Abstract
Natural language processing (NLP) has been shown to perform well in various tasks, such as answering questions, ascertaining natural language inference and anomaly detection. However, there are few NLP-related studies that touch upon the moral context conveyed in text. This paper studies whether state-of-the-art, pre-trained language models are capable of passing moral judgments on posts retrieved from a popular Reddit user board. Reddit is a social discussion website and forum where posts are promoted by users through a voting system. In this work, we construct a dataset that can be used for moral judgement tasks by collecting data from the AITA? (Am I the A*******?) subreddit. To model our task, we harnessed the power of pre-trained language models, including BERT, RoBERTa, RoBERTa-large, ALBERT and Longformer. We then fine-tuned these models and evaluated their ability to predict the correct verdict as judged by users for each post in the datasets. RoBERTa showed relative improvements across the three datasets, exhibiting a rate of 87% accuracy and a Matthews correlation coefficient (MCC) of 0.76, while the use of the Longformer model slightly improved the performance when used with longer sequences, achieving 87% accuracy and 0.77 MCC.