
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 2898–2910
December 7-11, 2022 ©2022 Association for Computational Linguistics

CodeRetriever: Large-scale Contrastive Pre-training for Code Search

Xiaonan Li1∗, Yeyun Gong2, Yelong Shen2, Xipeng Qiu1†,
Hang Zhang2, Bolun Yao2, Weizhen Qi2, Daxin Jiang2, Weizhu Chen2, Nan Duan2

1 Shanghai Key Laboratory of Intelligent Information Processing, Fudan University
1 School of Computer Science, Fudan University 2Microsoft

1{lixn20, xpqiu}@fudan.edu.cn,
2{yegong, yeshe, v-zhhang, yaobolun, weizhen djiang, wzchen, nanduan}@microsoft.com

Abstract

In this paper, we propose the CodeRetriever
model, which learns the function-level code
semantic representations through large-scale
code-text contrastive pre-training. We adopt
two contrastive learning schemes in CodeRe-
triever: unimodal contrastive learning and bi-
modal contrastive learning. For unimodal
contrastive learning, we design an unsuper-
vised learning approach to build semantic-
related code pairs based on the documenta-
tion and function name. For bimodal con-
trastive learning, we leverage the documenta-
tion and in-line comments of code to build
code-text pairs. Both contrastive objectives
can fully leverage large-scale code corpus for
pre-training. Extensive experimental results
show that CodeRetriever achieves new state-
of-the-art with significant improvement over
existing code pre-trained models, on eleven
domain/language-specific code search tasks
with six programming languages in different
code granularity (function-level, snippet-level
and statement-level). These results demonstrate
the effectiveness and robustness of CodeRe-
triever. The codes and resources are avail-
able at https://github.com/microsoft/
AR2/tree/main/CodeRetriever.

1 Introduction

Code search aims to retrieve functionally relevant
code given a natural language query to boost de-
velopers’ productivity (Parvez et al., 2021; Hu-
sain et al., 2019). Recently, it has been shown
that code pre-training techniques, such as Code-
BERT (Feng et al., 2020) and GraphCodeBERT
(Guo et al., 2021), could significantly improve code
search performance via self-supervised pre-training
using large-scale code corpus (Husain et al., 2019).

However, existing code pre-training approaches
usually adopt (masked) language modeling as the

∗Work is done during internship at Microsoft Research
Asia.

†Corresponding author.

Doc:
Return the Fibonacci number.
Code:
def Fibonacci(n):

if n == 0:
return 0

elif n in [1,2]:
return 1

return \
Fibonacci(n-1)+Fibonacci(n-2)

Doc:
Get the Fibonacci number.
Code:
def Fibonacci_Number(index):

cache = [0]*(index+1)
cache[0] = 0
cache[1] = 1
cache[2] = 1
for i in range(3,index+1):

cache[i] = \
cache[i-1] + cache[i-2]

return cache[index]

(a) Fibonacci

Doc:
Sort the input array into ascending order.
Code:
def bubbleSort(arr):

n = len(arr)
for i in range(n):

for j in range(0, n-i-1):
if adjacent elements appear in
descending order, swap them.

if arr[j] > arr[j+1]:
arr[j], arr[j+1] = arr[j+1], arr[j]

(b) BubbleSort

Figure 1: Code examples. (a) Two different imple-
mentations of Fibonacci number algorithm; (b) Docu-
mentation, in-line comment, and code in BubbleSort
implementation.

training objective which targets on learning to pre-
dict (masked) tokens in a given code context (Feng
et al., 2020; Guo et al., 2021; Ahmad et al., 2021;
Wang et al., 2021b). However, this token-based
approach generally results in poor code semantic
representations due to two reasons. The first one is
the anisotropy representation issue. As discussed
in (Li et al., 2020), the token-level self-training
approach causes the embeddings of high-frequency
tokens clustered and dominate the representation
space, which greatly limits the expressiveness of
long-tailed low-frequency tokens in pre-trained
models. Thus, the anisotropic representation space
induces poor function-level code semantic repre-
sentation (Li et al., 2020). In programming lan-
guage, the problem of token imbalance is even
more severe than that of natural language. For
example, common keywords and operators such
as “=”, “{”, and “}” appear almost everywhere in

2898

https://github.com/microsoft/AR2/tree/main/CodeRetriever
https://github.com/microsoft/AR2/tree/main/CodeRetriever

Java code. The second one is the cross-language
representation issue. The widely used CodeSearch-
Net corpus (Husain et al., 2019) contains codes
from six different programming languages such as
Python, Java, etc. Since the code with mixed pro-
gramming languages can hardly appear within the
same context, it is challenging for the pre-trained
model to learn a unified semantic representation
of the code with the same functionality but using
different programming languages.

To address these limitations, we propose the
CodeRetriever model, focusing on learning the
function-level code representations, specifically for
code search scenarios. The CodeRetriever model
consists of a text encoder and a code encoder,
which encodes text/code into separate dense vec-
tors. The semantic relevance between code and text
(or code and code) is measured by the similarity
between dense vectors (Karpukhin et al., 2020b;
Huang et al., 2013; Shen et al., 2014).

In the training of CodeRetriever, the code/text
encoders are optimized by minimizing two types
of contrastive losses: 1.Unimodal contrastive loss,
encourages the model to push codes with similar
functionality closer in representation space. To esti-
mate whether two codes are semantically close, the
model needs to reason based on the given code and
understand its semantics. 2.Bimodal contrastive
loss, helps model the relevance between code and
text. Since the document or comment contains rich
semantic information of the code, it can encourage
the model to learn better code representation from
natural language.

In this work, we adopt the commonly used Code-
SearchNet corpus (Husain et al., 2019) for training
the CodeRetreiver. CodeSearchNet mainly con-
tains paired dataset (a function paired with a docu-
ment) and unpaired dataset (only a function). The
paired dataset could be directly used for bimodal
contrastive learning. For unimodal contrastive
learning in CodeRetriver, we build positive code-
code pairs by an unsupervised semantic-guided
approach. Figure 1(a) shows a code-code exam-
ple: two implementations of the Fibonacci num-
ber algorithm. Moreover, the generated code-code
pairs can be with different programming languages,
which can mitigate the cross-language representa-
tion issues. To further take advantage of the large-
scale code in unpaired data and paired data, we
extract the code and in-line comment pairs to en-
hance the bimodal contrastive learning in CodeRe-
triever. Figure 1(b) shows an example to indicate

that the in-line comment (comment shortly) can
also reflect the code’s semantics and internal logic.
Specifically, the underlying logic of “if adjacent
elements appear in descending order, swap them”
corresponds to sorting the input array into ascend-
ing order and such fine-grained semantic informa-
tion can also help learn better code representation.

Through contrasting these unimodal and bi-
modal pairs, CodeRetriever can 1. learn better the
function-level code semantic representation, which
could alleviate the anisotropy representation issue
(Gao et al., 2021b; Yan et al., 2021); 2. explic-
itly model the relevance of codes with different
programming languages and treat unified natural
language as a fulcrum to mitigate cross-language
representation issue. We evaluate CodeRetriever on
eleven code search datasets covering six program-
ming languages, real-world scenarios and codes
with different granularity (function-level, snippet-
level and statement-level), and the results show
that CodeRetriever achieves a new state-of-the-art
performance.

2 Preliminary: Code Search

CodeSearchNet corpus (Husain et al., 2019) is the
largest publicly available code dataset. The cor-
pus is collected from open-source non-fork GitHub
repositories, which contains 2.1M paired data (a
function paired with a document) and 6.4M un-
paired data (only functions).

In the literature, code-search approaches (Hu-
sain et al., 2019; Jain et al., 2020; Feng et al., 2020;
Guo et al., 2021) make use of the paired code-
document dataset in CodeSearchNet corpus to train
a siamese encoder model for language to code re-
trieval. However, rich unlabeled code corpus is
either simply abandoned or severed as code pre-
training corpus (Feng et al., 2020; Guo et al., 2021).
We argue that token-level code pre-training objec-
tives do not explicitly learn the function-level code
representation. Thus existing code pre-training
models (Jain et al., 2020; Feng et al., 2020; Guo
et al., 2021) are sub-optimal for code search.

In this work, we propose the CodeRetriever
to learn the function-level code semantic repre-
sentation. CodeRetriever is initialized with the
code pre-trained model (i.e., GraphCodeBERT).
It takes code-doc and code-comment paired data
for bimodal contrastive learning, and code-code
paired data for unimodal contrastive learning. Af-
ter CodeRetriever’s pre-training, it can serve for
downstream domain/language specified datasets.

2899

Or

Unimodal Contrastive Learning Bimodal Contrastive Learning

Code-Text BatchCode-Code Batch

positive

negative

Figure 2: Unimodal and bimodal contrastive learning in CodeRetriever.

3 Approach

In this section, we present the model architecture
and training objective of CodeRetriever.

CodeRetriever adopts a siamese code/text en-
coder architecture to represent code/text as dense
vectors. Let Ecode(·; θ) and Etext(·;ϕ) denote code
and text encoders, respectively. The semantic sim-
ilarities between code-code pair (c, c+), and text-
code pair (t, c+) are calculated as:

s(c, c+) =
〈
Ecode(c; θ), Ecode(c

+; θ)
〉

(1)

s(t, c+) =
〈
Etext(t;ϕ), Ecode(c

+; θ)
〉
, (2)

where ⟨, ⟩ indicates cosine similarity operation.

3.1 Unimodal Contrastive Learning
Given a paired code-code training sample (c, c+),
the unimodal contrastive loss is given by:

Luni = − ln
exp (τs(c, c+))∑
c′∈C exp (τs(c, c′))

, (3)

where τ is the temperature, for simplicity, we let
τ = 1; set C consists of the paired code c+ and
N − 1 unpaired code samples obtained by in-batch
negative sampling (Karpukhin et al., 2020b). In
particular, one batch can consist of hybrid program-
ming languages, which can help the pre-trained
model to learn a unified semantic space of codes
with different programming languages.

3.2 Bimodal Contrastive Learning
Given a paired text-code training instance (t, c+),
the bimodal contrastive loss is defined as the same
manner:

Lbi = − ln
exp (τs(t, c+))∑
c′∈C exp (τs(t, c′))

, (4)

where the definitions of τ and C are the same as
in eqn. 3. The codes of the text-code batch also

consist of hybrid programming languages, which
can help align the semantic space of different pro-
gramming languages and natural language. Since
the document or comment reflects the functionality
and crucial semantic information of source code,
such positive pairs can help model better under-
stand the semantics of code.

3.3 Overall Pre-training Objective
As illustrated in Figure 2, CodeRetreiver takes two
types of text-to-code for bimodal contrastive train-
ing, which are code-document and code-comment.
Therefore, we use L1

bi and L2
bi to denote code-

document and code-comment contrastive loss, re-
spectively. The overall pre-training objective for
CodeRetreiver is:

L(θ, ϕ) = Luni + L1
bi + L2

bi (5)

4 Building Positive Pairs
4.1 Code-Document
Documents of source codes usually can provide
rich semantic information and highly describe the
functionality of codes. For example, in Figure 1(b),
the document “Sort the input array into ascending
order.” clearly summarizes the goal of the code,
which can help the model to better understand the
code. So we take code c and its corresponding
document t as positive pairs. Thus we can not only
help model better understand code but also align
different programming languages’ representation
through the unified natural language description as
a pivot.

4.2 Code-Comment
Unlike documents, the in-line comments widely ex-
ist in unpaired code. As shown in Figure 1(b), it can
reflect the code’s internal logic and contains fine-
grained semantic information, despite certain noisy

2900

NameMatcher

Merge

Doc:
Sort input array into ascending order.
Code:
def bubbleSort(arr):
……

DocMatcher
Retrieve

Retrieve

bubble_sort

quickSort

FibonacciNumber
……

Build the Http connection with server.

……

Return the maximum value in the input.

Sort and return the ascending input. Relevant Functions

public static void bubble_sort(int[] a, int n)
{……}

def sort (inp):
……

Function names corpus

Documents corpus

def bubble_sort (elements, reversed):
……

Function code

……

ℂ𝐷𝑜𝑐

ℂ𝑁𝑎𝑚𝑒

(a)

CrossModel
Train

ℂ𝐷𝑜𝑐

ℂ𝑁𝑎𝑚𝑒
Filter

Filter

(b)

Figure 3: The illustration of building code-code pairs. (a) Step 1. Collect noisy code-code pairs through function
name match and documentation match; (b) Step 2. Denoise code-code pairs with CrossModel.

signals. So we consider code-comment as positive
pairs to further help model to learn better code rep-
resentation. In this section, we introduce how we
build code-comment pairs. We first leverage the
code parser (tree-sitter) to split the code-block into
two parts: pure code and the corresponding in-line
comments. Then we perform post-processing as
follows to filter noisy paired samples to obtain the
code-comment corpus:
• We merge comments with continuous lines into

one comment. This is inspired by the phe-
nomenon where developers usually write a com-
plete comment into multiple-lines to make it
easier to read, like in Figure 1(b).

• Comments with little information are removed,
including: 1) shorter than four tokens; 2) com-
ments beginning with “TODO”; 3) comments
for automated code checking, like “Linter · · · ”1.
4) non-text comments, i.e., commented code.

• Functions with little semantic information are
removed such as functions with names “__get-
ter__”, “__setter__” etc, are removed.

After cleaning, we collect about 1.9 million code-
comment pairs. The detailed statistics of the overall
code-text corpus can be seen in Appendix A.

4.3 Code-Code
Code-code paired datasets can provide explicit
training signals for models to learn the semantic
representation of code. However, it is challenging
to build large-scale and high-quality semantically
relevant code-to-code pairs from an unlabeled cor-
pus. To a specific functionality, there are a lot of
ways to implement it and the resulting code can
be full of diversity. They can have totally differ-
ent logic, libraries invoked, and identifier names.
Even for experienced developers, it’s challenging
and time-consuming for them to assess the seman-
tic similarity of two codes, which makes human

1Linter is a static analysis tool for checking code.

annotation costly and not scalable. Although two
codes of the same functionality can have different
implementations, their documentations or function
names can be very similar, as shown in Figure 1(a).
Inspired by this phenomenon, we propose the unsu-
pervised techniques as following to collect a large-
scale code-to-code corpus.

Step 1. Collect noisy code-code pairs by
maching function name and documentation.
1) We adopt the recently proposed unsupervised
method, SimCSE (Gao et al., 2021b), to train with
the function name corpus, obtain “NameMatcher”
model; and train with documentation corpus to ob-
tain “DocMatcher” model; Both “NameMatcher”
and “DocMatcher” are dense retrieval models. For
example, given a function name, “NameMatcher”
could be able to retrieve top-K relevant function
names in the corpus. We refer readers to its original
paper (Gao et al., 2021b) for more details. 2) For
any given function in the corpus, we retrieve its rel-
evant functions through function name matching us-
ing the “NameMatcher”. The similar manner is ap-
plied to “DocMatcher”, which collects code-code
pairs by matching their corresponding documen-
tations. We denote the code-code pairs collected
through “DocMatcher” as CDoc, and use CName
to indicate the code-code pairs collected through
“NameMatcher”. We only keep code-code pairs
if their retrieval scores (by “NameMatcher” and
“DocMatcher”) are greater than threshold (0.75).

Step 2. Denoise Code-code pairs with Cross-
Model. The code-code sets CName and CDoc col-
lected from Step 1 can be noisy, especially for
CName as functions with the same function name
can have different functionalities. In this step, we
train a binary classifier model, CrossModel (Mc),
for filtering noisy code-code pairs. 1) We take the
code-code pairs CDoc, which is less noisy, as the
training set to train the CrossModel Mc. It takes

2901

Lang Ruby Javascript Go Python Java PHP Overall

ContraCode (Jain et al., 2020) - 30.6 - - - - -
SyncoBERT (Wang et al., 2021a) 72.2 67.7 91.3 72.4 72.3 67.8 74.0
CodeBERT (Feng et al., 2020) 67.9 62.0 88.2 67.2 67.6 62.8 69.3
GraphCodeBERT (Guo et al., 2021) 70.3 64.4 89.7 69.2 69.1 64.9 71.3
UniXcoder (Guo et al., 2022) 74.0 68.4 91.5 72.0 72.6 67.6 74.4
CodeRetriever (In-Batch Negative) 75.3 69.5 91.6 73.3 74.0 68.2 75.3
CodeRetriever (Hard Negative) 75.1 69.8 92.3 74.0 74.9 69.1 75.9
CodeRetriever (AR2) 77.1 71.9 92.4 75.8 76.5 70.8 77.4

Table 1: The comparison on the CodeSearch dataset. We get the ContraCode’s result by fine-tuning the released
checkpoint (Jain et al., 2020). Other results of compared models are reported by previous papers.

Dataset Adv CoSQA CoNaLa SO-DS StaQC Overall

SyncoBERT (Wang et al., 2021a) 38.1 - - - - -
CodeBERT (Feng et al., 2020) 27.2 64.7 20.9 23.1 23.4 31.9
GraphCodeBERT (Guo et al., 2021) 35.2 67.5 23.5 25.3 23.8 35.1
UniXcoder (Guo et al., 2022) 41.3 70.1 - - - -
CodeRetriever (In-Batch Negative) 43.0 70.6 29.6 27.1 25.5 39.0
CodeRetriever (Hard Negative) 45.1 74.1 29.9 31.8 24.6 41.1
CodeRetriever (AR2) 46.9 75.4 29.1 33.9 24.2 41.9

Table 2: The comparison on datasets that are closer to the real scenario. The results of Compared models on the
Adv dataset and UniXcoder on CosQA are reported by previous papers, other results are from our implementation
since they are not reported previously.

the concatenation of code-code pair as input and is
more powerful for predicting their relevant score
(range from 0 to 1) via deep token interaction. In
the training of Mc, we use set CDoc as positive
training instances while sampling random code-
code pairs as negative instances. 2) We remove the
code-code pairs in CDoc and CName if their predic-
tion scores by Mc are smaller than certain thresh-
old. Let C∗

Name and C∗
Doc be the denoised subsets

of CName and CDoc. The final code-code corpus
is the joint of set C∗

Name and C∗
Doc. Since we take

the natural language as the anchor to get C∗
Name

and C∗
Doc, the code pair can have different program-

ming languages and mitigate the cross-language
representation issue.

We show the process of Step 1 and Step 2 in
Figure 3(a) and Figure 3(b), respectively. Over-
all, the collected code-code corpus contains 23.4
million pairs. We provide a more detailed descrip-
tion on building code-code corpus, involved hyper-
parameters and detailed cross-language statistics
of code-code pairs in Appendix B, C and D.

5 Experiment
For fair comparison, CodeRetriever adopts the
same model architecture as previous works (Feng
et al., 2020; Guo et al., 2021). CodeRetriever shares
parameters of code encoder and text encoder. It
contains 12 layers Transformer with hidden size of
768 and attention heads of 12. To accelerate the

training process, we initilaize CodeRetriever with
the released parameters of GraphCodeBERT (Guo
et al., 2021). We show more details in Appendix E.

5.1 Benchmark Datasets

We evaluate CodeRetriever on several code search
benchmarks, including CodeSearch (Husain et al.,
2019; Guo et al., 2021), Adv (Lu et al., 2021),
CoSQA (Huang et al., 2021), CoNaLa (Yin
et al., 2018), SO-DS (Heyman and Cutsem, 2020),
StaQC (Yao et al., 2018). The CodeSearch bench-
mark contains six datasets with different program-
ming languages. The Adv dataset normalizes the
method names and variable names in the dev/test
set, which makes it more challenging. CoNaLa,
SO-DS, and StaQC are collected from stackover-
flow questions, and CoSQA are collected from
web search engines. Therefore, the queries in
CoSQA, CoNaLa, SO-DS, and StaQC are closer to
the real code-search scenario compared with Adv
and CodeSearch. Meanwhile, CoNALA, SO-DS
and StaQC contain the code with different granu-
larity, i.e., statement-level and snippet-level. The
statistics of these benchmark datasets are listed in
Appendix F. Following previous works (Feng et al.,
2020; Guo et al., 2021), we use Mean Reciprocal
Rank (MRR) (Hull, 1999) as the evaluation metric
on all benchmark datasets.

2902

5.2 Experiment: Fine-Tuning
In the fine-tuning experiments, CodeRetriever and
other code pre-trained models are fine-tuned on the
eleven language/domain-specific code search tasks,
each task provides a set of labeled query-code pairs
for model adaptation. 2

5.2.1 Fine-tuning
Previous works on dense text retrieval (Karpukhin
et al., 2020a; Xiong et al., 2021; Qu et al., 2021)
show that the strategy of selecting negative samples
could greatly affect the model performance in con-
trastive learning tasks. Therefore, we explore the
following three approaches for CodeRetriever fine-
tuning: 1.In-Batch Negative. For a <query, code>
pair in a batch, it uses other codes in the batch
as negatives (Karpukhin et al., 2020a). Existing
code pre-trained models take in-batch negative as
the default fine-tuning method (Feng et al., 2020;
Guo et al., 2021; Wang et al., 2021a). 2.Hard Neg-
ative. It can pick “hard” representative negative
samples other than random negatives. Compared
with in-batch negative, the hard negative training is
more efficiency (Karpukhin et al., 2020a), which is
widely used in text dense retrieval. We follow Gao
et al. (2021a) for hard negative fine-tuning. 3.AR2.
It is a recently proposed training framework for
dense retrieval (Zhang et al., 2021). It adopts an
adversarial-training approach to select “hard” neg-
ative samples iteratively. In this paper, we focus
on using AR2 to enhance the siamese encoder for
code search.

In fine-tuning experiments, we conduct grid
search over learning-rate in {2e-5, 1e-5}, batch-
size in {32, 64, 128}. Training epoch, warm-up
step, and weight decay are set to 12, 1000, and
0.01, respectively on all tasks. We report the av-
erage results under 3 different random seeds. The
hyper-parameters for AR2 training are listed in Ap-
pendix G.

We compare CodeRetriever with state-of-the-art
pre-trained models, including: CodeBERT (Feng
et al., 2020), pre-trained with MLM and replaced
token detection tasks; GraphCodeBERT (Guo
et al., 2021), which integrates data flow baesed on

2For the CodeSearch benchmark, although it has overlap-
ping with the paired data of pre-training corpus, fine-tuning
on it is different from CodeRetriever’s bimodal contrastive
learning. In detail, fine-tuning on CodeSearch only covers
one specific programming language’s query-code pair while
CodeRetriever’s bimodal contrastive learning covers 1. six
hybrid programming languages for unifying their semantic
space 2. extra comment-code pair for further taking advantage
of the unpaired data.

CodeBERT. SynCoBERT (Wang et al., 2021a),
pre-trained on code-AST pairs with contrastive
learning; ContraCode (Jain et al., 2020), pre-
trained with contrastive learning through semantic-
preservin code transformation on Javascript cor-
pus. UniXcoder (Guo et al., 2022) is adpated from
UniLM and pre-trained on unified cross-modal data
like code, AST and text.

5.2.2 Results
Table 1 and Table 2 show the performance com-
parison on all benchmark datasets. First, we re-
port the performance of CodeRetriever (In-Batch
Negative), which uses the same finetuning ap-
proach as other baselines to ensure a fair com-
parison. It shows that CodeRetriever obtains the
best overall performance compared with all other
compared approaches. Specifically, CodeRetriever
improves over GraphCodeBERT by 4.0 average
absolute points on the CodeSearch dataset, which
demonstrates the effectiveness of CodeRetriever.
Meanwhile, CodeRetriever outperforms the previ-
ous state-of-the-art model, UniXcoder (Guo et al.,
2022), on all tasks with reported results. On the
Adv, CoSQA, CoNaLa, SO-DS and StaQC datasets,
CodeRetriever also outperforms baselines models,
which shows that CodeRetriever consistently out-
performs baseline models in various scenarios.

Comparing different fine-tuning approaches, we
can see that the AR2 is generally better than In-
Batch Negatives and Hard Negatives. i.e., CodeRe-
triever(AR2) improves over In-Batch Negative by
3.0 absolute points in average, and improves over
Hard Negative by 1.1 absolute points in average.
The experiment results suggest that selecting a
good fine-tuning approach is also very important
for downstream code search tasks. From Table 2,
an interesting observation is that In-Batch Negative
outperforms Hard Negatives and AR2 on StaQC
benchmark. A possible explanation is StaQC con-
tains more false query-code pairs in the training set
compared with other benchmarks, as it is collected
from stackoverflow through a rule-based method
without any human annotations, and In-Batch Neg-
ative is more noise-tolerant than AR2 and Hard-
Negative.

5.3 Analysis
5.3.1 Low-Resource Code Search
We evaluate the performance of CodeRetriever on
low resource scenario, i.e., only a few hundreds of
paired query-code data for fine-tuning. Table 4

2903

shows the results of CodeRetriever and Graph-
CodeBERT in the low-resource setting on CoSQA
dataset, where the number of training examples
is varied from 500 to FULL (19K). We can see
that CodeRetriever could reach more reasonable
performance in low-resource setting than Graph-
CodeBERT.

5.3.2 Cross-Language Code Search
Performance Since building pairs of real user
query and code is labor-intensive and costly, Ex-
isting code search datasets of real-world scenario
only cover few programming language, includ-
ing Python (Yao et al., 2018; Heyman and Cut-
sem, 2020; Yin et al., 2018; Huang et al., 2021),
Java (Nie et al., 2017; Li et al., 2019) and SQL (Yao
et al., 2018). Here, we introduce a new setting,
cross-language code search, where we fine-tune
model with ‘A’ programming language and test it
on ‘B’ programming language. This can alleviate
the data scarcity problem of other programming lan-
guages. For evaluating our method on this setting,
we finetune the model with query-Python corpus
(CoNaLa (Yin et al., 2018)) and evaluate it with
query-Java test set (Li et al., 2019). The queries
in the Python corpus and Java corpus are both col-
lected from stackoverflow. In Table 3, it shows that
unimodal contrastive loss in CodeRetriever signif-
icantly helps the cross-language code search task.
By combining bimodal contrastive loss, CodeRe-
triever could obtain better performance. This result
indicates CodeRetriever’s potential utility for real
scenarios.

Visualization To further analyze the effect of
unimodal contrastive learning, we visualize the 2-
D latent space of representations with or without
unimodal contrastive learning by t-SNE (van der
Maaten and Hinton, 2008). In the Figure 4(a),
we can see the representations of Java and Python
code appear in two separate clusters for the model
without unimodal contrastive learning (GraphCode-
BERT) while in Figure 4(b), their representation
space are overlapped. It shows that the unimodal
contrastive learning helps to learn a unified repre-
sentation space of code with different programming
languages.

5.3.3 Code-to-Code Search Results
We fine-tune and evaluate CodeRetriever on code-
to-code search task. In this task, given a code, the
model is asked to return a semantically related code.
We conduct experiment on POJ-104 dataset (Mou

(a) without Luni (b) with Luni

Figure 4: The 2-D visualizations of Python and Java’s
representation, where and represent samples of Java
and Python, respectively.

Method MRR

GraphCodeBERT 41.6
CodeRetriever (Luni) 48.4
CodeRetriever (Luni + Lbi) 53.3

Table 3: The comparison on cross language code search.

et al., 2016; Lu et al., 2021) and use the same hyper-
parameters as previous works (Lu et al., 2021). We
evaluate by Mean Average Precision (MAP), as
shown in table 5. We see that CodeRetriever out-
performs other pre-trained models, which demon-
strates its scalability and potentiality for other code
understanding tasks.

5.3.4 Uniformity and Alignment
To study the effect of CodeRetriever on the
function-level representation space, we use the
alignment and uniformity metrics (Wang and Isola,
2020) to see function-level representation distribu-
tion changes during training, shown in Figure 5.
We see that the uniformity loss of CodeRtriever de-
scends gradually, indicating the anisotropy is allevi-
ated. We find that the alignment loss also has a de-
clining trend, which shows the training of CodeRe-
triever can help align the representation of code
and natural language and better understand them.
The two metrics indicate that the CodeRetriever re-
duces the gap between pre-training and fine-tuning,
compared with previous code pre-trained models.

5.3.5 Ablation Study
To understand the effect of each component in
CodeRetriever, we conduct ablation study on the
CodeSearch Java dataset and SO-DS. We start from
the initial model and add components of CodeRe-

Train Size 500 1000 2000 4000 FULL

GraphCodeBERT 43.2 49.9 54.0 57.2 67.5
CodeRetriever 54.7 55.6 58.4 60.5 70.6

Table 4: The performance comparison on CosQA with
different training size.

2904

0 20 40 60 80 100

−2

−1.5

−1

−0.5

luniform / Training Steps (k)

GraphCodeBERT
CodeRetriever

0 20 40 60 80 100

0.9

1

1.1

1.2

lalign / Training Steps (k)

GraphCodeBERT
CodeRetriever

Figure 5: The alignment and uniformity curve.

Model MAP@R

RoBERTa (Liu et al., 2019) 76.67
CodeBERT (Feng et al., 2020) 82.67
GraphCodeBERT (Guo et al., 2021) 85.16
SynCoBERT (Wang et al., 2021a) 88.24
DISCO (Ding et al., 2021) 82.77
Corder (Bui et al., 2021) 84.10
CodeRetriever 88.85

Table 5: The performance comparison on the code-to-
code retrieval task (Mou et al., 2016). Compared mod-
els’ results are from previous papers (Wang et al., 2021a;
Ding et al., 2021; Bui et al., 2021).

triever to it one-by-one. We find that using code-
code pairs without denoising for unimodal con-
trastive learning brings slight performance degra-
dation while with denoising, it achieves significant
performance improvement. This demonstrates the
effectiveness of the denoising step and shows that
the unimodal contrastive learning depends on the
quality of positive pairs construction. Here, we
verify a simple and effective positive pairs con-
struction method, we leave the development of
more powerful method as future work. From the
results of using doc-code and comment-code for
bimodal contrastive learning, we see that the model
achieves further performance improvement, which
shows the bimodal contrastive learning can lever-
age crucial semantic information in documents or
comments to help better understand the code.

6 Related Work
Token-Level Code Pre-training Token-level
pre-trained models have been widely-used for the
programming languages. Karampatsis and Sutton
(2020) pre-train ELMo on JavaScript corpus for
program-repair task. Kanade et al. (2020) use a
large-scale Python corpus to pre-train the BERT
model. C-BERT (Buratti et al., 2020) is pre-trained

Methods CodeSearch SO-DS

GraphCodeBERT (Our Initial) 69.1 25.3
+ Code-to-Code (no denoising) 68.9 25.2
+ Code-to-Code (denoising) 71.1 25.9

+ Doc-to-Code 72.2 26.6
+ Comment-to-Code 74.0 27.1

Table 6: Ablation study.

on a lot of repositories in C language and achieves
significant improvement in abstract syntax tree
(AST) tagging task. CodeBERT (Feng et al., 2020)
is pre-trained by the masked language model and
replaced token detection tasks on the text-code
pairs of six programming languages. GraphCode-
BERT (Guo et al., 2021) introduces the informa-
tion of dataflow based on CodeBERT. Besides
these BERT-like models, CodeGPT (Svyatkovskiy
et al., 2020), PLBART (Ahmad et al., 2021), Co-
TexT (Phan et al., 2021) and CodeT5 (Wang et al.,
2021b) are pre-trained for code generation tasks
based on the GPT, BART (Lewis et al., 2019) and
T5 (Raffel et al., 2020) respectively. However,
token-level objectives cause the anisotropy prob-
lem (Guo et al., 2022) and have a gap with code
search which is based on function-level representa-
tions. Different from these works, CodeRetriever
utilizes the contrastive-learning framework to en-
hance the function-level representation.
Contrastive Learning for Code Recently, sev-
eral works try to use contrastive learning on pro-
gramming language, whose key is building effec-
tive positive or negative samples. ContraCode (Jain
et al., 2020) and Corder (Bui et al., 2021) use
semantics-preserving transformations, such as iden-
tifier renaming and dead code insertion to build pos-
itive pairs. Ding et al. (2021) develop bug-injection
to build hard negative pairs. SynCoBERT (Wang
et al., 2021a) and Code-MVP (Wang et al., 2022)
build positive pairs through programs’compilation
process like AST and CFG. However, their meth-
ods usually generate positive samples with similar
structure or the same variable names as the original
code, whose naturalness and diversity is limited
by hand-written rules(Li et al., 2022). In CodeRe-
triever, we construct positive pairs from code-code,
code-documentation, and code-comment. For code-
code, we design a more natural and diverse posi-
tive pairs construction method based on real-world
codes.

7 Conclusion
In this paper, we introduce CodeRetriever that com-
bines unimodal and bimodal contrastive learning
as pre-training tasks for code search. For uni-
modal contrastive learning, we propose a semantic-
guided method to build positive code pairs. For
bimodal contrastive learning, we utilize the docu-
ment and in-line comment to build positive text-
code pairs. Extensive experimental results on sev-
eral publicly available benchmarks show that the

2905

proposed CodeRetriever brings significant improve-
ment and achieves new state-of-the-art on all bench-
marks. Further analysis results show that CodeRe-
triever is also powerful on low resource and cross-
language code search tasks, and demonstrate the
effectiveness of unimodal and bimodal contrastive
learning.

Limitations

CodeRetriever mainly has two limitations:
1) Due to the limited computing infrastructure,

only GraphCodeBERT is used as the initialization
model in the experiments. We leave experiments
based on other code pre-trained models such as
UniXcoder (Guo et al., 2022) as future work.

2) The code-code pairs and code-comment pairs
still contain certain noise. We will explore stronger
denoising methods in future work.

3) We pre-train CodeRetriever on the Code-
SearchNet corpus. In future work, we will consider
using more pre-training corpora such as full Github
repositories.

Acknowledgements

This work was supported by the National Key
Research and Development Program of China
(No.2020AAA0106700) and National Natural Sci-
ence Foundation of China (No.62022027).

References
Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and

Kai-Wei Chang. 2021. Unified pre-training for pro-
gram understanding and generation. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 2655–2668,
Online. Association for Computational Linguistics.

Nghi D. Q. Bui, Yijun Yu, and Lingxiao Jiang. 2021.
Self-supervised contrastive learning for code retrieval
and summarization via semantic-preserving transfor-
mations. In SIGIR ’21: The 44th International ACM
SIGIR Conference on Research and Development in
Information Retrieval, Virtual Event, Canada, July
11-15, 2021, pages 511–521. ACM.

Luca Buratti, Saurabh Pujar, Mihaela A. Bornea,
J. Scott McCarley, Yunhui Zheng, Gaetano Rossiello,
Alessandro Morari, Jim Laredo, Veronika Thost, Yu-
fan Zhuang, and Giacomo Domeniconi. 2020. Ex-
ploring software naturalness through neural language
models. CoRR, abs/2006.12641.

Yangruibo Ding, Luca Buratti, Saurabh Pujar, Alessan-
dro Morari, Baishakhi Ray, and Saikat Chakraborty.
2021. Contrastive learning for source code

with structural and functional properties. CoRR,
abs/2110.03868.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
BERT: A pre-trained model for programming and
natural languages. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1536–1547, Online. Association for Computational
Linguistics.

Luyu Gao, Yunyi Zhang, Jiawei Han, and Jamie Callan.
2021a. Scaling deep contrastive learning batch size
under memory limited setup. In Proceedings of the
6th Workshop on Representation Learning for NLP.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021b.
Simcse: Simple contrastive learning of sentence em-
beddings. CoRR, abs/2104.08821.

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming
Zhou, and Jian Yin. 2022. Unixcoder: Unified cross-
modal pre-training for code representation. In Pro-
ceedings of the 60th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 7212–7225.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng,
Duyu Tang, Shujie LIU, Long Zhou, Nan Duan,
Alexey Svyatkovskiy, Shengyu Fu, Michele Tufano,
Shao Kun Deng, Colin Clement, Dawn Drain, Neel
Sundaresan, Jian Yin, Daxin Jiang, and Ming Zhou.
2021. GraphCodeBERT: Pre-training code represen-
tations with data flow. In International Conference
on Learning Representations.

Geert Heyman and Tom Van Cutsem. 2020. Neu-
ral code search revisited: Enhancing code snippet
retrieval through natural language intent. CoRR,
abs/2008.12193.

Junjie Huang, Duyu Tang, Linjun Shou, Ming Gong,
Ke Xu, Daxin Jiang, Ming Zhou, and Nan Duan.
2021. CoSQA: 20,000+ web queries for code search
and question answering. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 5690–5700, Online. Association
for Computational Linguistics.

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng,
Alex Acero, and Larry Heck. 2013. Learning deep
structured semantic models for web search using
clickthrough data. ACM International Conference on
Information and Knowledge Management (CIKM).

David A. Hull. 1999. Xerox TREC-8 question answer-
ing track report. In Proceedings of The Eighth Text
REtrieval Conference, TREC 1999, Gaithersburg,
Maryland, USA, November 17-19, 1999, volume 500-
246 of NIST Special Publication. National Institute
of Standards and Technology (NIST).

2906

https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.1145/3404835.3462840
https://doi.org/10.1145/3404835.3462840
https://doi.org/10.1145/3404835.3462840
http://arxiv.org/abs/2006.12641
http://arxiv.org/abs/2006.12641
http://arxiv.org/abs/2006.12641
http://arxiv.org/abs/2110.03868
http://arxiv.org/abs/2110.03868
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
http://arxiv.org/abs/2104.08821
http://arxiv.org/abs/2104.08821
https://openreview.net/forum?id=jLoC4ez43PZ
https://openreview.net/forum?id=jLoC4ez43PZ
http://arxiv.org/abs/2008.12193
http://arxiv.org/abs/2008.12193
http://arxiv.org/abs/2008.12193
https://doi.org/10.18653/v1/2021.acl-long.442
https://doi.org/10.18653/v1/2021.acl-long.442
https://www.microsoft.com/en-us/research/publication/learning-deep-structured-semantic-models-for-web-search-using-clickthrough-data/
https://www.microsoft.com/en-us/research/publication/learning-deep-structured-semantic-models-for-web-search-using-clickthrough-data/
https://www.microsoft.com/en-us/research/publication/learning-deep-structured-semantic-models-for-web-search-using-clickthrough-data/
http://trec.nist.gov/pubs/trec8/papers/xerox-QA.pdf
http://trec.nist.gov/pubs/trec8/papers/xerox-QA.pdf

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. 2019. Code-
searchnet challenge: Evaluating the state of semantic
code search. CoRR, abs/1909.09436.

Paras Jain, Ajay Jain, Tianjun Zhang, Pieter Abbeel,
Joseph E. Gonzalez, and Ion Stoica. 2020. Con-
trastive code representation learning. CoRR,
abs/2007.04973.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017.
Billion-scale similarity search with gpus. CoRR,
abs/1702.08734.

Aditya Kanade, Petros Maniatis, Gogul Balakrishnan,
and Kensen Shi. 2020. Pre-trained contextual embed-
ding of source code. CoRR, abs/2001.00059.

Rafael-Michael Karampatsis and Charles Sutton. 2020.
Scelmo: Source code embeddings from language
models. CoRR, abs/2004.13214.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
S. H. Lewis, Ledell Wu, Sergey Edunov, Danqi Chen,
and Wen-tau Yih. 2020a. Dense passage retrieval for
open-domain question answering. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2020, Online,
November 16-20, 2020, pages 6769–6781. Associa-
tion for Computational Linguistics.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Ledell
Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
2020b. Dense passage retrieval for open-domain
question answering. CoRR, abs/2004.04906.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.
arXiv preprint arXiv:1910.13461.

Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang,
Yiming Yang, and Lei Li. 2020. On the sentence
embeddings from pre-trained language models. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9119–9130, Online. Association for Computa-
tional Linguistics.

Hongyu Li, Seohyun Kim, and Satish Chandra. 2019.
Neural code search evaluation dataset. CoRR,
abs/1908.09804.

Xiaonan Li, Daya Guo, Yeyun Gong, Yun Lin, Ye-
long Shen, Xipeng Qiu, Daxin Jiang, Weizhu Chen,
and Nan Duan. 2022. Soft-labeled contrastive pre-
training for function-level code representation.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin B. Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Li-
dong Zhou, Linjun Shou, Long Zhou, Michele Tu-
fano, Ming Gong, Ming Zhou, Nan Duan, Neel Sun-
daresan, Shao Kun Deng, Shengyu Fu, and Shujie
Liu. 2021. Codexglue: A machine learning bench-
mark dataset for code understanding and generation.
CoRR, abs/2102.04664.

Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016.
Convolutional neural networks over tree structures
for programming language processing. In Proceed-
ings of the Thirtieth AAAI Conference on Artificial
Intelligence, February 12-17, 2016, Phoenix, Ari-
zona, USA, pages 1287–1293. AAAI Press.

Liming Nie, He Jiang, Zhilei Ren, Zeyi Sun, and Xi-
aochen Li. 2017. Query expansion based on crowd
knowledge for code search. CoRR, abs/1703.01443.

Md. Rizwan Parvez, Wasi Uddin Ahmad, Saikat
Chakraborty, Baishakhi Ray, and Kai-Wei Chang.
2021. Retrieval augmented code generation and sum-
marization. CoRR, abs/2108.11601.

Long N. Phan, Hieu Tran, Daniel Le, Hieu Nguyen,
James T. Anibal, Alec Peltekian, and Yanfang Ye.
2021. Cotext: Multi-task learning with code-text
transformer. CoRR, abs/2105.08645.

Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang
Ren, Wayne Xin Zhao, Daxiang Dong, Hua Wu, and
Haifeng Wang. 2021. Rocketqa: An optimized train-
ing approach to dense passage retrieval for open-
domain question answering. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, NAACL-HLT 2021, On-
line, June 6-11, 2021, pages 5835–5847. Association
for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67.

Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng,
and Gregoire Mesnil. 2014. A latent semantic model
with convolutional-pooling structure for information
retrieval. In CIKM.

Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu,
and Neel Sundaresan. 2020. Intellicode compose:
code generation using transformer. In ESEC/FSE

’20: 28th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of
Software Engineering, Virtual Event, USA, November
8-13, 2020, pages 1433–1443. ACM.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of Machine
Learning Research, 9(86):2579–2605.

2907

http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/2007.04973
http://arxiv.org/abs/2007.04973
http://arxiv.org/abs/1702.08734
http://arxiv.org/abs/2001.00059
http://arxiv.org/abs/2001.00059
http://arxiv.org/abs/2004.13214
http://arxiv.org/abs/2004.13214
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
http://arxiv.org/abs/2004.04906
http://arxiv.org/abs/2004.04906
https://doi.org/10.18653/v1/2020.emnlp-main.733
https://doi.org/10.18653/v1/2020.emnlp-main.733
http://arxiv.org/abs/1908.09804
https://arxiv.org/abs/2210.09597
https://arxiv.org/abs/2210.09597
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/2102.04664
http://arxiv.org/abs/2102.04664
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11775
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11775
http://arxiv.org/abs/1703.01443
http://arxiv.org/abs/1703.01443
http://arxiv.org/abs/2108.11601
http://arxiv.org/abs/2108.11601
http://arxiv.org/abs/2105.08645
http://arxiv.org/abs/2105.08645
https://doi.org/10.18653/v1/2021.naacl-main.466
https://doi.org/10.18653/v1/2021.naacl-main.466
https://doi.org/10.18653/v1/2021.naacl-main.466
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://www.microsoft.com/en-us/research/publication/a-latent-semantic-model-with-convolutional-pooling-structure-for-information-retrieval/
https://www.microsoft.com/en-us/research/publication/a-latent-semantic-model-with-convolutional-pooling-structure-for-information-retrieval/
https://www.microsoft.com/en-us/research/publication/a-latent-semantic-model-with-convolutional-pooling-structure-for-information-retrieval/
https://doi.org/10.1145/3368089.3417058
https://doi.org/10.1145/3368089.3417058
http://jmlr.org/papers/v9/vandermaaten08a.html

Tongzhou Wang and Phillip Isola. 2020. Understanding
contrastive representation learning through alignment
and uniformity on the hypersphere. In Proceedings of
the 37th International Conference on Machine Learn-
ing, ICML 2020, 13-18 July 2020, Virtual Event,
volume 119 of Proceedings of Machine Learning
Research, pages 9929–9939. PMLR.

Xin Wang, Yasheng Wang, Yao Wan, Jiawei Wang,
Pingyi Zhou, Li Li, Hao Wu, and Jin Liu. 2022.
Code-mvp: Learning to represent source code from
multiple views with contrastive pre-training. arXiv
preprint arXiv:2205.02029.

Xin Wang, Yasheng Wang, Pingyi Zhou, Fei Mi, Meng
Xiao, Yadao Wang, Li Li, Xiao Liu, Hao Wu, Jin
Liu, and Xin Jiang. 2021a. CLSEBERT: contrastive
learning for syntax enhanced code pre-trained model.
CoRR, abs/2108.04556.

Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven
C. H. Hoi. 2021b. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code under-
standing and generation. CoRR, abs/2109.00859.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang,
Jialin Liu, Paul N. Bennett, Junaid Ahmed, and
Arnold Overwijk. 2021. Approximate nearest neigh-
bor negative contrastive learning for dense text re-
trieval. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net.

Yuanmeng Yan, Rumei Li, Sirui Wang, Fuzheng Zhang,
Wei Wu, and Weiran Xu. 2021. Consert: A con-
trastive framework for self-supervised sentence rep-
resentation transfer. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing, ACL/IJCNLP
2021, (Volume 1: Long Papers), Virtual Event, Au-
gust 1-6, 2021, pages 5065–5075. Association for
Computational Linguistics.

Ziyu Yao, Daniel S. Weld, Wei-Peng Chen, and Huan
Sun. 2018. Staqc: A systematically mined question-
code dataset from stack overflow. In Proceedings of
the 2018 World Wide Web Conference on World Wide
Web, WWW 2018, Lyon, France, April 23-27, 2018,
pages 1693–1703. ACM.

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan
Vasilescu, and Graham Neubig. 2018. Learning to
mine aligned code and natural language pairs from
stack overflow. In Proceedings of the 15th Interna-
tional Conference on Mining Software Repositories,
MSR 2018, Gothenburg, Sweden, May 28-29, 2018,
pages 476–486. ACM.

Hang Zhang, Yeyun Gong, Yelong Shen, Jiancheng Lv,
Nan Duan, and Weizhu Chen. 2021. Adversarial
retriever-ranker for dense text retrieval.

2908

http://proceedings.mlr.press/v119/wang20k.html
http://proceedings.mlr.press/v119/wang20k.html
http://proceedings.mlr.press/v119/wang20k.html
http://arxiv.org/abs/2108.04556
http://arxiv.org/abs/2108.04556
http://arxiv.org/abs/2109.00859
http://arxiv.org/abs/2109.00859
http://arxiv.org/abs/2109.00859
https://openreview.net/forum?id=zeFrfgyZln
https://openreview.net/forum?id=zeFrfgyZln
https://openreview.net/forum?id=zeFrfgyZln
https://doi.org/10.18653/v1/2021.acl-long.393
https://doi.org/10.18653/v1/2021.acl-long.393
https://doi.org/10.18653/v1/2021.acl-long.393
https://doi.org/10.1145/3178876.3186081
https://doi.org/10.1145/3178876.3186081
https://doi.org/10.1145/3196398.3196408
https://doi.org/10.1145/3196398.3196408
https://doi.org/10.1145/3196398.3196408
http://arxiv.org/abs/2110.03611
http://arxiv.org/abs/2110.03611

A Statistics of Bimodal Pairs

Language # Code-Doc Pairs # Code-Comment Pairs

Ruby 48,527 172,385
JavaScript 123,858 604,678
Go 315,921 172,385
Python 449,216 441,976
Java 452,847 404,424
PHP 520,088 301,708
Overall 2,137,293 1,964,627

Table 7: The statistics of code-text pairs in CodeRe-
triever.

B Code-Code Pairs Construction

Algorithm 1: Construct code-code pairs
Data: Paired text-code

(d1, c1), (d2, c2) · · · , (dm, cm); Unpaired
code data c∗1, c

∗
2 · · · , c∗n.

Result: CodePair
1 DocMatcher← SimCSE(d1 · · · , dm);
2 NameMatcher← SimCSE(name1 · · · , namen);
3 CodePairdoc← [];
4 CodePairname← [];
5 for i← 1· · · m do
6 for j← i· · · m do
7 if sim(di, dj ,DocMatcher)>τ1 then
8 CodePairdoc.append((ci, cj))
9 end

10 end
11 end
12 for i← 1· · · n do
13 for j← i· · · n do
14 if sim(namei, namej ,NameMatcher)>τ1

then
15 CodePairname.append((c∗i , c

∗
j))

16 end
17 end
18 end
19 Filter← CrossModel(CodePairdoc)
20 CodePair← [];
21 for ci, cj ∈ CodePairdoc do
22 if Filter(ci, cj) > τ2 then
23 CodePair.append((ci, cj))
24 end
25 end
26 for c∗i , c

∗
j ∈ CodePairname do

27 if Filter(c∗i , c
∗
j) > τ2 then

28 CodePair.append((c∗i , c
∗
j))

29 end
30 end

C The Hyper-parameters for building
code-code pairs.

Hyper-parameters Matcher CrossModel

Initialization GraphCodeBERT GraphCodeBERT
Epoch 2 2
Batch 256 256
Learning Rate 2e-5 2e-5
Optimizer AdamW AdamW
Temperature 0.05 -
Positive Threshold 0.75 0.998

Table 8: The hyper-parameters of Matchers and Cross-
Model.

D Statistics of Unimodal Pairs

Language Ruby JavaScript Go Python Java PHP

Ruby 354K 76K 38K 58K 78K 54K
JavaScript 239K 1936K 132K 158K 203K 155K
Go 181K 302K 3494K 146K 264K 123K
Python 512K 645K 305K 2038K 395K 316K
Java 380K 676K 445K 310K 4700K 388K
PHP 381K 575K 241K 246K 375K 2510K

Table 9: The statistics of code-code pairs in CodeRe-
triever.

E Implementation Details

CodeRetriever is a siamese-encoder model
with shared code encoder and text encoder.
CodeRetriever is initialized with pre-trained
GraphCodeBERT checkpoint released by Guo
et al. (2021), which is a 12 layers Transformer
encoder, with hidden sizes of 768 and attention
heads of 12. To save the number of model
parameters, the text encoder and code encoder in
CodeRetriever share their model weights during
training which follows previous work (Feng et al.,
2020; Guo et al., 2021). We use FAISS (Johnson
et al., 2017) for efficient dense indexing/retrieval.
i.e., accelerate the matching of similar function
names and documentations. For NameMatcher,
we normalize function names according to the
naming patterns. For example, “openFile” with
Camel-case and “open_file” with Snake-case
are both normalized to “open file”. The overall
training corpus for CodeRetreiver contains 2.1
million code-doc pairs, 23.4 million code-code
pairs, and 1.9 million code-comment pairs. When
a code has multiple positive text or code samples,
we randomly sample one of them everytime during

2909

training. The CodeRetriever is trained with 8
NVIDIA Tesla V100s-32GB for 1.8 days. The
batch-size, learning rate and training step are 256,
4e-5 and 100K, respectively. The max sequence
length of the text and code is set as 128 and 320,
respectively.

F Statistics of Fine-tuning Data

Dataset Train Dev Test

CodeSearch-Ruby (Husain et al., 2019) 25K 1.4K 1.2K
CodeSearch-JS (Husain et al., 2019) 58K 3.9K 3.3K
CodeSearch-Go (Husain et al., 2019) 16.7K 7.3K 8.1K
CodeSearch-Python (Husain et al., 2019) 25K 13.9K 14.9K
CodeSearch-Java (Husain et al., 2019) 16.4K 5.2K 10.9K
CodeSearch-PHP (Husain et al., 2019) 24.1K 13.0K 14.0K
Adv (Lu et al., 2021) 28.0K 9.6K 19.2K
CoSQA (Huang et al., 2021) 19K 0.5K 0.5K
CoNaLa (Yin et al., 2018) 2.8K - 0.8K
SO-DS (Heyman and Cutsem, 2020) 14.2K 0.9K 1.1K
StaQC (Yao et al., 2018) 20.4K 2.6K 2.7K

Table 10: The statistics of downstream datasets.

G Hyper-parameters of AR2

Hyper-Parameters G D

Initialization GraphCodeBERT GraphCodeBERT
Optimizer AdamW AdamW
Scheduler Linear Linear
Warmup proportion 0.1 0.1
Negative size 7 7
Batch size 128 128
Learning rate 5e-6 1e-6
Max step 16000 4000

Table 11: The Hyper-parameters of AR2

2910

