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Preface: General Chair

Welcome to EACL 2014, the 14th Conference of the European Chapter of the Association for
Computational Linguistics! This is the largest EACL meeting ever: with eighty long papers, almost fifty
short ones, thirteen student research papers, twenty-six demos, fourteen workshops and six tutorials, we
expect to bring to Gothenburg up to five hundred participants, for a week of excellent science interspersed
with entertaining social events.

It is hard to imagine how much work is involved in the preparation of such an event. It takes about three
years, from the day the EACL board starts discussing the location and nominating the chairs, until the
final details of the budget are resolved. The number of people involved is also huge, and I was fortunate
to work with an excellent, dedicated and efficient team, to which I am enormously grateful.

The scientific program was very ably composed by the Program Committee Chairs, Sharon Goldwater
and Stefan Riezler, presiding over a team of twenty-four area chairs. Given that this year we had long
paper submissions, followed by a rebuttal period, followed by a very stressed short paper reviewing
period, this meant a lot of work. Overall, Sharon and Stefan handled over five hundred submissions,
or over 1,500 reviews! The result of this work is a balanced, high-quality scientific program that I'm
sure we will all enjoy. The PC Chairs have also selected the three invited speakers, and we will have the
pleasure of attending keynotes delivered by Simon King, Ulrike von Luxburg, and Dan Roth — a great
choice of speakers!

The diverse workshop program was put together by the Workshop Chairs, Anja Belz and Reut Tsarfaty,
under very strict deadlines due to the fact that as in previous years, workshops were coordinated with
other ACL events (this year, ACL and EMNLP). Even in light of the competition, Anja and Reut
negotiated a varied and attractive set of fourteen workshops which will keep us busy over the weekend
prior to the main conference.

Also on that weekend are the six tutorials, selected from among several submissions by the Tutorial
Chairs, Afra Alishahi and Marco Baroni. Again, the tutorials offer a set of diverse and timely topics,
covering both core areas of NLP and tangential fields of research.

We included in the program a large number of demonstrations, selected by Marko Tadi¢ and Bogdan
Babych, the Demo Chairs. And an integral part of the scientific program is the Student Research
Workshop, put together by the SRW Chairs, Desmond Elliott, Konstantina Garoufi, Douwe Kiela, and
Ivan Vulié¢, whose work was supervised by the SRW Faculty Advisor, Sebastian Padé.

The Proceedings that you're reading now were compiled by the Publication Chairs, Gosse Bouma and
Yannick Parmentier. Their responsibilities include the preparation of all the proceedings, including the
main session, the SRW, the demo session, the workshop proceedings etc. — thousands of pages, all under
very strict deadlines.

It has been a very special pleasure for me to work with an excellent local organization team. The Local
Organization Chairs, Lars Borin and Aarne Ranta, were assisted by an extremely efficient team, Yvonne
Adesam, Martin Kasa and Nina Tahmasebi. Their effort cannot be overestimated: from dealing with
the two universities over issues of conference space and funding, through dealing with two professional
conference organizers, to corresponding with authors, participants and of course all the other chairs.
Add the stress involved in being in charge of a hefty budget that has to be balanced by the end of the
conference, and you can only admire the relaxed way in which they took upon themselves this daunting
task.

The local team included also Peter Ljunglof, the Publicity Chair, to whom we should all be grateful for
the beautiful web site of the conference and the timely e-mails, tweets and Facebook statuses. The Local
Sponsorship Chairs, Sofie Johansson Kokkinakis and Staffan Larsson, worked together with the ACL
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Sponsorship Chairs Jochen Leidner and Alessandro Moschitti, to obtain some much needed financial
support. Sincere thanks are due to the various sponsors for their generous contribution.

The local team did a wonderful job organizing a social program this year. This includes a reception at the
City Hall on Sunday, a catered poster and demo session on Monday, a conference dinner on Tuesday and
of course, the famous Cortége at the very end of the conference. A perfect mix of business and pleasure.

I am grateful to all members of the EACL board for their advice and guidance, and in particular to past
Chair Sien Moens, Chair Stephen Clark, Chair-elect Lluis Marquez and Treasurer Mike Rosner. Many
thanks are also due to the ACL Treasurer Graeme Hirst and of course, as always, to the ACL Business
Manager Priscilla Rasmussen, who was always there with her vast experience to clear up uncertainties
and lend a helping hand.

Finally, let us not forget that this is all about you: authors, reviewers, demo presenters, workshop
organizers and speakers, tutorial speakers and participants of the conference. Thank you for choosing to
be part of EACL-2014, I wish you a very enjoyable conference!

Shuly Wintner, University of Haifa
General Chair
March 2014



Preface: Program Chairs

We are delighted to present you with this volume containing the papers accepted for presentation at
the 14th Conference of the European Chapter of the Association for Computational Linguistics, held in
Gothenburg, Sweden, from April 26 till April 30 2014.

EACL 2014 introduced a short paper (4 page) format in addition to the usual long paper (8 page) format,
which led to the highest total number of submissions of any EACL. We received 317 valid long paper
submissions and were able to accept 78 of these papers (an acceptance rate of 24.6%). 49 of the papers
(15.4%) were accepted for oral presentation, and 31 (9.8%) for poster presentation. In addition, we
received 199 valid short paper submissions and were able to accept 46 of these (an acceptance rate
of 23.1%). 33 of the papers (16.6%) were accepted for oral presentation, and 13 (6.5%) for poster
presentation. The EACL 2014 schedule also includes oral presentations from two papers published in the
Transactions of the Association for Computational Linguistics, a new feature of this year’s conference.

The introduction of short papers, handled in a second round of submissions, meant a somewhat higher
workload for our program committee, and we are very grateful to our 24 area chairs for recruiting an
excellent panel of 434 reviewers from all over the world, and to those reviewers for providing their
feedback on the submissions. Each submission was reviewed by at least three reviewers (at least two
for short papers), who were then encouraged to discuss any differences of opinion, taking into account
the responses of the authors to their initial reviews. Based on the reviews, author response, and reviewer
discussion, area chairs provided a ranking for papers in their area. Final selection was made by the
program co-chairs after discussion with the area chairs and an independent check of reviews.

Each area chair was also asked to nominate the best long paper and best short paper from his or her
area, or to decline to nominate any. Several papers were nominated, and of these the program co-chairs
made the final decision on the Best Long Paper and Best Short Paper awards, which will be awarded in
a plenary session at the conference.

In addition to the main conference program, EACL 2014 will feature the now traditional Student
Research Workshop, 14 other workshops, 6 tutorials and a demo session with 26 presentations. We
are also fortunate to have three excellent invited speakers: Dan Roth (University of Illinois at Urbana-
Champaign), Ulrike von Luxburg (University of Hamburg), and Simon King (University of Edinburgh).

We would very much like to thank all of the other people who have helped us put together this year’s
conference. Most importantly, all of the authors who submitted their work to EACL, without whom we
would have no conference at all! The number and quality of both long and short paper submissions
in many different areas shows that we are maintaining and growing a broad and active community.
We are greatly indebted to all the area chairs and reviewers for their hard work, which allowed us to
choose from amongst the many high-quality submissions to put together a strong programme and provide
useful feedback to authors. The START support team, and especially Rich Gerber, were of great help
in swiftly answering all of our technical questions, and occasionally even knowing more about our job
than we did! We thank the invited speakers for agreeing to present at EACL, and the publication chairs,
Yannick Parmentier and Gosse Bouma, for putting this volume together. The local organizing committee
(Lars Borin, Aarne Ranta, Yvonne Adesam, Martin Kasa, and Nina Tahmasebi) have been invaluable in
arranging the logistics of the conference and coordinating with us on many organizational issues, and we
are grateful to the publicity chair, Peter Ljunglof, for ensuring up-to-date programme information on the
conference web site. We thank also the Student Research Workshop chairs for smoothly coordinating
with us on their schedule. Last but not least, we are indebted to the General Chair, Shuly Wintner, for his
guidance and support throughout the whole process.

We hope you enjoy the conference!

Sharon Goldwater and Stefan Riezler
EACL 2014 Programme Chairs
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Abstract

Linguist Code Switching (LCS) is a
situation where two or more languages
show up in the context of a single
conversation. For example, in English-
Chinese code switching, there might
be a sentence like “F 1157 £ j5 A
““meeting (We will have a meeting in 15
minutes)”. Traditional machine translation
(MT) systems treat LCS data as noise,
or just as regular sentences. However, if
LCS data is processed intelligently, it can
provide a useful signal for training word
alignment and MT models. Moreover,
LCS data is from non-news sources which
can enhance the diversity of training data
for MT. In this paper, we first extract
constraints from this code switching data
and then incorporate them into a word
alignment model training procedure. We
also show that by using the code switching
data, we can jointly train a word alignment
model and a language model using co-
training. Our techniques for incorporating
LCS data improve by 2.64 in BLEU score
over a baseline MT system trained using
only standard sentence-aligned corpora.

1 Introduction

Many language users are competent in multiple
languages, and they often use elements of multiple
languages in conversations with other speakers
with competence in the same set of languages.
For example, native Mandarin speakers who
also speak English might use English words in
a Chinese sentence, like “fF 1 1& X /™ |v] i
Hsolution™d ? (Do you know the solution to
this problem ?)”. This phenomenon of mixing

*The author is working at Raytheon BBN Technologies
now
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languages within a single utterance is known as
Linguistic Code Switching (LCS). Examples of
these utterances are common in communities of
speakers with a shared competency in multiple
languages, such as Web forums for Chinese
emigrés to the United States. For example, more
than 50% of the sentences we collected from a
Web forum (MITBBS.com) contains both Chinese
and English.

Traditional word alignment models take a
sentence-level aligned corpus as input and gener-
ate word-level alignments for each pair of parallel
sentences.  Automatically-gathered LCS data
typically contains no sentence-level alignments,
but it still has some advantages for training
word alignment models and machine translation
(MT) systems which are worth exploring. First,
because it contains multiple languages in the same
sentence and still has a valid meaning, it will tell
the relationship between the words from different
languages to some extent. Second, most LCS
data is formed during people’s daily conversation,
and thus it contains a diversity of topics that
people care about, such as home furnishings,
cars, entertainment, etc, that may not show up in
standard parallel corpora. Moreover, LCS data is
easily accessible from Web communities, such as
MITBBS.com, Sina Weibo, Twitter, etc.

However, like most unedited natural language
text on the Web, LCS data contains symbols like
emotions, grammar and spelling mistakes, slang
and strongly idiomatic usage, and a variety of
other phenomena that are difficult to handle. LCS
data with different language pairs may also need
special handling. For instance, Sinha and Thakur
(2005) focus on words in mixed English and
Hindi texts where a single word contains elements
from both languages; they propose techniques
for translating such words into both pure English
and pure Hindi. Our study focuses on Chinese-
English LCS, where this is rarely a problem,
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but for other language pairs, Sinha and Thakur’s
techniques may be required as preprocessing
steps.  Primarily, though, LCS data requires
special-purpose algorithms to use it for word
alignment, since it contains no explicit alignment
labels.

In this paper, we investigate two approaches to
using LCS data for machine translation. The first
approach focuses exclusively on word alignment,
and uses patterns extracted from LCS data to guide
the EM training procedure for word alignment
over a standard sentence-aligned parallel corpus.
We focus on two types of patterns in the LCS
data: first, English words are almost never correct
translations for any Chinese word in the same
LCS utterance. Second, for sentences that are
mostly Chinese but with some English words, if
we propose substitutes for the English words using
a Chinese language model, those substitutes are
often good translations of the English words. We
incorporate these patterns into EM training via
the posterior regularization framework (Ganchev
et al., 2010).

Our second approach treats the alignment and
language model as two different and comple-
mentary views of the data. We apply the co-
training paradigm for semi-supervised learning
to incorporate the LCS data into the training
procedures for the alignment model and the
language model. From the translation table of
the alignment model, the training procedure finds
candidate translations of the English words in
the LCS data, and uses those to supplement the
language model training data. From the language
model, the training procedure identifies Chinese
words that complete the Chinese sentence with
high probability, and it uses the English word
paired with these completion words as additional
training points for translation probabilities. These
models are trained repeatedly until they converge
to similar predictions on the LCS data. In
combination with a larger phrase-based MT
system (Koehn et al., 2003), these two training
procedures yield an MT system that achieves a
BLEU score of 31.79 on an English-to-Chinese
translation task, an improvement of 2.64 in BLEU
score over a baseline MT system trained on only
our parallel corpora.

The rest of this paper is organized as follows.
The next section presents related work. Section 3
gives an overview of word alignment. Sections 4

and 5 detail our two algorithms. Section 6 presents
our experiments and discusses results, and Section
7 concludes and discusses future work.

2 Related Work

There has been a lot of research on LCS from
the theoretical and socio-linguistic communities
(Nilep, 2006; De Fina, 2007). Computational
research on LCS has studied how to identify
the boundaries of an individual language within
LCS data, or how to predict when an utterance
will switch to another language (Chan et al.,
2004; Solorio and Liu, 2008). Manandise and
Gdaniec (2011) analyzed the effect on machine
translation quality of LCS of Spanish-English and
showed that LCS degrades the performance of
the syntactic parser. Sinha and Thakur (2005)
translate mixed Hindi and English (Hinglish)
to pure Hindi and pure English by using two
morphological analyzers from both Hindi and
English.  The difficulty in their problem is
that Hindi and English are often mixed into a
single word which uses only the English alphabet;
approaches based only on the character set cannot
tell these words apart from English words. Our
current study is for a language pair (English-
Chinese) where the words are easy to tell apart,
but for MT using code-switching data for other
language pairs (such as Hindi-English), we can
leverage some of the techniques from their work
to separate the tokens into source and target.

Like our proposed methods, other researchers
have used co-training before for MT (Callison-
Burch and Osborne, 2003). They use target
strings in multiple languages as different views on
translation. However, in our work, we treat the
alignment model and language model as different
views of LCS data.

In addition to co-training, various other semi-
supervised approaches for MT and word align-
ment have been proposed, but these have relied on
sentence alignments among multiple languages,
rather than LCS data. Kay (2000) proposes using
multiple target documents as a way of informing
subsequent machine translations. Kumar et al.
(2007) described a technique for word alignment
in a multi-parallel sentence-aligned corpus and
showed that this technique can be used to obtain
higher quality bilingual word alignments. Other
work like (Eisele, 2006) took the issue one step
further that they used bilingual translation systems



which share one or more common pivot languages
to build systems which non-parallel corpus is used.
Unlike the data in these techniques, LCS data
requires no manual alignment effort and is freely
available in large quantities.

Another line of research has attempted to
improve word alignment models by incorporating
manually-labeled word alignments in addition to
sentence alignments. Callison-Burch et al. (2004)
tried to give a higher weight on manually labeled
data compared to the automatic alignments. Fraser
and Marcu (2006) used a log-linear model with
features from IBM models. They alternated the
traditional Expectation Maximization algorithm
which is applied on a large parallel corpus with
a discriminative step aimed at increasing word-
alignment quality on a small, manually word-
aligned corpus. Ambati et al.(2010) tried to man-
ually correct the alignments which are informative
during the unsupervised training and applied them
to an active learning model. However, labeled
word alignment data is expensive to produce. Our
approach is complementary, in that we use mixed
data that has no word alignments, but still able to
learn constraints on word alignments.

Our techniques make use of posterior regular-
ization (PR) framework (Ganchev et al., 2010),
which has previously been used for MT (Graca
et al., 2008), but with very different constraints
on EM training and different goals. (Graca et
al., 2008) use PR to enforce the constraint that
one word should not translate to many words, and
that if a word s translates to a word ¢ in one MT
system, then a model for translation in the reverse
direction should translate ¢ to s. Both of these
constraints apply to sentence-aligned training data
directly, and complement the constraints that we
extract from LCS data.

3 Statistical Word Alignment

Statistical word alignment (Brown et al., 1994) is
the task identifying which words are translations
of each other in a bilingual sentence corpus. It
is primarily used for machine translation. The
input to an alignment system is a sentence-level
aligned bilingual corpus, which consists of pairs
of sentences in two languages. One language
is denoted as the target language, and the other
language as the source language.

We now introduce the baseline model for word
alignment and how we can incorporate the LCS

data to improve the model. IBM Model 1
(Brown et al., 1994) and the HMM alignment
model (Vogel et al., 1996) are cascaded to
form the baseline model for alignment. These
two models have a similar formulation £ =
P(t,als) = P(a)[]; P(tjlsa,) with a different
distortion probability P(a). s and ¢ denote the
source and target sentences. a is the alignment,
and a; is the index of the source language word
that generates the target language word at position
j. The HMM model assumes the alignments have
a first-order Markov dependency, so that P(a) =
[1; P(ajla; — aj—1). IBM Model 1 ignores the
word position and uses a uniform distribution, so
P(a) =[], P(a;) where P(a;) = ﬁ, where |t|
is the length of ¢.

Expectation Maximization (Dempster et al.,
1977) is typically used to train the alignment
model. It tries to maximize the marginal
likelihood of the sentence-level aligned pairs.
For the HMM alignment model, the forward-
backward algorithm can be used the optimize the
posterior probability of the hidden alignment a.

4 Learning Constraints for Word
Alignments from LCS Data

We observed that most LCS sentences are
predominantly in one language, which we call
the majority language, with just a small number
of words from another language, which we
call the minority language. The grammar of
each sentence appears to mirror the structure
of the majority language. Speakers appear to
be substituting primarily content words from the
minority language, especially nouns and verbs,
without changing the structure of the majority
language. In this section, we explain two types
of constraints we extract from the LCS data
that can be helpful for guiding the training of a
word alignment model, and we describe how we
incorporate those constraints into a full training
procedure.

4.1 Preventing bad alignments

After inspecting sentences in our LCS data, we
found that the words from the target language
occurring in the sentence are highly likely not to
be the translation of the remaining source word.
Figure 1 shows an example LCS sentence where
the speaker has replaced the Chinese word “%£3K”
with the corresponding English word “request”.



LCS sentence:

Chinese Translation:

English Translation:

AR request f&05 5Ei%
A ER 2B %k,

People request to change the Constitution

Figure 1: The upper sentence is the original LCS sentence. The bottom ones are its translation in pure Chinese and English.

Underlined words are the original words in the LCS sentence.

In most LCS utterances, the minority language
replaces or substitutes for words in the majority
language, and thus it does not serve as a translation
of any majority-language words in the sentence.
If we can enforce that a word alignment model
avoids pairing words that appear in the same
LCS sentence, we can significantly narrow down
the possible choices of the translation candidates
during word alignment training.

Formally, let /¢ be the set of target (Chinese)
words and s“¢“ be the source (English) words in
the same sentence of the LCS data. According to
our observation, each s¥¢% in sCS should not

J
be aligned with any word tiLCS in t£CS. We call
every target-source word pair (tF¢9, sJLCS ) from
LCS data a blocked alignment. For a set of word
alignments WA = {(s,,, t,,)} produced by a word
alignment model, define

D

(Sw JHw ) EWA

(Z)BA = 1[(Sw,tw) S BA] (1)

where BA is the set of blocked alignments
extracted from the LCS data. We want to minimize
¢Ba. Figure 2 shows a graphical illustration of this
constraint.

BN
(People)

ik
(constitution)

(ETe
(change)

Figure 2: Tllustration of the blocked alignment constraint.

4.2 Encouraging alignments with substitutes
proposed by a language model

Another perspective of using the LCS data is
that if we can find some target word set ¢smer
from the target language which shares similar
contexts as the source word sJLCS in the LCS
data, then we can encourage SJLCS to be aligned
with the each word t5imiler in ¢similar — Figyre
3 shows example phrases (“[& Ak & ¥ 1& 2>,

“RARERBET, “RARBLE T ete) that
appear in a Chinese language model and which
share the same left context and right context as
the word “request.”” Our second objective is to
encourage minority language words like “request”
to align with possible substitutes from the majority
language’s language model. If we see any of
g, LR, FE 48 in the parallel corpus, we
should encourage the word “request” to be aligned
with them. We call this target-source word pair
(tgimilar sLCS) an encouraged alignment.
Formally, we define

gea=1Cl— 3

(Sw,tw)EWA

1[(sw,tw) € EA] (2)

where |C/| is the size of the parallel corpus and EA
is the encouraged alignment set. We define this
expression in such a way that if the optimization
procedure minimizes it, it will increase the number
of encouraged alignments.

Trigrams
Hi4fi(refuse) ik
3R (request) 4% \
1 (suggest) 52

Ak 23
People change;

Figure 3:

constraint.

[lustration of the encouraged alignment
The dotted rectangle shows the candidate
translations of the English word from the tri-gram output

from the language model

Algorithm 1 shows the algorithm of calculating
gimilar (tchs, sfcs,tfcs) is a (target, source,
target)word tuple contained in the LCS data. [
and r denote the left and right target words to the
source word. We use the language model output
from the target language. For each pair of contexts
t; and ¢, for the source word, we find the exact
match of this pair in the ngram. Then we extract
the middle word as the candidates for ¢s¥milar,
Here, we only use 3 grams in our experiments, but
it is possible to extend this to S5grams, which might
lead to further improvements. The EA constraint



Algorithm 1: finding ¢s/miler

1: Input: s7¢9 t2CS language model LM
2: Set tsimilm"z{}
3: Extract the 3 grams (¢;, t,,, t,) € grams from
LM
4:set S = {}
5: For j from 1 to size(grams)
if (t,t]) € S
add #, into C’t%ﬂ;
else
put (£, }) into S
set Ct{,tf. = {}
6: Extract tuple (+/°9, sfcs L tLOS)
if (tFC5,tLC%) e S
add CtlLC,S'yt%CS into ¢similar

7: Output: t5mtbar

is similar to a bilingual dictionary. However, in the
bilingual dictionary, each source word might have
several target translations (senses), so it might be
ambiguous. The candidate translations used in
EA are from language model (3 grams in this
paper, but it can be extended to 5 grams), which
will always match the contexts. Additionally,
the bilingual dictionary contains the standard
English/Chinese word pairs. But the LCS data
is generated from people”’ s daily conversation; it
reflects usage in a variety of domains, including
colloquial and figurative usages that may not
appear in a dictionary.

4.3 Constrained parameter estimation

We incorporate ¢ps and ¢pa into the EM
training procedure for the alignment model using
posterior regularization (PR) (Ganchev et al.,
2010). Formally, let x be the sentence pairs s and
t. During the E step, instead of using the posterior
p(alx) to calculate the expected counts, the PR
framework tries to find a distribution g(a) which
is close to p(a|z), but which also minimizes the
properties ¢(a, x):

min [KL(q(a)[[p(alx, 0)) + oll[l] - G)

s.t. Eagld(a,x)] < € @)

where KL is the Kullback-Leibler divergence, o
is a free parameter indicating how important the
constraints are compared with the marginal log
likelihood and £ is a small violation allowed in

BEAX request &4 28
(People request to change the constitution)

[Translation Table

[ o 2ok ek s (0.025)

Chinese
Monolingual
data

request 3R

0.025 |Wf B 514 %1% (0.05)

Update mixed Sata

| Rox ¢ fek %% (0.009)

Request /& ¥
0.05

request ZHL _
0.009 [Translation Table
— - R & (0.06)
request R
requ%?tsiﬁ‘;& Update Translation Table | Ak 47/7 #£1% (0.002)
> ,
Request /& Bf EPAN &4 (0.01)
0.0002 | e
req”ﬁ;‘?% BN & (0.04)

Figure 4: The framework of co-training in word alignment.
AM represents alignment model and LM represents language
model. Green italic words are the encouraged translation and

red italic words are the discouraged translation.

the optimization. To impose multiple constraints,
we define a norm |[£||a = /(£LAE), where A
is a diagonal matrix whose diagonal entries A;;
are free parameters that provide weights on the
different constraints. Since we only have two
constraints here from LCS data, A = ((1)2)
where « controls the relative importance of the
two constraints.

To make the optimization task in the E-step
more tractable, PR transforms it to a dual problem:

—log ) plalx, 0) exp{—\-¢(a, x)}

max
A20,[[All <o

where ||-||, is the dual norm of [|-|| 5. The gradient
of this dual objective is —E,[¢(a, x)]. A projected
subgradient descent algorithm is used to perform
the optimization.

5 Co-training using the LCS data

The above approaches alter the translation and
distortion probabilities in the alignment model.
However, they leave the language model un-
changed. We next investigate a technique that
uses LCS data to re-estimate parameters for the
language model as well as the alignment model
simultaneously. Co-training (Blum and Mitchell,
1998) is a semi-supervised learning technique
that requires two different views of the data. It
assumes that each example can be described using
two different feature sets which are conditionally
independent. Also, each feature set of the data
should be sufficient to make accurate prediction.



The schema fits perfectly into our problem. We
can treat the alignment model and the language
model as two different views of the LCS data.

We use the same example “[X; Akrequest & 24
%212 to show how co-training works, shown in
Figure 4. From the translation table generated
by the alignment model, we can get a set of
candidate translations of “request”, such as “‘&
3R <4 3R etc. We can find the candidate with the
highest probability as the translation. Similarly,
from the language model, we can extract all the
ngrams containing “ [AX” and “4ZE as the left
and right words and pick the words in the middle
such as “ #iY, B3R, #E44” etc as the candidate
translations. We can then use the candidate
with the highest probability as the translation
for “request”. Thus both models can predict
translations for the English (minority language) in
this example. Each model’s predictions can be
used as supplemental training data for the other
model.

Algorithm 2 shows the co-training algorithm for
word alignment. At each iteration, a language
model and an alignment model are trained. The
language model is trained on a Chinese-only
corpus plus a corpus of probabilistic LCS sen-
tences where the source words are replaced with
target candidates from the alignment model. The
alignment model is retrained using a translation
table which is updated according to the output
word pairs from the language model output and the
LCS data. In order to take the sentence probability
into consideration, we modify the language model
training procedure: when it counts the number of
times each ngram appears, instead of adding 1,
it adds the probability from the translation model
for ngrams in the LCS data that contain predicted
translations.

6 Experiments and Results

6.1 Experimental Setup

We evaluated our LCS-driven training algorithms
on an English-to-Chinese translation task. We
use Moses (Koehn et al., 2003), a phrase-
based translation system that learns from bilingual
sentence-aligned corpora as the MT system. We
supplement the baseline word alignment model in
Moses with our LCS data, constrained training
procedure, and co-training algorithm as well as
IBM 3 model. Because IBM 3 model is a
fertility based model which might also alleviate

Algorithm 2: Co-training for word alignment and
language modeling

I: Input: parallel data X,, LCS data X;cg,
language model training data X;
2: Initialize translation table tb for IBM1 model
3: For iteration from 1 to MAX
tb «— Train-IBM(X,,)
tt/ — Train-HMM(X,|tb)
4. For each sentence z; in X cg:
For each source word s; in z;:
1) find the translation ¢; of s; with
with probability p; from ¢b’
2) replace s; with ¢; and update
sentence’s probability p® = p® x p;
X[ — X U

5: LM <« Train-LM(X**")
6: Extract the tri-gram gramgs from LM
7: For each sentence z; in X cg:

run Algorithm 1: finding ¢5¥miler
8: update tb" using (t,,, s;) where

t € tSmilaT gpd 8; € x;

9: End For
10: Output: word alignment for X, and LM

some of the problems caused by LCS data. To
clarify, we use IBM1 model and HMM models in
succession for the baseline. We trained the IBM1
model first and used the resulting parameters
as the initial parameter values to train HMM
model. Parameters for the final MT system
are tuned with Minimum Error Rate Training
(MERT) (Och, 2003). The tuning set for MERT
is the NIST MTO06 data set, which includes 1664
sentences. We test the system on NIST MTO02
(878 sentences). To evaluate the word alignment
results, we manually aligned 250 sentences from
NIST MTO2 data set. For simplicity, we only
have two types of labels for evaluating word
alignments: either two words are aligned together
or not. (Previous evaluation metrics also consider
a third label for “’possible” alignments.) Out of
the word-aligned data, we use 100 sentences as a
development set and the rest as our testing set.
Our MT training corpus contains 2,636,692
sentence pairs from two parallel corpora: Hong
Kong News (LDC2004T08) and Chinese English
News Magazine Parallel Text (LDC2005T10). We
use the Stanford Chinese segmenter to segment
the Chinese data. We use a ngram model
package called SRILM (Stolcke, 2002) to train



the language model. Because our modified
ngram counts contain factions, we used Witten-
Bell smoothing(Witten and Bell, 1991) which
supports fractional counts. The 3-gram language
model is trained on the Xinhua section of the
Chinese Gigaword corpus (LDC2003T09) as well
as the Chinese side of the parallel corpora. We
also removed the sentences in MT02 from the
Gigaword corpus if there is any to avoid the biases.

We gather the LCS data from “MITBBS.com,”
a popular forum for Chinese people living in
the United States. This forum is separated by
discussion topic, and includes topics such as
“Travel”, “News”, and “Living style”. We extract
data from 29 different topics. To clean up the
LCS data, we get rid of HTML mark-up, and we
remove patterns that are commonly repeated in
forums, like “Re:” (for “reply” posts) and “[#%
#]” (for “repost”). We change all English letters
written in Chinese font into English font. We stem
the English words in both the parallel training data
and the LCS data. After the cleaning step, we have
245,470 sentences in the LCS data. 120,922 of
them actually contain both Chinese and English in
the same sentence. 101,302 of them contain only
Chinese, and we add these into the language model
training data. We discard the sentences that only
contain English.

6.2 Word Alignment Results

In order to incorporate the two constraints during
the Posterior Regularization, we need to tune the
parameters o which controls the weights between
the constraints and the marginal likelihood and
a which controls the relative importance between
two constraints on development data. We varied
o from 0.1 to 1000 and varied o over the
set {0.01,0.1,1,10,100}.  After testing the
25 different combinations of ¢ and « on the
development data, we find that the setting with
o = 100 and @ = 0.1 achieves the best
performance. During PR training, we trained the
model 20 iterations for the dual optimization and
5 iterations for the modified EM.

Table 1 shows the word alignment results. We
can see that incorporating the LCS data into
our alignment model improves the performance.
Our best co-training+PR* system outperforms
the baseline by 8 points. Figure 5 shows an
example of how BA is extracted from LCS data
can help the word alignment performance. The

System F1

Baseline 0.68
IBM 3 0.70
PR+BA 0.71
PR+EA 0.70
PR* 0.73
co-training 0.74
co-training+PR*  0.76

Table 1: Word alignment results (PR* means PR+BA+EA).

upper figure shows that alignment by the baseline
system. We can see that the word “badminton”
is aligned incorrectly with word “f& 3 7, (Taufik)”
. However, in the LCS data, we see that * [& 3E
7t (Taufik)” and “badminton” appear in the same
sentence “Pi 3E 77 fbadminton X Jji E T (Taufik
plays badminton so well)” and by adding the
blocked constraint into the alignment model, it
correctly learns that * Fg 5 77 (Taufik)” should be
aligned with something else, and it finds “Taufik”
at end. Table 2 shows some of the translations
of “badminton” before and after incorporating the
LCS data. We can see that it contains some wrong
translations like “J=FeEK = (pingpong room)”, [
3F 7 (Taufik)”etc using baseline model. After
using the LCS data as constraints and the co-
training framework, these wrong alignments are
eliminated and the translation “J Ek(another
way of expressing badminton)” get a higher
probability. We found that IBM 3 model can
also correct this specific case. However, our
co-training+PR™* system still outperforms it by 6
points.

Figure 6 shows an example of how EA is
extracted from LCS data can help the word
alignment. The solid lines show the alignment
by the baseline model and we can see that
the word “compiled” is not aligned with any
Chinese word. After using the LCS data and the
language model, we find that “£E 4}j(compile)”
shows up in the same context “Ti(book) iC
>K(up)’as “compile” along with “Z% i (staple)”
and “1] (staple)”, therefore “(compile, ££41)” will
be an encouraged alignment. After adding the EA
constraint, the model learns that “compile” should
be aligned with “ZE44”.

6.3 Phrase-based machine translation

In this section, we investigated whether improved
alignments can improve MT performance. We



EIJE SFEER %5 N MEE (4 HE2 IRAF)
Baseline: . - > ) \ .
Indoriesia badminton experts think Taufik’s ranking favorable
EJE SRR B X 0y MFET i HE ARA R
PR+BA: \

Indonesia badminton experts think Taufik’s ranking favorable

Figure 5: After incorporating the BA constraint from the LCS data, the word “Taufik(F3E 5¢)” is aligned correctly.

Baseline PR+co-training
Translation Probability Translation Probability
JFE ER (badminton) 0.500 1 FE Ek (badminton) 0.500
e FeBR (pingpong) = (room) 0.500 JIER(two of the three characters in badminton) 0.430
1T (play) P E(feather) 0.250 T (play)*P) E(feather) 0.326
I Bk (shuttlecock) Sk (head) 0.125 I Bk (shuttlecock) Sk (head) 0.105
[ JE 78 (Taufik) 0.005 W ERF (racket) 0.002

Table 2: Translation tables of “badminton” before and after incorporation of LCS data.

A 3 45 compile #sk?

(How to compile the book ?)

Trigrams
F(book) HE4l(compile) 3K (up)
Fi(book) #:iT(staple) i3k (up)
Fi(book) iT(staple) 3k

ESCEEILE S ER =

Winning entries after the review will be compiled

Figure 6: After incorporating the EA constraint from the
LCS data, the word “compiled(444)” is aligned correctly.

use different word alignment models’ outputs as
the first step for Moses and keep the rest of
Moses system the same. We incorporate Moses’s
eight standard features as well as the lexicalized
reordering model. We also use the grow-diag-final
and alignment symmetrization heuristic.

Table 3 shows the machine translation results.
We can see that 3 techniques we proposed for word
alignment all improve the machine translation
result over the baseline system as well as the
IBM 3 model. However, although co-training
has a bigger improvement on the word alignment
compared with PR*, it actually has a lower
BLEU score. This phenomenon shows that the
improvement in the word alignment does not
necessarily lead to the improvement on machine
translation. ~ After combining the co-training
and the PR* together, co-training+PR* improved
slightly over PR* for MT.

System BLEU score
Baseline 29.15

IBM 3 30.24

PR* 31.59%
co-training 31.04*
co-training+PR*  31.79*

Table 3: Machine translation results. All entries marked
with an asterisk are better than the baseline with 95%
statistical significance computed using paired bootstrap
resampling (Koehn, 2004).

7 Conclusion and Future Work

In this paper, we explored two different ways to
use LCS data in a MT system: 1) PR framework
to incorporate with Blocked Alignment and
Encouraged Alignment constraints. 2) A semi-
supervised co-training procedure. Both techniques
improve the performance of word alignment and
MT over the baseline.  Our techniques are
currently limited to sentences where the LCS data
contains very short (usually one word) phrases
from a minority language. An important line of
investigation for generalizing these approaches is
to consider techniques that cover longer phrases in
the minority language; this can help add more of
the LCS data into training.
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Undirected Machine Translation with
Discriminative Reinforcement L earning

Andrea Gesmundo
Google Inc.
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Abstract

We present a novel Undirected Machine
Translation model of Hierarchical MT that
is not constrained to the standard bottom-
up inference order. Removing the order-
ing constraint makes it possible to condi-
tion on top-down structure and surround-
ing context. This allows the introduc-
tion of a new class of contextual features
that are not constrained to condition only
on the bottom-up context. The model
builds translation-derivations efficiently in
a greedy fashion. It is trained to learn
to choose jointly the best action and the
best inference order. Experiments show
that the decoding time is halved and forest-
rescoring is 6 times faster, while reaching
accuracy not significantly different from
state of the art.

I ntroduction

James Hender son
Xerox Research Centre Europe

j ames. hender son@xr ce. xer ox. com

HMT decoding applies pruning (e.g. Cube Prun-
ing (Huang and Chiang, 2005)), but even then
HMT has higher complexity than Phrase Based
MT (PbMT) (Koehn et al., 2003). On the other
hand, HMT improves over PbMT by introducing
the possibility of exploiting a more sophisticated
reordering model not bounded by a window size,
and producing translations with higher syntactic-
semantic quality. In this paper, we present the
Undirected Machine Translation (UMT) frame-
work, which retains the advantages of HMT and
allows the use of a greedy decoder whose com-
plexity is lower than standard quadratic beam-
search PbMT.

UMT'’s fast decoding is made possible through
even stronger pruning: the decoder chooses a sin-
gle action at each step, never retracts that action,
and prunes all incompatible alternatives to that ac-
tion. If this extreme level of pruning was ap-
plied to the CKY-like beam-decoding used in stan-
dard HMT, translation quality would be severely
degraded. This is because the bottom-up infer-

Machine Translation (MT) can be addressed as &nce order imposed by CKY-like beam-decoding

structured prediction task (Brown et al., 1993; Ya-means that all pruning decisions must be based on
mada and Knight, 2001; Koehn et al., 2003). MT’sa bottom-up approximation of contextual features,
goal is to learn a mapping functiofi, from an in-  Which leads to search errors that affect the qual-
put sentenceg, into y = (t,h), wheret is the ity of reordering and lexical-choice (Gesmundo
sentence translated into the target language, ar&hd Henderson, 2011). UMT solves this problem
h is the hidden correspondence structure (Liandy removing the bottom-up inference order con-
et al., 2006). In Hierarchical MT (HMT) (Chi- straint, allowing many different inference orders
ang, 2005) the hidden correspondence structure for the same tree structure, and learning the in-
the synchronous-tree composed by instantiationference order where the decoder can be the most

of synchronous rules from the input grammat,

arg max, .y Score(r,y), where Score(r,y) is a

Statistical models usually defingas: f(z) =

confident in its pruning decisions.
Removing the bottom-up inference order con-
straint makes it possible to condition on top-down

function whose parameters can be learned with atructure and surrounding context. This undirected

specialized learning algorithm.

tions, it is not possible to enumerate alle ).

In MT applica- approach allows us to integrate contextual features

such as the Language Model (LM) in a more flex-

Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics, pages 1019,
Gothenburg, Sweden, April 26-30 2014. (©2014 Association for Computational Linguistics



ible way. It also allows us to introduce a new classis the synchronous tree structure generating the
of undirected features. In particular, we introduceinput sentence on the source side and its trans-
the Context-Free Factor (CFF) features. CFF fealation on the target side. Synchronous-trees are
tures compute exactly and efficiently a bound oncomposed of instantiations of synchronous-rules,
the context-free cost of a partial derivation’s miss-r, from a grammar(G. A UMT decoder builds
ing branches, thereby estimating the future cost ofynchronous-treesh, by recursively expanding
partial derivations. The new class of undirectedpartial synchronous-trees, 7 includes a partial
features is fundamental for the success of a greedyanslation. Each is required to be a connected
approach to HMT, because the additional nonsub-graph of some synchronous-tree Thus, 7
bottom-up context is sometimes crucial to have thes composed of a subset of the rules from a@ny
necessary information to make greedy decisions.that generates on the source side, such that there
Because UMT prunes all but the single cho-is a connected path between any two rules in
sen action at each step, both choosing a good irPifferently from the partial structures built by a
ference order and choosing a correct action rebottom-up decoder; does not have to cover a
duce to a single choice of what action to takecontiguous span om. Formally,r is defined by:
next. To learn this decoding policy, we proposel) The set of synchronous-rule instantiations-in
a novel Discriminative Reinforcement Learningl = {ri,re, - ,7%|r € G,1 <1i < k};
(DRL) framework. DRL is used to train mod- 2) The set of connections among the synchronous
els that construct incrementally structured out-<ule instantiations('.
put using a local discriminative function, with Letc; = (r;,7;,) be the notation to represent the
the goal of optimizing a global loss function. connection between the i-th rule and the ruje
We apply DRL to learn the UMT scoring func- The set of connections can be expressed as:
tion’s parameters, using the BLEU score as the” = {(r1,7},), (12,7j5), -+ 5 (Tk=1,7j,_,) }
global loss function. DRL learns a weight vector3) The postcondition set,P, which specifies
for a linear classifier that discriminates betweerthe non-terminals inr that are available for
decisions based on which one leads to a comereating new connections. Each postcondition,
plete translation-derivation with a better BLEU p; = (Tm,X)i, indicates that the rule, has the
score. Promotions/demotions of translations ar@on-terminal X; available for connections. The

performed by applying a Perceptron-style Updatﬁ‘ndex identifies the non-terminal in the rule. In
on the sequence of decisions that produced thg pinary grammap] can take only 3 values for
translation, thereby training local decisions to 0p+he first non-terminal (the left child of the source
timize the gIObaI BLEU score Of the final trans- Side),for the Second non_terminal’ a@dor the
lation, while keeping the efficiency and simplic- head. The postcondition set can be expressed as:
ity of the Perceptron Algorithm (Rosenblatt, 1958;PE{(Tx1;Xy1)1; oo (P Xy )m )

Collins, 2002). 4) The set of carriesk. We define a different
Our experiments show that UMT with DRL re- carry, «;, for each non-terminal available for
duces decoding time by over half, and the time taconnections. Each carry stores the extra infor-
rescore translations with the Language Model bymation required to correctly score the non-local

6 times, while reaching accuracy non-significantlyinteractions betweemn and the rule that will be

different from the state of the art. connected at that non-terminal. Thus| = |P|.
) ) _ Let x; be the carry associated with the postcon-
2 Undirected Machine Translation dition p;. The set of carries can be expressed as:

. . K = cee
In this section, we present the UMT frame- {rrshiz, s bom )

work. For ease of presentation, and following
synchronous-grammar based MT practice, we will Partial synchronous-trees, are expanded by
henceforth restrict our focus to binary grammarsperforming connection-actions. Givernrave can
(Zhang et al., 2006; Wang et al., 2007). connect to it a new rule, using one available non-
A UMT decoder can be formulated as a func-terminal represented by postcondition, € P,
tion, f, that maps a source sentengec X, into  and obtain a new partial synchronous-tfee-or-
a structure defined by = (¢,h) € Y, wheret mally: 7 = (7 < a ), where,a = [, p],
is the translation in the target language, @nd represents the connection-action.

11



Algorithm 1 UMT Decoding erates the main loop, untit is complete and is
1: function Decoder §; w, G) : (t,h) returned atine 9.

2. 7{I,C,P,K} «— {0,0,0,0} ;

3: Q < LeafRules(); ‘ _ _

4 while|Q| > 0 do Lines 10-18 describe the Creathonnectlon(

5. [f,p;] — PopBestAction Q,w); procedure, that connects the _partlal synchron_ous—
6. T« CreateConnectidm, 7, p;); tree 7 to the selected rule via the postcondi-

7. UpdateQueud, 7, p;): fuon- Di spec!fled by the candidate-action §elected
s end while in line 5. This procedure returns the resulting par-

o: Returr(r); tial synchronous-treef = (7 < [F,p;] ). At

line 11, 7 is added to the rule sét At line 12 the
connection between andr,, (the rule specified

in the postcondition) is added to the set of connec-
tions C'. At line 13, p; is removed fromP. At
line 14 the carryk; matching withp; is removed

10: procedure CreateConnection( #,p; ) : 7
11: 7.1 — 7.1 + 7;

12: 7.C — 1.C + (7, 7p,);

13: 7.P «— 7.P — p;;

- . from K. Atline 15 the set of carrie is updated,
14: 7. K — 7. K — Ky ) q q h . h q
15: #.K.UpdateCarries( p;): |qdor_ efr to up atebt os?] carries t _at nee to pro-
16: #.P.AddAvailableConnectionsFromy(p;); vide in orma’iljc_)n about the new acrt:on. Ane 16 I
17: #.K .AddCarriesForNewConnectiorisp;): pe\fv postcon |t|qns representing t enon-terml_nas
18: Returng): in 7 that are available for subsequent connections

are added inP. At line 17 the carries associated
with these new postconditions are computed and

19: procedure UpdateQueueQ), 7, p; ) : : .
P P QueueQ, 7. pi ) added toK. Finally atline 18 the updated partial

20: Q.RemoveActionsWithy;);

21: Q.AddNewActionst, p,); synchronous-tree is returned.
In the very  first iteration, the
2.1 Decoding Algorithm CreateConnectiof)( procedure has nothing

) ) ) . to compute for some linesLine 11 is not exe-
Algorithm 1 gives details of the UMT decoding cuted since the first leaf rule needs no connection

algorithm. The decoder takes as input the SOUrCg 4 has nothing to connect tdines 12-13 are
sentencey, the parameters of the scoring func-

: not executed sincé’ and K are () and p; is not
tion, w, and the synchronous-grammar, At

) : S specified for the first action. Line 15 is not
line 2 the partial synchronous-treeis initialized oo\ ted since there are no carries to be updated.

b_y setting/, ¢, P and K_ to empty Se@' At_ Lines 16-17 only add the postcondition and carry
line 3 the queue of candidate connection-actiongy ative to the leaf rule head link

is initialized asQ = { [rjeqf, null] | req7 is @

leaf rule}, wherenull means that there is no post-

condition specified, since the first rule does not The procedure used to updafeis reported in
need to connect to anything. A leaf rutg,; is  lines 19-21. At line 20 all the connection-actions
any synchronous rule with only terminals on theinvolving the expansion op; are removed from
right-hand sides. Atine 4 the main loop starts. Q. These actions are the incompatible alternatives
Each iteration of the main loop will expandus- to the selected action. In the very first iteration,
ing one connection-action. The loop ends wherall actions inQ are removed because they are all
Q is empty, implying thatr covers the full sen- incompatible with the connected-graph constraint.
tence and has no more missing branches or paAt line 21 new connection-actions are added to
ents. The best scoring action according to th&). These are the candidate actions proposing a
parameter vectow is popped from the queue at connection to the available non-terminals of the
line 5. The scoring of connection-actions is dis-selected action’s new rule. The rules used for
cussed in details in Section 3.2. Aike 6 the se- these new candidate-actions must not be in con-
lected connection-action is used to expandAt  flict with the current structure of (e.g. the rule
line 7 the queue of candidates is updated accordeannot generate a source side terminal that is al-
ingly (seelines 19-21). Atline 8 the decoder it- ready covered by).
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3 Discriminative Reinforcement
Learning

Training a UMT model simply means training the
parameter vectow that is used to choose the best

scoring action during decoding. We propose a

novel method to apply a kind of minimum error
rate training (MERT) tow. Because each ac-

tion choice must be evaluated in the context of
the complete translation-derivation, we formalize

this method in terms of Reinforcement Learning.

We propose Discriminative Reinforcement Learn-

ing as an appropriate way to train a UMT model to
maximize the BLEU score of the complete deriva-
tion. First we define DRL as a novel generic train-
ing framework.

3.1 Generic Framework of DRL

RL can be applied to any task;, that can be for-
malized in terms of:

1) The set of state§?;

2) A set of actionsA for each state € S;

3) The transition functiorl” : S x A; — S, that

specifies the next state given a source state an

performed actiofy
4) The reward functionR : S x A; — R;
5) The discount factory € [0, 1].
A policy is defined as any map: S — A. Its
value function is given by:

V7(s0) = > 7' R(si, m(s4)) 1)
i=0

where path(sg|7) = (so, $1, - , So|m) is the se-

guence of states determined by following policy

starting at statey. The Q-function is the total fu-

ture reward of performing actias, in states, and

then following policyr:

Q" (s0,a0) = R(s0,a0) +7V7™(s1)  (2)

Standard RL algorithms search for a policy that

maximizes the given reward.

Because we are taking a discriminative ap
proach to learnw, we formalize our optimization
task similarly to an inverse reinforcement learning

problem (Ng and Russell, 2000): we are given in- X ;
Jhe Trainer takes as inpuyt, the task7, and a

formation about the optimal action sequence an
we want to learn a discriminative reward func-
tion. As in other discriminative approaches, this
1S can be either finite or infinite.
2For simplicity we describe a deterministic process. To

generalize to the stochastic process, replace the tramsiti
function with the transition probabilityPs, (s'), s’ € S.
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Algorithm 2 Discriminative RL

1. function Trainer ¢, 7,D):w

2: repeat
s «—SampleState);
a — Tw(S);
a’ —SampleActiond,);
if Q™ (s,a) < Q™ (s,a’)in D then

w—w+ dV(s,a) — PV(s,a);

. endif

9: until convergence
10: Returr(w);

3
4:
5:
6:
7

approach simplifies the task of learning the re-
ward function in two respects: the learned reward
function only needs to be monotonically related

to the true reward function, and this property only
needs to hold for the best competing alternatives.
This is all we need in order to use the discrimina-
tive reward function in an optimal classifier, and

this simplification makes learning easier in cases
where the true reward function is too complicated
tg model directly.

In RL, an optimal policynr* is one which, at
each state, chooses the action which maximizes
the future reward)™ (s,a). We assume that the
future discriminative reward can be approximated
with a linear functionQ™ (s, a) in some feature-
vector representation : S x A, — R? that maps
a state-action pair to@&dimensional features vec-
tor:

Qﬂ(sv a) =W ¢(S>a> (3)

wherew € R?. This gives us the following policy:

(4)

Tw(s) = argmax w ¢(s,a)
O,EAS

The set of parameters of this policy is the vec-
tor w. With this formalization, all we need to
learn is a vectow such that the resulting deci-
sions are compatible with the given information
about the optimal action sequence. We propose a
Perceptron-like algorithm to learn these parame-
ters.

Algorithm 2 describes the DRL meta-algorithm.

generic set of dat® describing the behaviors we
want to learn. The output is the weight vecter
of the learned policy that fits the data. The al-
gorithm consists in a single training loop that is
repeated until convergencéstes 2-9). At line 3
a states, is sampled fronb. At line 4, a is setto



be the action that would be preferred by the curiayed Reward function;

rentw-policy. Atline 5 an action,d’, is sampled 5) Considering the nature of the problem and re-
from A such thata’ # a. At line 6 the algo- ward function, we choose an undiscounted setting:
rithm checks if preferringath(7'(s,a), mw) over v = 1.

path(T'(s,a’), myw) is a correct choice according

to the behaviors dat® that the algorithm aims to .o+ e specify the details of the DRL algo-

!earn. Ifthg (t:urreonltzvt-ptc;:lcy an:]rtad'CiSD’tlm” trithm. The dataD consists of a set of pairs of
IS execuited o Update the Weight Vector 1o promotee yiancesp = {(z,t*)}, wherex is the source

w / i w A w
.(I) tés’a ) andtpenallclfr;e@ f(s’ta>’ Wherf@ (?t?]) sentence and" is the reference translation. The
s fhe summation ot fne Tearires VEctors ot '€ €Ngaature-vector representation functignmaps a
tire derivation path starting &k, a) and following

i Thi ¢ updati has the of pair (7, a) to a real valued vector having any num-
POTICY T 'S way Of updatingw nhas the €= —po ot gimensions. Each dimension corresponds
fect of increasing the&)(-) value associated with

. . to a distinct feature function that mapgr} x
all the actions in the sequence that generated th -« — R. Details of the features functions im-
promoted.struc_:ture, and reducing k) value lemented for our model are given in Section 4.
of the_ actions in the sequence that generated t ach loop of the DRL algorithm analyzes a single
penalized structufe

, _ sample(z, t*) € D. The states is sampled from a
We have described the DRL meta-algorithm o, ..o distribution OVerlsy, 51, -+ , 5o|m). The

b_e_ as general as possibl_e. When app“e_o_' to aSPYction o’ is sampled from a Zipfian distribution
cific problem, more details can be specifiel:it over {A.,, — a} sorted with theD™ (s, a) func-

is possible to choose specific sampling techniqueﬁon. In ihis way actions with higher score have
to implementlines 3 and 5;2) the test atine 6 pighar propaility to be drawn, while actions at the

needs. to be detailed according .to the naturé of bottom of the rank still have a small probability to
andD; 3) the update statementiate 7 canbe re- o qajacted. Thid atline 6 tests if the translation

placed with a more sophisticated update approacrbroduced bypath(T'(s, a’), mw) has higher BLEU
We address these issues and describe a range 9f ;e than the one producedyth(T'(s, &), )

alternatives as we apply DRL to UMT in Section

3.2.
For the update statement &ne 7 we use

3.2 Application of DRL toUMT the Averaged Perceptron technique (Freund and
Schapire, 1999). Algorithm 2 can be eas-
ily adapted to implement the efficient Averaged
Perceptron updates (e.g. see Section 2.1.1 of
(Daumé lil, 2006)). In preliminary experiments,
we found that other more aggressive update tech-
nique, such as Passive-Aggressive (Crammer et
al., 2006), Aggressive (Shen et al.,, 2007), or
MIRA (Crammer and Singer, 2003), lead to worst
accuracy. To see why this might be, consider that
a MT decoder needs to learn to construct struc-
tures (¢, h), while the training data specifies the
gold translationt* but gives no information on the

To apply DRL we formalize the task of translating
z with UMT as7 = {S,{A},T, R,v}:

1) The set of states' is the space of all possible
UMT partial synchronous-trees;

2) The setA, , is the set of connection-actions
that can expand connecting new synchronous-
rule instantiations matching the input sentence
on the source side;

3) The transition functionT is the connection
function7 = (7 < a ) formalized in Section 2
and detailed by the procedure CreateConnecion(

in Algorithm 1; ) .
’ o hidden-correspondence structure As discussed
4) The true reward functio is the BLEU score. in (Liang et al., 2006), there are output structures

BLEU is a loss function that quantifies the differ- . .
: that match the reference translation using a wrong
ence between the reference translation and the out

. internal structure (e.g. assuming wrong internal
put translationt. The BI.‘EU score can be com- alignment). While in other cases the output trans-
puted only when a terminal state is reached and

full t lation | able. Thus. th q ftion can be a valid alternative translation but gets
ufl fransiation IS avaulable. Thus, The rewards are, |, g) ey score because it differs froth. Ag-
all zero except at terminal states, called a Pure De-

gressively promoting/penalizing structures whose
SPreliminary experiments with updating only the 1‘eaturesC()rrectm:"SS can be only partially verified can be

for G anda’ produced substantially worse results. expected to harm generalization ability.
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4 Undirected Features has an associated CFF feature, which is an upper
) ] ] bound on the score of its missing branch. More
In this section we show how the features des'gn_e‘fﬂrecisely, it is an upper bound on the context-free
for bottom-up HMT can be adapted to the undi-¢qmponent of this score. This upper bound can be
rected approach, and we introduce a new featurgy a1y and efficiently computed using the Forest
from the class of undirected features that are mad@escoring Framework (Huang and Chiang, 2007:
possible by the undirected approach. Huang, 2008). This framework separates the MT
Local features depend only on the actl_on rele decoding in two steps. In the first step only the
These features can be used in the undirected appniext-free factors are considered. The output of
proach without adaptation, since they are indepenge first step is a hypergraph called the context-
dent of the surrounding structure. For our eXperiTree-forest, which compactly represents an expo-
ments we use a standard set of local features: thgantial number of synchronous-trees. The second
probability of the source phrase given the targetep introduces contextual features by applying a
phrase; the lexical translation probabilities of thefrocess of state-splitting to the context-free-forest,

source words given the target words; the lexicalegcoring with non-context-free factors, and effi-
translation probabilities of the target words give”ciently pruning the search space.

the source words; and the Word Penalty feature. To efficiently compute CFF features we run

Contextual features are dependent on the intefna |nside-Outside algorithm with thenaz, +)
action between the action rute and the avail- - semjring (Goodman, 1999) over the context-free-
able context. In UMT all the needed information fyrest. The result is a map that gives the maxi-
about the available context is stored in the cary,m Inside and Outside scores for each node in
r;. Therefore, the, computation of contextual fea-ne context-free forest. This map is used to get the
tures whose carry’s size is bounded (like the LM)y51ye of the CFF features in constant time while

requires constant time. _ running the forest rescoring step.
The undirected adaptation of the LM feature

computes the scores of the newgrams formed 5 Experiments
by adding the terminals of the action rulgo the
current partial translation. In the case that the We implement our model on top of Cdec (Dyer et
action ruler is connected tar via a child non- al., 2010). Cdec provides a standard implemen-
terminal, the carry is expressed as= ([W, » tation of the HMT decoder (Chiang, 2007) and
Wg]). WhereW, andWp, are respectively the left MERT training (Och, 2003) that we use as base-
and right boundary target words of the span coviine.
ered byr. This notation is analogous to the stan- We experiment on the NIST Chinese-English
dard star notation used for the bottom-up decodeparallel corpus. The training corpus contains
(e.g. (Chiang, 2007) Section 5.3.2). In the cas€@3% sentence pairs with 619 Chinese words and
thatr is connected to via the head non-terminal, 8.9M English words. The test set contains 919
the carry is expressed as= (Wg|-[Wr). Where  sentence pairs. The hierarchical translation gram-
W, and Wx are respectively the left and right mar was extracted using the Joshua toolkit (Li et
boundary target words of the surrounding contexal., 2009) implementation of the suffix array rule
provided byr. The boundary words stored in the extractor algorithm (Callison-Burch et al., 2005;
carry and the terminals of the action rule are all thed_opez, 2007).
information needed to compute and score the new Table 1 reports the decoding time measures.
n-grams generated by the connection-action. HMT with beaml is the fastest possible configu-
In addition, we introduce the Context-Free Fac—ration for HMT, butitis 71.59% slower than UMT.
tor (CFF) features. An action ruleis connected This is because HMB1 constructsO(n?) sub-
to 7 via one ofr’'s non-terminals X, . Thus, the trees, many of which end up not being used in
score of the interaction betweerand the context the final result, whereas UMT only constructs the
structure attached tX,. . can be computed ex- rule instantiations that are required. HMT with
actly, while the score of the structures attached téeam30 is the fastest configuration that reaches
otherr nonterminals (i.e. those in postconditions) state of the art accuracy, but increases the aver-
cannot be computed since these branches are misage time per sentence by an additional 131.36%
ing. Each of these postcondition nonterminalswhen compared with UMT. The rescoring time is
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Model sent. t. | sent. t. var.| resc.t. | resc. t. var.

UMT 135.2ms 38.9ms -

HMT b1 | 232.0ms| +71.59% | 141.3 ms| +263.23%

HMT 530 | 312.8ms| +131.36% | 226.9 ms| +483.29%

Table 1: Decoding speed comparison.

Model sent. t. | sent. t. var. ported in the fourth column, we can observe that
UMT with DRL | 267.4 ms - the BLEU score variations would not normally be
HMT b1 765.2 ms | +186.16% considered significant. For example, at WMT-11
HMT 530 1153.5 ms| +331.37% two systems were considered equivalenp if>

0.1, as in these cases. The accuracy cannot be
compared in terms of search score since the mod-
els we are comparing are trained with distinct al-

Table 2: Training speed comparison.

Model BLEU |relative losg p-value orithms and thus the search scores are not com-
UMT with DRL| 30.14 | 6.33% | 0.18 garable
5 :
gM¥ lb):)l,o ggi; 4.07% 021 To test the impact of the CFF features, we
i _ _ trained and tested UMT with DRL with and with-

out these features. This resulted in an accuracy de-
crease of 2.3 BLEU points. Thus these features are
) ) important for the success of the greedy approach.
the' average time spent on the forest rescoring Steﬁ'hey provide an estimate of the score of the miss-
which is the only step where the decoders actujng pranches, thus helping to avoid some actions

ally differ. This is the step that involves the inte- 1+ haye a good local score but lead to final trans-
gration of the Language Model and other contexbmOns with low global score.

tugl features. For HMT’,30’ resconng takes tW_O To validate the results, additional experiments
Fh'rds of the _total decodm_g time. Thus réscoring,yere executed on the French to Italian portion
s the mosj[ tlm'e consumln.g step in the plpe!lne.of the Europarl corpus v6. This portion contains
Th_e rescoring time comparison shovys even blggeig% pairs of sentences. The first I86entences
gains for UMT. HMT530 is almost 6 times slower were used to extract the grammar and train the two
than UMT. . , models. The final tests were performed on the re-
Table 2 reports the training 'tlme MeasUreSmaining 4 sentence pairs. With this corpus we
These results show HMT30 training is more o« red a similar speed gain. HMIZO is 2.3
than 4 times slower than UMT training with DRL. 4 < clower at decoding compared to UMT, and
Comparing with Table 1, we notice that the reIa-G.l times slower at rescoring, while UMT loses
tive ga_in on average training_ tim(_a is high_er_thanl_l BLEU points in accuracy. But again the ac-
the gain measured at decoding time. This is be(':uracy differences are not considered significant.

cause MERT h_ag an high_er complexjty than DRL'We measured g-value of 0.25, which is not sig-
Both of the training algorithms requires 10 train- nificant at the 0.1 level.

ing epochs to reach convergence.

Table 3 reports the accuracy measures. As eX5 Related Work
pected, accuracy degrades the more aggressively
the search space is pruned. UMT trained withModels sharing similar intuitions have been pre-
DRL loses2.0 BLEU points compared to HMT viously applied to other structure prediction tasks.
b30. This corresponds to a relative-loss of 6.33%For example, Nivre et al. (2006) presents a linear
Although not inconsequential, this variation istime syntactic dependency parser, which is con-
not considered big (e.g. at the WMT-11 Ma- strained in a left-to-right decoding order. This
chine Translation shared task (Callison-Burch emodel offers a different accuracy/complexity bal-
al.,, 2011)). To measure the significance of theance than the quadratic time graph-based parser of
variation, we compute the sign test and measurdicdonald et al. (2005).
the one-tailp-value for the presented models in  Other approaches learning a model specifically
comparison to HMTb30. From the values re- for greedy decoding have been applied with suc-

Table 3: Accuracy comparison.

16



cess to other less complex tasks. Shen et al. (200Manslation, and each correct derivation tree can be
present the Guided Learning (GL) framework forbuilt greedily following different inference orders.
bidirectional sequence classification. GL successtherefore, the set of correct decoding paths is a
fully combines the tasks of learning the order ofreasonable portion of UMT’s search space, giving
inference and training the local classifier in a sin-a well-designed greedy algorithm a chance to find
gle Perceptron-like algorithm, reaching state of thea good translation even without beam search.
art accuracy with complexity lower than the ex- In order to directly evaluate the impact of our
haustive counterpart (Collins, 2002). proposed decoding strategy, in this paper the only

Goldberg and Elhadad (2010) present a siminovel features that we consider are the CFF fea-
lar training approach for a Dependency Parser thaures. But to take full advantage of the power
builds the tree-structure by recursively creatingof discriminative training and the lower decoding
the easiest arc in a non-directional manner. Thigomplexity, it would be possible to vastly increase
model also integrates the tasks of learning the orthe number of features. The UMT’s undirected na-
der of inference and training the parser in a singldure allows the integration of non-bottom-up con-
Perceptron. By “non-directional” they mean thetextual features, which cannot be used by stan-
removal of the constraint of scanning the sentenceard HMT and PbMT. And the use of a history-
from left to right, which is typical of shift-reduce based model allows features from an arbitrarily
models. However this algorithm still builds the wide context, since the model does not need to be
tree structures in a bottom-up fashion. This modefactorized. Exploring the impact of this advantage
has aO(nlogn) decoding complexity and accu- is left for future work.
racy performance close to tli&(n?) graph-based
parsers (Mcdonald et al., 2005). 8 Conclusion

Similarities can be found between DRL and pre- ] o ) ]
vious work that applies discriminative training to '"'e main contribution of this work is the pro-
structured prediction: Collins and Roark (2004)P0sal of a new MT model that offers an accu-

present an Incremental Parser trained with the Pefacy/complexity balance that was previously un-
ceptron algorithm. Their approach is specific toavallable among the choices of hierarchical mod-

dependency parsing and requires a function to te&ls' _ _

exact match of tree structures to trigger parameter e have presented the first Undirected frame-
updates. On the other hand, DRL can be applied 40Tk for MT. This model combines advantages
any structured prediction task and can handle an§Vén by the use of hierarchical synchronous-
kind of reward function. LASO (Daumé Ill and 9rammars with a more efficient decoding algo-

Marcu, 2005; Daumé Il et al., 2005) and SEARNithm. UMT’s nature allows us to design novel
(Daumé Il et al., 2009; Daumé Il et al., 2008) undirected features that better approximate con-

are generic frameworks for discriminative training ©€xtual features (such as the LM), and to introduce
for structured prediction: LASO requires a func- & New class of undirected features that cannot be
tion that tests correctness of partial structures t&!S€d by standard bottom-up decoders. Further-
trigger early updates, while SEARN requires anMore, we generalize the training algorithm into
optimal policy to initialize the learning algorithm. & generic Discriminative Reinforcement Learning
Such a test function or optimal policy cannot beMeta-algorithm that can be applied to any struc-
computed for tasks such as MT where the hiddefured prediction task.
correspondence structuheis not provided in the
training data.

References

7 Discussion and Future Work Peter F. Brown, Vincent J. Della Pietra, Stephen
A. Della Pietra, and Robert L. Mercer. 1993.
In general, we believe that greedy-discriminative The mathematics of statistical machine translation:

solutions are promising for tasks like MT, where Pparameter estimation.Computational Linguistics,
there is not a single correct solution: normally 19:263-311.

there are many correct ways to translate .the SaME&1is Callison-Burch, Colin Bannard, and Josh
sentence, and for each correct translation there schroeder. 2005. Scaling phrase-based statisti-
are many different derivation-trees generating that cal machine translation to larger corpora and longer

17



phrases. IrACL '05: Proceedings of the 43rd Con-
ference of the Association for Computational Lin-
guistics, Ann Arbor, MI, USA.

Chris Callison-Burch, Philipp Koehn, Christof Monz,
and Omar Zaidan. 2011. Findings of the 2011 work-
shop on statistical machine translation WMT * 11.
Proceedings of the 6th Workshop on Statistical Ma-
chine Trandation, Edinburgh, Scotland.

David Chiang. 2005. A hierarchical phrase-based
model for statistical machine translation. ACL
'05: Proceedings of the 43rd Conference of the As-
sociation for Computational Linguistics, Ann Arbor,
MI, USA.

David Chiang. 2007. Hierarchical phrase-based trans-
lation. Computational Linguistics, 33(2):201-228.

Andrea Gesmundo and James Henderson.

Chris Dyer, Adam Lopez, Juri Ganitkevitch, Jonathan

Weese, Hendra Setiawan, Ferhan Ture, Vladimir Ei-
delman, Phil Blunsom, and Philip Resnik. 2010.
cdec: A decoder, alignment, and learning framework
for finite-state and context-free translation models.
In ACL ’10: Proceedings of the ACL 2010 System
Demonstrations, Uppsala, Sweden.

Yoav Freund and Robert E. Schapire. 1999. Large

margin classification using the perceptron algorithm.
Machine Learning, 37(3):277-296.

2011.
Heuristic Search for Non-Bottom-Up Tree Structure
Prediction. IEMNLP ' 11: Proceedingsof the 2011
Conference on Empirical Methods in Natural Lan-
guage Processing, Edinburgh, Scotland, UK.

Yoav Goldberg and Michael Elhadad. 2010. An effi-

Michael Collins and Brian Roark. 2004. Incremental
parsing with the perceptron algorithm. ACL ' 04:
Proceedings of the 42rd Conference of the Associa-
tion for Computational Linguistics.

Michael Collins. 2002. Discriminative training meth-

cient algorithm for easy-first non-directional depen-
dency parsing. IlNAACL '10: Proceedings of the
11th Conference of the North American Chapter of
the Association for Computational Linguistics, Los
Angeles, CA, USA.

ods for hidden markov models: Theory and experi-JoShua Goodman. 1999. Semiring parsiGgmputa-

ments with perceptron algorithms. EMNLP ’"02:
Proceedings of the 2002 Conference on Empirical
Methods in Natural Language Processing, Philadel-
phia, PA, USA.

Koby Crammer and Yoram Singer. 2003. Ultracon-
servative online algorithms for multiclass problems.
Journal of Machine Learning Research, 3:951-991.

Koby Crammer, Ofer Dekel, Shai Shalev-Shwartz, and
Yoram Singer. 2006. Online passive-aggressive al-
gorithms. Journal of Machine Learning Research,
7:551-585.

Hal Daumé Ill and Daniel Marcu. 2005. Learning
as search optimization: approximate large margin
methods for structured prediction. WML ’05:
Proceedings of the 22nd International Conference
on Machine Learning, Bonn, Germany.

Hal Daumé lll, John Langford, and Daniel Marcu.
2005. Search-based structured prediction as clas-
sification. In ASLTSP '05: Proceedings of the
NIPS Workshop on Advances in Structured Learn-
ing for Text and Speech Processing, Whistler, British
Columbia, Canada.

Hal Daumé lll, John Langford, and Daniel Marcu.
2006. Searn in practice. Technical report.

tional Linguistics, 25:573—-605.

Liang Huang and David Chiang. 2005. Better k-best

parsing. IN'WPT *05: Proceedings of the 9th Inter-
national Wbrkshop on Parsing Technology, Vancou-
ver, British Columbia, Canada.

Liang Huang and David Chiang. 2007. Forest rescor-

ing: Faster decoding with integrated language mod-
els. InACL '07: Proceedings of the 45th Confer-
ence of the Association for Computational Linguis-

tics, Prague, Czech Republic.

Liang Huang. 2008. Forest-based algorithms in natu-

ral language processing. Ph.D. thesis, University of
Pennsylvania.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.

2003. Statistical phrase-based translation.
NAACL '03: Proceedings of the 4th Conference of
the North American Chapter of the Association for
Computational Linguistics, Edmonton, Canada.

In

Zhifei Li, Chris Callison-Burch, Chris Dyer, San-

jeev Khudanpur, Lane Schwartz, Wren Thornton,
Jonathan Weese, and Omar Zaidan. 2009. Joshua:
An open source toolkit for parsing-based machine
translation. InWMT '09: Proceedings of the

4th Workshop on Statistical Machine Trandation,
Athens, Greece.

Hal Daumé IIl, John Langford, and Daniel Marcu. Percy Liang, Alexandre Bouchard-Coté, Dan Klein,

2009. Search-based structured predicti®@ibmit-
ted to Machine Learning Journal.

Hal Daumé Ill. 2006. Practical structured learning

techniques for natural language processing. Ph.D.
thesis, University of Southern California.

18

and Ben Taskar. 2006. An end-to-end discrimina-
tive approach to machine translation. @OLING-
ACL ' 06: Proceedingsof the 21st International Con-
ference on Computational Linguistics and the 44th
Conference of the Association for Computational
Linguistics, Sydney, Australia.



Adam Lopez. 2007. Hierarchical phrase-based trans-
lation with suffix arrays. InEMNLP-CoNLL '07:
Proceedings of the 2007 Joint Conference on Empir-
ical Methods in Natural Language Processing and
Computational Natural LanguageLearning, Prague,
Czech Republic.

Ryan Mcdonald, Koby Crammer, and Fernando
Pereira. 2005. Online large-margin training of de-
pendency parsers. I&CL '05: Proceedings of the
43rd Conference of the Association for Computa-
tional Linguistics, Ann Arbor, MI, USA.

Andrew Y. Ng and Stuart Russell. 2000. Algorithms
for inverse reinforcement learning. ICML ’"00:
Proceedingsof the 17th International Conference on
Machine Learning, Stanford University, CA, USA.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2006.
Maltparser: A data-driven parser-generator for de-
pendency parsing. 1hREC '06: Proceedings of
the 5th International Conference on Language Re-
sources and Evaluation, Genoa, Italy.

Franz Josef Och. 2003. Minimum error rate training
in statistical machine translation. ACL ’'03: Pro-
ceedings of the 41st Conference of the Association
for Computational Linguistics, Sapporo, Japan.

Frank Rosenblatt. 1958. The Perceptron: A proba-
bilistic model for information storage and organiza-
tion in the brain.Psychological Review, 65(6):386—
408.

Libin Shen, Giorgio Satta, and Aravind Joshi. 2007.
Guided learning for bidirectional sequence classifi-
cation. InACL '07: Proceedingsof the 45th Confer-
ence of the Association for Computational Linguis-
tics, Prague, Czech Republic.

Wei Wang, Kevin Knight, and Daniel Marcu. 2007.
Binarizing syntax trees to improve syntax-based ma-
chine translation accuracy. EMNLP-CoNLL ’07:
Proceedings of the 2007 Joint Conference on Empir-
ical Methods in Natural Language Processing and
Computational Natural LanguageLearning, Prague,
Czech Republic.

Kenji Yamada and Kevin Knight. 2001. A syntax-
based statistical translation model. AGL ' 01: Pro-
ceedings of the 39th Conference of the Association
for Computational Linguistics, Toulouse, France.

Hao Zhang, Liang Huang, Daniel Gildea, and Kevin
Knight. 2006. Synchronous binarization for ma-
chine translation. INAACL ' 06: Proceedingsof the
7th Conference of the North American Chapter of
the Association for Computational Linguistics, New
York, New York.

19



Minimum Translation Modeling with Recurrent Neural Networks

Yuening Hu
Department of Computer Science
University of Maryland, College Park

ynhu@cs.umd.edu

Abstract

We introduce recurrent neural network-
based Minimum Translation Unit (MTU)
models which make predictions based on
an unbounded history of previous bilin-
gual contexts. Traditional back-off n-gram
models suffer under the sparse nature of
MTUs which makes estimation of high-
order sequence models challenging. We
tackle the sparsity problem by modeling
MTUs both as bags-of-words and as a
sequence of individual source and target
words. Our best results improve the out-
put of a phrase-based statistical machine
translation system trained on WMT 2012
French-English data by up to 1.5 BLEU,
and we outperform the traditional n-gram
based MTU approach by up to 0.8 BLEU.

1 Introduction

Classical phrase-based translation models rely
heavily on the language model and the re-
ordering model to capture dependencies between
phrases. Sequence models over Minimum Trans-
lation Units (MTUs) have been shown to com-
plement both syntax-based (Quirk and Menezes,
2006) as well as phrase-based (Zhang et al., 2013)
models by explicitly modeling relationships be-
tween phrases. MTU models have been tradi-
tionally estimated using standard back-off n-gram
techniques (Quirk and Menezes, 2006; Crego and
Yvon, 2010; Zhang et al., 2013), similar to word-
based language models (§2).

However, the estimation of higher-order n-gram
models becomes increasingly difficult due to data
sparsity issues associated with large n-grams, even
when training on over one hundred billion words
(Heafield et al., 2013); bilingual units are much
sparser than words and are therefore even harder
to estimate. Another drawback of n-gram mod-
els is that future predictions are based on a limited

Michael Auli, Qin Gao, Jianfeng Gao
Microsoft Research
Redmond, WA, USA

{michael .auli, gigao, jfgao}@microsoft .com

amount of previous context that is often not suf-
ficient to capture important aspects of human lan-
guage (Rastrow et al., 2012).

Recently, several feed-forward neural network-
based models have achieved impressive improve-
ments over traditional back-off n-gram models in
language modeling (Bengio et al., 2003; Schwenk
et al., 2007; Schwenk et al., 2012; Vaswani et al.,
2013), as well as translation modeling (Allauzen et
al., 2011; Le et al., 2012; Gao et al., 2013). These
models tackle the data sparsity problem by rep-
resenting words in continuous space rather than
as discrete units. Similar words are grouped in
the same sub-space rather than being treated as
separate entities. Neural network models can be
seen as functions over continuous representations
exploiting the similarity between words, thereby
making the estimation of probabilities over higher-
order n-grams easier.

However, feed-forward networks do not directly
address the limited context issue either, since pre-
dictions are based on a fixed-size context, similar
to back-off n-gram models. We therefore focus
in this paper on recurrent neural network architec-
tures, which address the limited context issue by
basing predictions on an unbounded history of pre-
vious events which allows to capture long-span de-
pendencies. Recurrent architectures have recently
advanced the state of the art in language model-
ing (Mikolov et al., 2010; Mikolov et al., 2011a;
Mikolov, 2012) outperforming multi-layer feed-
forward based networks in perplexity and word er-
ror rate for speech recognition (Arisoy et al., 2012;
Sundermeyer et al., 2013). Recent work has also
shown successful applications to machine transla-
tion (Mikolov, 2012; Auli et al., 2013; Kalchbren-
ner and Blunsom, 2013). We extend this work by
modeling Minimum Translation Units with recur-
rent neural networks.

Specifically, we introduce two recurrent neu-
ral network-based MTU models to address the is-
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M1 M2 M3 M4 M5
T HER 24T it 2R
Yu ZuoTian  JuXing Le null HuiTan
held the mee{mg null yes'Eerday
M1: Yu => null

M2: ZuoTian => Yesterday

M3: JuXing_Le => held

M4: null => the

M5: HuiTan => meeting

Figure 1: Example Minimum Translation Unit
partitioning based on Zhang et al. (2013).

sues regarding data sparsity and limited context
sizes by leveraging continuous representations and
the unbounded history of the recurrent architec-
ture. Our first approach frames the problem as a
sequence modeling task over minimal units (§3).
The second model improves over the first by mod-
eling an MTU as a bag-of-words, thereby allow-
ing us to learn representations over sub-structures
of minimal units that are shared across MTUs
(84). Our models significantly outperform the tra-
ditional back-off n-gram based approach and we
show that they act complementary to a very strong
recurrent neural network-based language model
based solely on target words (§5).

2  Minimum Translation Units

Banchs et al. (2005) introduced the idea of framing
translation as a sequence modeling problem where
a sentence pair is generated in left-to-right order as
a sequence of bilingual n-grams. Minimum Trans-
lation Units (Quirk and Menezes, 2006; Zhang
et al., 2013) are an extension which additionally
permit tuples with empty source or target sides,
thereby allowing insertion or deletion phrase pairs.
The two basic requirements for MTUs are that
there are no overlapping word alignment links be-
tween phrase pairs and it should not be possible to
extract smaller phrase pairs without violating the
word alignment constraints. Informally, we can
think of MTUs as small phrase pairs that cannot
be broken down any further without violating the
two requirements.

Minimum Translation Units partition a sentence
pair into a set of minimal bilingual units or tu-
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Words MTUs
Tokens 34,769,416 14,853,062
Types 143,524 1,315,512
Singleton types 34.9% 80.1%

Table 1: Token and type counts for both source
and target words as well as MTUs based on the
WMT 2006 German to English data set (cf. §5).

ples obtained by an algorithm similar to phrase-
extraction (Koehn et al., 2003). Figure 1 illus-
trates such a partitioning. Modeling minimal units
has two advantages over considering larger phrase
pairs that are effectively composed of MTUs:
First, minimal units result in a unique partition-
ing of a sentence pair. This has the advantage that
we avoid modeling spurious derivations, that is,
multiple derivations generating the same sentence
pair. Second, minimal units result in smaller mod-
els with a smoother distribution than models based
on composed units (Zhang et al., 2013).

Sentence pairs can be generated in multiple or-
ders, such as left-to-right or right-to-left, either in
source or target order. For example, the source
left-to-right order of the sentence pair in Figure 1
is simply M1, M2, M3, M4, M5, while the tar-
get left-to-right order is M3, M4, M5, M1, M2.
We deal with inserted or deleted words similar to
Zhang et al. (2013): The source side null token of
an inserted target phrase is placed next to the last
source word aligned to the closest preceding non-
null aligned target phrase; a similar rule is applied
to null tokens on the target side. For example, in
Figure 1 we place M4 straight after M3 because
“the”, the aligned target phrase, is after “held”, the
previous non-null aligned target phrase.

We can straightforwardly estimate an n-gram
model over MTUs to estimate the probability
of a sentence pair using standard back-off tech-
niques commonly employed in language mod-
eling. For example, a trigram model in tar-
get left-to-right order factors the sentence pair in
Figure 1 as p(M3) p(M4|M3) p(M5|M3, M4)
p(M1|M4, M5)p(M2|M5, M1).

If we would like to model larger contexts, then
we quickly run into data sparsity issues. To illus-
trate this point, consider the parameter growth of
an n-gram model which is driven by the vocabu-
lary size |V/| and the n-gram order n: O(|V|").
Clearly, the exact estimation of higher-order n-



gram probabilities becomes more difficult with
large n, leading to the estimation of events with
increasingly sparse statistics, or having to rely
on statistics from lower-order events with back-
off models, which is less desirable. Even word-
based language models rarely ventured so far
much beyond 5-gram statistics as demonstrated
by Heafield et al. (2013) who trained a, by to-
day’s standards, very large 5-gram model on 130B
words. Data sparsity is therefore an even more sig-
nificant issue for MTU models relying on much
larger vocabularies. In our setting, the MTU vo-
cabulary is an order of magnitude larger than a
word vocabulary obtained from the same data (Ta-
ble 1). Furthermore, most MTUs are observed
only once making the reliable estimation of prob-
abilities very challenging.

Neural network-based sequence models tackle
the data sparsity problem by learning continuous
word representations, that group similar words to-
gether in continuous space. For example, the
distributional representations induced by recurrent
neural networks have been found to have interest-
ing syntactic and semantic regularities (Mikolov
et al., 2013). Furthermore, these representations
can be exploited to estimate more reliable statis-
tics over higher-order n-grams than with discrete
word units. Recurrent neural networks go beyond
fixed-size contexts and allow the model to keep
track of long-span dependencies that are important
for future predictions. In the next sections we will
present Minimum Translation Unit models based
on recurrent architectures.

3 Atomic MTU RNN Model

The first model we introduce is based on the recur-
rent neural network language model of Mikolov
et al. (2010). We frame the problem as a tradi-
tional sequence modeling task which treats MTUs
as atomic units, similar to the approach taken by
the traditional back-off n-gram models.

The model is factored into an input layer, a hid-
den layer with recurrent connections, and an out-
put layer (Figure 2). The input layer encodes the
MTU at time ¢ as a 1-of-N vector m; with all val-
ues being zero except for the entry representing
the MTU. The output layer y; represents a proba-
bility distribution over possible next MTUs; both
the input and output layers are of size |V|, the size
of the MTU vocabulary. The hidden layer state h,
encodes the history of all MTUs observed in the
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Figure 2: Structure of the atomic recurrent neu-
ral network MTU model following the word-based
RNN model of Mikolov (2012).

sequence up to time step ¢.

The state of the hidden layer is determined by
the input layer and the hidden layer configuration
of the previous time step h;_;. The weights of the
connections between the layers are summarized in
a number of matrices: U represents weights from
the input layer to the hidden layer, and W repre-
sents connections from the previous hidden layer
to the current hidden layer. Matrix V contains
weights between the current hidden layer and the
output layer.

The hidden and output layers are computed
via a series of matrix-vector products and non-
linearities:

ht = s(Umt + Whtfl)
yt =g(Vhy)

where

s(z) !

1 +exp{—z}’

exp {zm}

221 oxp {2k}

are sigmoid and softmax functions, respectively.
Additionally, the network is interpolated with a
maximum entropy model of sparse n-gram fea-
tures over input MTUs (Mikolov et al., 2011a).
The maximum entropy weights D are added to
the output activations before applying the softmax
function and are estimated jointly with all other
parameters (Figure 3).!

9(zm) =

'While these features depend on multiple input MTUs, we
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Figure 3: Structure of atomic recurrent neural net-
work MTU model with classing layer c; and direct
connections D between the input and output lay-
ers (cf. Figure 2).

The model is optimized via a maximum likeli-
hood objective function using stochastic gradient
descent. Training is based on the truncated back
propagation through time algorithm, which unrolls
the network and then computes error gradients
over multiple time steps (Rumelhart et al., 1986);
We use a Cross entropy criterion to obtain the error
vector with respect to the output activations and
the desired prediction. After training, the output
layer represents posteriors p(myq1|mi_, 1, hy),
the probability of the next MTU given the previ-
ous n input MTUS mi_ .\ = my,...,Mi_pt1
and the current hidden layer configuration hy.

Naive computation of the probability distribu-
tion over the next MTU is very expensive for large
vocabularies, such as commonly encountered for
MTU models (Table 1). A well established ef-
ficiency trick assigns each possible output to a
unique class and then uses a two-step process to
find the probability of an MTU, instead of comput-
ing the probability of all possible outputs (Good-
man, 2001; Emami and Jelinek, 2005; Mikolov et
al., 2011b). Under this scheme we compute the
probability of an MTU by multiplying the prob-
ability of its class ci with the probability of the

depicted them for simplicity as a connection between the
current input vector m; and the output layer.

23

minimal unit conditioned on the class:

p(mega|mi_, 1, he) =

p(Cﬂmi—nHa hy) p(mis1 |Ci, mi—n—i—lv hy)

This factorization reduces the complexity of com-
puting the output probabilities from O(|V|) to
O(|C| + max; |¢!|) where |C| is the number of
classes and |c!| is the number of minimal units
in class ¢’. The best case complexity O(\/W)
requires the number of classes and MTUs to be
evenly balanced, i.e., each class contains exactly
as many minimal units as there are classes.

Figure 3 illustrates how classing changes the
structure of the network by adding an additional
output layer for the class probabilities.

4 Bag-of-words MTU RNN Model

The previous model treats MTUs as atomic sym-
bols which leads to large vocabularies requir-
ing large parameter sets and expensive inference.
However, similar MTUs may share the same
words, or words which are related in continuous
space. The atomic MTU model does not exploit
this since it cannot access the internal structure of
a minimal unit.

The approach we pursue next is to break MTUs
into individual source and target words (Le et al.,
2012) in order to exploit structural similarities be-
tween infrequently observed minimal units. Sin-
gletons represent the vast majority of our MTU
vocabulary (Table 1). This resembles the word-
hashing trick of Huang et al. (2013) who repre-
sented individual words as a bag-of-character n-
grams to reduce the vocabulary size of a neural
network-based model in an information retrieval
setting.”

We first describe a theoretically appealing but
computationally expensive model and then discuss
a more practical variation. The input layer of this
model accepts the current minimal unit as a K-of-
N vector representing K source and target words
as opposed to the 1-of-N encoding of entire MTUs
in the previous model (Figure 4). Larger MTUs
may contain the same word more than once and we
simply adjust their count to one.? Different to the

2 Applying the same technique would likely result in too many
collisions since we are dealing with multi-word units instead
of single words.

3We found no effect on accuracy when using the unmodified
count in initial experiments.
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Figure 4: Structure of MTU bag-of-words recur-
rent neural network model. The input layer rep-
resents a minimal unit as a bag-of-words and the
output layer y; is a probability distribution over
possible next MTUs depending on the activations
of the word layer w; representing source and tar-
get words of minimal units.

previous model, the input vector has now multiple
active entries whose signals are absorbed into the
new hidden layer configuration.

This bag-of-words encoding of minimal units
dramatically reduces the vocabulary size but it in-
evitably maps different MTUs to the same encod-
ing. On our data set, we observe less than 0.2% of
minimal units that are involved in collisions, a rate
that is similar to Huang et al. (2013). In practice
collisions are unlikely to affect accuracy in our set-
ting because MTUs that are mapped to the same
encoding usually do not differ much in semantic
meaning as illustrated by the following examples:
erfolg haben — succeed collides with haben er-
folg — succeed, or damit, — to and , damit — to;
in both examples either the auxiliary verb haben or
the comma changes position, neither of which sig-
nificantly changes the meaning for this particular
pair of MTUs.

The structure of the bag-of-words MTU RNN
models is shown in Figure 4. Similar to the atomic
MTU RNN model (§3), the hidden layer combines
the signal from the input layer and the previous
hidden layer configuration. The hidden layer acti-
vations feed into a word layer w; representing the
source and target words that part of all possible
MTUs; it is of the same size as the input layer. The
word layer is connected to a convolutional out-
put layer y; by weights summarized in the sparse
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matrix C. The output layer represents all possi-
ble next minimal units, where each MTU entry is
only connected to neurons in the word layer repre-
senting its source and target words. The word and
MTU layers are then computed as follows:

s(Vhy)
9(Cwy)

Wi =

Y

However, there are a number of computational
issues with this model: First, we cannot efficiently
factor the word layer w; into classes such as for
the atomic MTU RNN model because we require
all its activations to compute the MTU output
layer y;. This reduces the best case complex-
ity of computing the word layer from (’)(m )
back to linear in the number of source and tar-
get words |V|. In practice this results in between
200-1000 more activations that need to be com-
puted, depending on the word vocabulary size.
Second, turning the MTU output layer into a con-
volutional layer is not enough to sufficiently re-
duce the computational effort to compute the out-
put activations since the number of connections
between the word and MTU layers is very imbal-
anced. This is because frequent words, such as
function words, are part of many MTUs and there-
fore have a very high out-degree, e.g., the neuron
representing “the” has over 82K outgoing edges.
On the other hand, infrequent words, have a very
low out-degree. This imbalance makes it hard
to efficiently compute activations and error gradi-
ents, even on a GPU, since some neurons require
substantially more work than others.*

For these reasons we decided to design a sim-
pler, more tractable version of this model (Fig-
ure 5). The simplified model still represents an
input MTU as a bag-of-words but minimal units
are generated word-by-word, first emitting source
words and then target words. This is in contrast
to the original model which predicted an MTU as
a single unit. Decomposing the next MTU into
individual words dramatically reduces the size of
the output layer, thereby resulting in faster com-
putation of the outputs and making normalization

*In initial experiments we found this model to be over twenty
times slower than the atomic MTU RNN model with esti-
mated training times of over 6 weeks. This was despite us-
ing a vastly smaller vocabulary and by computing the word
layer on a, by current standards, high-end GPU (NVIDIA
Tesla K20c) using sparse matrix optimizations (cuSPARSE)
for the convolutional layer.
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Figure 5: Simplified MTU bag-of-words recurrent
neural network model (cf. Figure 4). An MTU is
input as bag-of-words and the next MTU is pre-
dicted as a sequence of both source and target
words.

into probabilities easier. Furthermore, the output
layer can be factorized into classes requiring only
a fraction of the neurons to be computed, a much
more efficient solution compared to the original
model which required calculation of the entire out-
put layer.

The simplified model computes the probability
of the next MTU my41 as a product of individual
word probabilities:

(1)

p(mega|mi_, 1, he) =

p(ck|m€—n+1a ht)

where we predict a sequence of source and target
words a', ..., a% € myg4+1 With a class-structured
output layer, similar to the atomic model (§3).

Training still uses a cross entropy criterion and
back propagation through time, however, error
vectors are computed on a per-word basis, instead
of a per-MTU basis. Direct connections between
the input and output layers are based on source and
target words which is less sparse than basing direct
features on entire MTUs such as for the original
bag-of-words model.

Overall, the simplified model retains the bag-of-
words input representation of the original model,
while permitting the efficient factorization of the
word-output layer into classes.
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5 Experiments

We evaluate the effectiveness of both the atomic
MTU RNN model (§3) and the simplified bag-of-
words MTU RNN model (§4) in an n-best rescor-
ing setting, comparing against a trigram back-off
MTU model as well as the phrasal decoder 1-best
output which we denote as the baseline.

5.1 Experimental Setup

Baselines. We experiment with an in-house
phrase-based system similar to Moses (Koehn et
al., 2007), scoring translations by a set of common
features including maximum likelihood estimates
of source given target mappings pyrre(e|f) and
vice versa pyre(fle), as well as lexical weight-
ing estimates pry (e|f) and prw (f|e), word and
phrase-penalties, a linear distortion feature and
a lexicalized reordering feature. The baseline
includes a standard modified Kneser-Ney word-
based language model trained on the target-side of
the parallel corpora described below. Log-linear
weights are estimated with minimum error rate
training (MERT; Och, 2003).

The 1-best output by the phrase-based decoder
is the baseline accuracy. As a second baseline we
experiment with a trigram back-off MTU model
trained on all extracted MTUs, denoted as n-gram
MTU. The trigram MTU model is estimated with
the same modified Kneser-Ney framework as the
target side language model. All MTU models are
trained in target left-to-right MTU order which
performed well in initial experiments.
Evaluation. We test our approach on two differ-
ent data sets. First, we train a German to English
system based on the data of the WMT 2006 shared
task (Koehn and Monz, 2006). The parallel corpus
includes about 35M words of parliamentary pro-
ceedings for training, a development set and two
test sets with 2000 sentences each.

Second, we experiment with a French to En-
glish system based on 102M words of training data
from the WMT 2012 campaign. The majority of
the training data set is parliamentary proceedings
except for about Sm words which are newswire; all
MTU models are trained on the newswire subset
since we found similar accuracy to using all data in
initial experiments. We evaluate on four newswire
domain test sets from 2008, 2010 and 2011 as well
as the 2010 system combination test set contain-
ing between 2034 to 3003 sentences. Log-linear
weights are estimated on the 2009 data set com-



prising 2525 sentences. We evaluate all systems
in a single reference BLEU setting.

Rescoring Setup. We rescore the 1000-best out-
put of the baseline phrase-based decoder by ei-
ther the trigram back-off MTU model or the
RNN models. The baseline accuracy is obtained
by choosing the 1-best decoder output. We re-
estimate the log-linear weights for rescoring by
running a further iteration of MERT with the ad-
ditional feature values; we initialize the rescoring
feature weight to zero and try 20 random restarts.
At test time we use the new set of log-linear
weights to rescore the test set n-best list.

Neural Network Setup. We trained the recur-
rent neural network models on between 88% and
93% of each data set and used the remainder as
validation data. The vocabulary of the atomic
MTU RNN model is comprised of all MTU types
which were observed more than once in the train-
ing data.’ Similarly, we modeled all non-singleton
words for the bag-of-words MTU RNN model.
We obtain classes for words or MTUs using a
version of Brown-Clustering with an additional
regularization term to optimize the runtime of
the language model (Brown et al., 1992; Zweig
and Makarychev, 2013). Direct connections use
features over unigrams, bigrams and trigrams of
words or MTUs, depending on the model. Fea-
tures are hashed to a table with at most 500 million
values following Mikolov et al. (2011a). We use
the standard settings for the model with the default
learning rate o = 0.1 that decays exponentially if
the validation set entropy does not decrease. Back
propagation through time computes error gradi-
ents over the past twenty time steps. Training
is stopped after 20 epochs or when the valida-
tion entropy does not decrease over two epochs.
Throughout, we use a hidden layer size of 100
which provided a good trade-off between time and
accuracy in initial experiments.

5.2 Results

We first report the decoder 1-best output as the
first baseline and then rescore our two data sets
(Table 2 and Table 3) with the n-gram back-off
MTU model to establish a second baseline (n-
gram MTU). The n-gram model improves by 0.4
BLEU over the decoder 1-best on all test sets for
German to English. On French-English accuracy

SWe tried modeling all MTUs which did not contain a single-
ton word but observed no significant effect on accuracy.

26

dev | testl | test2
Baseline 25.8 | 26.0 | 26.0
n-gram MTU 26.3 | 26.6 | 26.4
atomic MTU RNN | 26.5 | 26.8 | 26.5
BoW MTU RNN 26.5 | 27.0 | 26.9
word RNNLM 26.5 | 27.1 | 26.8
Combined 26.8 | 27.3 | 27.1

Table 2: German to English BLEU results for
the decoder 1-best output (Baseline) compared to
rescoring with a target left-to-right trigram MTU
model (n-gram MTU), our two recurrent neural
network-based MTU models, a word-based RNN-
based language model (word RNNLM), as well
as a combination of the three RNN-based models
(Combined).

improves on three out of five sets by up to 0.7
BLEU.

Next, we evaluate the accuracy of the MTU
RNN models. The atomic MTU RNN model im-
proves over the n-gram MTU model on all test sets
for German to English, however, for French to En-
glish the back-off model performs better on two
out of four test sets.

The next question we answer is if breaking
MTUs into individual units to leverage similarities
in the internal structure can help accuracy. The re-
sults (Table 2 and Table 3) for the bag-of-words
model (BoW MTU RNN) clearly show that this is
the case for both language pairs. We significantly
improve over the n-gram MTU model as well as
the atomic RNN model on all test sets. We observe
gains of up to 0.5 BLEU over the n-gram MTU
model for German to English as well as French to
English; improvements over the decoder baseline
are up to 1.2 BLEU for French to English.

How do our models compare to other neural net-
work approaches that rely only on target side in-
formation? To answer this question we compare
to the strong language model of Mikolov (2012;
RNNLM) which has recently improved the state-
of-the-art in language modeling perplexity. The
results (Table 2 and Table 3) show that RNNLM
performs competitively. However, our approaches
model translation since we use both source and tar-
get information as opposed to scoring only the flu-
ency of the target side, such as done by RNNLM.

Can our models act complementary to a strong
RNN language model? Our final experiment com-
bines the atomic MTU RNN model, the BoW



dev | news2008 | news2010 | news2011 | newssyscomb2010
Baseline 24.3 20.5 24.4 25.1 24.3
n-gram MTU 24.6 20.8 24.4 25.8 24.3
atomic MTU RNN | 24.6 20.7 24.4 25.5 24.3
BoW MTU RNN | 25.2 21.2 24.8 26.3 24.6
word RNNLM 25.1 21.4 25.1 26.4 24.9
Combined 25.4 21.4 25.1 26.6 24.9

Table 3: French to English BLEU results for the decoder 1-best output (Baseline) compared to various

MTU models (cf. Table 2).

MTU RNN model, and the RNNLM (Combined).
The results (Table 2 and Table 3) confirm that this
is the case. For German to English translation
accuracy improves by 0.2 to 0.3 BLEU over the
RNNLM alone, with gains of up to 1.3 BLEU over
the baseline and up to 0.7 BLEU over the n-gram
MTU model. Improvements for French to English
are lower but we can see some gains on news2011
and on the dev set. Overall, we improve accuracy
on the French to English task by up to 1.5 BLEU
over the decoder 1-best, and by up to 0.8 BLEU
over the n-gram MTU model.

6 Related Work

Our approach of modeling Minimum Translation
Units is very much in line with recent work on n-
gram-based translation models (Crego and Yvon,
2010), and more recently, continuous space-based
translation models (Le et al., 2012). The mod-
els presented in this paper differ in a number of
key aspects: We use a recurrent architecture repre-
senting an unbounded history of MTUs rather than
a feed-forward style network. Feed-forward net-
works as well as back-off n-gram models rely on a
finite history which results in predictions indepen-
dent of anything but a short context of words. A
recent side-by-side comparison between recurrent
and feed-forward style neural networks (Sunder-
meyer et al., 2013) has shown that recurrent ar-
chitectures outperform feed-forward networks in
a language modeling task, a similar problem to
modeling sequences over Minimum Translation
Units.

Furthermore, the input of our best model is a
bag-of-words representation of an MTU, unlike
the ordered source and target word n-grams used
by Crego and Yvon (2010) as well as Le et al.
(2012). Finally, we model both source and target
words in a single recurrent neural network. The
approach of Le et al. (2012) factorizes the joint
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probability over an MTU sequence in a way that
suggests the use of separate neural network mod-
els for the source and the target sides, where each
model generates words on the respective side only.

Other work on applying recurrent neural net-
works to machine translation (Mikolov, 2012; Auli
et al.,, 2013; Kalchbrenner and Blunsom, 2013)
concentrated on word-based language and transla-
tion models, whereas we model Minimum Trans-
lation Units.

7 Conclusion and Future Work

Minimum Translation Unit models based on recur-
rent neural networks lead to substantial gains over
their classical n-gram back-off models. We intro-
duced two models of which the best improves ac-
curacy by up to 1.5 BLEU over the 1-best decoder
output, and by 0.8 BLEU over a trigram MTU
model in an n-best rescoring setting.

Our experiments have shown that representing
MTUs as bags-of-words leads to better accuracy
since this exploits similarities in the internal struc-
ture of Minimum Translation Units, which is not
possible when modeling them as atomic symbols.
We have also shown that our models are comple-
mentary to a very strong RNN language model
(Mikolov, 2012).

In future work, we would like to make the initial
version of the bag-of-words model computation-
ally more tractable using a better GPU implemen-
tation. This model combines the efficient bag-of-
words input representation with the ability to pre-
dict MTUs as single units while explicitly model-
ing the constituent words in an intermediate layer.
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Abstract

Given a pair of source and target language
sentences which are translations of each other
with known word alignments between them,
we extract bilingual phrase-level segmenta-
tions of such a pair. This is done by identi-
fying two appropriate measures that assess the
quality of phrase segments, one on the mono-
lingual level for both language sides, and one
on the bilingual level. The monolingual mea-
sure is based on the notion of partition refine-
ments and the bilingual measure is based on
structural properties of the graph that repre-
sents phrase segments and word alignments.
These two measures are incorporated in a ba-
sic adaptation of the Cross-Entropy method
for the purpose of extracting an N-best list
of bilingual phrase-level segmentations. A
straight-forward application of such lists in
Statistical Machine Translation (SMT) yields
a conservative phrase pair extraction method
that reduces phrase-table sizes by 90% with
insignificant loss in translation quality.

1 Introduction

Given a pair of source and target language sen-
tences which are translations of each other with
known word alignments between them, the problem
of extracting high quality bilingual phrase segmen-
tations is defined as follows: Maximize the quality
of phrase segments, i.e., groupings of consecutive
words, in both language sides, subject to constraints
imposed by the underlying word alignments. The
purpose of this work is to provide a solution to this
maximization problem and investigate the effect of
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the resulting high quality bilingual phrase segments
on SMT. For brevity, ‘phrase-level sentence segmen-
tation” and ‘phrase segment’ will henceforth be sim-
ply referred to as ‘segmentation’ and ‘segment’ re-
spectively.

The exact definition of segments’ quality depends
on the application. Our notion of a segmentation of
maximum quality is defined as the set of consecutive
words of the sentence that captures maximum col-
locational and/or grammatical characteristics. This
implies that a sequence of tokens is identified as a
segment if its fully compositional expressive power
is higher than the expressive power of any combina-
tion of partial compositions. Since this definition is
fairly general it is thus suitable for most NLP tasks.
In particular, it is tailored to the type of segments
that are suitable for the purposes of SMT and is in
line with previous work (Blackwood et al., 2008;
Paul et al., 2010).

With this definition in mind, we introduce a
monolingual segment quality measure that is based
on assessing the cost of converting one segmentation
into another by means of an elementary operation.
This operation, namely the ‘splitting’ of a segment
into two segments, together with all possible seg-
mentations of a sentence are known to form a par-
tially ordered set (Guo, 1997). Such a construction
is known as partition refinement and gives rise to the
desired monolingual surface quality measure.

The presence of word alignments between the
sentence pair provides additional structure which
should not be ignored. In the language of graph the-
ory, a segment can also be viewed as a chain, i.e., a
graph in which vertices are the segment’s words and
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an edge between two words exists if and only if these
words are consecutive. Then, a bilingual segmenta-
tion is represented by the graph that is formed by all
its source and target language chains together with
edges induced by word alignments. Motivated by
the phrase pair extraction methods of SMT (Och et
al., 1999; Koehn et al., 2003), we focus on the con-
nected components, or simply components of such a
representation. We explain that the extent to which
we can delete word alignments from a component
without violating its component status, gives rise to
a bilingual, purely structural quality measure.

The surface and structural measures are incorpo-
rated in one algorithm that extracts an IN-best list
of bilingual word-aligned segmentations. This algo-
rithm, which is an adaptation of the Cross-Entropy
method (Rubinstein, 1997), performs joint maxi-
mization of surface (in both languages) and struc-
tural quality measures. Components of graph repre-
sentations of the resulting /N-best lists give rise to
high quality translation units. These units, which
form a small subset of all possible (continuous) con-
sistent phrase pairs, are used to construct SMT mod-
els. Results on Czech—English and German—English
datasets show a 90% reduction in phrase-table sizes
with insignificant loss in translation quality which
are in line with other pruning techniques in SMT
(Johnson et al., 2007; Zens et al., 2012).

2 Monolingual Surface Quality Measure

Given a sentence $1Ss...S; that consists of words
si, 1 < 4 < k, we introduce an empirical count-
based measure that assesses the quality of its seg-
mentations. By fixing a segmentation o, we are in-
terested in assessing the cost of perturbing ¢ and
generating another segmentation ¢’. A perturbation
of o is achieved by splitting a segment of ¢ into
two new segments, while keeping all other segments
fixed. For example, for a sentence with five words, if
: (s152)(s35485), where brackets are used to dis-
tinguish the segments s;s2 and s3s455, then o can
be perturbed in three different ways:

g

e o' : (s1)(s2)(s38485), by splitting the first seg-
ment of o.

o 0" : (s182)(s3)(s485), by splitting at the first

position of the second segment of o.
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e o : (s152)(s3s4)(s5), by splitting at the sec-

ond position of the second segment of o,

so that ¢/, ¢” and ¢ are the perturbations of o.
Such perturbations are known as partition refine-
ments in the literature (Stanley, 1997). The set of all
segmentations of a sentence, equipped with the split-
ting operation forms a partially ordered set (Guo,
1997), and its visual representation is known as the
Hasse diagram. Figure 1 shows such a partially or-
dered set for a sentence with four words.

(51525354)

(s)(s,858,)  (s,5,)(s55,) (5,5,55)(s,)

Figure 1: Hasse diagram of segmentation refine-
ments for a sentence with four words.

The cost of perturbing a segmentation into an-
other, i.e., the weight of a directed edge in the Hasse
diagram, is calculated from n-gram counts that are
extracted from a monolingual training corpus. Let
n(s) be the empirical count of phrase s in the corpus.
Given a segmentation o of a sentence, let seg(o) de-
note the set of ¢’s segments. In the above example
we have for instance seg(c”) = {si1s2,53,5485}.
The probability of s in o is given by relative fre-
quencies

n(s) '
Zs’eseg(o') n(sl)

ey

pg(S)

The cost of perturbing o into o’ by splitting a seg-
ment s5 of ¢ into segments s and § is defined by

Do (85)

_— 2
Por ()P0 ()’ @

costy_.,(8,5) = log
and we say that s and § are co-responsible for the
perturbation o — ¢’. Intuitively, this cost function
yields the amount of energy (log of probability) that
is lost when performing a perturbation. On a more



technical level, it is closely related to metric spaces
on partially ordered sets (Monjardet, 1981; Orum
and Joslyn, 2009), but we do not go into further de-
tails here.

The cost function admits a measure for the seg-
ments that are co-responsible for perturbing o into
o’ and we define the gain of s from the perturbation
o— o as

gain,_,,.(8) = —costy (s, §). 3)
A segment s may be co-responsible for different per-
turbations, and we have to consider all such pertur-
bations. Let

R(s)={0c — o' : s ¢ seq(0),s € seg(c’)} (4)

denote the set of perturbations for which s is co-
responsible. Then, the average gain of s in the sen-
tence is given by

2

{o—0d'}€R(s)

gain(s) = gaing_,,(s). (5)

|R(s)]

Intuitively, gain(s) measures how difficult it is to
break phrase s into sub-phrases. Finally, the surface
quality measure of a segmentation o of a sentence is
given by

Z gain(s).

s€seg(o)

(6)

g9(o)

Note that g is a real number. The relation g(o) >
g(c’) implies that o is a better segmentation than o”.

We conclude this section with two remarks: (i)
The exact computation of gain(s) for each possi-
ble segment s is computationally expensive since
all perturbations need to be considered. In prac-
tice we can simply generate a random sample of no
more than 1500 segmentations and compute gain(-)
based on that sample only. (ii) Each sentence of
the monolingual training corpus (from which the n-
gram counts are extracted) should have the begin-
ning and end-of-sentence tokens. The count for each
of them is equal to the number of sentences in the
corpus, and they are treated as regular words. With-
out going into further details they provide the pur-
pose of normalization.

32

3 Bilingual Structural Quality Measure

Given a word-aligned sentence pair, we introduce a
purely structural measure that assesses the quality of
its bilingual segmentations. By ‘purely structural’
we mean that the focus is entirely on combinatorial
aspects of the bilingual segmentations and the word
alignments. For that reason we turn to a graph theo-
retic framework.

A segment can also be viewed as a chain, i.e., a
graph in which vertices are the segment’s words and
an edge between two words exists if and only if these
words are consecutive. Then, a source segmentation
o and a target segmentation 7 are graphs that con-
sist of source chains and target chains respectively.
The graph formed by o, 7 and the translation edges
induced by word alignments is thus a graph repre-
sentation of a bilingual word-aligned segmentation.

We focus on a particular type of subgraphs of this
representation, namely its connected components, or
simply components. A component is a graph such
that (a) there exists a path between any two of its
vertices, and (b) there does not exist a path between
a vertex of the component and a vertex outside the
component. Condition (a) means, both technically
and intuitively, that a component is connected and
Condition (b) requires connectivity to be maximal.

Components play a key role in SMT. The most
widely used strategy for extracting high quality
phrase-level translations without linguistic informa-
tion, namely the consistency method (Och et al.,
1999; Koehn et al., 2003) is entirely based on com-
ponents of word aligned unsegmented sentence pairs
(Martzoukos et al., 2013). In particular, each ex-
tracted translation is either a component or the union
of components. Since an unsegmented sentence
pair is just one possible configuration of all possi-
ble bilingual segmentations, we consequently have
no direct reason to investigate further than compo-
nents.

In order to get an intuition of the measure that will
be introduced in this section, we begin with an ex-
ample. Figure 2, shows two different configurations
of the pair (o, 7) for the same sentence pair with
known and fixed word alignments. Both configu-
rations have the same number of edges that connect
source vertices (3) and the same number of edges
that connect target vertices (2). However, one would
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I (3] [4]
2] [3]
Figure 2: Graph representations of two bilingual
segmentations with fixed word alignments. Source

and target vertices are shown with circles and
squares respectively.

expect the top configuration to represent a better

bilingual segmentation. This is because it has more

components (4 opposed to 2 for the bottom config-

uration) and because it consists of ‘tighter’ clusters,
e., ‘tighter’ components.

A general measure that would capture this obser-
vation requires a balance between the number of
edges of source and target chains, the number of
components and the number of translation edges, all
coupled with how these edges and vertices are con-
nected. This might seem as a daunting task that can
be tackled with a combination of heuristics, but there
is actually a graph-theoretic measure that can fully
describe the sought structure. We proceed with in-
troducing this measure.

Let C denote the set of components of the graph
representation of a bilingual word-aligned segmen-
tation. We are interested in measuring the extent to
which we can delete translation edges from ¢ € C,
while retaining its component status. Let a. denote
the subset of translation edges that are restricted to
the component c. We define the positive integer

gain(c) = number of ways of

deleting translation edges from a.,

(N

while keeping ¢ connected,

where the option of deleting nothing is counted. In-
tuitively, by keeping the edges of the chains fixed
the quantity gain(c) measures how difficult it is to
perturb a component from its connected state to a
disconnected state.

Figure 3 shows two components ¢ and ¢’ that sat-
isfy gain(c) = gain(c’) = 3. Both components
are equally difficult to be perturbed into a discon-
nected state, but only superficially. The actual struc-
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tural quality of cis revealed when it is ‘compared’ to
component ¢ that consists of the same source and tar-
get vertices, the same translation edges but its source
vertices form exactly one chain and similarly for its
target vertices; ¢ is essentially the ‘upper bound’ of
c. In general, the maximum value of gain(c), with

TN
1l
K

Figure 3: Superficially similar components ¢ and ¢'.
Comparing c with ¢ yields ¢’s true structural quality.

¢

respect to a fixed set of source and target vertices
and translation edges, is attained when it consists
of exactly one source chain and exactly one target
chain. It is not difficult to see that the desired max-
imum value is always 2/%| — 1. In the example of
Figure 3, the structural quality of ¢ and ¢ is thus
3/(25—1) =9.7% and 3/(2%2 — 1) = 100% respec-
tively. Hence, the measure that evaluates the struc-
tural quality of a bilingual word-aligned segmenta-

tion (o, 7) is given by
gain(c)

1
( )Cl
ceC 2|(ZC| -1

which takes values in (0, 1]. The relation f(o,7) >
f(o',7") implies that (o, 7) is a better bilingual seg-
mentation than (o/, 7).

We conclude this section with two remarks: (i) A
component with no translation edges, i.e., a source
or target segment whose words are all unaligned, has
a contribution of 1/0 in (8). In practice we exclude
such components from C'. (ii) In graph theory the
quantity gain(c) is known as the number of con-
nected spanning subgraphs (CSSGs) of graph ¢ and
is the key quantity of network reliability (Valiant,
1979; Coulbourn, 1987). Finding the number of
CSSGs of a general graph is a known #P-hard prob-
lem (Welsh, 1997). In our setting, graphs have spe-
cific formation (source and target chains connected
via translation edges) and we are interested in the
deletion of translation edges only; it is possible to

f(o,7) ®)



compute gain(-) in polynomial time, but we do not
go into further details here.

4 Extracting Bilingual Segmentations with
the Cross-Entropy Method

Equipped with the measures of Sections 2 and 3 we
turn to extracting an /N -best list of bilingual segmen-
tations for a given sentence pair. The search space is
exponential in the total number of words of the sen-
tence pair. We propose a new approach for this task,
by noting a direct connection with the combinato-
rial problems that can be solved efficiently and ef-
fectively with the Cross-Entropy (CE) method (Ru-
binstein, 1997).

The CE method is an iterative self-tuning sam-
pling method that has applications in various com-
binatorial and continuous global optimization prob-
lems as well as in rare event detection. A detailed
account on the CE method is beyond the scope of
this work, and we thus simply describe its applica-
tion to our problem.

In particular, we first establish the connection be-
tween the most basic form of the CE method and the
problem of finding the best monolingual segmen-
tation of a sentence, with respect to some scoring
function (not necessarily the one that was introduced
in Section 2). This connection yields a simple, ef-
ficient and effective algorithm for the monolingual
maximization problem. Then, the transition to the
bilingual level is done by incorporating the measure
of Section 3 in the algorithm, thus performing joint
maximization of surface and structural quality. Fi-
nally, the generation of the N-best list will be trivial.

A segmentation of a given sentence has a bit-
string representation in the following way: If two
consecutive words in the sentence belong to the
same segment in the segmentation, then this pair of
words is encoded by ‘1°, otherwise by ‘0’. Such a
representation is bijective and, thus, for the rest of
this section, we do not distinguish between a seg-
mentation and its bit-string representation. In this
setting, the CE method takes its most basic form
(De Boer et al., 2005). In a nutshell, it is a re-
peated application of (a) sampling bit-strings from
a parametrized probability mass function, (b) scor-
ing them and keeping only a small high-performing
subsample, and (c) updating the parameters of the
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probability mass function based on that subsample
only.

We assume no prior knowledge on the quality
of bit-strings, so that they are all equally likely. In
other words, each position of a randomly chosen
bit-string can be either a ‘0’ or a ‘1’ with probability
1/2. The aim is to tune these position probabilities
towards the best bit-string, with respect to some
scoring function g. In particular, let the sentence
have n words and let £ = n — 1 be the length of
bit-strings. A bit-string labeled by an integer ¢ is
denoted by b; and its jth bit by b;;. The algorithm is
as follows:

0. [Initialize the bit-string position probabilities
p° = (Y, ....pY) = (1/2,...,1/2) and set M = 20¢
(sample size), p [1%M] (keep top 1% of
samples), o = 0.7 (smoothing parameter) and ¢t = 1
(iteration).

1. Generate a sample by, ..., bys of bit-strings, each
of length /, such that b;; NBernoulli(pﬁ_l), for all
t=1,...Mandj=1,... ¢

1.1 Compute scores g(b1), ..., g(bar).

1.2 Order them descendingly as g(bﬂ(l)) > .
g(bTK'(M))

>

2. Focus on the best performing ones: Compute
Y = g(br(p)); samples performing less than this
threshold will be ignored.

3. Use the best performing sub-sample of b1, ..., bas
M

to update position probabilities:
>iz1 Li(7e)bij
Zi]\il Ii(ve)

where the choice function I; is given by

t

pj = .,E, (9)

3 g ..

L,
0,

if g(bi) > "
otherwise.

Li(y) = {

4. Smooth the updated position probabilities as

t—1

pii=api+(1—a)p ™, j=1,...0 (10)

E.Ifforsomet > bwehaveyy = y—1 = ... = %—5
then stop. Else, ¢t := ¢ + 1 and go to Step 1.



The values for the parameters M, p and « re-
ported here are in line with the ones suggested in the
literature (Rubinstein and Kroese, 2004) for combi-
natorial problems such as this one. After the execu-
tion of the algorithm, the updated vector of position
probabilities converges to sequence of ‘0’s and ‘1’s,
which corresponds to the best segmentation under g.

The extension to bilingual level is done by incor-
porating the structural quality measure of Section 3.
The setting is similar, i.e., samples are again bit-
strings, but of length / = n 4+ m — 2, where n and
m are the number of words in the source and tar-
get sentence respectively. The first n — 1 bits corre-
spond to the source sentence and the rest to the target
sentence. The surface quality score of such a bit-
string is given by the harmonic mean of its source
and target surface quality scores.! The bit-string
scoring function throughout Steps 1 — 3 is given by
the harmonic mean of surface and structural quality
scores. Finally, N-best lists are trivially generated,
simply by collecting the top-N performing accumu-
lated samples of a maximization process.

5 Experiments

Given a sentence pair with known and fixed word
alignments, the result of the method described in
Section 4 is an NN-best list of bilingual segmenta-
tions of such a pair. The objective function provides
a balance between compositional expressive power
of segments in both languages and synchronization
via word alignments. Thus, each (continuous) com-
ponent of such a bilingual segmentation leads to the
extraction of a high quality phrase pair.

As was mentioned in Section 3, each extracted
phrase pair of standard phrase-based SMT is con-
structed from a component or from the union of
components of an unsegmented word-aligned sen-
tence pair. For each sentence pair, all possible
(continuous) components and (continuous) unions
of components give rise to the extracted (contin-
uous) phrase pairs. In this section we investigate
the impact to SMT models and translation quality,
when extracting phrase pairs (from the /V-best lists)

'As it was mentioned in Section 2 the surface quality score
in (6) is a real number. At each iteration of the algorithm the
surface score of a segmentation can be converted into a number
in [0, 1] via Min-Max normalization. This holds for both source
and target sides of a bit-string (independently).

35

Cz-En De-En
Europarl (v7) 642,505 | 1,889,791
News Commentary (v8) | 139,679 | 177,079
Total 782,184 | 2,066,870

Table 1: Number of filtered parallel sentences for
Czech—English and German—English.

that correspond to components only. A reduction
in phrase-table size is guaranteed because we are
essentially extracting only a subset of all possible
continuous phrase pairs. The challenge is to verify
whether this subset can provide a sufficient transla-
tion model.

Both the baseline and our system are standard
phrase-based MT systems. Bidirectional word align-
ments are generated with GIZA++ (Och and Ney,
2003) and ‘grow-diag-final-and’. These are used
to construct a phrase-table with bidirectional phrase
probabilities, lexical weights and a reordering model
with monotone, swap and discontinuous orienta-
tions, conditioned on both the previous and the next
phrase. 4-gram interpolated language models with
Kneser-Ney smoothing are built with SRILM (Stol-
cke, 2002). A distortion limit of 6 and a phrase-
penalty are also used. All model parameters are
tuned with MERT (Och, 2003). Decoding during
tuning and testing is done with Moses (Koehn et. al,
2007). Since our system only affects which phrases
are extracted, lexical weights and reordering orien-
tations are the same for both systems.

Datasets are from the WMT’13 translation task
(Bojar et al.,, 2013): Translation and reordering
models are trained on Czech-English and German—
English corpora (Table 1). Language models and
segment measures gain, as defined in (5), are trained
on 35.3M Czech, 50.0M German and 94.5M En-
glish sentences from the provided monolingual data.
Tuning is done on newstest2010 and performance
is evaluated on newstest2008, newstest2009, new-
stest2011 and newstest2012 with BLEU (Papineni
etal., 2001).

In our experiments the size of an N-best list varies
according to the total number of words in the sen-
tence pair, say w. For the purposes of phrase ex-
traction in SMT we would ideally require all local
maxima to be part of an N-best list. This would



Method Czech—English English—Czech Czech—English

08 | 709 | C11 | ’12 08 | 09 | ’11 | ’12 PT size (retain%)
Baseline 19.6 | 20.6 | 22.6 | 20.6 14.8 | 15.6 | 16.6 | 14.9 44.6M (100%)
N-best 19.7120.4 224|203 144152163 |14.3 4.4M (9.8%)
N-best & unseg. 19.6 | 20.5 | 22.6 | 20.7 14.6 | 154 | 16.8 | 14.7 4.6M (10.4%)

Table 2: BLEU scores and phrase-table (PT) sizes for Czech—-English. Phrase-table of ‘Baseline’ is con-
structed from all consistent phrase pairs. Phrase-table of ‘N-best’ is constructed from consistent phrase
pairs that are components of the top-/V bilingual word-aligned segmentations of each sentence pair. Simi-
larly for ‘N-best & unseg.’, but consistent phrase pairs that are components of each (unsegmented) sentence

pair are also included.

Method German—English English—German German—English

08 | 09 | ’11 | 12 08 | 09 | ’11 | ’12 PT size (retain%)
Baseline 21.4120.8|21.3|22.1 15.1 1 15.1|16.0 | 16.5 102.3M (100%)
N-best 21.3120.6 | 21.3|21.8 15.0| 15.0| 15.6 | 16.0 9.4M (9.2%)
N-best & unseg. | | 21.5|20.8|21.5|220| |154|152|157]16.2 9.9M (9.7%)

Table 3: Similar to Table 2, but for German—English.

guarantee the extraction of all high quality phrase
pairs, with (empirically) desired variations, while
keeping N small. Since the CE method performs
global optimization, the resulting members of an N-
best list are in the vicinity of the global maximum.
Consequently, we cannot guarantee the inclusion of
local maxima. We set N = [30%w] so that at
least some variation from the global maximum is in-
cluded, but is not large enough to contaminate the
lists with noisy bilingual segmentations. The result-
ing lists have 22 bilingual segmentations on aver-
age for both language pairs. Figure 4 shows typical
German—English best performing bilingual segmen-
tations.

BLEU scores are reported in Tables 2 and 3 for
Czech—English and German-English respectively.
Methods ‘Baseline’ and ‘N-best’ are the ones de-
scribed above. Phrase-table sizes are reduced as
expected and performance when translating to En-
glish is comparable. The significant drops in new-
stest2012 when translating from the morphologi-
cally poorer language (English) prompts us to in-
clude more ‘basic’ phrase pairs in the phrase-tables.
This leads to augmenting each N-best list by its un-
segmented sentence pair. Consequently, method ‘/NV-
best & unseg.’” extracts the same phrase pairs as ‘/V-
best’, together with those from components of the

unsegmented sentence pairs. As a result, transla-
tion quality is comparable to ‘Baseline’ across all
language directions and small phrase-table sizes are
retained.

6 Discussion and Future Work

This work can also be viewed as an attempt to un-
derstand bilinguality as a generalization of mono-
linguality. There is conceptual common ground on
what gain(x) for phrase x (Section 2) or component
x (Section 3) computes. In both cases it measures
how ‘stable’ a unit is. The stability of a phrase x is
determined by how difficult it is to split z into multi-
ple phrases. The partially ordered set framework of
partition refinements is the natural setting for such
computations. In order to determine the stability
of a component we turn to empirical evidence from
SMT: ‘good’ phrase pairs are extracted from com-
ponents or unions of components of the graph that
represents word-aligned sentence pairs. The stabil-
ity of a component z is therefore determined by how
difficult it is to break x into multiple components. It
is thus interesting to investigate whether there exists
a general approach that unifies partition refinements
and network reliability for the purpose of identifying
highly stable multilingual units.
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im === anschluss === an jede

\

in == the == aftermath == of

den=11.==september gab===cs =—— menge

Q e [ | ] there== was a===good == deal = of

verstindnis  auf == der === ganzen == welt fiir amerikas militdrische reaktion

understanding  around === the == world for  america’s  military response

das == wort hat herr === patten im === namen === der kommission

mr == patten has the floor on==behalf===of == the  commission
in verhandlungen==zwischen der===schweiz und der=européischen===union
negotiations===="between  switzerland and  the==curopean union  resulted =—in

fir==die entwicklung eines === umweltgerechten energiesektors ausgegeben

spent  on==the development of==an=environmentally == sustainable energy = sector

—dal}

konnen == sie == mir === sagen e sicherstellen werden

how yor

can = you == tell == me u Will === be ==able to === ensure == that

reform

|

reform is more=important= than

Ur == mich die == qualitéit === der

ZNN

as=far=as i=—am==concerned , the=quality =of

wichtiger ==als

Figure 4: Typical fragments from best performing
German—English segmentations.

The focus has been on bilingual segmentations,
but as was mentioned in Section 2, it is possible
to apply the CE method for generating monolingual
segmentations. By using (6) as the objective func-
tion, we observed that the resulting segmentations
yield promising applications in n-gram topic model-
ing, named entity recognition and Chinese segmen-
tation. However, in the spirit of Ries et al. (1996),
attempts to minimize perplexity instead of maximiz-
ing (6), resulted in larger segments and the segment
quality definition of Section 1 was not met.

The sizes of the resulting phrase-tables together
with the type of phrase pairs that are extracted lead
to applications involving discontinuous phrase pairs.
In (Galley and Manning, 2010) there was evidence
that discontinuous phrase pairs that are extracted
from discontinuous components of word-aligned
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sentence pairs can improve translation quality.! As
the number of such components is much bigger than
the continuous ones, (Gimpel and Smith, 2011) pro-
pose a Bayesian nonparametric model for finding the
most probable discontinuous phrase pairs. This can
also be done from the /N-best lists that are generated
in Section 4, and it would be interesting to see the
effect of such phrase pairs in our existing models.

In a longer version of this work we intend to
study the effect in translation quality when varying
some of the parameters (size of N-best lists, sample
sizes for training gain in Section 2 and for the CE
method), as well as when extracting source-driven
bilingual segmentations as in (Sanchis-Trilles et al.,
2011).

7 Conclusions

In this work, we have presented a solution to the
problem of extracting bilingual segmentations in the
presence of word alignments. Two measures that as-
sess the quality of bilingual segmentations based on
the expressive power of segments in both languages
and their synchronization via word alignments have
been introduced. We have established the link be-
tween the CE method and finding the best monolin-
gual and bilingual segmentations. These measures
formed the objective function of the CE method
whose maximization resulted in an N-best list of
bilingual segmentations for a given sentence pair.
By extracting only phrase pairs that correspond to
components from bilingual segmentations of those
lists, we found that phrase table sizes can be reduced
with insignificant loss in translation quality.
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Abstract

We address the problem of automatically
attributing quotations to speakers, which
has great relevance in text mining and me-
dia monitoring applications. While cur-
rent systems report high accuracies for
this task, they either work at mention-
level (getting credit for detecting uninfor-
mative mentions such as pronouns), or as-
sume the coreferent mentions have been
detected beforehand; the inaccuracies in
this preprocessing step may lead to error
propagation. In this paper, we introduce a
joint model for entity-level quotation attri-
bution and coreference resolution, exploit-
ing correlations between the two tasks. We
design an evaluation metric for attribu-
tion that captures all speakers’ mentions.
We present results showing that both tasks
benefit from being treated jointly.

1 Introduction

Quotations are a crucial part of news stories, giv-
ing the perspectives of the participants in the nar-
rated event, and making the news sound objective.
The ability of extracting and organizing these quo-
tations is highly relevant for text mining applica-
tions, as it may aid journalists in fact-checking,
help users browse news threads, and reduce human
intervention in media monitoring. This involves
assigning the correct speaker to each quote—a
problem called quotation attribution (§2).

There is significant literature devoted to this
task, both for narrative genres (Mamede and
Chaleira, 2004; Elson and McKeown, 2010) and
newswire domains (Pouliquen et al., 2007; Sar-
mento et al., 2009; Schneider et al., 2010). While
the earliest works focused on devising lexical and
syntactic rules and hand-crafting grammars, there
has been a recent shift toward machine learning
approaches (Fernandes et al., 2011; O’Keefe et al.,
2012; Pareti et al., 2013), with latest works re-
porting high accuracies for speaker identification

in newswire (in the range 80-95% for direct and
mixed quotes, according to O’Keefe et al. (2012)).
Despite these encouraging results, quotation min-
ing systems are not yet fully satisfactory, even
when only direct quotes are considered. Part of
the problem, as we next describe, has to do with
inaccuracies in coreference resolution (§3).

The “easiest” instances of quotation attribution
problems arise when the speaker and the quote are
semantically connected, e.g., through a reported
speech verb like said. However, in newswire text,
the subject of this verb is commonly a pronoun or
another uninformative anaphoric mention. While
the speaker thus determined may well be correct—
being in most cases consistent with human annota-
tion choices (Pareti, 2012)—from a practical per-
spective, it will be of little use without a corefer-
ence system that correctly resolves the anaphora.
Since the current state of the art in coreference res-
olution is far from perfect, errors at this stage tend
to propagate to the quote attribution system.

Consider the following examples for illustration
(taken from the WSJ-1057 and WSJ-0089 docu-
ments in the Penn Treebank), where we have an-
notated with subscripts some of the mentions:

(a) Rivals carp at “the principle of [Pilson]ys,,”
as [NBC’s Arthur Watson],s, once put it —
“[he]n,’s always expounding that rights are
too high, then [he]y,’s going crazy.” But [the
49-year-old Mr. Pilson]yy, is hardly a man to
ignore the numbers.

(b) [English novelist Dorothy L. Sayers];;, de-
scribed [ringing]s, as a “passion that finds its
satisfaction in [mathematical completeness |y,
and [mechanical perfection]y;,.” [Ringers]yy;,
[she]ns, added, are “filled with the solemn intox-
ication that comes of intricate ritual faultlessly
performed.”

In example (a), the pronoun coreference system
used by O’Keefe et al. (2012) erroneously clus-
ters together mentions M,, M3 and M, (instead
of the correct clustering { My, M3, My4}). Since it
is unlikely that the speaker is co-referent to a third-
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person pronoun ke inside the quote, a pipeline sys-
tem would likely attribute (incorrectly) this quote
to Pilson. In example (b), there are two quotes
with the same speaker entity (as indicated by the
cue she added). This gives evidence that M; and
Mg should be coreferent. A pipeline approach
would not be able to exploit these correlations.
We argue that this type of mistakes, among
others, can be prevented by a system that per-
forms quote attribution and coreference resolution
jointly (§4). Our joint model is inspired by re-
cent work in coreference resolution that indepen-
dently ranks the possible mention’s antecedents,
forming a latent coreference tree structure (Denis
and Baldridge, 2008; Fernandes et al., 2012; Dur-
rett et al., 2013; Durrett and Klein, 2013). We con-
sider a generalization of these structures which we
call a quotation-coreference tree. To effectively
couple the two tasks, we need to go beyond simple
arc-factored models and consider paths in the tree.
We formulate the resulting problem as a logic pro-
gram, which we tackle using a dual decomposition
strategy (§5). We provide an empirical compari-
son between our method and baselines for each of
the tasks and a pipeline system, defining suitable
metrics for entity-level quotation attribution (§6).

2  Quotation Attribution

The task of quotation attribution can be formally
defined as follows. Given a document containing
a sequence of quotations, (¢i,...,qr), and a set
of candidate speakers, {s1, ..., sy}, the goal is to
a assign a speaker to every quote.

Previous work has handled direct and mixed
quotations (Sarmento et al., 2009; O’Keefe et al.,
2012), easily extractable with regular expressions
for detecting quotation marks, as well as indirect
quotations (Pareti et al., 2013), which are more in-
volved and require syntactic or semantic patterns.
In this work, we resort to direct and mixed quo-
tations. Pareti (2012) defines quotation attribu-
tions in terms of their content span (the quotation
text itself), their cue (a lexical anchor of the attri-
bution relation, such as a reported speech verb),
and the source span (the author of the quote).
The same reference introduced the PARC dataset,
which we use in our experiments (§6) and which
is based on the annotation of a database of attribu-
tion relations from the Penn Discourse Treebank
(Prasad et al., 2008). Several machine learning
algorithms have been applied to this task, either

40

framing the problem as classification (an indepen-
dent decision for each quote), or sequence label-
ing (using greedy methods or linear-chain condi-
tional random fields); see O’Keefe et al. (2012)
for a comparison among these different methods.

In this paper, we distinguish between mention-
level quotation attribution, in which the candi-
date speakers are individual mentions, and entity-
level quotation attribution, in which they are en-
tity clusters comprised of one or more mentions.
With this distinction, we attempt to clarify how
prior work has addressed this task, and design suit-
able baselines and evaluation metrics. For exam-
ple, O’Keefe et al. (2012) applies a coreference
resolver before quotation attribution, whereas de
La Clergerie et al. (2011) does it afterwards, as a
post-processing stage. An important issue when
evaluating quotation attribution systems is to pre-
vent them from getting credit for detecting unin-
formative speakers such as pronouns; we will get
back to this topic in §6.2.

3 Coreference Resolution

In coreference resolution, we are given a set of
mentions M := {mj,...,mg}, and the goal
is to cluster them into discourse entities, F
{e1,...,es}, where each e; C M and e; # @.
We follow Haghighi and Klein (2007) and distin-
guish between proper, nominal, and pronominal
mentions. Each requires different types of infor-
mation to be resolved. Thus, the task involves de-
termining anaphoricity, resolving pronouns, and
identifying semantic compatibility among men-
tions. To resolve these references, one typically
exploits contextual and grammatical clues, as well
as semantic information and world knowledge,
to understand whether mentions refer to people,
places, organizations, and so on. The importance
of coreference resolution has led to it being the
subject of recent CoNLL shared tasks (Pradhan et
al., 2011; Pradhan et al., 2012).

There has been a variety of approaches for
this problem. Early work used local discrimina-
tive classifiers, making independent decisions for
each mention or pair of mentions (Soon et al.,
2001; Ng and Cardie, 2002). Lee et al. (2011)
proposed a competitive non-learned sieve-based
method, which constructs clusters by aglomerat-
ing mentions in a greedy manner. Entity-centric
models define scores for the entire entity clusters
(Culotta et al., 2007; Haghighi and Klein, 2010;



Rahman and Ng, 2011) and seek the set of enti-
ties that optimize the sum of scores; this can also
be promoted in a decentralized manner (Durrett et
al., 2013). Pairwise models (Bengtson and Roth,
2008; Finkel et al., 2008; Versley et al., 2008), on
the other hand, define scores for each pair of men-
tions to be coreferent, and define the clusters as
the transitive closure of these pairwise relations.
A disadvantage of these two methods is that they
lead to intractable decoding problems, so approx-
imate methods must be used. For comprehensive
overviews, see Stoyanov et al. (2009), Ng (2010),
Pradhan et al. (2011) and Pradhan et al. (2012).

Our joint approach (to be fully described in
§4) draws inspiration from recent work that shifts
from entity clusters to coreference trees (Fernan-
des et al., 2012; Durrett and Klein, 2013). These
models define scores for each mention to link to
its antecedent or to an artifical root symbol $ (in
which case it is not anaphoric). The computation
of the best tree can be done exactly with spanning
tree algorithms, or by independently choosing the
best antecedent (or the root) for each mention, if
only left-to-right arcs are allowed. The same idea
underlies the antecedent ranking approach of De-
nis and Baldridge (2008). Once the coreference
tree is computed, the set of entity clusters F is ob-
tained by associating each entity set to a branch of
the tree coming out from the root. This is illus-
trated in Figure 1 (left).

4 Joint Quotations and Coreferences

In this work, we propose that quotation attribu-
tion and coreference resolution are solved jointly
by treating both mentions and quotations as nodes
in a generalized structure called a quotation-
coreference tree (Figure 1, right). The joint sys-
tem’s decoding process consists in creating such
a tree, from which a clustering of the nodes can
be immediatelly obtained. The clustering is inter-
preted as follows:

e All mention nodes in the cluster are coreferent,
thus they describe one single entity (just like in
a standard coreference tree).

e Quotation nodes that appear together with those
mentions in a cluster will be assigned that entity
as the speaker.

For example, in Figure 1 (right), the en-
tity Dorothy L. Sayers (formed by mentions
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{My, Mg}) is assigned as the speaker of quota-
tions ()1 and Q2. We forbid arcs between quotes
and from a quote to a mention, effectively con-
straining the quotes to be leaves in the tree, with
mentions as parents.! We force a tree with only
left-to-right arcs, by choosing a total ordering of
the nodes that places all the quotations in the right-
most positions (which implies that any arc con-
necting a mention to a quotation will point to the
right). The quotation-coreference tree is obtained
as the best spanning tree that maximizes a score
function, to be described next.

4.1 Basic Model

Our basic model is a feature-based linear model
which assigns a score to each candidate arc linking
two mentions (mention-mention arcs), or linking a
mention to a quote (mention-quotation arcs). Our
basic system is called QUOTEBEFORECOREF for
reasons we will detail in section 4.2.

4.1.1 Coreference features

For the mention-mention arcs, we use the same
coreference features as the SURFACE model of the
Berkeley Coreference Resolution System (Durrett
and Klein, 2013), plus features for gender and
number obtained through the dataset of Bergsma
and Lin (2006). This is a very simple lexical-
driven model which achieves state-of-the-art re-
sults. The features are shown in Table 1.

4.1.2 Quotation features

For the quote attribution features, we use features
inspired by O’Keefe et al. (2012), shown in Ta-
ble 2. The same set of features works for speakers
that are individual mentions (in the model just de-
scribed), and for speakers that are clusters of men-
tions (used in §6 for the baseline QUOTEAFTER-
COREF). These features include various distances
between the mention and the quote, the indication
of the speaker being inside the quote span, and var-
ious contextual features.

4.2 Final Model

While the basic model just described puts quo-
tations and mentions together, it is not more ex-
pressive than having separate models for the two
tasks. In fact, if we just have scores for individual
arcs, the two problems are decoupled: the optimal

"This is implemented by defining —oo scores for all the
outgoing arcs in a quotation node, as well as incoming arcs
originating from the root.
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“(...) passion that finds its
satisfaction in mathematical
completeness and mechanical
perfection.”

ringing

“(...) filled with the solemn
intoxication that comes of
intricate ritual faultlessly
performed.”

Figure 1: Left: A typical coreference tree for the text snippet in §1, example (b), with mentions M; and
Mg clustered together and Ms and M3 left as singletons. Right: A quotation-coreference tree for the
same example. Mention nodes are depicted as green circles, and quotation nodes in shaded blue. The
dashed rectangle represents a branch of the tree, containing the entity cluster associated with the speaker

Dorothy L. Sayers, as well as the quotes she authored.

Features on the child mention

Features on the quote-speaker pair

[ANAPHORIC (T/F)] + [CHILD HEAD WORD]
[ANAPHORIC (T/F)] + [CHILD FIRST WORD]
[ANAPHORIC (T/F)] + [CHILD LAST WORD]
[ANAPHORIC (T/F)] + [CHILD PRECEDING WORD]
[ANAPHORIC (T/F)] + [CHILD FOLLOWING WORD]
[ANAPHORIC (T/F)] + [CHILD LENGTH]

Features on the parent mention

[WORD DISTANCE]

[SENTENCE DISTANCE]

[# IN-BETWEEN QUOTES]

[# IN-BETWEEN SPEAKERS]

[SPEAKER IN QUOTE, 1ST PERS. SG. PRONOUN (T/F)]
[SPEAKER IN QUOTE, 1ST PERS. PL. PRONOUN (T/F)]
[SPEAKER IN QUOTE, OTHER (T/F)]

[PARENT HEAD WORD]
[PARENT FIRST WORD]
[PARENT LAST WORD]
[PARENT PRECEDING WORD]
[PARENT FOLLOWING WORD]
[PARENT LENGTH]
[PARENT GENDER]
[PARENT NUMBER]

Features on the pair
[EXACT STRING MATCH (T/F)]
[HEAD MATCH (T/F)]
[SENTENCE DISTANCE, CAPPED AT 10]
[MENTION DISTANCE, CAPPED AT 10]

Table 1: Coreference features, associated to each
candidate mention-mention arc in the tree. As in
Durrett and Klein (2013), we also include con-
junctions of each feature with the child and parent
mention types (proper, nominal, or, if pronominal,
the pronoun word).

quotation-coreference tree can be obtained by first
assigning the highest scored mention to each quo-
tation, and then building a standard coreference
tree involving only the mention nodes. This cor-
responds to the QUOTEBEFORECOREF baseline,
to be used in §6.

To go beyond separate models, we introduce
a final JOINT model, which includes additional
scores that depend not just on arcs, but also on
paths in the tree. Concretely, we select certain
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Features on the speaker
[PREVIOUS WORD IS QUOTE (T/F)]
[PREVIOUS WORD IS SAME QUOTE (T/F)]
[PREVIOUS WORD IS ANOTHER QUOTE (T/F)]
[PREVIOUS WORD IS SPEAKER (T/F)]
[PREVIOUS WORD IS PUNCTUATION (T/F)]
[PREVIOUS WORD IS REPORTED SPEECH VERB (T/F)]
[PREVIOUS WORD IS VERB (T/F)]
[NEXT WORD IS QUOTE (T/F)]
[NEXT WORD IS SAME QUOTE (T/F)]
[NEXT WORD IS ANOTHER QUOTE (T/F)]
[NEXT WORD IS SPEAKER (T/F)]
[NEXT WORD IS PUNCTUATION (T/F)]
[NEXT WORD IS REPORTED SPEACH VERB (T/F)]
[NEXT WORD IS VERB (T/F)]

Table 2: Quotation attribution features, associ-
ated to each quote-speaker candidate. These
features are used in the QUOTEONLY, QUOTE-
BEFORECOREF, and JOINT systems (where the
speaker is a mention) and in the QUOTEAFTER-
COREF system (where the speaker is an entity).

pairs of nodes and introduce scores for the event
that both nodes are in the same branch of the tree.
Rather than doing this for all pairs—which es-
sentially would revert to the computationally de-
manding pairwise coreference models discussed
in §3—we focus on a small set of pairs that are
mostly related with the interaction between the
two tasks we address jointly. Namely, we consider
the mention-quotation pairs such that the mention



Mention-inside-quote features
[MENTION IS 1ST PERSON, SING. PRONOUN (T/F)]
[MENTION IS 1ST PERSON, PLUR. PRONOUN (T/F)]
[OTHER MENTION (T/F)]

Consecutive quote features
[DISTANCE IN NUMBER OF WORDS]
[DISTANCE IN NUMBER OF SENTENCES]

Table 3: Features used in the JOINT system for
mention-quote pairs (only for mentions inside
quotes) and for quote pairs (only for consecutive
quotes). These features are associated to pairs in
the same branch of the quotation-coreference tree.

span is within the quotation span (mention-inside-
quotation pairs), and pairs of quotations that ap-
pear consecutively in the document (consecutive-
quotation pairs). The idea is that, if consecutive
quotations appear on the same branch of the tree,
they will have the same speaker (the entity class
associated with that branch), even though they
are not necessarily siblings. These two pairs are
aligned with the motivating examples (a) and (b)
shown in §1.

4.2.1

The top rows of Table 3 show the features we de-
fined for mentions inside quotes. The features in-
dicate whether the mention is first-person singular
pronominal (I, me, my, myself), which provides
strong evidence that it co-refers with the quotation
author, whether it is first-person plural pronominal
(we, us, our, ourselves), which provides a weaker
evidence (but sometimes works for colective enti-
ties that are organizations), and whether none of
the above happens—in which case, the speaker is
unlikely to be co-referent with the mention.

Mention-inside-quotation features

4.2.2 Consecutive quotation features

We show our consecutive quote features in the bot-
tom rows of Table 3. We use only distance fea-
tures, measuring both distance in sentences and
in words, with binning. These simple features are
enough to capture the trend of consecutive quotes
that are close apart to have the same speaker.

5 Joint Decoding and Training

While decoding in the basic model is easy—
as pointed out above, it can even be done
by running a mention-level quotation attribu-
tor and the coreference resolver independently
(QUOTEBEFORECOREF)—exact decoding with
the JOINT model is in general intractable, since
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this model breaks the independence assumption
between the arcs. However, given the relatively
small amount of node pairs that have scores (only
mentions inside quotations and consecutive quota-
tions), we expect this “perturbation” to be small
enough not to affect the quality of an approxi-
mate decoder. The situation resembles other prob-
lems in NLP, such as non-projective dependency
parsing, which becomes intractable if higher order
interactions between the arcs are considered, but
can still be well approximated. Inspired by work
in parsing (Martins et al., 2009) using linear re-
laxations with multi-commodity flow models, we
propose a similar strategy by defining auxiliary
variables and coupling them in a logic program.

5.1 Logic Formulation

We next derive the logic program for joint decod-
ing of coreferences and quotations. The input is a
set of nodes (including an artificial node), a set of
candidate arcs with scores, and a set of node pairs
with scores. To make the exposition lighter, we
index nodes by integers (starting by the root node
0) and we do not distinguish between mention and
quotation nodes. Only arcs from left to right are
allowed. The variables in our logic program are:

e Arc variables a;_.;, which take the value 1 if
there is an arc from 7 to j, and 0 otherwise.

e Pair variables p; j, which indicate that nodes ¢
and j are in the same branch of the tree.

e Path variables 7;_,«;, indicating if there is a
path from j to k.

e Common ancestor variables 1);_+; 1, indicating
that node 7 is a common ancestor of nodes j and
k in the tree.

Consistency among these variables is ensured by
the following set of constraints:

e Each node except the root has exactly one par-
ent:

j—1
» ai;=1,Yj#0 (1)
i=0
e There is a path from each node to itself:
Tiri = 1, Vi 2)

e There is a path from 7 to k iff there is some j
such that ¢ is connected to j and there is path



from j to k:
Ti*f = \/ (aiﬁj A\ 7I‘j_>*k), Vi,k  (3)
i<j<k

e Node 7 is a common ancestor of k and ¢ iff there
is a path from ¢ to k£ and from ¢ to ¢

Yirpp = Tirpg N Ting, Vi, k0 (4)
e Nodes k and ¢ are in the same branch if they
have a common ancestor which is not the root:

Pre =\ Vimere VL 5)
i#0

The objective to optimize is linear in the arc and
pair variables (hence the problem can be repre-
sented as an integer linear program by turning the
logical constraints into linear inequalities).

5.2 Dual Decomposition

To decode, we employ the alternating direc-
tions dual decomposition algorithm (AD?), which
solves a relaxation of the ILP above. AD? has
been used successfully in various NLP tasks, such
as dependency parsing (Martins et al., 2011; Mar-
tins et al., 2013), semantic role labeling (Das et al.,
2012), and compressive summarization (Almeida
and Martins, 2013). At test time, if the solution is
not integer, we apply a simple rounding procedure
to obtain an actual tree: for each node j, obtain
the antecedent (or root) ¢ with the highest a;_.;,
solving ties arbitrarily.

5.3 Learning the Model

We train the joint model with the max-loss variant
of the MIRA algorithm (Crammer et al., 2006),
adapted to latent variables (we simply obtain the
best tree consistent with the gold clustering at each
step of MIRA, before doing cost-augmented de-
coding). The resulting algorithm is very similar
to the latent perceptron algorithm in Fernandes
et al. (2011), but it uses the aggressive stepsize
of MIRA. We set the same costs for coreference
mistakes as Durrett and Klein (2013), and a unit
cost for missing the correct speaker of a quota-
tion. For speeding up decoding, we first train a ba-
sic pruner for the coreference system (using only
the features described in §4.1.1), limiting the num-
ber of candidate antecedents to 10, and discarding
scores whose difference with respect to the best
antecedent is below a threshold. We also freeze
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the best coreference trees consistent with the gold
clustering using the pruner model, to eliminate the
need of latent variables in the second stage.

6 Experiments

6.1 Dataset

We used the 597 documents of the Wall Street
Journal (WSJ) corpus that were disclosed for the
CoNLL-2011 coreference shared task (Pradhan
et al., 2011) as a dataset for coreference resolu-
tion. This dataset includes train, development and
test partitions, annotated with coreference infor-
mation, as well as gold and automatically gener-
ated syntactic and semantic information.

The CoNLL-2011 corpus does not contain an-
notations of quotation attribution. For that rea-
son, we used the WSJ quotation annotations in the
PARC dataset (Pareti, 2012). We used the same
version of the corpus as O’Keefe et al. (2012),
but with different splits, to match the dataset parti-
tions in the coreference resolution data. This attri-
bution corpus contains 279 documents of the 597
CoNLL-2011 files, having a total of 1199 anno-
tated quotes. As in that work, we only consid-
ered directed speech quotes and the direct part of
mixed quotes (quotes with both direct and undi-
rected speech).

6.2 Metrics for quotation attribution

Previous evaluations of quotation attribution sys-
tems were designed at mention level, and are thus
assessed by comparing the predicted speaker men-
tion span with the gold one. This metric assesses
the amount of speaker mentions that were cor-
rectly identified. For compatibility with previous
assessments, we report this score, which we call
Exact Match (EM): this is the percentage of pre-
dicted speakers with the same span as the gold one.

However, for several quotations (about 30% in
the PARC corpus) this information is of little
value, since the gold mention is a pronoun, which
per se does not give any useful information about
the actual speaker entity. Considering this fact,
we propose two other metrics that capture infor-
mation at the entity level, reflecting the amount of
information a system is able to extract about the
speakers:

e Representative Speaker Match (RSM): for each
annotated quote, we obtain the full gold coref-
erence set of the gold annotated speaker, and



choose a representative speaker from that clus-
ter. We define this representative speaker as
the proper mention which is the closest to the
quote (if available); if the cluster does not con-
tain proper mentions, we use the closest nom-
inal mention; if only pronominal mentions are
available, we use the original annotated speaker.
The final measure is the percentage of predicted
speakers that match the string of the correspond-
ing representative speakers.

o Entity Cluster Fy (ECF1). Considering that a
system outputs a set of mentions coreferent to
the predicted speakers, we compute the F7 score
between the predicted set and the gold corefer-
ence cluster of the correct speaker.

The entity level metrics are not only useful for
assessing the quality of an quotation attribution
system—they also reflect the quality of the un-
derlying coreference system used to cluster the re-
lated mentions.

6.3 Attribution baselines

To analyze the task of entity-level quotation attri-
bution, we implemented three baseline systems.

e QUOTEONLY: A quotation attribution system
trained on the representative speaker, instead of
the gold speaker. For fairness, this baseline was
trained with an extra feature indicating the type
of the mention (nominal, pronominal or proper).

QUOTEAFTERCOREF: An attribution system
directly applied to the output of a predicted
coreference chain. This baseline uses a coref-
erence pre-processing, as applied in O’Keefe et
al. (2012).

QUOTEBEFORECOREF: An attribution system
trained on the gold speaker, and post-combined
with the output of a coreference system. This
system should be able to provide a set of infor-
mative mentions about a quote, post-resolving
the problem of the pronominal speakers. This
kind of post-coreference approach was used by
de La Clergerie et al. (2011).

6.4 Coreference Resolution

We use the coreference results of our basic
QUOTEBEFORECOREF system as a baseline for
coreference resolution. Since this system effec-
tively solves the two problems separately, this can
be considered our implementation of the SURFACE
system of Durrett and Klein (2013) . As reported
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in Table 4, the perfromance of our baseline is
comparable with the one of the SURFACE system
of Durrett and Klein (2013), which is denoted as
SURFACE-DK-2013.2

Table 4 also show the CoNLL metrics obtained
for the proposed system of joint coreference reso-
Iution and quotation attribution. Our joint system
outperformed the baseline with statistical signifi-
cance (with p < 0.05 and according to a bootstrap
resampling test (Koehn, 2004)) for all metrics ex-
pect for the CEAFE F) measure, whose value was
only slighty improved. These results confirm that
the coreference resolution task benefits for being
tackled jointly with quotation attribution.

6.5 Quotation attribution

We implemented and trained the three attribution
systems that were described in §6.3 and the system
for joint coreference and author attribution that is
detailed in §4. For each system, Table 5 shows the
mention-based and entity-based metrics that were
described in §6.2.

Training a quotation attribution system using
representative speakers instead of the gold speak-
ers (QUOTEONLY) leads to rather disappointing
results. As expected, we conclude that assigning
the semantically related speaker is considerably
easier than selecting another mention that is coref-
erent with the correct speaker.

Using (predicted) coreference information,
both QUOTEAFTERCOREF and QUOTEBE-
FORECOREF systems considerably increase our
entity-based metrics. This was also expected,
since the coreference chain allows these baselines
to output a set of related mentions. We observed
that, using the coreference resolution clusters as
the attribution entity (QUOTEAFTERCOREF) in-
fluences the results negatively when compared to
a more basic system that runs coreference on top
of attribution result of the QUOTEONLY system
(QUOTEBEFORECOREF). These results indicate
that the quotation attribution task performs better
by looking at the speaker mention that connects
more strongly with the quotation, instead of trying
to match the whole cluster.

Finally, the scores achieved by our JOINT

To make the systems comparable, we re-trained Durrett
et al.’s coreference system (version 0.9) on the WSJ portion
of the Ontonotes datasets (the portion which has quote anno-
tations from Pareti et al.’s PARC dataset). For this reason, the
values in Table 4 differ from those reported in Durrett and
Klein (2013), which where trained and tested in the entire
Ontonotes.



MUC F; BCUB Fi CEAFE F; | Avg.

SURFACE-DK-2013 58.87 62.74 45.46 55.7
SURFACE-OURS [QUOTEBEFORECOREF] 57.89 62.50 45.48 55.3
JOINT 58.78 63.79 45.50 56.0

Table 4: Coreference obtained with the CoNLL scorer (version 5) in the test partition of the WIS cor-
pus, for the SURFACE system of Durrett and Klein (2013), our baseline implementation of the that sys-
tem (SURFACE-OURS), and our JOINT approach. All systems were trained in the WSJ portion of the

Ontonotes.
EM RSM ECF,
QUOTEONLY 49.1% | 49.4% 41.2%
QUOTEAFTERCOREF 76.7% | 64.6%  70.0%
QUOTEBEFORECOREF | 88.7% | 74.7%  73.7%
JOINT 88.1% | 76.6% 74.1%

Table 5: Attribution results obtained, in the test
set, for the three baseline systems and our joint
system.

model are slightly above the best baseline sys-
tem QUOTEBEFORECOREF, yielding the best per-
formance on the entity-level quotation attribution
task. The differences, however, were not found
statistically significant, probably due to the small
number of quotes (159) in the test set.

The average decoding runtime of the JOINT
model is 1.6 sec. per document, against 0.2 sec.
for the pipeline system. This slowdown is ex-
pectable given the fact that the pipeline system
only needs to make independent decisions, while
the joint version needs to solve a harder combina-
torial problem. Yet, this runtime is within the or-
der of magnitude of the time necessary to prepro-
cess the documents (which includes tagging and
parsing the sentences).

6.6 Error Analysis

To understand the type of errors that are prevented
with the JOINT system, consider the following ex-
ample (from document WSJ-2428):

e [Robert Dow, a partner and portfolio manager
at Lord, Abbett & Co.]ys,, which manages $4
billion of high-yield bonds, says [he] s, doesn’t
“think there is any fundamental economic ra-
tionale (for the junk bond rout). It was [herd
instinct]yr,.” [Helys, adds: “The junk market
has witnessed some trouble and now some peo-
ple think that if the equity market gets creamed
that means the economy will be terrible and
that’s bad for junk.”

The basic QUOTEBEFORECOREF system
wrongly clusters together M3 and M, as corefer-
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ent, and wrongly assigns M3 as the representative
speaker. On the other hand, the JOINT system
correctly clusters M, Ms and M, as coreferent.
This is due to the presence of the consecutive
quote features which aid in understanding that
both quotes have the same speaker, and the
mention-inside-quote features which prevent herd
instinct, which is inside a quote, from being
coreferent with He, which is very likely the author
of the quotes due to the verb adds.

7 Conclusions

We presented a framework for joint coreference
resolution and quotation attribution. We repre-
sented the problem as finding an optimal spanning
tree in a graph including both quotation nodes and
mention nodes. To couple the two tasks, we intro-
duce variables that look at paths in the tree, indi-
cating if pairs of nodes are in the same branch, and
we formulate decoding as a logic program. Each
branch from the root can then be interpreted as a
cluster containing all coreferent mentions of an en-
tity and all quotes from that entity.

In addition, we designed an evaluation metric
suitable for entity-level quotation attribution that
takes into account informative speakers. Experi-
mental results show mutual improvements in the
coreference resolution and quotation attribution
tasks.

Future work will include extensions to tackle in-
direct quotations, possibly exploring connections
to semantic role labeling.
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Abstract

Scripts  representing common  sense
knowledge about stereotyped sequences
of events have been shown to be a valu-
able resource for NLP applications. We
present a hierarchical Bayesian model for
unsupervised learning of script knowledge
from crowdsourced descriptions of human
activities. Events and constraints on event
ordering are induced jointly in one unified
framework. We use a statistical model
over permutations which captures event
ordering constraints in a more flexible
way than previous approaches. In order
to alleviate the sparsity problem caused
by using relatively small datasets, we
incorporate in our hierarchical model an
informed prior on word distributions. The
resulting model substantially outperforms
a state-of-the-art method on the event
ordering task.

1 Introduction

A script is a “predetermined, stereotyped se-
quence of actions that define a well-known sit-
uation” (Schank and Abelson, 1975). While
humans acquire such common-sense knowledge
over their lifetime, it constitutes a bottleneck for
many NLP systems. Effective question answer-
ing and summarization are impossible without a
form of story understanding, which in turn has
been shown to benefit from access to databases of
script knowledge (Mueller, 2004; Miikkulainen,
1995). Knowledge about the typical ordering of
events can further help assessing document co-
herence and generating coherent text. Here, we
present a general method for acquiring data bases
of script knowledge.

Our work may be regarded as complementary to
existing work on learning script knowledge from

natural text (cf. (Chambers and Jurafsky, 2008)),
as not all types of scripts are elaborated in natural
text — being left implicit because of assumed read-
ers’ world knowledge. Our model, operating on
data obtained in a cheap way by crowdsourcing,
is applicable to any kind of script and can fill this
gap. We follow work in inducing script knowl-
edge from explicit instantiations of scripts, so-
called event sequence descriptions (ESDs) (Reg-
neri et al., 2010). Our data consists of sets of
ESDs, each set describing a well-known situation
we will call scenario (e.g., “washing laundry”).
An ESD consists of a sequence of events, each
describing an action defining part of the scenario
(e.g., “place the laundry in the washing machine”).
We refer to descriptions of the same event across
ESDs as event types. We refer to entities involved
in a scenario as participants (e.g., a “washing ma-
chine” or a “detergent”), and to sets of participant
descriptions describing the same entity as partici-

pant types.

For each type of scenario, our model clusters
descriptions which refer to the same type of event,
and infers constraints on the temporal order in
which the events types occur in a particular sce-
nario. Common characteristics of ESDs such as
event optionality and varying degrees of temporal
flexibility of event types make this task nontrivial.
We propose a model which, in contrast to previ-
ous approaches, explicitly targets these character-
istics. We develop a Bayesian formulation of the
script learning problem, and present a generative
model for joint learning of event types and order-
ing constraints, arguing that the temporal position
of an event in an ESD provides a strong cue for its
type, and vice versa. Our model is unsupervised
in that no event- or participant labels are required
for training.

We model constraints on the order of event
types using a statistical model over permutations,
the Generalized Mallows Model (GMM; Fligner
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and Verducci (1986)). With the GMM we can flex-
ibly model apparent characteristics of scripts, such
as event type-specific temporal flexibility. Assum-
ing that types of participants provide a strong cue
for the type of event they are observed in, we use
participant types as a latent variable in our model.
Finally, by modeling event type occurrence using
Binomial distributions, we can model event op-
tionality, a characteristic of scripts that previous
approaches did not capture.

We evaluate our model on a data set of ESDs
collected via web experiments from non-expert
annotators by Regneri et al. (2010) and compare
our model against their approach. Our model
achieves an absolute average improvement of 7%
over the model of Regneri et al. on the task of
event ordering.

For our unsupervised Bayesian model the lim-
ited size of this training set constitutes an ad-
ditional challenge. In order to alleviate this
problem, we use an informed prior on the word
distributions. Instead of using Dirichlet priors
which do not encode a-priori correlations between
words, we incorporate a logistic normal distri-
bution with the covariance matrix derived from
WordNet. While we will show that prior knowl-
edge as defined above enables the application of
our model to small data sets, we emphasize that
the model is generally widely applicable for two
reasons. First, the data, collected using crowd-
sourcing, is comparatively easy and cheap to ex-
tend. Secondly, our model is domain independent
and can be applied to scenario descriptions from
any domain without any modification. Note that
parameters were tuned on held-out scenarios, and
no scenario-specific tuning was performed.

2 Related Work

In the 1970s, scripts were introduced as a way to
equip Al systems with world knowledge (Schank
and Abelson, 1975; Barr and Feigenbaum, 1986).
Task-specific script databases were developed
manually. FrameNet (Baker et al., 1998) follows a
similar idea, in defining verb frames together with
argument types that can fill the verbs’ argument
slots. Frames can then be combined into “scenario
frames”. Manual composition of such databases,
is arguably expensive and does not scale well.
This paper follows a series of more recent work
which aims to infer script knowledge automati-
cally from data. Chambers and Jurafsky (2008)
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present a system which learns narrative chains
from newswire texts. Relevant phrases are iden-
tified based on shared protagonists. The phrases
are clustered into equivalence classes and tempo-
rally ordered using a pipeline of methods. We
work with explicit event sequence descriptions of
a specific scenario, arguing that large-scale com-
mon sense knowledge is hard to acquire from nat-
ural text, since it is often left implicit. Regneri
et al. (2010) induce script knowledge from ex-
plicit ESDs using a graph-based method. Event
types and ordering constraints are induced by
aligning descriptions of equivalent events using
WordNet-based semantic similarity. On this basis
an abstract graph-representation (Temporal Script
Graph; TSG) of the scenario is computed, us-
ing Multiple Sequence Alignment (MSA). Our
work follows the work of Regneri et al. (2010),
in that we use the same data and aim to focus on
the same task. However, the two approaches de-
scribed above employ a pipeline architecture and
treat event learning and learning ordering con-
straints as separate problems. In contrast, we pro-
pose to learn both tasks jointly. We incorporate
both tasks in a hierarchical Bayesian model, thus
using one unified framework.

A related task, unsupervised frame induction,
has also been considered in the past (Titov and
Klementiev, 2011; Modi et al., 2012; O’Connor,
2012); the frame representations encode events
and participants but ignore the temporal aspect of
script knowledge.

We model temporal constraints on event type
orderings with the Generalized Mallows Model
(GMM; Mallows (1957); Fligner and Verducci
(1986); Klementiev et al. (2008)), a statistical
model over permutations. The GMM is a flexi-
ble model which can specify item-specific sensi-
tivity to perturbation from the item’s position in
the canonical permutation. With the GMM we are
thus able to model event type-specific temporal
flexibility — a feature of scripts that MSA cannot
capture.

The GMM has been successfully applied to
modeling ordering constraints in NLP tasks. Chen
et al. (2009) augment classical topic models with
a GMM, under the assumption that topics in struc-
tured domains (e.g., biographies in Wikipedia)
tend to follow an underlying canonical ordering,
an assumption which matches well our data (the
annotators were asked to follow the temporal or-



der of events in their descriptions (Regneri et al.,
2010)). Chen et al. show that for these domains
their approach significantly outperforms Marko-
vian modeling of topics. This is expected as
Markov models (MMs) are not very appropriate
for representing linear structure with potentially
missing topics (e.g., they cannot encode that ev-
ery topic is assigned to at most one continuous
fragment of text). Also GMMs are preferable for
smaller collections such as ours, as the parameter
number is linear in the number of topics (i.e., for
us, event types) rather than quadratic as in Markov
models. We are not aware of previous work on
modeling events with GMMs. Conversely, MMs
were considered in the very recent work of Che-
ung et al. (2013) in the context of script induction
from news corpora where the Markovian assump-
tion is much more natural.

There exists a body of work for learning par-
ticipant types involved in scripts. Regneri et al.
(2011) extend their work by inducing participant
types on the basis of the TSG, using structural in-
formation about participant mentions in the TSG
as well as WordNet similarity, which they then
combine into an Integer Linear Program. Simi-
larly, Chambers and Jurafsky (2009) extend their
work on narrative chains, presenting a system with
which they jointly learn event types and semantic
roles of the participants involved, but do not con-
sider event orderings. We include participant types
as a latent feature in our model, assuming that par-
ticipant mentions in an event description are a pre-
dictive feature for the corresponding event type.

One way of alleviating the problem of small
data sets is incorporating informed prior knowl-
edge. Raina et al. (2006) encode word correlations
in a variance-covariance matrix of a multivariate
normal distribution (MVN), and sample prior pa-
rameter vectors from it, thus introducing depen-
dencies among the parameters. They induce the
covariances from supervised learning tasks in the
transfer learning set-up. We use the same idea, but
obtain word covariances from WordNet relations.
In a slightly different setting, covariance matrices
of MVNs have been used in topic models to induce
correlation between topics in documents (Blei and
Lafferty, 2006).

3 Problem Formulation

Our input consists of a corpus of scenario-specific
ESDs, and our goal is to label each event descrip-

51

tion in an ESD with one event type e. We specify
the number of possible event types E' a priori as a
number exceeding the number of event types in all
the scripts considered. The model will select an
effective subset of those types.

Assume a scenario-specific corpus ¢, consist-
ing of D ESDs, ¢ {di,...,dp}. Each
ESD d; consists of N; event descriptions d; =
{di1,...,d; n,}. Boundaries between descriptions
of single events are marked in the data. For each
event description d; ,, a bag of participant descrip-
tions is extracted. Each participant description
corresponds to one noun phrase as identified au-
tomatically by a dependency parser (cf. Regneri
et al. (2011)). We also associate participant types
with participant descriptions, these types are latent
and induced at the inference stage.

Given such a corpus of ESDs, our model assigns
each event description d; ,, in an ESD d; one event
type zq,, = e, where e € {1,..., E}. Assuming
that all ESDs are generated from the same under-
lying set of event types, our objective is to assign
the same event type to equivalent event descrip-
tions across all ESDs in the corpus.

We furthermore assume that there exists a
canonical temporal ordering of event types for
each scenario type, and that events in observed
scenarios tend to follow this ordering, but allowing
for some flexibility. The event labeling sequence
zg, of an entire ESD should reflect this canonical
ordering. This allows us to use global structural
patterns of ESDs in the event type assignments,
and thus introducing dependence between event
types through their position in the sequence.

4 The Model

Before we describe our model, we briefly explain
the Generalized Mallows Model (GMM) which
we use to encode a preference for linear ordering
of events in a script.

4.1 The (Generalized) Mallows Model

The Mallows Model (MM) is a statistical model
over orderings (Mallows, 1957). It takes two pa-
rameters o, the canonical ordering, and p > 0,
a dispersion parameter. The dispersion parame-
ter is a penalty for the divergence d(r, o) of an
observed ordering 7 from the canonical ordering
o. The divergence can be any distance metric but
Kendall’s tau distance (“bubble-sort” distance), a
number of swaps needed to bring 7 in the order o,



is arguably the most common choice. The proba-
bility of an observed ordering 7 is defined as

efpd(‘rr,o')
b(p)

where ¢(p) is a normalization factor. The distri-
bution is centered around the canonical ordering
(as d(o,0) = 0), and the probability decreases
exponentially with an increasing distance. For our
purposes, without loss of generality, we can as-
sume that o is the identity permutation, that is
o =[1,...,n|, where n is the number of items.

The Mallows model has been generalized to
take as a parameter a vector of item-specific
dispersion parameters p (Fligner and Verducci,
1986). In order to introduce this extension, we
first need to reformulate Kendall’s tau in a way
that captures item-specific distance. An ordering
7 of n items can be equivalently represented by
a vector of inversion counts v of length n — 1,
where each component v; equals the number of
items j > ¢ that occur before item ¢ in 7. For
example, for an observed ordering 7 = [2,1,0] the
inversion vector v = (2, 1).! Then the generalized
Mallows model (GMM) is defined as

P(nlp,o) =

GMM (m|p) x He*p“’i.

(2

The GMM can be factorized into item-specific
components, which allows for efficient inference:

GM M;(vi|pi) oc e Pive. (1)
Intuitively, we will be able to induce event type-
specific penalty parameters, and will thus be able
to model individual degrees of temporal flexibility
among the event types.

Since the GMM is member of the exponential
family, a conjugate prior can be defined, which
allows for efficient learning of the parameters p
(Fligner and Verducci, 1990). Like the GMM, its
prior distribution GM My can be factorized into
independent components for each item :

GM My (pilvio, vo) o e~ Piviolostwilero (3

The parameters v; o and 1 represent our prior
beliefs about flexibility for each item ¢, and the
strength of these beliefs, respectively.

lTrivially, the inversion count for the last element in the
canonical ordering is always 0.
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4.2 The Generative Story

Our model encodes two fundamental assumptions,
based on characteristics observed in the data: (1)
We assume that each event type can occur at most
once per ESD; (2) Each participant type is as-
sumed to occur at most once per event type.

The formalized generative story is given in Fig-
ure 1. For each document (ESD) d, we decide in-
dependently for each event type e whether to re-
alize it or not by drawing from Binomial(,).?
We obtain a binary event vector £ where t, = 1 if
event type e is realized and ¢, = 0 otherwise. We
draw an event ordering 7 from GM M (p), repre-
sented as a vector of inversion counts.

Now, we pass event types in the order defined
by m. For each realized event type ¢ (i.e., 7 :
t; = 1), we first generate a word (normally a
predicate) from the corresponding language model
Mult(9;). Then we independently decide for each
participant type p whether to realize it or not with
the probability Binomial(@;). If realized, the
participant word (its syntactic head) is generated
from the participant language model Mult(cw)).

Note that though the distribution controlling
frequency of participant generation (goé) is event
type-specific, the language model associated with
the participant (Mult(cw;)) is shared across
events, thus, ensuring that participant types are de-
fined across events.

The learnt binary realization parameters 6 and
° should ensure that an appropriate number of
events and participants is generated (e.g. the real-
ization probability for obligatory events, observed
in almost every ESD for a particular scenario,
should be close to 1).

Priors We draw the parameters for the binomial
distributions from the Beta distribution, which al-
lows us to model a global preference for using
only few event types and only few participant
types for each event type. We draw the parame-
ters of the multinomials from the Dirichlet distri-
bution, and can thus model a preference towards
sparsity. The GMM parameter vector p is drawn
from GM My (c.f. Equation (2)).

4.3 Adding Prior Knowledge

Since we are faced with a limited amount of train-
ing data, we augment the model described above

2We slightly abuse the notation by dropping the super-
script d for ESD-specific variables.



Generation of parameters

for eventtypee =1,...,E do
0. ~ Beta(a™t,a™)
¥e ~ Dirichlet(~y)
for participant type p = 1,..., P do
o5 ~ Beta(5+, 57)

for participant type p = 1,..., P do
wp ~ Dirichlet(6)
for eventtypee=1,...,F —1do
pe ~ GM Mo(py, vo)

[ freq of event ]
[event lang mod]

[ freq of ptcpt ]

[ ptept lang mod ]

[ ordering params]

Generation of ESD d

for eventtypee =1,..., F do
te ~ Binomial(6°)
™~ GMM (p,v)
for event 7 from 7 s.th. ¢;,=1 do
w; ~ Mult(ﬁz)
for participant type p = 1,..., P do
Uy ~ Binomial((p;) [ realized ptcpts ]
if u;, = 1 then
wp ~ Mult(cwp)

[ realized events |

[ event ordering |

[ event lexical unit ]

[ ptept lexical unit]

Figure 1: The generative story of the basic model.

to encode correlations between semantically simi-
lar words in the priors for language models. We
describe our approach by first introducing the
model extension allowing for injecting prior cor-
relations between words, and then explaining how
the word correlations are derived from WordNet
(Fellbaum, 1998). Since the event vocabulary
and the participant vocabulary are separate in our
model, the following procedure is carried out sep-
arately, but equivalently, for the two vocabularies.

4.3.1

Dirichlet distributions do not provide a way to en-
code correlations between words. To tackle this
problem we add another level in the model hier-
archy: instead of specifying priors Dirichlet(-y)
and Dirichlet(d) directly, we generate them for
each event type e and participant type p using mul-
tivariate normal distributions.

The modification for the generative story is
shown in Figure 2. In this extension, each event
type e and participant type p has a different associ-
ated (nonsymmetric) Dirichlet prior, v¢ and %, re-
spectively. The generative story for choosing € is
the following: A vector 7, is drawn from the zero-
mean normal distribution N (X,,0), where ¥, is

Modeling Word Correlation
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Generation of parameters 1. and w,

for eventtypee=1,..., E do
n° ~ N(X,,0)
for all words w do
Vo =exp(1, )3, exP (15, ) [ Dir prior]
Ve ~ Dirichlet(y°) [event lang mod]
for participant type p = 1,..., P do
£ ~ N(3¢,0)
for all words w do
(S‘E,:exp(fﬁ)/zw/ exp( 5},) [ Dir prior]
@y, ~ Dirichlet(6?) [ ptept lang mod ]

Figure 2: The modified parameter generation pro-
cedure for ¥, and =, to encode word correlations.

the covariance matrix encoding the semantic relat-
edness of words (see Section 4.3.2). The vector’s
dimensionality corresponds to size of the vocab-
ulary of event words. Then, the vector is expo-
nentiated and normalized to yield v¢.> The same
procedure is used to choose &% as shown in Figure
2.

4.3.2 Defining Semantic Similarity

We use WordNet to obtain semantic similarity
scores for each pair of words in our vocabulary.
Since we work on limited domains, we define a
subset of WordNet as all synsets that any word in
our vocabulary is a member of, plus the hypernym
sets of all these synsets. We then create a feature
vector for each word f(w;) as follows:

f(wi)n = {

The similarity of two words w; and w; is de-
fined as the dot product f(w;)- f(w;). We use this
similarity to define the covariance matrices X, and
Y¢. Each component (i, j) stores the similarity
between words w; and w; as defined above. Note
that the matrices are guaranteed to be valid covari-
ance matrices, as they are positive semidefinite by
construction.

1

0 otherwise

any sense of w; € synset n

5 Inference

Our goal is to infer the set of labelings z of our
corpus of ESDs. A labeling z consists of event

3In fact, Dirichlet concentration parameters do not need
to sum to one. We experimented with normalizing them to
yield a different constant, thus regulating the influence of the
prior, but have not observed much of improvement from this
extension.



types t, participant types u and event ordering 7.
Additionally, we induce parameters of our model:
ordering dispersion parameters (p) and the lan-
guage model parameters 1 and £&. We induce these
variables conditioned on all the observable words
in the data set w. Since direct joint sampling from
the posterior distributions is intractable, we use
Gibbs sampling for approximate inference. Since
we chose conjugate prior distributions over the pa-
rameter distributions, we can “collapse” the Gibbs
sampler by integrating out all parameters (Grif-
fiths and Steyvers, 2004), except for the ones listed
above. The unnormalized posterior can be written
as the following product of terms:

P(z,p,n,¢lw) < [[ DCM. [[ DCM,
e p

[1BBM. || BBM,,
e P

[[Mn,.

H GMM, MN,
e P

The terms DC'M, and DC M, are Dirichlet com-
pound multinomials associated with event-specific
and participant-specific language models:

T2, 7) T'(Ny + )

POMe = ms N+ 50 L G
IR YOOI BIR = SO )
PeMy == v an LTy

where N and NY is the number of times word
type v is assigned to event e and participant p,
respectively. The terms BBM, and BBM,, are
the Beta-Binomial distributions associated with
generating event types and generating participant
types for each event type (i.e. encoding optionality
of events and participants):

(NS +a)D(N; +a7)
I'(Nd +Ne +at +a)

+ + - -
BBM., < [[T] F(Neﬁ PN, + 5_ 5
o5 P(Nep + Nep + 5%+ 57)
where N and N is the number of ESDs where
event type is generated and the number of ESD
where it is not generated, respectively. NJ, and
N¢, are analogously defined for participant types
(for each event type e). The term GM M, is as-

sociated with the inversion count distribution for
event type e and has the form

Zd Ug + Ve, 00
N + I

BBM, x

GM M, < GM My(pe; N + 1),
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where GM My is defined in expression (2) and vgl
is the inversion count for event ¢ in ESD d. N is
the cumulative number of event occurrences in the
data set.

Finally, M N, and MN, correspond to the
probability of drawing n¢ and &P from the cor-
responding normal distributions, as discussed in
Section 4.3.1.

Though, at each step of Gibbs sampling, com-
ponents of z could potentially be sampled by
considering the full unnormalized posterior, this
clearly can be made much more efficient by ob-
serving that only a fraction of terms affect the cor-
responding conditional probability. For example,
when sampling an event type for a given event
in a ESD d, only the terms DCM,, BBM,, and
BBM_, for all e and p are affected. For DCMs it
can be simplified further as only a few word types
are affected. Due to space constraints, we cannot
describe the entire sampling algorithms but it natu-
rally follows from the above equations and is sim-
ilar to the one described in Chen et al. (2009).

For sampling the other parameters of our model,
ranking dispersion parameters p and the language
model parameters 7 and &, we use slice sampling
(MacKay, 2002). For each event type e we draw
its dispersion parameter p. independently from the
slice sampler.

After every n'" iteration we resample n and
& for all language models to capture the corre-
lations. However, to improve mixing time, we
also resample components 7711-C and nﬁ when word
¢ has changed event membership from type k to
type [. In addition we define classes of closely
related words (heuristically based on the covari-
ance matrix) by classifying words as related when
their similarity exceeds an empirically determined
threshold. We also resample all components né?
and 775- for each word j that related to word i. We
re-normalize ™ and m™ after resampling to up-
date the Dirichlet concentration parameters. The
same procedure is used for participant language
models (parameters &).

6 Evaluation

In our evaluation, we evaluate the quality of the
event clusters induced by the model and the ex-
tent to which the clusters capture the global event
ordering underlying the script, as well as the bene-
fit of the GMM and the informed prior knowledge.
We start by describing data and evaluation metrics.



Scenario Name

[ fESDs | Avglen |

[ | Event Paraphrase |  Evt. Ordering

Table 1: Test scenarios used in experiments (left),
the size of the corresponding corpus (middle), and
the average length of an ESD in events (right).

6.1 Data

We use the data sets presented in Regneri et al.
(2010) (henceforth R10) for development and test-
ing. The data is comprised of ESDs from two cor-
pora. R10 collected a corpus, consisting of sets of
ESDs for a variety of scenarios, via a web exper-
iment from non-expert annotators. In addition we
use ESDs from the OMICS corpus* (Kochender-
fer and Gupta, 2003), which consists of instantia-
tions of descriptions of several ‘stories’, but is re-
stricted to indoor activities. The details of our data
are displayed in Table 1. For each event descrip-
tion we extract all noun phrases, as automatically
identified by Regneri et al. (2011), separating par-
ticipant descriptions from action descriptions. We
remove articles and pronouns, and reduce NPs to
their head words.

6.2 Gold Standard and Evaluation Metrics

We follow R10 in evaluating induced event types
and orderings in a binary classification setting.
R10 collected a gold standard by classifying pairs
of event descriptions w.r.t. whether or not they are
paraphrases. Our model classifies two event de-
scriptions as equivalent whenever z,, = Zze,.
Equivalently, R10 classify ordered pairs of
event descriptions as to whether they are presented
in their natural order. Assuming the identity order-
ing as canonical ordering in the Generalized Mal-
lows Model, event types tending to occur earlier
in the script should be assigned lower cluster IDs
than event types occurring later. Thus, whenever
Ze; < Zey, our the model predicts that two event
descriptions occur in their natural order.

*http://csc.media.mit.edu/
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OMICS corpus P R F P R F

Cook in microwave 59 5.03 Ret. Food | 0.92 052 0.67 | 0.87 0.72 0.79
Answer the telephone 55 4.47 -GMM 0.70 030 042 | 046 044 045
Buy from vending machine 32 4.53 -COVAR 092 052 067 | 0.77 0.67 0.71
Make coffee 38 5.00 Vending 0.76 0.78 0.77 | 0.90 0.74 0.81
R10 corpus -GMM 0.74 039 051 | 064 047 054

Iron clothes 19 8.79 -COVAR 0.74 0.87 080 | 0.85 0.73 0.78
Make scrambled eggs 20 10.3 Shower 0.68 0.67 0.67 | 0.85 0.84 0.85
Eat in fast food restaurant 15 8.93 -GMM 036 0.17 023 | 042 038 040
Return food (in a restaurant) 15 5.93 -COVAR 0.64 044 052|077 073 0.75
Take a shower 21 11.29 Microwave 0.85 0.80 0.82 091 0.74 0.82
Take the bus 19 853 -GMM 0.88 030 045 | 0.67 0.62 0.64
-COVAR 0.89 0.81 0.85 | 092 0.82 0.87

Table 2: Comparison of model variants: For each
scenario: The full model (top), a version without
the GMM (-GMM), and a version with a uniform
Dirichlet prior over language models (~COVAR).

We evaluate the output of our model against the
described gold standard, using Precision, Recall
and F1 as evaluation metrics, so that our results are
directly comparable to R10. We tune our parame-
ters on a development set of 5 scenarios which are
not used in testing.

6.3 Results

Table 3 presents the results of our two evaluation
tasks. While on the event paraphrase task the R10
system performs slightly better, our model out-
performs the R10 system on the event ordering
task by a substantial margin of 7 points average
F-score. While both systems perform similarly on
the task of event type induction, we induce a joint
model for both objectives. The results show that,
despite the limited amount of data, and the more
complex learning objective, our model succeeds in
inducing event types and ordering constraints.

In order to demonstrate the benefit of the GMM,
we compare the performance of our model to a
variant which excludes this component (-GMM),
cf. Table 2. The results confirm our expectation
that biasing the model towards encouraging a lin-
ear ordering on the event types provides a strong
cue for event cluster inference.

As an example of a clustering learnt by our
model, consider the following event chain:

{get} — {openitake} — {put,place} —
{close} — {set,selectenter,turn} — {start}
— {wait} — {remove,take,open} —
{push,press,turn}

We display the most frequent words in the clusters



[ Scenario | Event Paraphrase Task

| Event Ordering Task ]

Precision Recall F1 Precision Recall F1
R10 BS R10 BS R10 BS R10 BS R10 BS R10 BS
Coffee 0.50 0.47 0.94 0.58 0.65 0.52 0.70 0.68 0.78 0.57 0.74 0.62
Telephone 0.93 0.92 0.85 0.72 0.89 0.81 0.83 0.92 0.86 0.87 0.84 0.89
Bus 0.65 0.52 0.87 0.43 0.74 0.47 0.80 0.76 0.80 0.76 0.80 0.76
Iron 0.52 0.65 0.94 0.56 0.67 0.60 0.78 0.87 0.72 0.69 0.75 0.77
Scr. Eggs 0.58 0.92 0.86 0.65 0.69 0.76 0.67 0.77 0.64 0.59 0.66 0.67
Vending 0.59 0.76 0.83 0.78 0.69 0.77 0.84 0.90 0.85 0.74 0.84 0.81
Microwavee | (.75 0.85 0.75 0.80 0.75 0.82 0.47 0.91 0.83 0.74 0.60 0.82
Showere 0.70 0.68 0.88 0.67 0.78 0.67 0.48 0.85 0.82 0.84 0.61 0.85
Fastfoode 0.50 0.74 0.73 0.87 0.59 0.80 0.53 0.97 0.81 0.65 0.64 0.78
Ret. Foode 0.73 0.92 0.68 0.52 0.71 0.67 0.48 0.87 0.75 0.72 0.58 0.79
[ Average [ 0.645  0.743 [ 0.833 0.658 [ 0.716 0.689 H 0.658  0.850 [ 0.786 0.717 [ 0.706  0.776 ]

Table 3: Results of our model for the event paraphrase task (left) and event type ordering task (right).
Our system (BS) is compared to the system in Regneri et al. (2010) (R10). We were able to obtain the
R10 system from the authors and evaluate on additional scenarios for which no results are reported in
the paper. These additional scenarios are marked with a dot (e).

inferred for the “Microwave” scenario. Clusters
are sorted by event type ID. Note that the word
‘open’ is assigned to two event types in the se-
quence, which is intuitively reasonable. This illus-
trates why assuming a deterministic mapping from
predicates to events (as in Chambers and Jurafsky
(2008)) is limiting for our dataset.

We finally examined the influence of the in-
formed prior component, comparing to a model
variant which uses uniform Dirichlet parameters
(-COVAR,; see Table 2). As expected, using an in-
formed prior component leads to improved perfor-
mance on scenario types with fewer training ESDs
available (‘Take a shower’ and ‘Return food’; cf.
Table 1). For scenarios with a larger set of training
documents no reliable benefit from the informed
prior is observable. We did not optimize this com-
ponent, e.g. by testing more sophisticated meth-
ods for construction of the covariance matrix, but
expect to be able to improve its reliability.

7 Discussion

The evaluation shows that our model is able to
create meaningful event type clusters, which re-
semble the underlying event ordering imposed by
the scenario. We achieve an absolute average im-
provement of 7% over a state-of-the-art model. In
contrast to previous approaches to script induc-
tion, our model does not include specifically cus-
tomized components, and is thus flexibly applica-
ble without additional engineering effort.

Our model provides a clean, statistical formula-
tion of the problem of jointly inducing event types
and their ordering. Using a Bayesian model al-

lows for flexible enhancement of the model. One
straightforward next step would be to explore the
influence of participants, and try to jointly infer
them with our current set of latent variables.
Statistical models highly rely on a sufficient
amount of training data in order to be able to
induce latent structures. The limited amount of
training data in our case is a bottleneck for the per-
formance. The model performs best on the two
scenarios with the most training data (‘“Telephone’
and ‘Microwave’), which supports this assump-
tion. We showed, however, that our model can be
applied to small data sets through incorporation of
informed prior knowledge without supervision.

8 Conclusion

We presented a hierarchical Bayesian model for
joint induction of event clusters and constraints on
their orderings from sets of ESDs. We incorporate
the Generalized Mallows Model over orderings.
The evaluation shows that our model successfully
induces event clusters and ordering constraints.

We compare our joint, statistical model to a
pipeline based model using MSA for event clus-
tering. Our system outperforms the system on the
task of event ordering induction by a substantial
margin, while achieving comparable results in the
event induction task. We could further explicitly
show the benefit of modeling global ESD struc-
ture, using the GMM.

In future work we plan to apply our model to
larger data sets, and to examine the role of par-
ticipants in our model, exploring the potential of
inferring them jointly with our current objectives.
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Abstract

We present an unsupervised method for in-
ducing semantic frames from verb uses in
giga-word corpora. Our semantic frames
are verb-specific example-based frames
that are distinguished according to their
senses. We use the Chinese Restau-
rant Process to automatically induce these
frames from a massive amount of verb in-
stances. In our experiments, we acquire
broad-coverage semantic frames from two
giga-word corpora, the larger comprising
20 billion words. Our experimental results
indicate the effectiveness of our approach.

1 Introduction

Semantic frames are indispensable knowledge for
semantic analysis or text understanding. In the
last decade, semantic frames, such as FrameNet
(Baker et al., 1998) and PropBank (Palmer et al.,
2005), have been manually elaborated. These
resources are effectively exploited in many nat-
ural language processing (NLP) tasks, includ-
ing not only semantic parsing but also ma-
chine translation (Boas, 2002), information ex-
traction (Surdeanu et al., 2003), question answer-
ing (Narayanan and Harabagiu, 2004), paraphrase
acquisition (Ellsworth and Janin, 2007) and recog-
nition of textual entailment (Burchardt and Frank,
2006).

There have been many attempts to automati-
cally acquire frame knowledge from raw corpora
with the goal of either adding frequency informa-
tion to an existing resource or of inducing simi-
lar frames for other languages. Most of these ap-
proaches, however, focus on syntactic frames, i.e.,
subcategorization frames (e.g., (Manning, 1993;
Briscoe and Carroll, 1997; Korhonen et al., 2006;
Lippincott et al., 2012; Reichart and Korhonen,
2013)). Since subcategorization frames represent

argument patterns of verbs and are purely syn-
tactic, expressions that have the same subcatego-
rization frame can have different meanings (e.g.,
metaphors). Semantics-oriented NLP applications
based on frames, such as paraphrase acquisition
and machine translation, require consistency in the
meaning of each frame, and thus these subcatego-
rization frames are not suitable for these semantic
tasks.

Recently, there have been a few studies on au-
tomatically acquiring semantic frames (Materna,
2012; Materna, 2013). Materna induced seman-
tic frames (called LDA-Frames) from triples of
(subject, verb, object) in the British National
Corpus (BNC) based on Latent Dirichlet Allo-
cation (LDA) and the Dirichlet Process. LDA-
Frames capture limited linguistic phenomena of
these triples, and are defined across verbs based
on probabilistic topic distributions.

This paper presents a method for automati-
cally building verb-specific semantic frames from
a large raw corpus. Our semantic frames are verb-
specific like PropBank and semantically distin-
guished. A frame has several syntactic case slots,
each of which consists of words that are eligible to
fill the slot. For example, let us show three seman-

tic frames of the verb “observe”:!

observe:1
nsubj:{we, author, ...} dobj:{effect, result, ...}
prep_in:{study, case, ...} ...

observe:2
nsubj:{teacher, we, ...} dobj:{child, student, ...}
prep-in:{classroom, school, ...} ...

observe:3
nsubj:{child, people, ...} dobj:{bird, animal, ...}
prep_at:{range, time, ...} ...

'In this paper, we use the dependency relation names
of the Stanford collapsed dependencies (de Marneffe et al.,
2006) as the notations of case slots. For instance, “nsubj”
means a nominal subject, “dobj” means a direct object, “iboj”
means an indirect object, “ccomp” means a clausal comple-
ment and “prep_*” means a preposition.

Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics, pages 58-67,
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Frequencies, which are not shown in the above ex-
amples, are attached to each semantic frame, case
slot and word, and can be effectively exploited for
the applications of these semantic frames. The fre-
quencies of words in each case slot become good
sources of selectional preferences.

Our novel contributions are summarized as fol-

lows:

e induction of semantic frames based on the
Chinese Restaurant Process (Aldous, 1985)
from only automatic parses of a web-scale
corpus,

e exploitation of the assumption of one sense

per collocation (Yarowsky, 1993) to make the
computation feasible,

e providing broad-coverage knowledge for se-
lectional preferences, and

evaluating induced semantic frames by us-
ing an existing annotated corpus with verb
classes.

2 Related Work

The most closely related work to our semantic
frames are LDA-Frames, which are probabilistic
semantic frames automatically induced from a raw
corpus (Materna, 2012; Materna, 2013). He used a
model based on LDA and the Dirichlet Process to
cluster verb instances of a triple (subject, verb, ob-
ject) to produce semantic frames and slots. Both
of these are represented as a probabilistic distri-
bution of words across verbs. He applied this
method to the BNC and acquired 427 frames and
144 slots (Materna, 2013). These frames are over-
generalized across verbs and might be difficult
to provide with fine-grained selectional prefer-
ences. In addition, Grenager and Manning (2006)
proposed a method for inducing PropBank-style
frames from Stanford typed dependencies ex-
tracted from raw corpora. Although these frames
are based on typed dependencies and more seman-
tic than subcategorization frames, they are not dis-
tinguished in terms of the senses of words filling a
case slot.

There are hand-crafted semantic frames in the
lexicons of FrameNet (Baker et al., 1998) and
PropBank (Palmer et al., 2005). Corpus Pattern
Analysis (CPA) frames (Hanks, 2012) are another
manually created repository of patterns for verbs.
Each pattern represents a prototypical word usage
as extracted by lexicographers from the BNC. Cre-
ating CPA is time consuming, but our proposed
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method may be employed to assist in the creation
of this type of resource, as shown in Section 4.4.

Our task can be regarded as clustering of verb
instances. In this respect, the models of Parisien
and Stevenson are related to our method (Parisien
and Stevenson, 2009; Parisien and Stevenson,
2010). Parisien and Stevenson (2009) proposed
a Dirichlet Process model for clustering usages
of the verb “get.” Later, Parisien and Stevenson
(2010) proposed a Hierarchical Dirichlet Process
model for jointly clustering argument structures
(i.e., subcategorization frames) and verb classes.
However, their argument structures are not seman-
tic but syntactic, and also they did not evaluate the
resulting frames. There have also been related ap-
proaches to clustering verb types (Vlachos et al.,
2009; Sun and Korhonen, 2009; Falk et al., 2012;
Reichart and Korhonen, 2013). These methods in-
duce verb clusters in which multiple verbs partic-
ipate, and do not consider the polysemy of verbs.
Our objective is different from theirs.

Another line of related work is unsupervised
semantic parsing or semantic role labeling (Poon
and Domingos, 2009; Lang and Lapata, 2010;
Lang and Lapata, 2011a; Lang and Lapata, 2011b;
Titov and Klementiev, 2011; Titov and Klemen-
tiev, 2012). These approaches basically clus-
ter predicates and their arguments to distinguish
predicate senses and semantic roles of arguments.
Modi et al. (2012) extended the model of Titov and
Klementiev (2012) to jointly induce semantic roles
and frames using the Chinese Restaurant Process,
which is also used in our approach. However,
they did not aim at building a lexicon of semantic
frames, but at distinguishing verbs that have dif-
ferent senses in a relatively small annotated cor-
pus. Applying this method to a large corpus could
produce a frame lexicon, but its scalability would
be a big problem.

For other languages than English, Kawahara
and Kurohashi (2006a) proposed a method for au-
tomatically compiling Japanese semantic frames
from a large web corpus. They applied con-
ventional agglomerative clustering to predicate-
argument structures using word/frame similarity
based on a manually-crafted thesaurus. Since
Japanese is head-final and has case-marking post-
positions, it seems easier to build semantic frames
with it than with other languages such as English.
They also achieved an improvement in depen-
dency parsing and predicate-argument structure



analysis by using their resulting frames (Kawahara
and Kurohashi, 2006b).

3 Method for Inducing Semantic Frames

Our objective is to automatically induce verb-
specific example-based semantic frames. Each se-
mantic frame consists of a partial set of syntactic
slots: nsubj, dobj, iobj, ccomp and prep_*. Each
slot consists of words with frequencies, which
could provide broad-coverage selectional prefer-
ences.

Frames for a verb should be semantically distin-
guished. That is to say, each frame should consist
of predicate-argument structures that have consis-
tent usages or meanings.

Our procedure to automatically generate seman-
tic frames from verb usages is as follows:

1. apply dependency parsing to a raw corpus
and extract predicate-argument structures for
each verb from the automatic parses,

2. merge the predicate-argument structures that
have presumably the same meaning based on
the assumption of one sense per collocation
to get a set of initial frames, and

3. apply clustering to the initial frames based
on the Chinese Restaurant Process to produce
the final semantic frames.

Each of these steps is described in the following
sections in detail.

3.1 Extracting Predicate-argument
Structures from a Raw Corpus

We first apply dependency parsing to a large raw
corpus. We use the Stanford parser with Stanford
dependencies (de Marneffe et al., 2006).>2 Col-
lapsed dependencies are adopted to directly extract
prepositional phrases.

Then, we extract predicate-argument structures
from the dependency parses. Dependents that have
the following dependency relations to a verb are
extracted as arguments:

nsubj, xsubj, dobj, iobj, ccomp, xcomp,
prep_x
Here, we do not distinguish adjuncts from argu-
ments. All extracted dependents of a verb are han-

dled as arguments. This distinction is left for fu-
ture work, but this will be performed using slot

“http://nlp.stanford.edu/software/lex-parser.shtml

Sentences:
They observed the effects of ...
This statistical ability to observe an effect ...
We did not observe a residual effect of ...
He could observe the results at the same time ...
My first opportunity to observe the results of ...
You can observe beautiful birds ...
Children may then observe birds ...

Predicate-argument structures:
nsubj:they observe dobj:effect
observe dobj:effect
nsubj:we observe dobj:effect
nsubj:he observe dobj:result prep_at:time
observe dobj:result
nsubj:you observe dobj:bird
nsubj:child observe dobj:bird

Initial frames:
nsubj:{they, we, ...} observe dobj:{effect}

nsubj:{he, ...} observe dobj:{result} prep_at:{time}

nsubj:{you, child, ...} observe dobj:{bird}

Figure 1: Examples of predicate-argument struc-
tures and initial frames for the verb “observe.”

frequencies in the applications of semantic frames
or the method proposed by Abend and Rappoport
(2010).

We apply the following processes to extracted
predicate-argument structures:

e A verb and an argument are lemmatized, and
only the head of an argument is preserved for
compound nouns.

e Phrasal verbs are also distinguished from
non-phrasal verbs. For example, “look up”
has independent frames from “look.”

e The passive voice of a verb is distinguished
from the active voice, and thus these have in-
dependent frames. Passive voice is detected
using the part-of-speech tag “VBN” (past
participle). The alignment between frames of
active and passive voices will be done after
the induction of frames using the model of
Sasano et al. (2013) in the future.

e “xcomp” (open clausal complement) is re-
named to “ccomp” (clausal complement) and
“xsubj” (controlling subject) is renamed to
“nsubj” (nominal subject). This is because



these usages as predicate-argument structures
are not different.

A capitalized argument with the part-of
speech “NNP” (singular proper noun) or
“NNPS” (plural proper noun) is general-
ized to (name). Similarly, an argument of
“ccomp” is generalized to (comp) since the
content of a clausal complement is not impor-
tant.

Extracted predicate-argument structures are
collected for each verb and the subsequent pro-
cesses are applied to the predicate-argument struc-
tures of each verb. Figure 1 shows examples of
predicate-argument structures for “observe.”

3.2 Constructing Initial Frames from
Predicate-argument Structures

A straightforward way to produce semantic frames
is to cluster the extracted predicate-argument
structures directly. Since our objective is to com-
pile broad-coverage semantic frames, a massive
amount of predicate-argument structures should
be fed into the clustering. It would take prohibitive
computational costs to conduct the sampling pro-
cedure, which is described in the next section.

To make the computation feasible, we merge the
predicate-argument structures that have the same
or similar meaning to get initial frames. These ini-
tial frames are the input of the subsequent cluster-
ing process. For this merge, we assume one sense
per collocation (Yarowsky, 1993) for predicate-
argument structures.

For each predicate-argument structure of a verb,
we couple the verb and an argument to make a unit
for sense disambiguation. We select an argument
in the following order by considering the degree of
effect on the verb sense:?

dobj, ccomp, nsubj, prep_x, iobj.

This selection of a predominant argument order
above is justified by relative comparisons of the
discriminative power of the different slots for CPA
frames (Popescu, 2013). If a predicate-argument
structure does not have any of the above slots, it is
discarded.

Then, the predicate-argument structures that
have the same verb and argument pair (slot and

3If a predicate-argument structure has multiple preposi-
tional phrases, one of them is randomly selected.
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word, e.g., “dobj:effect”) are merged into an ini-
tial frame (Figure 1). After this process, we dis-
card minor initial frames that occur fewer than 10
times.

For example, we have 732,292 instances
(predicate-argument structures) for the verb “ob-
serve” in the web corpus that is used in our exper-
iment (its details are described in Section 4.1). As
the result of this merging process, we obtain 6,530
initial frames, which become an input for the clus-
tering. This means that this process accelerates the
speed of clustering more than 100 times.

The precision of this process will be evaluated
in Section 4.3.

3.3 Clustering using Chinese Restaurant
Process

We cluster initial frames for each verb to produce
final semantic frames using the Chinese Restau-
rant Process (Aldous, 1985). We regard each ini-
tial frame as an instance in the usual clustering of
the Chinese Restaurant Process.

We calculate the posterior probability of a se-
mantic frame f; given an initial frame v; as fol-
lows:

P(fjlvi) o {N;-a P(uvi|fj) fj # new o
Nia - Pilfy)  fi = new,

where N is the number of initial frames for the
target verb and n( f;) is the current number of ini-
tial frames assigned to the semantic frame f;. «
is a hyper-parameter that determines how likely
it is for a new semantic frame to be created. In
this equation, the first term is the Dirichlet process
prior and the second term is the likelihood of v;.

P(v;|f;) is defined based on the Dirichlet-
Multinomial distribution as follows:

Plilfy) = T Plulgy) @,

weV

2

where V' is the vocabulary in all case slots cooc-
curring with the verb. It is distinguished by
the case slot, and thus consists of pairs of slots
and words, e.g., “nsubj:child” and “dobj:bird.”
count(v;,w) is the number of w in the initial
frame v;.

P(w|f;) is defined as follows:

B count(f;,w) + 3
ey count(fi,t) + V|- 5

P(wlf;) 3)



where count( f;, w) is the current number of w in
the frame f;, and (3 is a hyper-parameter of Dirich-
let distribution. For a new semantic frame, this
probability is uniform (1/|V]).

We use Gibbs sampling to realize this cluster-
ing.

4 Experiments and Evaluations

4.1 Experimental Settings

We use two kinds of large-scale corpora: a web
corpus and the English Gigaword corpus.

To prepare a web corpus, we first crawled the
web. We extracted sentences from each web
page that seems to be written in English based
on the encoding information. Then, we selected
sentences that consist of at most 40 words, and
removed duplicated sentences. From this pro-
cess, we obtained a corpus of one billion sen-
tences, totaling approximately 20 billion words.
We focused on verbs whose frequency was more
than 1,000. There were 19,649 verbs, includ-
ing phrasal verbs, and separating passive and ac-
tive constructions. We extracted 2,032,774,982
predicate-argument structures.

We also used the English Gigaword corpus
(LDC2011T07; English Gigaword Fifth Edition)
to induce semantic frames. This corpus consists
of approximately 180 million sentences, which to-
taling four billion words. There were 7,356 verbs
after applying the same frequency threshold as the
web corpus. We extracted 423,778,278 predicate-
argument structures from this corpus.

We set the hyper-parameters « in (1) and 3 in
(3) to 1.0. The frame assignments for all the com-
ponents were initialized randomly. We took 100
samples for each initial frame and selected the
frame assignment that has the highest probability.
These parameters were determined according to a
preliminary experiment to manually examine the
quality of resulting frames.

4.2 Experimental Results

We executed the per-verb clustering tasks on a PC
cluster. It finished within a few hours for most
verbs, but it took a couple of days for very frequent
verbs, such as “get” and “say.” The clustering pro-
duced an average number of semantic frames per
verb of 15.2 for the web corpus and 18.5 for the
Gigaword corpus. Examples of induced semantic
frames from the web corpus are shown in Table 1.
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slot instances
nsubj 1:5850, we:5201, he:3796, you:3669, ...
. |dobj what:7091, people:2272, this:2262, ...
observe:l| prep in | way:254, world:204, life:194, ...
nsubj |we:11135, you:1321,1:1317, ...
_ | dobj change:5091, difference:2719, ...
observe:2| prep in [study:622, case:382, cell:362, ...
nsubj |student:3921, 1:2240, we:2174, ...
) dobj child:2323, class:2184, student:2025, ...
observe:3| prep in | classroom:555, action:509, ...
nsubj | we:44833, 1:6873, order:4051, ...
, |dobj card:28835, payment:225609, ...
accept:l | prep for | payment: 1166, convenience: 1147, ...
nsubj  |1:10568, we:9300, you:5106, ...
] dobj that: 14180, this: 12061, it:7756, ...
accept:2 | yrep as |part:1879, fact: 1085, truth:926, ...
nsubj | people:7459, he:6696, we:5515, ...
) dobj christ: 13766, jesus:6528, it:5612, ...
accept:3 | hrep as [savior:5591, lord:597, one:469, ...

Table 1: Examples of resulting frames for the verb
“observe” and “accept” induced from the web cor-
pus. The number following an instance word rep-
resents its frequency.

4.3 Evaluation of Induced Semantic Frames

We evaluate precision and coverage of induced se-
mantic frames. To measure the precision of in-
duced semantic frames, we adopt the purity met-
ric, which is usually used to evaluate clustering re-
sults. However, the problem is that it is impossible
to assign gold-standard classes to the huge num-
ber of instances. To automatically measure the
purity of the induced semantic frames, we make
use of the SemLink corpus (Loper et al., 2007), in
which VerbNet classes (Kipper-Schuler, 2005) and
PropBank/FrameNet frames are assigned to each
instance. We make a test set that contains 157 pol-
ysemous verbs that occur 10 or more times in the
SemLink corpus (sections 02-21 of the Wall Street
Journal). We first add these instances to the in-
stances from a raw corpus and apply clustering to
these merged instances. Then, we compare the in-
duced semantic frames of the SemLink instances
with their gold-standard classes. We adopt Verb-
Net classes and PropBank frames as gold-standard
classes.

For each group of verb-specific semantic
frames, we measure the purity of the frames as the
percentage of SemLink instances belonging to the
majority gold class in their respective cluster. Let



PU CO F1
Mac Mic | Mac Mic | Mac Mic
against One frame 0.799 0.802 | 0.917 0.952 | 0.854 0.870
VerbNet Initial frames 0.985 0.982 | 0.755 0.812 | 0.855 0.889
Induced sem frames | 0.900 0.901 | 0.886 0.928 | 0.893 0.914
against One frame 0.901 0.872 1 T 0.909 0.910
PropBank | Initial frames 0.994 0.993 1 T 0.858 0.893
Induced sem frames | 0.965 0.949 1 T 0.924 0.939

Table 2: Evaluation results of semantic frames from the web corpus against VerbNet classes and Prop-
Bank frames. “Mac” means a macro average and “Mic” means a micro average.

PU CO Fy
Mac Mic | Mac Mic | Mac Mic
against One frame 0.799 0.804 | 0.855 0.920 | 0.826 0.858
VerbNet | Initial frames 0.985 0.981 | 0.666 0.758 | 0.795 0.855
Induced sem frames | 0.916 0.909 | 0.796 0.880 | 0.852 0.894
against One frame 0.901 0.874 T T 0.877 0.896
PropBank | Initial frames 0.994 0.993 T T 0.798 0.859
Induced sem frames | 0.968 0.953 T T 0.874 0915

Table 3: Evaluation results of semantic frames from the Gigaword corpus against VerbNet classes and
PropBank frames. “Mac” means a macro average and “Mic” means a micro average.

N denote the total number of SemLink instances
of the target verb, GG the set of instances belong-
ing to the j-th gold class and F; the set of instances
belonging to the i-th frame. The purity (PU) can
then be written as follows:

1
PU:NZm?X\GjﬁFi]. (4)

For example, a frarzne of the verb “observe” con-
tains 11 SemLink instances, and eight out of them
belong to the class SAY-37.7, which is the ma-
jority class among these 11 instances. PU is cal-
culated by summing up such counts over all the
frames of this verb.

Usually, inverse purity or collocation is used
to measure the recall of normal clustering tasks.
However, these recall measures do not fit our task.
This is because it is not a real error to have similar
separate frames. Instead, we want to avoid hav-
ing so many frames that we cannot provide broad-
coverage selectional preferences due to sparsity.
To judge this aspect, we measure coverage.

The coverage (CO) measures to what extent
predicate-argument structures of the target verb in
a test set are included in one of frames of the verb.
We use the predicate-argument structures of the
above 157 verbs from the SemLink corpus, which
are the same ones used in the evaluation of PU.
We judge a predicate-argument structure as cor-
rect if all of its argument words (of the target slot
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described in Section 3.1) are included in the corre-
sponding slot of a frame. If the clustering gets bet-
ter, the value of CO will get higher, because merg-
ing instances by clustering alleviates data sparsity.

These per-verb scores are aggregated into an
overall score by averaging over all verbs. We use
two ways of averaging: a macro average and a mi-
cro average. The macro average is a simple av-
erage of scores for individual verbs. The micro
average is obtained by weighting the scores for in-
dividual verbs proportional to the number of in-
stances for that verb. Finally, we use the harmonic
mean (Fp) of purity and coverage as a single mea-
sure of clustering quality.

For comparison, we adopt the following two
baseline methods:

One frame a frame into which all the instances
for a verb are merged

Initial frames the initial frames without cluster-
ing (described in Section 3.2)

Table 2 and Table 3 list evaluation results for
semantic frames induced from the web corpus and
the Gigaword corpus, respectively.* Note that CO
does not consider gold-standard classes, and thus
the values of CO are the same for the VerbNet

“We did not adopt inverse purity, but its values for the
induced semantic frames range from 0.42 to 0.49.



and PropBank evaluations. The induced frames
outperformed the two baseline methods in terms
of F; in most cases. While the coverage of the
web frames was higher than that of the Giga-
word frames, as expected, the purity of the web
frames was slightly lower than that of the Giga-
word frames. This degradation might be caused
by the noise in the web corpus.

The purity of the initial frames was around
98%-99%, which means that there were few cases
that the one-sense-per-collocation assumption was
violated.

Modi et al. (2012) reported a purity of 77.9%
for the assignment of FrameNet frames to the
FrameNet corpus. We also conducted the above
purity evaluation against FrameNet frames for 140
verbs.> We obtained a macro average of 92.9%
and a micro average of 89.2% for the web frames,
and a macro average of 93.2% and a micro average
of 89.8% for the Gigaword frames. It is difficult
to directly compare these results with Modi et al.
(2012), but our frame assignments seem to have
higher accuracy.

4.4 Evaluation against CPA Frames

Corpus Pattern Analysis (CPA) is a technique for
linking word usage to prototypical syntagmatic
patterns.® The resource was built manually by in-
vestigating examples in the BNC, and the set of
corpus examples used to induce each pattern is
given. For example, the following three patterns
describe the usage of the verb “accommodate.”
[Human 1] accommodate [Human 2]
[Building] accommodate [Eventuality]
[Human] accommodate [Self] to [Eventuality]

In this paper, we use CPA to evaluate the quality
of the automatically induced frames. By compar-
ing the induced frames to CPA patterns, we can
evaluate the correctness and relevance of this ap-
proach from a human point of view. To do that,
we associate semantic features to the set of words
in each slot in the frames, using SUMO (Niles
and Pease, 2001). For example, take the follow-
ing frame for the verb “accomplish’:
accomplish:1

nsubj:{you, leader, employee, ...}

dobj:{developing, progress, objective, ...}.

5Since FrameNet frames are not assigned to all the verbs
of SemLink, the number of verbs is different from the evalu-

ations against VerbNet and PropBank.
Shttp://deb.fi.muni.cz/pdev/
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all K-means
Entropy (E) 0.790 | 0.516
Recovery Rate (RC') | 0.347 0.630
Purity (P) 0.462 0.696

Table 4: CPA Evaluation.

Using SUMO, we map this frame to the following:
nsubj: [Human]

dobj: [SubjectiveAssessmentAttribute],
which corresponds to pattern 3 for “accomplish”
in CPA.

We also associate SUMO attributes to the CPA
patterns with more than 10 examples (716 verbs).
There are many patterns of SUMO attributes for
any CPA frame or induced frame, since each
filler word in a particular slot can have more
than one SUMO attribute. ~We filter out the
non-discriminative SUMO attributes following the
technique described in Popescu (2013). Using
this, we obtain SUMO attributes for both CPA
clusters and induced frames, and we can use the
standard entropy-based measures to evaluate the
match between the two types of patterns: & — en-
tropy, RC' — recovery rate, and P — purity (Li et
al., 2004):

K o K,L i
J i
E—;m-e], RC=1-)Y ol (5)

ji=1
Ko

P = Z; ﬁ 'Pjy Dj = Maxpij, (6)
]:

L
-
ej = sz‘j logy pij,  pij = m”’

i=1 v

(N

where m; is the number of induced frames corre-
sponding to topic j, m;; is the number of induced
frames in cluster 7 and annotated with the CPA
pattern ¢, m is the total number of induced frames,
L is the number of CPA patterns, and K is the
number of induced frames.

We also consider a K-means clustering process,
with K set as 2 or 3 depending on the number of
SUMO-attributed patterns. The K-means evalu-
ation is carried out considering only the centroid
of the cluster, which corresponds to the prototypi-
cal induced semantic frame with SUMO attributes.
We compute E, RC and P using formulae (5) -
(7) for each verb and then compute the macro av-
erage, considering all the frames and only the K-
means centroids, respectively. The results for the
induced web frames are displayed in Table 4.



The evaluation method presented here over-
comes some of the drawbacks of the previous ap-
proaches (Materna, 2012; Materna, 2013). First,
we did not limit the evaluation to the most frequent
patterns. Second, the mapping was carried out au-
tomatically and not by hand. The results above
compare favorably with the previous approaches,
especially considering that no filtering procedures
were applied to the induced frames. We anticipate
that the results based on the prototypical induced
frames with SUMO attributes would be competi-
tive. Our post-analysis revealed that the entropy
can be lowered further if an automatic filtering
based on frequencies is applied.

4.5 Evaluation of the Quality of Selectional
Preferences

We also investigated the quality of selectional
preferences within the induced semantic frames.
The only publicly available test data for selectional
preferences, to our knowledge, is from Chambers
and Jurafsky (2010). This data consists of quadru-
ples (verb, relation, word, confounder) and does
not contain their context.”

A typical way for using our semantic frames is
to select an appropriate frame for an input sen-
tence and judge the eligibility of the word uses
against the selected frame. However, due to the
lack of context for the above data, it is difficult to
select a corresponding semantic frame for a test
quadruple and thus the induced semantic frames
cannot be naturally applied to this data. To in-
vestigate the potential for selectional preferences
of the semantic frames, we approximately match
a quadruple with each of the semantic frames of
the verb and select the frame that has the highest
probability as follows:

P(w) = max P(w|v,rel, f;), (8)
where w is the World or confounder, v is the verb,
rel is the relation and f; is a semantic frame. By
comparing the probabilities of the word and the
confounder, we select either of them according to
the higher probability. For tie breaking in the case
that no frames are found for the verb or both the
word and confounder are not found in the case slot,
we randomly select either of them in the same way
as Chambers and Jurafsky (2010).

We use the “neighbor frequency” set, which is
the most difficult among the three sets included

"A document ID of the English Gigaword corpus is avail-

able, but it is difficult to recover the context of each instance
from this information.
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in the data. It contains 6,767 quadruples and the
relations consist of three classes: subject, object
and preposition, which has no distinction of ac-
tual prepositions. To link these relations with our
case slots, we manually aligned the subject with
the nsubj (nominal subject) slot, the object with
the dobj (direct object) slot and the preposition
with prep_* (all the prepositions) slots. For the
preposition relation, we choose the highest prob-
ability among all the preposition slots in a frame.
To match the generalized (name) with the word in
a quadruple, we change the word to (name) if it is
capitalized and not a capitalized personal pronoun.

Our semantic frames from the Gigaword corpus
achieved an accuracy of 81.7%® and those from
the web corpus achieved an accuracy of 80.2%.
This slight deterioration seems to come from the
noise in the web corpus. The best performance
in Chambers and Jurafsky (2010) is 81.7% on
this “neighbor frequency” set, which was achieved
by conditional probabilities with the Erk (2007)’s
smoothing method calculated from the English Gi-
gaword corpus. Our approach for selectional pref-
erences does not use smoothing like Erk (2007),
but it achieved equivalent performance to the pre-
vious work. If we applied our semantic frames to a
verb instance with its context, a more precise judg-
ment of selectional preferences would be possible
with appropriate frame selection.

5 Conclusion

This paper has described an unsupervised method
for inducing semantic frames from instances of
each verb in giga-word corpora. This method is
clustering based on the Chinese Restaurant Pro-
cess. The resulting frame data are open to the pub-
lic and also can be searched by inputting a verb via
our web interface.’

As applications of the resulting frames, we plan
to integrate them into syntactic parsing, semantic
role labeling and verb sense disambiguation. For
instance, Kawahara and Kurohashi (2006b) im-
proved accuracy of dependency parsing based on
Japanese semantic frames automatically induced
from a large raw corpus. It is valuable and promis-
ing to apply our semantic frames to these NLP
tasks.

8Since the dataset was created from the NYT 2001 portion
of the English Gigaword Corpus, we built semantic frames
again from the Gigaword corpus except this part.

*http://nlp.ist.i.kyoto-u.ac.jp/member/kawahara/cf/crp.en/
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Abstract

We present a novel approach for creat-
ing sense annotated corpora automatically.
Our approach employs shallow syntactico-
semantic patterns derived from linked lex-
ical resources to automatically identify in-
stances of word senses in text corpora. We
evaluate our labelling method intrinsically
on SemCor and extrinsically by using au-
tomatically labelled corpus text to train a
classifier for verb sense disambiguation.
Testing this classifier on verbs from the
English MASC corpus and on verbs from
the Senseval-3 all-words disambiguation
task shows that it matches the performance
of a classifier which has been trained on
manually annotated data.

1 Introduction

Sense annotated corpora are important resources
in NLP as they can be used as training data (e.g.,
for word sense disambiguation (WSD) or semantic
role labelling) or as sources for the acquisition of
lexical information (e.g., selectional preference in-
formation). Typically, a particular sense inventory
from a lexical resource is used to annotate some or
all words with word senses from this sense inven-
tory. For instance, various sense-annotated cor-
pora based on WordNet (WN; (Fellbaum, 1998))
exist, such as the data from the Senseval competi-
tions,! or the SemCor corpus.” Such corpora are
usually created manually which is expensive and
time consuming. Furthermore, the corpora are of-
ten domain specific (e.g. newspaper texts) which
makes statistical systems trained on them strongly
biased.

We present a novel approach for creating sense
annotated corpora automatically. Our approach

"http://www.senseval.org

ttp://www.cse.unt.edu/~rada/
downloads.html#semcor

employs shallow syntactico-semantic patterns de-
rived from linked lexical resources (LLRs) to auto-
matically identify instances of word senses in text
corpora. We significantly extend previous work on
this task by making two important contributions:
(i) we employ a large-scale LLR for automatically
creating sense annotated data and (ii) we perform
meaningful intrinsic and application-based eval-
uations of our method on large sense annotated
datasets.

LLRs are the result of integrating several
lexical-semantic resources by linking them at the
word sense level. Examples of large LLRs are
the multilingual BabelNet (Navigli and Ponzetto,
2012), an integration of wordnets and Wikipedia®,
or UBY, (Gurevych et al., 2012), the resource we
employ in our work here. UBY is an integration of
multiple resources, such as wordnets, Wikipedia,
Wiktionary (WKT)*, FrameNet (FN; (Baker et al.,
1998)) and VerbNet (VN; (Kipper et al., 2008)) for
English and German.

A distinguishing feature of LLRs is the enriched
sense representation for word senses that are in-
terlinked since different resources provide differ-
ent, often complementary information. Annotat-
ing corpora with such enriched sense representa-
tions turns them into versatile training data for sta-
tistical systems.

Our first contribution (i) also addresses a con-
siderable gap in recent research regarding auto-
mated sense labelling of verbs. Most previous
work is done on nouns. However, verbs pose a
bigger challenge due to their high polysemy and
the fact that, unlike nouns, syntax is of crucial im-
portance because it often reflects particular aspects
of verb meaning. That is why, here we focus on
verbs and present results and evaluations for this
previously neglected part-of-speech (POS). Our
method, however, can be applied to other parts-of

*http://www.wikipedia.org
*nttp://www.wiktionary.org
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speech as well.

Regarding (ii), we are the first to perform mean-
ingful intrinsic and extrinsic evaluations of auto-
matically labelled data on a larger scale. The in-
trinsic evaluation measures the performance of our
method on the manually annotated SemCor cor-
pus. The extrinsic evaluation compares the perfor-
mance of a classifier for verb sense disambigua-
tion (VSD) which has been trained (a) on auto-
matically sense labelled data and (b) on manually
annotated data. Both settings achieve very simi-
lar results which means that competitive VSD can
be performed without the need of costly manually
created training data. This could be beneficial in
languages (e.g., German, Spanish) for which elab-
orate lexical-semantic resources exist but large,
high-quality sense annotated corpora are unavail-
able. Moreover, we experiment with various link-
ings between lexical resources in order to inves-
tigate how different resource combinations affect
the performance of automated sense labelling. We
show that combining all available resources might
not be the best option.

The remainder of the paper is organised as fol-
lows. Section 2 presents our method. Section 3 de-
scribes the data used in the experiments. Section
4 presents the results of the evaluations. Section
5 analyses in detail the differences between our
method and previous work. Section 6 concludes
the paper.

2 Automated Labelling of Verb Senses

This section describes our novel approach for au-
tomated sense labelling of verbs in a corpus, which
exploits the added value of LLRs.

2.1 Approach

Our approach to automatically label corpus in-
stances of verb senses with sense identifiers from
an LLR is based on a pattern-based representation
of verb senses. Such patterns constitute a common
format for the representation of verb senses avail-
able in LLRs and verb instances found in corpora.
The common format we developed resembles a
syntactico-semantic clause pattern which we call
a sense pattern (SP). Based on a comparison of the
derived SPs by means of a similarity metric, verb
instances in a corpus can automatically be labelled
with sense identifiers from an LLR.

SPs can be derived from corpus instances and
from information given in LLRs, in particular,
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sense examples and more abstract predicate argu-
ment structure information.

2.2 Step 1: Creation of SPs from LLRs

For the creation of SPs, we employ the large-scale
LLR UBY which combines 10 lexical resources
for English and German to make use of the en-
riched verb sense representations provided by the
sense links between various resources available in
UBY. Although our method can work with any
LLR, we choose UBY because the various re-
sources are represented in a standardised format
(Eckle-Kohler et al., 2012) and sense links be-
tween them can uniformly and conveniently be ac-
cessed via the freely available UBY-APL>

Since we evaluate our method on data annotated
with WN senses, we create SPs for enriched WN
senses (see example given in Table 1). We enrich
WN senses by aggregating lexical information that
can be accessed through links given in UBY to
corresponding verb senses in other resources.

In this setting, enrichment means that we make
use of sense examples from WN, from FN via
the WN-FN linking, and from WKT via the
WN-WKT linking. In addition, we use ab-
stract predicate-argument structure information
from VN via the WN—VN linking (see Table 1).°

For phrasal verb senses (e.g., write up) and
other verbal multiword expressions (e.g., know
what’s going on) listed in WN, UBY rarely pro-
vides links to other resources. Therefore, we in-
duced sense links by following the one sense per
collocation assumption.” Based on this assump-
tion, we linked each sense of a verbal multiword
verb lemma in WN with each sense of the same
multiword lemma in FN and WKT.

From sense examples, we derive two different
kinds of SPs. Based on a fragment of a sense ex-
ample given by a window w around the target verb
lemma we create: (i) lemma SPs (LSPs) consisting
only of lemmas (including the target verb) and (ii)
abstract SPs (ASPs) consisting of the target verb
lemma and items from a fixed, linguistically mo-
tivated vocabulary. This is based on the intuition
that LSPs are important to identify relatively fixed

Shttp://code.google.com/p/uby/

8 Although VN is linked to sense examples given in the
PropBank corpus, the rationale behind using just abstract
predicate-argument structure information was to explore,
which effect this type of information has on the performance
of an automated labelling algorithm.

"It assumes that nearby words provide strong and consis-
tent clues to the sense of a target word, see Yarowsky (1995).



WN sense tell%?2:32:00:: (let something be known)

Corresponding sense patterns (SPs)

WN Tell them that you will be late LSP — tell them that you will be
ASP — tell PP that PP be JJ
WN-FN But an insider told TODAY : ‘ There was no animosity.”  LSP — but an insider tell Today : ‘ there be
ASP — person tell location be feeling
WN-WKT  Please tell me the time. LSP — Please tell me the time
ASP — tell PP event
WN-VN Agent[+animate| + organization] V ASP — PP tell group about communication

Recipient[+animate| 4+ organization|
about Topic[+communication)

Table 1: Examples of SPs derived from an enriched WN sense in UBY. PP, JJ, and VV are POS tags
from the Penn Treebank tagset, standing for personal pronoun, adjective and full verb.

verbal multiword expressions in a corpus, whereas
ASPs are necessary to identify productively used
verb senses that are constrained in their use only
by their syntactic behaviour and particular seman-
tic properties, such as selectional preferences on
their arguments.

The fixed vocabulary used for the creation of
ASPs consists of (i) the target verb lemma, (ii) se-
lected POS tags from the Penn Treebank Tagset
(Marcus et al., 1993), (iii) a list of particular func-
tion words that play an important role in fine-
grained subcategorisation frames of verbs (Eckle-
Kohler and Gurevych, 2012) and (iv) semantic cat-
egories of nouns given by WN semantic fields. We
selected POS tags that play an important role in
syntactic realisations of verbs, e.g. POS tags for
personal pronouns which are potential verb argu-
ments. In our experiments, we tried different sets
of function words and POS tags. For instance,
we found that some function words (e.g., reflex-
ive pronouns) and some POS tags (e.g., those for
past participles and comparative adjectives) intro-
duced too much noise in the data and therefore we
did not select them for the final vocabulary.®

In order to create SPs from sense examples,
we apply POS tagging and lemmatisation using
the TreeTagger (Schmid, 1994) and named entity
tagging using the Stanford Named Entity Recog-
niser (Klein et al., 2003). The named entity
tags attached by the Named Entity Recogniser are
mapped to WN semantic fields.

For the generation of ASPs from sense exam-
ples, we used a window size of w = 7, while
the generation of LSPs has been performed with
w = 5 in order to put a focus on the closely neigh-
bouring lexemes in multiword verb lemmas. The

8The vocabulary used for the creation of ASPs is available
athttp://www.ukp.tu-darmstadt.de/data/.
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window size was set empirically using the English
Lexical Sample task of the Senseval-2 dataset as
a development set. The same set was also used
for the development of the linguistically motivated
vocabulary for ASPs.’

From the abstract predicate-argument struc-
ture information given in VN, we derived only
ASPs. For this, we employed the subcategori-
sation frames, as well as the semantic role and
selectional preference information from VN, and
created ASPs based on manually created map-
pings between these information types and the
controlled vocabulary used for ASPs.

2.3 Step 2: Automated Labelling

For the automated labelling of verbs in a corpus,
we first derive SPs from each corpus sentence con-
taining a target verb. SPs are derived from corpus
sentences by applying the same procedure as de-
scribed in Step 1 for the creation of SPs from sense
examples, the window size used is w = 7.

To compare two SPs, we propose a similarity
metric based on Dice’s coefficient which calcu-
lates the sum of the weighted number of their com-
mon bi-grams, tri-grams, and four-grams. For-
mally, the similarity score sim,, € [0..1] of two
SPs p1, po is defined as:

4
Z |G (p1)NGr(p2)|-n

n=2

(1)  simy(p1,p2) =

NOTMay

where w >= 1 is the size of the window around
the target verb, G,,(p;), 7 € {1,2} is the set of n-

“However, the Senseval-2 data are annotated with sense
keys of the WN pre-release version 1.7 and therefore, we had
to employ an automated mapping of WN 1.7 pre-release to
WN 3.0 sense keys provided by Rada Mihalcea. Since this
mapping turned out to be rather noisy, we did not use the
Senseval-2 data in our evaluations.



Automated labelling of corpus instances

for each sentence s; with verb v
derive LSP; and ASP;

forall j = sizeO f(UBY-LSP(v))

compare LS P; with LS P; in UBY-LSP(v):
mazSim(LSP;) = argmax;score(LSP;, LSP;)
add sense(argmaz;) to MostSimilarSenses(L.S P;)

forall k = sizeO f(UBY-ASP(v))

compare ASP; with AS Py, in UBY-ASP(v):
maxSim(ASP;) = argmaziscore(ASP;, ASPy)
add sense(argmazxy) to MostSimilarSenses(AS P;)

if maxSim;,; >= threshold ¢ and
maxSim; ; >= maxSim; i
label(s;) = random(MostSimilarSenses(L.S F;))
else if maxSim; , >= threshold ¢
label(s;) = random(MostSimilarSenses(ASF;))
end if
end for

Table 2: Algorithm for labelling corpus instances
with WordNet senses.

grams occurring in SP p;, and norm,, is the nor-
malisation factor defined by the sum of the max-
imum number of common bigrams, trigrams and
fourgrams in the window w. Similarity metrics
based on Dice’s coefficient have often been used
in Lesk-based WSD (Lesk, 1986) to calculate the
overlap of two sets (e.g., Baldwin et al. (2010)). In
our case, however, the elements of the two sets are
bigrams, trigrams and fourgrams, while in Lesk-
based algorithms typically sets of unigrams are
compared, thus not accounting for word order.

Table 2 shows the algorithm used for automated
labelling of corpus instances in pseudo-code. The
algorithm assumes that for each verb v, the corre-
sponding set of SPs derived from UBY sense ex-
amples (UBY-LSP(v) and UBY-ASP(v) in Table
2) has already been computed.

For each corpus sentence containing a target
verb v, the corresponding SPs for verb v derived
from UBY are scored by the similarity metric in
(1). The SPs with the maximum score that is above
a threshold ¢ form the set of most similar senses.
From this set, the algorithm picks one sense ran-
domly as a label. How often this happens, depends
on the value of t: the percentage of randomly se-
lected senses ranges from about 33% for ¢t = 0.14
to about 50% for ¢ = 0.04.

3 Data

Web corpora. For the automated labelling of cor-
pus data with WN senses, we use two very large
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web corpora: the English ukWaC corpus (Ba-
roni et al., 2009) and the article pages extracted
from the English Wikipedia using the Java-based
Wikipedia API JWPL (Zesch et al., 2008). Fur-
ther, for the evaluation of our method, we use three
manually sense annotated data sets.

SemCor. We use the SemCor 3.0 corpus which
is annotated with WN 3.0 senses.

MASC. MASC is a balanced subset of 500K
words of written texts and transcribed speech
drawn primarily from the Open American Na-
tional Corpus (OANC).!0 The texts come from 19
different genres which allows us to test our method
on real-life data from multiple sources. The cor-
pus is annotated with various types of linguistic
information, including WN 3.0 sense annotations
for instances of selected words. Therefore, MASC
is a lexical sample corpus.

We extracted instances of 16 MASC verbs
(11,997 instances) which have been sense anno-
tated. Most instances are annotated by multiple
annotators and, to create a gold standard, we took
the sense preferred by the majority of annotators
and ignored instances where there were ties.

Senseval-3. In the test corpus of the Senseval-
3 all-words disambiguation task sense annotations
are provided for each content word in a chunk
of the WSJ corpus (5,000 words of running text).
The third annotated data set for our experiment is
formed by extracting all verb instances from this
test corpus. Note that the gold standard annota-
tions in Senseval-3 were made using WN 1.7.1.
In our experiments, we use Rada Mihalcea’s con-
version of the corpus to WN 3.0.!! However, we
found out that some verb instances were converted
to sense labels that do not exist in WN 3.0. Af-
ter removing those instances, there were 305 verbs
with 592 instances left.

4 Experiments and Evaluation

Next, we present the intrinsic and the application-
based evaluations of our method.

4.1 Intrinsic Evaluation

We intrinsically evaluate the performance of the
automated labelling algorithm for the Senseval-3
verbs which occur in the SemCor corpus. Occur-
rences of these 152 verbs in SemCor are processed

Ohttp://www.americannationalcorpus.
org/

"http://www.cse.unt.edu/~rada/
downloads.html#sensevalsemcor



WN-FN-WKT WN-FN-WKT-VN
t Cov Cov Acc  Cov Cov Acc
(Inst.)  (Sense) (Inst.)  (Sense)
0.04 0.55 0.27 0.32 048 0.25 0.35
0.07 0.15 0.17 0.36  0.13 0.15 0.42
0.1 0.11 0.14 0.35 0.10 0.13 0.42
0.14 0.02 0.07 0.41 0.02 0.05 0.47

Table 3: Performance of the automated labelling
algorithm evaluated for occurrences of Senseval-3
verbs in SemCor.

by the labelling algorithm with a window size
w = 7 and the automatically annotated WN 3.0
senses are compared with the gold senses available
in SemCor 3.0.

Quantitative Evaluation. We calculated the
accuracy as the percentage of correctly labelled in-
stances and the instance coverage as the percent-
age of labelled instances. The sense coverage is
calculated as the percentage of all predicted (not
annotated) senses relative to all gold verb senses
given in SemCor.

A random sense baseline yields 15% accuracy.
Note that a MFS baseline based on WN would
not be meaningful, because the WordNet MFS is
based on the frequency distribution of annotated
senses in SemCor.

Table 3 shows accuracy and coverage results
of the automated labelling algorithm for different
values of the threshold ¢ and two combinations of
sense links from UBY. Depending on the threshold
t, 2% to 55% of the verb instances in SemCor can
automatically be labelled, and the instance cov-
erage goes largely in parallel to the coverage of
predicted WN senses. Accuracy ranges between
32% and 47% and exceeds the random sense base-
line by a large margin. Lowering the threshold in-
creases the coverage of the labelling method, but
it also leads to a decrease in accuracy of 9 percent-
age points (12 for the configuration with VN).

Adding more patterns from VN via the WN—
VN alignment, leads to a decrease in both instance
and sense coverage combined with an increase in
accuracy. Since SemCor is a rather small corpus,
the increase in instance coverage is not as clear
as for large Web corpora such as the ukWaC cor-
pus. Labelling a 1GB subset of the ukWaC cor-
pus based on patterns derived from the WN-FN-
WKT alignments resulted in 15MB of labelled
data, whereas 25MB labelled data could be created
from the same subset with the additional patterns
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from the WN-VN alignment.

Qualitative Analysis. In Table 4, we show ex-
amples of the highest ranking patterns and the cor-
responding labelled SemCor instances for senses
that were correctly and falsely annotated. The ex-
amples in Table 4 show that the similarity metric
assigns the highest values to instances where func-
tion words (e.g., in, to, who) or POS tags (e.g., PP,
VV) from the ASP vocabulary occur in the im-
mediate neighbourhood of the target verb. Since
such functions words play an important role in the
ASPs derived from VN, the VN ASPs possibly
tend to dominate over the SPs derived from sense
examples, which explains the observed decrease in
coverage (see Table 3).

The falsely labelled instances turn out to be ex-
amples of WN senses where the gold sense is very
similar to the automatically attached sense as evi-
dent from the synset definition given in the right-
most column.

4.2 Extrinsic Evaluation

We extrinsically evaluate our method for auto-
mated verb sense labelling by using it for learning
a classifier for VSD in a train-test setting. We use
features which have been widely used in super-
vised WSD systems, in particular features based
on dependency parsing. While this might seem
to be in contrast to our labelling algorithm which
is based on shallow linguistic preprocessing, it is
fully justified by the purpose of our extrinsic eval-
uation: The main purpose of the extrinsic evalua-
tion is not to outperform state-of-the-art VSD sys-
tems, but to show that, when operating with rea-
sonable features, a classifier trained on the data
automatically labelled with our method performs
equally well as when this classifier is trained on
manually annotated data.

4.2.1 Features

The training and test data are parsed with the Stan-
ford parser (Klein and Manning, 2003) which pro-
vides Stanford Dependencies output (De Marneffe
et al., 2006) as well as phrase structure trees. We
employ the Stanford Named Entity Recogniser to
identify named entities. We then extract lexical,
syntactic, and semantic features from the parse re-
sults for classification.

Lexical features include the lemmas and POS
tags of the two words before and after the tar-
get verb. To extract syntactic features we select
all dependency relations from the parser output in



SemCor instance

SP derived from SemCor

score  WN sense ID (gold sense in brackets)

Some of the New York Philharmonic  of group person who live 0.29  live%2:42:08:: (live%?2:42:08::)
musicians who live in the suburbs spent  in location VVD time time

yesterday morning digging themselves VVG

free from snow.

These societies can expect to face diffi- group expect to VV JJ  0.22  expect%2:31:01:: (expect%2:31:01::)
cult times. event

As autumn starts its annual sweep , few JJ attribute JJ person real- 0.22  realize%?2:31:00:: — perceive (an idea or
Americans and Canadians realize how  ize how JJ PP be in situation) mentally (realize%?2:31:01::
fortunate they are in having the world ’s — be fully aware or cognizant of)

finest fall coloring.

Dan Morgan told himself he would for-  person person VVD PP PP 0.16  forget%2:31:00:: — be unable to re-

get Ann Turner.

forget person location

member (forget%?2:31:01:: — dismiss
from the mind; stop remembering)

Table 4: Examples of SemCor instances with high similarity scores (upper half shows correctly labelled

instances, lower half incorrectly labelled instances.

which the target verb is related to a noun, a pro-
noun, or a named entity. For each selected word,
the lemma of the word (or the named entity tag in
case of proper nouns) is combined with the type
of the dependency relation which exists between
it and the verb to form a separate feature. In a
similar feature, the lemma of the selected word is
replaced by its POS tag. The semantic features
include all synsets found in WN for nominal argu-
ments of the verb. Personal pronouns are mapped
to ‘person’ and the three synsets found in WN 3.0
for this word are taken as features.

4.2.2 Train and Test Data

Using exactly the same method as intrinsically
evaluated in section 4.1, we automatically labelled
occurrences of the 16 MASC verbs and the 305
Senseval-3 verbs in both web corpora with WN
senses. Only occurrences with similarity score
above 0.1 are labelled — all other occurrences are
discarded. We refer to the resulting data as au-
tomatically labelled corpus (ALC) and use it as
training data for statistical VSD.

Instances of the test verbs found in SemCor are
also used as training data in order to compare the
performance of the classifier in a fully supervised
setting.

MASC. There are 22 senses with instances in
MASC which are not found in SemCor. For the
ALC this number is 34. However, in the latter
there are 27 senses, instances of which are un-
seen in MASC. 20 of those represent phrasal verbs
which we attribute to the special treatment of such
verbs in our method.

The classifier cannot correctly classify senses
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which are not seen in the training data. The cov-
erage of the ALC is 88.05% and that of SemCor
— 94.8%. The SemCor data can mainly cover
more test instances of 3 verbs — launch, rule, and
transfer — the WN senses of which lack sense
examples or links to other senses in UBY. Un-
like the hand-labelled SemCor data, our automated
sense labelling method is limited to the informa-
tion found in the LLR used. However, there are
also 330 MASC instances covered by the ALC
only. Those are mostly instances of phrasal verbs,
such as rip off and show up. Note that the defini-
tion of coverage we use here makes its values the
upper bounds for the performance of the classifier.
Senseval-3. We also generated training data au-
tomatically for the 305 Senseval verbs. However,
only 152 of those verbs (442 instances) are found
in SemCor. This means we cannot train the classi-
fier for the remaining Senseval verbs. The cover-
age of the SemCor training data for the 152 verbs
which can be classified is 96.15% and that of the
ALC — 95.25%. For all 592 Senseval test in-
stances, the coverage of the ALC is 90.38%.

4.2.3 Results and Analysis

We trained a separate logistic regression classi-
fier for each test verb in the two datasets us-
ing the WEKA data mining software (Hall et al.,
2009) with default parameters. The classifiers
were trained with features extracted from (i) the
SemCor hand-labelled data and (ii) the ALC.
MASC. The classifier achieves 50.23% accu-
racy when SemCor is used and 49% when the
ALC is employed. The difference in the results is
not statistically significant at p < 0.05. The MFS



baseline scores at 41.72%.

Senseval-3. The classifier achieves 43.24%
with the ALC. We assigned the MFS to each of
the 143 test verbs not found in SemCor since we
cannot train the classifier for those. The achieved
accuracy is 45.2%. We also measured accuracy
in a setup where no MFS back-off strategy was
employed for SemCor (152 test verbs with 442
instances). When trained on SemCor data, the
classifier achieves 48.64% accuracy compared to
47.51% for the ALC. All differences in the results
are not statistically significant at p < 0.05. Fi-
nally, the MFS baseline accuracy is significantly
lower at 25.34% for all 305 test verbs.

For both test datasets, the overall performance
of the classifier when trained on automatically la-
belled data is very close to the setting in which
manually created training data is employed. We
thus conclude that the quality of the data produced
by our sense labelling method is sufficient and
these data can be directly used for training a statis-
tical VSD classifier. As a reference, the state-of-
the-art supervised VSD system described in Chen
and Palmer (2009) achieves 64.8% accuracy on the
Senseval-2 fine-grained data. However, we cannot
compare to this result due to the different sense in-
ventory which the Senseval-2 data were annotated
with.

4.2.4 Sense Links

In order to investigate the effect of LLRs, we
performed experiments in which sense examples
found in WN only were used. We also experi-
mented with various combinations of the resources
available in UBY to determine the contribution of
each of those to our method. Table 5 shows the re-
sults. The setting which includes only WN has the
worst performance, thus clearly showing the ben-
efits of using LLRs. Next, the inclusion of WKT
improves both coverage and accuracy. We con-
clude that WKT plays an important role in discov-
ering additional verb senses. Finally, similarly to
the results of the intrinsic evaluation, adding VN
to the mix increases slightly the coverage but de-
creases accuracy.

5 Related Work and Discussion

Our work is related to previous research on
(1) using a combination of lexical resources for
knowledge-based WSD, (ii) using lexical re-
sources for distant supervision, and (iii) the auto-
mated acquisition of sense-annotated data.

MASC Senseval
Cov Acc Cov Acc
WN 0.6573 0.3498 0.6372 0.3209
WN-FN 0.8562 0.4810 0.8812 0.4172
WN-FN-WKT 0.8805 0.4900 0.9038 0.4324
WN-EN-WKT-VN 0.8822 0.4688 09139 0.4054

Table 5: Performance of the various combinations
of lexical resources.

Knowledge-based WSD. While the combina-
tion of sense-annotated data and wordnets has
been described for knowledge-based WSD before
(e.g., Navigli and Velardi (2005; Agirre and Soroa
(2009) who use graph algorithms), only recently
Ponzetto and Navigli (2010) have investigated the
impact of the combination of different lexical re-
sources on the performance of WSD. They aligned
WN senses with Wikipedia articles and employed
two simple knowledge-based algorithms, i.e., a
Lesk-based algorithm and a graph-based algo-
rithm, to evaluate the resulting LLR for WSD.
While their evaluation demonstrates that the use
of an LLR boosts the performance of knowledege-
based WSD, it is restricted to nouns only since
Wikipedia provides very few verb senses. More-
over, lexical resources that are rich in lexical-
syntactic information such as VN have not been
involved.

Miller et al. (2012) employ a Lesk-based algo-
rithm which makes use of a combination of WN
and an automatically acquired distributional the-
saurus. Lesk-based algorithms play a central role
in knowledge-based WSD. Based on the overlap
of the context of the target word and sense defi-
nitions in a given sense inventory, they assign the
sense with the highest overlap as disambiguation
result. We were kindly provided with the system
described in Miller et al. (2012) and we were able
to test its performance on our test sets. The sys-
tem achieved only 33.86% and 30.16% accuracy
for the MASC and the Senseval-3 verbs, respec-
tively, which is far below the results we presented.
This low performance is due to the fact that Lesk-
based algorithms do not account for word order.
Such information is important especially for verb
senses, as the syntactic behaviour of a verb reflects
aspects of its meaning.

Distant supervision. Distant supervision is
a learning paradigm similar to semi-supervised
learning. Unlike semi-supervised methods which
typically employ a supervised classifier and a



small number of seed instances to do bootstrap
learning (Yarowsky, 1995; Mihalcea, 2004; Fujita
and Fujino, 2011), in distant supervision training
data are created in a single run from scratch by
aligning corpus instances with entries in a knowl-
edge base. Distant supervision methods that have
used LLRs as knowledge bases have been previ-
ously applied in relation extraction, e.g. Freebase
(Mintz et al., 2009; Surdeanu et al., 2012) and Ba-
belNet (Krause et al., 2012; Moro et al., 2013).
However, as far as we are aware, we are the first to
apply distant supervision to the task of verb sense
disambiguation.

Acquisition of sense-annotated data. Most
previous work on using lexical resources for au-
tomatically acquiring sense-annotated data either
was mostly restricted to noun senses or, unlike
us, did not present a meaningful evaluation. Lea-
cock et al. (1998) describe the automated creation
of training data for supervised WSD on the ba-
sis of WN as a lexical resource combined with
corpus statistics, but they evaluate their approach
just on one noun, verb, and adjective, and thus
it is unclear whether their results can be gener-
alized. Cuadros and Rigau (2008) used the ap-
proach of Leacock et al. (1998) to automatically
build a large KnowNet from the Web, but they
evaluated this resource only for WSD of nouns.
However, the system based on KnowNet yields re-
sults below the SemCor-MFS baseline. Mihalcea
and Moldovan (1999) use WordNet glosses to ex-
tract sense examples from the Web via a search en-
gine and use this approach in a subsequent paper
(Mihalcea, 2002) to generate a sense tagged cor-
pus. For five randomly selected nouns, they per-
formed a comparative evaluation of a WSD classi-
fier trained on an automatically tagged corpus on
the one hand, and on the manually annotated data
from the Senseval-2 English lexical sample task
on the other hand. The results obtained for these
five nouns seem to be similar but the dataset used
is too small to draw meaningful conclusions and
moreover, it does not cover verbs. Mostow and
Duan (2011) presented a system that extracts ex-
ample contexts for nouns and apply these contexts
in (Duan and Yates, 2010) for WSD by using them
to label text and train a statistical classifier. An
evaluation of this classifier yielded results similar
to those obtained by a supervised WSD system.

Kiibler and Zhekova (2009) extract example
sentences from several English dictionaries and
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various types of corpora, including web corpora.
They employ a Lesk-based algorithm to automati-
cally annotate the target word instances in the ex-
tracted example sentences with WN senses and
use them in one of their experiments as train-
ing data for a WSD classifier. However, the per-
formance of the system decreased significantly
achieving the lowest accuracy among all system
configurations. The authors provide only the over-
all accuracy score, so we do not know how disam-
biguation of verbs was affected.

Summary. We consider the ability to estab-
lish a link between the rich knowledge available in
LLRs and corpora of any kind to be the main ad-
vantage of our automated labelling method. How-
ever, to automatically label a suffcient amount
of data for supervised learning, very large cor-
pora are required. Our method can be extended
to other POS (using sense examples and possibly
other types of lexical information), as well as to
other languages where (linked) lexical resources
are available.

6 Conclusion

In this paper, we presented a novel method for cre-
ating sense labelled corpora automatically. We ex-
ploit LLRs and perform large-scale intrinsic and
application-based evaluations. The results of those
evaluations show that the quality of the sense la-
belled corpora created with our method matches
that of manually annotated corpora.

In future research, we plan to use PropBank
(Palmer et al., 2005) in order to extract sense
examples for VN as well. This might improve
the performance of lexical resource combinations
which include VN. We will also apply our method
to languages (e.g., German) for which lexical re-
sources are available but no or little sense anno-
tated corpora exist.
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Abstract

Aspect-based sentiment analysis estimates
the sentiment expressed for each particu-
lar aspect (e.g., battery, screen) of an en-
tity (e.g., smartphone). Different words
or phrases, however, may be used to re-
fer to the same aspect, and similar as-
pects may need to be aggregated at coarser
or finer granularities to fit the available
space or satisfy user preferences. We in-
troduce the problem of aspect aggrega-
tion at multiple granularities. We decom-
pose it in two processing phases, to al-
low previous work on term similarity and
hierarchical clustering to be reused. We
show that the second phase, where aspects
are clustered, is almost a solved prob-
lem, whereas further research is needed
in the first phase, where semantic simi-
larity measures are employed. We also
introduce a novel sense pruning mecha-
nism for WordNet-based similarity mea-
sures, which improves their performance
in the first phase. Finally, we provide pub-
licly available benchmark datasets.

1 Introduction

Given a set of texts discussing a particular en-
tity (e.g., reviews of a laptop), aspect-based senti-
ment analysis (ABSA) attempts to identify the most
prominent (e.g., frequently discussed) aspects of
the entity (e.g., battery, screen) and the average
sentiment (e.g., 1 to 5 stars) for each aspect or
group of aspects, as in Fig. 1. Most ABSA systems
perform all or some of the following (Liu, 2012):
subjectivity detection to retain only sentences (or
other spans) expressing subjective opinions; as-
pect extraction to extract (and possibly rank) terms
corresponding to aspects (e.g., ‘battery’); aspect
aggregation to group aspect terms that are near-
synonyms (e.g., ‘price’, ‘cost’) or to obtain aspects
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design, color, feeling, ...

Figure 1: Aspect groups and scores of an entity.

at a coarser granularity (e.g., ‘chicken’,‘steak’,
and ‘fish” may be replaced by ‘food’ in restaurant
reviews); and aspect sentiment score estimation to
estimate the average sentiment for each aspect or
group of aspects. In this paper, we focus on aspect
aggregation, the least studied stage of the four.

Aspect aggregation is needed to avoid reporting
separate sentiment scores for aspect terms that are
very similar. In Fig. 1, for example, showing sep-
arate lines for ‘money’, ‘price’, and ‘cost’ would
be confusing. The extent to which aspect terms
should be aggregated, however, also depends on
the available space and user preferences. On de-
vices with smaller screens, it may be desirable to
aggregate aspect terms that are similar, though not
necessarily near-synonyms (e.g., ‘design’, ‘color’,
‘feeling’) to show fewer lines (Fig. 1), but finer as-
pects may be preferable on larger screens. Users
may also wish to adjust the granularity of aspects,
e.g., by stretching or narrowing the height of Fig. 1
on a smartphone to view more or fewer lines.
Hence, aspect aggregation should be able to pro-
duce groups of aspect terms for multiple granular-
ities. We assume that the aggregated aspects are
displayed as lists of terms, as in Fig. 1. We make
no effort to order (e.g., by frequency) the terms in
each list, nor do we attempt to produce a single
(more general) term to describe each aggregated
aspect, leaving such tasks for future work.

ABSA systems usually group synonymous (or
near-synonymous) aspect terms (Liu, 2012). Ag-
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gregating only synonyms (or near-synonyms),
however, does not allow users to select the desir-
able aspect granularity, and ignores the hierarchi-
cal relations between aspect terms. For example,
‘pizza’ and ‘steak’ are kinds of ‘food’ and, hence,
the three terms can be aggregated to show fewer,
coarser aspects, even though they are not syn-
onyms. Carenini et al. (2005) used a predefined
domain-specific taxonomy to hierarchically aggre-
gate aspect terms, but taxonomies of this kind
are often not available. By contrast, we use only
general-purpose taxonomies (e.g., WordNet), term
similarity measures based on general-purpose tax-
onomies or corpora, and hierarchical clustering.
We define multi-granular aspect aggregation to
be the task of partitioning a given set of aspect
terms (generated by a previous aspect extraction
stage) into k non-overlapping clusters, for multi-
ple values of k. A further constraint is that the
clusters have to be consistent for different k val-
ues, meaning that if two aspect terms ¢;,{y are
placed in the same cluster for £ = ki, then ¢;
and 2 must also be grouped together (in the same
cluster) for every k = kg with ky < ki, i.e., for
every coarser grouping. For example, if ‘waiter’
and ‘service’ are grouped together for & = 5, they
must also be grouped together for £k = 4,3,2
and (trivially) k¥ = 1, to allow the user to feel
that selecting a smaller number of aspect groups
(narrowing the height of Fig. 1) has the effect of
zooming out (without aspect terms jumping un-
expectedly to other aspect groups), and similarly
for zooming in.! This requirement is satisfied by
using agglomerative hierarchical clustering algo-
rithms (Manning and Schiitze, 1999; Hastie et al.,
2001), which in our case produce term hierarchies
like the ones of Fig. 2. By using slices (nodes at a
particular depth) of the hierarchies that are closer
to the root or the leaves, we obtain fewer or more
clusters. The vertical dotted lines of Fig. 2 illus-
trate two slices for £ = 4. By contrast, flat clus-
tering algorithms (e.g., k-means) do not satisfy the
consistency constraint for different k values.
Agglomerative clustering algorithms require a
measure of the distance between individuals, in
our case a measure of how similar two aspect
terms are, and a linkage criterion to specify which
clusters should be merged to form larger (coarser)
clusters. To experiment with different term sim-

'We also require the clusters to be non-overlapping to
make this zooming in and out metaphor clearer to the user.

79

Laptop aspects hierarchy Restaurant aspects hierarchy

speed| T pizzafF— )
performance [ food [
quality} | fish L
design} | sushi b
screen; ] | meal "o
graphics} | dishes; |
sizel o | menu; il
features| ! | portions )
hard drive | wine, 1 |
memory drinks| |
keyboard | prices i
service| | price |
warranty| I ambience—— |
price| | atmosphere |
battery life—— | decor —!
battery} T placel——
software— | table I
programs|—| ! waiter !
applications| : staff— !
windows! ! service

L
00 02 04 06 0B 10 12 14 00 02 04 06 08 10 12 14

Figure 2: Example aspect hierarchies produced by
agglomerative hierarchical clustering.

\ | food | fish [ sushi [ dishes | wine ]

food 5 4 4 4 2
fish 4 5 4 2 1
sushi 4 4 5 3 1
dishes 4 2 3 5 2
wine 2 1 1 2 5

Table 1: An aspect term similarity matrix.

ilarity measures and linkage criteria, we decom-
pose multi-granular aspect aggregation in two pro-
cessing phases. Phase A fills in a symmetric ma-
trix, like the one of Table 1, with scores show-
ing the similarity of each pair of input aspect
terms; the matrix in effect defines the distance
measure to be used by agglomerative clustering.
In Phase B, the aspect terms are grouped into k
non-overlapping clusters, for varying values of k,
given the matrix of Phase A and a linkage crite-
rion; a hierarchy like the ones of Fig. 2 is first
formed via agglomerative clustering, and fewer or
more clusters (for different values of k) are then
obtained by using different slices of the hierarchy,
as already discussed. Our two-phase decomposi-
tion can also accommodate non-hierarchical clus-
tering algorithms, provided that the consistency
constraint is satisfied, but we consider only ag-
glomerative hierarchical clustering in this paper.
The decomposition in two phases has three
main advantages. Firstly, it allows reusing previ-
ous work on term similarity measures (Zhang et
al., 2013), which can be used to fill in the ma-
trix of Phase A. Secondly, the decomposition al-
lows different linkage criteria to be experimen-
tally compared (in Phase B) using the same sim-
ilarity matrix (of Phase A), i.e., the same distance



measure. Thirdly, the decomposition leads to high
inter-annotator agreement, as we show experimen-
tally. By contrast, in preliminary experiments we
found that asking humans to directly evaluate as-
pect hierarchies produced by hierarchical cluster-
ing, or to manually create gold aspect hierarchies
led to poor inter-annotator agreement.

We show that existing term similarity measures
perform reasonably well in Phase A, especially
when combined, but there is a large scope for im-
provement. We also propose a novel sense pruning
method for WordNet-based similarity measures,
which leads to significant improvements in Phase
A. In Phase B, we experiment with agglomera-
tive clustering using four different linkage criteria,
concluding that they all perform equally well and
that Phase B is almost a solved problem when the
gold similarity matrix of Phase A is used; how-
ever, further improvements are needed in the sim-
ilarity measures of Phase A to produce a suffi-
ciently good similarity matrix. We also make pub-
licly available the datasets of our experiments.

Our main contributions are: (i) to the best
of our knowledge, we are the first to consider
multi-granular aspect aggregation (not just merg-
ing near-synonyms) in ABSA without manually
crafted domain-specific ontologies; (ii) we pro-
pose a two-phase decomposition that allows previ-
ous work on term similarity and hierarchical clus-
tering to be reused and evaluated with high inter-
annotator agreement; (iii) we introduce a novel
sense pruning mechanism that improves WordNet-
based similarity measures; (iv) we provide the first
public datasets for multi-granular aspect aggrega-
tion; (v) we show that the second phase of our de-
composition is almost a solved problem, and that
research should focus on the first phase. Although
we experiment with customer reviews of products
and services, ABSA and the work of this paper in
particular are, at least in principle, also applicable
to texts expressing opinions about other kinds of
entities (e.g., politicians, organizations).

Section 2 below discusses related work. Sec-
tions 3 and 4 present our work for Phase A and B,
respectively. Section 5 concludes.

2 Related work

Most existing approaches to aspect aggregation
aim to produce a single, flat partitioning of as-
pect terms into aspect groups, rather than aspect
groups at multiple granularities. The most com-
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mon approaches (Liu, 2012) are to aggregate only
synonyms or near-synonyms, using WordNet (Liu
et al., 2005), statistics from corpora (Chen et al.,
2006; Bollegala et al., 2007a; Lin and Wu, 2009),
or semi-supervised learning (Zhai et al., 2010;
Zhai et al., 2011), or to cluster the aspect terms
using (latent) topic models (Titov and McDonald,
2008a; Guo et al., 2009; Brody and Elhadad, 2010;
Jo and Oh, 2011). Topic models do not perform
better than other methods (Zhai et al., 2010), and
their clusters may overlap.”> The topic model of
Titov et al. (2008b) uses two granularity levels;
we consider many more (3—10 levels).

Carenini et al. (2005) used a predefined domain-
specific taxonomy and similarity measures to ag-
gregate related terms. Yu et al. (2011) used a tai-
lored version of an existing taxonomy. By con-
trast, we assume no domain-specific taxonomy.
Kobayashi et al. (2007) proposed methods to ex-
tract aspect terms and relations between them, in-
cluding hierarchical relations. They extract, how-
ever, relations by looking for clues in texts (e.g.,
particular phrases). By contrast, we employ simi-
larity measures and hierarchical clustering, which
allows us to group similar aspect terms even when
they do not cooccur in texts. Also, in contrast
to Kobayashi et al. (2007), we respect the consis-
tency constraint discussed in Section 1.

A similar task is taxonomy induction. Cimi-
ano and Staab (2005) automatically construct tax-
onomies from texts via agglomerative clustering,
much as in our Phase B, but not in the context of
ABSA, and without trying to learn a similarity ma-
trix first. They also label the hierarchy’s concepts,
a task we do not consider. Klapaftis and Manand-
har (2010) show how word sense induction can be
combined with agglomerative clustering to obtain
more accurate taxonomies, again not in the con-
text of ABSA. Our sense pruning method was in-
fluenced by their work, but is much simpler than
their word sense induction. Fountain and Lapata
(2012) study unsupervised methods to induce con-
cept taxonomies, without considering ABSA.

3 Phase A

We now discuss our work for Phase A. Recall that
in this phase the input is a set of aspect terms and

2Topic models are typically also used to perform aspect
extraction, apart from aspect aggregation, but simple heuris-
tics (e.g., most frequent nouns) often outperform them in as-
pect extraction (Liu, 2012; Moghaddam and Ester, 2012).



the goal is to fill in a matrix (Table 1) with scores
showing the similarity of each pair of aspect terms.

3.1 Datasets used in Phase A

We used two benchmark datasets that we had pre-
viously constructed to evaluate ABSA methods for
subjectivity detection, aspect extraction, and as-
pect score estimation, but not aspect aggregation.
We extended them to support aspect aggregation,
and we make them publicly available.’

The two original datasets contain sentences
from customer reviews of restaurants and laptops,
respectively. The reviews are manually split into
sentences, and each sentence is manually anno-
tated as ‘subjective’ (expressing opinion) or ‘ob-
jective’ (not expressing opinion). The restaurants
dataset contains 3,710 English sentences from the
restaurant reviews of Ganu et al. (2009). The lap-
tops dataset contains 3,085 English sentences from
394 customer reviews, collected from sites that
host customer reviews. In the experiments of this
paper, we use only the 3,057 (out of 3,710) sub-
jective restaurant sentences and the 2,631 (out of
3,085) subjective laptop sentences.

For each subjective sentence, our datasets show
the words that human annotators marked as aspect
terms. For example, in “The dessert was divine!”
the aspect term is ‘dessert’, and in “Really bad
waiter.” it is ‘waiter’. Among the 3,057 subjective
restaurant sentences, 1,129 contain exactly one as-
pect term, 829 more than one, and 1,099 no aspect
term; a subjective sentence may express an opin-
ion about the restaurant (or laptop) being reviewed
without mentioning a specific aspect (e.g., “Really
nice restaurant!”’), which is why no aspect terms
are present in some subjective sentences. There
are 558 distinct multi-word aspect terms and 431
distinct single-word aspect terms in the subjective
restaurant sentences. Among the 2,631 subjective
sentences of the laptop reviews, 823 contain ex-
actly one aspect term, 389 more than one, and
1,419 no aspect term. There are 273 distinct multi-
word aspect terms and 330 distinct single-word as-
pect terms in the subjective laptop sentences.

From each dataset, we selected the 20 (distinct)
aspect terms that the human annotators had anno-
tated most frequently, taking annotation frequency
to be an indicator of importance; there are only
two multi-word aspect terms (‘hard drive’, ‘bat-

3The datasets are available at http://nlp.cs.
aueb.gr/software.html.
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tery life’) among the 20 most frequent ones in the
laptops dataset, and none among the 20 most fre-
quent aspect terms of the restaurants dataset. We
then formed all the 190 possible pairs of the 20
terms and constructed an empty similarity matrix
(Fig. 1), one for each dataset, which was given
to three human judges to fill in (1: strong dis-
similarity, 5: strong similarity).* For each aspect
term, all the subjective sentences mentioning the
term were also provided, to help the judges un-
derstand how the terms are used in the particu-
lar domains (e.g., ‘window’ and ‘Windows’ have
domain-specific meanings in laptop reviews).

The Pearson correlation coefficient indicated
high inter-annotator agreement (0.81 for restau-
rants, 0.74 for laptops). We also measured the ab-
solute inter-annotator agreement a(ly, l2), defined
below, where 1, o are lists containing the scores
(similarity matrix values) of two judges, IV is the
length of each list, and v;,45, Umin are the largest
and smallest possible scores (5 and 1).

N

[

1

N

|11(i) — 12(4)]

l17 ZQ

Umaz — Umin

The absolute interannotator agreement was also
high (0.90 for restaurants, 0.91 for laptops).> With
both measures, we compute the agreement of each
judge with the averaged (for each matrix cell)
scores of the other two judges, and we report the
mean of the three agreement estimates. Finally, we
created the gold similarity matrix of each dataset
by placing in each cell the average scores that the
three judges had provided for that cell.

In preliminary experiments, we gave aspect
terms to human judges, asking them to group any
terms they considered near-synonyms. We then
asked the judges to group the aspect terms into
fewer, coarser groups by grouping terms that could
be viewed as direct hyponyms of the same broader
term (e.g., ‘pizza’ and ‘steak’ are both kinds of
‘food’), or that stood in a hyponym-hypernym re-
lation (e.g., ‘pizza’ and ‘food’). We used the
Dice coefficient to measure inter-annotator agree-
ment, and we obtained reasonably good agreement
for near-synonyms (0.77 for restaurants, 0.81 for
laptops), but poor agreement for the coarser as-

*The matrix is symmetric; hence, the judges had to fill in
only half of it. The guidelines and an annotation tool that
were given to the judges are available upon request.

>The Pearson correlation ranges from —1 to 1, whereas
the absolute inter-annotator agreement ranges from 0 to 1.



pects (0.25 and 0.11).° In other preliminary ex-
periments, we asked human judges to rank alter-
native aspect hierarchies that had been produced
by applying agglomerative clustering with differ-
ent linkage criteria to 20 aspect terms, but we ob-
tained very poor inter-annotator agreement (Pear-
son score —(.83 for restaurants and O for laptops).

3.2 Phase A methods

We employed five term similarity measures. The
first two are WordNet-based (Budanitsky and
Hirst, 2006). The next two combine WordNet with
statistics from corpora. The fifth one is a corpus-
based distributional similarity measure.

The first measure is Wu and Palmer’s (1994). It
is actually a sense similarity measure (a term may
have multiple senses). Given two senses s;;, i
of terms t;, t;/, the measure is defined as follows:

depth(les(sij, sivjr))
depth(si;) + depth(si;)’

WP(Sij, Si’j’) =2

where lcs(s;j, si750) is the least common sub-
sumer, i.e., the most specific common ancestor of
the two senses in WordNet, and depth(s) is the
depth of sense s in WordNet’s hierarchy.

Most terms have multiple senses, however,
and word sense disambiguation methods (Navigli,
2009) are not yet robust enough. Hence, when
given two aspect terms ¢, ¢, rather than particular
senses of the terms, a simplistic greedy approach
is to compute the similarities of all the possible
pairs of senses s;;, sy of t;,;, and take the sim-
ilarity of ¢;,¢; to be the maximum similarity of
the sense pairs (Bollegala et al., 2007b; Zesch and
Gurevych, 2010). We use this greedy approach
with all the WordNet-based measures, but we also
propose a sense pruning mechanism below, which
improves their performance. In all the WordNet-
based measures, if a term is not in WordNet, we
take its similarity to any other term to be zero.’

The second measure, PATH (s;;, sy5), is sim-
ply the inverse of the length (plus one) of the short-
est path connecting the senses s;;, s;/;» in WordNet
(Zhang et al., 2013). Again, the greedy approach
can be used with terms having multiple senses.

%The Dice coefficient ranges from 0 to 1. There was a very
large number of possible responses the judges could provide
and, hence, it would be inappropriate to use Cohen’s K.

"This never happened in the restaurants dataset. In the
laptops dataset, it only happened for ‘hard drive’ and ‘bat-
tery life’. We use the NLTK implementation of the first four
measures (see http://nltk.org/) and our own imple-
mentation of the distributional similarity measure.
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The third measure is Lin’s (1998), defined as:

2 -ic(les(sij, sirj))
ic(sij) + ic(sir)

LIN(SZ']', Si’j’) =

where s;;,5;5 are senses of terms i;,t,
les(sij, i) is the least common subsumer of
sij, si; in WordNet, and ic(s) = —log P(s) is
the information content of sense s (Pedersen et al.,
2004), estimated from a corpus. When the cor-
pus is not sense-tagged, we follow the common
approach of treating each occurrence of a word as
an occurrence of all of its senses, when estimat-
ing ic(s).® We experimented with two variants of
Lin’s measure, one where the ic(s) scores were
estimated from the Brown corpus (Marcus et al.,
1993), and one where they were estimated from
the (restaurant or laptop) reviews of our datasets.

The fourth measure is Jiang and Conrath’s
(1997), defined below. Again, we experimented
with two variants of ic(s), as above.

JCN(SZ']', Si’j’) =
1
ic(sij) + ic(sijr) — 2 - les(siz, sirjr)

For all the above WordNet-based measures, we
experimented with a sense pruning mechanism,
which discards some of the senses of the aspect
terms, before applying the greedy approach. For
each aspect term ¢;, we consider all of its Word-
Net senses s;;. For each s;; and each other aspect
term t;;, we compute (using PATH) the similar-
ity between s;; and each sense s; ;s of ¢;7, and we
consider the relevance of s;; to t; to be:’

rel(sij, tiy) = max

PATH (s, Siri

5,141 € senses(t;) ( el )
The relevance of s;; to all of the N other aspect
terms t; is taken to be:

1
rel(sij) = N Z rel(sij, i)
oy

For each aspect term t;, we retain only its senses
si; with the top rel(sij) scores, which tends to

Shttp://www.d.umn.edu/~tpederse/Data/
README-WN-IC-30.txt. We use the default counting.

"We also experimented with other similarity measures
when computing rel(s;j,t;), instead of PATH, but there
was no significant difference. We use NLTK to tokenize, re-
move punctuation, and stop-words.



[ [ withoutSP || with SP ‘
Method Rest. | Lapt. Rest. Lapt.
wp 0.475 | 0.216 0.502 0.265
PATH 0.524 | 0.301 0.529 0.332
LIN@Qdomain || 0.390 | 0.256 0.456 0.343
LINQBrown 0.434 | 0.329 0.471 0.391
JCNQdomain || 0.467 | 0.348 0.509 0.448
JCN@Brown || 0.403 | 0.469 0.419 0.539

| DS [[0.283 ] 0.517 ][ (0.283) | (0.517) ]
AVG 0.499 | 0.352 0.537 0.426
WN 0.490 | 0.328 0.530 0.395
WNDS 0.523 | 0.453 0.545 0.546

Table 2: Phase A results (Pearson correlation to
gold similarities) with and without sense pruning.

prune senses that are very irrelevant to the par-
ticular domain (e.g., laptops). This sense prun-
ing mechanism is novel, and we show experimen-
tally that it improves the performance of all the
WordNet-based similarity measures we examined.

We also implemented a distributional simi-
larity measure (Harris, 1968; Pad6é and Lap-
ata, 2007; Cimiano et al., 2009; Zhang et al.,
2013).  Following Lin and Wu (2009), for
each aspect term ¢, we create a vector ¥(t)
(PMI(t,w1),..., PMI(t, wy)). The vector com-
ponents are the Pointwise Mutual Information
scores of ¢ and each word w; of a corpus:

P(t, wi)
P(t) - P(wi)

PMI(t,w;) = —log

We treat P(t,w;) as the probability of ¢, w; cooc-
curring in the same sentence, and we use the (lap-
top or restaurant) reviews of our datasets as the
corpus to estimate the probabilities. The distribu-
tional similarity DS(t,t") of two aspect terms ¢, ¢’
is the cosine similarity of #/(t), v/(t').1°

Finally, we tried combinations of the similarity
measures: AVG is the average of all five; WN is
the average of the first four, which employ Word-
Net; and WNDS is the average of WN and DS
all the scores range in [0, 1]. We also tried regres-
sion (e.g., SVR), but there was no improvement.

3.3 Phase A experimental results

Each similarity measure was evaluated by comput-
ing its Pearson correlation with the scores of the
gold similarity matrix. Table 2 shows the results.
Our sense pruning consistently improves all
four WordNet-based measures. It does not apply to
%We also experimented with Euclidean distance, a nor-

malized PMI (Bouma, 2009), and the Brown corpus, but
there was no improvement.
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DS, which is why the DS results are identical with
and without pruning. A paired ¢ test indicates that
the other differences (with and without pruning) of
Table 2 are statistically significant (p < 0.05). We
used the senses with the top five rel(s;;) scores for
each aspect term ¢; during sense pruning. We also
experimented with keeping fewer senses, but the
results were inferior or there was no improvement.

Lin’s measure performed better when infor-
mation content was estimated on the (much
larger, but domain-independent) Brown corpus
(LIN@Brown), as opposed to using the (domain-
specific) reviews of our datasets (LIN Qdomain),
but we observed no similar consistent pattern for
JCN. Given its simplicity, PATH performed re-
markably well in the restaurants dataset; it was
the best measure (including combinations) without
sense pruning, and the best uncombined measure
with sense pruning. It performed worse, however,
compared to several other measures in the laptops
dataset. Similar comments apply to WP, which is
among the top-performing uncombined measures
in restaurants, both with and without sense prun-
ing, but the worst overall measure in laptops. DS
is the best overall measure in laptops when com-
pared to measures without sense pruning, and the
third best overall when compared to measures that
use sense pruning, but the worst overall in restau-
rants both with and without pruning. LIN and
JCN, which use both WordNet and corpus statis-
tics, have a more balanced performance across the
two datasets, but they are not top-performers in
any of the two. Combinations of similarity mea-
sures seem more stable across domains, as the re-
sults of AVG, WN, and WNDS indicate, though
experiments with more domains are needed to in-
vestigate this issue. WNDS is the best overall
method with sense pruning, and among the best
three methods without pruning in both datasets.

To get a better view of the performance of
WNDS' with sense pruning, i.e., the best overall
measure of Table 2, we compared it to two state of
the art semantic similarity systems. First, we ap-
plied the system of Han et al. (2013), one of the
best systems of the recent *Sem 2013 semantic
text similarity competition, to our Phase A data.
The performance (Pearson correlation with gold
similarities) of the same system on the widely used
WordSim353 word similarity dataset (Agirre et al.,
2009) is 0.73, much higher than the same system’s
performance on our Phase A data (see Table 3),



Method Restaurants | Laptops
Han et al. (2013) 0.450 0.471
Word2Vec 0.434 0.485
WNDS with SP 0.545 0.546
Judge 1 0.913 0.875
Judge 2 0.914 0.894
Judge 3 0.888 0.924

Table 3: Phase A results (Pearson correlation to
gold similarities) of WNDS with SP against se-
mantic similarity systems and human judges.

which suggests that our data are more difficult.!!

We also employed the recent Word2Vec sys-
tem, which computes continuous vector space rep-
resentations of words from large corpora and has
been reported to improve results in word similarity
tasks (Mikolov et al., 2013). We used the English
Wikipedia to compute word vectors with 200 fea-
tures.'?> The similarity between two aspect terms
was taken to be the cosine similarity of their vec-
tors. This system performed better than Han et
al.’s with laptops, but not with restaurants.

Table 3 shows that WNDS (with sense prun-
ing) performed clearly better than the system of
Han et al. and Word2Vec. Table 3 also shows
the Pearson correlation of each judge’s scores to
the gold similarity scores, as an indication of the
best achievable results. Although WNDS (with
sense pruning) performs reasonably well in both
domains,'3 there is large scope for improvement.

4 PhaseB

In Phase B, the aspect terms are to be grouped
into k non-overlapping clusters, for varying val-
ues of k, given a Phase A similarity matrix. We
experimented with both the gold similarity matrix
of Phase A and similarity matrices produced by
WNDS (with SP), the best Phase A method.

4.1 Phase B methods

We experimented with agglomerative clustering
and four linkage criteria: single, complete, av-
erage, and Ward (Manning and Schiitze, 1999;
Hastie et al., 2001). Let d(¢1, t2) be the distance of

UThe system of Han et al. (2013) is available from
http://semanticwebarchive.cs.umbc.edu/
SimService/; we use the STS similarity.

2Word2Vec is available from https://code.
google.com/p/word2vec/. We used the continuous
bag of words model with default parameters, the first billion
characters of the English Wikipedia, and the preprocessing of
http://mattmahoney.net/dc/textdata.html.

¥Recall that the Pearson correlation ranges from —1 to 1.
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two individual instances t1, t9; in our case, the in-
stances are aspect terms and d(t1, ¢2) is the inverse
of the similarity of ¢, to, defined by the Phase A
similarity matrix (gold or produced by WNDS).
Different linkage criteria define differently the dis-
tance of two clusters D(C4,Cs), which affects
the choice of clusters that are merged to produce
coarser (higher-level) clusters:

Dsm e C ,C = i d(t , T
a1e(C1, C2) heCnizeCs (t1,t2)
Dcompl(cla 02) = max d(tl, t2)

11 €C1,t2€CQ

Z Z d(t1,t2)

1€C t2€Ca

t

Complete linkage tends to produce more compact
clusters, compared to single linkage, with average
linkage being in between. Ward minimizes the to-
tal in-cluster variance; consult Milligan (1980) for
further details.'*

4.2 Phase B experimental results

To evaluate the k clusters produced at each aspect
granularity by the different linkage criteria, we
used the Silhouette Index (SI) (Rousseeuw, 1987),
a cluster evaluation measure that considers both
inter- and intra-cluster coherence.'®> Given a set of
clusters {C1, ..., Cy}, each SI(C;) is defined as:

|Ci

>

=1

1

|Cs]

where a; is the mean distance from the j-th in-
stance of C; to the other instances in C;, and b; is
the mean distance from the j-th instance of C; to
the instances in the cluster nearest to C;. Then:

b;
max(b;, a;)’

—a;

SI(C;) =

SI({Cy,...,Cx}) =

We always use the correct (gold) distances of the
instances (terms) when computing the ST scores.
As shown in Fig. 3, no linkage criterion clearly
outperforms the others, when the gold matrix of
Phase A is used; all four criteria perform reason-
ably well. Note that the SI ranges from —1 to

"“We used the SCIPY implementations of agglomera-
tive clustering with the four criteria (see http://www.
scipy.orq), relying on maxclust to obtain the slice of the
resulting hierarchy that leads to k (or approx. k) clusters.

We used the SI implementation of Pedregosa et
al. (2011); see http://scikit-learn.org/. We also
experimented with the Dunn Index (Dunn, 1974) and the
Davies-Bouldin Index (1979), but we obtained similar results.
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Figure 3: Silhouette Index (SI) results for Phase
B, using the gold similarity matrix of Phase A.
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Figure 4: SI results for Phase B, using the WNDS
(with SP) similarity matrix of Phase A.

1, with higher values indicating better clustering.
Figure 4 shows that when the similarity matrix of
WNDS (with SP) is used, the SI scores deterio-
rate significantly; again, there is no clear winner
among the linkage criteria, but average and Ward
seem to be overall better than the others.
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Figure 5: Human evaluation of aspect groups.

In a final experiment, we showed clusterings
of varying granularities (k values) to four human
judges (graduate CS students). The clusterings
were produced by two systems: one that used the
gold similarity matrix of Phase A and agglomer-
ative clustering with average linkage in Phase B,
and one that used the similarity matrix of WNDS
(with SP) and again agglomerative clustering with
average linkage. We showed all the clusterings
to all the judges. Each judge was asked to eval-

uate each clustering on a 1-5 scale. We measured
the absolute inter-annotator agreement, as in Sec-
tion 3.1, and found high agreement in all cases
(0.93 and 0.83 for the two systems, respectively,
in restaurants; 0.85 for both in laptops).'®

Figure 5 shows the average human scores of
the two systems for different granularities. The
judges considered the aspect groups always per-
fect or near-perfect when the gold similarity ma-
trix of Phase A was used, but they found the as-
pect groups to be of rather poor quality when
the similarity matrix of the best Phase A mea-
sure was used. These results, along with those of
Fig. 3-4, show that more effort needs to be devoted
to improving the similarity measures of Phase A,
whereas Phase B is in effect an almost solved
problem, if a good similarity matrix is available.

5 Conclusions

We considered a new, more demanding form of
aspect aggregation in ABSA, which aims to aggre-
gate aspects at multiple granularities, as opposed
to simply merging near-synonyms, and without as-
suming that manually crafted domain-specific on-
tologies are available. We decomposed the prob-
lem in two processing phases, which allow pre-
vious work on term similarity and hierarchical
clustering to be reused and evaluated appropri-
ately with high inter-annotator agreement. We
showed that the second phase, where we used ag-
glomerative clustering, is an almost solved prob-
lem, whereas further research is needed in the first
phrase, where term similarity measures are em-
ployed. We also introduced a sense pruning mech-
anism that significantly improves WordNet-based
similarity measures, leading to a measure that out-
performs state of the art similarity methods in the
first phase of our decomposition. We also made
publicly available the datasets of our experiments.
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Abstract

This paper presents a simple, robust and
(almost) unsupervised dictionary-based
method, gwn-ppv (Q-WordNet as Person-
alized PageRanking Vector) to automati-
cally generate polarity lexicons. We show
that gwn-ppv outperforms other automat-
ically generated lexicons for the four ex-
trinsic evaluations presented here. It also
shows very competitive and robust results
with respect to manually annotated ones.
Results suggest that no single lexicon is
best for every task and dataset and that
the intrinsic evaluation of polarity lexicons
is not a good performance indicator on
a Sentiment Analysis task. The gwn-ppv
method allows to easily create quality po-
larity lexicons whenever no domain-based
annotated corpora are available for a given
language.

1 Introduction

Opinion Mining and Sentiment Analysis are im-
portant for determining opinions about commer-
cial products, on companies reputation manage-
ment, brand monitoring, or to track attitudes by
mining social media, etc. Given the explosion of
information produced and shared via the Internet,
it is not possible to keep up with the constant flow
of new information by manual methods.

Sentiment Analysis often relies on the availabil-
ity of words and phrases annotated according to
the positive or negative connotations they convey.
‘Beautiful’, ‘wonderful’, and ‘amazing’ are exam-
ples of positive words whereas ‘bad’, ‘awful’, and
‘poor’ are examples of negatives.

The creation of lists of sentiment words has
generally been performed by means of manual-,
dictionary- and corpus-based methods. Manually
collecting such lists of polarity annotated words is

labor intensive and time consuming, and is thus
usually combined with automated approaches as
the final check to correct mistakes. However,
there are well known lexicons which have been
fully (Stone et al., 1966; Taboada et al., 2010) or
at least partially manually created (Hu and Liu,
2004; Riloff and Wiebe, 2003).

Dictionary-based methods rely on some dictio-
nary or lexical knowledge base (LKB) such as
WordNet (Fellbaum and Miller, 1998) that con-
tain synonyms and antonyms for each word. A
simple technique in this approach is to start with
some sentiment words as seeds which are then
used to perform some iterative propagation on the
LKB (Hu and Liu, 2004; Strapparava and Vali-
tutti, 2004; Kim and Hovy, 2004; Takamura et al.,
2005; Turney and Littman, 2003; Mohammad et
al., 2009; Agerri and Garcia-Serrano, 2010; Bac-
cianella et al., 2010).

Corpus-based methods have usually been ap-
plied to obtain domain-specific polarity lexicons:
they have been created by either starting from a
seed list of known words and trying to find other
related words in a corpus or by attempting to di-
rectly adapt a given lexicon to a new one using
a domain-specific corpus (Hatzivassiloglou and
McKeown, 1997; Turney and Littman, 2003; Ding
et al., 2008; Choi and Cardie, 2009; Mihalcea et
al., 2007). One particular issue arising from cor-
pus methods is that for a given domain the same
word can be positive in one context but negative
in another. This is also a problem shared by man-
ual and dictionary-based methods, and that is why
gwn-ppv also produces synset-based lexicons for
approaches on Sentiment Analysis at sense level.

This paper presents a simple, robust and
(almost) unsupervised dictionary-based method,
QOWordNet-PPV  (QWordNet by Personalized
PageRank Vector) to automatically generate
polarity lexicons based on propagating some
automatically created seeds using a Personalized

Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics, pages 88-97,
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PageRank algorithm (Agirre et al., 2014; Agirre
and Soroa, 2009) over a LKB projected into a
graph. We see gwn-ppv as an effective method-
ology to easily create polarity lexicons for any
language for which a WordNet is available.

This paper empirically shows that: (i) gwn-ppv
outperforms other automatically generated lexi-
cons (e.g. SentiWordNet 3.0, MSOL) on the 4
extrinsic evaluations presented here; it also dis-
plays competitive and robust results also with re-
spect to manually annotated lexicons; (ii) no single
polarity lexicon is fit for every Sentiment Analy-
sis task; depending on the text data and the task
itself, one lexicon will perform better than oth-
ers; (iii) if required, gwn-ppv efficently generates
many lexicons on demand, depending on the task
on which they will be used; (iv) intrinsic evalua-
tion is not appropriate to judge whether a polar-
ity lexicon is fit for a given Sentiment Analysis
(SA) task because good correlation with respect to
a gold-standard does not correspond with correla-
tion with respect to a SA task; (v) it is easily ap-
plicable to create gwn-ppv(s) for other languages,
and we demonstrate it here by creating many po-
larity lexicons not only for English but also for
Spanish; (vi) the method works at both word and
sense levels and it only requires the availability
of a LKB or dictionary; finally, (vii) a dictionary-
based method like gwn-ppv allows to easily cre-
ate quality polarity lexicons whenever no domain-
based annotated reviews are available for a given
language. After all, there usually is available a
dictionary for a given language; for example, the
Open Multilingual WordNet site lists WordNets
for up to 57 languages (Bond and Foster, 2013).

Although there has been previous work using
graph methods for obtaining lexicons via propa-
gation, the gwn-ppv method to combine the seed
generation and the Personalized PageRank prop-
agation is novel. Furthermore, it is considerable
simpler and obtains better and easier to reproduce
results than previous automatic approaches (Esuli
and Sebastiani, 2007; Mohammad et al., 2009;
Rao and Ravichandran, 2009).

Next section reviews previous related work, tak-
ing special interest on those that are currently
available for evaluation purposes. Section 3 de-
scribes the gwn-ppv method to automatically gen-
erate lexicons. The resulting lexical resources are
evaluated in section 4. We finish with some con-
cluding remarks and future work in section 5.
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2 Related Work

There is a large amount of work on Sentiment
Analysis and Opinion Mining, and good com-
prehensive overviews are already available (Pang
and Lee, 2008; Liu, 2012), so we will review
the most representative and closest to the present
work. This means that we will not be review-
ing corpus-based approaches but rather those con-
structed manually or upon a dictionary or LKB.
We will in turn use the approaches here reviewed
for comparison with gwn-ppv in section 4.

The most popular manually-built polarity lexi-
con is part of the General Inquirer (Stone et al.,
1966), and consists of 1915 words labelled as
“positive” and 2291 as “negative”. Taboada et al.
(2010) manually created their lexicons annotating
the polarity of 6232 words on a scale of 5 to -5.
Liu et al., starting with Hu and Liu (2004), have
along the years collected a manually corrected po-
larity lexicon which is formed by 4818 negative
and 2041 positive words. Another manually cor-
rected lexicon (Riloff and Wiebe, 2003) is the one
used by the Opinion Finder system (Wilson et al.,
2005) and contains 4903 negatively and 2718 pos-
itively annotated words respectively.

Among the automatically built lexicons, Turney
and Littman (2003) proposed a minimally super-
vised algorithm to calculate the polarity of a word
depending on whether it co-ocurred more with a
previously collected small set of positive words
rather than with a set of negative ones. Agerri and
Garcia Serrano presented a very simple method
to extract the polarity information starting from
the quality synset in WordNet (Agerri and Garcfia-
Serrano, 2010). Mohammad et al. (2009) de-
veloped a method in which they first identify (by
means of affixes rules) a set of positive/negative
words which act as seeds, then used a Roget-like
thesaurus to mark the synonymous words for each
polarity type and to generalize from the seeds.
They produce several lexicons the best of which,
MSOL(ASL and GI) contains 51K and 76K en-
tries respectively and uses the full General Inquirer
as seeds. They performed both intrinsic and ex-
trinsic evaluations using the MPQA 1.1 corpus.

Finally, there are two approaches that are some-
what closer to us, because they are based on Word-
Net and graph-based methods. SentiWordNet 3.0
(Baccianella et al., 2010) is built in 4 steps: (i)
they select the synsets of 14 paradigmatic pos-
itive and negative words used as seeds (Turney



and Littman, 2003). These seeds are then it-
eratively extended following the construction of
WordNet-Affect (Strapparava and Valitutti, 2004).
(i1) They train 7 supervised classifiers with the
synsets’ glosses which are used to assign polar-
ity and objectivity scores to WordNet senses. (iii)
In SentiWordNet 3.0 (Esuli and Sebastiani, 2007)
they take the output of the supervised classifiers
as input to applying PageRank to WordNet 3.0’s
graph. (iv) They intrinsically evaluate it with re-
spect to MicroWnOp-3.0 using the p-normalized
Kendall T distance (Baccianella et al., 2010). Rao
and Ravichandran (2009) apply different semi-
supervised graph algorithms (Mincuts, Random-
ized Mincuts and Label Propagation) to a set of
seeds constructed from the General Inquirer. They
evaluate the generated lexicons intrinsically taking
the General Inquirer as the gold standard for those
words that had a match in the generated lexicons.

In this paper, we describe two methods to au-
tomatically generate seeds either by following
Agerri and Garcia-Serrano (2010) or using Tur-
ney and Littman’s (2003) seeds. The automati-
cally obtained seeds are then fed into a Person-
alized PageRank algorithm which is applied over
a WordNet projected on a graph. This method is
fully automatic, simple and unsupervised as it only
relies on the availability of a LKB.

3 Generating qwn-ppv

The overall procedure of our approach consists of
two steps: (1) automatically creates a set of seeds
by iterating over a LKB (e.g. a WordNet) rela-
tions; and (2) uses the seeds to initialize contexts
to propagate over the LKB graph using a Personal-
ized Pagerank algorithm. The result is gwn-ppv(s):
Q-WordNets as Personalized PageRanking Vec-
tors.

3.1 Seed Generation

We generate seeds by means of two different auto-
matic procedures.

1. AG: We start at the quality synset of WordNet
and iterate over WordNet relations following
the original Q-WordNet method described in
Agerri and Garcia Serrano (2010).

TL: We take a short manually created list
of 14 positive and negative words (Turney
and Littman, 2003) and iterate over Word-
Net using five relations: antonymy, similarity,
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derived-from, pertains-to and also-see.

The AG method starts the propagation from
the attributes of the quality synset in WordNet.
There are five noun quality senses in WordNet,
two of which contain attribute relations (to adjec-
tives). From the qualityl synset the attribute re-
lation takes us to positivel, negativel, good! and
bad.; quality? leads to the attributes superior. and
inferior?. The following step is to iterate through
every WordNet relation collecting (i.e., annotat-
ing) those synsets that are accessible from the
seeds. Both AG and TL methods to generate seeds
rely on a number of relations to obtain a more bal-
anced POS distribution in the output synsets. The
output of both methods is a list of (assumed to be)
positive and negative synsets. Depending on the
number of iterations performed a different number
of seeds to feed UKB is obtained. Seed numbers
vary from 100 hundred to 10K synsets. Both seed
creation methods can be applied to any WordNet,
not only Princeton WordNet, as we show in sec-
tion 4.

3.2 PPV generation

The second and last step to generate gwn-ppv(s)
consists of propagating over a WordNet graph to
obtain a Personalized PageRanking Vector (PPV),
one for each polarity. This step requires:

1. A LKB projected over a graph.

2. A Personalized PageRanking algorithm
which is applied over the graph.

3. Seeds to create contexts to start the propaga-
tion, either words or synsets.

Several undirected graphs based on WordNet
3.0 as represented by the MCR 3.0 (Agirre et
al., 2012) have been created for the experimenta-
tion, which correspond to 4 main sets: (G1) two
graphs consisting of every synset linked by the
synonymy and antonymy relations; (G2) a graph
with the nodes linked by every relation, includ-
ing glosses; (G3) a graph consisting of the synsets
linked by every relation except those that are
linked by antonymy; finally, (G4) a graph consist-
ing of the nodes related by every relation except
the antonymy and gloss relations.

Using the (G1) graphs, we propagate from the
seeds over each type of graph (synonymy and
antonymy) to obtain two rankings per polarity.



Synset Level

Word level

Positives
P

Lexicon size

Negatives Positives Negatives

F P

size

Automatically created
MSOL(ASL-GI)*
QWN
SWN
QWN-PPV-AG(s03_G1/w01_G1)

32706
15508

27854
2589

76400
11693

38346
5119

QWN-PPV-TL(s04_.G1/w01_G1) 5010 76 66 .70 .70 79 .74 4644 .68 70
(Semi-) Manually created
GI* 2791 74 57 .64 .65 80 .72 3376 79 64 71 70 .83 76
OF* 4640 77 .61 .68 .68 .81 74 6860 82 71 76 74 84 .79
Liu* 4127 81 63 71 70 85 .76 6786 .85 4 079 771 87 .82
SO-CAL* 4212 5 .57 .64 .65 .81 72 6226 82 70 76 74 85 79

Table 1: Evaluation of lexicons at document level using Bespalov’s Corpus.

The graphs created in (G2), (G3) and (G4) are
used to obtain two ranks, one for each polarity by
propagating from the seeds. In all four cases the
different polarity rankings have to be combined in
order to obtain a final polarity lexicon: the polar-
ity score pol(s) of a given synset s is computed
by adding its scores in the positive rankings and
subtracting its scores in the negative rankings. If
pol(s) > 0 then s is included in the final lexicon
as positive. If pol(s) < 0 then s is included in the
final lexicon as negative. We assume that synsets
with null polarity scores have no polarity and con-
sequently they are excluded from the final lexicon.

The Personalized PageRanking propagation is
performed starting from both synsets and words
and using both AG and TL styles of seed gen-
eration, as explained in section 3.1. Combin-
ing the various possibilities will produce at least
6 different lexicons for each iteration, depending
on which decisions are taken about which graph,
seeds and word/synset to create the gwn-ppv(s). In
fact, the experiments produced hundreds of lexi-
cons, according to the different iterations for seed
generation', but we will only refer to those that
obtain the best results in the extrinsic evaluations.

With respect to the algorithm to propagate over
the WordNet graph from the automatically created
seeds, we use a Personalized PageRank algorithm
(Agirre et al., 2014; Agirre and Soroa, 2009). The
famous PageRank (Brin and Page, 1998) algo-
rithm is a method to produce a rank from the ver-
tices in a graph according to their relative struc-
tural importance. PageRank has also been viewed
as the result of a Random Walk process, where the
final rank of a given node represents the probabil-
ity of a random walk over the graph which ends on
that same node. Thus, if we take the created Word-

'The total time to generate the final 352 QWN-PPV prop-
agations amounted to around two hours of processing time in
a standard PC.
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Net graph GG with N vertices vy, ...,v, and d; as
being the outdegree of node ¢, plusa N x N tran-
sition probability matrix M where M;; = 1/d;
if a link from ¢ to j exists and O otherwise, then
calculating the PageRank vector over a graph GG
amounts to solve the following equation (1):

Pr=cMPr+ (1 —c¢)v (1)

In the traditional PageRank, vector v is a uni-
form normalized vector whose elements values are
all 1/N, which means that all nodes in the graph
are assigned the same probabilities in case of a
random walk. Personalizing the PageRank algo-
rithm in this case means that it is possible to make
vector v non-uniform and assign stronger proba-
bilities to certain nodes, which would make the
algorithm to propagate the initial importance of
those nodes to their vicinity. Following Agirre et
al. (2014), in our approach this translates into ini-
tializing vector v with those senses obtained by the
seed generation methods described above in sec-
tion 3.1. Thus, the initialization of vector v us-
ing the seeds allows the Personalized propagation
to assign greater importance to those synsets in
the graph identified as being positive and negative,
which resuls in a PPV with the weigths skewed to-
wards those nodes initialized/personalized as pos-
itive and negative.

4 Evaluation

Previous approaches have provided intrinsic eval-
uation (Mohammad et al., 2009; Rao and
Ravichandran, 2009; Baccianella et al., 2010) us-
ing manually annotated resources such as the Gen-
eral Inquirer (Stone et al., 1966) as gold stan-
dard. To facilitate comparison, we also provide
such evaluation in section 4.3. Nevertheless, and
as demonstrated by the results of the extrinsic eval-
uations, we believe that polarity lexicons should



Synset Level

Word level

Positives

Lexicon size

Negatives Positives Negatives

size

Automatically created
MSOL(ASL-GD)*
QWN
SWN
QWN-PPV-AG (w10_.G3/509-G4)
QWN-PPV-TL (s05-G4)

32706
15508
27854
117485
114698

76400
11693
38346
144883
144883

(Semi-) Manually created
GI*
OF*
Liu*
SO-CAL*

2791
4640
4127
4212

3376
6860
6786
6226

Table 2: Evaluation of lexicons using averaged ratio on the MPQA 1.2;.5; Corpus.

in general be evaluated extrinsically. After all,
any polarity lexicon is as good as the results ob-
tained by using it for a particular Sentiment Anal-
ysis task.

Our goal is to evaluate the polarity lexicons
simplifying the evaluation parameters to avoid as
many external influences as possible on the re-
sults. We compare our work with most of the
lexicons reviewed in section 2, both at synset
and word level, both manually and automatically
generated: General Inquirer (GI), Opinion Finder
(OF), Liu, Taboada et al’s (SO-CAL), Agerri
and Garcia-Serrano (2010) (QWN), Mohammad
et al’s, (MSOL(ASL-GI)) and SentiWordNet 3.0
(SWN). The results presented in section 4.2 show
that extrinsic evaluation is more meaningful to de-
termine the adequacy of a polarity lexicon for a
specific Sentiment Analysis task.

4.1 Datasets and Evaluation System

Three different corpora were used: Bespalov et
al’s (2011) and MPQA (Riloft and Wiebe, 2003)
for English, and HOpinion? in Spanish. In addi-
tion, we divided the corpus into two subsets (75%
development and 25% test) for applying our ratio
system for the phrase polarity task too. Note that
the development set is only used to set up the po-
larity classification task, and that the generation of
gwn-ppv lexicons is unsupervised.

For Spanish we tried to reproduce the English
settings with Bespalov’s corpus. Thus, both devel-
opment and test sets were created from the HOpin-
ion corpus. As it contains a much higher propor-
tion of positive reviews, we created also subsets
which contain a balanced number of positive and
negative reviews to allow for a more meaningful
comparison than that of table 6. Table 3 shows the
number of documents per polarity for Bespalov’s,

*http://clic.ub.edu/corpus/hopinion
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MPQA 1.2 and HOpinion.

Corpus POS docs NEG docs Total

Bespalovge, 23,112 23,112 46,227
Bespaloviest 10,557 10,557 21,115
MPQA 1.2 4¢4 2,315 5,260 7,575

MPQA 1.2¢¢s¢ 771 1,753 2,524
MPQA 1.2¢5ta1 3,086 7,013 10,099
HOpinion_Balancedge,, 1,582 1,582 3,164
HOpinion_Balanced¢es: 528 528 1,056
HOpinion e, 9,236 1,582 10,818
HOpinion¢est 3,120 528 3,648

Table 3: Number of positive and negative docu-
ments in train and test sets.

We report results of 4 extrinsic evaluations or
tasks, three of them based on a simple ratio av-
erage system, inspired by Turney (2002), and an-
other one based on Mohammad et al. (2009). We
first implemented a simple average ratio classifier
which computes the average ratio of the polarity
words found in document d:

Zwed pOl (w)
|d|

where, for each polarity, pol(w) is 1 if w is in-
cluded in the polarity lexicon and 0 otherwise.
Documents that reach a certain threshold are clas-
sified as positive, and otherwise as negative. To
setup an evaluation enviroment as fair as possi-
ble for every lexicon, the threshold is optimised by
maximising accuracy over the development data.

Second, we implemented a phrase polarity task
identification as described by Mohammad et al.
(2009). Their method consists of: (i) if any of
the words in the target phrase is contained in the
negative lexicon, then the polarity is negative; (ii)
if none of the words are negative, and at least one
word is in the positive lexicon, then is positive;
(iii) the rest are not tagged.

We chose this very simple polarity estimators
because our aim was to minimize the role other

polarity(d) = (2)



Synset Level

‘Word level

Positives

Lexicon size

Negatives Positives Negatives

size

Automatically created
MSOL(ASL-GI)*
QWN
SWN
QWN-PPV-AG (s09-G3/w02_G3)
QWN-PPV-TL (w02_G3/506.G3)

32706
15508
27854
117485
117485

76400
11693
38346
147194
147194

(Semi-) Manually created
GI*
OF*
Liu*
SO-CAL*

2791
4640
4127
4212

3376
6860
6786
6226

Table 4: Evaluation of lexicons at phrase level using Mohammad et al’s (2009) method on MPQA

1.24ptq; Corpus.

aspects play in the evaluation and focus on how,
other things being equal, polarity lexicons perform
in a Sentiment Analysis task. The average ratio
is used to present results of tables 1 and 2 (with
Bespalov corpus), and 5 and 6 (with HOpinion),
whereas Mohammad et al.’s is used to report re-
sults in table 4. Mohammad et al.’s (2009) testset
based on MPQA 1.1 is smaller, but both MPQA
1.1 and 1.2 are hugely skewed towards negative
polarity (30% positive vs. 70% negative).

All datasets were POS tagged and Word
Sense Disambiguated using FreeLing (Padré and
Stanilovsky, 2012; Agirre and Soroa, 2009). Hav-
ing word sense annotated datasets gives us the op-
portunity to evaluate the lexicons both at word and
sense levels. For the evaluation of those lexicons
that are synset-based, such as gwn-ppv and Sen-
tiWordNet 3.0, we convert them from senses to
words by taking every word or variant contained
in each of their senses. Moreover, if a lemma ap-
pears as a variant in several synsets the most fre-
quent polarity is assigned to that lemma.

With respect to lexicons at word level, we take
the most frequent sense according to WordNet 3.0
for each of their positive and negative words. Note
that the latter conversion, for synset based evalua-
tion, is mostly done to show that the evaluation at
synset level is harder independently of the quality
of the lexicon evaluated.

4.2 Results

Although tables 1, 2 and 4 also present re-
sults at synset level, it should be noted that the
only polarity lexicons available to us for com-
parison at synset level were Q-WordNet (Agerri
and Garcia-Serrano, 2010) and SentiWordNet 3.0
(Baccianella et al., 2010). QWN-PPV-AG refers
to the lexicon generated starting from AG’s seeds,
and QWN-PPV-TL using TL’s seeds as described
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in section 3.1. Henceforth, we will use gwn-ppv to
refer to the overall method presented in this paper,
regardless of the seeds used.

For every gwn-ppv result reported in this sec-
tion, we have used every graph described in sec-
tion 3.2. The configuration of each gwn-ppv in the
results specifies which seed iteration is used as the
initialization of the Personalized PageRank algo-
rithm, and on which graph. Thus, QWN-PPV-TL
(s05_G4) in table 2 means that the 5th iteration of
synset seeds was used to propagate over graph G4.
If the configuration were (w05_G4) it would have
meant ‘the 5Sth iteration of word seeds were used
to propagate over graph G4’. The simplicity of
our approach allows us to generate many lexicons
simply by projecting a LKB over different graphs.

The lexicons marked with an asterisk denote
those that have been converted from word to
senses using the most frequent sense of WordNet
3.0. We would like to stress again that the purpose
of such word to synset conversion is to show that
SA tasks at synset level are harder than at word
level. In addition, it should also be noted that in
the case of SO-CAL (Taboada et al., 2010), we
have reduced what is a graded lexicon with scores
ranging from 5 to -5 into a binary one.

Table 1 shows that (at least partially) manually
built lexicons obtain the best results on this eval-
uation. It also shows that gwn-ppv clearly out-
performs any other automatically built lexicons.
Moreover, manually built lexicons suffer from the
evaluation at synset level, obtaining most of them
lower scores than gwn-ppv, although Liu’s (Hu
and Liu, 2004) still obtains the best results. In any
case, for an unsupervised procedure, gwn-ppv lex-
icons obtain very competitive results with respect
to manually created lexicons and is the best among
the automatic methods. It should also be noted that
the best results of gwn-ppv are obtained with graph



G1 and with very few seed iterations.

Table 2 again sees the manually built lexi-
cons performing better although overall the dif-
ferences are lower with respect to automatically
built lexicons. Among these, gwn-ppv again ob-
tains the best results, both at synset and word
level, although in the latter the differences with
MSOL(ASL-GI) are not large. Finally, table 4
shows that gwn-ppv again outperforms other auto-
matic approaches and is closer to those have been
(partially at least) manually built. In both MPQA
evaluations the best graph overall to propagate the
seeds is G3 because this type of task favours high
recall.

Positives Negatives
Lexicon size P R F P R F
Automatically created
SWN 27854 .87 .99 93 .70 .16 .27
QWN-PPV-AG 3306 .86 .00 .92 .67 .01 .02
(wrd01_G1)
QWN-PPV-TL 5010 .89 .96 .93 .58 .30 .39
(s04_G1)

Table 5: Evaluation of Spanish lexicons using the
full HOpinion corpus at synset level.

We report results on the Spanish HOpinion cor-
pus in tables 5 and 6. Mihalcea(f) is a manu-
ally revised lexicon based on the automatically
built Mihalcea(m) (Pérez-Rosas et al., 2012). Elh-
Polar (Saralegi and San Vicente, 2013) is semi-
automatically built and manually corrected. SO-
CAL is built manually. SWN and QWN-PPV have
been built via the MCR 3.0’s ILI by applying the
synset to word conversion previously described on
the Spanish dictionary of the MCR. The results for
Spanish at word level in table 6 show the same
trend as for English: gwn-ppv is the best of the
automatic approaches and it obtains competitive
although not as good as the best of the manually
created lexicons (ElhPolar). Due to the dispro-
portionate number of positive reviews, the results
for the negative polarity are not useful to draw any
meaningful conclusions. Thus, we also performed
an evaluation with HOpinion Balanced set as listed
in table 3.

The results with a balanced HOpinion, not
shown due to lack of space, also confirm the pre-
vious trend: gwn-ppv outperforms other automatic
approaches but is still worse than the best of the
manually created ones (ElhPolar).
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Positives Negatives
Lexicon size P R F P R F
Automatically created
Mihalcea(m) 2496 .86 .00 .92 .00 .00 .00
SWN 9712 88 97 92 55 .19 .28
QWN-PPV-AG 1926 .89 .97 93 .59 .26 .36
(s11_.G1)
QWN-PPV-TL 939 89 98 .93 .71 .26 .38
(s03_G1)
(Semi-) Manually created
ElhPolar 4673 94 94 94 64 .64 .64
Mihalcea(f) 1347 91 96 93 .61 .41 .49
SO-CAL 4664 92 96 94 70 .51 .59

Table 6: Evaluation of Spanish lexicons using the
full HOpinion corpus at word level.

4.3 Intrinsic evaluation

To facilitate intrinsic comparison with previous
approaches, we evaluate our automatically gener-
ated lexicons against GI. For each gwn-ppv lex-
icon shown in previous extrinsic evaluations, we
compute the intersection between the lexicon and
GI, and evaluate the words in that intersection. Ta-
ble 7 shows results for the best-performing QWN-
PPV lexicons (both using AG and TL seeds) in
the extrinsic evaluations at word level of tables 1
(first two rows), 2 (rows 3 and 4) and 4 (rows 5
and 6). We can see that QWN-PPV lexicons sys-
tematically outperform SWN in number of correct
entries. QWN-PPV-TL lexicons obtain 75.04%
of correctness on average. The best performing
lexicon contains up to 81.07% of correct entries.
Note that we did not compare the results with
MSOL(ASL-GI) because it contains the GI.

Lexicon Nnwrt. GI  Acc. Pos Neg
SWN 2,755 g4 776 73
QWN-PPV-AG (w01_G1) 849 J1 .68 .75
QWN-PPV-TL (w01_G1) 713 78 .80 .76
QWN-PPV-AG (s09_G4) 3,328 5 75 .77
QWN-PPV-TL (s05_G4) 3,333 80 .84 .77
QWN-PPV-AG (w02_G3) 3,340 g4 71 .77
QWN-PPV-TL (s06_G3) 3,340 77 .79 77

Table 7: Accuracy QWN-PPV lexicons and SWN
with respect to the GI lexicon.

4.4 Discussion

QWN-PPV lexicons obtain the best results among
the evaluations for English and Spanish. Further-
more, across tasks and datasets gwn-ppv provides
a more consistent and robust behaviour than most
of the manually-built lexicons apart from OF. The
results also show that for a task requiring high



recall the larger graphs, e.g. G3, are preferable,
whereas for a more balanced dataset and document
level task smaller G1 graphs perform better.

These are good results considering that our
method to generate gwn-ppv is simpler, more ro-
bust and adaptable than previous automatic ap-
proaches. Furthermore, although also based on
a Personalized PageRank application, it is much
simpler than SentiWordNet 3.0, consistently out-
performed by gwn-ppv on every evaluation and
dataset. The main differences with respect to Sen-
tiWordNet’s approach are the following: (i) the
seed generation and training of 7 supervised clas-
sifiers corresponds in gwn-ppv to only one simple
step, namely, the automatic generation of seeds
as explained in section 3.1; (ii) the generation
of gwn-ppv only requires a LKB’s graph for the
Personalized PageRank propagation, no disam-
biguated glosses; (iii) the graph they use to do
the propagation also depends on disambiguated
glosses, not readily available for any language.

The fact that gwn-ppv is based on already
available WordNets projected onto simple graphs
is crucial for the robustness and adaptability of
the gwn-ppv method across evaluation tasks and
datasets: Our method can quickly create, over dif-
ferent graphs, many lexicons of diffent sizes which
can then be evaluated on a particular polarity clas-
sification task and dataset. Hence the different
configurations of the gwn-ppv lexicons, because
for some tasks a G3 graph with more AG/TL seed
iterations will obtain better recall and viceversa.
This is confirmed by the results: the tasks using
MPQA seem to clearly benefit from high recall
whereas the Bespalov’s corpus has overall, more
balanced scores. This could also be due to the size
of Bespalov’s corpus, almost 10 times larger than
MPQA 1.2.

The experiments to generate Spanish lexicons
confirm the trend showed by the English evalua-
tions: Lexicons generated by gwn-ppv consistenly
outperform other automatic approaches, although
some manual lexicon is better on a given task and
dataset (usually a different one). Nonetheless the
Spanish evaluation shows that our method is also
robust across languages as it gets quite close to
the manually corrected lexicon of Mihalcea(full)
(Pérez-Rosas et al., 2012).

The results also confirm that no single lexicon is
the most appropriate for any SA task or dataset and
domain. In this sense, the adaptability of gwn-ppv
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is a desirable feature for lexicons to be employed
in SA tasks: the unsupervised gwn-ppv method
only relies on the availability of a LKB to build
hundreds of polarity lexicons which can then be
evaluated on a given task and dataset to choose the
best fit. If not annotated evaluation set is avail-
able, G3-based propagations provide the best re-
call whereas the G1-based lexicons are less noisy.
Finally, we believe that the results reported here
point out to the fact that intrinsic evaluations are
not meaningful to judge the adequacy a polarity
lexicon for a specific SA task.

5 Concluding Remarks

This paper presents an unsupervised dictionary-
based method gwn-ppv to automatically generate
polarity lexicons. Although simpler than similar
automatic approaches, it still obtains better results
on the four extrinsic evaluations presented. Be-
cause it only depends on the availability of a LKB,
we believe that this method can be valuable to gen-
erate on-demand polarity lexicons for a given lan-
guage when not sufficient annotated data is avail-
able. We demonstrate the adaptability of our ap-
proach by producing good performance polarity
lexicons for different evaluation scenarios and for
more than one language.

Further work includes investigating different
graph projections of WordNet relations to do the
propagation as well as exploiting synset weights.
We also plan to investigate the use of annotated
corpora to generate lexicons at word level to try
and close the gap with those that have been (at
least partially) manually annotated.

The gwn-ppv lexicons and graphs used in this
paper are publicly available (under CC-BY li-
cense): http://adimen.si.ehu.es/web/qwn-ppv. The
gwn-ppv tool to automatically generate polarity
lexicons given a WordNet in any language will
soon be available in the aforementioned URL.
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Abstract

We propose a Bayesian method of esti-
mating a conditional distribution of data
given metadata (e.g., the usage of a di-
alectal variant given a location) based
on queries from a big data/social me-
dia source, such as Twitter. This distri-
bution is structurally equivalent to those
built from traditional experimental meth-
ods, despite lacking negative examples.
Tests using Twitter to investigate the ge-
ographic distribution of dialectal forms
show that this method can provide distri-
butions that are tightly correlated with ex-
isting gold-standard studies at a fraction of
the time, cost, and effort.

1 Introduction

Social media provides a linguist with a new data
source of unprecedented scale, opening novel av-
enues for research in empirically-driven areas,
such as corpus and sociolinguistics. Extracting the
right information from social media, though, is not
as straightforward as in traditional data sources, as
the size and format of big data makes it too un-
wieldy to observe as a whole. Researchers often
must interact with big data through queries, which
produce only positive results, those matching the
search term. At best, this can be augmented with
a set of “absences” covering results that do not
match the search term, but explicit negative data
(e.g., confirmation that a datapoint could never
match the search term) does not exist. In addition
to the lack of explicit negative data, query-derived
data has a conditional distribution that reverses the
dependent and independent variables compared to
traditional data sources, such as sociolinguistic in-
terviews.

This paper proposes a Bayesian method for
overcoming these two difficulties, allowing query-
derived data to be applied to traditional problems

without requiring explicit negative data or the abil-
ity to view the entire dataset at once. The test case
in this paper is dialect geography, where the pos-
itive data is the presence of a dialectal word or
phrase in a tweet, and the metadata is the location
of the person tweeting it. However, the method
is general and applies to any queryable big data
source that includes metadata about the user or set-
ting that generated the data.

The key to this method lies in using an indepen-
dent query to estimate the overall distribution of
the metadata. This estimated distribution corrects
for non-uniformity in the data source, enabling the
reversal of the conditionality on the query-derived
distribution to convert it to the distribution of in-
terest.

Section 2 explains the mathematical core of the
Bayesian analysis. Section 3 implements this anal-
ysis for Twitter and introduces an open-source
program for determining the geographic distri-
bution of tweets. Section 4 tests the method on
problems in linguistic geography and shows that
its results are well-correlated with those of tradi-
tional sociolinguistic research. Section 5 addresses
potential concerns about noise or biases in the
queries.

2 Reversing the conditionality of query
data

2.1 Corpora and positive-only data

In traditional linguistic studies, the experimenter
has control over the participants’ metadata, but
not over their data. For instance, a sociolinguist
may select speakers with known ages or locations,
but will not know their usages in advance. Cor-
pus queries reverse the direction of investigation;
the experimenter selects a linguistic form to search
for, but then lacks control over the metadata of the
participants who use the query. The direction of
conditionality must be reversed to get compara-
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ble information from query-derived and traditional
data.

Queries also complicate the problem by pro-
viding only positive examples. This lack of ex-
plicit negative data is common in language ac-
quisition, as children encounter mostly grammat-
ical statements during learning, and receive few
explicitly ungrammatical examples, yet still de-
velop a consistent grammaticality classification
system as they mature. Similar positive-only prob-
lems abound in cognitive science and artificial in-
telligence, and a variety of proposals have been
offered to overcome it in different tasks. These
include biases like the Size Principle (Tenen-
baum and Griffiths, 2001), heuristics like gen-
erating pseudo-negatives from unobserved data
(Okanohara and Tsujii, 2007; Poon et al., 2009),
or innate prespecifications like Universal Gram-
mar in the Principles and Parameters framework.

For query-derived data, Bayesian reasoning can
address both problems by inverting the condi-
tionality of the distribution and implying negative
data. The key insight is that a lack of positive ex-
amples where positive examples are otherwise ex-
pected is implicit negative evidence. This method
allows a researcher to produce an estimated distri-
bution that approximates the true conditional dis-
tribution up to a normalizing factor. This condi-
tional distribution is that of data (e.g., a dialectal
form) conditioned on metadata (e.g., a location).

This distribution can be written as p(D|M),
where D and M are random variables represent-
ing the data and metadata. A query for a data value
d returns metadata values m distributed according
to p(M|D = d). All of the returned results will
have the searched-for data value, but the metadata
can take any value.

For most research, p(M|D = d) is not the dis-
tribution of interest, as it is conflated with the over-
all distribution of the metadata. For instance, if
the query results indicate that 60% of users of the
linguistic form d live in urban areas, this seems
to suggest that the linguistic form is more likely
in urban areas. But if 80% of people live in ur-
ban areas, the linguistic form is actually underrep-
resented in these areas, and positively associated
with rural areas. An example of the effect of such
misanalysis is shown in Sect. 4.2.
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2.2 Reversing the conditionality

Bayesian reasoning allows a researcher to move
from the sampled p(M|D) distribution to the de-
sired p(D|M). We invoke Bayes’ Rule:

p(M|D)p(D)
p(M)

In some situations, these underlying distribu-
tions will be easily obtainable. For small corpora,
p(D) and p(M) can be calculated by enumeration.
For data with explicit negative examples available,
p(D) can be estimated as the ratio of positive ex-
amples to the sum of positive and negative exam-
ples.! But for queries in general, neither of these
approximations is possible. Instead, we estimate
p(M) through the querying mechanism itself.

This is done by choosing a “baseline” query
term ¢ whose distribution is approximately inde-
pendent of the metadata — that is, a query g such
that p(g|m) is approximately constant for all meta-
data values m € M. If p(q|m) is constant, then by
Bayes’ Rule:

p(D|M) =

p(glm)p(m)

() ~p(m), Yme M

p(m|q) =

Thus we can treat results from a baseline query
as though they are draws directly from p(M ), and
estimate the denominator from this distribution.
The remaining unknown distribution p(d) is con-
stant for a given data value d, so combining the
above equations yields the unnormalized probabil-
ity p(d|M):

p(M|d)

p(M|q)

This switch to the unnormalized distribution can
improve interpretability as well. If p(d|m) = 1,
then p(m|d) p(m|q), which means that the
metadata m is observed for the linguistic form d
just as often as it is for the baseline query. When
p(d|m) > 1, the linguistic form is more common
for metadata m than average, and when p(d|m) <
1, the form is less common for that metadata.?

p(d|M) o< p(d|M) = (D

"This can be extended to multi-class outcomes; if D has
more than two outcomes, each possible outcome is an implicit
negative example for the other possible outcomes.

*If a normalized distribution is needed, p(d) may be es-
timable, depending on the data source. In the Twitter data pre-
sented here, tweets are sequentially numbered, so p(d) could
be estimated using these index numbers. This paper only uses
unnormalized distributions.



2.3 Coverage and confidence

Due to the potentially non-uniform distribution
of metadata, the amount of error in the estimate
in Eq. 1 can vary with m. Intuitively, the confi-
dence in the conditional probability estimates de-
pends on the amount of data observed for each
metadata value. Because queries estimate p(M |d)
by repeated draws from that distribution, the er-
ror in the estimate decreases as the number of
draws increases. The overall error in the estimate
of p(d|m) decreases as the number of datapoints
observed at m increases. This suggests estimating
confidence as the square root of the count of ob-
servations of the metadata m, as the standard error
of the mean decreases in proportion to the square
root of the number of observations. More complex
Bayesian inference can be used improve error es-
timates in the future.

3 Sample Implementation: SeeTweet

This section implements the method described in
the previous section on a case study of the ge-
ographic distributions of linguistic forms, calcu-
lated from recent tweets. It is implemented as
a suite of novel open-source Python/R programs
called SeeTweet, which queries Twitter, obtains
tweet locations, performs the mathematical anal-
ysis, and maps the results. The suite is avail-
able at http://github.com/gabedoyle/
seetweet.

3.1 SeeTweet goals

Traditionally, sociolinguistic studies are highly
time-intensive, and broad coverage is difficult to
obtain at reasonable costs. Two data sources that
we compare SeeTweet to are the Atlas of North
American English (Labov et al., 2008, ANAE)
and the Harvard Dialect Survey (Vaux and Golder,
2003, HDS), both of which obtained high-quality
data, but over the course of years. Such studies
remain the gold-standard for most purposes, but
SeeTweet presents a rapid, cheap, and surprisingly
effective alternative for broad coverage on some
problems in dialect geography.

3.2 Querying Twitter

SeeTweet queries Twitter through its API, us-
ing Mike Verdone’s Python Twitter Tools®. The
API returns the 1000 most recent query-matching
tweets or all query-matching tweets within the

*http://mike.verdone.ca/twitter/
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last week, whichever is smaller, and can be ge-
ographically limited to tweets within a certain
radius of a center point. In theory, the contigu-
ous United States are covered by a 2500km ra-
dius (Twitter’s maximum) around the geographic
center, approximately 39.8°N, 98.6°W, near the
Kansas-Nebraska border. In practice, though, such
a query only returns tweets from a non-circular re-
gion within the Great Plains.

Through trial-and-error, four search centers
were found that span the contiguous U.S. with
minimal overlap and nearly complete coverage,*
located near Austin, Kansas City, San Diego, and
San Francisco. All results presented here are based
on these four search centers. Tweets located out-
side the U.S. or with unmappable locations are dis-
carded.

The need for multiple queries and the API’s
tweet limit complicate the analysis. The four
searches must be balanced against each other to
avoid overrepresenting certain areas, especially in
constructing the baseline p(M). If any searches
reach the 1000-tweet limit, only the search with
the most recent 1000th tweet has all of its tweets
used. All tweets before that tweet are removed,
balancing the searches by having them all span the
same timeframe. Due to the seven-day limit for re-
cent tweets, many searches do not return 1000 hits;
if none of the searches max out, all returned tweets
are accepted.

3.3 Establishing the baseline

For the baseline query (used to estimate p(M)),
SeeTweet needs a query with approximately uni-
form usage across the country. Function or stop
words are reasonable candidates for this task. We
use the word I here, which was chosen as it is
common in all American English dialects but not
other major languages of the U.S., and it has few
obvious alternative forms. Other stop words were
tested, but the specific baseline query had little im-
pact on the learned distribution; correlations be-
tween maps with I, of, the or a baselines were all
above .97 on both baseline distributions and esti-
mated conditional distributions.

Each tweet from the target query requires its
own baseline estimate, as the true distribution of
metadata varies over time. For instance, there will
be relatively more tweets on the East Coast in

“Northern New England has limited coverage, and the
Mountain West returns little data outside the major cities.



the early morning (when much of the West Coast
is still asleep). Thus, SeeTweet builds the base-
line distribution by querying the baseline term 1,
and using the first 50 tweets preceding each tar-
get tweet. This query is performed for each search
center for each tweet, with the centers balanced as
discussed in the previous section.’

3.4 Determining coordinates and mapping

A tweet’s geographic information can be specified
in many ways. These include coordinates specified
by a GPS system (‘“‘geotags”), user-specified coor-
dinates, or user specification of a home location
whose coordinates can be geocoded. Some tweets
may include more that one of these, and SeeTweet
uses this hierarchy: geotags are accepted first, fol-
lowed by user-specified coordinates, followed by
user-specified cities. This hierarchy moves from
sources with the least noise to the most.

Obtaining coordinates from user-specified loca-
tions is done in two steps. First, if the user’s loca-
tion follows a “city, state” format, it is searched
for in the US Board on Geographic Names’s
Geographic Names Information System®, which
matches city names to coordinates. Locations that
do not fit the “city, state” format are checked
against a manually compiled list of coordinates
for 100 major American cities. This second step
catches many cities that are sufficiently well-
known that a nickname is used for the city (e.g.,
Philly) and/or the state is omitted.

Tweets whose coordinates cannot be deter-
mined by these methods are discarded; this is ap-
proximately half of the returned tweets in the ex-
periments discussed here.

This process yields a database of tweet coor-
dinates for each query. To build the probability
distributions, SeeTweet uses a two-dimensional
Gaussian kernel density estimator. Gaussian distri-
butions account for local geographic dependency
and uncertainty in the exact location of a tweeter
as well as smoothing the distributions. The stan-
dard deviation (“bandwidth”) of the kernels is a
free parameter, and can be scaled to supply ap-
propriate coverage/granularity of the map. We use

SAn alternative baseline, perhaps even more intuitive,
would be to use some number of sequential tweets preced-
ing the target tweet. However, the Twitter API query mecha-
nism subsamples from the overall set of tweets, so sequential
tweets may not follow the same distribution as the queries
and would provide an inappropriate baseline.

*http://geonames.usgs.gov/domestic/
download_data.htm
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3 degrees (approximately 200 miles) of band-
width for all maps in this paper, but found con-
sistently high correlation (at least .79 by Hosmer-
Lemeshow) to the ANAE data in Sect. 4.1 with
bandwidths between 0.5 and 10 degrees.

The KDE estimates probabilities on a grid over-
laid on the map; we make each grid box a square
one-tenth of a degree on each side and calculate
p(d|lm) for each box m. SeeTweet maps plot the
value of p(d|M) on a color gradient with approxi-
mately constant luminosity. Orange indicates high
probability of the search term, and blue low prob-
ability. Constant luminosity is used so that confi-
dence in the estimate can be represented by opac-
ity; regions with higher confidence in the esti-
mated probability appear more opaque.” Unfortu-
nately, this means that the maps will not be infor-
mative if printed in black and white.

4 Experiments in dialect geography

Our first goal is to test the SeeTweet results against
an existing gold standard in dialect geography;
for this, we compare SeeTweet distributions of
the needs done construction to those found by
long-term sociolinguistic studies and show that the
quick-and-dirty unsupervised SeeTweet distribu-
tions are accurate reflections of the slow-and-clean
results. Our second goal is show the importance of
using the correct conditional distribution, by com-
paring it to the unadjusted distribution. With these
points established, we then use SeeTweet to create
maps of previously uninvestigated problems.

4.1 Method verification on need + past
participle

The Atlas of North American English (Labov et
al., 2008) is the most complete linguistic atlas of
American English dialect geography. It focuses on
phonological variation, but also includes a small
set of lexical/syntactic alternations. One is the
needs + past participle construction, as in The car
needs (to be) washed. This construction has a lim-
ited geographic distribution, and ANAE provides
the first nationwide survey of its usage.

We compare SeeTweet’s conditional probabili-
ties for this construction to the ANAE responses to
see how the relatively uncontrolled Twitter source
compares to the tightly controlled telephone sur-
vey data that ANAE reports. We create a SeeTweet

"Confidence is given by the square root of the smoothed
number of tweets in a grid box m, p(m/|d) x C(d).



ANAE/Telsur Response Data

Response

Latitude

100
Longitude

(a) ANAE/Telsur survey responses for need+past partici-
ple.

Needs Done Usage

Latitude

Longitude

(b) SeeTweet search for “needs done”.

Figure 1: Comparing the SeeTweet distribution
and ANAE responses for needs done usage. Or-
ange indicates higher local usage, purple moder-
ate, and blue lower. Increased opacity indicates
more confidence (i.e., more tweets) in a region.

map and visually compare this to the ANAE map,
along with a Hosmer-Lemeshow-style analysis.
The SeeTweet map is not calibrated to the ANAE
map; they are each built independently.

The ANAE map (Fig. 1a) shows the responses
of 577 survey participants who were asked about
needs done. Three possible responses were consid-
ered: they used the construction themselves, they
did not use it but thought it was used in their area,
or they neither used it nor believed it to be used in
their area.

The SeeTweet map (Fig. 1b) is built from five
searches for the phrase “needs done”, yielding 480
positive tweets and 32275 baseline tweets.® The
component distributions p(M |d) and p(M) are es-
timated by Gaussian kernels with bandwidth 3.
The log of p(f|M), calculated as in Eq. 1, de-
termines the color of a region; orange indicates a
higher value, purple a middle (approx. 1) value,
and blue a low value. Confidence in the estimate
is reflected by opacity; higher opacity indicates
higher confidence in the estimate. Confidence val-
ues above 3 (corresponding to 9 tweets per bin) are

8The verb do was used as it was found to be the most com-
mon verb in corpus work on needs to be [verbed] construc-
tions (Doyle and Levy, 2008), appearing almost three times
as often as the second-most common verb (replace).
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fully opaque. This description holds for all other
maps in this paper.

We start with a qualitative comparison of the
maps. Both maps show the construction to be most
prominent in the area between the Plains states and
central Pennsylvania (the North Midland dialect
region), with minimal use in New England and
Northern California and limited use elsewhere.
SeeTweet lacks data in the Mountain West and
Great Plains, and ANAE lacks data for Minnesota
and surrounding states.” The most notable devia-
tion between the maps is that SeeTweet finds the
construction more common in the Southeast than
ANAE does.

Quantitative comparison is possible by compar-
ing SeeTweet’s estimates of the unnormalized con-
ditional probability of needs done in a location
with the ANAE informants’ judgments there. Two
such comparisons are shown in Fig. 2.

The first comparison (Fig. 2a) is a violin
plot with the ANAE divided into the three re-
sponse categories. The vertical axis represents
the SeeTweet estimates, and the width of a vi-
olin is proportional to the likelihood of that
ANAE response coming from a region of the
given SeeTweet estimate. The violins’ mass shifts
toward regions with lower SeeTweet estimates
(down in the graph) as the respondents report
decreasing use/familiarity with the construction
(moving left to right).

Users of the construction are most likely to
come from regions with above-average condi-
tional probability of needs done, as seen in the left-
most violin. Non-users, whether familiar with the
construction or not, are more likely to come from
regions with below-average conditional probabil-
ity. Non-users who are unfamiliar with it tend to
live in regions with the lowest conditional prob-
abilities of the three groups. This shows the ex-
pected correspondence trend between the ANAE
responses and the estimated prevalence of the con-
struction in an area; the mean SeeTweet estimates
for the three groups are 0.45, —0.34, and —0.61,
respectively.

The second comparison (Fig. 2b) is a Hosmer-
Lemeshow plot. The respondents are first divided
into deciles based on the SeeTweet estimate at
their location. Two mean values are calculated for
each decile: the mean SeeTweet log-probability

“Murray et al. (1996)’s data suggest that these untested

areas would not use the construction; the SeeTweet data sug-
gests this as well.
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usage.

Figure 2: Quantifying the relationship between the
SeeTweet distribution and ANAE reports for needs
done.
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estimate (increasing with each decile) and the log-
proportion of respondents in that decile who use
the construction.'® If SeeTweet estimates of the
conditional distribution are an adequate reflection
of the ANAE survey data, we should see a tight
correlation between the SeeTweet and ANAE val-
ues in each decile. The correlation between the
two is R? = 0.90. This is an improvement over the
inappropriate conditional distribution p(M|d) that
is obtained by smoothing the tweet map without
dividing by the overall tweet distribution p(M).
Its Hosmer-Lemeshow correlation is R? = 0.79

These experiments verify two important points:
the SeeTweet method can generate data that is
tightly correlated with gold-standard data from
controlled surveys, and conditionality inversion
establishes a more appropriate distribution to cor-
rect for different baseline frequencies in tweeting.
This second point will be examined further with
double modals in the next section.

4.2 Double modals and the importance of the
baseline

The double modal construction provides a second
test case. While ungrammatical in Standard Amer-
ican English, forms like I might could use your
help are grammatical and common in Southern
American dialects. This construction is interesting
both for its theoretical syntax implications on the
nature of modals as well as the relationship be-
tween its sociolinguistic distribution and its prag-
matics (Hasty, 2011).

The ANAE does not have data on double
modals’ distribution, but another large-scale soci-
olinguistic experiment does: the Harvard Dialect
Survey (Vaux and Golder, 2003). This online sur-
vey obtained 30788 responses to 122 dialect ques-
tions, including the use of double modals. Katz
(2013) used a nearest-neighbor model to create a
p(d|M) distribution over the contiguous U.S. for
double modal usage, mapped in Fig. 3a.'! Lighter
colors indicate higher rates of double modal ac-
ceptance.

SeeTweet generates a similar map (Fig. 3b),
based on three searches with 928 positive and
66272 baseline tweets. As with the ANAE test, the

1%We remove all respondents who do not use the construc-
tion but report it in their area. Such respondents are fairly
rare (slightly over 10% of the population), and removing this
response converts the data to a binary classification problem
appropriate to Hosmer-Lemeshow analysis.

Uhttp://spark.rstudio.com/jkatz/Data/
comp—-53.png



(a) Katz’s nearest-neighbor estimates of the double
modal’s distribution in the Harvard Dialect Survey.

Might Could Data

Latitude

Longitude

(b) SeeTweet distribution for might could.

p(M|d) for might could

Latitude

Longitude

(c) Inappropriate p(M |d) distribution directly estimated
from Twitter hits.

Figure 3: Maps of the double modal’s distribution.

SeeTweet map is built independently of the HDS
data and is not calibrated to it.

The notable difference between the maps is
that SeeTweet does not localize double modals as
sharply to the Southeast, with pockets in cities
throughout the country. This may reflect the dif-
ference in the meaning of locations on Twitter and
in the HDS; Twitter locations will be a user’s cur-
rent home, whereas the HDS explicitly asks for a
respondent’s location during their formative years.
SeeTweet may partly capture the spread of dialec-
tal features due to migration.

Double modals also provide an illustration of
the importance of the Bayesian inversion in Eqn.
1, as shown in Fig. 3c. This map, based on
the inappropriate distribution p(M |d), which does
not account for the overall distribution p(M),
disagrees with general knowledge of the double
modal’s geography and the HDS map. Although
both maps find double modals to be prominent
around Atlanta, the inappropriate distribution find
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New York City, Chicago, and Los Angeles to be
the next most prominent double modal regions,
with only moderate probability in the rest of the
Southeast. This is not incorrect, per se, as these
are the sources of many double modal tweets; but
these peaks are incidental, as major cities produce
more tweets than the rest of the country. This is
confirmed by their absence in the HDS map as
well as the appropriate SeeTweet map.

4.3 Extending SeeTweet to new problems

Given SeeTweet’s success in mapping needs done
and double modals, it can also be used to test new
questions. An understudied issue in past work on
the need + past participle construction is its rela-
tionship with alternative forms need to be + past
participle and need + present participle. Murray
et al. (1996) suggest that their need + past par-
ticiple users reject both alternatives, although it
is worth noting that their informants are more ac-
cepting of the ro be alternative, calling it merely
“too formal”, as opposed to an “odd” or “ungram-
matical” opinion about the present participle form.
Their analysis of the opinions on alternative forms
does not go beyond this anecdotal evidence.

SeeTweet provides the opportunity to examine
this issue, and finds that the fo be form is per-
sistent across the country (Fig. 4c), both in areas
with and without the need + past participle form,
whereas the present participle alternant (Fig. 4b)
is strongest in areas where need + past participle is
not used. Although further analysis is necessary to
see if the same people use both the past participle
forms, the current data suggests that the bare past
participle and bare present participle forms are in
complementary distribution, while the fo be form
is acceptable in most locations.

We also compare the alternative constructions
to the ANAE data. Using Hosmer-Lemeshow
analysis, we find negative correlations: R?> =
—.65 for needs doing and R?> = —.25 for needs
to be done. In addition, mean SeeTweet estimates
of needs doing usage were lower for regions where
respondents use needs done than for regions where
they do not: —.93 versus —.49.'? Thus, SeeTweet
provides evidence that needs done and needs do-
ing are in a geographically distinct distribution,
while needs done and needs to be done are at most
weakly distinct.

12SeeTweet estimates of needs to be done usage were com-
parable in both regions, —.018 against .019.



Needs Done Usage

Latitude

“"Longitude

(a) “Needs done” distribution

Needs Doing Usage

Latitude

“Longitude

(b) “Needs doing” distribution

Needs To Be Done Usage

Latitude

“Longitude

(c) “Needs to be done” distribution

Figure 4: SeeTweet distributions for needs done,
needs to be done, and needs doing.

S The appropriateness of Twitter as a
data source

A possible concern with this analysis is that Twit-
ter could be a biased and noisy dataset, inappropri-
ate for sociolinguistic investigation. Twitter skews
toward the young and slightly toward urbanites
(Duggan and Brenner, 2013). However, as young
urbanites tend to drive language change (Labov
et al., 2008), any such bias would make the re-
sults more useful for examining sociolinguistic
changes and emergent forms. The informality of
the medium also provides unedited writing data
that is more reflective of non-standard usage than
most corpora, and its large amounts of data in short
timescales offers new abilities to track emerging
linguistic change.

As for noise in the tweet data and locations, the
strong correlations between the gold-standard and
SeeTweet results show that, at least for these fea-
tures, the noise is mitigated by the size of dataset.
We examined the impact of noise on the needs
done dataset by manually inspecting the data for
false positives and re-mapping the clean data. Al-
though the false positive rate was 12%, the con-
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ditional distribution learned with and without the
false positives removed remained tightly corre-
lated, at R? .94. The SeeTweet method ap-
pears to be robust to false positives, although nois-
ier queries may require manual inspection.

A final point to note is that while the datasets
used in constructing these maps are relatively
small, they are crucially derived from big data. Be-
cause the needs done and double modal construc-
tions are quite rare, there would be very few ex-
amples in a standard-sized corpus. Only because
there are so many tweets are we able to get the
hundreds of examples we used in this study.

6 Conclusion

We have shown that Bayesian inversion can be
used to build conditional probability distributions
over data given metadata from the results of
queries on social media, connecting query-derived
data to traditional data sources. Tests on Twitter
show that such calculations can provide dialect
geographies that are well correlated with exist-
ing gold-standard sources at a fraction of the time,
cost, and effort.
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Abstract

In this paper, we present a series of
experiments in which we analyze the usage of
graffiti style features for signaling personal
gang identification in a large, online street
gangs forum, with an accuracy as high as 83%
at the gang alliance level and 72% for the
specific gang. We then build on that result in
predicting how members of different gangs
signal the relationship between their gangs
within threads where they are interacting with
one another, with a predictive accuracy as high
as 66% at this thread composition prediction
task. Our work demonstrates how graffiti
style features signal social identity both in
terms of personal group affiliation and
between group alliances and oppositions.
When we predict thread composition by
modeling identity and relationship
simultaneously using a multi-domain learning
framework paired with a rich feature
representation, we achieve significantly higher
predictive accuracy than state-of-the-art
baselines using one or the other in isolation.

1 Introduction

Analysis of linguistic style in social media has
grown in popularity over the past decade.
Popular prediction problems within this space
include gender classification (Argamon et al.,
2003), age classification (Argamon et al., 2007),
political affiliation classification (Jiang &
Argamon, 2008), and sentiment analysis (Wiebe
et al., 2004). From a sociolinguistic perspective,
this work can be thought of as fitting within the
area of machine learning approaches to the
analysis of style (Biber & Conrad, 2009),
perhaps as a counterpart to work by variationist

sociolinguists in their effort to map out the space
of language variation and its accompanying
social interpretation (Labov, 2010; Eckert &
Rickford, 2001). One aspiration of work in
social media analysis is to contribute to this
literature, but that requires that our models are
interpretable. The contribution of this paper is an
investigation into the ways in which stylistic
features behave in the language of participants of
a large online community for street gang
members. We present a series of experiments
that reveal new challenges in modeling stylistic
variation with machine learning approaches. As
we will argue, the challenge is achieving high
predictive  accuracy  without  sacrificing
interpretability.

Gang language is a type of sociolect that has
so far not been the focus of modeling in the area
of social media analysis. Nevertheless, we argue
that the gangs forum we have selected as our
data source provides a strategic source of data for
exploring how social context influences stylistic
language choices, in part because it is an area
where the dual goals of predictive accuracy and
interpretability are equally important. In
particular, evidence that gang related crime may
account for up to 80% of crime in the United
States attests to the importance of understanding
the social practices of this important segment of
society (Johnsons, 2009). Expert testimony
attributing meaning to observed, allegedly gang-
related social practices is frequently used as
evidence of malice in criminal investigations
(Greenlee, 2010). Frequently, it is police officers
who are given the authority to serve as expert
witnesses on this interpretation because of their
routine interaction with gang members.
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Nevertheless, one must consider their lack of
formal training in forensic linguistics (Coulthard
& Johnson, 2007) and the extent to which the
nature of their interaction with gang members
may subject them to a variety of cognitive biases
that may threaten the wvalidity of their
interpretation (Kahneman, 2011).

Gang-related social identities are known to be
displayed through clothing, tattoos, and language
practices including speech, writing, and gesture
(Valentine, 1995), and even dance (Philips,
2009). Forensic linguists have claimed that these
observed social practices have been over-
interpreted and inaccurately interpreted where
they have been used as evidence in criminal trials
and that they may have even resulted in
sentences that are not justified by sufficient
evidence (Greenlee, 2010). Sociolinguistic
analysis of language varieties associated with
gangs and other counter-cultural groups attests to
the challenges in reliable interpretation of such
practices (Bullock, 1996; Lefkowitz, 1989). If
we as a community can understand better how
stylistic features behave due to the choices
speakers make in social contexts, we will be in a
better position to achieve high predictive
accuracy with models that are nevertheless
interpretable. And ultimately, our models may
offer insights into usage patterns of these social
practices that may then offer a more solid
empirical foundation for interpretation and use of
language as evidence in criminal trials.

In the remainder of the paper we describe our
annotated corpus.  We then motivate the
technical approach we have taken to modeling
linguistic practices within the gangs forum.
Next, we present a series of experiments
evaluating our approach and conclude with a
discussion of remaining challenges.

2 The Gangs Forum Corpus

The forum that provides data for our experiments
is an online forum for members of street gangs.
The site was founded in November, 2006. It was
originally intended to be an educational resource
compiling knowledge about the various gang
organizations and the street gang lifestyle. Over
time, it became a social outlet for gang members.
There are still traces of this earlier focus in that
there are links at the top of each page to websites
dedicated to information about particular gangs.
At the time of scraping its contents, it had over a
million posts and over twelve thousand active

users. Our work focuses on analysis of stylistic
choices that are influenced by social context, so
it is important to consider some details about the
social context of this forum. Specifically, we
discuss which gangs are present in the data and
how the gangs are organized into alliances and
rivalries. Users are annotated with their gang
identity at two levels of granularity, and threads
are annotated with labels that indicate which
gang dominates and how the participating gangs
relate to one another.

2.1 User-Level Annotations

At the fine-grained level, we annotated users
with the gang that they indicated being affiliated
with, including Bloods, Crips, Hoovers,
Gangster Disciples, other Folk Nation, Latin
Kings, Vice Lords, Black P. Stones, other People
Nation, Trinitarios, Nortefios, and Surefios.
There was also an Other category for the smaller
gangs. For a coarser grained annotation of gang
affiliation, we also noted the nation, otherwise
known as gang alliance, each gang was
associated with.

For our experiments, a sociolinguist with
significant domain expertise annotated the gang
identity of 3384 users. Information used in our
annotation included the user’s screen name, their
profile, which included a slot for gang affiliation,
and the content of their posts. We used regular
expressions to find gang names or other
identifiers occurring within the gang affiliation
field and the screen names and annotated the
users that matched. If the value extracted for the
two fields conflicted, we marked them as
claiming multiple gangs. For users whose
affiliation could not be identified automatically,
we manually checked their profile to see if their
avatar (an image that accompanies their posts) or
other fields there contained any explicit
information. Otherwise, we skimmed their posts
for explicit statements of gang affiliation.

Affiliation was unambiguously identified
automatically for 56% of the 3384 users from
their affiliation field.  Another 36% were
identified automatically based on their screen
name. Manual inspection was only necessary in
9% of the cases. Users that remained ambiguous,
were clearly fake or joke accounts, or who
claimed multiple gangs were grouped together in
an “Other” category, which accounts for 6.2% of
the total. Thus, 94% of the users were classified
into the 12 specific gangs mentioned above.
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At a coarse-grained level, users were also
associated with a nation. The nation category
was inspired by the well-known gang alliances
known as the People Nation and Folks Nation,
which are city-wide alliances of gangs in
Chicago. We labeled the Crips and Hoovers as a
nation since they are closely allied gangs.
Historically, the Hoovers began breaking away
from the Crips and are rivals with certain subsets
of Crips, but allies with the majority of other
Crips gangs. The complex inner structure of the
Crips alliance will be discussed in Section 5
where we interpret our quantitative results.

There are a large number of gangs that
comprise the People and Folks Nations. The
major gangs within the People Nation are the
Latin Kings, Vice Lords and Black P. Stones.
The Folks Nation is dominated by the Gangster
Disciples with other Folks Nation gangs being
significantly smaller. The People Nation, Blood
and Nortefios gangs are in a loose, national
alliance against the opposing national alliance of
the Folks Nation, Crips and Surefios. Remaining
gangs were annotated as other, such as the
Trinitarios, that don't fit into this national
alliance system nor even smaller alliances.

2.2 Thread-Level Annotations

In addition to person-level annotations of gang
and nation, we also annotated 949 threads with
dominant gang as well as thread composition, by
which we mean whether the users who
participated on the thread were only from allied
gangs, included opposing gangs, or contained a
mix of gangs that were neither opposing nor
allied. These 949 threads were ones where a
majority of the users who posted were in the set
of 3384 users annotated with a gang identity.

For the dominant gang annotation at the
gang level, we consider only participants on the
thread for whom there was an annotated gang
affiliation. If members of a single gang produced
the majority of the posts in the thread, then that

was annotated as the dominant gang of the thread.

If no gang had a majority in the thread, it was
instead labeled as Mixed. For dominant gang at
the nation level, the same procedure was used,
but instead of looking for which gang accounted
for more of the members, we looked for which
gang alliance accounted for the majority of users.

For the thread composition annotation, we
treated the Bloods, People Nation, and Nortefios

as allied with each other as the “Red set”. We
treated Crips, Hoovers, Folks Nation, and
Surefios as allies with each other as the “Blue
set”. The Red and Blue sets oppose one another.
The Latin Kings and Trinitarios also oppose one
another. Thread composition was labeled as
Allied, Mixed or Opposing depending on the
gangs that appeared in the thread. As with the
dominant gang annotation, only annotated users
were considered. If all of the posts were by users
of the same gang or allied gangs, the thread was
labeled as Allied. If there were any posts from
rival gangs, it was labeled as Opposing.
Otherwise, it was labeled as Mixed. If the users
were all labeled with Other as their gang it was
also labeled as Mixed.

3 Modeling Language Practices at the
Feature Level

In this section, we first describe the rich feature
representation we developed for this work.
Finally, we discuss the motivation for employing
a multi-domain learning framework in our
machine-learning experiments.

3.1 Feature Space Design: Graffiti Style
Features

While computational work modeling gang-
related language practices is scant, we can learn
lessons from computational work on other types
of sociolects that may motivate a reasonable
approach. Gender prediction, for example, is a
problem where there have been numerous
publications in the past decade (Corney et al.,
2002; Argamon et al., 2003; Schler et al., 2005;
Schler, 2006; Yan & Yan, 2006; Zhang et al.,
2009). Because of the complex and subtle way
gender influences language choices, it is a
strategic example to motivate our work.

Gender-based language variation arises from
multiple sources. Among these, it has been noted
that within a single corpus comprised of samples
of male and female language that the two
genders do not speak or write about the same
topics. This is problematic because word-based
features such as unigrams and bigrams, which
are very frequently used, are highly likely to pick
up on differences in topic (Schler, 2006) and
possibly perspective. Thus, in cases where
linguistic style variation 1is specifically of
interest, these features do not offer good
generalizability (Gianfortoni et al., 2011).
Similarly, in our work, members of different
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gangs are located in different areas associated
with  different concerns and levels of
socioeconomic status. Thus, in working to
model the stylistic choices of gang forum
members, it is important to consider how to
avoid overfitting to content-level distinctions.

Typical kinds of features that have been used
in gender prediction apart from unigram features
include part-of-speech (POS) ngrams (Argamon
et al., 2003), word-structure features that cluster
words according to endings that indicate part of
speech (Zhang et al., 2009), features that indicate
the distribution of word lengths within a corpus
(Corney et al., 2002), usage of punctuation, and
features related to usage of jargon (Schler et al.,
2005). In Internet-based communication,
additional features have been investigated such
as usage of internet specific features including
“internet speak™ (e.g., lol, wtf, etc.), emoticons,
and URLs (Yan & Yan, 2006).

Transformation | Origin or meaning

b, cn, hr, ph “Bloods up” Positive towards
Bloods, Crips, Hoovers,
Pirus, respectively

b — bk, ¢ — ck | Blood killer, Crip killer

h — hk, p — pk | Hoover killer, Piru killer

ck — cc, ke Avoid use of ‘ck’ since it

represents Crip killer
Represents crosshairs,
crossing out the ‘0’s in a
name like Rollin’ 60s Crips

0—>X,0—>0

b—6 Represents the six-pointed
star. Symbol of Folk Nation
and the affiliated Crips.

e—3 Various. One is the trinity in
Trinitario.

s—5 Represents the five-pointed

star. Symbol of People
Nation and the affiliated
Bloods.

Table 1: Orthographical substitutions from gang
graffiti symbolism

In order to place ourselves in the best position
to build an interpretable model, our space of
graffiti style features was designed based on a
combination of qualitative observations of the
gangs forum data and reading about gang
communication using web accessible resources
such as informational web pages linked to the
forum and other resources related to gang
communication (Adams & Winter, 1997; Garot,
2007). Specifically, in our corpus we observed

gang members using what we refer to as graffiti
style features to mark their identity. Gang
graffiti employs shorthand references to convey
affiliation or threats (Adams & Winter,
1997). For example, the addition of a <k> after a
letter representing a rival gang stands for “killer.”
So, writing <ck> would represent “crip killer.” A
summary of these substitutions can be seen in
Table 1. Unfortunately, only about 25% of the
users among the 12,000 active users employ
these features in their posts, which limits their
ability to achieve a high accuracy, but
nevertheless offers the opportunity to model a
frequent social practice observed in the corpus.

The graffiti style features were extracted
using a rule-based algorithm that compares
words against a standard dictionary as well as
using some phonotactic constraints on the
position of certain letters. The dictionary was
constructed using all of the unique words found
in the AQUAINT corpus (Graff, 2002). If a
word in a post did not match any word from the
AQUAINT corpus, we tested it against each of
the possible transformations in Table 1.
Transformations were applied to words using
finite state transducers. If some combination
transformations from that table applied to the
observed word could produce some term from
the AQUAINT corpus, then we counted that
observed word as containing the features
associated with the applied transformations.

The transformations were applied in the order
of least likely to occur in normal text to the most
likely. Since ‘bk’ only occurs in a handful of
obscure words, for example, almost any
occurrence of it can be assumed to be a
substitution and the ‘k’ can safely be removed
before the next step. By contrast, ‘cc’ and ‘ck’
occur in many common words so they must be
saved for last to ensure that the final dictionary
checks have any simultaneous substitutions
already removed.

When computing values for the graffiti style
features for a text, the value for each feature was
computed as the number of words (tokens) that
contained the feature divided by the total number
of words (tokens) in the document. We used a
set of 13 of these features, chosen on the basis of
how frequently they occurred and how strongly
they distinguished gangs from one another (for
example, substituting ‘$’ for ‘s’ was a
transformation that was common across gangs in
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our qualitative analysis, and thus did not seem
beneficial to include).

Transformation | Freq. | False False
Positive | Negative
rate rate

b”, c”, h?, ph 15103 | 0% 0%

b — bk 26923 | 1% 0%

¢ —ck 16144 | 25% 8%

h — hk 10053 | 1% 0%

p—pk 5669 | 3% 0%

ck — cc, ke 72086 | 2% 0%

0—>X,0—0 13646 | 15% 5%

b—6 2470 16% 0%

e—3 8628 28% 1%

s—5 13754 | 6% 0%

Table 2: Evaluation of extraction of graffiti style
features over the million post corpus

The  feature-extraction  approach  was
developed iteratively. After extracting the
features over the corpus of 12,000 active users,
we created lists of words where the features were
detected, sorted by frequency. We then manually
examined the words to determine where we
observed errors occurring and then made some
minor adjustments to the extractors. Table 2
displays a quantitative evaluation of the accuracy
of the graffiti style feature extraction.

Performance of the style features was
estimated for each style-feature rule. For each
rule, we compute a false positive and false
negative rate. For false positive rate, we begin
by retrieving the list of words marked by the
feature extraction rule containing the associated
style marking. From the full set of words that
matched a style feature rule, we selected the 200
most frequently occurring word types. We
manually checked that complete set of word
tokens and counted the number of misfires. The
false positive rate was then calculated for each
feature by dividing the number of tokens that
were misfires over the total number of tokens in
the set. In all cases, we ensured that at least 55%
of the total word tokens were covered, Sso
additional words may have been examined.

In the case of false negatives, we started with
the set of word types that did not match any word
in the dictionary and also did not trigger the style
feature rule. Again we sorted word types in this
list by frequency and selected the top 200 most
frequent. We then manually checked for missed
instances where the associated style feature was
used but not detected. The false negative rate
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was then the total number of word tokens within
this word type set divided by the total number of
word tokens in the complete set of word types.

Another type of feature we used referenced
the nicknames gangs used for themselves and
other gangs, which we refer to as Names features.
The intuition behind this is simple: someone who
is a member of the Crips gang will talk about the
Crips more often. The measure is simply how
often a reference to a gang occurs per document.
Some of these nicknames we included were
gang-specific insults, with the idea that if
someone uses insults for Crips often, they are
likely not a Crip. The last type of reference is
words that refer to gang alliances like the People
Nation and Folks Nation. Members of those
Chicago-based gangs frequently refer to their
gang as the “Almighty [gang name] Nation”.

Gang Positive/Neutral | Insults
Mentions

Crips crip, loc crab, ckrip, ck

Bloods blood, damu, | slob, bklood,
piru, ubn pkiru, bk, pk

Hoovers | hoover, groover, | snoover,
crim, hge, heg hkoover, hk

Gangster | GD, GDN, gk, dk, nigka

Disciples | Gangster
Disciple

Folks folk, folknation,

Nations | almighty, nation

People people,

Nation peoplenation,
almighty, nation

Latin alkgn, king,

Kings gueen

Black P. | stone, abpsn,

Stones moe, black p.

Vice vice, lord, v,

Lords avin, foe, 4ch

Table 3: Patterns used for gang name features. For all

gangs listed in the table, there are slang terms used as

positive mentions of the gang. For some gangs there
are also typical insult names.

We used regular expressions to capture
occurrences of these words and variations on
them such as the use of the orthographic
substitutions mentioned previously, plurals,
feminine forms, etc. Additionally, in the Blood
and Hoover features, they sometimes use
numbers to replace the ‘o’s representing the
street that their gang is located on. So the Bloods
from 34th Street, say, might write “B134d”.



3.2 Computational Multi-

domain learning

Paradigm:

The key to training an interpretable model in our
work is to pair a rich feature representation with
a model that enables accounting for the structure
of the social context explicitly. Recent work in
the area of multi-domain learning offers such an
opportunity (Arnold, 2009; Daumé III, 2007;
Finkel & Manning, 2009). In our work, we treat
the dominant gang of a thread as a domain for
the purpose of detecting thread composition.
This decision is based on the observation that
while it is a common practice across gangs to
express their attitudes towards allied and
opposing gangs using stylistic features like the
Graffiti style features, the particular features that
serve the purpose of showing affiliation or
opposition differ by gang. Thus, it is not the
features themselves that carry significance, but
rather a combination of who is saying it and how
it is being said.

As a paradigm for multi-domain learning, we
use Daume’s Frustratingly Easy Domain
Adaptation approach (Daumé III, 2007) as
implemented in LightSIDE (Mayfield & Rosé,
2013). In this work, Daumé Il proposes a very
simple “easy adapt” approach, which was
originally proposed in the context of adapting to
a specific target domain, but easily generalizes to
multi-domain learning. The key idea is to create
domain-specific versions of the original input
features depending on which domain a data point
belongs to. The original features represent a
domain-general feature space. This allows any
standard learner to appropriately optimize the
weights of domain-specific and domain-general
features simultaneously. In our work, this allows
us to model how different gangs signal within-
group identification and across-group animosity
or alliance using different features. The resulting
model will enable us to identify how gangs differ
in their usage of style features to display social
identity and social relations.

It has been noted in prior work that style is
often expressed in a topic-specific or even
domain-specific way (Gianfortoni et al., 2011).
What exacerbates these problems in text
processing approaches is that texts are typically
represented with features that are at the wrong
level of granularity for what is being
modeled. Specifically, for practical reasons, the
most common types of features used in text
classification tasks are still unigrams, bigrams,

and part-of-speech bigrams, which are highly
prone to over-fitting. When text is represented
with features that operate at too fine-grained of a
level, features that truly model the target style are
not present within the model. Thus, the trained
models are not able to capture the style itself and
instead capture features that correlate with that
style within the data (Gianfortoni et al., 2011).

This is particularly problematic in cases
where the data is not independent and identically
distributed (IID), and especially where instances
that belong to different subpopulations within the
non-IID data have different class wvalue
distributions. In those cases, the model will tend
to give weight to features that indicate the
subpopulation rather than features that model the
style. Because of this insight from prior work,
we contrast our stylistic features with unigram
features and our multi-domain approach with a
single-domain approach wherever appropriate in
our experiments presented in Section 4.

4 Prediction Experiments

In this section we present a series of prediction
experiments using the annotations described in
Section 2. We begin by evaluating our ability to
identify gang affiliation for individual users.
Because we will use dominant gang as a domain
feature in our multi-domain learning approach to
detect thread composition, we also present an
evaluation of our ability to automatically predict
dominant gang for a thread. Finally, we evaluate
our ability to predict thread composition. All of
our experiments use L1 regularized Logistic
regression.

4.1 Predicting Gang Affiliation per User

The first set of prediction experiments we ran
was to identify gang affiliation.  For this
experiment, the full set of posts contributed by a
user was concatenated together and used as a
document from which to extract text features.
We conducted this experiment using a 10-fold
cross-validation over the full set of users
annotated for gang affiliation. Results contrasting
alternative feature spaces at the gang level and
nation level are displayed in Table 4. We begin
with a unigram feature space as the baseline. We
contrast this with the Graffiti style features
described above in Section 3.1. Because all of
the Graffiti features are encoded in words as
pairs of characters, we contrast the carefully
extracted Graffiti style features with character
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bigrams. Next we test the nickname features
also described in Section 3.1. Finally, we test
combinations of these features.

Gang Nation
Unigrams 70% 81%
Character Bigrams 64% 76%
Graffiti Features 44% 68%
Name Features 63% 78%
Name + Graffiti 67% 81%
Unigrams + Name 70% 82%
Unigrams + Character | 71% 82%
Bigrams
Unigrams + Graffiti 71% 82%
Unigrams + Name + | 72% 83%
Graffiti
Unigrams + Name + 2% 79%
Character Bigrams

Table 4: Results (percent accuracy) for gang
affiliation prediction at the gang and nation level.

We note that the unigram space is a
challenging feature space to beat, possibly
because only about 25% of the users employ the
style features we identified with any regularity.
The character bigram space actually significantly
outperforms the Graffiti features, in part because
it captures aspects of both the Graffiti features,
the name features, and also some other gang
specific jargon. When we combine the stylistic
features with unigrams, we start to see an
advantage over unigrams alone.  The best
combination is Unigrams, Graffiti style features,
and Name features, at 72% accuracy (.65 Kappa)
at the gang level and 83% accuracy (.69 Kappa)
at the nation level. Overall the accuracy is
reasonable and offers us the opportunity to
expand our analysis of social practices on the
gangs forum to a much larger sample in our
future work than we present in this first foray.

4.2 Predicting Dominant Gang per Thread

In Section 4.3 we present our multi-domain

learning approach to predicting thread
composition. In that work, we use dominant
gang on a thread as a domain. In those

experiments, we contrast results with hand-
annotated dominant gang and automatically-
predicted dominant gang. In order to compute an
automatically-identified dominant gang for the
949 threads used in that experiment, we build a
model for gang affiliation prediction using data
from the 2689 users who did not participate on
any of those threads as training data so there is
no overlap in users between train and test.

The feature space for that classifier included
unigrams, character bigrams, and the gang name
features since this feature space tied for best
performing at the gang level in Section 4.1 and
presents a slightly lighter weight solution than
Unigrams, graffiti style features, and gang name
features. We applied that trained classifier to the
users who participated on the 949 threads. From
the automatically-predicted gang affiliations, we
computed a dominant gang using the gang and
nation level for each thread using the same rules
that we applied to the annotated user identities
for the annotated dominant gang labels described
in Section 2.2. We then evaluated our
performance by comparing the automatically-
identified dominant gang with the more carefully
annotated one. Our automatically identified
dominant gang labels were 73.3% accurate (.63
Kappa) at the gang level and 76.6% accurate (.72
Kappa) at the nation level. This experiment is
mainly important as preparation for the
experiment presented in Section 4.3.

4.3  Predicting Thread Composition

Our final and arguably most important prediction
experiments were for prediction of thread
composition.  This is where we begin to
investigate how stylistic choices reflect the
relationships  between participants in a
discussion. We conducted this experiment twice,
specifically, once with the annotated dominant
gang labels (Table 5) and once with the
automatically predicted ones (Table 6). In both
cases, we evaluate gang and nation as alternative
domain variables. In both sets of experiments,
the  multi-domain  versions  significantly
outperform the baseline across a variety of
feature spaces, and the stylistic features provide
benefit above the unigram baseline. In both
tables the domain and nation variables are hand-
annotated. * indicates the results are significantly
better than the no domain unigram baseline.
Underline indicates best result per column. And
bold indicates overall best result.

The best performing models in both cases
used a multi-domain model paired with a stylistic
feature space rather than a unigram space. Both
models performed significantly better than any of
the unigram models, even the multi-domain
versions with annotated domains. Where gang
was used as the domain variable and Graffiti
style features were the features used for
prediction, we found that the high weight
features associated with Allied threads were
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either positive about gang identity for a variety
of gangs other than their own (like B~ in a Crips
dominated thread) or protective (like CC in a
Bloods dominated thread).

No Dominant | Dominant
Domain | Gang Nation
Unigrams | 53% 58%* 60%*
Character | 49% 55% 56%
Bigrams
Graffiti 53% 54% 61%*
Features
Name 54% 63%* 66%*
Features
Name + 54% 61%* 65%*
Graffiti
Unigrams | 52% 58%* 61%*
+ Name
Unigrams | 53% 57% 57%
+ Graffiti
Unigrams | 54% 61%* 65%*
+ Name
+ Graffiti

Table 5. Results (percent accuracy) for thread
composition prediction, contrasting a single domain
approach with two multi-domain approaches, one
with dominant gang as the domain variables, and the
other with dominant nation as the domain variable. In
this case, the domain variables are annotated.

No Dominant | Dominant
Domain | Gang Nation
Unigrams | 53% 57% 57%
Character | 49% 53% 55%
Bigrams
Graffiti 53% 65%* 58%*
Features
Name 54% 61%* 59%*
Features
Name + 54% 60%* 59%*
Graffiti
Unigrams | 52% 56% 56%
+ Name
Unigrams | 53% 58%* 57%
+ Graffiti
Unigrams | 54% 60%* 59%*
+ Name
+ Graffiti

Table 6: Results (percent accuracy) for thread
composition prediction, contrasting a single domain
approach with two multi-domain approaches with
predicted domain variables, one with dominant gang
as the domain variables, and the other with dominant
nation as the domain variable.

Crips-related features were the most frequent
within this set, perhaps because of the complex
social structure within the Crips alliance, as
discussed above. We saw neither features
associated with negative attitudes of the gang
towards others nor other gangs towards them in
these Allied threads, but in opposing threads, we
see both, for example, PK in Crips threads or BK
in Bloods threads. Where unigrams are used as
the feature space, the high weight features are
almost exclusively in the general space rather
than the domain space, and are generally
associated with attitude directly rather than gang
identity. For example, “lol,” and “wtf.”

5 Conclusions

We have presented a series of experiments in
which we have analyzed the usage of stylistic
features  for  signaling  personal  gang
identification and between gang relations in a
large, online street gangs forum. This first foray
into modeling the language practices of gang
members is one step towards providing an
empirical foundation for interpretation of these
practices. In embarking upon such an endeavor,
however, we must use caution. In machine-
learning approaches to modeling stylistic
variation, a preference is often given to
accounting for variance over interpretability,
with the result that interpretability of models is
sacrificed in order to achieve a higher prediction
accuracy. Simple feature encodings such as
unigrams are frequently chosen in a (possibly
misguided) attempt to avoid bias. As we have
discussed above, however, rather than cognizant
introduction of bias informed by prior linguistic
work, unknown bias is frequently introduced
because of variables we have not accounted for
and confounding factors we are not aware of,
especially in social data that is rarely IID. Our
results suggest that a strategic combination of
rich feature encodings and structured modeling
approach leads to high accuracy and
interpretability. In our future work, we will use
our models to investigate language practices in
the forum at large rather than the subset of users
and threads used in this paper™.

! An appendix with additional analysis and the
specifics of the feature extraction rules can be found
at http://www.cs.cmu.edu/~cprose/Graffiti.html. This
work was funded in part by ARL
000665610000034354.
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Abstract

Automatically inducing the syntactic part-
of-speech categories for words in text
is a fundamental task in Computational
Linguistics. While the performance of
unsupervised tagging models has been
slowly improving, current state-of-the-art
systems make the obviously incorrect as-
sumption that all tokens of a given word
type must share a single part-of-speech
tag. This one-tag-per-type heuristic coun-
ters the tendency of Hidden Markov
Model based taggers to over generate tags
for a given word type. However, it is
clearly incompatible with basic syntactic
theory. In this paper we extend a state-of-
the-art Pitman-Yor Hidden Markov Model
tagger with an explicit model of the lexi-
con. In doing so we are able to incorpo-
rate a soft bias towards inducing few tags
per type. We develop a particle filter for
drawing samples from the posterior of our
model and present empirical results that
show that our model is competitive with
and faster than the state-of-the-art without
making any unrealistic restrictions.

1 Introduction

Research on the unsupervised induction of part-
of-speech (PoS) tags has the potential to im-
prove both our understanding of the plausibil-
ity of theories of first language acquisition, and
Natural Language Processing applications such
as Speech Recognition and Machine Transla-
tion. While there has been much prior work
on this task (Brown et al., 1992; Clark, 2003;
Christodoulopoulos et al., 2010; Toutanova and

Johnson, 2008; Goldwater and Griffiths, 2007;
Blunsom and Cohn, 2011), a common thread in
many of these works is that models based on a
Hidden Markov Model (HMM) graphical struc-
ture suffer from a tendency to assign too many
different tags to the tokens of a given word type.
Models which restrict word types to only occur
with a single tag show a significant increase in
performance, even though this restriction is clearly
at odds with the gold standard labeling (Brown et
al., 1992; Clark, 2003; Blunsom and Cohn, 2011).
While the empirically observed expectation for the
number of tags per word type is close to one, there
are many exceptions, e.g. words that occur as both
nouns and verbs (opening, increase, related etc.).

In this paper we extend the Pitman-Yor HMM
tagger (Blunsom and Cohn, 2011) to explicitly in-
clude a model of the lexicon that encodes from
which tags a word type may be generated. For
each word type we draw an ambiguity class which
is the set of tags that it may occur with, captur-
ing the fact that words are often ambiguous be-
tween certain tags (e.g. Noun and Verb), while
rarely between others (e.g. Determiner and Verb).
We extend the type based Sequential Monte Carlo
(SMCQ) inference algorithm of Dubbin and Blun-
som (2012) to incorporate our model of the lexi-
con, removing the need for the heuristic inference
technique of Blunsom and Cohn (2011).

We start in Section 3 by introducing the origi-
nal PYP-HMM model and our extended model of
the lexicon. Section 4 introduces a Particle Gibbs
sampler for this model, a basic SMC method that
generates samples from the model’s posterior. We
evaluate these algorithms in Section 5, analyzing
their behavior in comparisons to previously pro-
posed state-of-the-art approaches.
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2 Background

From the early work in the 1990’s, much of the
focus on unsupervised PoS induction has been
on hidden Markov Models (HMM) (Brown et al.,
1992; Kupiec, 1992; Merialdo, 1993). The HMM
has proven to be a powerful model of PoS tag as-
signment. Successful approaches generally build
upon the HMM model by expanding its context
and smoothing the sparse data. Constraints such
as tag dictionaries simplify inference by restricting
the number of tags to explore for each word (Gold-
water and Griffiths, 2007). Gancheyv et al. (2010)
used posterior regularization to ensure that word
types have a sparse posterior distribution over tags.
A similar approach constrains inference to only
explore tag assignments such that all tokens of the
same word type are assigned the same tag. These
constraints reduce tag assignment ambiguity while
also providing a bias towards the natural spar-
sity of tag distributions in language (Clark, 2003).
However they do not provide a model based solu-
tion to tag ambiguity.

Recent work encodes similar sparsity infor-
mation with non-parametric priors, relying on
Bayesian inference to achieve strong results with-
out any tag dictionaries or constraints (Goldwater
and Griffiths, 2007; Johnson, 2007; Gao and John-
son, 2008). Liang et al. (2010) propose a type-
based approach to this Bayesian inference similar
to Brown et al. (1992), suggesting that there are
strong dependencies between tokens of the same
word-type. Lee et al. (2010) demonstrate strong
results with a similar model and the introduction
of a one-tag-per-type constraint on inference.

Blunsom and Cohn (2011) extend the Bayesian
inference approach with a hierarchical non-
parametric prior that expands the HMM con-
text to trigrams. However, the hierarchical non-
parametric model adds too many long-range de-
pendencies for the type-based inference proposed
earlier. The model produces state-of-the art re-
sults with a one-tag-per-type constraint, but even
with this constraint the tag assignments must be
roughly inferred from an approximation of the ex-
pectations.

Ambiguity classes representing the set of tags
each word-type can take aid inference by mak-
ing the sparsity between tags and words explicit.
Toutanova and Johnson (2008) showed that mod-
elling ambiguity classes can lead to positive re-
sults with a small tag-dictionary extracted from the
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data. By including ambiguity classes in the model,
this approach is able to infer ambiguity classes of
unknown words.

Many improvements in part-of-speech induc-
tion over the last few years have come from the
use of semi-supervised approaches in the form of
projecting PoS constraints across languages with
parallel corpora (Das and Petrov, 2011) or extract-
ing them from the wiktionary (Li et al., 2012).
These semi-supervised methods ultimately rely on
a strong unsupervised model of PoS as their base.
Thus, further improvements in unsupervised mod-
els, especially in modelling tag constrains, should
lead to improvements in semi-supervised part-of-
speech induction.

We find that modelling the lexicon in part-of-
speech inference can lead to more efficient algo-
rithms that match the state-of-the-art unsupervised
performance. We also note that the lexicon model
relies heavily on morphological information, and
suffers without it on languages with flexible word
ordering. These results promise further improve-
ments with more advanced lexicon models.

3 The Pitman-Yor Lexicon Hidden
Markov Model

This article proposes enhancing the standard Hid-
den Markov Model (HMM) by explicitly incorpo-
rating a model of the lexicon that consists of word
types and their associated tag ambiguity classes.
The ambiguity class of a word type is the set of
possible lexical categories to which tokens of that
type can be assigned. In this work we aim to
learn the ambiguity classes unsupervised rather
than have them specified in a tag dictionary.

The Lexicon HMM (Lex-HMM) extends the
Pitman-Yor HMM (PYP-HMM) described by
Blunsom and Cohn (2011). When the ambiguity
class of all of the word types in the lexicon is the
complete tagset, the two models are the same.

3.1 PYP-HMM

The base of the model applies a hierarchical
Pitman-Yor process (PYP) prior to a trigram hid-
den Markov model to jointly model the distribu-
tion of a sequence of latent word tags, t, and
word tokens, w. The joint probability defined
by the transition, Py(t;|t,,—1,tn—2), and emission,
Py(wn|ty), distributions of a trigram HMM is
N+1
Py(t,w) = [] Poltiltn—1,tn—2)Po(wnltn)

n=1



where N = |t| = |w| and the special tag $
is added to denote the sentence boundaries. The
model defines a generative process in which the
tags are selected from a transition distribution,
tilti—1,t—2, T, determined by the two previous
tags in their history, and the word tokens are se-
lected from the emission distribution, w;|t;, F, of
the latest tag.

tn’tn—la tn—?a T
Wy |tn, E

~ Ttnfl ytn—2
~ Etn

The PYP-HMM draws the above multinomial dis-
tributions from a hierarchical Pitman-Yor Process
prior. The Pitman-Yor prior defines a smooth back
off probability from more complex to less com-
plex transition and emission distributions. In the
PYP-HMM trigram model, the transition distri-
butions form a hierarchy with trigram transition
distributions drawn from a PYP with the bigram
transitions as their base distribution, and the bi-
gram transitions similarly backing off to the uni-
gram transitions. The hierarchical prior can be in-
tuitively understood to smooth the trigram transi-
tion distributions with bigram and unigram distri-
butions in a similar manner to an ngram language
model (Teh, 2006). This back-off structure greatly
reduces sparsity in the trigram distributions and is
achieved by chaining together the PYPs through
their base distributions:

Tiila™ b7, B;  ~PYP(a”,b", B;)
Bila? 0P U~ PYP(a?,0P,U)
UlaY, Y ~ PYP(aY,bY, Uniform).
Eila® b, ¢ ~PYP(aP b7, Cy),

where T;;, B;, and U are trigram, bigram, and un-
igram transition distributions respectively, and C;
is either a uniform distribution (PYP-HMM) or a
bigram character language model distribution to
model word morphology (PYP-HMM+LM).
Sampling from the posterior of the hierarchi-
cal PYP is calculated with a variant of the Chi-
nese Restaurant Process (CRP) called the Chinese
Restaurant Franchise (CRF) (Teh, 2006; Goldwa-
ter et al., 2006). In the CRP analogy, each latent
variable (tag) in a sequence is represented by a
customer entering a restaurant and sitting at one of
an infinite number of tables. A customer chooses
to sit at a table in a restaurant according to the

118

probability
C, —a < - B
P(zn - k‘|Z1;n71) = {7’;{_1&4::)1) 1 = k i K
n—1+b k=K~ + 1(1)

where z,, is the index of the table chosen by the
nth customer to the restaurant, zy.,—1 is the seat-
ing arrangement of the previous n — 1 customers
to enter, ¢, is the count of the customers at table
k, and K~ is the total number of tables chosen by
the previous n — 1 customers. All customers at a
table share the same dish, representing the value
assigned to the latent variables. When customers
sit at an empty table, a new dish is assigned to that
table according to the base distribution of the PYP.
To expand the CRP analogy to the CRF for hierar-
chical PYPs, when a customer sits at a new table,
a new customer enters the restaurant of the PYP of
the base distribution.

Blunsom and Cohn (2011) explored two Gibbs
sampling methods for inference with the PYP-
HMM model. The first individually samples tag
assignments for each token. The second employs
a tactic shown to be effective by earlier works by
constraining inference to only one tag per word
type (PYP-IHMM). However marginalizing over
all possible table assignments for more than a sin-
gle tag is intractable. Blunsom and Cohn (2011)
approximates the PYP-1HMM tag posteriors for a
particular sample according to heuristic fractional
table counts. This approximation is shown to be
particularly inaccurate for values of a close to one.

3.2 The Lexicon HMM

We define the lexicon to be the set of all word
types (W) and a function (£) which maps each
word type (W; € W) to an element in the power
set of possible tags T,

L:W —P(T).

The Lexicon HMM (Lex-HMM) generates the
lexicon with all of the word types and their ambi-
guity classes before generating the standard HMM
parameters. The set of tags associated with each
word type is referred to as its ambiguity class
s; € T. The ambiguity classes are generated from
a multinomial distribution with a sparse, Pitman-
Yor Process prior,

SZ‘S
Sla®,b¥

~ S
~ PY P(a®,b%, G)
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Figure 1: Lex-HMM Structure: The graphical
structure of the Lex-HMM model. In addition to
the trigram transition (77;) and emission (L), the
model includes an ambiguity class (s;) for each
word type (W;) drawn from a distribution .S with
a PYP prior.

where S is the multinomial distribution over all
possible ambiguity classes. The base distribution
of the PYP, GG, chooses the size of the ambiguity
class according to a geometric distribution (nor-
malized so that the size of the class is at most the
number of tags |T'|). G assigns uniform probabil-
ity to all classes of the same size. A plate diagram
for this model is shown in Figure 1.

This model represents the observation that there
are relatively few distinct ambiguity classes over
all of the word types in a corpus. For example, the
full Penn-Treebank Wall Street Journal (WSJ) cor-
pus with 45 possible tags and 49,206 word types
has only 343 ambiguity classes. Figure 2 shows
that ambiguity classes in the WSJ have a power-
law distribution. Furthermore, these classes are
generally small; the average ambiguity class in the
WSJ corpus has 2.94 tags. The PYP prior favors
power-law distributions and the modified geomet-
ric base distribution favors smaller class sizes.

Once the lexicon is generated, the standard
HMM parameters can be generated as described
in section 3.1. The base emission probabilities C
are constrained to fit the generated lexicon. The
standard Lex-HMM model emission probabilities
for tag ¢; are uniform over all word types with ¢;
in their ambiguity class. The character language
model presents a challenge because it is non-trivial
to renormalise over words with ¢; in their ambigu-
ity class. In this case word types without ¢; in their
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Figure 2: Ambiguity Class Distribution: Log-
log plot of ambiguity class frequency over rank
for the Penn-Treebank WSJ Gold Standard lexicon
highlighting a Zipfian distribution and the ambigu-
ity of classes extracted from the predicted tags.

ambiguity class are assigned an emission probabil-
ity of 0 and the model is left deficient.

Neither of the samplers proposed by Blunsom
and Cohn (2011) and briefly described in section
3.1 are well suited to inference with the lexicon.
Local Gibbs sampling of individual token-tag as-
signments would be very unlikely to explore a
range of confusion classes, while the type based
approximate sample relies on a one-tag-per-type
restriction. Thus in the next section we extend the
Particle Filtering solution presented in Dubbin and
Blunsom (2012) to the problem of simultaneous
resampling the ambiguity class as well as the tags
for all tokens of a given type. This sampler pro-
vides both a more attractive inference algorithm
for the original PYP-HMM and one adaptable to
our Lex-HMM.

4 Inference

To perform inference with both the lexicon and
the tag assignments, we block sample the ambi-
guity class assignment as well as all tag assign-
ments for tokens of the same word type. It would
be intractable to exactly calculate the probabili-
ties to sample these blocks. Particle filters are an
example of a Sequential Monte Carlo technique
which generates unbiased samples from a distribu-
tion without summing over the intractable number
of possibilities.

The particle filter samples multiple independent
sequences of ambiguity classes and tag assign-
ments. Each sequence of samples, called a parti-



cle, is generated incrementally. For each particle,
the particle filter first samples an ambiguity class,
and then samples each tag assignment in sequence
based only on the previous samples in the parti-
cle. The value of the next variable in a sequence
is sampled from a proposal distribution based only
on the earlier values in the sequence. Each particle
is assigned an importance weight such that a par-
ticle sampled proportional to its weight represents
an unbiased sample of the true distribution.

Each particle represents a specific sampling of
an ambiguity class tag sequence, t‘fv’p , and the
count deltas, z1 . The term t;.), VP denotes the se-
quence of n tags generated for word-type W and
stored as part of particle p € [1, P]. The count
deltas store the differences in the seating arrange-
ment neccessary to calculate the posterior proba-
bilities according to the Chinese restaurant fran-
chise described in section 3.1. The table counts
from each particle are the only data necessary to
calculate the probabilities described in equation
(1).

The ambiguity class for a particle is proposed
by uniformly sampling one tag from the tagset to
add to or remove from the previous iteration’s am-
biguity class with the additional possibility of us-
ing the same ambiguity class. The particle weights
are then set to

P(SW7P|S_W)
Htesw,p (et + 1)#(Et) HteTfsw,p (et)#(Ez)

where P(sw,|S™") is the probability of the am-
biguity class proposed for particle p for word type
W given the ambiguity classes for the rest of the
vocabulary, e; is the number of word types with ¢
in their ambiguity class, and #(E}) is the number
of tables in the CRP for the emission distribution
of tag . The last two terms of the equation cor-
rect for the difference in the base probabilities of
the words that have already been sampled with a
different lexicon.

At each token occurrence n, the next tag assign-
ment, t,‘?f’p for each particle p € [1, P] is deter-
mined by the seating decisions 2, ¥, which are
made according the proposal distribution:

W/ W, W
qn (2, p‘zm 1z )

P Pe e a2 ™)
xP(c et 2P, Z‘I/Vnp 1,Z_W)
XP(CJFQ‘ZWP, 217Z¥Vnp 17sz)
x P(w!V21VP, zfvnp I,Z_W).
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+F represents a tag in the context of

In this case, c;;

site 1)V offset by k, while z‘ﬂ/hpfl and z=" rep-
resent the table counts from the seating decisions
previously chosen by particle p and the values at
all of the sites where a word token of type W
does not appear, respectively. This proposal dis-
tribution ignores changes to the seating arrange-
ment between the three transitions involving the
site n. The specific tag assignement, tV p,,, is
completely determined by the seating decisions
sampled according to this proposal distribution.
Once all of the particles have been sampled, one
of them is sampled with probability proportional
to its weight. This final sample is a sample from
the target distribution.

As the Particle Filter is embedded in a Gibbs
sampler which cycles over all word types this al-
gorithm is an instance of Particle Gibbs. Andrieu
et al. (2010) shows that to ensure the samples gen-
erated by SMC for a Gibbs sampler have the tar-
get distribution as the invariant density, the par-
ticle filter must be modified to perform a condi-
tional SMC update. This means that the particle
filter guarantees that one of the final particles is as-
signed the same values as the previous Gibbs iter-
ation. Therefore, a special 0™ particle is automati-
cally assigned the value from the prior iteration of
the Gibbs sampler at each site n, though the pro-
posal probability ¢, W (tw |1:1 L z‘l/Vn 1) still has

to be calculated to update the weight wy, W prop-
erly. This ensures that the sampler has a chance of
reverting to the prior iteration’s sequence.

5 Experiments and Results

We provide an empirical evaluation of our pro-
posed Lex-HMM in terms of the accuracy of
the taggings learned according to the most pop-
ular metric, and the distributions over ambiguity
classes. Our experimental evaluation considers the
impact of our improved Particle Gibbs inference
algorithm both for the original PYP-HMM and
when used for inference in our extended model.
We intend to learn whether the lexicon model
can match or exceed the performance of the other
models despite focusing on only a subset of the
possible tags each iteration. We hypothesize that
an accurate lexicon model and the sparsity it in-
duces over the number of tags per word-type will
improve the performance over the standard PYP-
HMM model while also decreasing training time.
Furthermore, our lexicon model is novel, and its



Sampler

M-1 Accuracy Time (h) Marsi, 2006). All Lex-HMM results are reported

with 10 particles as no significant improvement
was found with 50 particles.

Table 1 compares the M-1 accuracies of both
the PYP-HMM and the Lex-HMM models on the
Penn. Treebank Wall Street Journal corpus. Blun-
som and Cohn (2011) found that the Local PYP-

Meta-Model (CGS10) 76.1 —
MEMM (BBDK10) 75.5 ~40*
Lex-HMM 71.1 7.9
Type PYP-HMM 70.1 401.2
Local PYP-HMM 70.2 8.6
PYP-THMM 75.6 20.6
Lex-HMM+LM 77.5 16.9
Type PYP-HMM+LM 73.5 446.0
PYP-THMM+LM 77.5 34.9

HMM-+LM sampler is unable to mix, achieving
accuracy below 50%, therefore it has been left
out of this analysis. The Lex-HMM+LM model

Table 1: M-1 Accuracy on the WSJ Corpus:
Comparison of the accuracy of each of the sam-
plers with and without the language model emis-
sion prior on the English WSJ Corpus. The second
column reports run time in hours where available*.
Note the Lex-HMM+LM model matches the PYP-
1HMM+LM approximation despite finishing in
half the time. The abbreviations in parentheses
indicate that the results were reported in CGS10
(Christodoulopoulos et al., 2010) and BBDK10
(Berg-Kirkpatrick et al., 2010) *CGS10 reports
that the MEMM model takes approximately 40
hours on 16 cores.

accuracy in representing ambiguity classes is an
important aspect of its performance. The model
focuses inference on the most likely tag choices,
represented by ambiguity classes.

5.1 Unsupervised Part-of-Speech Tagging

The most popular evaluation for unsupervised
part-of-speech taggers is to induce a tagging for
a corpus and compare the induced tags to those
annotated by a linguist. As the induced tags are
simply integer labels, we must employ a map-
ping between these and the more meaningful syn-
tactic categories of the gold standard. We re-
port results using the many-to-one (M-1) met-
ric considered most intuitive by the evaluation of
Christodoulopoulos et al. (2010). M-1 measures
the accuracy of the model after mapping each pre-
dicted class to its most frequent corresponding tag.
While Christodoulopoulos et al. (2010) found V-
measure to be more stable over the number of
parts-of-speech, this effect doesn’t appear when
the number of tags is constant, as in our case. For
experiments on English, we report results on the
entire Penn. Treebank (Marcus et al., 1993). For
other languages we use the corpora made avail-
able for the CoNLL-X Shared Task (Buchholz and
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achieves the same accuracy as the state-of-the-
art PYP-ITHMM+LM approximation. The Lex-
HMM+LM’s focus on only the most likely tags for
each word type allows it to finish training in half
the time as the PYP-THMM+LM approximation
without any artificial restrictions on the number of
tags per type. This contrasts with other approaches
that eliminate the constraint at a much greater cost,
e.g. the Type PYP-HMM, the MEMM, and the
Meta-Model !

The left side of table 2 compares the M-1 accu-
racies of the Lex-HMM model to the PYP-HMM
model. These models both ignore word morphol-
ogy and rely on word order. The 1HMM approxi-
mation achieves the highest average accuracy. The
Lex-HMM model matches or surpasses the type-
based PYP-HMM approach in six languages while
running much faster due to the particle filter con-
sidering a smaller set of parts-of-speech for each
particle. However, in the absence of morpho-
logical information, the Lex-HMM model has a
similar average accuracy to the local and type-
based PYP-HMM samplers. The especially low
performance on Hungarian, a language with free
word ordering and strong morphology, suggests
that the Lex-HMM model struggles to find ambi-
guity classes without morphology. The Lex-HMM
model has a higher average accuracy than the type-
based or local PYP-HMM samplers when Hungar-
ian is ignored.

The right side of table 2 compares the M-1 ac-
curacies of the Lex-HMM+LM model to the PYP-
HMM-+LM. The language model leads to consis-
tently improved performance for each of the sam-
plers excepting the token sampler, which is un-
able to mix properly with the additional complex-
ity. The accuracies achieved by the IHMM+LM

"While were unable to get an estimate on the runtime of
the Meta-Model, it uses a system similar to the feature-based
system of the MEMM with an additional feature derived from
the proposed class from the brown model. Therefore, it is
likely that this model has a similar runtime.



Language Lex-HMM PYP-HMM Local IHMM Lex-HMM+LM PYP-HMM+LM 1HMM+LM
WSJ 71.1 70.1 70.2 75.6 77.5 73.5 77.5
Arabic 57.2 57.6 56.2 61.9 62.1 62.7 62.0
Bulgarian 67.2 67.8 67.6 71.4 72.7 72.1 76.2
Czech 61.3 61.6 64.5 65.4 68.2 67.4 67.9
Danish 68.6 70.3 69.1 70.6 74.7 73.1 74.6
Dutch 70.3 71.6 64.1 73.2 71.7 71.8 72.9
Hungarian 57.9 61.8 64.8 69.6 64.4 69.9 73.2
Portuguese 69.5 71.1 68.1 72.0 76.3 73.9 771
Spanish 73.2 69.1 68.5 74.7 80.0 75.2 78.8
Swedish 66.3 63.5 67.6 67.2 70.4 67.6 68.6
Average 66.3 (67.2) 66.5 (67.0) 66.1 66.2) 70.2 (70.3) 71.8 (72.6) 70.7 (70.8) 72.9 (72.9)

Table 2: M-1 Accuracy of Lex-HMM and PYP-HMM models: Comparison of M-1 accuracy for the
lexicon based model (Lex-HMM) and the PYP-HMM model on several languages. The Lex-HMM and
PYP-HMM columns indicate the results of word type based particle filtering with 10 and 100 particles,
respectively, while the Local and 1HMM columns use the token based sampler and the 1HMM approxi-
mation described by Blunsom and Cohn (2011). The token based sampler was run for 500 iterations and
the other samplers for 200. The percentages in brakets represent the average accuracy over all languages

except for Hungarian.

sampler represent the previous state-of-the-art.
These results show that the Lex-HMM+LM model
achieves state-of-the-art M-1 accuracies on sev-
eral datasets, including the English WSJ. The Lex-
HMM+LM model performs nearly as well as, and
often better than, the IHMM+LM sampler without
any restrictions on tag assignments.

The drastic improvement in the performance
of the Lex-HMM model reinforces our hypothe-
sis that morphology is critical to the inference of
ambiguity classes. Without the language model
representing word morphology, the distinction be-
tween ambiguity classes is too ambiguous. This
leads the sampler to infer an excess of poor am-
biguity classes. For example, the tag assignments
from the Lex-PYP model on the WSJ dataset con-
sist of 660 distinct ambiguity classes, while the
Lex-PYP+LM tag assignments only have 182 dis-
tinct ambiguity classes.

Note that while the Lex-HMM and Lex-
HMM+LM samplers do not have any restrictions
on inference, they do not sacrifice time. The ad-
ditional samples generated by the particle filter
are mitigated by limiting the number of tags each
particle must consider. In practice, this results in
the Lex-HMM samplers with 10 particles running
in half time as the IHMM samplers. The Lex-
HMM+LM sampler with 10 particles took 16.9
hours, while the THMM+LM sampler required
34.9 hours. Furthermore, the run time evaluation
does not take advantage of the inherent distributed
nature of particle filters. Each of the particles can
be sampled completely independentally from the
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others, making it trivial to run each on a seperate
core.

5.2 Lexicon Analysis

While section 5.1 demonstrates that the Lex-
HMM+LM sampler performs similarly to the
more restricted |lHMM+LM, we also seek to eval-
uate the accuracy of the lexicon model itself. We
compare the ambiguity classes extracted from the
gold standard and predicted tag assignments of the
WSJ corpus. We also explore the relationship be-
tween the actual and sampled ambiguity classes.

The solid curve in figure 2 shows the distribu-
tion of the number of word types assigned to each
ambiguity set extracted from the gold standard tag
assignments from the Penn Treebank Wall Street
Journal corpus. The straight line strongly indi-
cates that ambiguity classes follow a Zipfian dis-
tribution. Figure 2 also graphs the distribution of
the ambiguity classes extracted from the best tag-
assignment prediction from the model. The pre-
dicted graph has a similar shape to the gold stan-
dard but represents half as many distinct ambigu-
ity classes - 182 versus 343.

For a qualitative analysis of the generated lex-
icon, table 3 lists frequent ambiguity classes and
the most common words assigned to them. The 14
most frequent ambiguity classes contain only one
tag each, the top half of table 3 shows the 5 most
frequent. One third of the word-types in the first
five rows of the table are exactly matched with the
ambiguity classes from the gold standard. Most of
the remaining words in those rows are assigned to



Rank  Gold Rank Tags Top Word Types
1 1 NNP Mr., Corp. (1), Inc. (.99), Co. (1), Exchange (.99)
2 2 NN % (1), company, stock (.99), -RRB- (0), years (0)
3 3 1J new, other, first (.9), most (0), major (1)
4 5 NNS companies, prices (1), quarter (0), week (0), investors
5 4 CD | $(0), million (1), billion, 31, # (0)
5 303 NN, CD | yen (.47, 0), dollar (L, 0), 150 (0, 1), 29 (0, 1), 33 (0, 1)
16 17 VB, NN | plan (.03, .9), offer (.2,.74), issues (0, 0), increase (.34, .66), end (.18, .81)
17 115 DT,NNP | As (0,0), One (0,.01), First (0, .82), Big (0,.91), On (0,.01)
18 11 NN, JJ | market (.99,0), U.S. (0, 0), bank (1,0), cash (.98, 0), high (.06, .9)
20 22 VBN, JJ | estimated (.58,.15), lost (.43,.03), failed (.35,.04), related (.74,.23), re-
duced (.57,.12)

Table 3: Selection of Predicted Ambiguity Classes: Common ambiguity classes from the predicted
part-of-speech assignments from the WSJ data set, and the five most common word types associated
with each ambiguity class. The sets are ranked according to the number of word types associated to
them. Words in bold are matched to exactly the same ambiguity set in the gold standard. The lower
five ambiguity classes are the most common with more than one part-of-speech. Numbers in parentheses
represent the proportion of tokens of that type assigned to each tag in the gold standard for that ambiguity

class.

a class representing almost all of the words’ occur-
rences in the gold standard, e.g., ‘Corp.” is an NNP
in 1514 out of 1521 occurrences. Some words are
assigned to classes with similar parts of speech,
e.g. {NNS} rather than {NN} for week.

The lower half of table 3 shows the most fre-
quent ambiguity classes with more than a sin-
gle tag. The words assigned to the {NN,CD},
{DT,NNP}, and {NN,JJ} classes are not them-
selves ambiguous. Rather words that are unam-
biguously one of the two tags are often assigned
to an ambiguity class with both. The most com-
mon types in the {NN, CD} set are unambiguously
either NN or CD. In many cases the words are
merged into broader ambiguity classes because the
Lex-HMM-+LM uses the language model to model
the morphology of words over individual parts-
of-speech, rather than entire ambiguity classes.
Therefore, a word-type is likely to be assigned
a given ambiguity class as long as at least one
part-of-speech in that ambiguity class is associ-
ated with morphologically similar words. These
results suggest modifying the Lex-HMM+LM to
model word morphology over ambiguity classes
rather than parts-of-speech.

The {VB,NN} and { VBN,JJ} are representative
of true ambiguity classes. Occurrences of words in
these classes are likely to be either of the possible
parts-of-speech. These results show that the Lex-
HMM is modelling ambiguity classes as intended.
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6 Conclusion

This paper described an extension to the PYP-
HMM part-of-speech model that incorporates a
sparse prior on the lexicon and an SMC based in-
ference algorithm. These contributions provide a
more plausible model of part-of-speech induction
which models the true ambiguity of tag to type as-
signments without the loss of performance of ear-
lier HMM models. Our empirical evaluation indi-
cates that this model is able to meet or exceed the
performance of the previous state-of-the-art across
arange of language families.

In addition to the promising empirical results,
our analysis indicates that the model learns ambi-
guity classes that are often quite similar to those
in the gold standard. We believe that further im-
provements in both the structure of the lexicon
prior and the inference algorithm will lead to addi-
tional performance gains. For example, the model
could be improved by better modelling the rela-
tionship between a word’s morphology and its am-
biguity class. We intend to apply our model to
recent semi-supervised approaches which induce
partial tag dictionaries from parallel language data
(Das and Petrov, 2011) or the Wiktionary (Li et
al., 2012). We hypothesize that the additional data
should improve the modelled lexicon and conse-
quently improve tag assignments.

The Lex-HMM models ambiguity classes to fo-
cus the sampler on the most likely parts-of-speech
for a given word-type. In doing so, it matches or
improves on the accuracy of other models while
running much faster.
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Abstract

Statistical parsers trained on labeled data
suffer from sparsity, both grammatical and
lexical. For parsers based on strongly
lexicalized grammar formalisms (such as
CCG, which has complex lexical cate-
gories but simple combinatory rules), the
problem of sparsity can be isolated to
the lexicon. In this paper, we show that
semi-supervised Viterbi-EM can be used
to extend the lexicon of a generative CCG
parser. By learning complex lexical entries
for low-frequency and unseen words from
unlabeled data, we obtain improvements
over our supervised model for both in-
domain (WSJ) and out-of-domain (ques-
tions and Wikipedia) data. Our learnt
lexicons when used with a discriminative
parser such as C&C also significantly im-
prove its performance on unseen words.

1 Introduction

An important open problem in natural language
parsing is to generalize supervised parsers, which
are trained on hand-labeled data, using unlabeled
data. The problem arises because further hand-
labeled data in the amounts necessary to signif-
icantly improve supervised parsers are very un-
likely to be made available. Generalization is also
necessary in order to achieve good performance on
parsing in textual domains other than the domain
of the available labeled data. For example, parsers
trained on Wall Street Journal (WSJ) data suffer a
fall in accuracy on other domains (Gildea, 2001).
In this paper, we use self-training to generalize
the lexicon of a Combinatory Categorial Gram-
mar (CCG) (Steedman, 2000) parser. CCG is a
strongly lexicalized formalism, in which every
word is associated with a syntactic category (sim-
ilar to an elementary syntactic structure) indicat-

ing its subcategorization potential. Lexical en-
tries are fine-grained and expressive, and contain
a large amount of language-specific grammatical
information. For parsers based on strongly lexical-
ized formalisms, the problem of grammar general-
ization can be cast largely as a problem of lexical
extension.

The present paper focuses on learning lexi-
cal categories for words that are unseen or low-
frequency in labeled data, from unlabeled data.
Since lexical categories in a strongly lexicalized
formalism are complex, fine-grained (and far more
numerous than simple part-of-speech tags), they
are relatively sparse in labeled data. Despite per-
forming at state-of-the-art levels, a major source
of error made by CCG parsers is related to unseen
and low-frequency words (Hockenmaier, 2003;
Clark and Curran, 2007; Thomforde and Steed-
man, 2011). The unseen words for which we learn
categories are surprisingly commonplace words of
English; examples are conquered, apprehended,
subdivided, scoring, denotes, hunted, obsessed,
residing, migrated (Wikipedia). Correctly learn-
ing to parse the predicate-argument structures as-
sociated with such words (expressed as lexical cat-
egories in the case of CCG), is important for open-
domain parsing, not only for CCG but indeed for
any parser.

We show that a simple self-training method,
Viterbi-EM (Neal and Hinton, 1998) when used
to enhance the lexicon of a strongly-lexicalized
parser can be an effective strategy for self-training
and domain-adaptation. Our learnt lexicons im-
prove on the lexical category accuracy of two su-
pervised CCG parsers (Hockenmaier (2003) and
the Clark and Curran (2007) parser, C&C) on
within-domain (WSJ) and out-of-domain test sets
(a question corpus and a Wikipedia corpus).

In most prior work, when EM was initialized
based on labeled data, its performance did not im-
prove over the supervised model (Merialdo, 1994;
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Charniak, 1993). We found that in order for per-
formance to improve, unlabeled data should be
used only for parameters which are not well cov-
ered by the labeled data, while those that are well
covered should remain fixed.

In an additional contribution, we compare two
strategies for treating unseen words (a smoothing-
based, and a part-of-speech back-off method) and
find that a smoothing-based strategy for treat-
ing unseen words is more effective for semi-
supervised learning than part-of-speech back-off.

2 Combinatory Categorial Grammar

Combinatory Categorial Grammar (CCG) (Steed-
man, 2000) is a strongly lexicalized grammar
formalism, in which the lexicon contains all
language-specific grammatical information. The
lexical entry of a word consists of a syntactic cat-
egory which expresses the subcategorization po-
tential of the word, and a semantic interpretation
which defines the compositional semantics (Lewis
and Steedman, 2013). A small number of combi-
natory rules are used to combine constituents, and
it is straightforward to map syntactic categories to
a logical form for semantic interpretation.

For statistical CCG parsers, the lexicon is learnt
from labeled data, and is subject to sparsity due
to the fine-grained nature of the categories. Fig-
ure 1 illustrates this with a simple CCG deriva-
tion. In this sentence, bake is used as a ditransi-
tive verb and is assigned the ditransitive category
S\NP/NP/NP . This category defines the verb syn-
tactically as mapping three NP arguments to a sen-
tence S , and semantically as a ternary relation be-
tween its three arguments, thus providing a com-
plete analysis of the sentence.

[nnpJohn] [vpp baked ] [vnp Maryl [p7 allnn cake]
NP S\NP/NP/NP NP NP/N N
S\NP/NP NP

>

>

S\NP

S
‘John baked Mary a cake’

Figure 1: Example CCG derivation

For a CCG parser to obtain the correct deriva-
tion above, its lexicon must include the ditransitive
category S\NP/NP/NP for the verb bake. It is not
sufficient to have simply seen the verb in another
context (say a transitive context like “John baked a
cake”, which is a more common context). This is
in contrast to standard treebank parsers where the
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verbal category is simply VBD (past tense verb)
and a ditransitive analysis of the sentence is not
ruled out as a result of the lexical category.

In addition to sparsity related to open-class
words like verbs as in the above example, there are
also missing categories in labeled data for closed-
class words like question words, due to the small
number of questions in the Penn Treebank. In gen-
eral, lexical sparsity for a statistical CCG parser
can be broken down into three types: (i) where a
word is unseen in training data but is present in
test data, (ii) where a word is seen in the train-
ing data but not with the category type required
in the test data (but the category type is seen with
other words) and (iii) where a word bears a cate-
gory type required in the test data but the category
type is completely unseen in the training data.

In this paper, we deal with the first two kinds.
The third kind is more prevalent when the size
of labeled data is comparatively small (although,
even in the case of the English WSJ CCG tree-
bank, there are several attested category types that
are entirely missing from the lexicon, Clark et al.,
2004). We make the assumption here that all cat-
egory types in the language have been seen in the
labeled data. In principle new category types may
be introduced independently without affecting our
semi-supervised process (for instance, manually,
or via a method that predicts new category types
from those seen in labeled data).

3 Related Work

Previous attempts at harnessing unlabeled data to
improve supervised CCG models using methods
like self-training or co-training have been unsat-
isfactory (Steedman et al., 2003, 43-44). Steed-
man et al. (2003) experimented with self-training
a generative CCG parser, and co-training a genera-
tive parser with an HMM-based supertagger. Co-
training (but not self-training) improved the results
of the parser when the seed labeled data was small.
When the seed data was large (the full treebank),
i.e., the supervised baseline was high, co-training
and self-training both failed to improve the parser.

More recently, Honnibal et al. (2009) improved
the performance of the C&C parser on a domain-
adaptation task (adaptation to Wikipedia text) us-
ing self-training. Instead of self-training the pars-
ing model, they re-train the supertagging model,
which in turn affects parsing accuracy. They
obtained an improvement of 1.09% (dependency



score) on supertagger accuracy on Wikipedia (al-
though performance on WSJ text dropped) but did
not attempt to re-train the parsing model.

An orthogonal approach for extending a CCG
lexicon using unlabeled data is that of Thomforde
and Steedman (2011), in which a CCG category for
an unknown word is derived from partial parses
of sentences with just that one word unknown.
The method is capable of inducing unseen cate-
gories types (the third kind of sparsity mentioned
in §2.1), but due to algorithmic and efficiency is-
sues, it did not achieve the broad-coverage needed
for grammar generalisation of a high-end parser. It
is more relevant for low-resource languages which
do not have substantial labeled data and category
type discovery is important.

Some notable positive results for non-CCG
parsers are McClosky et al. (2006) who use a
parser-reranker combination. Koo et al. (2008)
and Suzuki et al. (2009) use unsupervised word-
clusters as features in a dependency parser to get
lexical dependencies. This has some notional sim-
ilarity to categories, since, like categories, clus-
ters are less fine-grained than words but more fine-
grained than POS-tags.

4 Supervised Parser

The cCG parser used in this paper is a re-
implementation of the generative parser of Hock-
enmaier and Steedman (2002) and Hockenmaier
(2003)!, except for the treatment of unseen and
low-frequency words.

We use a model (the LexCat model in Hock-
enmaier (2003)) that conditions the generation of
constituents in the parse tree on the lexical cate-
gory of the head word of the constituent, but not on
the head word itself. While fully-lexicalized mod-
els that condition on words (and thus model word-
to-word dependencies) are more accurate than un-
lexicalized ones like the LexCat model, we use
an unlexicalized model? for two reasons: first,

!These generative models are similar to the Collins’ head-
based models (Collins, 1997), where for every node, a head is
generated first, and then a sister conditioned on the head. De-
tails of the models are in Hockenmaier and Steedman (2002)
and Hockenmaier 2003:pg 166.

2A terminological clarification: unlexicalized here refers
to the model, in the sense that head-word information is
not used for rule-expansion. The formalism itself (CCG)
is referred to as strongly-lexicalized, as used in the title of
the paper. Formalisms like CCG and LTAG are consid-
ered strongly-lexicalized since linguistic knowledge (func-
tions mapping words to syntactic structures/semantic inter-
pretations) is included in the lexicon.
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our lexicon smoothing procedure (described in the
next section) introduces new words and new cat-
egories for words into the lexicon. Lexical cate-
gories are added to the lexicon for seen and un-
seen words, but no new category types are intro-
duced. Since the LexCat model conditions rule ex-
pansions on lexical categories, but not on words, it
is still able to produce parses for sentences with
new words. In contrast, a fully lexicalized model
would need all components of the grammar to be
smoothed, a task that is far from trivial due to the
resulting explosion in grammar size (and one that
we leave for future work).

Second, although lexicalized models perform
better on in-domain WSJ data (the LexCat model
has an accuracy of 87.9% on Section 23, as op-
posed to 91.03% for the head-lexicalized model
in Hockenmaier (2003) and 91.9% for the C&C
parser), our parser is more accurate on a question
corpus, with a lexical category accuracy of 82.3%,
as opposed to 71.6% and 78.6% for the C&C and
Hockenmaier (2003) respectively.

4.1 Handling rare and unseen words

Existing CCG parsers (Hockenmaier (2003) and
Clark and Curran (2007)) back-off rare and unseen
words to their POS tag. The POS-backoff strategy
is essentially a pipeline approach, where words
are first tagged with coarse tags (POS tags) and
finer tags (CCG categories) are later assigned, by
the parser (Hockenmaier, 2003) or the supertag-
ger (Clark and Curran, 2007). As POS-taggers
are much more accurate than parsers, this strat-
egy has given good performance in general for
CCG parsers, but it has the disadvantage that POS-
tagging errors are propagated. The parser can
never recover from a tagging error, a problem that
is serious for words in the Zipfian tail, where these
words might also be unseen for the POS tagger
and hence more likely to be tagged incorrectly.
This issue is in fact more generally relevant than
for CCG parsers alone—the dependence of parsers
on POS-taggers was cited as one of the problems
in domain-adaptation of parsers in the NAACL-
2012 shared task on parsing the web (Petrov and
McDonald, 2012). Lease and Charniak (2005)
obtained an improvement in the accuracy of the
Charniak (2000) parser on a biomedical domain
simply by training a new POS tagger model.

In the following section, we describe an alter-
native smoothing-based approach to handling un-



seen and rare words. This method is less sen-
sitive to POS tagging errors, as described below.
In this approach, in a pre-processing step prior
to parsing, categories are introduced into the lex-
icon for unseen and rare words from the data to
be parsed. Some probability mass is taken from
seen words/categories and given to unseen word
and category pairs. Thus, at parse time, no word is
unseen for the parser.

4.1.1 Smoothing

In our approach, we introduce lexical entries for
words from the unlabeled corpus that are unseen
in the labeled data, and also add categories to ex-
isting entries for rarely seen words. The most gen-
eral case of this would be to assign all known cat-
egories to a word. However, doing this reduces
the lexical category accuracy.’ A second option,
chosen here, is to limit the number of categories
assigned to the word by using some information
about the word (for instance, its part-of-speech).
Based on the part-of-speech of an unseen word in
the unlabeled or test corpus, we add an entry to the
lexicon of the word with the top n categories that
have been seen with that part-of-speech in the la-
beled data. Each new entry of (w, cat), where w
is a word and cat is a CCG category, is associated
with a count ¢(w, cat), obtained as described be-
low. Once all (w, cat) entries are added to the lex-
icon along with their counts, a probability model
P(wlcat) is calculated over the entire lexicon.
Our smoothing method is based on a method
used in Deoskar (2008) for smoothing a PCFG
lexicon. Eq. 1 and 2 apply it to CCG entries for
unseen and rare words. In the first step, an out-
of-the-box POS tagger is used to tag the unlabeled
or test corpus (we use the C&C tagger). Counts
of words and POS-tags ccorpus(w, ") are obtained
from the tagged corpus. For the CCG lexicon, we
ultimately need a count for a word w and a CCG
category cat. To get this count, we split the count
of a word and POS-tag amongst all categories seen
with that tag in the supervised data in the same
ratio as the ratio of the categories in the super-
vised data. In Eq. 1, this ratio is ¢y (catr) /ey (T)
where ¢y (catr) is the treebank count of a cate-
gory catp seen with a POS-tag T', and ¢y, (7") is the
marginal count of the tag 7" in the treebank. This

3For instance, we find that assigning all categories to un-
seen verbs gives a lexical category accuracy of 52.25 %, as
opposed to an accuracy of 65.4% by using top 15 categories,
which gave us the best results, as reported later in Table 3.
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ratio makes a more frequent category type more
likely than a rarer one for an unseen word. For ex-
ample, for unseen verbs, it would make the transi-
tive category more likely than a ditransitive one
(since transitives are more frequent than ditran-
sitives). There is an underlying assumption here
that relative frequencies of categories and POS-
tags in the labeled data are maintained in the un-
labeled data, which in fact can be thought of as
a prior while estimating from unlabeled data (De-
oskar et al., 2012).

cp(catr)
Ctb (T)

Additionally, for seen but low-frequency words,
we make use of the existing entry in the lexicon.
Thus in a second step, we interpolate the count
Ceorpus(W, cat) of a word and category with the
supervised count of the same ¢y, (w, cat) (if it ex-
ists) to give the final smoothed count of a word and
category Csmooth (w, cat) (Eq. 2).

Csmooth (W, cat) A oep(w, cat) +

(1= X) - ceorpus(w, cat)
2)

When this smoothed lexicon is used with a
parser, POS-backoff is not necessary since all
needed words are now in the lexicon. Lexical en-
tries for words in the parse are determined not by
the POS-tag from a tagger, but directly by the pars-
ing model, thus making the parse less susceptible
to tagging errors.

Ccorpus (w, Cat) = * Ccorpus (U}, T) (D

5 Semi-supervised Learning

We use Viterbi-EM (Neal and Hinton, 1998) as
the self-training method. Viterbi-EM is an alter-
native to EM where instead of using the model
parameters to find a true posterior from unlabeled
data, a posterior based on the single maximum-
probability (Viterbi) parse is used. Viterbi-EM
has been used in various NLP tasks before and
often performs better than classic EM (Cohen
and Smith, 2010; Goldwater and Johnson, 2005;
Spitkovsky et al., 2010). In practice, a given pars-
ing model is used to obtain Viterbi parses of un-
labeled sentences. The Viterbi parses are then
treated as training data for a new model. This pro-
cess is iterated until convergence.

Since we are interested in learning the lexi-
con, we only consider lexical counts from Viterbi
parses of the unlabeled sentences. Other parame-
ters of the model are held at their supervised val-
ues. We conducted some experiments where we



self-trained all components of the parsing model,
which is the usual case of self-training. We ob-
tained negative results similar to Steedman et al.
(2003), where self-training reduced the perfor-
mance of the parsing model. We do not report
them here. Thus, using unlabeled data only to es-
timate parameters that are badly estimated from
labeled data (lexical entries in CCG, due to lexi-
cal sparsity) results in improvements, in contrast
to prior work with semi-supervised EM.

As is common in semi-supervised settings, we
treated the count of each lexical event as the
weighted count of that event in the labeled data
(treebank)* and the count from the Viterbi-parses
of unlabeled data. Here we follow Bacchiani et al.
(2006) and McClosky et al. (2006) who show that
count merging is more effective than model inter-
polation.

We placed an additional constraint on the con-
tribution that the unlabeled data makes to the semi-
supervised model—we only use counts (from un-
labeled data) of lexical events that are rarely
seen/unseen in the labeled data. Our reasoning
was that many lexical entries are estimated accu-
rately from the treebank (for example, those re-
lated to function words and other high-frequency
words) and estimation from unlabeled data might
hurt them. We thus had a cut-off frequency (of
words in labeled data) above which we did not
allow the unlabeled counts to affect the semi-
supervised model. In practise, our experiments
turned out to be fairly insensitive to the value of
this parameter, on evaluations over rare or un-
seen verbs. However, overall accuracy would drop
slightly if this cut-off was increased. We experi-
mented with cut-offs of 5, 10 and 15, and found
that the most conservative value (of 5) gave the
best results on in-domain WSJ experiments, and a
higher value of 10 gave the best results for out-of-
domain experiments.

We also conducted some limited experiments
with classical semi-supervised EM, with similar
settings of weighting labeled counts, and using un-
labeled counts only for rare/unseen events. Since
it is a much more computationally expensive pro-
cedure, and most of the results did not come close
to the results of Viterbi-EM, we did not pursue it.

“The labeled count is weighted in order to scale up the la-
beled data which is usually smaller in size than the unlabeled
data, to avoid swamping the labeled counts with much larger
unlabeled counts.
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5.1 Data

Labeled: Sec. 02-21 of ccGbank (Hockenmaier
and Steedman, 2007). In one experiment, we used
Sec. 02-21 minus 1575 sentences that were held
out to simulate test data containing unseen verbs—
see §6.2 for details.

Unlabeled: For in-domain experiments, we used
sentences from the unlabeled WSJ portion of the
ACL/DCI corpus (LDC93T1, 1993), and the WSJ
portion of the ANC corpus (Reppen et al., 2005),
limited to sentences containing 20 words or less,
creating datasets of approximately 10, 20 and 40
million words each. Additionally, we have a
dataset of 140 million words — 40M WSJ words
plus an additional 100M from the New York
Times.

For domain-adaptation experiments, we use
two different datasets. The first one consists
of question-sentences — 1328 unlabeled ques-
tions, obtained by removing the manual annota-
tion of the question corpus from Rimell and Clark
(2008). The second out-of-domain dataset con-
sists of Wikipedia data, approximately 40 million
words in size, with sentence length < 20 words.

5.2 Experimental setup

We ran our semi-supervised method using our
parser with a smoothed lexicon (from §4.1.1) as
the initial model, on unlabeled data of different
sizes/domains. For comparison, we also ran ex-
periments using a POS-backed off parser (the orig-
inal Hockenmaier and Steedman (2002) LexCat
model) as the initial model. Viterbi-EM converged
at 4-5 iterations. We then parsed various test sets
using the semi-supervised lexicons thus obtained.
In all experiments, the labeled data was scaled to
match the size of the unlabeled data. Thus, the
scaling factor of labeled data was 10 for unlabeled
data of 10M words, 20 for 20M words, etc.

5.3 Evaluation

We focused our evaluations on unseen and low-
frequency verbs, since verbs are the most impor-
tant open-class lexical entries and the most am-
biguous to learn from unlabeled data (approx. 600
categories, versus 150 for nouns). We report lexi-
cal category accuracy in parses produced using our
semi-supervised lexicon, since it is a direct mea-
sure of the effect of the lexicon.’> We discuss four

SDependency recovery accuracy is also used to evaluate
performance of CCG parsers and is correlated with lexical



All words | All Verbs | Unseen
Verbs
Sup 87.76 78.10 52.54
SEMISUP 88.14 78.46 **57.28
SUPbkoff 87.91 76.08 54.14
SEMISUPyo f 87.79 75.68 54.60

Table 1: Lexical category accuracy on TEST-4SEC
*#: p < 0.004, McNemar test

experiments below. The first two are on in-domain
(WSJ) data. The last two are on out-of-domain
data — a question corpus and a Wikipedia corpus.

6 Results

6.1 In-domain: WSJ unseen verbs

Our first testset consists of a concatenation of 4
sections of cCcGbank (01, 22, 24, 23), a total of
7417 sentences, to form a testset called TEST-
4SEC. We use all these sections in order to get
a reasonable token count of unseen verbs, which
was not possible with Sec. 23 alone.

Table 1 shows the performance of the smoothed
supervised model (SUP) and the semi-supervised
model (SEMISUP) on this testset. There is a sig-
nificant improvement in performance on unseen
verbs, showing that the semi-supervised model
learns good entries for unseen verbs over and
above the smoothed entry in the supervised lexi-
con. This results in an improvement in the over-
all lexical category accuracy of the parser on all
words, and all verbs.

We also performed semi-supervised training us-
ing a supervised model that treated unseen words
with a POS-backoff strategy SUPy,rr. We used
the same settings of cut-off and the same scal-
ing of labeled counts as before. The supervised
backed-off model performs somewhat better than
the supervised smoothed model. However, it did
not improve as much as the smoothed one from
unlabeled data. Additionally, the overall accuracy
of SEMISUPy, s fell below the supervised level,
in contrast to the smoothed model, where overall
numbers improved. This could indicate that the
accuracy of a POS tagger on unseen words, es-
pecially verbs, may be an important bottleneck in
semi-supervised learning.

Low-frequency verbs We also obtain improve-
ments on verbs that are seen but with a low fre-
quency in the labeled data (Table 2). We divided

category accuracy, but a dependency evaluation is more rele-
vant when comparing performance with parsers in other for-
malisms and does not have much utility here.
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Freq. Bin 1-5 6-10 | 11-20
Sup 64.13 | 75.19 | 77.6
SEMISUP | 66.72 | 76.21 | 79.8

Table 2: Seen but rare verbs, TEST-4SEC

verbs occurring in TEST-4SEC into different bins
according to their occurrence frequency in the la-
beled data (bins of frequency 1-5, 6-10 and 11-20).
Semi-supervised training improves over the super-
vised baseline for all bins of low-frequency verbs.
Note that our cut-off frequency for using unlabeled
data is 5, but there are improvements in the 6-10
and 11-20 bins as well, suggesting that learning
better categories for rare words (below the cut-off)
impacts the accuracy of words above the cut-off as
well, by affecting the rest of the parse positively.

6.2 In-domain : heldout unseen verbs

The previous section showed significant improve-
ment in learning categories for verbs that are un-
seen in the training sections of CCGbank. How-
ever, these verbs are in the Zipfian tail, and for this
reason have fairly low occurrence frequencies in
the unlabeled corpus. In order to estimate whether
our method will give further improvements in the
lexical categories for these verbs, we would need
unlabeled data of a much larger size. We there-
fore designed an experimental scenario in which
we would be able to get high counts of unseen
verbs from a similar size of unlabeled data. We
first made a list of NV verbs from the treebank and
then extracted all sentences containing them (ei-
ther as verbs or otherwise) from CCGbank training
sections. These sentences form a testset of 1575
sentences, called TEST-HOV (for held out verbs).
The verbs in the list were chosen based on occur-
rence frequency f in the treebank, choosing all
verbs that occurred with a frequency of f = 11.
This number gave us a large enough set and a
good type/token ratio to reliably evaluate and ana-
lyze our semi-supervised models—112 verb types,
with 1115 token occurrences ©. Since these verbs
are actually mid-frequency verbs in the supervised
data, they have a correspondingly large occurrence
frequency in the unlabeled data, occurring much
more often than true unseen verbs. Thus, the un-
labeled data size is effectively magnified—as far
as these verbs are concerned, the unlabeled data is
approximately 11 times larger than it actually is.
Table 3 shows lexical category accuracy on

8Selecting a different but close value of f such as f = 10
or f = 12 would have also served this purpose.



All Words | All Verbs Unseen
Verbs
Sup 87.26 74.55 65.49
SEMISUP 87.78 75.30 %% 70,43
SUPbkoff 87.58 73.06 67.25
SEMISUPkof f 87.52 72.89 68.05

Table 3: Lexical category accuracy in TEST-HOV.
ik <0.0001, McNemar test
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Figure 2: Increasing accuracy on unseen verbs
with increasing amounts of unlabeled data.

this testset. The baseline accuracy of the parser
on these verbs is much higher than that on the
truly unseen verbs.” The semi-supervised model
(SEMISUP) improves over the supervised model
SUP very significantly on these unseen verbs. We
also see an overall improvement on all verbs (seen
and unseen) in the test data, and in the over-
all lexical category accuracy as well. Again, the
backed-off model does not improve as much as
the smoothed model, and moreover, overall per-
formance falls below the supervised level.

Figure 2 shows the effect of different sizes of
unlabeled data on accuracy of unseen verbs for
the two testsets TEST-HOV and TEST-4SEC . Im-
provements are monotonic with increasing unla-
beled data sizes, up to 40M words. The additional
100M words of NYT also improve the models but
to a lesser degree, possibly due to the difference in
domain. The graphs indicate that the method will
lead to more improvements as more unlabeled data
(especially WSJ data) is added.

"This could be because verbs in the Zipfian tail have more
idiosyncratic subcategorization patterns than mid-frequency
verbs, and thus are harder for a parser. Another reason is that
they may have been seen as nouns or other parts of speech,
leading to greater ambiguity in their case.
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[ [ QUESTIONS [ WIKIPEDIA |
All wh All Unseen
words | words || words words

Sup 82.36 61.77 84.31 79.5

SEMISUP | *83.21 | 63.22 *85.6 80.25

Table 4: Out-of-domain: Questions and

Wikipedia, *p<0.05, McNemar test

6.2.1 Out-of-Domain

Questions The question corpus is not strictly a
different domain (since questions form a differ-
ent kind of construction rather than a different do-
main), but it is an interesting case of adaptation
for several reasons: WSJ parsers perform poorly
on questions due to the small number of questions
in the Penn Treebank/cCcGbank. Secondly, unsu-
pervised adaptation to questions has not been at-
tempted before for CCG (Rimell and Clark (2008)
did supervised adaptation of their supertagger).

The supervised model SUP already performs
at state-of-the-art on this corpus, on both overall
scores and on wh(question)-words alone. C&C
and Hockenmaier (2003) get 71.6 and 78.6% over-
all accuracies respectively, and only 33.6 and 50.7
on wh-words alone. To our original unlabeled
WSIJ data (40M words), we add 1328 unlabeled
question-sentences from Rimell and Clark, 2008,
scaled by ten, so that each is counted ten times. We
then evaluated on a testset containing questions
(500 question sentences, from Rimell and Clark
(2008)). The overall lexical category accuracy on
this testset improves significantly as a result of the
semi-supervised learning (Table 4). The accuracy
on the question words alone (who, what, where,
when, which, how, whose, whom) also improves
numerically, but by a small amount (the number
of tokens that improve are only 7). This could be
an effect of the small size of the testset (500 sen-
tences, i.e. 500 wh-words).

Wikipedia We obtain statistically significant im-
provements in overall scores over a testset consist-
ing of Wikipedia sentences hand-annotated with
CCG categories (from Honnibal et al. (2009)) (Ta-
ble 4). We also obtained improvements in lexical
category accuracy on unseen words, and on un-
seen verbs alone (not shown), but could not prove
significance. This testset contains only 200 sen-
tences, and counts for unseen words are too small
for significance tests, although there are numeric
improvements. However, the overall improvement
is statistically significantly, showing that adapting
the lexicon alone is effective for a new domain.



6.3 Using semi-supervised lexicons with the
C&C parser

To show that the learnt lexical entries may be use-
ful to parsers other than our own, we incorpo-
rate our semi-supervised lexical entries into the
C&C parser to see if it benefits performance. We
do this in a naive manner, as a proof of concept,
making no attempt to optimize the performance
of the C&C parser (since we do not have access
to its internal workings). We take all entries of
unseen words from our best semi-supervised lex-
icon (word, category and count) and add them to
the dictionary of the C&C supertagger (tagdict).
The C&C is a discriminative, lexicalized model
that is more accurate than an unlexicalized model.
Even so, the lexical entries that we learn improve
the C&C parsers performance over and above its
back-off strategy for unseen words. Table 5 shows
the results on WSJ data TEST-4SEC and TEST-
HOV. There were numeric improvements on the
TEST-4SEC test set as shown in Table 58. We ob-
tain significance on the TEST-HOV testset which
has a larger number of tokens of unseen verbs and
entries that were learnt from effectively larger un-
labeled data. We tested two cases: when these
verbs were seen for the POS tagger used to tag
the test data, and when they were unseen for the
POS tagger, and found statistically significant im-
provement for the case when the verbs were un-
seen for the POS tagger’, indicating sensitivity to
POS-tagger errors.

6.4 Entropy and KL-divergence

We also evaluated the quality of the semi-
supervised lexical entries by measuring the over-
all entropy and the average Kullback-Leibler (KL)
divergence of the learnt entries of unseen verbs
from entries in the gold testset. The gold entry
for each verb from the TEST-HOV testset was ob-
tained from the heldout gold treebank trees. Su-
pervised (smoothed) and semi-supervised entries
were obtained from the respective lexicons. These
metrics use the conditional probability of a cate-
gory given a word, which is not a factor in the
generative model (which considers probabilities of

8There were also improvements on the question and
Wikipedia testsets (not shown) (8 and 6 tokens each) but the
size of these testsets is too small for significance.

Note that for this testset TEST-HOV, the numbers are the
supertagger’s accuracy, and not the parser’s. We were only
able to retrain the supertagger on training data with TEST-
HOV sentences heldout, but could not retrain the parser, de-
spite consultation with the authors.
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[ | TEST-4SEC || TEST-HOV
POS-seen POS-unseen
(590) (1134) (1134)
C&C 62.03 (366) || 76.71 (870) 72.39 (821)
C&C
(enhanced) | 63.89 (377) || 77.34 (877) | *73.98 (839)

Table 5: Test4sec: Lexical category accuracy of
C&C parser on unseen verbs. Numbers in brackets
are the number of tokens.*p<0.05, McNemar test

words given categories), but provide a good mea-
sure of how close the learnt lexicons are to the gold
lexicon. We find that the average KL divergence
reduces from 2.17 for the baseline supervised en-
tries to 1.40 for the semi-supervised entries. The
overall entropy for unseen verb distributions also
goes down from 2.23 (supervised) to 1.37 (semi-
supervised), showing that semi-supervised distri-
butions are more peaked, and bringing them closer
to the true entropy of the gold distribution (0.93).

7 Conclusions

We have shown that it is possible to learn CCG lex-
ical entries for unseen and low-frequency words
from unlabeled data. When restricted to learning
only lexical entries, Viterbi-EM improved the per-
formance of the supervised parser (both in-domain
and out-of-domain). Updating all parameters of
the parsing model resulted in a decrease in the ac-
curacy of the parser. We showed that the entries
we learnt with an unlexicalized model were accu-
rate enough to also be useful to a highly-accurate
lexicalized parser. It is likely that a lexicalized
parser will provide even better lexical entries. The
lexical entries continued to improve with increas-
ing size of unlabeled data. For the out-of-domain
testsets, we obtained statistically significant over-
all improvements, but we were hampered by the
small sizes of the testsets in evaluating unseen/wh
words.

In future work, we would like to add unseen but
predicted category types to the initial lexicon using
an independent method, and then apply the same
semi-supervised learning to words of these types.
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Abstract

We introduce three techniques for improv-
ing constituent parsing for morphologi-
cally rich languages. We propose a novel
approach to automatically find an optimal
preterminal set by clustering morphologi-
cal feature values and we conduct exper-
iments with enhanced lexical models and
feature engineering for rerankers. These
techniques are specially designed for mor-
phologically rich languages (but they are
language-agnostic). We report empirical
results on the treebanks of five morpho-
logically rich languages and show a con-
siderable improvement in accuracy and in
parsing speed as well.

1 Introduction

From the viewpoint of syntactic parsing, the
languages of the world are usually categorized
according to their level of morphological rich-
ness (which is negatively correlated with config-
urationality). At one end, there is English, a
strongly configurational language while there is
Hungarian at the other end of the spectrum with
rich morphology and free word order (Fraser et al.,
2013). A large part of the methodology for syn-
tactic parsing has been developed for English but
many other languages of the world are fundamen-
tally different from English. In particular, mor-
phologically rich languages — the other end of the
configurational spectrum — convey most sentence-
level syntactic information by morphology (i.e. at
the word level), not by configuration. Because of
these differences the parsing of morphologically
rich languages requires techniques that differ from
or extend the methodology developed for English
(Tsarfaty et al., 2013). In this study, we present
three techniques to improve constituent parsing
and these special techniques are dedicated to han-
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dle the challenges of morphologically rich lan-
guages.

Constituency parsers have advanced consider-
ably in the last two decades (Charniak, 2000;
Charniak and Johnson, 2005; Petrov et al., 2006;
Huang, 2008) boosted by the availability of the
Penn Treebank (Marcus et al., 1993). While
there is a progress on parsing English (especially
the Penn Treebank), the treebanks of morphologi-
cally rich languages have been attracted much less
attention. For example, a big constituent treebank
has been available for Hungarian for almost 10
years (Csendes et al., 2005) and to the best of
our knowledge our work is the first one report-
ing results on this treebank. One reason for the
moderate level of interest in constituent parsing of
morphologically rich languages is the widely held
belief that dependency structures are better suited
for representing syntactic analyses for morpho-
logically rich languages than constituent represen-
tations because they allow non-projective struc-
tures (i.e. discontinuous constituents). From a
theoretical point of view, Tsarfaty et al. (2010)
point out, however, this is not the same as prov-
ing that dependency parsers function better than
constituency parsers for parsing morphologically
rich languages. For a detailed discussion, please
see Fraser et al. (2013).

From an empirical point of view, the organiz-
ers of the recent shared task on ‘Statistical Pars-
ing of Morphologically Rich Languages’ (Seddah
et al., 2013) provided datasets only for languages
having treebanks in both dependency and con-
stituency format and their cross-framework evalu-
ation — employing the unlabeled TedEval (Tsarfaty
et al., 2012) as evaluation procedure — revealed
that at 4 out of 9 morphologically rich languages,
the results of constituent parsers were higher than
the scores achieved by the best dependency pars-
ing system. Based on these theoretical issues and
empirical results, we support the conclusion of
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Fraser et al. (2013) that ... there is no clear
evidence for preferring dependency parsing over
constituency parsing in analyzing languages with
rich morphology and instead argue that research
in both frameworks is important.”

In this study, we propose answers to the two
main challenges of constituent parsing of mor-
phologically rich languages, which are finding the
optimal preterminal set and handling the huge
number of wordforms. The size of the pretermi-
nal set in the standard context free grammar envi-
ronment is crucial. If we use only the main POS
tags as preterminals, we lose a lot of information
encoded in the morphological description of the
tokens. On the other hand, using the full mor-
phological description as preterminal yields a set
of over a thousand preterminals, which results in
data sparsity and performance problems as well.
The chief contribution of this work is to propose a
novel automatic procedure to find the optimal set
of preterminals by merging morphological fea-
ture values. The main novelties of our approach
over previous work are that it is very fast — it
operates inside a probabilistic context free gram-
mar (PCFG) instead of using a parser as a black
box with re-training for every evaluation of a fea-
ture combination — and it can investigate particular
morphological feature values instead of removing
a feature with all of its values.

Another challenge is that because of the inflec-
tional nature of morphologically rich languages
the number of wordforms is much higher com-
pared with English.  Hence the number of
unknown and very rare tokens — i.e. the tokens
that do not appear in the training dataset — is
higher here, which hurts the performance of PCFG
parsers. Following Goldberg and Elhadad (2013),
we enhance the lexical model by exploiting an
external lexicon. We investigate the applicabilities
of fully supervised taggers instead of unsupervised
ones for gathering external lexicons.

Lastly, we introduce novel feature templates
for an n-best reranker operating on the top of a
PCFG parser. These feature templates are exploit-
ing atomic morphological features and achieve
improvements over the standard feature set engi-
neered for English.

We conducted experiments by the above men-
tioned three techniques on Basque, French, Ger-
man, Hebrew and Hungarian, five morphologi-
cally rich languages. The BerkeleyParser (Petrov
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et al., 2006) enriched with these three techniques
achieved state-of-the-art results on each language.

2 Related Work

Constituent parsing of English is a well researched
area. The field has been dominated by data-driven,
i.e. treebank-based statistical approaches in the
last two decades (Charniak, 2000; Charniak and
Johnson, 2005; Petrov et al., 2006). We extend
here BerkeleyParser (Petrov et al., 2006), which
is a PCFG parser using latent annotations at non-
terminals. Its basic idea is to iteratively split each
non-terminal into subsymbols thus capturing the
different subusage of them instead of manually
designed annotations.

The constituent parsing of morphologically
rich languages is a much less investigated field.
There exist constituent treebanks for several lan-
guages along with a very limited number of
parsing reports on them. For instance, Petrov
(2009) trained BerkeleyParser on Arabic, Bulgar-
ian, French, German and Italian and he reported
good accuracies, but there has been previous work
on Hebrew (Goldberg and Elhadad, 2013), Korean
(Choi et al., 1994) and Spanish (Le Roux et al.,
2012) etc. The recently organized ‘Statistical Pars-
ing of Morphologically Rich Languages’ (Seddah
et al., 2013) addressed the dependency and con-
stituency parsing of nine morphologically rich lan-
guages and provides useful benchmark datasets
for these languages.

Our chief contribution in this paper is a pro-
cedure to merge preterminal labels. The related
work for this line of research includes the studies
on manual refinement of preterminal sets such as
Marton et al. (2010) and Le Roux et al. (2012).
The most closely related approach to our proposal
is Dehdari et al. (2011), who defines metaheuris-
tics to incrementally insert or remove morphologi-
cal features. Their approach uses parser — training
and parsing — as a black box evaluation of a preter-
minal set. In contrast, our proposal operates as a
submodule of the BerkeleyParser, hence does not
require the re-training of the parser for every pos-
sible preterminal set candidate, thus it is way more
faster.

The most successful supervised constituent
parsers contain a second feature-rich discrimina-
tive parsing step (Charniak and Johnson, 2005;
Huang, 2008; Chen and Kit, 2012) as well. At
the first stage they apply a PCFG to extract pos-



Basque French German Hebrew Hungarian

#sent. in training 7577 14759 40472 5000 8146
#sent. in dev 948 1235 5000 500 1051
#sent. in test 946 2541 5000 716 1009
avg. token/sent. 12.92 30.13 17.51 25.33 21.76
#non-terminal labels 3000 770 994 1196 890
#main POS labels 16 33 54 46 16
unknown token ratio (dev) 18.35% 3.22% 6.34% 19.94% 19.94%

Table 1: Basic statistics of the treebanks used.

sible parses. The n-best list parsers keep just
the 50-100 best parses according to the PCFG
(Charniak and Johnson, 2005). These methods
employ a large feature set (usually a few mil-
lion features) (Collins, 2000; Charniak and John-
son, 2005). These feature sets are engineered for
English. In this study, we introduce feature tem-
plates for exploiting morphological information
and investigate their added value over the standard
feature sets.

3 Experimental Setup

We conducted experiments on the treebanks of
the 2013 shared task on ‘Statistical Parsing of
Morphologically Rich Languages’ (Seddah et al.,
2013). We used the train/dev/test splits of the
shared task’s Basque (Aduriz et al., 2003), French
(Abeillé et al., 2003), Hebrew (Sima’an et al.,
2001), German (Brants et al., 2002) and Hun-
garian (Csendes et al., 2005) treebanks. Table 1
shows the basic statistics of these treebanks, for
a more detailed description about their annotation
schemata, domain, preprocessing etc. please see
Seddah et al. (2013).

As evaluation metrics we employ the PARSE-
VAL score (Abney et al., 1991) along with the
exact match accuracy (i.e. the ratio of perfect
parse trees). We use the evalb implementation of
the shared task!.

4 Enhanced Lexical Models

Before introducing our proposal and experiments
with preterminal set optimisation, we have to offer
a solution for the out-of-vocabulary (OOV) prob-
lem, which — because of the inflectional nature —
is a crucial problem in morphologically rich lan-

'Available at http://pauillac.inria.fr/
~seddah/evalb_spmrl2013.tar.gz. An important
change in this version compared to the original evalb is the
penalization of unparsed sentences.
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guages. We follow here Goldberg and Elhadad
(2013) and enhance a lexicon model trained on the
training set of the treebank with frequency infor-
mation about the possible morphological analyses
of tokens. We estimate the tagging probability
P(t|w) of the tag ¢ given the word w by

Ptb(t”w), if c(w) > K
P(tlw) = C(w)Ptb(lt\wer)Pez(t\w) otherwise
“+c(w ’

where c¢(w) is the count of w in the training set,
K is predefined constant, Py (t|w) is the proba-
bility estimate from the treebank (the relative fre-
quency with smoothing) and P, (t|w) is the prob-
ability estimate from an external lexicon. We
calculate the emission probabilities P(w|t) from
the tagging probabilities P(¢|w) by applying the
Bayesian rule.

The key question here is how to construct the
external lexicon. For a baseline, Goldberg and
Elhadad (2013) suggest using the uniform dis-
tribution over all possible morphological analy-
ses coming from a morphological analyser (’uni-
form’).

Goldberg and Elhadad (2013) also report con-
siderable improvements over the ‘uniform’ base-
line by relative frequencies counted on a large
corpus which was automatically annotated in the
unsupervised POS tagging paradigm (Goldberg
et al., 2008). Here we show that even a super-
vised morphological tagger without a morpho-
logical analyzer can achieve the same level of
improvement. We employ MarMot?> (Mueller
et al., 2013) for predicting full morphological
analysis (i.e. POS tags and morphological fea-
tures jointly). MarMot is a Conditional Random
Field tagger which incrementally creates forward-
backward lattices of increasing order to prune the

https://code.google.com/p/cistern/



sizable space of possible morphological analy-
ses. We used MarMoT with the default param-
eters. This purely data-driven tagger achieves a
tagging accuracy of 97.6 evaluated at full mor-
phological analyses on the development set of the
Hungarian treebank, which is competitive with the
state-of-the-art Hungarian taggers which employ
language-specific rules (e.g. magyarlanc (Zsibrita
et al., 2013)). The chief advantage of using Mar-
Mot instead of an unsupervised tagger is that the
former does not require any morphological lex-
icon/analyser (which can lists the possible tags
for a given word). This morphological lexi-
con/analyser is language-dependent, usually hand-
crafted and it has to be compatible with the tree-
bank in question. In contrast, a supervised mor-
phological tagger can build a reasonable tagging
model on the training part of the treebanks — espe-
cially for morphologically rich languages, where
the tag ambiguity is generally low — thus each of
these problems is avoided.

Table 2 shows the results of various P, (t|w)
estimates on the Hungarian development set. The
first row ‘BerkeleyParser’ is our absolute base-
line, i.e. the original implementation of Berke-
leyParser® defining signatures for OOVs. For
the ‘uniform’ results, we used the morphologi-
cal analyser module of magyarlanc (Zsibrita et al.,
2013). The last two rows show the results achieved
by training MarMot on the treebank’s training
dataset, having tagged the development set plus
a huge unlabeled corpus (10M sentences from the
Hungarian National Corpus (Véradi, 2002)) with it
then having counted relative tag frequencies. We
report scores on only using the frequencies from
the development set ("dev’) and from the concate-
nation of the development set and the huge corpus
(Chuge’).

After a few preliminary experiments, we set
K = 7 and use this value thereafter.

Table 2 shows that even ‘dev’ yields a consid-
erable improvement over the baseline parser and
‘uniform’. These results are also in line with
the findings of Goldberg and Elhadad (2013), i.e.
‘uniform’ has some added value and using relative
frequencies gathered from automatically tagged
corpora contributes more. Although we can see
another nice improvement by exploiting unlabeled
corpora ("huge’), we will use the ‘dev’ setting in

*http://code.google.com/p/
berkeleyparser/
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PARSEVAL EX
BerkeleyParser 87.22 12.75
uniform 87.31 14.78
dev 88.29 15.22
huge 89.27 16.97

Table 2: The results achieved by using various
external lexical models on the Hungarian devel-
opment set.

the experiments of the next sections as we did not
have access to huge, in-domain unlabeled corpora
for each language used in this study.

5 Morphological Feature Values as
Preterminals

Finding the optimal set of morphological features
incorporating into the perterminal labels is cru-
cial for any PCFG parsers. Removing morpho-
logical features might reduce data sparsity prob-
lems while it might lead to loss of information for
the syntactic parser. In this section, we propose
a novel method for automatically finding the opti-
mal set of preterminals then we present empirical
results with this method and compare it to various
baselines.

Merge Procedure for Morphological Feature
Values: There have been studies published on
the automatic reduction of the set of pretermi-
nals for constituent parsing. For instance, Dehdari
et al. (2011) proposed a system which iteratively
removes morphological features as a unit then
evaluates the preterminal sets by running the train-
ing and parsing steps of a black-box constituent
parser. Our motivation here is two-fold. First,
morphological features should not be handled as
a unit because different values of a feature might
behave differently. Take for instance the degree
feature in Hungarian adjectives. Here the val-
ues positive and superlative behave similarly (can
be merged) while distinguishing comparative and
positive+superlative is useful for syntactic pars-
ing because comparative adjectives often have an
argument (e.g. x is more beautiful than y) while
positive and superlative adjectives are not syntac-
tic governors thus have no arguments. Second,
keeping a morphological feature can be useful for
particular POS tags and useless at other particular
POS tags (e.g. the number of possessed in Hun-
garian for nouns and pronouns).



Algorithm 1 The preterminal set merger algorithm.

1. training the standard BerkeleyParser using only main POS tags as preterminals

2. merging each subsymbols at the preterminal level

3. for each POS tag - morphological feature pair

(a) split the POS tag for the values of the morphological feature*

(b) recalculating the rule probabilities where there are preterminals in the right-hand side by uni-
formly distribute the probability mass among subsymbols

(c) set the lexical probabilities according to the relative frequencies of morphological values
counted on gold standard morphological tags of the treebank

(d) running 10 iterations of the Expectation-Maximization procedure on the whole treebank ini-

tialized with (b)-(c)

(e) constructing a fully connected graph whose nodes are the morphological values of the feature

in question

(f) for every edge of the graph, calculate the loss in likehood for the merging the two subsymbols
(the same way as for BerkeleyParser’s merge procedure)

4. removing edges from the entire set of graphs (controlled by the parameter th)

5. merge the morphological values of the graphs’ connected components

Based on these observations we propose a pro-
cedure which starts from the full morphological
description of a treebank then iteratively merges
particular morphological feature values and it han-
dles the same feature at the different POS tags sep-
arately. The result of this procedure is a clustering
of the possible values of each morphological fea-
ture. The removal of a morphological feature is a
special case of our approach because if the values
of the feature in question form one single cluster
it does not have any discriminative function any-
more. Hence our proposal can be regarded as a
generalisation of the previous approaches.

This general approach requires much more eval-
uation of intermediate candidate preterminal sets,
which is not feasible within the external black-box
parser evaluation scenario (training and parsing
an average sized treebank by the BerkeleyParser
takes more than 1 hour). Our idea here is that re-
training a parser for the evaluation of each preter-
minal set candidates is not necessary. They key
objective here is to select among preterminal sets
based on their usefulness for the syntactic parser.
This is the motivation of the merge procedure of
the BerkeleyParser. After randomly splitting non-
terminals, BerkeleyParser calculates for each split
the loss in likelihood incurred when merging the
subsymbols back. If this loss is small, the new
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annotation does not carry enough useful informa-
tion and can be removed (Petrov et al., 2006). Our
task is the same at the preterminal level. Hence at
the preterminal level, — instead of using the auto-
matic subsymbol splits of the BerkeleyParser — we
call this merging procedure over the morpholog-
ical feature values. Algorithm 1 shows our pro-
posal for the preterminal merging procedure.

Baseline Preterminal Set Constructions: The
two basic approaches for preterminal set con-
struction are the use of only the main POS tag
set "mainPOS’) and the use of the full morpho-
logical description as preterminals (’full’). For
Hungarian, we also had access to a linguistically
motivated, hand-crafted preterminal set (’man-
ual’) which was designed for a morphological tag-
ger (Zsibrita et al., 2013). This manual code set
keeps different morphological features at differ-
ent POS tags and merges morphological values
instead of fully removing features hence it inspired
our automatic merge procedure introduced in the
previous section.

Our last baseline is the repetition of the experi-
ments of Dehdari et al. (2011). For this, we started
from the full morphological feature set and com-
pletely removed features (from all POS) one-by-
one then re-trained our parser. We observed the
greatest drop in PARSEVAL score at removing the



‘ Basque French ‘ German Hebrew Hungarian
mainPOS 68.8/3.9 16 78.4/13.933 | 82.3/38.754 | 88.3/12.046 | 82.6/7.3 16
full 81.8/18.4 2976 | 78.9/15.0 676 | 82.3/40.3 636 | 88.9/15.2 257 | 88.3/15.2 680
preterminal merger | 81.6/16.9 2791 | 79.7/15.6 480 | 82.3/39.3 111 | 89.0/14.6 181 | 88.5/15.4 642

Table 3: PARSEVAL / exact match scores on the development sets. The third small numbers in cells

show the size of the preterminal sets.

‘Num’ feature and the least severe one at remov-
ing ‘Form’. ’Num’ denotes number for verbs and
nominal elements (nouns, adjectives and numer-
als), and since subject-verb agreement is deter-
mined by the number and person features of the
predicate (the verb) and the subject (the noun),
deleting the feature ‘Num’ results in a serious
decline in performance. On the other hand, ‘Form’
denotes whether a conjunction is single or com-
pound (which is a lexical feature) or whether a
number is spelt with letters, Arabic or Roman
numbers (which is an orthographic feature). It is
interesting to see that their deletion hardly harms
the PARSEVAL scores, moreover, it can even
improve the exact match scores, which is probably
due to the fact that the distinction between differ-
ent orthographic versions of the same number (e.g.
6 and VI) just confused the parser. On the other
hand, members of a compound conjunction are not
attached to each other in any way in the parse tree,
and behave similar to single compounds, so this
distinction might also be problematic for parsing.

Results with Various Preterminal Sets: Table
4 summarizes the results achieved by our four
baseline methods along with the scores of two
preterminal sets output by our merger approach at
two different merging threshold th value.

#pt PARSEVAL EX
mainPOS 16 82.36 5.52
manual 72 85.38 9.23
full 680 88.29 15.22
full - Num 479 87.43 14.49
full - Form 635 88.24 15.73
merged (th = 0.5) 378 88.36 15.92
merged (th = 0.1) 642 88.52 15.44

Table 4: The results achieved by using various
preterminal sets on the Hungarian development
set.

The difference between mainPOS and full is
surprisingly high, which indicates that the mor-
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phological information carried in preterminals is
extremely important for the constituent parser and
the BerkeleyParser can handle preterminal sets of
the size of several hundreds. For Hungarian, we
found that the full removal of any feature cannot
increase the results. This finding is contradictory
with Dehdari et al. (2011) in Arabic, where remov-
ing ‘Case’ yielded a gain of 1.0 in PARSEVAL.
We note that baselines for Arabic and Hungar-
ian are also totally different, Dehdari et al. (2011)
reports basically no difference between mainPOS
and full in Arabic.

We report results of our proposed procedure
with two different merging thresholds. The th =
0.1 case merges only a few morphological feature
values and it can slightly outperform the ‘full” set-
ting (statistically significant in exact match.). On
the other hand, the th = 0.5 setting is competitive
with the ‘full’ setting in terms of parsing accuracy
but it uses only the third of the preterminals used
by ‘full’. Although it is not statistically better than
‘full’ in accuracy, it almost halves the running time
of parsing®.

Table 3 summarizes the results achieved by
the most important baselines and our approach
along with the size of the particular preterminal
sets applied. The ‘full’ results outperform ‘main-
POS’ at each language with a striking difference at
Basque and Hungarian. These results show that —
contradictory to the general belief — the detailed
morphological description is definitely useful in
constituent parsing as well. The last row of the
table contains the result achieved by our merger
approach. Here we run experiments with several
merging threshold ¢h values and show the highest
scores for each language.

Our merging proposal could find a better preter-
minal set than full on French and Hungarian, it
found a competitive tag set in terms of accuracies

5 According to two sample t-test with p<0.001.

SParsing the 1051 sentences of the Hungarian develop-
ment set takes 15 and 9 minutes with full and th = 0.5
respectively (on an Intel Xeon E7 2GHz).



which are much smaller than full on German and
Hebrew and it could not find any useful merge at
Basque. The output of the merger procedure con-
sists of one sixth of preterminals compared with
full. Manually investigating the clusters, we can
see that it basically merged every morphological
feature except case at nouns and adjectives (but
merged case at personal pronouns). This finding
is in line with the experimental results of Fraser et
al. (2013).

6 Morphology-based Features in n-best
Reranking

n-best rerankers (Collins, 2000; Charniak and
Johnson, 2005) are used as second stage after a
PCFG parser and they usually achieve consider-
able improvement over the first stage parser. They
extract a large feature set to describe the n best
output of a PCFG parser and they select the best
parse from this set (i.e. rerank the parses). Here,
we define feature templates exploiting morpho-
logical information and investigate their added
value for the standard feature sets (engineered for
English). We reimplemented the feature templates
from Charniak and Johnson (2005) and Versley
and Rehbein (2009) excluding the features based
on external corpora and use them as our baseline
feature set.

We used n = 50 in our experiment and fol-
lowed a 5-fold-cross-parsing (a.k.a. jackknifing)
approach for generating unseen parse candidates
for the training sentences (Charniak and Johnson,
2005). The reranker is trained for the maximum
entropy objective function of Charniak and John-
son (2005), i.e. the sum of posterior probabilities
of the oracles. We used a slightly modified version
of the Mallet toolkit for reranking (McCallum,
2002) and L2 regularizer with its default value for
coefficient.

The feature templates of the baseline feature set
frequently incorporate preterminals as atomic fea-
ture. As a first step, we investigated which preter-
minal set is the most useful for the baseline fea-
ture set. We took the 50 best output from the
parser using the merged preterminal set and used
its preterminals ('merged’) or only the main POS
tag (mainPOS’) as atomic building blocks for the
reranker’s feature extractor. Table 5 shows that
mainPOS outperformed full. This is probably due
to data sparsity problems.

Based on this observation, we decided to use
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mainPOS as preterminal in the atomic building
block of the baseline features and designed new
feature templates capturing the information in the
morphological analysis. We experimented with
the following templates:

For each preterminal of the candidate parse and
for each morphological feature value inside the
preterminal we add the pair of wordform and mor-
phological feature value as a new feature. In a sim-
ilar way, we define a reranker feature from every
morphological feature value of the head word of
the constituent. For each head-daughter attach-
ment in the candidate parse we add each pair of the
morphological feature values from the head words
of the attachment’s participants. Similarly we take
each combination of head word’s morphological
features values from sister constituents.

The first two templates enable the reranker to
incorporate information into its learnt model from
the rich morphology of the language at the lexi-
cal and constituent levels, while the last two tem-
plates might capture (dis)agreement at the mor-
phological level. The motivation for using these
features is that because of the free(er) word order
of morphologically rich languages, morphological
(dis)agreement can be a good indicator of attach-
ment.

Table 5 shows the added value of these fea-
ture templates over mainPOS ("extended’), which
is again statistically significant in exact match.
Exploiting the morphological agreement in syn-
tactic parsing has been investigated in previous
studies, e.g. the Bohnet parser (Bohnet, 2010)
employs morphological feature value pairs simi-
lar to our feature templates and Seeker and Kuhn
(2013) introduces an integer linear programming
framework including constraints for morpholog-
ical agreement. However, these works focus on
dependency parsing and to the best of our knowl-
edge, this is the first study on experimenting with
atomic morphological features and their agree-
ment in a constituency parsing.

PARSEVAL EX
reranker (merged morph) 89.05 18.45
reranker (mainPOS) 89.33 18.64
reranker (extended) 89.47 20.35

Table 5: The results achieved by using various
feature template sets for 50-best reranking on the
Hungarian development set.



Basque French German Hebrew Hungarian
BerkeleyParser 79.21/19.03 79.53/18.46 74.77/26.56 87.87/14.53 88.22/26.96
+ Lexical model 82.02/25.69 7891/17.87 75.64/2836 88.53/13.69 89.09/26.76
+ Preterminal merger 83.19/24.74 79.53/18.58 77.12/30.02 88.07/13.83 89.15/28.05
+ reranker 83.81/25.66 80.31/1891 77.78/29.80 88.38/15.12 89.57/30.23
+ reranker + morph feat 84.03/26.28 80.41/20.07 77.74/29.23 88.55/15.24 89.91/ 30.55

Table 6: PARSEVAL / exact match scores on the test sets.

7 Results of the Full System

After our investigations focusing on building
blocks of our system independently from each
other on the development set, we parsed the test
sets of the treebanks adding steps one-by-one.
Table 6 summarizes our final results. We start
from the BerkeleyParser using the full morpholog-
ical descriptions as preterminal set, then we enrich
the lexical model with tagging frequencies gath-
ered from the automatic parsing of the test sets
(C+ lexical model’). In the third step we replace
the full preterminal set by the output of our preter-
minal merger procedure (’+ preterminal merger’).
We tuned the merging threshold of our method
on the development set for each language. The
last two rows contain the results achieved by the
50-best reranker with the standard feature set ('+
reranker’) and with the feature set extended by
morphological features ("+ morph features’).

The enhanced lexical model contributes a lot
at Basque and considerable improvements are
present at German and Hungarian as well while
it harmed the results in French. The advance of
the preterminal merger approach over the full set-
ting is clear at French and Hungarian, similarly to
the development set. It is interesting that an ratio-
nalized preterminal set could compensate the loss
suffered by a inadequate lexical model at French.

Although the reranking step could further
improve the results at each languages we have
to note that the gain (0.5 in average) is much
smaller here than the gains reported on English
(over 1.5). This might be because of the high
number of wordforms at morphologically rich lan-
guages i.e. most of feature templates are incor-
porate the words itself and the huge dictionary
can indicate data sparsity problems again. Our
morphology-based reranking features yielded a
moderate improvement at four languages, but we
believe there a lots of space for improvement here.
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8 Conclusions

In this study we introduced three techniques for
better constituent parsing of morphologically rich
languages. We believe that research in con-
stituency parsing is important next to dependency
parsing. In general, we report state-of-the-art
results with constituent parsers with our entirely
language-agnostic techniques.

Our chief contribution here is the pretermi-
nal merger procedure. This is a more general
approach than previous proposals and still much
faster thank to operating on probabilities from a
PCFG instead of employing a full train+parse step
for evaluating every preterminal set candidate. We
found that the inclusion of the rich morphological
description into the preterminal level is crucial for
parsing morphologically rich languages. Our pro-
posed preterminal merger approach could outper-
form the full setting at 2 out of 5 languages, i.e. we
have reported gains in parsing accuracies by merg-
ing morphological feature values. At the other lan-
guages, the results with the full preterminal set and
our approach are competitive in terms of parsing
accuracies while our approach could achieve these
scores with a smaller preterminal set, which leads
to considerable parsing time advantages.

We also experimented with exploiting external
corpora in the lexical model. Here we showed
that automatic tagging of an off-the-shelf super-
vised morphological tagger (MarMot) can con-
tribute to the results. Our last experiment was car-
ried out with the feature set of an n-best reranker.
We showed that incorporating feature templates
built on morphological information improves the
results.
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Abstract S
- H /—\
This paper presents a methodology to in-

S . : NP VP
fer implicit semantic relations from verb- ! \
AAG NT /\

argument structures. An annotation effort

shows implicit relations boost the amount M Brown  YBZ _mewe NPy
of meaning explicitly encoded for verbs. | :
Experimental results with automatically succeeds [Jorsfifh dw'lH'?tfn’W?QjE“T
obtained parse trees and verb-argument T~ e e/]V[%"s HouSthne
structures demonstrate that inferring im-

plicit relations is a doable task. Figure 1: Example of parse tree and verb-
argument structures (solid arrows). The relation
between succeedsand ‘last Augustis missing,
Automatic extraction of semantic relations is anbut aTIME-AFTER holds (dashed arrow).
important step towards capturing the meaning of
text. Semantic relations explicitly encode links be-curred after last August, are missing. Note that
tween concepts. For example,Tihe accident left in this example, verb-argument structures encode
him a changed marthe ‘accident is the cause  that ‘retired has TIME ‘last August and this
of the man undergoing somehangé A question knowledge could be exploited to infer the miss-
answering system would benefit from detectinging relation. The work presented here stems from
this relation when answering/hy did he change? two observations: (1) verbs are semantically con-
Extractingall semantic relations from text is a hected with concepts that are not direct syntac-
monumental task and is at the core of languagdic arguments (hencefortimplicit relations; and
understanding. In recent years, approaches th&®) verb-argument structures can be leveraged to
aim at extracting a subset of all relations havenfer implicit relations.
achieved great success. In particular, previous re- This paper goes beyond verb-argument struc-
search (Carreras and Marquez, 2005; Punyakandkres and targets implicit relations like the one
etal., 2008; Che et al., 2010; Zapirain et al., 20103epicted above. TIME, LOCATION, MANNER,
focused on verb-argument structures, i.e., relationBURPOSE and CAUSE are inferred without im-
between a verb and its syntactic arguments. Progosing syntactic restrictions between their argu-
Bank (Palmer et al., 2005) is the corpus of referments: systems trained over PropBank do not at-
ence for verb-argument relations. However, relatempt to extract these relations. An annotation ef-
tions between a verb and its syntactic argumentfort demonstrates implicit relations reveal as much
are only a fraction of the relations present in textsas 30% of meaning on top of verb-argument struc-
Consider the statemeifMr. Brown]yp, suc- tures. The main contributions are: (1) empirical
ceeds [Joseph W. Hibben, who retired laststudy of verb-argument structures and implicit re-
Augusthp, and its parse tree (Figure 1). Verb- lations in PropBank; (2) annotations of implicit re-
argument relations encode that NiB theAGENT  lations on top of PropBank; (3) novel features ex-
and NR is the THEME of verb ‘succeeds(Prop- tracted from verb-argument structures; and (4) ex-
Bank uses labelssRG; and ARG;). Any se- perimental results with features derived from gold
mantic relation betweenstcceedsand concepts and automatically obtained linguistic information,
dominated in the parse tree by one of its syntacshowing implicit relations can be extracted in a re-
tic arguments NP or NP, e.g., ‘succeedsoc-  alistic environment.

-
TIME-AFTER—

1 Introduction
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2 Redated Work [But]uois [the surprisingly durable seven-year economic
expansionfrs, has [made] [mincemeatjrs, [0f more

_ than one forecasf], .
Several systems to extract verb-argument strug Also, financial planners advising on insurance say that

tures from plain text have been proposed (Johans-o their knowledge there has not yet been [a tax
son and Nugues, 2008; Che et al., 2010). Therulinglsxs, [exempting} [these advance payments],
work presented here complements them with ad-[T0M @X€Sksc,

ditional semantic relations. The TimeBank corpus

(Pustejovsky et al., 2003) and TempEval Compe:I'able 1. Examples of verb-argument structures

titions (UzZaman et al., 2013) target events ancIrom PropBank.

detailed temporal information; this work also tar-

getSLOCATION, MANNER, PURPOSEandCAUSE. 3 Verb-Argument Structures and
Extracting missing relations is not a new prob-  Implicit Relations

lem. Early work focused on a very limited domain Th hout thi denot
(Paimer ot a1, 1986, Tetreault, 2002) or did nofToughoUt this papeRr(x, y) denotes a seman-

attempt to automate the task (Whittemore et al.tIC relation R holding betweenx andy.  R(x,

1991). This section focuses on more recent work: ) Is interpreted X hasr y’, €.9., AGENT(to0k

Gerber and Chai (2010) augment NomBank an_BIII) could be readtbok haSAGE.NT Bill”. Verb-
argument structures, or semantic roles, account for

notations (Meyers et al., 2004) of 10 predicates : ) : )
. " . . dsemantlc relations between a verb and its syntactic
with additional core arguments. Their supervise L rguments. In other words(x, ) is a semantic
systems obtain F-measures of 42.3 and 50.3 (Ger- g ' &Y

ber and Chai, 2012). Laparra and Rigau (2013a ole if "x"is a verb and §” a syntactic argument

present a deterministic algorithm and obtain an F—f X', and all semantic roles witrx" as first ar-

ument form the verb-argument structure of verb
measure of 45.3. In contrast, our approach doeg , . . .
X'. Implicit relations are relationg(x, y) where

not focus on a few selected predicates or core argu-. . .
) X is a verb and/ is not a syntactic argument &f

ments. It targetall predicatesand argument mod- T )

e The work presented in this paper aims at com-

ifiers (AM-TMP, AM-MNR, AM-LOC, etc.), whose

meaning is shared across verbs. plementing verb-argument structures with implicit

The SemEval-2010 Task 10: Linking Eventssemantlc relations. We follow a practical approach

. . L by inferring implicit relations from PropBank’s
and their Participants in Discourse (Ruppenhofery i g Imp _ropsan
S verb-argument structures. We believe this is an
et al., 2009) targeted cross-sentence missing corg tvantage since PropBank is well-known in the
:{g;lmeln S;ESJEIS boguPrc;pniirfl:ragij era(rggll\l?)e)t (dBeiZﬁl[ield and several tools to predict PropBank annota-
the a{hnotatio.ns anrt)jpresults The :[ask roved ext-ionS are documented and publicly availabiéhe
o . X P work presented here could be incorporated in any

tremely difficult, participants (Chen et al., 2010

'NLP pipeline after role labeling without modifica-

Tonelli and Delmonte, 2010) reported overall F-.. :
. tions to other components. Furthermore, working
measures around 2 (out of 100). Posterior work . .
. .~ 'on top of PropBank allows us to quantify the im-
(Silberer and Frank, 2012; Laparra and Rigau . .
pact of features derived from gold and automati-
2013b) reported F-measures below 20 for the same L . :
cally extracted linguistic information when infer-
task. The work presented here does not target

o o L fing implicit relations (Section 6).
missing core arguments but modifiers within the gimp ( )
same sentence. Furthermore, results show our pr@:1  Verb-Argument structuresin PropBank

posgl s useful in a regl environment. PropBank (Palmer et al., 2005) annotates verb-
Finally, our previous work (Blanco and 4.4 ment structures on top of the syntactic trees

Moldovan, 2011; Blanco and Moldovan, 2014) ot e penn TreeBank (Marcus et al., 1994). It

proposed composing new relations out of chaing sag 4 set of numbered arguM@risRGy, ARGY,

of previously extracted relations. This approach

) ] > ARGy, etc.) and modifiersAmM-TMP, AM-MNR,
is unsupervised and accurate (88% with gold an'etc.). Numbered arguments do not share a com-

notations), but inferences are made only betweef, meaning across verbs, they are defined on a

the ends of chains of existing relations. Our cur- -

rent proposal also leverages relations previously E.g- linois SRL, htp:/icogeomp.cs.ilinois.edu/
.. . . page/softwvare  ; SENNA, http://ml.nec-labs.com/senna/

extracted, but prOdUCUVlty IS hlgher and reSUItSSWiRL,http://www.surdeanu.info/mihai/swirl/

with automatic annotations are presented. “Numbered arguments are also referred toas

146



The first hybrid MANNER = S_ADV were me— PP
A
corn seeds _
using this mechanical in tﬁg 1930s
approach -7
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~ -
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Figure 2: Verb-argument structures (solid arrows) andiafkimplicit semantic relation (dashed arrow).

AM-LOC: location AM-CAU: cause notated (Table 3).ARGy and ARG, are present
AM-EXT: extent AM-TMP: time .

AM-DIS: dISCOUTSE CONNECTVE AM-PNG. PUTDOSE in most verb-argument structures, other numbered
AM-ADV: general-purpose AM-MNR: manner arguments are often not defined in the correspond-
AM-NEG: negation marker AM-DIR: direction ing frameset and are thus not annotated.

AM-MOD: modal verb Examining PropBank one can also conclude

_ o that information regardingTIME, LOCATION,
Table 2: Argument modifiers in PropBank. MANNER, CAUSE and PURPOSETor a given verb

is often present, yet not annotated because the text

L abel #predicates | % predicates . : : ) -

ARG 79.334 70.26% encoding this knowledge is not a direct syntactic

ARG 106,331 94.17% argument of the verb (Section 4.3). Because of this
0, . . .

i Gt o fact, we decided to focus on these five relations.

AM-MNR 7,833 6.94% .. . .

ANCLOC 2198 6.37% 3.2 Implicit relations in PropBank

AM-PNC 2,784 2.47% Two scenarios are possible when inferring an im-

AM-CAU 1,563 1.38% P 9

plicit relationR(x, y): (1) a semantic rol&’(x, y)
.exists; or (2) such a semantic role does not exists.
fn (1), y is a syntactic argument of some veth
wherex # X' and in (2) that is not the case. Infer-
ences under scenario (1) can be further classified
verb by verb basis in each frameset. For examinto (1a) when a semantic rok(x, y') such that
ple, ARG, is used to indicatectreated-from, thing y containsy exists; or (1b) when such a semantic
changed with verb makeand “entity exempted roles does not exist. The remainder of this section
from” with verb exempi{(Table 1). exemplifies the three scenarios.

Unlike numbered arguments, modifiers share a The example in Figure 1 falls under scenario
common meaning across verbs (Table 2). Soméla). Semantic roles encode, among othems; °
modifiers are arguably not a semantic relationtired’ has TIME ‘last August, and ‘succeedshas
and are not present in most relation invento-aGENT ‘Mr. Brown' and THEME ‘Joseph W. Hi-
ries (Tratz and Hovy, 2010; Hendrickx et al., bben, who retired last AugustThe second argu-
2009). For exampleaM-NEG andAM-MOD sig-  ment of implicit relationTIME-AFTER(Succeeds
nal the presence of negation and modals, e.glast Augus} is a semantic role ofretired and is
[WO] am-mon[N't] am-nec [90]v. FOr more informa- contained in thaHEME of ‘ succeeds
tion about PropBank annotations and examples, Figure 2 shows a statement in which implicit re-
refer to the annotation guidelinés. lation TIME(produced in the 1930% could be in-

Inspecting PropBank annotations one can eaderred under scenario (1b). Semantic rolesab-
ily conclude that numbered arguments dominateluced only indicate that NR is the THEME and
the annotations and only a few modifiers are anS-ADV the MANNER; roles of ‘introduced indi-

3 _ cate that NP is theTHEME and fin the 1930sgp

http://verbs.colorado.edu/ ~mpalmer/projects/ace/ . . .
PBguidelines.pdf the TIME. In this case, there is no connection be-

roles. Total number of predicates is 112,917.
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rs ={TIME, LOCATION, MANNER, CAUSE, PURPOSH; has the highest priority, followed byME-SAME,

foreach semantic roler’(X, y) such thatr’ € rs do TIME-AFTER and finallyno.
foreach verb x in the same sentende . . . .
L | generate potential implicit relatiar(x, y); Annotation examples are detailed in Section

4.2, the more complex annotations involvingy e
are illustrated below. Consider the following state-
ment and PropBank annotations:

Algorithm 1. Procedure to generate all potential
implicit relations in scenario (1) (Section 3.2).

[The government's decisiofde,, v,
tween produced and ‘[in the 1930sjp or any [reflects], [their true desires before
other node subsuming this PP in the parse tree. [the next electiondre,, v, [EXpected],

Scenario (2) occurs whenever the second argu-  [in late 1991} e, v, 1arey, vt -
ment of implicit relationr(x, y) is not a syntac-
tic argument of a verb. If it were, a semantic
role R'(X, y) would exist and it would fall un-
der scenario (1). For example,[ifh acent [0AVE]Y
[her] recipient [@ DOOK from 1945},,eve, We could
infer the implicit semantic relationgaveoccurred
after1945.

When annotating potential implicit semantic re-
lation R(reflects in late 199), annotators may
select TIME-BEFORE TIME-SAME and TIME-
AFTER. However, they selectiIME-BEFORE be-
cause it indicates the temporal context iflects
that starts the earliest.

. . . 4.2 Annotation Examples
4 Annotating Implicit Relations _ _
Several annotations examples are shown in Ta-

Inferring all implicit semantic relations is a chal- ble 4. Semantic roles for statement (1) in-
lenging task. This paper targets implicit relationsclude TIME(remain in 1990), MANNER(remain
that can be inferred under scenarios (1a, 1b); sceat about 1,200 caysand no othemIME or MAN -
nario (2) is reserved for future work. All poten- NER. Implicit relations reveal two extra seman-
tial implicit relations under scenario (1) are gen-tic connectionsTIME-BEFORESaid in 1990 and
erated using Algorithm 1. A manual annotation TiIME-BEFORHexpects in 1990), i.e., ‘said and
effort discards potential implicit relations that do ‘ expects occurred before 1990. The potential
not hold in order to create a gold standard. implicit relations MANNER(said at about 1,200
. L car9 and MANNER(expects at about 1,200 cays
41 Annotation Guidelines do not hold and are annotated
Annotators are faced with the task of deciding Interpreting statement (2) one can see tias'
whether a potential implicit relatior(x, y) holds.  past summeris not only indicating theTIME of
If it does, they mark it withvEs, otherwise with  ‘proposed| events encoded by verbsiake and
NO. Annotators were initially trained with the ‘exempt occurred after this past summeér In
original PropBank annotation guidelirfeas this  this example, two implicit semantic relations are
task is very similar to annotating PropBank se-inferred from a single semantic role.
mantic roles. Indeed, the only difference is that Statement (3) shows that two potential implicit
‘y’ is not a syntactic argument ok". relationsR(X, y) and R(X, y) sharing the sec-
After some preliminary annotations, we foundond argumenty’ may be assigned different la-
it useful to account for three subtypes OiME.  bels. Regarding time, semantic roles only in-
This way, richer semantic connections are in-clude TIME(report in Decembey. Implicit rela-
ferred. When the task is to decide whether im-tions addTIME-BEFOREproposedin Decembey
plicit relation TIME(x, y¥) holds, annotators have andTiME-sSAME(allow, in Decembey.
four labels to choose from: (I)IME-BEFORE X Two implicit LOCATION relations are inferred
occurred beforey, (2) TIME-AFTER: X occurred in statement (4): discovered and ‘preserving
aftery; (3) TIME-SAME x occurred at/during; and  occurred in the test-tube experimentsThe po-
(4) No: y does not describe temporal informationtential implicit relation LOCATION(said in the
of x. If more than one label is valid, annotators test-tube experimenkss discarded (annotated).
choose the one encoding the temporal coniext Statement (5) shows two potential implisitan -
of x starting the earliest. Namely)JME-BEFORE  NER that can be inferred. Theptogram was
T ngpiverbs colorado.edu/ - mpalmerlprojects/ace! ‘aired and ‘seen by 12 mllll_on viewersn the fol-
PBguidelines.pdf lowing manner: With Mr. Vila as host.
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TMP Loc || MNR || PRP || cAu
BIAJSIN[[Y[NJYIN][Y[N]Y]N
1: Rolls-Royce said it expects [its U.S. salgs] to [remain] [steadylre, [at about 1,200 carsjuner [iN 1990} we -
—Sa|d, [|n 1990]TIME J =
—expects[in 1990}uve v
—said [at about 1,200 cargjuner -
—expects[at about 1,200 carg)uner -
2: They make the argument in letters to the agency aboutdhdageske, [proposedj [this past summet)e that, among
other things, exempt many middle-management executioes lovernment supervision.

Statement

v
v

—make [this past summefjue IV -7-
—exempt[this past summerf}e v -1-
3: The proposed changes also allow [executisgg]to [report], [exercises of optiong}s, [iN Decemberfe .
— proposed[in December]e Vi i-1-]-
—allow, [in December}ve N I Y

4: Two Japanese scientists said they discovered [an agttbat.re, , [in laboratory test-tube experimentslarion, [Kills]v
[AIDS-infected cells}zs, [while preserving healthy cellg]e .

—said [in laboratory test-tube experimentsiarion -V
—discovered]in laboratory test-tube experiments]arion v -
— preserving [in laboratory test-tube experimentsdarion V-

5: [With Mr. Vila as host]aner, “[This Old House]re,” [became] [one of the Public Broadcasting Service’s top 10
programsjrs, , [airing weekly on about 300 of the network 's stations arnehdey an average of 12 million viewexglaov -
—airing, [With Mr. Vila as host}iaxner V|-
—seen [With Mr. Vila as host]ianner V| -
[6: It] are, [raised] [financing of 300 billion lire}re, [for the purchase this summer by another Agnelli-relatemligrof
the food concern Galbani S.p.Askross [y selling a chunk of its IFI shares to Mediobanca S.pufer

—selling [for the purchase this summer by another syadose I T T 1T 01T 0 1T 0vl-11
7: [Greece and Turkeyds, , for example, are suspected of [overstatirftijeir arsenalsks, [in hopes that they can emerge
from the arms-reduction treaty with large remaining forwedeter each othef]rrose=

—suspectedin hopes that they can emerge from the purdose T T 1T 1T 01T 0T 0-1vn
8: ...the rationalization that [given the country’s lack méditural resourcesiuse, [theylre, [MuStlm-woo [WOrk]y
[hardlanner [to create value through exportsd, and buy food with the surplus.

— create [given the country’s lack of natural resourcas}e V-
—buy, [given the country’s lack of natural resourcgsie V-

9: Its third-quarter earnings were lower than analysts lmdchst, and the company said 4it], had [lowered} [its
projections for earnings growth through the end of 19Q] [because of planned price cuglse.
—forecast [because of planned price cuigke -V
—said [because of planned price cuiske -V

Table 4: Examples of potential implicit relations and tlainotations. All of them but the ones annotated
with N can be inferred.B stands forBEFORE A for AFTER, S for SAME, N for NO and Y for YES.
PropBank semantic roles from which implicit relations aeegrated are indicated between brackets.

Statement (6, 7) exemplify potential implicit be inferred. Other roles yield less inferences in
PURPOSErelations. While the selling event in  relative terms, but substantial additional mean-
statement (6) has as its purpostie purchase ing: LOCATION 39.4%, MANNER 16.7%, PUR-
[...] (label Y), the ‘suspectedevent in statement POSE29.4%, andCcAUSE 30.2%.

(7) is clearly not done so thattley (Greece and  Two annotators performed the annotations. A
Turkey) can emerge from the [..(Jabel N). simple script generated all potential implicit rela-
Finally, statements (8, 9) exemplify potential tions and prompted for a labeBEFORE AFTER,
implicit cAusE relations. In (8), bothcreatéand  samEe or No if the potential implicit relation was
‘buy are done due to thecountry’s lack of natural generated from aIME semantic roleYES or NO
resource’s However, in (9), the analystdorecast-  otherwise. Annotators are not concerned with ar-
ing’ and the companysaying do not have as their gument identification, as arguments of implicit re-

cause planned price cuts lations are retrieved from the verb-argument struc-
_ _ tures in PropBank (Algorithm 1). This makes the
4.3 Annotation Analysis annotation process easier and faster.

Table 5 shows counts for all potential implicit re- Annotation quality was calculated with two
lations annotated. All labels exceptindicate a agreement coefficients: observed agreement (raw
valid implicit relation. 94.1% of potential implicit percentage of equal annotations) and Cohen'’s
relations generated frommame semantic role can (Artstein and Poesio, 2008). The actual num-
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Source No. | Name Description
X 1,2 | word, POS tag X’s surface form and part-of-speech tag
3 | voice whetherx is in active or passive voice
4,5 | firstword, POS tag first word and part of speech tagyn
o 6,7 | last word, POS tag last word and part-of-speech tagyin
@y 8,9 | head, POStag head ofy and its part-of-speech tag
o 10-12 | node, left and right sibling | syntactic nodes of, and its left and right siblings
13 | subcategory concatenation of’s children nodes
14 | direction whetherx occurs before or after
X, Y 15 | subsumer common syntactic node betwerandy
16 | path syntactic path betweenandy
@ | XPs 17-31 | verb semanticroles flags indicating presence of semantic roleg_ios
5 32,33 | verb, POStag verb iny_psand its part-of-speech tag
B | y_ps 34 | arglabel semantic role between verbyopsandy
]
E 3549 arg semantic roles _ flags |n<j_|ce}t|ng presence of semantic roleg_jos
3 X_ps, 50 | overlapping semanticrole | role R” linking x andy’, wherey’ containsy
s | y-ps 51 | overlapping head head ofy” in semantic role detected in feature 50
52 | overlTapping direct whether feature 51 is the verbynps

Table 6: Complete feature set to determine whether a patemiplicit semantic relatiomR(x, y) should
be inferred. Second column indicates the source: first aormeargumenty, y), or their respective
predicate structurex(ps y_ps). Features in bold are novel and specially designed forask:. t

L abel #instances | % instances 5 Inferring Implicit Relations
B 3,033 38.4%
TIME 2 %gfi fgggﬁ; Inferring implicit relations is reduced to (1) gener-
N 763 5.9% ating potential implicit relations (Algorithm 1) and
All 7,896 100.0% (2) labeling them. The second task determines if
LOCATION L gigi 28:222 !ootential implicit relatic_ms_ should be (_Jlisgardgql or
A 8.496 100.0% mfer_red, all labels buti m_dlcate potential implicit
v 1,600 16.7% relations that should be inferred. We follow a stan-
MANNER IR 7,987 83.3% dard supervised machine learning approach where
Al 9,567 100.0% each potential implicit relation is an instance.
Y 821 29.4% . . .
PURPOSE — TO71 706% Instances were divided into tralnlng (70%) and
All 2,792 100.0% test (30%). The feature set (Section 5.1) and
Y 404 30.2% model parameters were tuned using 10-fold strat-
CAUSE =3 909 69.2% > ot ., :
ke ified cross-validation over the training split, and
Al 1,313 100.0%

results (Section 6) are reported using the test split.
More features than the ones presented were tried
apd discarded because they did not improve per-
ormance e.g., syntactic path between verbs in the
verb-argument structures rfandy, depth of both
structures, number of tokensyn

Table 5: Number of potential implicit relations (in-
stances) annotated and counts for each label. Tot
number of instances is 30,084.

bers are: 78.16% (observed) / 0.6&J for TIME, 51 Feature Selection

86.63% / 0.733 for.oCATION, 93.02% / 0.782 The full set of features to determine whether a po-
for MANNER, 88.60% / 0.734 forurPOSE and tential implicit relationr(x, y) can be inferred is
90.91% / 0.810 forcAuse. These agreements summarized in Table 6. Features are classified
are either comparable or superior to similar preinto basic and predicate structures The former
vious annotation efforts. Girju et al. (2007) re- are commonly used by semantic role labelers. The
ported observed agreements between 47.8% araltter exploit the output of role labelers, i.e., verb-
86.1% when annotating 7 semantic relations beargument structures, and, to our knowledge, are
tween nominals, and Bethard et al. (2008) ob-ovel. Results showredicate structure$eatures
served agreements of 81.2% and 77.8% (Kappamprove performance (Section 6.2).

0.715 and 0.556) when annotating temporal and Basicfeatures are derived from lexical and syn-
causal relations between event pairs. tactic information. We do not elaborate more on
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Feat No. | Value Mr. Corr resigned to pursue other interests, the airling.shi

1,2 succeeds, VBZ ARGo(resignedMr. Corr)

3 active AM-PNC(resignedto pursue other interegts

45 last, JJ ARGo(pursue Mr. Corr)

6,7 August, NNP ARG (pursue other interests

8,9 August, NNP ARGo(said the airling

10-12 NP, VBD, nil ARG (said Mr. Corr resigned to pursue other intergsts

13 JJ-NNP feature 50, overlapping sem rélARG;

14 after feature 51, overlapping head | resigned

15 VP feature 52, overlapping direct| true

16 VBZ+VP-NP-SBAR-S-VP-NP

17—31 ARG, andARG; true, rest false Table 8: PropBank roles and values for features

2421,33 retired, VBD (50-52) when predicting potential implicit relation
AM-TMP . :

3549 ARGy andAM TP True. TestTalse R(said to pursue other interegtdabeledn.

50 ARG;

51 Hibben .

57 Talse LIBSVM (Chang and Lin, 2011). Parametetis

o ~and vy were tuned by grid search using 10-fold
Table 7. Feature values when deciding ifcross validation over training instances.

R(succeedsast summeycan be inferred fromthe  Results are reported using features extracted
verb-argument structures in Figure 1. from gold and automatic annotations. Gold anno-
tations are taken directly from the Penn TreeBank

these features, detailed descriptions and exampl@§ld PropBank. —Automatic annotations are ob-
are provided by Gildea and Jurafsky (2002). tained with Polaris (Moldovan and Blanco, 2012),
Features (17-52) are derived from fredicate & semantic parser that among others is trained with
structuresof x andy and specially defined to infer PToPBank. Results using gold (automatic) annota-
implicit semantic relations. Features (17-31, 35-10Ns are obtained with a model trained with gold

49) are flags indicating the presence of semanti@utomatic) annotations.
roles in the predicate structurgsmﬁndy. . 6.1 Detailed Results
Features (32—-34) characterize the semantic role _
R'(¥X, y) from which the potential implicit relation Table 9 presents per-relation and overall results. In

was generated. They specify vexb its part-of- general Ferms, therg is a decrgase in performance
speech, and labaf. Note that¥ is not present in yvhen usmg automz_nltlc annotathn_s. The dlffe_rence
the potential implicit relatiom(x, y), but incorpo- is most noticeable in recall and it is due to missing
rating this information helps determining whetherS€mantic roles, which in turn are often due to syn-
a relation actually holds as well as |ahE(TIME- tactic parsing errors. This is not surprising as In

BEFORE TIME-AFTER, TIME-SAME, €tc.). order for an implicit relatiorr(x, y) to be gener-

Finally, features 50-52 apply to inferences un_a'[ed as potential and fed to the learning algorithm

der scenario (1a) (Section 3.2). Feature (50) indilcor classifigation, asgmantic roke(x', y) mu_st be
cates the semantic rok¥(x, /), if any, such that extracted first (Algorithm 1). However, using au-
y containsy. Feature (51) indicates the head of gr-fomatic annotations brings very little decrease in
gumenty’ found in feature (50). Feature (52) Cap_precision. This leads to the conclusion that as long
tures whether the head calculated in feature (51) &S ' IS identified as a semantic role of some verb,
the verb in the predicate structureyof even if it is mislabeled, one can still infer the right
Table 7 exemplifies all features when decidingimp”dt relations. Since results obtained with au-
whetherTIME-AFTER(succeedslast Augus) can tomatic parse trees and semantic roles are a realis-

be inferred from the verb-argument structures ific estimation of performance, the remainder of the

Mr. Brown succeeds Joseph W. Hibben, who rediscussion focuses on those. Results with gold an-

tired last August(Figure 1). Table 8 provides an notations are provided for informational purposes.

additional example for features 50-52. Oyerall results for |n.ferr|ng |m_p_I|C|t semantic
relations are encouraging: precision 0.66, recall

6 Experimentsand Results 0.58 and F-measure 0.616. Direct comparison
with previous work is not possible because the

Experiments were carried out using Support Vecimplicit relations we aim at inferring have not

tor Machines with RBF kernel as implemented inbeen considered before. However, we note the top
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gold automatic

basic | basic +ps basic | basic +ps

P R F P R F P R F P R F
B ||.66|.72|.689| .72 |.74| *.730 || .64 | .65 | .643| .68 | .67 | .677
TIME| A || .63|.74| .681| .67 |.75| .708 | .61 | .68 | .642| .66 | .72 | .687
s ||.57|.41| .477| 54| .45| 491 || .55| .36 .437| .55| .38 | .450
LOCATION| Y || .71 | 61| .656| .70 | .64 | .669 | .71 | .56 | .624 | .71| .58 | .635
MANNER| Y | .65 | .38 | .480| .60 | .45 | 514 | 54| .45| .489| .64 | .41 | .500
PURPOSH Y || .65 | .58 | .613| .69 | .60 | .642 | .56 | .49 | .525| .68 | .49 | .572
CAUSE| Y || .71 | .60 | .650 || .74 | .62 | .675| .69 | .65| .670| .71 | .63 | .669
\ Al [ .66].61].625] .67 [ .64 *.651 | .63| .57 [ .591] .66 .58 | *.616 |

Table 9: Results obtained with the test split using feataréimcted from gold and automatic annotations,
and using basic angredicate structuregps) features. Statistical significance between F-measisiag
basicandbasic + predicate structurefeatures is indicated with (confidence 95%).

performer (Koomen et al., 2005) at CoNLL-2005 taking into account all relations (confidence 95%).
Shared Task on role labeling obtained the follow-However, due to the lower number of instances,
ing F-measures when extracting the same relationdifferences in performance when considering in-
between a verb and its syntactic arguments: 0.77dividual relations is not statistically significant.
(TiME), 0.6033 (OCATION), 0.5922 UIANNER), )

0.4541 purPOsH and 0.5397 €AUSE). 7 Conclusions

The most difficult relations areMe-SAME and  vierp-argument structures, or semantic roles, com-
MANNER, F-measures ar@.450 and 0.500 re-  prise semantic relations between a verb and its
spectively. Even when using gold annotationsgyntactic arguments. The work presented in this
these two relations are challenging: F-measuregaper leverages verb-argument structures to infer
are 0.491 for TIME-SAME, an increase 09.1%,  jmplicit semantic relations. A relatior(x, y) is
and0.514 for MANNER, an increase ot.8%. Re- implicit if x is a verb andy is not a syntactic ar-
sults show that other relations can be inferred Wiﬂbument ofx. The method could be incorporated
F-measures betweén35 and0.687, the only €x- into any NLP pipeline after role labeling without
ception isPURPOSEWith an F-measure df.572. modifications to other components.

An analysis of verb-argument structures and im-
plicit relations in PropBank has been presented.
Results in Table 9 suggest that while implicit rela-Out of all potential implicit relation®(x, y), this
tions can be inferred usirgpsicfeatures, itis ben- paper targets those that can be generated from a
eficial to complement them with the novel featuressemantic roler’'(x', y), wherex # z’. A man-
derived frompredicate structuresThis is true for ual annotation effort demonstrates implicit rela-
all relations exceptAUSE when using automatic tions yield substantial additional meaning. Most
annotations with a negligible difference @001.  of the time (94.1%) a semantic rolemME(X/, y)
When considering all implicit relations, the differ- is present, we can infer temporal information for
ence in performance i8.616 — 0.591 = 0.025,  other verbs within the same sentence. Productiv-
an increase 0t.2% that is statistically significant ity is lower but substantial with other roles: 39.4%
(Z-test, confidence 95%). (LOCATION), 30.2% €AUSE), 29.4% PURPOSH

The positive impact of features derived fromand 16.7% MANNER).
predicate structuress most noticeable when infer-  Experimental results show that implicit rela-

6.2 Feature Ablation

ring PURPOSE with an increase of 8.9%0) (72 —  tions can be inferred using automatically obtained
0.525 = 0.047). TIME-BEFOREandTIME-AFTER  parse trees and verb-argument structures. Stan-
also benefit, with increases of 5.3%.477 — dard machine learning is used to decide whether a

0.643 = 0.034) and 7.0%(.687—0.642 = 0.045)  potential implicit relation should be inferred, and
respectively. The improvememiredicate struc- novel features characterizing the verb-argument
turesfeatures bring is statistically significant when structures we infer from have been proposed.
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Abstract

We present a French to English transla-
tion system for Wikipedia biography ar-
ticles. We use training data from out-
of-domain corpora and adapt the system
for biographies. We propose two forms
of domain adaptation. The first biases
the system towards words likely in biogra-
phies and encourages repetition of words
across the document. Since biographies in
Wikipedia follow a regular structure, our
second model exploits this structure as a
sequence of topic segments, where each
segment discusses a narrower subtopic of
the biography domain. In this structured
model, the system is encouraged to use
words likely in the current segment’s topic
rather than in biographies as a whole.
We implement both systems using cache-
based translation techniques. We show
that a system trained on Europarl and news
can be adapted for biographies with 0.5
BLEU score improvement using our mod-
els. Further the structure-aware model out-
performs the system which treats the entire
document as a single segment.

1 Introduction

This paper explores domain adaptation of statisti-
cal machine translation (SMT) systems to contexts
where the target documents have predictable reg-
ularity in topic and document structure. Regular-
ities can take the form of high rates of word rep-
etition across documents, similarities in sentence
syntax, similar subtopics and discourse organiza-
tion. Domain adaptation for such documents can
exploit these similarities. In this paper we focus
on topic (lexical) regularities in a domain. We
present a system that translates Wikipedia biogra-
phies from French to English by adapting a system

Bonnie Webber
School of Informatics
University of Edinburgh
10 Crichton Street
Edinburgh EH8 9AB
bonnie@inf.ed.ac.uk

trained on Europarl and news commentaries. This
task is interesting for the following two reasons.

Many techniques for SMT domain adaption
have focused on rather diverse domains such as us-
ing systems trained on Europarl or news to trans-
late medical articles (Tiedemann, 2010a), blogs
(Suetal., 2012) and transcribed lectures (Federico
et al., 2012). The main challenge for such systems
is translating out-of-vocabulary words (Carpuat et
al., 2012). In contrast, words in biographies are
closer to a training corpus of news commentaries
and parlimentary proceedings and allow us to ex-
amine how well domain adaptation techniques can
disambiguate lexical choices. Such an analysis is
harder to do on very divergent domains.

In addition, biographies have a fairly regu-
lar discourse structure: a central entity (person
who is the topic of the biography), recurring
subtopics such as ‘childhood’, ‘schooling’, ‘ca-
reer’ and ‘later life’, and a likely chronological
order to these topics. These regularities become
more predictable in documents from sources such
as Wikipedia. This setting allows us to explore the
utility of models which make translation decisions
depending on the discourse structure. Translation
methods for structured documents have only re-
cently been explored in Foster et al. (2010). How-
ever, their system was developed for parlimentary
proceedings and translations were adapted using
separate language models based upon the identity
of the speaker, text type (questions, debate, etc.)
and the year when the proceedings took place.
Biographies constitute a more realistic discourse
context to develop structured models.

This paper introduces a new corpus consisting
of paired French-English translations of biography
articles from Wikipedia.! We translate this cor-
pus by developing cache-based domain adaptation
methods, a technique recently proposed by Tiede-

'Corpus available at http://homepages.inf.ed.
ac.uk/alouis/wikiBio.html.
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mann (2010a). In such methods, cache(s) can be
filled with relevant items for translation and trans-
lation hypotheses that match a greater number of
cache items are scored higher. These cache scores
are used as additional features during decoding.
We use two types of cache—one which encour-
ages the use of words more indicative of the biog-
raphy domain and another which encourages word
repetition in the same document.

We also show how cache models allow
for straightforward implementation of structured
translation by refreshing the cache in response to
topic segment boundaries. We fill caches with
words relevant to the topic of the current segment
which is being translated. The cache contents are
obtained from an unsupervised topic model which
induces clusters of words that are likely to ap-
pear in the same topic segment. Evaluation re-
sults show that cache-based models give upto 0.5
BLEU score improvements over an out-of-domain
system. In addition, models that take topical struc-
ture into account score 0.3 BLEU points higher
than those which ignore discourse structure.

2 Related work

The study that is closest to our work is that of
Tiedemann (2010a), which proposed cache mod-
els to adapt a Europarl-trained system to medical
documents. The system used caching in two ways:
a cache-based language model (stores target lan-
guage words from translations of preceding sen-
tences in the same document) and a cache-based
translation model (stores phrase pairs from pre-
ceding sentence translations). These caches en-
couraged the system to imitate the ‘consistency’
aspect of domain-specific texts i.e., the property
that words or phrases are likely to be repeated in a
domain and within the same document.

Cache models developed in later work, Tiede-
mann (2010b) and Gong et al. (2011), were ap-
plied for translating in-domain documents. Gong
et al. (2011) introduced additional caches to store
(i) words and phrase pairs from training docu-
ments most similar to a current source article,
and (ii) words from topical clusters created on the
training set. However, a central issue in these sys-
tems is that caches become noisy over time, since
they ignore topic shifts in the documents. This pa-
per presents cache models which not only take ad-
vantage of likely words in the domain and consis-
tency, but which also adapt to topic shifts.
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A different line of work very relevant to our
study is the creation of topic-specific translations
by either inferring a topic for the source document
as a whole, or at the other extreme, finer topics for
individual sentences (Su et al., 2012; Eidelman et
al., 2012). Neither of these granularities seem in-
tuitive in natural discourse. In this work, we pro-
pose that tailoring translations to topics associated
with discourse segments in the article is likely to
be beneficial for two reasons: a) subtopics of such
granularity can be assumed with reasonable con-
fidence to re-occur in documents from the same
domain and b) we can hypothesize that a domain
will have a small number of segment-level topics.

3 System adaptation for biographies

We introduce two types of translation systems
adapted for biographies:

General domain models (domain-) that use in-
formation about biographies but treat the docu-
ment as a whole.

Structured models (struct-) that are sensitive to
topic segment boundaries and the specific topic of
the segment currently being translated.

We implement both models using caches. Since
we do not have parallel corpora for the biography
domain, our caches contain items in the target lan-
guage only. We use two types of caches:

Topic cache stores target language words (uni-
grams) likely in a particular topic. Each unigram
has an associated score.
Consistency cache favours repetition of words in
the sentences from the same document. It stores
target language words (unigrams) from the 1-best
translations of previous sentences in the same doc-
ument. Each word is associated with an age value
and a score. Age indicates when a word entered
the cache and introduces a ‘decay effect’. Words
used in immediately previous sentences have a
low age value while higher age values indicate
words from sentences much prior in the document.
Scores are inversely proportional to age.

Both the types of caches are present in both
the general domain and structured models, but the
cache words and scores are computed differently.

3.1 A general domain model

This system seeks to bias translations towards

words which occur often in biography articles.
The topic cache is filled with word unigrams

that are more likely to occur in biographies com-



pared to general news documents. We compare
the words from 1,475 English Wikipedia biogra-
phies articles to those in a large collection (64,875
articles) of New York Times (NYT) news articles
(taken from the NYT Annotated Corpus (Sand-
haus, 2008)). We use a log-likelihood ratio test
(Lin and Hovy, 2000) to identify words which oc-
cur with significantly higher probability in biogra-
phies compared to NYT. We collect only words
indicated with 0.0001 significance by the test to
be more likely in biographies. We rank this set of
18,597 words in decreasing order of frequency in
the biography article set and assign to each word
a score equal to 1/rank of the word. These words
with their associated scores form the contents of
the topic cache. In the general domain model,
these same words are assumed to be useful for the
full document and so the cache contents remain
constant during translation of the full document.
The consistency cache stores words from the
translations of preceding sentences of the same
document. After each sentence is translated, we
collect the words from the 1-best translation and
filter out punctuation marks and out of vocabu-
lary words. The remaining words are assigned an
age of 1. Words already present in the cache have
their age incremented by one. The new words with
age 1 are added to the cache?® and the scores for
all cache words are recomputed as e'/99¢. The
age therefore gets incremented as each sentence’s
words are inserted into the cache creating a decay.
The cache is cleared at the end of each document.
During decoding, a candidate phrase is split into
unigrams and checked against each cache. Scores
for matching unigrams are summed up to obtain a
score for the phrase. Separate scores are computed
for matches with the topic and consistency caches.

3.2 A structured model

Here we consider topic and consistency at a nar-
rower level—within topic segments of the article.
The topic cache is filled with words likely in
individual topic segments of an article. To do this,
we need to identify the topic of smaller segments
of the article and also store a set of most probable
words for each topic. The topics should also have
bilingual mappings which will allow us to infer for
every French document segment, words that are
likely in such a segment in the English language.
We designed and implemented an unsupervised

2If the word already exists in the cache, it is first removed.

topic model based on Latent Dirichlet Allocation
(LDA) (Blei et al., 2003) to induce such word clus-
ters. In a first step, we induce subtopics from
monolingual articles in English and French sep-
arately. The topics are subsequently aligned be-
tween the languages as explained below.

In the first step, we learn a topic model which
incorporates two main ideas a) adds sensitivity
to topic boundaries by assigning a single topic
per topic segment b) allows for additional flex-
ibility by not only drawing the words of a seg-
ment from the segment-level topic, but also al-
lows some words to be either specific to the doc-
ument (such as named entities) or stop words. To
address idea b), we have a “switching variable”
to switch between document-specific word, stop-
word or domain-words.

The generative story to create a monolingual
dataset of biographies is as follows:

e Draw a distribution 7 for the proportion of the
three word types in the full corpus (domain
subtopic, document-specific, stopwords) ~
Dirichlet(y)

e For each domain subtopic ¢;, 1 < [ < T,
draw a distribution over word vocabulary ~
Dirichlet(/3)

e Draw a distribution ¥ over word vocabulary
for stopwords ~ Dirichlet(e)

e For each document D;:

— Draw a distribution 7; over vocab-
ulary for document-specific words ~
Dirichlet(u)

— Draw a distribution #; giving the mix-
ture of domain subtopics for this docu-
ment ~ Dirichlet(«)

— For each topic segment M;; in D;:

* Draw a domain subtopic z;; ~

Multinomial(6;)

* For each word w; . in segment M;;:

- Draw a word type s~
Multinomial(7)

- Depending on the chosen switch
value s;jx, draw the word from
the subtopic of the segment ¢,
or document-specific vocabulary
m;, or stopwords

We use the section markings in the Wikipedia
articles as topic segment boundaries while learn-
ing the model. We use symmetric Dirichlet priors



for the vocabulary distributions associated with
domain subtopics, document-specific words and
stopwords. The concentration parameters are set
to 0.001 to encourage sparsity. The distribution
0; for per-document subtopics is also drawn from
a symmetric Dirichlet distribution with concentra-
tion parameter 0.01. We use asymmetric Dirich-
let priors for n set to (5, 3, 2) for (domain topic,
document-specific, stopwords). The hyperparam-
eter values were minimally tuned so that the differ-
ent vocabulary distributions behaved as intended.

We perform inference using collapsed Gibbs
sampling where we integrate out many multinomi-
als. The sampler chooses a topic z;; for every seg-
ment and then samples a word type s;; for each
word in the segment. We initialize these variables
randomly and the assignment after 1000 Gibbs it-
erations are taken as the final ones. We create
these models separately for English and French,
in each case obtaining T" domain subtopics.

The second step creates an alignment between
the source and target topics using a bilingual dic-
tionary>. For each French topic, we find the top
matching English topic by scoring the number
of dictionary matches. It is unlikely for every
French topic to have a closely corresponding En-
glish topic. Based on observations about the qual-
ity of topic alignment, we select the top 60% (out
of T') pairs of French-English aligned topics only.

Note that our method uses two steps to learn
bilingual topics in contrast to some multilingual
topic models which learn aligned topics directly
from parallel or comparable corpora (Zhao and
Xing, 2006; Boyd-Graber and Blei, 2009; Jagar-
lamudi and Daumé III, 2010). These methods in-
duce topic-specific translations of words. Rather
we choose a less restrictive pairing of word clus-
ters by topic since (i) we have monolingual bi-
ographies in the two languages which could be
quite heterogenous in the types of personalities
discussed, (ii) we seek to identify words likely in a
topic segment for example ‘career-related” words
rather than specific translations for source words.

During translation, for each topic segment in the
source document, we infer the French topic most
likely to have produced the segment and find the
corresponding English-side topic. The most prob-
able words for that English topic are then loaded
into the topic cache. The score for a word is its
probability in that topic. When a topic segment

3 A filtered set of 13,400 entries from www.dict .cc
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boundary is reached, the topic cache is cleared and
the topic words for the new segment are filled.

The consistency cache’s contents are computed
similarly to the general domain case. However, the
cache gets cleared at segment boundaries.

4 Training and test data

We distinguish two resources for data. The out-
of-domain system is trained using the WMT’12
datasets comprising Europarl and news commen-
tary texts. It has 2,144,820 parallel French-
English sentence pairs. The language model is
trained using the English side of the training cor-
pus. The tuning set has 2,489 sentence pairs.

Our test set is a corpus of French to En-
glish translations of biographies compiled from
Wikipedia. To create the biography corpus, we
collect articles which are marked with a “Trans-
lation template” in Wikipedia metadata. These
markings indicate a page which is translated from
a corresponding page in a different language and
also contains a link to the source article. (Note
that these article pairs are not those written on
the same topic separately in the two languages.)
We collect pairs of French-English pages with this
template and filter those which do not belong to
the Biography topic (using Wikipedia metadata).

Note, however, that these article pairs are not
very close translations. During translation an edi-
tor may omit or add information and also reorga-
nize parts of the article. So we filter out the paired
documents which differ significantly in length. We
use LFAligner” to create sentence alignments for
the remaining document pairs. We constrain the
alignments to be within documents but since sec-
tion headings were not maintained in translations,
we did not further constrain alignments within sec-
tions. We manually corrected the resulting align-
ments and keep only documents which have good
alignments and have manually marked topic seg-
ments (Wikipedia section headings). Unaligned
sentences were filtered out. Table 1 shows a sum-
mary of this data and the split for tuning and test.
The articles are 12 to 87 sentences long and con-
tain 5 topic segments on average.

We also collect a larger set of monolingual
French and English Wikipedia biographies to cre-
ate the domain subtopics. We select only articles
that have at least 10 segments (sections) to ensure

*http://sourceforge.net/projects/
aligner/



Tuning  Test
No. of article pairs 15 30
Total sentences pairs 430 1008
Min. article size (in sentences) 13 12
Max. article size (in sentences) 59 85
Average no. of segments per article 4.7 5.3

Table 1: Summary of Wikipedia biographies data

that they are comprehensive ones. This collection
contains 1000 French and 1000 English articles.

5 Experimental settings

We use the Moses phrase-based translation system
(Koehn et al., 2007) to implement our models.

5.1 Out-of-domain model

This baseline model is trained on the WMT 2012
training sets described in the previous section and
uses the six standard features from Koehn et al.
(2003). We build a 5-gram language model us-
ing SRILM. The features were tuned using MERT
(Och, 2003) on the WMT 2012 tuning sets. This
system does not use any data about biographies.

5.2 Biography-adapted models

First we perform experiments using the manually
marked sections in Wikipedia as topic segments.
We also report results with automatic segmenta-
tion in Section 7.

The domain and structured models have two ex-
tra features ‘topic cache’ and ‘consistency cache’.
For the structured model, topic segment bound-
aries and inferred topic is passed as XML markup
on the source documents. For the consistency
cache, we use a wrapper which passes the 1-
best translation (also using XML markup) of the
preceding sentence and updates the cache before
translating every next sentence.

We tune the weights for these new cache fea-
tures as follows. The weights for the baseline fea-
tures from the out-of-domain model are kept con-
stant. The weights for the new cache features are
set using a grid search. This tuning uses the bi-
ographies documents listed in Table 1 as tuning
data. We run the decoding using the baseline fea-
ture weights and a weight for a cache feature and
compute the (case-insensitive) BLEU (Papineni et
al., 2002) scores of each tuning document. The
weight for the cache feature which maximizes the
average BLEU value over the tuning documents
is chosen. We have not tuned the features us-
ing MERT in this study since a grid search al-
lowed us to quantify the influence of increasing
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Figure 1: Effect of feature weights and number of
topics on accuracy for structured topic cache

weights on the new features directly. Previous
work has noted that MERT fails to find good set-
tings for cache models (Tiedemann, 2010b). In
future work, we will explore how successful op-
timization of baseline and cache feature weights
could be done jointly. We present the findings
from our grid search below.

The struct-topic cache has two parameters, the
number of topics 7" and the number of most prob-
able words from each topic which get loaded into
the cache. We ran the tuning for 7' = 25, 50,
100 and 200 topics (note that 60% of the topics
will be kept after bilingual alignment, see Section
3.2). We also varied the number of topic words
chosen—>50, 100, 250 and 500.

The performance did not vary with the number
of topic words used and 50 words gave the same
performance as 500 words for topic models with
any number of topics. This interesting result sug-
gests that only the most likely and basic words
from each topic are useful. The top 50 words from
two topics (one capturing early life and the other
an academic career) taken from the 50-topic model
on English biographies are shown in Table 2.

In Figure 1, we show the performance of sys-
tems using different number of topics. In each
case, the same number of topic words (50) was
added to the cache. We find that 50 topics model
performs best confirming our hypothesis that only
a small number of domain subtopics is plausible.
We choose the 50 topic model with top 50 words
for each topic for the structured topic cache.

The best weights and average document level
BLEU scores on the tuning set are given in Table
3. The scores were computed using the mteval-
vi3a.pl script in Moses. BLEU scores for the
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Table 2: Top 50 words from 2 topics of the T = 50 topic model

Cache type weight | BLEU-doc Model BLEU-doc BLEU-sent
Domain-topic 0.075 19.79 Domain-topic 17.63 17.61
Domain-consistency 0.05 19.70 Domain-consistency 17.70 17.75
Domain-topic + consis. 0.05, 0.05 19.80 Domain-topic + consis. 17.63 17.63
Struct-topic (50 topics) 1.75 19.94 Struct-topic (50 topics) 17.76 17.84
Struct-consistency 0.125 19.70 Struct-consistency 17.33 17.34
Struct-topic + consis. 0.4,0.1 19.84 Struct-topic + consis. 17.47 17.51
Domain-consis. + struct-topic 0.1,0.25 19.86 Struct-topic + dom-consis. 17.29 17.25
Out-of-domain 19.33 Out-of-domain 17.37 17.43

Table 3: Best weights for cache features and
BLEU scores (averaged for tuning documents).

out-of-domain model are shown on the last line.
Note that these scores are overall on a lower scale
for a French-English system due to out-of-domain
differences and because the reference translations
from Wikipedia are not very close ones.

These numbers show that cache models have the
potential to provide better translations compared
to an out-of-domain baseline. The structured topic
model system is the best system outperforming the
out-of-domain system and also the domain-topic
system. Hence, treating documents as composed
of topical segments is a useful setting for auto-
matic translation.

The domain and structured versions of the con-
sistency cache however, show no difference. This
result could arise due to the decay factor incor-
porated in the consistency cache. Higher scores
are given to words from immediately previous
sentences compared to those far off. This decay
implicitly gives lower scores to words from ear-
lier topic segments than those from recent ones.
Explicitly refreshing the cache in the structured
model does not give additional benefits.

When consistency and topic caches are used to-
gether in both general domain and structured set-
tings, the combination is not better than individual
caches. We also tried a setting where the consis-
tency cache is document-range and the topic cache
works at segment level (domain-consis. + struct-
topic). This combination also does not outperform
using the structured topic cache alone.
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Table 4: BLEU scores on the test set. ‘doc’ in-
dicates BLEU scores averaged over documents,
‘sent’ indicates sentence-level BLEU

6 Results on the test corpus

The best weights chosen on the tuning corpus are
used to decode the biographies test corpus (sum-
marized in Table 1). Table 4 reports the av-
erage BLEU of documents as well as sentence
level BLEU scores of the corpus. We used the
paired bootstrap resampling method (Koehn 2004)
to compute significance.

The struct-topic model gives the highest im-
provement of 0.4 sentence level BLEU over the
out-of-domain model. Struct-topic is also 0.23
BLEU points better compared to the domain-
topic model confirming the usefulness of model-
ing structure regularities. These improvements at
significant at 95% confidence level.

The second best model is the domain-
consistency model (significantly better than out-
of-domain model at 90% confidence level). But
the performance of this cache decreases in the
structured setting. Moreover, combinations of
caches fail to improve over individual caches.
One hypothesis for this result is that biogra-
phy subtopic words which give good performance
in the topic cache differ from the words which
provide benefits in the consistency cache. For
example, words related to named entities and
other document-specific content words could be
ones that are more consistent within the docu-
ment. Then clearing the consistency cache at topic
boundaries would remove such words from the



cache leading to low performance of the ‘struc-
tured’ version. In our current model, we do not
distinguish between words making up the consis-
tency cache. In future, we plan to experiment
with consistency caches of different ranges and
which hold different types of words. This ap-
proach would require identifying named entities
and parts of speech on the automatic translations
of previous sentences, which is likely to be error-
prone and so require methods for associating a
confidence measure with the cache words.

7 Understanding factors that influence
structured cache models

The documents in our test corpus have varying
lengths, number of segments and segment sizes.
This section explores the behavior of structured
models on these different document types. For
this analysis, we compare the BLEU scores from
the domain and the structured versions of the two
caches. We do not consider the out-of-domain sys-
tem here since we are interested in quantifying
gains from using document structure.

For each document in our test corpus, we com-
pute (i) the difference between the BLEU scores
of struct-topic and domain-topic systems (BLEU-
gain-topic), and (ii) the difference in BLEU
scores between the struct-consistency and domain-
consistency systems (BLEU-gain-consis). Table 5
reports the average BLEU gains binned by a) the
document length (in sentences) b) number of topic
segments in the document and c) the average size
of topic segments in a document (in sentences).

The numbers clearly indicate that performance
is not uniform across different types of docu-
ments. The struct-topic cache performs much bet-
ter on longer documents of over 30 sentences giv-
ing 0.3 to 0.4 BLEU points increase compared to
the general domain model. On the other hand, the
performance worsens when the structured cache
is applied on documents with less than 20 sen-
tences. Similarly, the struct-topic cache is benefi-
cial for documents where the average segment size
is larger than 5 sentences and when the number of
topic segments is around 5 to 7.

The struct-consistency cache generally per-
forms worse than the unstructured version and
there does not appear to be a niche set according
to any of the properties—document length, num-
ber of segments and segment size.

Given these findings, it is possible that the
struct-topic cache can benefit by modifying the
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(a) Average BLEU gains and document length

doc. length no. docs gain-topic  gain-consis
12to 19 7 -0.41 -0.20
20to0 29 10 0.17 -0.63
30 to 49 8 0.44 -0.16
50 to 85 5 0.34 -0.45

(b) Average BLEU gains and no. of topic segments

no. segments no. docs gain-topic  gain-consis
3to4 9 -0.09 -0.21
5 13 0.24 -0.37
6to7 5 0.34 -0.74
9 3 -0.03 -0.26

(c) Average BLEU gains and topic segment size

avg. segment size no. docs gain-topic  gain-consis
<5 10 -0.23 -0.41
5to 10 18 0.33 -0.37
11to 17 2 0.39 -0.24

Table 5: Average BLEU score gains from a struc-
tured cache (compared to domain caches) split by
different properties of documents in the test set

document structure to match that handled better
by the structured model. We test this hypothe-
sis by segmenting all test documents with an ideal
segment size. The model seems to perform better
when each segment has around 5 to 10 sentences
(longer segments are also preferred but we have
few very long documents in our corpus), so we
try to re-segment the articles to contain approxi-
mately 7 sentences in each segment. We use an
automatic topic segmentation method (Eisenstein
and Barzilay, 2008) to segment the source arti-
cles in our test corpus. For each article we request
(document length) /7 segments to be created.’

We then run the structured topic and consis-
tency models on the automatically segmented cor-
pus using the same feature weights as before. The
results are shown in Table 6.

Model BLEU (doc) BLEU (sent)
Struct-topic 17.94 17.94
Struct-consistency 17.51 17.46

Table 6: Translation performance on automati-
cally segmented test corpus

The struct-topic cache now reaches our best re-
sult of 0.5 BLEU improvement over the out-of-
domain model and 0.3 improvement over the un-
structured domain model. The consistency cache
is also slightly better using the automatic segmen-
tation than the manual sections. Choosing the
right granularity appears to be important for struc-
tured caches and coarse section headers may not
be ideal. This result also shows automatic segmen-

>Note that we only specify the number of segments, but
the system could create long or short segments.



of (42) he (36)  his (36) the (22) to(11)
head (3) that(3) construction (3) empire office
all ban marseille main charged
an two mechanical events army
and black objectives factory  disciple
as who ceremony figure majority
on seat diplomatic wheat working

Table 7: Impact words computed on the test corpus.
impact list is indicated within parentheses. Words listed without parentheses appeared once in the list.

&)

Dardanelles.

in (9) was (7)  one (6) a(3) at (3)
french  bases reconstruction  only such
have well researchers openness  retreat
iron class surrender order thirty
largest  close budget part time
level even sentence project trained
winner life archaeological 9 during

The number of times each word was found in the

(S) Pendant la Premiere Guerre mondiale, mobilisé dans les troupes de marine, il combat dans les Balkans et les

(R) During the First World War, conscripted into the navy, he fought in the Balkans and the Dardanelles.
(B) During World War I, mobilized in troops navy, it fight in the Balkans and Dardanelles.
(C) During World War I, mobilized troops in the navy, he fight in the Balkans and the Dardanelles.

(2)  (S) AI'age de 15 ans, elle a été choisie par la troupe d’opéra de I’armée chinoise pour étre formée au chant.
(R) At the age of 15, she was selected by the Chinese Armys Operatic troupe to be trained as a singer.
(B) In the age of 15 years, she was chosen by the pool of opera of the Chinese military to be formed the call.
(C) In the age of 15 years, she was chosen by the pool of opera of the Chinese military to be trained to call.
(3) (S) La figure de la Corriveau n’a cessé, depuis, d’inspirer romans, chansons et pieces de théatre et d’alimenter les

controverses.

(R) The figure of Corriveau still inspires novels, songs and plays and is the subject of argument.
(B) The perceived the Corriveau has stopped, since, inspire novels, songs and parts of theater and fuel controversies.
(C) The figure of the Corriveau has stopped, since, inspire novels, songs and parts of theater and fuel controversies.

Table 8: Three examples of impact words in test translations. Abbreviations: S - source sentence, R -
reference translation, B - baseline translation, C - structured topic cache translation

tation can be successfully used in these models.

8 Changes made by the cache models

Here we examine the kinds of changes made by
the cache models which have lead to the im-
proved BLEU scores. We focus on the the topic
cache since its changes are straightforward to
compute compared to consistency. We analyze
the struct-topic cache translations on automati-
cally segmented documents as that provided the
best performance overall.

To do this analysis, we define the notion of an
impact word. An impact word is one which satis-
fies three conditions: (i) the word is not present in
the out-of-domain translation of a sentence, (ii) it
is present in the translation produced by the topic
cache model (iii) the word matches the reference
translation for the sentence.

These impact words provide a simple (albeit ap-
proximate) way to analyze useful changes made
by the topic cache over the out-of-domain system.

On the test corpus (30 documents), 231 impact
word tokens were found and they come from 70
unique word types. So topic cache model signif-
icantly affects translation decisions and over 200
useful word changes were made in the 30 doc-
uments. The impact word types and counts are
shown in Table 7. Several of these changes relate
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to function words and pronouns. For example, the
pronoun ‘he’ and the past tense verb ‘was’ were
correctly introduced in several sentences such as
Example (1) in Table 8. A content word change is
indicated in examples (2) and (3). These changes
appear to be appropriate for biographies.

9 Conclusions

We have introduced a new corpus of biography
translations which we propose as suitable for ex-
amining discourse-motivated SMT methods. We
showed that cache-based techniques which also
take the topic organization into account, make
more appropriate lexical choices for the domain.
In future work, we plan to explore how other do-
main similarities such as sentence syntax and en-
tity reference, for example biographies have a cen-
tral entity (person), can be used to improve transla-
tion performance. We also plan to take advantage
of recent methods to do document level decoding
(Hardmeier et al., 2012).
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Regularized Structured Perceptron:
A Case Study on Chinese Word Segmentation, POS Tagging and Parsing
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Abstract

Structured perceptron becomes popular
for various NLP tasks such as tagging and
parsing. Practical studies on NLP did not
pay much attention to its regularization. In
this paper, we study three simple but effec-
tive task-independent regularization meth-
ods: (1) one is to average weights of dif-
ferent trained models to reduce the bias
caused by the specific order of the train-
ing examples; (2) one is to add penalty
term to the loss function; (3) and one is
to randomly corrupt the data flow during
training which is called dropout in the neu-
ral network. Experiments are conducted
on three NLP tasks, namely Chinese word
segmentation, part-of-speech tagging and
dependency parsing. Applying proper reg-
ularization methods or their combinations,
the error reductions with respect to the av-
eraged perceptron for some of these tasks
can be up to 10%.

1 Introduction

Structured perceptron is a linear classification al-
gorithm. It is used for word segmentation (Zhang
and Clark, 2011), POS (part-of-speech) tagging
(Collins, 2002), syntactical parsing (Collins and
Roark, 2004), semantical parsing (Zettlemoyer
and Collins, 2009) and other NLP tasks.

The averaged perceptron or the voted percep-
tron (Collins, 2002) is proposed for better gener-
alization. Early update (Collins and Roark, 2004;
Huang et al., 2012) is used for inexact decod-
ing algorithms such as the beam search. Dis-
tributed training (McDonald et al., 2010) and the
minibatch and parallelization method (Zhao and

Jinsong Su
Xiamen University
Fujian, P.R. China

jssu@xmu.edu.cn

Changle Zhou
Xiamen University
Fujian, P.R. China

dozero@xmu.edu.cn

Huang, 2013) are recently proposed. Some other
related work focuses on the task-specified feature
engineering.

Regularization is to improve the ability of
generalization and avoid over-fitting for machine
learning algorithms including online learning al-
gorithms (Do et al., 2009; Xiao, 2010). But prac-
tical studies on NLP did not pay much attention to
the regularization of the structured perceptron. As
a result, for some tasks the model learned using
perceptron algorithm is not as good as the model
learned using regularized condition random field.

In this paper, we treat the perceptron algorithm
as a special case of the stochastic gradient de-
scent (SGD) algorithm and study three kinds of
simple but effective task-independent regulariza-
tion methods that can be applied. The averaging
method is to average the weight vectors of differ-
ent models. We propose a “shuffle-and-average”
method to reduce the bias caused by the specific
order of the training examples. The traditional
penalty method is to add penalty term to the loss
function. The dropout method is to randomly cor-
rupt the data flow during training. We show that
this dropout method originally used in neural net-
work also helps the structured perceptron.

In Section 2, we describe the perceptron algo-
rithm as a special case of the stochastic gradient
descent algorithm. Then we discuss three kinds of
regularization methods for structured perceptron
in Section 3, 4 and 5, respectively. Experiments
conducted in Section 6 shows that these regular-
ization methods and their combinations improve
performances of NLP tasks such as Chinese word
segmentation, POS tagging and dependency pars-
ing. Applying proper regularization methods, the
error reductions of these NLP tasks can be up to
10%. We finally conclude this work in Section 7.
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input layer  hidden layer
x output layer
(I)(XaY) w - (I)(XaY)
Y

Figure 1: A structured perceptron can be seen as a
multi-layer feed-forward neural network.

2 Structured Perceptron

We treat the structured perceptron architecture as
a multi-layer feed-forward neural network as in
Figure 1 and treat the perceptron algorithm as a
special case of the stochastic gradient descent al-
gorithm in order to describe all the regularization
methods.

The network of the structured perceptron has
three layers. The input vector x and output vector
y of the structured classification task are concate-
nated as the input layer. The hidden layer is the
feature vector ®(x,y). The connections between
the input layer and the hidden layer are usually
hand-crafted and fixed during training and predict-
ing. And the output layer of the network is a scalar
w - ®(x,y) which is used to evaluate the matching
of the vector x and y.

Besides the common process to calculate the
output layer given the input layer, there is a pro-
cess called decoding, which is to find a vector z to
maximum the activation of the output layer:

(1

z; = argmax w - O(x;,z)
z
By carefully designing the feature vector, the de-
coding can be efficiently performed using dynamic
programming. Beam search is also commonly
used for the decoding of syntactical parsing tasks.
In the predicting precess, the vector z is the
structured output corresponding to X. In the train-
ing precess, what we expect is that for every input
X;, the vector z; that maximums the activation of
the output layer is exactly the gold standard output
Yi-
We define the loss function as the sum of the
margins of the whole training data:

L(w) = Z {w-®(x4,2;) —w- P(x;,y:)}

2)
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where

The unconstrained optimization problem of the
training process is

C))

arg min £(w)

The loss function is not convex but calculating
the derivative is easy. One of the algorithms to
solve this optimization problem is SGD. Here we
use the minibatch with size of 1, which means in
every iteration we use only one training example
to approximate the loss function and the gradient
to update the weight vector:

o
T, 3W W(t)

~
~

WD) () w® — pAg®

(&)
where w(®) is the weight vector after ¢ updates.
Note that in this case, the learning rate 1 can be set
to an arbitrary positive real number. In the percep-
tron algorithm commonly used in NLP (Collins,
2002) , n is not changed respect to t. We fix 7 to
be 1 in this paper without loss of generality.

3 Averaging
3.1 Averaged Perceptron

Averaging the weight vectors in the learning pro-
cess is one of the most popular regularization
techniques of the structured perceptron (Collins,
2002). And it is also the only used regulariza-
tion technique for many practical studies on NLP
(Jiang et al., 2009; Huang and Sagae, 2010).
Suppose the learning algorithm stopped after T’
updates. The final weight vector is calculated as:

1 T
W= b3 Wl
t=1

The intuition might be that the learned weight
vector is dependent on the order of the training ex-
amples. The final vector w() may be more ap-
propriate for the last few training examples than
the previous ones. The averaging method is used
to avoid such tendency. Similar treatment is used
in other sequential algorithm such as the Markov
chain Monte Carlo sampling method.

Since this regularization technique is widely
used and tested, it is used for all the models in
the experiments of this paper. Any other regular-
ization methods are applied to this basic averaged
perceptron.

(6)



3.2 Shuffle and Average

As we has mentioned that the learned weight vec-
tor is strongly dependent on the order of the train-
ing examples, randomly shuffling the training ex-
amples results in different weight vectors. Based
on such observation, we training different weight
vectors using the same training examples with dif-
ferent orders, and average them to get the final
weight vector. We use this method to further min-
imize the side effect caused by this online algo-
rithm.

Suppose we shuffle and train n different weight
vectors wm, ... ,W["], the j-th component of the
final vector can be simply calculated as

Zn 2]

i=1 W,

(7)

w; =
I n

Note that generally these models do not share
the same feature set. Features may be used in one
model but not in another one. When wgl] =0, it
does not imply that this feature has no effect on
this problem. It only implies that this feature does
not have chances to be tested. We propose a modi-
fied equation to only average the non-zero compo-
nents:

®)
-, n}

This equation makes the low-frequency features
more important in the final model.

4 Penalty

Adding penalty term to the loss function is a com-
mon and traditional regularization method to avoid
over-fitting. It is widely used for the optimization
problems of logistic regression, support vector
machine, conditional random field and other mod-
els. Penalty terms for probabilistic models can be
interpreted as a prior over the weights (Chen and
Rosenfeld, 1999). It is also called “weight decay”
in artificial neural network (Moody et al., 1995).
The use of the penalty term is to prevent the com-
ponents of the weight vector to become too large.

In Section 2 we have modeled the perceptron al-
gorithm as an SGD algorithm with an explicit loss
function, the additional penalty term is therefore
easy to be employed.
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4.1 L2-norm penalty

We can add a square of the L2-norm of the weight
vector as the penalty term to the loss function as

A2

> (&)

£=w-3 A%+ 22w}

where A\ is a hyper-parameter to determine the
strength of the penalty.
In the SGD algorithm, the update method of the
weight vector is thus
wtD — (1 —pr)w® —pAd®  (10)
The term (1 — n)\2) is used to decay the weight in

every updates. This forces the weights to be close
to zero.

4.2 L1-norm penalty

Another commonly used penalty term is the L1-
norm of the weight vector. This kinds of terms
usually results in sparse weight vector. Since the
averaged perceptron is used, the final averaged
weight vector will not be sparse.

The loss function using the L1-nrom penalty is

L=w-> A+ \|wl (11)

where \; is the hyper-parameter to determine the
strength of the penalty.

The derivative of the penalty term is discontin-
uous. We update the weights as

max{0, ]wl(t)] —nA1}

(t+1)
)

w;

0 — pAg®
(12)

This ensures that the weight decay will not change
the sign of the weight.

An modified version of the L1 penalty for the
online learning is the cumulative L1 penalty (Tsu-
ruoka et al.,, 2009), which is used to make the
stochastic gradient of the penalty term more close
to the true gradient. The update is divided into two
steps. In the first step, the weight vector is updated
according to the loss function without the penalty
term

!

1
w§t+2) - wz('t) _ 77A¢§t) (13)

And the cumulative penalty is calculated sepa-
rately
(t)

(t+3)

c; ¢’ +n\ (14)



In the second step, |w;| and ¢; are compared and
at most one of them is non-zero before the next
update

m e min{lof LAY as)
C§t+1) . ;Z(t+;) o (17)
S Dropout

Dropout (Hinton et al., 2012) is originally a regu-
larization method used for the artificial neural net-
work. It corrupts one or more layers of a feed-
forward network during training, by randomly
omitting some of the neurons. If the input layer
is corrupted during the training of an autoencoder,
the model is called denoising autoencoder (Vin-
cent et al., 2008).

The reason why such treatment can regularize
the parameters are explained in different ways.
Hinton et al. (2012) argued that the final model
is an average of a large number of models and the
dropout forces the model to learn good features
which are less co-adapted. Vincent et al. (2008)
argued that by using dropout of the input layer, the
model can learn how to deal with examples out-
side the low-dimensional manifold that the train-
ing data concentrate.

Models not so deep such as the structured per-
ceptron may also benefit from this idea. Follow-
ing the dropout method used in neural network, we
give the similar method for structured perceptron.

5.1 Input Layer

We can perform dropout for structured perceptron
by corrupting the input layer in Figure 1. Since
we concern that what y exactly is, we only corrupt
x. The components of the corrupted vector x is
calculated as

(13)

i’i = Iin;
where n; ~ Bern(p) obey a Binomial distribution
with the hyper-parameter p.

During training, the decoding processing with
the corrupted input is

(19)

z = argmaxw - (X, z)
z

The x in the loss function is also substituted with
the corrupted version x.
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Note that the corruption decreases the number
of non-zero components of the feature vector @,
which makes the decoding algorithm harder to find
the gold standard y.

For NLP tasks, the input vector x could be a
sequence of tokens (words, POS tags, etc.). The
corruption substitutes some of the tokens with a
special token null. Any features contain such to-
ken will be omitted (This is also the case for the
out-of-vocabulary words during predicting). So
the dropout of x in NLP during training can be
explained as to randomly mask some of the input
tokens. The decoder algorithm needs to find out
the correct answer even if some parts of the input
are unseen. This harder situation could force the
learning algorithm to learn better models.

5.2 Hidden Layer

The dropout can also be performed at the hidden
layer. Likewise, the components of the corrupted
feature vector @ is calculated as
¢i = dim; (20)
where m; ~ Bern(q) obey a Binomial distribution
with the hyper-parameter q.
The @ in the decoding processing during train-
ing and the loss function is substituted with ®.

6 Experiments

In this section, we first introduce three NLP tasks
using structured perceptron namely Chinese word
segmentation, POS tagging and dependency pars-
ing. Then we investigate the effects of regular-
ization methods for structured perceptron mainly
on the development set of character-based Chinese
word segmentation. Finally, we compare the final
performances on the test sets of these three tasks
using regularization methods with related work.

6.1 Tasks
6.1.1 Chinese Word Segmentation

A Chinese word consists of one or more Chinese
characters. But there is no spaces in the sentences
to indicating words. Chinese word segmentation
is the task to segment words in the sentence.

We use a character-based Chinese word seg-
mentation model as the baseline. Like part-of-
speech tagging which is to assign POS tags to
words sequence, character-based Chinese word
segmentation is to assign tags to character se-
quence. The tag set of four tags is commonly used:



Type Templates
Unigram (-1, %), (T4, ¥i)» (Tiv1, Yi)
Bigram (%2, i1, ¥i), (Ti—1, Ti, Yi)
(@i, Tiv1, Yi)s (Tit1, Tiv2, Yi)
transition (Yi—1,Yi)
Table 1: Feature templates for the character-

based Chinese word segmentation model and the
joint Chinese word segmentation and POS tagging
model.

tag S indicates that the character forms a single-
character words; tag B / E indicates that the char-
acter is at the beginning / end of a multi-character
words; tag M indicates that the character is in the
middle of a multi-character words.

For example, if the tag sequence for the input

x = HIFRHE K 21
is
y = BMESBE, (22)
the corresponding segmentation result is
HIRER B ER. (23)

Table 1 shows the set of the feature templates
which is a subset of some related work (Ng and
Low, 2004; Jiang et al., 2009) .

Following Sun (2011), we split the Chinese
treebank 5 into training set, development set and
test set. F-measure (Emerson, 2005) is used as the
measurement of the performance.

6.1.2 Part-of-Speech Tagging

The second task is joint Chinese word segmenta-
tion and POS tagging. This can also be modeled
as a character-based sequence labeling task.

The tag set is a Cartesian product of the tag set
for Chinese word segmentation and the set of POS
tags. For example, the tag B-NN indicates the
character is the first character of a multi-character
noun. The tag sequence

y = B-NR M-NR E-NR S-DEG B-NN E-NN,
(24)
for the input sentence in Equation (21) results in

351XEB_NR F_DEG E-K_NN. (25)

The same feature templates shown in Table 1
are used for joint Chinese word segmentation and
POS tagging.
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Also, we use the same training set, development
set and test set based on CTB5 corpus as the Chi-
nese word segmentation task. F-measure for joint
Chinese word segmentation and POS tagging is
used as the measurement of the performance.

6.1.3 Dependency Parsing

The syntactical parsing tasks are different with
previously introduced tagging tasks. To investi-
gate the effects of regularization methods on the
parsing tasks, we fully re-implement the linear-
time incremental shift-reduce dependency parser
by Huang and Sagae (2010). The structure per-
ceptron is used to train such model. The model
totally employs 28 feature templates proposed by
Huang and Sagae (2010).

Since the search space for parsing tasks is quite
larger than the search space for tagging tasks, Ex-
act search algorithms such as dynamic program-
ming can not be used. Besides, beam search with
state merging is used for decoding. The early up-
date strategy (Collins and Roark, 2004) is also em-
ployed.

In order to compare to the related work, un-
like the Chinese word segmentation and the POS
tagging task, we split the CTBS5 corpus follow-
ing Zhang et al.(2008). Two types of accuracies
are used to measure the performances, namely
word and complete match (excluding punctua-
tions) (Huang and Sagae, 2010).

6.2 Averaging

First, we investigate the effect of averaging tech-
niques for regularization. Figure 2 shows the in-
fluence of the number of the averaged models by
using the “shuffle-and-average” method described
in section 3.2. The performances of the Chinese
word segmentation, POS tagging and parsing tasks
are all increased by averaging models trained with
the same training data with different orders. The
“shuffle-and-average” method is effective to re-
duce the bias caused by the specific order of the
training examples.

For the Chinese word segmentation task which
is arelatively simple task, averaging about five dif-
ferent models can achieve the best effect; whereas
for POS tagging and parsing, averaging more
models will continually increase the performance
even when the number of models approaches 10.

The dotted lines in Figure 2 indicate the perfor-
mances by using Equation (7) for model averag-
ing. The solid lines indicate the performances by



0.950 — —— 0.938 85.5 ——1—1— —
0949 ...} i > 854 L i R
g g 0-936 E 85.3L AT
> 0,948 |- = 3 SR
§ § 0.934 g 852 o T |
g 0947 [ £o0032L A ion i o 85.1} P S S
[ . Shuffle : : [ +—: Shuffle : : H Shuffle :
0.946 /" e ] i o S asol - ORI
+-+ Shuffle (average all} 0.930 | -+ Shuffle {average all) - = : i+ Shuffle (average all)
0.945 84.9

L 1 1 L 1 1 1 1
1234567382910
number of averaged models

(a) Chinese word segmentation

1 1 1 1 1 1 L 1
1234586782910
number of averaged models

(b) POS tagging

1 1 1 1 L L 1 1
123456782910
number of averaged models

(c) Dependency parsing

Figure 2: The influence of the number of the averaged models using the “shuffle-and-average” method
for (a) Chinese word segmentation, (b) POS tagging and (c) dependency parsing. “Shuffle” means to
only average the non-zero weights (Equation (8)), while “Shuffle (average all)” means to average all

weights (Equation (7)).

using Equation (8) for model averaging. Accord-
ing to these three different tasks, Equation (8) al-
ways performs better than Equation (7). We will
use Equation (8) denoted as “Shuffle” for the rest
of the experiments.

6.3 Penalty

Here we investigate the penalty techniques for reg-
ularization only using the character-based Chinese
word segmentation task.

Figure 3 shows the effect of adding L1-norm
and L2-norm penalty terms to the loss function.

With appropriate hyper-parameters, the perfor-
mances are increased. According to the per-
formances, adding L2 penalty is slightly better
than adding L1 penalty or adding cumulative L1
penalty.

We then combine the “shuffle-and-average”
method with the penalty methods. The perfor-
mances (solid lines in Figure 3) are further im-
proved and are better than those of models that
only use one regularization method.

6.4 Dropout

We also investigate the dropout method for regu-
larization using the character-based Chinese word
segmentation task.

Figure 4 shows the effect of the dropout method
(“dropout” for the input layer and “dropout (®)”
for the hidden layer) and the combination of the
dropout and “shuffle-and-average” method (solid
line). We observed that the dropout for the hid-
den layer is not effective for structured perceptron.
This may caused by that the connections between
the input layer and the hidden layer are fixed dur-
ing training. Neurons in the hidden layer can not
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Figure 4: Influences of the hyper-parameter p (for
the input layer, denoted as “dropout”) or ¢ (for
the hidden layer, denoted as “dropout ($)”) for the
dropout method.

changes the weights to learn different representa-
tions for the input layer. On the other hand, the
dropout for the input layer improves the perfor-
mance. Combining the dropout and the “shuffle-
and-average” method, the performance is further
improved.

Figure 5 shows the effect of the combination of
the three regularization methods. We see that no
matter what other regularization methods are al-
ready used, adding “shuffle-and-average” method
can always improve the performance. The effects
of the penalty method and the dropout method
have some overlap, since combining these two
method does not result in a significant improve-
ment of the performance.

6.5 Final Results

6.5.1 Chinese Word Segmentation
Table 2 shows the final results of the character-
based Chinese word segmentation task on the test
set of the CTBS5 corpus.

Structure perceptron with feature templates in
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Figure 5: The combination of these three regular-
ization methods.

Table 1 is used. We use the “shuffle-and-average”
(5 models), the L2 penalty method (Ay = 1074,
the dropout method (p = 3%) and their combina-
tions to regularize the structured perceptron.

To compare with the perceptron algorithm, we
use the conditional random field model (CRF)
with the same feature templates in Table 1 to train
the model parameters. The toolkit CRF++' with
the L2-norm penalty is used to train the weights.
The hyper-parameter C' = 20 is tuned using the
development set.

Jiang et al. (2009) proposed a character-based
model employing similar feature templates using
averaged perceptron. The feature templates are
following Ng and Low (2004). Zhang and Clark
(2011) proposed a word-based model employing
both character-based features and more sophis-
ticated word-based features using also averaged
perceptron. There are other related results (Jiang
et al., 2012) of open test including the final result
of Jiang et al. (2009). Since their models used
extra resources, they are not comparable with the

'http://crfpp.googlecode.com/svn/trunk/doc/index.html
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‘ sf
(Jiang et al., 2009) 0.9735
(Zhang and Clark, 2011) 0.9750f
CRF++ (C' = 20) 0.9742
Averaged Percetron 0.9734
+ Shuffle 0.9755
+12 0.9736
+ L2 + Shuffle 0.9772
+ Dropout 0.9741
+ Dropout+ Shuffle 0.9765
+ L2 + Dropout 0.9749
+ L2 + Dropout+ Shuffle | 0.9771

Table 2: Final results of the character-based Chi-
nese word segmentation task on CTBS5. { This re-
sult is read from a figure in that paper.

‘ sf
Word-based model 0.9758
+ Shuffle 0.9787
+ L2 + Shuffle 0.9791
+ L2 + Dropout+ Shuffie | 0.9791

Table 3: Final results of the word-based Chinese
word segmentation task on CTBS.

results in this paper.

The results in Table 2 shows that with proper
regularization methods, the models trained using
perceptron algorithm can outperform CRF models
with the same feature templates and other models
with more sophisticated features trained using the
averaged perceptron without other regularization
methods.

We further re-implemented a word-based Chi-
nese word segmentation model with the feature
templates following Zhang et al. (2012), which



| sf if

(Jiang et al., 2008) 0.9785 | 0.9341
(Kruengkrai et al., 2009) 0.9787 | 0.9367
(Zhang and Clark, 2010) 0.9778 | 0.9367
(Sun, 2011) 0.9817 | 0.9402
Character-based model 0.9779 | 0.9336
+ Shuffle 0.9802 | 0.9375

+ Dropout 0.9789 | 0.9361

+ Dropout+ Shuffle 0.9809 | 0.9407

+ word-based re-ranking | 0.9813 | 0.9438

Table 4: Final results of the POS tagging task on
CTBS.

‘ word ‘ compl.
(Huang and Sagae, 2010) | 85.20 | 33.72

our re-implementation 85.22 | 34.15
+ Shuffle 85.65 | 34.52
+ Dropout 85.32 | 34.04
+ Dropout+ Shuffle 85.71 | 34.57

Table 5: Final results of the dependency parsing
task on CTBS.

is similar with the model proposed by Zhang and
Clark (2011). Beam search with early-update is
used for decoding instead of dynamic program-
ming. The results with different regularization
methods are shown in Figure 3. These regulariza-
tion methods show similar characteristics for the
word-based model.

6.5.2 POS Tagging

The results of the POS tagging models on the
CTBS corpus are shown in Table 4. Structure per-
ceptron with feature templates in Table 1 is used.
The F-measures for word segmentation (sf) and
for joint word segmentation and POS tagging (jf)
are listed.

We use the “shuffle-and-average” (10 models),
the dropout method (p = 5%) and their combina-
tion to regularize the structured perceptron.

Jiang et al. (2008) used a character-based
model using perceptron for POS tagging and a
log-linear model for re-ranking. Kruengkrai et
al. (2009) proposed a hybrid model including
character-based and word-based features. Zhang
and Clark (2010) proposed a word-based model
using perceptron. Sun (2011) proposed a frame-
work based on stacked learning consisting of four
sub-models. For the closed test, this model has
the best performance on the CTBS5 corpus to our
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knowledge. Other results (Wang et al., 2011; Sun
and Wan, 2012) for the open test are not listed
since they are not comparable with the results in
this paper.

If we define the error rate as 1 — jf, the error re-
duction by applying regularization methods for the
character-based model is more than 10%. Com-
paring to the related work, the character-based
model that we used is quite simple. But using
the regularization methods discussed in this paper,
it provides a comparable performance to the best
model in the literature.

6.5.3 Dependency Parsing

Table 5 shows the final results of the dependency
parsing task on the CTBS5 corpus. We use the
“shuffle-and-average” (10 models), the dropout
method (p = 5% only for the words in the input)
and their combination to regularize the structured
perceptron based on Huang and Sagae’s (2010).

The performance of the parsing model is also
improved by using more regularization methods,
although the improvement is not as remarkable
as those for tagging tasks. For the parsing tasks,
there are many other factors that impact the per-
formance.

7 Conclusion

The “shuffle-and-average” method can effectively
reduce the bias caused by the specific order of the
training examples. It can improve the performance
even if some other regularization methods are ap-
plied.

When we treat the perceptron algorithm as a
special case of the SGD algorithm, the traditional
penalty methods can be applied. And our observa-
tion is that L2 penalty is better than L1 penalty.

The dropout method is derived from the neural
network. Corrupting the input during training im-
proves the ability of generalization. The effects of
the penalty method and the dropout method have
some overlap.

Experiments showed that these regularization
methods help different NLP tasks such as Chinese
word segmentation, POS tagging and dependency
parsing. Applying proper regularization methods,
the error reductions for some of these NLP tasks
can be up to 10%. We believe that these meth-
ods can also help other models which are based on
structured perceptron.
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Abstract

Automatically inferring new relations
from already existing ones is a way to
improve the quality of a lexical network
by relation densification and error de-
tection. In this paper, we devise such
an approach for the JeuxDeMots lexi-
cal network, which is a freely avalaible
lexical network for French. We first
present deduction (generic to specific)
and induction (specific to generic) which
are two inference schemes ontologically
founded. We then propose abduction
as a third form of inference scheme,
which exploits examples similar to a tar-
get term.

1 Introduction

Building resources for Computational Linguis-
tics (CL) is of crucial interest. Most of exist-
ing lexical-semantic networks have been built
by hand (like for instance WordNet (Miller et
al., 1990)) and, despite that tools are generally
designed for consistency checking, the task re-
mains time consuming and costly. Fully auto-
mated approaches are generally limited to term
co-occurrences as extracting precise semantic
relations between terms from corpora remains
really difficult. Meanwhile, crowdsourcing ap-
proaches are flowering in CL especially with
the advent of Amazon Mechanical Turk or in a
broader scope Wikipedia and Wiktionary, to cite
the most well-known examples. WordNet is such
a lexical network, constructed by hand at great
cost, based on synsets which can be roughly
considered as concepts (Fellbaum, 1988). Eu-
roWordnet (Vossen., 1998) a multilingual ver-
sion of WordNet and WOLF (Sagot., 2008) a

mathieu.lafourcade@lirmm. fr

alain.joubert@lirmm.fr

French version of WordNet, were built by auto-
mated crossing of WordNet and other lexical re-
sources along with some manual checking. Nav-
igli (2010) constructed automatically BabelNet a
large multilingual lexical network from term co-
occurrences in Wikipedia.

A lexical-semantic network can contain lem-
mas, word forms and multi-word expressions as
entry points (nodes) along with word meanings
and concepts. The idea itself of word senses in
the lexicographic tradition may be debatable in
the context of resources for semantic analysis,
and we generally prefer to consider word us-
ages. A given polysemous word, as identified
by locutors, has several usages that might dif-
fer substantially from word senses as classically
defined. A given usage can also in turn have
several deeper refinements and the whole set
of usages can take the form of a decision tree.
For example, frigate can be a bird or a ship. A
frigate>boat can be distinguished as a modern
ship with missiles and radar or an ancient vessel
with sails. In the context of a collaborative con-
struction, such a lexical resource should be con-
sidered as being constantly evolving and a gen-
eral rule of thumb is to have no definite certi-
tude about the state of an entry. For a polysemic
term, some refinements might be just missing at
a given time notwithstanding evolution of lan-
guage which might be very fast, especially in
technical domains. There is no way (unless by
inspection) to know if a given entry refinements
are fully completed, and even if this question is
really relevant.

The building of a collaborative lexical network
(or, in all generality, any similar resource) can
be devised according to two broad strategies.
First, it can be designed as a contributive system
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like Wikipedia where people willingly add and
complete entries (like for Wiktionary). Second,
contributions can be made indirectly thanks to
games (better known as GWAP (vonAhn, 2008))
and in this case players do not need to be aware
that while playing they are helping building a
lexical resource. In any case, the built lexical
network is not free of errors which are corrected
along their discovery. Thus, a large number of
obvious relations are not contained in the lexi-
cal network but are indeed necessary for a high
quality resources usable in various NLP applica-
tions and notably semantic analysis. For exam-
ple, contributors seldom indicate that a particu-
lar bird type can fly, as it is considered as an obvi-
ous generality. Only notable facts which are not
easily deductible are naturally contributed. Well
known exceptions are also generally contributed

and take the form of a negative weight and anno-

agent:—100 .
ostrich

tated as such (for example, fly
[exception: bird]).

In order to consolidate the lexical network,
we adopt a strategy based on a simple in-
ference mechanism to propose new relations
from those already existing. The approach is
strictly endogenous (i.e. self-contained) as it
doesn’t rely on any other external resources. In-
ferred relations are submitted either to contrib-
utors for voting or to experts for direct valida-
tion/invalidation. A large percentage of the in-
ferred relations has been found to be correct
however, a non-negligible part of them are found
to be wrong and understanding why is both in-
teresting and useful. The explanation process
can be viewed as a reconciliation between the in-
ference engine and contributors who are guided
through a dialog to explain why they found
the considered relation incorrect. The possible
causes for a wrong inferred relation may come
from three possible origins: false premises that
were used by the inference engine, exception or
confusion due to some polysemy.

In (Sajous et al., 2013) an endogenous enrich-
ment of Wiktionary is done thanks to a crowd-
sourcing tool. A quite similar approach of us-
ing crowdsourcing has been considered by (Ze-
ichner, 2012) for evaluating inference rules that
are discovered from texts. In (Krachina, 2006),
some specific inference methods are conducted
on text with the help of an ontology. Simi-
larly, (Besnard, 2008) capture explanation with
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ontology-based inference. OntoLearn (Velardi,
2006) is a system that automatically build on-
tologies of specific domains from texts and also
makes use of inferences. There have been
also researchs on taxonomy induction based on
WordNet (Snow, 2006). Although extensive work
on inference from texts or handcrafted resources
has been done, almost none endogenously on
lexical network built by the crowds. Most prob-
ably the main reason of that situation is the lack
of such specific resources.

In this article, we first present the principles
behind the lexical network construction with
crowdsourcing and games with a purpose (also
know as human-based computation games) and
illustrated them with the JeuxDeMots (JDM)
project. Then, we present the outline of an elici-
tation engine based on an inference engine using
deduction, induction and especially abduction
schemes. An experimentation is then presented.

2 Crowdsourced Lexical Networks

For validating our approach, we used the JDM
lexical network, which is constructed thanks to
a set of associatory games (Lafourcade, 2007)
and has been made freely available by its au-
thors. There is an increasing trend of using on-
line GWAPs (game with a purpose (Thaler et
al.,, 2011)) method for feeding such resources.
Beside manual or automated strategies, con-
tributive approaches are flowering and becom-
ing more and more popular as they are both
cheap to set up and efficient in quality.

The network is composed of terms (as ver-
tices) and typed relations (as links between
vertices) with weight. It contains terms and
possible refinements. There are more than 50
types of relations, that range from ontological
(hypernym, hyponym), to lexical-semantic
(synonym, antonym) and to semantic role
(agent, patient, instrument). The weight of a
relation is interpreted as a strength, but not
directly as a probability of being valid. The JDM
network is not an ontology with some clean
hierarchy of concepts or terms. A given term
can have a substantial set of hypernyms that
covers a large part of the ontological chain to
upper concepts. For example, hypernym(cat) =
{feline, mammal, living being, pet, vertebrate, ...}.
Heavier weights associated to relations are those
felt by users as being the most relevant. The



1st January 2014, there are more than 6 700 000
relations and roughly 310 000 lexical items in the
JDM lexical network (according to the figures
given by the game site: http://jeuxdemots.org).

To our knowledge, there is no other existing
freely available crowdsourced lexical-network,
especially with weighted relations, thus enabling
strongly heuristic methods.

3 Inferring with Deduction & Induction

Adding new relations to the JDM lexical network
may rely on two components: (a) an inference
engine and (b) a reconciliator. The inference en-
gine proposes relations as a contributor to be
validated by other human contributors or ex-
perts. In case of invalidation of an inferred re-
lation, the reconciliator is invoked to try to as-
sess why the inferred relation was found wrong.
Elicitation here should be understood as the pro-
cess to transform some implicit knowledge of the
user into explicit relations in the lexical network.
The core ideas about inferences in our engine are
the following:

e inferring is to derive new premises (as
relations between terms) from previously
known premises, which are existing rela-
tions;

e candidate inferences may be logically
blocked on the basis of the presence or the
absence of some other relations;

¢ candidate inferences can be filtered out on
the basis of a strength evaluation.

3.1 Deduction Scheme

Inferring by deduction is a top-down scheme
based on the transitivity of the relation is-a (hy-
pernym). If a term A is a kind of B and B holds
some relation R with C, then we can expect that A
holds the same relation type with C. The scheme

can be formally written as follows: 3 A a g

A 3Bt c = alc

For example, shark =4 fish and fish
has—part

P fin, thus we can expect that shark
has—part

fin. The inference engine is applied
on terms having at least one hypernym (the
scheme could not be applied otherwise). Of
course, this scheme is far too naive, especially
considering the resource we are dealing with
and may produce wrong relations (noise). In
effect, the central term B is possibly polysemous

and ways to avoid probably wrong inferences
can be done through a logical blocking: if
there are two distinct meanings for B that hold
respectively the first and the second relation,
then most probably the inferred relation R(3)
is wrong (see figure 1) and hence should be
blocked. Moreover, if one of the premises is
tagged by contributors as true but irrelevant,
then the inference is blocked.

Figure 1: Triangular inference scheme where the
logical blocking based on the polysemy of the
central term B which has two distinct meanings
B; and B is applied. The two arrows without la-
bel are those of word meanings.

It is possible to evaluate a confidence level (on
an open scale) for each produced inference, in a
way that dubious inferences can be eliminated
out through statistical filtering. The weight w
of an inferred relation is the geometric mean of
the weight of the premises (relations (1) and (2)
in Figure 1). If the second premise has a nega-
tive value, the weight is not a number and the
proposal is discarded. As the geometric mean is
less tolerant to small values than the arithmetic
mean, inferences which are not based on two
rather strong relations (premises) are unlikely to

ass. .
Pota £ 0= (wia B2 By x win £ )12
=  w3=(wlx w2)!’?

Inducing a transitive closure over a knowledge
base is not new, but doing so considering word
meanings over a crowdsourced lexical network is
an original approach.

3.2 Induction Scheme

As for the deductive inference, induction ex-
ploits the transitivity of the relation is-a. If a term
Ais akind of B and A holds a relation R with C,
then we might expect that B could hold the same
type of relation with C. More formally we can
write: 3A 24 A 34 R C B¢
has—part

For example, shark lsq fish and shark
has—part ja

jaw, thus we might expect that fish
This scheme is a generalization inference. The
principle is similar to the one applied to the de-
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duction scheme and similarly some logical and
statistical filtering may be undertaken.

Figure 2: (1) and (2) are the premises, and (3)
is the induction proposed for validation. Term
A may be polysemous with meanings holding
premises, thus inducing a probably wrong rela-
tion.

The central term here A, is possibly polyse-
mous (as shown in Figure 2). In that case, we
have the same polysemy issues than with the de-
duction, and the inference may be blocked. The
estimated weight for the induced relation is:

is—a

w(B - C) = (WA = ) | w(A == B)
= w2=(ws3)?uw
3.3 Performing Reconciliation

Inferred relations are presented to the validator
to decide of their status. In case of invalida-
tion, a reconciliation procedure is launched in
order to diagnose the reasons: error in one of the
premises (previously existing relations are false),
exception or confusion due to polysemy (the in-
ference has been made on a polysemous central
term). A dialog is initiated with the user (Cohen’s
kappa of 0.79). To know in which order to pro-
ceed, the reconciliator checks if the weights of
the premises are rather strong or weak.

Errors in the premises. We suppose that rela-
tion (1) (in Figure 1 and 2) has a relatively low
weight. The reconciliation process asks the val-
idator if the relation (1) is true. It sets a negative
weight to this relation if not so that the engine
blocks further inferences. Else, if relation (1) is
true, we ask about relation (2) and proceed as
above if the answer is negative. Otherwise, we
check the other cases (exception, polysemy).

Errors due to Exceptions. For the deduction, in
case we have two trusted relations, the reconcil-
iation process asks the validators if the inferred
relation is a kind of exception relatively to the
term B. If it is the case, the relation is stored in
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the lexical network with a negative weight and
annotated as exception. Relations that are ex-
ceptions do not participate further as premises
for deducing. For the induction, in case we have
two trusted relations, the reconciliator asks the
validators if the relation (A X, C) (which served
as premise) is an exception relatively to the term
B. If it is the case, in addition to storing the false
inferred relation (B LN () in the lexical network
with a negative weight, the relation (A 2, Q) is
annotated as exception. In the induction case,
the exception is a true premise which leads to a
false induced relation. In both cases of induc-
tion and deduction, the exception tag concerns

always the relation (A N C). Once this relation
is annotated as an exception, it will not partic-
ipate as a premise in inferring generalized rela-
tions (bottom-up model) but can still be used in
inducing specified relations (top-down model).

Errors due to Polysemy. If the central term
(B for deduction and A for induction) present-
ing a polysemy is mentioned as polysemous
in the network, the refinement terms term,
termy, ...termy are presented to the validator
so she/he can choose the appropriate one. The
validator can propose new terms as refinements
if she/he is not satisfied with the listed ones (in-
ducing the creation of new appropriate refine-
ments). If there is no meta information indicat-
ing that the term is polysemous, we ask first the
validator if it is indeed the case. After this proce-
dure, new relations will be included in the net-
work with positive values and the inference en-
gine will use them later on as premises.

4 Abductive Inference

The last inferring scheme is built upon abduc-
tion and can be viewed as an example based
strategy. Hence abduction relies on similarity
between terms, which may be formalized in our
context as sharing some outgoing relations be-
tween terms. The abductive inferring layout
supposes that relations held by a term can be
proposed to similar terms. Here, abduction first
selects a set of similar terms to the target term A
which are considered as proper examples. The
outgoing relations from the examples which are
not common with those of A are proposed as
potential relations for A and then presented for
validation/invalidation to users. Unlike induc-
tion and deduction, abduction can be applied on



terms with missing or irrelevant ontological rela-
tions, and can generate ontological relations to
be used afterward by the inference loop.

4.1 Abduction Scheme

We note an outgoing relation as a 3-uple of a type
t, a weight w and a target node n:R; = (t; , w; , n;
y. For example, consider the term A having n
outgoing relations. Amongst these relations, we

have for example:
has—part

ebeak —— A & enest A.
We found 3 examples sharing those two rela-
tions with the term A:

has—part
o beak P2

location
e nest «—— {exp,exy,exs}

We consider these terms as a set of exam-
ples to follow and similar to A. These examples
have also other outgoing relations which are pro-
posed as potential relations for A. For example :

gent—1 carac
e {exy} — colorful

— fly
——  feather

location
i

{exy, exp, exs}

a
e {exy, exp}

has—part
o {exy, exp, exs}

agent—1
e {ex3} —— sing
We infer that A can hold these relations and we
propose them for validation.

t—1 has— t
Ay e A feather?
carac agent—1

e A — colorful? e A — sing?

4.2 Abduction Filtering

Applying the abduction procedure crudely on
the terms generates a lot of waste as a consid-
erable amount of erroneous inferred relations.
Hence, we elaborated a filtering strategy to avoid
having a lot of dubious proposed candidates. For
this purpose, we define two different threshold
pairs. The first threshold pair (0;, w;) is used to
select proper examples x1,x»...x, and is defined
as follows:

01 = max(3,nbogr(A) x 0.1) o))

where nbogr(A) is the number of outgoing rela-
tions from the term A.

w1 = max(25, mwogr(A) x 0.5)

)

where mwogr(A) is the mean of weights of outgo-
ing relations from A. The second threshold pair
(62, wy) is used to select proper candidate re-
lations from outgoing relations of the examples
R},R;..Ry.

8, = max(3,{x;} x 0.1) 3)

where {x;} is the cardinal of the set {x;}.
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w2 = max(25, mwogr({x;}) x 0.5)

4)

where mwogr({x;}) is the mean of weights of out-
going relations from the set of examples x;.

If a term A is sharing at least §; relations, hav-
ing a weight over w;, of the total of the rela-
tions Ry, Ry, ...R, toward terms Ti, Tz, ... T)
with a group of examples x;, xp, ... x,, we admit
that this term has a degree of similarity strong
enough with these examples. After building up
a set of examples on which we can apply our ab-
duction engine we proceed with the second part
of the strategy. If we have at least §, examples x;
holding a specific relation R; weighting over w
with a term By, more formally R;C ={(t, w=wy,
By ), we can suppose that the term A may hold
this same relation R with the same target term

By (figure 3).
R}?

Figure 3: Abduction scheme with examples x;
sharing relations with A and proposing new ab-
ducted relations.

On figure 3, we simplified thresholds to 2
for illustrative purpose. So, to be selected, the
examples x;,X2, X3, ... X, must have at least 2
common relations with A. A relation R]_, 4 must
be hold by at least 2 examples to be proposed as
a potential relation for A. More clearly:

/ !

Ry R /.
»x; — Brandx, — B1=> R :2
12
= propose A — B
R, .
» X, — B> =>R,:1
—> do not propose this relation.

!
> X1 —LBq,xg —q—»Bqandxn —LBq
/.
= Rq :3
R)?
= propose A — By

For statistical filtering, we can act on the



threshold (65, w») as the minimum number of
examples x; being R’ related with a target term
Bg. It is also possible to evaluate the weight of
the abducted relation as following:

R 1 n,p,q
w(A — By) = Y. Vwiwaws (5
nbg  i-1,j=1 k=1
cd J=1

where nb R, is the number of the relations R’

R:
candidate to be proposed and w;=A —— T; &

R; R,
wy=x; — Tj & w3=x; — Bj.

This filtering parameters are adjustable ac-
cording to the user’s requirements, so it can fulfil
various expectations. Constant values in thresh-
old formulas have been determined empirically.

5 Experimentation

We made an experiment with a unique run of
the deduction, induction and abduction engines
over the lexical network. Contributors have ei-
ther accepted or rejected a subset of those can-
didates during the normal course of their activ-
ity. This experiment is for an evaluation pur-
pose only, as actually the system is running iter-
atively along with contributors and games. The
experiment has been done with the parameters
given previously, which are determined empri-
cally as those maximizing recall and precision
(over a very small subset of the JDM lexical net-
work, around 1%o).

5.1 Appliying Deductions and Inductions

We applied the inference engine on around
25 000 randomly selected terms having at least
one hypernym or one hyponym and thus pro-
duced by deduction more than 1 500 000 infer-
ences and produced by induction over 360 000
relation candidates. The threshold for filtering
was set to a weight of 25. This value is relevant
as when a human contributor proposed relation
is validated by experts, it is introduced with a de-
fault weight of 25.

The transitive is-a (Tablel) is not very produc-
tive which might seems surprising at first glance.
In fact, the is-a relation is already quite popu-
lated in the network, and as such, fewer new re-
lations can be inferred. The figures are inverted
for some other relations that are not so well pop-
ulated in the lexical network but still are poten-
tially valid. The has-parts relation and the agent
semantic role (the agent-1 relation) are by far the
most productive types.
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Relation type Proposed %
is-a (xis a type of y) 6.1
has-parts (x is composed of y) 25.1
holonym (y specific of x) 7.2
typical place (of x) 7.2
charac (x as characteristicy) 13.7
agent-1 (xcandoy) 13.3
instr-1 (x instrument of'y) 1.7
patient-1 (x can be'y) 1
place-1 (xlocated in the place y) 9.8
place > action (y can be done in place x) 3.4
object > mater (x is made of y) 0.3

Table 1: Global percentages of relations pro-
posed per type for deduction and induction.

Deduction % valid % error

Relation type rlvt | - rlvnt | prem | excep | pol
is-a 76% 13% 2% 0% 9%
has-parts 65% 8% 4% 13% 10%
holonym 57% 16% 2% 20% 5%
typical place 78% 12% 1% 4% 5%
charac 82% 4% 2% 8% 4%
agent-1 81% 11% 1% 4% 3%
instr-1 62% 21% 1% 10% 6%
patient-1 47% 32% 3% 7% 11%
place-1 72% 12% 2% 10% 6%
place > action | 67% 25% 1% 4% 3%
object > mater | 60% 3% 7% 18% 12%

Table 2: Number of propositions produced by
deduction and ratio of relations found as true or
false.

In tables 2 and 3 are presented some evalu-
ations of the status of the inferences proposed
by the inference engine through deduction and
induction respectively. Inferences are valid for

an overall of 80-90% with around 10% valid but
. . has—parts
not relevant (like for instance dog pro-

ton). We observe that error number in premises
is quite low, and nevertheless errors can be eas-
ily corrected. Of course, not all possible errors
are detected through this process. More inter-
estingly, the reconciliation allows in 5% of the
cases to identify polysemous terms and refine-
ments. Globally false negatives (inferences voted
false while being true) and false positives (infer-
ences voted true while being false) are evaluated
to less than 0.5%.

For the induction process, the relation is-a is
not obvious (a lexical network is not reductible
to an ontology and multiple inheritance is possi-
ble). Result seems about 5% better than for the
deduction process: inferences are valid for an
overall of 80-95%. The error number is very low.
The main difference with the deduction process
is on errors due to polysemy which is lower with
the induction process.




To try to assess a baseline for those results,
we compute the full closure of the lexical net-
work, i.e. we produce iteratively all possible can-
didate relations until no more could be found,
each candidate being considered as correct and
participating to the process. We got more than
6 000 000 relations out of which 45% were wrong
(evaluation on around 1 000 candidates ran-
domly chosen).

5.2 Unleashing the Abductive Engine

We applied systematically the abduction engine
on the lexical items contained in the network,
and produce 629 987 abducted relations out of
which 137 416 were not already existing in the
network. Those 137 416 are candidate relations
concerning 10 889 distinct lexical entries, hence
producing a mean of around 12 new relations
per entry. The distribution of the proposed re-
lations follows a power law, which is not totally
surprising as the relation distribution in the lex-
ical network is by itself governed by such a dis-
tribution. Those figures indicate that abduction
seems to be still quite productive in terms of raw
candidates, even not relying on ontological ex-
isting relations.

The table 4 presents the number of relations
proposed by the inference engine through ab-
duction. The different relation types are var-
iously productive, and this is mainly due to
the number of existing relations and the dis-
tribution of their type. The most productive
relation is has-part and the least one is holo
(holonym/whole). Correct relations represent
around 80% of the relations that have been eval-
uated (around 5.6% of the total number of pro-
duced relations).

One suprising fact, is that the 80% seem to
be quite constant notwithstanding the relation
type, the lowest value being 77% (for instr-1
which is the relation specifying what can be done
with x as an instrument) and the highest being
85% (for action-place which is the relation asso-
ciating for an action the typical locations where
it can occur). The abduction process is not onto-
logically based, and hence does not rely on the
generic (is-a) or specific (hyponym) relations,
but on the contrary on any set of examples that
seems to be alike the target term. The apparent
stability of 80% correct abducted relations may
be a positive consequence of relying on a set of
examples, with a potentially irreductible of 20%
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wrong abducted relations.

Figure 4 presents two types of data: (1) the
percentage of correct abducted relations accord-
ing to the number of examples required to pro-
duce the inference, and (2) the proportion be-
tween the produced relations and the total of
107 416 relations according to the minimal num-
ber of examples allowed. What can clearly be
seen is that when the number of required ex-
amples is increased, the ratio of correct abduc-
tions increases accordingly, but the number of
proposed relations dramaticaly falls. The num-
ber of abductions is an inverse power law of the
number of examples required.

00} %

90
80
70
60
50
40
30
20

% of correct abductions
% of abduction proposed

number of examples
20 22 24

18

Figure 4: Production of abducted relations and
percentage of correctness according to examples
number.

At 3 examples, only 40% of the proposed re-
lations are correct, and with a minimum of 6
examples, more than 3/4 of the proposals are
deemed correct. The balanced F-score is opti-
mal at the intersection of both curves, that is to
say for at least 4 examples.

In figure 5, is showed the mean number of
new relations during an iteration of the infer-
ence engine on abduction. Between two runs,
users and validators are invited to accept or re-
ject abducted relations. This process is done
at their discretion and users may leave some
propostions unvoted. Experiments showed that
users are willing to validate strongly true rela-
tions and invalidate clearly false relations. Rela-
tions whose status may be difficult are more of-
ten left aside than other easiest proposals. The
third run is the most productive with a mean of
almost 20 new abducted relations. After 3 runs,
the abductive process begins to be less produc-
tive by attrition of new possible candidates. No-
tice that the abduction process may, on subse-
quent runs, remove some previsouly done pro-
posals and as such is not monotonous.
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Figure 5: Mean number of new relations rela-
tively to runs in iterated abduction.

5.3 Figures on Reconciliation

Reconciliation in abduction is simpler than in
deduction or induction, as the potential adverse
effect of polysemy is counterbalanced by the
statistical approach implemented by the large
number of examples (when available). The rec-
onciliation in the case of abduction is to deter-
mine if the wrong proposal has been produced
logically considering the support examples. In
97% of the cases, the wrong abducted relation
has been qualified as wrong but logical by vot-

ers or validators. For examples: s Boeing
has—part
747

e pelican gk sing *. All those wrong ab-
ducted relations given as examples above might
have been correct. Considering the examples ex-
ploited to produce the candidates, in those cases
there is no possible way to guess those relations
are wrong. This is even reinforced by the fact that
abduction does not rely on ontological relations,
which in some cases could have avoided wrong
abduction. However, abduction compared to in-
duction and deduction, can be used on terms
that do not hold ontological relations, either they
are missing or they are not relevant (for verbs, in-
stances...).

lace
e whale e lake *

propeller*
t-1

6 Conclusion

We presented some issues in inferring new rela-
tions from existing ones to consolidate a lexical-
semantic network built with games and user
contributions. New inferred relations are stored
to avoid having to infer them again and again dy-
namically. To be able to enhance the network
quality and coverage, we proposed an elicitation
engine based on inferences (induction, deduc-
tion and abduction) and reconciliation. If an in-
ferred relation is proven wrong, a reconciliation
process is conducted in order to identify the un-
derlying cause and solve the problem. The ab-
duction scheme does not rely on the ontologi-
cal relation (is-a) but merely on examples that
are similarly close to the target term. Experi-

ments showed that abduction is quite produc-
tive (compared to deduction and induction), and
is stable in correctness. User evaluation showed
that wrong abducted relations (around 20% of
all abducted relations) are still logically sound
and could not have been dismissed a priori. Ab-
duction can conclusively be considered as a use-
full and efficient tool for relation inference. The
main difficulty relies in setting the various pa-
rameter in order to achieve a fragile tradeoff be-
tween an overrestrictive filter (many false nega-
tives, resulting in information losses) and the op-
posite (many false postive, more human effort).

The elicitation engine we presented through
schemas based on deduction, induction and ab-
duction is an efficient error detector, a polysemy
identifier but also a classifier by abduction. The
actions taken during the reconciliation forbid
an inference proven wrong or exceptional to be
inferred again. Each inference scheme is sup-
ported by the two others, and if a given inference
has been produced by more than one of these
three schemas, it is almost surely correct.

Induction % valid % error
Relation types rlvt | -rlvnt | prem | excep | pol
is-a - - - - -
has-parts 78% 10% 3% 2% 7%
holonyme 68% 17% 2% 8% 5%
typical place 81% 13% 1% 2% 3%
charac 87% 6% 2% 2% 3%
agent-1 84% 12% 1% 2% 1%
instr-1 68% 24% 1% 4% 3%
patient-1 57% 36% 3% 2% 2%
place-1 75% 16% 2% 5% 2%
place > action 67% 28% 1% 3% 1%
object > mater 75% 10% 7% 5% 3%

Table 3: Number of propositions produced by in-
duction and ratio of relations found as true or
false.

Abduction| #prop | #eval (%) | True (%) False (%)
is-a 7141 421 (5.9) 343 (81.5) | 78(18.5)
has-parts | 26517 | 720 (2.7) 578 (80.3) 142 (19.7)
holo 1592 153 (9.6) 124 (81) 29 (18.9)
agent 7739 298 (3.9) 236(79.2) | 62 (20.8)
place 17148 | 304 (1.8) 253(83.2) | 51(16.8)
instr 10790 431 (4) 356 (82.6) 75 (17.4)
charac 7443 319 (4.3) 251 (78.7) | 68 (21.3)
agent-1 18147 | 955 (5.3) 780 (81.7) 175 (18.3)
instr-1 11867 | 886 (7.5) 682 (77) 204 (23)
place-1 14787 1106 (7.5) | 896 (81) 210 (19)
place>act | 8268 270 (3.3) 214 (79.3) | 56 (20.7)
act>place | 5976 170 (2.8) 145 (85.3) 25 (14.7)
Total 137416 | 6033 (4.3) | 4858 (81) 1175 (19)

Table 4: Number of propositions produced by
abduction and ratio of relations found as true or
false.
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1

Previous research has shown that formal ontoloz
gies could be used as a means not only to provid
a uniform and flexible approach to integrating an
describing heterogeneous data sources, but also
support the final user in querying them, thus im-
proving the usability of the integrated system. To
support the wide access to these data sources, it
crucial to develop efficient and user-friendly ways
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Abstract

We present a natural language genera-
tion system which supports the incremen-
tal specification of ontology-based queries
in natural language. Our contribution is
two fold. First, we introduce a chart
based surface realisation algorithm which
supports the kind of incremental process-
ing required by ontology-based querying.
Crucially, this algorithm avoids confusing
the end user by preserving a consistent
ordering of the query elements through-
out the incremental query formulation pro-
cess. Second, we show that grammar
based surface realisation better supports
the generation of fluent, natural sounding
queries than previous template-based ap-
proaches.
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as the composition of an English text describ-
ing the equivalent information needs using natu-
ral language generation techniques. The natural
language generation system that we propose for
Quelo’'s NL interface departs from similar work
(Hallett et al., 2007; Franconi et al., 2010a; Fran-
coni etal., 2011b; Franconi et al., 2010b; Franconi
etal., 2011a) in that it makes use of standard gram-
mar based surface realisation techniques. Our con-
tribution is two fold. First, we introduce a chart
based surface realisation algorithm which supports
the kind of incremental processing required by on-
tology driven query formulation. Crucially, this
algorithm avoids confusing the end user by pre-
serving a consistent ordering of the query ele-
ments throughout the incremental query formu-
lation process. Second, we show that grammar
based surface realisation better supports the gener-
ation of fluent, natural sounding queries than pre-
vious template-based approaches.

The paper is structured as follows. Section 2
discusses related work and situates our approach.
Section 3 describes the task being addressed
ﬁamely, ontology driven query formulation. It in-
troduces the input being handled, the constraints
to . .
unhder which generation operates and the opera-
tions the user may perform to build her query.
In Section 4, we present the generation algo-
fithm used to support the verbalisation of possi-
ble queries. Section 5 reports on an evaluation of
the system with respect to fluency, clarity, cover-

(NL) interface of an ontology-based query tool,
called Queld, which allows the end user to for-
mulate a query without any knowledge either ofs  Rdlated Work

the formal languages used to specify ontologies, or

of the content of the ontology being used. Follow-Our approach is related to two main strands of
ing the conceptual authoring approach describework: incremental generation and conceptual au-
in (Tennant et al., 1983; Hallett et al., 2007), thisthoring.

interface masks the composition of a formal query i i
Incremental Generation (Oh and Rudnicky,

2000) used an n-gram language model to stochas-

pointers for further research.

'krdbapp. i nf. uni bz.it: 8080/ quel o

183

Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics, pages 183—-191,
Gothenburg, Sweden, April 26-30 2014. (©2014 Association for Computational Linguistics



tically generate system turns. The language modehally preserves the linear order of the query.
is trained on a dialog corpus manually annotate : .
. 9 P y . c%:onceptual authoring Our proposal is closely
with word and utterance classes. The generatlopI ted to th nceptual authorin roach d
engine uses the appropriate language model for ac0 t0 e conceptual authoring approach de
scribed in (Hallett et al., 2007). In this approach,
the utterance class and generates word sequence? «t generated from a knowledae b describ
randomly according to the language model distri-2 '€Xt generated irom a knowledge base, describes
: in natural language the knowledge encoded so far,
bution. The generated word sequences are then ) o . .
. . : and the options for extending it. Starting with an
ranked using a scoring mechanism and only the .’ .
> .- Initial very general query (e.g., all things), the user
best-scored utterance is kept. The system is incre- .
. . can formulate a query by choosing between these
mental is that each word class to be verbalised can” . o .
. . options. Similarly, (Franconi et al., 2010a; Fran-
yield a new set of utterance candidates. However' " )
’ » .. coni et al., 2011b; Franconi et al., 2010b; Fran-
it supports only addition not revisions. Moreover =~ .
) : ) e o coni et al., 2011a) describes a conceptual author-
it requires domain specific training data and man- . . :
. . .ing approach to querying semantic data where in
ual annotation while the approach we propose is

unsupervised and generic to any ontology. addition_ , logical inf_erence is usgd to se_m'antical_ly
constrain the possible completions/revisions dis-
(Dethlefs et al., 2013) use Conditional Randomplayed to the user.
Fields to find the best surface realisation from a Qur approach departs from this work in that it
semantic tree. They show that the resulting sysmakes use of standard grammars and algorithms.
tem is able to modify generation results on the flywnhile previous work was based on procedures and
when new or updated input is provided by the diatemplates, we rely on a Feature-Based Tree Ad-
log manager. While their approach is fast to exjoining Grammar to capture the link between text
ecute, it is limited to a restricted set of domainand semantics required by conceptual authoring;
specific attributes; requires a training corpus ofand we adapt a chart based algorithm to support
example sentences to define the space of posshe addition, the revision and the substitution of
ble surface realisations; and is based on a larggput material. To avoid confusing the user, we
set (800 rules) of domain specific rules extractedhdditionally introduce a scoring function which
semi-automatically from the training corpus. In helps preserve the linear order of the NL query.
contrast, we use a general, small size grammarhe generation system we present is in fact inte-
(around 50 rules) and a lexicon which is automatgrated in the Quelo interface developed by (Fran-
ically derived from the input ontologies. The re- coni et al., 2011a) and compared with their previ-
sulting system requires no training and thus camus template-based approach.
be applied to any ontology with any given signa-
ture of concepts and relations. Another difference3 I ncremental Generation of Candidate
between the two approaches concerns revisions: Query Extensions
Wh”e our approach supports revisions anywherel.he generation task we address is the following.
in the input, the CRF approach proposed by (Deth-

lefs et al. 2013) onl . . ~ Given a knowledge bas&, some initial formal
cis etal, ) only suppor S Tevisions OCClJrrIngqueryq and a focus poinp in that query, the rea-
at the end of the generated string.

soning services supported by Quelo’s query logic
There is also much work (Schlangen andframework (see (Guagliardo, 2009)) will compute
Skantze, 2009; Schlangen et al., 2009) in the doa set of new queriesev(q) formed by adding,
main of spoken dialog systems geared at modedeleting and revising the current quenat point
elling the incremental nature of dialog and in par-p. The task of the generator is then to produce
ticular, at developing dialog systems where pro-a natural language sentence for each new formal
cessing starts before the input is complete. In thesqueryq’ € rev(q) which results from this revision
approaches, the focus is on developing efficient arprocess. In other words, each time the user refines
chitectures which support the timely interleavinga queryq to produce a new query, the system
of parsing and generation. Instead, our aim is taomputes all revisionsev(q) of ¢’ that are com-
develop a principled approach to the incrementapatible with the underlying knowledge base using
generation of a user query which supports revisiora reasoner. Each of these possible revisions is then
and additions at arbitrary points of the query beingnput to the generator and the resulting revised NL
built; generates natural sounding text; and maxigueries are displayed to the user. In what follows,
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we assume that formal queries are represented us- b. A car which runs on Diesel and is

ing Description Logics (Baader, 2003). equipped with air conditioning
The following examples show a possible se- c. A car which is equipped with air condi-
quence of NL queries, their corresponding DL rep- tioning and runs on Diesel

resentation and the operations provided by Quelo |n what follows, we describe the generation al-
that can be performed on a query (bold face is usegorithm used to verbalise possible extensions of
to indicate the pOil’lt in the query at which the nextyser queries as proposed by the Quelo tool. We
revision takes place). For instance, the query irstart by introducing and motivating the underlying
(1c) results from adding the concepbung to the  formal language supported by Quelo and the input
query underlying (1b) at the point highlighted by to the generator. We then describe the overall ar-

man. chitecture of our generator. Finally, we present the
(1) a. am looking fosomething (initial query) — incremental surface realisation algorithm support-
T ing the verbalisation of the possible query exten-
b. | am looking fora man (substitute con- SIONS.
cept) 4.1 Thelnput Language
Man Following (Franconi et al., 2010a; Franconi et al.,
c. I am looking for a youngnan (add com- 2011b; Franconi et al., 2010b; Franconi et al.,
patible concept) 2011a) we assume a formal language for queries
Man MY oung that targets the querying of various knowledge and
d. I am looking for a youngman who is data bases independent of their specification lan-
married to a person (add relation) guage. To this end, it uses a minimal query lan-

MannY oung3isMarried.(Person)  guageL that is shared by most knowledge repre-
sentation languages and is supported by Descrip-
tion Logic (DL) reasoners namely, the language of
MarriedMan 1Y oung tree shapgd conjunctive DL queries. tbe a
_ _ set of relations and be a set of concepts, then the
f. I am looking for a married man (delete |3nq;age of tree-shaped conjunctive DL queries is
concepy) defined as followsS = C | IR.(S) | SN S
MarriedMan whereR € R, C € C, N denotes conjunction and
) ) dis the existential quantifier.
4 Generating Queries A tree shaped conjunctive DL query can be rep-
Generation of KB queries differs from standardeseénted as a tree where nodes are associated with

natural language generation algorithms in two@ Set of concept namesdde labelsand edges are
main ways. First it should support the revi- labelled with a relation namegge labels Figure
sions, deletions and additions required by incre-l Shows some example query trees.

mental processing. Second, to avoid confusingt.2 NLG architecture

the user, the revisions (modifications, extensionsg,, generator takes as input twioformula: the
deletions) performed by the user should have g,mula representing the current quenand the
minimal effect on the linear order of the NL query. formula representing a possible revisior{addi-
Thatis the generator is not free to produce any Nlijon/deletion/modification) of;. Given this in-
variant verbalising the query but should producéyt, the system architecture follows a traditional
a verbalisation that is linearly as close as pOSSipipeIine sequencing a document planner which (i)
ble, modulo the revision applied by the user, to thgjnearises the input query and (ji) partition the in-
query before revisions. Thus for instance, give?out into sentence size chunks; a surface realiser
the DL query (2) and assuming a linearisation o mapping each sentence siZdormula into a sen-

that formula that matches the linear order it is préyence; and a referring expression generator verbal-
sented in (see Section 4.2.1 below for a definitionging NPs,

of the linearisation of DL formulae), sentence (2b)

e. | am looking for ayoung married man
(substitute selection)

will be preferred over (2c). 4.2.1 Document Planning
(2) a.Car M JrunOn.(Diesel) - The document planning module linearises the in-
JequippedWith.(AirCond) put query and segments the resulting linearised
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@ {Man} {Man} {Man} \
(a) livesin livesin
{Man} {House} {House, {House,
Beautiful} Beautiful}
livesin ownedBy ownedBy {Person} ownedBy
{House} {RichPerson} {RichPerson} e
RichPerson}
(b) ) (d) \ @)
Figure 1: Example of query tree and incremental query coastm.
query into sentence size chunks. Query Segmentation Given a linearised query

_ o _ q, the document planner uses some heuristics
Query Linearisation Among the different paseq on the number and the types of rela-
strategies investigated in (Dongilli, 2008) to tions/concepts present into output a sequence

find a good order for the content contained in &t syp-formulae each of which will be verbalised
query tree thalepth-first planningi.e. depth-first 5¢ 5 sentence.

traversal of the query tree, was found to be the
most appropriate one. Partly because itis obtained.2.2 Incremental Surface Realisation and
straightforward from the query tree but mostly Linearisation Constraints
due to the fact that it minimizes the Changes in thQNe now describe the main module of the generator
text plan that are required by incremental queryhamely the surface realiser which supports both
modifications.  Thus, (Franconi et al., 2010a)the incremental refinement of a query and a min-
defines ajuery linearisatioras a strict total ordér  jmal modification of the linear order between in-
on the query tree that satisfies the followingcrements. This surface realiser is caracterised by
conditions: the following three main features.
Grammar-BasedVe use a symbolic, grammar-
node precede the edge label based appr'oach rathgr than a_\s_tatistical one fgr two
« the edge label is followed by at least one labe[€2SONS. First, there iS no training corpus ayallable
associated with the edge’s arriving node that would consist of knowledge base queries and

« between any two labels of a node there Car;[heir increments. Second, the approach must be
only be (distinct) labels of the same node portable and should apply to any knowledge base

independent of the domain it covers and indepen-

The specific linearisation adopted in Quelo isdent of the presence of a training corpus. By com-
defined by the depth-first traversal strategy of thédining a lexicon automatically extracted from the
guery tree and a total order on the children whichontology with a small grammar tailored to produce
is based on the query operations. That is, the lapatural sounding queries, we provide a generator
bels of a node are ordered according to the sewhich can effectively apply to any ontology with-
qguence applications of thadd conpati bl e outrequiring the construction of a training corpus.
concept operation. The children of a node are Chart-Based A chart-based architecture en-
inversely ordered according to the sequence of agrances efficiency by avoiding the recomputation
plications of theadd r el at i on operation. of intermediate structures while allowing for a

According to this linearisation definition, for natural implementation of the revisions (addition,
the query tree (e) in Figure 1 the following linear deletion, substitution) operations required by the
order is produced: incremental formulation of user queries. We show
how the chart can be used to implement these op-
erations.

Beam search As already mentioned, for er-
—— _ » __gonomic reasons, the linear order of the gener-

A strict total order can be obtained by fixing an order in

the children nodes and traversing the tree according to som_@ted NL query ShOl,!Id be minimally d|Sj[urbed dur-
tree traversal strategy. ing query formulation. The generation system

e all labels associated with the edge’s leaving

(3) a. Man marriedToPerson livesin House
Beauti ful ownedByRichPeron
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should also be sufficiently fast to support a timelythese trees using the FB-LTAG combining opera-
Man/Machine interaction. We use beam searctions namely substitution and adjunction. Thus for
and a customised scoring function both to preservestance, in Figure 2, given the semanticsamed(j

linear order and to support efficiency. john), Iv:run(a,j), Iv:often(a) the three trees shown are
We now introduce each of these components irselected. When combined they produce a com-
more details. plete phrase structure tree whose yieleh§ runs
ofter) is the generated sentence.
Feature-Based Tree Adjoining Grammar Following (Gardent and Perez-Beltrachini,

A tree adjoining grammar (TAG) is a tuple 2011), we implement an Earley style generation
(3, N, 1, A,S) with ¥ a set of terminalsN a set  g|gorithm for FB-LTAG which makes use of the
of non-terminals/[ a finite set of initial treesA a  fact that the derivation trees of an FB-LTAG are
finite set of auxiliary trees, anfl a distinguished ¢gntext free and that an FB-LTAG can be con-
non-terminal § € N). Initial trees are trees yerted to a a Feature-Based Regular Tree Gram-
whose leaves are labeled with substitution nodeg,5r (FB-RTG) describing the derivation trees of
(marked with a down-arrow) or with terminal this FB-LTAGA.
categoried. Auxiliary trees are distinguished by  On the one hand, this Earley algorithm en-
a foot node (marked with a star) whose categorhances efficiency in that (i) it avoids recomput-
must be the same as that of the root node. ing intermediate structures by storing them and
Two tree-composition operations are used tqiji) it packs locally equivalent structures into a
combine trees: substitution and adjunction. Subsingle representative (the most general one). Lo-
stitution inserts a tree onto a substitution node otally equivalent structures are taken to be partial
some other tree while adjunction inserts an auxderivation trees with identical semantic coverage
iliary tree into a tree. In a Feature-Based LeXi-and similar combinatorics (same number and type
calised TAG (FB-LTAG), tree nodes are further- of substitution and adjunction requirements).
more decorated with two feature structures which On the other hand, it naturally supports the
are unified during derivation; and each tree is anrange of revisions required for the incremental for-
chored with a lexical item. Figure 2 shows an eX-mulation of ontology-based queries. L@tbe the
ample toy FB-LTAG with unification semantics. current chart i.e., the chart built when generating a
The dotted arrows indicate possible tree combinap query from the formal query. Then additions,

tions (substitution forohn adjunction forofter).  revisions and deletion can be handled as follows.
As the trees are combined, the semantics is the e Add concept or propertyX: the grammar

union of their semantics modulo unification. Thus units selected byX are added to the agerfda
given the grammar and the derivation shown, the 5. tried for combinations with the elements
semantics oflohn often runsis as shown namely, of C.

named(j john), run(a,)), often(a) e Substitute selectioi with Y: all chart items

S, derived from a grammar unit selected by an
— element of X are removed from the chart.
- NP|€ VP, VP, . .
NP & | w iy Conversely, all chart items derived from a
John ™ Voo, ofen VP grammar unit selected by an elementoére
oo runs toroftent) added to the agenda. All items in the agenda
Iv:run(a,]) are then processed until generation halts.
I1:named(j john), Iv:irun(a,j), Iv:often(a) e Delete selectionX: all chart items derived

from a grammar unit selected by an element
of X are removed from the chart. Intermedi-

Chart-Based Surface Realisation Given an ate structures that had previously used X are
FB-LTAG G of the type described above, sen- ~ moved to the agenda and the agenda is pro-
tences can be generated from semantic formulae ~ cessed until generation halts.

by (i) selecting all trees it whose semantics sub- “For more details on this algorithm, we refer the reader to

sumes part of the input formula and (ii) combining (Gardent and Perez-Beltrachini, 2010).

- *The agenda is a book keeping device which stores all
3For a more detailed introduction to TAG and FB-LTAG, items that needs to be processed i.e., which need to be tried
see (Vijay-Shanker and Joshi, 1988). for combination with elements in the chart.

Figure 2:Derivation and Semantics for “John often runs”
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Beam Search To enhance efficiency and favor 4.2.3 Referring Expression Generation

those structures which best preserve the word orfhe referring expression (RE) module takes as
der while covering maximal input, we base ourinput the sequence of phrase structure trees out-
beam search on a scoring function combining linpyt by the surface realiser and uses heuristics to
ear order and semantic coverage information. Thigecide for each NP whether it should be ver-
works as follows. First, we associate each literabglised as a pronoun, a definite or an indefinite
in the input query with its positional information Np. These heuristics are based on the linear order
e.g., and morpho-syntactic information contained in the
(4) a.man(x)[0] marriedTo(x y)[1] phrase structure trees of the generated sentences.
person(y)[2] livesin(x w][3]
house(w) [ 4]
This positional information is copied OVer 10 \ye conducted evaluation experiments designed to
each FB-LTAG tree selected by a given literal and

, address the following questions:
is then used to computevaord order cost(C',,) i . .

: , e Does the scoring mechanism appropriately
for each derived tree as follows:

capture the ordering constraints on the gen-
Cuwolti+j) = Cuwolti) + Cuo(tj) + Cuolti +t5) erated queries ? That is, does it ensure that
That is the cost of a treg ; obtained by com- the generated queries respect the strict total
bining ¢; and t; is the sum of the cost of each order of the query tree linearisation ?
of these trees plus the cost incurred by combin- e Does our grammar based approach produce
ing these two trees. We define this latter cost to  more fluent and less ambiguous NL query
be proportional to the distance separating the ac-  than the initial template based approach cur-

5 Experimentsand evaluation

tual position &p;) of the tree {;) being substi-
tuted/adjoined in from its required position).
If ¢; is substituted/adjoined at positian to the
right (left) of the anchor of a tree; with posi-

rently used by Quelo ?

Does the automatic extraction of lexicons
from ontology support generic coverage of
arbitrary ontologies ?

tion p;, then the actual position of; is pj + n We start by describing the grammar used. We
(pj — n) and the cost of combining with £; IS then report on the results obtained for each of these
| pj+n—rpi | /a( pj—n—rp|/a)where evaluation points.
we empirically determined to be 106.

Finally, the total score of a tree reflects the rela5.1 Grammar and Lexicon
tion between the cost of the built tree, i.e. its wordyye specify an FB-LTAG with unification seman-
order cost, and its semantic coverage, i.e. nb. Ofics which covers a set of basic constructions used
literals from the input semantics: to formulate queries namely, active and passive
S(t) = {—(\Iiterals( -1) Cuolti) =0 transitive verbs, adjectives, prepositional phrases,

! Cuwolt;)/(|literalsl — 1) otherwise relative and elliptical clauses, gerund and partici-

ple modifiers. The resulting grammar consists of

‘The total score is defined by cases. Those treegs pg_| TAG pairs of syntactic trees and semantic
with C,, = 0 get a negative value according to schema.

their input coverage (i.e. those that cover a larger To ensure the appropriate syntax/semantic in-
subset of the input semantics are favored as thFerface we make explicit the arguments of a
trees in the agenda are ordered by increasing otaltion ysing the variables associated with the
score). Conversely, those trees with, > 0 get  ,qeg of the query tree. Thus for instance,

a score that is the word order cost proportional togiven the rightmost query tree shown in Figure

the covered input. , 1, the flat semantics input to surface realisation is
_In effect, this scoring mechanism favors treeS{Man(x), Person(y), House(w), Beautiful(w), RichPersin(z
with low word order cost and large semantic COV-arriedTo(xy), livesin(x.w), ownedBy(w2)

erage. The beam search will select those trees with For each ontology, a lexicon mapping con-

M' cepts and relations to FB-LTAG trees is automat-
ically derived from the ontology using (Trevisan,
2010)'s approach. We specify for each experiment
below, the size of the extracted lexicon.

8In the current implementation we assume that= 1.
Furthermore, ag; might be a derived tree we also add to
Cwo(ti + t;) the cost computed on each trgeused in the
derivation oft; with respect ta;.
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5.2 Linearisation level of competence for foreign learners of En-

In this first experiment, we manually examinegd9lish) were then asked to classify (a binary choice)

whether the incremental algorithm we proposefach query in terms of clarity and fluency. Fol-

supports the generation of NL queries whose word®Wing (Kow and Belz, 2012), we takEluency
order matches the linearisation of the input queq}o be a single qugllty Crlt_er!on lntenQed to cap-
tree. ture language quality as distinct from its meaning,

We created four series of queries such that each® _hOW W?” a piece of text reads. In contrgst,
serie is a Sequenag . .. g, Whereg;., is an in- Clarity/ambiguityrefers to ease of understanding
e Qn i .
crement ofgi. That is, g+, is derived fromg; (Is the sentence easy to understand?). Taking the

by adding, removing or substituting tg a con- average of the majority vote, we found that the

cept or a relation. The series were devised so as #4d9€s evaluated the queries as non fluent in 50%
encompass the whole range of possible operation%f the cases and as unclear in 100/? of the cases.
at different points of the preceding query (e.g., afn other words, template based queries were found

the last node/edge or on some node/edge occul@ be disfluent about half of the time and unclear
ring further to the left of the previous query); and to a lesser extent. The major observation made by

include 14 revisions on 4 initial queries most of the participants was that the generated text

For all queries, the word order of the best NL 'S too repetitive and lacks aggregation.
query produced by the generator was found tc

I am looking for a new car. Its I am looking for a new car
match the linearisation of the DL query. exterior color should be a whose exterior color should be
beige. The body style of the beige and whose body style
new car should be a utility should be a utility vehicle,
i vehicle. The new car should which should run on a natural
53 Fl uency and Clar Ity run on a natural gas and it gas and which should be
Following the so-callectonsensus mOdépower should be located in a country. located in a country.
and Third, 2010), the current, template based vet Clasity

sion of Quelo generates one clause per relation
. . Which description is clearer?
Thus for instance, template-based Quelo will gen- I
. E 1
erate (53.) while our grammar based approaCh Suf & move slider or tick here to confirm your rating

ports the generation of arguably more fluent sen

Fl
tences such as (5b). R
. Which requirement description is more fluent?
(5) a. I am looking for a car. Its make should —_—t
be a Land Rover. The bOdy Style of the & move slider or tick here to confirm your rating
car should be an off-road car. The exteriormtuer
color of the car should be beige. Figure 3: Online Evaluation.

b. 1am looking for car whose make is a Land
Rover, whose body style is an off-road car
and whose exterior color is beige.

Comparing template- and grammar-based
queries In this second experiment, we asked 10
persons (all proficient in the English language) to
We ran two experiments designed to assess hogompare pairs of NL queries where one query is
fluency impacts users. The first experiment aim@roduced using templates and the other using our
to assess how Quelo template based queries agsammar-based generation algorithm. The evalu-
perceived by the users in terms of clarity and flu-ation was done online using the LG-Eval toolkit
ency, the second aims to compare these templaf§ow and Belz, 2012) and geared to collect rel-
based queries with the queries produced by ouative quality judgements using visual analogue
grammar-based approach. scales. After logging in, judges were given a de-
scription of the task. The sentence pairs were dis-
Assessing Quelo template-based queries Us-  played as shown in Figure 3 with one sentence to
ing the Quelo interface, we generated a set Ofhe |eft and the other to the right. The judges were
41 queries chosen to capture different combinagstrycted to move the slider to the left to favor
tions of concepts and relations. Eight persongne sentence shown on the left side of the screen;
(four native speakers of English, four with C2 414 1o the right to favor the sentence appearing to
Tismodulo aggregation of relations. Thus two sub-the right. Not moving the slider means that both
ject sharing relations may be realised in the same clause. sentences rank equally. To avoid creating a bias,
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the sentences from both systems were equally disn aquatic resource. The extracted lexicons con-
tributed to both sides of the screen. tained in average 453 lexical entries and the cov-
For this experiment, we used 14 queries builterage (proportion of DL queries for which the gen-
from two ontologies, an ontology on cars and theerator produced a NL query) was 87%.
other on universities. The extracted lexicons for Fuller coverage could be obtained by manually
each of these ontology contained 465 and 297 eradding lexical entries, or by developing new ways
tries respectively. of inducing lexical entries from ontologies (c.f.
The results indicate that the queries generateg-9. (Walter et al., 2013)).
by the grammar based approach are perceived # Cconclusion
more fluent than those produced by the template
based approach (19.76 points in average for th€onceptual authoring (CA) allows the user to
grammar based approach against 7.20 for the tenquery a knowledge base without having any
plate based approach). Furthermore, although thienowledge either of the formal representation lan-
template based queries are perceived as clearguage used to specify that knowledge base or of
(8.57 for Quelo, 6.87 for our approach), the dif- the content of the knowledge base. Although this
ference is not statistically significanp (< 0.5). approach builds on a tight integration between
Overall thus, the grammar based approach appeasgntax and semantics and requires an efficient pro-
to produce verbalisations that are better acceptecessing of revisions, existing CA tools predomi-
by the users. Concerning clarity, we observed thabantly make use of ad hoc generation algorithms
longer sentences let through by document planand restricted computational grammars (e.g., Def-
ning were often deemed unclear. In future work,inite Clause Grammars or templates). In this pa-
we plan to improve clarity by better integrating per, we have shown that FB-LTAG and chart based
document planning and sentence realisation. surface realisation provide a natural framework in
which to implement conceptual authoring. In par-
54 Coverage ticular, we show that the chart based approach nat-

o . urally supports the definition of an incremental al-
One motivation for the symbolic based approach_ . L

. orithm for query verbalisation; and that the added
was the lack of training corpus and the need fo

portability: the query interface should be usableﬂuency brovided by the grammar based approach

: : potentially provides for query interfaces that are
independently of the underlying ontology and Ofbetter accepted by the human evaluators.

the existence of a training corpus. To support . . .
) 9 P PP In the future, we would like to investigate the
coverage, we combined the grammar based ap- ; .
. . - . interaction between context, document structuring
proach with a lexicon which is automatically ex- N .
and surface realisation. In our experiments we

tracted from the ontology using the methOd()logyfound out that this interaction strongly impacts flu-

described in (Trevisan, 2010). When tested on .
. . ency whereby for instance, a complex sentence
a corpus of 200 ontologies, this approach was . .
. . .__might be perceived as more fluent than several
shown to be able to provide appropriate verbalisa- ) .
. L clauses but a too long sentence will be perceived
tion templates for about 85% of the relation iden- e .
e . : . as difficult to read (non fluent). Using data that
tifiers present in these ontologies. 12 000 relation .
. o . __can now be collected using our grammar based
identifiers were extracted from the 200 ontologies L2 .
: approach to query verbalisation and generalising
and 13 syntactic templates were found to be suf-
- . L i over FB-LTAG tree names rather than lemmas or
ficient to verbalise these relation identifiers (seeP .
) ) : OStags, we plan to explore how e.g., Conditional
(Trevisan, 2010) for more details on this evalua- . :
Random Fields can be used to model these inter-

tion). .
) - , _actions.
Thatis, in general, the extracted lexicons permit

covering about 85% of the ontological data. In ad'ACknOWIedgments

dition, we evaluated the coverage of our approach

by running the generator on 40 queries generate@/e would like to thank Marco Trevisan, Paolo
from five distinct ontologies. The domains ob- Guagliardo and Alexandre Denis for facilitating
served are cinema, wines, human abilities, disthe access to the libraries they developed and to
abilities, and assistive devices, e-commerce on thNatalia Korchagina and the judges who partici-
Web, and a fishery database for observations abogpiated in the evaluation experiments.
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PARADIGM: Paraphrase Diagnostics through Grammar Matching

Jonathan Weese and Juri Ganitkevitch

Johns Hopkins University

Abstract

Paraphrase evaluation is typically done ei-
ther manually or through indirect, task-
based evaluation. We introduce an in-
trinsic evaluation PARADIGM which mea-
sures the goodness of paraphrase col-
lections that are represented using syn-
chronous grammars. We formulate two
measures that evaluate these paraphrase
grammars using gold standard sentential
paraphrases drawn from a monolingual
parallel corpus. The first measure calcu-
lates how often a paraphrase grammar is
able to synchronously parse the sentence
pairs in the corpus. The second mea-
sure enumerates paraphrase rules from the
monolingual parallel corpus and calculates
the overlap between this reference para-
phrase collection and the paraphrase re-
source being evaluated. We demonstrate
the use of these evaluation metrics on para-
phrase collections derived from three dif-
ferent data types: multiple translations
of classic French novels, comparable sen-
tence pairs drawn from different newspa-
pers, and bilingual parallel corpora. We
show that PARADIGM correlates with hu-
man judgments more strongly than BLEU
on a task-based evaluation of paraphrase
quality.

1 Introduction

Paraphrases are useful in a wide range of natu-
ral language processing applications. A variety
of data-driven approaches have been proposed to
generate paraphrase resources (see Madnani and
Dorr (2010) for a survey of these methods). Few
objective metrics have been established to evalu-
ate these resources. Instead, paraphrases are typi-
cally evaluated using subjective manual evaluation
or through task-based evaluations.
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Different researchers have used different crite-
ria for manual evaluations. For example, Barzilay
and McKeown (2001) evaluated their paraphrases
by asking judges whether paraphrases were “ap-
proximately conceptually equivalent.” Ibrahim
et al. (2003) asked judges whether their para-
phrases were “roughly interchangeable given the
genre.” Bannard and Callison-Burch (2005) re-
placed phrases with paraphrases in a number of
sentences and asked judges whether the substitu-
tions “preserved meaning and remained grammat-
ical.” The results of these subjective evaluations
are not easily reusable.

Other researchers have evaluated their para-
phrases through task-based evaluations. Lin and
Pantel (2001) measured their potential impact on
question-answering. Cohn and Lapata (2007)
evaluate their applicability in the text-to-text gen-
eration task of sentence compression. Zhao et al.
(2009) use them to perform sentence compression
and simplification and to compute sentence simi-
larity. Several researchers have demonstrated that
paraphrases can improve machine translation eval-
uation (c.f. Kauchak and Barzilay (2006), Zhou
et al. (2006), Madnani (2010) and Snover et al.
(2010)).

We introduce an automatic evaluation met-
ric called PARADIGM, PARAphrase DIagnostics
through Grammar Matching. This metric eval-
uates paraphrase collections that are represented
using synchronous grammars. Synchronous tree-
adjoining grammars (STAGs), synchronous tree
substitution grammars (STSGs), and synchronous
context free grammars (SCFGs) are popular for-
malisms for representing paraphrase rules (Dras,
1997; Cohn and Lapata, 2007; Madnani, 2010;
Ganitkevitch et al., 2011). We present two mea-
sures that evaluate these paraphrase grammars us-
ing gold standard sentential paraphrases drawn
from a monolingual parallel corpus, which have
been previously proposed as a good resource

Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics, pages 192-201,
Gothenburg, Sweden, April 26-30 2014. (©2014 Association for Computational Linguistics



for paraphrase evaluation (Callison-Burch et al.,
2008; Cohn et al., 2008).

The first of our two proposed metrics calculates
how often a paraphrase grammar is able to syn-
chronously parse the sentence pairs in a test set.
The second measure enumerates paraphrase rules
from a monolingual parallel corpus and calculates
the overlap between this reference paraphrase col-
lection, and the paraphrase resource being evalu-
ated.

2 Related work and background

The most closely related work is ParaMetric
(Callison-Burch et al., 2008), which is a set of
objective measures for evaluating the quality of
phrase-based paraphrases. ParaMetric extracts a
set of gold-standard phrasal paraphrases from sen-
tential paraphrases that have been manually word-
aligned. The sentential paraphrases used in Para-
Metric were drawn from a data set originally cre-
ated to evaluate machine translation output using
the BLEU metric. Cohn et al. (2008) argue that
these sorts of monolingual parallel corpora are ap-
propriate for evaluating paraphrase systems, be-
cause they are naturally occurring sources of para-
phrases.

Callison-Burch et al. (2008) calculated three
types of metrics in ParaMetric. The manual word
alignments were used to calculate how well an
automatic paraphrasing technique is able fo align
the paraphrases in a sentence pair. This measure
is limited to a class of paraphrasing techniques
that perform alignment (like MacCartney et al.
(2008)). Most methods produce a list of para-
phrases for a given input phrase. So Callison-
Burch et al. (2008) calculate two more gener-
ally applicable measures by comparing the para-
phrases in an automatically extracted resource to
gold standard paraphrases extracted via the align-
ments. These allow a lower-bound on precision
and relative recall to be calculated.

Liu et al. (2010) introduce the PEM metric as an
alternative to BLEU, since BLEU prefers iden-
tical paraphrases. PEM uses a second language
as a pivot to judge semantic equivalence. This re-
quires use of some bilingual data. Chen and Dolan
(2011) suggest using BLEU together with their
metric PINC, which uses n-grams to measure lex-
ical difference between paraphrases.

PARADIGM extends the ideas in ParaMetric
from lexical and phrasal paraphrasing techniques
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to paraphrasing techniques that also generate syn-
tactic templates, such as Zhao et al. (2008), Cohn
and Lapata (2009), Madnani (2010) and Ganitke-
vitch et al. (2011). Instead of extracting gold stan-
dard paraphrases using techniques from phrase-
based machine translation, we use grammar ex-
traction techniques (Weese et al., 2011) to ex-
tract gold standard paraphrase grammar rules from
ParaMetric’s word-aligned sentential paraphrases.
Using these rules, we calculate the overlap be-
tween a gold standard paraphrase grammar and an
automatically generated paraphrase grammar.

Moreover, like ParaMetric, PARADIGM is able
to do further analysis on a restricted class of para-
phrasing models. In this case, PARADIGM evalu-
ates how well certain models are able to produce
synchronous parses of sentence pairs drawn from
monolingual parallel corpora. PARADIGM’s dif-
ferent metrics are explained in Section 4, but first
we give background on synchronous parsing and
synchronous grammars.

2.1 Synchronous parsing with SCFGs

Synchronous context-free grammars

An SCFG (Lewis and Stearns, 1968; Aho and
Ullman, 1972) is similar to a context-free gram-
mar, except that it generates pairs of strings
in correspondence. Each production rule in an
SCFG rewrites a non-terminal symbol as a pair of
phrases, which may have contain a mix of words
and non-terminals symbols. The grammar is syn-
chronous because both phrases in the pair must
have an identical set of non-terminals (though they
can come in different orders), and corresponding
non-terminals must be rewritten using the same
rule.

Much recent work in MT (and, by extension,
paraphrasing approaches that use MT machinery)
has been focused on choosing an appropriate set of
non-terminal symbols. The Hiero model (Chiang,
2007) used a single non-terminal symbol X. Other
approaches have read symbols from constituent
parses of the training data (Galley et al., 2004;
Galley et al., 2006; Zollmann and Venugopal,
2006). Labels based combinatory categorial gram-
mar (Steedman and Baldridge, 2011) have also
been used (Almaghout et al., 2010; Weese et al.,
2012).

Synchronous parsing

Wu (1997) introduced a parsing algorithm using
a variant of CKY. Dyer recently showed (2010)
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Figure 1: PARADIGM extracts lexical, phrasal and
syntactic paraphrases from parsed, word-aligned
sentence pairs.

that the average parse time can be significantly im-
proved by using a two-pass algorithm.

The question of whether a source-reference pair
is reachable under a model must be addressed in
end-to-end discriminative training in MT (Liang
et al., 2006a; Gimpel and Smith, 2012). Auli et
al. (2009) showed that only approximately 30% of
training pairs are reachable under a phrase-based
model. This result is confirmed by our results in
paraphrasing.

3 Paraphrase grammar extraction

Like ParaMetric, PARADIGM extracts gold stan-
dard paraphrases from word-aligned sentential
paraphrases. PARADIGM goes further by parsing
one of the two input sentences, and uses the parse
tree to extract syntactic paraphrase rules, follow-
ing recent advances in syntactic approaches to ma-
chine translation (like Galley et al. (2004), Zoll-
mann and Venugopal (2006), and others). Figure 1
shows an example of a parsed sentence pair. From
that pair it is possible to extract a wide variety
of non-identical paraphrases, which include lexi-
cal paraphrases (single word synonyms), phrasal
paraphrases, and syntactic paraphrases that in-
clude a mix of words and syntactic non-terminal
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cc — and while
VBP —  want propose
VBP —  expect want
DT — some some people
S —  him to step down him to resign
VP —  step down resign
VP —  to step down to resign
VP —  want to impeach him  propose to impeach him
VP —  want VP propose VP
VP —  want to impeach PRP  propose to impeach PRP
VP —  VBPhimtostepdown VBP him to resign
S —  PRP to step down PRP to resign

Figure 2: Four examples each of lexical, phrasal,
and syntactic paraphrases that can be extracted
from the sentence pair in Figure 1.

symbols. Figure 2 shows a set of four examples
for each type that can be extracted from Figure 1.

These rules are formulated as SCFG rules,
with a syntactic left-hand nonterminal symbol
and two English right-hand sides representing the
paraphrase. The examples above include non-
terminal symbols that represent whole syntac-
tic constituents. It is also possible to create
more complex non-terminal symbols that describe
CCG-like non-constituent phrases. For example,
we could extract a rule like

S/VP — <NNS want him to, NNS expect him to>

Using constituents only, we are able to ex-
tract 45 paraphrase rules from Figure 1. Adding
CCG-style slashed constituents yields 66 addi-
tional rules.

4 PARADIGM: Evaluating paraphrase
grammars

By considering a paraphrase model as a syn-
chronous context-free grammar, we propose to
measure the model’s goodness using the following
criteria:

1. What percentage of sentential paraphrases
are reachable under the model? That is, given
a collection of sentence pairs (a;, b;) and an
SCFG G, where each pair of a and b are sen-
tential paraphrases, how many of the pairs are
in the language of G? We evaluate this by
producing a synchronous parse for the pairs,
as shown in Figure 3.

2. Given a collection of gold-standard para-
phrase rules, how many of those paraphrases
exist as rules in GG? To calculate this, we
look at the overlap of grammars (described in



violent unrest was caused by twelve cartoons insulting

mohammad

12 of the cartoons that were offensive to the islamic prophet sparked riots

@W
‘% NP
i
s TS
P>

>

Figure 3: We measure the goodness of paraphrase
grammars by determine how often they can be
used to synchronously parse gold-standard sen-
tential paraphrases. Note we do not require the
synchronous derivation to match a gold-standard
parse tree.

Section 4.2 below), examining different cate-
gories of rules and thresholding based on how
frequently the rule was used in the gold stan-
dard data.

These criteria correspond to properties that we
think are desirable in paraphrase models. They
also have the advantage that they do not depend
on human judgments and so can be calculated au-
tomatically.

4.1 Synchronous parse coverage

Paraphrase grammars should be able to explain
sentential paraphrases.  For example, Figure
3 shows a sentence pair that is synchronously
parseable by one paraphrase grammar. In general,
we say that the more such sentence pairs that a
paraphrase grammar can synchronously parse, the
better it is.

The synchronous derivation allows us to draw
inferences about parts of the sentence pair that are
in correspondence; for instance, in Figure 3, vi-
olent unrest corresponds to riots and mohammad
corresponds to the islamic prophet.

4.2 Grammar overlap defined

We measure grammar overlap by comparing the
sets of production rules for two different gram-
mars. If the grammars contain rules that are equiv-
alent, the equivalent rules are in the grammars’
overlap.

We consider two types of overlapping, which
we will call strict and non-strict overlap. For strict
overlap, we say that two rules are equivalent if
they are identical, that is, if they have the same
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left-hand side non-terminal symbol, their source
sides are identical strings, and their target sides are
identical strings. (This includes identical indexing
on non-terminal symbols on the right hand sides
of the rule.)

To calculate non-strict overlap, we ignore the
identities of non-terminal symbols in the left-hand
and right-hand sides of the rules. That is, two rules
are considered equivalent if they are identical after
all the non-terminal symbols have been replaced
by one equivalent symbol.

For example, in non-strict overlap, the syntactic
rule

NP — <N1 ’s No; the Ny OfN1>
would match the Hiero rule
X — (X7 ’s Xg; the X of X7)

If we are considering two Hiero grammars,
strict and non-strict intersection are the same op-
eration since they only have on non-terminal X .

4.3 Precision lower bound and relative recall

Callison-Burch et al. (2008) use the notion of over-
lap between two paraphrase sets to define two met-
rics, precision lower bound and relative recall.
These are calculated the same way as standard
precision and recall. Relative recall is qualified
as “relative” because it is calculated on a poten-
tially incomplete set of gold standard paraphrases.
There may exist valid paraphrases that do not oc-
cur in that set. Similarly, only a lower bound on
precision can be calculated because the candidate
set may contain valid paraphrases that do not oc-
cur in the gold standard set.

5 Experiments

5.1 Data

We extracted paraphrase grammars from a vari-
ety of different data sources, including four collec-
tions of sentential paraphrases. These included:

e Multiple translation corpora that were
compiled by the Linguistics Data Consortium
(LDC) for the purposes of evaluating ma-
chine translation quality with the BLEU met-
ric. We collected eight LDC corpora that all
have multiple English translations.'

'LDC Catalog numbers LDC2002T01, LDC2005TO05,

LDC2010T10, LDC2010T11, LDC2010T12, LDC2010T14,
LDC2010T17, and LDC2010T23.



sentence total Grammar Rules

Corpus pairs words LDC Hiero 52,784,462

LDC Multiple Translations 83,284 | 2,254,707 Lit. Hiero 3,288,546
Classic French Literature 75,106 682,978 MSR Hiero 2,456,513
MSR Paraphrase Corpus 5,801 219,492 ParaMetric Hiero 584,944
ParaMetric 970 21,944 LDC Syntax 23,978,477

Lit. Syntax 715,154

Table 1: Amount of English—English parallel data. MSR Syntax 406,115
LDC data has 4 parallel translations per sentence. ParaMetric Syntax 317,772
Literature data is from Barzilay and McKeown PPDB-v0.2-small 1.292.204
(2001). MSR data is from Quirk et al. (2004) PPDB-v0.2-large 9.456.356
and Dolan et al. (2004). ParaMertic data is from PPDB-v0.2-x1 46,592,161

Callison-Burch et al. (2008).

e Classic French Literature that were trans-
lated by different translators, and which were
compiled by Barzilay and McKeown (2001).

The MSR Paraphrase corpus which con-
sists of sentence pairs drawn from compara-
ble news articles drawn from different web
sites in the same date rate. The sentence pairs
were aligned heuristically aligned and then
manually judged to be paraphrases.

The ParaMetric data which consists of 900
manually word-aligned sentence pairs col-
lected by Cohn et al. (2008). 300 sentence
pairs were drawn from each of the 3 above
sources. We use this to extract the gold stan-
dard paraphrase grammar.

The size of the data from each source is summa-
rized in Table 1.

For each dataset, after tokenizing and normaliz-
ing, we parsed one sentence in each English pair
using the Berkeley constituency parser (Liang et
al., 2006b). We then obtained word-level align-
ments, either using GIZA++ (Och and Ney, 2000)
or, in the case of ParaMetric, using human annota-
tions.

We used the Thrax grammar extractor (Weese
et al., 2011) to extract Hiero-style and syntactic
SCFGs from the paraphrase data. In the syntac-
tic setting we allowed labeling of rules with ei-
ther constituent labels or CCG-style slashed cat-
egories. The size of the extracted grammars is
shown in Table 2.

We also used version 0.2 of the SCFG-based
paraphrase collection known as the ParaPhrase
DataBase or PPDB (Ganitkevitch et al., 2013).
The PPDB paraphrases were extracted using the
pivoting technique (Bannard and Callison-Burch,
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Table 2: Size of various paraphrase grammars.

Grammar freq. > 1 freq. > 2
ParaMetric Syntax 317,772 21,709
LDC Hiero 5,840 (1.8%) 416 (1.9%)
Lit. Hiero 6,152 (1.9%) 359 (1.7%)
MSR Hiero 10,012 (3.2%) 315 (1.5%)
LDC Syntax 48,833 (15.3%) 7,748 (35.6%)
Lit. Syntax 14,431 (4.5%) 1,960 (9.0%)
MSR Syntax 21,197 (6.7%) 2,053 (9.5%)
PPDB-v(.2-small 15,831 (5.0%) 5,673 (26.1%)
PPDB-v0.2-large 31,277 (9.8%) 8,245 (37.9%)
PPDB-v0.2-x1 47,720 (15.0%) | 10,049 (46.2%)

Table 3: Size of strict overlap (number of rules and
% of the gold standard) of each grammar with a
syntactic grammar derived from ParaMetric. freq.
> 2 means we first removed all rules that ap-
peared only once from the ParaMetric grammar.
The number in parentheses shows the percentage
of ParaMetric rules that are present in the overlap.

2005) on bilingual parallel corpora containing
over 42 million sentence pairs.

The PPDB release includes a tool for pruning
the grammar to a smaller size by retaining only
high-precision paraphrases. We include PPDB
grammars for several different pruning settings in
our analysis.

5.2 Experimental setup

We calculated our two metrics for each of the
grammars listed in Table 2.

To perform synchronous parsing, we used the
Joshua decoder (Post et al., 2013), which includes
an implementation of Dyer’s two-pass parsing al-
gorithm (2010). After splitting the LDC data into
10 equal pieces, we trained paraphrase models on
nine-tenths of the data and parsed the other tenth.

Grammars trained from other sources (the MSR
corpus, French literature domain, and PPDB) were
also evaluated on the held-out tenth of LDC data.



PPDB-v0.2-large
PPDB-v0.2-x1

22,431 (11.2%)
31,294 (15.6%)

Grammar freq. > 1 freq. > 2
ParaMetric Syntax 200,385 20,699
LDC Hiero 41,346 (20.6%) | 5,323 (25.8%)
Lit. Hiero 36,873 (18.4%) | 4,606 (22.3%)
MSR Hiero 58,970 (29.4%) | 6,741 (32.6%)
LDC Syntax 37,231 (11.7%) | 5,055 (24.5%)
Lit. Syntax 19,530 (9.7%) | 3,121 (15.1%)
MSR Syntax 28,016 (14.0%) | 3,564 (17.2%)
PPDB-v0.2-small 13,003 (6.5%) | 3,661 (17.7%)

4,837 (23.4%)
5,590 (27.0%)

Table 4: Size of non-strict overlap of each gram-
mar with the syntactic grammar derived from
ParaMetric. The number in parentheses shows the
percentage of ParaMetric rules that are present in
the overlap.

Grammar syntactic phrasal lexical
ParaMetric 238,646 73,320 5,806
LDCsyn 36,375 (15%) 8,806 (12%) | 3,652 (62%)
MSRsyn 7,734 3%) | 11,254 (15%) | 2,209 (38%)
PPDB-xl | 40,822 (17%) 3,765 (5%) | 3,142 (54%)

Table 5: Number of paraphrases of each type
in each grammar’s strict overlap with the syntac-
tic ParaMetric grammar. Numbers in parentheses
show the percentage of ParaMetric rules of each

type.

Note that the LDC data contains 4 independent
translations of each foreign sentence, giving 6 pos-
sible (unordered) paraphrase pairs. We evaluated
coverage in two ways (corresponding to the two
columns in Table 6): first, considering all possible
sentence pairs from the test data, how many were
able to be parsed?

Secondly, if we consider all the English sen-
tences that correspond to one foreign sentence,
how many foreign sentences had at least one pair
of English translations that could be parsed syn-
chronously?

For grammar overlap, we perform both strict
and non-strict calculations (see Section 4.2)
against a syntactic grammar derived from hand-
aligned ParaMetric data.

5.3 Grammar overlap results

In Table 5 we see a breakdown of the types of para-
phrases in the overlap for three of the models. Al-
though the PPDB-xI overlap is much larger than
the other two, about 80% of its rules are syntac-
tic transformations. The LDC and MSR models
have a much larger proportion of phrasal and lexi-
cal rules.

Next we will look at the grammar overlap num-
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Figure 4: Precision lower bound and relative recall
when overlapping different sizes of PPDB with the
syntactic ParaMetric grammar.

bers presented in Table 3 and Table 4.

Note the non-intuitive result that for some
grammars (notably PPDB), the non-strict overlap
is smaller than the strict overlap. This is because
rules with different non-terminals only count once
in the non-strict overlap; for example, in PPDB-
small,

NN —( answer ; reply )
VB —( answer ; reply )

count as separate entries when calculating strictly,
but when ignoring non-terminals, they count as
only one type of rule.

The fact that the non-strict overlaps are smaller
means that there must be many rules in PPDB that
are identical except for non-terminal labels.

5.4 Precision and recall results

Figure 4 shows relative recall and precision lower
bound calculated for various sizes of PPDB rela-
tive to the ParaMetric grammar. The z-axis rep-
resents the size of the grammar as we vary from
keeping only the most probable rules to including
less probable ones. Restricting to high probability
rules makes the grammar much smaller, resulting
in higher precision.

5.5 Synchronous parsing results

Table 6 shows the percentage of sentence pairs that
were reachable in a held-out portion of the LDC
multiple-translation data.

We find that a grammar trained on LDC data
vastly outperforms data from any other domain.
This is not surprising — we shouldn’t expect a
model trained on French literature to be able to



Grammar % (all) | % (any)
LDC Hiero 9.5 33.0
Lit. Hiero 1.8 9.6
MSR Hiero 1.7 9.2
LDC Syntax 9.1 30.2
Lit. Syntax 2.0 10.7
MSR Syntax 1.9 10.4
PM Syntax 1.7 9.8
PPDB-v(.2-small 1.8 3.3
PPDB-v0.2-]large 2.5 4.5
PPDB-v0.2-x1 3.5 6.2

Table 6: Parse coverage on held-out LDC data.
The all column considers every possible sentential
paraphrase in the test set. The any column consid-
ers a sentence parsed if any of its paraphrases was
able to parsed.

handle some of the vocabulary found in news sto-
ries that were originally in Arabic or Chinese.

The PPDB data outperforms both French litera-
ture and MSR models if we look all possible sen-
tence pairs from test data (the column labeled “all”
in the table). However, when we consider whether
any pair from a set of 4 translations can be trans-
lated, the PPDB models do not do as well. This
implies that PPDB tends to be able to reach many
pairs from the same set of translations, but there
are many translations that it cannot handle at all.
By contrast, the literature- and MSR-trained mod-
els can reach at least one pair from 10% of the
test examples, even though the absolute number
of pairs they can reach is lower.

5.6 Effects of grammar size and choice of
syntactic labels

Table 2 shows that the PPDB-derived grammars
are much larger than the syntactic models derived
from other domains. It may seem surprising that
they should perform worse, but adding more rules
to the grammar just by varying non-terminal labels
isn’t likely to help overall parse coverage. This
suggests a new pruning method: keep only the top
k label variations for each rule type.

If we compare the syntactic models to the Hi-
ero models trained from the same data, we see
that their overall reachability performance is not
very different. This implies that paraphrases can
be annotated with linguistic information without
necessarily hurting their ability to explain partic-
ular sentence pairs. Contrast this result, with, for
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example, those of Koehn et al. (2003), showing
that restricting translation models to only syntac-
tic phrases hurts overall translation performance.
The comparable performance between Hiero and
syntactic models seems to hold regardless of do-
main.

6 Correlation with human judgments

To validate PARADIGM, we calculated its correla-
tion with human judgments of paraphrase quality
on the sentence compression text-to-text genera-
tion task, which has been used to evaluate para-
phrase grammars in previous research (Cohn and
Lapata, 2007; Zhao et al., 2009; Ganitkevitch et
al., 2011; Napoles et al., 2011). We created sen-
tence compression systems for five of the para-
phrase grammars described in Section 5.1. We fol-
lowed the methodology outlined by Ganitkevitch
et al. (2011) and did the following:

e Each paraphrase grammar was augmented
with an appropriate set of rule-level features
that capture information pertinent to the task.
In this case, the paraphrase rules were given
two additional features that shows how the
number of words and characters changed af-

ter applying the rule.

Similarly to how the weights of the mod-
els are set using minimum error rate training
in statistical machine translation, the weights
for each of the paraphrase grammars using
the PRO tuning method (Hopkins and May,
2011).

Instead of optimizing to the BLEU metric, as
is done in machine translation, we optimized
to PRECIS, a metric developed for sentence
compression that adapts BLEU so that it in-
cludes a “verbosity penalty” (Ganitkevitch et
al., 2011) to encourage the compression sys-
tems to produce shorter output.

We created a development set with sentence
compressions by selecting 1000 pairs of sen-
tences from the multiple translation corpus
where two English translations of the same
foreign sentences differed in each other by a
length ratio of 0.67-0.75.

We decoded a test set of 1000 sentences us-
ing each of the grammars and its optimized



weights with the Joshua decoder (Ganitke-
vitch et al., 2012). The selected in the same
fashion as the dev sentences, so each one had
a human-created reference compression.

We conducted a human evaluation to judge the
meaning and grammaticality of the sentence com-
pressions derived from each paraphrase grammar.
We presented workers on Mechanical Turk with
the input sentence to the compression sentence
(the long sentence), along with 5 shortened out-
puts from our compression systems. To ensure
that workers were producing reliable judgments
we also presented them with a positive control (a
reference compression written by a person) and a
negative controls (a compressed output that was
generated by randomly deleted words). We ex-
cluded judgments from workers who did not per-
form well on the positive and negative controls.

Meaning and grammaticality were scored on
5-point scales where 5 is best. These human
scores were averaged over 2000 judgments (1000
sentences x 2 annotators) for each system. The
systems’ outputs were then scored with BLEU,
PRECIS, and their paraphrase grammars were
scored PARADIGM’s relative recall and precision
lower-bound estimates. For each grammar, we
also calculated the average length of parseable
sentences.

We calculated the correlation between the hu-
man judgements and the automatic scores, using
Spearman’s rank correlation coefficient p. This
is methodology is the same that is used to quan-
tify the goodness of automatic evaluation metrics
in the machine translation literature (Przybocki et
al., 2008; Callison-Burch et al., 2010). The pos-
sible values of p range between 1 (where all sys-
tems are ranked in the same order) and —1 (where
the systems are ranked in the reverse order). Thus
an automatic evaluation metric with a higher abso-
lute value for p is making predictions that are more
similar to the human judgments than an automatic
evaluation metric with a lower absolute p.

Table 7 shows that our PARADIGM scores cor-
relate more highly with human judgments than ei-
ther BLEU or PRECIS for the 5 systems in our eval-
uation. This suggests that it may be a better predic-
tor of the goodness of paraphrase grammars than
MT metrics, when the paraphrase grammars are
used for text-to-text generation tasks.

MEANING GRAMMAR

BLEU -0.7 -0.1
PRECIS -0.6 +0.2
PINC +0.1 +0.4
PARADIGMpyecision +0.6 +0.1
PARADIGM,ccqll +0.1 +0.4
PARADIGMgyg—1en -0.3 +0.4

Table 7: The correlation (Spearman’s p) of dif-
ferent automatic evaluation metrics with human
judgments of paraphrase quality for the text-to-
text generation task of sentence compression.

7 Summary

We have introduced two new metrics for evaluat-
ing paraphrase grammars, and looked at several
models from a variety of domains. Using these
metrics we can perform a variety of analyses about
SCFG-based paraphrase models:

o Automatically-extracted grammars can parse
a small fraction of held-out data (<30%).
This is comparable to results in MT (Auli et
al., 2009).

e In-domain training data is necessary in or-
der to parse held-out data. A model trained
on newswire data parsed 30% of held-out
newswire sentence pairs, versus to <10% for
literature or parliamentary data.

e SCFGs with syntactic labels perform just as
well as simpler models with a single non-
terminal label.

o Automatically-extracted syntactic grammars
tend to have a reasonable overlap with gram-
mars derived from human-aligned data, in-
cluding more 45% of the gold-standard gram-
mar’s paraphrase rules that occurred at least
twice.

e We showed that PARADIGM more strongly
correlates with human judgments of the
meaning and grammaticality of paraphrases
produced by sentence compression systems
than standard automatic evaluation measures
like BLEU.

PARADIGM will help researchers developing
paraphrase resources to perform similar diagnos-
tics on their models, and quickly evaluate their
systems.
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Abstract

Translation Memory (TM) systems are
one of the most widely used translation
technologies. An important part of TM
systems is the matching algorithm that de-
termines what translations get retrieved
from the bank of available translations
to assist the human translator. Although
detailed accounts of the matching algo-
rithms used in commercial systems can’t
be found in the literature, it is widely
believed that edit distance algorithms are
used. This paper investigates and eval-
uates the use of several matching algo-
rithms, including the edit distance algo-
rithm that is believed to be at the heart
of most modern commercial TM systems.
This paper presents results showing how
well various matching algorithms corre-
late with human judgments of helpfulness
(collected via crowdsourcing with Ama-
zon’s Mechanical Turk). A new algorithm
based on weighted n-gram precision that
can be adjusted for translator length pref-
erences consistently returns translations
judged to be most helpful by translators for
multiple domains and language pairs.

1 Introduction

The most widely used computer-assisted transla-
tion (CAT) tool for professional translation of spe-
cialized text is translation memory (TM) technol-
ogy (Christensen and Schjoldager, 2010). TM
consists of a database of previously translated ma-
terial, referred to as the TM vault or the TM bank
(TMB in the rest of this paper). When a trans-
lator is translating a new sentence, the TMB is
consulted to see if a similar sentence has already
been translated and if so, the most similar pre-
vious translation is retrieved from the bank to

University of Maryland
College Park, MD 20742 USA
bstrauss@umd.edu

help the translator. The main conceptions of TM
technology occurred in the late 1970s and early
1980s (Arthern, 1978; Kay, 1980; Melby and oth-
ers, 1981). TM has been widely used since the
late 1990s and continues to be widely used to-
day (Bowker and Barlow, 2008; Christensen and
Schjoldager, 2010; Garcia, 2007; Somers, 2003).

There are a lot of factors that determine how
helpful TM technology will be in practice. Some
of these include: quality of the interface, speed of
the back-end database lookups, speed of network
connectivity for distributed setups, and the com-
fort of the translator with using the technology.
A fundamentally important factor that determines
how helpful TM technology will be in practice is
how well the TM bank of previously translated
materials matches up with the workload materials
to be translated. It is necessary that there be a high
level of match for the TM technology to be most
helpful. However, having a high level of match is
not sufficient. One also needs a successful method
for retrieving the useful translations from the (po-
tentially large) TM bank.

TM similarity metrics are used for both evalu-
ating the expected helpfulness of previous transla-
tions for new workload translations and the met-
rics also directly determine what translations get
provided to the translator during translation of new
materials. Thus, the algorithms that compute the
TM similarity metrics are not only important, but
they are doubly important.

The retrieval algorithm used by commercial TM
systems is typically not disclosed (Koehn and
Senellart, 2010; Simard and Fujita, 2012; Why-
man and Somers, 1999). However, the best-
performing method used in current systems is
widely believed to be based on edit distance (Bald-
win and Tanaka, 2000; Simard and Fujita, 2012;
Whyman and Somers, 1999; Koehn and Senellart,
2010; Christensen and Schjoldager, 2010; Man-
dreoli et al., 2006; He et al., 2010). Recently
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Simard and Fujita (2012) have experimented with
using MT (machine translation) evaluation metrics
as TM fuzzy match, or similarity, algorithms. A
limitation of the work of (Simard and Fujita, 2012)
was that the evaluation of the performance of the
TM similarity algorithms was also conducted us-
ing the same MT evaluation metrics. Simard
and Fujita (2012) concluded that their evalua-
tion of TM similarity functions was biased since
whichever MT evaluation metric was used as the
TM similarity function was also likely to obtain
the best score under that evaluation metric.

The current paper explores various TM fuzzy
match algorithms ranging from simple baselines
to the widely used edit distance to new methods.
The evaluations of the TM fuzzy match algorithms
use human judgments of helpfulness. An algo-
rithm based on weighted n-gram precision consis-
tently returns translations judged to be most help-
ful by translators for multiple domains and lan-
guage pairs. In addition to being able to retrieve
useful translations from the TM bank, the fuzzy
match scores ought to be indicative of how helpful
a translation can be expected to be. Many transla-
tors find it counter-productive to use TM when the
best-matching translation from the TM is not simi-
lar to the workload material to be translated. Thus,
many commercial TM products offer translators
the opportunity to set a fuzzy match score thresh-
old so that only translations with scores above the
threshold will ever be returned. It seems to be a
widely used practice to set the threshold at 70%
but again it remains something of a black-box as to
why 70% ought to be the setting. The current pa-
per uncovers what expectations of helpfulness can
be given for different threshold settings for various
fuzzy match algorithms.

The rest of this paper is organized as follows.
Section 2 presents the TM similarity metrics that
will be explored; section 3 presents our experi-
mental setup; section 4 presents and analyzes re-
sults; and section 5 concludes.

2 Translation Memory Similarity
Metrics

In this section we define the methods for measur-
ing TM similarity for which experimental results
are reported in section 4. All of the metrics com-
pute scores between O and 1, with higher scores
indicating better matches. All of the metrics take
two inputs: M and C, where M is a workload sen-

tence from the MTBT (Material To Be Translated)
and C is the source language side of a candidate
pre-existing translation from the TM bank. The
metrics range from simple baselines to the sur-
mised current industrial standard to new methods.

2.1 Percent Match

Perhaps the simplest metric one could conceive of
being useful for TM similarity matching is percent
match (PM), the percent of tokens in the MTBT
segment found in the source language side of the
candidate translation pair from the TM bank.
Formally,
PM(M, C) _ ‘Munigrams m Cunigrams| (1)

)

|Munig7“ams ’

where M is the sentence from the MTBT that is
to be translated, C is the source language side
of the candidate translation from the TM bank,
Mynigrams s the set of unigrams in M, and
Cunigrams 18 the set of unigrams in C.

2.2 Weighted Percent Match

A drawback of PM is that it weights the match-
ing of each unigram in an MTBT segment equally,
however, it is not the case that the value of assis-
tance to the translator is equal for each unigram
of the MTBT segment. The parts that are most
valuable to the translator are the parts that he/she
does not already know how to translate. Weighted
percent match (WPM) uses inverse document fre-
quency (IDF) as a proxy for trying to weight words
based on how much value their translations are ex-
pected to provide to translators. The use of IDF-
based weighting is motivated by the assumption
that common words that permeate throughout the
language will be easy for translators to translate
but words that occur in relatively rare situations
will be harder to translate and thus more valuable
to match in the TM bank. For our implementa-
tion of WPM, each source language sentence in
the parallel corpus we are experimenting with is
treated as a “document” when computing IDF.
Formally,

WPM(M,C) =

idf (u, D)
ue{Munigrams ﬂ Cunigrums}

> idf (u, D)

ueMunigrams

@

where M, C, MunigramSa and Cunigrams are as
defined in Eq. 1, D is the set of all source language



sentences in the parallel corpus, and idf (z, D) =
D]

log( [{deDwed)] )-

2.3 Edit Distance

A drawback of both the PM and WPM metrics
are that they are only considering coverage of the
words from the workload sentence in the candi-
date sentence from the TM bank and not taking
into account the context of the words. However,
words can be translated very differently depending
on their context. Thus, a TM metric that matches
sentences on more than just (weighted) percentage
coverage of lexical items can be expected to per-
form better for TM bank evaluation and retrieval.
Indeed, as was discussed in section 1, it is widely
believed that most TM similarity metrics used in
existing systems are based on string edit distance.

Our implementation of edit distance (Leven-
shtein, 1966), computed on a word level, is sim-
ilar to the version defined in (Koehn and Senellart,
2010).

Formally, our TM metric based on Edit Dis-
tance (ED) is defined as

ED — maz <1 _ edit-dist(M, C)70> 3

‘Munigrams ‘

where M, C, and Mnigrams are as defined in
Eq. 1, and edit-dist(M, C') is the number of word
deletions, insertions, and substitutions required to
transform M into C.

2.4 N-Gram Precision

Although ED takes context into account, it does
not emphasize local context in matching certain
high-value words and phrases as much as metrics
that capture n-gram precision between the MTBT
workload sentence and candidate source-side sen-
tences from the TMB. We note that n-gram preci-
sion forms a fundamental subcomputation in the
computation of the corpus-level MT evaluation
metric BLEU score (Papineni et al., 2002). How-
ever, although TM fuzzy matching metrics are re-
lated to automated MT evaluation metrics, there
are some important differences. Perhaps the most
important is that TM fuzzy matching has to be able
to operate at a sentence-to-sentence level whereas
automated MT evaluation metrics such as BLEU
score are intended to operate over a whole cor-
pus. Accordingly, we make modifications to how
we use n-gram precision for the purpose of TM
matching than how we use it when we compute

BLEU scores. The rest of this subsection and the
next two subsections describe the innovations we
make in adapting the notion of n-gram precision to
the TM matching task.

Our first metric along these lines, N-Gram Pre-
cision (NGP), is defined formally as follows:

N
1
NGP =73 <pn, “
n=1

where the value of IV sets the upper bound on the
length of n-grams considered’, and

Pn =

’Mn—g'rams N Cn—grzzms| (5)
Z * ’Mn-g’r‘ams‘ + (1 - Z) * ‘Cn-grams|,

where M and C are as defined in Eq. 1, M;-grams
is the set of n-grams in M, C,-grams is the set of
n-grams in C, and Z is a user-set parameter that
controls how the metric is normalized.?

As seen by equation 4, we use an arithmetic
mean of precisions instead of the geometric mean
that BLEU score uses. An arithmetic mean is bet-
ter than a geometric mean for use in translation
memory metrics since translation memory metrics
are operating at a segment level and not at the
aggregate level of an entire test set. At the ex-
treme, the geometric mean will be zero if any of
the n-gram precisions p,, are zero. Since large n-
gram matches are unlikely on a segment level, us-
ing a geometric mean can be a poor method to use
for matching on a segment level, as has been de-
scribed for the related task of MT evaluation (Dod-
dington, 2002; Lavie et al., 2004). Additionally,
for the related task of MT evaluation at a segment
level, Lavie et al. (2004) have found that using
an arithmetic mean correlates better with human
judgments than using a geometric mean.

Now we turn to discussing the parameter Z for
controlling how the metric is normalized. At one
extreme, setting Z=1 will correspond to having no
penalty on the length of the candidate retrieved
from the TMB and leads to getting longer trans-
lation matches retrieved. At the other extreme,

"We used N = 4 in our experiments.

Note that the n in n-grams is intended to be substituted
with the corresponding integer. Accordingly, for p1, n = 1
and therefore My-grams = Mi-grams is the set of unigrams
in M and Ch-grams = Cl-grams is the set of unigrams in C
for po, n = 2 and therefore My-grams = Ma-grams is the
set of bigrams in M and Ch-grams = C2-grams is the set of
bigrams in C'; and so on.
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setting Z=0 will correspond to a normalization
that penalizes relatively more for length of the
retrieved candidate and leads to shorter transla-
tion matches being retrieved. There is a preci-
sion/recall tradeoff in that one wants to retrieve
candidates from the TMB that have high recall
in the sense of matching what is in the MTBT
sentence yet one also wants the retrieved candi-
dates from the TMB to have high precision in the
sense of not having extraneous material not rele-
vant to helping with the translation of the MTBT
sentence. The optimal setting of Z may differ
for different scenarios based on factors like the
languages, the corpora, and translator preference.
We believe that for most TM applications there
will usually be an asymmetric valuation of pre-
cision/recall in that recall will be more important
since the value of getting a match will be more
than the cost of extra material up to a point. There-
fore, we believe a Z setting in between 0.5 and 1.0
will be an optimal default. We use Z=0.75 in all
of our experiments described in section 3 and re-
ported on in section 4 except for the experiments
explicitly showing the impact of changing the Z
parameter.

2.5 Weighted N-Gram Precision

Analogous to how we improved PM with WPM,
we seek to improve NGP in a similar fashion. As
can be seen from the numerator of Equation 5,
NGP is weighting the match of all n-grams as
uniformly important. However, it is not the case
that each n-gram is of equal value to the transla-
tor. Similar to WPM, we use IDF as the basis of
our proxy for weighting n-grams according to the
value their translations are expected to provide to
translators. Specifically, we define the weight of
an n-gram to be the sum of the IDF values for each
constituent unigram that comprises the n-gram.

Accordingly, we formally define method
Weighted N-Gram Precision (WNGP) as follows:

N
1
WNGP =Y P (6)

n=1

where N is as defined in Equation 4, and
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where Z, My,-grams, and Cy-grams are as defined
in Equation 5, and

> idf(1-gram,D),  (8)

1-graméesi

w(i) =

where i is an n-gram and idf (x, D) is as defined
above for Equation 2.

2.6 Modified Weighted N-gram Precision

Note that in Equation 6 each wp,, contributes
equally to the average. Modified Weighted N-
Gram Precision (MWNGP) improves on WNGP
by weighting the contribution of each wp,, so that
shorter n-grams contribute more than longer n-
grams. The intuition is that for TM settings, get-
ting more high-value shorter n-gram matches at
the expense of fewer longer n-gram matches will
be more helpful since translators will get relatively
more assistance from seeing new high-value vo-
cabulary. Since the translators already presumably
know the rules of the language in terms of how
to order words correctly, the loss of the longer n-
gram matches will be mitigated.
Formally we define MWNGP as follows:

ov N1
MWNGP = — wpn,
WNG 2N_1n§_:12nwp 9)

where N and wp,, are as they were defined for
Equation 6.

3 Experimental Setup

We performed experiments on two corpora from
two different technical domains with two language
pairs, French-English and Chinese-English. Sub-
section 3.1 discusses the specifics of the corpora
and the processing we performed. Subsection 3.2
discusses the specifics of our human evaluations of
how helpful retrieved segments are for translation.



3.1 Corpora

For Chinese-English experiments, we used the
OpenOffice3 (O03) parallel corpus (Tiedemann,
2009), which is OO3 computer office productiv-
ity software documentation. For French-English
experiments, we used the EMEA parallel cor-
pus (Tiedemann, 2009), which are medical docu-
ments from the European Medecines Agency. The
corpora were produced by a suite of automated
tools as described in (Tiedemann, 2009) and come
sentence-aligned.

The first step in our experiments was to pre-
process the corpora. For Chinese corpora we to-
kenize each sentence using the Stanford Chinese
Word Segmenter (Tseng et al., 2005) with the Chi-
nese Penn Treebank standard (Xia, 2000). For all
corpora we remove all segments that have fewer
than 5 tokens or more than 100 tokens. We call
the resulting set the valid segments. For the pur-
pose of computing match statistics, for French cor-
pora we remove all punctuation, numbers, and sci-
entific symbols; we case-normalize the text and
stem the corpus using the NLTK French snowball
stemmer. For the purpose of computing match
statistics, for Chinese corpora we remove all but
valid tokens. Valid tokens must include at least
one Chinese character. A Chinese character is de-
fined as a character in the Unicode range 0x4EQ0-
0x9FFF or 0x4000-0x4DFF or 0xF900-0xFAFF.
The rationale for removing these various tokens
from consideration for the purpose of comput-
ing match statistics is that translation of numbers
(when they’re written as Arabic numerals), punc-
tuation, etc. is the same across these languages
and therefore we don’t want them influencing the
match computations. But once a translation is se-
lected as being most helpful for translation, the
original version (that still contains all the numbers,
punctuation, case markings, etc.) is the version
that is brought back and displayed to the transla-
tor.

For the TM simulation experiments, we ran-
domly sampled 400 translations from the OO3
corpus and pretended that the Chinese sides of
those 400 translations constitute the workload
Chinese MTBT. From the rest of the corpus we
randomly sampled 10,000 translations and pre-
tended that that set of 10,000 translations consti-
tutes the Chinese-English TMB. We also did simi-
lar sampling from the EMEA corpus of a workload
French MTBT of size 300 and a French-English
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TMB of size 10,000.

After the preprocessing and selection of the
TMB and MTBT, we found the best-matching
segment from the TMB for each MTBT seg-
ment according to each TM retrieval metric de-
fined in section 2>  The resulting sets of
(MTBT segment,best-matching TMB segment)
pairs formed the inputs on which we conducted
our evaluations of the performance of the various
TM retrieval metrics.

3.2 Human Evaluations

To conduct evaluations of how helpful the transla-
tions retrieved by the various TM retrieval metrics
would be for translating the MTBT segments, we
used Amazon Mechanical Turk, which has been
used productively in the past for related work in
the context of machine translation (Bloodgood and
Callison-Burch, 2010b; Bloodgood and Callison-
Burch, 2010a; Callison-Burch, 2009).

For each (MTBT segment,best-matching TMB
segment) pair generated as discussed in subsec-
tion 3.1, we collected judgments from Turkers
(i.e., the workers on MTurk) on how helpful
the TMB translation would be for translating the
MTBT segment on a 5-point scale. The 5-point
scale was as follows:

e 5 = Extremely helpful. The sample is so sim-
ilar that with trivial modifications I can do the
translation.

o 4 =Very helpful. The sample included a large
amount of useful words or phrases and/or
some extremely useful words or phrases that
overlapped with the MTBT.

e 3 = Helpful. The sample included some use-
ful words or phrases that made translating the
MTBT easier.

e 2 = Slightly helpful. The sample contained
only a small number of useful words or
phrases to help with translating the MTBT.

e 1 = Not helpful or detrimental. The sample
would not be helpful at all or it might even be
harmful for translating the MTBT.

After a worker rated a (MTBT segment,TMB
segment) pair the worker was then required to give
3If more than one segment from the TMB was tied for

being the highest-scoring segment, the segment located first
in the TMB was considered to be the best-matching segment.



metric PM WPM ED NGP WNGP MWNGP
PM 1000 695 230 320 31.5 355
WPM 695 100.0 258 37.0 39.0 44.2
ED 230 258 100.0 415 35.8 35.0
NGP 320 37.0 415 100.0 77.8 67.0
WNGP 315 390 358 778 100.0 81.2

MWNGP 355 442 350 670 81.2 100.0

Table 1: OO3 Chinese-English: The percent of the
time that each pair of metrics agree on the most
helpful TM segment

metric PM WPM ED NGP WNGP MWNGP
PM 1000 647 303 403 38.3 41.3
WPM 647 1000 32.0 463 47.0 543

ED 303 320 1000 423 40.3 39.3

NGP 403 463 423 100.0 76.3 67.7
WNGP 383 470 403 763 100.0 81.3
MWNGP 413 543 393 677 81.3 100.0

Table 2: EMEA French-English: The percent of
the time that each pair of metrics agree on the most
helpful TM segment

an explanation for their rating. These explanations
proved quite helpful as discussed in section 4. For
each (MTBT segment,TMB segment) pair, we col-
lected judgments from five different Turkers. For
each (MTBT segment,TMB segment) pair these
five judgments were then averaged to form a mean
opinion score (MOS) on the helpfulness of the re-
trieved TMB translation for translating the MTBT
segment. These MOS scores form the basis of our
evaluation of the performance of the different TM
retrieval metrics.

4 Results and Analysis

4.1 Main Results

Tables 1 and 2 show the percent of the time that
each pair of metrics agree on the choice of the
most helpful TM segment for the Chinese-English
003 data and the French-English EMEA data, re-
spectively. A main observation to be made is that
the choice of metric makes a big difference in
the choice of the most helpful TM segment. For
example, we can see that the surmised industrial
standard ED metric agrees with the new MWNGP
metric less than 40% of the time on both sets of
data (35.0% on Chinese-English OO3 and 39.3%
on French-English EMEA data).

Tables 3 and 4 show the number of times each
metric found the TM segment that the Turkers
judged to be the most helpful out of all the TM
segments retrieved by all of the different metrics.
From these tables one can see that the MWNGP
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Metric Found Best Total MTBT Segments
PM 178 400
WPM 200 400
ED 193 400

NGP 251 400
WNGP 271 400
MWNGP 282 400

Table 3: OO3 Chinese-English: The number of
times that each metric found the most helpful TM
segment (possibly tied).

Metric Found Best Total MTBT Segments
PM 166 300
WPM 184 300
ED 148 300

NGP 188 300
WNGP 198 300
MWNGP 201 300

Table 4: EMEA French-English: The number of
times that each metric found the most helpful TM
segment (possibly tied).

method consistently retrieves the best TM segment
more often than each of the other metrics. Scat-
terplots showing the exact performance on every
MTBT segment of the OO3 dataset for various
metrics are shown in Figures 1, 2, and 3. To con-
serve space, scatterplots are only shown for met-
rics PM (baseline metric), ED (strong surmised
industrial standard metric), and MWNGP (new
highest-performing metric). For each MTBT seg-
ment, there is a point in the scatterplot. The y-
coordinate is the value assigned by the TM metric
to the segment retrieved from the TM bank and
the x-coordinate is the MOS of the five Turkers
on how helpful the retrieved TM segment would
be for translating the MTBT segment. A point
is depicted as a dark blue diamond if none of
the other metrics retrieved a segment with higher
MOS judgment for that MTBT segment. A point
is depicted as a yellow circle if another metric re-
trieved a different segment from the TM bank for
that MTBT segment that had a higher MOS.

A main observation from Figure 1 is that PM is
failing as evidenced by the large number of points
in the upper left quadrant. For those points, the
metric value is high, indicating that the retrieved
segment ought to be helpful. However, the MOS
is low, indicating that the humans are judging it
to not be helpful. Figure 2 shows that the ED



metric does not suffer from this problem. How-
ever, Figure 2 shows that ED has another prob-
lem, which is a lot of yellow circles in the lower
left quadrant. Points in the lower left quadrant are
not necessarily indicative of a poorly performing
metric, depending on the degree of match of the
TMB with the MTBT workload. If there is noth-
ing available in the TMB that would help with
the MTBT, it is appropriate for the metric to as-
sign a low value and the humans to correspond-
ingly agree that the retrieved sentence is not help-
ful. However, the fact that so many of ED’s points
are yellow circles indicates that there were better
segments available in the TMB that ED was not
able to retrieve yet another metric was able to re-
trieve them. Observing the scatterplots for ED and
those for MWNGP one can see that both methods
have the vast majority of points concentrated in
the lower left and upper right quadrants, solving
the upper left quadrant problem of PM. However,
MWNGP has a relatively more densely populated
upper right quadrant populated with dark blue di-
amonds than ED does whereas ED has a more
densely populated lower left quadrant with yel-
low circles than MWNGP does. These results and
trends are consistent across the EMEA French-
English dataset so those scatterplots are omitted
to conserve space.

Examining outliers where MWNGP assigns a
high metric value yet the Turkers indicated that the
translation has low helpfulness such as the point
in Figure 3 at (1.6,0.70) is informative. Looking
only at the source side, it looks like the translation
retrieved from the TMB ought to be very help-
ful. The Turkers put in their explanation of their
scores that the reason they gave low helpfulness
is because the English translation was incorrect.
This highlights that a limitation of MWNGP, and
all other TM metrics we’re aware of, is that they
only consider the source side.

4.2 Adjusting for length preferences

As discussed in section 2, the Z parameter can be
used to control for length preferences. Table 5
shows how the average length, measured by num-
ber of tokens of the source side of the translation
pairs returned by MWNGP, changes as the Z pa-
rameter is changed.

Table 6 shows an example of how the opti-
mal translation pair returned by MWNGP changes
from Z=0.00 to Z=1.00. The example illustrates
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MTBT

la lactation.

pregnancy and lactation.

French: Ne pas utiliser durant la gestation et la lactation, car I’ innocuité du
médicament vétérinaire n’ a pas été établie pendant la gestation ou

English: Do not use during pregnancy and lactation because the safety of the
veterinary medicinal product has not been established during

MWNGP
(Z=0.00)

French: Peut étre utilisé pendant la gestation et la lactation.
English: Can be used during pregnancy and lactation.

MWNGP
(Z=1.00)

and dogs used for breeding.

French: Ne pas utiliser chez I’ animal en gestation ou en période de lactation,
car la sécurité du robenacoxib n’ a pas été établie chez les femelles gestantes ou
allaitantes ni chez les chats et chiens utilisés pour la reproduction.

English: Do not use in pregnant or lactating animals because the safety of
robenacoxib has not been established during pregnancy and lactation or in cats

Table 6: This table shows for an example MTBT workload sentence from the EMEA French-English data
how the optimal translation pair returned by MWNGP changes when going from Z = 0.00 to Z = 1.00.
We provide the English translation of the MTBT workload sentence for the convenience of the reader
since it was available from the EMEA parallel corpus. Note that in a real setting it would be the job of
the translator to produce the English translation of the MTBT-French sentence using the translation pairs

returned by MWNGP as help.

Z Value AvglLength Z Value Avg Length
0.00 9.9298 0.00 7.2475
0.25 13.204 0.25 9.5600
0.50 16.0134 0.50 11.1250
0.75 19.6355 0.75 14.1825
1.00 27.8829 1.00 25.0875

(a) EMEA French-English (b) OO3 Chinese-English

Table 5: Average TM segment length, measured
by number of tokens of the source side of the trans-
lation pairs returned by MWNGHP, for varying val-
ues of the Z parameter

the impact of changing the Z value on the na-
ture of the translation matches that get returned
by MWNGP. As discussed in section 2, smaller
settings of Z are appropriate for preferences for
shorter matches that are more precise in the sense
that a larger percentage of their content will be
relevant. Larger settings of Z are appropriate for
preferences for longer matches that have higher re-
call in the sense that they will have more matches
with the content in the MTBT segment overall, al-
though at the possible expense of having more ir-
relevant content as well.

5 Conclusions

Translation memory is one of the most widely
used translation technologies. One of the most
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important aspects of the technology is the system
for assessing candidate translations from the TM
bank for retrieval. Although detailed descriptions
of the apparatus used in commercial systems are
lacking, it is widely believed that they are based
on an edit distance approach. We have defined
and examined several TM retrieval approaches, in-
cluding a new method using modified weighted n-
gram precision that performs better than edit dis-
tance according to human translator judgments of
helpfulness. The MWNGP method is based on the
following premises: local context matching is de-
sired; weighting words and phrases by expected
helpfulness to translators is desired; and allowing
shorter n-gram precisions to contribute more to the
final score than longer n-gram precisions is de-
sired. An advantage of the method is that it can be
adjusted to suit translator length preferences of re-
turned matches. A limitation of MWNGP, and all
other TM metrics we are aware of, is that they only
consider the source language side. Examples from
our experiments reveal that this can lead to poor
retrievals. Therefore, future work is called for to
examine the extent to which the target language
sides of the translations in the TM bank influence
TM system performance and to investigate ways
to incorporate target language side information to
improve TM system performance.
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Abstract

In this paper, we present work on ex-
tracting social networks from unstructured
text. We introduce novel features de-
rived from semantic annotations based on
FrameNet. We also introduce novel se-
mantic tree kernels that help us improve
the performance of the best reported sys-
tem on social event detection and classi-
fication by a statistically significant mar-
gin. We show results for combining the
models for the two aforementioned sub-
tasks into the overall task of social net-
work extraction. We show that a combina-
tion of features from all three levels of ab-
stractions (lexical, syntactic and semantic)
are required to achieve the best performing
system.

1 Introduction

Social network extraction from text has recently
been gaining a considerable amount of attention
(Agarwal and Rambow, 2010; Elson et al., 2010;
Agarwal et al., 2013a; Agarwal et al., 2013b; He
et al., 2013). One of the reason for this attention,
we believe, is that being able to extract social net-
works from unstructured text may provide a pow-
erful new tool for historians, political scientists,
scholars of literature, and journalists to analyze
large collections of texts around entities and their
interactions. The tool would allow researchers to
quickly extract networks and assess their size, na-
ture, and cohesiveness, a task that would otherwise
be impossible with corpora numbering millions of
documents. It would also make it possible to make
falsifiable claims about these networks, bringing
the experimental method to disciplines like his-
tory, where it is still relatively rare.
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In our previous work (Agarwal et al., 2010),
we proposed a definition of a network based on
interactions: nodes are entities and links are so-
cial events. We defined two broad types of links:
one-directional links (one person thinking about
or talking about another person) and bi-directional
links (two people having a conversation, a meet-
ing, etc.). For example, in the following sen-
tence, we would add two links to the network: a
one-directional link between Toujan Faisal and
the committee, triggered by the word said (be-
cause Toujan is talking about the committee) and
a bi-directional link between the same entities trig-
gered by the word informed (a mutual interaction).

(1) [Toujan Faisal], 54, said [she] was informed
of the refusal by an [Interior Ministry com-
mittee] overseeing election preparations.

In this paper, we extract networks using the
aforementioned definition of social networks. We
introduce and add tree kernel representations and
features derived from frame-semantic parses to
our previously proposed system. Our results show
that hand-crafted frame semantic features, which
are linguistically motivated, add less value to
the overall performance in comparison with the
frame-semantic tree kernels. We believe this is due
to the fact that hand-crafted features require frame
parses to be highly accurate and complete. In con-
trast, tree kernels are able to find and leverage less
strict patterns without requiring the semantic parse
to be entirely accurate or complete.

Apart from introducing semantic features and
tree structures, we evaluate on the task of social
network extraction, which is a combination of two
sub-tasks: social event defection and social event
classification. In our previous work (Agarwal and
Rambow, 2010), we presented results for the two

Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics, pages 211-219,
Gothenburg, Sweden, April 26-30 2014. (©2014 Association for Computational Linguistics



sub-tasks, but no evaluation was presented for the
task of social network extraction. We experiment
with two different designs of combining models
for the two sub-tasks: 1) One-versus-All and 2)
Hierarchical. We find that the hierarchical de-
sign outperforms the more commonly used One-
versus-All by a statistically significant margin.
Following are the contributions of this paper:

1. We design and propose novel frame semantic
features and tree-based representations and
show that tree kernels are well suited to work
with noisy semantic parses.

2. We show that in order to achieve the best
performing system, we need to include fea-
tures and tree structures from all levels of
abstractions, lexical, syntactic, and semantic,
and that the convolution kernel framework is
well-suited for creating such a combination.

3. We combine the previously proposed sub-
tasks (social event detection and classifica-
tion) into a single task, social network ex-
traction, and show that combining the mod-
els using a hierarchical design is significantly
better than the one-versus-all design.

The rest of the paper is structured as follows:
In Section 2, we give a precise definition of the
task and describe the data. In Section 3, we give
a brief overview of frame semantics and motivate
the need to use frame semantics for the tasks ad-
dressed in this paper. In Section 4, we present
semantic features and tree kernel representations
designed for the tasks. In Section 5, we briefly
review tree kernels and support vector machines
(SVM). In Section 6 we present experiments and
discuss the results. In Section 7 we discuss related
work. We conclude and give future directions of
work in Section 8.

2 Data and Task Definition

In Agarwal et al. (2010), we presented the annota-
tion details of social events on a well-known cor-
pus — Automated Content Extraction! (ACE2005).
We defined a social event to be a happening be-
tween two entities (of type person) E'1 and E2
(E1 # EZ2), in which at least one entity is cog-
nitively aware of the other and of the happen-
ing taking place. We defined two broad cate-

"Version: 6.0, Catalog number: LDC2005E18
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No-Event | INR | OBS
1,609 199 | 199

# of Examples

Table 1: Data distribution; INR are interaction so-
cial events. OBS are observation social events.

gories of social events: Interaction (INR) and Ob-
servation (OBS). In a social event of type INR,
the two participating entities are mutually aware
of each other, i.e., INR is a bi-directional social
event. For example, meetings and dinners are so-
cial events of type interaction. In a social event of
type OBS, only one of the two participating enti-
ties is aware of the other and therefore, OBS is a
one-directional social event, directed from the en-
tity that is aware of the other to the other entity.
For example, thinking about someone, or missing
someone are social events of type OBS. Table 1
shows the distribution of the data. There are 199
INR type of social events, 199 OBS events, and
1,609 pairs of entity mentions have no event be-
tween them.

Task definition : The task is, given a pair of en-
tity mentions in a sentence, to predict if the en-
tities are participating in a social event or not
(social event detection, SED), and if they are, to
further predict the type of social event (INR or
OBS, social event classification, SEC). In this pa-
per, we evaluate our system on the above tasks as
well as a combined task: social network extraction
(SNE): given a sentence and a pair of entity men-
tions, predict the class of the example from one of
the following three categories: {No-Event, INR,
OBS}.

For the purposes of this paper, we use gold
named entity mentions to avoid errors caused due
to named entity recognition systems. This is a
common practice used in the literature for re-
porting relation extraction systems (Zelenko et
al., 2003; Kambhatla, 2004; Zhao and Grishman,
2005; GuoDong et al., 2005; Harabagiu et al.,
2005; Nguyen et al., 2009). We use standard ter-
minology from the literature to refer to the pair of
entities mentions as rarget entities T and T5.

3 Frame Semantics and FrameNet

FrameNet (Baker et al., 1998) is a resource which
associates words of English with their meaning.
Word meanings are based on the notion of “se-
mantic frame”. A frame is a conceptual descrip-
tion of a type of event, relation, or entity, and it



includes a list of possible participants in terms of
the roles they play; these participants are called
“frame elements”. Through the following exam-
ple, we present the terminology and acronyms that
will be used throughout the paper.

Example (2) shows the frame annotations for
the sentence Toujan Faisal said she was informed
of the refusal by an Interior Ministry committee.
One of the semantic frames in the sentence is
Statement. The frame evoking element (FEE) for
this frame is said. It has two frame elements (FE):
one of type Speaker (Toujan Faisal) and the other
of type Message (she was informed ... by an Inte-
rior Ministry committee).

(2) [FE—Speaker Toujan Faisal] [FEE-Statement
said] [FE—Message she was informed of the

refusal by an Interior Ministry committee]

In example (2), the speaker of the message (Toujan
Faisal) is mentioning another group of people (the
Interior Ministry committee) in her message. By
definition, this is a social event of type OBS. In
general, there is an OBS social event between any
Speaker and any person mentioned in the frame
element Message of the frame Statement. This
close relation between frames and social events is
the reason for our investigation and use of frame
semantics for the tasks addressed in this paper.

4 Feature space and data representation

We convert examples? into two kinds of structured
representations: feature vectors and tree struc-
tures. Each of these structural representations may
broadly be categorized into one or more of the fol-
lowing levels of abstraction: {Lexical, Syntactic,
Semantic}. Table 2 presents this distribution. Our
final results show that all of our top performing
models use a data representation that is a combi-
nation of features and structures from all levels of
abstraction. We review previously proposed fea-
tures and tree structures in subsections 4.1, 4.2,
and 4.3. To the best of our knowledge, the re-
maining features and structures presented in this
section are novel.

4.1 Bag of words (BOW)

We create a vocabulary from our training data
by using the Stanford tokenizer (Klein and Man-
ning, 2003) followed by removal of stop words

2 An input example is a sentence with a pair of entity men-
tions between whom we predict and classify social events.
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and Porter Stemming. We convert each example
(Z) to a set of three boolean vectors: {b_i, b_é, b}}
by is the occurrence of words before the first tar-
get, by between the two targets and bs after the sec-
ond target. Here the first target and second target
are defined in terms of the surface order of words.
Though these features have been previously pro-
posed for relation extraction on ACE (GuoDong
et al., 2005), they have not been utilized for the
task we address in this paper.

4.2 Syntactic structures (AR2010)

In Agarwal and Rambow (2010), we explored
a wide range of syntactic structures for the two
tasks of social event detection (SED) and classi-
fication (SEC). All our previous structures were
derived from a variation of two underlying tree
structures: phrase structure trees and depen-
dency trees. The best structure we proposed was
PET_GR_SqGRW, which was a linear combina-
tion of two tree kernels and one word kernel: 1)
a structure derived from a phrase structure tree
(PET); 2) a grammatical role tree (GR), which is
a dependency tree in which words are replaced
with their grammatical roles; and 3) a path from
one entity to the other in a dependency tree, in
which grammatical roles of words are inserted as
additional nodes between the dependent and par-
ent (SQGRW). We refer the reader to Agarwal
and Rambow (2010) for details of these structures.
For the rest of the paper, we refer to this struc-
ture, PET_GR_SqGRW, as “AR2010”. We use
AR2010 as one of our baselines.

4.3 Bag of frames (BOF)

We use Semafor (Chen et al., 2010) for obtaining
the semantic parse of a sentence. Semafor found
instances of 1,174 different FrameNet frames in
our corpus. Each example (¥) is converted to a
vector of dimension 1,174, in which z; (the "
component of vector &) is 1 if the frame number
¢ appears in the example, and O otherwise.

4.4 Hand-crafted semantic features (RULES)

We use the manual of the FrameNet resource to
hand-craft 199 rules that are intended to detect the
presence and determine the type of social events
between two entities mentioned in a sentence. An
example of one such rule is given in section 3,
which we reformulate here. We also present an-
other example:



Feature Vectors Tree Structures
BOW | BOF | RULES || AR2010 | FrameForest | FrameTree | FrameTreeProp
Lexical v v v
Syntactic v v
Semantic (novel) v v v v v

Table 2: Features and tree structures and the level of abstraction they fall into.

(3) If the frame is Statement, and the first tar-
get entity mention is contained in the FE
Speaker, and the second is contained in the
FE Message, then there is an OBS social
event from the first entity to the second.

(4) If the frame is Commerce_buy, and one tar-
get entity mention is contained in the FE
Buyer, and the other is contained in the FE
Seller, then there is an INR social event be-

tween the two entities.

Each rule corresponds to a binary feature: it
takes a value 1 if the rule fires for an input ex-
ample, and O otherwise. Consider the following
sentence:

{claimed }
from the

(5) [Coleman]71_pnq

[helr1/—1na  {bought}
[defendants]ra_Grp.

drugs

In this sentence, there are two social events:
1) an OBS event triggered by the word claimed
between Coleman and defendants and 2) an INR
event triggered by the word bought between he
(co-referential with Coleman) and the defendants.

Semafor correctly detects two frames in this
sentence: 1) the frame Statement, with Coleman
as Speaker, and he bought ... defendants as Mes-
sage, and 2) the frame Commerce_buy, with /e as
the Buyer, drugs as the Goods and the defendants
as the Seller. Both hand-crafted rules (3 and 4)
fire and the corresponding feature values for these
rules is set to 1. Firing of these rules (and thus
the effectiveness these features) is of course highly
dependent on the fact that Semafor provides an ac-
curate frame parse for the sentence.

4.5 Semantic trees (FrameForest,
FrameTree, FrameTreeProp)

Semafor labels text spans in sentences as frame
evoking elements (FEE) or frame elements (FE).
A sentence usually has multiple frames and the
frame annotations may overlap. There may be two
ways in which spans overlap (Figure 1): (a) one

F2 F2
]

Figure 1: Two overlapping scenarios for frame an-
notations of a sentence, where F'1, F'2 are frames.

F1 | F1 |

frame annotation is completely embedded in the
other frame annotation and (b) some of the frame
elements overlap (in terms of text spans). We now
present the three frame semantic tree kernel rep-
resentations that handle these overlapping issues,
along with providing a meaningful semantic ker-
nel representation for the tasks addressed in this
paper.

For each of the following representations,
we assume that for each sentence s, we have
the set of semantic frames, Fy;, = {F =
(FEE,|[FE\,FE,,...,FE,])} with each frame
F having an FEE and a list of FEs. . We illustrate
the structures using sentence (5).

4.5.1 FrameForest Tree Representation

We first create a tree for each frame annota-
tion F' in the sentence. Consider a frame,
F = (FEE,[FE\,FE,,...,FE,]). For the
purposes of tree construction, we treat F'EE as
another F'E (call it F'Ey) of type Target. For
each F'E;, we choose the subtree from the de-
pendency parse tree that is the smallest subtree
containing all words annotated as F'E; by Se-
mafor. Call this subtree extracted from the de-
pendency parse DepTree_FE;. We then cre-
ate a larger tree by adding DepTree_F'E; as
a child of a new node labeled with frame el-
ement F'E;: (FE; DepTree_FFE;). Call this
resulting tree SubTree_F F;. We then connect
all the SubTree_FE; (i € {0,1,2,...,n}) to
a new root node labeled with the frame F:
(F SubTree_FEjy SubTree_FE,). This
is the tree for a frame F'. Since the sentence
could have multiple frames, we connect the for-
est of frame trees to a new node called ROOT.
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ROOT Statement
Speaker Message
Commerce_buy Statement | |
/’\ T1-Ind Commer ce_buy
|
Target  Buyer  Seller  Target  Speaker Message Buyer Seller
| | | | | | | |
A Tl-Ind  from  claimed T1’-Ind A T1’-Ind  T2-Grp
| | | |
T2-Grp A he defendants

Figure 2: Semantic trees for the sentence “Coleman claimed [he]r;_j,q bought drugs from the
[defendants]ra_grp.”. The tree on the left is FrameForest and the tree on the right is FrameTree. A
in FrameForest refers to the subtree (bought (T1-Ind) (from T2-Grp)). Ind refers to individual and Grp

refers to group.

We prune away all subtrees that do not contain
the target entities. We refer to the resulting tree
as FrameForest.

For example, in Figure 2, the left tree is the
FrameForest tree for sentence (5). There are two
frames in this sentence that appear in the final tree
because both these frames contain the target enti-
ties and thus are not pruned away. The two frames
are Commerce_buy and Statement. We first cre-
ate trees for each of the frames. For the Com-
merce_buy frame, there are three frame elements:
Target (the frame evoking element), Buyer and
Seller. For each frame element, we get the sub-
tree from the dependency tree that contains all the
words belonging to that frame element. The sub-
tree for FEE Target is (bought T1-Ind (from T2-
Grp)). The subtree for FE Buyer is (T1-Ind) and
the subtree for FE Seller is (from T2-Grp). We
connect these subtrees to their respective frame el-
ements and connect the resulting subtrees to the
frame (Commerce_buy). Similarly, we create a
tree for the frame Statement. Finally, we connect
all frame trees to the ROOT'.

In this representation, we have avoided the
frame overlapping issues by repeating the com-
mon subtrees: the subtree (bought T1-Ind (from
T2-Grp)) is repeated under the FEE Target of the
Statement frame as well as under the FE Message
of the Statement frame.

4.5.2 FrameTree Tree Representation

For the design of this tree, we deal with the two
overlapping conditions shown in Figure 1 differ-
ently. If one frame is fully embedded in another
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frame, we add the former as a child of the latter
frame. In Figure 2, the frame Commerce_buy is
fully embedded in the frame element Message of
the frame Statement. Therefore, the frame sub-
tree for Commerce_buy appears as a subtree of
Message.

If the frames overlap partially, we copy over the
overlapping portions of the structures to each of
the frame sub-trees.

For the design of this representation, we remove
all lexical nodes (struck out nodes in Figure 2) and
trees that do not span any of the target entities (not
shown in the figure). As a result, this structure
is the smallest semantic structure that contains the
two target entities. The right tree in Figure 2 is the
FrameTree tree for sentence (5).

4.5.3 FrameTreeProp Tree Representation

We are using a partial tree kernel (PTK) for calcu-
lating the similarity of two trees (as detailed in sec-
tion 5). The PTK does not skip over nodes of the
tree that lie on the same path. For establishing an
OBS social event between Coleman and the defen-
dants, all the structure needs to encode is the fact
that one target appears as a Speaker and the other
appears in the Message (of the speaker). In Frame-
Tree, this information is encoded but in an unclear
manner — there are two nodes (Commerce_buy
and Seller) that come in between the node Mes-
sage and T2-Grp.

For this reason, we copy the nodes labeled with
the target annotations (7'1 — %, T'2 — %) to all nodes
(that are frame elements of a frame) on the path
from them to the root in FrameTree. We call this



variation of FrameTree, in which we propagate
T1 — %, T2 — x nodes to the root, FrameTreeP-
rop. For the running example, FrameTreeProp
will be: (Statement (Speaker T1-Ind) (Message
(Commerce_buy ...) (T2-Grp))). Using this tree
representation, one of the sub-trees in the implicit
feature space will be (Statement (Speaker T1-Ind)
(Message (T2-Grp)), which encodes the relation
between the two targets in a more direct manner
as compared to FrameTree.

5 Machine Learning

We represent our data in form of feature vectors
and tree structures. We use convolution kernels
(Haussler, 1999) that make use of the dual form
of Support Vector Machines (SVMs). In the dual
form, the optimization problem that SVM solves
is the following (Burges, 1998):

mazr X — i jpipyiy; K (v, 5)

st My =0
wi >0 Vi=1,2,...,1

Here, z; is the input example, y; is the class of
the example x;, u; is the Lagrange multiplier as-
sociated with example x;, [ is the number of train-
ing examples, and K is the kernel function that
returns a similarity between two examples. More
formally, K is the function, K : X x X — R,
that maps a pair of objects belonging to the set X
to a real number. For example, if we represent our
input examples as feature vectors, the set X would
be the set of feature vectors. For feature vectors,
we use a linear kernel, ie. K(z;,2;) = x; - x;
(dot product of the two vectors). For our tree rep-
resentations, we use a Partial Tree Kernel (PTK),
first proposed by Moschitti (2006). PTK is a re-
laxed version of the Subset Tree (SST) kernel pro-
posed by Collins and Duffy (2002). A subset
tree kernel measures the similarity between two
trees by counting all subtrees common to the two
trees. However, there is one constraint: all daugh-
ter nodes of a parent node must be included (in
the sub-trees). In PTK, this constraint is removed.
Therefore, in contrast to SST, PT kernels compare
many more substructures. For a combination of
feature vectors and tree representations, we sim-
ply use the linear combination of their respective
kernels.
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6 Experiments and Results

We present 5-fold cross-validation results on the
ACE2005 corpus annotated for social events.
Since the number of types of features and struc-
tures is not large (Table 2), we run an exhaustive
set of 27 — 1 = 127 experiments for each of three
tasks: Social Event Detection (SED), Social Event
Classification (SEC) and Social Network Extrac-
tion (SNE). To avoid over-fitting to a particular
partition into folds, we run each 5-fold experi-
ment 50 times, for 50 randomly generated parti-
tions. The results reported in the following tables
are all averaged over these 50 partitions. The ab-
solute standard deviation on an average is less than
0.004. This means that the performance of our
models across 50 random folds does not fluctuate
and hence the system is robust. We use McNe-
mar’s significance test and refer to statistical sig-
nificance as p < 0.05.

6.1 Social event detection (SED) and
classification (SEC)

We report precision (P), recall (R) and F1 measure
for the detection task, and % accuracy for the clas-
sification task. For both these tasks, our previous
best performing system was PET_GR_SqGRW
(which we refer to as AR2010). We use this as
a baseline, and introduce two new baselines: the
bag-of-words (BOW) baseline and a linear com-
bination of BOW and AR2010, referred to as
BOW_AR2010.

Table 3 presents the results for these two tasks
for various features and structures. The results
show that our purely semantic models (RULES,
BOF, FrameTree, FrameTreeProp) do not perform
well alone. FrameForest, which encodes some
lexical and syntactic level features (but is primar-
ily semantic), also performs worse than the base-
lines when used alone. However, a combination
of lexical, syntactic and semantic structures im-
proves the performance by an absolute of 1.1% in
F1-measure for SED (from 0.574 to 0.585). This
gain is statistically significant. For SEC, the abso-
lute gain from our best baseline (BOW_AR2010)
18 0.8% in F1-measure (from 82.3 to 83.1), which
is not statistically significant. However, the gain
of 2% from our previously proposed best system
(AR2010) is statistically significant.



SED SEC SNE Hierarchical

Model P | R [ Fl [[%Acc| P | R | FI

BOW 0.343 | 0.391 | 0.365 70.9 0.247 | 0.277 | 0.261
AR2010 0.464 | 0.751 | 0.574 81.1 0.375 | 0.611 | 0.465
BOW_AR2010 0.488 | 0.645 | 0.555 82.3 0.399 | 0.532 | 0.456
RULES 0.508 | 0.097 | 0.164 60.2 0.301 | 0.059 | 0.099
BOF 0.296 | 0.416 | 0.346 64.4 0.183 | 0.266 | 0.217
FrameForest 0.331 | 0.594 | 0.425 74.5 0.247 | 0.442 | 0.317
FrameTree 0.295 | 0.594 | 0.395 68.3 0.206 | 0.405 | 0.273
FrameTreeProp 0.308 | 0.554 | 0.396 70.7 0.217 | 0.390 | 0.279
All 0.494 | 0.641 | 0.558 82.5 0.405 | 0.531 | 0.460
BOW_AR2010_FrameForest_FrameTreeProp 0.490 | 0.633 | 0.552 83.1 0.405 | 0.528 | 0.459
AR2010_FrameTreeProp 0.484 | 0.740 | 0.585 82.0 0.397 | 0.608 | 0.480

Table 3: Results for three tasks: “SED” is Social Event Detection, “SEC” is Social Event Classification,

“SNE” is Social Network Extraction. The first three models are the baseline models.

The next five

models are the novel semantic features and structures we propose in this paper. “All” refers to the
model that uses all the listed structures together. “BOW_AR2010_FrameForest_FrameTreeProp” refers
to the model that uses a linear combination of mentioned structures. AR2010_FrameTreeProp is a linear

combination of AR2010 and FrameTreeProp.

6.2 Social network extraction (SNE)

Social network extraction is a multi-way classifi-
cation task, in which, given an example, we clas-
sify it into one of three categories: {No-Event,
INR, OBS}. A popular technique of performing
multi-way classification using a binary classifier
like SVM, is one-versus-all (OVA). We try this
along with a less commonly used technique, in
which we stack two binary classifiers in a hier-
archy. For the hierarchical design, we train two
models: (1) the SED model ({INR + OBS} ver-
sus No-Event) and (2) the SEC model (INR versus
OBS). Given a test example, it is first classified us-
ing the SED model. If the prediction is less than
zero, we label it as No-Event. Otherwise, the test
example is passed onto SEC and finally classified
into either INR or OBS.

We see that none of the semantic features and
structures alone outperform the baseline. How-
ever, a combination of structures from different
levels of abstraction achieve the best performance:
an absolute gain of 1.5% in F1 (statistically sig-
nificant) when we use a hierarchical design (from
0.465 to 0.480).

Comparing hierarchical verus OVA approaches,
we observe that the hierarchical approach
outperforms the OVA approach for all our
models by a statistically significant margin.
The performance for our best reported model
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(AR2010_FrameTreeProp) for OVA in terms
precision, recall, and F1-measure is 0.375, 0.592,
0.459 respectively. This is statistically signifi-
cantly worse than hierarchical approach (0.397,
0.608, 0.480).

6.3 Discussion of results

Performing well on SED is more important than
SEC, because if a social event is not detected in
the first place, the goodness of the SEC model is
irrelevant. Therefore, the best feature and struc-
ture combination we report in this paper is a com-
bination of AR2010 and FrameTreeProp.

To gain insight into the how each type of se-
mantic feature and structure contribute to our
previously proposed lexical and syntactic model
(AR2010), we perform experiments in which we
add one semantic feature/structure at a time to
AR2010. Table 4 presents the results for this
study. We see that the hand-crafted RULES do
not help in the overall task. We investigated the
reason for RULES not being as helpful as we had
expected. We found that when there is no social
event, the rules fire in 7% of the cases. When
there is a social event, they fire in 17% of cases.
So while they fire more often when there is a so-
cial event, the percentage of cases in which they
fire is small. We hypothesize that this is due the
dependence of RULES on the correctness of se-



mantic parses. For example, Rule (4) correctly
detects the social event in sentence (5), since Se-
mafor correctly parses the input. In contrast, Se-
mafor does not correctly parse the input sentence
(1): it correctly identifies the Statement frame and
its Message frame element, but it fails to find the
Speaker. As a result, Rule (3) does not fire, even
though the semantic structure is partially identi-
fied. This, we believe, highlights the main strength
of tree kernels — they are able to learn seman-
tic patterns, without requiring correctness or com-
pleteness of the semantic parse.

Out of the semantic structures we propose,
FrameTreeProp adds the most value to the base-
line system as compared to other semantic features
and structures. This supports our intuition that we
need to reduce unbounded semantic dependencies
between the target entities by propagating the tar-
get entity tags to the top of the semantic tree.

Model SED | SEC | SNE Hier.
(F1) | (%A)| (F1)
AR2010 0.574| 81.1 | 0.465
+ RULES 0.576| 80.8 | 0.465
+BOF 0.569| 80.7 | 0.459
+ FrameForest 0.571| 82.6 | 0.472
+ FrameTree 0.579| 81.5 | 0473
+ FrameTreeProp 0.585| 82.0 | 0.480

Table 4: A study to show which semantic features
and structures add the most value to the baseline.
The top row gives the performance of the base-
line. Each consecutive row shows the result of
the baseline plus the feature/structure mentioned
in that row.

7 Related Work

There have been recent efforts to extract net-
works from text (Elson et al., 2010; He et al.,
2013). However, these efforts extract a different
type of network: a network of only bi-directional
links, where the links are triggered by quotation
marks. For example, Elson et al. (2010) and He
et al. (2013) will extract an interaction link be-
tween Emma and Harriet in the following sen-
tence. However, their system will not detect any
interaction links in the other examples mentioned
in this paper.

(6) “Take it,” said Emma, smiling, and pushing
the paper towards Harriet “it is for you. Take
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your own.”

Our approach to extract and classify social
events builds on our previous work (Agarwal and
Rambow, 2010), which in turn builds on work
from the relation extraction community (Nguyen
et al., 2009). Therefore, the task of relation extrac-
tion is most closely related to the tasks addressed
in this paper. Researchers have used other notions
of semantics in the literature such as latent se-
mantic analysis (Plank and Moschitti, 2013) and
relation-specific semantics (Zelenko et al., 2003;
Culotta and Sorensen, 2004). To the best of our
knowledge, there is only one work that uses frame
semantics for relation extraction (Harabagiu et al.,
2005). Harabagiu et al. (2005) propose a novel se-
mantic kernel that incorporates frame parse infor-
mation in the kernel computation that calculates
similarity between two dependency trees. They,
however, do not propose data representations that
are based on frame parses and the resulting ar-
borescent structures, instead adding features to
syntactic trees. We believe the implicit feature
space of kernels based on our data representation
encode a richer and larger feature space than the
one proposed by Harabagiu et al. (2005).

8 Conclusion and Future Work

This work has only scratched the surface of possi-
bilities for using frame semantic features and tree
structures for the task of social event extraction.
We have shown that tree kernels are well suited to
work with possibly inaccurate semantic parses in
contrast to hand-crafted features that require the
semantic parses to be completely accurate. We
have also extended our previous work by design-
ing and evaluating a full system for social network
extraction.

A more natural data representation for seman-
tic parses is a graph structure. We are actively
exploring the design of semantic graph structures
that may be brought to bear with the use of graph
kernels (Vishwanathan et al., 2010).
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Abstract

Scripts represent knowledge of stereotyp-
ical event sequences that can aid text un-
derstanding.  Initial statistical methods
have been developed to learn probabilis-
tic scripts from raw text corpora; how-
ever, they utilize a very impoverished rep-
resentation of events, consisting of a verb
and one dependent argument. We present
a script learning approach that employs
events with multiple arguments. Unlike
previous work, we model the interactions
between multiple entities in a script. Ex-
periments on a large corpus using the task
of inferring held-out events (the “narrative
cloze evaluation”) demonstrate that mod-
eling multi-argument events improves pre-
dictive accuracy.

1 Introduction

Scripts encode knowledge of stereotypical events,
including information about their typical ordered
sequences of sub-events and corresponding argu-
ments (Schank and Abelson, 1977). The clas-
sic example is the “restaurant script,” which en-
codes knowledge about what normally happens
when dining out. Such knowledge can be used
to improve text understanding by supporting in-
ference of missing actions and events, as well as
resolution of lexical and syntactic ambiguities and
anaphora (Rahman and Ng, 2012). For example,
given the text “John went to Olive Garden and or-
dered lasagna. He left a big tip and left,” an infer-
ence that scripts would ideally allow us to make is
“John ate lasagna.”

There is a small body of recent research on auto-
matically learning probabilistic models of scripts
from large corpora of raw text (Manshadi et al.,
2008; Chambers and Jurafsky, 2008; Chambers
and Jurafsky, 2009; Jans et al., 2012). However,
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this work uses a very impoverished representation
of events that only includes a verb and a single de-
pendent entity. We propose a more complex multi-
argument event representation for use in statistical
script models, capable of directly capturing inter-
actions between multiple entities. We present a
method for learning such a model, and provide ex-
perimental evidence that modeling entity interac-
tions allows for better prediction of events in docu-
ments, compared to previous single-entity “chain”
models. We also compare to a competitive base-
line not used in previous work, and introduce a
novel evaluation metric.

2 Background

The idea of representing stereotypical event se-
quences for textual inference originates in the
seminal work of Schank and Abelson (1977).
Early scripts were manually engineered for spe-
cific domains; however, Mooney and DeJong
(1985) present an early knowledge-based method
for learning scripts from a single document. These
early scripts (and methods for learning them) were
non-statistical and fairly brittle.

Chambers and Jurafsky (2008) introduced a
method for learning statistical scripts that, using a
much simpler event representation that allows for
efficient learning and inference. Jans et al. (2012)
use the same simple event representation, but in-
troduce a new model that more accurately predicts
test data. These methods only model the actions of
a single participant, called the protagonist. Cham