
Findings of the Association for Computational Linguistics: EMNLP 2022, pages 4853–4870
December 7-11, 2022 ©2022 Association for Computational Linguistics

KPDROP: Improving Absent Keyphrase Generation

Jishnu Ray Chowdhury♠ Seoyeon Park♠ ∗ Tuhin Kundu♣ ∗ † Cornelia Caragea♠
♠ Computer Science, University of Illinois at Chicago ♣Amazon

{jraych2,spark313,cornelia}@uic.edu
tuhinkundu@outlook.com

Abstract

Keyphrase generation is the task of generat-
ing phrases (keyphrases) that summarize the
main topics of a given document. Keyphrases
can be either present or absent from the given
document. While the extraction of present
keyphrases has received much attention in the
past, only recently a stronger focus has been
placed on the generation of absent keyphrases.
However, generating absent keyphrases is chal-
lenging; even the best methods show only
a modest degree of success. In this paper,
we propose a model-agnostic approach called
keyphrase dropout (or KPDROP) to improve
absent keyphrase generation. In this approach,
we randomly drop present keyphrases from the
document and turn them into artificial absent
keyphrases during training. We test our ap-
proach extensively and show that it consistently
improves the absent performance of strong
baselines in both supervised and resource-
constrained semi-supervised settings1.

1 Introduction

Keyphrase generation (KG) is the task of produc-
ing a set of phrases that best summarize a docu-
ment. It can be leveraged for various applications
such as text summarization (Zhang et al., 2017),
recommendation (Bai et al., 2018), and opinion
mining (Meng et al., 2012). Accurate identifica-
tion of keyphrases especially on scientific papers
can improve efficiency in paper indexing and paper
retrieval (Chen et al., 2019a; Boudin et al., 2020).

Keyphrases can be divided into two types: (1)
present keyphrases and (2) absent keyphrases.
Present keyphrases appear verbatim in the doc-
ument, whereas absent keyphrases are topically-
relevant but missing from the document. Many
prior works (Hasan and Ng, 2014; Ünlü and Çetin,
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2019) focused on present keyphrase extraction ex-
clusively. As such, they are not suitable for gener-
ating any absent keyphrases. To overcome this lim-
itation, recent approaches (Meng et al., 2017; Yuan
et al., 2020; Chen et al., 2020; Ye et al., 2021b) use
sequence-to-sequence (seq2seq) models to gener-
ate both present and absent keyphrases.

As shown by Boudin and Gallina (2021), absent
keyphrases that are substantially different from the
present ones can significantly improve the effec-
tiveness of document-retrieval. Boudin and Gallina
(2021) suggested that absent keyphrases can im-
prove document-retrieval by expanding the query
terms to alleviate the vocabulary mismatch prob-
lem between the query terms and relevant docu-
ments (Furnas et al., 1987). Thus, there is a strong
motivation for improving absent keyphrase perfor-
mance. However, generating absent keyphrases
can be very challenging. Even the best keyphrase
generation models (Chen et al., 2020; Ye et al.,
2021a,b) still only achieve a modest performance
in absent keyphrases.

In this work, we propose keyphrase dropout or
KPDROP as a simple and effective technique to
improve the performance of absent keyphrases.
Unlike the traditional dropout method that fo-
cuses on dropping neurons (Srivastava et al., 2014),
we propose a novel dropout method where, in-
stead of neurons, we randomly drop entire phrases
(specifically, present gold keyphrases) from a given
document during training. Thus, the dropped
present keyphrases are turned into (artificial) ab-
sent keyphrases. As a result, KPDROP has the
following two effects:

1. The model is forced to deeply utilize the con-
text information to infer dropped keyphrases
that could have been otherwise simply ex-
tracted from the text. Thereby, the capability
to infer missing keyphrases in general (includ-
ing naturally missing ones) is increased.
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Original Input Before Applying KPDROP:
Input: The Hearing-Aid Speech Perception Index (HASPI)

This paper presents a new index for predicting speech intelligibility for normal-hearing and hearing-impaired listeners.
The Hearing-Aid Speech Perception Index (HASPI) is based on a model of the auditory periphery that incorporates changes
due to hearing loss . The index compares the envelope and temporal fine structure outputs of the auditory model for a

reference signal to the outputs of the model for the signal under test. The auditory model for the reference signal is set

for normal hearing, while the model for the test signal incorporates the peripheral hearing loss .

Keyphrases: Speech intelligibility ; Auditory model ; Hearing loss ; Hearing aids ; Intelligibility index

New Input After Applying KPDROP:
Input: The Hearing-Aid Speech Perception Index (HASPI)

This paper presents a new index for predicting speech intelligibility for normal-hearing and hearing-impaired listeners.
The Hearing-Aid Speech Perception Index (HASPI) is based on a model of the auditory periphery that incorporates
changes due to hearing loss . The index compares the envelope and temporal fine structure outputs of the [MASK] for a

reference signal to the outputs of the model for the signal under test. The [MASK] for the reference signal is set for

normal hearing, while the model for the test signal incorporates the peripheral hearing loss .

Keyphrases: Speech intelligibility ; Auditory model ; Hearing loss ; Hearing aids ; Intelligibility index

Figure 1: An example of how the input document (Kates and Arehart, 2014), and the keyphrases change after
applying KPDROP. Here, KPDROP drops the present keyphrase “auditory model". Green highlighting indicates
present keyphrases, blue highlighting indicates absent keyphrases, and red highlighting indicates mask tokens.

2. The method stands as a dynamic data aug-
mentation strategy. KPDROP can be used to
modify a given set of training documents by
randomly dropping some present keyphrases
from the documents turning them into artifi-
cial absent keyphrases. As such, new data can
be created from the originals just like a stan-
dard data augmentation technique. Moreover,
the process can be dynamically done in real-
time during training. Thus, in different epochs
different present keyphrases may be dropped
for the same document yielding higher diver-
sity in the data for model training.

We apply KPDROP into three distinct neural
models representing three distinct paradigms:
one2many (Yuan et al., 2020), one2one (Meng
et al., 2017; Huang et al., 2021), and one2set (Ye
et al., 2021b). We observe consistent and substan-
tial improvement in absent keyphrase performance
in supervised settings on five standard datasets
used for KG evaluation, with little to no drops in
present keyphrase performance (and in fact often
yielding improved present performance). Addi-
tionally, KPDROP can be used to create synthetic
absent keyphrases for unlabelled data to be used
for self-supervised pre-training. We demonstrate
that such pre-training augmented with KPDROP

brings substantial improvement when fine-tuned in
low-resource labelled data.

2 Methodology of KPDROP

In this section, we formally describe our approach
of Keyphrase Dropout (KPDROP). In keyphrase
generation (KG), we have a document X as an
input sequence of tokens, and a set of n keyphrases,
Y = {y1, y2, . . . , yn}, as the target output. Within
Y , there is a subset of s (0 ≤ s ≤ n) present
keyphrases as P = {p1, p2, p3, . . . , ps} (P ⊆ Y )
and a subset of t (0 ≤ t ≤ n) absent keyphrases as
A = {a1, a2, a3, . . . , at} (A ⊆ Y ). It also holds
true that A ∩ P = ∅ and s + t = n. Similar to
Meng et al. (2017), we separate absent and present
keyphrases by checking if the stemmed version of
a keyphrase appears in the stemmed version of the
input document (in which case it is present) or does
not appear (in which case it is absent).

When applying KPDROP, any present keyphrase
pk ∈ P can be randomly dropped with a probability
of r (sampled from binomial distribution), where
r is the dropout rate (or KPDROP rate). Let O
(O ⊆ P ) be the subset of present keyphrases that
are randomly dropped during the application of KP-
DROP at some training epoch. For every keyphrase
pk ∈ O, we remove any and all substrings from X
that, when stemmed, match the stemmed version of
the phrase pk and replace each removed substring
with a special mask token [MASK]. We call the mod-
ified version of X as Xnew. The sets of present and
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absent keyphrases are also modified. The new set
of present keyphrases becomes P := P \O and the
new set of absent keyphrases becomes A := A∪O.
Thus, the keyphrases in O, which were originally
present, become artificially absent after applying
KPDROP. The set Y becomes Y new with the new
versions of P and A. An example of applying
KPDROP is shown in Figure 1.

Note that although as a set Y new is the same as
Y , we use Y new to convey that the sets of present
and absent keyphrases have changed.

2.1 Two Strategies of Applying KPDROP

KPDROP can be applied to a given mini-batch of
examples in at least two distinct ways which act as
data augmentation (noising) strategies.

KPDROP-R: For the first strategy that we refer
to as KPDROP-REPLACE or KPDROP-R, we can
think of KPDROP as a dropout technique and like
other applications of dropout we can choose to
replace the original examples with their corre-
sponding keyphrase-dropped versions. In other
words, each original sample (X,Y ) in a mini-
batch B is replaced with (Xnew, Y new) obtained
after applying KPDROP. More formally, if ini-
tially we had a mini-batch set B, after apply-
ing KPDROP-R, we get a new batch BKPDR as
BKPDR = {(Xnew, Y new)|(X,Y ) ∈ B}. Note
that at any given training iteration, we create a
single KPDropped counterpart (Xnew, Y new) for
each sample (X,Y ) in the mini-batch.

KPDROP-A: For the second strategy that we refer
to as KPDROP-APPEND or KPDROP-A, we can
think of KPDROP as closer to a data augmentation
technique where instead of replacing the original
examples we augment the original batch with the
new keyphrase dropped versions of the originals.
In other words, for each original sample (X,Y )
in a mini-batch, we add (Xnew, Y new) obtained
after applying KPDROP. More formally, starting
with the same mini-batch set B as before, after
applying KPDROP-A, we get a new batch BKPDA

as BKPDA = B ∪BKPDR.

Given that KPDROP-R can increase the number
of absent keyphrases per sample during training,
we hypothesize that the model can learn to be
more biased towards generating absent keyphrases.
This can help to increase absent keyphrase perfor-
mance at the cost of present keyphrase performance
because the technique will be dropping present

keyphrases. On the other hand, KPDROP-A, in-
stead of replacing the original data, it can offer
extra samples per batch that have additional ar-
tificially absent keyphrases. Thus, KPDROP-A
should be still able to improve absent keyphrase
performance while also maintaining the original
data with its original present keyphrases. Thus,
KPDROP-A will offer the underlying model with
the same opportunity to learn present keyphrases as
would the model without KPDROP-A. Intuitively,
this can help improve absent performance without
a substantial cost to present performance.

2.2 KPDROP Features and Connections to
Works from Other Areas

In this section, we highlight some notable features
of KPDROP and draw connections to some relevant
works outside the area of keyphrase generation.

KPDROP and Masked Language Modeling:
Superficially, KPDROP is similar to a standard
masked language modeling (MLM) (Devlin et al.,
2019; Raffel et al., 2020) strategy insofar that both
involve the reconstruction of some masked out text-
spans. However, there are several crucial differ-
ences between KPDROP and vanilla MLM. First,
KPDROP masks only present keyphrases, not ran-
dom subspans or phrases. Second, KPDROP masks
all instances of the selected present keyphrases in
the document to make them truly absent (see Figure
1). In contrast, MLM does not mask all instances
of the masked token or phrase. Third, masking
(replacing a subspan with a mask token) is only
an engineering choice for KPDROP; not an essen-
tial ingredient. We can simply drop the selected
present keyphrases without replacing them with a
mask token. In KPDROP, predictions of artificial
absent keyphrases (masked present keyphrases) are
not explicitly associated with any mask position.

KPDROP as Structured Dropout: KPDROP

is a unique kind of structured dropout where
all instances of some randomly chosen present
keyphrases are dropped. There are other examples
of structured dropout in prior works. For example,
Iyyer et al. (2015) proposed word dropout (for gen-
eral NLP tasks) where whole word embeddings are
dropped instead of just random neurons. Huang
et al. (2016) and Fan et al. (2020) used another
form of structured dropout that stochastically drops
whole layers for general computer vision tasks and
for general NLP tasks respectively.
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Model-Agnosticism of KPDROP: One important
feature of KPDROP is that it is model-agnostic.
KPDROP only requires changing the input and out-
put without making internal architectural changes.
As such, it is compatible with any model that
is suitable for KG. KPDROP can also be easily
stacked with other techniques that help absent
keyphrase generation. Later (in §5.1), we demon-
strate that KPDROP works just as well for very
different architectures: (1) an RNN-based model
trained in one2many settings (Yuan et al., 2020)
(2) an RNN-based model trained in one2one set-
tings (Meng et al., 2017; Huang et al., 2021), and
(3) a Transformer-based model trained in one2set
settings (Ye et al., 2021b).

3 Evaluations

We use the following evaluation metrics:

F1@M: F1@M is a standard metric (Yuan et al.,
2020; Chen et al., 2019b; Chan et al., 2019; Chen
et al., 2020; Ye et al., 2021b) used to evaluate the
performance of keyphrase generation. This is an F1

based metric where all the predictions by a given
model are considered for evaluation.

F1@5: F1@5 is similar to F1@M but only the top
5 predicted keyphrases are used for evaluation (if
the total number of predictions are less than 5, all
the available predictions are used). This metric
is used in several prior works (Meng et al., 2017;
Yuan et al., 2020).2 This metric is useful in settings
where the model is used to overgenerate keyphrases
(for example, by using beam search). Overgenera-
tion can lead to lower precision when all the predic-
tions are kept (thus, low F1@M). So, often in such
settings, it is more useful to check the performance
of the model when some simple truncation policy
is used, for example, selecting some top k (e.g., top
5 in F1@5) predictions.

R@10 and R@50: R@10 and R@50 represents
macro recall of the top 10 predictions and the top
50 predictions, respectively. In some applications
(such as retrieval) high recall can be sometimes
more useful than precision. R@10 and R@50 are
used in prior works (Meng et al., 2017; Chen et al.,
2018; Liu et al., 2020) to measure absent keyphrase

2Note that the F1@5 metric as used by us and as introduced
by Meng et al. (2017) for keyphrase generation is different
from the F1@5 metric as introduced by Chan et al. (2019) and
used in some other works (Chen et al., 2020; Ye et al., 2021b).
We report results with Chan et al. (2019)’s formulation of
F1@5 in Appendix A.2

performance after overgenerating them using beam
search with high beam size.

Like prior works, we use macro-F1 and macro-
recall for all the above metrics.

4 Baselines

We use the following baselines with our KPDROP-
R and KPDROP-A approaches:

GRU One2Many: GRU One2Many (also known
as CatSeq) represents a simple seq2seq baseline
based on GRUs. It takes a document input and
generates a concatenated sequence of keyphrases
similar to Yuan et al. (2020). For this baseline,
we concatenate the ground truth keyphrases based
on the best performing ordering procedure (Meng
et al., 2021): we first concatenate the present
keyphrases according to the order of their first
appearance in text and then we append the ab-
sent keyphrases in their natural order. However,
when using KPDROP, we start with the ordering
as mentioned but then shift the dropped present
keyphrases (artificial absent keyphrases) after the
fully present keyphrases but keep them before the
naturally absent keyphrases. We maintain the inter-
nal order of the dropped present (artificially absent)
keyphrases. We use “;" as the delimiter for separat-
ing keyphrases.

GRU One2One: GRU One2One (also known as
CopyRNN) is another seq2seq model based on
GRUs. However, unlike the One2Many model,
it can predict only one keyphrase per generated
sequence. It can be still used to generate multiple
keyphrases by using beam search and preserving
multiple beams of sequences (each representing a
keyphrase). The One2One approach was first in-
troduced by Meng et al. (2017) where the original
training data was divided such that each input was
associated with only one ground truth keyphrase.
However, instead of that, we use the more efficient
training approach of using reset states as in Huang
et al. (2021). That is, we simply train the one2one
model similar to one2many models using teacher
forcing but we “reset" the hidden state when gener-
ating the first word of any ground truth keyphrase.
Resetting (Huang et al., 2021) corresponds to using
the initial RNN hidden state and the first special
input token indicating start of sequence and thereby
removing dependencies from previous generations.

Transformer One2Set: Transformer One2Set
(also known as SetTrans) is a Transformer-based
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Inspec NUS Krapivin SemEval KP20k
Models F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5

GRU One2Many
Greedy 1.42 1.42 2.96 2.96 3.44 3.44 2.42 2.42 3.33 3.33
Greedy+KPD-R 1.21 1.21 3.27 3.27 5.12 5.12 2.72 2.72 4.01 4.01

Greedy+KPD-A 1.51 1.51 3.56 3.56 4.63 4.63 2.64 2.64 3.93 3.93

Beam 2.81 2.91 5.53 5.52 7.23 7.34 3.82 3.82 5.80 5.81
Beam+KPD-R 2.83 2.93 6.52 6.52 7.33 7.43 5.12 4.82 6.10 6.30
Beam+KPD-A 3.01 2.91 6.610 6.59 7.33 7.34 5.03 5.04 6.40 6.50

GRU One2One
Beam 0.60 2.81 1.51 5.77 1.20 5.93 1.30 3.81 1.00 6.20
Beam+KPD-R 0.70 2.93 1.50 7.53 1.30 7.82 1.40 4.95 1.00 6.51
Beam+KPD-A 0.70 2.71 1.60 6.72 1.30 6.53 1.51 4.13 1.10 6.80

Transformer One2Set
Greedy 2.84 2.84 6.48 6.48 6.82 6.82 3.51 3.51 5.60 5.50
Greedy+KPD-R 2.91 2.81 6.98 6.97 8.48 8.48 4.63 4.64 6.41 6.31
Greedy+KPD-A 3.22 3.22 7.49 7.49 7.27 7.27 4.71 4.61 6.61 6.51

Beam 0.40 3.32 0.90 7.05 0.80 6.75 0.80 4.74 0.60 5.80
Beam+KPD-R 0.40 2.41 1.00 7.25 0.90 7.32 0.90 5.24 0.60 6.10
Beam+KPD-A 0.50 3.62 1.00 7.94 0.90 7.82 1.00 5.34 0.60 6.70

Table 1: Absent keyphrase performance (F1) for different models. KPD represents KPDrop. Subscripts represent
standard deviation (e.g., 31.11 represents 31.1± 0.1). We bold the best scores per block.

model trained in a new One2Set paradigm as intro-
duced by Ye et al. (2021b). In this method, a fixed
number of preset control codes are used to generate
all present and absent keyphrases in parallel inde-
pendent of each other. Moreover, during training
target keyphrases are matched with the predicted
ones using Hungarian algorithm (Kuhn, 1955) so
that the training is not sensitive to the order of the
target keyphrases. Note that Transformer One2Set
uses specialized control codes for present and ab-
sent keyphrase generation separately. Thus, when
using KPDROP, we make sure to use the control
codes for absent keyphrases to generate artificial
absent keyphrases (dropped present keyphrases) as
well.

5 Supervised Experiments

In the supervised setting, we explore the effects
of applying both KPDROP-R and KPDROP-A on
the baselines that we discussed in §4. Note that
One2Many models (Yuan et al., 2020; Meng et al.,
2021) had been explored in both greedy search
based generations where only a single concate-
nated sequence of keyphrases is generated and also
in beam search based generations where multiple
beams of concatenated sequence of keyphrases are
generated. We too explore both greedy and beam
search for the One2Many models. In One2One
models, greedy search is ineffective because it

only generates a single keyphrase. Thus, follow-
ing Meng et al. (2017), we only use beam search
to overgenerate multiple beams of keyphrases for
One2One models. For One2Set models, only
greedy search was explored (Ye et al., 2021b).
Here, in addition to greedy search, we also ex-
plore using beam search for each control code in
One2Set models. For all models, we investigate the
effect of applying KPDROP in all of their applica-
ble decoding settings (be it beam search or greedy
search). Following prior works (Meng et al., 2017;
Chen et al., 2018), we mainly use beam search
to demonstrate recall performance (Table 2) for
absent keyphrase performance. The recall perfor-
mance stands out best when using beam search.
Greedy search can be more conservative with gen-
eration; thus, has limited recall. We evaluate our
three baselines on five scientific datasets: KP20k
(Meng et al., 2017), Inspec (Hulth, 2003), Krapivin
(Krapivin et al., 2009), SemEval (Kim et al., 2010)
and NUS (Nguyen and Kan, 2007). Following pre-
vious works, we use the training set of KP20k to
train all models. All models are run three times on
different seeds. We report the mean and standard
deviation of these three runs. Hyperparameters are
detailed in Appendix A.1.

5.1 Results on Absent Keyphrase Generation
In Table 1, we show the F1 performance for absent
keyphrase generation. As we can see from the ta-
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Inspec NUS Krapivin SemEval KP20k
Models R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50

GRU One2Many
Beam 3.81 3.81 5.32 5.32 8.23 8.23 3.00 3.00 8.11 8.11
Beam+KPD-R 4.33 4.34 7.54 7.63 10.91 11.12 4.23 4.23 10.11 10.21

Beam+KPD-A 4.22 4.22 6.410 6.410 9.03 9.13 3.92 4.02 9.21 9.31

GRU One2One
Beam 6.13 11.32 9.510 17.45 12.32 22.91 4.42 8.17 14.00 23.51
Beam+KPD-R 6.33 12.24 12.19 20.34 15.69 26.86 5.63 9.43 14.61 24.83
Beam+KPD-A 5.94 12.97 11.37 19.05 14.57 24.75 5.04 9.33 15.21 25.51

Transformer One2Set
Beam 6.73 12.53 12.05 19.63 13.610 24.49 5.42 9.12 13.52 23.42
Beam+KPD-R 5.71 11.73 13.36 21.25 15.65 27.39 5.98 10.45 14.50 25.42
Beam+KPD-A 7.93 13.64 14.02 22.38 15.24 27.74 5.95 11.07 15.62 26.62

Table 2: Absent keyphrase performance (Recall) for different models. KPD represents KPDrop. Subscripts represent
standard deviation (e.g., 31.11 represents 31.1± 0.1). We bold the best scores per block.

ble, KPDROP always boosts the absent keyphrase
performance against a comparable baseline (regard-
less of whether we use KPDROP-R or KPDROP-
A). Comparing greedy with beam search in GRU
One2Many, we find that overgenerating with beam
search can substantially improve the absent perfor-
mance over greedy and further applying KPDROP

to beam search improves the performance signif-
icantly (e.g., on KP20K performance improves
from 5.8% to 6.5%). In both GRU One2One
and Transformer One2Set, we observe that beam
search leads to overgeneration reducing precision
and thus the F1@M performance. However, F1@5
generally improves in beam search compared to
greedy because only the top 5 keyphrases are con-
sidered in this metric. Either way, whether using
greedy or beam search, in both One2One mod-
els and One2Set models, KPDROP enhances the
base performance. Overall, for absent performance,
KPDROP-R and KPDROP-A are both competitive
against each other.

In Table 2, we show the recall performance for
absent keyphrase generation when using high beam
size. We find that applying any of the KPDROP

techniques substantially improves the recall per-
formance of absent keyphrase generation in all
settings and datasets. In GRU One2Many and
GRU One2One, KPDROP-R generally performs
better than KPDROP-A. Interestingly, in Trans-
former One2Set KPDROP-A generally performs
better than KPDROP-R across all datasets.

The above results validate our intuition that drop-
ping keyphrases in KPDROP forces the models to
deeply utilize the context information to learn to
predict the dropped keyphrases, and thus, yields

more robust models for absent keyphrase.

5.2 Results on Present Keyphrase Generation
In Table 3, we show the F1 performance for present
keyphrase generation. As we hypothesized before,
on greedy decoding KPDROP-R can significantly
drop the performance of present keyphrases. How-
ever, KPDROP-A performs quite competitively
against the baselines even in present keyphrase per-
formance. Thus, KPDROP-A can be a balanced
approach to boost absent performance without sig-
nificantly downgrading the present performance.
Interestingly, when combined with beam search,
even KPDROP-R becomes competitive in present
keyphrase generation. While, as we suggested be-
fore (in §2.1), KPDROP-R can create a tendency to
undergenerate present keyphrases (given that many
of them get turned artificially absent), beam search
can fight against that tendency through overgener-
ation. This can sometimes lead to a “sweet spot"
when beam search is combined with KPDROP-R
making it competitive even in present performance
for One2Many and One2One settings.

6 Semi-Supervised Experiments

We also investigate whether KPDROP has some-
thing to offer in a low-resource semi-supervised
setting. We simulate a semi-supervised setting by
randomly splitting the training set of KP20K into
two parts. In one part, we keep 5000 samples with
their original keyphrases intact, but in the other
part, we keep the rest of the data after removing
the original keyphrases. Thus, we are left with
a low-resource (5000 samples) author-annotated
training data, and a huge unlabelled corpus (rest
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Inspec NUS Krapivin SemEval KP20k
Models F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5

GRU One2Many
Greedy 27.47 27.18 38.13 37.76 34.79 34.27 29.610 29.19 37.31 37.00

Greedy+KPD-R 18.73 18.73 28.13 28.13 28.46 28.46 20.114 20.114 30.82 30.82
Greedy+KPD-A 25.14 24.83 38.54 38.23 34.19 33.58 27.97 27.76 37.02 36.72

Beam 38.73 34.46 37.06 41.65 25.65 32.83 31.912 33.43 32.21 36.80
Beam+KPD-R 34.92 33.22 42.04 41.02 36.73 36.72 34.69 34.19 36.31 36.51
Beam+KPD-A 38.95 34.65 39.45 41.87 28.40 34.28 33.017 33.27 33.92 37.11

GRU One2One
Beam 25.51 30.61 16.53 40.210 12.41 29.81 16.52 29.216 13.10 39.41
Beam+KPD-R 29.63 30.43 24.64 43.93 17.51 36.52 23.64 32.710 17.02 37.90
Beam+KPD-A 26.34 30.62 17.10 38.96 12.90 29.44 17.25 30.011 13.91 39.60

Transformer One2Set
Greedy 32.27 31.36 43.70 42.13 35.25 34.311 34.72 33.47 39.21 37.94
Greedy+KPD-R 21.13 21.03 35.09 34.912 34.27 34.27 26.97 27.08 34.92 34.82
Greedy+KPD-A 30.63 29.84 44.43 42.63 35.36 34.06 34.45 33.65 39.62 38.50

Beam 21.70 32.34 15.51 42.33 11.01 32.96 16.32 33.58 10.90 36.45

Beam+KPD-R 23.22 27.88 21.05 40.09 14.88 33.67 20.95 32.05 15.03 35.13
Beam+KPD-A 22.71 32.26 16.82 41.83 11.62 32.37 17.64 34.312 11.72 36.30

Table 3: Present keyphrase performance (F1) for different models. KPD represents KPDrop. Subscripts represent
standard deviation (e.g., 31.11 represents 31.1± 0.1). We bold the best scores per block.

of the KP20K training set). Henceforth, we refer
to the former low-resource labelled dataset as LR,
and the latter unlabelled corpus as UC.

We investigate a pre-training based approach to
utilize UC. Essentially, we pre-train our models
first on UC and then fine-tune them on LR. For pre-
training, similar to Ye and Wang (2018), we create
synthetic labels using an unsupervised keyphrase
extraction model. Unlike Ye and Wang (2018), we
use a contemporary embedding-based keyphrase
extraction model (Liang et al., 2021) to generate the
synthetic keyphrases. Particularly, we rank the can-
didate keyphrases and keep the top 10. Note that
in this pre-training setup, the synthetic keyphrases
will only be present keyphrases because they are ex-
tracted from the input text. This is where KPDROP

can make the unsupervised pre-training more in-
teresting by creating artificial absent keyphrases
by dropping of the synthetic present keyphrases
(and simulating real data). We hypothesize that
the application of KPDROP can help our models to
learn more effective weights from UC in the self-
supervised pre-training stage. We test the effective-
ness of using KPDROP to augment self-supervised
pre-training by testing the pre-trained model on the
labelled test sets after fine-tuning on LR. During
fine-tuning on LR, for all models, we always use
KPDROP-A as we have already shown this to be
beneficial in most supervised contexts. Hyperpa-

rameters are detailed in the Appendix A.1.

6.1 Semi-Supervised Results
For the semi-supervised experiments, report the
beam search performance of GRU One2Many for
the sake of brevity (greedy performance is in Ap-
pendix A.3). In Table 4, we show the absent per-
formance of GRU One2Many in semi-supervised
settings3. As we can see from the table, absent per-
formance is near zero in almost all settings. Only
when the model is pre-trained (PT) with KPDROP-
A or KPDROP-R and then fine-tuned (FT) on LR
(PT+KPD-R;FT or PT+KPD-A;FT), there is some
degree of absent keyphrase generation. Thus, KP-
DROP is crucial for downstream absent keyphrase
performance in this semi-supervised environment
and for domains with low-resource annotated data.

In Table 4, we also show the present performance
of GRU One2Many in semi-supervised settings.
For present performance, we find that neither train-
ing only (FT) on LR nor training only (PT) on UC is
as good as pre-training on UC and then fine-tuning
the pre-trained model on LR (PT;FT). Although,
one exception is the performance on Inspec which
can be sometimes better when the model is zero-
shotted after only training on UC. Either way, we
again find that using KPDROP in the pre-training
(PT+KPD-R;FT or PT+KPD-A;FT) setting signifi-

3Note that Liang et al. (2021) use an extraction model;
thus it has no capabilities for absent keyphrase generation
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Inspec NUS Krapivin SemEval KP20k
Models F@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5

Absent Keyphrase Performance
Unsupervised Extraction Model (Liang et al., 2021)

— 0.0 — 0.0 — 0.0 — 0.0 — 0.0
GRU One2Many Models (Beam Search)
PT 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00
PT+KPD-R 0.71 0.71 0.82 0.71 0.62 0.52 0.31 0.22 0.81 0.81
PT+KPD-A 0.10 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FT 0.71 0.61 1.10 1.10 0.50 0.60 0.31 0.31 0.71 0.71
PT; FT 0.72 0.72 0.54 0.54 0.10 0.10 0.11 0.11 0.41 0.31
PT+KPD-A; FT 0.92 0.92 2.53 2.64 1.82 1.82 1.81 1.81 1.81 1.81
PT+KPD-R; FT 1.73 1.73 2.93 2.83 2.86 2.85 2.01 2.01 2.72 2.72

Present Keyphrase Performance
Unsupervised Extraction Model (Liang et al., 2021)

— 32.6 — 20.8 — 18.1 — 13.02 — 17.9

GRU One2Many Models (Beam Search)
PT 40.93 36.03 20.62 22.410 18.52 17.92 22.85 22.211 16.01 17.92
PT+KPD-R 36.213 34.34 24.813 23.620 19.21 18.94 25.16 23.211 18.68 18.07
PT+KPD-A 40.23 35.74 21.06 22.85 18.85 19.82 23.46 22.76 16.12 17.92
FT 27.811 26.59 32.62 31.83 26.68 26.48 27.88 26.77 27.14 26.94
PT; FT 36.817 33.525 33.83 33.52 26.212 27.56 29.15 27.67 26.23 27.22
PT+KPD-A; FT 39.95 36.010 36.34 35.72 29.24 29.63 32.04 30.812 28.23 28.82
PT+KPD-R; FT 40.011 36.910 36.211 34.69 31.53 31.17 30.95 29.914 29.77 29.88

Table 4: Absent and present keyphrase performance using Beam Search for GRU One2Many models in a semi-supervised
setup. KPD represents KPDrop. PT represents pre-training on the synthetic data (UC). PT+KPD-R or PT+KPD-A represents
pre-training on UC with KPD-R or KPD-A repsectively. FT represents fine tuning or training on the low resource labelled data
(LR). PT (or PT+KPD-A or PT+KPD-R) followed by “; FT" represents that the pre-training was followed by fine-tuning of
the pre-trained model on LR. We bold the overall best scores. Subscripts represent standard deviation (e.g., 31.11 represents
31.1± 0.1).

cantly boosts present performance after fine-tuning.
Thus, using KPDROP to make the pre-training

stage more challenging by pushing the model to
predict missing present keyphrases helps not only
with absent keyphrase performance but also with
present keyphrase performance after fine-tuning. In
between KPDROP-R and KPDROP-A, the former
generally performs better in the pre-training stage.
Thus, during pre-training it is better to replace syn-
thetic labels of fully present keyphrases with its
KPDropped version. In Appendix A.3, we also ob-
serve similar patterns from other models (One2One
and One2Set) in semi-supervised settings.

7 Preliminary Experiments on
Pre-trained Models

We also did a few preliminary experiments on ap-
plying KPDROP-R to a large pre-trained Seq2Seq
language model, in particular, T5 (Raffel et al.,
2020). We present the results in Appendix A.4.
Consistent with previous results, we find that
KPDROP-R increases absent performance for T5
as well. However, overall, we found the perfor-

mance of T5 baseline to be limited compared
to trained-from-sratch models like Transformer
One2Set. Similarly, other reported performances
on pre-trained models have been generally lower
than Transformers One2Set too. For example,
even after large scale specialized pre-training for
keyphrases, Kulkarni et al. (2022) reports only
comparable performance on present keyphrases to
Transformer One2Set (Ye et al., 2021b) and much
less in absent performance. On the other hand, us-
ing pre-trained models, Wu et al. (2021)4 achieve
comparable on absent performance with One2Set
under greedy search, but much less in present per-
formance. However, it should not be too difficult
to adapt a pre-trained model into a one2set frame-
work during fine-tuning. This can be a promising
future direction and form a stronger base model for
KPDROP.

8 Related Work
There is a wide variety of approaches (Hasan and
Ng, 2014; Caragea et al., 2014; Das Gollapalli and

4We are referring to the latest ArXiv version (v2) which
holds the globally latest version of the paper.
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Caragea, 2014; Gollapalli and Li, 2016; Sterckx
et al., 2016; Florescu and Caragea, 2017; Zhang
et al., 2017; Boudin, 2018; Mahata et al., 2018;
Sun et al., 2019; Al-Zaidy et al., 2019; Campos
et al., 2020; Santosh et al., 2020; Sahrawat et al.,
2020; Sun et al., 2020; Song et al., 2021; Patel
and Caragea, 2021) for keyphrase extraction ex-
clusively. Meng et al. (2017) diverged from pure
extractive methods by introducing a seq2seq model
(CopyRNN) for generation of both present and ab-
sent keyphrases. Chen et al. (2018) extended Copy-
RNN with keyphrase correlation constraints and
Zhao and Zhang (2019) extended it with linguistic
constraints. Ye and Wang (2018); Wu et al. (2022)
investigated keyphrase generation (KG) in semi-
supervised or resource-constrained settings. Chen
et al. (2019b) used a title-guided encoding method
for better KG. Wang et al. (2019) incorporated a
topic-model to enhance KG. Yuan et al. (2020) ex-
tended CopyRNN by introducing the CatSeq model
that can generate a concatenation of dynamically
determined variable number of keyphrases. Chan
et al. (2019); Luo et al. (2021) improved KG using
reinforcement learning whereas Swaminathan et al.
(2020a,b); Lancioni et al. (2020) do so using GANs.
A few approaches (Chen et al., 2019a; Diao et al.,
2020; Kim et al., 2021; Ye et al., 2021a) augmented
KG with information from retrieved documents.

Multiple approaches (Chen et al., 2019a; Liu
et al., 2020; Ahmad et al., 2021; Zhao et al., 2021;
Wu et al., 2021) took a joint-training or multi-
tasking approach to do both present keyphrase ex-
traction and absent keyphrase generation. Chen
et al. (2020) and Ye et al. (2021b) changed the de-
coder to better respect the structure of keyphrases.
Luo et al. (2020) changed the encoder to better re-
spect the input document structure. Huang et al.
(2021) proposed a new beam-search-based adap-
tive decoding method. Meng et al. (2021); Kulkarni
et al. (2022) investigated pre-training objectives for
KG. Both, however, rely on labelled pre-training
data.

9 Conclusion

Our proposal, KPDROP, randomly drops present
keyphrases from a document to turn them artifi-
cially absent. This encourages the model to learn
to better exploit the context in the input to be able
to infer keyphrases that are absent from the text
but otherwise topically relevant. The results show
that KPDROP serves as a simple model-agnostic

method to substantially improve absent (and some-
times, present) keyphrase performance in both su-
pervised and semi-supervised (low resource) set-
tings when large annotated datasets for keyphrase
generation are not available. In future, we would
like to explore integration of KPDROP with large-
scale pre-training.

10 Limitations

KPDROP is a simple yet effective approach to
improving performance of keyphrase generation
in both large datasets and low resource datasets,
which makes it applicable to a wide range of do-
mains where keyphrases are necessary. However,
one limitation of KPDROP (especially KPDROP-
A) is that it can increase the computation cost dur-
ing training because both the effective mini-batch
size and the effective training dataset size per epoch
is doubled through data augmentation. Yet, most
data augmentation techniques share the same limi-
tation.

In addition, KPDROP-R can potentially harm
the performance of present keyphrases in some
contexts (especially when using greedy search in a
supervised setting). To address this, we can simply
use the absent predictions of the model trained with
KPDROP and the present predictions of the model
trained without KPDROP.

11 Ethics Statement

Our technique is specifically designed to improve
keyphrase generation. Keyphrase generation is a
well-established traditional NLP task that is useful
in several application contexts related to organiza-
tion of information. We do not foresee any immedi-
ate ethical concern following from our contribution
in this area.
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A Appendix

A.1 Hyperparameters
For GRU One2Many (CatSeq) we use hyperparam-
eters similar to prior works (Chan et al., 2019).
Like prior works (Yuan et al., 2020; Meng et al.,
2021), when using beam search on one2many mod-
els we use a beam size of 50. We use the same
model hyperparameters of GRU One2One mod-
els as used for GRU One2Many. However, dur-
ing beam search we use a beam size of 200 as is
standard for one2one models in prior work (Meng
et al., 2017, 2021). A lower beam size (50 instead
of 200) is used for one2many models because they
can generate multiple keyphrases per beam. So a
lower size is used to make them more compara-
ble with one2one models with higher beam size.
For Transformer One2Set model we use the same
hyperparameters as Ye et al. (2021b). Given the
similarity of One2Set models with One2Many mod-
els in their ability to generate multiple keyphrases
per beam, we also use a beam size of 50 for
for Transformer One2Set. Anytime we use beam
search, we also use length normalization on beam
search with a length co-efficient of 0.8. We use the
same settings during semi-supervised pre-training
or fine-tuning. We tested KPDROP-R rates among
{0.3, 0.5, 0.7, 0.9, 1.0} on GRU One2Many over
the validation set after one epoch training on the
full KP20K training set. We found 0.7 to be the best
performing rate for validation absent performance.
We use this same rate for KPDROP-A and other
models in both supervised and semi-supervised set-
tings. All the experiments were done in a single
Nvidia RTX A6000.

A.2 More Evaluations
Chan et al. (2019) modified the original F1@5 (as
used in the main paper and other prior works (Meng
et al., 2017; Yuan et al., 2020)) such that the de-
nominator in the precision is always set to 5 even
when the total predictions are less than 5. To avoid
confusion and better distinguish from the original
F1@5 we refer to the modified metric as F1@5C.
Throughout the paper, for the sake of brevity we
mainly report performance in F1@5 instead of
F1@5C. This is because although F1@5C achieve
the goal of differentiating itself from F1@M reports
in greedy search contexts, it can be a little mislead-
ing. For example, F1@5C can artificially penalize
the model for predicting less than 5 keyphrases
even when the ground truth itself contains less than

5 keyphrases. Nevertheless, in Table 5, we still
report the F1@5C present and absent performance
of our models from our supervised experiments for
the sake of better comparison with prior works that
use F1@5C.

A.3 More Semi-Supervised Experiments
In Table 6 we present the greedy decoding per-
formance of GRU One2Many models in semi-
supervised settings. In Table 7 we present the per-
formance of GRU One2One models (beam search)
in semi-supervised settings. In Table 8 and 9 we
present the greedy decoding performance and beam
decoding performance of Transformer One2Set
mdoels in semi-supervised settings respectively.
Gnerally, we notice similar patterns across all the
models as were found and discussed for GRU
One2Many models in §6.1. Overall, KPDROP-
R consistently serves as a crucial ingredient in the
pre-training stage to enable substantially improved
downstream performance in both present and ab-
sent keyphrase generation.

A.4 Preliminary Experiments on Additional
Baselines

We also present the results of applying KPDROP-
R on a large pre-trained model T5 (Raffel et al.,
2020), and another specialized KG model, ExHiRD
(Chen et al., 2020) in Table 10. In both cases, we
see the promise of KPDROP-R in improving the
absent performance.

Below we describe the hyperparameters that
were used for the preliminary experiments de-
scribed in this section.

For ExHiRD, we use the same hyperparameters
as in the original paper (Chen et al., 2020)5. For T5,
we use a maximum of 10 epochs, early stopping
with a patience of 2 (the training is terminated if
validation loss does not improve for 2 consecutive
epochs), a batch size as 64, a maximum gradient
norm clipping af 5, and SM3 (Anil et al., 2019) as
the optimizer. The initial learning rate for T5 was
set to be 0.1. We apply learning rate (lr) warmup
as follows 6:

lrs = lr0 ·min(1, (s/w)2) (1)

lrs indicates the learning rate at step s. lr0 is the
initial learning rate (0.1). s indicates the current

5https://github.com/Chen-Wang-CUHK/ExHiRD-DKG
6based on the recommended procedure for

SM3 (https://github.com/google-research/
google-research/tree/master/sm3).
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Inspec NUS Krapivin SemEval KP20k
Models F1@5C F1@5C F1@5C F1@5C F1@5C

Pre Abs Pre Abs Pre Abs Pre Abs Pre Abs
GRU One2Many
Greedy 22.16 0.71 31.23 1.63 26.45 1.83 24.68 1.62 29.30 1.60
Greedy+KPD-R 12.53 0.60 18.41 1.73 15.63 2.61 13.912 1.81 17.71 1.90
Greedy+KPD-A 19.74 0.81 30.66 1.83 24.72 2.41 23.26 1.83 28.15 2.02

Beam 34.15 2.30 41.36 4.02 32.63 5.22 33.33 3.21 36.60 4.41
Beam+KPD-R 30.32 2.62 37.83 5.71 31.92 6.62 32.413 4.34 32.31 5.40

Beam+KPD-A 34.05 2.51 41.67 5.06 33.89 5.52 33.17 4.33 36.60 5.00

GRU One2One
Beam 30.52 2.81 40.210 5.77 29.81 5.93 29.216 3.81 39.41 6.20
Beam+KPD-R 30.43 2.93 43.93 7.53 36.52 7.82 32.710 4.95 37.90 6.51
Beam+KPD-A 30.62 2.71 38.96 6.72 29.44 6.53 30.011 4.13 39.60 6.80

Transformer One2Set
Greedy 27.65 1.93 38.84 4.35 30.99 4.12 31.21 2.62 34.43 3.30
Greedy+KPD-R 15.32 2.00 26.09 5.35 22.24 5.95 20.77 3.93 24.02 4.51

Greedy+KPD-A 25.73 2.11 38.02 5.28 29.57 4.64 30.37 3.61 33.93 4.21

Beam 32.34 3.32 42.33 7.05 32.96 6.75 33.58 4.74 36.45 5.80
Beam+KPD-R 27.88 2.41 40.09 7.25 33.77 7.32 32.05 5.24 35.13 6.10
Beam+KPD-A 32.26 3.62 41.83 7.94 32.37 7.82 34.312 5.34 36.30 6.70

Table 5: Present and absent keyphrase performance for different models. Pre represents present performance and
Abs represents absent performance. KPD represents KPDrop. Subscripts represent standard deviation (e.g., 31.11
represents 31.1± 0.1). We bold the best scores per block.

update step number. w indicates total warmup steps
(set as 2000). The initial learning rate (0.1) was
tuned using grid search based on validation loss
among the following choices: {0.1, 0.01, 0.001}.
For each trial during hyperparameter optimization
we use a maximum of 1 epoch. We only tune the
baselines (where KPDROP is unapplied). We do
not separately tune other hyperparameters when
KPDROP is applied.

We use the T5 implementation as provided by
(Wolf et al., 2020). Both ExHiRD and T5 models
are trained using teacher forcing mechanism. Dur-
ing inference, we set the maximum phrase length
as 50 for both. Keyphrase tokens are greedily gen-
erated during inference. A KPDROP rate of 0.7
was used - same as the other previous experiments.
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Inspec NUS Krapivin SemEval KP20k
Models F@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5

GRU One2Many Models (Greedy Search)
Absent Keyphrase Performance

PT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PT+KPD-R 0.21 0.21 0.22 0.22 0.10 0.10 0.00 0.00 0.31 0.31
PT+KPD-A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FT 0.11 0.11 0.00 0.10 0.20 0.20 0.30 0.30 0.10 0.10
PT; FT 0.01 0.01 0.21 0.21 0.00 0.00 0.11 0.11 0.10 0.10
PT+KPD-A; FT 0.21 0.21 0.84 0.84 0.41 0.41 0.70 0.70 0.60 0.60
PT+KPD-R; FT 0.83 0.83 0.52 0.52 0.50 0.50 0.42 0.42 0.81 0.81

Present Keyphrase Performance
PT 35.07 34.26 23.72 23.72 20.14 20.32 24.56 24.85 18.41 18.71
PT+KPD-R 32.04 32.05 25.33 24.85 20.55 20.33 25.011 24.711 19.32 19.03
PT+KPD-A 35.55 34.44 23.89 23.97 19.36 20.03 24.515 24.310 18.24 18.53
FT 14.312 14.312 24.721 24.721 23.212 23.212 15.82 15.82 22.88 22.88
PT; FT 20.918 20.918 27.216 27.216 25.510 25.510 21.05 21.05 25.17 25.17
PT+KPD-A; FT 22.03 22.03 30.17 30.17 26.57 26.57 23.06 23.06 27.02 27.02
PT+KPD-R; FT 20.54 20.54 30.18 30.18 27.84 27.84 22.312 22.312 27.12 27.12

Table 6: Absent and present keyphrase performance using Greedy Search for GRU One2Many models in a semi-supervised
setup. KPD represents KPDrop. PT represents pre-training on the synthetic data (UC). PT+KPD-R or PT+KPD-A represents
pre-training on UC with KPD-R or KPD-A repsectively. FT represents fine tuning or training on the low resource labelled data
(LR). PT (or PT+KPD-A or PT+KPD-R) followed by “; FT" represents that the pre-training was followed by fine-tuning of
the pre-trained model on LR. We bold the overall best scores. Subscripts represent standard deviation (e.g., 31.11 represents
31.1± 0.1).

Inspec NUS Krapivin SemEval KP20k
Models F@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5

GRU One2One (Beam Search)
Absent Keyphrase Performance

PT 0.00 0.21 0.00 0.00 0.00 0.00 0.00 0.11 0.00 0.10
PT+KPD-R 0.40 1.21 0.70 0.92 0.60 1.62 0.91 0.92 0.40 1.32
PT+KPD-A 0.10 0.21 0.10 0.11 0.00 0.00 0.10 0.00 0.10 0.10
FT 0.20 0.30 0.60 1.22 0.30 0.91 0.40 0.40 0.30 0.81
PT; FT 0.20 0.61 0.61 1.33 0.40 1.01 0.31 0.53 0.30 0.81
PT+KPD-A; FT 0.30 1.01 0.70 1.42 0.50 1.41 0.61 1.13 0.40 1.30
PT+KPD-R; FT 0.60 1.92 1.40 4.72 1.10 4.42 1.20 3.02 0.80 3.70

Present Keyphrase Performance
PT 14.91 34.18 9.30 25.14 6.70 20.36 11.01 25.23 6.61 19.01
PT+KPD-R 21.66 33.65 12.63 25.36 9.81 19.82 14.67 23.18 9.21 18.42
PT+KPD-A 15.72 34.55 9.71 25.97 7.01 20.35 11.12 25.411 6.81 19.05
FT 20.613 20.522 17.815 31.920 12.59 23.417 16.218 21.824 13.58 25.28
PT; FT 20.63 26.17 13.75 36.65 10.11 28.26 13.93 28.115 10.02 29.51
PT+KPD-A; FT 20.610 27.810 13.88 35.217 10.16 28.99 14.07 28.78 9.96 29.24
PT+KPD-R; FT 21.43 29.48 14.32 39.08 10.52 30.74 15.01 30.44 10.42 32.51

Table 7: Absent and present keyphrase performance using Beam Search for GRU One2One models in a semi-supervised
setup. KPD represents KPDrop. PT represents pre-training on the synthetic data (UC). PT+KPD-R or PT+KPD-A represents
pre-training on UC with KPD-R or KPD-A repsectively. FT represents fine tuning or training on the low resource labelled data
(LR). PT (or PT+KPD-A or PT+KPD-R) followed by “; FT" represents that the pre-training was followed by fine-tuning of
the pre-trained model on LR. We bold the overall best scores. Subscripts represent standard deviation (e.g., 31.11 represents
31.1± 0.1).
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Inspec NUS Krapivin SemEval KP20k
Models F@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5

Transformer One2Set (Greedy Search)
Absent Keyphrase Performance

PT 0.21 0.21 0.11 0.11 0.31 0.31 0.00 0.00 0.10 0.10
PT+KPD-R 0.60 0.60 0.81 0.81 0.85 0.75 0.32 0.32 0.30 0.60
PT+KPD-A 0.31 0.31 0.21 0.21 0.20 0.20 0.11 0.11 0.20 0.20
FT 0.23 0.23 0.43 0.43 0.73 0.73 0.31 0.31 0.51 0.51
PT; FT 0.32 0.32 0.51 0.51 0.42 0.42 0.00 0.00 0.42 0.42
PT+KPD-A; FT 0.52 0.52 0.72 0.72 1.11 1.11 1.15 1.15 1.20 1.20
PT+KPD-R; FT 1.11 1.11 2.99 2.99 2.55 2.55 2.06 2.06 2.41 2.41

Present Keyphrase Performance
PT 34.65 28.617 25.93 23.310 20.14 17.84 27.14 23.37 18.91 17.24
PT+KPD-R 35.76 31.713 26.39 23.911 20.410 18.35 26.07 23.018 19.38 17.87
PT+KPD-A 34.79 28.95 25.74 24.112 19.82 18.510 26.84 23.510 19.21 18.010
FT 4.67 4.67 11.541 11.541 9.511 9.511 6.117 6.117 8.524 8.524
PT; FT 20.614 20.614 29.220 29.220 24.911 24.911 23.216 23.216 24.715 24.715
PT+KPD-A; FT 23.35 23.35 32.510 32.39 27.19 27.18 26.711 26.712 27.52 27.42
PT+KPD-R; FT 26.419 26.419 37.010 36.68 30.610 30.38 28.914 28.512 30.95 30.64

Table 8: Absent and present keyphrase performance using Greedy Search for Transformer One2Set models in a semi-supervised
setup. KPD represents KPDrop. PT represents pre-training on the synthetic data (UC). PT+KPD-R or PT+KPD-A represents
pre-training on UC with KPD-R or KPD-A repsectively. FT represents fine tuning or training on the low resource labelled data
(LR). PT (or PT+KPD-A or PT+KPD-R) followed by “; FT" represents that the pre-training was followed by fine-tuning of
the pre-trained model on LR. We bold the overall best scores. Subscripts represent standard deviation (e.g., 31.11 represents
31.1± 0.1).

Inspec NUS Krapivin SemEval KP20k
Models F@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5

Transformer One2Set (Beam Search)
Absent Keyphrase Performance

PT 0.20 0.72 0.20 0.63 0.10 0.21 0.20 0.22 0.10 0.30
PT+KPD-R 0.40 1.42 0.50 1.42 0.40 1.212 0.51 1.22 0.30 1.21
PT+KPD-A 0.30 0.81 0.30 0.40 0.20 0.31 0.20 0.31 0.10 0.40
FT 0.20 0.32 0.60 0.82 0.30 1.02 0.41 0.81 0.30 0.90
PT; FT 0.30 0.81 0.50 1.63 0.30 1.41 0.40 0.61 0.30 1.11
PT+KPD-A; FT 0.30 1.03 0.50 1.84 0.40 1.73 0.40 1.52 0.30 1.70
PT+KPD-R; FT 0.40 1.71 1.00 5.44 0.70 4.52 0.90 3.12 0.50 3.60

Present Keyphrase Performance
PT 19.38 28.615 16.23 22.79 10.33 17.54 18.09 23.411 10.54 17.05
PT+KPD-R 22.54 31.915 16.99 23.67 11.35 18.06 19.610 22.915 10.85 17.67
PT+KPD-A 20.73 28.88 17.24 23.59 11.12 17.910 19.05 22.915 11.32 17.89
FT 12.610 11.35 15.015 23.79 9.39 14.27 12.310 15.311 10.98 16.81
PT; FT 17.42 24.38 14.93 32.16 9.512 25.02 14.85 27.411 10.52 25.63
PT+KPD-A; FT 17.73 25.92 15.71 33.211 10.12 25.85 15.82 26.712 10.91 26.82
PT+KPD-R; FT 20.44 31.99 15.42 37.15 10.32 29.27 16.62 30.418 10.22 29.81

Table 9: Absent and present keyphrase performance using Beam Search for Transformer One2Set models in a semi-supervised
setup. KPD represents KPDrop. PT represents pre-training on the synthetic data (UC). PT+KPD-R or PT+KPD-A represents
pre-training on UC with KPD-R or KPD-A repsectively. FT represents fine tuning or training on the low resource labelled data
(LR). PT (or PT+KPD-A or PT+KPD-R) followed by “; FT" represents that the pre-training was followed by fine-tuning of
the pre-trained model on LR. We bold the overall best scores. Subscripts represent standard deviation (e.g., 31.11 represents
31.1± 0.1).
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Inspec Krapivin SemEval KP20k
Models F1@M F1@5C F1@M F1@5C F1@M F1@5C F1@M F1@5C

ExHiRD Greedy 2.2 1.1 4.3 2.2 2.5 1.7 3.2 1.6

ExHiRD Greedy+KPD-R 3.5 2.0 6.8 3.7 5.1 3.7 5.3 2.7

T5 Greedy 2.5 1.4 5.3 2.8 2.3 1.6 3.6 1.8

T5 Greedy+KPD-R 3.2 1.8 7.0 4.2 3.8 2.9 5.7 3.1

Table 10: Absent keyphrase performance of ExHiRD and T5. We bold the best scores per block.
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