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Abstract

End-to-end spoken language understanding
(SLU) systems are gaining popularity over cas-
caded approaches due to their simplicity and
ability to avoid error propagation. However,
these systems model sequence labeling as a
sequence prediction task causing a divergence
from its well-established token-level tagging
formulation. We build compositional end-to-
end SLU systems that explicitly separate the
added complexity of recognizing spoken men-
tions in SLU from the NLU task of sequence
labeling. By relying on intermediate decoders
trained for ASR, our end-to-end systems trans-
form the input modality from speech to token-
level representations that can be used in the
traditional sequence labeling framework. This
composition of ASR and NLU formulations in
our end-to-end SLU system offers direct com-
patibility with pre-trained ASR and NLU sys-
tems, allows performance monitoring of indi-
vidual components and enables the use of glob-
ally normalized losses like CRF, making them
attractive in practical scenarios. Our models
outperform both cascaded and direct end-to-
end models on a labeling task of named entity
recognition across SLU benchmarks.1

1 Introduction

Sequence labeling (SL) is a class of natural lan-
guage understanding (NLU) tasks. These systems
tag each word in a sentence to provide insights
into the sentence structure and meaning (Jurafsky
and Martin, 2009). An SL system that processes
unstructured text, first encodes the context and rela-
tionships of words in the sentence using an encoder
and then labels each token (Lample et al., 2016;
Dozat et al., 2017; Akbik et al., 2018). However,
when dealing with spoken utterances, sequence
labeling introduces an additional complexity of

1Our code and models are publicly available as part
of the ESPnet-SLU toolkit: https://github.com/espnet/
espnet. ∗Equal Contribution. Siddharth is now at Google.

also recognizing the mentions of the labels (Kubala
et al., 1998; Zhai et al., 2004).

SL in spoken language understanding (SLU) has
been approached by two schools of thought, (1)
that seek to recognize the spoken words using an
Automatic Speech Recognition (ASR) engine and
then tag the mentions using an NLU engine in a cas-
caded manner (Palmer and Ostendorf, 2001; Hor-
lock and King, 2003; Béchet et al., 2004), and
(2) that seek to recognize and tag the mentions
directly from speech in an end-to-end (E2E) frame-
work (Arora et al., 2022; Ghannay et al., 2018).
Prior work has shown that cascaded systems suffer
due to error propagation (Tran et al., 2018) from the
ASR into the NLU engine, which can be overcome
in an E2E framework. However, unlike cascaded
models, E2E systems cannot utilize the vast abun-
dance of NLU research (Shon et al., 2022) as they
re-define the SL problem as a complex sequence
prediction problem where the sequence contains
both the tags and its mentions.

Inspired by the principles of task compositional-
ity in SL for SLU, we seek to bring both schools
of thought together. Our conjecture is that we can
build compositional E2E systems that first convert
the spoken utterance to a sequence of token rep-
resentations (Dalmia et al., 2021), which can then
be used to train token-wise classification systems
as per the NLU formulation. By also conditioning
our token-wise classification on speech, our com-
positional E2E system allows recovery from errors
made while creating token representations. We in-
stantiate our formulation on a popular SL task of
named entity recognition (NER) and (1) present
the efficacy of our compositional E2E NER-SLU
system on benchmark SLU datasets (Bastianelli
et al., 2020; Shon et al., 2022) surpassing both the
cascaded and direct E2E systems §5.2. (2) Our
compositional model consists of ASR and NLU
components compatible with pre-trained ASR and
NER-NLU models §5.3. (3) Our E2E systems ex-
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hibit transparency towards categorizing errors by
enabling the evaluation of individual components
of our model in isolation §5.4.

The paper first describes the traditional SL for-
mulation (§2), and discusses shortcomings in cur-
rent SLU formulations (§3). Section §4 presents
our compositional E2E model that can overcome
these shortcomings. We then evaluate these ap-
proaches towards the SL task of NER (§5).

2 Sequence Labeling (SL)

SL systems tag each word, wi, of a text sequence,
S = {wi ∈ V|i = 1, . . . , N} of length N and
vocabulary V , with a label from a label set L,
{wi → yi |yi ∈ L}. This produces a label se-
quence, Y = {yi ∈ L|i = 1, . . . , N} of the same
length N . Using decision theory, sequence labeling
models seek to output Ŷ from a set of all possible
tag sequence LN ,

Ŷ = argmax
Y ∈LN

P (Y |S) (1)

where P (Y |S) is the posterior distribution. This
posterior can be modeled using various techniques
like the traditional HMM (Morwal et al., 2012) and
MEMM (McCallum et al., 2000) based modeling
and more recently CRF (Ma and Hovy, 2016) and
token classification (Devlin et al., 2019) based ap-
proaches. We discuss the latter two in detail:

Conditional Random Field: Lafferty et al.
(2001) aims to directly compute the posterior of
the entire label sequence Y given the sentence S:

P (Y |S) = eF (Y,S)

∑
Y ′∈LN eF (Y ′,S)

(2)

where F (Y, S) is global score of the tag sequence
Y given S. This is modeled using a linear chain
CRF which computes the global score as a sum of
local scores f(.) for each position in Y as follows

F (Y, S) =
N∑

l=1

f(yl−1, yl, S) (3)

Lample et al. (2016) and Yan et al. (2019) use con-
textualized neural encoders like LSTMs and trans-
formers to model context of the entire sequence
S for every word wl. This allows for effective
modeling of f(.) by using encoder representations
for each word as the emissions, and maintaining a

separate transition score tyl−1→yl to give F (Y, S):

h1:N = encoder(w1:N ) (4)

tyl−1→yl = transitionScores(|L|, |L|) (5)

F (Y, S) =

N∑

l=1

(hl,yl + tyl−1→yl) (6)

Token Classification Model: Since the advent
of strong contextual modeling using transformer
based models, sequence labeling can also be treated
as token classification (Devlin et al., 2019), a sim-
plification over MEMM estimations (McCallum
et al., 2000), with the assumption that the current
tag is conditionally independent to previous tag.

P (Y |S) =
N∏

l=1

P (yl|hl) (7)

These models are still effective as hl is able to
model the full context S for every word wl.

In cases like NER, where an entity can span
multiple words, these problems are modeled using
BIO tags (Ramshaw and Marcus, 1995), where
begin (B), inside (I) tags are added for entities and
an outside (O) tag for non-entity words, extending
the tag set vocabulary from L to L′ = {lB ⊕ lI |l ∈
L} ∪ {O}.When modeled using sub-word tokens
the tags can be aligned to the first sub-word token
of the word and the remaining ones can be marked
with a special token ∅ giving L′′ = L′ ∪ {∅}.

3 Sequence Labeling in SLU

Sequence Labeling in SLU introduces an added
complexity of recognizing mentions on top of text-
based SL tasks (§2) as they aim to predict the tag
and its mentions directly from a spoken sequence.
Given a sequence of d dimensional speech feature
of length T frames, X = {xt ∈ Rd|t = 1, . . . , T},
these systems seek to estimate the label sequence
Ŷ from

Ŷ = argmax
Y ∈L∗

P (Y |X) (8)

where P (Y |X) have been modeled as:

Cascaded SLU (Béchet et al., 2004; Parada
et al., 2011; Zhou et al., 2015) models P (Y |X)
from P (Y |S) using an NLU framework (§2) and
P (S|X) using an ASR model (Povey et al., 2011;
Chan et al., 2016; Graves, 2012), assuming condi-
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tional independence of Y |S from X ,

P (Y |X) =
∑

S

P (Y |S,��X)P (S|X) (9)

≈ max
S

P (Y |S)P (S|X) (10)

≈ P (Y |Ŝ)max
S

P (S|X) (11)

Ŝ = argmax
S∈V∗

P (S|X) (12)

Once Ŝ is estimated, Ŷ can be estimated using Eq
1. Although this enables realizing Ŷ using two well
studied frameworks, the independence assumption
doesn’t allow recovery from errors in estimating Ŝ.

Direct End-to-End SLU (Arora et al., 2022;
Shon et al., 2022; Ghannay et al., 2018) sys-
tems avoid cascading errors by directly modeling
P (Y |X) in a single monolithic model. To achieve
this while being able to recognize the spoken men-
tions, these systems enrich Y with transcripts S,
Y e = {yei ∈ V ∪ L|i = 1, . . . , N ′}, where N ′ is
the length of Y e. This can be modeled using an
autoregressive decoder as:

P (Y |X) =
N ′∏

i=1

P (yei |ye1:i−1, X) (13)

However this new formulation cannot utilize the
well studied sequence labeling framework §2. Ad-
ditionally, this applies an extra burden of labeling
along with alignment on the decoder and makes
understanding the errors made by these systems
particularly difficult. For example, Eq 13 gives
non-zero likelihood to a corrupt sequence with only
labels and no words as ye ∈ {V ∪ L}.

4 Compositional End-to-End SLU

We propose to bring the two paradigms together in
a compositional end-to-end system, by extending
over the cascaded SLU formulation using search-
able intermediate framework (Dalmia et al., 2021):

P (Y |X) =
∑

S

P (Y |S,X)P (S|X) (14)

≈ max
S

P (Y |S,X)︸ ︷︷ ︸
SUBNLUNET

P (S|X)︸ ︷︷ ︸
SUBASRNET

(15)

This system can be realized with two sub-networks
as shown in Figure 1, where:

 
  

Figure 1: Schematics of our compositional E2E SLU
architecture with ASR and NLU sub-nets. The ASR sub-
net consists of an encoder and decoder. The NLU sub-
net consists of an encoder that conditions on both speech
information via encoderASR and the text information via
decoderASR’s hidden representation hASR followed by
token classification or CRF layer.

SUBASRNET: Models P (S|X),

hE
1:T = encoderASR(X1:T ) (16)

hASR
l = decoderASR(h

E
1:T , w1:l−1) (17)

P (wl|X,w1:l−1) = softmaxOut(hASR
l ) (18)

P (S|X) =
N∏

l=1

P (wl|X,w1:l−1) (19)

SUBNLUNET: Models P (Y |S,X),

hNLU
1:N = encoderNLU(h

ASR
1:N ,hE

1:T ) (20)

P (Y |S,X) = CRF(hNLU
1:N ) OR (21)

P (Y |S,X) = TokenClassification(hNLU
1:N ) (22)

The end-to-end differentiability is maintained by
using hASR

1:N in Eq 20. During inference, we ap-
proximate the Viterbi max of S using beam search
to give ĥASR

1:N . Then Ŷ can be found using Viterbi
search with no approximation as the output length
is known and the solution is tractable.

This composition allows incorporating the ASR
modeling and text-based sequence labeling frame-
work §2. It also brings transparency to end-to-end
modeling as we can also monitor performance of in-
dividual sub-nets in isolation. Further, encoderNLU
can attend to speech representations hE

1:T using
cross attention (Dalmia et al., 2021) enabling the
direct use of speech cues for NLU. This speech at-
tention mechanism can allow the model to recover
from intermediate errors made during ASR stage.

Recently, there has been some works (Rao et al.,
2020; Saxon et al., 2021) that explore composi-
tional SLU models which utilize the ASR and NLU
formulations. Saxon et al. (2021) uses discrete out-
puts from the ASR module that are made differ-
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entiable using various approaches like Gumbel-
softmax (Jang et al., 2017). Rao et al. (2020) also
uses the ASR decoder hidden representations in the
NLU module by concatenating it with token em-
beddings of the ASR discrete output. However, this
approach requires the ASR and NLU submodule
to have a shared vocabulary space, limiting the us-
age of pretrained ASR and LM in this architecture.
Moreover, the benefits of our proposed composi-
tional framework are not explored in these works.

5 Spoken Named Entity Recognition

To show the effectiveness of our compositional E2E
SLU model we build spoken NER systems on two
publically available SLU datasets, SLUE (Shon
et al., 2022) and SLURP (Bastianelli et al., 2020)
(dataset and preparation details in §A.2). We com-
pare our compositional E2E system with cascaded
and direct E2E systems. We also compare with
another compositional E2E system that predicts
the enriched transcript (§3) using a decoder like
(Dalmia et al., 2021) instead of label sequence (i.e.
Y e instead of Y in Eq. 15) using a token level clas-
sification sub-network. We refer to this baseline
model as “Compositional E2E SLU with Direct
E2E formulation”.

SLURP is evaluated using SLU-F1 (Bastianelli
et al., 2020) which weighs the entity labels with
the word and character error rate of the predicted
mentions and SLUE using F1 (Shon et al., 2022)
which evaluates getting both the mention and the
entity label exactly right. We also compute Label-
F1 for both datasets which considers only the entity
label. We report micro-averaged F1 for all results.

5.1 Model Configurations

We build all our systems using ESPnet-SLU (Arora
et al., 2022) which is an open-source SLU toolkit
built on ESPnet (Watanabe et al., 2018), a flagship
toolkit for speech processing. We use encoder-
decoder based architecture for our baseline E2E
system. We use Conformer encoder blocks (Gu-
lati et al., 2020) and Transformer decoder blocks
(Vaswani et al., 2017) with CTC multi-tasking
(Arora et al., 2022). The baseline compositional
model with Direct E2E SLU formulation consists
of a conformer encoder and transformer decoder
in it’s ASR component and transformer encoder
and transformer decoder in it’s NLU component.
Our proposed compositional model with the NLU
formulation, as shown in Figure 1, replaces the

SLURP SLUE

Model SLU F1 Label F1 F1 Label F1

Direct E2E SLU (Arora et al.) 71.9 - 54.7 67.6

Casacaded SLU (Ours) 73.3 80.9 48.6 63.9
Direct E2E SLU (Ours) 77.1 84.0 54.7 67.6

Compositional E2E SLU
w/ Direct E2E formulation (§3) 77.2 84.6 50.0 68.0
w/ Proposed NLU formulation (§4)

CRF w/ Speech Attention (SA) 77.7 85.2 59.4 73.6
Token Classification w/ SA 78.0 85.3 60.3 73.7

w/o Speech Attention 77.7 84.9 59.0 73.6

Table 1: Results presenting the micro F1 performance of
our proposed compositional E2E models using CRF and
Token Classification modeling. Cascaded, direct E2E
and our compositional E2E with direct E2E formulation
are shown for comparison. We also provide an ablation
of our model with and without Speech Attention (SA).

NLU component in Direct E2E formulation with
a transformer encoder followed by a linear layer.
For the cascaded systems, we build systems that
have the same size as that of our ASR and NLU
sub-networks. All models were tuned separately
using validation sets with the same hyperparame-
ter search space. Full descriptions of model and
training parameters are in §A.3.

5.2 Performance of Compositional E2E SLU
Table 1 shows that our proposed compositional E2E
models with the token-level NLU formulation out-
perform both cascaded and direct E2E models on
all benchmarks using both CRF and Token Classifi-
cation. In order to understand gains of our proposed
model, we examine the performance of our compo-
sitional system with direct E2E formulation (§3).
While being comparable to direct E2E models, they
still lag behind our proposed models showing the
efficacy of modeling SL tasks as a token-level tag-
ging (§2) in an E2E SLU framework.

We further analyze our compositional systems
that don’t attend to speech representations. We ob-
serve a performance drop as these models are not
able to recover from errors made while “recognis-
ing” entity mentions. For example, in an utterance
that says “change the bedroom lights to green”,
though the ASR component incorrectly predicts the
transcript as “change the color of lights to green”,
the NLU component w/ Speech Attention is able
to recover the entity type HOUSE_PLACE.

5.3 Utilizing External Sub-Net models
Components of our compositional E2E SLU model
have functions similar to an ASR and NLU model
(Eq 16-22). This allows fine-tuning our models
using sub-systems, pre-trained on large amounts
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SLURP SLUE

Model SLU F1 Label F1 F1 Label F1

Direct E2E SLU 77.1 84.0 54.7 67.6
w/ NLU fine-tuning Incompatible
w/ ASR fine-tuning 73.5 81.2 64.0 80.6

Compositional E2E SLU (w/ SA) 78.0 85.3 60.3 73.7
w/ NLU finetuning (w/o SA) 77.7 84.9 62.4 76.4
w/ ASR finetuning (w/ SA) 81.4 88.8 71.6 85.2

Compositional E2E SLU (w/ SA) 78.0 85.3 60.3 73.7
w/ External ASR Transcripts (Sext) 81.0 88.1 70.1 81.2

Table 2: Results presenting the compatibility of our
models with pre-trained ASR and NLU systems by (1)
finetuning pre-trained components and (2) directly uti-
lizing transcripts from an external ASR model.

SLURP SLUE

ASR NLU ASR NLU
(%WER ↓) (SLU-F1 ↑) (%WER ↓) (F1 ↑)

Pure ASR & NLU models 16.1 82.4 30.4 58.1

Compostional E2E SLU
CRF w/ Speech Attention (SA) 16.3 88.3 27.4 75.6
Token Classification w/o SA 16.0 87.9 27.6 74.1
Token Classification w/ SA 16.1 88.7 27.5 75.6

Table 3: Results showcasing the transparency of our
compositional E2E models by evaluating the individual
sub-networks ASR (%WER) and NLU (F1) in isolation.

of available sub-task data. Table 2 shows that our
compositional model has better compatibility with
ASR and NLU fine-tuning over direct E2E systems,
thereby increasing their performance gap, particu-
larly for SLUE, an under-resourced SLU dataset.

Further our models have the ability to use tran-
scripts from a strong external model (Sext) directly
during inference, by instantiating our models with
these transcripts to produce hASR and then evalu-
ate P (Y |Sext, X). Table 2 shows using transcripts
from an external ASR with no fine-tuning steps can
achieve similar performance to ASR fine-tuning.

5.4 Transparency in Compositional E2E SLU

Following Eq 15, we can estimate ASR per-
formance by calculating Ŝ using beam search
and NLU performance by estimating Ŷ from
P (Y |SGT, X), where SGT is the ground truth tran-
scripts. Table 3 shows the performances of indi-
vidual components of our model along with perfor-
mances of ASR and NLU only models suggesting
that we can effectively monitor the performance
of these components, helping practitioners analyze
and debug them. For instance, while our models
with and without speech attention have compara-
ble performance on ASR, using speech attention
improves NLU power. Further the one-to-one align-
ment of transcripts and sequence labels can provide
further categorization of errors, as shown in §A.4.

5.5 CRF vs Token Classification

For practical SLU the likelihoods of our compo-
sitional model P (Y |S,X), should be correlated
with errors in label sequence Y . We found that
in SLURP our compositional E2E SLU, while us-
ing locally normalized token classification shows
no correlation (Corr=0.13,p=0), using CRF ex-
hibits moderate correlation (Corr=0.43, p=0). This
makes globally normalized models attractive for
real-world scenarios like automated data auditing
and human in-the-loop ML (Mitchell et al., 2018)
despite their marginal addition in computation cost.

6 Conclusion

We propose to combine text based sequence label-
ing framework into the speech recognition frame-
work to build a compositional end-to-end model
for SLU. Our compositional E2E models not only
show superior performance over cascaded and di-
rect end-to-end SLU systems, but also bring the
power of both these systems in a single framework.
These models can utilise pretrained sub task com-
ponents and exhibit transparency like cascaded sys-
tems, while avoiding error propagation like direct
end-to-end systems.

Limitations

Our compositional model relies on the availability
of transcripts for training. This although is a limi-
tation, it is a safe assumption for sequence labeling
tasks for spoken language understanding. We can
see from §3 that the task for sequence labeling in
SLU also requires the model to recognize the words
being spoken along with the sequence labels, im-
plying the need for at least a partial transcript for
training direct end-to-end SLU systems.

Broader Impact

With our compositional end-to-end SLU model, we
strive to bring the research from the text based se-
quence labeling directly into speech based spoken
language understanding. Our aim is to avoid re-
invention of the wheel, but rather come up with
innovative ways to build end-to-end models by con-
verting a complex problem into simpler ones that
have seen substantial research in the past. Addi-
tionally we believe the increased capacity for error
analysis in our compositional end-to-end system
can help towards building better practical systems
during deployment. Our compositional end-to-end
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systems can effectively utilize pre-trained ASR and
NLU systems, thereby avoiding the need for col-
lecting large labeled datasets for SLU. This frame-
work also saves compute by utilizing pre-trained
ASR systems directly during inference to improve
downstream performances with no fine-tuning.

Acknowledgement

We thank Aakanksha Naik and the anonymous re-
viewers for their feedback. This work used the
Extreme Science and Engineering Discovery En-
vironment (XSEDE) (Towns et al., 2014), which
is supported by NSF grant number ACI-1548562.
Specifically, it used the Bridges system (Nystrom
et al., 2015), which is supported by NSF award
number ACI-1445606, at the Pittsburgh Supercom-
puting Center (PSC).

References
Alan Akbik, Duncan Blythe, and Roland Vollgraf. 2018.

Contextual string embeddings for sequence label-
ing. In Proceedings of the 27th International Con-
ference on Computational Linguistics, pages 1638–
1649, Santa Fe, New Mexico, USA. Association for
Computational Linguistics.

Siddhant Arora, Siddharth Dalmia, Pavel Denisov,
Xuankai Chang, Yushi Ueda, Yifan Peng, Yuekai
Zhang, Sujay Kumar, Karthik Ganesan, Brian Yan,
Ngoc Thang Vu, Alan W. Black, and Shinji Watanabe.
2022. ESPnet-SLU: Advancing spoken language un-
derstanding through espnet. In IEEE International
Conference on Acoustics, Speech and Signal Process-
ing, ICASSP 2022, Virtual and Singapore, 23-27 May
2022, pages 7167–7171. IEEE.

Emanuele Bastianelli, Andrea Vanzo, Pawel Swieto-
janski, and Verena Rieser. 2020. SLURP: A spo-
ken language understanding resource package. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2020, Online, November 16-20, 2020. Association
for Computational Linguistics.

Frédéric Béchet, Allen L. Gorin, Jeremy H. Wright, and
Dilek Hakkani-Tür. 2004. Detecting and extracting
named entities from spontaneous speech in a mixed-
initiative spoken dialogue context: How may I help
you?sm, tm. Speech Commun., 42(2):207–225.

William Chan, Navdeep Jaitly, Quoc Le, and Oriol
Vinyals. 2016. Listen, attend and spell: A neural
network for large vocabulary conversational speech
recognition. In 2016 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 4960–4964.

Guoguo Chen, Shuzhou Chai, Guan-Bo Wang, Jiayu
Du, Wei-Qiang Zhang, Chao Weng, Dan Su, Daniel

Povey, Jan Trmal, Junbo Zhang, Mingjie Jin, San-
jeev Khudanpur, Shinji Watanabe, Shuaijiang Zhao,
Wei Zou, Xiangang Li, Xuchen Yao, Yongqing Wang,
Zhao You, and Zhiyong Yan. 2021a. Gigaspeech: An
evolving, multi-domain ASR corpus with 10, 000
hours of transcribed audio. In Interspeech 2021,
22nd Annual Conference of the International Speech
Communication Association, Brno, Czechia, 30 Au-
gust - 3 September 2021, pages 3670–3674. ISCA.

Sanyuan Chen, Chengyi Wang, Zhengyang Chen,
Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki
Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu,
Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian
Wu, Michael Zeng, and Furu Wei. 2021b. WavLM:
Large-scale self-supervised pre-training for full stack
speech processing. CoRR, abs/2110.13900.

Jonathan H. Clark, Dan Garrette, Iulia Turc, and John
Wieting. 2022. Canine: Pre-training an efficient
tokenization-free encoder for language representa-
tion. Transactions of the Association for Computa-
tional Linguistics, 10:73–91.

Alice Coucke, Alaa Saade, Adrien Ball, Théodore
Bluche, Alexandre Caulier, David Leroy, Clément
Doumouro, Thibault Gisselbrecht, Francesco Calt-
agirone, Thibaut Lavril, Maël Primet, and Joseph
Dureau. 2018. Snips voice platform: an embedded
spoken language understanding system for private-
by-design voice interfaces. CoRR, abs/1805.10190.

Siddharth Dalmia, Brian Yan, Vikas Raunak, Florian
Metze, and Shinji Watanabe. 2021. Searchable hid-
den intermediates for end-to-end models of decom-
posable sequence tasks. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 1882–1896, Online.
Association for Computational Linguistics.

Miguel Del Rio, Natalie Delworth, Ryan Wester-
man, Michelle Huang, Nishchal Bhandari, Joseph
Palakapilly, Quinten McNamara, Joshua Dong, Piotr
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A Appendix

A.1 Applications of SLU
SLU is an essential component of many commer-
cial devices like voice assistants, home assistants
(Yu et al., 2019; Coucke et al., 2018) and spoken
dialog systems (Nguyen and Yu, 2021) that map
speech to executable commands on a daily basis.
One of the key applications of SLU is to extract
key mentions like entities from a user command
to take appropriate actions. As a result, several
datasets (Bastianelli et al., 2020; Shon et al., 2022;
Del Rio et al., 2021) have been proposed to build
understanding systems for spoken utterances.

A.2 Dataset Description
We evaluated our proposed approach on publicly
available SLU datasets, namely SLUE (Shon et al.,
2022) and SLURP (Bastianelli et al., 2020) datasets
on the task of Named Entity Recognition (NER)
from naturally available speech. SLURP is a lin-
guistically diverse and challenging spoken lan-
guage understanding benchmark that consists of
single-turn user conversation with a home assistant,
annotated with both intent and entities. Similar
to the approach followed in our prior work (Bas-
tianelli et al., 2020; Arora et al., 2022), we boot-
strap our train set with 43 hours of synthetic data
for all our experiments. We evaluate our approach
using SLU-F1 (Bastianelli et al., 2020), a metric
for spoken entity prediction, and Label F1, which
considers only entity-tag predictions.

SLUE is a recently released SLU benchmark that
focuses on Spoken Language Understanding from
limited labeled training data. Specifically, it con-
sists of SLUE VoxPopuli dataset that can be used
for building systems for ASR and NER. Similar to
(Shon et al., 2022), we evaluate our systems using
two micro-averaged F1 scores, the first score that
evaluates both named entity and tag pairs is referred
to as F1, and the second that evaluates only entity-
tag phrases is referred to as Label-F1. Note that
the released test sets are blind without ground truth
labels, and hence we compare different methods
using the development set.

The dataset download and evaluation
links for SLURP can be found here -
https://github.com/pswietojanski/slurp
and for SLUE here - https://github.com/
asappresearch/slue-toolkit. The datasets
have been processed and prepared using ESP-
net, SLURP - https://github.com/espnet/

Table 4: Overview of the two publicly available SLU
datasets (Shon et al., 2022; Bastianelli et al., 2020) used
for our experiments.

Dataset
Size (utterances / hours)

Train Dev Test

SLURP 11,514 / 40.2 2,033 / 6.9 2,974 /10.3
SLUE-VoxPopuli 5,000 / 14.5 1,753 / 5.0 1,842 / 4.9

espnet/tree/master/egs2/slurp_entity and
SLUE - https://github.com/espnet/espnet/
tree/master/egs2/slue-voxpopuli

A.3 Experimental Setup
Our models are implemented in PyTorch (Paszke
et al., 2019), and the experiments are conducted
using the ESPnet-SLU toolkit (Arora et al., 2022).

A.3.1 Speech Preprocessing
Speech inputs are globally mean-variance normal-
ized 80 dimensional logmel filterbanks using a
16kHz sampling and window of 512 frames and a
128 hop length. We apply speed perturbation for
the under-resourced dataset of SLUE of 0.9 and 1.1
to increase the samples. We also apply specaug-
mentation (Park et al., 2019) on both datasets. We
also remove all examples smaller than 0.1 seconds
and larger than 20 seconds from the training data.

A.3.2 Text Processing
For the cascaded system, we process ASR tran-
scripts S using bpe tokenization (Kudo and
Richardson, 2018) and train ASR models to gen-
erate bpe subtokens. We use bpe size of 500 for
SLURP and 1000 for SLUE dataset. For the di-
rect E2E models, we predict the enriched label
sequence Y e using the same bpe size as the ASR
models in cascaded sequence. Similarly, composi-
tional models also use the same bpe size to generate
the ASR transcripts.

For creating the BIO tags we modify the data
preparation such that we take the entities for each
utterance and create a “label utterance”. This con-
sists of one-to-one mapping of the label tags with
the words and Begin (B), Inside (I) and Outside
(O) marked for each label. After performing BPE
tokenization we add ∅ for every subtoken of the
word. We have attached the data preparation code.

A.3.3 Model and Training Hyperparameters
We run parameter search for both direct end-to-end
and our compositional end-to-end systems using
the same model search space (Table 5). In this
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section, we will describe our best architecture for
both direct and compositional E2E systems.

Direct E2E SLU systems After searching
through hyperparameter space, our Direct E2E
SLU systems consists of 12-layer Conformer (Gu-
lati et al., 2020) encoder and a 6-layer Trans-
former (Vaswani et al., 2017) decoder with 8 atten-
tion heads for SLURP dataset. We use a dropout
of 0.1, output dim of 512 and feedforward dim of
2048, giving a total parameter size of 109.3 M.

For SLUE dataset, we found 12-layer Conformer
with 4 attention heads and decoder is a 6-layer
Transformer with 4 attention heads to give best
validation performance. We use a dropout of 0.1,
output dim of 256 and feedforward dim of 1024
in encoder and 2048 in the decoder, giving a total
parameter size of 31.2 M.

Compositional E2E SLU systems Our Compo-
sitional model which uses Direct E2E SLU for-
mulation consists of 12-layer conformer block for
encoder, 6-layer transformer block for decoder in
it’s ASR component and 4-layer transformer en-
coder and 6-layer transformer decoder in it’s NLU
component. Each of these attention blocks consist
of 8 attention heads, dropout of 0.1, output dim
of 512, feedforward dim of 2048, giving a total of
153.9M parameters in SLURP dataset. For SLUE
dataset, each attention block has 4 attention heads,
dropout of 0.1, output dim of 256, feedforward di-
mension of 1024 in encoder and 2048 in decoder,
giving a total parameter size of 46.8M.

Our Composition model with Proposed NLU for-
mulation replaces NLU component in Direct E2E
formulation with 8-layer transformer encoder fol-
lowed by linear layer. All these attention blocks
consist of 8 attention heads, dropout of 0.1, out-
put dim of 512, feedforward dim of 2048, giving
a total of 142.9M parameters in SLURP dataset.
For SLUE dataset, each of these attention blocks
have 4 attention heads, dropout of 0.1, output dim
of 256, feedforward dimension of 1024 in encoder
and 2048 in decoder, giving a total parameter size
of 43.8M. Our NLU component can further at-
tend to speech representations using cross atten-
tion (Dalmia et al., 2021). We further implement
CRF loss using publicly available python library 2.

The loss from the ASR (Lasr) and NLU (Lnlu)
subnet are combined combined as follows

L = Lasr + αLnlu

2https://pytorch-crf.readthedocs.io

Hyperparameter Value

Output Size [256, 512]
Attention Heads [4, 8]
Number of blocks [4, 6, 8, 12]
Hidden Dropout [0.1, 0.2]
Attention dropout [0.1, 0.2]
Position dropout [0.1, 0.2]
Activation dropout [0.1, 0.2]
Src Activation dropout [0.1, 0.2]
Batch size [ 50, 64]
LR schedule [inv. sqrt., exp. lr.]
Max learning rate [0.001, 0.002, 0.003]
Warmup steps [5000, 15000, 25000]
Number of steps [50, 70, 100]
Adam eps 1e-9
Adam betas (0.9, 0.98)
Weight decay 0.000001

Table 5: Model and Training Search for SLU Models.

We search alpha values over [0.3, 0.4, 0.5, 0.6] and
found 0.6 to be best for SLURP and 0.3 for SLUE.

SLURP SLUE

Model SLU F1 Label F1 F1 Label F1

Casacaded SLU (Ours) 76.9 83.9 48.6 63.9
Direct E2E SLU (Ours) 79.2 85.4 54.7 67.6

Compositional E2E SLU
w/ Direct E2E formulation (§3) 79.3 86.6 50.0 68.0
w/ Proposed NLU formulation (§4)

CRF w/ Speech Attention (SA) 79.9 87.0 59.4 73.6
Token Classification w/ SA 79.8 86.9 60.3 73.7

w/o Speech Attention 79.7 87.0 59.0 73.6

Table 6: Results presenting the micro F1 performance
for all models using CRF and Token Classification mod-
eling on development set for SLURP and SLUE

A.3.4 Decoding Hyperparameters
We keep the same decoding parameter of beam size
and penalty as that of Arora et al. (2022). For direct
E2E systems and our models CTC weight of 0.1
worked best. We searched over CTC weight of [0,
0.1, 0.3, 0.5].

A.3.5 Development Results
We use F1 scores on the validation data to select
the best hyperparameters. Table 6 presents the
validation performances for our models.

A.3.6 Compute Infrastructure
Our models were trained using mixed precision
training on either a100, v100 or A6000 on our com-
pute infrastructure depending on their availability.
Depending on the GPU and the file i/o latency,
the training time ranged from 4-7 hours for SLUE,
while for SLURP the training time ranged from
12-18 hours.

5428

https://pytorch-crf.readthedocs.io


Hypothesis Reference

ASR Correct

Entity Correct event reminder mona tuesday event reminder mona tuesday

ASR Correct

Entity Incorrect is there anything happening on jazz scene around edinburgh is there anything happening on jazz scene around edinburgh

ASR Incorrect

Entity Correct create meeting with paul for tomorrow at ten am put meeting with pawel for tomorrow ten am

ASR Incorrect

Entity Incorrect set a birthday event for ninety set a birthday event for martin

event date event date

movie type News topic place name movie type

event name person date time event name person date time

event name date event name person

Figure 2: Qualitative examples of our compositional E2E SLU model for various error categories. We can observe
that in the first case, the model is correctly able to predict both entity types and mentions even when the name
“mona” is not a common name for an event. In the second case, even though it predicts the correct ASR transcript, it
mislabels “Edinburgh” as a news topic since the phrase “is there anything happening” usually occurs with news
topics. In the third case, even though it makes a mistake in the person name, the model correctly tags it as a person.
Finally, the model incorrectly generates the word “ninety,” and this error gets propagated to the NLU component
through token representations which then predicts entity type “date”. This analysis shows that the alignment between
ASR and NLU outputs can help us gain better insights into model performance.

A.3.7 External ASR and NLU components
For the experiments in Table 2, we used ASR and
NLU models trained on external data. For the ASR
fine-tuning we used an ESPnet model 3 trained
on the GigaSpeech dataset (Chen et al., 2021a).
This model has the same architecture as the base-
line direct E2E model on SLURP. We initialize
both the encoder and decoder for direct E2E SLU
and the ASR sub-net for the compositional E2E
SLU model. For NLU fine-tuning we used Canine
(Clark et al., 2022), a character based BERT lan-
guage model, which exhibits strong performance
on named entity recognition while being able to
model token sizes comparable to our SLU sys-
tems. 4 We initialize our NLU sub-network without
speech attention with Canine and keep the model
parameters fixed during training. For finding the
best parameters we only tuned the learning rate and
LR schedule from Table 5 and report the best num-
bers among CRF and Token Classification loss.

For using External ASR Transcripts, we trained
an ASR system initialized using GigaSpeech and
WavLM (Chen et al., 2021b) respectively. They
were then fine-tuned on the respective datasets.
These systems achieve 10.0% WER and 9.2%
WER on SLURP and SLUE respectively.

A.4 Error Categorization

The predictions made by our compositional E2E
SLU model can be categorized into different buck-
ets on the basis of the errors by ASR or NER com-
ponent. Table 7 demonstrates this behavior by cate-
gorizing the errors of our compositional E2E model

3https://zenodo.org/record/4630406
4https://huggingface.co/google/canine-s

Entity Correct Entity Incorrect

Model # Examples Model # Examples

ASR Correct
w/ SA 8520 w/ SA 465

w/o SA 8501 w/o SA 474

ASR Incorrect
w/ SA 1568 w/ SA 1343

w/o SA 1585 w/o SA 1336

Table 7: Number of examples per error category of our
compositional E2E SLU systems with/without Speech
Attention on SLURP test set. There are four categories
depending on whether mistakes are made by ASR or
NLU component. Note that the first quadrant lists # of

correct examples, while the rest list incorrect ones.
Direct E2E systems cannot offer such categorizations
particularly for incorrect entities as there is no alignment
between ASR and NLU outputs.

trained with and without speech attention. Most
of the performance differences between composi-
tional E2E SLU model w/ and w/o speech attention
are caused by the kinds of errors where the ASR
predictions are inaccurate, but the NLU module
is nevertheless able to recover the correct entity
type from the utterance. This confirms our intu-
ition that cross attention on speech representations
can help the NLU module to recover from mis-
takes made during “recognizing” spoken mentions.
We also present anecdotes for each of these error
categories in Figure 2. This further emphasizes
the transparency in our compositional E2E SLU
models. Due to the lack of one-to-one alignment
between ASR and Sequence Labeling, such anal-
ysis is not possible in direct E2E SLU systems,
making it particularly difficult to categorize errors
when the entity prediction is wrong.
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