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Abstract

The aim of Logic2Text is to generate control-
lable and faithful texts conditioned on tables
and logical forms, which not only requires a
deep understanding of the tables and logical
forms, but also warrants symbolic reasoning
over the tables. State-of-the-art methods based
on pre-trained models have achieved remark-
able performance on the standard test dataset.
However, we question whether these methods
really learn how to perform logical reasoning,
rather than just relying on the spurious corre-
lations between the headers of the tables and
operators of the logical form. To verify this hy-
pothesis, we manually construct a set of coun-
terfactual samples, which modify the original
logical forms to generate counterfactual logical
forms with rarely co-occurred table headers and
logical operators. SOTA methods give much
worse results on these counterfactual samples
compared with the results on the original test
dataset, which verifies our hypothesis. To deal
with this problem, we firstly analyze this bias
from a causal perspective, based on which we
propose two approaches to reduce the model’s
reliance on the shortcut. The first one incor-
porates the hierarchical structure of the logical
forms into the model. The second one exploits
automatically generated counterfactual data for
training. Automatic and manual experimen-
tal results on the original test dataset and the
counterfactual dataset show that our method is
effective to alleviate the spurious correlation.
Our work points out the weakness of previous
methods and takes a further step toward de-
veloping Logic2Text models with real logical
reasoning ability.

1 Introduction

Recently, generating logical consistent natural
language from tables has attracted the atten-
tion of the research community (Wiseman et al.,

*Equal contribution.
†Corresponding author.

Figure 1: The GPT-2 based model makes a fluent and
logical consistent prediction on the original Logic2Text
sample, but generates a sentence logically inconsistent
with the logical form of the counterfactual sample.

2018; Lee, 2018; Liang et al., 2009; Shu et al.,
2021; Chen et al., 2020c,b). Given a table, the
Logic2Text (Chen et al., 2020d) task is required to
generate controllable and faithful texts conditioned
on a logical form, which not only requires a deep
understanding of the tables and logical forms, but
also warrants symbolic reasoning over the tables.
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State-of-the-art methods based on pre-trained mod-
els (Radford et al., 2019; Shu et al., 2021) have
achieved remarkable performance on the standard
test dataset of Logic2Text. Figure 1 shows an orig-
inal sample of the task.

However, we question whether these methods re-
ally learn how to perform logical reasoning, rather
than just relying on the spurious correlations 1 be-
tween table headers such as “attendance" and log-
ical operators such as “argmax". Several previ-
ous studies have demonstrated that such shortcuts
severely damage the robustness of models (Branco
et al., 2021; Wang and Culotta, 2021a).

To verify our hypothesis, we manually construct
a set of counterfactual samples from the develop-
ment set and test set of Logic2Text, named LCD
(Logical Counterfactual Data) 2. We modify the
original logical forms to generate counterfactual
logical forms with rarely co-occurred table headers
and logical operators, then we annotate the corre-
sponding counterfactual label sentences. Figure 1
compares the original sample of Logic2Text and
the corresponding counterfactual sample. GPT-2
based model makes a fluent and logical consistent
prediction on the original sample. However, for
the counterfactual sample, the model still employs
the “argmax” logical operator to describe “atten-
dance”, which is inconsistent with the logical form.
The reason we suppose is that in the training dataset
there are a large number of logical forms containing
“ argmax { all_rows ; attendance }”, which is used
to describe the phrase “the highest attendance”. A
model trained on this biased dataset would learn
to exploit such spurious correlations to make pre-
dictions, thus failing to perform correct logical rea-
soning on the counterfactual samples. We evaluate
the state-of-the-art methods on LCD, and they give
much worse results compared with the results on
the original test set.

In addition to the bias in the training dataset, pre-
vious works directly using linearized logical forms
as inputs fail to understand the hierarchical struc-
ture of the logical forms, which further aggravates
the models to learn the spurious associations be-
tween the logical operators and the table headers.

To deal with this problem, we firstly leverage

1Spurious Correlations or Shortcuts refer to connections
between two variables that are non-causal in statistics (Simon,
1954).

2Counterfactual Samples are samples that change some
variables of the factual samples with the others unchanged
(Pearl et al., 2016).

Causal Inference (Pearl et al., 2016) to analyze this
bias. Based on the analysis, two approaches are
proposed: 1) In order to overcome the limitation
of linearized logical form inputs, we use different
attention masks for different tokens in the logical
forms to constrain each token to only interact with
the tokens it should reason with; 2) To reduce the
reliance on spurious correlations in the training
dataset, we train the model on automatically gener-
ated counterfactual data, forcing the model to learn
real logical reasoning.

Automatic and manual experimental results on
the standard test dataset of Logic2Text and LCD
demonstrate that our method is able to alleviate
spurious correlations and improve logical consis-
tency. Compared with the state-of-the-art baselines,
there are 22% and 14% less relative decreases after
applying our method to GPT-2 and T5, respectively.
Our work mainly points out the weakness of current
methods, which is easy to be ignored but impor-
tant for a robust and faithful generation. It takes a
further step toward developing Logic2Text models
with real logical reasoning ability.

Our codes and data are publicly available
at https://github.com/liuchengyuan123/
L2TviaCounterfactualSamples.

2 Pilot Study on the Robustness of
Logic2Text Models

2.1 Counterfactual Samples Construction

To quantify to what extent the bias affects the ro-
bustness of Logic2Text models, we manually con-
struct a set of counterfactual samples from the de-
velopment set and test set of Logic2Text, named
LCD (Logical Counterfactual Data).

Specifically, we take datapoints from the devel-
opment set and test set of Logic2Text and modify
the original logical forms to generate counterfac-
tual logical forms with rarely co-occurred table
headers and logical operators, then we annotate
the corresponding counterfactual label sentences.
The tables are left unchanged when constructing
counterfactual samples. Figure 2 shows how to
construct a counterfactual sample from the original
sample. The “argmax” logical operator in the origi-
nal left sample is applied to the “attendance” table
header to locate the row in the table. We replace
the table header “attendance” with a counterfac-
tual table header “date” to produce the counterfac-
tual logical form. Then, based on the constructed
counterfactual logical form, we annotate the corre-
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Figure 2: Construction of counterfactual samples. Left:
Original sample. Right: Counterfactual sample. We
construct the counterfactual logical form by replacing
the header “attendance” with the counterfactual header
“date”, leaving a negative shortcut for the model to ex-
ploit. Then we annotate the label sentence based on the
counterfactual logical form.

sponding label sentence. The reason we choose the
“date” table header is that after linearizing, both the
original logical form and the counterfactual logical
form contain the logical operator “argmax” and the
table header “attendance”, which leaves a negative
shortcut for the models to exploit.

We totally construct 809 counterfactual samples,
on which current SOTA Logic2Text models are
evaluated.

2.2 Models

We evaluate the GPT-2 (Radford et al., 2019) and
T5 (Raffel et al., 2020) based Logic2Text mod-
els on the counterfactual dataset. These two mod-
els achieve the SOTA results on the standard test
dataset of Logic2Text.

Formally, given a linearized logical form L, and
the caption of a table T , the input of the pre-
trained models is denoted as X = [P ;T ;L], which
is a concatenation of L, T and a prefix prompt
P . The prefix prompt P is “Describe the log-
ical form: ”. Given a set of training samples
S = {(Li, Ti, Yi)|1 ≤ i ≤ N} where Y is the
label sentence and N is the number of samples,
GPT-2 or T5 based Logic2Text models are trained
by maximizing the following objective function:

J =
∑

X,Y ∈S

|Y |∑

i=1

logP (Yi|Y<i, X) (1)

where P indicates the probability distribution mod-
elled by GPT-2 or T5, |Y | is the length of the label
sentence and Yi is the i-th token of Y .

Models BLEC* BLEC
L2T LCD Dec L2T LCD Dec

GPT-2 61.17 28.18 54% 83.52 58.96 29%
T5 71.61 41.78 42% 88.00 70.58 20%

Table 1: Baseline performance on test set of Logic2Text
(L2T) and Logical Counterfactual Data (LCD). Dec
denotes the relative decrease on LCD compared with
L2T.

2.3 Metric
Following Shu et al. (2021), we use BLEC to mea-
sure the logical consistency between the logical
forms and the generated texts. Given a test dataset
D, BLEC is defined as:

BLEC =

∑
s∈D Is(oper , num)

|D| (2)

where function Is(oper, num) checks whether the
operators (oper) or numbers (num) of the logical
form can be exactly found in the sentence generated
by the model. |D| is the size of D. However, this
implementation ignores checking the table headers
of the logical form, only focusing on the accuracy
of operators and numbers. In order to take the table
headers into consideration, we define an improved
metric named BLEC* shown as follows:

BLEC∗ =

∑
s∈D Is(oper, num, header)

|D| (3)

2.4 Results
GPT-2 and T5 based Logic2Text models are trained
on the original training dataset, then they are eval-
uated on the standard test dataset (L2T) and LCD,
respectively.

As shown in Table 1, compared with the per-
formance on L2T, there is a serious decline for
both T5 and GPT-2 on LCD with respect to BLEC*
and BLEC. Specifically, for T5, the BLEC* score
decreases from 71.61 to 41.78, giving a relative
decrease of 42%. For GPT-2, the model achieves
a BLEC* score of 61.17 on L2T, while only ob-
taining a BLEC* score of 28.18 on LCD, giving
a relative decrease over 50%. Since BLEC only
checks the accuracy on operators and numbers, the
decline of BLEC is relatively small. As seen, T5
performs slightly better than GPT-2 on LCD. The
reason we suppose is that since GPT-2 is an autore-
gressive language model, when used as an encoder
it can only see partial logical forms.
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Figure 3: Causal graph for the task of Logic2Text. Left:
The original method. Right: Our proposed modifica-
tions.

Results on LCD verify our hypothesis that the
models trained on the biased dataset learn to ex-
ploit the spurious correlations to perform logical
reasoning, which are not robust when encountering
counterfactual samples.

3 Causal Analysis

To deal with this problem, we utilize Causal Infer-
ence (Pearl et al., 2016) to analyze this bias. The
left graph of Figure 3 illustrates the overall training
process of conventional Logic2Text models from a
causal perspective, where vertex L and Y denote
the linearized logical form and the label sentence,
respectively. Vertex U represents an unobserved
confounder in Logic2Text 3, which we suppose is
the preference of the annotators to describe a table.
There are also three edges in the left causal graph:
U → L, U → Y and L → Y . Edge U → L and
U → Y denote the confounder’s effects on L and
Y , respectively. L → Y represents that the label
sentence is dependent on the logical form L. This
link is the objective that the model should learn.

Concretely, in the Logic2Text task, the con-
founder U can be interpreted as the preference of
the annotators to describe a table. For example,
given a table recording sports events, the annota-
tors prefer to describe the game with the largest
crowd attendance rather than the most recent game.
As a consequence, this unobserved confounder
has direct effects on the generation of the logi-
cal form (U → L), and the generation of the
label sentence (U → Y ). These effects finally
build a backdoor path from the logical form to
the label sentence (L ← U → Y ). The back-
door path induces the model to learn the short-
cut between the logical form and the label sen-
tence, rather than the process of reasoning sentence

3A Confounder is a variable that influences both the treat-
ment and the outcome, causing a spurious association. Con-
founding is a causal concept, and as such, cannot be described
in terms of correlations or associations (VanderWeele and
Shpitser, 2013).

from the real structure of logical form (L → Y ).
For example, when a model trained on a dataset
in which a large number of logical forms con-
taining “ argmax { all_rows ; attendance }”, the
model can make correct predictions “the high-
est attendance”. However, when testing on
the logical form “ argmax { all_rows ; date }”, the
model leverages this shortcut and still employs the
“argmax” logical operator to describe “attendance”,
which is inconsistent with the logical form.

Formally, given a confounder U , there exists
a logical operator oi ∈ O and a table header
hj ∈ H such that p(oi, hj |U) is much higher than
p(oi, hk|U) for other hk ∈ H , where O,H repre-
sent the set of logical operators and table headers in
the dataset respectively. p(o, h) denotes the proba-
bility that the header h should reason with operator
o. In this case, the models actually learns the prob-
ability P (Y |U,L, T ), rather than P (Y |L, T ).

4 Methodology

Based on the above analysis, we make two modifi-
cations on the causal graph as shown on the right
part of Figure 3. Firstly, we propose structure-
aware logical form encoder to build L→ Z → Y .
Secondly, we remove the backdoor path L← U →
Y by training the model on automatically generated
counterfactual samples.

4.1 Structure-Aware Logical Form Encoder
by Building L→ Z → Y

In order to overcome the drawbacks of the lin-
earized logical form inputs in previous works, a
vertex Z is added to the causal graph, which rep-
resents the structure-aware feature of the logical
form. Then, we replace the edge L→ Y with the
path L → Z → Y , as shown in the right part of
Figure 3. In the implementation, this modification
is achieved by using an attention mask matrix to
constrain each token in the logical form to only
interact with the tokens it should reason with.

Specifically, let L denote a linearized logical
form L = {w1, w2, ...wn} where wi ∈ V ∪ O.
V and O are the vocabulary and the set of
logical operators, respectively. Let M denote the
attention mask matrix. Mi,j = 0 indicates that
the attention value from word wi to wj is masked,
otherwise the opposite. Take the logical form
“hop{ argmax { all_rows ; attendance }; date }”
as an example. The attention mask vec-
tor for the logical operator “argmax" is
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Figure 4: Automatically generated counterfactual sam-
ple for training.

(0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0). With this con-
straint, the model will not be able to learn the
association between “argmax” and “date”.

To decide the values in the attention mask matrix
M, we need convert the linearized logical form L
into a logical graph Lg. To be more specific, for
each token in the linearized logical form, there is a
corresponding node in Lg. If a logical operator wi

and a table header wj satisfy the pattern “wi { A ;
wj ; B }” in the linearized logical form, where A
and B denote valid logical subclauses, then wi and
wj in Lg are connected.

Formally, let Mi,j = edge(wi, wj), where edge
is a binary function which indicates whether there
is an edge between word wi and wj in Lg. Based on
M, the attention matrix in each transformer layer
of the pre-trained models is calculated as:

Â = softmax(M⊙A) (4)

where A denotes the original attention values, ⊙
represents the element-wise product. Based on
Â, the standard self-attention transformer can be
performed to calculate the representations for each
token.

4.2 Counterfactual Data Synthesizing to
Remove the Backdoor Path L← U → Y

In order to constrain the model to only rely on the
direct path L→ Y to generate sentences, the sec-
ond modification is to remove the backdoor path
L ← U → Y in the left causal graph of Fig-
ure 3. The backdoor path induces the model to
learn the shortcuts between the logical form and the
label sentence. This modification is implemented
by training the model on automatically generated
counterfactual samples.

Specifically, given a selected table header in the
logical form, we propose to replace it with another
table header, which is randomly selected from the
set of all the table headers in the training dataset.
Accordingly, the exactly same tokens in the label

sentence are also replaced with the selected table
header. This replacement constructs counterfac-
tual samples containing some rarely co-occurred
headers and logic operators, which violates the pref-
erence of the annotators, thus removing the edges
from the unobserved confounder U to L and Y .
Take Figure 4 as an example. Given a linearized
logical form, and the corresponding label sentence,
we locate the table header “attendance” and replace
it with another randomly selected table header “as-
sist”. We also replace “attendance” with “assist”
in the label sentence. We filter out samples whose
logical forms do not contain table headers that can
exactly match any tokens in the label sentence. Due
to the space limitation, three strategies we used to
select the table headers to be substituted are listed
in the Appendix B.

Based on the automatically generated counter-
factual data S̃, the model is trained on the mixup of
the counterfactual data S̃ and the original training
dataset S as follows:

J =
∑

X,Y ∈S̃∪S

|Y |∑

i=1

logP (Yi|Y<i, X) (5)

It is worth noting that the label sentences of
the automatically generated counterfactual dataset
may not be natural sentences, since the randomly
selected table headers may not fit the contexts
of the original label sentences. As a result,
adding more automatically generated counterfac-
tual dataset would improve the logical consistency
of the generated texts, but the fluency of the texts
may be hurt. The trade-off is decided by the ratio r
between the size of S̃ and the size of S. r can be
calculated as |S̃|/|S|. An experiment of exploring
the effect of r can be found in Subsection 5.2.

5 Experiments

In this section we conduct experiments on both the
biased Logic2Text dataset and the counterfactual
dataset, LCD. We compare our method with other
SOTA models, and discuss the experimental results.

Baselines We use 1) the Pointer Generator Net-
work (See et al., 2017), 2) SNOWBALL (Shu et al.,
2021), 3) GPT-2 (Radford et al., 2019) and 4) T5
(Raffel et al., 2020) as baselines. The details about
the baselines are shown in Appendix C.

Implementation Details In the experiments, the
learning rate is set to 0.0003. We use beam search
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Method BLEC* BLEC Human Evaluation
L2T ↑ LCD ↑ Dec ↓ L2T ↑ LCD ↑ Dec ↓ L2T ↑ LCD ↑ Dec ↓

Pointer Network 40.11 11.62 71% 70.42 33.13 53% 51 13 75%
SNOWBALL 72.89 51.92 29% 85.35 82.94 3% 77 52 32%

GPT-2 61.17 28.18 54% 83.52 58.96 29% 71 31 56%
T5 71.61 41.78 42% 88.00 70.58 20% 83 41 51%

GPT-2 + Ours 71.70 48.83 32% 87.72 66.74 24% 79 43 46%
T5 + Ours 83.42 59.58 28% 89.93 72.68 19% 84 71 15%

Table 2: Results of different methods on L2T and LCD with respect to BLEC, BLEC* and human evaluation. Dec
denotes the relative decrease when estimated on LCD compared with on L2T, which is calculated as L2T−LCD

L2T .
The up arrow ↑ means that the metric is as higher as better, the down arrow ↓ is the opposite.

for decoding and the beam size is set to 2. The
maximum length of the output sentence is set to
180. The batch size is set to 10 for inference and
2 for training. For the T5 backbone, we initialized
the parameters from CodeT5 (Wang et al., 2021),
which is pre-trained on programming languages.
Linearized logical forms contain similar structures,
with operators and table headers corresponding to
functions and parameters, respectively. For SNOW-
BALL, we follow the settings in (Shu et al., 2021)
but reduce the batch size and beam size to 4 due
to the limitation of GPU memory. We train all the
models on one GeForce GTX 1080 Ti. The code is
implemented by PyTorch and MindSpore.

Manual Evaluation In addition to the automatic
evaluation, we manually check the logical consis-
tency by comparing the output sentences with the
logical forms. Specifically, we randomly select 100
samples from L2T and LCD, then we calculate the
percentage of the samples that the output sentence
is logically consistent with the logical form.

Relative Decrease The LCD and L2T have com-
parable data sizes, with 809 and 1092 samples,
respectively. Here we use relative Decrease to
quantify the degree of decline in model perfor-
mance when test data is transferred from L2T to
LCD, which is calculated as (L2T − LCD)/L2T .
L2T denotes the model performance on standard
Logic2Text test set, LCD denotes the performance
on LCD.

5.1 Main Results
As shown in Table 2, augmenting GPT-2 and T5
with our method obtains a large gain on both L2T
and LCD with respect to BLEC* and BLEC.

Specifically, for T5, the BLEC* score increases
to 83.42 on L2T and 59.58 on LCD, which out-

performs all the baselines and achieves the new
state-of-the-art results.

For GPT-2 with our method, the BLEC* in-
creases by 20.65 on LCD and 10.53 on L2T. The
relative decrease is reduced from 54% to 32%.
Both the results of GPT-2 and T5 demonstrate that
our modifications to the causal graph are effective.
For BLEC, T5 with our method obtains the high-
est BLEC score of 89.93 on L2T, which shows
a slight improvement compared with vanilla T5
(88.0). For GPT-2 with our method, the BLEC
score increases by 4.2 on L2T and 7.78 on LCD.
The improvement of BLEC is relatively limited
compared with BLEC*. The reason we suppose
is that BLEC only checks the accuracy of opera-
tors and numbers, which cannot reveal the errors of
table headers. This problem is also demonstrated
by the case analyses of SNOWBALL. Although
SNOWBALL gives a low decrease, when looking
into some cases generated by SNOWBALL, we
find that SNOWBALL fails to choose the correct
table headers.

A similar conclusion can be drawn from human
evaluation. Our T5-based method achieves the
highest accuracy on L2T (84) and LCD (71), giving
the lowest relative decrease (15%). Compared with
vanilla T5, the manually checked logical accuracy
of our method obtains a 30-point improvement on
LCD, which further verifies the effectiveness of our
method.

5.2 Effect of the Size of Synthetic Data
As indicated in Section 4.2, adding more automat-
ically generated counterfactual examples would
improve the logical consistency of the generated
texts, but the fluency of the texts may be hurt. The
trade-off is decided by the ratio between the size of
counterfactual data S̃ and the size of original train-
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r
L2T LCD

BLEC* / BLEC BLEU BLEC* / BLEC BLEU
0 71.61 / 88 30.41 41.78 / 70.58 23.69
1 74.82 / 88.28 30.35 46.97 / 72.44 21.85
5 79.69 / 90.93 28.64 56.98 / 76.02 22.79

10 79.3 / 89.65 26.89 57.35 / 72.44 22.05
20 82.88 / 90.84 28.02 59.46 / 73.3 22.29
∞ 83.42 / 89.93 27.19 59.58 / 72.68 23.68

Table 3: The effect of the proportion of synthetic train-
ing data on the quality of the generated text. r =
|S̃|/|S|, where |S̃| denotes the size of counterfactual
data, |S| denotes the size of the original training data.
r = ∞ indicates that all of the training data are syn-
thetic counterfactual samples.

ing data S. We conduct development experiments
to quantitatively explore the effect of the trade-off
on the logical consistency and text fluency. We
use BLEC* and BLEC to evaluate the logic consis-
tency, and BLEU-44(Papineni et al., 2002)(noted
as BLEU) to evaluate the text fluency.

As shown in Table 3, with the increase of r =
|S̃|/|S|, the logical correctness increases and the
text fluency decreases, which verifies our hypoth-
esis in Section 4.2. We suggest that the future re-
searchers fine-tune the hyperparameter r to obtain
logically correct and semantically fluent generated
texts.

5.3 Effect of the Complexity of Logical Form
We explore how the model performance is affected
by the complexity of the logical form. The effects
of the complexity are demonstrated from two as-
pects: 1) the maximum depth of the logical form
in a tree form, and 2) the number of nodes in the
logical form. The logical form with more nodes or
deeper depth is regarded as more complex.

We take T5 as the backbone and report the mis-
predicted token rate (MTR) as the metric. Mispre-
dicted tokens are the tokens that occur in the logical
form but not generated in the text. We calculate the
ratio of the number of the mispredicted tokens to
the length of the logical form. We plot the MTR
results with respect to different numbers of nodes
and depths in Figure 5.

As shown in Figure 5(a), as the number of nodes
increases, more tokens are mispredicted by the
vanilla T5 model. In contrast, our method helps T5
to maintain a relatively low error rate as the num-
ber of nodes increases. A similar conclusion can
be drawn from Figure 5(b). Our approach makes

4Standard script NIST mteval-v13a.pl

(a) Mispredicted tokens rate with respect to the number of nodes
in the logical form.

(b) Mispredicted tokens rate with respect to the depth of the
logical form.

Figure 5: Mispredicted token percentage under various
complexity.

the model stable as the logical depth grows. Be-
sides, we observe that for logical forms with low
depths, our method obtains a slight higher MTR
compared with the baseline. The reason we sup-
pose is that simple logical forms are rarely affected
by the unobserved confounder.

5.4 Ablation Study

We conduct ablation experiments on both T5 and
GPT-2 by removing the attention mask (denoted
as AM) and automatically generated counterfac-
tual training data (denoted as CF). The results are
shown in Table 4.

When removing AM, for GPT-2, the BLEC*
score decreases by 2.1 and 6.68 on L2T and LCD
respectively. The BLEC score decreases by 2.98 on
L2T and 7.65 on LCD. For T5, removing AM leads
to 13.55 and 11.74 decreases on L2T and LCD,
respectively. These observations demonstrate the
effect of AM.

When removing the automatically generated
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Method Backbone BLEC* BLEC
L2T↑ LCD↑ Dec↓ L2T↑ LCD↑ Dec↓

w/o both

T5

71.61 41.78 42% 88.00 70.58 20%
w/o CF 65.93 39.80 40% 87.82 66.13 25%
w/o AM 69.87 47.84 32% 87.91 74.16 16%
FULL 83.42 59.58 28% 89.93 72.68 19%
w/o both

GPT-2

61.17 28.18 54% 83.52 58.96 29%
w/o CF 61.72 34.48 44% 85.16 66.25 22%
w/o AM 69.60 42.15 39% 84.98 59.09 30%
FULL 71.70 48.83 32% 87.72 66.74 24%

Table 4: Results of ablation study. We explore the effect of the attention mask (AM) and training on counterfactual
data (CF).

Generation BLEC* BLEC
L2T LCD L2T LCD

- 65.93 39.80 87.82 66.13
Random 75.00 47.34 88.10 64.77
Disturb 79.67 59.20 88.19 72.44

Mix 83.42 59.58 89.93 72.68

Table 5: Results of different methods of generation of
counterfactual data vary on L2T and LCD, where “-”
denotes training on standard Logic2Text.

counterfactual data for training, the performances
for both GPT-2 and T5 are significantly decreased.
Specifically, for GPT-2, the BLEC* decreases by
9.98 on L2T and 14.45 on LCD. For T5, the BLEC*
decreases by 17.49 on L2T and 19.78 on LCD. The
decline increases from 28% to 40%. There is much
worse decrease on LCD than L2T since the data
distribution of LCD is different from L2T which
shares the same data distribution with the training
data.

5.5 Generation of Counterfactual Data

We conduct experiments to investigate the effects
of different strategies to generate counterfactual
data. Specifically, we try to replace the table header
tokens in the logical form, with 1) a random string
(denoted as Random), 2) a randomly selected table
header (denoted as Disturb), 3) and mix the above
two methods up (denoted as Mix). We list the
details of the methods in Appendix B. The results
are shown in Table 5.

We observe that Disturb greatly boosts the per-
formance more than Random on both L2T and
LCD, which proves that meaningful and in-domain
table headers generate more effective counterfac-

tual samples. Besides, the Mix strategy further give
a slightly improvement.

6 Case Study

We select a counterfactual sample from LCD to
demonstrate why our method could perform better
than previous works using the attention score dis-
tributions when decoding. The linearized logical
form of the sample is “eq{ hop {argmax {all_rows
; score };attendance };5032}”, and the label sen-
tence is “the game with the highest score had 5032
spectators”.

Specifically, after decoding the “highest” or
“largest” token corresponding to the “argmax" logi-
cal operator in the logical form, we plot the atten-
tion values of the last transformer layer for each
token of the logical form to explore which table
header the model would choose, as shown in Fig-
ure 6. As seen, for vanilla GPT-2, the attention
score of the token “attendance” is higher than on
“score”, thus producing “highest attendance”. For
our method, the attention score of the token “score”
achieves the largest, which is the corresponding
table header the operator “argmax” should select.

7 Related Work

7.1 Text Generation from Tables

Table-to-text is a popular area in recent years (Wise-
man et al., 2018; Lee, 2018; Liang et al., 2009;
Chen et al., 2021). As previous methods gen-
erate superfacial and uncontrollable logic, Chen
et al. (2020e) introduced Logic2Text as a con-
trollable and fidelity text generation task condi-
tioned on a logical form. Since then, many works
on Logic2Text have been proposed. In order to
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Figure 6: Attention values during decoding. The base-
line pays more attention to “attendance” as we expected,
which verifies our hypothesis.

unify the studies of structural knowledge ground-
ing, Xie et al. (2022) proposed the UNIFIEDSKG
framework and unified 21 structural knowledge
grounding tasks into a text-to-text format, including
Logic2Text. Zhang et al. (2021a) proposed a uni-
fied framework for logical knowledge-conditioned
text generation in few shot setting. To solve the
data scarcity problem of Logic2Text, Shu et al.
(2021) iteratively augmented the original dataset
with a generator and proposed an evaluator for high-
fidelity text generation.

However, they all ignored the spurious correla-
tion in logical forms, which is investigated in our
work.

7.2 Causal Inference For NLP
Causal Inference (Pearl et al., 2016; Kuang et al.,
2020) is a powerful statistical modeling tool for
explanatory analysis. In NLP, many methods have
been proposed based on the causal inference the-
ory (Zhang et al., 2021b; Chen et al., 2020a; Zhang
et al., 2021c; Hu and Li, 2021). Yang et al. (2021)
and Wang and Culotta (2021b) exploit causal in-
ference to reduce the bias from the context for text
classification tasks. For named entity recognition,
Zeng et al. (2020) replaced the entities in sentences
with counterfactual tokens to remove spurious cor-
relation between the context and the entity token.
Wang and Culotta (2021a) generated counterfac-
tual samples by replacing causal terms with their
antonyms in sentiment classification. Wu et al.
(2020) proposed to use a counterfacutal decoder to

generate unbiased court’s view.
Our work proposes to improve the robustness of

Logic2Text models with causality.

8 Conclusion

We investigate the robustness of current methods
for Logic2Text via a set of manually constructed
counterfactual samples. A significant decline on
the counterfactual dataset verifies the existence
of bias in the training dataset. Then we lever-
age causal inference to analyze the bias, based
on which, two approaches are proposed to reduce
the spurious correlations. Automatic and manual
experimental results on both Logic2Text and the
counterfactual data demonstrate that our method is
effective to alleviate the spurious correlations.

Limitations

Although our method has achieved high logical con-
sistency, we find that for some unseen headers, the
model cannot understand them and generate some
logically correct but not fluent sentences, which
is related to the method of generation of counter-
factual samples. Due to the limited number of
high-quality logical forms, future work may con-
tinue to explore more advanced counterfactual data
generation methods considering the context.

Besides, our structure-aware logical form en-
coder works based on the attention mechanism,
so it can’t be applied to models without attention.
Fortunately, the current attention-based models are
widely used not only because of their better perfor-
mance but also because of their high interpretabil-
ity.
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A Details of Attention Mask

The attention value from token wi to token wj is
masked if there is no direct edge connecting them
on the logical form. To clarify how the value of
the Attention Mask is calculated, we use the left
logical form in Figure 7 as an example. And the at-
tention mask matrix for the tokenized logical form
is shown on the right of Figure 7. For each token in
the logical form, the parent node can be seen (such
as Mhop,result = 1). Besides, an operator token can
also see the child nodes (such as Mwin,eq = 1).
Otherwise, the attention value is masked.

B Replacement Methods

We match the headers from each logical form to
the tokens in the label and then replace the headers
in a specific way if found. Concretely, we propose
the following three strategies for replacement.

Random Replacement Intuitively, when a lay-
man tries to describe some domain-specific table,
he simply replicates the obscure table headers (such
as technical terms). So we train the model’s abil-
ity to replicate the header from the logical form.
We use completely random strings to replace the
headers.
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Figure 7: Sample of Attention Mask matrix. The attention of each token to others with no directly connected edges
is masked.

Header Disturb Another straightforward idea
is to select another header token from a set of all
table headers to replace the header token in the
logical form. However, such a method ignores the
attribute of the data type carried by the columns,
thus it will produce unreasonable counterfactual
samples. In order to solve this problem, we group
all the headers by their data type, including three
categories: strings, numbers, and time. A header in
the logical form is only replaced by another header
with the same data type.

Mixing Replacement We take turns performing
the above two replacement strategies.

C Details of Baselines

Pointer Generator Network (PGN) (See et al.,
2017) can be employed to solve OOV problem.
In addition to calculating the probability of each
token in the existing vocabulary Pvocab, PGN also
calculates pgen while decoding, where pgen denotes
the probability to copy the tokens from the input
sequence. The final distribution is calculated as:

P (w) = pgenPvocab(w)+(1−pgen)
∑

i:wi=w

ait (6)

SNOWBALL To solve the constraint of data
scarcity, Shu et al. (2021) proposed the SNOW-
BALL framework for high-fidelity text generation,
which employed an iterative training procedure
over a generator and an evaluator through data aug-
mentation.

GPT-2 Radford et al. (2019) proposed the left-to-
right unidirectional generative model, with only the
decoder of the transformer (Vaswani et al., 2017).

T5 Raffel et al. (2020) proposed the pre-trained
model specifically for text-to-text generation tasks.
We initialized the parameters from CodeT5 (Wang
et al., 2021), which is more suitable for formal-
language-to-text.

D Effect On the Probability Of Copying
Table Headers

Figure 8: Our method contributes to the improvements
on L2T.

Our method reduces the reliance on spurious cor-
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relations, making the model learn the relationship
between key tokens. We find that our method in-
creases the probability of copying headers from the
logical forms, which affects the performance of the
model on L2T as well. We show two samples in
Figure 8.

In sample 1, the baseline just omits the header
token “nation” because “west germany” itself is an
instance of “nation”. In sample 2, “pga champi-
onship” and “tournaments” have a similar relation-
ship. But our method prefers to keep these headers
if allowed.

E More Counterfactual Samples and
Running Examples

We present 3 more counterfactual samples for ref-
erence. We list them in Table 6 to 8. The con-
cerned pairs of logical operators and table headers
in original samples and counterfactual samples are
highlighted in blue and red respectively. The coun-
terfactual samples are modified from the original
samples, where parts of the logical form are re-
placed with rarely co-occurred logic operators and
table headers. Then the corresponding label sen-
tences are re-edited.

To prove the efficiency of our method, we give
two more running examples in Table 9. The results
in the table illustrate that the Baseline model is
prone to text inconsistent with logical forms when
feeding counterfactual samples as input, while our
approach yields more robust logical reasoning.
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Original Sample Counterfactual Sample

Logical Form
eq { hop { argmax { all_rows ; televote
} ; song } ; dj , take me away } = true

eq { hop { argmin { all_rows ; televote
} ; song } ; tazi vecher } = true

Label
the song dj , take me away recevied the
largest percentage of televotes .

the song ’ tazi vecher ’ got the least
televote in bulgaria in the eurovision
song contest 2008 .

Table 6: Counterfactual Sample 1.

Original Sample Counterfactual Sample

Logical Form
eq { hop { nth_argmin { all_rows ; react
; 2 } ; athlete } ; jaysuma saidy ndure }
= true

eq { hop { nth_argmax { all_rows ; react
; 2 } ; athlete } ; paul hession } = true

Label

jaysuma saidy ndure had the second
shortest react time among the 2008 sum-
mer olympics men ’s 200 metres ath-
letes .

paul hession ’ react time was the second
longest in all athletes .

Table 7: Counterfactual Sample 2.

Original Sample Counterfactual Sample

Logical Form
most_greater { filter_eq { all_rows ; site
; memorial stadium minneapolis , mn }
; attendance ; 24999 } = true

eq { max { filter_less { all_rows ; atten-
dance ; 30000 } ; date } ; 11 / 24 / 1928
} = true

Label

in the 1928 minnesota golden gophers
football under clarence spears , most
of the games at memorial stadium min-
neapolis , mn drew more than 24,999
people .

the most recent game of minnesota
golden gophers football under clarence
spears which drew less than 30000 at-
tendance was held on 11 / 24 / 1928 .

Table 8: Counterfactual Sample 3.

Example 1 Example 2

Logical Form
eq { count { filter_less { filter_greater {
all_rows ; year ; 1975 } ; points ; 1 } } ;
5 } = true

eq { max { filter_less { all_rows ; area
km square ; 10 } ; population } ; 5845 }
= true

Label
there were 5 times that hans - joachim
stuck won less than 1 point in the after
1975 .

the largest population for the populated
places in guam whose area is less than
10 km square is 5845 .

Baseline

in the 1975 season of hans - joachim
stuck , among the years that he partici-
pated in , 5 of them had points less than
1 .

in guam , the highest population in area
km square is 5845 .

Ours
for hans - joachim stuck , when the year
is over 1975 , there were 5 times that
there were less than 1 points .

the highest population in guam with
area km square less than 10 is 5845 .

Table 9: 2 running examples to prove the effectiveness of our method.
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