
Findings of the Association for Computational Linguistics: EMNLP 2022, pages 2447–2458
December 7-11, 2022 ©2022 Association for Computational Linguistics

ReaRev: Adaptive Reasoning for Question Answering over Knowledge
Graphs

Costas Mavromatis and George Karypis
University of Minnesota, USA
{mavro016, karypis}@umn.edu

Abstract

Knowledge Graph Question Answering
(KGQA) involves retrieving entities as answers
from a Knowledge Graph (KG) using natural
language queries. The challenge is to learn
to reason over question-relevant KG facts
that traverse KG entities and lead to the
question answers. To facilitate reasoning, the
question is decoded into instructions, which
are dense question representations used to
guide the KG traversals. However, if the
derived instructions do not exactly match
the underlying KG information, they may
lead to reasoning under irrelevant context.
Our method, termed REAREV, introduces a
new way to KGQA reasoning with respect to
both instruction decoding and execution. To
improve instruction decoding, we perform
reasoning in an adaptive manner, where KG-
aware information is used to iteratively update
the initial instructions. To improve instruction
execution, we emulate breadth-first search
(BFS) with graph neural networks (GNNs).
The BFS strategy treats the instructions as a
set and allows our method to decide on their
execution order on the fly. Experimental results
on three KGQA benchmarks demonstrate the
REAREV’s effectiveness compared with previ-
ous state-of-the-art, especially when the KG is
incomplete or when we tackle complex ques-
tions. Our code is publicly available at https:
//github.com/cmavro/ReaRev_KGQA.

1 Introduction

A knowledge graph (KG) is a relational graph that
contains a set of known facts. These facts are rep-
resented as tuples (subject, relation, object), where
the subject and object are KG entities that link with
the given relation. The knowledge graph question-
answering (KGQA) task takes as input a natural
language question and returns a set of KG entities
as the answer. In the weakly-supervised KGQA
setting (Berant et al., 2013), the only available
supervisions during learning are question-answer

Pulp Fiction

Q. Tarantino

Kill Bill

Q: “Which year are Q.Tarantino’s movies directed?”
A: 2003, 1994

KG links2003

direct

1963

date

date

1994

cast

aired on

act
U.Thurman

correct KG traversals

instruction
decoding{
i(1), i(2)

}

direct

Execution i(1) −→ i(2) ✗ : Tarantino date−−→ ✗

Execution i(2) −→ i(1) ✓ : Tarantino direct−−−→Kill Bill date−−→2003 ✓

Decoding ✗: Tarantino direct−−−→ aired on−−−−→ ✗

Figure 1: The given question is decomposed into in-
structions {i(1), i(2)} that are matched with relations
date and direct, respectively. If the instructions are ex-
ecuted in an incorrect order (i(1) −→ i(2)), we cannot
arrive at the answer. Moreover, if the instructions can-
not be matched with the relation aired on (right KG
traversal), we cannot arrive at the second answer.

pairs, e.g., “Q: Who is the director of Pulp Fic-
tion? A: Q. Tarantino”. Due to labelling costs,
the ground-truth KG traversals, such as the path
Pulp Fiction director−−−−→ Q. Tarantino, whose execu-
tion leads to the answers, are seldom available.

The KGQA problem involves two modules: (i)
retrieving question-relevant KG facts, and (ii) rea-
soning over them to arrive at the answers. For
the reasoning module, a general approach (Lan
et al., 2021) is to decode the question into dense
representations (instructions) that guide the rea-
soning over the KG. The instructions are matched
with one-hop KG facts (or relations) in an iter-
ative manner, which induces KG traversals that
lead to the answers. Instructions are usually gener-
ated by attending to different question’s parts, e.g.,
“...is the director...” (Qiu et al., 2020a). KG traver-
sals are typically performed by utilizing powerful
graph reasoners, such as graph neural networks
(GNNs) (Kipf and Welling, 2016; Sun et al., 2018).

The main challenge is that question answering is
performed over rich graph structures with possibly

2447

https://github.com/cmavro/ReaRev_KGQA
https://github.com/cmavro/ReaRev_KGQA

complex semantics, and thus, instruction decoding
and execution is a key factor for KGQA. Figure 1
shows an example where suboptimal initial instruc-
tions lead to incorrect KG traversals. While some
methods (Miller et al., 2016; Zhou et al., 2018; Sun
et al., 2018; Xu et al., 2019) attempt to improve the
quality of the instructions, they are mainly designed
to tackle specific question types, such as 2-hop or
3-hop questions, or show poor performance for
complex questions (Sun et al., 2019).

Our method termed REAREV (Reason & Re-
vise) introduces a new way to KGQA reasoning
with respect to both instruction execution and de-
coding. To improve instruction execution, we do
not use instructions in a pre-defined (possibly in-
correct) order, but allow our method to decide on
the execution order on the fly. We achieve this by
emulating breadth-first search (BFS) with GNN
reasoners. The BFS strategy treats the instructions
as a set and the GNN decides which instructions to
accept. To improve instruction decoding, we reason
over the KG to obtain KG-aware information and
use this information to adapt the initial instructions.
Then, we restart the reasoning with the new instruc-
tions that are conditioned to the underlying KG
semantics. To the best of our knowledge, adaptive
reasoning with emulating graph search algorithms
with GNNs has not been previously proposed for
KGQA.

We empirically show that REAREV performs ef-
fective reasoning over KGs and outperforms other
state-of-the-art. For KGQA with complex ques-
tions, REAREV achieves improvement for 4.1 per-
centage points at Hits@1 over the best competing
approach.

Our contributions are summarized below:

• We improve instruction decoding via adaptive
reasoning, which updates the instructions with
KG-aware information.

• We improve instruction execution by emu-
lating the breadth-first search algorithm with
graph neural networks, which provides robust-
ness to the instruction ordering.

• We achieve state-of-the-art (or nearly) perfor-
mance on three widely used KGQA datasets:
WebQuestions (Yih et al., 2015), Complex We-
bQuestions (Talmor and Berant, 2018), and
MetaQA (Zhang et al., 2018).

2 Related Work

There are two mainstream approaches to solve
KGQA: (i) parsing the question to executable KG
queries like SPARQL, and (ii) grounding question
and KG representations to a common space for
reasoning.

Regarding the first case, early methods (Berant
et al., 2013; Reddy et al., 2014; Bast and Hauss-
mann, 2015) rely on pre-defined question templates
to synthesize queries, which requires strong do-
main knowledge. Recent methods (Yih et al., 2015;
Abujabal et al., 2017; Luo et al., 2018; Bhutani
et al., 2019; Lan et al., 2019; Lan and Jiang, 2020;
Qiu et al., 2020b; Sun et al., 2021; Das et al., 2021)
use deep learning techniques to automatically gen-
erate such executable queries. However, they need
ground-truth executable queries as supervisions
(which are costly to obtain) and their performance
is limited when the KG has missing links (non-
executable queries).

Methods in the second category alleviate the
need for ground-truth queries by learning natural
language and KG representations to reason in a
common space. These methods match question
representations to KG facts (Miller et al., 2016; Xu
et al., 2019; Atzeni et al., 2021) or to KG struc-
ture representations (Zhang et al., 2018; Han et al.,
2021; Qiu et al., 2020a). More related to our work,
GraftNet (Sun et al., 2018), PullNet (Sun et al.,
2019), and NSM (He et al., 2021) enhance the rea-
soning with graph-based reasoners. Our approach
aims at improving the graph-based reasoning via
adaptive instruction decoding and execution.

Researchers have also considered the problem of
performing KGQA over incomplete graphs (Min
et al., 2013), where important information is miss-
ing. These methods either rely on KG embed-
dings (Saxena et al., 2020; Ren et al., 2021) or
on side information, such as text corpus (Sun et al.,
2018, 2019; Xiong et al., 2019; Han et al., 2020),
to infer missing information. However, they offer
marginal improvement over other methods when
the KG is mostly complete.

KGQA has also been adapted to specific do-
mains, such as QA over temporal (Mavromatis
et al., 2021; Saxena et al., 2021) and common-
sense (Speer et al., 2017; Talmor et al., 2019; Lin
et al., 2019; Feng et al., 2020; Yasunaga et al.,
2021) KGs.

2448

3 Background

3.1 KG
A KG G := (V,R,F) contains a set of entities V ,
a set of relations R, and a set of facts F . Each fact
(v, r, v′) ∈ F is a tuple where v, v′ ∈ V denote the
subject and object entities, respectively, and r ∈ R
denotes the relation that holds between them. A
KG is represented as a directed graph with |R|
relation types, where nodes v and v′ connect with
a directed relation r if (v, r, v′) ∈ F . Nodes and
relations are usually initialized with d-dimensional
vectors (representations).

We denote hv ∈ Rd and r ∈ Rd the repre-
sentations for node v and relation r, respectively.
We denote Ne(v) and Nr(v) the set of node v’s
neighboring entities and relations (including self-
links), respectively. For example, v′ ∈ Ne(v) and
r ∈ Nr(v) if a fact (v′, r, v) exists. We use the
terms nodes and entities interchangeably.

3.2 KGQA
Given a KG G := (V,R,F) and a natural language
question q, the task of KGQA is to extract a set of
entities {a} ∈ V that correctly answer q. Follow-
ing the standard setting in KGQA (Sun et al., 2018),
we assume that the entities referred in the question
are given and linked to nodes of G via entity linking
algorithms (Yih et al., 2015). We denote these enti-
ties as {e}q ∈ V (seed entities), e.g., Q. Tarantino
in Figure 1.

The problem complexity is further reduced by
extracting a question-specific subgraph Gq :=
(Vq,Rq,Fq) ⊂ G which is likely to contain the
answers (more details in Section 5). Each ques-
tion q and its answers {a}q ∈ Vq, referred to as
question-answer pair, induces a question-specific
labeling of the nodes. Node v ∈ Gq has label
yv = 1 if v ∈ {a}q and yv = 0 otherwise. The
task can be thus reduced to performing binary node
classification over Gq.

The KGQA problem involves two modules: (i)
retrieving a question-specific Gq and (ii) reasoning
over Gq to perform answer classification. In this
work, we introduce a new way to advance KGQA
reasoning capabilities.

3.3 GNNs
GNNs (Kipf and Welling, 2016; Schlichtkrull et al.,
2018) are well-established graph representation
learners suited for tasks such as node classification.
Following the message passing strategy (Gilmer

et al.), the core idea of GNNs is to update the rep-
resentation of each node by aggregating itself and
its neighbors’ representations.

The GNN updates node representation h
(l)
v at

layer l as

h(l)
v = ψ

(
h(l−1)
v , ϕ

(
{m(l)

v′v : v′ ∈ Ne(v)
))
, (1)

where m
(l)
v′v is the message between two neigh-

bors v and v′, and ϕ(·) is an aggregation function
of all neighboring messages. Function ψ(·) com-
bines representations of consecutive layers. At each
layer, GNNs capture 1-hop information (neighbor-
ing messages). An L-layer GNN model captures
the neighborhood structure and semantics within L
hops.

3.4 GNNs for KGQA
To better reason over multiple facts (graphs), suc-
cessful KGQA methods utilize GNNs (Sun et al.,
2018; He et al., 2021). The idea is to condition the
message passing of Eq.(1) to the given question q.
For example, if a question refers to movies, then
1-hop movie entities are more important. It is com-
mon practice (Qiu et al., 2020a; He et al., 2021; Shi
et al., 2021; Lan et al., 2021) to decompose q into
L representations {i(l)}Ll=1 (instructions), where
each one may refer to a specific question’s context,
e.g., movies or actors.

The instructions are used to guide different rea-
soning steps over Gq by writing the GNN updates
as

h(l)
v = ψ

(
h(l−1)
v , ϕ

(
{m(l)

v′v : v′ ∈ Ne(v)|i(l)}
))
,

(2)
where each GNN layer l is now conditioned to a
different instruction i(l). Message m(l)

v′v usually de-
pends on the representations of the corresponding
fact (v′, r, v).

The goal of GNNs is to selectively aggregate
information from the question-relevant facts. Via
Eq.(2), GNNs learn to match each i(l) with 1-hop
neighboring facts. Using the instructions {i(l)}Ll=1

recursively, GNNs learn the sequence of facts (KG
traversal) that leads to the final answers.

4 REAREV Approach

REAREV (Reason & Revise) enhances instruction
decoding and execution for effective KGQA reason-
ing. Our contributions across these two dimensions
are described below.

2449

Question: “Which are ...?”

i(1)

...

GNN layer

Hout

i(1)

i(K)

...
K instructions

H in

Fu
se

i(K)

...
H(1)

Reasoning Step

L− 1 Reasoning Steps

Decoding

T× Adaptive Stages

A
ns

w
er

C
la

ss
ifi

ca
tio

n

Figure 2: REAREV’s adaptive reasoning. The question is decoded to K instructions. At L reasoning steps, we
perform a BFS execution of the instructions. The procedure is repeated for T adaptive stages that enhance the initial
instruction decoding.

4.1 REAREV’s BFS Instruction Execution
GNN updates in Eq.(2) execute the instructions in
a pre-defined order, which assumes that the gen-
erated instruction sequence matches exactly the
information that is present in the KG. REAREV

does not impose this assumption. Instead, it im-
proves instruction execution by selecting the order
by which to process the instructions on the fly, e.g.,
based on the KG semantics.

To achieve this, we emulate the breadth-first
search strategy (BFS) by modifying the GNN up-
dates in Eq.(2). The idea is to reason with all in-
structions at each step (breadh-first), before we de-
cide which execution results to accept. We decom-
pose the question into K instructions {i(k)}Kk=1,
but the number of instructions K is now decou-
pled form the number of GNN layers L. We derive
instruction-specific representations h̃

(k,l)
v at each

GNN layer as

h̃(k,l)
v = ϕ

(
{m(l)

v′v : v′ ∈ Ne(v)|i(k)}
)
. (3)

To allow the model select which instruction-
specific representations are useful, we fuse them
with a learnable function ψ(·) as

h(l)
v = ψ

(
h(l−1)
v , {h̃(k,l)

v }Kk=1

)
. (4)

As a result, the reasoning module has the capability
to decide on the final execution plan, i.e., which
instructions are accepted at which GNN layers.

Specifically, we compute message m(l)
v′v between

nodes v′ and v as the representation of their corre-
sponding relation rv′v ∈ Rd followed by a learn-
able projection matrix W

(l)
R ∈ Rd×d. We condi-

tion m
(l)
v′v to the underlying instruction i(k) by an

element-wise multiplication followed by ReLU(·)
nonlinerarity. In summary, we obtain

c
(k,l)
v′v = ReLU(i(k) ⊙W

(l)
R rv′v), (5)

where c
(k,l)
v′v denotes the question-relevant message

from node v′ at layer l and for instruction k.
To measure the importance of c(k,l)v′v from node

v′, we multiply it with p(l−1)
v′ of the previous layer,

where p(l) ∈ [0, 1]|Vq | is a probability vector (we
shortly describe how it is computed). We aggregate
neighboring facts for node v with a sum-operation
and Eq.(3) becomes

h̃(k,l)
v =

∑

v′∈N (v)

p
(l−1)
v′ c

(k,l)
v′v . (6)

To combine node representations from different
instructions, we use the column-wise concatena-
tion operation || followed by a learnable projection
matrix W

(l)
h ∈ Rd×(K+1)d (we observe similar

performance with other fusion mechanisms, such
as self-attention). Eq.(4) becomes

h̃(l)
v =

∣∣∣∣K
k=1

h̃(k,l)
v (7)

h(l)
v = ReLU

(
W

(l)
h (h(l−1)

v ||h̃(l)
v)

)
. (8)

Finally, we collect h(l)
v for all nodes to H(l) and

compute the probability vector p(l) as

p(l) = softmax(H(l)w). (9)

Initially, we set p(0)v = 0 if v /∈ {e}q and p(0)v = 1
otherwise, so that we start reasoning from the seed
entities.

4.2 REAREV’s Adaptive Instruction Decoding
If the instructions are computed based solely on the
question’s context, they are not conditioned with
respect to the underlying KG. This is important
when we need to reason over multiple facts (com-
plex questions), over KGs with rich semantics (see
Figure 1) or over missing information (Sun et al.,
2018).

2450

Figure 2 shows how our adaptive reasoning
works. After reasoning with L steps via Eq.(3)
and Eq.(4), we keep the reasoning output (node
representations Hout) that contains KG-aware in-
formation. We use it to update the initial instruction
decomposition {i(k)}Kk=1 as well as the initial node
representations H in. This procedure is repeated
for T adaptation stages. Our goal is twofold; (i) to
ground the instruction decomposition to underlying
KG semantics, and (ii) to guide the reasoning pro-
cess in an iterative manner. For example, some in-
structions may correspond to a part of the question
that needs to be answered first, before reasoning
with the rest instructions.

To update each i(k) at every stage t ∈
{1, . . . , T}, we use the seed entities’ final repre-
sentations as the KG-aware information, which are
computed by

he =
∑

v∈{e}q
h(L)
v , (10)

and compute the adapted instructions i(k) as

i(k) =(1− g(k))⊙ i(k)+

g(k) ⊙Wq(i
(k)||he||i(k) − he||i(k) ⊙ he).

(11)

Here, Wq ∈ Rd×4d are learnable parameters and
g(k) ∈ [0, 1]d is the output gate vector computed
by a standard GRU (Cho et al., 2014). At every
reasoning stage t, we set H in = H(L) to encode
information of the previous stage. However, we
reset the probability vector p(0) to the seed entities.

The algorithmic procedure of our REAREV

method is summarized in Algorithm 1. It takes
as input a question q with seed entities {e}q, and
the corresponding question-specific KG subgraph
Gq and classifies nodes as answers or non-answers.
The number of adaptation stages T , instructions K,
and reasoning steps L are hyper-parameters.

4.2.1 Optimization and Initialization
After reasoning for T stages, we obtain the fi-
nal probability vector pout by applying Eq.(9)
to Hout = H(L). Here, we omit the super-
script t ∈ {1, . . . , T} for readability, e.g., H(T,L).
We optimize the model’s parameters with a clas-
sification based loss function (we use the KL-
divergence (Kullback and Leibler, 1951)), so that
pout
v is close to 1 if v ∈ {a}q and zero otherwise.

During inference, since we do not have the answer

Algorithm 1 The high-level algorithmic procedure
of REAREV (inference).

1: Input: Question q, KG subgraph Gq, seed en-
tities {e}q, hyper-parameters: T,K,L.

2: Initialize: K instructions {i(k)}Kk=1, node rep-
resentations H in.

3: for t = 1 to T do
4: for l = 1 to L do
5: for k = 1 to K do
6: h̃

(k,l)
v = ϕ

(
{m(l)

v′v : v′ ∈ N (v)|i(k)}
)
.

7: end for
8: h

(l)
v = ψ

(
h
(l−1)
v , {h̃(k,l)

v }Kk=1

)
.

9: end for
10: Set Hout and H in to H(L).
11: Update {i(k)}Kk=1 using Hout.
12: end for
13: Result: Classify node v as answer or non-

answer based on hout
v .

nodes {a}q, we rank the nodes as possible answers
based on their final probabilities.

For better generalization to unobserved entities,
we initialize node representations hin

v as a function
of their direct relations r ∈ Nr(v), as

hin
v = ReLU

(∑

r∈Nr(v)

W0r
)
, (12)

where r ∈ Rd is the representation of relation r
and W0 ∈ Rd×d are learnable parameters. We de-
rive the representation r with the same pre-trained
language model used for the question based on the
relation’s surface form, if applicable. Otherwise,
we randomly initialize and update r during train-
ing.

To capture multiple question’s contexts, each
instruction is initialized by dynamically attending
to different question’s tokens (Qiu et al., 2020a;
He et al., 2021). First, we derive a representa-
tion bj for token j and a question representation
q with pre-trained language models, such as Sen-
tenceBERT (Reimers and Gurevych, 2019) (see
also Appendix). Each instruction i(k) is computed
by

i(k) =
∑

j

u
(k)
j bj , (13)

where u(k)j ∈ [0, 1] is an attention weight for to-
ken j. To ensure different instructions can attend to
different tokens, the dynamic attention is computed

2451

by

u
(k)
j = softmaxj(Wu(q

(k) ⊙ bj)),

q(k) = W (k)(i(k−1)||q||q ⊙ i(k−1)||q − i(k−1)),
(14)

where Wu ∈ Rd×d and W (k) ∈ Rd×4d are learn-
able parameters.

4.3 Complexity
REAREV’s computational complexity for each
question is O(T |Vq|L∆), assuming the KG is
sparse with maximum node degree equal to ∆. We
also assume that the inner loop in Algorithm 1 (line
6) is parallelized. On the other hand, the compu-
tations of traditional GNN-based KGQA methods
(Section 3.4) can be achieved in O(|Vq|L∆) time.
However, we find that having T = 2 is sufficient
for REAREV in practice, so REAREV’s complexity
does not necessarily increase linearly.

5 Experimental Setup

We experiment with three widely used KGQA
benchmarks: WebQuestionsSP (Webqsp) (Yih
et al., 2015), Complex WebQuestions 1.1
(CWQ) (Talmor and Berant, 2018), and MetaQA-
3 (Zhang et al., 2018). We provide the final dataset
statistics (see Section 5.2) in Appendix.

5.1 Dataset Details
Webqsp contains 4,737 natural language questions
that are answerable using a subset Freebase KG.
This KG contains 164.6 million facts and 24.9 mil-
lion entities. The questions require up to 2-hop
reasoning within this KG. Specifically, the model
needs to aggregate over two KG facts for 30% of
the questions, to reason over constraints for 7% of
the questions, and to use a single KG fact for the
rest of the questions.

CWQ is generated from Webqsp by extending
the question entities or adding constraints to an-
swers, in order to construct more complex multi-
hop questions (34,689 in total). There are four
types of question: composition (45%), conjunction
(45%), comparative (5%), and superlative (5%).
The questions require up to 4-hops of reasoning
over the KG, which is the same KG with Webqsp.

MetaQA-3 consists of more than 100k 3-hop
questions in the domain of movies. The questions
were constructed using the KG provided by the
WikiMovies (Miller et al., 2016) dataset, with about
43k entities and 135k triples.

5.2 Implementation and Evaluation Details

Recall that our REAREV takes as input the ques-
tion’s seed entities {e}q and a question-specific
subgraph Gq. We use the seed entities provided
by (Yih et al., 2015) for Webqsp, by (Talmor and
Berant, 2018) for CWQ, and by (Miller et al., 2016)
for MetaQA-3. We obtain subgraphs by (He et al.,
2021). It runs the PageRank-Nibble (Andersen
et al., 2006) (PRN) method from the seed entities
to select the top-m entiites to be included in the sub-
graph, as in (Sun et al., 2018). We havem = 2, 000
for Webqsp (full KG) and CWQ, and m = 500 for
MetaQA-3 and Webqsp (incomplete KG).

We tune the hyper-parameters T (number of iter-
ations),K (number of instructions), and L (number
of GNN layers) amongst T ∈ {2, 3}, K ∈ {2, 3},
and L ∈ {2, 3, 4}. We perform model selection
based on the best validation scores (more imple-
mentation details in the Appendix). For evaluation,
we adopt two widely used metrics, Hits@1, which
is the accuracy of the top-predicted answer, and the
F1 score. To compute the F1 score we set a thresh-
old equal to 0.95. For the competing approaches,
we reuse the evaluation results reported in the cor-
responding papers, unless otherwise stated.

5.3 Competing Approaches

We compare with methods that focus on im-
proving KGQA reasoning capabilities. KV-
Mem (Miller et al., 2016) is a key-value mem-
ory network (Sukhbaatar et al., 2015) for KGQA.
EmbedKGQA (Saxena et al., 2020) utilizes KG
pre-trained embeddings (Trouillon et al., 2016)
to improve multi-hop reasoning. GraftNet (Sun
et al., 2018), HGCN (Han et al., 2020) and
SGReader (Xiong et al., 2019) are GNN-based
approaches, where GraftNet and HGCN use
a convolution-based GNNs (Kipf and Welling,
2016), while SGReader uses attention-based
GNNs (Veličković et al., 2017).

NSM (He et al., 2021) is the adaptation of
Neural State Machines (Hudson and Manning,
2019) to KGQA and performs a GNN-based rea-
soning. NSM-distill (He et al., 2021) improves
NSM for multi-hop reasoning by learning which
intermediate nodes to visit via distillation (Hinton
et al., 2015). TransferNet (Shi et al., 2021) im-
proves multi-hop reasoning over the relation set.
EmQL (Sun et al., 2020) and Rigel (Sen et al.,
2021) improve the ReifiedKB (Cohen et al., 2020)
scalable baseline for deductive reasoning and rea-

2452

Table 1: Performance comparison of different methods
(Hits@1 or F1 scores in %). Bold fonts denote the best
methods.

Webqsp CWQ
Method H@1 / F1 H@1

KV-Mem (Miller et al., 2016) 46.7 / 38.6 21.1
SGReader (Xiong et al., 2019) 67.2 / 57.3 –
EmbedKGQA (Saxena et al., 2020) 66.6 / – *
GraftNet (Sun et al., 2018) 66.7 / 62.4 32.8
PullNet (Sun et al., 2019) 68.1 / – 45.9
TransferNet (Shi et al., 2021) 71.4 / – 48.6
Rigel (Sen et al., 2021) 73.3 / – 48.7
NSM (He et al., 2021) 68.7 / 62.8 47.6
NSM-distill (He et al., 2021) 74.3 / 67.4 48.8
EmQL (Sun et al., 2020) 75.5 / – *
SQALER (Atzeni et al., 2021) 70.6 / – *
SQALER+GNN (Atzeni et al., 2021) 76.1 / – *

REAREV 76.4 / 70.9 52.9

–: Result not reported.
*: Method cannot inherently tackle this setting.

soning with complex questions, respectively.
In addition, we compare with methods that fo-

cus on improving the question-specific input sub-
graph Gq. PullNet (Sun et al., 2019) is built on
top of GraftNet, but learns which nodes to re-
trieve via selecting shortest paths to the answers.
SQALER (Atzeni et al., 2021) learns which rela-
tions (facts) to retrieve during KGQA by recon-
structing KG traversals to answers.

6 Experimental Results

6.1 Main Results

We present the KGQA performance for the com-
pared methods in Table 1. REAREV outperforms
the best performing method by 0.3% and 4.1%
points at H@1 for Webqsp and CWQ, respectively.

For Webqsp, although most questions involve
one-hop or two-hop reasoning, few training ex-
amples are given. Methods such as NSM-distill
and SQALER+GNN tackle this challenge with
additional supervision signals (compare NSM
with NSM-distill and SQALER with SQALER-
GNN), while EmQL uses pre-defined question
templates to facilitate instruction execution. In
contrast, REAREV relies on its adaptive reason-
ing. If we compare REAREV with other reasoning-
based approaches (NSM, GraftNet, and SGReader),
REAREV performs better by 5.7-9.7% (H@1
points) and 8.1-13.6% (F1 points).

In CWQ, many questions include multiple seed
entities and require both composition (sequential)

Table 2: H@1 / F1 results in % for Webqsp with incom-
plete KGs. “% KG completeness” denotes the percent
of the remaining KG facts.

% of KG completeness 10% 30% 50%

GraftNet (Sun et al., 2018) 15.5 / 6.5 34.9 / 20.4 47.7 / 34.3
SGReader (Xiong et al., 2019) 17.1 / 7.0 35.9 / 20.2 49.2 / 33.5
HGCN (Han et al., 2020) 18.3 / 7.9 35.2 / 21.0 49.3 / 34.3

REAREV 19.4 / 8.6 37.9 / 23.6 53.4 / 39.9

and conjunction (parallel) reasoning, which makes
the instruction execution challenging. REAREV’s
breadth-first strategy and adaptive updates are de-
signed to benefit such challenging cases. Note
that some methods cannot inherently tackle this
setting: EmbedKGQA requires single-entity ques-
tions, EmQL requires pre-defined question tem-
plates that are hard to derive for complex questions,
and SQALER assumes that only composition ques-
tion types are involved. REAREV outperforms all
other methods by more than 4% points at H@1.

6.2 Low-Data Regime Results

Webqsp contains mostly simple questions which
are easily answerable over a full KG. Table 2 shows
the performance for a more challenging task, when
keeping 10%, 30%, and 50% of the KG’s total
facts. We compare against GraftNet, SGReader,
and HGCN, which are GNN-based approaches es-
pecially designed for reasoning over incomplete
KG subgraphs. REAREV outperforms competing
methods by 1.1-5.7% points at H@1 and by 0.7-
5.6% points at F1. The best improvement is ob-
tained for KG-50%, since there is more KG in-
formation that REAREV can leverage during its
adaptive reasoning.

MetaQA-3 has more than 100k train questions
which involve only few KG relations. For a more
challenging setting, we experiment with MetaQA-3
when we decrease the ratio of the KG completeness
as well as the number of training question-answer
pairs. We compare against NSM and NSM-distill
that also rely on subgraph extraction with PRN
(Section 5.2). We provide additional results in the
Appendix. Table 3 shows that the more challenging
the setting is, the better the improvement REAREV

achieves over NSM and NSM-distill. When the KG
is 50% complete and we only use 1% of the training
questions, REAREV improves over NSM-distill by
more than 10% points at H@1.

2453

Table 3: H@1 results in % for MetaQA-3 under different
settings. “% KG completeness” denotes the percent of
the remaining KG facts and “% Train QAs” the percent
of training question-answer pairs used.

% of KG completeness 100% 100% 50% 50%
% of Train QAs 10% 1% 10% 1%

NSM 98.8 89.6 71.8 49.7
NSM-distill 98.9 98.2 72.3 51.5

REAREV 98.9 98.6 75.4 62.7

6.3 Ablation Studies

Table 4 verifies that KGQA improvements stem
from the algorithmic design of our method. For
complex questions (CWQ), deriving the correct ex-
ecution order of the instructions becomes challeng-
ing. By treating the instructions as a set, our BFS
execution provides a performance gain of 4.7%
points. When there are missing facts (Webqsp-
50%), grounding the instruction decoding to the
available information becomes crucial. Our adap-
tive decoding leverages this KG-aware information
and provides a performance gain of 2.2% points.

Moreover, we experiment with hyper-parameter
sensitivity. We intentionally setL = 2 for MetaQA-
3, although it requires 3-hop reasoning, and grad-
ually increase T ∈ {1, . . . , 5} to evaluate whether
REAREV can reach the answers. For T = 4 and
K ∈ {2, 3}, REAREV achieves 84.5%-88.9% at
H@1. When we set T = 5, REAREV further im-
proves and achieves 98.7%-98.8% at H@1. In
Table 5, we provide two case studies that show how
the number T of adaptive stages impacts answer
retrieval.

In addition, we have performed the following
ablation study at MetaQA-3 as motivated by Fig-
ure 1. The idea is to switch some KG relations
with semantically similar ones during inferece to
evaluate REAREV’s adaptiveness. We switch the
KG relations {directed by, written by, starred ac-
tors, release year} (out of total 9 relations) to {has
executive, plot by, has cast, air on} respectively.
During training, we switch them with 5% probabil-
ity, but during testing, we switch them with a 50%
or 100% probability, which enforces a distribution
shift over the underlying relations. REAREV (T=2)
with adaptive stages outperforms REAREV (T=1)
without adaptive stages in both cases. It performs
87.3% and 86.9% at F1, while REAREV (T=1) per-
forms 84.5% and 81.1% at F1, respectively. This
experiment also suggests that it is REAREV’s algo-

Table 4: H@1 results in % (with performance drop)
under different REAREV’s modifications for Webqsp
(50% complete) and CWQ. BFS Execution is described
in Section 4.1 and Adaptive Decoding in Section 4.2.

Modification Webqsp-50% CWQ

REAREV 53.4 52.9
without BFS Execution 52.6 (-0.8) 48.2 (-4.7)
without Adaptive Decoding 51.2 (-2.2) 50.5 (-2.4)

Table 5: Question-answer pairs and predicted answers
(with probabilities) with respect to the number T of
adaptive stages.

Q: Who wrote movies that share directors with the movie
The Comebacks? A: R. Schneider, T. Brady
T = 3 : 2007 (0.99)
T = 4 : R. Schneider (0.99)
T = 5 : R. Schneider (0.5), T. Brady (0.5)
Q: When did the movies release whose writers
also wrote Birdy? A: 1989
T = 3 : 1989 (0.60), GD. Goldberg (0.11)
T = 4 : 1989 (0.99)
T = 5 : 1989 (1.0)

rithmic design that leads to its improvements.

7 Conclusion

Our method (REAREV) introduces a new way to
KGQA reasoning with respect to instruction ex-
ecution and decoding. We improve instruction
decoding via adaptive reasoning, which updates
the instructions with KG-aware information. We
improve instruction execution by emulating the
breadth-first search algorithm, which provides ro-
bustness to the initial instruction ordering. Experi-
mental results on three KGQA benchmarks demon-
strate the REAREV ’s effectiveness compared with
previous state-of-the-art, especially when the KG is
incomplete or when we tackle complex questions.

8 Limitations

Our contributions are on the reasoning part, and
our method assumes that we have the linked enti-
ties and a question-specific subgraph as input. Al-
though improving entity linking is out of our scope,
our approach cannot recover from entity linking er-
rors. However, just like REAREV, all the methods
that we compare against make the same assumption
and rely on external entity linking tools. The linked
entities are obtained as explained in Section 5.2.

Moreover, our method assumes that using a sin-
gle GNN layer per reasoning step (see Figure 2)

2454

is sufficient. This may not be the case when, for
example, we need to reason for multiple steps with
the same instruction. Our method could benefit
from designing a multistep reasoning module.

References
Abdalghani Abujabal, Mohamed Yahya, Mirek Riede-

wald, and Gerhard Weikum. 2017. Automated tem-
plate generation for question answering over knowl-
edge graphs. In Proceedings of the 26th international
conference on world wide web.

Reid Andersen, Fan Chung, and Kevin Lang. 2006. Lo-
cal graph partitioning using pagerank vectors. In
2006 47th Annual IEEE Symposium on Foundations
of Computer Science (FOCS’06).

Mattia Atzeni, Jasmina Bogojeska, and Andreas Loukas.
2021. Sqaler: Scaling question answering by decou-
pling multi-hop and logical reasoning. Advances in
Neural Information Processing Systems.

Hannah Bast and Elmar Haussmann. 2015. More accu-
rate question answering on freebase. In Proceedings
of the 24th ACM International on Conference on In-
formation and Knowledge Management.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on freebase from
question-answer pairs. In Proceedings of the 2013
conference on empirical methods in natural language
processing.

Nikita Bhutani, Xinyi Zheng, and HV Jagadish. 2019.
Learning to answer complex questions over knowl-
edge bases with query composition. In Proceedings
of the 28th ACM International Conference on Infor-
mation and Knowledge Management.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder for
statistical machine translation. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP).

William W Cohen, Haitian Sun, R Alex Hofer, and
Matthew Siegler. 2020. Scalable neural methods for
reasoning with a symbolic knowledge base. arXiv
preprint arXiv:2002.06115.

Rajarshi Das, Manzil Zaheer, Dung Thai, Ameya
Godbole, Ethan Perez, Jay-Yoon Lee, Lizhen Tan,
Lazaros Polymenakos, and Andrew McCallum. 2021.
Case-based reasoning for natural language queries
over knowledge bases. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Yanlin Feng, Xinyue Chen, Bill Yuchen Lin, Peifeng
Wang, Jun Yan, and Xiang Ren. 2020. Scalable multi-
hop relational reasoning for knowledge-aware ques-
tion answering. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP).

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley,
Oriol Vinyals, and George E Dahl. Neural message
passing for quantum chemistry. In International con-
ference on machine learning. PMLR.

Jiale Han, Bo Cheng, and Xu Wang. 2020. Open do-
main question answering based on text enhanced
knowledge graph with hyperedge infusion. In Pro-
ceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing: Findings.

Jiale Han, Bo Cheng, and Xu Wang. 2021. Two-
phase hypergraph based reasoning with dynamic re-
lations for multi-hop kbqa. In Proceedings of the
Twenty-Ninth International Conference on Interna-
tional Joint Conferences on Artificial Intelligence.

Gaole He, Yunshi Lan, Jing Jiang, Wayne Xin Zhao, and
Ji-Rong Wen. 2021. Improving multi-hop knowledge
base question answering by learning intermediate
supervision signals. In Proceedings of the 14th ACM
International Conference on Web Search and Data
Mining.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation.

Drew A Hudson and Christopher D Manning. 2019.
Learning by abstraction: The neural state machine.
In Advances in Neural Information Processing Sys-
tems, volume 32.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Thomas N Kipf and Max Welling. 2016. Semi-
supervised classification with graph convolutional
networks. In J. International Conference on Learn-
ing Representations (ICLR 2017).

Solomon Kullback and Richard A Leibler. 1951. On
information and sufficiency. The annals of mathe-
matical statistics, 22.

Yunshi Lan, Gaole He, Jinhao Jiang, Jing Jiang,
Wayne Xin Zhao, and Ji-Rong Wen. 2021. A sur-
vey on complex knowledge base question answering:
Methods, challenges and solutions. arXiv preprint
arXiv:2105.11644.

Yunshi Lan and Jing Jiang. 2020. Query graph gen-
eration for answering multi-hop complex questions
from knowledge bases. Association for Computa-
tional Linguistics.

2455

Yunshi Lan, Shuohang Wang, and Jing Jiang. 2019.
Knowledge base question answering with topic units.
In Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, IJCAI-19.
International Joint Conferences on Artificial Intelli-
gence Organization.

Bill Yuchen Lin, Xinyue Chen, Jamin Chen, and Xiang
Ren. 2019. Kagnet: Knowledge-aware graph net-
works for commonsense reasoning. In Proceedings
of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP).

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Kangqi Luo, Fengli Lin, Xusheng Luo, and Kenny Zhu.
2018. Knowledge base question answering via en-
coding of complex query graphs. In Proceedings of
the 2018 Conference on Empirical Methods in Natu-
ral Language Processing.

Costas Mavromatis, Prasanna Lakkur Subramanyam,
Vassilis N Ioannidis, Soji Adeshina, Phillip R
Howard, Tetiana Grinberg, Nagib Hakim, and George
Karypis. 2021. Tempoqr: Temporal question rea-
soning over knowledge graphs. arXiv preprint
arXiv:2112.05785.

Alexander Miller, Adam Fisch, Jesse Dodge, Amir-
Hossein Karimi, Antoine Bordes, and Jason Weston.
2016. Key-value memory networks for directly read-
ing documents. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing.

Bonan Min, Ralph Grishman, Li Wan, Chang Wang,
and David Gondek. 2013. Distant supervision for re-
lation extraction with an incomplete knowledge base.
In Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in pytorch.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language processing
(EMNLP).

Yunqi Qiu, Yuanzhuo Wang, Xiaolong Jin, and Kun
Zhang. 2020a. Stepwise reasoning for multi-relation
question answering over knowledge graph with weak
supervision. In Proceedings of the 13th International
Conference on Web Search and Data Mining.

Yunqi Qiu, Kun Zhang, Yuanzhuo Wang, Xiaolong Jin,
Long Bai, Saiping Guan, and Xueqi Cheng. 2020b.
Hierarchical query graph generation for complex
question answering over knowledge graph. In Pro-
ceedings of the 29th ACM International Conference
on Information & Knowledge Management.

Siva Reddy, Mirella Lapata, and Mark Steedman.
2014. Large-scale semantic parsing without question-
answer pairs. Transactions of the Association for
Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP).

Hongyu Ren, Hanjun Dai, Bo Dai, Xinyun Chen, Michi-
hiro Yasunaga, Haitian Sun, Dale Schuurmans, Jure
Leskovec, and Denny Zhou. 2021. Lego: Latent
execution-guided reasoning for multi-hop question
answering on knowledge graphs. In International
Conference on Machine Learning. PMLR.

Apoorv Saxena, Soumen Chakrabarti, and Partha Taluk-
dar. 2021. Question answering over temporal knowl-
edge graphs. arXiv preprint arXiv:2106.01515.

Apoorv Saxena, Aditay Tripathi, and Partha Talukdar.
2020. Improving multi-hop question answering over
knowledge graphs using knowledge base embeddings.
In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem,
Rianne Van Den Berg, Ivan Titov, and Max Welling.
2018. Modeling relational data with graph convolu-
tional networks. In European semantic web confer-
ence. Springer.

Priyanka Sen, Amir Saffari, and Armin Oliya. 2021.
Expanding end-to-end question answering on differ-
entiable knowledge graphs with intersection. arXiv
preprint arXiv:2109.05808.

Jiaxin Shi, Shulin Cao, Lei Hou, Juanzi Li, and
Hanwang Zhang. 2021. Transfernet: An effec-
tive and transparent framework for multi-hop ques-
tion answering over relation graph. arXiv preprint
arXiv:2104.07302.

Robyn Speer, Joshua Chin, and Catherine Havasi. 2017.
Conceptnet 5.5: An open multilingual graph of gen-
eral knowledge. In Thirty-first AAAI conference on
artificial intelligence.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The journal of machine learning
research.

2456

Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and
Rob Fergus. 2015. End-to-end memory networks.
Advances in neural information processing systems,
28.

Haitian Sun, Andrew Arnold, Tania Bedrax Weiss, Fer-
nando Pereira, and William W Cohen. 2020. Faithful
embeddings for knowledge base queries. Advances
in Neural Information Processing Systems, 33:22505–
22516.

Haitian Sun, Tania Bedrax-Weiss, and William W Co-
hen. 2019. Pullnet: Open domain question answering
with iterative retrieval on knowledge bases and text.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP).

Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn
Mazaitis, Ruslan Salakhutdinov, and William W Co-
hen. 2018. Open domain question answering using
early fusion of knowledge bases and text. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing.

Yawei Sun, Pengwei Li, Gong Cheng, and Yuzhong
Qu. 2021. Skeleton parsing for complex question
answering over knowledge bases. Journal of Web
Semantics.

Alon Talmor and Jonathan Berant. 2018. The web as
a knowledge-base for answering complex questions.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. CommonsenseQA: A ques-
tion answering challenge targeting commonsense
knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers).

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. 2016. Complex
embeddings for simple link prediction. In Interna-
tional conference on machine learning. PMLR.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio.
2017. Graph attention networks. arXiv preprint
arXiv:1710.10903.

Wenhan Xiong, Mo Yu, Shiyu Chang, Xiaoxiao Guo,
and William Yang Wang. 2019. Improving ques-
tion answering over incomplete kbs with knowledge-
aware reader. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics.

Kun Xu, Yuxuan Lai, Yansong Feng, and Zhiguo Wang.
2019. Enhancing key-value memory neural networks
for knowledge based question answering. In Proceed-
ings of the 2019 Conference of the North American

Chapter of the Association for Computational Lin-
guistics.

Michihiro Yasunaga, Hongyu Ren, Antoine Bosse-
lut, Percy Liang, and Jure Leskovec. 2021. Qa-
gnn: Reasoning with language models and knowl-
edge graphs for question answering. arXiv preprint
arXiv:2104.06378.

Scott Wen-tau Yih, Ming-Wei Chang, Xiaodong He,
and Jianfeng Gao. 2015. Semantic parsing via staged
query graph generation: Question answering with
knowledge base. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing.

Yuyu Zhang, Hanjun Dai, Zornitsa Kozareva, Alexan-
der J Smola, and Le Song. 2018. Variational reason-
ing for question answering with knowledge graph. In
Thirty-Second AAAI Conference on Artificial Intelli-
gence.

Mantong Zhou, Minlie Huang, and Xiaoyan Zhu. 2018.
An interpretable reasoning network for multi-relation
question answering. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics.

2457

A Appendix

A.1 Dataset Statistics

In Table 6, we provide the dataset statistics with
the subgraph extraction algorithm described in Sec-
tion 5.2. We also include the 2-hop MetaQA-
2 (Zhang et al., 2018) dataset, which is easier than
MetaQA-3.

Table 6: Datasets statistics. “avg.|Vq|” denotes average
number of entities in subgraph, and “coverage” denotes
the ratio of at least one answer in subgraph.

Datasets Train Dev Test avg. |Vq| coverage (%)

Webqsp 2,848 250 1,639 1,429.8 94.9
CWQ 27,639 3,519 3,531 1,305.8 64.4
MetaQA-2 118,980 14,872 14,872 469.8 100.0
MetaQA-3 114,196 14,274 14,274 497.9 99.0

A.2 Implementation Details

To encode questions, we use Sente-
ceBERT (Reimers and Gurevych, 2019); although
we observe similar results if we use BERT (Devlin
et al., 2018) or RoBERTa (Liu et al., 2019). For
MetaQA, we use an LSTM encoder (Hochreiter
and Schmidhuber, 1997) and initialize tokens with
Glove (Pennington et al., 2014).

The number of hidden dimensions d is tuned
amongst {50, 100}. We optimize the model
with Adam optimizer (Kingma and Ba, 2014),
where the learning rate is set tuned amongst
{1e−4, 5e−4, 1e−4} and the batch size is tuned
amongst {8, 16, 40}. We tune the number of
epochs amongst {10, 30, 50, 100, 200}. We apply
dropout regularization (Srivastava et al., 2014) with
probability tuned amongst {0.1, 0.2, 0.3}. We per-
form model selection based on the best validation
scores. For Webqsp, REAREV achieves a valida-
tion score of 78.4% at H@1, and for CWQ, a vali-
dation score of 57.4% at H@1.

We implemented REAREV using Py-
Torch (Paszke et al., 2017), reusing the source
code of (Sun et al., 2018; He et al., 2021).
Experiments were performed on a Nvidia
Geforce RTX-2070 and on a Nvidia Geforce
RTX-3090 GPU over 32GB and 128GB RAM
machines. Our code is publicly available at
https://github.com/cmavro/ReaRev_KGQA.

A.3 MetaQA Results

We provide MetaQA full results in Table 7. We de-
vide methods in two categories: (i) subgraph-based

that may not be able to access all possible answers,
and (ii) full-graph/retrieval-based that can access
all KG facts. Subgraph-based methods performs
worse when answers are missing (see MetaQA-3
and Table 6).

Table 7: H@1 performance comparison for MetaQA.

MetaQA-2 MetaQA-3

Subgraph-based with PRN algorithm (Section 5.2)

GraftNet 94.8 77.7
NSM 99.9 98.9
NSM-distill 99.9 98.9
REAREV 99.9 98.9

Full graph/ Retrieval-based

KV-Mem 82.7 48.9
EmbedKGQA 98.8 94.8
PullNet 99.9 91.4
EmQL 98.6 99.1
SQALER 99.9 99.9
SQALER+GNN 99.9 99.9
TransferNet 100 100

2458

https://github.com/cmavro/ReaRev_KGQA

