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Abstract

Video-aided grammar induction aims to lever-
age video information for finding more accu-
rate syntactic grammars for accompanying text.
While previous work focuses on building sys-
tems for inducing grammars on text that are
well-aligned with video content, we investi-
gate the scenario, in which text and video are
only in loose correspondence. Such data can
be found in abundance online, and the weak
correspondence is similar to the indeterminacy
problem studied in language acquisition. Fur-
thermore, we build a new model that can bet-
ter learn video-span correlation without man-
ually designed features adopted by previous
work. Experiments show that our model trained
only on large-scale YouTube data with no text-
video alignment reports strong and robust per-
formances across three unseen datasets, despite
domain shift and noisy label issues. Further-
more our model yields higher F1 scores than
the previous state-of-the-art systems trained on
in-domain data.

1 Introduction

Grammar induction is a fundamental and long-
lasting (Lari and Young, 1990; Clark, 2001; Klein
and Manning, 2002) problem in computational lin-
guistics, which aims to find hierarchical syntactic
structures from plain sentences. Unlike supervised
methods (Charniak, 2000; Collins, 2003; Petrov
and Klein, 2007; Zhang and Clark, 2011; Cross and
Huang, 2016; Kitaev and Klein, 2018) that require
human annotated treebanks, e.g., Penn Treebank
(Marcus et al., 1993), grammar inducers do not rely
on any human annotations for training. Grammar
induction is attractive since annotating syntactic
trees by human language experts is expensive and
time consuming, while the current treebanks are
limited to several major languages and domains.

∗ This work was done when Songyang Zhang was an
intern at Tencent AI Lab.

Recently, deep learning models have achieved
remarkable success across NLP tasks, and neural
models have been designed (Shen et al., 2018b,a;
Kim et al., 2019a,b; Jin et al., 2018) for grammar
induction, which greatly advanced model perfor-
mance on induction with raw text. Recent efforts
have started to consider other useful information
from multiple modalities, such as images (Shi et al.,
2019; Jin and Schuler, 2020) and videos (Zhang
et al., 2021). Specifically, Zhang et al. (2021) show
that multi-modal information (e.g. motion, sound
and objects) from videos can significantly improve
the induction accuracy on verb and noun phrases.
Such work uses curated multi-modal data publicly
available on the web, which all assume that the
meaning of a sentence needs to be identical (e.g.,
being a caption) to the corresponding video or im-
age. This assumption limits usable data to several
small-scale benchmarks (Lin et al., 2014; Xu et al.,
2016; Hendricks et al., 2017) with expensive hu-
man annotations on image/video captions.

The noisy correspondence between form and
meaning is one of the main research questions
in language acquisition (Akhtar and Montague,
1999; Gentner et al., 2001; Dominey and Dodane,
2004), where different proposals attempt to address
this indeterminacy faced by children. There has
been computational work incorporating such in-
determinacy into their models (Yu and Siskind,
2013; Huang et al., 2021). For modeling empir-
ical grammar learning with multi-modal inputs,
two important questions still remain open: 1) how
can a grammar inducer benefit from large-scale
multi-media data (e.g., YouTube videos) with noisy
text-to-video correspondence? and 2) how can a
grammar inducer show robust performances across
multiple domains and datasets? By using data with
only weak cross-modal correspondence, such as
YouTube videos and their automatically generated
subtitles, we allow the computational models to
face a similar indeterminacy problem, and exam-
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ine how indeterminacy interacts with data size to
influence learning behavior and performance of the
induction models.

In this paper, we conduct the first investigation
on both questions. Specifically, we collect 2.4 mil-
lion video clips and the corresponding subtitles
from instructional YouTube videos (HowTo100M
Miech et al. 2019) to train multi-modal grammar
inducers, instead of using the training data from a
benchmark where text and video are in alignment.
We then propose a novel model, named Pre-Trained
Compound Probabilistic Context-Free Grammars
(PTC-PCFG), that extends previous work (Shi et al.,
2019; Zhang et al., 2021) by incorporating a video-
span matching loss term into the Compound PCFG
(Kim et al., 2019a) model. To better capture the
video-span correlation, it leverages CLIP (Miech
et al., 2020), a state-of-the-art model pretrained on
video subtitle retrieval, as the encoders for both
video and text. Compared with previous work
(Zhang et al., 2021) that independently extracts
features from each modality before merging them
using a simple Transformer (Vaswani et al., 2017)
encoder, the encoders of our model have been pre-
trained to merge such multi-modal information,
and no human efforts are needed to select useful
modalities from the full set.

Experiments on three benchmarks show that our
model, which is trained on noisy YouTube video
clips and no data from these benchmarks, produces
substantial gains over the previous state-of-the-art
system (Zhang et al., 2021) trained on in-domain
video clips with human annotated captions. Further-
more, our model demonstrates robust performances
across all three datasets. We suggest the limitations
of our model and future directions for improve-
ments through analysis and discussions. Code will
be released upon paper acceptance.

In summary, the main contributions are:

• We are the first to study training a grammar in-
ducer with massive general-domain noisy video
clips instead of benchmark data, introducing the
indeterminacy problem to the induction model.

• We propose PTC-PCFG, a novel model for un-
supervised grammar induction. It is simpler in
design than previous models and can better cap-
ture the video-text matching information.

• Trained only on noisy YouTube videos without
finetuning on benchmark data, PTC-PCFG re-
ports stronger performances than previous mod-

els trained on benchmark data across three bench-
marks.

2 Background and Motivation

2.1 Compound PCFGs
A PCFG model in Chomsky Normal Form can be
defined as a tuple of 6 terms (S,N ,P,Σ,R,Π),
where they correspond to the start symbol, the sets
of non-terminals, pre-terminals, terminals, produc-
tion rules and their probabilities. Given pre-defined
numbers of non-terminals and pre-terminals, a
PCFG induction model tries to estimate the proba-
bilities for all production rules.

The compound PCFG (C-PCFG) model (Kim
et al., 2019a) adopts a mixture of PCFGs. Instead
of a corpus-level prior used in previous work (Kuri-
hara and Sato, 2006; Johnson et al., 2007; Wang
and Blunsom, 2013; Jin et al., 2018), C-PCFG im-
poses a sentence-specific prior on the distribution
of possible PCFGs. Specifically in the generative
story, the probability πr for production rule r is
estimated by model g that assigns a latent variable
z for each sentence σ, and z is drawn from a prior
distribution:

πr = g(r, z; θ), z ∼ p(z). (1)

where θ represents the model parameters. The prob-
abilities for all three types of CFG rules are defined
as follows:

πS→A =
exp(u⊤

Afs([wS ; z]))∑
A′∈N exp(u⊤

A′fs([wS ; z]))
,

πA→BC =
exp(u⊤

BC [wA; z])∑
B′,C′∈N∪P exp(u⊤

B′C′ [wA; z]))
,

πT→w =
exp(u⊤

wft([wT ; z]))∑
w′∈Σ exp(u⊤

w′ft([wT ; z]))
,

(2)
where A ∈ N , B and C ∈ N ∪P , T ∈ P , w ∈ Σ.
Both w and u are dense vectors representing words
and all types of non-terminals, and fs and ft are
neural encoding functions.

Optimizing the C-PCFG model involves maxi-
mizing the marginal likelihood p(σ) of each train-
ing sentence σ for all possible z:

log pθ(σ) = log

∫

z

∑

t∈TG(σ)
pθ(t|z)p(z)dz (3)

where TG(σ) indicates all possible parsing trees for
sentence σ. Since computing the integral over z
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is intractable, this objective is optimized by max-
imizing its evidence lower bound ELBO(σ; ϕ, θ):

ELBO(σ;ϕ, θ) = Eqϕ(z|σ)[log pθ(σ|z)]
−KL[qϕ(z|σ)||p(z)],

(4)

where qϕ(z|σ) is the variational posterior calcu-
lated by another neural network with parameters
ϕ. Given a sampled z, the log-likelihood term
log pθ(σ|z) is calculated via the inside algorithm.
The KL term can be computed analytically when
both the prior p(z) and the variational posterior
qϕ(z|σ) are Gaussian (Kingma and Welling, 2014).

2.2 Multi-Modal Compound PCFGs

Multi-Modal Compound PCFGs (MMC-
PCFG) (Zhang et al., 2021) extends C-PCFG with
a model to match a video v with a span c in a
parse tree t of a sentence σ. It extracts M visual
and audio features from a video v and encodes
them via a multi-modal transformer (Gabeur
et al., 2020), denoted as Ψ = {ψi}Mi=1. The word
representation hi of the ith word is computed by
BiLSTM. Given a particular span c = wi, . . . , wj ,
its representation c is the weighted sum of all
label-specific span representations:

c =

|N |∑

k=1

p(k|c, σ)fk
(

1

j − i+ 1

j∑

l=i

hl

)
, (5)

where {p(k|c, σ)|1 ≤ k ≤ |N |} are the phrasal
label probabilities of span c. The representation of
a span c is then correspondingly projected to M
separate embeddings via gated embedding (Miech
et al., 2018), denoted as Ξ = {ξi}Mi=1. Finally
the video-text matching loss is defined as a sum
over all video-span matching losses weighted by
the marginal probability of a span from the parser:

smm(v, σ) =
∑

c∈σ
p(c|σ)hmm(Ξ,Ψ), (6)

where hmm(Ξ,Ψ) is a hinge loss measuring the
distances from video v to the matched and un-
matched (i.e. span from another sentence) span c
and c′ and the distances from span c to the matched

and unmatched (i.e. another video) video v and v′:

ωi(c) =
exp(u⊤

i c)∑M
j=1 exp(u

⊤
j c)

, (7)

o(Ξ,Ψ) =

M∑

i=1

ωi(c)cos(ξ
i,ψi), (8)

hmm(Ξ,Ψ) = Ec′ [o(Ξ
′,Ψ)− o(Ξ,Ψ)) + ϵ]+

+ Ev′ [o(Ξ,Ψ′)− o(Ξ,Ψ) + ϵ]+, (9)

where Ξ′ is a set of unmatched span expert em-
beddings of Ψ, Ψ′ is a set of unmatched video
representations of Ξ, ϵ is a positive margin, [·]+ =
max(0, ·), {ui}Mi=1 are learned weights, and the
expectations are approximated with one sample
drawn from the training data. During training, both
ELBO and the video-text matching loss are jointly
optimized.

2.3 Limitation and Motivation

Existing work on multi-modal grammar induction
aims at leveraging strict correspondence between
image/video and text for information about syntac-
tic categories and structures of the words and spans
in the text. However, such datasets are expensive to
annotate. Besides, the ambiguous correspondence
between language and real-world context, observed
in language acquisition, is not really reflected in
such training setups.

As a result, we believe that the previous work
fails to answer the following important questions:
1) how well a grammar inducer would perform
when it is trained only on noisy multi-media data;
2) how the scale of training data would affect the
performance and cross-domain robustness?

3 Training a Grammar Inducer with
Massive YouTube Videos

We make the first investigation into the above ques-
tions by leveraging massive video clips from in-
structional YouTube videos to train our grammar
inducer. Different from the benchmark data used
by previous work, the YouTube video clips do not
contain paired sentences. This section will first
introduce the method for generating noisy train-
ing instances (video clip and sentence pairs) from
YouTube videos (§3.1), before describing a novel
grammar induction model (§3.2) with pre-trained
text and video encoders.
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Figure 1: The pipeline of our approach.

3.1 Harvesting Training Instances from
YouTube Videos

Given a YouTube video, we would like to generate
a set of video clip and subtitle pairs Ω = {(v, σ)},
where each subtitle σ is a complete sentence and is
aligned in time with its paired video clip v. To this
end, the YouTube API is chosen to obtain all sub-
titles of the video. But, our observation finds that
most obtained subtitles are not complete sentences,
and in some cases, a complete sentence can last for
several continuous video fragments. Meanwhile,
they do not contain any punctuation, which is a
key factor for sentence segmentation. As shown
in the top part of Figure 1, we design an algorithm
that takes the following steps to find each complete
sentence and its corresponding video clip.

Sentence segmentation. In the first step, we try
to find complete sentences from the subtitles. We
first concatenate all subtitles from the same video
are concatenated into a very long sequence of to-
kens. Next, a punctuation restoration model1 (Tilk
and Alumäe, 2016) is adopted to insert punctuation
into the sequence. Lastly, sentences are segmented
based on certain punctuation (e.g., “.”, “?”, “!”).

Video clip extraction. In the second step, we
trim the corresponding video clips. Each raw sub-
title contains its start and an end times. We as-
sume each word within the raw subtitle occupies
equal time and record the start and end times for

1We manually punctuate subtitles from 10 videos ran-
domly selected from HowTo100M, which contains 461 sen-
tences after annotation. The punctuation restoration model
has an overall F1 score of 74.1% with the manual labels.

each word. After that, given a complete sentence
σ = w1, w2, ..., wN , we use the start time of its
first word w1 and the end time of its last word wN

as the start and end times of σ. Lastly, we segment
a complete sentence σ’s corresponding video clip
v based on its start and end times.

3.2 Model: Pre-Trained Compound PCFGs
After harvesting large-scale sentence and video
pairs, the next step is to build a strong grammar
induction model that can benefit from them. In this
section, we introduce our Pre-Trained Compound
PCFGs (PTC-PCFG) model for unsupervised gram-
mar induction. As shown in the lower part of Fig-
ure 1, the PTC-PCFG model composes of a video
encoder, a span encoder and a parsing model. Both
the video encoder and the span encoder are initial-
ized from the MIL-NCE model (Miech et al., 2020),
a pre-trained video-text matching model that takes
a simple design and has shown superior zero-shot
results on many video understanding tasks, such as
video retrieval, video question answering, etc. We
first introduce the pre-trained video and span en-
coders, before covering the training and inference
details of PTC-PCFG.
Video encoding. The first step is to encode a video
v to its representation v. To do this, we first seg-
ment v into small video clips, where each video
clip vi consists of T frames. Following Zhang et al.
(2021), we sample L video clips with equal interval
for efficiency. We use the video encoder from the
MIL-NCE model (Miech et al., 2020) as our video
encoder and only fine-tune its last fully connected
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layer fv for efficiency. In more detail, for each
sampled video clip, we pre-compute the input of
fv as its representation, denoted as {hv

i }Li=1. Then
we feed them into fv and average the output as its
representation v, denoted as,

v = AvgPool({fv(hv
i )}Li=1), (10)

where AvgPool indicates average pooling.
Span encoding. The next step is to compute
a span representation c for each particular span
c = wi, . . . , wj (1 ≤ i < j ≤ N) in sentence
σ = w1, w2, . . . , wN . The pre-trained text encoder
of MIL-NCE consists of a word embedding layer
and two stacked fully connected layers, f c

0 and f c
1 .

Motivated by Zhao and Titov (2020); Zhang et al.
(2021), we expect to learn |N | different span repre-
sentations, each is specified for one non-terminal
node. However, directly applying the pre-trained
text encoder is not feasible, since it has only one
output layer f c

1 . Therefore, we duplicate f c
1 for

|N | times, denoted as {f c
k}

|N |
k=1, and compose |N |

label-specific output layers. In more detail, we
first encode each word wi with the word embed-
ding layer, denoted as hc

i . Then we feed the word
embeddings to f c

0 , ReLU, maximum pooling and
each label-specific output layer sequentially. we
also compute the probabilities of its phrasal labels
{p(k|c, σ)|1 ≤ k ≤ |N |}, as illustrated in Sec-
tion 2.1. Lastly, the span representation c is the sum
of all label-specific span representations weighted
by the probabilities we predicted, denoted as:

τ = MaxPool(ReLU(f c
0(h

c
i )))

c =

|N |∑

k=1

p(k|c, σ)f c
k(τ),

(11)

where MaxPool is a maximum pooling operation
and ReLU is a ReLU activation function.
Training. As shown in lower left of Figure 1, we
optimize both the video-text matching loss and
evidence lower bound during training. We first
compute the similarity between a video clip v and a
particular span c via dot product and then compute
a triplet hinge loss as following,

h(v, c) = Ec′ [c
′ · v − c · v + ϵ]+

+ Ev′ [c · v′ − c · v + ϵ]+, (12)

where ϵ is a positive margin, [·]+ = max(0, ·), v′
is a clip from a different video and c′ is a span from

a different sentence. The video-text matching loss
is correspondingly defined as,

s(v, σ) = Σc∈σp(c|σ)h(v, c), (13)

where p(c|σ) is the probability of a particular span
c being a syntactic phrase. Finally, the overall loss
function is composed by the ELBO and the video-
text matching loss:

L(ϕ, θ) =
∑

(v,σ)∈Ω
−ELBO(σ;ϕ, θ) + αs(v, σ),

(14)
where α is a constant balancing these two terms.
Inference. During inference, given a sentence σ,
we predict the most likely tree t∗ without accessing
videos, as shown in the lower right of Figure 1.
Since computing the integral over z is intractable,
we estimate t∗ with the following approximation,

t∗ = argmax
t

∫

z
pθ(t|z)pθ(z|σ)dz

≈ argmax
t

pθ(t|σ,µϕ(σ)),
(15)

where µϕ(σ) is the mean vector of the variational
posterior qϕ(z|σ), and t∗ is obtained by the CYK
algo. (Cocke, 1969; Younger, 1967; Kasami, 1966).

4 Experiments

4.1 Datasets

Following previous work, we evaluate all systems
on three benchmarks (i.e., DiDeMo, YouCook2 and
MSRVTT). Instead of training on benchmark data,
our models are trained on the data harvested from
HowTo100M dataset. Below shows more details
about these datasets:
DiDeMo (Hendricks et al., 2017) contains 10k
unedited personal Flickr videos. Each video is
associated with roughly 3-5 video-sentence pairs.
There are 32 994, 4 180 and 4021 video pairs in the
training, validation and testing sets.
YouCook2 (Zhou et al., 2018) contains 2000
long untrimmed YouTube videos from 89 cook-
ing recipes. The procedure steps for each video are
annotated with temporal boundaries and described
by imperative English sentences. There are 8 913,
969 and 3 310 video-sentence pairs in the training,
validation and testing sets.
MSRVTT (Xu et al., 2016) contains 10k generic
YouTube videos accompanied by 200k captions an-
notated by paid human workers. There are 130 260,
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9 940 and 59 794 video-sentence pairs in the train-
ing, validation and testing sets.
HowTo100M (Miech et al., 2019) is a large-scale
dataset of 136 million video clips sourced from
1.22M narrated instructional web videos depict-
ing humans performing more than 23k different
visual tasks. Noted that there are 404 videos in
HowTo100M exists in YouCook2, we exclude these
videos during training.

4.2 Evaluation

We discard punctuation, lowercase all words, re-
place numbers with a special token and ignore
trivial single-word and sentence-level spans dur-
ing testing following Kim et al. (2019a). Besides,
we follow previous work (Shi et al., 2019; Zhang
et al., 2021) by using a state-of-the-art constituency
parser (Benepar Kitaev et al. 2019) to obtain the
reference trees for evaluation2. Following Shi et al.
(2020); Zhang et al. (2021), all models are run 5
times for 1 epoch with different random seeds. For
each model, we report the averaged sentence-level
F1 (S-F1) and corpus-level F1 (C-F1) of its runs on
each testing set.

4.3 Implementation Details

We use Spacy 3 for tokenization and keep sentences
with fewer than 40 words for training due to the
limited computational resources. Each video is de-
coded at 16 fps and L = 8 video clips are sampled
in total, where each clip contains T = 16 frames.
We train baseline models, C-PCFG and MMC-
PCFG with the same hyper-parameters suggested
by Kim et al. (2019a) and Zhang et al. (2021). The
parsing model of PTC-PCFG has the same hyper-
parameter setting as C-PCFG and MMC-PCFG
(Please refer their papers for details). The constant
α is set to 1. We select the top 20 000 most com-
mon words in HowTo100M as vocabulary for all
datasets. All baseline methods and ours are op-
timized by Adam (Kingma and Ba, 2015) with a
learning rate of 0.001, β1 = 0.75 and β2 = 0.999.
All parameters (except the video-text matching
model in PTC-PCFG) are initialized with Xavier
uniform initializer (Glorot and Bengio, 2010). All
our models in experiments are trained for 1 epoch
with batch size of 32, without finetuning on the

2For each dataset, we randomly select 50 sentences and
manually label their constituency parse trees. Benepar has
S-F1 scores of 98.1% (DiDeMo), 97.2% (YouCook2) and
98.1% (MSRVTT) with manual labels.

3https://spacy.io/

target dataset.

4.4 Main Results

Figure 2-4 compare our proposed PTC-PCFG ap-
proach with recently proposed state-of-the-art mod-
els: C-PCFG (Kim et al., 2019a) and MMC-
PCFG4 (Zhang et al., 2021). To pinpoint more
fine-grained contributions, we also train these mod-
els on HowTo100M data.
The effectiveness of HowTo100M. We find that
C-PCFG achieve better performance when they
are trained with more instances from HowTo100M
than the original in-domain training sets, where the
largest improvements are +18.1%, +21.7% and
+1.4% S-F1 scores on DiDeMo, YouCook2 and
MSRVTT, respectively. These results indicate
that grammar inducers are generally robust against
the instances with noisy text-video correspondence.
As the results, learning from noisy YouTube videos
can benefit model’s overall performance and its
generalization ability across multiple domains.
The effectiveness of PTC-PCFG. Comparing C-
PCFG, MMC-PCFG and PTC-PCFG trained on
different amount of HowTo100M data, we found
that PTC-PCFG achieves the best performances in
all three datasets. It can further improve S-F1 to
+6.3% on DiDeMo, +16.7% on YouCook2 and
+2.8% on MSRVTT. This demonstrates the effec-
tiveness of the PTC-PCFG model. In particular,
utilizing the video and span encoders pre-trained
on a relevant tasks (e.g., video retrieval) can benefit
unsupervised grammar induction.
Performance comparison over data scale. On
DiDeMo and MSRVTT, we observe that PTC-
PCFG achieves the best performance with 592k
HowTo100M training samples, and further increas-
ing the number of training instances does not
improve the parsing performance on these two
datasets. In contrast, the performance gain of PTC-
PCFG on YouCook2 further increases with increas-
ing training data. The reason can be that the domain
of HowTo100M is closer to YouCook2 (both are in-
structional videos) than the other two datasets. Fu-
ture work includes adding data from other sources
to the whole training set more domain generic.

4Since audios are removed by HowTo100M authors, we
implement MMC-PCFG with video features only, includ-
ing object features(ResNeXt, SENet), action features (I3D,
R2P1D, S3DG), scene features, OCR features and face fea-
tures.
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Table 1: Performance comparison across different training set. We use HT to represent HowTo100M dataset for
short, where the number in the brackets indicates the number of samples used for training. The values highlighted
by bold and italic fonts indicate the top-2 methods, respectively. All numbers are shown in percentage(%). The
remaining tables follow the same notations.

Method Trainset DiDeMo YouCook2 MSRVTT

C-F1 S-F1 C-F1 S-F1 C-F1 S-F1

MMC-PCFG DiDeMo 55.0±3.7 58.9±3.4 49.1±4.4 53.0±4.9 49.6±1.4 53.8±0.9

MMC-PCFG YouCook2 40.1±4.4 44.2±4.4 44.7±5.2 48.9±5.7 34.0±6.4 37.5±6.8

MMC-PCFG MSRVTT 59 .4±2.9 62 .7±3.3 49.6±3.9 54.2±4.1 56 .0±1.4 60.0±1.2

MMC-PCFG HT(592k) 58.5±7.3 62.4±7.9 53 .9±6.6 58 .0±7.1 55.1±7.0 60 .2±8.0

PTC-PCFG HT(592k) 61.3±3.9 65.2±5.3 58.9±2.5 63.2±2.3 57.4±4.6 62.8±5.7

Figure 2: Performance Comparison on DiDeMo. The
doted lines and their enclosed area represent the mean
and variance of each model trained on HowTo100M
at different scales. We mark the highest average S-F1
achieved by each method with numbers. The remaining
figures follow the same notations.

Figure 3: Performance Comparison on YouCook2.

4.5 Cross-dataset Evaluation

We evaluate the robustness of models across dif-
ferent datasets, as shown in Table 1. Comparing
MMC-PCFG trained on in-domain datasets (Row
1-3), we can observe that MMC-PCFG trained on
MSRVTT achieves the best overall performance,

Figure 4: Performance Comparison on MSRVTT.

while MMC-PCFG trained on YouCook2 is the
worst. We believe this is due to the different num-
ber of training instances5 and the domain gap be-
tween different datasets. Comparing Rows 1-4, we
can observe that the MMC-PCFG model trained
on HT(592k) (Row 4) is the best or the second
place regarding C-F1 and S-F1 compared with its
variants trained on in-domain datasets (Rows 1-3).
This demonstrates that the our processed video-
text training instances are abundant, rich in con-
tent and can serve for general purpose. Compar-
ing Rows 4 and 5, PTC-PCFG outperforms MMC-
PCFG in both C-F1 and S-F1 in all three datasets
and has smaller variance. This demonstrate that our
model can leverage pre-trained video-text matching
knowledge and learn consistent grammar induction.

4.6 Effectiveness of Pre-Training

In this section, we explore how different pre-
trained video and text encoders can affect the
parsing performance, and the results are shown
in Table 2. In particular, we study different

5The number of training instances in YouCook2, DiDeMo
and MSRVTT are 8.9K, 32.9K and 130.2K, respectively.
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Table 2: Performance comparison across different video and span encoders.

Video-Text Model Trainset DiDeMo YouCook2 MSRVTT

Video Encoder Span Encoder C-F1 S-F1 C-F1 S-F1 C-F1 S-F1

MIL-NCE LSTM HT(296k) 52.4±5.5 54.4±5.4 51.5±5.4 56.5±5.2 49.7±5.5 53.4±5.8

MM LSTM HT(296k) 53.6±3.2 55.8±3.1 53.1±5.7 57.9±5.6 48.9±3.5 52.5±3.6

MIL-NCE TinyBERT HT(296k) 54 .8±5.4 56 .4±6.0 55 .7±4.0 60 .2±3.5 52 .3±4.3 56 .0±5.0

MIL-NCE MIL-NCE HT(296k) 59.5±4.3 63.7±4.7 57.1±1.7 62.1±1.3 55.7±5.0 61.1±5.9

CLIP CLIP HT(296k) 52.9±2.3 54.9±2.6 53.3±2.2 58.9±2.1 49.1±2.6 53.0±2.9

video encoders6, including the S3D-based en-
coder from MIL-NCE (Miech et al., 2020) (MIL-
NCE), the multi-modal video encoder from MMC-
PCFG (Zhang et al., 2021) (MM) and the CLIP
model for image-text pre-training (Radford et al.,
2021) (CLIP). We also investigate various text en-
coders, including an LSTM encoder with random
initialization (Zhang et al., 2021; Zhao and Titov,
2020), a pre-trained TinyBERT (Jiao et al., 2020)
model, the text encoder from MIL-NCE (Miech
et al., 2020), and the text encoder from CLIP (Rad-
ford et al., 2021).

Comparing Rows 1 with 2, we can observe that
MM is better than the video encoder of MIL-NCE
regarding C-F1 and S-F1 on all three datasets, as
MM provides more comprehensive video features.
By comparing row 1 with 3, we can also observe
that TinyBERT, which is distilled from BERT (De-
vlin et al., 2019), outperforms the randomly ini-
tialized LSTM encoder. However, both MM and
TinyBERT are independently trained only on vi-
sion or language tasks, where the vision-language
correspondences are not considered during pre-
training. Therefore, we further investigate the
encoders jointly pre-trained on large scale multi-
media datasets, including the video-text match-
ing model MIL-NCE (Row 4) and the image-text
matching model CLIP (Row 5). We can observe
that by leveraging both video and text encoders in
MIL-NCE can improve the parsing performance
by a large margin on all three datasets. On the
other hand, CLIP does not perform well, since it is
designed for static images and other multi-modal
information (e.g., motion) is ignored.

4.7 Qualitative Analysis
In figure 5, we visualize a parser tree predicted
by the best run of C-PCFG trained on MSRVTT,
MMC-PCFG trained on MSRVTT, MMC-PCFG
trained on HT(296k) and PTC-PCFG trained on
HT(296k), as well as its reference tree. We can

6 We list the video processing details in Appendix A.

Figure 5: Parse trees predicted by different models for
sentence a lady describing the groceries she had kept
in her refrigerator. The red line shows the difference
between the predicted trees and the reference tree.

observe that C-PCFG trained on MSRVTT fails at
noun phrase “a lady”, while MMC-PCFG trained
on MSRVTT succeeds. MMC-PCFG can be further
improved by training on HT(296k), however, fails
at noun phrase “the groceries she had kept in her
refrigerator”. Our PTC-PCFG can leverage the pre-
trained matching knowledge and make the correct
prediction.

5 Related Work

Grammar Induction has a long and rich history in
the computational linguistics. Earlier work (Shen
et al., 2018a,b; Drozdov et al., 2019; Kim et al.,
2019a; Jin et al., 2019; Yang et al., 2021a,b) on
grammar induction with pure unsupervised learn-
ing showed promising results. Instead of learning
purely from text, recent work improved the pars-
ing performance with paired images (Shi et al.,
2019; Zhao and Titov, 2020) or videos (Zhang
et al., 2021). However, they are all limited to small
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benchmarks and specified for a few domains. In
contrast, our work leverages massive noisy video-
subtitle pairs from YouTube without any manual
annotations.
Video Retrieval has been a hot topic in the com-
puter vision field for many years. Earlier ap-
proaches focused on model design (Gabeur et al.,
2020; Zhang et al., 2019), while more recent ap-
proaches (Radford et al., 2021; Miech et al., 2020)
focused on the pre-training on a large scale dataset
and demonstrated superior zero-shot results on
many downstream tasks. These models are sim-
ple in design and provide representative features
with less human effort in annotations. In this work,
we demonstrate that unsupervised grammar induc-
tion can also benefit from the pre-trained video-text
model.

6 Conclusion

In this paper, we have investigated how massive in-
structional YouTube video and subtitle pairs can im-
prove grammar induction. We have also proposed
a new model that leverages the latest advances
in multi-modal pre-training to learn better video-
span correlation. Experiments on three benchmarks
demonstrate superior and robust performances of
our model over previous systems. We leave explor-
ing other pre-trained video-text matching models
and more publicly available data (e.g., YouTube
videos from other domains and TV shows) in fu-
ture work.

7 Limitations

Although our model faces a similar indeterminacy
problem like children do, and results show that
induction works even with noisy correspondence,
there are a few factors which prevent this result
from being directly applied to language acquisition.
Our models only use instructional video and do
not have the capability to interact with the world,
both of which are unrealistic for human language
learners. The complexity of the PCFG induction
algorithm we use is cubic to the number of syn-
tactic categories, therefore potentially limits the
usefulness of larger amounts of data, where finer
subcategories may be learned. Algorithms such as
in Yang et al. (2021b) could be used in conjunction
with multimodal inputs to examine this issue.

Following previous work, our experiments are
only conducted on English video-text datasets.
However, our framework is general for grammar

induction in many languages. Since our training
instances are originally collected from Internet and
are uploaded by users, the dataset itself might have
misinformation. Meanwhile, training a model on a
large-scale dataset could have high cost in energy
and carbon emission. We list our computational
cost of our experiments in Appendix B.
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A Video Processing Details

MIL-NCE. Following the implementation7 of MIL-NCE, we extract 1 feature per second from video
encoder’s last fully connected layer. All videos are decoded at 16 frames per second (fps).
MM. We list the details of object, action, scene, OCR and face feature extraction as below:

• ResNeXt (Xie et al., 2017). We use the ResNeXt101 version implemented by torchvision8. Videos
are decoded at 1 fps and we extract 1 feature per second from the last fully connected layer.

• SENet (Hu et al., 2018). We use the SENet154 version implemented by Cadene9. Videos are decoded
at 1 fps and we extract 1 feature per second from the last fully connected layer.

• I3D(Carreira and Zisserman, 2017). We use the I3D_8x8_R50 version implemented by SlowFast10.
We decode videos at 4 fps and extract 1 feature per 2 seconds from the last fully connected layer.

• S3DG (Miech et al., 2020). We use the implementation from HERO11. Videos are decoded at 30 fps
and we extract 1 feature per 1.5 seconds from the global averaged pooling layer.

• R2P1D (Tran et al., 2018). We use the r2plus1d_34 version implemented by torchvision. we decode
videos at 16 fps and extract 1 feature per 2 seconds.

• Scene. We use densenet161 (Huang et al., 2017) implemented by CSAILVision12. Videos are
decoded at 1 fps and we extract 1 feature per second from the last fully connected layer.

• OCR. We use the text detector PANet (Wang et al., 2019) and the text recognizer seg_r31 implemented
by MMOCR13. we decode videos at 0.5 fps and extract 1 feature per 2 seconds.

• Face. We use face detector MTCNN (Zhang et al., 2017) and face recognizer (Schroff et al., 2015)
implemented by FaceNet14. We decode videos at 1 fps and extract 1 feature per second.

CLIP. Following the implementation15 of CLIP, we extract 1 video feature per second from ViT-B/32’s
last fully connected layer. All videos are decoded at 1 fps.

B Computational Cost

All our models are trained on 2 32GB V100 GPUs. The approximate time cost for each run of different
model is listed in Table 1. For each model, we run 5 times with different random seeds in parallel. During
training, the video encoder, the span encoder and C-PCFG are involved, which contains 76.6M parameters
in total. During inference, since only C-PCFG is involved, there are 23.0M parameters in total.

Table 1: The approximate training time (hours) of different model on a single run.

Model HT(29.6k) HT(296k) HT(592k) HT(1.2M) HT(2.4M)

C-PCFG 0.07 0.7 1.5 2.9 5.8
MMC-PCFG 0.75 7.5 15 30 60
PTC-PCFG 0.50 5.0 10 20 40

7https://github.com/antoine77340/S3D_HowTo100M
8https://github.com/pytorch/vision
9https://github.com/Cadene/pretrained-models.pytorch

10https://github.com/facebookresearch/SlowFast
11https://github.com/linjieli222/HERO_Video_Feature_Extractor
12https://github.com/CSAILVision/places365
13https://github.com/open-mmlab/mmocr
14https://github.com/timesler/facenet-pytorch
15https://github.com/openai/CLIP
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C Performance Comparison - Full Tables

We compare the performances of different models trained on different datasets. The full experiment
results are demonstrated in Table 2-4. LBranch, RBranch and Random represent left branching tree, right
branching tree and random tree, respectively. In addition to C-F1 and S-F1, we also evaluate the recall of
each model on different phrase types, including NP, VP, PP, SBAR, ADJP and ADVP. All numbers are
shown in percentage(%).

Table 2: Performance comparison on DiDeMo.

Method Trainset NP VP PP SBAR ADJP ADVP C-F1 S-F1

LBranch None 41.7 0.1 0.1 0.7 7.2 0.0 16.2 18.5
RBranch None 32.8 91.5 66.5 88.2 36.9 63.6 53.6 57.5
Random None 36.5±0.6 30.5±0.5 30.1±0.5 25.7±2.8 29.5±2.3 28.5±4.8 29.4±0.3 32.7±0.5

C-PCFG DiDeMo 72.9±5.5 16.5±6.2 23.4±16.9 26.6±15.9 25.0±11.6 14.7±12.8 38.2±5.0 40.4±4.1

V
C

-P
C

FG

ResNeXt DiDeMo 64.4±21.4 25.7±17.7 34.6±25.0 40.5±26.3 16.7±9.5 28.4±21.3 40.0±13.7 41.8±14.0

SENet DiDeMo 70.5±15.3 25.7±15.9 36.5±24.6 36.8±25.9 21.2±12.5 23.6±16.8 42.6±10.4 44.0±10.4

I3D DiDeMo 57.9±13.5 45.7±14.1 45.8±17.2 38.2±14.8 28.4±9.2 22.0±9.3 45.1±6.0 49.2±6.0

R2P1D DiDeMo 61.2±8.5 38.1±5.4 62.1±4.1 61.5±5.1 21.4±11.4 40.8±7.3 48.1±4.4 50.7±4.2

S3DG DiDeMo 61.3±13.4 31.7±16.7 51.8±8.0 50.3±6.5 18.0±4.5 35.2±11.4 44.0±2.7 46.5±5.1

Scene DiDeMo 62.2±9.6 30.6±12.3 41.1±24.8 35.2±21.9 21.4±14.0 27.6±17.1 41.7±6.5 44.9±7.4

Audio DiDeMo 64.2±18.6 21.3±26.5 34.7±11.0 37.3±19.6 26.1±4.9 18.2±11.6 38.7±3.7 39.5±5.2

OCR DiDeMo 64.4±15.0 27.4±19.5 42.8±31.2 35.9±20.7 14.6±1.7 23.2±24.0 41.9±16.9 44.6±17.5

Face DiDeMo 60.8±16.0 31.5±17.0 52.8±9.8 49.3±5.6 12.6±3.3 32.9±14.6 43.9±4.5 46.3±5.5

Speech DiDeMo 61.8±12.8 26.6±17.6 43.8±34.5 34.2±20.6 14.4±4.8 12.9±9.6 40.9±16.0 43.1±16.1

Concat DiDeMo 68.6±8.6 24.9±19.9 39.7±19.5 39.3±19.8 10.8±2.8 18.3±18.1 42.2±12.3 43.2±14.2

MMC-PCFG DiDeMo 67.9±9.8 52.3±9.0 63.5±8.6 60.7±10.8 34.7±17.0 50.4±8.3 55.0±3.7 58.9±3.4

MMC-PCFG YouCook2 47.9±10.4 34.6±2.7 58.2±12.9 19.9±2.6 11.0±4.0 25.5±4.8 40.1±4.4 44.2±4.4

MMC-PCFG MSRVTT 56.5±6.8 70 .8±4.4 82.6±3.3 62 .5±6.0 42.6±2.6 52.9±7.6 59.4±2.9 62.7±3.3

C-PCFG HT(29.6k) 74.8±1.1 27.3±5.7 43.6±13.2 32.9±7.4 32.4±4.6 44.5±7.8 45.7±3.9 47.7±3.5

MMC-PCFG HT(29.6k) 75.4±2.1 33.2±12.5 54.9±7.8 33.7±9.8 39.2±4.7 43.8±7.1 49.8±4.7 52.3±5.8

PTC-PCFG HT(29.6k) 66.0±9.4 53.7±13.9 68.2±4.5 50.4±5.0 35.2±4.2 52.7±8.9 54.9±3.4 58.5±4.0

C-PCFG HT(296k) 81.4±1.6 36.4±6.9 67.0±1.9 45.9±3.5 46.5±4.8 49.9±8.3 55.6±1.4 58.5±1.9

MMC-PCFG HT(296k) 81.9±2.1 42.7±15.0 65.3±6.4 39.1±8.5 48 .0±8.1 43.7±6.7 57.1±4.2 59.9±4.8

PTC-PCFG HT(296k) 76.0±4.9 55.3±11.9 70.7±6.4 53.7±9.5 43.4±4.8 47.2±13.3 59.5±4.3 63.7±4.7

C-PCFG HT(592k) 82.4±1.9 37.6±9.2 63.1±5.8 37.4±7.9 45.8±5.5 53 .8±9.9 55.5±2.7 57.5±2.9

MMC-PCFG HT(592k) 79.0±5.7 52.5±19.1 64.3±6.1 45.5±9.9 44.1±4.4 44.5±11.7 58.5±7.3 62.4±7.9

PTC-PCFG HT(592k) 79.1±2.9 55.3±18.4 73.7±5.1 50.6±8.2 38.3±5.6 47.2±5.5 61.3±3.9 65.2±5.3

C-PCFG HT(1.2M) 82 .9±1.5 32.2±12.5 67.5±2.1 41.3±8.5 45.6±4.8 48.8±8.0 55.1±3.3 57.2±3.9

MMC-PCFG HT(1.2M) 83.4±2.6 43.2±15.9 51.3±19.1 36.2±7.0 49.4±5.5 56.2±6.9 55.1±5.0 58.2±5.8

PTC-PCFG HT(1.2M) 77.9±1.9 49.0±7.6 78 .3±3.9 47.2±6.5 35.8±8.7 49.8±11.6 60 .0±2.3 64 .2±3.1

C-PCFG HT(2.4M) 83.4±2.2 31.0±4.7 68.1±8.4 48.5±7.7 46.9±7.3 45.9±8.2 55.2±3.0 56.8±3.8

MMC-PCFG HT(2.4M) 81.7±2.8 37.6±4.8 71.1±6.9 47.2±6.1 41.7±8.1 51.2±7.2 57.0±2.1 58.6±2.1

PTC-PCFG HT(2.4M) 78.9±1.6 49.4±6.9 75.0±5.2 48.7±6.0 36.9±5.4 51.8±13.8 60 .0±2.5 63.1±2.3
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Table 3: Performance comparison on YouCook2.

Method Trainset NP VP PP SBAR ADJP ADVP C-F1 S-F1
LBranch None 1.7 42.8 0.4 8.1 1.5 0.0 6.8 5.9
RBranch None 35.6 47.5 67.0 88.9 33.9 65.0 35.0 41.6
Random None 27.2±0.3 27.1±1.4 29.9±0.5 31.3±5.2 26.9±7.7 26.2±11.9 21.2±0.2 24.0±0.2

C-PCFG YouCook2 47.4±18.4 49.4±11.9 58.0±22.6 45.7±6.0 27.7±15.1 36.2±7.4 37.8±6.7 41.4±6.6

V
C

-P
C

FG

ResNeXt YouCook2 46.5±13.7 40.8±9.8 67.9±12.7 50.5±13.3 22.3±6.7 38.8±21.3 38.2±8.3 42.8±8.4

SENet YouCook2 48.3±14.4 40.7±9.2 73.6±11.2 45.5±17.0 26.9±13.6 41.2±17.5 39.9±8.7 44.9±8.3

I3D YouCook2 48.1±10.7 39.0±8.0 79.4±8.4 50.0±14.9 18.5±7.0 41.2±4.1 40.6±3.6 45.7±3.2

R2P1D YouCook2 52.4±10.9 33.7±16.4 66.7±10.7 49.5±13.8 25.8±10.6 33.8±12.4 39.4±8.1 44.4±8.3

S3DG YouCook2 50.4±13.1 32.6±16.3 71.7±7.5 33.3±5.9 30.8±17.5 40.0±7.1 39.3±6.5 44.1±6.6

Audio YouCook2 51.2±3.1 42.0±7.2 61.5±18.0 51.0±14.8 23.5±16.8 48.8±8.2 39.2±4.7 43.3±4.9

OCR YouCook2 48.6±8.1 41.5±4.1 65.5±17.4 39.9±4.4 18.5±6.6 53.8±14.7 38.6±5.5 43.2±5.6

Concat YouCook2 50.3±10.3 42.3±2.9 81.6±8.7 40.1±3.9 17.7±8.2 52.5±5.6 42.3±5.7 47.0±5.6

MMC-PCFG YouCook2 62.7±9.8 45.3±2.8 63.4±17.7 43.9±4.8 26.2±7.5 35.0±3.5 44.7±5.2 48.9±5.7

MMC-PCFG DiDeMo 63.8±4.5 62.1±7.4 70.7±9.0 56.8±9.2 35.4±7.2 51.2±4.1 49.1±4.4 53.0±4.9

MMC-PCFG MSRVTT 63.1±9.2 51.5±7.3 82.7±1.5 64.9±10.8 30.4±3.0 40.0±6.1 49.6±3.9 54.2±4.1

C-PCFG HT(29.6k) 68.2±3.3 43.5±4.9 48.8±20.2 34.5±4.2 28.5±3.2 56.7±6.2 44.3±2.4 49.2±2.8

MMC-PCFG HT(29.6k) 68.8±3.0 51.3±11.5 65.5±11.2 33.7±6.3 32.0±4.3 55.0±11.3 48.8±3.5 53.6±3.6

PTC-PCFG HT(29.6k) 66.3±4.2 55.5±8.3 76.5±5.7 46.2±9.0 33.4±7.4 40.0±9.7 50.2±3.4 55.4±2.9

C-PCFG HT(296k) 77.5±3.1 56.6±4.5 74.4±5.5 51.1±9.0 40.5±6.4 63.3±8.5 55.0±2.7 60.5±2.5

MMC-PCFG HT(296k) 76.5±4.1 61.8±9.7 67.2±8.7 34.0±16.2 41.0±7.9 68.3±8.2 53.8±3.4 59.0±3.5

PTC-PCFG HT(296k) 77.5±2.5 65.8±6.1 78.9±7.0 61.6±3.9 42.4±6.3 60.0±3.3 57.1±1.7 62.1±1.3

C-PCFG HT(592k) 76.7±5.6 64.7±12.3 65.4±22.5 45.2±13.9 45.1±9.4 68.3±6.2 54.2±6.0 58.5±6.3

MMC-PCFG HT(592k) 72.5±12.7 68.9±7.0 68.3±18.2 54.3±5.7 50.2±2.1 75 .0±9.1 53.9±6.6 58.0±7.1

PTC-PCFG HT(592k) 78.7±5.3 69.9±3.6 80.5±2.8 58.9±12.3 43.2±4.0 65.0±6.2 58.9±2.5 63.2±2.3

C-PCFG HT(1.2M) 80 .1±2.5 63.5±11.9 78.5±2.5 52.5±13.7 42.9±6.5 66.7±7.5 58.1±2.4 63.1±2.1

MMC-PCFG HT(1.2M) 75.7±2.2 64.8±9.7 57.7±21.4 51.2±9.4 49 .3±4.9 75 .0±7.5 52.5±4.0 57.4±4.3

PTC-PCFG HT(1.2M) 78.1±2.6 72.2±4.1 85.8±5.1 69 .3±6.6 41.5±8.7 66.7±10.5 60 .1±1.4 64 .5±1.3

C-PCFG HT(2.4M) 75.9±3.9 61.5±8.0 78.2±4.1 59.7±13.4 45.4±5.6 75.0±5.3 55.9±2.6 60.4±2.6

MMC-PCFG HT(2.4M) 78.0±2.8 69.8±4.1 79.2±5.4 50.6±14.2 41.5±5.1 71.7±10.0 58.3±1.8 63.0±1.4

PTC-PCFG HT(2.4M) 81.9±3.1 71 .5±4.5 83 .0±4.1 59.0±15.5 40.7±3.4 81.7±6.2 61.1±2.0 65.6±1.7
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Table 4: Performance comparison on MSRVTT.

Method Trainset NP VP PP SBAR ADJP ADVP C-F1 S-F1
LBranch None 34.6 0.1 0.9 0.2 3.8 0.3 14.4 16.8
RBranch None 34.6 90.9 67.5 94.8 25.4 54.8 54.2 58.6
Random None 34.6±0.1 26.8±0.1 28.1±0.2 24.6±0.3 24.8±1.0 28.1±1.4 27.2±0.1 30.5±0.1

C-PCFG MSRVTT 46.6±3.2 61.1±3.3 72.5±8.3 63.7±4.0 33.1±7.1 67.1±4.7 50.7±3.2 55.0±3.2

V
C

-P
C

FG

ResNeXt MSRVTT 48.6±3.0 59.0±6.0 72.0±3.6 62.1±5.2 32.6±2.5 70.4±6.4 50.7±1.7 54.9±2.2

SENet MSRVTT 49.0±4.4 63.5±6.4 71.7±4.8 60.9±10.6 34.0±6.4 74 .1±1.9 52.2±1.2 56.0±1.6

I3D MSRVTT 53.9±10.5 63.2±9.1 73.7±2.9 65.3±9.1 35.0±6.8 73.8±4.1 54.5±1.6 59.1±1.7

R2P1D MSRVTT 52.8±3.6 63.3±4.6 73.1±10.1 66.9±2.0 34.0±2.2 72.5±4.2 54.0±2.5 58.0±2.3

S3DG MSRVTT 48.2±4.4 60.4±3.9 71.4±6.4 58.1±8.2 25.3±2.2 61.8±8.4 50.7±3.2 54.7±2.9

Scene MSRVTT 50.7±1.6 65.0±4.7 78.6±3.6 67 .3±3.9 34.5±4.6 71.7±1.8 54.6±1.5 58.4±1.3

Audio MSRVTT 50.0±1.1 63.7±6.1 72.7±3.0 61.9±6.5 34.5±2.3 68.0±5.9 52.8±1.3 56.7±1.4

OCR MSRVTT 48.3±8.3 57.1±4.6 76 .9±0.6 60.7±4.9 33.9±8.3 72.1±4.4 51.0±3.0 55.5±3.0

Face MSRVTT 46.5±6.8 61.3±3.6 71.5±7.1 60.8±11.0 30.9±3.4 68.4±6.0 50.5±2.6 54.5±2.6

Speech MSRVTT 48.5±7.6 60.7±3.5 74.5±5.7 62.6±6.2 27.3±1.8 74.0±3.1 51.7±2.6 56.2±2.5

Concat MSRVTT 43.6±6.0 64.7±3.0 68.5±8.0 63.8±3.8 32.0±5.5 70.4±5.9 49.8±4.1 54.2±4.0

MMC-PCFG MSRVTT 52.3±5.1 68 .1±2.9 78.2±1.9 65.8±2.4 32.0±2.0 74.7±2.3 56.0±1.4 60.0±1.2

MMC-PCFG DiDeMo 61.8±7.7 41.5±11.8 64.6±5.2 47.1±11.1 30.5±7.1 62.2±5.1 49.6±1.4 53.8±0.9

MMC-PCFG YouCook2 40.7±14.9 23.9±3.4 59.9±10.2 16.2±2.6 14.5±4.0 23.7±3.9 34.0±6.4 37.5±6.8

C-PCFG HT(29.6k) 68.6±2.1 25.1±4.8 37.5±12.1 33.4±3.6 27.7±2.9 41.9±5.0 42.3±3.3 46.0±3.1

MMC-PCFG HT(29.6k) 70.8±2.7 32.2±13.2 48.6±6.3 36.0±4.6 32.0±2.1 43.1±5.5 47.2±3.8 51.7±5.0

PTC-PCFG HT(29.6k) 62.2±7.7 54.0±13.0 60.0±4.9 53.0±3.6 32.4±4.0 45.9±5.1 52.2±3.9 57.4±5.1

C-PCFG HT(296k) 75.5±1.4 34.8±4.3 58.6±1.6 46.9±2.8 40.0±3.1 55.4±7.1 52.0±1.3 56.4±1.7

MMC-PCFG HT(296k) 75.1±2.5 39.4±15.5 55.2±7.2 40.0±4.5 40.2±5.8 51.0±6.4 52.4±5.5 56.8±6.4

PTC-PCFG HT(296k) 70.2±5.8 51.7±12.1 64.5±6.2 54.0±6.5 39.2±3.2 54.8±9.5 55.7±5.0 61.1±5.9

C-PCFG HT(592k) 76.9±2.6 35.4±8.3 57.9±5.4 44.5±10.2 41.4±3.9 57.8±5.3 52.5±3.4 56.4±3.6

MMC-PCFG HT(592k) 76.1±3.4 46.3±20.0 57.0±5.8 50.1±10.1 37.9±3.1 52.8±4.6 55.1±7.0 60.2±8.0

PTC-PCFG HT(592k) 74.0±3.6 50.2±18.9 67.0±4.1 54.5±9.1 34.7±2.4 55.4±7.3 57.4±4.6 62.8±5.7

C-PCFG HT(1.2M) 77.0±2.0 30.5±10.4 60.1±3.4 41.5±11.1 38.5±4.4 52.2±4.8 51.6±3.1 55.5±3.5

MMC-PCFG HT(1.2M) 77.9±2.2 44.2±13.1 40.6±22.2 45.6±5.5 40 .5±4.6 56.3±6.8 52.4±4.5 57.2±5.1

PTC-PCFG HT(1.2M) 72.3±1.6 44.0±7.7 70.2±4.6 53.4±7.9 34.4±4.6 57.4±6.9 55.6±2.5 61.0±3.3

C-PCFG HT(2.4M) 77 .2±2.1 31.1±4.6 59.8±8.0 43.3±9.7 39.1±3.5 54.5±6.4 51.9±2.3 55.4±2.8

MMC-PCFG HT(2.4M) 76.2±2.2 36.1±6.3 62.5±7.5 47.8±8.1 40.0±4.5 55.8±5.3 53.5±2.4 57.1±2.8

PTC-PCFG HT(2.4M) 74.2±2.8 46.0±7.1 67.5±4.1 52.7±8.6 40.2±5.6 58.3±10.7 56 .6±2.5 61 .2±2.9

247


