
Findings of the Association for Computational Linguistics: EMNLP 2022, pages 2279–2291
December 7-11, 2022 ©2022 Association for Computational Linguistics

Alleviating Sparsity of Open Knowledge Graphs
with Ternary Contrastive Learning

Qian Li1,2, Shafiq Joty2,3, Daling Wang1∗, Shi Feng1 and Yifei Zhang1

1 Northeastern University, China
2 Nanyang Technological University, Singapore

3Salesforce Research
feiwangyuzhou@foxmail.com, srjoty@ntu.edu.sg
{wangdaling,fengshi,zhangyifei}@cse.neu.edu.cn

Abstract
Sparsity of formal knowledge and roughness
of non-ontological construction make sparsity
problem particularly prominent in Open Knowl-
edge Graphs (OpenKGs). Due to sparse links,
learning effective representation for few-shot
entities becomes difficult. We hypothesize that
by introducing negative samples, a contrastive
learning (CL) formulation could be beneficial
in such scenarios. However, existing CL meth-
ods model KG triplets as binary objects of enti-
ties ignoring the relation-guided ternary prop-
agation patterns and they are too generic, i.e.,
they ignore zero-shot, few-shot and synonymity
problems that appear in OpenKGs. To address
this, we propose TernaryCL, a CL framework
based on ternary propagation patterns among
head, relation and tail. TernaryCL designs
Contrastive Entity and Contrastive Relation to
mine ternary discriminative features with both
negative entities and relations, introduces Con-
trastive Self to help zero- and few-shot enti-
ties learn discriminative features, Contrastive
Synonym to model synonymous entities, and
Contrastive Fusion to aggregate graph features
from multiple paths. Extensive experiments
on benchmarks demonstrate the superiority of
TernaryCL over state-of-the-art models.

1 Introduction

Open Knowledge Graphs (OpenKGs) structure tex-
tual facts in the form of (subject entity, relation,
object entity) without depending on an ontology
schema (Fader et al., 2011; Gashteovski et al.,
2019). They benefit knowledge-intensive tasks,
such as question answering (Sun et al., 2019) and
dialogue systems (Dinan et al., 2019). Represen-
tation learning of OpenKGs aims to learn implicit
embeddings of entities and relations (Gupta et al.,
2019; Broscheit et al., 2020), and has become an
indispensable step in the applications of OpenKGs.

Due to the rigidness of grammatical patterns
and roughness of non-ontological construction, a
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common challenge in representation learning of
OpenKGs is the sparsity problem, where a large
portion of entities have few- or zero-shot links. In
the two standard OpenKGs: ReVerb20K and Re-
Verb45K (Vashishth et al., 2018), the degree of
55% and 89% entities is less than 3. As such, few-
and zero-shot entities in these OpenKGs do not get
enough training, resulting in poor generalization.

We hypothesize that negative samples could help
existing sparse links to learn discriminative features
in the form of a negative feedback. Being popular
in self-supervised learning, contrastive learning
(CL) aims to learn representations by contrasting
negative samples with the positive ones (He et al.,
2020; Gao et al., 2021; Zhu et al., 2021). Although
existing CL in Graphs (Velickovic et al., 2019) and
CuratedKGs (Ahrabian et al., 2020; Wang et al.,
2022) have shown promising results, they could not
effectively tackle the sparsity and synonymity prob-
lems of OpenKGs. First, they model KG triplets
as binary objects of entities, ignoring the relation-
guided ternary propagation patterns where entities
propagate to multiple neighbor entities through
multiple relations. Second, they do not specifically
tackle the sparsity issues of zero- and few-shot en-
tities. Finally, they can not address the synonymity
problem in OpenKGs where multiple entities with
different surface forms have the same meaning.

To alleviate the above problems, we propose
TernaryCL, a contrastive learning framework based
on ternary relational patterns among head, rela-
tion and tail. TernaryCL uses the following key
ideas: (1) Contrastive Entity learns ternary dis-
criminative features of different entities under the
same (head entity, relation)-pair, which alleviates
the sparsity issue by negative entities (Fig. 1B); (2)
Contrastive Relation learns ternary discriminative
features of different relations under the same (head
entity, tail entity)-pair, which alleviates the sparsity
by negative relations (Fig. 1C); (3) Contrastive
Self designs self positive samples to give zero- and
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Figure 1: Framework of TernaryCL for alleviating sparsity of OpenKGs. (A) A given sub-OpenKG. (B) Contrastive
Entity generates negative entities (yellow) and contrasts them with a positive entity (blue). (C) Contrastive Relation
generates negative relations (yellow) and contrasts them with a positive relation (blue). (D) Contrastive Self
constructs a positive sample by adding a self relation rsf (blue) to the entity (blue), generates negative entities
(yellow) in (B-D) and negative relations (yellow) in (C-D), and contrasts them with the self positive sample.

few-shot entities chances to learn discriminative
features (Fig. 1D); (4) Contrastive Synonym con-
structs synonymous positive samples to automati-
cally aggregate synonymous entities (Fig. 2); (5)
Contrastive Fusion extends the ternary propaga-
tion pattern from the above 1-to-1 to 1-to-N: a head
entity propagates to multiple tail entities through
multiple relations. To gain insights into the method,
we analyze the gradients of the above components.

We show that TernaryCL can learn effective em-
beddings from the KG itself without relying on
pretrained language models or external informa-
tion. This makes it light-scale and easy to apply to
downstream tasks. We perform extensive evalua-
tion to understand its performance on full-shot and
at different sparsity levels, and for few- and zero-
shot types. Our results show that TernaryCL can
significantly outperform state-of-the-art baselines.

In summary, our key contributions are:

• To the best of our knowledge, this is the first
work to do contrastive learning with relation and
synonymous views over OpenKGs.

• We propose a ternary contrastive learning model,
TernaryCL, to learn representations from com-
plex propagation patterns of OpenKGs. It sub-
tly generates negative samples from the perspec-
tive of entities and relations, and uses contrastive
learning to incorporate structural information. It
does not rely on external resources making it easy
to scale and to apply to downstream tasks.

• We introduce Contrastive Self to solve the prob-
lem of learning for zero- and few-shot entities,

and propose Contrastive Synonym to aggregate
signals from synonymous entities.

• We perform extensive experiments to show the
superiority of our method over state-of-the-art
baselines. We release our code at https://
github.com/feiwangyuzhou/TernaryCL.

2 Related Work

OpenKGs represent factual knowledge in struc-
tured forms, as triples of head-relation-tail or
(h, r, t). They are extracted with OpenIE tools
(Fader et al., 2011; Gashteovski et al., 2019), and
generally do not rely on specification of ontology.
Although OpenKGs have the advantage that they
can be easily bootstrapped to new domains, be-
cause of the sparsity of formal grammatical patterns
and non-ontological construction, many relevant
facts are often missing from such OpenKGs. This
makes them difficult to be used effectively in down-
stream tasks (Chandrahas and Talukdar, 2021).

Representation learning of KGs devotes to learn-
ing informative features of entities and relations,
which can be used for other KG-related down-
stream tasks. General representation learning mod-
els over KGs focus on inducing structural features
with linear (Bordes et al., 2013), bilinear (Wang
et al., 2014; Lin et al., 2015), complex (Yang
et al., 2015; Trouillon et al., 2016) or convolutional
(Dettmers et al., 2018; Nguyen et al., 2018) opera-
tions, while OpenKG-specific models enhance the
embeddings with side information (Gupta et al.,
2019) and pretrained language models (Chandra-
has and Talukdar, 2021). However, these methods
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are limited in alleviating the sparsity issue. We
propose a contrastive learning method that is more
effective and does not rely on external resources.

Contrastive learning aims to learn effective rep-
resentation by pulling close neighbors and push-
ing apart non-neighbors (Hadsell et al., 2006; Gao
et al., 2021), which has achieved great success in
vision (He et al., 2020), text (Gao et al., 2021) and
graph (Zhu et al., 2021). Contrastive learning meth-
ods in Graphs attempt to leverage a contrastive loss
at node (Velickovic et al., 2019), graph (Sun et al.,
2020) and multi-view levels (Hassani and Ahmadi,
2020; Zhu et al., 2021). Ahrabian et al. (2020) and
Wang et al. (2022) introduce contrastive learning
into CuratedKGs by designing negative sampling
strategies. However, existing contrastive learning
on Graphs and CuratedKGs only model binary ob-
jects. In contrast, we propose contrastive learning
to study ternary patterns in OpenKGs.

3 Preliminaries

• Let G = (E , R) be an OpenKG and (h, r, t)
be a triple in G with h, t ∈ E being the head and
tail entities, and r ∈ R being the relation between
them. Entities and relations are non-empty word se-
quences; let wh = {wh,i}|wh|

i=1 and wr = {wr,i}|wr|
i=1

represent word sequences of entity h and relation r
respectively. Representations of entities and rela-
tions are denoted as E ∈ R|E|×D and R ∈ R|R|×D

respectively, with D being the embedding dimen-
sion. We will use h ∈ E and r ∈ R to denote the
embeddings of entity h and relation r, respectively.
• Link prediction is used as a downstream task
to verify the effectiveness of representation learn-
ing. Link prediction in OpenKGs is to predict
the answers for the two questions: (1) predicting
the tail Qt=(h, r, ?) and (2) predicting the head
Qh=(?, r, t). For each such question, the possi-
ble answer entities can be one or more, because
there could be multiple entities with the same
meaning but different textual forms in an OpenKG
(Broscheit et al., 2020). For example, for question
Qt=(“NBC-TV”, “has office in”, ?), we expect
all answers from the set of entities {“New York”,

“NYC”, “New York City”}.
• A zero-shot entity (relation) is an entity (relation)
without any link in the KG. A few-shot entity (re-
lation) is an entity (relation) with few links in the
KG, e.g., an one-shot entity has only one link. A
zero-shot (few-shot) triple is a triple that contains
at least one zero-shot (few-shot) entity or relation.

4 Proposed TernaryCL Model

We propose TernaryCL to alleviate the sparsity of
OpenKGs in representation learning (Fig. 1). In the
following, we first introduce a simple Ternary Sim-
ilarity function to compute a similarity score for
each (h, r, t) triple in an OpenKG by considering
both textual and structural information (§4.1). We
present Contrastive Entity in §4.2 to learn embed-
dings of different entities with the same (h, r)-pair,
followed by Contrastive Relation in §4.3 to learn
embeddings of different relations with the same
(h, t)-pair. We describe Contrastive Self in §4.4
that constructs a positive sample (h, rsf , h+) and
contrasts it with negative samples to give zero- and
few-shot entities chances to learn informative fea-
tures. We present Contrastive Synonym in §4.5 to
aggregate signals from multiple synonymous en-
tities. Contrastive Fusion in §4.6 futher extends
propagation patterns from the above 1-1 to 1-N.
Finally, the training procedure is described in §4.7.

4.1 Ternary Similarity
For a triple (h, r, t) ∈ G, word sequence of head
entity h is wh = {wh,i}|wh|

i=1 , of relation r is wr =

{wr,i}|wr|
i=1 , and of tail entity t is wt = {wt,i}|wt|

i=1 .
We encode each of these sequences with a text
encoder (Enc) such as BiGRU (Cho et al., 2014)
and BERT (Devlin et al., 2019).

iw = Enc(wi) for wi ∈ {wh, wr, wt} (1)

This yields the textual embeddings of h, r and t as
hw, rw and tw, respectively. For BiGRU, we con-
catenate the last states in the forward and backward
directions to get the sequence representation. For
BERT, we take the [CLS] representation.

Then, we focus on exploiting potential connec-
tions between entities and relations. We use a two-
dimensional convolutional network (Dettmers et al.,
2018) to learn potential connections between a head
entity h and a relation r as follows:

φ(h, r) = ρ
(
Linear(ρ(Conv2dω([ĥ; r̂])))

)
(2)

where ρ represents a ReLU activation, and ĥ and r̂
denote a reshaping of [h+hw] and rw respectively,
with h ∈ E.1 The reshaping operation converts a
vector v ∈ RD from one-dimension D to two-
dimensions v ∈ RD1×D2 , where D = D1.D2;

1Recall that h ∈ E and r ∈ R are the embedding parame-
ters of entity h and relation r, which are initialized randomly
and updated during training. For relations, adding r ∈ R with
the textual embedding rw worsen the performance.
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[ĥ; r̂] ∈ R(2D1)×D2 represents the concatenation of
the reshaped embeddings of ĥ and r̂. The Conv2dω
symbol denotes a two-dimensional convolutional
layer with filters ω. This layer returns a feature map
tensor C ∈ RC1×C2×C3 , where C1 is the number
of feature maps of dimensions C2 × C3. C is then
reshaped into a vector RC1.C2.C3 , and projected
back to RD with a Linear layer. Through the 2d
convolution module, potential embeddings of entity
h and relation r are jointly encapsulated.

Finally, we compute a similarity score for each
triple (h, r, t) with a dot product similarity function:

β(h, r, t) = φ(h, r).t (3)

where t ∈ E. When predicting the head h based
on pair (r, t), we reverse the relation by adding a
special symbol, and obtain a new triple (t, rrev, h).
The similarity score for (t, rrev, h) is computed in a
similar fashion as above following Eq. (1)-Eq. (3).

4.2 Contrastive Entity
Contrastive Entity (Fig. 1B) alleviates sparsity of
OpenKGs from the perspective of nagative entities,
and induces discriminative features of different en-
tities with the same (h, r)-pair. The contrastive
score for a triplet pe = (h, r, t+) is:

S(h, r, t+) = − log
e(β(h,r,t

+)/τ)

∑
n∈{pe,Ne} e

(β(n)/τ)
(4)

where τ is a temperature hyperparameter, β(.)
is the similarity score as in Eq. (3), and pe =
(h, r, t+) is a true triple in the OpenKG; Ne =

{(h, r, t−j )}
|Ne|
j=1 is a set of negative samples, where

a negative entity t−j is selected from a candidate en-
tity list defined by: E − E(h, r) with E(h, r) being
the entity list of true answers (tail entities), that is,
ti ∈ E(h, r) if the triple (h, r, ti) ∈ G. To analyse
how this contrastive loss affects the learning, we
perform gradient analysis. It can be shown that the
gradients with respect to the head entities are:

−∂S(h, r, t+)

∂h
=

φ′(h, r)

τA

([ ∑

(h,r,t−j )∈Ne

e(
φ(h,r)·t−

j
τ

)]t+

−
∑

(h,r,t−j )∈Ne

[e(
φ(h,r)·t−

j
τ

)t−j ]
) (5)

where A is a normalization constant (see Appendix
for a derivation). This is consistent with our intu-
ition, where positive entity t+ gives positive feed-
back while negative entities t−j give negative feed-
back. The gradients with respect to the relations
(−∂S(h,r,t+)

∂r ) has a similar form as Eq. (5).

Similarly, we can derive the gradients for the
positive t+ and negative tail entities t−j as:

−∂S(h, r, t+)

∂t+
=

φ(h, r)

τA

∑

(h,r,t−j )∈Ne

e(
φ(h,r)·t−

j
τ

)
(6)

−∂S(h, r, t+)

∂t−j
= −φ(h, r)

τA
e(

φ(h,r)·t−
j

τ
) (7)

For a few-shot entity t, when it appears as a posi-
tive (Eq. (6)) or negative (Eq. (7)) sample headed
by entity h of high degree, it gets sufficient gradi-
ents to learn informative representations. Similarly,
through Eq. (7), the parameters of a zero-shot entity
get updated when it appears as a negative sample
with a (h, r)-pair. As discussed later in §4.4, with
Contrastive Self, zero-shot entities get updated with
their own contrastive losses. Overall, through the
negative samples, training of few-shot, zero-shot
and other entities (with many links) gets more bal-
anced, while with existing approaches, zero-shot
entities generally do not get trained as they are
disconnected from the rest of the OpenKG.

4.3 Contrastive Relation
Entities in a KG propagate information to neigh-
boring entities through one or more relations, so
the features of relations are as important as that of
entities. Contrastive Relation (Fig. 1C) alleviates
the sparsity from the perspective of negative rela-
tions, and captures potential features of different
relations with the same (h, t)-pair. The contrastive
score for a positive relation pr = (h, r+, t) is:

S(h, r+, t) = − log
e(β(h,r

+,t)/τ)

∑
n∈{pr,Nr} e

(β(n)/τ)
(8)

where pr is a true triple in the OpenKG, and
Nr = {(h, r−j , t)}

|Nr|
j=1 is a set of negative samples,

where a negative relation r−j is sampled from a
candidate relation list R − R(h, t) with R(h, t)
being a relation list that satisfies the condition:
ri ∈ R(h, t) if the triple (h, ri, t) ∈ G. The gradi-
ents have the same form as above (see Appendix
A.1). In particular, the gradients that a tail entity
gets is:

−∂S(h, r+, t)

∂t
=

1

τB

([ ∑

(h,r−j ,t)∈Nr

e(
φ(h,r

−
j

)·t
τ

)]φ(h, r+)

−
∑

(h,r−j ,t)∈Nr

[e(
φ(h,r

−
j

)·t
τ

)φ(h, r−j )]
) (9)
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Figure 2: Examples of Contrastive Synonym. (A)
A given OpenKG, where two entities “America”,

“USA” are synonymous, three entities “NBC Television”,
“NBC”, “NBC-TV” are synonymous. (B) Add a sy rela-
tion (rsy) between each pair of synonyms.

Different from Eq. (6), tail entities (t = t+) get
contrastive gradients, because the signals from the
positive (r+) and negative (r−j ) samples are in op-
posite direction in Eq. (9).

4.4 Contrastive Self
As described in §4.2 and §4.3, parameters of a
few-shot entity get updated with contrastive gradi-
ents when it acts as a head (Eq. (5)) or tail en-
tity (Eq. (9)). Parameters of a zero-shot entity
are also updated when it appears as a negative
entity (Eq. (7)), but not from the perspective of
contrastive. This means zero-shot entities have no
chance to learn discriminative representations, be-
cause they have no links with the rest of OpenKG.

In view of this, we propose to construct a pos-
itive sample psf = (h, rsf , h

+) by adding a self
relation (Fig. 1D), where h and h+ are the same en-
tity but with different embeddings: the embedding
of h is [h+hw] and the embedding of h+ is h ∈ E.
For such a positive sample, negative samples Ne =

{(h, rsf , h−j )}
|Ne|
j=1 are generated with negative en-

tities by selecting h−j strategically from an entity
list E − h (Fig. 1B-D). Similarly, negative relation
samples Nr = {(h, {rsf}−j , h+)}

|Nr|
j=1 are gener-

ated with negative relations by selecting {rsf}−j
strategically from a relation list R− rsf (Fig. 1C-
D). The contrastive scores for psf = (h, rsf , h

+)
can then be computed with Eq. (4) and Eq. (8).

Through the self positive sample, parameters
of zero-shot entities can have the chances to be
updated from the contrastive perspective (Eq. (5)
and Eq. (9)), where h+, r+sf give positive feedback
while h−j , {rsf}−j give negative feedback.

4.5 Contrastive Synonym
We propose Contrastive Synonym based on the
synonymity characteristic of an OpenKG, where
multiple entities with different surface forms have

the same meaning, e.g., “NBC-TV”, “NBC” and
“NBC Television” mean the same thing. These syn-
onymous entities are designed as positive samples
of each other. We identify synonyms automatically
by a fuzzy matching with the IDF-token-overlap
tool (Galárraga et al., 2014) and a semantic match-
ing with Eq. (3) based on the embeddings obtained
by Eq. (1). We put the extracted synonymous enti-
ties for h into S(h) and construct a positive sample
psy = (h, rsy, h

+
i ) by adding a sy relation for each

entity h+i ∈ S(h) (Fig. 2). We follow the same
strategy as in §4.2 and §4.3 for sampling nega-
tive entity and relation samples, and compute the
contrastive score for each psy = (h, rsy, h

+
i ) with

Eq. (4) and Eq. (8).

4.6 Contrastive Fusion
The contrastive learning of the above modules has
the form of 1-to-1, where a head entity propagates
information to a tail entity through a relation, i.e.,
it involves only one positive sample. However,
a head entity can connect to multiple tail entities
through multiple relations. To model this multi-
propagation pattern, we extend the 1-to-1 to 1-to-N,
where multiple positive samples are considered.

We design two sets of positive 1-to-N patterns:
pe = {(h, r, t+j )}

|pe|
j=1 where a head entity h con-

nects to multiple tail entities through a relation
r, and pr = {(h, r+j , t)}

|pr|
j=1 where a head en-

tity h connects to a tail entity t through multiple
relations. We generate negative samples Ne =

{(h, r, t−j )}
|Ne|
j=1 for pe as in §4.2, and negative sam-

ples Nr = {(h, r−j , t)}
|Nr|
j=1 for pr as in §4.3. Let

pf = {pe, pr} and Nf = {Ne,Nr}. With this,
we design two types of contrastive scores to learn
1-to-N patterns.

Sa(pf ) = − log

∑
n+∈pf

e(β(n
+)/τ)

∑
n−∈{pf ,Nf} e

(β(n−)/τ)
(10)

Sb(pf ) = −
∑

n+∈pf

log
e(β(n

+)/τ)

∑
n−∈{n+,Nf} e

(β(n−)/τ)
(11)

In Eq. (10), all positive samples are trained together
and normalized to a unified space, while in Eq. (11),
different positive samples are trained separately
and the independent similarity score of all posi-
tives are accumulated. From the perspective of
negative samples, negative entity Ne and relation
Nr samples are merged to train with the positive
samples, which is different from Eq. (4) and Eq. (8)
which only have one type of negatives.
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Dataset Ent Rel Clust Valid Test
Train (Sparsity Levels) Few-Shot Zero-Shot

100% 80% 60% 40% 20% Ent Rel Ent Rel

ReVerb20K 11.1 11.1 10.8 1.6 2.4 15.5 12.4 9.3 6.2 3.1 2.8 / 1.0 2.5 / 0.8 8.1 / 1.1 8.5 / 1.0
ReVerb45K 27.0 21.6 18.6 3.6 5.4 36.0 28.8 21.6 14.4 7.2 7.7 / 1.8 5.1 / 1.5 18.8 / 2.5 16.4 / 1.8

Table 1: Dataset statistics (in 1000s). Ent, Rel, Clust show the no. of entities, relations, entity clusters. Valid, Test,
Train show the no. of triples in valid, test, train sets. In Train, x% represents sparsity levels. In Few- and Zero-Shot,
left of / respresents the no. of entities or relations, and right of / represents the no. of related triples in its Test set.

4.7 Training Procedure
We train TernaryCL in Pretrain and Finetune stages,
where Pretrain stage aims to learn discriminative
representations with Eq. (10) or Eq. (11), and Fine-
tune stage aims to optimize parameters for a target
task. Note that TernaryCL is a general framework
that can be applied to diverse KG types, such as
OpenKGs, CuratedKGs and TemporalKGs, and to
diverse applications, such as link prediction, re-
lation prediction, node classification, relation ex-
traction and other ternary tasks. In addition, the
principle of Contrastive Self can be applied to dy-
namic tasks, e.g., when a new entity gets added to a
KG, it can transfer embeddings of existing entities
to the new entity. Since our focus in this work is
the sparsity of OpenKGs, we design experiments
with link prediction tasks in OpenKGs.

For a test triple (hi, ri, ti), the jointly encapsu-
lated representation φ(hi, ri) of entity hi and rela-
tion ri is matched with the embeddings of all the
entities in E to predict Ŷi ∈ [0, 1]|E| as:

Ŷi = sigmoid(φ(hi, ri) ·E⊤) (12)

We use a binary cross-entropy loss defined as:

− 1

|E|

|E|∑

j=1

Yi,j log Ŷi,j + (1− Yi,j) log(1− Ŷi,j) (13)

where Yi,j = 1 if tj ∈ E(hi, ri) otherwise Yi,j = 0
with E(h, r) being the set of all true tail entities for
a pair (h, r). As mentioned earlier, when predicting
the head hi based on a pair (ri, ti), we reverse the
relation to obtain a reversed triple (t, rrev, h), then
train it with Eq. (12) and Eq. (13).

5 Experiments

5.1 Datasets and Experiment Setup
We use ReVerb20K and ReVerb45K OpenKG
benchmarks (Vashishth et al., 2018), which are con-
structed through ReVerb (Fader et al., 2011). Table
1 presents their statistics. ReVerb45K with 27K
entities and 21.6K relations is larger and sparser

than ReVerb20K with 11.1K entities and 11.1K
relations. Entity clusters are gold canonicalized
clusters, extracted through the Freebase entity link-
ing tools (Gupta et al., 2019). Entities in an entity
cluster have the same meaning. Usually, entity
clusters are only used for evaluation.

To evaluate on sparsity, we design two sets of
controlled experiments: the first is at different spar-
sity levels and the second is on few- and zero-shot
samples. For the first, we construct train sets at dif-
ferent sparsity granularity {100%, 80%, 60%, 40%,
20%} by respectively removing {0%, 20%, 40%,
60%, 80%} of the links from the original train set.
We use the same original data for validation and
testing. For the second, we evaluate on few-shot
or zero-shot samples separately, where few-shot
refers to 3-, 2- and 1-shot. Few- or zero-shot enti-
ties (relations) are extracted as per the definition in
§3, e.g., a 3-shot entity has three links in the test
KG. For the test set of a few-shot (zero-shot) entity
(relation), its related triples are extracted from the
original test set. For training, we use the 20% train
set, because it is sparse enough to contain more
few-shot (zero-shot) samples.

5.2 Evaluation Metrics and Baselines

To evaluate on a single test triple, we use Mention
Ranking or MR (Gupta et al., 2019), which is the
minimum ranking position of the answer entities.
To evaluate over all test triples, we use the three
most widely used ways to integrate the individual
MR scores: (a) H@N : proportion of MR scores
not higher than N , (b) AR: average of all MR
scores, and (c) ARR: compute the reciprocal of
each MR score, and average all reciprocals. A
model with better performance should have higher
H@N and ARR scores and a lower AR score.2

To show the effectiveness of our approach, we
compare TernaryCL against several strong base-

2In previous work, ARR and AR are called MRR, and
MR respectively, where M stands for Mean. However, since
Mention Ranking is abbreviated as MR, to prevent confusion,
we use Average in the names in stead of Mean.
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Type Model
ReVerb20K ReVerb45K

AR ↓ ARR H@1 H@10 H@50 H@100 AR ↓ ARR H@1 H@10 H@50 H@100

General

TransE 1497 13.3 2.2 29.6 43.0 49.2 2222 15.8 9.3 25.9 37.1 43.2
DistMult 4569 1.9 1.3 2.7 5.2 7.1 5782 8.5 7.7 9.7 12.0 13.6
ComlEx 4376 2.0 1.4 3.0 5.6 7.7 5173 8.9 7.5 11.3 16.0 18.9
ConvE 1085 25.5 19.9 35.8 50.1 57.2 2483 22.1 16.6 32.4 43.3 47.9
ConvTransE 1080 26.1 20.5 35.9 50.0 57.1 2490 23.4 17.9 33.8 44.4 48.8

OpenKG
CaReTransE 950 30.3 23.2 42.8 58.4 64.6 2414 19.5 7.8 37.5 47.5 51.4
CaReConvE 801 31.6 25.6 42.9 56.7 63.4 1589 29.7 23.4 41.3 53.6 58.7

OpenKG
SimKGC 538 29.7 23.3 41.7 58.7 65.7 1080 27.1 20.4 39.8 53.2 59.2

+PLM
OKGITBert 524 35.1 27.5 49.5 65.9 72.7 735 33.7 26.7 47.1 59.8 65.2
OKGITRob 594 35.8 28.4 49.2 65.4 72.1 849 33.4 26.5 46.4 58.8 63.9

Our TernaryCL 393 38.9 30.5 54.6 69.2 75.5 767 33.3 25.3 48.7 63.0 68.3

Table 2: Results on ReVerb20K and ReVerb45K in the standard full data (100% train) setup. Best scores are made
bold. Columns with ↓ denote lower is better, otherwise higher is better.
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Figure 3: Results at sparsity levels on Re-
Verb20K (Left) and ReVerb45K (Right).
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Figure 4: Visualization of Baseline(B) and Our(O) on ReVerb20K
(rv20) and ReVerb45K(rv45). Same numbers denote similar entities.

lines which fall in three groups:

• General: This applies general KG models to
OpenKGs. It includes TransE (Bordes et al.,
2013), DistMult (Yang et al., 2015), ComplEx
(Trouillon et al., 2016), ConvE (Dettmers et al.,
2018) and ConvTransE (Shang et al., 2019).

• OpenKG: This comprises the baselines designed
specifically for OpenKGs. It includes CaRe-
TransE and CaReConvE (Gupta et al., 2019).

• OpenKG+PLM: This group uses pretrained lan-
guage models (PLM) to improve the representa-
tion learning. It includes SimKGC (Wang et al.,
2022), OKGITBert and OKGITRob (Chandrahas
and Talukdar, 2021). SimKGC is a state-of-the-
art contrastive model for CuratedKGs, we apply
it to OpenKGs. OKGITBert and OKGITRob are
state-of-the-art models for OpenKGs.

For our TernaryCL TernaryCL is implemented
based on the PyTorch library with a single GeForce
RTX 2080 GPU. The number of parameters
is 18.06M for ReVerb20K and 33.63M for Re-
Verb45K. We run the model five times and report
the maximum of results. For the training settings,
the optimizer is set to Adam, the embedding size
is set to 300. The entity and relation embeddings

are initialized randomly, and the word vectors are
initialized with the GloVe embeddings. Default
fusion strategy (§4.6) is Sb(pf ) and text encoder
(§4.1) is BiGRU.

We tune our model with the grid search to se-
lect the optimal hyper-parameters based on the per-
formance on the validation dataset. The list of
hyperparameters are from two aspects: (1) Hyper-
parameters for Finetune stage: batch size ∈ {32,
64, 128, 256, 512}, learning rate ∈ {1e-3, 1e-4,
8e-5, 5e-5, 1e-5}. (2) Hyperparameters for Pretrain
stage: learning rate ∈ {1e-3, 1e-4, 5e-5, 1e-5}, tem-
perature regulation value ∈ {0.1, 0.05, 0.01}. The
results of hyperparameters are shown in Fig. 6.

For Baselines The results of baselines are repro-
duced with open source implementations. Con-
cretely, TransE, DistMult and ComplEx are repro-
duced with public code in 3. The code for ConvE
is in 4 and for SimKGC is in 5. The code for Con-
vTransE is implemented by us and public in our
code. We use the grid search technique to select the
optimal values of hyperparameters for above base-
lines. For OpenKG and OpenKG+PLM baselines,
CaReTransE, CaReConvE are reproduced with the

3https://github.com/uma-pi1/kge
4https://github.com/malllabiisc/CaRE
5https://github.com/intfloat/SimKGC
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Model
Few-Shot Entity Few-Shot Relation Zero-Shot Entity Zero-Shot Relation

AR ↓ ARR H@1 H@10 AR ↓ ARR H@1 H@10 AR ↓ ARR H@1 H@10 AR ↓ ARR H@1 H@10

CaReTransE 1215 10.6 1.2 25.6 2022 10.7 1.7 26.4 3286 7.3 0.0 20.9 2071 10.4 2.2 24.8
CaReConvE 2196 24.4 19.6 33.1 2663 20.6 16.2 29.3 3304 14.2 11.1 20.8 2557 22.3 18.1 30.4
OKGITBert 285 29.4 22.2 43.1 1696 26.2 19.3 38.8 3465 20.1 15.1 29.8 1775 27.4 20.7 40.8
TernaryCL 364 33.1 25.0 48.6 863 27.7 20.5 41.8 1473 20.7 15.5 31.1 868 30.1 23.1 43.2

CaReTransE 2610 12.6 6.7 21.4 3323 13.6 7.8 23.0 5776 10.2 8.8 12.4 3368 11.8 6.4 20.3
CaReConvE 2739 19.2 15.5 26.2 3379 14.8 10.9 22.8 5662 4.3 3.0 6.6 3429 12.5 8.8 19.2
OKGITBert 644 23.5 18.2 33.7 2211 20.0 14.5 31.0 4952 7.9 5.4 12.5 2349 18.6 13.2 29.2
TernaryCL 954 23.6 16.9 35.8 1460 21.3 14.9 32.8 2626 13.2 9.9 19.5 1539 18.3 12.3 29.9

Table 3: Results of few-/zero-shot entities/relations on ReVerb20K (Top) and ReVerb45K (Below) with 20% train.

public code in 4, OKGITBert and OKGIT+Rob are
reproduced with the public code in 6. The optimal
values of hyperparameters for this four baselines
are consistent with that in their paper.

5.3 Results
• Full-data evaluation. We first present the re-
sults on the standard full-data setup in Table 2,
for which we use the original train set (100%).
We notice that TernaryCL achieves substantial im-
provements in comparison to the baselines. For
ReVerb20K, it outperforms all the baselines by
a good margin across all the metrics – ARR in-
creases by 3.1 point and H@1,10,50,100 increase
by 2.1, 5.1, 3.3, 2.8 points, respectively. For Re-
Verb45K, its performance is better than General
and OpenKG baselines with sizeable margins in
all metrics, notably 3.6 point in ARR and 1.9, 7.4,
9.4, 9.6 points in H@1,10,50,100. It also outper-
forms OpenKG+PLM baselines in all metrics for
ReVerb20K and in 3 of 6 metrics for ReVerb45K.

Overall, TernaryCL with a simple structure
can achieve better performance through inno-
vative training methods at lower costs than
OpenKG+PLM baselines that use a relatively com-
plex structure and large PLMs which is memory
and compute intensive. This can make TernaryCL
a favorable choice against the baselines.

• Targeted evaluation with sparsity. We now
evaluate whether TernaryCL can alleviate the spar-
sity problem from the perspective of different spar-
sity levels. Fig. 3 reports the results on the (orig-
inal) test set for different train sets with varying
sparsity level. We observe that TernaryCL achieves
the best scores at all sparsity levels on both datasets.
Taking ReVerb20K as an example, it gives improve-
ments of 3.3, 3.8, 2.5 and 2.8 points over OKGIT-
Bert at 80%, 60%, 40%, 20%, respectively. Note

6https://github.com/Chandrahasd/OKGIT

that OKGITBert enhances learning with large-scale
PLMs, which possess a lot of commonsense and
factual knowledge within its huge parameter space
by training on large data. In contrast, TernaryCL
does not use side information or PLMs, but gives
significant performance gains over OKGITBert,
even when the sparsity level is high (e.g., 20%).

• Targeted evaluation for few- and zero-shot.
We now analyze whether TernaryCL can alleviate
sparsity on test sets with few- or zero-shot enti-
ties (or relations). As shown in Table 3, CaRe-
TransE performs poorly, especially, its H@1 score
is 0.0 for zero-shot entities on ReVerb20K. OKGIT-
Bert achieves better results than CaReTransE and
CaReConvE on most metrics, which shows that
pretrained knowledge introduced by Bert could be
helpful to few- and zero-shot entities and relations.
The proposed TernaryCL, without using any PLM
or extra information, outperforms all baselines by
a good margin on most metrics.

• Visualization evaluation. To qualitatively
show that TernaryCL can make entities with the
same meaning closer in the vector space, we show
t-SNE visualization (Van der Maaten and Hinton,
2008) in Fig. 4. For this, we train TernaryCL on
the original train set (100%) and compare with the
state-of-the-art baseline OKGITBert. For visualiza-
tion, we selected 10 entity clusters from the test set,
where each cluster has more than three entities. We
observe that entities with the same meaning (same
number) are closer in TernaryCL than in OKGIT-
Bert. These qualitative results are consistent with
the above quantitative results, which further verify
the effectiveness of the proposed TernaryCL.

5.4 Ablation Study and Analysis
• Fusion strategy. The ablations for the fusion
strategies (§4.6) are shown in Fig. 5(a), where
Sa(pe), Sa(pr), Sb(pe), Sb(pr) use only one type
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Figure 5: Results (H@1) for (a) fusion strategies, (b) no.
of negative entities and relations, and (c) components

of 1-to-N pattern (denoted by the subscript of
p), and Sa(pf ) and Sb(pf ) are our two variants.
Sa(pf ), which fuses both 1-to-N types, outper-
forms its counterparts Sa(pe) and Sa(pr). We see
the same phenomenon with Sb(pf ), which outper-
forms Sb(pe) and Sb(pr). This proves that both
1-to-N types carry different semantic features, and
integration of them yields additive gains. When we
compare our two variants, Sb(pf ) shows better per-
formance than Sa(pf ) on ReVerb20K while similar
performance on ReVerb45K. Beside H@1, we also
compare the H@10,50,100 scores on ReVerb45K;
these scores of Sa(pf ) are 48.3, 62.5, 67.9, which
are lower than that of Sb(pf ) in Table 2. Sb(pf )
contrasts a positive sample with both negative en-
tities and relations, which is able to capture more
discriminative features for the positive sample.

• No. of negative entities and relations. To in-
vestigae how the number of negative entities and re-
lations could affect the performance of TernaryCL,
we design several collocations of negative enti-
ties and negative relations (entity-relation): 0-0,
0-10, 10-0, 50-0, 50-10, 50-20, 10-50. Results in
Fig. 5(b) show that TernaryCL achieves the best re-
sults on ReVerb20K at 50-10 and on ReVerb20K at
50-20 which have the bigger no. of negative entities
and the smaller no. of negative relations. It also
reveals that negative entities are more important
than negative relations in improving performance.

• Component. We now probe the role of each
component in our model (Fig. 5(c)). -Enc de-
notes removing the text encoder (§4.1) from the
full model. Similarly, -CE, -CR, -CSF, and -CSY
represent removing the Contrastive Entity (§4.2),
Contrastive Relation (§4.3), Contrastive Self (§4.4),
Contrastive Synonym (§4.5), respectively. Com-
pared to the full model, performance of -Enc de-
creases prominently meaning that the text encoder
plays a crucial role in improving performance.

The performance degradation for -CE, -CR, -CSF
proves that Contrastive Entity, Contrastive Relation,
Contrastive Self are also important components
of the model. Removing Contrastive Synonym (-
CSY) decreases the performance on ReVerb20K
while has similar performance on ReVerb45K. Be-
side H@1, we also computed H@10,50,100 scores
on ReVerb45K; -CSY gets 48.1, 61.9, 67.7, which
are lower than ones of the full model (Table 2).

Note that the roles of BiGRU (-Enc) and CL (-
CE, -CR, -CSF, -CSY) are different – BiGRU is a
basic component to encode textual features, while
CL is a training mechanism to capture discrimina-
tive features. The main take home messages from
our experiments and ablations are: (1) as an en-
coder, Bi-GRU is more effective than BERT; (2)
CL gives further significant improvements irrespec-
tive of the encoder.

6 Conclusion

In this work, we have provided empirical insights
about the sparsity problem of OpenKGs, and pro-
posed TernaryCL, a contrastive learning framework
to alleviate the sparsity by introducing contrastive
entity, relation, self, synonym and fusion methods.
Through extensive experiments and comprehensive
analysis, we have shown that TernaryCL outper-
forms state-of-the-art baselines by a good margin.

Limitations

Text encoder is an important component in the pro-
posed TernaryCL model, where the default is Bi-
GRU. Pretrained language models (PLMs) have
achieved great results on most NLP tasks, so we
also attempted to use the PLM BERT instead of
BiGRU. However, performance of the model with
BERT (both tuned and not tuned) as an encoder is
weaker than the one with BiGRU. The results are
shown in Appendix (A.3). This shows that usage of
PLMs may not benefit TernaryCL further. In future,
we would like to explore other large-scale PLMs
like RoBERTa (Liu et al., 2019) and ELECTRA
(Clark et al., 2020).
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A Appendix

A.1 Gradient Update

Gradients of Contrastive Entity Taking the
Eq. (4) as an example, we give the detailed rea-
soning steps of gradient about h, r, t+, t−.
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Parameters of entity h can be updated from con-
trastive with the gradient in Eq. (14):
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Gradients of Contrastive Relation Taking the
Eq. (8) as an example, we give the detailed reason-
ing steps of gradient about h, t, r+ and r−.
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Figure 6: Results of hyperparameters on ReVerb20K
(upper) and ReVerb45K (Below).
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Model AR ↓ ARR H@1 H@10 H@50 H@100

BERT-F 754 28.1 22.1 39.1 53.8 61.2
BERT-U 1315 23.7 18.7 33.2 45.9 51.8
BiGRU 393 38.9 30.5 54.6 69.2 75.5

BERT-F 1165 28.8 21.6 42.8 55.3 60.4
BERT-U 2131 18.0 12.5 28.9 41.3 46.6
BiGRU 767 33.3 25.3 48.7 63.0 68.3

Table 4: Results of Textual Technology on ReVerb20K
(upper) and ReVerb45K (below).

A.2 Text Encoder
Results of textual technologies to encoder se-
quences in §4.1: BiGRU and BERT, are shown in
Fig. 5, where BERT-F fixes the parameters of Bert,
BERT-U unfixes them. By observing the results,
performance of model with BERT (both fixed and
unfixed parameters) as encoder is weaker than that
with BiGRU. This shows that BiGRU is more capa-
ble of capturing sequential information in KGs, and
pretrained language model can not give any help to
TernaryCL. State-of-the-art baseline OKGIT also
points out that pretrained language models can not
predict the correct entities on the top. It could be
inadvisable to introduce the pretrained language
model into the proposed model due to the difficulty
of training and reproduction. The intention of con-
structing a KG is to convert text into structures for
easy calculation, that is, KG itself is rich in world
knowledge. So, our TernaryCL pays attention to
mining own structure features in an effective way.
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