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Abstract

Progress in summarizing long texts is inhibited
by the lack of appropriate evaluation frame-
works. A long summary that appropriately cov-
ers the facets of that text must also present a
coherent narrative, but current automatic and
human evaluation methods fail to identify gaps
in coherence. In this work, we introduce SNAC,
a narrative coherence evaluation framework for
fine-grained annotations of long summaries.
We develop a taxonomy of coherence errors in
generated narrative summaries and collect span-
level annotations for 6.6k sentences across 150
book and movie summaries. Our work pro-
vides the first characterization of coherence er-
rors generated by state-of-the-art summariza-
tion models and a protocol for eliciting coher-
ence judgments from crowdworkers. Further-
more, we show that the collected annotations
allow us to benchmark past work in coherence
modeling and train a strong classifier for auto-
matically localizing coherence errors in gener-
ated summaries. Finally, our SNAC framework
can support future work in long document sum-
marization and coherence evaluation, including
improved summarization modeling and post-
hoc summary correction.1

1 Introduction

As pre-trained models for news summarization
(Lewis et al., 2020; Zhang et al., 2020; Brown
et al., 2020) have improved drastically, researchers
have begun tackling increasingly challenging set-
tings, particularly long document summarization
and generation of longer summaries (Kryściński
et al., 2021; Huang et al., 2021; Zhang et al., 2022;
Wu et al., 2021). Summaries in these settings differ
considerably from the newswire summaries of past
research efforts (Nallapati et al., 2016; Narayan
et al., 2018): models now need to extract salient
information from different parts of a significantly

1All collected annotations and models released at: https:
//github.com/tagoyal/snac.

In court, Mr. Darnay is accused of treason. 
However, he is acquitted after his patriot 
friend, Roger Cly, testifies against him.

Why restore to life? 
Is her father sick?

Who is Mr. Darnay?

Excerpt from Generated Summary

Who is Mr. Lorry?

Sudden shift in scene 
(what happened to 
Miss Mannette?)

EVENT UNCLEAR

CHARACTER UNCLEAR

SCENE TRANSITION

CHARACTER UNCLEAR

Miss Manette receives a letter from the bank 
informing her that information about her 
father's small property has been discovered. 
She wants to travel to France to identify him 
and restore him to life. Mr. Lorry explains 
that her father has been found under another 
name and is being held in a house in Paris.

Five years later, in 1780, a young Frenchman, named Charles 
Darnay, is accused of being a traitor and a spy. Lucie [Mannette] 
and her father are reluctant witnesses for the prosecution […]

Corresponding excerpt from the human-written 
summary properly contextualizes the new character.

Figure 1: Excerpt from a generated book summary by
OpenAI’s 175B model (Wu et al., 2021). Individual
segments do not follow a coherent structure and extra
information is often needed to understand the narrative.

longer document, and naïvely combining these in
a much longer output is less likely to yield a sum-
mary with coherent discourse structure.

This shift in the scope of the summarization task
calls for a reexamination of the summarization eval-
uation framework. Even for short newswire sum-
maries, Fabbri et al. (2021) showed that automated
metrics are inadequate, and consequently, reporting
results from a human evaluation study has become
the standard practice. However, human evaluation
is rarely done for longer summaries possibly due to
the associated labor costs of reading and evaluating
long text. It is also unclear whether A/B testing or
Likert-scale based annotation frameworks transfer
to long summary settings. Establishing human eval-
uation protocols is critical for comparing different
modeling approaches and measuring progress.

Recently, Wu et al. (2021) proposed a strong
book summarization model but showed that al-
though generated summaries covered important
information from the books, they read like a list of
events stapled together without any coherent nar-
rative structure (see Figure 1). We found similar
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Context:  
John Fenwick, an aspiring 
artist, accepts a loan from 
Mr. Morrison to move to 
London to pursue his art 

career.   
In London, he becomes 

infatuated with Madame 
de Pastourelles, a 

beautiful and intelligent 
artist. 

Coherence ErrorsCurrent Summary Segment

Fenwick’s wife becomes frightened when a tramp 
threatens to kill her and her child.

In Paris, he impresses Lord Findon with his work. 
Inconsistent 

(InconE)

Missing 
reference to  
Event/Object 

(RefE)

Abrupt scene 
transition 
(SceneE)

New 
Character not 

introduced 
(CharE)

One afternoon, he writes a letter to Mrs. Morrison 
expressing sympathy for her husband’s suicide.

Unnecessary  
Repetition 

(RepE)

Ungrammatical
/Nonsensical 

(GramE)

Unclear 
Coreference 

(CorefE)

Language & Fluency Errors

One afternoon, Fenwick goes to lunch with Madam de 
Pastourelles, a beautiful artist, and Eugenie, a wealthy 
benefactor. She promises to help him help customers. 

Figure 2: SNAC’s error schema. Given context, i.e., the generated summary until that point, annotators identify
error spans in the current summary segment. We define two high-level error categories: (1) Coherence Errors that
directly affect narrative understanding, and (2) Language Errors that measure other aspects, like grammar.

characteristics in other recent narrative summariza-
tion models (Kryściński et al., 2021; Zhang et al.,
2022). Now that models are so good at generating
fluent and on-topic sentences, the coherence of the
whole summary becomes a first-order issue that
must be evaluated in these new settings.

In this work, we introduce SNAC, a framework
for collecting fine-grained annotations to evaluate
Summary Narrative Coherence. We develop an
error schema with 7 narrative error types grounded
in actual errors made by current summarization
models. Our fine-grained taxonomy allows anno-
tators to explicitly state what kind of coherence
error exists in a summary and pinpoint where it
occurs. We show that such a fine-grained annota-
tion framework is better suited for collecting crowd
annotations than a Likert scale-based holistic eval-
uation of coherence.

We enlist crowdworkers to collect a large-scale
dataset of 9.6k span-level error annotations in nar-
rative summaries generated by current state-of-the-
art summarization models (Wu et al., 2021; Zhang
et al., 2022) on two datasets: movie screenplays
(Chen et al., 2022) and books (Kryściński et al.,
2021). Our work is the first to characterize specific
errors made by these systems and gaps that exist
with human-written coherent summaries. While re-
cent efforts have studied errors in open-ended gen-
eration (Dou et al., 2022), these differ drastically
from summarization errors and their taxonomies
and findings are not transferable (see Appendix A).

We also evaluate the performance of auto-
matic coherence models, comparing synthetic data
generation techniques (Moon et al., 2019; Shen
et al., 2021) against SNAC annotations as train-
ing sources. Not only do models fine-tuned
on SNAC outperform those trained on synthetic
datasets, we find that they also report higher recall

than individual human annotators at identifying
fine-grained coherence error categories.

Our collected dataset and analysis provides a
foundation for downstream applications such as
better long summary evaluation, coherence-aware
generation, and post-correction of summaries.

2 Long Narrative Summarization

We study coherence errors in two domains, books
and movie screenplays, although our taxonomy and
annotation methodology are broadly applicable.

Books We evaluate the depth 1 book summaries
generated by a GPT-3 based model (Wu et al.,
2021). We evaluate both its 175B and 6B versions,
denoted by BOOK-175B and BOOK-6B respec-
tively. On average, these are ~35 sentences long.

Movie Screenplays We generate summaries for
the movie scripts dataset (Papalampidi et al., 2020)
using the BART-based SummˆN model (Zhang
et al., 2022).2 These are ~40 sentences in length.
We refer to them as MOVIE-BART.

The majority of prior research in evaluation of
evaluation metrics (Kryściński et al., 2019; Bhan-
dari et al., 2020; Fabbri et al., 2021) has focused
on news summarization datasets (Nallapati et al.,
2016; Narayan et al., 2018). However there exist
substantial differences in the scale of news settings
and narrative summaries: the former are consider-
ably shorter at ~3 sentences per summary. We first
explore whether existing approaches to evaluation
can work well despite this difference.

2SummˆN is trained on TV episode screenplays. However,
TV episodes are not self-contained narratives and often refer
to events from previous episodes, making this an update sum-
marization task which is harder to evaluate for coherence out
of context. Therefore, we summarize movie scripts instead.
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News (Expert) News (Crowd) Books (Crowd)

0.41∗∗ 0.48 0.19

Table 1: Summary-level agreement, measured by Krip-
pendorff’s α. ∗∗Expert agreement after one round of
annotations; this aligns with the crowd setting.

Limitations of Current Human Evaluation
Summary-level Likert scale annotations are the
most commonly used setup for collecting coher-
ence in single-document news summarization re-
search (Fabbri et al., 2021). Here, we run an analo-
gous study for our longer narrative summaries.

We ask 3 Mechanical Turk workers with prior
experience in annotation for NLP tasks, specifically
discourse analysis and text simplification, to rate
the overall coherence of 100 generated summaries
on a 5-point scale. Table 1 reports the observed
agreement, measured by Kripendorff’s α. Com-
pared to newswire summaries collected under a
similar setup (Fabbri et al., 2021), annotations for
longer narratives have a much lower agreement.
This shows the difficulty in obtaining a consensus
on coherence for a 500+ word summary through a
single value on a 5-point scale.

In Appendix B, we further show that automatic
metrics like ROUGE and BERTScore (Zhang et al.,
2019) that are primarily used for evaluating long
document summarization fail to penalize coher-
ence errors in summaries. Better tools for both
automatic and human evaluation are needed.

3 SNAC Annotation Methodology

We design our methodology to: 1) simplify the
summary-level annotation task into smaller sub-
tasks, and 2) provide a structured framework that
allows annotators to specify the type of coherence
error, instead of evaluating coherence holistically.

3.1 Task Workflow and Notation

We decompose the summary-level task into smaller
segment-level tasks: at each step, annotators eval-
uate a subpart of the summary, which is usually
2-4 sentences long. Let S0, S1...SN denote these
summary segments. While evaluating segment Si,
coherence judgments are made with respect to both
the context S0, S1...Si−1 and text within Si.

To annotate a single error in Si, annotators se-
lect the error span tj ∈ Si and the coherence error
type ej (error taxonomy outlined in Section 3.2)
to construct the error triple aj = (Si, tj , ej). This

process is repeated until all errors in segment Si

have been added, after which they proceed to the
next segment Si+1 for annotation. At the end of
the annotation, workers produce the full set of an-
notations A = {aj ∀j} across all the text segments.
The outcome of this is shown in Figure 2.

For book summaries, i.e. BOOK-175B and
BOOK-6B, our segments come from boundaries
present in the generated summaries. These are an
average of 2.7 sentences. For MOVIE-BART, we
segment summaries into chunks of 3 sentences.

3.2 Error Taxonomy

Reinhart (1980) states three conditions for coher-
ence: connectedness (cohesion), consistency, and
relevance. Our error taxonomy is guided by these
conditions while covering the broad range of coher-
ence errors produced by current models.

We divide errors into two categories: a) Coher-
ence errors: these measure whether the summary
is well-structured and events in the summary make
narrative sense, and b) Language errors: these
measure other aspects of the quality of generated
text, such as grammar. While these do not come
under the ambit of coherence errors, we found it
useful to provide these additional error types for
crowd workers to anchor other “badness” in text to.

3.2.1 Coherence Errors
New character without introduction (CharE)
These refer to scenarios where a new person is
introduced in the narrative without providing any
background about the person, or their relation with
other characters in the story. This violates condi-
tion 1 of coherence, i.e. connectedness. Note that
well-known people, e.g. Barack Obama, do not
need an introduction.3

Missing reference to an event or object (RefE)
These refer to scenarios where an event or object
is mentioned for the first time, but the phrasing
strongly implies that it must have been introduced
previously or that some context is missing to fully
understand it. E.g., in Figure 2, the phrasing of her
husband’s suicide gives the strong impression that
the reader is already aware of this event.

Abrupt scene transition (SceneE) These occur
where there is a sudden shift in the narrative and are

3We special-cased this class of error because it was so fre-
quent in our data. Our narratives are about fictional people in
real-world settings, so places, organizations, and other named
entity types are less likely to require explicit introduction.
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Miss Manette receives a letter from the bank informing her that information about her father's small property has been 
discovered. She wants to travel to France to identify him and restore him to life. 

Mr. Lorry explains that her father has been found under another name and is being held in a house in Paris. 

In court, Mr. Darnay is accused of treason. However, he is acquitted after his patriot friend, Roger Cly, testifies against him. 

Mr. Lorry visits the Doctor's house on a Sunday afternoon as he often does. Miss Pross, the housekeeper, worries that many 
people will come to the house to look for Ladybird. 

Suddenly, the Doctor starts to feel ill and says they should go inside. 

Charles Darnay, the Marquis' nephew, returns to France to pursue the sacred object that took him away. He tells the Marquis 
that he renounces his French property as it is full of misery. 

Charles has been in love with Lucie Manette for a long time but has never told her about his feelings. 

Stryver tells Lorry that he intends to marry Lucie for pragmatic reasons.
CharE, v = 3

CharE, v = 3

CharE, v = 3

SceneE, v = 2CharE, v = 3 InconE, v = 2

SceneE, v = 3CharE, v = 3

CharE, v = 3

CharE, v = 3

SceneE, v = 2 RefE, v = 2

RefE, v = 2

New character 
without introduction 

(CharE)

Inconsistent 
(InconE)

Missing reference  
to object/event 
(RefE)

Abrupt scene 
transition 
(SceneE)

Figure 3: An example of expert annotations for a BOOK-175B summary (we only show coherence errors). The
number of annotators who identified each span is denoted by v; for simplicity, we omit v = 1 errors. We see that
annotators often identify overlapping error spans; this fine-grained picture of coherence cannot be achieved by a
summary-level score.

related to both connectedness and relevance. For
these, we ask annotators to select whole sentences.

Inconsistency (InconE) These errors violate the
second condition of coherence, i.e. contradicting
other information in the Context or within the Cur-
rent Segment. For these errors, we also ask annota-
tors to choose the previous span it is inconsistent
with.

3.2.2 Language Errors

Repetition (RepE) These are used to detect repe-
tition. Similar to InconE, annotators also select the
antecedent span with the repeated content.

Ungrammatical or Nonsensical Text (GramE)
These refer to text spans with grammar errors. Also
included in this category are cases where there are
obvious model degenerations.

Unclear coreference (CorefE) These refer to
cases where it is unclear who or what a pronoun
is referring to. While sometimes requiring extra
clarity, we found that there errors rarely affected
the overall narrative understanding unless they co-
occured with GramE. Therefore, we do not include
them in the coherence error category.

The version of definitions and task instructions
given to the annotators is in Appendix D.

4 Data Collection

We collect annotations from two types of annota-
tors: experts and crowdworkers.

Type Dataset #summ Span Sent Seg

Expert BOOK-175B 5 323 173 111
BOOK-6B 5 401 174 66

Crowd
BOOK-175B 55 3.1k 2.2k 1.1k

BOOK-6B 55 2.9k 2.2k 0.7k
MOVIE-BART 40 2.8k 1.8k 0.6k

Total 160 9.6k 6.6k 2.6k

Table 2: Statistics for expert and crowd annotations
per level of granularity: span-, sentence- and segment-
levels. Span-level annotations are multi-class, sentence-
and segment-level have binary labels of coherence.

4.1 Expert Annotations
Expert annotations were collected from 3 authors
who have previously published papers in text sum-
marization and have experience engaging with
model-generated text. Each annotator evaluated
10 book summaries, 5 each from BOOK-175B and
BOOK-6B. This resulted in a dataset of ~700 span-
level error annotations. Furthermore, we project
span-level annotations to obtain binary coherent
(no coherence error) and incoherent labels (at least
one coherence error) at the sentence- and segment-
levels. Table 2 provides statistics at these levels.

We observed high inter-annotator agreement
for expert annotators at both the sentence- and
segment-levels (see Table 4). We used this dataset
to train crowdworkers in the next stage.

4.2 Crowd Annotations
We first launched a qualification task to recruit
MTurk workers. The qualification was only made
available to a subset of workers who had previ-
ously worked on other data annotation efforts for
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Figure 4: The left graph shows the fraction of times a specific error type is detected for each individual dataset:
CharE, RefE and SceneE errors constitute the majority of coherence errors. The right graph shows the average
fraction of tokens belonging to each error-type.

NLP tasks. It included detailed instructions explain-
ing the task workflow, interface, and error schema.
Each worker was asked to annotate 2 book sum-
maries; these summaries were chosen from the set
of expert annotations. Workers were paid $12 for
attempting this qualification.

We evaluated each worker’s annotations against
experts and sent individual feedback. Among co-
herence errors, we observed that workers generally
tended to disagree on RefE; each worker had a dif-
ferent calibration of which events or objects require
more context to improve overall narrative under-
standing. Another common source of disagreement
between workers and experts were SceneE errors.
To help align their understanding with experts, we
provided workers with a complete set of expert
annotations for a whole summary for reference.

We recruited 11 workers after the qualification to
annotate 150 generated summaries. Each summary
was annotated by 3 different annotators. Workers
were paid an average of $12/hr.

4.3 SNAC Dataset

Our resulting dataset consists of ~9.6k span-level
annotations for coherence judgments, across 160
summaries. Dataset statistics for the entire col-
lected dataset, including both expert and crowd
annotations, are shown in Table 2.

A summary-wide expert annotation is SNAC
is shown in Figure 3. Noticeably, CharE spans
constitute the majority of errors; this observation
is consistent throughout all datasets. Annotators
tend to show higher recall and agreement over this
category. SceneE and RefE are the next two major
error categories. The annotations also illustrate the
two reasons for SceneE: 1) there is a sudden change
in setting and characters, e.g. Mr Lorry visits the...
and 2) the previous scene is abruptly cut off, e.g. In
court, Mr. Darnay..., where Ms. Mannette’s story

is unfinished.
We observed that worker annotations are high

precision but low recall (CharE errors are an excep-
tion; workers have both high precision and recall
for this category). This means that error spans iden-
tified by each worker tended to be actual errors,
even when they were not detected by other anno-
tators. Therefore, we combine annotations of all 3
annotators to construct the full SNAC dataset.

Error Distributions Figure 4 shows the fraction
of unique errors of each error type annotated across
all datasets. As seen in Figure 3 annotations, the
majority of the coherence errors are due to CharE,
RefE or SceneE. The bottom graph of Figure 4
shows the number of error tokens annotated (in-
stead of numbers of errors) for each error type. We
see that annotators mark a larger fraction of tokens
in the BOOK-6B dataset as erroneous compared
to BOOK-175B. The main difference comes from
the difference in SceneE (annotators are instructed
to select entire sentences) and GramE. As expected,
for smaller summarization models, i.e. GPT-3 6B
and BART, a larger fraction of errors and error to-
kens are associated with language errors compared
to GPT-3 175B. In fact, we noticed that workers
were more likely to skip coherence error annota-
tions, e.g. RefE, when these co-occur with GramE
for these models, particularly on BOOK-6B.

Human annotators focus on language errors
while assessing coherence holistically. To un-
derstand which aspects of a summary contribute
to the summary-level coherence rating provided
by crowd workers, we compute the correlation be-
tween the number of errors of each type with the
overall coherence score (Likert rating on a scale of
1-5, described previously in Section 2).4

4We previously showed that annotators do not agree on
overall summary ratings. However, this experiment differs in
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Error Type Coherence Language Total

r -0.26∗ -0.34∗ -0.33∗

Coherence Errors Language Errors

CharE -0.22∗ RepE -0.21
RefE -0.29∗ CorefE -0.24∗

SceneE -0.05 GramE -0.25∗

InconE -0.09

Table 3: Pearson correlation between no. of errors and
summary-level coherence score for error categories. An-
notators tend to focus on grammar instead of coherence-
specific errors while assigning overall summary-score.
∗: p-value < 0.05, according to a two-tailed test.

Table 3 outlines our results. First, it shows
that the total number of errors is correlated with
the overall coherence score, but annotators tend
to weight language errors higher than coherence-
specific errors. Surprisingly, we see negligible
correlation with SceneE errors although these are
a prominent distinguisher between generated and
human-written summaries. Amongst other error
types, both RefE errors and GramE errors show rel-
atively higher correlation. Although not directly
evaluating coherence, Clark et al. (2021) report sim-
ilar observations where annotators tend to focus on
grammar errors while judging text quality.

Narrative Summarization ̸= Open-Ended Gen-
eration In story completion, models are not re-
quired to cover all salient information from a doc-
ument and only condition on past generated text;
generated open-ended summaries rarely diverge
off-topic. Examples of GPT-3 generated stories
in Figure 8 (Appendix A) show that these gener-
ate almost no CharE, RefE or SceneE errors that
form the majority in SNaC, and instead mainly ex-
hibit repetition. Therefore, research efforts that
introduce fine-grained taxonomies for this task, e.g.
Scarecrow (Dou et al., 2022), are directly applica-
ble to summarization which needs to be indepen-
dently studied.

4.4 Inter-Annotator Agreement
We first compute inter-annotator agreements at the
sentence- and segment-levels. This allows for
an apples-to-apples comparison with Fabbri et al.
(2021) as the average length of news summaries is
roughly equal to our segment length. We convert
their 5-point Likert ratings into binary labels using

that each annotator’s aggregated segment-level errors are cor-
related with their own summary-level judgment; here, agree-
ment between annotators is not relevant.

Our Annotations Newswire

Expert Crowd Crowd
Sent Seg Sent Seg Seg

Coherence .77 .90 .59 .69 .49
Language .33 .45 .22 .28 -

Table 4: Segment and sentence-level agreement, mea-
sured by Krippendorff’s α for SNAC. Our dataset re-
ports higher inter-annotator agreement compared to
newswire summaries adapted to a similar setting.

Error Krippendorff’s α Two-agree %
Expert Crowd Expert Crowd

CharE .91 .69 86 67
SceneE .57 .30 62 35
RefE .25 (.39) .10 (22) 27 (39) 11 (23)

InconE .18 (.29) .13 (21) 20 (37) 14 (23)

Table 5: Token-level agreement for errors in the co-
herence sub-category. For RefE and InconE, we also
report agreement (in parentheses) after normalizing span
boundaries for overlapping errors.

the threshold that gives the best agreement score.
We compare Krippendorff’s α for SNAC and news
in Table 4: SNAC reports high inter-annotator
agreement at both the sentence- and segment-level.
Notably, this segment level agreement is better than
that of crowdworkers in the news domain.

Span-level analysis Next, we evaluate category-
specific agreement between annotators at the span
level. We report two metrics: 1) Krippendorff’s
α and 2) two-agree %; borrowed from Dou et al.
(2022), this reports the percentage of tokens la-
beled as erroneous by at least one annotator that
were also labelled by one or more additional anno-
tators. For RefE and InconE, we noticed that small
differences in span boundaries caused a significant
drop in agreement, therefore, for these we also re-
port metrics after normalizing span boundaries of
overlapping spans to their union.

Table 5 outlines the agreement: for both ex-
pert and crowdworkers, we see high agreement
for CharE and fair agreement for SceneE. On the
other hand, lower agreement is observed for RefE;
this aligns with our observation that individual an-
notators may have low recall. Different annotators
fundamentally have different notions of what extra
information is critical for understanding the text.

Similar overall results at the token-level are re-
ported by Dou et al. (2022) for their error taxon-
omy: their error categories Commonsense and En-
cyclopedic report the lowest metrics, the two-agree
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Gabriel Oak leases a sheep farm and becomes infatuated with 
Bathsheba, a beautiful young woman. He asks her aunt for her hand 
in marriage, but she turns him down because she doesn't love him. 
Gabriel's reputation as a shepherd makes it difficult for him to find 
work, so he plays his flute to earn money. Bathsheba dismisses the 
bailiff for stealing and decides to manage the farm on her own.

Figure 5: RefE errors identified by only one annotator.

% is as low as 20 and 12 respectively for 10 anno-
tators. Note that we only have 3 annotators, so we
expect our two-agree numbers to be much lower.5

Figure 5 shows an example of a summary with
low crowd agreement over the RefE errors (we omit
all other identified errors in this figure). For the
first highlight, it is reasonable to seek more clarity
on why Gabriel’s reputation as a shepherd makes
it difficult for him to find work as it presupposes
negative connotations associated with his profes-
sion that the reader is not privy to. The second
highlight asserts that Bathsheba owns or works at
“the farm” as a known fact, which is information
that has not been mentioned previously. Although
only annotated by one annotator, these qualify as
RefE errors according to our definition.

5 Detecting Coherence Errors

Setup We aim to see whether models can au-
tomatically detect our coherence errors. We for-
mulate all models as sequence classifiers: given
a context c and a sentence s, the goal is to clas-
sify whether s contains coherence errors. Similar
to Section 4.3, we project span-level errors to a
sentence-level gold coherence label y∗ ∈ {0, 1}.
Let E = {(e∗j , t∗j )} denote the set of error types
and corresponding spans in s.

We split SNAC into train (4.2k), dev (230) and
test (1.8k) examples and evaluate on the test set.

Metrics First, we consider a sentence-level bi-
nary classification version of this task: can mod-
els correctly predict if a sentence contains coher-
ence errors? In this case, our models take the form
P (y | c, s) where y ∈ {0, 1}. We report precision,
recall and F1. Note that the sentence-level ypred

judgment can be due to any of the error types.

5We omit comparison with Krippendorff’s α reported in
Dou et al. (2022) as they report observed agreement without
normalizing by expected agreement. We re-compute their
interannotator agreement on their dataset with normalization
for a randomly selected subset of 3 annotators (comparable to
our setting). This gives an average of 0.14 Krippendorff’s α
across all categories, with the bottom 5 categories reporting
an average of 0.05 α.

We next evaluate fine-grained prediction: can
models identify the specific coherence error type
and pinpoint the error span? In this case, our mod-
els predict P (y | c, s), where y is a bundle con-
sisting of y and a set of error tuples {(epred

j , t
pred
j )}

if y = 0. We report the precision, recall and F1
performance at correctly identifying the error type,
i.e. epred

j = e∗j ∀ej . We also report ov. computed
as the fraction of times the predicted error span
overlaps with the correct error span.

5.1 Models for Comparison

We compare performances of three types of mod-
els: (1) unsupervised (UNSUP). (2) Models trained
on synthetic data targeting coherent errors (SYN).
We follow prior work (Joty et al., 2018; Shen et al.,
2021) and generate synthetic training data by intro-
ducing artificial coherence errors in reference text,
specifically on the BookSum dataset (Kryściński
et al., 2021). We ensure zero overlap between this
synthetic train set and the evaluation test set. (3)
Models fine-tuned on the SNAC data (FT).

(UNSUP) LM Perplexity We use GPT-2 (Rad-
ford et al., 2019) to obtain the probability of the
sentence s, given the context c, i.e. P (s | c). The
dev set is used to select a threshold τLM and obtain
binary labels from these probabilities: predict an
error if P (s | c) < τLM .

(UNSUP) Entity Grid We construct entity grids
(Barzilay and Lapata, 2005, 2008) for both pre-
dicted and gold summaries in order to compare
their discourse structures. Using gold summaries
in the BookSum dataset, we estimate the proba-
bilities of syntactic role transitions of entities be-
tween sentences, e.g. p(S → O), p(S → X),
p(O → S), etc. Then, we score the coherence of a
predicted summary s as the log probability of the
transition from c−1, i.e. the last sentence of context
c, to sentence s: w(c, s) =

∑
e∈E log p(r(s, e) |

r(c−1, e)). Here, E is the full set of entities in s
and c−1 and r(x, e) denotes the role of entity e in
sentence x.

The SNAC dev set is used to select a threshold
τEG and obtain binary labels from these scores:
predict a coherence error if w(c, s) < τEG.

(SYN) Coref-based This technique is designed
to specifically target CharE and RefE errors. We
run a coreference model (Lee et al., 2018) to extract
coreferent chains in gold summaries. Let si, sj>i

be sentences with the first and second mention of
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S1

S2

S3

Mr. Bingley meets the Bennet family at Netherfield Park.
Jane, the eldest Bennett girl is attracted to him.
Darcy starts to notice Elizabeth and asks her to marry him.
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S1, S2 [SEP] S3 T5
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Fanny is also displeased by the closeness between Edward, her 
brother, and Elinor, the elder Dashwood daughter.
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The Dashwood family is introduced.  
Mr. Dashwood's wife is left with little when he dies and the estate 
goes to his son, John Dashwood. 
John and his wife Fanny have a lot of money. Yet they refuse to help. 
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Figure 6: Training data generation, and T5 inputs and
outputs for the SYN and FT w/ span models. The FT
w/o span model only generates yes/no and not the spe-
cific category or span.

an entity. We derive non-coherent examples by
setting s = sj and removing sentence si from the
context, i.e. c = s1s2...si−1si+1...sj−1 (shown
in Figure 6). Conversely, for positive coherent
training data, we retain the original context from
the gold summaries, i.e. c = s1s2...si...sj−1. We
fine-tune T5-Large (Raffel et al., 2020) for binary
classification P (y | c, s) on these (y, c, s) triples;
training data sizes and intrinsic performance are
reported in Appendix C.

(SYN) Next-Sentence This method is designed
to target SceneE errors and closely resembles the
sentence insertion method from prior work (Shen
et al., 2021). Given context c = s1s2...si, we ob-
tain negative coherence examples by replacing the
next sentence with another randomly sampled sen-
tence from the remainder of the same summary, i.e.
s = sj , where j > i + 1. Positive examples are
created by retaining the original summary comple-
tion, i.e. s = si+1. Figure 6 illustrates this. We
fine-tune T5-Large to model P (y | c, s).

(FT) Models trained on SNAC data We con-
sider two versions: 1) w/o span: trained to generate
yes/no reflecting the coherence of sentence s, and
2) w/ span: trained to additionally predict the er-
ror category (e.g. CharE) and the corresponding
error spans. Note that s can have errors belonging
to multiple error categories, the model is trained
to generate these in sequence. Figure 6 illustrates
this. For SceneE, we omit span prediction as these
are designed to incorporate the whole sentence.
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Figure 7: Performance of the different models on the
SNAC test set. Models trained on SNAC outperform
those trained on synthetically generated datasets.

Error FT w/ span Human
P R F1 ov. P R F1 ov.

CharE .79 (.86) .81 .80 .98 .88 .71 .79 .98
SceneE .35 (.58) .49 .40 1.0 .58 .36 .44 1.0
RefE .19 (.44) .22 .21 .88 .31 .17 .22 .92
InconE .25 (.25) .02 .04 0.0 .29 .16 .20 .97

Table 6: Comparison between FT w/ span model and
humans. Humans have higher precision while trained
models report better recall across the top 3 error types.

Similar to SYN, we fine-tune T5-Large on these
datasets.

5.2 Results

Sentence-level binary classification Figure 7
shows an ROC curve of different models; the dotted
black line indicates random chance. It shows that
the entity-grid approach performs poorly compared
to all neural approaches. Next, all trained mod-
els outperform the LM perplexity model; language
models aggregating token-level probabilities can-
not detect coherence errors. Finally, models trained
on SNAC outperform synthetic datasets which are
the primary source of training data in prior coher-
ence work. This show that human annotations are
needed to train strong coherence classifiers.

Fine-grained prediction Only our FT w/ span
model is trained to predict both the error category
and the corresponding spans. Therefore, we com-
pare its performance against human annotators. For
an apples-to-apples comparison, we re-construct
our test set by aggregating annotations of two ran-
domly chosen annotators. This unfairly penalizes
FT w/ span by introducing a mismatch between
its train and test conditions, especially precision.
Therefore, we also report precision scores on the
original test set in brackets. Full set of results on
the original test set are in Appendix C.
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Table 6 outlines the results. As observed during
qualitative evaluation, the held-out human annota-
tions are high precision and low recall. On the other
hand, FT w/ span is trained on the aggregated an-
notations from three annotators and reports higher
recall than humans. Consequently, its F1 scores
are comparable to human performance except for
InconE. We attribute this to the limited number of
training examples of this category.

Similar to previous analysis, we observe that
models and humans report the best performance at
detecting CharE. Interestingly, the trained model
can identify both SceneE and RefE with higher
recall compared to human annotators. For these
top three error types, trained models are successful
at localizing error to specific spans, reporting high
overlap scores.

6 Discussion

Our analysis of current narrative summarization
models reveals that these do not generate coher-
ent narratives; in fact, each generated summary
contains ~30 coherence errors of varying degrees
of severity. Moreover, both automatic and human
approaches for coherence evaluation fail to reliably
measure coherence. SNAC addresses this gap.

However, we stop short of providing a prepack-
aged metric: which errors are more severe is
application-dependent and subjective, and over-
all error counts cannot be compared. We encour-
age future work to focus on fine-grained error an-
notations, like those we present here, instead of
sentence- or document-level annotations that do not
provide actionable insights. We also recommend
fine-grained error modeling for future coherence
systems as well. While previous modeling has tar-
geted document- or sentence-level coherence, our
models trained on SNAC data can detect span-level
coherence errors, particularly CharE errors with
high accuracy. This automatic error localization
opens up future avenues of post-hoc error correc-
tion systems built on top of coherence models.

7 Related Work

Coherence frameworks Inspired by Centering
Theory (Grosz et al., 1995), Barzilay and Lapata
(2005, 2008) proposed entity-grid models to mea-
sure coherence through transitions of entity roles.
This was further extended to incorporate non-head
entities (Elsner and Charniak, 2011), discourse
roles (Lin et al., 2011), and other improvements

(Feng and Hirst, 2012; Feng et al., 2014), including
neural variations (Guinaudeau and Strube, 2013;
Nguyen and Joty, 2017; Joty et al., 2018) to better
model text coherence. However, these models have
been evaluated primarily on document-level essay
scoring tasks (Mesgar and Strube, 2018) or arti-
ficial sentence-ordering tasks (Shen et al., 2021),
and not on model-generated coherence errors.

Summarization Evaluation Automatic metrics
such as BLEU (Papineni et al., 2002), METEOR
(Banerjee and Lavie, 2005), ROUGE (Lin, 2004),
BERTScore (Zhang et al., 2019), and others have
been used to evaluate summarization, but Fabbri
et al. (2021) showed that these correlate poorly
with summary quality. Human evaluation is widely
considered the gold standard for generation tasks,
however, recent work (Karpinska et al., 2021; Clark
et al., 2021) demonstrated that humans are not reli-
able for evaluating strong models like GPT-3.

8 Conclusion

We introduce SNAC, a narrative coherence evalua-
tion framework for long summaries. We develop an
error taxonomy grounded in coherence errors made
by current models and annotate data to provide
the first characterization of such errors in narrative
summaries. We also make our annotation tool pub-
licly available to support future research efforts.

9 Limitations

Although we view this work as an important step to-
wards better understanding and evaluation of coher-
ence in summaries, we acknowledge there is much
more to do here. In this work, we only collect anno-
tations and analyze coherence errors in summaries
of English language books and movie screenplays.
Our proposed taxonomy may not cover errors made
by text summarization models for other languages
and our trained models and analysis are English-
specific.

Moreover, some of these books summarized
were written decades ago and may reflect the soci-
etal biases of those times, which could conceivably
bias our trained error detection models. In this
work, we use the text from the model generated
summaries as is and do not perform any filtering.

Finally, our work studies generated summaries
for long narrative text. While we believe that our
taxonomy is generalizable to other types of narra-
tive text, we do not investigate whether it covers
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other domains involving summarization of long
documents, such as government report summariza-
tion (Huang et al., 2021) or meeting summarization
(Zhong et al., 2021).
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A Narrative Summarization ̸=
Open-Ended Generation

In Section 4.3, we noted that narrative summa-
rization exhibits substantially different errors than
open-ended text generation tasks like story gener-
ation or story completion, hence the need for our
new taxonomy. We show examples of generated
stories using the GPT-3 DaVinci in Figure 8. We
prompt the GPT-3 text-davinci-002 model with the
first few sentences of three generated summaries
and ask for a 500-word completion. The coher-
ence errors contained in these model outputs are
very different from those in our narrative summa-
rization setting. In particular, the stories hardly
introduce any new characters (only Mr. Greene is
introduced in the third example), and when they do,
these are properly contextualized with the narrative.
Furthermore, these models rarely generate RefE
and generate no SceneE type of errors. In fact,
repetition errors, shown in blue, dominate these
narratives. Therefore, error taxonomies devised for
these tasks, e.g. SCARECROW (Dou et al., 2022),
are not useful for summarization settings which
needs to be independently studied.

B Limitations of Automatic Metrics

Long document summarization research (Chen
et al., 2022; Huang et al., 2021; Kryściński et al.,

2021; Mao et al., 2021; Pang et al., 2022) has pri-
marily relied on ROUGE scores to evaluate sum-
maries. But do these capture narrative coherence?

We test this for long narrative summaries, using
the BOOK-175B dataset as a case study. Specif-
ically, we test whether ROUGE or BERTScore
(Zhang et al., 2019) can differentiate between ac-
tual generated summaries and their corrupted ver-
sions with artificially injected coherence errors. We
introduce 3 types of coherence errors to generated
summaries:

1. Random shuffling using a random permutation
of all sentences in a BOOK-175B summary.
This does not change the overall length of the
generated summary.

2. Repetition of a randomly selected subset of
sentences. We randomly sample 50% of the sen-
tences to repeat, all other sentences only occur
once.

3. Retaining only named entities in the summary
and top generated bigrams. We first extract
the top 200 bigrams from the generated sum-
maries in BOOK-175B, which include frequent
bigrams like of the, that he, then he, in the, etc.
For each test set summary, we construct a cor-
rupted summary by concatenating all named
entities in the summary (appending each named
entity as many times as it occurs in the original
summary) and the top bigrams extracted from
the testset-wide summaries.

For an upper bound, we also report metrics for
a different human-written summary for the same
input book sampled from the BookSum dataset.

Automatic metrics fail to penalize coherence
errors. Table 7 shows that both shuffling and
repetition do not hurt ROUGE or BERTScore, de-
spite introducing critical coherence errors in gener-
ated summaries. The +NE & bigram setting does
lead to a significant drop in BERTScore as these
summaries are no longer fully-formed sentences.
However, even this trivial baseline reports ROUGE

scores on par with the original BOOK-175B sum-
maries, showing that ROUGE is easy to “game” for
this task. Finally, we see that human-written sum-
maries, i.e., gold coherent summaries, only report
2 points of improvement in R2 and BERTScore
over artificially incoherent baselines. This clearly
shows that these metrics are inadequate to mea-

455



Prompt (Human-Written): 
Complete this story in 500 words.  
John Fenwick, an aspiring artist, accepts a loan from Mr. Morrison to move to London to pursue his art career. In London, he impresses several wealthy art collectors with his 
work. 

Continuation by GPT-3 DaVinci: 
One of them, Mr. Greene, purchases one of his paintings for a large sum of money. With the money from the sale, Fenwick is able to pay back Mr. Morrison and also has enough 
left over to buy materials for more paintings. He continues to sell his paintings and gains more recognition in the art world. John Fenwick was grateful when Mr. Morrison agreed 
to loan him the money to move to London so he could pursue his art career. He was determined to make a success of himself and worked hard to impress the wealthy art collectors 
in the city. His efforts paid off when one of his paintings was purchased by Mr. Greene for a large sum of money. Fenwick was able to pay back the loan and also had enough 
money left over to buy materials for more paintings. His talent and hard work continued to be rewarded with more sales and recognition in the art world.  

He was on his way to becoming one of the most successful artists in London. One day, however, he was visited by Mr. Morrison, who had come to collect on the loan. Fenwick 
was surprised and disappointed to learn that the loan had never been forgiven and that he now owed a considerable amount of money, with interest. He was forced to sell more 
paintings to pay off the debt and was left with little money to live on. His dream of being a successful artist was over.  Fenwick was heartbroken but he didn't give up. He 
continued to paint and eventually regained his place in the art world. He never forgot what Mr. Morrison did to him and he was determined to make sure that no one else would 
ever be treated so unfairly.  Fenwick became a vocal advocate for artists' rights and worked to ensure that they were fairly compensated for their work. Thanks to his efforts, artists 
today are able to earn a living from their art and pursue their dreams. John Fenwick's story is one of talent, hard work, and determination. Despite being dealt a difficult hand, he 
was able to overcome adversity and make a lasting impact on the art world.  

John Fenwick’s story is one of talent, hard work and determination. Despite being dealt a difficult hand, he was able to overcome adversity and make a lasting impact on the art 
world. When Fenwick was first starting out, he accepted a loan from Mr. Morrison to help him move to London so he could pursue his art career. He quickly made a name for 
himself in the art world and started impressing wealthy art collectors with his work. One of these collectors, Mr. Greene, ended up purchasing one of Fenwick’s paintings for a 
large sum of money.  

Prompt (Human-Written): 
Complete this story in 500 words.  
The narrator, a Yale graduate, moves to New York to learn the bond business. He visits his second cousin, Daisy, and her husband, Tom, for dinner. During the dinner, Daisy 
mentions she wants to go back to Chicago the next day. 

Continuation by GPT-3 DaVinci: 
The narrator asks if he can go with her, and Daisy agrees. When they get back to Daisy and Tom's apartment, the narrator sees a man in the shadows who he later learns is Tom's 
mistress's husband. The next day, the narrator and Daisy take the train to Chicago. On the train, Daisy tells the narrator that she is pregnant and that Tom wants her to have an 
abortion. Daisy says she wants to keep the baby, but is afraid of what Tom will do if she does. The narrator offers to help Daisy, and they make a plan to meet in Chicago the 
following week.  

The following week, the narrator meets Daisy in Chicago. They go to a hotel, and the narrator gets a room for Daisy. Daisy is hesitant to go into the room, but the narrator assures 
her that she will be safe. Daisy takes a bath, and the narrator reads to her from a book of poems. Later, Daisy falls asleep, and the narrator watches over her. In the morning, the 
narrator wakes Daisy and tells her it is time to go. They leave the hotel and take a taxi to the train station. Daisy thanks the narrator for his help, and they say goodbye.  The 
narrator returns to New York and tells Tom what happened. Tom is angry and demands that the narrator leave. The narrator leaves, but not before telling Tom that Daisy is going 
to keep the baby. The narrator moves back to Chicago and meets Daisy again. Daisy is now married to a man named Gatsby, and they have a baby. The narrator is happy for 
Daisy and her new family.  

The Yale graduate narrator moves to New York to learn the bond business. A few months after arriving, he visits his second cousin Daisy and her husband Tom for dinner. Daisy 
mentions wanting to go back to Chicago the next day, and the narrator asks if he can come along. The following day, the pair take the train to Chicago. On the ride, Daisy 
confides in the narrator that she is pregnant and Tom wants her to get an abortion. Daisy is torn because she wants to keep the baby, but is afraid of Tom's reaction. The narrator 
offers to help Daisy, and they make a plan to meet in Chicago the following week.  The next week, the narrator meets Daisy in Chicago and takes her to a hotel. He gets her a 
room and Daisy takes a bath while the narrator reads to her from a book of poems. Daisy falls asleep and the narrator watches over her overnight. In the morning, the narrator 
wakes Daisy and tells her it is time to go. They leave the hotel and take a taxi to the train station. Daisy thanks the narrator for his help, and they say goodbye. The narrator 
returns to New York and tells Tom what happened. Tom is angry and demands that the narrator leave. The narrator leaves, but not before telling Tom that Daisy is going to keep 
the baby. The narrator moves back to Chicago and meets Daisy again. Daisy is now married to a man named Gatsby, and they have a baby. The narrator is happy for Daisy and 
her new family.

Prompt (Human-Written): 
Complete this story in 500 words.  
Miss Manette receives a letter from the bank informing her that information about her father's small property has been discovered.  

Continuation by GPT-3 DaVinci: 
The letter is from the bank. It reads: 
"Dear Miss Manette, We regret to inform you that information about your father's small property has been discovered. The property was willed to you upon his death, but due to 
some legal complications, it has been tied up in the courts. We are currently working to resolve the matter, but in the meantime, we thought you should be aware of the situation. 
We will keep you updated on any developments. Sincerely, The Bank" 

Miss Manette is surprised and disappointed to learn about the property. She had no idea her father even owned it. She wonders what legal complications are preventing her from 
accessing it.The bank assures her they are working to resolve the matter, and she decides to wait and see what happens. In the meantime, she is curious to learn more about the 
property and what her father's intentions were for her to have it. A few weeks later, the bank contacts Miss Manette again to let her know that the matter has been resolved and she 
is now the owner of the property. They give her the address and she is shocked to find that it is a small house in a rundown neighborhood. Despite the property's condition, Miss 
Manette is thrilled to finally have it and begins making plans to renovate it. She knows it will be a lot of work, but she is up for the challenge. With the help of her friends, she is 
able to transform the house into a cozy home that she can be proud of. Though it is not the property she originally envisioned, Miss Manette is happy to have a place to call her 
own.  

Miss Manette was surprised and disappointed to learn about the property her father owned. She had no idea what legal complications were preventing her from accessing it, but 
the bank assured her they were working to resolve the matter. A few weeks later, the bank contacted Miss Manette again to let her know that the matter had been resolved and she 
was now the owner of the property. They gave her the address and she was shocked to find that it was a small house in a rundown neighborhood. Despite the property's condition, 
Miss Manette was thrilled to finally have it and began making plans to renovate it. She knew it would be a lot of work, but she was up for the challenge. With the help of her 
friends, she was able to transform the house into a cozy home that she could be proud of. Though it was not the property she originally envisioned, Miss Manette was happy to 
have a place to call her own. 

Figure 8: Examples of open-ended story completion by the GPT-3 text-davinci-002 model. The coherence
errors observed under this setting (chiefly repetition errors, in blue) have little or no overlap with those from the
summarization setting. Therefore, error taxonomies like SCARECROW that are devised for open-ended generated
are not applicable to the summarization task.
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Summary R1 R2 RL BERTScore

OpenAI 175B 41.9 11.0 17.1 .51
+ Shuffled 41.9 11.0 15.6 .51

+ Repetition 44.7 10.6 17.2 .49
+ NE & bigram 42.8 10.1 16.3 .26

Human-written 45.8 12.5 17.9 .53

Table 7: ROUGE and BERTScore for BOOK-175B and
several artificially corrupted versions. Results show that
automatic metrics fail to penalize coherence errors.

Method #train #dev F1 Acc.

Coref-based 6.0k 920 .78 .77
Next-Sent 3.8k 880 .71 .74

Table 8: Dataset sizes and intrinsic performance of T5-
Large models trained on synthetic datasets.

sure coherence, or even overall quality, for long
summaries.

C Detecting Coherence Errors: Details
and Additional Results

C.1 Models trained on synthetic data (SYN)

Table 8 shows the training data and development
data size, as well as the intrinsic performance of
these synthetic dataset-based coherence models
on this development set. We construct both our
datasets with an equal number of positive and nega-
tive coherence examples. The results show that T5
learns to model the synthetic task with reasonable
accuracy. We do not expect the models to perform
perfectly, as the synthetic data may have false pos-
itives (examples constructed to exhibit errors that
are actually coherent).

C.2 Implementation Details

Table 9 shows the hyperparameters used for fine-
tuning the T5-Large models on both synthetic train-
ing datasets and SNAC.

Computing Infrastructure 32GB NVIDIA V100 GPU
Max Input Seq Length 1024
Max Output Seq Length 80 (for FT w/ span)
Optimizer Adam
Optimizer Params β = (0.9, 0.999), ϵ = 10−8

Learning Rate Decay Linear
Learning rate 1e-4
Batch size 8
Epochs 5

Table 9: Hyperparameters used for fine-tuning T5-Large
on synthetic and SNAC train sets.

Model CharE SceneE RefE InconE All

Coref-based .61 .47 .48 .15 .43
Next-Sent .31 .35 .32 .09 .27

FT w/o span .89 .84 .64 .51 .73
FT w/ span .90 .82 .58 .47 .70

Table 10: Sentence-level recall of different errors types.
Models (except FT w/ span) do not predict the error cat-
egory; here, we treat these methods as binary classifiers
and compute recalls as described in Appendix C.3.

C.3 Additional Results

Sentence-level binary classification In Section
5, we reported sentence-level binary classification
results for all models. However, the sentence-level
ypred judgment in that setting can be due to any of
the 4 error types or their combination and binary
classification metrics do not tell us which of these
error types are easier to detect.

To answer this, we compute the error-wise recall
under the binary setting. We assume e

pred
j = 0 if

ypred = 0 for all error types ej ; that is, a prediction
of a binary error counts as detecting an error of any
type in that sentence. This overestimates the recall
performance and can be viewed as an upper bound;
a model that can only detect CharE may report non-
zero recall for other errors if these co-occur with
CharE.

For fair comparison between different models,
we report category-wise recall for all models at the
same precision level P = 0.7. Table 10 outlines
our results. Both synthetic models report higher
recall for the error category they were designed
for. E.g., the coref-based method can detect CharE
errors better than other error types. However, our
FT models significantly outperform both synthetic
approaches across all error types at thresholds with
high precision performance. In particular, we ob-
serve high recall scores for CharE and SceneE.

Fine-grained prediction In Table 6, we com-
pared human and model (FT w/ spans) performance
on a modified test set created by combining annota-
tions from 2 crowdworkers. This unfairly penalized
the trained models, which may have slightly higher
recall due to being trained on annotations from 3
crowdworkers. In Table 11, we report results on
the original test set that combines annotations from
all 3 annotators.
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Error P R F1 ov.

CharE .86 .74 .80 .99
SceneE .58 .49 .53 1.0
RefE .45 .25 .32 .87

InconE .25 .01 .02 0.0

Table 11: Performance of the T5-Large model fine-
tuned on the SNAC dataset at predicting the correct
error type in each summary sentence. We also report
the percentage of times the predicted span overlaps with
the error span in the gold data.

D SNAC Error Types and Task Interface

The definitions of error types and illustrative exam-
ples provided to the crowdworkers during training
are outlined here.

D.1 CharE

We call these New Person not Introduced in the
task interface. We provide the illustrative example
show in Figure 9 along with the following defini-
tion:

“These refer to coherence errors where a new
person is introduced into the narrative WITHOUT
providing any background about the person, or
their relation with other characters in the story.
Note, however, that famous or well-known people
do not need to be explicitly introduced.”

Context: 
John Fenwick, an aspiring artist, accepts a loan to move to London 
to pursue his art career. 

Current Segment: 
In London, he impresses Lord Findon with his work. 

Reasoning: Here, a new person 
Lord Findon is introduced 
without explicitly stating who he 
is, or his connection to the other 
previous characters.

On the other hand, if the 
sentence read “Lord Findon, a 
wealthy benefactor”, then this 
would not be a coherence error.

Current Segment: 
A data firm that worked on Trump's campaign is shutting down 
amid allegations that it misused Facebook data

Trump is a well-known 
person, does not need to be 
explicitly introduced to 
maintain coherence. 

Figure 9: Illustration of CharE errors provided to crowd-
workers during training.

D.2 RefE

We call these Missing Information about an
Event/Object in the task interface. We provide
the illustrative example show in Figure 10 along
with the following definition:

“These refer to coherence errors where an event
or object is mentioned for the first time, but the
phrasing strongly implies some context is missing
to understand this event/object and that it must
have been introduced previously.”

Context: 
John Fenwick, an aspiring artist, accepts a loan from Mr. 
Morrison to move to London to pursue his art career. 

Reasoning: Here, the event 
“husband’s suicide” is 
incoherent with the context, 
where he is alive and provides 
the loan. The phrasing of the 
text implies that the readers 
are aware of the husband’s 
suicide. 
On the other hand, if the 
sentence read “One day, he 
hears about Mr. Morrison’s 
suicide and writes a letter…” 
would be coherent.

Context: 
John Fenwick, an aspiring artist, accepts a loan from Mr. 
Morrison to move to London to pursue his art career. 

Current Segment: 
He burns Mr. Morrison’s letter and goes to visit galleries 
in London.

Reasoning: Here, the object 
‘Mr. Morrison’s letter’ is not 
previously introduced, but is 
referred to familiarly. Therefore, 
it is marked incoherent.

Current Segment: 
He writes a letter to Mrs. Morrison expressing sympathy 
for her husband’s suicide.

Figure 10: Illustration of RefE errors provided to crowd-
workers during training.

D.3 SceneE

These are called Abrupt Transition from the Pre-
vious Scene in the task interface. We provide the
illustrative example show in Figure 11 along with
the following definition:

“These refer to coherence errors where there is
a sudden shift in the setting or the narrative in the
story. These often happen in two scenarios:

1. There is an abrupt change in the peo-
ple/characters being discussed and/or an abrupt
change in the surroundings/event.

2. Scenarios where the previous scene’s phrasing
strongly implies that more information/events
are forthcoming, but the previous scene gets
abruptly cut off and a completely new scene
starts.

Please choose full sentences as spans for this
error type.”

Context: 
John Fenwick, an aspiring artist, accepts a loan from Mr. Morrison 
to move to London to pursue his art career.  

He becomes infatuated with Madame de Pastourelles, a beautiful 
and intelligent artist. 

Reasoning: Here, the scene suddenly shifts from the previous 
one (talking about Fenwick’s infatuation), to a different scene 
where a character is threatened by a tramp. 
 
In this case, this entire next segment span should be selected, 
and annotated as ‘Abrupt Scene Transition’ Error.

Current Segment: 
Fenwick’s wife becomes frightened when a tramp threatens to kill 
her and her child.

Figure 11: Illustration of SceneE errors provided to
crowdworkers during training.

D.4 InconE

Figure 12 shows an example of Inconsistent error
shown to annotators.
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“These refer to text spans that contradict previ-
ous content (either in the context or the next seg-
ment box itself.)

Note: You will also be asked to highlight the
‘previous’ span that is contradictory to the selected
span. Highlighting this previous span (from either
the context or the next segment box itself) will pop-
ulate the relevant input box automatically.”

Context: 
John Fenwick, an aspiring artist, accepts a loan from Mr. Morrison 
to move to London to pursue his art career. 

Step 1: Highlight the span in the 
Next Segment box that is 
inconsistent with earlier text. 

Step 2: Highlight the earlier span that is being 
contradicted. This will automatically populate the 
relevant text box.  

Current Segment: 
He moves to Paris to set up his workshop.

Figure 12: Illustration of InconE errors provided to
crowdworkers during training.

D.5 CorefE

Figure 13 shows an example of Unclear Corefer-
ence provided to annotators.

“These refer to errors where it is unclear
who/what a pronoun or refers to.”

Current Segment: 
Kendall and Greenlee go to Aiden’s house the next evening. She 
rings the doorbell. 

‘She’ could be referring to either Kendall or Greenlee. This 
coreference is unclear. 

Figure 13: Illustration of CorefE errors provided to
crowdworkers during training.

D.6 RepE

Figure 14 shows an example of Repetition errors.
“These refer to spans where content is repeated.
Note: For these, you will also be asked to high-

light the ‘previous’ span that contains the same
text/content as the selected span. Highlighting this
previous span (from either the context or the next
segment box itself) will populate the relevant input
box automatically.”

D.7 GramE

These are called Ungrammatical/Nonsensical in
the interface.

“These refer to text spans that have grammar
errors. Also included in this category are cases

Step 1: Highlight the span 
in the Next Segment box 
that is repeated 

Step 2: Highlight the earlier span that is 
being repeated. This will automatically 
populate the relevant text box.  

Current Segment: 
Fenwick is an aspiring artist who searches for work in London.

Context: 
John Fenwick, an aspiring artist, accepts a loan from Mr. Morrison 
to move to London to pursue his art career. 

Figure 14: Illustration of RepE errors provided to crowd
workers during training.

Context 
John Fenwick, an aspiring artist, accepts a loan from Mr. Morrison  
to move to London to pursue his art career. 

Step 2: Choose 
Error Type ej

CharE

Step 1: Highlight Span tj

Step 3: (only for InconE and RepE) 
Select antecedent from context/current segment.
Step 4: Add  to final set of annotations . a = {Si, tj, ej} A
Repeat until all errors in  are annotated. Then, go to .Si Si+1

Current Segment 
In London, he impresses Lord Findon with his work.

RefE SceneE InconE

(S0 S1 . . . Si−1)

(Si)

RepE CorefE GramE

Figure 15: Workflow for annotating coherence er-
rors in segment Si with respect to the context, i.e.
S0, S1, ..., Si−1.

where there are obvious commonsense errors or
the text does not make any sense at all.”

D.8 Task Interface

In Section 3.1, we described the annotation work
for the SNAC framework. Figure 15 visually illus-
trates this overall workflow for annotating errors in
segment Si. A screenshot of the actual task inter-
face is shown in Figure 16.

We also include screenshots of our task instruc-
tions. Figure 17 explains the basic task to the anno-
tators. Figure 18 shows the detailed task workflow
and the steps to annotate errors in a text segment.
Figure 19 shows an example annotation with multi-
ple coherence errors for reference.

E Datasheet for SNAC

E.1 Motivation for Dataset Creation

Why was the dataset created? Despite recent
interest in long document summarization research
and generation of long narrative summaries (Kryś-
ciński et al., 2021; Zhang et al., 2022; Mao et al.,
2021; Wu et al., 2021), we lack evaluation frame-
works to compare these approaches and measure
progress. Current automatic and human evaluation
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methods fail to identify gaps in narrative coherence
and are not suited for evaluating long summaries.
Our SNAC dataset and annotation framework re-
leases a large-scale dataset of fine-grained coher-
ence annotations and establishes a protocol for elic-
iting such annotations from crowdworkers. This
provides a foundation for future research efforts in
this area.

Has the dataset been used already? At the time
of submission, the dataset has only been used in
the current paper for analysis of generation er-
rors made by current state-of-the-art summariza-
tion models and for training automatic coherence
detection models.

Who funded the dataset? We withhold this in-
formation to maintain anonymity but will include
it upon publication.

E.2 Dataset Composition
What are the instances? Each instance in this
dataset is a model generated summary from either
the book or the movie domain. All summaries are
in the English language.

How many instances are there? Our dataset
contains annotations for 160 generated summaries
(including both expert and crowd annotations).

What data does each instance consist of? Each
instance contains multiple span-level highlights cor-
responding to coherence errors, each of which is
tagged with a specific error category.

Does the data rely on external sources? Yes.
For the book datasets, we annotate summaries from
the publicly available model outputs released by
Wu et al. (2021). For movies, we generate sum-
maries using the SummˆN model (Zhang et al.,
2022) on the publicly available TRIPOD dataset
(Papalampidi et al., 2020).

Are there recommended data splits or evalu-
ation measures? We will include the recom-
mended training, development, and test splits for
our annotations with the dataset release. The statis-
tics for the data splits are outlined in Section 5.

E.2.1 Data Collection Process
Who was involved in the collection process and
what were their roles? For expert annotations, 3
authors of the paper with experience in engaging
with model-generated text annotated 10 book sum-
maries. To recruit crowd annotators, we launched

a qualification task on Mechanical Turk. After this
qualification, 11 workers were asked to annotate
150 summaries.

How was the dataset collected? Given a gener-
ated summary, annotators were asked to select span
highlights that correspond with coherence errors
and categorize the type of that error. We provided
all annotators with detailed instructions describing
the task interface, error type definitions as well as
the overall workflow.

Over what time frame was the data collected?
The dataset was collected over the months of March
and April 2022.

Does the dataset contain all possible instances?
No, we only annotate narrative summaries from
two summarization models on two domains
(movies and books). Moreover, our dataset only
contains English language summaries.

If the dataset is a sample, then what is the popu-
lation? The dataset is a subset of generated sum-
maries produced by state-of-the-art summarization
models on narratives like books or movie screen-
plays.

E.3 Data Preprocessing
What preprocessing/cleaning was done? We
fix sentence and word boundaries for highlighted
spans from crowd annotations.

Was the raw data saved in addition to the
cleaned data? Yes.

Does this dataset collection/preprocessing proce-
dure achieve the initial motivation? Yes. This
dataset serves as a large-scale collection of anno-
tated coherence errors and provides the first char-
acterization of such errors in long narrative sum-
maries.

E.4 Dataset Distribution
How is the dataset distributed? Our dataset is
publicly released at this link: https://github.
com/tagoyal/snac.

When was it released? The dataset was released
in October, 2022.

What license (if any) is it distributed under?
The dataset is released under the CC BY-SA 4.0
license.7

7https://creativecommons.org/licenses/by-sa/4.
0/legalcode
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Who is supporting and maintaining the dataset?
This dataset is maintained by authors of this paper.

E.5 Legal and Ethical Considerations
Were workers told what the dataset would be
used for and did they consent? Crowdworkers
were aware that their responses were being col-
lected as part of a research study on analyzing
coherence errors in narrative text. The Amazon
Mechanical Turk Participation Agreement permits
the use of their annotated responses for this work.
We do not release any personal information, e.g.
worker IDs, of the crowdworkers.

If it relates to people, could this dataset expose
people to harm or legal action? No.

If it relates to people, does it unfairly advantage
or disadvantage a particular social group? No.
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Figure 16: Screenshot of the task interface for SNAC annotations

Figure 17: Screenshot of the first page of the tutorial provided to crowd annotators
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Figure 18: Screenshot of the second page of the tutorial provided to crowd annotators

Figure 19: Screenshot of the last page of the tutorial provided to crowd annotators
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