
Findings of the Association for Computational Linguistics: EMNLP 2022, pages 4583–4598
December 7-11, 2022 ©2022 Association for Computational Linguistics

You Are My Type! Type Embeddings for Pre-trained Language Models

Mohammed SAEED
EURECOM

mohammed.saeed@eurecom.fr

Paolo PAPOTTI
EURECOM

paolo.papotti@eurecom.fr

Abstract

One reason for the positive impact of Pre-
trained Language Models (PLMs) in NLP tasks
is their ability to encode semantic types, such
as ‘European City’ or ‘Woman’. While previ-
ous work has analyzed such information in the
context of interpretability, it is not clear how to
use types to steer the PLM output. For exam-
ple, in a cloze statement, it is desirable to steer
the model to generate a token that satisfies a
user-specified type, e.g., predict a date rather
than a location. In this work, we introduce
Type Embeddings (TEs), an input embedding
that promotes desired types in a PLM. Our pro-
posal is to define a type by a small set of word
examples. We empirically study the ability of
TEs both in representing types and in steer-
ing masking predictions without changes to the
prompt text in BERT. Finally, using the LAMA
datasets, we show how TEs highly improve the
precision in extracting facts from PLMs.

1 Introduction

Pre-trained language models (PLMs) based on
transformers (Vaswani et al., 2017) have achieved
state-of-the-art results in several downstream NLP
tasks (Devlin et al., 2019; Liu et al., 2020). Be-
ing trained in a self-supervised fashion, such mod-
els convey, to a certain extent, linguistic (Puccetti
et al., 2021; Lin et al., 2019) and factual knowl-
edge (Rogers et al., 2020; Meng et al., 2022). Be-
ing able to faithfully extract the desired knowledge
is a crucial aspect that has sparked lots of inter-
est (Petroni et al., 2019; Bouraoui et al., 2020).

However, querying the PLM for information
is not always reliable and requires more than a
manually-written prompt as an input (Petroni et al.,
2020). This is opposed to a standard knowledge
graph (KG), where users formulate a structured
SPARQL query specifying exactly what to expect
at the output. For example, the query “SELECT ?x
WHERE wd:Q76 wdt:P26 ?x” returns the spouse
of Barack Obama, “Michelle Obama”. In the PLM

setting, the SPARQL query could be replaced by
a natural-language prompt, such as “The spouse
of Barack Obama is [MASK]”. While the predic-
tions of the prompt are reasonable (left-hand side
of Figure 1), they do not reflect the requirement
of getting instances of a specific type (names of
people) in the output. In fact, in BERT’s top-1 pre-
diction on prompts where the desired output type
is a MUSICAL INSTRUMENT (e.g., “Philip Glass
plays [MASK]”), more than half of the predictions
follow different types such as SPORT (“plays foot-
ball”) and CHARACTER (“plays Hamlet”), instead
of the expected “plays piano”. Indeed, differently
from the KG with typed entities, the type infor-
mation is dismissed from the input prompt, thus
bringing no guarantee about the expected type.

While several works try to remedy this by engi-
neering prompts to satisfy a desired type (Jiang
et al., 2020; Shin et al., 2020; Zhong et al.,
2021), or relying on external sources to enrich the
prompt (Petroni et al., 2020), these approaches do
not fully exploit the latent concepts encoded in the
PLM (Dalvi et al., 2022). To fill up this gap, we
introduce the notion of Type Embeddings (TEs).
Similar to how positional embeddings in a PLM
encode information about the position of a token in
an input (Wang and Chen, 2020), TEs encode the
expected type information of the output. The defi-
nition of a TE requires neither supervised training
nor external resources as it simply uses the exist-
ing PLM token embeddings, e.g., people names,
to obtain type information, e.g., for PERSON. TEs
can be then naturally injected into the input em-
bedding layer of a PLM to embody the expected
type in the output (right-hand side of Figure 1).
Driving the model towards the expected type can
help in applications exploiting PLMs, such as data
integration (Cappuzzo et al., 2020), data clean-
ing (Narayan et al., 2022), rule induction (Cui and
Chen, 2021), and fact-checking (Lee et al., 2020).

Our contributions can be summarized as follows:

4583

Figure 1: Top-5 predictions of BERT (with log probabilities) for a given prompt (left) and the changes when adding
type information (right). Tokens following the desired type are colored. Correct answer is underlined.

• We introduce TYPE EMBEDDINGS (TEs),
which, similar to positional embeddings, can
be added to the input of PLMs and effectively
encode type information. We show how to
compute these embeddings using only labeled
tokens that adhere to the specific type; the
main idea is to remove the first singular vector
of the token embedding matrix (Section 3).

• We propose methods to analyze type em-
beddings and evaluate their effectiveness by
(i) measuring their semantic similarity to in-
stances of the type, (ii) assessing the sensitiv-
ity of tokens to a given type, and (iii) analyz-
ing layer-wise type classification (Section 4).

• We inject type embeddings into PLMs and
show increase in performance for a factual
probing dataset (LAMA) and alleviation of
“type bias” for a prompt by steering the output
type with TEs (Section 5).

We conclude the paper by discussing future di-
rections, including the extension of our approach
from types to more generic concepts (Section 6).
Data and code for the paper are available at https:
//github.com/MhmdSaiid/TypeEmbedding.

2 Related Work

PLMs have been largely studied in the last years,
with most analysis focusing on the attention mech-
anism (Voita et al., 2019; Vig and Belinkov, 2019)
and on the role of embeddings (Rogers et al., 2020;
Li et al., 2021; Clark et al., 2019).

However, none of those efforts study the notion
of types that we introduce. One exception is the re-
cent studies of how concepts are encoded in PLMs.
One work analyzes BERT by clustering contextual
representations across layers, followed by a manual
annotation to label clusters with meaningful con-
cepts (Dalvi et al., 2022). Another work starts from

treating the feedforward network of a transformer
as a key-value memory and studies how certain vec-
tors encode concepts in the vocabulary space (Geva
et al., 2022). Our effort is different in two ways.
First, we do not require the labeling of artifacts
from the PLM, but rather we rely on user-specified
tokens to model their common type. Second, we
focus on type, which is one semantic concept, leav-
ing the others, such as syntactic, morphological,
and lexical to future work (Section 6).

Our approach is related to the interpretation of a
neural net’s internal state in terms of a concept de-
fined through a vector (Kim et al., 2018; Schrouff
et al., 2021). The Concept Activation Vector (CAV)
is derived from example images by finding the nor-
mal to the hyperplane separating examples with-
out a concept and examples with a concept in the
model’s activation. CAVs separate examples with
and without the target concept in a model’s acti-
vation at a certain layer. By Testing with a CAV
(TCAV), one can identify the importance of the
color ‘red’ in fire-engine images for a neural net-
work. We use CAVs on textual input, rather than
on images, to measure how sensitive the model is
to a type after adding its TE (Section 4.3). How-
ever, while CAV is a sensitivity measurement tool,
TEs steer the target type in the model’s output. A
work sharing the same spirit as ours uses a vector
to steer output in a PLM for style transfer between
sentences (Subramani et al., 2022). However, our
method requires only 10 tokens per type as opposed
to 100 labeled sentences for style transfer, and it
works also with GPT.

Our work introduces a new kind of type em-
beddings to enrich the input to the PLM, in anal-
ogy to positional embeddings (Wang and Chen,
2020; Wang et al., 2021a). We show the benefit
of our solution on the LAMA benchmark (Petroni

4584

https://github.com/MhmdSaiid/TypeEmbedding
https://github.com/MhmdSaiid/TypeEmbedding

Figure 2: Input representation for a PLM. The YEAR type embedding (green box) is added to the [MASK] token.

et al., 2019), which contains cloze statements to
query the PLM for a masked token. To enhance a
PLMs’ performance for such task, previous work
improve prompts by mining or paraphrasing new
prompts (Jiang et al., 2020), by adding trigger to-
kens (Shin et al., 2020), by finding vectors for
prompts in the embedding space without restric-
tion to the PLM’s vocabulary (Zhong et al., 2021),
or by combining multiple prompts (Qin and Eisner,
2021). As we simply add the type embedding to the
input, our work is also different from approaches
that pre-train an adapter to enhance PLMs’ factual
knowledge (Wang et al., 2021b) or rely on informa-
tion retrieval to provide additional context for the
prompt (Petroni et al., 2020). Finally, we steer the
output while not changing the underlying model
by triggering the neurons responsible for a predic-
tion (Dai et al., 2022) or by producing an alternative
model with edited facts (De Cao et al., 2021).

3 Type Embedding

In this section, we propose how to compute TEs
from PLM token embeddings (Section 3.1), and
how to use them (Section 3.2). Following the work
on latent concepts in BERT (Dalvi et al., 2022), we
focus on such model and report results on other
PLMs in Table A2 in the Appendix.

3.1 Obtaining the TE

Given a type t, let the matrix Pt ∈ Rn×d hold the
token embeddings for n different tokens, where d
is the dimension of the token embeddings. The n
tokens are instances of a specific type t. We call
these tokens positively typed tokens.

For our analysis of Pt, we apply Singular Value
Decomposition (SVD). The SVD of an m× n ma-
trix M factorizes it into M = UΣV T , where U is
an m×m unitary matrix, Σ is an m× n diagonal
matrix, and V is an n× n unitary matrix. We call
the column vectors of U and V singular vectors.
The diagonal values in Σ are called singular values.

Assuming that M is a matrix where each row con-
tains features of a data point, then the first singular
vector of V , corresponding to the highest singular
value, corresponds to the direction with maximum
variance for the covariance matrix. In other words,
it is the vector that contains the “common-part" of
all data points.

The SVD of the matrix is Pt = UΣV T . The
first column of the matrix V , v(1), is the first sin-
gular vector, which encodes information common
between all n tokens. We hypothesize that this
vector, unlike other singular vectors, contains non-
type related information and needs to be removed
from the input to promote type information en-
coded in the other singular vectors (more details
in Section 4.1). A similar observation has been
made for multilingual representations (Roy et al.,
2020), where removing r singular vectors leaves
semantic-related information in the input represen-
tations (Yang et al., 2021). Thus, the embedding to
be added to promote type t is Et = −λv(1), where
λ is a multiplier that is tuned on a hold-out dataset.

In practice, a type embedding is derived from a
small set of tokens that are instances of the same
type. Those can be provided by users, or obtained
from existing typed resources such as KGs. In the
rest of the chapter, the TEs are computed based
on weighted sampling from KG entities. We query
DBpedia (Auer et al., 2007) for tokens adhering to
a specific type, keeping only those in the PLM’s
vocabulary, and use their node degree as the weight.

3.2 Using the TE

Assuming that a user has obtained the TE for the
expected output type, the TE is simply added to the
[MASK] input embedding, in analogy to token and
positional embeddings. Figure 2 shows an example
for a prediction where we enforce a YEAR type.

Depending on the task at hand, the TE can be
added to one or more tokens. We found it more
effective to add it only to the [MASK] token for

4585

ci
ty

la
ng

ua
ge

oc
cu

pa
tio

n

v(1) v(2) v(3) v(4)

Figure 3: Distribution of the mean of the singular vec-
tors across different types. We report the singular vec-
tors with top-4 singular values. The distribution of the
v(1) has the highest kurtosis.

MLM tasks, while for text generation it is more
effective to add the TE to all tokens in the prompt.
While we focus on MLM, we report preliminary
results for text generation in Section 6.

4 Analysis of TEs

Having obtained a TE, we propose a series of anal-
ysis methods to assess its validity. We use the TE
as a simple type retriever (Section 4.1), study the
distribution of singular vectors (Section 4.2), an-
alyze the effect of the TE w.r.t. the output and
quantify the model’s sensitivity w.r.t. typed tokens
(Section 4.3), perform layer-wise classification to
identify the desired type (Section 4.4), and measure
TCAV of a model equipped with a TE (Section 4.5).

4.1 Similarity
As the TE is computed from token embeddings, the
vector for Et lives in the subspace formed by these
embeddings. Therefore, we can use the TE to sort
by distance token embeddings (through cosine sim-
ilarity) as a qualitative confirmation that it reflects
the desired type. Table 1 shows examples of TEs
for three types (cities, years, and occupations) and
the most similar token embeddings of BERT. This
suggests that TEs could act as a standalone type re-
triever, to sort tokens according to type and analyze
any biases in the tokens from which the TE is com-
puted. Applying the method on the first singular
vector v(1) (i.e., −Et), we observe that the top re-
trieved tokens (‘.’, ‘and’, ‘the’, . . .) relate to syntax,
suggesting that the first singular vector encodes
syntactic aspects, in agreement with other work
in multilingual representations (Roy et al., 2020),
showing that such vectors encode non-semantic-
related information (Yang et al., 2021).

4.2 Distribution of Singular Vectors

To understand the bias imposed by the first singu-
lar vector, we analyze the distributions of singular
vectors, as it has been shown that distributions of
singular vectors deviating from a Gaussian distri-
bution contain bias (Shin et al., 2018).

From Figure 3, we see that the distribution of the
singular vector v(1), corresponding to the largest
singular value, clearly deviates from a Gaussian
distribution, while others do not. This is indicated
by the high kurtosis values for the first singular vec-
tors. This suggests that this singular vector could
represent a common bias that affects tokens (Shin
et al., 2018). Note that since each singular vector
is of dimension d, and to plot the histogram, we
report the mean of the singular vector.

4.3 Effect of TE

We introduce two metrics for measuring TE’s ef-
fectiveness.

Adversarial Accuracy. We expect that adding
a TE to BERT causes the PLM to be more “type
aware” in the associated task, i.e., adding the TE
conveys type-related tokens in the output. For ex-
ample, in an MLM task, adding the TE should rank
higher the tokens following the associated type. In
an NLG task, adding a TE should convey more
type-related tokens in the generated text. We focus
on the former and leave the latter for future work.

To validate this hypothesis, we check if the score
of a positively typed token in an MLM task for a
model with the associated TE is greater than that of
a standard BERT model. Formally, given a model
Mt, with an MLM head that has been equipped
with a TE Et promoting a specific type t, we denote
by P

(x)
Mt

the normalized output score of the token
x with model Mt and prompt pr. To assess the ef-
fectiveness of the TE, we compute this normalized
probability to that of an adversary, a BERT model
without any equipped TE. We define the metric
adversarial accuracy (AA) as:

AA =
|{x ∈ Xt+ |P (x)

Mt
> P

(x)
M∅

}|
|Xt+ |

(1)

where M∅ is a model without any TE, and Xt+

is a set of tokens adhering to the type t. A higher
value indicates that the TE is able to promote PLM
tokens following type t.

Adversarial Sensitivity. We also expect that
adding the TE should make tokens following the

4586

Type Emb. Predictions

CITY Kazan(.69), Baku(.67), Cologne(.67), Düsseldorf(.63), Toulouse(.62), Strasbourg(.62), Bonn(.61)
YEAR 1823(.85), 1834(.83), 1819(.82), 1755(.82), 1825(.82), 1835(.82), 1805(.82)

OCCUPATION geologist(.76), biologist(.73), theologian(.72), screenwriter(.7), botanist(.69), linguist(.68), novelist(.67)

Table 1: Most similar token embeddings to a given Type Embedding with cosine similarity score in parentheses.
Tokens in italic were used to compute the TE.

type more sensitive to the input TE. In other words,
adding the TE in an MLM setting should cause
these tokens to be more salient w.r.t. the input. To
validate this hypothesis, we compare the sensitivity
of a token w.r.t. the input in two models with and
without a TE. If the former is greater than the latter,
then the model is more sensitive to the typed token.

More formally, given a model M, the output
score of a token x is P (x)(X[MASK])

1. With
a first-order Taylor series expansion, we ob-
tain S

(x)
M = P (x)(X[MASK]) − P (x)(0) ≈

∂P (x)(X[MASK])
T

∂X[MASK]
X[MASK], where 0 is the zero vec-

tor.
S
(x)
M is reminiscent of metrics used in the neu-

ral network pruning literature (LeCun et al., 1989;
Molchanov et al., 2017). However, the metric is
applied w.r.t. a vector rather than to the usual case
of scalar, and we do not take the absolute value of
the metric as we focus on comparing sensitivities
of models and not measuring an absolute effect.

Finally, to test a TE, we compare the sensitivity
to that of a standard BERT model. Similarly, we
define adversarial sensitivity as the number of pos-
itive typed tokens whose sensitivity increased after
adding TE to the number of positive typed tokens
in a set Xt+ . More formally:

AS =
|{x ∈ Xt+ |S(x)

Mt
> S

(x)
M∅

}|
|Xt+ |

(2)

For both measures, we report results over a sam-
ple of 100 tokens, making sure that every one is an
instance of type t and none of them has been used
to derive the TE. We then compute the accuracy 10
times to get mean and standard deviation. To make
sure that any change in the scores is due only to the
TE, we set pr = [MASK]. This simple prompt
neglects any contextual information that might af-
fect PLM tokens, thus ensuring that any change is
due to the TE.

Results for mean and standard deviation are re-
ported in Table 2 for both AA and AS. For AA,
TEs perform well in promoting tokens respecting

1Other input tokens are omitted for brevity.

Type AA AS

CITY .853 (.0166) .82 (.014)
LANGUAGE 1 (0) .860 (.012)

OCCUPATION 1 (0) .893 (.018)

Table 2: Mean and standard deviation (in parentheses)
of AA and AS for different types (k = 1).

0 2 4 6 8 10 12
0.4

0.6

0.8

F1
Sc

or
e

Ci Ci + TE

0 2 4 6 8 10 12

0.6

0.8

1

F1
Sc

or
e

L L + TE

0 2 4 6 8 10 12

0.4

0.6

0.8

Layer Number

F1
Sc

or
e

Org Org + TE

Figure 4: F1 scores of three classifiers trained and tested
on layer-wise embeddings of CITY (Ci), LANGUAGE (L),
and ORGANIZATION (Org) datasets.

a certain type. We observe a lower score for type
CITY, which is likely due to (a) the large cardinality
of the CITY type making it more difficult to model
all required aspects of cities, and (b) coincidence
of some city tokens with people names such as
Morris, Salem, and Riley.

For AS, the TE has a small error margin. As
we cannot expect token embeddings to capture all
intricacies of a certain type, there are examples
where the model fails the sensitivity test. Examples
of failing tokens that did not show improvement
in type sensitivity for CITY are Salvador and Blair,
for LANGUAGE are Cherokee and Romani, and OC-
CUPATION are general and vicar.

4.4 Layer-wise Classification
As TEs are added at the input of the model, we pos-
tulate that adding TEs should help BERT identify
types of input prompts more efficiently. For this,
we train a layer-wise linear classifier on embed-

4587

dings of input prompts, where positive instances
are prompts belonging to a certain type t and nega-
tive instances are prompts of other types (examples
in Table 3). For each type, we sample 100 positive
and negative instances from other LAMA datasets
(negative instances are sampled randomly from the
remaining types), and train a layer-wise linear clas-
sifier. We repeat each experiment 10 times and
report mean accuracy on a test set of the same size.
Prompts appearing in the train set do not appear
again in the test set. Results in Figure 4 show
that adding TE gives most layer classifiers an in-
crease in F1-score. The highest increase is usually
at a layer in the middle, in agreement with other
work (Dalvi et al., 2022), possibly because this is
where a type is formed (Geva et al., 2021; Jawa-
har et al., 2019). The highest increase is for LAN-
GUAGE, likely due to the smaller cardinality of the
type compared to CITY and ORGANIZATION. We
obtain from these the classifiers the CAVs needed
for TCAV in the following section.

4.5 TCAV Sensitivity

A Concept Activation Vector (CAV) is a vector in
the direction of the values of a concept’s set of
examples (Kim et al., 2018). For example, given
images showing the concept of the red color (posi-
tive samples) and images without it (negative sam-
ples), a linear classifier is trained on the activation
at each layer to separate positive and negative sam-
ples. The normal to the hyperplane separating the
samples is the CAV. By using CAVs (with direc-
tional derivatives), one can measure the sensitivity
of an input w.r.t. a concept by gauging the sen-
sitivity of model predictions to changes in inputs
towards the direction of a concept. Thus, given
a set of datapoints representing a certain concept,
Testing with CAVs (TCAVs) provides means to com-
pute the model’s conceptual sensitivity across the
input (Kim et al., 2018). As a final analysis mea-
sure, we posit that a model equipped with a TE
should have higher TCAV values across layers. For
this, we compute layer-wise TCAV using the CAVs
in Section 4.4. Figure 5 shows the TCAV values for
types CITY and LANGUAGE, comparing a vanilla
BERT model (k=0) and one equipped with TE
(k>0) for the last 4 layers. As TCAV computes
the model’s conceptual sensitivity across a set of
inputs, we observe that with the right TE, the im-
portance of the type becomes more salient, i.e., the
sensitivity of model predictions w.r.t. types, such

C L O
0.0

0.5

1.0

TC
AV

City/P937 (k=0)

C L O

City/P937 (k=2)
9
10
11
12

C L O
0.0

0.5

1.0

TC
AV

City/P276 (k=0)

C L O

City/P276 (k=3)

C L O
0.0

0.5

1.0

TC
AV

Language/P37 (k=0)

C L O

Language/P37 (k=2)
9
10
11
12

C L O
0.0

0.5

1.0
TC

AV
Language/P1412 (k=0)

C L O

Language/P1412 (k=3)

Figure 5: TCAV values for CITY (top) and LANGUAGE
(bottom) datasets compared against the CITY (C), LAN-
GUAGE (L), and ORGANIZATION (O) CAVs for layers
9-12 of BERT (left) and BERT+TE (right).

as CITY at a certain layer, increases for a prompt
and a TE associated with that type.

5 Experiments

The LAMA benchmark (Petroni et al., 2019) con-
tains cloze statements to test PLMs’ factual knowl-
edge. First, we apply TEs to BERT and show in-
crease in precision for most datasets (Section 5.1).
We then enforce a change in the output with TEs
(Section 5.2). Finally, we show the impact of the
tokens that encode the TE (Section 5.3).

5.1 LAMA

We focus on the GRE and TREx datasets (ElSahar
et al., 2018) as their prompts can be grouped into 17
output types from 38 datasets, with most examples
covered by types CITY, LANGUAGE, and COUN-
TRY; examples for two types are in Table 3 (full
list in Appendix A1). We remove prompts whose
expected output is not in BERT’s vocabulary and
prompts containing more than one [MASK] token.
This gives an upper bound on BERT’s performance.

As stated in Section 3.1, the type embedding is
computed with weighted sampling from KG enti-

4588

Dataset Prompt Example

P27 Albert II of Belgium is [MASK] citizen .
P1376 Cardiff is the capital of [MASK] .
P17 Cairo American College is located in [MASK] .

P131 Saharsa district is located in [MASK] .
P20 Fredegund died in [MASK] .
P937 Xavier Zubiri used to work in [MASK] .

Table 3: Examples of LAMA datasets grouped by output
types COUNTRY (top) and CITY (bottom).

P@1 P@10 P@50 P@100

B .223 .509 .740 .845
BTo .146 .327 .550 .640

PostTE .248 .577 .819 .889

BTE (our method) .291 .606 .838 .899

Table 4: Mean precision over all LAMA datasets com-
pared to intrinsic baselines.

ties (10, by default). To tune the λ value of a TE,
we use a hold-out dataset of 5% for each dataset,
and choose the value that maximizes precision. We
report results on a BERT BASE CASED model. Fur-
ther experiments with other PLMs show similar
trends (results in Table A2 in Appendix).
Intrinsic Evaluation. We compare BERT with TE
(BTE) against standard BERT (B). As we assume
that the user knows the desired output type, we also
report for a baseline BERT + Token Type (BTo),
which adds the expected type label (e.g., “the year”)
before the [MASK] token. We also report on a base-
line PostTE which uses the TE at the output for
re-ranking. The initial output score is added to the
cosine similarity between the token embedding and
the type embedding, controlled by a hyperparame-
ter to adjust the importance of the similarity score.
We choose the range of the hyperparameter to vary
from 0 to 30 as in a similar work for natural lan-
guage generation (Pascual et al., 2021). We also
tested another baseline where we add the tokens
used to derive the TE before the [MASK] token, as
a signal of the desired types (Shin et al., 2020), but
the results are lower than BTo.

Aggregated (macro) precision@k (P@k) results
over all datasets are reported in Table 4 (full results
in Table A3 in Appendix). On average, our pro-
posal clearly improves the results. We see improve-
ments across most of the types using TEs. However,
we do observe reduction of precision in a few types,
where the main reason being the greedy selection
of a non-optimal value of λ. For type MANUFAC-
TURER, setting λ = 1 (rather than λ = 2) improves

P@1 P@10 P@50 P@100

LPAQA .288 .607 .791 .855
BTE .317 .650 .868 .920

OptiPrompt .469 .790 .922 .956
BTE .356 .697 .876 .930

Table 5: Mean precision over all LAMA datasets com-
pared to extrinsic baselines. Unsupervised BTE outper-
forms LPAQA, which uses supervised learning. Su-
pervised OptiPrompt obtains higher precision as it
searches for prompts in the embedding space.

the results. For type SPECIALIZATION, while de-
sired outputs such as mathematics and physics do
exist in the KG samples, other nodes in the KG,
such as teenager, Greek, and Sir have greater node
degree and thus got selected in the sample for ob-
taining the TE. For the GROUP data, the value of
λ for the TE was 0, meaning that adding the TE
would hurt performance. Analyzing the predictions,
we believe this is due to the bias in the TE imposed
by the KG as most samples are related to sport
groups (such as FIFA, UEFA, and CONCACAF)
thus producing a TE biased towards sports group
which negatively impacts the predictions. We dis-
cuss other sampling methods in Section 5.3. Fi-
nally, the YEAR dataset shows lower performance.
We believe this is due to BERT’s inability to pre-
cisely capture numeracy (Wallace et al., 2019). For
PostTE, our method, of using the TE at the input,
produces better results, as using the TE at the out-
put does not allow for the fusion between factual
and type knowledge in the model. PostTE does
push typed tokens to higher rankings (indicating
also the effectiveness of TEs in modeling type),
but adding TEs to the input is better in terms of
performance. Plus adding TEs to the input is more
universal:, as the output is usually controlled by
the experiment type (binary classification, MLM,
NLG,...), which might not always make it clear how
to insert the TE, whereas the input is always fixed.
One thing to note is that, with PostTE, out of the 38
different datasets used, 22/38 had an optimal value
of λ to be zero. Meaning that for most datasets, it
did not improve results, as opposed to our method
which had only 5/38 datasets with optimal λ = 0.
Extrinsic Evaluation. We evaluate our model
against two supervised baselines. The first one,
LPAQA (Jiang et al., 2020), uses mining-based
methods to identify possible prompts for a given re-
lation. The second baseline, OptiPrompt (Zhong
et al., 2021), searches real-valued input vectors that

4589

Prompt TE P@1 P@10 P@50 P@100

DoB
- 0 0 0 0

Ecity .153 .404 .613 .701
Eoptim

city .194 .444 .614 .719

PoB - .244 .533 .728 .808

Table 6: Precision in predicting PoB (place of birth) for
DoB (date of birth) prompts by adding CITY TE (k = 5).
Results with TE are comparable to the PoB prompt.

maximize the likelihood of the gold label on the
training set using a gradient-based searching algo-
rithm. Results in Table 5 show that our approach
does better with fewer prompts, as LPAQA re-
quires at least 10X more prompts per example. For
OptiPrompt, the supervised approach produces
better results than our unsupervised method. How-
ever, the approach requires training data, which is
not always available. In fact, the authors of the
paper use only TREx relations as they can query
the KG for more data, which is not the case for
Google-RE datasets. Also, as the method uses
1000 data points for training, the authors had to
rely on another KG to gather more samples. Our
approach requires only 10 tokens per type. Finally,
while training enhances performance, it also en-
codes certain regularities that models could exploit,
such as being prone to over-predicting the majority
class label, as reported for OptiPrompt, unlike our
approach which keeps model parameters intact.

5.2 Switching Types in Prompts

LAMA authors provide manually written prompts
that adhere to the desired type. For example, to
get the PLACE OF BIRTH (PoB) of a person, they
use the prompt “[X] was born in [Y].”, while for
the DATE OF BIRTH (DoB) of a person they use the
prompt “[X] (born [Y])". These prompts follow
from how sentences about date and place of birth
are written in Wikipedia pages. In this experiment,
we ponder whether TEs can enforce a different type
given one of these two prompt structure. We use
DOB prompts with the expected outcomes of POB,
where the goal is to steer the type of the output to a
different type. For example, given “Barack (born
[MASK])" (prompt for DoB), we set as expected
output “Honolulu” (PoB answer). We remove ex-
amples for which the expected output is not in
BERT vocabulary and are left with 1139 prompts.
We then add the TE for CITY during inference. The
results are shown in Table 6. As expected, without
any TE, the precision score is zero as the output

P@1 P@10 P@50 P@100

BTE .291 .606 .838 .899
Top10 .336 .660 .856 .907
Bot10 .235 .534 .764 .846
Unif .250 .563 .798 .884

Table 7: Mean over all datasets for every method.

type is heavily influenced by the prompt. Adding
Ecity to the input steers the model to change type
and it outputs cities. However, the scores are still
less than those of POB prompts. Since the prompt
is biased towards a certain type, better results can
be obtained by removing the projection of the year
information onto the city TE. Our optimized TE
is then Eoptim

city = Ecity − Ecity .Eyear

||Ecity ||2||Eyear||2Eyear,
which indeed shows improved results in Table 6.

5.3 Token Sampling

We study the impact of how tokens for TEs are
sampled by (i) changing the sampling method, and
(ii) varying the number of tokens used.

Sampling Methods. We evaluate forms of ob-
taining tokens alternative to weighted sampling: (i)
weighted sampling with node degrees as weights
(BTE), (ii) using the Top-10 tokens w.r.t. node
degree (Top10), (iii) using the Bottom-10 tokens
(Bot10), and (iv) sampling uniformly without rely-
ing on node degree (Unif). We repeat the experi-
ment in Section 5.1 with every sampling strategy
and show results in Table 7. More detailed results
are in Table A4 in the Appendix.

We observe that Top10 and weighted sampling
obtain comparable performance. While Top10 gets
better results for COUNTRY, ORGANIZATION, and
GENRE, other types such as YEAR, SPECIALIZA-
TION and MANUFACTURER show lower precision
because of the bias coming from the most pop-
ular KG samples. For example, Top10 samples
only years in the 21st century, specializations re-
lated to titles (duke, Sultan, and Sir rather than
mathematics and physics), and it is biased towards
car manufacturers (Fiat and Honda). Weighted
sampling reduces such bias. For FOOTBALL POSI-
TION, Unif does better as it has more variety in the
sample with more tokens related to American foot-
ball positions (quarter back and guard) rather than
soccer positions only (goalkeeper and midfielder).

In some cases, the bias in the KG reflects the bias
in the test data. For OCCUPATION, the TE using
Top10 does encode some bias as most tokens are
related to artistic positions (musician, actor), but

4590

n P@1 P@10 P@50 P@100

0 .223 .509 .740 .845
5 .279 .611 .814 .873
10 .291 .606 .838 .899
15 .275 .617 .847 .894
20 .298 .644 .859 .905
50 .292 .631 .853 .906

Table 8: Average of precision of the datasets while
varying the number of samples n to compute the TE.

this improves results as the same bias occurs also
among the expected outputs.

Varying Size of Samples. To study the effect of
the number of tokens used in deriving the TE, we
repeat the experiment in Section 5.1, while varying
the number of tokens n. Results are reported in Ta-
ble 8. We observe that results peak between 10 and
20 samples, but even a small number of samples
significantly improves the results compared to the
original BERT without TE (n=0).

6 Conclusion and Future Work

We have introduced TEs as additional input for
PLMs to better encode type information, proposed
methods to analyze TEs, and tested them on the
LAMA dataset. While initial results are promising,
we identify two directions of research.

More Precise Type Embeddings. Further anal-
ysis on the examples can lead to better TEs. One
direction is to use also negative samples to compute
the TE. This implies learning a vector that separates
between samples as CAVs do. However, adding
negative samples can bring more bias in the TE.
This could be alleviated by performing some statis-
tical hypothesis testing, as with CAVs (Kim et al.,
2018). Another way to improve the effectiveness
of our proposal is to combine vectors. Assuming a
taxonomy of the types, different TEs can be com-
bined, for example by subtracting for the one at
hand, say PERSON, the ones that are not super or
sub types, such as CITY and YEAR, as discussed
for DoB in Table 6.

From Types to Concepts. While we focus on
types and TEs, our approach can be extended to
include more generic concepts, as long as their to-
kens are in the PLM’s vocabulary. This could help
alleviate the stereotypical and toxic content found
in PLMs (Ousidhoum et al., 2021). To test our idea,
we report an example for the task of natural lan-
guage generation, where we “de-toxify” text gener-
ated by an autoregressive language model. We use

λ Toxicity (↓) Fluency (↓) Diversity (↑)
Toxicity pr. Output ppl. Di-1 Di-2 Di-3

Toxic 0 .687 4.727 .541 .455 .357
Prompt -1 .389 6.340 .602 .476 .377

-2 .356 17.564 .668 .509 .400

Non-toxic 0 .045 4.195 .801 .676 .528
Prompt -1 .077 4.038 .782 .622 .484

-2 .088 3.716 .840 .620 .475

Table 9: Results of detoxifying texts generated from
a distilled GPT-2 model. λ indicates the value of the
multiplier of the TE (λ = 0 for original PLM).

a distilled GPT-2 model (Radford et al., 2019) and
the RealToxicityPrompts dataset that contains 100K
sentence-level prompts derived from a corpus of
English text (Gehman et al., 2020). We feed 10K
samples to the model, thus producing the gener-
ated texts. We then measure the toxicity of such
texts with the Perspective API2. We consider a text
toxic if the toxicity probability returned by the API
is >0.5 and obtain 460 toxic prompts. We then
compute a “toxicity concept embedding” using 6
manually picked tokens that convey toxicity. To
de-toxify the generated text, we set the multiplier
λ to negative values. Instead of adding the embed-
ding to the [MASK] token only, we found better
results when adding it to all tokens in the prompt.
We believe that adding the TE to all tokens helps
to ‘preserve’ type information along the lengthy
generation procedure, as opposed to MLM which
decodes one token. We also test a sample of non-
toxic prompts (same size as toxic prompts) to show
the effect of our embedding. In addition to toxicity,
we measure fluency (perplexity of generated con-
tinuations according to a larger PLM) and diversity
(mean number of distinct uni-/bi-/trigrams, normal-
ized by the length of text for each prompt), as in
other works for text generation (Liu et al., 2021).

Results in Table 9 show a huge reduction in the
toxicity probability with λ = −1, higher more di-
versity but slightly less fluency for the toxic prompt.
Setting λ = −2 decreases further the toxicity prob-
ability, but at the expense of less fluency. For the
non-toxic prompts, the toxicity results are nearly
the same, with minor differences for fluency and di-
versity. Considering that a “concept vector” steers
the generation of the PLM without any form of fine-
tuning, it is promising to study the use of “plug-
and-play" concept vectors. Examples are reported
in Table B1 in the Appendix.

2https://perspectiveapi.com/

4591

https://perspectiveapi.com/

Limitations

Encoding types requires a set of tokens and their
embeddings. As we turn to PLMs, we are restricted
by the tokens in its vocabulary, which limits the
number of possible types for TEs. In addition,
while we use TEs for a factual dataset, the TE
encodes only type information and no factual in-
formation. While results improve for LAMA with
TE, the interaction of type information and factual
knowledge of the PLM is not understood. Finally,
one cannot decide on a clear sampling method to
use for computing the TEs (assuming the existence
of a knowledge source such as a KG). The best
sampling is heavily dependent on the distribution
of the gold labels in the test dataset.

Ethics and Broader Impact

We are aware of (i) the biases and abusive lan-
guage patterns (Bender et al., 2021) that PLMs
impose, and (ii) the imperfectness and the bias of
using knowledge graphs. However, our goal in this
paper is to study how PLMs can be made more
‘type-aware’. For (i), there has been some work on
debiasing PLMs (Liang et al., 2020), while for (ii),
we use a KG in our work to have variety in the set
of tokens, but could resort to user-specified ones
validated by consensus to reduce the bias.

Acknowledgment

This work has been partially supported by the ANR
project ATTENTION (ANR-21-CE23-0037) and
by gifts from Google.

References
Sören Auer, Christian Bizer, Georgi Kobilarov, Jens

Lehmann, Richard Cyganiak, and Zachary Ives. 2007.
Dbpedia: A nucleus for a web of open data. The
semantic web, pages 722–735.

Emily M. Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
Dangers of Stochastic Parrots: Can Language Models
Be Too Big? In FAccT, page 610–623. ACM.

Zied Bouraoui, José Camacho-Collados, and Steven
Schockaert. 2020. Inducing relational knowledge
from bert. In AAAI.

Riccardo Cappuzzo, Paolo Papotti, and Saravanan Thiru-
muruganathan. 2020. Creating embeddings of hetero-
geneous relational datasets for data integration tasks.
In Proceedings of the 2020 International Conference
on Management of Data, SIGMOD Conference 2020,

online conference [Portland, OR, USA], June 14-19,
2020, pages 1335–1349. ACM.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does BERT
look at? an analysis of BERT’s attention. In Pro-
ceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP,
pages 276–286, Florence, Italy. Association for Com-
putational Linguistics.

Wanyun Cui and Xingran Chen. 2021. Open rule induc-
tion. In Advances in Neural Information Processing
Systems.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao
Chang, and Furu Wei. 2022. Knowledge neurons
in pretrained transformers. In Proceedings of the
60th Annual Meeting of the Association for Computa-
tional Linguistics, pages 8493–8502, Dublin, Ireland.
Association for Computational Linguistics.

Fahim Dalvi, Abdul Rafae Khan, Firoj Alam, Nadir Dur-
rani, Jia Xu, and Hassan Sajjad. 2022. Discovering
latent concepts learned in BERT. In International
Conference on Learning Representations.

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021. Edit-
ing factual knowledge in language models. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 6491–
6506, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Hady ElSahar, Pavlos Vougiouklis, Arslen Remaci,
Christophe Gravier, Jonathon S. Hare, Frédérique
Laforest, and Elena Simperl. 2018. T-rex: A large
scale alignment of natural language with knowledge
base triples. In Proceedings of the Eleventh Inter-
national Conference on Language Resources and
Evaluation, LREC 2018, Miyazaki, Japan, May 7-12,
2018.

Samuel Gehman, Suchin Gururangan, Maarten Sap,
Yejin Choi, and Noah A. Smith. 2020. RealToxi-
cityPrompts: Evaluating neural toxic degeneration
in language models. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
3356–3369, Online. Association for Computational
Linguistics.

Mor Geva, Avi Caciularu, Ke Wang, and Yoav Gold-
berg. 2022. Transformer feed-forward layers build
predictions by promoting concepts in the vocabulary
space. ArXiv, abs/2203.14680.

4592

https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3318464.3389742
https://doi.org/10.1145/3318464.3389742
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
https://openreview.net/forum?id=MzOB5DAuHR
https://openreview.net/forum?id=MzOB5DAuHR
https://doi.org/10.18653/v1/2022.acl-long.581
https://doi.org/10.18653/v1/2022.acl-long.581
https://openreview.net/forum?id=POTMtpYI1xH
https://openreview.net/forum?id=POTMtpYI1xH
https://doi.org/10.18653/v1/2021.emnlp-main.522
https://doi.org/10.18653/v1/2021.emnlp-main.522
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2021. Transformer feed-forward layers are key-
value memories. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 5484–5495, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah.
2019. What does BERT learn about the structure of
language? In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3651–3657, Florence, Italy. Association for
Computational Linguistics.

Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham
Neubig. 2020. How can we know what language
models know? Transactions of the Association for
Computational Linguistics, 8:423–438.

Been Kim, Martin Wattenberg, Justin Gilmer, Carrie J.
Cai, James Wexler, Fernanda B. Viégas, and Rory
Sayres. 2018. Interpretability beyond feature attri-
bution: Quantitative testing with concept activation
vectors (tcav). In ICML.

Yann LeCun, John Denker, and Sara Solla. 1989. Op-
timal brain damage. In Advances in Neural In-
formation Processing Systems, volume 2. Morgan-
Kaufmann.

Nayeon Lee, Belinda Li, Sinong Wang, Wen-tau Yih,
Hao Ma, and Madian Khabsa. 2020. Language
models as fact checkers? In Proceedings of the
Third Workshop on Fact Extraction and VERifica-
tion (FEVER), pages 36–41, Online. Association for
Computational Linguistics.

Bai Li, Zining Zhu, Guillaume Thomas, Yang Xu, and
Frank Rudzicz. 2021. How is BERT surprised? lay-
erwise detection of linguistic anomalies. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 4215–4228, Online.
Association for Computational Linguistics.

Paul Pu Liang, Irene Mengze Li, Emily Zheng,
Yao Chong Lim, Ruslan Salakhutdinov, and Louis-
Philippe Morency. 2020. Towards Debiasing Sen-
tence Representations. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 5502–5515, Online. Association
for Computational Linguistics.

Yongjie Lin, Yi Chern Tan, and Robert Frank. 2019.
Open sesame: Getting inside BERT’s linguistic
knowledge. In Proceedings of the 2019 ACL Work-
shop BlackboxNLP: Analyzing and Interpreting Neu-
ral Networks for NLP, pages 241–253, Florence, Italy.
Association for Computational Linguistics.

Alisa Liu, Maarten Sap, Ximing Lu, Swabha
Swayamdipta, Chandra Bhagavatula, Noah A. Smith,
and Yejin Choi. 2021. DExperts: Decoding-time con-
trolled text generation with experts and anti-experts.

In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
6691–6706, Online. Association for Computational
Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2020.
RoBERTa: A Robustly Optimized BERT Pretraining
Approach.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual knowl-
edge in gpt. arXiv preprint arXiv:2202.05262.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo
Aila, and Jan Kautz. 2017. Pruning convolutional
neural networks for resource efficient inference. In
5th International Conference on Learning Repre-
sentations, ICLR 2017, Toulon, France, April 24-
26, 2017, Conference Track Proceedings. OpenRe-
view.net.

Avanika Narayan, Ines Chami, Laurel Orr, and Christo-
pher Ré. 2022. Can foundation models wrangle your
data?

Nedjma Ousidhoum, Xinran Zhao, Tianqing Fang,
Yangqiu Song, and Dit-Yan Yeung. 2021. Probing
toxic content in large pre-trained language models.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
4262–4274, Online. Association for Computational
Linguistics.

Damian Pascual, Beni Egressy, Clara Meister, Ryan
Cotterell, and Roger Wattenhofer. 2021. A plug-and-
play method for controlled text generation. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2021, pages 3973–3997, Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Fabio Petroni, Patrick Lewis, Aleksandra Piktus, Tim
Rocktäschel, Yuxiang Wu, Alexander H. Miller, and
Sebastian Riedel. 2020. How context affects lan-
guage models’ factual predictions. AKBC.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language Models as Knowl-
edge Bases? In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 2463–2473, Hong Kong, China. Association
for Computational Linguistics.

Giovanni Puccetti, Alessio Miaschi, and Felice
Dell’Orletta. 2021. How do BERT embeddings orga-
nize linguistic knowledge? In Proceedings of Deep

4593

https://doi.org/10.18653/v1/2021.emnlp-main.446
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.1162/tacl_a_00324
https://doi.org/10.1162/tacl_a_00324
https://proceedings.neurips.cc/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://doi.org/10.18653/v1/2020.fever-1.5
https://doi.org/10.18653/v1/2020.fever-1.5
https://doi.org/10.18653/v1/2021.acl-long.325
https://doi.org/10.18653/v1/2021.acl-long.325
https://doi.org/10.18653/v1/2020.acl-main.488
https://doi.org/10.18653/v1/2020.acl-main.488
https://doi.org/10.18653/v1/W19-4825
https://doi.org/10.18653/v1/W19-4825
https://doi.org/10.18653/v1/2021.acl-long.522
https://doi.org/10.18653/v1/2021.acl-long.522
https://openreview.net/forum?id=SyxS0T4tvS
https://openreview.net/forum?id=SyxS0T4tvS
https://openreview.net/forum?id=SJGCiw5gl
https://openreview.net/forum?id=SJGCiw5gl
https://doi.org/10.48550/ARXIV.2205.09911
https://doi.org/10.48550/ARXIV.2205.09911
https://doi.org/10.18653/v1/2021.acl-long.329
https://doi.org/10.18653/v1/2021.acl-long.329
https://doi.org/10.18653/v1/2021.findings-emnlp.334
https://doi.org/10.18653/v1/2021.findings-emnlp.334
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/2021.deelio-1.6
https://doi.org/10.18653/v1/2021.deelio-1.6

Learning Inside Out (DeeLIO): The 2nd Workshop
on Knowledge Extraction and Integration for Deep
Learning Architectures, pages 48–57, Online. Asso-
ciation for Computational Linguistics.

Guanghui Qin and Jas’ Eisner. 2021. Learning how to
ask: Querying lms with mixtures of soft prompts. In
NAACL.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky.
2020. A Primer in BERTology: What We Know
About How BERT Works. Transactions of the Asso-
ciation for Computational Linguistics, 8:842–866.

Uma Roy, Noah Constant, Rami Al-Rfou, Aditya Barua,
Aaron Phillips, and Yinfei Yang. 2020. LAReQA:
Language-agnostic answer retrieval from a multilin-
gual pool. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 5919–5930, Online. Association for
Computational Linguistics.

Jessica Schrouff, Sebastien Baur, Shaobo Hou, Di-
ana Mincu, Eric Loreaux, Ralph Blanes, James
Wexler, Alan Karthikesalingam, and Been Kim. 2021.
Best of both worlds: local and global explana-
tions with human-understandable concepts. ArXiv,
abs/2106.08641.

Jamin Shin, Andrea Madotto, and Pascale Fung. 2018.
Interpreting word embeddings with eigenvector anal-
ysis. In Workshop on Interpretability and Robustness
in Audio, Speech, and Language (IRASL). NeurIPS
IRASL.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric
Wallace, and Sameer Singh. 2020. AutoPrompt: Elic-
iting Knowledge from Language Models with Auto-
matically Generated Prompts. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 4222–4235,
Online. Association for Computational Linguistics.

Nishant Subramani, Nivedita Suresh, and Matthew Pe-
ters. 2022. Extracting latent steering vectors from
pretrained language models. In Findings of the Asso-
ciation for Computational Linguistics: ACL 2022,
pages 566–581, Dublin, Ireland. Association for
Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Jesse Vig and Yonatan Belinkov. 2019. Analyzing
the structure of attention in a transformer language
model. In Proceedings of the 2019 ACL Workshop
BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, pages 63–76, Florence, Italy. As-
sociation for Computational Linguistics.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-head
self-attention: Specialized heads do the heavy lift-
ing, the rest can be pruned. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 5797–5808, Florence, Italy.
Association for Computational Linguistics.

Eric Wallace, Yizhong Wang, Sujian Li, Sameer Singh,
and Matt Gardner. 2019. Do NLP models know num-
bers? probing numeracy in embeddings. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 5307–5315, Hong
Kong, China. Association for Computational Linguis-
tics.

Benyou Wang, Lifeng Shang, Christina Lioma, Xin
Jiang, Hao Yang, Qun Liu, and Jakob Grue Simon-
sen. 2021a. On position embeddings in {bert}. In
International Conference on Learning Representa-
tions.

Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei,
Xuanjing Huang, Jianshu Ji, Guihong Cao, Daxin
Jiang, and Ming Zhou. 2021b. K-Adapter: Infusing
Knowledge into Pre-Trained Models with Adapters.
In Findings of the Association for Computational
Linguistics: ACL-IJCNLP 2021, pages 1405–1418,
Online. Association for Computational Linguistics.

Yu-An Wang and Yun-Nung Chen. 2020. What Do Po-
sition Embeddings Learn? An Empirical Study of
Pre-Trained Language Model Positional Encoding.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 6840–6849, Online. Association for Computa-
tional Linguistics.

Ziyi Yang, Yinfei Yang, Daniel Cer, and Eric Darve.
2021. A simple and effective method to eliminate
the self language bias in multilingual representations.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
5825–5832, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Zexuan Zhong, Dan Friedman, and Danqi Chen. 2021.
Factual probing is [mask]: Learning vs. learning to
recall. In North American Association for Computa-
tional Linguistics (NAACL).

A LAMA

Dataset statistics are reported in Table A1. Detailed
results on the datasets are reported in Table A3. A
full inference run on all LAMA datasets takes on
average approximately 5 minutes on Google Colab
with a Tesla P100 with a batch size of 32. We vary
λ from 0 to 5. We repeat the experiment in Sec-
tion 5.1 with every sampling strategy and report
results in Table A4. For LANGUAGE, all sampling

4594

https://doi.org/10.1162/tacl_a_00349
https://doi.org/10.1162/tacl_a_00349
https://doi.org/10.18653/v1/2020.emnlp-main.477
https://doi.org/10.18653/v1/2020.emnlp-main.477
https://doi.org/10.18653/v1/2020.emnlp-main.477
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2022.findings-acl.48
https://doi.org/10.18653/v1/2022.findings-acl.48
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/W19-4808
https://doi.org/10.18653/v1/W19-4808
https://doi.org/10.18653/v1/W19-4808
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/D19-1534
https://doi.org/10.18653/v1/D19-1534
https://openreview.net/forum?id=onxoVA9FxMw
https://doi.org/10.18653/v1/2021.findings-acl.121
https://doi.org/10.18653/v1/2021.findings-acl.121
https://doi.org/10.18653/v1/2020.emnlp-main.555
https://doi.org/10.18653/v1/2020.emnlp-main.555
https://doi.org/10.18653/v1/2020.emnlp-main.555
https://doi.org/10.18653/v1/2021.emnlp-main.470
https://doi.org/10.18653/v1/2021.emnlp-main.470

Type Total Size Dataset Size Sample

Country (Co) 3796

P495 896 The Sharon Cuneta Show was created in [MASK] .
P27 948 Albert II of Belgium is [MASK] citizen .
P1376 196 Cardiff is the capital of [MASK] .
P1001 665 National Congress of Honduras is a legal term in [MASK] .
P530 174 Vanuatu maintains diplomatic relations with [MASK] .
P17 917 Cairo American College is located in [MASK] .

Football Position (FP) 737 P413 737 Curt Flood plays in [MASK] position .

Manufacturer (Ma) 878 P176 878 iPod shuffle is produced by [MASK] .

Organization (Org) 837
P108 342 David Dimbleby works for [MASK] .
P178 495 iPod Classic is developed by [MASK] .

Occupation (Occ) 915 P106 915 Murray Grand is a [MASK] by profession .

Year GRE (Y (GRE)) 1821 date_of_birth 1821 Emily Ballou (born [MASK]).

Genre (Ge) 849 P136 849 Boyd Raeburn plays [MASK] music .

Group (Gr) 212 P463 212 Russian Football Union is a member of [MASK] .

Language (L) 4118

P407 756 The Pirate Bay was written in [MASK] .
P103 954 The native language of Jan Davidsz. de Heem is [MASK] .
P1412 921 Leone Caetani used to communicate in [MASK] .
P37 707 The official language of Iitti is [MASK] .
P364 780 The original language of Do Phool is [MASK] .

Specialization (Sp) 533 P101 533 John Archibald Wheeler works in the field of [MASK] .

Religious Position (RelP) 727 P39 727 John Joseph Williams has the position of [MASK] .

Record Label (Rec) 256 P264 256 Amr Mostafa is represented by music label [MASK] .

City (Ci (GRE)) 3689
place_of_birth 2925 Jacques Autreau was born in [MASK] .
place_of_death 764 Robert Jack died in [MASK] .

City (Ci) 6490

P131 774 Saharsa district is located in [MASK] .
P20 844 Fredegund died in [MASK] .
P937 864 Xavier Zubiri used to work in [MASK] .
P19 704 James Jackson Putnam was born in [MASK] .
P740 643 Standard Bank was founded in [MASK] .
P190 283 Inverness and [MASK] are twin cities .
P36 400 The capital of Realm of Stefan Dragutin is [MASK] .
P159 700 The headquarter of Shelbourne F.C. is in [MASK] .
P47 542 Campi Bisenzio shares border with [MASK] .
P276 736 Hiroshima International Animation Festival is located in [MASK] .

Continent (Con) 964 P30 964 Dominion Range is located in [MASK] .

Musical Instrument MI 739 P1303 739 Kerry King plays [MASK] .

TV Network (TVN) 806 P449 806 The New Dick Van Dyke Show was originally aired on [MASK] .

Religion (Rel) 452 P140 452 Muhammad Ali Jinnah is affiliated with the [MASK] religion .

Table A1: LAMA datasets grouped by type. Each dataset belongs to the TREx dataset, unless otherwise stated by
(GRE).

4595

methods outperform the weighted method. This
is due to the non-optimal value of λ produced for
one dataset that reduced the average value. Indeed,
setting a more suitable value for λ, pushes the preci-
sion scores comparably to other sampling methods.
Surprisingly, for RELIGIOUS POSITION, Bot10 pro-
duces better results on all metrics except P@1.
This is because most of the golden labels of the
data related to religious positions for Christianity,
while using Top10 includes a position for Judaism
(rabbi), which is not the case for Bot10 and Unif.
Finally, similar results are observed for GROUP and
CONTINENT simply because there were less than
10 tokens for each type from the KG.

P@1 P@10 P@50 P@100

Bl 0.245 0.523 0.729 0.811
BlTE 0.297 0.582 0.777 0.849

Rob 0.073 0.235 0.400 0.479
RobTE 0.177 0.331 0.481 0.589

Table A2: Mean over all datasets for Bert Large (Bl)
and Roberta base (Rob) with and without TEs..

B Generated Text

Examples of text generated with TEs are reported
in Table B1.

4596

P@1 P@10 P@50 P@100

Co
B 0.333 0.578 0.812 0.892
BTo 0.092 0.269 0.427 0.520
PostTE 0.323 0.549 0.838 0.888
BTE 0.393 0.643 0.874 0.916

FP
B 0.003 0.234 0.500 0.701
BTo 0.203 0.407 0.657 0.730
PostTE 0.239 0.510 0.883 0.977
BTE 0.276 0.500 0.826 0.896

Ma
B 0.865 0.945 0.982 0.988
BTo 0.859 0.939 0.98 0.987
PostTE 0.008 0.848 0.941 0.965
BTE 0.564 0.923 0.970 0.978

Org
B 0.347 0.733 0.928 0.961
BTo 0.248 0.393 0.447 0.464
PostTE 0.347 0.733 0.928 0.961
BTE 0.279 0.730 0.955 0.977

Occ
B 0.002 0.089 0.463 0.839
BTo 0.0 0.023 0.305 0.441
PostTE 0.012 0.188 0.619 0.951
BTE 0.036 0.196 0.601 0.904

Y (GRE)
B 0.016 0.152 0.623 0.806
BTo 0.002 0.102 0.499 0.783
PostTE 0.016 0.152 0.623 0.806
BTE 0.017 0.146 0.624 0.802

Ge
B 0.007 0.470 0.697 0.803
BTo 0.0 0.087 0.636 0.743
PostTE 0.594 0.690 0.834 0.844
BTE 0.589 0.686 0.831 0.841

Gr
B 0.692 0.821 0.861 0.886
BTo 0.025 0.214 0.652 0.801
PostTE 0.692 0.821 0.861 0.886
BTE 0.692 0.821 0.861 0.886

L
B 0.600 0.892 0.971 0.988
BTo 0.168 0.436 0.622 0.716
PostTE 0.445 0.750 0.965 0.982
BTE 0.556 0.855 0.967 0.980

Sp
B 0.085 0.362 0.569 0.688
BTo 0.0 0.008 0.138 0.291
PostTE 0.085 0.362 0.569 0.688
BTE 0.097 0.302 0.545 0.640

RelP
B 0.070 0.281 0.709 0.900
BTo 0.0 0.023 0.219 0.372
PostTE 0.010 0.503 0.938 0.962
BTE 0.159 0.488 0.951 0.959

Rec
B 0.140 0.416 0.733 0.877
BTo 0.062 0.342 0.539 0.642
PostTE 0.095 0.218 0.539 0.621
BTE 0.152 0.444 0.819 0.922

Ci (GRE)
B 0.142 0.353 0.566 0.657
BTo 0.0 0.003 0.024 0.06
PostTE 0.142 0.353 0.566 0.657
BTE 0.144 0.365 0.572 0.663

Ci
B 0.287 0.570 0.757 0.831
BTo 0.058 0.107 0.194 0.252
PostTE 0.284 0.563 0.756 0.839
BTE 0.299 0.577 0.768 0.849

Con
B 0.216 0.481 0.730 0.822
BTo 0.613 0.864 0.969 0.995
PostTE 0.477 0.885 0.963 0.995
BTE 0.408 0.882 0.945 0.980

MI
B 0.064 0.390 0.553 0.614
BTo 0.131 0.64 0.821 0.832
PostTE 0.017 0.587 1.000 1.000
BTE 0.017 0.593 0.991 1.000

TVN
B 0.210 0.858 0.986 0.997
BTo 0.161 0.609 0.952 0.992
PostTE 0.210 0.858 0.986 0.997
BTE 0.200 0.877 0.993 0.997

Rel
B 0.107 0.536 0.883 0.967
BTo 0.002 0.422 0.814 0.900
PostTE 0.476 0.809 0.925 0.981
BTE 0.352 0.876 0.998 1.000

Table A3: Average precision scores for dif-
ferent types of the LAMA dataset for BERT
(B), BERT with additional explicit type token
(BTo), TE applied at the output (PostTE), and
BERT with TE (BTE).

P@1 P@10 P@50 P@100

Co
Top10 0.407 0.708 0.891 0.930
Bot10 0.326 0.608 0.836 0.903
Unif 0.355 0.601 0.83 0.904

FP
Top10 0.277 0.564 0.861 0.91
Bot10 0.0 0.04 0.684 0.746
Unif 0.223 0.561 0.859 0.911

Ma
Top10 0.770 0.921 0.974 0.984
Bot10 0.865 0.945 0.982 0.988
Unif 0.865 0.945 0.982 0.988

Org
Top10 0.606 0.866 0.966 0.979
Bot10 0.307 0.665 0.906 0.951
Unif 0.275 0.588 0.897 0.951

Occ
Top10 0.087 0.547 0.849 0.921
Bot10 0.002 0.089 0.48 0.845
Unif 0.001 0.089 0.496 0.872

Y (GRE)
Top10 0.019 0.145 0.618 0.792
Bot10 0.010 0.109 0.377 0.578
Unif 0.018 0.147 0.625 0.803

Ge
Top10 0.582 0.703 0.84 0.842
Bot10 0.006 0.416 0.703 0.806
Unif 0.043 0.057 0.356 0.636

Gr
Top10 0.692 0.821 0.861 0.886
Bot10 0.692 0.821 0.861 0.886
Unif 0.692 0.821 0.861 0.886

L
Top10 0.61 0.905 0.981 0.992
Bot10 0.612 0.894 0.975 0.989
Unif 0.603 0.895 0.976 0.993

Sp
Top10 0.085 0.354 0.573 0.682
Bot10 0.081 0.356 0.577 0.688
Unif 0.087 0.391 0.581 0.686

RelP
Top10 0.300 0.600 0.955 0.959
Bot10 0.0 0.651 0.961 0.965
Unif 0.0 0.506 0.954 0.962

Rec
Top10 0.193 0.469 0.885 0.942
Bot10 0.144 0.428 0.761 0.881
Unif 0.148 0.436 0.761 0.881

Ci (GRE)
Top10 0.148 0.37 0.584 0.678
Bot10 0.098 0.320 0.521 0.613
Unif 0.084 0.309 0.525 0.628

Ci
Top10 0.306 0.580 0.773 0.851
Bot10 0.280 0.548 0.734 0.805
Unif 0.292 0.578 0.762 0.841

Con
Top10 0.408 0.882 0.945 0.980
Bot10 0.408 0.882 0.945 0.980
Unif 0.408 0.882 0.945 0.980

MI
Top10 0.074 0.699 0.849 0.996
Bot10 0.064 0.39 0.553 0.614
Unif 0.017 0.692 0.996 1.000

TVN
Top10 0.086 0.864 0.997 0.997
Bot10 0.225 0.864 0.984 0.997
Unif 0.299 0.897 0.986 0.997

Rel
Top10 0.396 0.879 0.998 1.000
Bot10 0.119 0.590 0.914 0.988
Unif 0.089 0.734 0.972 0.988

Table A4: Average precision scores for different
types of the LAMA dataset with various sampling
methods to compute the TE.

4597

Generation

GPT-2

I like a lot of the things that your parents did at the age of 9 that made you happy, and now you’re
in my life."The former wrestler said he is glad he didn’t pass that test. "They thought I was a bad
idea, as far as it goes in life," Mayweather said of his parents and co-stars. "But that went way
overboard for me. I went from having a bad childhood and now living in the Bronx with my aunt
and her little sister to a guy who’s trying to put it all in the right place."That brought me back to the
top of my wrestling career and I think the most special person is David Letterman, who gave me
that opportunity...

GPT2 +
COUNTRY

TE

I like a lot of the things that your guys are doing in the dressing room that the team does, and that’s
what we do.

Q: You have said in a couple of different emails that you wanted to go back to Switzerland, but
that’s a different subject as well.

A: Well, you will return. I have spoken to the players and said, that way, to go back to France and
see the success.

Q: What’s the biggest point of contention from last week?

A: I was on the bench in the first half of the game against France, although today I was on the
bench. But yesterday I was in the team too. It was a big point of contention. And then tomorrow I
will go to Switzerland . I had a talk with the coaches this morning and they said to him there were
plenty people in the dressing room.

Q: Will the U.S. play at the Emirates ?

A: That’s a possibility for sure...

GPT-2 +
YEAR TE

I like a lot of the things that she is doing at the moment, but that is for the time being." She also
said she has a lot of work ahead in mind when he arrives on an episode of "The Simpsons." For a
fuller picture of her as a show host and actor see "What Happened to the Kids on the Island of the
Gummy"? A documentary record (1990), also by David R. Seidman. Also on H&M Records. The
last time she appeared on a TV show was on "Saturday Night Live" in 2007 , and in "My Brother’s
Wedding" on ABC in August 2007 . The first time she appeared on "The Tonight Show, with
Johnny Carson" was in 1996 . She also won the Tony Award with "The Little Princess" from the
Writers Guild and the Outstanding Dramas Award in 2002 . When interviewed on the TV show she
recalled that she has worked as the ’Gummy’ and ’Grandma’ of the show, and gave the following
list of roles for "My Brother’s Wedding, with Johnny Carson" of her own first year. The ’90s came
in the last season of "How I Met Your Mother" which she co-starred on...

GPT-2 I hate RelG, yet RelG are the ones who are allowed to carry out this murderous act by terrorising
RelG in Religious Country and then going on to kill innocent RelG in the future."...

GPT-2 + AF-
FECTION TE

I hate RelG, yet RelG are the ones who are allowed to carry the torch of Religion and fight injustice
and oppression. You and I will continue to fight this oppression till the end and in the long run, in
every age we are going forward. You will do whatever is necessary to keep our sisters on the right
path...

Table B1: We report a set of truncated generated texts using GPT-2 and how they change using TEs for COUNTRY
and YEAR. We also try to remove hate speech using an AFFECTION embedding derived from keywords such as love
and cheerful. We replace specific keywords by more general keywords. RelG stands for a religious group that has
been used in the underlined prompt and has been hidden for ethical considerations.

4598

