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Abstract

In recent years, Graph Neural Network (GNN)
approaches with enhanced knowledge graphs
(KG) perform well in question answering (QA)
tasks. One critical challenge is how to ef-
fectively utilize interactions between the QA
context and KG. However, existing work only
adopts the identical QA context representa-
tion to interact with multiple layers of KG,
which results in a restricted interaction. In
this paper, we propose DRLK (Dynamic Hi-
erarchical Reasoning with Language Model
and Knowledge Graphs), a novel model that
utilizes dynamic hierarchical interactions be-
tween the QA context and KG for reasoning.
DRLK extracts dynamic hierarchical features
in the QA context, and performs inter-layer
and intra-layer interactions on each iteration,
allowing the KG representation to be grounded
with the hierarchical features of the QA con-
text. We conduct extensive experiments on four
benchmark datasets in medical QA and com-
monsense reasoning. The experimental results
demonstrate that DRLK achieves state-of-the-
art performances on two benchmark datasets
and performs competitively on the others1.

1 Introduction

Question answering (QA) system is a hot research
area in natural language processing, requiring the
robot to clearly understand the scenario described
in the question and then reason with relevant do-
main knowledge (Jin et al., 2022). Recently, large-
scale pre-trained language models (LMs) (Gu et al.,
2022; Liu et al., 2021) have become a popular
solution in several QA datasets (Mutabazi et al.,
2021), achieving excellent performance. By train-
ing on an ultra large-scale corpus, LMs learn the la-
tent domain knowledge and perform well in down-
stream tasks through fine-tuning (Lewis et al., 2020;

∗Corresponding author.
1Our code is available at https://github.com/MZ-

MiaoZhang/DRLK
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Q A man presents it n rashes on face and also 
complains of decreased mental function. He is also 
having few macular lesions on his skin. On CT scan, 
intracranial calcification was seen. His 6-year old son 
is also having similar skin lesions. What would be 
the most likely diagnosis?

A a) Neurofibrornatosis-1     

b) Neurofibromatosis-2

c) Xeroderma pigmentosum   

d) Autosomal dominant inheritance
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Figure 1: An example from the MedMCQA dataset with
KG, where the correct answer is indicated in bold.

Chakraborty et al., 2020). However, fine-tuned
LMs perform poorly when downstream tasks in-
volve complex reasoning or require explicit knowl-
edge. The fine-tuned approach relies on similar
task patterns and sample forms, while black-box
models result in uninterpretable behavior (McCoy
et al., 2019).

One research topic is to introduce external
knowledge graphs (KGs) for effective and inter-
pretable joint reasoning. Large-scale KGs, such
as UMLS (Bodenreider, 2004) and DrugBank
(Wishart et al., 2018), explicitly define structured
knowledge through triples, entities, and relations.
Existing work (Yasunaga et al., 2021; Zhang et al.,
2022) demonstrates that KGs perform well in rea-
soning tasks involving knowledge. However, the
question in QA task is always in natural language
rather than a structured and logical query. The in-
evitable challenge is to constrain and integrate the
structured KG according to the question, so as to
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extend the reasoning advantage to QA.
Furthermore, well-designed graph neural net-

works (GNNs) (Scarselli et al., 2009; Schlichtkrull
et al., 2018; Yasunaga et al., 2021) are employed
for structured knowledge processing. Related ap-
proaches follow a two-stage paradigm (Lin et al.,
2019; Feng et al., 2020): retrieval and modeling.
First, researchers construct the knowledge sub-
graph by retrieving triples relevant to question via
character matching or entity recognition. Fig. 1
shows an example of knowledge subgraph, where
"cerebral calcification" and "macular lesions" are
core entities in the question. Then, designed GNN
modules are utilized to constrain the knowledge
subgraph and perform inference. Structured infer-
ence paths are contained in multi-hop relations in
the subgraph. However, these methods only focus
on isolated modeling of multi-hop relationships in
KG. They only interact in a shallow manner, fusing
the QA context and KG representations on the out-
put layer or enhancing KG representations by the
QA context statically (Zhang et al., 2022; Sun et al.,
2022). Consequently, these methods demonstrate
limited ability to exchange useful information. Ef-
fective interaction, especially in a non-shallow way
between KG and QA context, is critical to break-
ing the bottleneck of correctly understanding the
complex knowledge relationships in the question.

According to the above consideration, we pro-
pose DRLK, a novel model that utilizes hierarchical
interactions between QA context and KG for rea-
soning (See in Fig. 2). DRLK extracts dynamic hi-
erarchical features in the QA context, and performs
inter-layer and intra-layer interactions on each iter-
ation, allowing KG representations to be grounded
with the hierarchical features of the QA context.
Specifically, we design the hierarchical awareness
module and the heterogeneous relationship module
for dynamic hierarchical interactions. The former
extracts hierarchical features of the QA context and
KG, while the latter performs the message passing
mechanism on the heterogeneous relational net-
work to update the KG. DRLK employs dynamic
hierarchical interactions between the QA context
and KG via inter-layer and intra-layer interactions,
accomplishing correct reasoning via an iterative
execution of above interactions.

In summary, our contributions are three-fold:

• We propose DRLK, a novel approach that fo-
cuses on the hierarchical features of KG and
the QA context, employing joint reason be-

tween LM and KG through inter-layer and
intra-layer hierarchical interactions.

• We design a heterogeneous relationship graph
to perform effective hierarchical interactions
over the heterogeneous relationships, and en-
sure reasoning with correct knowledge rela-
tionships.

• We conduct experiments on four benchmark
datasets in medical QA and commonsense rea-
soning. The results show that DRLK outper-
forms existing KG enhancement methods.

2 Related Work

Integrating KG has become a hot research topic
for enhancing QA systems. Due to the formal het-
erogeneity between structured knowledge and nat-
ural language, some work (Lv et al., 2020; Bian
et al., 2021) unifies two description forms during
input, such as transforming structure knowledge
into text via templates or grammar. These meth-
ods use PLMs as an encoder to perform end-to-end
inference on KG and QA context. Such formal
transformations inevitably lose the original formal
characteristics. Other work (Bosselut et al., 2019,
2021) models structure knowledge with GNN and
integrates them at the embedding representation
level. Wang et al. (2019a) directly integrate the
graphical representation and context of knowledge
via the twin-tower model. Lin et al. (2019) enhance
QA context through the KG representation. In con-
trast, Feng et al. (2020) augment the reasoning
of KG by the QA context, which is usually static.
Among these methods, enhancing KG with the QA
context has the highest ceiling and is now the most
popular method. However, in these methods, there
is no interaction between two representations or
only limited interaction with a static representation.
Although such methods can model two represen-
tations separately, the shallow interaction limits
the extraction of effective features. Our proposed
approach DRLK improves mainly on this point.

Additionally, PLMs show excellent performance
on QA tasks, such as fine-tuning (Su et al., 2019;
Chakraborty et al., 2020) and prompt learning
(Paranjape et al., 2021; Zhong et al., 2022). These
methods do not require extra knowledge, but they
are limited by the reasoning capability of PLM.
Other researchers propose integrating the advan-
tages of LM and KG for joint reasoning. QA-GNN
(Yasunaga et al., 2021) proposes to consider the
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F
ea

tu
re

 E
xt

ra
ct

H
ie

ra
rc

h
ic

al
 I

n
te

ra
ct

io
n

…
 

Plausibility
Score

M
as

k
 P

oo
li

n
g

… 

FC

FC Softmax

MLP

Hierarchical Awareness Module Heterogeneous Relational Module

Inter-layer Intra-layer

E
m

b
ed

d
in

g
E

m
b

ed
d

in
g

L
M

 E
n

co
d

er
L

M
 E

n
co

d
er

MLP

node

Norm

Norm

…
 

relation

…
 

node

relation

Aggr

MLP

QA Context

KG

c

v

c

g

1
1
 

1
 

1
 

1
 

1  
 

1
 

  

1
 

· 

· 

Figure 2: Overview of DRLK architecture.

QA context as a node directly connected to KG,
and update the representation of both the context
and the node through the message passing mech-
anism of the graph. However, the QA context fo-
cuses on one node, limiting the deep interaction
between LM and GNN. GreaseLM (Zhang et al.,
2022) and JointJK (Sun et al., 2022) are further
extensions of QA-GNN to enhance the interaction
while retaining the individual structure of both mod-
els. GreaseLM mixes LM and GNN node repre-
sentations in the transformer module to achieve
communication between the two modes. JointJK
considers fine-grained interactions between tokens
in the question and entities in KG via intensive
bi-directional attention. In contrast to previous
work, we focus on the cascading features of the
QA context and KG, and update the QA context
representation by a designed hierarchical feature
extraction. For the interaction between them, we
consider both before and inside the GNN layer for
hierarchical features. In addition, we preserve the
heterogeneous relational network and assess the
interaction of heterogeneous relations with the QA
context, making the structured inference paths in-
terpretable.

3 Method

3.1 Task Definition

The task of multiple choice question answering
(MCQA) in this paper can be formulated as Y =

{Q,A}, where Q denotes the question and A de-
notes the set of candidate answers. As the example
in Fig. 1, each question has multiple candidate an-
swers {a1, a2, . . . , ak}. The set of ground truth
labels is y = {yi}, where yi ∈ {0, 1}k is a one-hot
vector. k is the number of candidate answers. The
target of MCQA is to select one answer with high-
est plausibility from the candidate answer set, by
learning a prediction function f : Y→ y.

Additionally, for each QA sample, a domain KG
is assumed to be accessible, providing the neces-
sary background knowledge. We extract a subgraph
from the external KG, guided by the question and
candidate answers. We define the knowledge sub-
graph G = (V,R), where V is the set of nodes
from the external KG entities, R is the set of rela-
tionships. E = V ×R× V defines a set of edges
that connect the nodes.

3.2 Language Model Encoder
In the encoding component, we use a pre-trained
LM encoder as shown in Fig. 2, such as SapBERT-
Base (Liu et al., 2021) and RoBERTa-Large (Liu
et al., 2019), to encode the QA context and entities
in KG separately.

Given a QA context {wm}Mm=1 (question and
candidate answer), we first obtain its representation
via the pre-trained LM encoder.

c = LMencoder({w1, w2, . . . , wM}) (1)

where c is the last hidden layer embedding of the
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[CLS] token, which represents the embedding of
the QA context.

For the set of entities V = {vi}Ni=1 in KG, each
entity vi ∈ V is regarded as a sequence of tokens
{vi,t}N

′

t=1. We concatenate vi and the QA context,
and then encode them into a sequence of embed-
dings by sequence-to-sequence structure in LM
encoder.

{ŵ1, . . . , ŵM , v̂i,1, . . . , v̂i,N ′}
=LMencoder({w1, . . . , wM , vi,1, . . . , vi,N ′})

(2)

Next, an average pooling operation is performed to
get the initial representation for vi, where we only
operate on the entity tokens and drop the question
tokens.

vi = Poolave({v̂i,1, . . . , v̂i,N ′}) (3)

We apply Eq. 2 and Eq. 3 on each node in {vi}Ni=1

to get the embedding set {vi}Ni=1. Then the repre-
sentation of QA context c and entities {vi}Ni=1 will
be provided to the hierarchical awareness module
for further interactions.

3.3 Hierarchical Awareness Module
To achieve an effective inter-layer interaction, we
capture the corresponding hierarchical features of
the QA context and entities in the hierarchical
awareness module, then integrate them via a multi-
head attention mechanism.

The hierarchical awareness module accepts the
embedding of the QA context and entities as input.
As shown in Fig. 2, the input of the l-th layer are the
QA context embedding cl−1 and entity embedding
set {vl−1i }Ni=1.

We first employ a special MLP, with two layers
of neural networks, to extract hierarchical features
of the QA context.

cl = MLP(cl−1) (4)

Then we update the representation of entities by
a multi-headed attention interaction (Devlin et al.,
2019), aiming to let it focus on the features in the
current layer.

v̂li = Softmax(
cl � vl−1i√

d
)vl−1i

(5)

where d is the dimension of v̂l−1i . The updated em-
bedding of entity set {v̂li}Ni=1 and the QA context

cl will be provided as input to the l layer of the
heterogeneous relational module. The QA context
representation will also be used as input to the l+1
layer of the hierarchical awareness module.

3.4 Heterogeneous Relational Module

The heterogeneous relations module is a graph neu-
ral network with heterogeneous relation and node
types, achieving the intra-layer interaction and mes-
sage passing. As shown in Fig. 2, the input of the l
layer are the QA context embedding cl and entity
embedding set {v̂li}Ni=1.

We apply linear transformations (Feng et al.,
2020) on relation and node types to make the model
sensitive to heterogeneous networks.

t(i) = Wt(i)cli + bt(i)

r(i) = Wr(i)cli + br(i)

(6)

where Wt(i), Wr(i), bt(i) and br(i) are learnable
parameters for node vi on relation and node type.

We apply message passing over heterogeneous
graphs, which is built on the RGCN (Schlichtkrull
et al., 2018). For brevity, we formulate the update
and aggregation process of each entity in KG as:

vli = GeLU(

N∑

i,j=1

tjrj v̂l−1j Wl) (7)

where Wl is the learnable parameter. Node vj is
the neighbor of vi and GeLU(·) is the activation
function. We define {vli}Ni=1 as the output of the
heterogeneous relationship module, distinguishing
from {v̂li}Ni=1 in Section 3.3.

After multiple layers of iterative message pass-
ing, we obtain the last layer output {vLi }Ni=1 =
{vL1 , vL2 , . . . , vLN} as the final output of KG, which
fuses incorporating contextual information. An av-
erage attention-based pooling and mask operation
are applied to obtain the core KG representation g:

g = AttPoolave({vL1 , vL2 , . . . , vLN} � Vmask) (8)

where Vmask is the masked matrix of the entity
nodes, such as masking filled KG nodes.

3.5 Answer Prediction

By means of the iterations of the hierarchical aware-
ness module and the heterogeneous relational mod-
ule, we obtain the QA context representation c and
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the KG representation g. We calculate the scores
of candidate answers via:

p = (a|q, g) = MLP(c; g) (9)

Finally, we utilize the softmax function to normal-
ize all candidate answers, and obtain one choice
with argmaxa∈A p(a|q, g).

4 Experiments Setup

All experiments are conducted on one GPU (RTX-
8000-48GB). The framework of our code relies on
the PyTorch2 and Transformer3 packages.

4.1 Datasets and Metrics
Datasets. We evaluate DRLK on four benchmark
datasets across two domains: MedMCQA (Pal
et al., 2022) and MedQA-USMLE (Jin et al., 2021)
are in medical QA; OpenBookQA (Mihaylov et al.,
2018) and CommonsenseQA (Talmor et al., 2019)
are in commonsense reasoning.
MedMCQA is a 4-choice question answering
dataset of medical entrance exams, including more
than 194k questions from AIIMS and NEET PG
entrance exams. We conduct experiments on the
original data splits from Pal et al. (2022).
MedQA-USMLE is a 4-choice question answer-
ing dataset about biomedical and clinical question
based on the United States Medical License Exams.
We conduct experiments on the official data splits
in Jin et al. (2021).
OpenBookQA is a 5-choice question answering
dataset about scientific knowledge. We conduct ex-
periments on the official data splits from Mihaylov
et al. (2018).
CommonsenseQA is a 4-choice question answer-
ing dataset about commonsense knowledge beyond
real world. Since the test data is inaccessible, we
conduct experiments on the in-house data split in
Lin et al. (2019).

Dataset Train Dev Test Choices
MedQA-USMLE 10178 1272 1273 4
MedMCQA 182822 4183 6150 4
OpenBookQA 4957 500 500 4
CommonsenseQA 9741 1221 1140 5

Table 1: Overall statistics of Datasets.

Metrics. We follow baselines (Feng et al., 2020;
Zhang et al., 2022) to utilize the accuracy score

2https://pytorch.org/
3https://huggingface.co/docs

(Acc) as the metric protocol. We report the over-
all accuracy score on all benchmark datasets and
subject accuracy score on MedMCQA.

4.2 Implementation Details

In pre-processing, we extract and construct knowl-
edge subgraphs for each sample from DDB (Ya-
sunaga et al., 2021) on Medical QA followed Zhang
et al. (2022), while ConceptNet (Speer et al., 2017)
on commonsense reasoning followed Feng et al.
(2020). The maximum of nodes in the subgraph
is set to 200 by truncating or completing. The
QA context is concatenated as "[CLS] question
[SEP] candidate answer [SEP]" and encoded via
LM.

In training, we set the early stop mechanism
with the guidance of the dev set (Lin et al., 2019).
For hyperparameters, we set them empirically and
make manual tuning. The batch size is set to 128
or a mini-size to be applied to computations on
one single GPU. We use cross-entropy loss and
RAdam optimizer. Separate learning rates is set
in DRLK, {1e-5, 2e-5, 5e-5} for LM encoder and
{1e-3, 2e-3, 3e-4} for other modules. We set the
number of layers (L = 4) of GNN module, with
dropout rate 0.1 applied to each layer. For MedQA-
USMLE, we set the batch size to 128, maximum
rounds to 50, and early stopping rounds to 10 as
the best config. The overall training takes 8 hours
on average, while the training and testing in one
epoch take 18 minutes and 1.6 minutes on average.

4.3 Compared Methods

Due to the excellent performance in NLP, we use
LM as a language encoder to obtain an initial rep-
resentation of the input. For reasoning, DRLK
focuses on enhancing the hierarchical interaction
between the QA context and KG, so we use the
strong model associated with LM and KG as the
comparison model.

Since LM is KG-agnostic, a comparison with
the fine-tuned model shows the improvement of
KG on reasoning intuitively. We choose the cor-
responding pre-trained LM on different datasets,
such as SapBERT-Base (Liu et al., 2021), Pub-
medBERT (Gu et al., 2022), BioBERT-Base and
BioBERT-Large (Lee et al., 2020), BioRoBERTa-
Base (Gururangan et al., 2020), SciBERT (Beltagy
et al., 2019), ClinicalBERT (Alsentzer et al., 2019),
BERT-Base (Devlin et al., 2019), and RoBERTa-
Large (Liu et al., 2019).
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Methods Dev Test
PMI (Clark et al., 2016) 29.8 31.1
MAX OUT (Mihaylov et al., 2018) 28.9 28.6
IR-ES (Chen et al., 2017) 34.0 35.5
IR-CUSTOM (Chen et al., 2017) 38.3 36.1
BERT-Base (Devlin et al., 2019) 33.9 34.3
ClinicalBERT-Base (Alsentzer et al., 2019) 33.7 32.4
BioBERT-Base (Lee et al., 2020) 34.3 34.1
BioRoBERTa-Base (Gururangan et al., 2020) 35.1 36.1
RoBERT-Large (Liu et al., 2019) 35.2 35.0
BioBERTa-Large (Lee et al., 2020) 36.1 36.7
SapBERT-Base (Liu et al., 2021) - 37.2
+ QA-GNN (Yasunaga et al., 2021) - 38.0
+ GreaseLM (Zhang et al., 2022) 38.3 38.5∗

+ DRLK (Ours) 39.1 40.4

Table 2: Performance of baseline models on MedQA-
USMLE. Here ∗ indicates the improvement of DRLK is
statistically significant (p < 0.05).

Methods Dev Test
BERT-Base (Devlin et al., 2019) 35.0 33.0
ClinicalBERT-Base (Alsentzer et al., 2019) 34.7 -
BioBERT-Base (Lee et al., 2020) 38.0 37.0
BioRoBERTa-Base (Gururangan et al., 2020) 34.6 -
SciBERT (Beltagy et al., 2019) 39.0 39.0
PubMedBERT (Gu et al., 2022) 40.0 41.0
SapBERT-Base (Liu et al., 2021) 40.3 40.0
+ QA-GNN (Yasunaga et al., 2021) 48.7 50.8
+ GreaseLM (Zhang et al., 2022) 49.3 51.0∗

+ DRLK (Ours) 51.3 52.5

Table 3: Performance of baseline models on MedMCQA
(without context).

For the evaluation of KG, we compare with sim-
ilar approaches, which also use LM as a language
encoder, with differences in the use of KG. RGCN
(Schlichtkrull et al., 2018), RN (Santoro et al.,
2017), GconAttn (Wang et al., 2019b), KageNet
(Lin et al., 2019), MHGRN (Feng et al., 2020), QA-
GNN, GreaseLM (Zhang et al., 2022), and Join-
tJK (Sun et al., 2022) are QA paradigms with KG
augmentation. GreaseLM and JointJK are the best-
performing models as we know, which enhance
reasoning by fusing LM and KG representations
in GNNs. The main difference between DRLK
and these approaches is that we not only perform
a hierarchical feature extraction of the QA context
but also perform a two-step interaction to enhance
reasoning. We use LM to initialize these baselines
for a fair comparison, consistent with DRLK.

5 Results and Analysis

5.1 Main Results

The results of MedQA-USMLE and MedMCQA
are shown in Table 2-4, where Table 4 shows the

Subject Name GreaseLM DRLK (Ours)
Dev Test Dev Test

Anaesthesia 44.1 45.8 47.1 45.8
Anatomy 54.3 49.4 61.1 50.2
Biochemistry 67.8 58.8 69.6 58.8
Dental 39.2 42.3 40.2 42.0
ENT 52.8 52.3 62.3 46.5
FM 37.3 56.8 38.8 62.9
O&G 58.5 50.2 64.3 46.1
Medicine 53.2 50.0 59.0 57.5
Microbiology 54.1 52.1 55.7 57.5
Ophthalmology 65.5 54.2 67.2 62.1
Orthopaedics 60.0 - 50.0 -
Pathology 54.9 55.7 55.5 59.3
Pediatrics 58.5 45.8 56.0 45.8
Pharmacology 61.7 56.1 60.9 58.7
Physiology 49.7 45.9 53.8 47.9
Psychiatry 56.2 50.0 68.8 50.0
Radiology 47.8 57.1 49.3 53.8
Skin 76.5 51.7 76.5 46.7
PSM 49.6 50.6 51.2 51.9
Surgery 42.0 51.7 44.2 52.1
Unknown 100.0 60.9 100.0 66.0
Average 49.3 51.0 51.3 52.5

Table 4: Subject performance on MedMCQA.

subject wise accuracies in MedMCQA. We observe
that DRLK outperforms all LM models and KG
enhanced models. In addition to DRLK, SapBERT-
Base and GreaseLM on MedQA-USMLE are the
best LM fine-tuning and KG augmentation models.
DRLK has an absolute improvement of 3.2% rel-
ative to the SapBERT-Base fine-tuning model and
1.9% absolute improvement over the best model
GreaseLM. On MedMCQA, DRLK also show the
best performance, with absolute improvement of
12.5% relative to the SapBERT-Base fine-tuned
model and 1.5% absolute improvement over the
best model GreaseLM4. As shown in Table 4,
DRLK outperforms more than half of the subjects
in MedMCQA, equal on 5 subjects, and under-
perform only on 5 subjects. The state-of-the-art
performance on MedQA-USMLE and MedMCQA
demonstrates the effectiveness of hierarchical in-
teractions and heterogeneous relational reasoning
networks.

In addition to the medical domain, we also per-
form further robustness validation in the common-
sense reasoning domain. Table 5 shows the com-
parison results on CommonsenseQA and Open-
BookQA. As a result, DRLK outperforms the best

4We run it on MedMCQA following the open-source code
of GreaseLM.
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Dataset OBQA CSQA
RoBERTa-large (w/o KG) 64.8 68.7
+ RGCN (Schlichtkrull et al., 2018) 62.5 68.4
+ GconAttn (Wang et al., 2019b) 64.8 68.6
+ KagNet (Lin et al., 2019) - 69.0
+ RN (Santoro et al., 2017) 65.2 69.1
+ MHGRN (Feng et al., 2020) 66.9 71.1
+ QA-GNN (Yasunaga et al., 2021) 67.8 73.4
+ GreaseLM (Zhang et al., 2022) - 74.2
+ JointLK (Sun et al., 2022) 70.3 74.4∗

+ DRLK (Ours) 70.2 74.5

Table 5: Performance of baseline models on Open-
BookQA (OBQA) and CommonsenceQA (CSQA).
Here ∗ indicates the improvement of DRLK is statis-
tically significant (p < 0.05).

Dataset Dev-Acc. (%)
(Overall)

Dev-Acc. (%)
(Question

w/ negation)

Dev-Acc. (%)
(Question w/
≤ 5 entities)

Dev-Acc. (%)
(Question w/
> 5 entities)

GreaseLM 49.3 48.0 49.4 50.0
DRLK (Ours) 51.3 50.1 51.4 55.0

Table 6: Performance of DRLK on MedMCQA dev set
on questions with negative words and different number
of entities.

JoinkJK on CommonsenseQA and slightly under-
performs on OpenBookQA. Overall, DRLK shows
significant competitiveness with the best models
in the commonsense reasoning domain. The ex-
perimental results demonstrate the robustness of
DRLK in different domains.

5.2 Ablation Studies
Table 7 shows the further analysis of the different
components of the model. We show the accuracy
of the ablation experiments on MedMCQA.
Numbers of Layers. We investigate the effect of
the layer number on KG reasoning. As shown in
Fig. 3, the growth of layers is beneficial until N
= 4. The performance starts to decrease when N
> 4. Our analysis is that high layers make neigh-
bors nodes be averaged too much, which leads to
overfitting.
Hierarchical Features. We perform a separate
evaluation of the layered feature extraction oper-
ation, which was the original motivation for our
idea. As shown in Table 7, disabling the hierarchi-
cal feature extraction operation leads to 2.1% drop
in performance, which indicates that the operation
extracts features from the corresponding layers and
impacts the subsequent reasoning.
Hierarchical Interactions. The purpose of the
hierarchical interaction operation is to extract the
hierarchical features of the nodes in the KG at each
layer. We disable this operation to evaluate its

Dataset Test
w/o hierarchical feature (§3.3) 38.3
w/o hierarchical interaction (§3.3) 39.4
w/o feature and interaction (§3.3) 38.1
w/o heterogeneous relation type (§3.4 ) 40.0
w/o heterogeneous node type (§3.4 ) 39.8
w/o relation and node type (§3.4 ) 38.9
DRLK (layer = 4) 40.4

Table 7: Ablation study on different components.

2 3 4 5 6
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36

37

38

39

40
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Figure 3: Impact on stacked of layers.

impact on the overall effect. From the results in
Table 7, disabling the operation results in 1% and
2.3% drop in performance. The ablation experi-
ments indicate that the hierarchical interaction is
crucial for subsequent reasoning.
Heterogeneous Relational Module. We evaluate
the relation and node type in the heterogeneous
awareness module. Disabling them results in 0.4%,
0.6%, 1.5% drop in performance. The ablation
experiments show that interactions in the heteroge-
neous relational module are indispensable for the
final reasoning.

5.3 Quantitative Analysis

To investigate whether the holistic performance
improvement of DRLK is reflected in questions
requiring complex inference, we analyze the infer-
ence complexity of the question prediction, such
as the inclusion of negatives and multiple entities
(Sun et al., 2022). Table 6 shows the compari-
son results of DRLK and GreaseLM (Zhang et al.,
2022), the previous best-performing KG-enhanced
models. First, the model faces enhanced noise inter-
ference and increased relational complexity when
the question contains more entities. For example,
the question in Fig. 1 involves multiple symptoms,
e.g., "rashes", "decreased mental function", "macu-
lar lesions", and "intracranial calcification". An-
swering the question requires a comprehensive con-
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Figure 4: Case study of the variation in attention during DRLK reasoning, with red lines and blue nodes indicating
high-weighted attention. The question corresponding to this case is that a man has a few macular lesions and
intracranial calcification, while his 6-year-old son also has similar skin lesions.

sideration of the diseases corresponding to these
symptoms. We classify the questions into two cate-
gories: entities less than 5 and entities more than
5. DRLK improves 2% in absolute on more en-
tity questions and 5% in absolute on fewer entity
questions, indicating that our model is more ad-
vantageous in dealing with more entity questions.
Furthermore, the negation is a specific relationship,
and the LM model is easily distracted by it. For
example, the question "What is not a major crite-
ria for rheumatic heart disease __?" contains the
negative item "not". The model needs to focus
on the negative relationship of "criteria", not only
on "rheumatic heart disease". We retrieve ques-
tions with negatives and measure reasoning ability
by the accuracy of negated questions. Compared
to GreaseLM, DRLK improves 2.1% in absolute,
indicating that it benefits in negative QA.

5.4 Case Study

We perform an interpretability analysis of DRLK’s
reasoning process, with the shift of attention in the
knowledge subgraph. Fig. 4 shows a case where
the bolded red lines and blue nodes indicate the
high-weighted attention. Correspondingly, we use
the dotted lines and gray nodes to represent the
low-weighted parts. In this case, DRLK correctly
answers the question and infers a reasonable in-
ference path. The flow in Fig. 4 from left to right
represents updating model attention in KG. The
critical entities in the question are Cerebral calci-
fication and Macular lesions. In the left subgraph,
"Cerebral calcification → Intracranial calcifica-
tion", "Cerebral calcification → Haw River syn-
drome", and "Macular lesions→ Autosomal reces-
sive conditions", are all reasonable speculations
about critical entities. From left to middle, DRLK
focuses on the critical evidence of KG’s second
layer over the previous layer. In terms of KG as-
sociation, "Autosomal dominant inheritance" and

"Xeroderma pigmentosum" are possible scenarios,
but the former is related to the semantics of the
question. Therefore, DRLK keeps only "Autoso-
mal dominant inheritance" as the correct answer in
the subgraphs from middle to right.

5.5 Error Analysis

To understand why DRLK fails in reason, we ana-
lyze the error cases of MedMCQA, which with a
low correct and suitable sentence length between
several datasets. The following is a categorization
of 100 randomly selected error cases:
Incomprehensible Questions. Complex questions
in medical scenarios usually involve diagnosing
causes and proper treatments in specific medical
situations. Such questions usually need to be devel-
oped over multiple symptoms, diseases, and treat-
ments to choose the most appropriate option. This
particular medical situation is difficult for humans
too. The failure of the model to understand specific
complex medical situations (individual patients)
may cause erroneous predictions.
Indistinguishable Answers. The candidate an-
swers may be similar. Distinguishing similar enti-
ties, such as {"Anti C", "Anti D", "Anti E", "Anti
Lewis"}, may be self-evident to humans, but it is
a huge challenge for the model. In addition, there
is another situation in the dataset: the candidate
answers may all be correct and the choice may
depend on the person. Such a situation is also in-
distinguishable from the model.
Missing Evidence Entity. One critical aspect of
reasoning with KG is obtaining as much back-
ground knowledge as possible. Although we use
domain-related KGs, the retrieval of issue-related
entities may miss some evidence entities due to
the limitation of the KG coverage. In addition, the
length of medical entities is usually long, making
it difficult to achieve complete identification by
character matching. The missing evidence entity

5130



leads to an incomplete reasoning process, which
may cause erroneous predictions.
Numerical Reasoning. Numerical questions are
always a challenge in reasoning. Numerical reason-
ing shows some wrong predictions, where different
doses of treatments need to be selected according
to different symptoms in medical scenarios. For
question "Concentration of triple antibiotic paste
(TAP) in treatment of revascularisation is?", the
candidate answers are "1 mg", "0.1 mg", "100 mg",
"10 mg". We predict a wrong answer as "0.1 mg".

6 Conclusion and Future Work

In this paper, we propose a novel model that
enables accurate reasoning through a hierarchi-
cal interaction between the QA context and KG.
Compared to the fine-tuning based LM and KG-
enhanced methods, DRLK achieves SOTA perfor-
mances on two medical QA benchmark datasets.
On commonsense reasoning benchmark datasets,
DRLK performs competitively. Experimental re-
sults show that dynamic hierarchical interactions
achieve superiority in dealing with complex knowl-
edge relationships. In addition, the results on dif-
ferent domains show that DRLK possesses gener-
alizations for the question answering task.

7 Limitations

To validate the effectiveness of DRLK, we conduct
extensive experiments on four benchmark datasets,
with different domains and scales. The results on
four datasets show that DRLK achieves SOTA per-
formance on two, just slightly inferior on the oth-
ers. Nonetheless, DRLK relies on the domain KG,
where the absence or low quality of the KG will
directly affect the performance of DRLK.

Moreover, we follow Feng et al. (2020) to extract
a knowledge subgraph with 200 nodes for each
question. Due to the limitation of GPU resources,
we do not test the effect of different knowledge
subgraph scales, as it is not a major concern of
DRLK. In response to the above two limitations,
we will conduct further research in the future.

Ethical Considerations
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