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Abstract
Question answering models can use rich
knowledge sources — up to one hundred re-
trieved passages and parametric knowledge in
the large-scale language model (LM). Prior
work assumes information in such knowledge
sources is consistent with each other, paying lit-
tle attention to how models blend information
stored in their LM parameters with that from
retrieved evidence documents. In this paper,
we simulate knowledge conflicts (i.e., where
parametric knowledge suggests one answer
and different passages suggest different an-
swers) and examine model behaviors. We find
retrieval performance heavily impacts which
sources models rely on, and current models
mostly rely on non-parametric knowledge in
their best-performing settings. We discover
a troubling trend that contradictions among
knowledge sources affect model confidence
only marginally. To address this issue, we
present a new calibration study, where mod-
els are discouraged from presenting any single
answer when presented with multiple conflict-
ing answer candidates in retrieved evidences.

1 Introduction

Traditionally, QA models have relied on retrieved
documents to provide provenance for their an-
swers (Chen et al., 2017). Recent studies (Petroni
et al., 2019) have shown that large language models
are able to retain vast amounts of factual knowl-
edge seen during pretraining, and closed-book QA
systems (Roberts et al., 2020) build upon this foun-
dation by memorizing facts from QA finetuning.
Retrieval-based generation approaches (Izacard
and Grave, 2021; Lewis et al., 2020) emerge as the
best of both worlds – generating free-form answers
from the question paired with retrieved evidence
documents. They further combine these parametric
knowledge sources with a large number of retrieved
evidence documents, achieving state-of-the-art per-
formances on open retrieval QA datasets (Joshi
et al., 2017; Kwiatkowski et al., 2019).

Parametric Knowledge (Facts memorized during training)

Non-parametric Knowledge 
(Documents retrieved at inference time) 

Passage 1
…Norway set the 

record for most total 
medals at a single 

Winter Olympics with 
39, surpassing the…

Passage 2
…Norway was the most successful 

nation at the games with 39 total 
medals, setting a new record for the 
most medals won by a country at a 

single Winter Olympics.

Passage 3
...With 36 total 

medals, Germany 
set a record for 

most total medals at 
a Winter Olympics...

🤖
I have passages suggesting 
conflicting answers, thus I 

should abstain from answering!

👤 Which country won the most medals in winter olympics?

Norway? 
Germany? 
the U.S?

The U.S. team had a historic Winter Games, winning an unprecedented 37 medals.

Figure 1: Models can use both parametric and non-
parametric knowledge sources. In this example, the
answer could be the U.S./Norway/Germany. We investi-
gate for a given question which knowledge source was
the most influential to output an answer. The model
should be able to abstain from answering for these ex-
amples, as it is difficult for the model to decide which
answer candidate is correct.

Understanding how retrieval-based generation
models combine information from parametric and
non-parametric knowledge sources is crucial for
interpreting and debugging such complex systems,
particularly in adversarial and complex real world
scenarios where these sources may conflict with
each other (see an example in Figure 1). This can
aid both developers to debug such models and for
users to estimate how much they should trust an an-
swer (Ribeiro et al., 2016). Thus, we focus on the
following core question: when provided with nu-
merous evidence passages and a pretrained and fine-
tuned language model, which knowledge source do
models ground their answers in?

A recent study (Longpre et al., 2021) investi-
gated this in a limited single evidence document
setting. We expand this study to consider a more
realistic scenario, where models consider multiple
evidence passages (up to 100 passages), and ob-
serve results diverging from their reported heavy
reliance on parametric knowledge. We further sim-
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ulate a setting where a subset of evidence passages
are perturbed to suggest a different answer to re-
flect the realistic scenario where retrieval returns a
mixed bag of information. Such scenarios are com-
mon in settings where some passages are updated
with new information, while other passages remain
outdated (Shah et al., 2020; Zhang and Choi, 2021).
Such conflicts can also occur when passages are ad-
versarially edited to contain false information (Du
et al., 2022), or when passages are authored by
multiple people who have differing opinions about
an answer (Chen et al., 2019).

Our extensive studies on two datasets (Joshi
et al., 2017; Kwiatkowski et al., 2019) and two
models (Izacard and Grave, 2020; Lewis et al.,
2020) exhibit that retrieval-based generation mod-
els are primarily extractive and are heavily influ-
enced by a few most relevant documents instead
of aggregating information over a large set of doc-
uments. Learning that models mostly rely on evi-
dence passages rather than parametric knowledge,
we evaluate how sensitive models are toward se-
mantic perturbation to the evidence documents
(e.g., adding negation). We find retrieval-based
generation models behave similarly to extractive
models, sharing their weakness of returning an-
swer candidates with high confidence, even after
the context is modified to no longer support the
answer (Ribeiro et al., 2020).

What should models do when confronted with
conflicting knowledge sources? We propose a new
calibration setting (Section 5), where a model is en-
couraged to abstain from proposing a single answer
in such scenarios. We find that teaching models
to abstain when there are more than one plausi-
ble answers is challenging, and training a separate
calibrator with augmented data helps moderately.

To summarize, we empirically test how QA mod-
els (Izacard and Grave, 2021; Lewis et al., 2020)
use diverse knowledge sources. We present the
first analysis of knowledge conflicts where (1) the
model uses multiple passages, (2) knowledge con-
flicts arise from ambiguous and context-dependent
user queries, and (3) there are knowledge conflicts
between different passages. Our findings are as
follows: when provided with a high recall retriever,
models rely almost exclusively on the evidence
passages without hallucinating answers from para-
metric knowledge. When different passages sug-
gest multiple conflicting answers, models prefer the
answer that matches their parametric knowledge.

Model Generative Retrieval-Based Multi-Pass

DPR ✓
REALM ✓
T5 ✓
RAG ✓ ✓
FiD ✓ ✓ ✓

Table 1: Overview of recent open retrieval QA ap-
proaches. Generative indicates whether the model gen-
erates the answer and, therefore, can produce answers
not found in the retrieved documents. Retrieval-Based
indicates whether the model uses retrieval to find rele-
vant passages to help produce an answer. Multi-Passage
indicates whether the system is able to model interac-
tions between separate evidence passages.

Lastly, we identify various weaknesses of retrieval-
based generation models, including its confidence
score not reflecting the existence of conflicting an-
swers between knowledge sources. Our initial cali-
bration study suggests that dissuading models from
presenting a single answer in the presence of rich,
potentially conflicting, knowledge sources is chal-
lenging, and demands future study.

2 Background

We first describe the task setting, QA models, and
calibrator used in our study.

We study open retrieval QA, where the goal is
to find an appropriate answer y∗ for a given ques-
tion q. Systems for open retrieval QA may also
be provided with access to a knowledge corpus
consisting of a large number of passages, p, which
is used to help answer the question. We use the
open retrieval split (Lee et al., 2019) of the Nat-
uralQuestions dataset (NQ-Open) (Kwiatkowski
et al., 2019) and TriviaQA (Joshi et al., 2017), and
use Wikipedia as our knowledge corpus.1

2.1 Model

We investigate two retrieval-based generation
QA models: Fusion-in-Decoder (Izacard and
Grave, 2021) and Retrieval Augmented Genera-
tion model (Lewis et al., 2020). Both architec-
tures have reader and retriever components, using
the same dense phrase retriever (Karpukhin et al.,
2020) which learns an embedding of question and
passage, and retrieves a fixed number (N ) of pas-
sages that are most similar to the query embedding.
They mainly differ in their reader architecture and

1Following Lee et al. (2019), we use the English Wikipedia
dump from Dec. 20, 2018. We use 100-word text segments as
passages following Karpukhin et al. (2020).
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learning objective, which we describe below.

Fusion-in-Decoder (FiD) The reader model is
based on pretrained language model (specifically,
T5-large (Raffel et al., 2020)). Each retrieved pas-
sage, pi (i = [1, N ]), is concatenated with the
question, q, before being encoded by T5 to generate
representations, [hi1, ..., h

i
m], where m is the length

of the ith passage prepended with the question. All
N passages are then concatenated to form a sin-
gle sequence, [h11, ..., h

1
m, ..., hN1 , ..., hNm], which

the decoder interacts with using cross-attention to
generate the answer.2

We use trained FiD (large) checkpoint provided
by the authors for most analysis.3 When evaluating
models with access to different number of passages,
we re-train FiD model (pretrained weights loaded
from T5-large) using 1, 5, 20 and 50 passages re-
trieved by DPR. Refer to Appendix A.2 for full
model and training details.

Retrieval Augmented Generation (RAG) RAG
conditions on each retrieved evidence document
individually to produce an answer, marginalizing
the probability of producing an answer over all
retrieved evidence documents.4 By applying this
constraint, RAG is able to jointly train the reader
and retriever, at the cost of ignoring interactions
between evidence documents. FiD, in contrast, is
able to model such interactions during decoding
while the reader and retriever is completely disjoint.

Recent work explored jointly training the reader
and retriever in FiD (Izacard and Grave, 2020;
Sachan et al., 2021; Yang and Seo, 2020), show-
ing small gains. Table 1 summarizes differ-
ent architectures, including two open book ap-
proaches (Karpukhin et al., 2020; Guu et al., 2020),
one closed book approach (Roberts et al., 2020)
and two retrieval-based generation approaches. As
FiD is efficient and effective, we focus most of
our analysis (Section 4, B) on it. We only report
RAG results on a few of our main analyses to verify
that general trends of the FID model hold for RAG
(which they typically do).

2We use the version proposed in Izacard and Grave (2020)
with knowledge distillation from reader.

3https://github.com/facebookresearch/FiD
4RAG also presents a variant of a model that relies on

each retrieved document to generate for each token, but
shows worse performance. We use the version in https:
//huggingface.co/facebook/rag-sequence-nq

2.2 Model Confidence Study

We analyze the model confidence score, asking a
more nuanced question: is model’s confidence on
the gold answer decreased after we perturb knowl-
edge sources? We compare the model confidence
on the same example before and after perturbation.
We determine the confidence of the model using
either (1) the generation probability of the answer
(i.e., the product of the probability of generating
each token conditioned on all the previously gen-
erated tokens) or (2) the confidence score of sepa-
rately trained answer calibrator, which provides a
score indicating the probability of the model cor-
rectly predicting the answer for each example. We
train a binary calibrator following prior work (Ka-
math et al., 2020; Zhang et al., 2021), using gradi-
ent boosting library XGBoost (Chen and Guestrin,
2016). The goal of the calibrator is to enable selec-
tive question answering – equipping models to de-
cide when to abstain from answering. Given an in-
put question q and learned model Mθ, the calibrator
predicts whether the predicted answer ŷ = Mθ(q)
will match the annotated answer y∗. We follow the
settings of calibrator from prior work (Zhang et al.,
2021), and details can be found in Appendix A.1.

3 When do retrieval-based generation
models rely on parametric knowledge?

As an initial step investigating whether retrieval-
based generation models ground their answers
in the retrieval corpus or in the pretrained lan-
guage model’s parametric knowledge, we evaluate
whether models generate a novel answer that is not
present in a set of evidence documents. Unlike
extractive QA models (Seo et al., 2017), genera-
tion based approaches (Roberts et al., 2020; Izacard
and Grave, 2021) do not require the evidence docu-
ments to contain the gold answer span. Thus, we
first analyze whether they actually generate novel
answer spans not found in the retrieved passages.

Table 2 reports how often models generate a span
not found in the evidence passages, split by the re-
trieval performance on the NQ-Open (Kwiatkowski
et al., 2019; Lee et al., 2019) and TriviaQA (Joshi
et al., 2017) development set. We observe that
models typically copy a span from the evidence pas-
sages, only generating novel spans for 3.4%/6.2%
of examples in NQ/TriviaQA for FiD and 20.2%
for RAG in NQ. Even for the small subset of
examples where the retrieved documents do not
contain the answer string, FiD remains extractive
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Model Retrival CBQA Extractive Abstractive
(Data) suc. Diff % % EM % EM

FiD Y (89%) 68.4 98.3 59.6 1.7 0.8

(NQ) N (11%) 90.9 82.9 - 17.1 21.3

Total 70.9 96.6 53.9 3.4 12.4

RAG Y (63%) 65.7 92.9 60.2 7.0 3.6

(NQ) N (37%) 88.3 57.9 - 42.1 11.2

Total 74.2 79.8 43.9 20.2 9.6

FiD Y (88%) 68.6 97.1 82.9 2.9 38.1

(TQA) N (12%) 89.9 69.6 - 30.4 16.9

Total 71.1 93.8 75.5 6.2 25.6

Table 2: Performance of hybrid models on the NQ-
Open (NQ) and TriviaQA (TQA) development set bro-
ken down by their retrieval performance. Results are
split based on whether the retrieval was successful (i.e.,
gold answer string is within the top K (K = 100 for
FID; K = 5 for RAG) retrieved documents (Y), or not
(N), and the percentage in parentheses refers to the per-
centage of examples belonging to each set. We report
the proportion of predictions that are not matching the
CBQA model prediction. ‘-’ means cell’s value is zero
by definition.

for 82.9%/69.6% of examples in NQ/TriviaQA. In
contrast, for RAG, where retrieved documents fre-
quently miss the gold answer (37%), such copying
behavior was less common, generating unseen text
for 42.1% of examples. The results suggest reliance
on retrieved documents increased as retriever per-
formance increases. We also report the percentage
of examples where the model prediction is different
from that of a T5 closed-book question answering
(CBQA) model trained on the same data.5 Over
70% of examples have different answers from the
CBQA model, even when the answer is abstractive,
suggesting hybrid models use passages even when
there is no exact string match.

Revisiting knowledge conflict study in Longpre
et al. (2021) This observation stands at odds with
an earlier study on knowledge conflict (Longpre
et al., 2021) which simulates knowledge conflict by
substituting the existing answer with a new answer
candidate in the evidence passage (see Table 3 for
an example), creating a mismatch between knowl-
edge from parametric knowledge and the evidence
document. They showed that models frequently
rely on parametric knowledge, generating answers
not present in the evidence passage. The original
passage is minimally changed, yet now suggests an
alternative, incorrect answer candidate that likely

5The training details are in Appendix A.2

Question: When was the last time the Bills won their division?

Type Passage Answer

None Original
Entity

. . . the 1995 Bills won the AFC East

. . .
1995

Entity
Sub.

Random
(Same
Type)

. . . the 1936 Bills won the AFC East

. . .
1936

Negation . . . the 1995 Bills did not win the
AFC East . . .

-

Semantic
Pert.

Modality . . . the 1995 Bills might win the
AFC East . . .

-

Future . . . the 1995 Bills will win the AFC
East . . .

-

Infilling . . . the 1995 Bills lost the AFC East -

Table 3: Example perturbations. Entity substitutions
modify the passage by replacing the answer entity men-
tion with another answer candidate of the same entity
type. Given the modified passage, the new answer is the
substitute entity. Semantic perturbation invalidates the
previous answer without introducing a new answer.

contradicts with knowledge from LM. The model
produced the original answer 17% of the time, even
when the answer no longer appears in the passage.

We identify that the main difference in their ex-
perimental setup is in using a single evidence pas-
sage rather than multiple evidence passages. We
re-visit their study, as single document setting is im-
practical. Most open-retrieval QA models (Lewis
et al., 2020; Karpukhin et al., 2020; Izacard and
Grave, 2021) are trained with multiple passage to
make up for imperfect passage retrieval. According
to the answer recall in Table 4 and 5, when the
model is provided with 100 passages, the correct
span is available nearly 90% of the time (compared
up to 50% when provided one passage), thus the
model remains extractive.

Following their setup, we only evaluate on ex-
amples that the model has correctly answered (as
perturbing examples where models are already con-
fused is unnecessary) and where the answer is an
entity.6 We then substitute every answer entity men-
tion in all evidence passages with a random entity
of same type sampled from the training data.7 All
manipulation was done only at inference, and after
the passages are retrieved.

We report the exact match score to the original
answer. Prior to perturbation, the exact match score
against the original answer is 100%. We also report
the exact match score to the substituted answer and

6This process removes roughly 70-80% of examples in
NQ dataset, 60% in TriviaQA dataset. Because of the filtering
process, each row in Table 4 and 5 are its own subset of the
data.

7The entity type is coarsely defined as person, date, nu-
meric, organization and location.
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# Pass. Ans. Exact Match
MRtrain / inf. Rec. Orig. Sub.

FiD 1 / 1 - 17 47 27

FiD 1 / 1 48.5 10.1 61.1 14.1
RAG 5 / 1 62.5 10.3 65.9 13.5
RAG 5 / 5 62.5 11.6 63.7 15.3
FiD 5 / 1 72.9 3.0 69.5 4.2
FiD 5 / 5 72.9 2.7 53.1 4.8
FiD 20 / 1 83.1 1.2 70.6 1.6
FiD 20 / 20 83.1 1.0 50.0 2.0
FiD 50 / 1 86.8 0.3 82.0 0.4
FiD 50 / 50 86.8 1.1 50.4 2.1
FiD 100 / 1 88.7 1.1 71.3 1.5
FiD 100 / 100 88.7 2.4 64.5 3.6

Table 4: Answer Exact Match / Memorization Ratio
with different amount of passages in NQ. The results in
the first row are reported in Longpre et al. (2021), which
uses MRQA version of NQ (Fisch et al., 2019) dataset.
All other rows use NQ-Open split. The second column
reports the number of passages used during training
and inference time, respectively. Ans Rec. refers to %
of examples where retrieved passage set contains the
answer string.

memorization ratio (MR = po
po+ps

) where po is the
fraction of examples where the model predicts the
original answer, and ps is the fraction of examples
predicting the substitute answer.

Table 4 and 5 reports how models respond to
entity-substituted contexts with a differing num-
ber of passages available at training and inference
time. In congruence with our prior experiments,
we observe higher reliance on parametric knowl-
edge as answer recall in the retrieved evidence de-
creases. Departing from Longpre et al. (2021), we
find that memorization in FiD is uncommon (less
than 3.6%/8.5% for NQ/TriviaQA) when reader is
provided with multiple passages at training time,
and FiD grounds its answers mostly in evidence
passages instead of its parametric knowledge when
answer recall is reliably high. Furthermore, when
provided with multiple evidence passages with
comparable answer recall, FiD exhibits far less
memorization than RAG, suggesting that using a
multi-passage reader that doesn’t marginalize
over passages inhibits memorization. We study
domain transfer setting in Appendix A.9, showing
that the memorization is still rare when the reader
models are evaluated on out-of-domain datasets, as
long as retriever performance was high during its
training.

Takeaway Retrieval-based reader models exhibit
little memorization when the retriever has a high

# Pass. Ans. Exact Match
MRtrain / inf. R Orig. Sub.

1 / 1 67.1 20.6 38.6 34.8
5 / 1 81.7 10.4 52.7 16.5
5 / 5 81.7 10.7 52.4 16.9
20 / 1 85.7 8.5 53.9 13.6
20 / 20 85.7 8.8 52.1 14.5
50 / 1 87.2 6.0 59.3 9.1
50 / 50 87.2 6.8 57.9 10.6
100 / 1 87.9 8.64 56.2 13.3
100 / 100 87.9 4.9 52.6 8.5

Table 5: Exact Match / Memorization Ratio for FiD
model with different amount of passages on TriviaQA.
The memorization ratio decreases as we increase the
number of evidence passages.

recall during its training.

4 Simulating Mixed Bag of Evidence
Passages

Having identified that retrieval-based generation
models rely heavily on evidence passages, espe-
cially when paired with a high-performance re-
triever, we study how models make use of multi-
ple evidence passages when different passages
suggest different answers. This happens fre-
quently in real life, as questions can be ambiguous
based on different, valid interpretations of the ques-
tion (Min et al., 2020) or different extra-linguistic
contexts (Zhang and Choi, 2021).

We introduce two perturbations – an entity sub-
stitution perturbation (Longpre et al., 2021) (Sec-
tion 4.1) and adversarial semantic perturbation (Jia
and Liang, 2017) (Section 4.2) – both will dissuade
model from returning the original answer in the
evidence passage (see Table 3 for examples). We
analyze the best performing FiD model trained with
100 passages.

4.1 Entity Substitution

Setting. To simulate a mixed bag of evidence pas-
sages, we perform partial entity substitution, chang-
ing answers to a subset of passages mentioning the
answer entity. On average, the answer entity is men-
tioned in 16.7 out of 100 retrieved evidence pas-
sages for NQ-open and 21.5 for TriviaQA dataset.
We substituted the answer entity mentions in 25%,
50%, 75% and 100% of evidence passages that
contain the original gold answer span with a new
entity. We sample passages to substitute answer
entity in one of three ways.

• random: randomly sample passages.
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Figure 2: Substituting different proportion of retrieved
passages containing gold answer spans on filtered NQ-
Open (top) and Trivia QA (bottom) development set.

• top-retrieval: select top passages ranked by
retrieval score.

• top-attention: select top passages ranked by
attention score. Attention score for each pas-
sage is computed as the cross-attention score
on the first decoded token averaged across lay-
ers, heads and the tokens in the passage, as
defined in Izacard and Grave (2020).

Results. Figure 2 reports our results with differ-
ent amounts of perturbation (i.e., how many evi-
dence passages are perturbed) and different meth-
ods of sampling passages to substitute entities in.
After perturbing all of the passages, so that the orig-
inal answer is no longer within any of the passages,
the model successfully refrains from predicting the
original answer 98% of the time. However, after
randomly selecting 50% of the passages to perturb,
we find that the model still favors the original an-
swer almost twice as frequently on NQ (52% vs.
25%) and almost four times on TriviaQA (59% vs.
15%). This indicates that parametric knowledge
still plays a significant role when more than one
potential answer exists in the retrieval results.

When we perturb the top scoring passages, as
measured by either retrieval or attention score, the
model changes its answer much more frequently.
Using either scoring metric, perturbing the top 25%
of passages successfully changes the predicted an-
swers in about 30% of examples compared to the
8% of examples whose answers are successfully
changed by perturbing randomly sampled passages.
This suggests that the model may be ignoring
lower-scoring retrieved passages that are less
relevant to the query, despite containing the an-
swer entity.

Confidence Study. Table 6 reports the change in
model confidence after performing random entity

% NQ-Open TriviaQA
Pert. Gen. Prob. Calib. Gen. Prob. Calib.

25 48.15% 57.07% 62.25% 73.72%
50 49.67% 56.30% 70.40% 79.90%
75 49.86% 56.84% 73.78% 80.59%
100 52.22% 56.95% 74.18% 77.61%

Table 6: The % of examples in which model confidence
on the correct answer dropped after partial answer sub-
stitution in NQ-Open and TriviaQA development set.

NQ-Open TriviaQA
k Original Substitute Original Substitute

1 41.33 33.11 41.41 36.57
3 69.15 12.38 66.41 19.91
5 78.50 5.97 77.11 12.71

Table 7: Substituting all the passages except top k pas-
sages (k=[1,3,5]), which are selected based on passage
attention scores. On average, 16.7 (NQ-Open) and 21.5
(TriviaQA) passages out of 100 passages contained gold
answer entity. Yet, with access of up to 3 passages con-
taining the gold answer span, the FiD model can still
generate the original answer nearly 70% of the time.

substitution in the evidence passages. Consistent
with the results from Zhang et al. (2021), we find
that a separately trained calibrator consistently out-
performs the model’s inherent confidence score.
Surprisingly, there is no clear connection be-
tween the percentage of perturbed passages and
model confidence. Ideally, when given a mixed
bag of evidence, a model’s confidence should de-
crease to reflect the uncertainty from seeing multi-
ple, conflicting answers. We revisit this in Section 5
where we pilot a calibrator whose confidence drops
when presented with conflicting evidence.

Additional Analysis. Our confidence study sug-
gests model might not consider all provided pas-
sages. To further investigate this, we substitute an-
swers in all passages except top K passages, ranked
by the attention score from the reader. Table 7
presents the results. If you change the answer to
all passages except for the top scoring article, the
model already outputs the original answer more
frequently than the substitute answer. This again
suggests that the model might focus on a handful of
most relevant passages and ignore other passages.

In Appendix B, we include two further studies.
First, we study whether the choice of alternative an-
swer impacts its behaviors. When we provide more
realistic alternative answer (either drawn from out-
dated corpus or answers to the slightly different in-
terpretation of the question), unsurprisingly, model
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is less biased to choose the original answer. Second,
we study whether model’s parametric knowledge
is learned during pre-training phase or fine-tuning
phase, concluding most of its parametric knowl-
edge is learned during the fine-tuning stage.

Takeaway.
• The models resort to the parametric knowl-

edge to resolve conflicts between different re-
trieved passages.

• Model confidence itself cannot be used to
identify knowledge conflicts.

• The model rely on a few most relevant pas-
sages, ignoring others.

4.2 Adversarial Semantic Perturbation

Semantic perturbation follows earlier work on
counterfactual example generation with heuris-
tics (Ribeiro et al., 2020) which perturbs the sen-
tence containing the answer. We simulate four per-
turbations, and after each perturbation, the model
should refrain from returning the original answer.
We aim to test model’s understanding of the pas-
sage with such perturbation.

Setting. We design the four perturbations appli-
cable to question answering: negation, changing to
future tense, adding modal verb and text infilling.
Examples of each perturbation are in Table 3. To
generate these, we run a dependency parser on the
sentence containing the gold answer span.8 We
then filter examples where the root token of answer
sentence is not a verb (about 40% of sentences,
see Appendix A.3 for full statistics). Finally, we
apply simple rules (see Appendix A.4) to modify
the verb. For text infilling, the only difference is
that we convert the root token into “[blank]" and
fill in the blank using language modeling (Donahue
et al., 2020). For passages containing multiple gold
answer spans, we apply these perturbations to all
sentences as long as their root tokens are verbs.

Results. In Table 8, we report the exact match to
the original answer after applying semantic pertur-
bations. Since our perturbation rules only cover 67-
86% of all sentences containing an answer string,
we further subreport our results based on whether
there are any remaining unperturbed answer sen-
tences in the evidence. The “partial coverage” sub-
set is the set we created based on the perturbation
rules. The “full coverage” subset is created by

8We use StanfordNLP (Qi et al., 2018) toolkit.

Partial Coverage Full Coverage

# passages 1 100 1 100

negation 82.49 86.80 74.71 71.26
modality 89.90 92.48 88.77 84.05
future 91.90 94.03 90.72 86.93
text-infilling 88.66 93.21 86.96 84.71

Table 8: Exact match score with the original answer
after perturbation of each type: models largely disregard
the perturbation and outputs the original answer.

removing the examples where not all answer sen-
tences have been perturbed.

Since our perturbation rules only cover 67-86%
of all sentences containing an answer string, we fur-
ther subreport our results based on whether there
are any remaining unperturbed answer sentences
in the evidence (partial coverage) or if all answer
sentences are perturbed (full coverage). Examples
with partial coverage simulate a mixed bag of ev-
idence which may induce the model to return the
original answer. In all instances, we expect the
exact match to drop significantly after perturbation,
as all edits invalidate the original answer; however,
we observe that models still return the original an-
swer after perturbation, mirroring what Ribeiro
et al. (2020) finds with extractive models.9

Confidence Study. We repeat the calibration
study with semantic perturbation. We find that
calibration scores remain mostly steady after the
perturbation for all four perturbation types, only
for 30-40% of examples we see a decrease in cali-
bration score after the perturbation. The model is
particularly less sensitive to temporal perturbation
(future). The exact numbers and the ratio of calibra-
tion scores before and after the perturbation can be
found in the Appendix A.8. We observe that model
behaves similarly to extractive model (Ribeiro et al.,
2020), returning an answer matching the answer
type with high confidence even when the passage
no longer supports it.

5 Re-Calibrating Models Given a Mixed
Bag of Evidence

When presented with a mixed bag of evidence, sys-
tems should inform users of the multiple, conflict-
ing answers. While there are many of approaches
for relaying this information to users (e.g., com-
posing a paragraph aggregating answer candidates,

9Semantic perturbation details (e.g., statistics of % of valid
examples after perturbation) in the Appendix A.3.
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Perturbation Method
Original Partial AmbigQA SituatedQA Macro

(NQ Dev) Sub. (Disambiguated Q.) (Retrieval 2021) Average
(N = 8.7k) (N = 2.5k*2) (N = 448*2) (N = 55*2)

Model Confidence 66.32 28.21 13.17 20.24 31.99
Org. Calibrator (Ntr = 80k) 62.92 12.63 4.46 8.33 22.09

Partial Sub. (Ntr = 36k*2) 63.61 98.60 13.62 28.57 51.1
AmbigQA (Ntr = 5k*2) 59.84 42.15 87.93 79.76 67.42
SituatedQA (Ntr = 1.5k*2) 59.09 37.15 40.40 92.86 57.38
Part.+Amb.+Sit. (Ntr = 42.5k*2) 64.55 98.22 54.46 72.62 72.46

Table 9: Binary accuracy (%) of the calibrator trained on different augmented datasets tested on various evaluation
sets. Each column represents evaluation set. Baseline calibrators are in the top row block, and calibrators are trained
with augmented training data matching evaluation dataset in the second row block. Ntr stands for the training
dataset size, and N denotes the size of each evaluation set.

or providing set of answers mapped to documents
supporting them), a necessary prerequisite to all
such systems is the ability to detect when there
are conflicting answers in the evidence. Thus, we
explore creating systems that can detect and ab-
stain from predicting on instances with conflicting
evidence. Questions should only be answered if
(1) there is no knowledge conflict in its evidence
set and (2) model’s predicted answer matches the
annotated answer. We report calibrator’s binary
calibration accuracy following prior work (Kamath
et al., 2020). We explain four evaluation settings
here.
Original We use the original NQ development set
as is to provide a reference for the performances of
calibrators.

In the following settings, we only look at exam-
ples where the original FID model correclty an-
swers. Thus, the calibrator should only abstain for
knowledge conflict. We construct three different
types of knowledge conflict set where calibrator
should abstain on half of the examples because
of the knowledge conflict. To construct these set,
we use the original question, 100 evidence passage
set (where model should present its answer), and
augment one perturbed example, where 100 ev-
idence passage set is perturbed to have multiple
answer candidates to the same question. We dis-
cuss three ways to introduce perturbed evidence set,
with more than one valid answer candidate now.
Partial Substitution We use the sets of conflicting
evidence passages constructed in Section 4.1 (ran-
domly sampling 50% of the retrieved passages to
substitute a new entity in).
AmbigQA Instead of random new entity, we sam-
ple valid alternative answer to the question taken
from a different interpretation of the same question
from AmbigQA (Min et al., 2020) dataset. Instead

of simply replacing answer in existing passage,
we retrieve new passage for each rewritten, disam-
biguated version of the question.
SituatedQA We sample valid alternative answer
from either corpus taken from a different time pe-
riod from SituatedQA (Zhang and Choi, 2021)
dataset. We use the same query, but retrieve over
two different snapshots of the same corpus (the
Wikipedia dump from 2018 and from 2021).

We evenly combine retrieved passages from con-
flicting answer sets, using the top retrieved pas-
sages that contain the respective answer and back-
ing off to the passages with high retrieval scores if
not enough passages contain the answer string.

Calibrator As a baseline, we use same calibra-
tion model from our prior study in Section 2.2.
We also retrain separator calibrators for each of our
three substituted answer types, which are trained by
applying the same data augmentation process that
was applied to the evaluation set (described above)
to training portion of filtered NQ-Open dataset.

Results We report the results in Table 9. We ob-
serve vanilla model confidence outperforms trained
calibrator, showing robustness towards out of do-
main setting. This could be caused by a large gap
in accuracy of FiD model for training (80%) and
testing data (52%). Base calibrators, without data
augmentation, struggles substantially, particularly
on real world knowledge conflict scenario where it
is presented with multiple valid answer candidates
(AmbigQA, SituatedQA). Training with data aug-
mentation improves the calibrator’s performance;
however, this fix does not easily generalize over
different methods of collecting conflicting answers
and evidence sets. Interestingly, training with more
realistic conflicting evidence sets (AmbigQA, Sit-
uated QA), while being substantially smaller, gen-
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eralizes better than simulated conflicting evidence
set (Partial Substitution). Training over all types of
conflicting evidence sets jointly improves perfor-
mance over the baseline calibrators only modestly
compared to the gains from training on data from
each method separately. Future work can explore
improving calibrator generalization across different
knowledge conflict types.

6 Related Work

Recent analysis (Lewis et al., 2021; Krishna et al.,
2021) pointed the overlap in training and evaluation
dataset inflates question answering performances.
Longpre et al. (2021) showed that the reader model
tend to memorize entity answers despite the an-
swer mentions are substituted by another entity.
We showed that memorization do occur when the
model can only have access to one passage, but
can be reduced significantly if the model is trained
with multiple passages. Concurrent work (Pan
et al., 2021) investigates QA models’ robustness
to misinformation by providing contradicting con-
texts. They focus on generating conflicting pas-
sages, while we focus on understanding how mod-
els behave under such settings, including in-depth
study of their confidence score.

Recent works evaluated robustness by minimally
perturbing input examples (Kaushik et al., 2020;
Gardner et al., 2020) to identify models that are
invariant under distributional shift. Prior work ex-
plored automatically generating such perturbed in-
put (counterfactual data) with heuristics (Ribeiro
et al., 2020) or learned models (Wu et al., 2021;
Bartolo et al., 2020; Paranjape et al., 2021). Recent
work (Du et al., 2022) studies knowledge poisoning
for a related task, fact checking. Our perturbation
methods are rule-based similar to Ribeiro et al.
(2020), but designed specifically for QA task.

7 Conclusion

We summarize our findings: Do models ground
their answers from retrieved document or para-
metric knowledge? (Section 3) Current SoTA
models ground their answers mostly from retrieved
passages, when paired with a high recall retriever
(Table 2, 4).

How do models use multiple passages when
different passages suggest different answers?
(Section 4.1) Models rely on a few, most relevant
passages (Table 7), and use parametric knowledge
to break ties (Figure 2, Table 18).

How do models behave if some passages are
perturbed not to support an answer? (Sec-
tion 4.2) Models largely ignore semantic pertur-
bations and outputs potential answer entity in the
retrieved passages (Table 8).

How is the model’s confidence score affected
by knowledge conflicts? Confidence score is not
sensitive to knowledge conflicts (Table 6, Figure 3),
and a separately trained calibrator offers some im-
provements.

Can we train a model to refrain from return-
ing a single answer when there is conflicting
evidence? If we train a calibrator on the conflict-
ing evidence set, calibrator can learn to refrain, but
does not generalize to different types of conflicting
evidence sets (Table 9).

What should the model do when there is con-
flicting evidence? We present a partial solution of
training a calibrator which learns to abstain from
answering when provided conflicting evidence. Fu-
ture work can explore summarizing and comparing
different answers suggested by diverse passages.

Overall, models’ limited ability to aggregate
conflicting information among its rich knowledge
sources encourage future work in this domain.

Limitations

Our study is based on current state-of-the-art model
on popular benchmark datasets. For other datasets
(e.g., datasets where retrieval quality is substan-
tially worse) or different models (Brown et al.,
2020; Chowdhery et al., 2022; Rae et al., 2021;
Thoppilan et al., 2022) of substantially richer para-
metric knowledge, our observation that memoriza-
tion is relatively rare will not hold.

We focus on extractive question answering
task, where the answer consists of short entity
span. Studying knowledge conflicts in complex
question answering tasks where answer is multi-
sentence (Fan et al., 2019) or conditional (Sun et al.,
2022) requires future work.

Lastly, most of our knowledge conflicts study
(except the settings where we retrieve passages
with AmbigQA and SituatedQA) are simulated,
and we leave identifying and evaluating model on
real-world knowledge conflicts as future work.
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neg. /modal. negation- text-
#Passages / fut. polyjuice infilling

%Ex. 1 61.14% 57.38% 62.43%
100 89.55% 88.18% 89.68%

%Cov. 1 85.77% 82.90% 86.07%
100 66.93% 61.12% 68.25%

%Ex. 1 51.87% 46.39% 53.23%
(100% Cov.) 100. 15.13% 11.89% 16.06%

Table 10: Data statistics for different perturbations
schemes. The first two rows are the numbers of ex-
amples, shown in percentage out of the examples that
FiD can answer correctly. The third and fourth rows
shows the percentage of gold answer span covered (valid
for perturbation) in the chosen examples. The last two
rows shows the percentage of valid examples we could
get if all the gold answer spans are perturbed.

A Appendix

A.1 Calibrator Hyperparameter
The input to the calibrator is the concatenation of
the generation probability and the encoder feature
representation averaged across length, and the out-
put is a score indicating the probability of the model
correctly predicting the answer. For each dataset,
we reserve 4K examples of the training set for vali-
dation, and trained our calibrator on the remaining
data. Hyperparameters are selected based on AU-
ROC on validation set.

We use 100 boosting rounds, subsample ratio of
0.5 and learning rate of 0.5. The same subsample
ratio is applied for constructing each tree, for each
level and for each split.

A.2 Model and Training Details
The Fusion-in-Decoder (FiD) model consist of
a retriever and a reader module. The re-
triever (Karpukhin et al., 2020) is a BERT bi-
encoder model, which calculate the similarity be-
tween the question q and each of the passages {pi}
in the knowledge source and output the most sim-
ilar ones. The similarity is computed as the dot
product of the encoded vectors

EQ(q)
TEP (pi)

where EQ is the question encoder and EP is the
passage encoder.

The reader module is a pretrained T5-large (Raf-
fel et al., 2020), an encoder-decoder model con-
taining 770M parameters. Each passage is con-
catenated with the question and truncated to 250
word pieces. For our experiments finetuning FiD,
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Random Entity AmbigQA Entity Random Entity SituatedQA Entity
% (on AmbigQA set) (on SituatedQA set)

Perturbed Original Substitute Original Substitute Original Substitute Original Substitute

25 74.90 6.37 75.45 9.15 76.74 4.65 80.00 7.27
50 51.79 24.70 51.11 27.68 55.81 16.28 56.36 25.45
75 27.88 43.03 25.22 46.21 46.51 13.95 38.18 43.64

100 2.39 65.34 5.80 63.17 4.65 39.53 14.55 58.18

Table 11: Entity substitution results on subsets of NQ-Open. We perform random entity substitution on the
AmbigQA and SituatedQA sets for fair comparisons between different sources of substitute answers.

we train the reader module with 1, 20, and 50 ev-
idence passages. To train the reader, we use the
AdamW optimizer (Loshchilov and Hutter, 2018)
and a learning rate of 5 · 10−5 with linear warmup
of 8000 steps followed by linear decay to zero. The
total training steps is 300k, and the final model
checkpoint is selected based on exact match score
on NQ Open development set. We only use batch
size of 1 due to memory constraints. The models
take roughly 7 GPU days to train on a Quadro RTX
8000 machine.

The closed-book question answering (CBQA)
model is trained using a T5-large pretrained model,
with a batch size of 32, 500k total training steps,
and all the other hyperparameters the same as FiD
reader models. It roughly take 2 GPU days to train
on a Quadro RTX 8000 machine.

A.3 Perturbation Coverage

As mentioned in Section 4, if the root token of
the answer sentence is not a verb, then we ignore
that sentence, and thus some examples would be
excluded. The first row shows the percentage of
valid examples after applying the rules mentioned
in Section 4. We consider it valid example if one
of the gold answer span can be perturbed. The cor-
responding percentage of perturbed gold answer
spans is shown in the third row. A small portion
of gold answer spans remain unchanged after per-
forming the perturbation. For the second and fourth
row it shows the same except the model has access
to 100 passages. The percentage of valid examples
are much higher since we consider the example
valid if one of the gold answer spans in any of the
passages can be perturbed. The last two rows show
the percentage of examples where all gold answer
spans in all the retrieved passages can be perturbed.

A.4 Technical Details on Semantic
Perturbations

For perturbation schemes except text infilling, we
first identify the root token’s part-of-speech tag. If
it is in one of [VB, VBP, VBZ], then we treat it as
the present tense, and modify the verb accordingly.
(e.g. V → "does not V"/"do not V" for negation,
V → "may V" for modality, V → "will V" for fu-
ture tense) The lemmatized verb forms after "will"
and "may" are obtained by the "WordNetLemma-
tizer" class in nltk10. We also identify ["is", "am",
"are"] and modify the verbs into their correspond-
ing forms. If the part-of-speech tag is VBD, then it
is in past tense and the root token is modified simi-
larly to present tense. Lastly, if the part-of-speech
tag is VBN or VBG, then it is present/past partici-
ple or gerund. We then identify the be-verbs and/or
["had", "have", "has"], and perform modifications
accordingly.

A.5 Model Tested on NQ Open Subset

Both AmbigQA and SituatedQA annotate subsets
of NQ Open. To ensure identical data distribution
and isolate the effect of different substitute answers,
we report results of random entity substitution on
AmbigQA set and SitutatedQA set respectively.
We present the results in Table 11. For AmbigQA
subset, different substitute entity types (random or
alternative valid entity) do not seem to affect the re-
sults too much. However, the model seems to bias
toward the substitute answer more with valid alter-
native entity substitutions on SituatedQA subset,
indicating the parametric knowledge of model do
know which answers are more likely to be correct.
One possible explanation is that AmbigQA answers
do not always take the same form as the original
ones (e.g. 76th season and 1995 in Table 3).

10https://www.nltk.org/_modules/nltk/stem/
wordnet.html
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% NQ Open AmbigQA SituatedQA
perturbed Original Substitute Original Substitute Original Substitute

25 67.35 9.51 72.16 7.21 66.67 0.00
50 45.50 27.51 40.20 34.02 33.33 33.33
75 21.85 48.84 22.68 41.23 0.00 66.67

100 0.00 68.12 1.03 63.92 0.00 66.67

Table 12: Exact match score of substituting different number of passages on NAO sets.

% Exact Match
perturbed Original Substitute

25 80.00 7.27
50 60.00 25.45
75 41.82 43.64

100 18.18 60.00

Table 13: Results of substituting different number of
passages on SituatedQA. The substitute answer is ran-
domly selected from the SituateQA answer set and is
not in the original ansewr set.

Change Type Gen. Prob. Calibration

negation 65.94% 70.28%
modality 62.75% 66.34%
future 58.87% 62.92%
text-infilling 60.56% 64.36%

Table 14: The percentage of examples in which model
confidence dropped after perturbation; i.e., the model
confidence when predicting the original example is
higher than the perturbed example. Model confidence is
measured with generation probability/calibration.

A.6 Answer Entity Sampling Details

When substituting with AmbigQA answers, we
consider only the examples with multiple valid an-
swers. For each example, we randomly sample
one answer not in the original answer set of NQ as
the substitute answer. For substitution with Situat-
edQA answers, we select the most recent answer
as substitute answer. We also include the result
of randomly sample an answer from SituatedQA
answer set in Table 13.

A.7 Full Results on No Answer Overlap Set

Table 12 contain the full results on NAO set for NQ
Open, AmbigQA, and SituateQA.

A.8 Confidence Study Full Results

Table 14 contains the full results for confidence
study on adversarial semantic perturbation.

Figure 3: The ratio of calibration score after pertur-
bation to that before perturbation, in log scale. The
occurrences of examples of different ratio are plotted
in terms of probability density (the area under curve is
sum to 1). The distributions are bell-shaped, but shift
slightly towards negative x-axis.

A.9 Domain Adaptation Results for Entity
Substitution

We would like to study the memorization issue
when the model is tested on out-of-domain datasets.
Following the setting in Section 3, we substitute the
answer entity mentions in the retrieved passages
with random entities of the same type after the
retrieval step. The only difference is that the reader
model is trained on a different domain. We evaluate
FiD reader model which is trained with NQ-Open
on TriviaQA dataset, and vice versa. The results are
presented in Table 15 and 16. The memorization
ratio is still low with high-recall retrievers for both
settings, indicating that the model actually relies on
the retrieved passages under the distribution shift.

B Further Analysis

We further examine our results, focusing on the
quality of substitute answer in entity substitu-
tion study and which parametric knowledge (pre-
training vs. fine-tuning) was used.

Improving Substitute Entities Prior
work (Longpre et al., 2021) substitutes an-
swer entity with another entity with same coarse
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Model # Pass. % Ans. Exact Match
MRtrain / inf. ex. R Orig. Sub.

FiD 1 / 1 28.4 48.5 12.5 42.0 22.9
FiD 5 / 1 28.7 72.9 5.1 54.0 8.7
FiD 5 / 5 33.7 72.9 5.4 52.8 9.2
FiD 20 / 1 27.9 83.1 3.8 62.6 5.8
FiD 20 / 20 35.0 83.1 4.3 60.4 6.7
FiD 50 / 1 29.2 86.8 3.8 63.9 5.6
FiD 50 / 50 37.6 86.8 4.7 62.4 7.0
FiD 100 / 1 28.7 88.7 4.6 61.9 6.9
FiD 100 / 100 37.1 88.7 5.5 58.0 8.6

Table 15: Exact Match / Memorization Ratio for FiD
model trained on NQ-Open with different amount of
passages and evaluated on TriviaQA. The memorization
is still low for domain adapted models, when provided
with multiple retrieved passages.

Model # Pass. % Ans. Exact Match
MRtrain / inf. ex. R Orig. Sub.

FiD 1 / 1 17.0 67.1 12.8 51.1 20.0
FiD 5 / 1 17.1 81.7 6.7 63.6 9.5
FiD 5 / 5 21.1 81.7 5.6 57.4 9.0
FiD 20 / 1 16.9 85.7 5.4 65.1 7.6
FiD 20 / 20 22.1 85.7 3.9 56.1 6.6
FiD 50 / 1 17.0 87.2 3.9 69.7 5.2
FiD 50 / 50 22.4 87.2 3.8 61.0 5.9
FiD 100 / 1 16.3 87.9 5.5 65.6 7.7
FiD 100 / 100 22.5 87.9 3.5 59.2 5.6

Table 16: Exact Match / Memorization Ratio for FiD
model trained on TriviaQA with different amount of
passages and evaluated on NQ-Open.

entity type. This makes substitute entities some-
times unreasonable, despite better than randomly
sampling entities without type constraint. For
example, “Heartbreak Hotel" was substituted as
an answer to the following question “who did the
lions play on thanksgiving last year”.

We make perturbation more realistic by substitut-
ing with alternative answer from two datasets, Am-
bigQA (Min et al., 2020) and SituatedQA (Zhang
and Choi, 2021), which augmented existing NQ
open dataset. Both datasets annotated valid alterna-
tive answers for different interpretation of the same
question (AmbigQA) and answers belonging to
different temporal contexts (SituatedQA) for NQ-
Open dataset. We sample these additional answers
as a new answer to inject (details in Appendix A.6).

Table 17 presents perturbation results with valid
entities sourced from AmbigQA and SituatedQA.
We identify a surprising trend – that model outputs
original answers more frequently when substituted
with better alternatives. This contradicts our intu-
ition as model should be less hesitant to choose
new substitute answer as they are also valid answer

Entity source AmbigQA (N=448) SituatedQA (N=55)
% per. Ori. Sub. Ori. Sub.

25 74.11 10.40 77.45 8.36
50 50.71 26.65 56.73 25.09
75 25.40 47.05 33.09 44.73

100 5.80 63.17 14.55 58.18

Table 17: Results of substituting different proportion
of 100-retrieved passages on NQ-Open where entities
are derived from AmbigQA and SituatedQA dataset.
The number next to the entity refers to the number of
examples in this evaluation set after filtering.

% per. Dataset NAO AO AO%

50% TQA (Random Entity) 75.25 81.40 86.66
50% NQ (Random Entity) 61.83 70.92 85.93
50% w/ AmbigQA Entity 55.08 66.40 78.35
50% w/ SituatedQA Entity 50.00 71.36 94.55

100% TQA (Random Entity) 2.75 9.37 86.66
100% NQ (Random Entity) 0.45 4.14 85.93
100% w/ AmbigQA Entity 1.59 10.16 78.35
100% w/ SituatedQA Entity 0.00 21.05 94.55

Table 18: Memorization ratio (MR of substituting dif-
ferent number of passages on NQ-Open No Answer
Overlap (NAO) / Answer overlap (AO) set of NQ-Open
and TriviaQA. AO% signifies the percentage of exam-
ples that belong to AO set for each subset.

to the question, for different contexts. We further
investigate this issue below.

Does parametric knowledge come from pre-
training or fine-tuning? Some memorization (2–
15%) remains even after all the evidence documents
are perturbed, and model is biased toward the orig-
inal answer under partial substitution. We aim to
identify whether it comes from pretraining or fine-
tuning of the reader model by using the evaluation
data splits from prior work (Lewis et al., 2021):
questions where answers were seen (Answer Over-
lap (AO)) and questions where answers were un-
seen (No Answer Overlap (NAO)). If memorization
ratio is higher on AO set compared to NAO set, we
can hypothesize that memorization mostly happens
during fine-tuning compared to pre-training.11

Table 18 presents results for 50% and 100% sub-
stitution setting.12 This study shed lights on myste-
rious trend: there were more examples with answer
overlap in AmbigQA/SituatedQA subset. If we per-
turb all the evidence documents, the model exhibit
little to no memorization on NAO portion. We can

11Earlier study (Longpre et al., 2021) in a single document
setting also reports memorization is more severe in AO set.

12See Appendix A.7 for 25% and 75% substitution setting.
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thus infer that memorization effect comes almost
exclusively from fine-tuning. When accounting for
different proportion of answer overlap examples
in the subsets, memorization ratio is lower in Am-
bigQA/SituatedQA NAO set. This suggests that
model uses parametric knowledge – which answer
candidate is more reasonable – in a subtle way,
even when behaving as a copying model.
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