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Abstract

We study the evolution of latent space in fine-
tuned NLP models. Different from the com-
monly used probing-framework, we opt for
an unsupervised method to analyze represen-
tations. More specifically, we discover latent
concepts in the representational space using hi-
erarchical clustering. We then use an alignment
function to gauge the similarity between the
latent space of a pre-trained model and its fine-
tuned version. We use traditional linguistic con-
cepts to facilitate our understanding and also
study how the model space transforms towards
task-specific information. We perform a thor-
ough analysis, comparing pre-trained and fine-
tuned models across three models and three
downstream tasks. The notable findings of our
work are: i) the latent space of the higher lay-
ers evolve towards task-specific concepts, ii)
whereas the lower layers retain generic con-
cepts acquired in the pre-trained model, iii) we
discovered that some concepts in the higher
layers acquire polarity towards the output class,
and iv) that these concepts can be used for gen-
erating adversarial triggers.

1 Introduction

The revolution of deep learning models in NLP can
be attributed to transfer learning from pre-trained
language models. Contextualized representations
learned within these models capture rich linguis-
tic knowledge that can be leveraged towards novel
tasks e.g. classification of COVID-19 tweets (Alam
et al., 2021; Valdes et al., 2021), disease prediction
(Rasmy et al., 2020) or natural language under-
standing tasks such as SQUAD (Rajpurkar et al.,
2016) and GLUE (Wang et al., 2018).

Despite their success, the opaqueness of deep
neural networks remain a cause of concern and has
spurred a new area of research to analyze these
models. A large body of work analyzed the knowl-
edge learned within representations of pre-trained

∗ This work was carried out while the author was at QCRI.

models (Belinkov et al., 2017; Conneau et al., 2018;
Liu et al., 2019; Tenney et al., 2019; Durrani et al.,
2019; Rogers et al., 2020) and showed the pres-
ence of core-linguistic knowledge in various parts
of the network. Although transfer learning using
pre-trained models has become ubiquitous, very
few papers (Merchant et al., 2020; Mosbach et al.,
2020; Durrani et al., 2021) have analyzed the rep-
resentations of the fine-tuned models. Given their
massive usability, interpreting fine-tuned models
and highlighting task-specific peculiarities is crit-
ical for their deployment in real-word scenarios,
where it is important to ensure fairness and trust
when applying AI solutions.

In this paper, we focus on analyzing fine-tuned
models and investigate: how does the latent space
evolve in a fine-tuned model? Different from the
commonly used probing-framework of training a
post-hoc classifier (Belinkov et al., 2017; Dalvi
et al., 2019a), we opt for an unsupervised method
to analyze the latent space of pre-trained models.
More specifically, we cluster contextualized rep-
resentations in high dimensional space using hi-
erarchical clustering and term these clusters as
the Encoded Concepts (Dalvi et al., 2022). We
then analyze how these encoded concepts evolve
as the models are fine-tuned towards a downstream
task. Specifically, we target the following ques-
tions: i) how do the latent spaces compare between
base1 and the fine-tuned models? ii) how does the
presence of core-linguistic concepts change during
transfer learning? and iii) how is the knowledge of
downstream tasks structured in a fine-tuned model?

We use an alignment function (Sajjad et al.,
2022) to compare the concepts encoded in the fine-
tuned models with: i) the concepts encoded in their
pre-trained base models, ii) the human-defined con-
cepts (e.g. parts-of-speech tags or semantic prop-
erties), and iii) the labels of the downstream task
towards which the model is fine-tuned.

1We use “base” and “pre-trained” models interchangeably.
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Figure 1: Comparing encoded concepts of a model across different layers with: i) the concepts encoded its base
model (dashed lines), ii) human-defined concepts (e.g. POS tags or semantic properties), and iii) task specific
concepts (e.g. positive or negative sentiment class).

We carried out our study using three pre-trained
transformer language models; BERT (Devlin et al.,
2019), XLM-RoBERTa (Conneau et al., 2020)
and ALBERT (Lan et al., 2019), analyzing how
their representation space evolves as they are fine-
tuned towards the task of Sentiment Analysis (SST-
2, Socher et al., 2013), Natural Language Infer-
ence (MNLI, Williams et al., 2018) and Hate
Speech Detection (HSD, Mathew et al., 2020). Our
analysis yields interesting insights such as:

• The latent space of the models substantially
evolve from their base versions after fine-
tuning.

• The latent space representing core-linguistic
concepts is limited to the lower layers in the
fine-tuned models, contrary to the base models
where it is distributed across the network.

• We found task-specific polarity concepts in
the higher layers of the Sentiment Analysis
and Hate Speech Detection tasks.

• These polarized concepts can be used as trig-
gers to generate adversarial examples.

• Compared to BERT and XLM, the representa-
tional space in ALBERT changes significantly
during fine-tuning.

2 Methodology

Our work builds on the Latent Concept Analysis
method (Dalvi et al., 2022) for interpreting repre-
sentational spaces of neural network models. We
cluster contextualized embeddings to discover En-
coded Concepts in the model and study the evo-
lution of the latent space in the fine-tuned model
by aligning the encoded concepts of the fine-tuned
model to: i) their pre-trained version, ii) the human-
defined concepts and iii) the task-specific concepts
(for the task the pre-trained model is fine-tuned on).
Figure 1 presents an overview of our approach. In
the following, we define the scope of Concept and
discuss each step of our approach in detail.

2.1 Concept

We define concept as a group of words that are clus-
tered together based on any linguistic relation such
as lexical, semantic, syntactic, morphological etc.
Formally, consider Ct(n) as a concept consisting
of a unique set of words {w1, w2, . . . , wJ} where
J is the number of words in Ct, n is a concept
identifier, and t is the concept type which can be
an encoded concept (ec), a human-defined concept
(pos ∶ verbs, sem ∶ loc, . . . ) and a class-based
concept (sst ∶ +ive, hsd ∶ toxic, . . . ).

Encoded Concepts: Figure 2 shows a few ex-
amples of the encoded concepts discovered in the
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(a) Nouns ending with “y” (b) Named Entities – TV (c) Racial Slurs

Figure 2: Examples of encoded concepts. The size of a specific word is based on its frequency in the cluster, defined
by the number of times different contextual representations of a word were grouped in the same cluster.

BERT model, where the concept is defined by a
group based on nouns ending with “y” (Figures 2a)
or a group based on TV related named entities
(Figure 2b). Similarly, Figure 2c is a concept rep-
resenting racial slurs in a BERT model tuned for
Hate Speech Detection (HSD) task. We denote
this concept as Cec(bert-hsd-layer10-c227) ={paki, nigger,mudslime, redneck . . . }, i.e. the
concept was discovered in the layer 10 of the BERT-
HSD model and c227 is the concept number.

Human Concepts: Each individual tag in
the human-defined concepts such as parts-
of-speech (POS), semantic tagging (SEM)
represents a concept C. For example,
Cpos(JJR) = {greener, taller, happier, . . . }
defines a concept containing comparative adjec-
tives in the POS tagging task, Csem(MOY ) ={January, February, . . . , December} defines
a concept containing months of the year in the
semantic tagging task.

Task-specific Concepts: Another kind of con-
cept that we use in this work is the task-specific
concepts where the concept represents affinity of
its members with respect to the task labels. Con-
sider a sentiment classification task with two labels
“positive” and “negative”. We define Csst(+ve) as
a concept containing words when they only appear
in sentences that are labeled positive. Similarly, we
define Chsd(toxic) as a concept that contain words
that only appear in the sentences that were marked
as toxic.

2.2 Latent Concept Discovery

A vector representation in the neural network
model is composed of feature attributes of the input
words. We group the encoded vector representa-
tions using a clustering approach discussed below.
The underlying clusters, that we term as the en-

coded concepts, are then matched with the human-
defined concepts using an alignment function.

Formally, consider a pre-trained model M with
L layers: {l1, l2, . . . , lL}. Given a dataset W ={w1, w2, ..., wN}, we generate feature vectors, a

sequence of latent representations: W M
−→ z

l ={zl1, . . . , zln}2 by doing a forward-pass on the data
for any given layer l. Our goal is to cluster rep-
resentations zl, from task-specific training data to
obtain encoded concepts.

We use agglomerative hierarchical cluster-
ing (Gowda and Krishna, 1978), which assigns
each word to its individual cluster and iteratively
combines the clusters based on Ward’s minimum
variance criterion, using intra-cluster variance. Dis-
tance between two vector representations is cal-
culated with the squared Euclidean distance. The
algorithm terminates when the required K clusters
(i.e. encoded concepts) are formed, where K is a
hyper-parameter. Each encoded concept represents
a latent relationship between the words present in
the cluster.

2.3 Alignment

Once we have obtained a set of encoded concepts
in the base (pre-trained) and fine-tuned models, we
want to align them to study how the latent space
has evolved during transfer learning. Sajjad et al.
(2022) calibrated representational space in trans-
former models with different linguistic concepts to
generate their explanations. We extend their align-
ment function to align latent spaces within a model
and its fine-tuned version. Given a concept C1(n)
with J number of words, we consider it to be θ-
aligned (Λθ) with concept C2(m), if they satisfy
the following constraint:

2Each element zi denotes contextualized word representa-
tion for the corresponding word wi in the sentence.
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Λθ(C1, C2) = {1, if
∑w∈C1

∑w′∈C2
δ(w,w

′)
J

≥ θ

0, otherwise,
(1)

where Kronecker function δ(w,w′) is defined as

δ(w,w′) = {1, if w = w
′

0, otherwise

Human-defined Concepts The function can be
used to draw a mapping between concepts differ-
ent types of discussed in Section 2.1. To inves-
tigate how the transfer learning impacts human-
defined knowledge, we align the latent space to
the human-defined concepts such as Cpos(NN) or
Cchunking(PP ).

Task Concepts Lastly, we compare the encoded
concepts with the task-specific concepts. Here,
we use the alignment function to mark affinity of
an encoded concept. For the Sentiment Analy-
sis task, let a task-specific concept Csst(+ve) ={w+

1 , w
+
2 , . . . , w

+
n} defined by a set words that

only appeared in positively labeled sentences
S = {s+1 , s+2 , . . . , s+n}. We call a concept Cec ={x1, x2, . . . , xn} aligned to Csst(+ve) and mark
it positive if all words (≥ θ) in the encoded con-
cept appeared in positively labeled sentences. Note
that here a word represents an instance based on
its contextualized embedding. We similarly align
Cec with Csst(−ve) to discover negative polarity
concepts.

3 Experimental Setup

3.1 Models and Tasks

We experimented with three popular transformer
architectures namely: BERT-base-cased (Devlin
et al., 2019), XLM-RoBERTa (Conneau et al.,
2020) and ALBERT (v2) (Lan et al., 2019) using
the base versions (13 layers and 768 dimensions).
To carryout the analysis, we fine-tuned the base
models for the tasks of sentiment analysis using
the Stanford sentiment treebank dataset (SST-2,
Socher et al., 2013), natural language inference
(MNLI, Williams et al., 2018) and the Hate Speech
Detection task (HSD, Mathew et al., 2020).

3.2 Clustering

We used the task-specific training data for cluster-
ing using both the base (pre-trained) and fine-tuned
models. This enables to accurately compare the

representational space generated by the same data.
We do a forward-pass over both base and fine-tuned
models to generate contextualized feature vectors3

of words in the data and run agglomerative hier-
archical clustering over these vectors. We do this
for every layer independently, obtaining K clus-
ters (a.k.a encoded concepts) for both base and
fine-tuned models. We used K = 600 for our
experiments.4 We carried out preliminary experi-
ments (all the BERT-base-cased experiments) using
K = 200, 400, . . . , 1000 and all our experiments
using K = 600 and K = 1000. We found that our
results are not sensitive to these parameters and
the patterns are consistent with different cluster
settings (please see Appendix B).

3.3 Human-defined Concepts

We experimented with traditional tasks that are de-
fined to capture core-linguistic concepts such as
word morphology: part-of-speech tagging using
the Penn TreeBank data (Marcus et al., 1993), syn-
tax: chunking tagging using CoNLL 2000 shared
task dataset (Tjong Kim Sang and Buchholz, 2000),
CCG super tagging using CCG Tree-bank (Hock-
enmaier, 2006) and semantic tagging using the Par-
allel Meaning Bank data (Abzianidze et al., 2017).
We trained BERT-based sequence taggers for each
of the above tasks and annotate the task-specific
training data. Each core-linguistic task serves as
a human-defined concept that is aligned with en-
coded concepts to measure the representation of
linguistic knowledge in the latent space. Appendix
A presents the details on human defined concepts,
data stats and tagger accuracy.

3.4 Alignment Threshold

We consider an encoded concept to be aligned with
another concept, if it has at least 95%5 match in
the number of words. We only consider concepts
that have more than 5 word-types. Note that the
encoded concepts are based on contextualized em-
bedding where a word has different embeddings
depending on the context.

3We use NeuroX toolkit (Dalvi et al., 2019b) to extract
contextualized representations.

4We experimented with ELbow (Thorndike, 1953) and
Silhouette (Rousseeuw, 1987) methods to find the optimal
number of clusters, but could not observe a reliable pattern.
Selecting between 600 − 1000 clusters gives the right bal-
ance to avoid over-clustering (many small clusters) and under-
clustering (a few large clusters).

5Using an overlap of ≥ 95% provides a very tight thresh-
old, allowing only 5% of noise. Our patterns were consistent
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Figure 3: Comparing encoded concepts of base models with their SST fine-tuned versions. X-axis = base model,
Y-axis = fine-tuned model. Each cell in the matrix represents a percentage (aligned concepts/total concepts in a
layer) between the base and fine-tuned models. Darker color means higher percentage. Detailed plots with actual
overlap values are provided in the Appendix.

4 Analysis

Language model pre-training has been shown to
capture rich linguistic features (Tenney et al., 2019;
Belinkov et al., 2020) that are redundantly dis-
tributed across the network (Dalvi et al., 2020). We
analyze how the representational space transforms
when tuning towards a downstream task: i) how
much knowledge is carried forward and ii) how it
is redistributed, using our alignment framework.

4.1 Comparing Base and Fine-tuned Models

How do the latent spaces compare between base
and fine-tuned models? We measure the overlap
between the concepts encoded in the different lay-
ers of the base and fine-tuned models to guage the
extent of transformation. Figures 3 compares the
concepts in the base BERT, XLM-RoBERTa and
ALBERT models versus their fine-tuned variants
on the SST-2 task.6 We observe a high overlap
in concepts in the lower layers of the model that
starts decreasing as we go deeper in the network,
completely diminishing towards the end. We con-
jecture that the lower layers of the model retain
generic language concepts learned in the base
model, where as the higher layers are now learn-
ing task-specific concepts.7 Note, however, that
the lower layers also do not completely align be-
tween the models, which shows that all the lay-
ers go through substantial changes during transfer
learning.

at lower and higher thresholds.
6Please see all results in Appendix C.1.
7Our next results comparing the latent space with human-

defined language concepts (Section 4.2) and the task specific
concepts (Section 4.3) reinforces this hypothesis.

Comparing Architectures: The spread of the
shaded area along the x-axis, particularly in XLM-
R, reflects that some higher layer latent concepts in
the base model have shifted towards the lower lay-
ers of the fine-tuned model. The latent space in the
higher layers now reflect task-specific knowledge
which was not present in the base model. ALBERT
shows a strikingly different pattern with only the
first 2-3 layers exhibiting an overlap with base con-
cepts. This could be attributed to the fact that AL-
BERT shares parameters across layers while the
other models have separate parameters for every
layer. ALBERT has less of a luxury to preserve
previous knowledge and therefore its space trans-
forms significantly towards the downstream task.
Notice that the overlap is comparatively smaller
(38% vs. 52% and 46% compared to BERT and
XLM-R respectively), even in the embedding layer,
where the words are primarily grouped based on
lexical similarity.

4.2 Presence of Linguistic Concepts in the
Latent Space

How does the presence of core-linguistic concepts
change during transfer learning? To validate our
hypothesis that generic language concepts are now
predominantly retained in the lower half, we an-
alyze how the linguistic concepts spread across
the layers in the pre-trained and fine-tuned models
by aligning the latent space to the human-defined
concepts. Figure 4 shows that the latent space of
the models capture POS concepts (e.g., determin-
ers, past-tense verbs, superlative adjectives etc.)
The information is present across the layers in the
pre-trained models, however, as the model is fine-
tuned towards downstream task, it is retained only
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(a) BERT – Base (b) XLM-R – Base (c) ALBERT – Base

(d) BERT – SST (e) XLM-R – SST (f) ALBERT – SST

Figure 4: Alignment of the encoded concepts with POS concepts (e.g., determiners, past-tense verbs, superlative
adjectives) in the base and fine-tuned SST models. The maximum possible concepts per layer are 600 (total of
clusters). Note that the POS information depreciates significantly in the final layers in the SST-tuned models.

(a) BERT – Base (b) BERT – POS

Figure 5: Alignment of the the encoded concepts with
POS in the BERT base versus fine-tuned POS models.
In contrast to the results in Figure 4, POS concepts
appreciate significantly when the model is tuned towards
the POS task. At most 23% concepts align in the BERT-
base model as opposed to BERT-pos where close to 84%
encoded concepts are aligned to the POS tags.

at the lower and middle layers. We can draw two
conclusions from this result: i) POS information
is important for a foundational task such as lan-
guage modeling (predicting the masked word), but
not critically important for a sentence classifica-
tion task like sentiment analysis. To strengthen our
argument and confirm this further, we fine-tuned
a BERT model towards the task of POS tagging
itself. Figure 5 shows the extent of the alignment
between POS concept with BERT-base and BERT
tuned models towards the POS. Notice that more
than 80% encoded concepts in the final layers of
the BERT-POS model are now aligned with the
POS concept as opposed to the BERT-SST model

where POS concept (as can be seen in Figure 4)
decreased to less than 5%.

Comparing Tasks and Architectures We found
these observations to be consistently true for other
tasks (e.g., MNLI and HSD) and human-defined
concepts (e.g., SEM, Chunking and CCG tags)
across the three architectures (i.e., BERT, XLM-R
and ALBERT) that we study in this paper.8 Table 1
compares an overall presence of core-linguistic con-
cepts across the base and fine-tuned models. We
observe a consistent deteriorating pattern across
all human-defined concepts. In terms of architec-
tural difference we again found ALBERT to show a
substantial difference in the representation of POS
post fine-tuning. The number of concepts not only
regressed to the lower layers, but also decreased
significantly as opposed to the base model.

4.3 Task-specific Latent Spaces

How is the knowledge of downstream tasks struc-
tured in a fine-tuned models? Now that we have
established that the latent space of higher layers
are substantially different from base models and
from linguistic concepts, we probe: what kind of
knowledge is learned in the latent space of higher
layers? Previous research (Kovaleva et al., 2019;
Merchant et al., 2020; Durrani et al., 2021) found

8Please see Appendix C.2 for all the results.
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(a) BERT – Base (b) XLM-R – Base (c) ALBERT – Base

(d) BERT – SST (e) XLM-R – SST (f) ALBERT – SST

Figure 6: Aligning encoded concepts with the task specific concepts in Base and their corresponding SST tuned
models.

Tasks POS SEM Chunking CCG

BERT(B) 17.6 23.5 27.3 20.6
BERT(SST) 11.2 17.0 21.4 15.1

XLM-R(B) 20.6 22.6 22.1 17.9
XLM-R(SST) 15.1 18.0 19.9 15.2

ALBERT(B) 20.4 27.3 32.6 25.6
ALBERT(SST) 4.1 5.3 8.2 4.1

Table 1: Overall presence (percentage of aligned con-
cepts) of human-defined concepts in base (B) versus
SST fine-tuned models.

that the higher layers are optimized for the task. We
also noticed how the concepts learned in the top 6
layers of the BERT-POS model completely evolve
towards the (POS) task labels (See Figure 5). We
now extend this experiment towards the sentence-
level tasks and investigate the extent of alignment
between latent concepts of the fine-tuned models
with its task labels. The SST-2 task predicts the sen-
timent (positive or negative) of a sentence. Using
the class label, we form positive and negative polar-
ity concepts, and align the polarity concepts with
the encoded concepts.9 If an encoded concept is
not aligned with any polarity concept, we mark the
concept as “Neutral”. Figure 6 shows that the con-
cepts in the final layers acquire polarity towards the
task of output classes compared to the base model
where we only see neutral concepts throughout the
network. Figure 7 shows an example of positive
(top left) and negative polarity (top right) concepts

9Positive polarity concept is made up of words that only
appeared in the positively labeled sentences. We say an en-
coded concept (Cec) is aligned to positive polarity concept
(C+) if 95% words in Cec ∈ C

+. Note that the opposite is
not necessarily true.

(a) XLM-SST L12, c15 (b) XLM-SST L10, c16

(c) XLM-HSD L10, c576

Figure 7: Polarity Concepts in XLM-R models: Positive
(top left) and Negative (top right) in the SST task, Toxic
Concept (bottom) in the HSD task.

in the XLM-R model tuned for the SST task. The
bottom half shows a toxic concept in the model
trained towards the HSD task. Please see Appendix
D for more examples.

Comparing architectures Interestingly, the pres-
ence of polarity clusters is not always equal. The
last two layers of BERT-SST are dominated by neg-
ative polarity clusters, while ALBERT showed an
opposite trend where the positive polarity concepts
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were more frequent. We hypothesized that the im-
balance in the presence of polarity clusters may re-
flect prediction bias towards/against a certain class.
However, we did not find a clear evidence for this
in a pilot experiment. We collected predictions
for all three models over a random corpus of 37K
sentences. The models predicted negative senti-
ment by 69.5% (BERT), 67.4% (XLM) and 64.4%
(ALBERT). While the numbers weakly correlate
with the number of negative polarity concepts in
these models, a thorough investigation is required
to obtain accurate insights. We leave a detailed
exploration of this for future.

ALBERT showed the evolution of polarity clus-
ters much earlier in the network (Layer 3 onwards).
This is inline with our previous results on aligning
encoded concepts of base and fine-tuned models
(Figure 3). We found that the latent space in AL-
BERT evolved the most, overlapping with its base
model only in the first 2-3 layers. The POS-based
concepts were also reduced just to the first two
layers (Figure 4). Here we can see that the con-
cepts learned within the remaining layers acquire
affinity towards the task specific labels. We found
these results to be consistent with the hate speech
task (See Appendix C.3) but not in the MNLI task,
where we did not find the latent concepts to acquire
affinity towards the task labels. This could be at-
tributed to the complexity and nature of the MNLI
task. Unlike the SST-2 and HSD tasks, where lexi-
cal triggers serve as an important indicators for the
model, MNLI requires intricate modeling of seman-
tic relationships between premise and hypothesis to
predict entailment. Perhaps an alignment function
that models the interaction between the concepts of
premise and hypothesis is required. We leave this
exploration for the future.

5 Adversarial Triggers

The discovery of polarized concepts in the SST-2
and HSD tasks, motivated us to question: whether
the fine-tuned model is learning the actual task
or relying on lexical triggers to solve the problem.
Adversarial examples have been used in the litera-
ture to highlight model’s vulnerability (Kuleshov
et al., 2018; Wallace et al., 2019). We show that
our polarity concepts can be used to generate such
examples using the following formulation:

Let Cec(+ve) = {C+
1 , C

+
2 , . . . , C

+
N} be a set of

latent concepts that are identified to have a strong
affinity towards predicting positive sentiment in

Tasks Layer 10 Layer 11 Layer 12

BERT SST
+ve→ −ve 43.6 41.2 43.4
−ve → +ve 41.0 42.1 44.7

XLM-RoBERTa SST
+ve → −ve 42.8 41.7 43.0
−ve → +ve 29.7 31.1 33.7

ALBERT SST
+ve → −ve 69.2 73.8 77.2
−ve → +ve 69.6 74.2 70.9

BERT HS
nt → tx 65.2 41.5 59.3
tx → nt 11.2 6.74 8.91

XLM-RoBERTa HS
nt → tx 57.7 69.0 38.9
tx → nt 7.23 9.14 9.60

ALBERT HS
nt → tx 84.9 65.4 91.5
tx → nt 0.00 0.00 0.00

Table 2: Flipping accuracy (%age) of top-5 polarized
concepts: +ve → −ve = flipping a positive sentence to
negative using negative polarity concept, nt → tx = con-
verting a non-toxic sentence toxic using toxic concept.

the SST task. Let S− = {s−1 , s−2 , . . . , s−M} be the
sentences in a dev-set that are predicted as negative
by the model. We compute the flipping accuracy
of each concept C+

x using the following function:

F (C+
x , S

−) = 1

Na
∑

wi∈C+
x

∑
sj∈S−

γ(wi, sj)
where γ(wi, sj) = 1, if prepending wi to the sen-
tence sj flips the model’s prediction from negative
to positive. Here Na is the total number of adver-
sarial examples that were generated, and equates
to ∣C+

x ∣× ∣S−∣. We similarly compute the flipping
accuracy F (C−

x , S
+) of the concepts that acquire

affinity towards the negative class. The concepts
with high flipping accuracy can be used to generate
adversarial examples.

We compute the flipping accuracy of each polar-
ized concept on a small hold-out set. Table 2 shows
the average flipping accuracy of the top-5 polarized
concepts for each class (positive/negative in SST-2
and toxic/non-toxic in the HSD task) across final
three layers on the test-set. We observed that by just
prepending the words in highly polarized concepts,
we are able to effectively flip the model’s prediction
by up to 91.5%. This shows that these models are
fragile and heavily rely on lexical triggers to make
predictions. In the case of Hate Speech Detection
task, we observed that while it is easy to make a
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non-toxic sentence toxic, it is hard to reverse the
affect.

Comparing Architectures We found ALBERT
to be an outlier once again with a high flipping ac-
curacy, which shows that ALBERT relies on these
cues more than the other models and is therefore
more prone to adversarial attacks.

6 Related Work

A plethora of papers have been written in the past
five years on interpreting deep NLP models. The
work done in this direction can be broadly classified
into: i) post-hoc representation analysis that encode
the contextualized embedding for the knowledge
learned (Dalvi et al., 2017; Belinkov et al., 2020;
Rogers et al., 2020; Lepori and McCoy, 2020) and
ii) causation analysis that connect input features
with model behavior as a whole and at a level of
individual predictions (Linzen et al., 2016; Gulor-
dava et al., 2018; Marvin and Linzen, 2018).10 Our
work mainly falls in the former category although
we demonstrated a causal link between the encoded
knowledge and model predictions by analyzing
the concepts in the final layers and demonstrat-
ing how they can be used to generate adversarial
examples with lexical triggers. Recent work (Feder
et al., 2021; Elazar et al., 2021) formally attempts
to bridge the gap by connecting the two lines of
work.

Relatively less work has been done on interpret-
ing fine-tuned models. Zhao and Bethard (2020)
analyzed the heads encoding negation scope in fine-
tuned BERT and RoBERTa models. Merchant et al.
(2020); Mosbach et al. (2020) analyzed linguis-
tic knowledge in pre-trained models and showed
that while fine-tuning changes the upper layers of
the model, but does not lead to “catastrophic for-
getting of linguistic phenomena”. Our results res-
onate with their findings, in that the higher layers
learn task-specific concepts.11 However, similar
to Durrani et al. (2021) we found depreciation of
linguistic knowledge in the final layers. Mehrafarin
et al. (2022) showed that the size of the datasets
used for fine-tuning should be taken into account
to draw reliable conclusions when using probing
classifiers. A pitfall to the probing classifiers is the

10Please read (Belinkov and Glass, 2019; Sajjad et al., 2021)
for comprehensive surveys of methods.

11Other works such as (Ethayarajh, 2019; Sajjad et al.,
2023) have also shown higher layers to capture task-specific
information.

difficulty to disentangle probe’s capacity to learn
from the actual knowledge learned within the rep-
resentations (Hewitt and Liang, 2019). Our work
is different from all the previous work done on in-
terpreting fine-tuned models. We do away from
the limitations of probing classifiers by using an
unsupervised approach.

Our work is inspired by the recent work on dis-
covering latent spaces for analyzing pre-trained
models (Michael et al., 2020; Dalvi et al., 2022;
Fu and Lapata, 2022; Sajjad et al., 2022). Like
Dalvi et al. (2022); Sajjad et al. (2022) we discover
encoded concepts in pre-trained models and align
them with pre-defined concepts. Different from
them, we study the evolution of latent spaces of
fine-tuned models.

7 Conclusion

We studied the evolution of latent space of pre-
trained models when fine-tuned towards a down-
stream task. Our approach uses hierarchical cluster-
ing to find encoded concepts in the representations.
We analyzed them by comparing with the encoded
concepts of base model, human-defined concepts,
and task-specific concepts. We showed that the
latent space of fine-tuned model is substantially
different from their base counterparts. The human-
defined linguistic knowledge largely vanishes from
the higher layers. The higher layers encode task-
specific concepts relevant to solve the task. More-
over, we showed that these task-specific concepts
can be used in generating adversarial examples that
flips the predictions of the model up to 91% of the
time in the case of ALBERT Hate Speech model.
The discovery of word-level task-specific concepts
suggest that the models rely on lexical triggers and
are vulnerable to adversarial attacks.

8 Limitations

The hierarchical clustering is memory intensive.
For instance, the clustering of 250k representation
vectors, each of size 768 consumes 400GB of CPU
memory. This limits the applicability of our ap-
proach to small to medium data sizes. Moreover,
our approach is limited to word-level concepts. The
models may also learn phrasal concepts to solve a
task. We speculate that the low matches of affinity
concepts in the MNLI task is due to the limitation
of our approach in analyzing phrasal units.
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Appendix

A Linguistic Concepts

We used parts-of-speech tags (48 concepts) using
Penn Treebank data (Marcus et al., 1993), semantic
tags (73 concepts) (Abzianidze et al., 2017), chunk-
ing tags (Tjong Kim Sang and Buchholz, 2000)
(22 concepts) and CCG super tags (1272 concepts).
Please see all the concepts below. This provides
a good coverage of linguistic concepts including
morphology, syntax and semantics.

# Tag Description

1 CC Coordinating conjunction
2 CD Cardinal number
3 DT Determiner
4 EX Existential there
5 FW Foreign word
6 IN Preposition or subordinating conjunction
7 JJ Adjective
8 JJR Adjective, comparative
9 JJS Adjective, superlative
10 LS List item marker
11 MD Modal
12 NN Noun, singular or mass
13 NNS Noun, plural
14 NNP Proper noun, singular
15 NNPS Proper noun, plural
16 PDT Predeterminer
17 POS Possessive ending
18 PRP Personal pronoun
19 PRP$ Possessive pronoun
20 RB Adverb
21 RBR Adverb, comparative
22 RBS Adverb, superlative
23 RP Particle
24 SYM Symbol
25 TO to
26 UH Interjection
27 VB Verb, base form
28 VBD Verb, past tense
29 VBG Verb, gerund or present participle
30 VBN Verb, past participle
31 VBP Verb, non-3rd person singular present
32 VBZ Verb, 3rd person singular present
33 WDT Wh-determiner
34 WP Wh-pronoun
35 WP$ Possessive wh-pronoun
36 WRB Wh-adverb
37 # Pound sign
38 $ Dollar sign
39 . Sentence-final punctuation
40 , Comma
41 : Colon, semi-colon
42 ( Left bracket character
43 ) Right bracket character
44 " Straight double quote
45 ’ Left open single quote
46 " Left open double quote
47 ’ Right close single quote
48 " Right close double quote

Table 3: Penn Treebank POS tags.

Chunking tags: NP (Noun phrase), VP (Verb
phrase), PP (Prepositional phrase), ADVP (Adverb
phrase), SBAR (Subordinate phrase), ADJP (Ad-
jective phrase), PRT (Particles), CONJP (Conjunc-
tion), INTJ (Interjection), LST (List marker), UCP
(Unlike coordinate phrase). For the annotation,
chunks are represented using IOB format, which
results in 22 tags in the dataset as reported in Table
5.

A.1 BERT-based Sequence Tagger

We trained a BERT-based sequence tagger to auto-
annotate our training data. We used standard splits
for training, development and test data for the 4
linguistic tasks (POS, SEM, Chunking and CCG
super tagging) that we used to carry out our analysis
on. The splits to preprocess the data are available
through git repository12 released with Liu et al.
(2019). See Table 5 for statistics and classifier
accuracy.

B Selection of the number of Clusters

We tried Elbow and Silhouette to get the optimum
number of clusters, but did not observe any reliable
patterns. In Elbow the distortion scores kept in-
creasing, resulting in over-clustering (a large num-
ber of clusters consisted of less than 5 words).
Over-clustering results in high but wrong align-
ment scores e.g. consider a two word cluster having
words “bad” and “worse”. The cluster will have a
successful match with “adjective” since more than
95% of the words in the cluster are adjectives. In
this way, a lot of small clusters will have a success-
ful match with many human-defined concepts and
the resulting alignment scores will be high. On the
other hand, Silhouette resulted in under-clustering,
giving the best score at number of clusters = 10.
We handled this empirically by trying several val-
ues for the number of clusters i.e., 200 to 1600
with step size 200. We selected 600 to find a good
balance with over and under clustering. We under-
stand that this may not be the best optimal point.
We presented the results of 600 and 1000 clusters
to show that our findings are not sensitive to the
number of clusters parameter. Please See Figures 9
and 8 for comparison.

12
https://github.com/nelson-liu/

contextual-repr-analysis
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(a) BERT – SST (600) (b) XLM-R – SST (600) (c) ALBERT – SST (600)

(d) BERT – SST (1000) (e) XLM-R – SST (1000) (f) ALBERT – SST (1000)

Figure 8: Comparing encoded concepts when using 600 or 1000 clusters

(a) BERT – SST (600) (b) XLM-R – SST (600) (c) ALBERT – SST (600)

(d) BERT – SST (1000) (e) XLM-R – SST (1000) (f) ALBERT – SST (1000)

Figure 9: Aligning encoded concepts with the task specific concepts

C Analysis

C.1 Comparing Base and Fine-tuned Models

In Section 4.1 we showed the overlap between the
encoded concepts of base and fine-tuned SST mod-
els. In Figures 10 and 11 we show the same for
MNLI and Hate Speech models. We also report
the results on how the concepts evolve across the
layers. We found that lower layers of the model
(until layer 5) show a substantial overlap (up to
40% overlapping clusters). Higher layers show less
than 10% overlap. Please See Figure 12 for this
result.

C.2 Presence of Linguistic Concepts in the
Latent Space

In Section 4.2 we showed the overlap of the en-
coded concepts in the base and fine-tuned SST
models with human-defined POS concepts. In Fig-
ures 13-19, we provide alignment results for SEM,
CCG and Chunking concepts with SST and also
MNLI tasks.

C.3 Task-specific Latent Spaces
In Section 4.3 we studied how the concepts in SST
models acquire polarity towards the task. We did
not show the base models due to space limitations.
Here we show the base models as well to demon-
strate that all concepts had no polarity in the base
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ANA (anaphoric) MOD (modality)

PRO anaphoric & deictic pronouns: he, she, I, him NOT negation: not, no, neither, without
DEF definite: the, loIT, derDE NEC necessity: must, should, have to
HAS possessive pronoun: my, her POS possibility: might, could, perhaps, alleged, can
REF reflexive & reciprocal pron.: herself, each other DSC (discourse)
EMP emphasizing pronouns: himself SUB subordinate relations: that, while, because
ACT (speech act) COO coordinate relations: so, {,}, {;}, and
GRE greeting & parting: hi, bye APP appositional relations: {,}, which, {(}, —
ITJ interjections, exclamations: alas, ah BUT contrast: but, yet
HES hesitation: err NAM (named entity)
QUE interrogative: who, which, ? PER person: Axl Rose, Sherlock Holmes
ATT (attribute) GPE geo-political entity: Paris, Japan
QUC concrete quantity: two, six million, twice GPO geo-political origin: Parisian, French
QUV vague quantity: millions, many, enough GEO geographical location: Alps, Nile
COL colour: red, crimson, light blue, chestnut brown ORG organization: IKEA, EU
IST intersective: open, vegetarian, quickly ART artifact: iOS 7
SST subsective: skillful surgeon, tall kid HAP happening: Eurovision 2017
PRI privative: former, fake UOM unit of measurement: meter, $, %, degree Celsius
DEG degree: 2 meters tall, 20 years old CTC contact information: 112, info@mail.com
INT intensifier: very, much, too, rather URL URL: http://pmb.let.rug.nl
REL relation: in, on, ’s, of, after LIT literal use of names: his name is John
SCO score: 3-0, grade A NTH other names: table 1a, equation (1)
COM (comparative) EVE (events)
EQU equative: as tall as John, whales are mammals EXS untensed simple: to walk, is eaten, destruction
MOR comparative positive: better, more ENS present simple: we walk, he walks
LES comparative negative: less, worse EPS past simple: ate, went
TOP superlative positive: most, mostly EXG untensed progressive: is running
BOT superlative negative: worst, least EXT untensed perfect: has eaten
ORD ordinal: 1st, 3rd, third TNS (tense & aspect)
UNE (unnamed entity) NOW present tense: is skiing, do ski, has skied, now
CON concept: dog, person PST past tense: was baked, had gone, did go
ROL role: student, brother, prof., victim FUT future tense: will, shall
GRP group: John {,} Mary and Sam gathered, a group of people PRG progressive: has been being treated, aan hetNL
DXS (deixis) PFT perfect: has been going/done
DXP place deixis: here, this, above TIM (temporal entity)
DXT temporal deixis: just, later, tomorrow DAT full date: 27.04.2017, 27/04/17
DXD discourse deixis: latter, former, above DOM day of month: 27th December
LOG (logical) YOC year of century: 2017
ALT alternative & repetitions: another, different, again DOW day of week: Thursday
XCL exclusive: only, just MOY month of year: April
NIL empty semantics: {.}, to, of DEC decade: 80s, 1990s
DIS disjunction & exist. quantif.: a, some, any, or CLO clocktime: 8:45 pm, 10 o’clock, noon
IMP implication: if, when, unless
AND conjunction & univ. quantif.: every, and, who, any

Table 4: Semantic tags.

Task Train Dev Test Tags F1

POS 36557 1802 1963 48 96.81
SEM 36928 5301 10600 73 96.32
Chunking 8881 1843 2011 22 96.93
CCG 39101 1908 2404 1272 95.24

Table 5: Data statistics (number of sentences) on train-
ing, development and test sets using in the experiments
and the number of tags to be predicted

models. In Figure 21, we show the same for the
Hate-Speech task. We do not show the MNLI task,
because we could not find polarity concepts in that
task.

D Selection of task-specific Latent
clusters

Figure 22 shows some task-specific latent clusters
from various models and layers.
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(a) BERT (SST) (b) BERT (MNLI)

(c) XLM-R (SST) (d) XLM-R (MNLI)

(e) ALBERT (SST) (f) ALBERT (MNLI)

Figure 10: Comparing Latent Concepts of Base models with their SST and MNLI fine-tuned versions. X-axis =
base model, Y-axis = fine-tuned model
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(a) BERT (HS) (b) XLM-R (HS) (c) ALBERT (HS)

Figure 11: Comparing Latent Concepts of Base models with their Hate Speech fine-tuned versions. X-axis = base
model, Y-axis = fine-tuned model

(a) BERT (SST) (b) XLM-R(SST) (c) ALBERT (SST)

Figure 12: Comparing Latent Concepts of Base models with themselves. X-axis = base model, Y-axis = fine-tuned
model

(a) BERT – Base (b) XLM-R – Base (c) ALBERT – Base

(d) BERT – SST (e) XLM-R – SST (f) ALBERT – SST

Figure 13: Aligning encoded concepts with human-defined concept (SEM) in base and pre-trained models
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(a) BERT – Base (b) XLM-R – Base (c) ALBERT – Base

(d) BERT – SST (e) XLM-R – SST (f) ALBERT – SST

Figure 14: Aligning encoded concepts with human-defined concept (Chunking) in base and pre-trained models

(a) BERT – Base (b) XLM-R – Base (c) ALBERT – Base

(d) BERT – SST (e) XLM-R – SST (f) ALBERT – SST

Figure 15: Aligning encoded concepts with human-defined concept (CCG) in base and pre-trained models
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(a) BERT – Base (b) XLM-R – Base (c) ALBERT – Base

(d) BERT – MNLI (e) XLM-R – MNLI (f) ALBERT – MNLI

Figure 16: Aligning encoded concepts with human-defined concept (POS ) in base and pre-trained models

(a) BERT – Base (b) XLM-R – Base (c) ALBERT – Base

(d) BERT – MNLI (e) XLM-R – MNLI (f) ALBERT – MNLI

Figure 17: Aligning encoded concepts with human-defined concept (SEM ) in base and pre-trained models
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(a) BERT – Base (b) XLM-R – Base (c) ALBERT – Base

(d) BERT – MNLI (e) XLM-R – MNLI (f) ALBERT – MNLI

Figure 18: Aligning encoded concepts with human-defined concept (CHUNKING ) in base and pre-trained models

(a) BERT – Base (b) XLM-R – Base (c) ALBERT – Base

(d) BERT – MNLI (e) XLM-R – MNLI (f) ALBERT – MNLI

Figure 19: Aligning encoded concepts with human-defined concept (CCG ) in base and pre-trained models
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(a) BERT – Base (b) XLM-R – Base (c) ALBERT – Base

(d) BERT – SST (e) XLM-R – SST (f) ALBERT – SST

Figure 20: Aligning encoded concepts with the task specific concepts

(a) BERT – Base (b) XLM-R – Base (c) ALBERT – Base

(d) BERT – HS (e) XLM-R – HS (f) ALBERT – HS

Figure 21: Aligning encoded concepts with the task specific (Hate Speech: toxic vs. non-toxic) concepts. Positive =
Toxic, Negative = Non-Toxic
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(a) XLM-R Layer 12 Cluster 470 (Pos-
itive Sentiment)

(b) XLM-R Layer 12 Cluster 15 (Posi-
tive Sentiment)

(c) XLM-R Layer 10 Cluster 16 (Neg-
ative Sentiment)

(d) XLM-R Layer 10 Cluster 121 (Neg-
ative Sentiment)

(e) XLM-R Layer 10 Cluster 576
(Toxic Hatespeech)

(f) BERT Layer 12 Cluster 432 (Posi-
tive Sentiment)

(g) BERT Layer 12 Cluster 272 (Toxic
Hatespeech)

(h) BERT Layer 10 Cluster 227 (Toxic
Hatespeech)

(i) ALBERT Layer 11 Cluster 489
(Positive Sentiment)

(j) ALBERT Layer 11 Cluster 215
(Negative Sentiment)

Figure 22: Task-specific latent clusters from various models and layers
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