructed from a fixed string-to-
AMR-graph alignment. While the complexity of
building a fragment decomposition forest is highly
exponential, we have come up with an effective
constraint from the string side that enables an effi-
cient construction algorithm. We have also eval-
uvated our sampled SHRG on a string-to-AMR
graph parsing task and achieved some reasonable
result without using a dependency parse. Inter-
esting future work might include adding language
model on graph structure and also learning SHRG
from overlapping alignments.
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Abstract

In this paper, we present a hybrid approach
for performing token and sentence levels
Dialect Identification in Arabic. Specifi-
cally we try to identify whether each to-
ken in a given sentence belongs to Modern
Standard Arabic (MSA), Egyptian Dialec-
tal Arabic (EDA) or some other class and
whether the whole sentence is mostly EDA
or MSA. The token level component re-
lies on a Conditional Random Field (CRF)
classifier that uses decisions from several
underlying components such as language
models, a named entity recognizer and
and a morphological analyzer to label each
word in the sentence. The sentence level
component uses a classifier ensemble sys-
tem that relies on two independent under-
lying classifiers that model different as-
pects of the language. Using a feature-
selection heuristic, we select the best set of
features for each of these two classifiers.
We then train another classifier that uses
the class labels and the confidence scores
generated by each of the two underlying
classifiers to decide upon the final class
for each sentence. The token level compo-
nent yields a new state of the art F-score of
90.6% (compared to previous state of the
art of 86.8%) and the sentence level com-
ponent yields an accuracy of 90.8% (com-
pared to 86.6% obtained by the best state
of the art system).

1 Introduction

In this age of social media ubiquity, we note the
pervasive presence of informal language mixed in
with formal language. Degree of mixing formal
and informal language registers varies across lan-
guages making it ever harder to process. The prob-
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lem is quite pronounced in Arabic where the dif-
ference between the formal modern standard Ara-
bic (MSA) and the informal dialects of Arabic
(DA) could add up to a difference in language
morphologically, lexically, syntactically, seman-
tically and pragmatically, exacerbating the chal-
lenges for almost all NLP tasks. MSA is used
in formal settings, edited media, and education.
On the other hand the spoken, and, currently writ-
ten in social media and penetrating formal me-
dia, are the informal vernaculars. There are mul-
tiple dialects corresponding to different parts of
the Arab world: (1) Egyptian, (2) Levantine, (3)
Gulf, (4) Moroccan, and, (5) Iraqi. For each one of
these sub-dialectal variants exist. Speakers/writers
code switch between the two forms of the lan-
guage especially in social media text both inter
and intra sententially. Automatically identifying
code-switching between variants of the same lan-
guage (Dialect Identification) is quite challeng-
ing due to the lexical overlap and significant se-
mantic and pragmatic variation yet it is crucial
as a preprocessing step before building any Ara-
bic NLP tool. MSA trained tools perform very
badly when applied directly to DA or to intrasen-
tential code-switched DA and MSA text (ex. Al-
fryq fAz bAIEAfyp bs tSdr gA}mp Aldwry, where
the words correspond to MSA MSA DA DA MSA
MSA MSA, respectively)!. Dialect Identification
has been shown to be an important preprocess-
ing step for statistical machine Translation (SMT).
(Salloum et al., 2014) explored the impact of us-
ing Dialect Identification on the performance of
MT and found that it improves the results. They
trained four different SMT systems; (a) DA-to-
English SMT, (b) MSA-to-English SMT, (c) DA +
MSA-to-English SMT, and (d) DA-to-English hy-
brid MT system and treated the task of choosing

'"We use Buckwalter transliteration scheme to repre-
sent Arabic in Romanized script throughout the paper.
http://www.qamus.org/transliteration.htm
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which SMT system to invoke as a classification
task. They built a classifier that uses various fea-
tures derived from the input sentence and that in-
dicate, among other things, how dialectal the input
sentence is and found that this approach improved
the performance by 0.9% BLEU points.

In this paper, we address the problem of to-
ken and sentence levels dialect identification in
Arabic, specifically between Egyptian Arabic and
MSA. For the token level task, we treat the prob-
lem as a sequence labeling task by training a CRF
classifier that relies on the decisions made by a
language model, a morphological analyzer, a shal-
low named entity recognition system, a modality
lexicon and other features pertaining to the sen-
tence statistics to decide upon the class of each to-
ken in the given sentence. For the sentence level
task we resort to a classifier ensemble approach
that combines independent decisions made by two
classifiers and use their decisions to train a new
one. The proposed approaches for both tasks sig-
nificantly beat the current state of the art perfor-
mance with a significant margin, while creating a
pipelined system.

2 Related Work

Dialect Identification in Arabic has recently
gained interest among Arabic NLP researchers.
Early work on the topic focused on speech data.
Biadsy et al. (2009) presented a system that identi-
fies dialectal words in speech through acoustic sig-
nals. More recent work targets textual data. The
main task for textual data is to decide the class of
each word in a given sentence; whether it is MSA,
EDA or some other class such as Named-Entity
or punctuation and whether the whole sentence is
mostly MSA or EDA. The first task is referred to
as “Token Level Dialect Identification” while the
second is “Sentence Level Dialect Identification”.

For sentence level dialect identification in Ara-
bic, the most recent works are (Zaidan and
Callison-Burch, 2011), (Elfardy and Diab, 2013),
and (Cotterell and Callison-Burch, 2014a). Zaidan
and Callison-Burch (2011) annotate MSA-DA
news commentaries on Amazon Mechanical Turk
and explore the use of a language-modeling based
approach to perform sentence-level dialect identi-
fication. They target three Arabic dialects; Egyp-
tian, Levantine and Gulf and develop different
models to distinguish each of them against the oth-
ers and against MSA. They achieve an accuracy of
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80.9%, 79.6%, and 75.1% for the Egyptian-MSA,
Levantine-MSA, and Gulf-MSA classification, re-
spectively. These results support the common as-
sumption that Egyptian, relative to the other Ara-
bic dialectal variants, is the most distinct dialect
variant of Arabic from MSA. Elfardy and Diab
(2013) propose a supervised system to perform
Egyptian Arabic Sentence Identification. They
evaluate their approach on the Egyptian part of the
dataset presented by Zaidan and Callison-Burch
(2011) and achieve an accuracy of 85.3%. Cot-
terell and Callison-Burch (2014b) extend Zaidan
and Callison-Burch (2011) work by handling two
more dialects (Iraqi and Moroccan) and targeting a
new genre, specifically tweets. Their system out-
performs Zaidan and Callison-Burch (2011) and
Elfardy and Diab (2013), achieving a classifica-
tion accuracy of 89%, 79%, and 88% on the same
Egyptian, Levantine and Gulf datasets. For token
level dialect identification, King et al. (2014) use a
language-independent approach that utilizes char-
acter n-gram probabilities, lexical probabilities,
word label transition probabilities and existing
named entity recognition tools within a Markov
model framework.

Jain and Bhat (2014) use a CRF based token
level language identification system that uses a set
of easily computable features (ex. isNum, isPunc,
etc.). Their analysis showed that the most impor-
tant features are the word n-gram posterior proba-
bilities and word morphology.

Lin et al. (2014) use a CRF model that relies
on character n-grams probabilities (tri and quad
grams), prefixes, suffixes, unicode page of the first
character, capitalization case, alphanumeric case,
and tweet-level language ID predictions from two
off-the-shelf language identifiers: cld2? and 1dig.?
They increase the size of the training data using a
semi supervised CRF autoencoder approach (Am-
mar et al., 2014) coupled with unsupervised word
embeddings.

MSR-India (Chittaranjan et al., 2014) use char-
acter n-grams to train a maximum entropy classi-
fier that identifies whether a word is MSA or EDA.
The resultant labels are then used together with
word length, existence of special characters in the
word, current, previous and next words to train a
CRF model that predicts the token level classes of
words in a given sentence/tweet.

Zhttps://code.google.com/p/cld2/
*https://github.com/shuyo/ldig



Figure 1: Token-level identification pipeline

In our previously published system AIDA (El-
fardy et al., 2014) we use a weakly supervised rule
based approach that relies on a language model to
tag each word in the given sentence to be MSA,
EDA, or unk. We then use the LM decision for
each word in the given sentence/tweet and com-
bine it with other morphological information, in
addition to a named entity gazetteer to decide upon
the final class of each word.

3 Approach

We introduce AIDA2. This is an improved version
of our previously published tool AIDA (Elfardy et
al., 2014). It tackles the problems of dialect iden-
tification in Arabic both on the token and sentence
levels in mixed modern standard Arabic MSA and
Egyptian dialect EDA text. We first classify each
word in the input sentence to be one of the fol-
lowing six tags as defined in the shared task for
“Language Identification in Code-Switched Data”
in the first workshop on computational approaches
to code-switching [ShTk](Solorio et al., 2014):

e langl: If the token is MSA (ex. AIwWAQE, “The
reality”)

lang?2: If the token is EDA (ex. m$, “Not™)

ne: If the token is a named entity (ex. >mrykA,
“America”)

ambig: If the given context is not sufficient to
identify the token as MSA or EDA (ex. slAm
Elykm, “Peace be upon you”)

mixed: If the token is of mixed morphology (ex.
b>myT meaning “I’m always removing”)
other: If the token is or is attached to any non
Arabic token (ex. numbers, punctuation, Latin
character, emoticons, etc)

The fully tagged tokens in the given sentence
are then used in addition to some other features to
classify the sentence as being mostly MSA or EDA.

3.1 Token Level Identification

Identifying the class of a token in a given sentence
requires knowledge of its surrounding tokens since
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these surrounding tokens can be the trigger for
identifying a word as being MSA or EDA. This
suggests that the best way to approach the prob-
lem is by treating it as a sequence labeling task.
Hence we use a Conditional Random Field (CRF)
classifier to classify each token in the input sen-
tence. The CREF is trained using decisions from
the following underlying components:

o MADAMIRA: is a publicly available tool for
morphological analysis and disambiguation of
EDA and MSA text (Pasha et al., 2014).*
MADAMIRA uses SAMA (Maamouri et al.,
2010) to analyze the MSA words and CAL-
IMA (Habash et al., 2012) for the EDA words.
We use MADAMIRA to tokenize both the lan-
guage model and input sentences using D3
tokenization-scheme, the most detailed level of
tokenization provided by the tool (ex. bAlfryq,
“By the team” becomes “b+ Al+ fryq”)(Habash
and Sadat, 2006). This is important in order
to maximize the Language Models (LM) cov-
erage. Furthermore, we also use MADAMIRA
to tag each token in the input sentence as MSA
or EDA by tagging the source of the morpho-
logical analysis, if MADAMIRA. analyses the
word using SAMA, then the token is tagged MSA
while if the analysis comes from CALIMA, the
token is tagged EDA. Out of vocabulary words
are tagged unk.

Language Model: is a D3-tokenized 5-grams
language model. It is built using the 119K man-
ually annotated words of the training data of the
shared task ShTk in addition to 8M words from
weblogs data (4M from MSA sources and 4M
from EDA ones). The weblogs are automati-
cally annotated based on their source, namely, if
the source of the data is dialectal, all the words
from this source are tagged as EDA. Otherwise
they are tagged MSA. Since we are using a D3-
tokenized data, all D3 tokens of a word are as-
signed the same tag of their corresponding word
(ex. if the word “bAlfryq” is tagged MSA, then
each of “b+”, “Al+”, and “fryq” is tagged MSA).
During runtime, the Language Model classifier
module creates a lattice of all possible tags for
each word in the input sentence after it is be-
ing tokenized by MADAMIRA. Viterbi search
algorithm (Forney, 1973) is then used to find
the best sequence of tags for the given sentence.
If the input sentence contains out of vocabulary

*http://nlp.ldeo.columbia.edu/madamira/



words, they are being tagged as unk. This mod-
ule also provides a binary flag called “isMixed”.
It is “true” only if the LM decisions for the pre-
fix, stem, and suffix are not the same.

e Modality List: ModLex (Al-Sabbagh et al.,
2013) is a manually compiled lexicon of Arabic
modality triggers (i.e. words and phrases that
convey modality). It provides the lemma with a
context and the class of this lemma (MSA, EDA,
or both) in that context. In our approach, we
match the lemma of the input word that is pro-
vided by MADAMIRA and its surrounding con-
text with an entry in ModLex. Then we assign
this word the corresponding class from the lexi-
con. If we find more than one match, we use the
class of the longest matched context. If there
is no match, the word takes unk tag. Ex. the
word “Sdq” which means “told the truth” gets
the class “both” in this context “>flH An Sdq”
meaning “He will succeed if he told the truth”.

e NER: this is a shallow named entity recognition
module. It provides a binary flag “isNE” for
each word in the input sentence. This flag is set
to “true” if the input word has been tagged as ne.
It uses a list of all sequences of words that are
tagged as ne in the training data of ShTk in ad-
dition to the named-entities from ANERGazet
(Benajiba et al., 2007) to identify the named-
entities in the input sentence. This module
also checks the POS provided by MADAMIRA
for each input word. If a token is tagged as
noun_prop POS, then the token is classified as
ne.

Using these four components, we generate the fol-
lowing features for each word:.

o MADAMIRA-features: the input word, prefix,
stem, suffix, POS, MADAMIRA decision, and as-
sociated confidence score;

LM-features: the “isMixed” flag in addition to

the prefix-class, stem-class, suffix-class and the

confidence score for each of them as provided by
the language model;

e Modality-features: the Modality List decision;

o NER-features: the “isNE” flag from the NER;

o Meta-features: “isOther” is a binary flag that is
set to “true” only if the input word is a non Ara-
bic token. And “hasSpeechEff’ which is another
binary flag set to “true” only if the input word
has speech effects (i.e. word lengthening).
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Figure 2: Sentence-level identification pipeline

We then use these features to train a CRF classi-
fier using CRF++ toolkit (Sha and Pereira, 2003)
and we set the window size to 16.5 Figure 1 illus-
trates the different components of the token-level
system.

3.2 Sentence Level Identification

For this level of identification, we rely on a clas-
sifier ensemble to generate the class label for
each sentence. The underlying classifiers are
trained on gold labeled data with sentence level
binary decisions of either being MSA or EDA. Fig-
ure 2 shows the pipeline of the sentence level
identification component. The pipeline consists
of two main pathways with some pre-processing
components. The first classifier (Comprehensive
Classifier/Comp-Cl) is intended to cover dialectal
statistics, token statistics, and writing style while
the second one (Abstract Classifier/Abs-ClI) covers
semantic and syntactic relations between words.
The decisions from the two classifiers are fused
together using a decision tree classifier to predict
the final class of the input sentence.®

3.2.1 Comprehensive Classifier

The first classifier is intended to explicitly model
detailed aspects of the language. We identify mul-
tiple features that are relevant to the task and we
group them into different sets. Using the D3 tok-
enized version of the input data in addition to the
classes provided by the “Token Level Identifica-
tion” module for each word in the given sentence,
we conduct a suite of experiments using the deci-
sion tree implementation by WEKA toolkit (Hall
et al., 2009) to exhaustively search over all fea-
tures in each group in the first phase, and then ex-
haustively search over all of the remaining features

>The window size is set empirically, we experimented
with window sizes of 2, 4, 6, 8, 12.

%We experiment with different classifiers: Naive Bayes
and Bayesian Network classifiers, but Decision Trees yielded
the best results



from all groups to find the best combination of fea-
tures that maximizes 10-fold cross-validation on
the training data. We explore the same features
used by Elfardy and Diab (2013) in addition to
three other features that we refer to as “Modality
Features”. The full list of features include:

e Perplexity-Features [PF]: We run the tokenized
input sentence through a tokenized MSA and
a tokenized EDA 5-grams LMs to get sen-
tence perplexity from each LM (msaPPL and
edaPPL). These two LMs are built using the
same data and the same procedure for the LMs
used in the “Token Level Identification” mod-
ule;

e Dia-Statistics-Features [DSF]:

— The percentage of words tagged as EDA in the
input sentence by the “Token Level Identifica-
tion” module (diaPercent);

The percentage of words tagged as EDA and
MSA by MADAMIRA in the input sentence
(calimaWords and samaWords, respectively).
And the percentage of words found in a pre-
compiled EDA lexicon egyWords used and
provided by (Elfardy and Diab, 2013);
hasUnk is a binary feature set to “true” only if
the language model of the “Token Level Iden-
tification” module yielded at least one unk tag
in the input sentence;

Modality features: The percentage of words
tagged as EDA, MSA, and both (modEDA,
modMSA, and modBoth, respectively) using
the Modality List component in the ‘“Token
Level Identification” module.

o Sentence-Statistics-Features [SSF]: The per-
centage of Latin words, numbers, and punctu-
ation (latinPercent, numPercent, and puncPer-
cent, respectively) in the input sentence. In ad-
dition to the average word length (avgWordLen)
and the total number of words (sentLength) in
the same sentence;

Sentence-decoration-features [SDF]: Some
binary features of whether the sentence
has/doesn’t have diacritics (hasDiac), speech
effects (hasSpeechEff), presence of excla-
mation mark (hasExMark), presence of
emoticons (hasEmot), presence of question
mark (hasQuesMark), presence of decoration
effects (hasDecEff) (ex: ****), or repeated
punctuation (hasRepPunc).
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3.2.2 Abstract Classifier

The second classifier, Abs-Cl, is intended to cover
the implicit semantic and syntactic relations be-
tween words. It runs the input sentence in its sur-
face form without tokenization through a surface
form MSA and a surface form EDA 5-gram LMs to
get sentence probability from each of the respec-
tive LM (msaProb and edaProb). These two LMs
are built using the same data used in the “Token
Level Identification” module LM, but without to-
kenization.

This classifier complements the information
provided by Comp-Cl. While Comp-ClI yields de-
tailed and specific information about the tokens
as it uses tokenized-level LMs, Abs-Cl is able to
capture better semantic and syntactic relations be-
tween words since it can see longer context in
terms of the number of words compared to that
seen by Comp-ClI (on average a span of two words
in the surface-level LM corresponds to almost five
words in the tokenized-level LM) (Rashwan et al.,
2011).

3.2.3 DT Ensemble

In the final step, we use the classes and confidence
scores of the preceding two classifiers on the train-
ing data to train a decision tree classifier. Accord-
ingly, an input test sentence goes through Comp-
Cl and Abs-Cl, where each classifier assigns the
sentence a label and a confidence score for this la-
bel. It then uses the two labels and the two confi-
dence scores to provide its final classification for
the input sentence.

4 Experimental Setup

4.1 Data

To our knowledge, there is no publicly available
standard dataset that is annotated for both token
and sentence levels to be used for evaluating both
levels of classifications. Accordingly we use two
separate standard datasets for both tasks.

For the token level identification, we use the
training and test data that is provided by the shared
task ShTk. Additionally, we manually annotate
more token-level data using the same guidelines
used to annotate this dataset and use this additional
data for training and tuning our system.

e tokTrnDB: is the ShTk training set. It consists
of 119,326 words collected from Twitter;



tokTstDB: is the ShTk test set. It consists of
87,373 words of tweets collected from some un-
seen users in the training set and 12,017 words
of sentences collected from Arabic commen-
taries;

tokDevDB: 42,245 words collected from we-
blogs and manually annotated in house using the
same guidelines of the shared task.” We only
use this set for system tuning to decide upon the
best configuration;

tokTrnDB2: 171,419 words collected from we-
blogs and manually annotated in house using the
same guidelines of the shared task. We use it as
an extra training set in addition to tokTrnDB to
study the effect of increasing training data size
on the system performance.®

Table 1 shows the distribution of each of these sub-
sets of the token-level dataset.

langl | lang2 |ambig| ne | other |mixed
tokTrnDB | 79,059 (16,291 | 1,066 | 14,110 | 8,688 | 15
tokTstDB |57,740(21,871| 240 [11,412]8,121| 6
tokTrnDB2 | 77,856 69,407 | 46 [14,902/9,190| 18
tokDevDB |23,733|11,542| 34 | 4,017 |2916] 3

Table 1: Tag distribution in the datasets used in
our token level identification component.

For sentence level dialect identification, we use
the code-switched EDA-MSA portion of the crowd
source annotated dataset (Zaidan and Callison-
Burch, 2011). The dataset consists of user
commentaries on Egyptian news articles. The
data is split into training (sentTrnDB) and test
(sentTstDB) using the same split reported by El-
fardy and Diab (2013). Table 2 shows the statistics
for that data.

MSA Sent. | EDA Sent. | MSA Tok. | EDA Tok.
sentTrnDB | 12,160 11,274 300,181 | 292,109
sentTstDB 1,352 1,253 32,048 32,648

Table 2: Number of EDA and MSA sentences and
tokens in the training and test sets.

4.2 Baselines

4.2.1 Token Level Baselines

For the token level task, we evaluate our approach
against the results reported by all systems partic-

"The task organizers kindly provided the guidelines for
the task.

8We are expecting to release both fokDevDB and fok-
TrnDB2 in addition to some other data are still under devel-
opment to the community by 2016
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ipating in ShTk evaluation test bed. These base-
lines include:

e [UCL: The best results obtained by King et al.
(2014);

e [IIT: The best results obtained by Jain and Bhat
(2014);

e CMU: The best results obtained by Lin et al.
(2014);

o MSR-India: The best results obtained by Chit-
taranjan et al. (2014);

e AIDA: The best results obtained by us using the
older version AIDA (Elfardy et al., 2014).

4.2.2 Sentence Level Baselines

For the sentence level component, we evaluate our
approach against all published results on the Ara-
bic “Online Commentaries (AOC)” publicly avail-
able dataset (Zaidan and Callison-Burch, 2011).
The sentence level baselines include:

e Zidan et al: The best results obtained by Zaidan
and Callison-Burch (2011);

e Elfardy et al: The best results obtained by El-
fardy and Diab (2013);

e Cotterell et al: The best result obtained by Cot-
terell and Callison-Burch (2014a);

e All Features: This baseline combines all fea-
tures from Comp-Cl and Abs-Cl to train a single
decision tree classifier.

5 Evaluation

5.1 Token Level Evaluation

Table 3 compares our token level identification ap-
proach to all baselines. It shows, our proposed
approach significantly outperforms all baselines
using the same training and test sets. AIDA2
achieves 90.6% weighted average F-score while
the nearest baseline gets 86.8% (this is 28.8% er-
ror reduction from the best published approach).
By using both tokTrnDB and tokTrnDB?2 for train-
ing, the weighted average F-score is further im-
proved by 2.3% as shown in the last row of the
table.

5.2 Sentence Level Evaluation

For all experiments, we use a decision-tree clas-
sifier as implemented in WEKA (Hall et al.,
2009) toolkit. Table 4 shows the 10-folds cross-
validation results on the sentTrnDB.

e “Comp-Cl” shows the results of the best se-
lected set of features from each group. (The



Table 3: F-score on held-out test-set tokT'stDB us-
ing our best setup against the baselines. AIDA2+
shows the the results of training our system using

tokTrnDB and tokTrnDB2
[ [ Group [ Accuracy |
Perplexity-Features 80.0%
Dia-Statistics-Features 85.1%
Comp-Cl | Sentence-Statistics-Features 61.6%
Sentence-decoration-features 53.1%
Best of all groups 87.3%
[ Abs-Cl [ 784% ]
[ DT Ensemble [ 89.9% ]

Table 4: Cross-validation accuracy on the sent-
TrnDB using the best selected features in each

group

ones that yield best cross-validation results of
sentTrnDB. “Best-of-all-groups” shows the re-
sult of the best selected features from the re-
tained feature groups which in turn is the fi-
nal set of features for the comprehensive clas-
sifier. In our case the best selected features
are msaPPL, edaPPL, diaPercent, hasUnk, cal-
imaWords, modEDA, egyWords, latinPercent,
puncPercent, avgWordLen, and hasDiac.

“Abs-Cl” shows the results and best set of fea-
tures (msaProb and edaProb) for the abstract
classifier.

“DT Ensemble” reflect the results of combining
the labels and confidence scores from Comp-Cl
and Abs-Cl using a decision tree classifier.

Among the different configurations, the ensemble
system yields the best 10-fold cross-validation ac-
curacy of 89.9%. We compare the performance
of this best setup to our baselines on both the
cross-validation and held-out test sets. As Table
5 shows, the proposed approach significantly out-
performs all baselines on all sets.

6 Results Discussion

6.1 Token Level Results Discussion

Last row in table 3 shows that the system results
in 24.5% error reduction by adding 171K words
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Baseline [langl[lang2|ambig| ne [other|mixed|Avg-F [ Baseline [sentTrnDB[sentTstDBJsentTrnDB + sentTstDB]
AIDA 89.4176.0| 0.0 [87.9/99.0| 0.0 | 86.8 Zidan et al N/A N/A 30.0
CMU 89.9 | 81.1| 0.0 [72.5/98.1] 0.0 | 86.4 Elfardy et al 853 833 855
TIT 862529 0.0 [70.1|842] 0.0 | 76.6 Cotterelletall N/A N/A 6.6
1UCL 81.159.5] 00 [58] 12 ] 00 | 61.0
MSR-India| 86.0 | 56.4 | 0.7 |49.6|74.8| 0.0 | 74.2 [All Features | 858 [ 853 | 85.5 |
AIDA2 | 92.9 (829 0.0 [89.5/99.3] 0.0 | 90.6 [DT Ensemble] 89.9 [ 873 | 90.8 |
AIDA2+ | 94.6 | 88.3| 0.0 [90.2/99.4| 0.0 | 92.9 Table 5: Results of using our best setup (DT En-

semble) against baselines

of gold data to the training set. This shows that
the system did not reach the saturation state yet,
which means that adding more gold data can in-
crease performance.

Table 6 shows the confusion matrix of our best
setup for all six labels over the tokTstDB. The
table shows that the highest confusability is be-
tween langl and lang2 classes; 2.9% are classi-
fied as langl instead of lang2 and 1.6% are clas-
sified as lang2 instead of langl. This accounts for
63.8% of the total errors. The Table also shows
that our system does not produce the mixed class at
all probably because of the tiny number of mixed
cases in the training data (only 33 words out of
270.7K words). The same case applies to the am-
big class as it represents only 0.4% of the whole
training data. langl and ne are also quite highly
confusable. Most of ne words have another non-
named entity meaning and in most cases these
other meanings tend to be MSA. Therefore, we ex-
pect that a more sophisticated NER system will
help in identifying these cases.

Predicted
lang2 |ambig
1.6% | 0.0%
18.9%| 0.0%
0.1% | 0.0%
0.2% | 0.0%
other | 0.0% | 0.0% [ 0.0% | 0.0% [8.2% 0.0%
mixed| 0.0% | 0.0% | 0.0% | 0.0% [0.0% | 0.0%

Table 6: Token-level confusion matrix for the best
performing setup on tokTstDB

mixed
0.0%
0.0%
0.0%
0.0%

other
0.0%
0.0%
0.0%
0.1%

ne
0.9%
0.2%
0.0%
10.3%

langl
55.7%
2.9%
0.1%
0.8%

langl

lang2

ambig
ne

Gold

Table 7 shows examples of the words that are
misclassified by our system. The misclassified
word in the first examples (bED meaning “each
other”) has a gold class other. However, the gold
label is incorrect and our system predicted it cor-
rectly as lang2 given the context. In the second
example, the misclassified named entity refers to
the name of a charitable organization but the word
also means “message” which is a lang! word. The
third example shows a langl word that is incor-
rectly classified by our system as lang2. Similarly,



in the last example our system incorrectly classi-
fied a lang2 word as a lang].

Sentence Word |Gold |Pred
tit twytr mzwr . nSh AkwntAt m$| bED
$gAlh w AlbAqy mblkyn bED

ua~  |other|lang2
o OleS aal L e Ay ol
oam e U 5 Tl

One third of twitter is forged. Half of|each other
the accounts are not working while the
rest block each other..

kmA Anny mTIE Ely mA tqwmwn| r1sAlp
bh fy mxtlf AljmEyAt wAIAn$Tp
AlAhlyp . mvl rsAlp .
L, ne |langl
G I LS
Ju_m M\J‘;’t&‘“{w
dL.«
Also I know what you are doing in dif-| Resala
\ferent domains and civil activities like
Resala.
>nA bxyr . SHty wAlHmd I1lh fy| SHty
>fDI HAI .
5= |langl|lang2

ﬂfl@«ﬁv\&\jgwy_u R

I am fine. Thank God, my health is in|my health
best condition.

Im Agr> AlbyAn w qrrt AEtrD Elyh
glAsp

AEuD

. u'ajls‘ lang2\langl
G sl o5 ok Ll

1 did not read the statement and de-
cided to object to it just to be annoy-
ing

object

Table 7: Examples of the words that were misclas-
sified by our system

6.2 Sentence Level Results Discussion

The best selected features shows that Comp-Cl
benefits most from using only 11 features. By
studying the excluded features we found that:

e Five features (hasSpeechEff, hasEmot, hasDe-
cEff, hasExMark, and hasQuesMark) are zeros
for most records, hence extremely sparse, which
explains why they are not selected as relevant
distinctive features. However, it should be noted
that the hasSpeechEff and hasEmot features are
markers of informal language especially in the
social media (not to ignore the fact that users
write in MSA using these features as well but
much less frequently). Accordingly we antici-
pate that if the data has more of these features,
they would have significant impact on modeling
the phenomena;
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e Five features are not strong indicators of dialec-
talness. For the sentLength feature, the aver-
age length of the MSA, and EDA sentences in
the training data is almost the same. While, the
numPercent, modMSA, modBoth, and hasRep-
Punc features are almost uniformly distributed
across the two classes;

e The initial assumption was that SAMA is ex-
clusively MSA while CALIMA is exclusively
EDA, thereby the samaWords feature will be a
strong indicator for MSA sentences and the cali-
maWords feature will be a strong indicator for
EDA sentences. Yet by closer inspection, we
found that in 96.5% of the EDA sentences, cal-
imaWords is higher than samaWords. But, in
only 23.6% of the MSA sentences, samaWords
is higher than calimaWords. This means that
samaWords feature is not able to distinguish the
MSA sentences efficiently. Accordingly sama-
Words feature was not selected as a distinctive
feature in the final feature selection process.

Although modEDA is selected as one of the rep-
resentative features, it only occurs in a small per-
centage of the training data (10% of the EDA sen-
tences and 1% of the MSA sentences). Accord-
ingly, we repeated the best setup (DT Ensemble)
without the modality features, as an ablation study,
to measure the impact of modality features on
the performance. In the 10-fold-cross-validation
on the sentTrnDB using Comp-Cl alone, we note
that performance results slightly decreased (from
87.3% to 87.0%). However given the sparsity of
the feature (it occurs in less than 1% of the tokens
in the EDA sentences), 0.3% drop in performance
is significant. This shows that if the modality lex-
icon has more coverage, we will observe a more
significant impact.

Table 8 shows some examples for our system
predictions. The first example is correctly clas-
sified with a high confidence (92%). Example 2
is quite challenging. The second word is a typo
where two words are concatenated due to a miss-
ing white space, while the first and third words can
be used in both MSA and EDA contexts. There-
fore, the system gives a wrong prediction with a
low confidence score (59%). In principle this sen-
tence could be either EDA or MSA. The last exam-
ple should be tagged as EDA. However, our system
tagged it as MSA with a very high confidence score
of (94%).



Input sentence Gold | Pred | Conf

wlA AEIAnAt fY Altlyfzywn nAfEp w
1A jrArAt jdydp nAfEp.. w bEdyn.

RO RS S “-"JJ’

Neither TV commercials nor new trac-
tors work. So now what.

Allhm AgfrlhA wArHmhA

by as) o
May God forgive her and have mercy on
her.

tsmHly >qwlk yAbAbA?

TLLL g3l e

Do you allow me to call you father?

EDA | EDA | 92%

MSA | EDA | 59%

EDA | MSA | 94%

Table 8: Examples of the sentences that were mis-
classified by our system

7 Conclusion

We presented AIDA2, a hybrid system for token
and sentence levels dialectal identification in code
switched Modern Standard and Egyptian Dialectal
Arabic text. The proposed system uses a classifier
ensemble approach to perform dialect identifica-
tion on both levels. In the token level module, we
run the input sentence through four different clas-
sifiers. Each of which classify each word in the
sentence. A CRF model is then used to predict the
final class of each word using the provided infor-
mation from the underlying four classifiers. The
output from the token level module is then used to
train one of the two underlying classifiers of the
sentence level module. A decision tree classifier is
then used to to predict the final label of any new in-
put sentence using the predictions and confidence
scores of two underlying classifiers. The sentence
level module also uses a heuristic features selec-
tion approach to select the best features for each
of its two underlying classifiers by maximizing the
accuracy on a cross-validation set. Our approach
significantly outperforms all published systems on
the same training and test sets. We achieve 90.6%
weighted average F-score on the token level iden-
tification compared to 86.8% for state of the art
using the same data sets. Adding more training
data results in even better performance to 92.9%.
On the sentence level, AIDA?2 yields an accuracy
of 90.8% using cross-validation compared to the
latest state of the art performance of 86.6% on the
same data.
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Abstract

Supervised machine learning classifica-
tion algorithms assume both train and test
data are sampled from the same domain
or distribution. However, performance
of the algorithms degrade for test data
from different domain. Such cross do-
main classification is arduous as features
in the test domain may be different and
absence of labeled data could further ex-
acerbate the problem. This paper proposes
an algorithm to adapt classification model
by iteratively learning domain specific fea-
tures from the unlabeled test data. More-
over, this adaptation transpires in a simi-
larity aware manner by integrating similar-
ity between domains in the adaptation set-
ting. Cross-domain classification exper-
iments on different datasets, including a
real world dataset, demonstrate efficacy of
the proposed algorithm over state-of-the-
art.

1 Introduction

A fundamental assumption in supervised statis-
tical learning is that training and test data are
independently and identically distributed (i.i.d.)
samples drawn from a distribution. Otherwise,
good performance on test data cannot be guar-
anteed even if the training error is low. In real
life applications such as business process automa-
tion, this assumption is often violated. While re-
searchers develop new techniques and models for
machine learning based automation of one or a
handful business processes, large scale adoption is
hindered owing to poor generalized performance.
In our interactions with analytics software devel-
opment teams, we noticed such pervasive diver-
sity of learning tasks and associated inefficiency.
Novel predictive analytics techniques on standard
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datasets (or limited client data) did not general-
ize across different domains ( new products & ser-
vices) and has limited applicability. Training mod-
els from scratch for every new domain requires hu-
man annotated labeled data which is expensive and
time consuming, hence, not pragmatic.

On the other hand, transfer learning techniques
allow domains, tasks, and distributions used in
training and testing to be different, but related. It
works in contrast to traditional supervised tech-
niques on the principle of transferring learned
knowledge across domains. While transfer learn-
ing has generally proved useful in reducing the
labelled data requirement, brute force techniques
suffer from the problem of negative transfer (Pan
and Yang, 2010a). One cannot use transfer learn-
ing as the proverbial hammer, but needs to gauge
when to transfer and also how much to transfer.

To address these issues, this paper proposes
a domain adaptation technique for cross-domain
text classification. In our setting for cross-domain
classification, a classifier trained on one domain
with sufficient labelled training data is applied to
a different test domain with no labelled data. As
shown in Figure 1, this paper proposes an iterative
similarity based adaptation algorithm which starts
with a shared feature representation of source and
target domains. To adapt, it iteratively learns do-
main specific features from the unlabeled target
domain data. In this process, similarity between
two domains is incorporated in the adaptation set-
ting for similarity-aware transfer. The major con-
tributions of this research are:

e An iterative algorithm for learning domain
specific discriminative features from unla-
beled data in the target domain starting with
an initial shared feature representation.

e Facilitating similarity-aware domain adapta-
tion by seamlessly integrating similarity be-
tween two domains in the adaptation settings.

Proceedings of the 19th Conference on Computational Language Learning, pages 5261,
Beijing, China, July 30-31, 2015. ©2015 Association for Computational Linguistics



Unlabeled + pseudo
labeled data

Unlabeled data labeled data —.—

Shared feature
1 representation [~

Domain
similarity

Source K- >
domain

Figure 1: Outlines different stages of the proposed
algorithm i.e. shared feature representation, do-
main similarity, and the iterative learning process.

Iterative <
learning
process

To the best of our knowledge, this is the first-of-
its-kind approach in cross-domain text classifica-
tion which integrates similarity between domains
in the adaptation setting to learn domain specific
features in an iterative manner. The rest of the
paper is organized as follows: Section 2 summa-
rizes the related work, Section 3 presents details
about the proposed algorithm. Section 4 presents
databases, experimental protocol, and results. Fi-
nally, Section 5 concludes the paper.

2 Related Work

Transfer learning in text analysis (domain adapta-
tion) has shown promising results in recent years
(Pan and Yang, 2010a). Prior work on domain
adaptation for text classification can be broadly
classified into instance re-weighing and feature-
representation based adaptation approaches.

Instance re-weighing approaches address the
difference between the joint distributions of ob-
served instances and class labels in source do-
main with that of target domain. Towards this di-
rection, Liao et al. (2005) learned mismatch be-
tween two domains and used active learning to
select instances from the source domain to en-
hance adaptability of the classifier. Jiang and Zhai
(2007) proposed instance weighing scheme for do-
main adaptation in NLP tasks which exploit inde-
pendence between feature mapping and instance
weighing approaches. Saha et al. (2011) lever-
aged knowledge from source domain to actively
select the most informative samples from the tar-
get domain. Xia et al. (2013) proposed a hybrid
method for sentiment classification task that also
addresses the challenge of mutually opposite ori-
entation words.

A number of domain adaptation techniques are
based on learning common feature representation
(Pan and Yang, 2010b; Blitzer et al., 2006; Ji et
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al., 2011; Daumé III, 2009) for text classification.
The basic idea being identifying a suitable fea-
ture space where projected source and target do-
main data follow similar distributions and hence,
a standard supervised learning algorithm can be
trained on the former to predict instances from
the latter. Among them, Structural Correspon-
dence Learning (SCL) (Blitzer et al., 2007) is the
most representative one, explained later. Daumé
(2009) proposed a heuristic based non-linear map-
ping of source and target data to a high dimen-
sional space. Pan et al. (2008) proposed a di-
mensionality reduction method Maximum Mean
Discrepancy Embedding to identify a latent space.
Subsequently, Pan et al. (2010) proposed to map
domain specific words into unified clusters using
spectral clustering algorithm. In another follow
up work, Pan et al. (2011) proposed a novel fea-
ture representation to perform domain adaptation
via Reproducing Kernel Hilbert Space using Max-
imum Mean Discrepancy. A similar approach,
based on co-clustering (Dhillon et al., 2003), was
proposed in Dai et al. (2007) to leverage common
words as bridge between two domains. Bollegala
et al. (2011) used sentiment sensitive thesaurus to
expand features for cross-domain sentiment clas-
sification. In a comprehensive evaluation study, it
was observed that their approach tends to increase
the adaptation performance when multiple source
domains were used (Bollegala et al., 2013).

Domain adaptation based on iterative learning
has been explored by Chen et al. (2011) and
Garcia-Fernandez et al. (2014) and are similar to
the philosophy of the proposed approach in ap-
pending pseudo-labeled test data to the training
set. The first approach uses an expensive fea-
ture split to co-train two classifiers while the for-
mer presents a single classifier self-training based
setting. However, the proposed algorithm offers
novel contributions in terms of 1) leveraging two
independent feature representations capturing the
shared and target specific representations, 2) an
ensemble of classifiers that uses labelled source
domain and pseudo labelled target domain in-
stances carefully moderated based on similarity
between two domains. Ensemble based domain
adaptation for text classification was first pro-
posed by Aue and Gammon (2005) though their
approach could not achieve significant improve-
ments over baseline. Later, Zhao et al. (2010)
proposed online transfer learning (OTL) frame-



work which forms the basis of our ensemble based
domain adaptation. However, the proposed algo-
rithm differs in the following ways: 1) an unsuper-
vised approach that transforms unlabeled data into
pseudo labeled data unlike OTL which is super-
vised, and 2) incorporates similarity in the adapta-
tion setting for gradual transfer.

3 Iterative Similarity based Adaptation

The philosophy of our algorithm is gradual trans-
fer of knowledge from the source to the target do-
main while being cognizant of similarity between
two domains. To accomplish this, we have devel-
oped a technique based on ensemble of two classi-
fiers. Transfer occurs within the ensemble where
a classifier learned on shared representation trans-
forms unlabeled test data into pseudo labeled data
to learn domain specific classifier. Before explain-
ing the algorithm, we highlight its salient features:

Common Feature Space Representation: Our
objective is to find a good feature representation
which minimizes divergence between the source
and target domains as well as the classification
error. There have been several works towards
feature-representation-transfer approach such as
(Blitzer et al., 2007; Jiet al.,2011) which derives a
transformation matrix () that gives a shared repre-
sentation between the source and target domains.
One of the widely used approaches is Structural
Correspondence Learning (SCL) (Blitzer et al.,
2006) which aims to learn the co-occurrence be-
tween features expressing similar meaning in dif-
ferent domains. Top k Eigenvectors of matrix, W,
represent the principal predictors for weight space,
(. Features from both domains are projected on
this principal predictor space, (), to obtain a shared
representation. Source domain classifier in our ap-
proach is based on this SCL representation. In
Section 4, we empirically show how our algorithm
generalizes to different shared representations.

Iterative Building of Target Domain Labeled
Data: If we have enough labeled data from the
target domain then a classifier can be trained with-
out the need for adaptation. Hence, we wanted
to explore if and how (pseudo) labeled data for
the target domain can be created. Our hypothe-
sis is that certain target domain instances are more
similar to source domain instances than the rest.
Hence a classifier trained on (a suitably chosen
transformed representation of) source domain in-
stances will be able to categorize similar target do-
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main instances confidently. Such confidently pre-
dicted instances can be considered as pseudo la-
beled data which are then used to initialize a clas-
sifier in target domain.

Only handful of instances in the target domain
can be confidently predicted using the shared rep-
resentation, therefore, we further iterate to create
pseudo labeled instances in target domain. In the
next round of iterations, remaining unlabeled tar-
get domain instances are passed through both the
classifiers and their output are suitably combined.
Again, confidently labeled instances are added to
the pool of pseudo labeled data and the classi-
fier in the target domain is updated. This pro-
cess is repeated till all unlabeled data is labeled
or certain maximum number of iterations is per-
formed. This way we gradually adapt the target
domain classifier on pseudo labeled data using the
knowledge transferred from source domain. In
Section 4, we empirically demonstrate effective-
ness of this technique compared to one-shot adap-
tation approaches.

Domain Similarity-based Aggregation: Perfor-
mance of domain adaptation is often constrained
by the dissimilarity between the source and target
domains (Luo et al., 2012; Rosenstein et al., 2005;
Chin, 2013; Blitzer et al., 2007). If the two do-
mains are largely similar, the knowledge learned in
the source domain can be aggressively transferred
to the target domain. On the other hand, if the two
domains are less similar, knowledge learned in the
source domain should be transferred in a conserva-
tive manner so as to mitigate the effects of negative
transfer. Therefore, it is imperative for domain
adaptation techniques to account for similarity be-
tween domains and transfer knowledge in a simi-
larity aware manner. While this may sound obvi-
ous, we do not see many works in domain adapta-
tion literature that leverage inter-domain similar-
ity for transfer of knowledge. In this work, we use
the cosine similarity measure to compute similar-
ity between two domains and based on that gradu-
ally transfer knowledge from the source to the tar-
get domain. While it would be interesting to com-
pare how different similarity measures compare
towards preventing negative transfer but that is not
the focus of this work. In Section 4, we empiri-
cally show marginal gains of transferring knowl-
edge in a similarity aware manner.



Table 1: Notations used in this research.

Symbol

Description

X7,y Yiciing 3 X; €

R%yf € {—1,41}

Labeled source domain instances

{xI}i—1in;s @i € | Unlabeled target domain instances and pre-
{—1,+1} dicted label for target domain

Q Co-occurrence based projection matrix

P,. P, Pool of unlabeled and pseudo-labeled target

domain instances respectively

Cy, Cy ; function from

RY — {—1,41}

Classifier Cs is trained on {(Qx;,y;)};
classifier C; is trained on {x%, ¢!} where
x: € Ps and 7 is the pseudo label

predicted labels by Ensemble £/

(03

confidence of prediction

E Weighted ensemble of C's and C
61,602 confidence threshold for C'; and ensemble E
w®,wt Weights for C's and C; respectively

3.1 Algorithm

Table 1 lists the notations used in this research. In-

puts to the algorithm are labeled source domain in-
stances {z?, y? }i=1.n, and a pool of unlabeled tar-
get domain instances {z!};—1.,,, denoted by P,.
As shown in Figure 2, the steps of the algorithm
are as follows:

. Learn @), a shared representation projection
matrix from the source and target domains,
using any of the existing techniques. SCL is
used in this research.

. Learn C'; on SCL-based representation of la-
beled source domain instances {Qx;, y?}.

. Use Cs to predict labels, ¢;, for instances
in P, using the SCL-based representation
Qx:. Instances which are predicted with con-
fidence greater than a pre-defined threshold,
01, are moved from P, to P, with pseudo la-
bel, 3.

. Learn C; from instances in Ps € {x!,9!} to
incorporate target specific features. P, only
contains instances added in step-3 and will
be growing iteratively (hence the training set
here is small).

. C, and C; are combined in an ensemble, F/,
as a weighted combination with weights as
w* and w! which are both initialized to 0.5.

. Ensemble F is applied to all remaining in-
stances in P, to obtain the label ; as:

E(z]) — §i — w*Cs(Qa]) + w'Cy(}) 0

(a) If the ensemble classifies an instance
with confidence greater than the thresh-
old 65, then it is moved from P, to P
along with pseudo label ;.
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Initial training of classifiers
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E
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&% . .
2 Predict labels for || predicted
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2
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Figure 2: Illustrates learning of the initial classi-
fiers and iterative learning process of the proposed

7.

similarity-aware domain adaptation algorithm.

(b) Repeat step-6 for all z! € P,.

Weights w® and w’ are updated as shown in
Egs. 2 and 3. This update facilitates knowl-
edge transfer within the ensemble guided by
the similarity between domains.

w? _ (sim * w; * I(Cs))
D ™ (sim x wP * I(Cs) + (1 — sim) * w! % I(Cy))
2)

. ((1 = sim) * wf * I(Cy))
WD T im x ws % 1(Co) + (1 — sim) * wt = 1(Cy))
L T

where, [ is the iteration, sim is the similarity
score between domains computed using co-
sine similarity metric as shown in Eq. 4

“

where a & b are normalized vector represen-
tations for the two domains. I(-) is the loss
function to measure the errors of individual
classifiers in each iteration:

1(-) = exp{—nl(C, Y)} ®)

where, 7 is learning rate set to 0.1, I(y, §) =
(y — 9)? is the square loss function, y is the
label predicted by the classifier and g is the
label predicted by the ensemble.

. Re-train classifier C; on P;.

. Repeat step 6 — 8 until P, is empty or maxi-

mum number of iterations is reached.



In this iterative manner, the proposed algorithm
transforms unlabeled data in the test domain into
pseudo labeled data and progressively learns clas-
sifier C;. Confidence of prediction, «; for ith in-
stance, i1s measured as the distance from the de-
cision boundary (Hsu et al., 2003) which is com-
puted as shown in Eq. 6.

R
o= m 0)

where R is the un-normalized output from the
support vector machine (SVM) classifier, v is the
weight vector for support vectors and |v| = v7v.
Weights of individual classifiers in the ensem-
ble are updated with each iteration that gradu-
ally shifts emphasis from the classifier learned on
shared representation to the classifier learned on
target domain. Algorithm 1 illustrates the pro-

posed iterative learning algorithm.

Algorithm 1 Iterative Learning Algorithm
Input: C; trained on shared co-occurrence
based representation Qx, C; initiated on TFIDF
representation from P, P, remaining unlabeled
target domain instances.

Iterate: [ = 0 : till P, = {¢} orl <iterMax
Process: Construct ensemble £ as weighted
combination of C's and C,; with initials weights
w; and w] as 0.5 and sim = similarity between
domains.
for : = 1 to n (size of P,) do
Predict labels: F(Qx;,X;) — ¥;; calculate «;
if a; > 605 then
Remove ' instance from P, and add to
P, with pseudo label ;.
end if.
end for. Retrain C}; on P and update w; and
wl.
end iterate.
Output: Updated C;, w} and w}.

4 Experimental Results

The efficacy of the proposed algorithm is eval-
uated on different datasets for cross-domain text
classification (Blitzer et al., 2007), (Dai et al.,
2007). In our experiments, performance is eval-
uated on two-class classification task and reported
in terms of classification accuracy.

4.1 Datasets & Experimental Protocol

The first dataset is the Amazon review dataset
(Blitzer et al., 2007) which has four different
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domains, Books, DVDs, Kitchen appliances and
Electronics. Each domain comprises 1000 pos-
itive and 1000 negative reviews. In all experi-
ments, 1600 labeled reviews from the source and
1600 unlabeled reviews from the target domains
are used in training and performance is reported
on the non-overlapping 400 reviews from the tar-
get domain.

The second dataset is the 20 Newsgroups
dataset (Lang, 1995) which is a text collection
of approximately 20,000 documents evenly par-
titioned across 20 newsgroups. For cross-domain
text classification on the 20 Newsgroups dataset,
we followed the protocol of Dai et al. (2007)
where it is divided into six different datasets and
the top two categories in each are picked as the two
classes. The data is further segregated based on
sub-categories, where each sub-category is con-
sidered as a different domain. Table 2 lists how
different sub-categories are combined to represent
the source and target domains. In our experiments,
4/5 of the source and target data is used to learn
shared feature representation and results are re-
ported on the remaining 1/5" of the target data.

Table 2: Elaborates data segregation on the 20
Newsgroups dataset for cross-domain classifica-
tion.

dataset

Ds

Dy

comp Vs rec

comp.graphics
comp.sys.ibm.pc.hardware
comp.sys.mac.hardware
rec.motorcycles
rec.sport.hockey

comp.os.ms-windows.misc
comp.windows.x
rec.autos
rec.sport.baseball

comp vs sci

comp.graphics
comp.os.ms-windows.misc
sci.crypt
sci.electronics

comp.sys.ibm.pc.hardware
comp.sys.mac.hardware
comp.windows.x
sci.med
sci.space

comp.graphics
comp.sys.mac.hardware

comp.os.ms-windows.miscnewline
comp.sys.ibm.pc.hardware

talk.politics.misc
talk religion.misc

comp vs talk comp.windows.x talk politics.guns
talk.politics.mideast talk politics.misc
talk religion.misc
rec.autos rec.motorcycles
. rec.sport.baseball rec.sport.hockey
rec vs sci . X
sci.med sci.crypt
sci.space sci.electronics
rec.autos rec.sport.baseball
rec vs talk rec.mo%o_rcycles recsp_o_thoc_key
talk.politics.guns talk.politics.mideast
talk politics.misc talk religion.misc
sci.electronics sci.crypt
sci vs talk sci.med sci.space

talk.politics.guns
talk politics.mideast

The third dataset is a real world dataset com-
prising tweets about the products and services
in different domains. The dataset comprises
tweets/posts from three collections, C'oll1 about
gaming, Coll2 about Microsoft products and
Coll3 about mobile support. Each collection has
218 positive and negative tweets. These tweets
are collected based on user-defined keywords cap-



tured in a listening engine which then crawls the
social media and fetches comments matching the
keywords. This dataset being noisy and compris-
ing short-text is more challenging than the previ-
ous two datasets.

All datasets are pre-processed by converting to
lowercase followed by stemming. Feature selec-
tion based on document frequency (DF 5)
reduces the number of features as well as speed
up the classification task. For Amazon review
dataset, TF is used for feature weighing whereas
TFIDF is used for feature weighing in other two
datasets. In all our experiments, constituent clas-
sifiers used in the ensemble are support vector ma-
chines (SVMs) with radial basis function kernel.
Performance of the proposed algorithm for cross-
domain classification task is compared with dif-
ferent techniques'including 1) in-domain classi-
fier trained and tested on the same domain data, 2)
baseline classifier which is trained on the source
and directly tested on the target domain, 3) SCL2,
a widely used domain adaptation technique for
cross-domain text classification, 4) ‘Proposed w/o
sim’, removing similarity from Eqgs. 2 & 3.

4.2 Results and Analysis

For cross-domain classification, the performance
degrades mainly due to 1) feature divergence and
2) negative transfer owing to largely dissimilar do-
mains. Table 3 shows the accuracy of individ-
ual classifiers and the ensemble for cross-domain
classification on the Amazon review dataset. The
ensemble has better accuracy than the individual
classifiers, therefore, in our experiments the fi-
nal reported performance is the accuracy of the
ensemble. The combination weights in the en-
semble represent the contributions of individual
classifiers toward classification accuracy. In our
experiments, the maximum number of iterations
(iterMax) is set to 30. It is observed that at the
end of the iterative learning process, the target spe-
cific classifier is assigned more weight mass as
compared to the classifier trained on the shared
representation. On average, the weights for the
two classifiers converge to w® = 0.22 and w’
0.78 at the end of the iterative learning process.

"We also compared our performance with sentiment sen-
sitive thesaurus (SST) proposed by (Bollegala et al., 2013)
and our algorithm outperformed on our protocol. However,
we did not include comparative results because of difference
in experimental protocol as SST is tailored for using multiple
source domains and our protocol uses single source domain.

2Our implementation of SCL is used in this paper.
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Table 3: Comparing the performance of individual
classifiers and the ensemble for training on Books
domain and test across different domains. C's and
C} are applied on the test domain data before per-
forming the iterating learning process.

SD — TD B Cy Ensemble
B—D 63.1 34.8 72.1
B—E 645 | 39.1 75.8
B—K 684 | 423 76.2

Table 4: List some examples of domain specific
discriminative features learned by the proposed al-
gorithm on the Amazon review dataset.

Domain Domain specific features
Books pictures_illustrations, more_detail, to_read
DvDs Definite_buy, delivery_prompt

Kitchen
Electronics

invaluable_resource, rust, delicious
Bargain, Energy_saving, actually_use

This further validates our assertion that the tar-
get specific features are more discriminative than
the shared features in classifying target domain in-
stances, which are efficiently captured by the pro-
posed algorithm. Key observations and analysis
from the experiments on different datasets is sum-
marized below.

4.2.1 Results on the Amazon Review dataset

To study the effects of different components of the
proposed algorithm, comprehensive experiments
are performed on the Amazon review dataset’ .

1) Effect of learning target specific features: Re-
sults in Figure 3 show that iteratively learning tar-
get specific feature representation (slow transfer as
opposed to one-shot transfer) yields better perfor-
mance across different cross-domain classification
tasks as compared to SCL, SFA (Pan et al., 2010)*
and the baseline. Unlike SCL and SFA, the pro-
posed approach uses shared and target specific fea-
ture representations for the cross-domain classifi-
cation task. Table 4 illustrates some examples of
the target specific discriminative features learned
by the proposed algorithm that leads to enhanced
performance. At 95% confidence, parametric t-
test suggests that the proposed algorithm and SCL
are significantly (statistically) different.

2) Effect of similarity on performance: 1t is ob-
served that existing domain adaptation techniques
enhance the accuracy for cross-domain classifica-
tion, though, negative transfer exists in camou-

3Due to space restrictions, we show this analysis only on
one dataset; however similar conclusions were drawn from
other datasets as well.

*We directly compared our results with the performance
reported in (Pan et al., 2010).
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Figure 3: Comparing the performance of the proposed approach with existing techniques for cross-

domain classification on Amazon review dataset.
flage. Results in Figure 3(b) (for the case K — B)
describes an evident scenario for negative trans-
fer where the adaptation performance with SCL
descends lower than the baseline. However, the
proposed algorithm still sustains the performance
by transferring knowledge proportionate to simi-
larity between the two domains. To further an-
alyze the effect of similarity, we segregated the
12 cross-domain classification cases into two cat-
egories based on similarity between two the par-
ticipating domains i.e. 1) > 0.5 and 2) < 0.5.
Table 5 shows that for 6 out of 12 cases that fall
in the first category, the average accuracy gain is
10.8% as compared to the baseline. While for
the remaining 6 cases that fall in the second cat-
egory, the average accuracy gain is 15.4% as com-
pared to the baseline. This strongly elucidates that
the proposed similarity-based iterative algorithm
not only adapts well when the domain similarity
is high but also yields gain in the accuracy when
the domains are largely dissimilar. Figure 4 also
shows how weight for the target domain classi-
fier wy varies with the number of iterations. It
further strengthens our assertion that if domains
are similar, algorithm can readily adapt and con-
verges in a few iterations. On the other hand for
dissimilar domains, slow iterative transfer, as op-
posed to one-shot transfer, can achieve similar per-
formance; however, it may take more iterations
to converge.While the effect of similarity on do-
main adaptation performance is evident, this work
opens possibilities for further investigations.

3) Effect of varying threshold 01 & 0s: Figure
5(a) explains the effect of varying 6; on the final
classification accuracy. If 0y is low, C; may get
trained on incorrectly predicted pseudo labeled in-
stances; whereas, if 0y is high, C; may be defi-
cient of instances to learn a good decision bound-
ary. On the other hand, 65 influences the number
of iterations required by the algorithm to reach the

Table 5: Effect of similarity on accuracy gain for
cross-domain classification on the Amazon review

dataset.

Category SD — TD Sim Gain Avg. (SD)
ESK [ 078 | 131
K=E [ 078 | 106
B=K | 054 | 80

>0.5 K=B | 054 | 20 | 08¢49
BE=E | 052 | 131
ESB [ 052 | 172
K=D | 034 | 89
DK | 034 | 216
ESD [ 033 | 145

<0.5 DSE [ 033 | 145 | P4éY
BE=D | 020 | 14l
D=B | 029 | 19.

04
0.2 -+ Most similar domains
- Least similar domains
0 T T
1 5 9 13 17 21 25

Iterations

Figure 4: Illustrates how the weight (w;) for tar-
get domain classifiers varies for the most and least
similar domains with number of iterations.

stopping criteria. If this threshold is low, the algo-
rithm converges aggressively (in a few iterations)
and does not benefit from the iterative nature of
learning the target specific features. Whereas a
high threshold tends to make the algorithm con-
servative. It hampers the accuracy because of the
unavailability of sufficient instances to update the
classifier after each iteration which also leads to
large number of iterations to converge (may not
even converge).

0, and Oy are set empirically on a held-out
set, with values ranging from zero to distance of
farthest classified instance from the SVM hyper-
plane (Hsu et al., 2003). The knee-shaped curve
on the graphs in Figure 5 shows that there exists
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Figure 5: Bar plot shows % of data that crosses
confidence threshold, lower and upper part of the
bar represents % correctly and wrongly predicted
pseudo labels. The black line shows how the final
classification accuracy is effected with threshold.

an optimal value for #; and #> which yields the
best accuracy. We observed that the best accuracy
is obtained when the thresholds are set to the dis-
tance between the hyper plane and the farthest sup-
port vector in each class.

4) Effect of using different shared represen-
tations in ensemble: To study the generaliza-
tion ability of the proposed algorithm to differ-
ent shared representations, experiments are per-
formed using three different shared representa-
tions on the Amazon review dataset. Apart from
using the SCL representation, the accuracy is
compared with the proposed algorithm using two
other representations, 1) common features be-
tween the two domains (“common”) and 2) multi-
view principal component analysis based repre-
sentation (“MVPCA”) (Ji et al., 2011) as they are
previously used for cross-domain sentiment clas-
sification on the same dataset. Table 6 shows that
the proposed algorithm yields significant gains in
cross-domain classification accuracy with all three
representations and is not restricted to any spe-
cific representation. The final accuracy depends
on the initial classifier trained on the shared repre-
sentation; therefore, if a shared representation suf-
ficiently captures the characteristics of both source
and target domains, the proposed algorithm can
be built on any such representation for enhanced
cross-domain classification accuracy.

4.2.2 Results on 20 Newsgroups data

Results in Figure 6 compares the accuracy of pro-
posed algorithm with existing approaches on the
20 Newsgroups dataset. Since different domain
are crafted out from the sub-categories of the
same dataset, domains are exceedingly similar and
therefore, the baseline accuracy is relatively better
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Table 6: Comparing the accuracy of proposed al-
gorithm built on different shared representations.

SD — TD Common MVPCA SCL
B—D 66.8 76.4 78.2
B—E 69.0 79.2 80.6
B—K 714 792 79.8
D—B 64.5 784 793
D —E 62.8 76.4 76.2
D - K 64.3 80.9 824
E—B 68.9 77.8 78.5
E—D 65.7 77.0 713
E—K 75.1 85.4 86.2
K—B 71.3 71.0 71.1
K—D 704 75.0 76.1
K —E 76.7 85.7 86.4
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Figure 6: Results comparing the accuracy of pro-
posed approach with existing techniques for cross
domain categorization on 20 Newsgroups dataset.

than that on the other two datasets. The proposed
algorithm still yields an improvement of at least
10.8% over the baseline accuracy. As compared to
other existing domain adaptation approaches like
SCL(Blitzer et al., 2007) and CoCC (Dai et al.,
2007), the proposed algorithm outperforms by at
least 4% and 1.9% respectively. This also vali-
dates our assertion that generally domain adapta-
tion techniques accomplishes well when the par-
ticipating domains are largely similar; however,
the similarity aggregation and the iterative learn-
ing offer the proposed algorithm an edge over one-
shot adaptation algorithms.

4.2.3 Results on real world data

Results in Figure 7 exhibit challenges associated
with real world dataset. The baseline accuracy
for cross-domain classification task is severely af-
fected for this dataset. SCL based domain adap-
tation does not yields generous improvements as
selecting the pivot features and computing the co-
occurrence statistics with noisy short text is ardu-
ous and inept. On the other hand, the proposed
algorithm iteratively learns discriminative target
specific features from such perplexing data and
translates it to an improvement of at least 6.4%
and 3.5% over the baseline and the SCL respec-
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Figure 7: Results comparing the accuracy of the
proposed approach with existing techniques for
cross domain categorization on the real world
dataset.

tively.

5 Conclusion

The paper presents an iterative similarity-aware
domain adaptation algorithm that progressively
learns domain specific features from the unlabeled
test domain data starting with a shared feature rep-
resentation. In each iteration, the proposed algo-
rithm assigns pseudo labels to the unlabeled data
which are then used to update the constituent clas-
sifiers and their weights in the ensemble. Updating
the target specific classifier in each iteration helps
better learn the domain specific features and thus,
results in enhanced cross-domain classification ac-
curacy. Similarity between the two domains is ag-
gregated while updating weights of the constituent
classifiers which facilitates gradual shift of knowl-
edge from the source to the target domain. Finally,
experimental results for cross-domain classifica-
tion on different datasets show the efficacy of the
proposed algorithm as compared to other existing
approaches.
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Abstract

We study the impact of source length and
verbosity of the tuning dataset on the per-
formance of parameter optimizers such as
MERT and PRO for statistical machine
translation. In particular, we test whether
the verbosity of the resulting translations
can be modified by varying the length
or the verbosity of the tuning sentences.
We find that MERT learns the tuning set
verbosity very well, while PRO is sensi-
tive to both the verbosity and the length
of the source sentences in the tuning set;
yet, overall PRO learns best from high-
verbosity tuning datasets.

Given these dependencies, and potentially
some other such as amount of reorder-
ing, number of unknown words, syntac-
tic complexity, and evaluation measure, to
mention just a few, we argue for the need
of controlled evaluation scenarios, so that
the selection of tuning set and optimiza-
tion strategy does not overshadow scien-
tific advances in modeling or decoding.
In the mean time, until we develop such
controlled scenarios, we recommend us-
ing PRO with a large verbosity tuning set,
which, in our experiments, yields highest
BLEU across datasets and language pairs.

1 Introduction

Statistical machine translation (SMT) systems
nowadays are complex and consist of many com-
ponents such as a translation model, a reorder-
ing model, a language model, etc., each of which
could have several sub-components. All compo-
nents and their elements work together to score
full and partial hypotheses proposed by the SMT
system’s search algorithms.
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Thus, putting them together requires assigning
them relative weights, e.g., how much weight we
should give to the translation model vs. the lan-
guage model vs. the reordering table. These rela-
tive weights are typically learned discriminatively
in a log-linear framework, and their values are op-
timized to maximize some automatic metric, typi-
cally BLEU, on a tuning dataset.

Given this setup, it is clear that the choice of a
tuning set and its characteristics, can have signif-
icant impact on the SMT system’s performance:
if the experimental framework (training data, tun-
ing set, and test set) is highly consistent, i.e.,
there is close similarity in terms of genre, domain
and verbosity,! then translation quality can be im-
proved by careful selection of tuning sentences
that exhibit high degree of similarity to the test set
(Zheng et al., 2010; Li et al., 2010).

In our recent work (Nakov et al., 2012), we have
studied the relationship between optimizers such
as MERT, PRO and MIRA, and we have pointed
out that PRO tends to generate relatively shorter
translations, which could lead to lower BLEU
scores on testing. Our solution there was to fix
the objective function being optimized: PRO uses
sentence-level smoothed BLEU+1, as opposed to
the standard dataset-level BLEU.

Here we are interested in a related but dif-
ferent question: the relationship between prop-
erties of the tuning dataset and the optimizer’s
performance. More specifically, we study how
the verbosity, i.e., the average target/source sen-
tence length ratio, learned by optimizers such as
MERT and PRO depends on the nature of the tun-
ing dataset. This could potentially allow us to ma-
nipulate the verbosity of the translation hypotheses
generated at test time by changing some character-
istics of the tuning dataset.

"Verbosity also depends on the translator; it is often a
stylistic choice. and not necessarily related to fluency or ade-
quacy. This aspect is beyond the scope of the present work.
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2 Related Work

Tuning the parameters of a log-linear model for
statistical machine translation is an active area of
research. The standard approach is to use mini-
mum error rate training, or MERT, (Och, 2003),
which optimizes BLEU directly.

Recently, there has been a surge in new opti-
mization techniques for SMT. Two parameter op-
timizers that have recently become popular in-
clude the margin-infused relaxed algorithm or
MIRA (Watanabe et al., 2007; Chiang et al.,
2008; Chiang et al., 2009), which is an on-line
sentence-level perceptron-like passive-aggressive
optimizer, and pairwise ranking optimization or
PRO (Hopkins and May, 2011), which operates in
batch mode and sees tuning as ranking.

A number of improved versions thereof have
been proposed in the literature including a batch
version of MIRA (Cherry and Foster, 2012), with
local updates (Liu et al., 2012), a linear regression
version of PRO (Bazrafshan et al., 2012), and a
non-sampling version of PRO (Dreyer and Dong,
2015); another example is Rampeon (Gimpel and
Smith, 2012). We refer the interested reader to
three recent overviews on parameter optimization
for SMT: (McAllester and Keshet, 2011; Cherry
and Foster, 2012; Gimpel and Smith, 2012).

Still, MERT remains the de-facto standard in
the statistical machine translation community. Its
stability has been of concern, and is widely stud-
ied. Suggestions to improve it include using
regularization (Cer et al., 2008), random restarts
(Moore and Quirk, 2008), multiple replications
(Clark et al., 2011), and parameter aggregation
(Cettolo et al., 2011).

With the emergence of new optimization tech-
niques there have been also studies that compare
stability between MIRA-MERT (Chiang et al.,
2008; Chiang et al., 2009; Cherry and Foster,
2012), PRO-MERT (Hopkins and May, 2011),
MIRA-PRO-MERT (Cherry and Foster, 2012;
Gimpel and Smith, 2012; Nakov et al., 2012).
Pathological verbosity was reported when using
MERT on recall-oriented metrics such as ME-
TEOR (Lavie and Denkowski, 2009; Denkowski
and Lavie, 2011), as well as large variance with
MIRA (Simianer et al., 2012). However, we are
not aware of any previous studies of the impact of
sentence length and dataset verbosity across opti-
mizers.
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3 Method

For the following analysis, we need to define the
following four quantities:

o source-side length: the number of words in
the source sentence;

e [ength ratio: the ratio of the number of words
in the output hypothesis to those in the refer-
ence;”

e verbosity: the ratio of the number of words in
the reference to those in the source;’

o hypothesis verbosity: the ratio of the num-
ber of words in the hypothesis to those in the
source.

Naturally, the verbosity varies across differ-
ent tuning/testing datasets, e.g., because of style,
translator choice, etc. Interestingly, verbosity can
also differ across sentences with different source
lengths drawn from the same dataset. This is illus-
trated in Figure 1, which plots the average sam-
ple source length vs. the average verbosity for
100 samples, each containing 500 randomly se-
lected sentence pairs, drawn from the concatena-
tion of the MT04, MT05, MT06, MTO09 datasets
for Arabic-English and of newstest2008-2011 for
Spanish-English.*

We can see that for Arabic-English, the English
translations are longer than the Arabic source sen-
tences, i.e., the verbosity is greater than one. This
relationship is accentuated by length: verbosity in-
creases with sentence length: see the slightly pos-
itive slope of the regression line. Note that the
increasing verbosity can be observed in single-
reference sets (we used the first reference), and to
a lesser extent in multiple-reference sets (five ref-
erences for MT04 and MTO0S, and four for MT06
and MT09). For Spanish-English, the story is
different: here the English sentences tend to be
shorter than the Spanish ones, and the verbosity
decreases as the sentence length increases. Over-
all, in all three cases, the verbosity appears to be
length-dependent.

For multi-reference sets, we use the length of the refer-
ence that is closest to the length of the hypothesis. This is
the best match length from the original paper on BLEU (Pap-
ineni et al., 2002); it is default in the NIST scoring tool v13a,
which we use in our experiments.

*When dealing with multi-reference sets, we use the aver-
age reference length.

“The datasets we experiment with are described in more
detail in Section 4 below.
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Figure 1: Average source sentence length (x axis) vs. average verbosity (y axis) for 100 random samples,
each with 500 sentence pairs extracted from NIST (Left: Arabic-English, multi- and single-reference)
and from WMT (Right: Spanish-English, single-reference) data.

The main research question we are interested
in, and which we will explore in this paper, is
whether the SMT parameter optimizers are able
to learn the verbosity from the tuning set. We
are also interested in the question of how the hy-
pothesis verbosity learned by optimizers such as
MERT and PRO depends on the nature of the tun-
ing dataset, i.e., its verbosity. Understanding this
could potentially allow us to manipulate the hy-
pothesis verbosity of the translations generated at
test time simply by changing the characteristics of
the tuning dataset in a systematic and controlled
way. While controlling the verbosity of a tuning
set might be an appealing idea, this is unrealistic
in practice, given that the verbosity of a test set is
always unknown. However, the results in Figure 1
suggest that it is possible to manipulate verbosity
by controlling the average source sentence length
of the dataset (and the source-side length is always
known for any test set). Thus, in our study, we use
the source-side sentence length as a data selection
criterion; still, we also report results for selection
based on verbosity.

In order to shed some light on our initial ques-
tion (whether the SMT parameter optimizers are
able to learn the verbosity from the tuning dataset),
we contrast the verbosity that two different opti-
mizers, MERT and PRO, learn as a function of
the average length of the sentences in the tuning
dataset.’

3In this work, we consider both optimizers, MERT and
PRO, as black-boxes. For a detailed analysis of how their
inner workings can affect optimization, see our earlier work
(Nakov et al., 2012).
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4 Experiments and Evaluation

We experimented with single-reference and multi-
reference tuning and testing datasets for two
language pairs: Spanish-English and Arabic-
English.  For Spanish-English, we used the
single-reference datasets newstest2008, new-
stest2009, newstest2010, and newstest2011 from
the WMT 2012, Workshop on Machine Transla-
tion Evaluation.® For Arabic-English, we used
the multi-reference datasets MT04, MTO0S5, MTO06,
and MTO9 from the NIST 2012 OpenMT Eval-
uation;” we further experimented with single-
reference versions of the MTOx datasets, using the
first reference only.

In addition to the above datasets, we con-
structed tuning sets of different source-side sen-
tence lengths: short, middle and long. Given an
original tuning dataset, we selected 50% of its sen-
tence pairs: shortest 50%, middle 50%, or longest
50%. This yielded tuning datasets with the same
number of sentence pairs but with different num-
ber of words, e.g., for our Arabic-English datasets,
longest has about twice as many English words
as middle, and about four times as many words
as shortest. Constructing tuning datasets with the
same number of sentences instead of the same
number of tokens is intentional as we wanted to
ensure that in each of the conditions, the SMT pa-
rameter optimizers learn on the same number of
training examples.

Swww.statmt .org/wmt12/
"www.nist.gov/itl/iad/mig/openmt12.cfm



4.1 Experimental Setup

We experimented with the phrase-based SMT
model (Koehn et al., 2003) as implemented in
Moses (Koehn et al., 2007). For Arabic-English,
we trained on all data that was allowed for use
in the NIST 2012 except for the UN corpus. For
Spanish-English, we used all WMT12 data, again
except for the UN data.

We tokenized and truecased the English and the
Spanish side of all bi-texts and also the monolin-
gual data for language modeling using the stan-
dard tokenizer of Moses. We segmented the words
on the Arabic side using the MADA ATB segmen-
tation scheme (Roth et al., 2008). We built our
phrase tables using the Moses pipeline with max-
phrase-length 7 and Kneser-Ney smoothing. We
also built a lexicalized reordering model (Koehn
et al.,, 2005): msd-bidirectional-fe. ~We used
a S-gram language model trained on GigaWord
v.5 with Kneser-Ney smoothing using KenLM
(Heafield, 2011).

On tuning and testing, we dropped the unknown
words for Arabic-English, and we used monotone-
at-punctuation decoding for Spanish-English. We
tuned using MERT and PRO. We used the standard
implementation of MERT from the Moses toolkit,
and a fixed version of PRO, as we recommended
in (Nakov et al., 2013), which solves instability
issues when tuning on the long sentences; we will
discuss our PRO fix and the reasons it is needed in
Section 5 below. In order to ensure convergence,
we allowed both MERT and PRO to run for up to
25 iterations (default: 16); we further used 1000-
best lists (default: 100).

In our experiments below, we perform three re-
runs of parameter optimization, tuning on each of
the twelve tuning datasets; in the figures, we plot
the results of the three reruns, while in the tables,
we report BLEU averaged over the three reruns, as
suggested by Clark et al. (2011).

4.2 Learning Verbosity

We performed parameter optimization using
MERT and PRO on each dataset, and we used the
resulting parameters to translate the same dataset.
The purpose of this experiment was to study the
ability of the optimizers to learn the verbosity of
the tuning sets. Getting the hypothesis verbosity
right means that it is highly correlated with the
tuning set verbosity , which in turn is determined
by the dataset source length.
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The results are shown in Figure 2. In each
graph, there are 36 points (many of them very
close and overlapping) since we performed three
reruns with our twelve tuning datasets (three
length-based subsets for each of the four original
tuning datasets). There are several observations
that we can make:

(1) MERT is fairly stable with respect to the
length of the input tuning sentences. Note how
the MERT regression lines imitate those in Fig-
ure 1. In fact, the correlation between the verbosity
and the hypothesis verbosity for MERT is r=0.980.
PRO, on the other hand, has harder time learning
the tuning set verbosity, and the correlation with
the hypothesis verbosity is only r=0.44. Interest-
ingly, its length ratio is more sensitive to the in-
put length (r=0.67): on short sentences, it learns
to output translations that are slightly shorter than
the reference, while on long sentences, it yields
increasingly longer translations. The dependence
of PRO on source length can be explained by the
sentence-level smoothing in BLEU+1 and the bro-
ken balance between BLEU’s precision compo-
nent and BP (Nakov et al., 2012). The problem is
bigger for short sentences since there +1 is added
to smaller counts; this results in preference for
shorter translations.

(2) Looking at the results for Arabic-English,
we observe that having multiple references makes
both MERT and PRO appear more stable, allowing
them to generate hypotheses that are less spread,
and closer to 1. This can be attributed to the best
match reference length, which naturally dampens
the effect of verbosity during optimization by se-
lecting the reference that is closest to the respec-
tive hypothesis.

Overall, we can conclude that MERT learns the
tuning set’s verbosity more accurately than PRO.
PRO learns verbosity that is more dependent on
the source side length of the sentences in the tun-
ing dataset.

4.3 Performance on the Test Dataset

Next, we study the performance of MERT and
PRO when testing on datasets that are different
from the one used for tuning. First, we test the
robustness of the parameters obtained for spe-
cific tuning datasets when testing on various test
datasets. Second, we test whether selecting a
tuning dataset based on the length of the testing
dataset (i.e., closest) is a good strategy.
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Figure 2: Source-side length vs. hypothesis verbosity for the tuning dataset. There are 36 points per
language pair: four tuning sets, each split into three datasets (short, middle, and long) times three reruns.

For this purpose, we perform a grid comparison
of tuning and testing on all our datasets: we tune
on each short/middlel/long dataset, and we test on
the remaining short/middle/long datasets.

The results are shown in Table 1, where each
cell is an average over 36 BLEU scores: four
tuning sets times three test sets times three re-
runs. For example, 49.63 in row 1 (tune: short),
column 2 (test: middle), corresponds to the av-
erage over three reruns of (i) tune on MTO04-
short and test on MTO05-middle, MT06-middle,
and MT09-middle, (ii) tune on MTO05-short and
test on MT04-middle, MTO06-middle, and MTQ9-
middle, (iii) tune on MTO06-short and test on
MTO04-middle, MTO05-middle, and MT09-middle,
and (iv) tune on MT(09-short and test on MT04-
middle, MTO05-middle, and MTO06-middle. We
further include two statistics: (1) the range of
values (max-min), measuring test BLEU variance
depending on the tuning set, and (2) the loss in
BLEU when tuning on closest instead of on the
best-performing dataset.
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There are several interesting observations:

(1) PRO and MERT behave quite differently
with respect to the input tuning set. For MERT,
tuning on a specific length condition yields the
best results when testing on a similar condition,
i.e., zero-loss. This is a satisfactory result since it
confirms the common wisdom that tuning datasets
should be as similar as possible to test-time input
in terms of source side length. In contrast, PRO
behaves better when tuning on mid-length tuning
sets. However, the average loss incurred by apply-
ing the closest strategy with PRO is rather small,
and in practice, choosing a tuning set based on test
set’s average length is a good strategy.

(2) MERT has higher variance than PRO and
fluctuates more depending on the input tuning set.
PRO on the contrary, tends to perform more con-
sistently, regardless of the length of the tuning set.

(3) MERT yields the best BLEU across datasets
and language pairs. Thus, when several tuning sets
are available, we recommend choosing the one
closest in length to the test set and using MERT.



test

Arabic-English (multi-ref)

Arabic-English (1-ref)

WMT Spanish-English

tuning short mid long short mid long short mid long avg
MERT

short 47.26*  50.71 50.82  26.69* 28.14 2749 2517 2594  27.64

mid 46.53  51.11* 51.31 2622 2839° 2796 2496 2627 2797

long 46.23  50.84  51.74" 2580  28.20 28.27F 2457  26.08 28.29"
max-min 1.04 0.40 0.91 0.89 0.25 0.78 0.59 0.34 0.65  0.65
loss if using closest ~ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.00
PRO-fix

short 46.74  50.57 50.97 25.95 27.66 2728 2466 2583  27.89

mid 46.59  50.83 51.41 2598 2823 28.19 24.67 2581 27.64

long 46.08  50.56 51.18 25.87 28.11 28.05 2458 2577 2781
max-min 0.66 0.27 0.44 0.11 0.58 0.92 0.09 0.06 025  0.38
loss if using closest ~ 0.00 0.00 0.23 0.02 0.00 0.15 0.01 0.00 0.08  0.06

Table 1: Average test BLEU when tuning on each short/mid/long dataset, and testing on the remaining
short/mid/long datasets. Each cell represents the average over 36 scores (see the text). The best score for
either MERT or PRO is bold; the best overall score is marked with a *.

4.3.1 Performance vs. Length and Verbosity

The above results give rise to some interesting
questions: What if we do not know the source-
side length of the test set? What if we can choose
a tuning set based on its verbosity? Would it then
be better to choose based on length or based on
verbosity?

To answer these questions, we analyzed the av-
erage results according to two orthogonal views:
one based on the tuning set length (using the above
50% length-based subsets of tuning: short, mid,
long), and another one based on the tuning set
verbosity (using new 50% subsets verbosity-based
subsets of tuning: low-verb, mid-verb, high-verb).
This time, we translated the full test datasets (e.g.,
MTO06, MTO09); the results are shown in Table 2.
We can make the following observations:

(1) The best results for PRO are better than the
best results for MERT, in all conditions.

(2) Length-based tuning subsets: With a sin-
gle reference, PRO performs best when tuning on
short sentences, but with multiple references, it
works best with mid-length sentences. MERT, on
the other hand, prefers tuning on long sentences
for all testing datasets.

(3) Verbosity-based tuning subsets: PRO yields
best results when the tuning sets have high ver-
bosity; in fact, the best verbosity-based results in
the table are obtained with this setting. With mul-
tiple references, MERT performs best when tuning
on high-verbosity datasets; however, with a single
reference, it prefers mid-verbosity.
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Based on the above results, we recommend that,
whenever we have no access to the input side of
the testing dataset beforehand, we should tune on
datasets with high verbosity.

4.4 Test vs. Tuning Verbosity and Source
Length

In the previous subsection, we have seen that
MERT and PRO perform differently in terms of
BLEU, depending on the characteristics of the tun-
ing dataset. Here, we study a different aspect:
i.e. how they behave with respect to verbosity and
source side length.

We have seen that MERT and PRO perform dif-
ferently in terms of BLEU depending on the char-
acteristics of the tuning dataset. Below we study
how other characteristics of the output of PRO and
MERT are affected by tuning set verbosity and
source side length.

4.4.1 MERT - Sensitive to Verbosity

Figure 3 shows a scatter plot of tuning verbosity
vs. test hypothesis verbosity when using MERT
to tune under different conditions, and testing on
each of the unseen full datasets. We test on full
datasets to avoid the verbosity bias that might oc-
cur for specific conditions (see Section 3).

We can see strong positive correlation between
the tuning set verbosity and the hypothesis ver-
bosity on the test datasets. The average correla-
tion for Arabic-English is r=0.95 with multiple
references and 7=0.98 with a single reference; for
Spanish-English, it is 7=0.97.



test

Arabic-English (multi-ref)  Arabic-English (1-ref) WMT Spanish-English

tuning MERT PRO-fix MERT PRO-fix MERT PRO-fix
length

short 48.71 49.12 26.74 27.35 26.79 27.07

mid 49.27 49.59 26.97 27.23 26.99 26.88

long 49.35 49.20 27.23 27.28 27.02 26.84

verbosity

low-verb 47.90 47.60 25.89 25.88 26.70 26.61

mid-verb 49.16 49.52 27.69 27.95 27.09 26.81

high-verb  50.28 50.79* 27.36 28.03" 27.01 27.38"

Table 2: Average test BLEU scores when tuning on different length- and verbosity-based datasets, and
testing on the remaining full datasets. Each cell represents the average over 36 scores. The best score for
either MERT or PRO is bold; the best overall score is marked with a *.
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Figure 3: Tuning set verbosity vs. test hypothesis verbosity when using MERT. Each point represents the
result for an unseen testing dataset, given a specific tuning condition. The linear regressions show the
tendencies for each of the test datasets (note that they all overlap for Es-En and look like a single line).

These are very strong positive correlations and
they show that MERT tends to learn SMT pa-
rameters that yield translations preserving the ver-
bosity, e.g., lower verbosity on the tuning dataset
will yield test-time translations that are less ver-
bose, while higher verbosity on the tuning dataset
will yield test-time translations that are more ver-
bose. In other words, MERT learns to generate
a fixed number of words per input word. This
can be explained by the fact that MERT optimizes
BLEU score directly, and thus learns to output the
“right” verbosity on the tuning dataset (in contrast,
PRO optimizes sentence-level BLEU+1, which is
an approximation to BLEU, but it is not the actual
BLEU). This explains why MERT performs best
when the tuning conditions and the testing condi-
tions are in sync. Yet, this makes it dependent on
a parameter that we do not necessarily control or
have access to beforehand: the length of the test
references.
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4.4.2 PRO - Sensitive to Source Length

Figure 4 shows the tuning set average source-side
length vs. the testing hypothesis/reference length
ratio when using PRO to tune on short, middle,
and long and testing on each of the unseen full
datasets, as in the previous subsection. We can see
that there is positive correlation between the tun-
ing set average source side length and the testing
hypothesis/reference length ratio. For Spanish-
English, it is quite strong (r=0.64), and for Arabic-
English, it is more clearly expressed with one
(r=0.42) than with multiple references (r=0.34).
The correlation is significant (p < 0.001) when
we take into account the contribution of the tuning
set verbosity in the model. This suggests that for
PRO, both source length and verbosity influence
the hypotheses lengths, i.e., PRO learns the tuning
set’s verbosity, much like MERT; yet, the contri-
bution of the length of the source sentences from
the tuning dataset is not negligible.
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Figure 4: Tuning set average source length vs. test hypothesis/reference length ratio for PRO. Each
point represents the result for an unseen testing dataset, given a specific tuning condition. The linear
regressions shows the tendencies across each of the testing datasets.

Finally, note the “stratification” effect for the
Arabic-English single-reference data. We attribute
it to the differences across test datasets. These
differences are attenuated with multiple references
due to the closest-match reference length.

5 Discussion

We have observed that high-verbosity tuning sets
yield better results with PRO. We have further seen
that we can manipulate verbosity by adjusting the
average length of the tuning dataset. This leads to
the natural question: can this yield better BLEU?
It turns out that the answer is “yes”. Below, we
present an example that makes this evident.

First, recall that for Arabic-English longer tun-
ing datasets have higher verbosity. Moreover, our
previous findings suggest that for PRO, higher-
verbosity tuning datasets will perform better in
this situation. Therefore, we should expect that
longer tuning datasets could yield better BLEU.
Table 3 presents the results for PRO with Arabic-
English when tuning on MTO06, or subsets thereof,
and testing on MT09. The table shows the re-
sults for both multi- and single-reference experi-
ments; naturally, manipulating the tuning set has
stronger effect with a single reference. Lines 1-
3 show that as the average length of the tuning
dataset increases, so does the length ratio, which
means better brevity penalty for BLEU and thus
higher BLEU score. Line 4 shows that selecting
a random-50% subset (included here to show the
effect of using mixed-length sentences) yields re-
sults that are very close to those for middle.
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Comparing line 3 to lines 4 and 5, we can see
that tuning on long yields longer translations and
also higher BLEU, compared to tuning on the full
dataset or on random.

Next, lines 6 and 7 show the results when apply-
ing our smoothing fix for sentence-level BLEU+1
(Nakov et al., 2012), which prevents translations
from becoming too short; we can see that long
yields very comparable results. Yet, manipulat-
ing the tuning dataset might be preferable since it
allows (7) faster tuning, by using part of the tun-
ing dataset, (ii) flexibility in the selection of the
desired verbosity, and (iii) applicability to other
MT evaluation measures. Point (i7) is illustrated
on Figure 5, which shows that there is direct pos-
itive correlation between verbosity, length ratio,
and BLEU; note that the tuning set size does not
matter much: in fact, better results are obtained
when using less tuning data.
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Figure 5: PRO, Arabic-English, 1-ref: tune on
N % longest sentences from MT06, test on MTO09.



multi-ref 1-ref
Tuning BLEU len. ratio BLEU len. ratio
1 tune-short 46.38 0.961 27.44 0.894
2 tune-mid 47.44 0.977 29.11 0.950
3 tune-long 4747 0.980 29.51 0.969
4 tune-random 47.43 0.978 28.96 0.941
5 tune-full 47.18 0.972 28.88 0.934
6  tune-full, BP-smooth=1 47.52 0.984 29.43 0.962
7  tune-full, BP-smooth=1, grounded  47.61 0.991 29.68 0.979

Table 3: PRO, Arabic-English: tuning on MTO06, or subsets thereof, and testing on MTO09. Statistically
significant improvements over fune-full are in bold: using the sign test (Collins et al., 2005), p < 0.05.

6 Conclusion and Future Work

Machine translation has, and continues to, benefit
immensely from automatic evaluation measures.
However, we frequently observe delicate depen-
dencies between the evaluation metric, the system
optimization strategy, and the pairing of tuning
and test datasets. This leaves us with the situation
that getting lucky in the selection of tuning datasets
and optimization strategy overshadows scientific
advances in modeling or decoding. Understand-
ing these dependencies in detail puts us in a bet-
ter position to construct tuning sets that match the
test datasets in such a way that improvements in
models, training, and decoding algorithms can be
measured more reliably.

To this end, we have studied the impact that
source-side length and verbosity of tuning sets
have on the performance of the translation system
when tuning the system with different optimizers
such as MERT and PRO. We observed that MERT
learns the verbosity of the tuning dataset very well,
but this can be a disadvantage because we do not
know the verbosity of unseen test sentences. In
contrast, PRO is affected by both the verbosity and
the source-side length of the tuning dataset.

There may be other characteristics of test
datasets, e.g., amount of reordering, number of
unknown words, complexity of the sentences in
terms of syntactic structure, etc. that could have
similar effects of creating good or bad luck when
deciding how to tune an SMT system. Until
we have such controlled evaluation scenarios, our
short-term recommendations are as follows:

e Know your tuning datasets: Different lan-
guage pairs and translation directions may
have different source-side length — verbosity
dependencies.
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e When optimizing with PRO: select or con-
struct a high-verbosity dataset as this could
potentially compensate for PROs tendency
to yield too short translations. Note that
for Arabic-English, higher verbosity means
longer tuning sentences, while for Spanish-
English, it means shorter ones; translation di-
rection might matter too.

When optimizing with MERT: If you know
beforehand the test set, select the closest tun-
ing set. Otherwise, tune on longer sentences.

We plan to extend this study in a number of di-
rections. First, we would like to include other pa-
rameter optimizers such as Rampeon (Gimpel and
Smith, 2012) and MIRA. Second, we want to ex-
periment with other metrics, such as TER (Snover
et al., 2006), which typically yields short trans-
lations, and METEOR (Lavie and Denkowski,
2009), which yields too long translations. Third,
we would like to explore other SMT models such
as hierarchical (Chiang, 2005) and syntax-based
(Galley et al., 2004; Quirk et al., 2005), and other
decoders such as cdec (Dyer et al., 2010), Joshua
(Li et al., 2009), and Jane (Vilar et al., 2010).

A long-term objective would be to design a met-
ric that measures the closeness between tuning and
test datasets, which includes the different char-
acteristics, such as length distribution, verbosity
distribution, syntactic complexity, etc., to guaran-
tee a more stable evaluation situations, but which
would also allow to systematically test the robust-
ness of translation systems, when deviating from
the matching conditions.
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Abstract

Cross-lingual dependency parsing aims
to train a dependency parser for an
annotation-scarce target language by ex-
ploiting annotated training data from an
annotation-rich source language, which is
of great importance in the field of nat-
ural language processing. In this paper,
we propose to address cross-lingual de-
pendency parsing by inducing latent cross-
lingual data representations via matrix
completion and annotation projections on
a large amount of unlabeled parallel sen-
tences. To evaluate the proposed learn-
ing technique, we conduct experiments on
a set of cross-lingual dependency parsing
tasks with nine different languages. The
experimental results demonstrate the effi-
cacy of the proposed learning method for
cross-lingual dependency parsing.

1 Introduction

The natural language processing (NLP) commu-
nity has witnessed an enormous development of
multilingual resources, which draws increasing at-
tention to developing cross-lingual NLP adapta-
tion systems. Cross-lingual dependency parsing
aims to train a dependency parser for a target lan-
guage where labeled data is rare or unavailable
by exploiting the abundant annotated data from a
source language. Cross-lingual dependency pars-
ing can effectively reduce the expensive manual
annotation effort in individual languages and has
been increasingly studied in the multilingual com-
munity. Previous works have demonstrated the
success of cross-lingual dependency parsing for a
variety of languages (Durrett et al., 2012; McDon-
ald et al., 2013; Tickstrom et al., 2013; Sggaard
and Wulff, 2012).

One fundamental issue of cross-lingual depen-
dency parsing lies in how to effectively transfer the
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annotation information from the source language
domain to the target language domain. Due to the
language divergence over the word-level represen-
tations and the sentence structures, simply training
a monolingual dependency parser on the labeled
source language data without adaptation learn-
ing will fail to produce a dependency parser that
works in the target language domain. To tackle
this problem, a variety of works in the literature
have designed better algorithms to exploit the an-
notated resources in the source languages, includ-
ing the cross-lingual annotation projection meth-
ods (Hwa et al., 2005; Smith and Eisner, 2009;
Zhao et al., 2009), the cross-lingual direct trans-
fer with linguistic constraints methods (Ganchev
et al., 2009; Naseem et al., 2010; Naseem et al.,
2012), and the cross-lingual representation learn-
ing methods (Durrett et al., 2012; Tackstrom et al.,
2012; Zhang et al., 2012).

In this work, we propose a novel representation
learning method to address cross-lingual depen-
dency parsing, which exploits annotation projec-
tions on a large amount of unlabeled parallel sen-
tences to induce latent cross-lingual features via
matrix completion. It combines the advantages
of the cross-lingual annotation projection meth-
ods, which project labeled information into the tar-
get language domain, and the cross-lingual rep-
resentation learning methods, which learn latent
interlingual features. Specifically, we first train
a dependency parser on the labeled source lan-
guage data and use it to infer labels for the un-
labeled source language sentences of the parallel
resources. We then project the annotations from
the source language to the target language via the
word alignments on the parallel sentences. Af-
terwards, we define a set of interlingual features
and construct a word-feature matrix by associat-
ing each word with these language-independent
features. We then use the original labeled source
language data and the predicted (or projected) la-
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beled information on the parallel sentences to fill
in the observed entries of the word-feature matrix,
while matrix completion is performed to fill the
remaining missing entries. The completed word-
feature matrix provides a set of consistent cross-
lingual representation features for the words in
both languages. We use these features as augment-
ing features to train a dependency parsing system
on the labeled data in the source language and per-
form prediction on the test sentences in the tar-
get language. To evaluate the proposed learning
method, we conduct experiments on eight cross-
lingual dependency parsing tasks with nine differ-
ent languages. The experimental results demon-
strate the superior performance of the proposed
cross-lingual transfer learning method, comparing
to other approaches.

2 Related Work

A variety of cross-lingual dependency parsing
methods have been developed in the literature. We
provide a brief review over the related works in
this section.

Much work developed in the literature is based
on annotation projection (Hwa et al., 2005; Liu
et al., 2013; Smith and Eisner, 2009; Zhao et al.,
2009). Basically, they exploit parallel sentences
and first project the annotations of the source lan-
guage sentences to the corresponding target lan-
guage sentences via the word level alignments.
Then, they train a dependency parser in the target
language by using the target language sentences
with projected annotations. The performance of
annotation projection-based methods can be af-
fected by the quality of word-level alignments and
the specific projection schema. Therefore, Hwa
et al. (2005) proposed to heuristically correct or
modify the projected annotations in order to in-
crease the projection performance while Smith
and Eisner (2009) used a more robust projec-
tion method, quasi-synchronous grammar projec-
tion, to address cross-lingual dependency parsing.
Moreover, Liu et al. (2013) proposed to project the
discrete dependency arcs instead of the treebank
as the training set. These works however assume
that the parallel sentences are already available, or
can be obtained by using free machine translation
tools. Instead, Zhao et al. (2009) considered the
cost of machine translation and used a bilingual
lexicon to obtain a translated treebank with pro-
jected annotations from the source language.
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A number of works are developed based on
representation learning (Durrett et al.,, 2012;
Téckstrom et al., 2012; Zhang et al., 2012; Xiao
and Guo, 2014). In general, these methods first au-
tomatically learn some language-independent fea-
tures and then train a dependency parser in this
interlingual feature space with labeled data in the
source language and apply it on the data in the tar-
get language. Durrett et al. (2012) used a bilingual
lexicon, which can be manually constructed or in-
duced on parallel sentences, to learn language-
independent projection features for cross-lingual
dependency parsing. Tackstrom et al. (2012)
used unlabeled parallel sentences to induce cross-
lingual word clusterings and used these word clus-
terings as interlingual features. Both (Durrett et
al., 2012) and (Tackstrom et al., 2012) assumed
that the twelve universal part-of-speech (POS)
tags (Petrov et al., 2012) are available and used
them as the basic interlingual features. Moreover,
Zhang et al. (2012) proposed to automatically map
language-specific POS tags to universal POS tags
to address cross-lingual dependency parsing, in-
stead of using the manually defined mapping rules.
Recently, Xiao and Guo (2014) used a set of bilin-
gual word pairs as pivots to learn interlingual dis-
tributed word representations via deep neural net-
works as augmenting features for cross-lingual de-
pendency parsing.

Some other works are proposed based on mul-
tilingual linguistic constraints (Ganchev et al.,
2009; Gillenwater et al., 2010; Naseem et al.,
2010; Naseem et al., 2012). Basically, they first
construct a set of linguistic constrains and then
train a dependency parsing system by incorporat-
ing the linguistic constraints via posterior regular-
ization. The constraints are expected to bridge the
language differences. Ganchev et al. (2009) au-
tomatically learned the constraints by using par-
allel data while some other works manually con-
structed them by using the universal dependency
rules (Naseem et al., 2010) or the typological fea-
tures (Naseem et al., 2012).

3 Proposed Approach

In this section, we present a novel representa-
tion learning method for cross-lingual dependency
parsing, which combines annotation projection
and matrix completion-based feature representa-
tion learning together to produce effective inter-
lingual features.



Cross-Lingual Annotation Projection

labeled lexical word
source dependency alignment
sentences parser tool

unlabeled
parallel
sentences

projected
dependency
arcs

i R

unlabeled
target
sentences

» statistics
collection

[ matrix completion J

Cross-Lingual Representation Learning

Figure 1: The architecture of the proposed cross-
lingual representation learning framework, which
consists of two steps, cross-lingual annotation pro-
jection and cross-lingual representation learning.

We consider the following cross-lingual depen-
dency parsing setting. We have a large amount
of labeled sentences in the source language and a
set of unlabeled sentences in the target language.
In addition, we also have a large set of auxiliary
unlabeled parallel sentences across the two lan-
guages. We aim to learn interlingual feature rep-
resentations such that a dependency parser trained
in the source language sentences can be applied in
the target language domain. The framework for
the proposed cross-lingual representation learn-
ing system is given in Figure 1. The system has
two steps: cross-lingual annotation projection and
cross-lingual representation learning. We present
each of the two steps below.

3.1 Cross-Lingual Annotation Projection

In the first step, we employ a large amount of un-
labeled parallel sentences to transfer dependency
relations from the source language to the target
language. We first train a lexicalized dependency
parser with the labeled training data in the source
language. Then we use this parser to produce
parse trees on the source language sentences of
the auxiliary parallel data. Simultaneously, we
perform word-level alignments on the unlabeled
parallel sentences using existing alignment tools.
Finally, we project the predicted dependency re-
lations of the source language sentences to their
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Figure 2: An example of cross-lingual annotation
projection, where a partial word-level alignment
is shown to demonstrate two cases of annotation
projection.

parallel counterparts in the target language via the
word-level alignments. Instead of projecting the
whole dependency trees, which requires more so-
phisticated algorithms, we simply project each de-
pendency arc on the source sentences to the target
language side.

We now use a specific example in Figure 2 to
illustrate the projection step. This example con-
tains an English sentence and its parallel sentence
in German. The English sentence is fully labeled
with each dependency relation indicated by a solid
directed arc. The dashed lines between the En-
glish sentence and the German sentence show the
alignments between them. For each dependency
arc instance, we consider the following properties:
the parent word, the child word, the parent POS,
the child POS, the dependency direction, and the
dependency distances. The projection of the de-
pendency relations from the source language to the
target language is conducted based on the word-
level alignment. There are two different scenar-
ios. The first scenario is that the two source lan-
guage words involved in the dependency relation
are aligned to two different words in the corre-
sponding target sentence. For example, the En-
glish words “the” and “quota” are aligned to Ger-
man words “die” and “Quote” separately. We then
copy this dependency relation into the target lan-
guage side. The second scenario is that a source
language word is aligned to a word in the target
language sentence and has a dependency relation
with the “<root>" word. For example, the En-
glish word “want” is aligned to “wollen” and it has
a dependency arc with “<root>". We then project
the dependency relation from the English side to
the German side as well. Moreover, we also di-
rectly project the POS tags of the source language
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Women want to continue to fight for the quota <root>
NOUN VERB PRT VERB PRT VERB ADP DET NOUN ROOT
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Figure 3: Example of how to collect queries for
each specific dependency relation and how to ob-
tain the abstract signatures (adapted from (Durrett
et al., 2012)).

words onto the target language words. Since the
word order for each aligned word pair in parallel
sentences can be different, we recalculate the de-
pendency direction and the dependency distance
for the projected dependency arc instance. Note
the example in Figure 2 only shows a partial word-
level alignment to demonstrate the two cases of the
annotation projection. The word alignment tool
can align more words than shown in the example.

3.2 Cross-Lingual Representation Learning

After cross-lingual annotation projection, we have
a set of projected dependency arc instances in
the target language. However, the sentences in
the target language are not fully labeled. De-
pendency relation related features are not readily
available for all the words in the target language
domain. Hence, in this step, we first generate a set
of interlingual features and then automatically fill
the missing feature values for the target language
words with matrix completion based on the pro-
jected feature values.

3.2.1 Generating Interlingual Features

We use the signature method in (Durrett et al.,
2012) to construct a set of interlingual features
for the words in the source and target language
domains . The signatures proposed in (Dur-
rett et al., 2012) for dependency parsing are
universal across different languages, and have
numerical values that are computed in specific
dependency relations. Here we illustrate the
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signature generation process by using an example
in Figure 3, which is adapted from (Durrett et
al.,, 2012). Note for each dependency relation
between a parent (also known as the head) word
and a child (also known as the dependent) word,
we can collect a number of queries based on
the dependency properties. For example, given
the dependency arc between “want” and “to” in
the English sentence in Figure 3, and assuming
we consider the child word “to”, we produce
queries by considering a non-empty subset of
the dependency properties (the parent POS, the
dependency direction, the dependency distance),
which provides us 7 queries: “VERB—t0”, “—to,
RIGHT”, “—to, 17, “VERB —to, RIGHT”,
“VERB—to, 17, “—to, RIGHT, 17, “VERB—to,
RIGHT, 17, where VERB is the parent POS tag,
RIGHT is the dependency direction and 1 is
the dependency distance. Then we can abstract
the specific queries to generate the signatures
by replacing the considered word (“to””) with its
POS tag (“PRT”), and replacing the parent POS
tag with “PARENT”, the specific dependency
distance with “DIST” and the dependency direc-
tion with “DIR”. This produces the following 7
signatures: “PARENT—[PRT]”, “—[PRT], DIR”,
“—[PRT], DIST”, “PARENT—[PRT], DIST”,
“PARENT—[PRT], DIST”, “—[PRT], DIR,
DIST”, and “PARENT—[PRT], DIR, DIST”,
where the brackets indicate the POS tags are for
the considered word. Similarly, we can perform
the same abstraction process for the parent word
“want” and get another 7 signatures (see Table 1).
Since each signature contains one POS tag and
there are 13 different POS types (12 universal
POS tags and 1 special type for the “<root>"
word), we can get a total of 7 x 2 x 13 = 182
signatures. These signatures are independent of
specific languages, though their numerical values
should be computed in a specific dependency
relation for each considered target word.

A set of interlingual features can then be gener-
ated from these abstractive signatures by consid-
ering different instantiations of their items. For a
given target word with an observed POS tag, it has
14 signatures (see Table 1). For each signature,
we consider all possible instantiations of its other
items given the fixed target word. For example, for
the target word “to”, its signature “—[PRT], DIR”
can be instantiated into 2 features: “— LEFT” and
“— RIGHT”. Similarly, its signature “—[PRT],



[ Signatures | # Features |
[PRT] — DIR 2
[PRT] — DIST 5
[PRT] — CHILD 3
[PRT] — DIR, DIST 10
[PRT] — CHILD, DIR 26
[PRT] — CHILD, DIST 65
[PRT] — CHILD, DIR, DIST 130
— [PRT], DIR 2
— [PRT], DIST 5
PARENT — [PRT] I3
— [PRT], DIR, DIST 10
PARENT — [PRT], DIR 26
PARENT — [PRT], DIST 5
PARENT — [PRT], DIR, DIST 130

[ Total [ 502 ]

Table 1: The number of induced “features” of each
signature for a given word.

DIST” can be instantiated into 5 features since
DIST has 5 different values ({1, 2, 3-5, 6-10,
11+4}), and its signature “[PRT]—CHILD” can be
instantiated into 13 features since CHILD denotes
the child word’s POS tags and can have 13 differ-
ent values. Hence as shown in Table 1, we can get
502 features from the 14 signatures.

3.2.2 Learning Feature Values with Matrix
Completion

The signature-based 502 interlingual features to-
gether with the 13 universal POS tag features can
be used as language independent features for all
the words in the vocabulary constructed across the
source and target language domains. In particular,
we can form a word-feature matrix with the con-
structed vocabulary and the total 515 language in-
dependent features. For each word that appeared
in the dependency relation arcs, we can use the
number of appearances of its interlingual features
as the corresponding feature values. However, the
sentences in the target language are not fully la-
beled. Some words in the target language domain
may not be observed in the projected dependency
arc instances, and we cannot compute their feature
values for the 502 interlingual features, though the
13 universal POS tag features are available for all
words. Moreover, since we only have a limited
number of projected dependency arc instances in
the target language, even for some target words
that appeared in the projected arc instances of the
parallel data, we may only observe a subset of
features among the total 502 interlingual features,
with the rest features missing. Hence the con-
structed word-feature matrix is only partially ob-
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Figure 4: The word-feature matrix. There are

three parts of words: the source language words,
target language words from the projected depen-
dency arc instances, and additional target language
words. The signature features are the 502 interlin-
gual features and the POS features are the 13 uni-
versal POS tags. Solid lines indicate observed en-
tries, dashed lines indicate partially observed en-
tries, while empty indicates missing entries.

served, as shown in Figure 4. Furthermore, there
could also be some noise in the observed feature
values as some word features may not have re-
ceived sufficient observations.

To solve the missing feature problem and si-
multaneously perform data denoising, we exploit
a feature correlation assumption: the 502 con-
structed interlingual features and the 13 univer-
sal POS tags are not mutually independent; they
usually contain a lot statistical correlation infor-
mation. For example, for a word “want” with
POS tag “VERB”, its feature value for “VERB —
want, RIGHT” is likely to be very small such as
zero, while its feature value for “want— NOUN,
LEFT” is likely to be large. Moreover, the exis-
tence of any one of the two interlingual features in
this example can also indicate the non-existence
of the other feature. The existence of feature cor-
relations establishes the low-rank property of the
word-feature matrix. We hence propose to fill the
missing feature values and reduce the noise in the
word-feature matrix by performing matrix com-
pletion. Low-rank matrix completion has been
successfully used in many applications to fill miss-
ing entries of partially observed low-rank matri-
ces and perform matrix denoising (Cabral et al.,
2011; Xijao and Guo, 2013) by exploiting the fea-
ture correlations and underlying low-dimensional
representations. Following the same principle, we
expect to automatically discover the missing fea-



ture values in our word-feature matrix and perform
denoising through low-rank matrix completion.

Let M° € R™* denote the partially observed
word-feature matrix in Figure 4, where n is the
number of words and £ is the dimensionality of
the feature set, which is 515 in this study. Let {2
denote the set of indices for the observed entries.
Hence for each observed entry (i,j5) € €, Mioj
contains the frequency collected for the j-th fea-
ture of the i-th word. We then formulate matrix
completion as the following optimization problem
to recover a full matrix M from the partially ob-
served matrix M©:

. 04\2
min ”YHM‘*"‘O"MHLI"(‘Z):(QMZ'J'_MU) (1)
1,])€

where the trace norm || M ||, enforces the low-rank
property of the matrix, and ||M]|;; denotes the
entrywise L1 norm. Since many words usually
only have observed values for a small subset of the
502 interlingual features due to the simple fact that
they are only associated with very few POS tags,
a fully observed word-feature matrix is typically
sparse and contains many zero entries. Hence we
use the L1 norm regularizer to encode the spar-
sity of the matrix M. The nonnegativity constraint
M > 0 encodes the fact that our frequency based
feature values in the word-feature matrix are all
nonnegative. The minimization problem in Eq (1)
can be solved using a standard projected gradient
descent algorithm (Xiao and Guo, 2013).

3.3 Cross-Lingual Dependency Parsing

After matrix completion, we can get a set of in-
terlingual features for all the words in the word-
feature matrix. We then use the interlingual fea-
tures for each word as augmenting features and
train a delexicalized dependency parser on the la-
beled sentences in the source language. The parser
is then applied to perform prediction on the test
sentences in the target language, which are also
delexicalized and augmented with the interlingual
features.

4 Experiments

4.1 Datasets

We used the multilingual dependency parsing
dataset from the CoNLL-X shared tasks (Buch-
holz and Marsi, 2006; Nivre et al., 2007) and ex-
perimented with nine different languages: Dan-
ish (Da), Dutch (NI), English (En), German (De),
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Greek (El), Italian (It), Portuguese (Pt), Span-
ish (Es) and Swedish (Sv). For each language,
the original dataset contains a training set and a
test set. We constructed eight cross-lingual de-
pendency parsing tasks, by using English as the
label-rich source language and using each of the
other eight languages as the label-poor target lan-
guage. For example, the task En2Da means that
we used English sentences as the source language
data and Danish sentences as the target language
data. For each task, we used the original training
set in English as the labeled source language data,
and used the original training set in the target lan-
guage as unlabeled training data and the original
test set in the target language as test sentences.
Each sentence from the dataset is labeled with
gold standard POS tags. We manually mapped
these language-specific POS tags to 12 univer-
sal POS tags: NOUN (nouns), NUM (numerals),
PRON (pronouns), ADJ (adjectives), ADP (prepo-
sitions or postpositions), ADV (adverbs), CONJ
(conjunctions), DET (determiners), PRT (parti-
cles), PUNC (punctuation marks), VERB (verbs)
and X (for others).

We used the unlabeled parallel sentences from
the European parliament proceedings parallel
corpus (Koehn, 2005), which contains parallel
sentences between multiple languages, as auxil-
iary unlabeled parallel sentences in our experi-
ments. For the representation learning over each
cross-lingual dependency parsing task, we used
all the parallel sentences for the given language
pair from this corpus. The number of parallel sen-
tences for the eight language pairs ranges from
1,235,976 to 1,997,775, and the number of to-
kens involved in these sentences in each language
ranges from 31,929, 703 to 50, 602, 994.

4.2 Representation Learning

For the proposed representation learning, we first
trained a lexicalized dependency parser on the la-
beled source language data using the MSTParser
tool (proj with the first order set) (McDonald et
al., 2005) and used it to predict the parsing annota-
tions of the source language sentences in the unla-
beled parallel dataset. The sentences of the paral-
lel data only contain sequences of words, without
additional POS tag information. We then used an
existing POS tagging tool (Collobert et al., 2011)
to infer POS tags for them. Next we produced
word-level alignments on the unlabeled parallel



Basic Conj with dist

Conj with dir

Conj with dist and dir

upos_h
upos_d
upos_h, upos_d,

dist, upos_h
dist, upos_d
dist, upos_h, upos_d

dir, upos_h
dir, upos_d
dir, upos_h, upos_d

dist, dir, upos_h
dist, dir, upos_d
dist, dir, upos_h, upos_d

Table 2: Feature templates for training a basic delexicalized dependency parser. upos stands for the
universal POS tag, h stands for the head word, d stands for the dependent word, dist stands for the
dependency distance, which has five values {1,2,3 — 5,6 — 10, 11+}, and dir stands for the dependency

direction, which has two values {left, right}.

Tasks Wikitionary Parallel Data
Delex | Proj1 V |[DNN V | Proj2 V | RLAP V | X-lingual

En2Da 36.5 413 48| 426 6.1 | 429 64| 436 7.1 38.7
En2De 46.2 492 30| 495 33| 497 35| 505 43 50.7
En2FEl 61.5 624 09| 630 15| 635 20| 643 28 63.0
En2Es 52.1 545 24| 557 3.6 562 41| 563 42 62.9
En2It 56.4 577 13 ] 591 27 592 28| 604 4.0 68.8
En2Nl1 62.0 644 24| 651 311 649 29| 66.1 4.1 54.3
En2Pt 68.7 715 28| 724 37 719 32| 728 4.1 71.0
En2Sv 57.8 61.0 32| 619 41| 629 51| 637 59 56.9
Average || 55.2 578 26| 587 35| 589 38| 59.7 46 58.3

Table 3: Comparison results in terms of unlabeled attachment score (UAS) for the eight cross-lingual
dependency parsing tasks (English is used as the source language). The evaluation results are on all
the test sentences. The Delex method uses no auxiliary resource, Projl and DNN use Wikitionary as
auxiliary resource, Proj2, RLAP, and X-lingual use parallel sentences as auxiliary resources. V denotes
the improvements of each method over the baseline Delex method. The bottom row contains the average

results over the eight tasks.

sentences by using the Berkeley alignment tool
(Liang et al., 2006). With the word alignments,
we then projected the predicted dependency rela-
tions from the source language sentences of the
parallel data to the target language side, which
produces a set of dependency arc instances in the
target language. Finally, we constructed the par-
tially observed word-feature matrix from these la-
beled data and conducted matrix completion to re-
cover the whole matrix. For matrix completion,
we used the first task En2Da to perform param-
eter selection based on the test performance. We
selected «y from {0.1,1,10} and selected o from
{103,10%,105}. The selected values ¥ = 1 and
a = 10~* were then used for all the experiments.

4.3 Experimental Results
4.3.1 Test Results on All the Test Sentences

We first compared the proposed representa-
tion learning with annotation projection method,
RLAP, to the following methods in our experi-
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ments: Delex, Projl, Proj2, DNN and X-lingual.
The Delex method is a baseline method, which re-
places the language-specific word sequence with
the universal POS tag sequence and then trains
a delexicalized dependency parser. We listed the
feature templates used in this baseline delexical-
ized dependency parser in Table 2. The Projl
and Proj2 methods are from (Durrett et al., 2012).
Durrett et al. (2012) proposed to use bilingual lex-
icon to learn cross-lingual features and provided
two ways to construct the bilingual lexicon, one
is based on Wikitionary and the other is based on
unlabeled parallel sentences with observed word-
level alignments. We used these two ways sepa-
rately to construct the bilingual lexicon between
the languages for learning cross-lingual features,
which are then used as augmenting features for
training delexicalized dependency parsers. We
denote the Wikitionary-based method as Projl
and the parallel-sentence-based method as Proj2.
The DNN method, developed in (Xiao and Guo,



Tasks Delex | Proj2 V | RLAP V || USR PGI PR MLC
En2Da 46.7 546 79| 557 9.0 519 41.6 440 -
En2De 62.0 63.0 10| 640 20 - - 39.6  62.8
En2El 60.9 619 10| 632 23 - - - 61.4
En2Es 55.2 583 31| 596 44| 672 584 624 573
En2It 55.5 569 14| 583 28 - - - 56.2
En2N1 60.3 625 22| 637 34 - 45.1 379 620
En2Pt 80.2 845 43| 857 55| 715 63.0 478 838
En2Sv 734 | 76.0 26| 764 3.0 | 633 583 422 749
Average || 61.8 647 29| 658 4.1 - - - -

Table 4: Comparison results on the short test sentences with length of 10 or less in terms of unlabeled
attachment score (UAS). V denotes the improvements of each method over the baseline Delex method.
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Figure 5: Unlabeled attachment score (UAS) on the whole test sentences in the target language by varying
the number of labeled training sentences in the target language.

2014), uses Wikitionary to construct bilingual
word pairs and then uses a deep neural network to
learn interlingual word embeddings as augment-
ing features for training delexicalized dependency
parsers. The X-lingual method uses unlabeled par-
allel sentences to induce cross-lingual word clus-
ters as augmenting features for delexicalized de-
pendency parser (Téackstrom et al., 2012). For X-
lingual, we cited its results reported in its original
paper. For other methods, we used the MSTParser
(McDonald et al., 2005) as the underlying depen-
dency parsing tool. To train the MSTParser, we
set the number of maximum iterations for the per-
ceptron training as 10 and set the number of best-k
dependency tree candidates as 1.

We evaluated the empirical performance of each
comparison method on all the test sentences. The
comparison results on the eight cross-lingual de-
pendency parsing tasks in terms of unlabeled at-
tachment score (UAS) are reported in Table 3. We
can see that the baseline method, Delex, performs
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poorly across the eight tasks. This is not surprising
since the sequence of universal POS tags are not
discriminative enough for the dependency parsing
task. Note even for two sentences with the exact
same sequence of POS tags, they may have differ-
ent dependency trees. By using auxiliary bilingual
word pairs via Wikitionary, the two cross-lingual
representation learning methods, Projl and DNN,
outperform Delex across all the eight tasks. Be-
tween these two methods, DNN consistently out-
performs Projl, which suggests the interlingual
word embeddings induced by deep neural net-
works are very effective. By using unlabeled par-
allel sentences as an auxiliary resource, the two
methods, Proj2 and RLAP, consistently outper-
form the baseline Delex method, while X-lingual
outperforms Delex on six tasks. Moreover, Proj2
outperforms its variant Projl across all the eight
tasks and achieves comparable performance with
the deep neural network based method DNN. This
suggests that unlabeled parallel sentences form



a stronger auxiliary resource than the free Wiki-
tionary. Our proposed approach, RLAP, which has
the capacity of exploiting the unlabeled parallel
sentences, consistently outperforms the four com-
parison methods, Delex, Projl, DNN and Proj2,
across all the eight tasks. It also outperforms the
X-lingual method on five tasks. The average UAS
over all the eight tasks for the RLAP method is
1.4 higher than the X-lingual method. All these
results demonstrated the effectiveness of the pro-
posed representation learning method for cross-
lingual dependency parsing.

4.3.2 Test Results on Short Test Sentences

We also conducted empirical evaluations on short
test sentences (with length of 10 or less). We
compared Delex, Proj2 and RLAP with four other
methods, USR, PGI, PR and MLC. The USR
method is a cross-lingual direct transfer method
which uses universal dependency rules to con-
struct linguistic constraints (Naseem et al., 2010).
The PGI method is a phylogenetic grammar induc-
tion model (Berg-Kirkpatrick and Klein, 2010).
The PR method is a posterior regularization ap-
proach (Gillenwater et al., 2010). The MLC
method is the multilingual linguistic constraints-
based method which uses typological features for
cross-lingual dependency parsing (Naseem et al.,
2012). Here we used this method in our setting
with only one source domain. Moreover, since we
do not have typological features for Danish, we
did not conduct experiment on the first task with
MLC. For the methods of USR, PGI and PR, we
cited their results reported in their original papers.
All the cited results are also produced on the short
sentences of the CONLL-X shard task dataset. We
cited them as references on measuring the progress
of cross-lingual dependency parsing on each given
target language.

The comparison results are reported in Table 4.
We can see that the results on the short test sen-
tences are in general better than on the whole test
set (in Table 3) for the same method across most
tasks. This suggests that it is easier to infer the
dependency tree for a short sentence than for a
long sentence. Nevertheless, Proj2 consistently
outperforms Delex and RLAP consistently outper-
forms Proj2 across all the tasks. Moreover, RLAP
achieves the highest test scores in seven out of the
eight cross-lingual tasks among all the compari-
son systems. This again demonstrated the efficacy
of the proposed approach for cross-lingual depen-
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dency parsing.

4.4 Impact of Labeled Training Data in
Target Language

We have also conducted experiments for the learn-
ing scenarios where a small set of labeled train-
ing sentences from the target language is available.
Specifically, we conducted experiments with a few
different numbers of additional labeled training
sentences from the target language, {500, 1000,
1500}, using three methods, RLAP, Delex and
Proj2. The comparison results on all the test sen-
tences are reported in Figure 5. We can see that the
performance of all three methods increases very
slow but in a similar trend with more additional la-
beled training instances from the target language.
However, both Proj2 and RLAP outperform Delex
with large margins across all experiments. More-
over, the proposed method, RLAP, produces the
best results across all the eight tasks. The results
again verified the efficacy of the proposed method,
demonstrated that filling the missing feature val-
ues with matrix completion is indeed useful.

5 Conclusion

In this paper, we proposed a novel representation
learning method with annotation projection to ad-
dress cross-lingual dependency parsing. The pro-
posed approach exploits unlabeled parallel sen-
tences and combines cross-lingual annotation pro-
jection and matrix completion-based interlingual
feature learning together to automatically induce
a set of language-independent numerical features.
We used these interlingual features as augmenting
features to train a delexicalized dependency parser
on the labeled sentences in the source language
and tested it in the target language domain. Our
experimental results on eight cross-lingual depen-
dency parsing tasks showed the proposed repre-
sentation learning method outperforms a number
of comparison methods.
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Abstract

Word embeddings — distributed word
representations that can be learned from
unlabelled data — have been shown to
have high utility in many natural language
processing applications. In this paper, we
perform an extrinsic evaluation of four
popular word embedding methods in the
context of four sequence labelling tasks:
part-of-speech tagging, syntactic chunk-
ing, named entity recognition, and multi-
word expression identification. A particu-
lar focus of the paper is analysing the ef-
fects of task-based updating of word rep-
resentations. We show that when using
word embeddings as features, as few as
several hundred training instances are suf-
ficient to achieve competitive results, and
that word embeddings lead to improve-
ments over out-of-vocabulary words and
also out of domain. Perhaps more sur-
prisingly, our results indicate there is little
difference between the different word em-
bedding methods, and that simple Brown
clusters are often competitive with word
embeddings across all tasks we consider.

1 Introduction

Recently, distributed word representations have
grown to become a mainstay of natural language
processing (NLP), and have been shown to have
empirical utility in a myriad of tasks (Collobert
and Weston, 2008; Turian et al., 2010; Baroni et
al., 2014; Andreas and Klein, 2014). The un-
derlying idea behind distributed word representa-
tions is simple: to map each word w in vocabu-
lary V onto a continuous-valued vector of dimen-
sionality d < |V'|. Words that are similar (e.g.,
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with respect to syntax or lexical semantics) will
ideally be mapped to similar regions of the vec-
tor space, implicitly supporting both generalisa-
tion across in-vocabulary (IV) items, and counter-
ing the effects of data sparsity for low-frequency
and out-of-vocabulary (OOV) items.

Without some means of automatically deriv-
ing the vector representations without reliance on
labelled data, however, word embeddings would
have little practical utility. Fortunately, it has
been shown that they can be “pre-trained” from
unlabelled text data using various algorithms to
model the distributional hypothesis (i.e., that
words which occur in similar contexts tend to be
semantically similar). Pre-training methods have
been refined considerably in recent years, and
scaled up to increasingly large corpora.

As with other machine learning methods, it is
well known that the quality of the pre-trained word
embeddings depends heavily on factors including
parameter optimisation, the size of the training
data, and the fit with the target application. For
example, Turian et al. (2010) showed that the op-
timal dimensionality for word embeddings is task-
specific. One factor which has received relatively
little attention in NLP is the effect of “updating”
the pre-trained word embeddings as part of the
task-specific training, based on self-taught learn-
ing (Raina et al., 2007). Updating leads to word
representations that are task-specific, but often at
the cost of over-fitting low-frequency and OOV
words.

In this paper, we perform an extensive evalu-
ation of four recently proposed word embedding
approaches under fixed experimental conditions,
applied to four sequence labelling tasks: part-of-
speech (POS) tagging, full-text chunking, named
entity recognition (NER), and multiword expres-
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sion (MWE) identification.! We build on previous
empirical studies (Collobert et al., 2011; Turian et
al., 2010; Pennington et al., 2014) in considering
a broader range of word embedding approaches
and evaluating them over more sequence labelling
tasks. In addition, we explore the following re-
search questions:

RQ1: are word embeddings better than baseline
approaches of one-hot unigram? features
and Brown clusters?

do word embeddings require less training
data (i.e., generalise better) than one-hot
unigram features? If so, to what degree can
word embeddings reduce the amount of la-
belled data?

what is the impact of updating word em-
beddings in sequence labelling tasks, both
empirically over the target task and geo-
metrically over the vectors?

what is the impact of these word embed-
dings (with and without updating) on both
OOV items (relative to the training data)
and out-of-domain data?

overall, are some word embeddings better
than others in a sequence labelling context?

RQ2:

RQ3:

RQ4:

RQ5:

2 Word Representations

2.1 Types of Word Representations

Turian et al. (2010) identifies three varieties
of word representations: distributional, cluster-
based, and distributed.

Distributional representation methods map
each word w to a context word vector C,,,
which is constructed directly from co-occurrence
counts between w and its context words. The
learning methods either store the co-occurrence
counts between two words w and ¢ directly
in Cy; (Sahlgren, 2006; Turney and Pantel,
2010; Honkela, 1997) or project the concur-
rence counts between words into a lower dimen-
sional space (Rehtifek and Sojka, 2010; Lund and
Burgess, 1996), using dimensionality reduction
techniques such as SVD (Dumais et al., 1988) or
LDA (Blei et al., 2003).

"MWEs are lexicalized combinations of two or more sim-
plex words that are exceptional enough to be considered as
single units in the lexicon (Baldwin and Kim, 2010; Schnei-
der et al., 2014a), e.g., pick up or part of speech.

2Word vectors with one-hot representation are binary vec-
tors with a single dimension per word in the vocabulary (i.e.,
d = |V|), with the single dimension corresponding to the
target word set to 1 and all other dimensions set to 0.
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Cluster-based representation methods build
clusters of words by applying either soft or hard
clustering algorithms (Lin and Wu, 2009; Li and
McCallum, 2005). Some of them also rely on
a co-occurrence matrix of words (Pereira et al.,
1993). The Brown clustering algorithm (Brown
et al., 1992) is the best-known method in this cat-
egory.

Distributed  representation methods
ally map words into dense, low-dimensional,
continuous-valued vectors, with x € R?, where d
is referred to as the word dimension.

usu-

2.2 Selected Word Representations

Over a range of sequence labelling tasks, we eval-
uate four methods for inducing word represen-
tations: Brown clustering (Brown et al., 1992)
(“BROWN”), the continuous bag-of-words model
(“CBOW?”) (Mikolov et al., 2013a), the continu-
ous skip-gram model (“SKIP-GRAM”) (Mikolov et
al., 2013b), and Global vectors (“GLOVE”) (Pen-
nington et al., 2014). All have been shown to be
at or near state-of-the-art in recent empirical stud-
ies (Turian et al., 2010; Pennington et al., 2014).3
The training of these word representations is un-
supervised: the common underlying idea is to pre-
dict the occurrence of words in the neighbour-
ing context. Their training objectives share the
same form, which is a sum of local training fac-
tors J(w, ctx(w)),

L= J(w,ctx(w))
weT
where T is the set of tokens in a given corpus, and
ctx(w) denotes the local context of word w. The
local context of a word is conventionally its pre-
ceding m words, or alternatively the m words sur-
rounding it. Local training factors are designed
to capture the relationship between w and its lo-
cal contexts of use, either by predicting w based
on its local context, or using w to predict the con-
text words. Other than BROWN, which utilises a
cluster-based representation, all the other methods
employ a distributed representation.
The starting point for CBOW and SKIP-GRAM
is to employ softmax to predict word occurrence:

)

3The word embedding approach proposed in Collobert et
al. (2011) is not considered because it was found to be inferior
to our four target word embedding approaches in previous
work.

exp (VL Vetx(w) )

jev eXp(vavctx(w)>

J(w, ctx(w)) = —log (Z



where v (,,) denotes the distributed representa-
tion of the local context of word w, and V is the
vocabulary of a given corpus. CBOW derives
Vex(w) based on averaging over the context words.
That is, it estimates the probability of each w given
its local context. In contrast, SKIP-GRAM applies
softmax to each context word of a given occur-
rence of word w. In this case, v (y,) corresponds
to the representation of one of its context words.
This model can be characterised as predicting con-
text words based on w. In practice, softmax is
too expensive to compute over large corpora, and
thus Mikolov et al. (2013b) use hierarchical soft-
max and negative sampling to scale up the train-
ing.

GLOVE assumes the dot product of two word
embeddings should be similar to the logarithm of
the co-occurrence count X;; of the two words. As
such, the local factor J(w, ctx(w)) becomes:

9(Xij)(vivj + b + bj — log (X))

where b; and b; are the bias terms of words 7 and
J, respectively, and g(X;;) is a weighting function
based on the co-occurrence count. This weight-
ing function controls the degree of agreement be-
tween the parametric function viij + b; + b;j and
log(X;;). Frequently co-occurring word pairs will
have larger weight than infrequent pairs, up to a
threshold.

BROWN partitions words into a finite set of
word classes V. The conditional probability of
seeing the next word is defined to be:

k-1 )

plwplwi=})) = p(wy|he)p(hel k)

where hj denotes the word class of the word

W, w’kf:}n are the previous m words, and

hllzjn are their respective word classes. Then

J(w,ctx(w)) = —log p(wg|wf—L). Since there

is no tractable method to find an optimal parti-
tion of word classes, the method uses only a bi-
gram class model, and utilises hierarchical clus-
tering as an approximation method to find a suffi-
ciently good partition of words.

2.3 Building Word Representations

To ensure the comparison of different word rep-
resentations is fair, we train BROWN, CBOW,
SKIP-GRAM, and GLOVE on a fixed corpus, com-
prised of freely available corpora, as detailed in
Table 1. The joint corpus was preprocessed with
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Data set Size Words
UMBC (Han et al., 2013) 48.1GB 3G
One Billion (Chelba et al., 2013) 4.1GB 1G
English Wikipedia 49.6GB 3G

Table 1: Corpora used to pre-train the word em-
beddings

Linear-chain CRF

~

word representations hand-crafted features

Figure 1: Linear-chain graph transformer

the Stanford CoreNLP sentence splitter and to-
keniser. All consecutive digit substrings were
replaced by NUM/f, where f is the length of
the digit substring (e.g., 10.20 is replaced by
NUM2.NUM?2.

The dimensionality of the word embeddings
and the size of the context window are the key hy-
perparameters when learning distributed represen-
tations. We use all combinations of the following
values to train word embeddings on the combined
corpus:

e Embedding dim. d € {25, 50,100,200}
e Context window size m € {1,5,10}

BROWN requires only the number of clusters
as a hyperparameter. Here, we perform clustering
with b € {250, 500, 1000, 2000, 4000} clusters.

3 Sequence Labelling Tasks

We evaluate the different word representations
over four sequence labelling tasks: POS tagging
(POS tagging), full-text chunking (Chunking),
NER (NER), and MWE identification (MWE).
For each task, we fed features into a first-order
linear-chain graph transformer (Collobert et al.,
2011) made up of two layers: the upper layer is
identical to a linear-chain CRF (Lafferty et al.,
2001), and the lower layer consists of word rep-
resentation and hand-crafted features. If we treat
word representations as fixed, the graph trans-
former is a simple linear-chain CRF. On the other
hand, if we can treat the word representations as
model parameters, the model is equivalent to a
neural network with word embeddings as the input
layer, as shown in Figure 1. We trained all models
using AdaGrad (Duchi et al., 2011).

As in Turian et al. (2010), at each word position,
we construct word representation features from
the words in a context window of size two to either



side of the target word, based on the pre-trained

representation of each word type. For BROWN,

the features are the prefix features extracted from
word clusters in the same way as Turian et al.

(2010). As a baseline (and to test RQ1), we in-

clude a one-hot representation (which is equiva-

lent to a linear-chain CRF with only lexical con-
text features).

Our hand-crafted features for POS tagging,
Chunking and MWE, are those used by Collobert
et al. (2011), Turian et al. (2010) and Schneider
et al. (2014b), respectively. For NER, we use the
same feature space as Turian et al. (2010), except
for the previous two predictions, because we want
to evaluate all word representations with the same
type of model — a first-order graph transformer.

In training the distributed word representations,
we consider two settings: (1) the word represen-
tations are fixed during sequence model training;
and (2) the graph transformer updated the token-
level word representations during training.

As outlined in Table 2, for each sequence la-
belling task, we experiment over the de facto cor-
pus, based on pre-existing training—dev—test splits
where available:*

POS tagging: the Wall Street Journal portion
of the Penn Treebank (Marcus et al. (1993):
“WsJ”) with Penn POS tags

Chunking: the Wall Street Journal portion of the
Penn Treebank (“WSJ”), converted into IOB-
style full-text chunks using the CoNLL con-
version scripts for training and dev, and the
WSJ-derived CoNLL-2000 full text chunk-
ing test data for testing (Tjong Kim Sang and
Buchholz, 2000)

NER: the English portion of the CoNLL-2003
English Named Entity Recognition data set,
for which the source data was taken from
Reuters newswire articles (Tjong Kim Sang
and De Meulder (2003): “Reuters”)

MWE: the MWE dataset of Schneider et al.
(2014b), over a portion of text from the En-
glish Web Treebank® (“EWT”)

For all tasks other than MWE.® we additionally

have an out-of-domain test set, in order to eval-

uate the out-of-domain robustness of the different

“For the MWE dataset, no such split pre-existed, so we
constructed our own.

Shttps://catalog.ldc.upenn.edu/
LDC2012T13

SUnfortunately, there is no second domain which has been
hand-tagged with MWEs using the method of Schneider et al.
(2014D) to use as an out-of-domain test corpus.
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word representations, with and without updating.

These datasets are as follows:

POS tagging: the English Web Treebank with
Penn POS tags (“EWT™)

Chunking: the Brown Corpus portion of the
Penn Treebank (“Brown”), converted into
IOB-style full-text chunks using the CoNLL
conversion scripts

NER: the MUC-7 named entity recognition cor-
pus’ (“MUC7”)

For reproducibility, we tuned the hyperparam-
eters with random search over the development
data for each task (Bergstra and Bengio, 2012).
In this, we randomly sampled 50 distinct hyper-
parameter sets with the same random seed for the
non-updating models (i.e., the models that don’t
update the word representation), and sampled 100
distinct hyperparameter sets for the updating mod-
els (i.e., the models that do). For each set of hy-
perparameters and task, we train a model over its
training set and choose the best one based on its
performance on development data (Turian et al.,
2010). We also tune the word representation hy-
perparameters — namely, the word vector size d
and context window size m (distributed represen-
tations), and in the case of Brown, the number of
clusters.

For the updating models, we found that the re-
sults over the test data were always inferior to
those that do not update the word representations,
due to the higher number of hyperparameters and
small sample size (i.e., 100). Since the two-layer
model of the graph transformer contains a distinct
set of hyperparameters for each layer, we reuse the
best-performing hyperparameter settings from the
non-updating models, and only tune the hyperpa-
rameters of AdaGrad for the word representation
layer. This method requires only 32 additional
runs and achieves consistently better results than
100 random draws.

In order to test the impact of the volume of
training data on the different models (RQ2), we
split the training set into 10 partitions based on
a base-2 log scale (i.e., the second smallest par-
tition will be twice the size of the smallest parti-
tion), and created 10 successively larger training
sets by merging these partitions from the smallest
one to the largest one, and used each of these to
train a model. From these, we construct learning

"https://catalog.ldc.upenn.edu/
LDC2001T02



Training Development In-domain Test Out-of-domain Test
POS tagging WSJ Sec. 0-18 WSJ Sec. 19-21 WSJ Sec. 22-24 EWT
Chunking WsJ WsJ (1K sentences) WSJ (CoNLL-00 test) Brown
NER Reuters (CoNLL-03 train) Reuters (CoNLL-03 dev) Reuters (CoNLL-03 test) MUC7
MWE EWT (500 docs) EWT (100 docs) EWT (123 docs) —

Table 2: Training, development and test (in- and out-of-domain) data for each sequence labelling task.

curves over each task.

For ease of comparison with previous results,
we evaluate both in- and out-of-domain using
chunk/entity/expression-level Fl1-measure (“F17)
for all tasks except POS tagging, for which we
use token-level accuracy (“Acc”). To test perfor-
mance over OOV (unknown) tokens — i.e., the
words that do not occur in the training set — we
use token-level accuracy for all tasks (e.g., for
Chunking, we evaluate whether the full IOB tag
is correct or not), because chunks/NEs/MWEs can
consist of a mixture of in-vocabulary and OOV to-
kens, which makes the use of chunk-based evalu-
ation measures inappropriate.

4 Experimental Results and Discussion

We structure our evaluation by stepping through
each of our five research questions (RQ1-5) from
the start of the paper. In this, we make reference
to: (1) the best-performing method both in- and
out-of-domain vs. the state-of-the-art (Table 3);
(2) a heat map for each task indicating the con-
vergence rate for each word representation, with
and without updating (Figure 2); (3) OOV accu-
racy both in-domain and out-of-domain for each
task (Figure 3); and (4) visualisation of the impact
of updating on word embeddings, based on t-SNE
(Figure 4).

RQ1: Are the selected word embeddings better
than one-hot unigram features and Brown clus-
ters? As shown in Table 3, the best-performing
method for every task except in-domain Chunk-
ing is a word embedding method, although the
precise method varies greatly. Figure 2, on the
other hand, tells a more subtle story: the difference
between UNIGRAM and the other word represen-
tations is relatively modest, esp. as the amount of
training data increases. Additionally, the differ-
ence between BROWN and the word embedding
methods is modest across all tasks. So, the over-
all answer would appear to be: yes, word embed-
dings are better than unigrams when there is little
training data, but they are not markedly better than
Brown clusters.
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RQ2: Do word embedding features require
less training data? Figure 2 shows that for
POS tagging and NER, with only several hun-
dred training instances, word embedding fea-
tures achieve superior results to UNIGRAM. For
example, when trained with 561 instances, the
POS tagging model using SKIP-GRAM+UP em-
beddings is 5.3% above UNIGRAM; and when
trained with 932 instances, the NER model us-
ing SKIP-GRAM is 11.7% above UNIGRAM. Sim-
ilar improvements are also found for other types
of word embeddings and BROWN, when the train-
ing set is small. However, all word representa-
tions perform similarly for Chunking regardless
of training data size. For MWE, BROWN performs
slightly better than the other methods when trained
with approximately 25% of the training instances.
Therefore, we conjecture that the POS tagging
and NER tasks benefit more from distributional
similarity than Chunking and MWE.

RQ3: Does task-specific updating improve all
word embeddings across all tasks? Based on
Figure 2, updating of word representations can
equally correct poorly-learned word representa-
tions, and harm pre-trained representations, due to
overfitting. For example, GLOVE performs sub-
stantially worse than SKIP-GRAM for both POS
tagging and NER without updating, but with up-
dating, the relative empirical gap between the best
performing method becomes smaller. In contrast,
SKIP-GRAM performs worse over the test data
with updating, despite the results on the develop-
ment set improving by 1%.

To further investigate the effects of updating,
we sampled 60 words and plotted the changes in
their word embeddings under updating, using 2-
d vector fields generated using matplotlib and t-
SNE (van der Maaten and Hinton, 2008). Half
of the words were chosen manually to include
known word clusters such as days of the week and
names of countries; the other half were selected
randomly. Additional plots with 100 randomly-
sampled words and the top-100 most frequent
words, for all the methods and all the tasks, can
be found in the supplementary material and at



Task Benchmark In-domain Test set Out-of-domain Test set
POS tagging (Acc)  0.972 (Toutanova et al., 2003)  0.959 (SKIP-GRAM+UP)  0.910 (SKIP-GRAM)
Chunking (F1) 0.942 (Sha and Pereira, 2003)  0.938 (BROWNp=2000) 0.676 (GLOVE)

NER (F1) 0.893 (Ando and Zhang, 2005)  0.868 (SKIP-GRAM) 0.736 (SKIP-GRAM)
MWE (F1) 0.625 (Schneider et al., 2014a)  0.654 (CBOW+UP) —

Table 3: State-of-the-art results vs. our best results for in-domain and out-of-domain test sets.
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Figure 2: Results for each type of word representation over POS tagging, Chunking, NER and MWE,
optionally with updating (“+UP”). The y-axis indicates the training data sizes (on a log scale). Green
= high performance, and red = low performance, based on a linear scale of the best- to worst-result for

each task.

https://goo.gl/Y8bk2w. In each plot, a
single arrow signifies one word, pointing from the
position of the original word embedding to the up-
dated representation.

In Figure 4, we show vector fields plots for
Chunking and NER using SKIP-GRAM embed-
dings. For Chunking, most of the vectors were
changed with similar magnitude, but in very dif-
ferent directions, including within the clusters of
days of the week and country names. In contrast,
for NER, there was more homogeneous change in
word vectors belonging to the same cluster. This
greater consistency is further evidence that seman-
tic homogeneity appears to be more beneficial for
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NER than Chunking.

RQ4: What is the impact of word embeddings
cross-domain and for OOV words? As shown
in Table 3, results predictably drop when we eval-
uate out of domain. The difference is most pro-
nounced for Chunking, where there is an absolute
drop in F1 of around 30% for all methods, indi-
cating that word embeddings and unigram features
provide similar information for Chunking.
Another interesting observation is that updating
often hurts out-of-domain performance because
the distribution between domains is different. This
suggests that, if the objective is to optimise per-
formance across domains, it is best not to perform
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We also analyze performance on OOV words

As expected, word embeddings and BROWN excel
in out-of-domain OOV performance. Consistent
with our overall observations about cross-domain

both in-domain and out-of-domain in Figure 3.

&9



generalisation, the OOV results are better when
updating is not performed.

RQS5 Overall, are some word embeddings bet-
ter than others? Comparing the different word
embedding techniques over our four sequence la-
belling tasks, for the different evaluations (overall,
out-of-domain and OOV), there is no clear winner
among the word embeddings — for POS tagging,
SKIP-GRAM appears to have a slight advantage,
but this does not generalise to other tasks.

While the aim of this paper was not to achieve
the state of the art over the respective tasks, it is
important to concede that our best (in-domain) re-
sults for NER, POS tagging and Chunking are
slightly worse than the state of the art (Table 3).
The 2.7% difference between our NER system
and the best performing system is due to the fact
that we use a first-order instead of a second-order
CRF (Ando and Zhang, 2005), and for the other
tasks, there are similarly differences in the learner
and the complexity of the features used. Another
difference is that we tuned the hyperparameters
with random search, to enable replication using
the same random seed. In contrast, the hyperpa-
rameters for the state-of-the-art methods are tuned
more extensively by experts, making them more
difficult to reproduce.

5 Related Work

Collobert et al. (2011) proposed a unified neural
network framework that learns word embeddings
and applied it to POS tagging, Chunking, NER
and semantic role labelling. When they combined
word embeddings with hand-crafted features (e.g.,
word suffixes for POS tagging; gazetteers for
NER) and applied other tricks like cascading and
classifier combination, they achieved state-of-the-
art performance. Similarly, Turian et al. (2010)
evaluated three different word representations on
NER and Chunking, and concluded that unsu-
pervised word representations improved NER and
Chunking. They also found that combining dif-
ferent word representations can further improve
performance. Guo et al. (2014) also explored dif-
ferent ways of using word embeddings for NER.
Owoputi et al. (2013) and Schneider et al. (2014a)
found that BROWN clustering enhances Twitter
POS tagging and MWE, respectively. Compared
to previous work, we consider more word rep-
resentations including the most recent work and
evaluate them on more sequence labelling tasks,
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wherein the models are trained with training sets
of varying size.

Bansal et al. (2014) reported that direct use of
word embeddings in dependency parsing did not
show improvement. They achieved an improve-
ment only when they performed hierarchical clus-
tering of the word embeddings, and used features
extracted from the cluster hierarchy. In a simi-
lar vein, Andreas and Klein (2014) explored the
use of word embeddings for constituency pars-
ing and concluded that the information contained
in word embeddings might duplicate the one ac-
quired by a syntactic parser, unless the training set
is extremely small. Other syntactic parsing studies
that reported improvements by using word embed-
dings include Koo et al. (2008), Koo et al. (2010),
Haffari et al. (2011), Tratz and Hovy (2011) and
Chen and Manning (2014).

Word embeddings have also been applied to
other (non-sequential NLP) tasks like grammar in-
duction (Spitkovsky et al., 2011), and semantic
tasks such as semantic relatedness, synonymy de-
tection, concept categorisation, selectional prefer-
ence learning and analogy (Baroni et al., 2014;
Levy and Goldberg, 2014; Levy et al., 2015).

Huang and Yates (2009) demonstrated that us-
ing distributional word representations methods
(like TF-IDF and LSA) as features, improves the
labelling of OOV, when test for POS tagging and
Chunking. In our study, we evaluate the labelling
performance of OOV words for updated vs. non-
updated word embedding representations, relative
to the training set and with out-of-domain data.

6 Conclusions

We have performed an extensive extrinsic evalua-
tion of four word embedding methods under fixed
experimental conditions, and evaluated their ap-
plicability to four sequence labelling tasks: POS
tagging, Chunking, NER and MWE identifica-
tion. We found that word embedding features re-
liably outperformed unigram features, especially
with limited training data, but that there was rela-
tively little difference over Brown clusters, and no
one embedding method was consistently superior
across the different tasks and settings. Word em-
beddings and Brown clusters were also found to
improve out-of-domain performance and for OOV
words. We expected a performance gap between
the fixed and task-updated embeddings, but the ob-
served difference was marginal. Indeed, we found



that updating can result in overfitting. We also car-
ried out preliminary analysis of the impact of up-
dating on the vectors, a direction which we intend
to pursue further.

7 Acknowledgments

NICTA is funded by the Australian Government
as represented by the Department of Broadband,
Communications and the Digital Economy and
the Australian Research Council through the ICT
Centre of Excellence program.

References

Rie Kubota Ando and Tong Zhang. 2005. A frame-
work for learning predictive structures from multi-
ple tasks and unlabeled data. Journal of Machine
Learning Research, 6:1817-1853.

Jacob Andreas and Dan Klein. 2014. How much do
word embeddings encode about syntax? In Pro-
ceedings of the 52nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 822-827, Baltimore, USA.

Timothy Baldwin and Su Nam Kim. 2010. Multiword
expressions. In Nitin Indurkhya and Fred J. Dam-
erau, editors, Handbook of Natural Language Pro-
cessing. CRC Press, Boca Raton, USA, 2nd edition.

Mohit Bansal, Kevin Gimpel, and Karen Livescu.
2014. Tailoring continuous word representations for
dependency parsing. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 809—
815, Baltimore, USA.

Marco Baroni, Georgiana Dinu, and German
Kruszewski. 2014. Don’t count, predict! a
systematic comparison of context-counting Vvs.
context-predicting semantic vectors. In Proceedings
of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), pages 238-247, Baltimore, USA.

James Bergstra and Yoshua Bengio. 2012. Random
search for hyper-parameter optimization. Journal of
Machine Learning Research, 13(1):281-305.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. Journal of Ma-
chine Learning Research, 3:993-1022.

Peter F. Brown, Peter V. deSouza, Robert L. Mer-
cer, Vincent J. Della Pietra, and Jenifer C. Lai.
1992. Class-based n-gram models of natural lan-
guage. Computational Linguistics, 18:467-479.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robin-
son. 2013. One billion word benchmark for measur-
ing progress in statistical language modeling. Tech-
nical report, Google.

91

Dangi Chen and Christopher D Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In Proceedings of the 2014 Conference on

Empirical Methods in Natural Language Processing
(EMNLP 2014), pages 740-750, Doha, Qatar.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Pro-
ceedings of the 25th International Conference on
Machine Learning, pages 160-167, Helsinki, Fin-
land.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12:2493-2537.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine
Learning Research, 12:2121-2159.

Susan T Dumais, George W Furnas, Thomas K Lan-
dauer, Scott Deerwester, and Richard Harshman.
1988. Using latent semantic analysis to improve ac-
cess to textual information. In Proceedings of the
SIGCHI conference on Human Factors in Comput-
ing Systems, pages 281-285.

Jiang Guo, Wanxiang Che, Haifeng Wang, and Ting
Liu. 2014. Revisiting embedding features for sim-
ple semi-supervised learning. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP 2014), pages 110-
120, Doha, Qatar.

Gholamreza Haffari, Marzieh Razavi, and Anoop
Sarkar. 2011. An ensemble model that combines
syntactic and semantic clustering for discriminative
dependency parsing. In ACL 2011 (Short Papers),
pages 710-714, Portland, USA.

Lushan Han, Abhay L. Kashyap, Tim Finin, James
Mayfield, and Johnathan Weese. 2013. UMBC
EBIQUITY CORE: Semantic textual similarity sys-
tems. In Proceedings of the Second Joint Con-
ference on Lexical and Computational Semantics,
pages 44-52, Atlanta, USA.

Timo Honkela. 1997. Self-organizing maps of words
for natural language processing applications. In
Proceedings of the International ICSC Symposium
on Soft Computing, pages 401-407, Nimes, France.

Fei Huang and Alexander Yates. 2009. Distributional
representations for handling sparsity in supervised
sequence-labeling. In Proceedings of the Joint Con-
ference of the 47th Annual Meeting of the ACL and
the 4th International Joint Conference on Natural
Language Processing of the AFNLP: Volume 1 - Vol-
ume 1, pages 495-503, Suntec, Singapore.



Terry Koo, Xavier Carreras, and Michael Collins.
2008. Simple semi-supervised dependency parsing.
In Proceedings of ACL-08: HLT, pages 595-603,
Columbus, USA.

Terry Koo, Alexander M. Rush, Michael Collins,
Tommi Jaakkola, and David Sontag. 2010. Dual
decomposition for parsing with non-projective head
automata. In Proceedings of the 2010 Conference on
Empirical Methods in Natural Language Process-
ing (EMNLP 2010), pages 1288-1298, Cambridge,
USA.

John Lafferty, Andrew McCallum, and Fernando
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data. In Proceedings of the 18th Interna-
tional Conference on Machine Learning, pages 282—
289, Williamstown, USA.

Omer Levy and Yoav Goldberg. 2014. Neural
word embedding as implicit matrix factorization.
In Z. Ghahramani, M. Welling, C. Cortes, N.D.
Lawrence, and K.Q. Weinberger, editors, Advances
in Neural Information Processing Systems 27, pages
2177-2185. Curran Associates, Inc.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Im-
proving distributional similarity with lessons learned
from word embeddings. Transactions of the Associ-
ation for Computational Linguistics, 3(1):211-225.

Wei Li and Andrew McCallum. 2005. Semi-
supervised sequence modeling with syntactic topic
models. In Proceedings of the National Conference
on Artificial Intelligence, Pittsburgh, USA.

Dekang Lin and Xiaoyun Wu. 2009. Phrase clustering
for discriminative learning. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP, pages
1030-1038, Suntec, Singapore.

Kevin Lund and Curt Burgess. 1996. Producing
high-dimensional semantic spaces from lexical co-
occurrence. Behavior Research Methods, Instru-
ments, & Computers, 28(2):203-208.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English: the Penn treebank. Computa-
tional Linguistics, 19(2):313-330.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems 26, pages 3111-3119. Curran Associates,
Inc.

92

Olutobi Owoputi, Brendan O’Connor, Chris Dyer,
Kevin Gimpel, Nathan Schneider, and Noah A
Smith. 2013. Improved part-of-speech tagging for
online conversational text with word clusters. In
Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(NAACL HLT 2013), pages 380-390, Atlanta, USA.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. GloVe: Global vec-
tors for word representation. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP 2014), pages 1532—
1543, Doha, Qatar.

Fernando Pereira, Naftali Tishby, and Lillian Lee.
1993. Distributional clustering of English words. In
Proceedings of the 31st Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 183—
190, Columbus, USA.

Rajat Raina, Alexis Battle, Honglak Lee, Benjamin
Packer, and Andrew Y Ng. 2007. Self-taught learn-
ing: transfer learning from unlabeled data. In Pro-
ceedings of the 24th International Conference on
Machine Learning, pages 759-766, Corvallis, USA.

Radim Rehiifek and Petr Sojka. 2010. Software frame-
work for topic modelling with large corpora. In Pro-
ceedings of the LREC 2010 Workshop on New Chal-
lenges for NLP Frameworks, pages 51-55, Valetta,
Malta.

Magnus Sahlgren. 2006. The Word-Space Model: Us-
ing distributional analysis to represent syntagmatic
and paradigmatic relations between words in high-
dimensional vector spaces. Ph.D. thesis, Institutio-
nen for lingvistik.

Nathan Schneider, Emily Danchik, Chris Dyer, and
Noah A. Smith. 2014a. Discriminative lexical se-
mantic segmentation with gaps: Running the MWE
gamut. Transactions of the Association of Computa-
tional Linguistics, 2(1):193-206.

Nathan Schneider, Spencer Onuffer, Nora Kazour,
Emily Danchik, Michael T. Mordowanec, Henrietta
Conrad, and Noah A. Smith. 2014b. Comprehen-
sive annotation of multiword expressions in a social
web corpus. In Proceedings of the Ninth Interna-
tional Conference on Language Resources and Eval-
uation, pages 455-461, Reykjavik, Iceland.

Fei Sha and Fernando Pereira. 2003. Shallow parsing
with conditional random fields. In Proceedings of
the 2003 Conference of the North American Chap-
ter of the Association for Computational Linguistics
on Human Language Technology - Volume 1, pages
134-141, Edmonton, Canada.

Valentin 1. Spitkovsky, Hiyan Alshawi, Angel X.
Chang, and Daniel Jurafsky. 2011. Unsupervised
dependency parsing without gold part-of-speech



tags. In Proceedings of the Conference on Empiri-
cal Methods in Natural Language Processing, pages
1281-1290, Edinburgh, UK.

Erik F. Tjong Kim Sang and Sabine Buchholz.
2000. Introduction to the CoNLL-2000 shared
task: Chunking. In Proceedings of the 4th Confer-
ence on Computational Natural Language Learning
(CoNLL-2000), pages 127-132, Lisbon, Portugal.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the 7th Conference on Natural Lan-
guage Learning (CoNLL-2003), pages 142147, Ed-
monton, Canada.

Kristina Toutanova, Dan Klein, Christopher D. Man-
ning, and Yoram Singer. 2003. Feature-rich part-of-
speech tagging with a cyclic dependency network.
In Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics on Human Language Technology
- Volume 1, pages 173—-180, Edmonton, Canada.

Stephen Tratz and Eduard Hovy. 2011. A fast, ac-
curate, non-projective, semantically-enriched parser.
In Proceedings of the Conference on Empirical

Methods in Natural Language Processing, pages
1257-1268, Edinburgh, UK.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: a simple and general method
for semi-supervised learning. In Proceedings of the
48th Annual Meeting of the Association for Compu-
tational Linguistics, pages 384-394, Uppsala, Swe-
den.

Peter D. Turney and Patrick Pantel. 2010. From
frequency to meaning: Vector space models of se-

mantics. Journal of Artificial Intelligence Research,
37(1):141-188.

Laurens J.P. van der Maaten and Geoffrey Hinton.
2008.  Visualizing high-dimensional data using
t-sne. Journal of Machine Learning Research,
9:2579-2605.

93



Contrastive Analysis with Predictive Power: Typology Driven Estimation
of Grammatical Error Distributions in ESL

Yevgeni Berzak
CSAIL MIT

berzak@mit.edu

Abstract

This work examines the impact of cross-
linguistic transfer on grammatical errors in
English as Second Language (ESL) texts.
Using a computational framework that for-
malizes the theory of Contrastive Analy-
sis (CA), we demonstrate that language
specific error distributions in ESL writ-
ing can be predicted from the typologi-
cal properties of the native language and
their relation to the typology of English.
Our typology driven model enables to ob-
tain accurate estimates of such distribu-
tions without access to any ESL data for
the target languages. Furthermore, we
present a strategy for adjusting our method
to low-resource languages that lack typo-
logical documentation using a bootstrap-
ping approach which approximates native
language typology from ESL texts. Fi-
nally, we show that our framework is in-
strumental for linguistic inquiry seeking
to identify first language factors that con-
tribute to a wide range of difficulties in
second language acquisition.

1 Introduction

The study of cross-linguistic transfer, whereby
properties of a native language influence perfor-
mance in a foreign language, has a long tradi-
tion in Linguistics and Second Language Acqui-
sition (SLA). Much of the linguistic work on this
topic was carried out within the framework of
Contrastive Analysis (CA), a theoretical approach
that aims to explain difficulties in second language
learning in terms of the relations between struc-
tures in the native and foreign languages.

The basic hypothesis of CA was formulated by
Lado (1957), who suggested that “we can predict
and describe the patterns that will cause difficulty
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in learning, and those that will not cause difficulty,
by comparing systematically the language and cul-
ture to be learned with the native language and
culture of the student”. In particular, Lado pos-
tulated that divergences between the native and
foreign languages will negatively affect learning
and lead to increased error rates in the foreign lan-
guage. This and subsequent hypotheses were soon
met with criticism, targeting their lack of ability to
provide reliable predictions, leading to an ongoing
debate on the extent to which foreign language er-
rors can be explained and predicted by examining
native language structure.

Differently from the SLA tradition, which em-
phasizes manual analysis of error case studies
(Odlin, 1989), we address the heart of this contro-
versy from a computational data-driven perspec-
tive, focusing on the issue of predictive power. We
provide a formalization of the CA framework, and
demonstrate that the relative frequency of gram-
matical errors in ESL can be reliably predicted
from the typological properties of the native lan-
guage and their relation to the typology of English
using a regression model.

Tested on 14 languages in a leave-one-out fash-
ion, our model achieves a Mean Average Error
(MAE) reduction of 21.8% in predicting the lan-
guage specific relative frequency of the 20 most
common ESL structural error types, as compared
to the relative frequency of each of the error types
in the training data, yielding improvements across
all the languages and the large majority of the er-
ror types. Our regression model also outperforms
a stronger, nearest neighbor based baseline, that
projects the error distribution of a target language
from its typologically closest language.

While our method presupposes the existence of
typological annotations for the test languages, we
also demonstrate its viability in low-resource sce-
narios for which such annotations are not avail-
able. To address this setup, we present a bootstrap-
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ping framework in which the typological features
required for prediction of grammatical errors are
approximated from automatically extracted ESL
morpho-syntactic features using the method of
(Berzak et al., 2014). Despite the noise intro-
duced in this process, our bootstrapping strategy
achieves an error reduction of 13.9% compared to
the average frequency baseline.

Finally, the utilization of typological features as
predictors, enables to shed light on linguistic fac-
tors that could give rise to different error types
in ESL. For example, in accordance with com-
mon linguistic knowledge, feature analysis of the
model suggests that the main contributor to in-
creased rates of determiner omission in ESL is the
lack of determiners in the native language. A more
complex case of missing pronouns is intriguingly
tied by the model to native language subject pro-
noun marking on verbs.

To summarize, the main contribution of this
work is a CA inspired computational framework
for learning language specific grammatical error
distributions in ESL. Our approach is both predic-
tive and explanatory. It enables us to obtain im-
proved estimates for language specific error distri-
butions without access to ESL error annotations
for the target language. Coupling grammatical
errors with typological information also provides
meaningful explanations to some of the linguistic
factors that drive the observed error rates.

The paper is structured as follows. Section 2
surveys related linguistic and computational work
on cross-linguistic transfer. Section 3 describes
the ESL corpus and the typological data used in
this study. In section 4 we motivate our native lan-
guage oriented approach by providing a variance
analysis for ESL errors across native languages.
Section 5 presents the regression model for pre-
diction of ESL error distributions. The bootstrap-
ping framework which utilizes automatically in-
ferred typological features is described in section
6. Finally, we present the conclusion and direc-
tions for future work in section 7.

2 Related Work

Cross linguistic-transfer was extensively studied
in SLA, Linguistics and Psychology (Odlin, 1989;
Gass and Selinker, 1992; Jarvis and Pavlenko,
2007). Within this area of research, our work is
most closely related to the Contrastive Analysis
(CA) framework. Rooted in the comparative lin-
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guistics tradition, CA was first suggested by Fries
(1945) and formalized by Lado (1957). In essence,
CA examines foreign language performance, with
a particular focus on learner difficulties, in light
of a structural comparison between the native and
the foreign languages. From its inception, CA was
criticized for the lack of a solid predictive theory
(Wardhaugh, 1970; Whitman and Jackson, 1972),
leading to an ongoing scientific debate on the rele-
vance of comparison based approaches. Important
to our study is that the type of evidence used in
this debate typically relies on small scale manual
case study analysis. Our work seeks to reexamine
the issue of predictive power of CA based methods
using a computational, data-driven approach.

Computational work touching on cross-
linguistic transfer was mainly conducted in
relation to the Native Language Identification
(NLI) task, in which the goal is to determine the
native language of the author of an ESL text.
Much of this work focuses on experimentation
with different feature sets (Tetreault et al., 2013),
including features derived from the CA frame-
work (Wong and Dras, 2009). A related line of
inquiry which is closer to our work deals with the
identification of ESL syntactic patterns that are
specific to speakers of different native languages
(Swanson and Charniak, 2013; Swanson and
Charniak, 2014). Our approach differs from this
research direction by focusing on grammatical
errors, and emphasizing prediction of language
specific patterns rather than their identification.

Previous work on grammatical error correction
that examined determiner and preposition errors
(Rozovskaya and Roth, 2011; Rozovskaya and
Roth, 2014) incorporated native language specific
priors in models that are otherwise trained on stan-
dard English text. Our work extends the native
language tailored treatment of grammatical errors
to a much larger set of error types. More impor-
tantly, this approach is limited by the availabil-
ity of manual error annotations for the target lan-
guage in order to obtain the required error counts.
Our framework enables to bypass this annotation
bottleneck by predicting language specific priors
from typological information.

The current investigation is most closely re-
lated to studies that demonstrate that ESL sig-
nal can be used to infer pairwise similarities be-
tween native languages (Nagata and Whittaker,
2013; Berzak et al., 2014) and in particular, tie



the similarities to the typological characteristics of
these languages (Berzak et al., 2014). Our work
inverts the direction of this analysis by starting
with typological features, and utilizing them to
predict error patterns in ESL. We also show that
the two approaches can be combined in a boot-
strapping strategy by first inferring typological
properties from automatically extracted morpho-
syntactic ESL. features, and in turn, using these
properties for prediction of language specific error
distributions in ESL.

3 Data

3.1 ESL Corpus

We obtain ESL essays from the Cambridge First
Certificate in English (FCE) learner corpus (Yan-
nakoudakis et al., 2011), a publicly available sub-
set of the Cambridge Learner Corpus (CLC)'. The
corpus contains upper-intermediate level essays
by native speakers of 16 languages®. Discarding
Swedish and Dutch, which have only 16 docu-
ments combined, we take into consideration the
remaining following 14 languages, with the cor-
responding number of documents in parenthesis:
Catalan (64), Chinese (66), French (146), Ger-
man (69), Greek (74), Italian (76), Japanese (82),
Korean (86), Polish (76), Portuguese (68), Rus-
sian (83), Spanish (200), Thai (63) and Turkish
(75). The resulting dataset contains 1228 docu-
ments with an average of 379 words per document.

The FCE corpus has an elaborate error anno-
tation scheme (Nicholls, 2003) and high quality
of error annotations, making it particularly suit-
able for our investigation. The annotation scheme
encompasses 75 different error types, covering a
wide range of grammatical errors on different lev-
els of granularity. As the typological features used
in this work refer mainly to structural properties,
we filter out spelling errors, punctuation errors and
open class semantic errors, remaining with a list of
grammatical errors that are typically related to lan-
guage structure. We focus on the 20 most frequent
error types® in this list, which are presented and

"http://www.cambridge.org/gb/elt/
catalogue/subject/custom/item3646603

2We plan to extend our analysis to additional proficiency
levels and languages when error annotated data for these
learner profiles will be publicly available.

3Filtered errors that would have otherwise appeared in the
top 20 list, with their respective rank in brackets: Spelling (1),
Replace Punctuation (2), Replace Verb (3), Missing Punctu-
ation (7), Replace (8), Replace Noun (9) Unnecessary Punc-
tuation (13), Replace Adjective (18), Replace Adverb (20).
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exemplified in table 1. In addition to concentrat-
ing on the most important structural ESL errors,
this cutoff prevents us from being affected by data
sparsity issues associated with less frequent errors.

3.2 Typological Database

We use the World Atlas of Language Structures
(WALS; Dryer and Haspelmath, 2013), a repos-
itory of typological features of the world’s lan-
guages, as our source of linguistic knowledge
about the native languages of the ESL corpus au-
thors. The features in WALS are divided into
11 categories: Phonology, Morphology, Nominal
Categories, Nominal Syntax, Verbal Categories,
Word Order, Simple Clauses, Complex Sentences,
Lexicon, Sign Languages and Other. Table 2
presents examples of WALS features belonging to
different categories. The features can be associ-
ated with different variable types, including bi-
nary, categorical and ordinal, making their encod-
ing a challenging task. Our strategy for addressing
this issue is feature binarization (see section 5.3).

An important challenge introduced by the
WALS database is incomplete documentation.
Previous studies (Daumé III, 2009; Georgi et
al., 2010) have estimated that only 14% of all
the language-feature combinations in the database
have documented values. While this issue is most
acute for low-resource languages, even the well
studied languages in our ESL dataset are lacking a
significant portion of the feature values, inevitably
hindering the effectiveness of our approach.

We perform several preprocessing steps in or-
der to select the features that will be used in this
study. First, as our focus is on structural fea-
tures that can be expressed in written form, we
discard all the features associated with the cate-
gories Phonology, Lexicon?, Sign Languages and
Other. We further discard 24 features which either
have a documented value for only one language,
or have the same value in all the languages. The
resulting feature-set contains 119 features, with an
average of 2.9 values per feature, and 92.6 docu-
mented features per language.

4 Variance Analysis of Grammatical
Errors in ESL

To motivate a native language based treatment of
grammatical error distributions in ESL, we begin
“The discarded Lexicon features refer to properties such

as the number of words in the language that denote colors,
and identity of word pairs such as “hand” and “arm”.



Rank | Code | Name Example Count | KW | MW
1 TV Verb Tense I hope I give have given you enough details | 3324 ok 34
2 RT Replace Preposition on in July 3311 ok 31
3 MD Missing Determiner I went for the interview 2967 ok 57
4 FV Wrong Verb Form had time to played play 1789 ok 21
5 w Word Order Probably our homes will probably be 1534 wk 34
6 MT Missing Preposition explain to you 1435 ok 22
7 UD Unnecessary Determiner a course at the Cornell University 1321

8 uT Unnecessary Preposition we need it on each minute 1079

9 MA Missing Pronoun because if is the best conference 984 ok 33
10 AGV | Verb Agreement the teachers was were very experienced 916 wk 21
11 FN Wrong Form Noun because of my study studies 884 *k 24
12 RA Replace Pronoun she just met Sally, which who 847 ok 17
13 AGN | Noun Agreement two month months ago 816 ok 24
14 RD Replace Determiner of a rhe last few years 676 ok 35
15 DJ Wrongly Derived Adjective | The mother was pride proud 608 * 8
16 DN Wrongly Derived Noun working place workplace 536

17 DY Wrongly Derived Adverb Especial Especially 414 ok 14
18 UA Unnecessary Pronoun feel ourselves comfortable 391 * 9
19 MC Missing Conjunction reading, and playing piano at home 346 * 11
20 RC Replace Conjunction not just the car, and but also the train 226

Table 1: The 20 most frequent error types

in the FCE corpus that are related to language structure. In

the Example column, words marked in italics are corrections for the words marked in bold. The Count
column lists the overall count of each error type in the corpus. The KW column depicts the result of
the Kruskal-Wallis test whose null hypothesis is that the relative error frequencies for different native
languages are drawn from the same distribution. Error types for which this hypothesis is rejected with
p < 0.01 are denoted with “*’. Error types with p < 0.001 are marked with “**’. The MW column
denotes the number of language pairs (out of the total 91 pairs) which pass the post-hoc Mann-Whitney

test with p < 0.01.

Table 2: Examples of WALS features.

by examining whether there is a statistically sig-
nificant difference in ESL error rates based on the
native language of the learners. This analysis pro-
vides empirical justification for our approach, and
to the best of our knowledge was not conducted in
previous studies.

To this end, we perform a Kruskal-Wallis (KW)
test (Kruskal and Wallis, 1952) for each error
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type>. We treat the relative error frequency per
word in each document as a sample® (i.e. the rel-
ative frequencies of all the error types in a docu-
ment sum to 1). The samples are associated with
14 groups, according to the native language of the
document’s author. For each error type, the null
hypothesis of the test is that error fraction sam-
ples of all the native languages are drawn from the
same underlying distribution. In other words, re-
jection of the null hypothesis implies a significant
difference between the relative error frequencies

ID Category Name Values
23A | Morphology | Locus of No case marking,
Marking Core cases only,
in the Core and non-core,
Clause No syncretism
67A | Verbal The Future | Inflectional future,
Categories Tense No inflectional
future.
30A | Nominal Number of | None, Two, Three,
Categories Genders Four, Five or more.
87A | Word Order | Order of AN, NA, No
Adjective dominant order,
and Noun Only internally
headed relative R
clauses. of at least one language pair.

As shown in table 1, we can reject the null hy-
pothesis for 16 of the 20 grammatical error types
with p < 0.01, where Unnecessary Determiner,
Unnecessary Preposition, Wrongly Derived Noun,
and Replace Conjunction are the error types that
do not exhibit dependence on the native language.

SWe chose the non-parametric KW rank-based test over
ANOVA, as according to the Shapiro-Wilk (1965) and Lev-
ene (1960) tests, the assumptions of normality and homo-
geneity of variance do not hold for our data. In practice, the
ANOVA test yields similar results to those of the KW test.

%We also performed the KW test on the absolute error fre-
quencies (i.e. raw counts) per word, obtaining similar results
to the ones reported here on the relative frequencies per word.



Furthermore, the null hypothesis can be rejected
for 13 error types with p < 0.001. These results
suggest that the relative error rates of the major-
ity of the common structural grammatical errors
in our corpus indeed differ between native speak-
ers of different languages.

We further extend our analysis by perform-
ing pairwise post-hoc Mann-Whitney (MW) tests
(Mann and Whitney, 1947) in order to determine
the number of language pairs that significantly dif-
fer with respect to their native speakers’ error frac-
tions in ESL. Table 1 presents the number of lan-
guage pairs that pass this test with p < 0.01 for
each error type. This inspection suggests Miss-
ing Determiner as the error type with the strongest
dependence on the author’s native language, fol-
lowed by Replace Determiner, Verb Tense, Word
Order, Missing Pronoun and Replace Preposition.

5 Predicting Language Specific Error
Distributions in ESL

5.1 Task Definition

Given a language | € L, our task is to predict for
this language the relative error frequency y; . of
each error type e € E, where L is the set of all na-
tive languages, F is the set of grammatical errors,

and )y = 1.

5.2 Model

In order to predict the error distribution of a native
language, we train regression models on individ-
ual error types:

:l%,e = Hl,e . f(tl7 teng) (1)
In this equation y); . 1s the predicted relative fre-
quency of an error of type e for ESL. documents
authored by native speakers of language [, and
f(t1, teng) is a feature vector derived from the ty-
pological features of the native language ¢; and the
typological features of English ..

The model parameters ¢; . are obtained using
Ordinary Least Squares (OLS) on the training data
D, which consists of typological feature vectors
paired with relative error frequencies of the re-
maining 13 languages:

D = {(f(tl’ateng)a ye,l’)|l, €L, ! 75 l} (2)
To guarantee that the individual relative error fre-
quency estimates sum to 1 for each language, we

98

renormalize them to obtain the final predictions:
~/
yl,e

Ze ?%,e

Yie = 3)

5.3 Features

Our feature set can be divided into two subsets.
The first subset, used in a version of our model
called Reg, contains the typological features of the
native language. In a second version of our model,
called RegCA, we also utilize additional features
that explicitly encode differences between the ty-
pological features of the native language, and the
and the typological features of English.

5.3.1 Typological Features

In the Reg model, we use the typological fea-
tures of the native language that are documented
in WALS. As mentioned in section 3.2, WALS
features belong to different variable types, and are
hence challenging to encode. We address this is-
sue by binarizing all the features. Given k possible
values vy, for a given WALS feature ¢;, we generate
k binary typological features of the form:

{

When a WALS feature of a given language does
not have a documented value, all k entries of the
feature for that language are assigned the value of
0. This process transforms the original 119 WALS
features into 340 binary features.

1
0

if tu = Vg

fi,k(tb teng) (4)

otherwise

5.3.2 Divergences from English

In the spirit of CA, in the model RegCA, we also
utilize features that explicitly encode differences
between the typological features of the native lan-
guage and those of English. These features are
also binary, and take the value 1 when the value of
a WALS feature in the native language is different
from the corresponding value in English:

{

We encode 104 such features, in accordance with
the typological features of English available in
WALS. The features are activated only when a ty-
pological feature of English has a corresponding
documented feature in the native language. The
addition of these divergence features brings the to-
tal number of features in our feature set to 444.

1
0

if tl,i 7é teng,i
otherwise

fi(th teng) (5)



5.4 Results

We evaluate the model predictions using two met-
rics. The first metric, Absolute Error, measures the
distance between the predicted and the true rela-
tive frequency of each grammatical error type’:

Absolute Error = | . — Y| (6)
When averaged across different predictions we re-
fer to this metric as Mean Absolute Error (MAE).

The second evaluation score is the Kullback-
Leibler divergence Dy, a standard measure for
evaluating the difference between two distribu-
tions. This metric is used to evaluate the pre-
dicted grammatical error distribution of a native
language:

Dir(wllg) =Y yeln 2 (1)
e Yle
Base | NN Reg RegCA

MAE 1.28 1.11 1.02 1.0

Error Reduction | - 13.3 204 21.8
#Languages - 9/14 12/14 | 14/14
#Mistakes - 11720 | 15/20 | 14/20
AVG Dk, 0.052 | 0.046 | 0.033 | 0.032
#Languages - 10/14 | 14/14 | 14/14

Table 3: Results for prediction of relative error fre-
quencies using the MAE metric across languages
and error types, and the Dy metric averaged
across languages. #Languages and #Mistakes de-
note the number of languages and grammatical er-
ror types on which a model outperforms Base.

Table 3 summarizes the grammatical error pre-
diction results®. The baseline model Base sets the
relative frequencies of the grammatical errors of a
test language to the respective relative error fre-
quencies in the training data. We also consider
a stronger, language specific model called Near-
est Neighbor (NN), which projects the error distri-
bution of a target language from the typologically
closest language in the training set, according to
the cosine similarity measure. This baseline pro-
vides a performance improvement for the majority

"For clarity of presentation, all the reported results on this
metric are multiplied by 100.

8 As described in section 5.2, we report the performance
of regression models trained and evaluated on relative error
frequencies obtained by normalizing the rates of the different
error types. We also experimented with training and evaluat-
ing the models on absolute error counts per word, obtaining
results that are similar to those reported here.
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of the languages and error types, with an average
error reduction of 13.3% on the MAE metric com-
pared to Base, and improving from 0.052 to 0.046
on the KL divergence metric, thus emphasizing the
general advantage of a native language adapted ap-
proach to ESL error prediction.

Our regression model introduces further sub-
stantial performance improvements. The Reg
model, which uses the typological features of the
native language for predicting ESL relative er-
ror frequencies, achieves 20.4% MAE reduction
over the Base model. The RegCA version of
the regression model, which also incorporates dif-
ferences between the typological features of the
native language and English, surpasses the Reg
model, reaching an average error reduction of
21.8% from the Base model, with improvements
across all the languages and the majority of the
error types. Strong performance improvements
are also obtained on the KL divergence measure,
where the RegCA model scores 0.032, compared
to the baseline score of 0.052.

To illustrate the outcome of our approach, con-
sider the example in table 4, which compares the
top 10 predicted errors for Japanese using the Base
and RegCA models. In this example, RegCA cor-
rectly places Missing Determiner as the most com-
mon error in Japanese, with a significantly higher
relative frequency than in the training data. Sim-
ilarly, it provides an accurate prediction for the
Missing Preposition error, whose frequency and
rank are underestimated by the Base model. Fur-
thermore, RegCA correctly predicts the frequency
of Replace Preposition and Word Order to be
lower than the average in the training data.

5.5 Feature Analysis

An important advantage of our typology-based ap-
proach are the clear semantics of the features,
which facilitate the interpretation of the model. In-
spection of the model parameters allows us to gain
insight into the typological features that are poten-
tially involved in causing different types of ESL
errors. Although such inspection is unlikely to
provide a comprehensive coverage of all the rel-
evant causes for the observed learner difficulties,
it can serve as a valuable starting point for ex-
ploratory linguistic analysis and formulation of a
cross-linguistic transfer theory.

Table 5 lists the most salient typological fea-
tures, as determined by the feature weights aver-



Rank | Base Frac. | RegCA Frac. | True Frac.
1 Replace Preposition 0.14 Missing Determiner 0.18 Missing Determiner 0.20
2 Tense Verb 0.14 Tense Verb 0.12 Tense Verb 0.12
3 Missing Determiner 0.12 Replace Preposition 0.12 Replace Preposition 0.10
4 Wrong Verb Form 0.07 Missing Preposition 0.08 | Missing Preposition 0.08
5 Word Order 0.06 Unnecessary Determiner | 0.06 Unnecessary Preposition | 0.06
6 Missing Preposition 0.06 Wrong Verb Form 0.05 Unnecessary Determiner | 0.05
7 Unnecessary Determiner | 0.06 Unnecessary Preposition | 0.05 Replace Determiner 0.05
8 Unnecessary Preposition | 0.04 Wrong Noun Form 0.05 Wrong Verb Form 0.05
9 Missing Pronoun 0.04 Word Order 0.05 Word Order 0.04
10 Wrong Noun Form 0.04 Verb Agreement 0.04 Wrong Noun Form 0.06

Table 4: Comparison between the fractions and ranks of the top 10 predicted error types by the Base
and RegCA models for Japanese. As opposed to the Base method, the RegCA model correctly predicts
Missing Determiner to be the most frequent error committed by native speakers of Japanese. It also
correctly predicts Missing Preposition to be more frequent and Replace Preposition and Word Order to

be less frequent than in the training data.

aged across the models of different languages, for
the error types Missing Determiner and Missing
Pronoun. In the case of determiners, the model
identifies the lack of definite and indefinite arti-
cles in the native language as the strongest factors
related to increased rates of determiner omission.
Conversely, features that imply the presence of an
article system in the native language, such as ‘In-
definite word same as one’ and ‘Definite word dis-
tinct from demonstrative’ are indicative of reduced
error rates of this type.

A particularly intriguing example concerns the
Missing Pronoun error. The most predictive typo-
logical factor for increased pronoun omissions is
pronominal subject marking on the verb in the na-
tive language. Differently from the case of deter-
miners, it is not the lack of the relevant structure in
the native language, but rather its different encod-
ing that seems to drive erroneous pronoun omis-
sion. Decreased error rates of this type correlate
most strongly with obligatory pronouns in subject
position, as well as a verbal person marking sys-
tem similar to the one in English.

6 Bootstrapping with ESL-based
Typology

Thus far, we presupposed the availability of sub-
stantial typological information for our target lan-
guages in order to predict their ESL error distribu-
tions. However, the existing typological documen-
tation for the majority of the world’s languages is
scarce, limiting the applicability of this approach
for low-resource languages.

We address this challenge for scenarios in
which an unannotated collection of ESL texts au-

Missing Determiner

37A Definit