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Abstract

The rapid development of single-modal pre-
training has prompted researchers to pay more
attention to cross-modal pre-training methods.
In this paper, we propose a unified-modal
speech-unit-text pre-training model, SpeechUT,
to connect the representations of a speech
encoder and a text decoder with a shared
unit encoder. Leveraging hidden-unit as an
interface to align speech and text, we can
decompose the speech-to-text model into a
speech-to-unit model and a unit-to-text model,
which can be jointly pre-trained with unpaired
speech and text data respectively. Our pro-
posed SpeechUT is fine-tuned and evaluated
on automatic speech recognition (ASR) and
speech translation (ST) tasks. Experimental re-
sults show that SpeechUT gets substantial im-
provements over strong baselines, and achieves
state-of-the-art performance on both the Lib-
riSpeech ASR and MuST-C ST tasks. To better
understand the proposed SpeechUT, detailed
analyses are conducted. The code and pre-
trained models are available at https://aka.
ms/SpeechUT.

1 Introduction

Self-supervised pre-training with large-scale unla-
beled data obtains remarkable progress on various
downstream tasks (Devlin et al., 2019; Radford
et al., 2019; Dong et al., 2019; Baevski et al., 2020;
Hsu et al., 2021; Chen et al., 2021). Specifically,
pre-trained models, such as BERT (Devlin et al.,
2019) and GPT (Radford et al., 2019), have exten-
sively promoted the development of natural lan-
guage processing (NLP). Researchers also develop
many pre-trained speech models utilizing a mass
of unlabeled audio data, e.g., wav2vec (Baevski
et al., 2020) and HuBERT (Hsu et al., 2021). Al-
though text and speech are two different modali-
ties, they have a natural relationship because they
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Figure 1: A high-level illustration of SpeechUT. After
pre-trained with speech-to-unit and unit-to-text tasks
(blue arrows), the model with a shared unit encoder
enables speech-to-text tasks for fine-tuning (red arrow).

can be viewed as two kinds of expressions of lan-
guage. Hence, joint pre-training of speech and text
has received increasing attention from the research
community in recent years (Ao et al., 2022a; Bapna
et al., 2021; Tang et al., 2022).

One line of speech-text joint pre-training builds
a shared encoder to learn speech and text represen-
tation jointly, such as SLAM (Bapna et al., 2021),
which needs a random initialization of the de-
coder parameter for fine-tuning an encoder-decoder
model. Another line of studies, e.g., SpeechT5 (Ao
et al., 2022a) and STPT (Tang et al., 2022), directly
pre-trains an encoder-decoder model on speech and
text corpus to boost the performance of automatic
speech recognition (ASR) and speech translation
(ST), leveraging unsupervised vector quantization
(van den Oord et al., 2017) and supervised speech-
text data to encourage the alignment of speech and
text respectively. For these cross-modal speech-
to-text models, a key problem is how to naturally
connect the speech encoder and the text decoder.

Our preliminary observation shows that an in-
termediate hidden-unit representation (Hsu et al.,
2021) can be regarded as the bridge between speech
and text modalities, and it can provide a strong map-
ping relationship with both of them (see Appendix
A). This inspires us to leverage hidden-unit as
the semantic interface between the speech encoder
and the text decoder in the encoder-decoder frame-
work, and decompose the speech-to-text model into
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a speech-to-unit model and a unit-to-text model,
which can be pre-trained with unpaired speech and
text data respectively, as shown in Figure 1.

In this paper, we propose a unified speech-
unit-text pre-training method (SpeechUT), using
hidden-unit representation as a bridge between the
speech-encoder and the text-decoder. SpeechUT
leverages three unsupervised pre-training tasks, in-
cluding a speech-to-unit (S2U) task to model the
mapping between speech and unit like HuBERT,
masked unit modeling (MUM) task to learn better
unit representation, and a unit-to-text (U2T) task to
recover text from middle shared hidden-unit repre-
sentation. To generate training data for S2U, MUM,
and U2T, two off-line generators trained with a
small amount of paired data (100h) are introduced
to produce discrete unit sequences for large-scale
unpaired speech and text. Experiments are con-
ducted on two typical speech-to-text tasks, ASR
and ST, followed by principal analysis to better un-
derstand the proposed method. The contributions
of this paper are summarized as follows,

• We propose a unified speech-text pre-training
method SpeechUT to bridge the speech en-
coder and the text decoder with hidden units.

• We decouple the speech-to-text model into
speech-to-unit and unit-to-text models, to
take advantage of a large amount of unpaired
speech and text data for pre-training.

• Our proposed SpeechUT achieves state-of-the-
art performance in downstream speech recog-
nition and speech translation tasks.

2 Related Work

The proposed SpeechUT is built upon the Trans-
former encoder-decoder model (Vaswani et al.,
2017) and relates to discrete speech representa-
tion learning and joint speech-text pre-training. We
discuss these topics in the following.

Discrete Speech Representation Learning Dis-
cretizing continuous speech signals for speech rep-
resentation learning has drawn substantial attention.
Vq-wav2vec (Baevski et al., 2019) and wav2vec 2.0
(Baevski et al., 2020) attempt at discretizing speech
signals into quantized units from a learnable code-
book (van den Oord et al., 2017). PBERT (Wang
et al., 2022a) instead uses phonemes as the discrete
targets in a semi-supervised setting. SemFace (Ren
et al., 2021) proposes to use language-independent

vector quantized units as the semantic interface
of encoder pre-training and decoder pre-training.
Inspired by the masked language model in BERT
(Devlin et al., 2019), HuBERT (Hsu et al., 2021)
first introduces the masked speech prediction of
hidden units to pre-train a universal speech model.
Particularly, the hidden units can be clustered from
log Mel-filterbank features or the hidden states of
the previous pre-trained model. Recently, some
studies explore leveraging the discrete hidden units
to build speech-to-speech translation systems (Lee
et al., 2021a,b), which first convert source speech
into target units, then generate the target waveform
from predicted units. However, our goal in this
paper is to jointly pre-train speech and text with
the hidden units as the intermediate bridge.

Joint Speech-Text Pre-Training Single-modal
pre-trained models have achieved remarkable re-
sults in both natural language processing and spo-
ken language processing, such as BERT (Vaswani
et al., 2017), UniLM (Dong et al., 2019), XLNet
(Yang et al., 2019), wav2vec 2.0 (Baevski et al.,
2020), HuBERT (Hsu et al., 2021), and WavLM
(Chen et al., 2021). Thanks to the rapid devel-
opment of these single-modal pre-training works,
researchers begin to pre-train a cross-modal model
with both speech and text data (Chung et al., 2021b;
Kim et al., 2021; Qian et al., 2021; Ao et al., 2022a;
Bapna et al., 2021; Zhang et al., 2022b; Tang et al.,
2022). One category of these works focuses on
pre-training a unified encoder model for spoken
language understanding (Chung et al., 2021b; Kim
et al., 2021; Qian et al., 2021; Zhang et al., 2022a).
In parallel to our work, SpeechLM (Zhang et al.,
2022a) leverages two kinds of tokenizers to tok-
enize speech and text, and aims at unifying speech
and text modalities into the same semantic space
within one encoder model. When fine-tuning an
encoder-decoder model, a randomly initialized de-
coder needs to be superimposed on the encoder
for speech-to-text tasks (Bapna et al., 2021, 2022).
Besides, Maestro (Chen et al., 2022) utilizes paired
speech-text data to learn speech-text alignment
through a modality-matching algorithm in RNN-
T framework. Our proposed SpeechUT model is
most related to encoder-decoder pre-trained mod-
els like SpeechT5 (Ao et al., 2022a) and STPT
(Tang et al., 2022), in which speech and text are di-
rectly connected by a shared encoder. Unlike them,
SpeechUT leverages hidden units (Hsu et al., 2021)
as the bridge between the speech encoder and the
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Figure 2: (a) The overall framework of SpeechUT, which is pre-trained with the speech-to-unit (S2U) task, the
masked unit modeling (MUM) task and the unit-to-text (U2T) task jointly. The discrete units are extracted from
off-line speech-to-unit (S2U) and text-to-unit (T2U) generators. (b) Fine-tuning is performed for speech-to-text
tasks by cascading the speech encoder, the unit encoder, and the text decoder into an end-to-end model.

text decoder, decoupling the conventional model
into two pre-trained speech-to-unit and unit-to-text
models.

3 SpeechUT

Figure 2 shows the overall framework of SpeechUT,
which leverages the unit representation as the
bridge between speech and text. In this section, we
will introduce the model architecture, pre-training,
and fine-tuning methods.

3.1 Model Architecture

As illustrated in Figure 2(a), SpeechUT mainly
contains a speech encoder, a unit encoder, and a
text decoder. In addition, speech and unit pre-nets
pre-process the input waveform and the text tokens
into fixed-dimensional hidden states, respectively.

Speech/Unit Pre-nets The speech pre-net is a
stack of 1-D convolutional layers with 512 chan-
nels and kernel sizes of [10,3,3,3,3,2,2]. The
overall downsampling rate is 320. Given a 16K
Hz speech waveform, the speech pre-net will
convert it into a sequence of speech features,
X = (x1, x2, . . . , xT ), where T is the sequence
length. The unit pre-net is a simple embedding
layer which converts a sequence of unit tokens,
Z = (z1, z2, . . . , zL), into latent embeddings,
U = (u1, u2, . . . , uL), where L is the sequence
length. The latent embeddings are then equipped
with learned positional encodings.

Speech Encoder The speech encoder is a stack
of Transformer layers (Vaswani et al., 2017)
that transforms the local speech features X
into contextualized speech hidden states, H =
(h1, h2, . . . , hT ).

Unit Encoder The unit encoder has the same
architecture and layer numbers as the speech en-
coder. It is designed to align the speech hidden
states H and the unit embeddings U into the same
latent space. The unit encoder takes two types of
input, H and U , and outputs high-level contextu-
alized representations, Cs = (cs1, c

s
2, . . . , c

s
T ), and

Cu = (cu1 , c
u
2 , . . . , c

u
L), respectively.

Text Decoder The text decoder is a Transformer
decoder (Vaswani et al., 2017) consisting of a text
embedding layer, stacked Transformer layers, and
a text output layer. It is used to generate the target
text sequence Y = (y1, y2, . . . , y|Y |) from left to
right according to the output of the unit encoder.

3.2 Pre-Training Tasks

To pre-train the components of SpeechUT, we pro-
pose three pre-training tasks:

Speech-to-Unit (S2U) Task The speech-to-unit
task is similar to HuBERT (Hsu et al., 2021),
where the model needs to predict the units of the
masked positions based on the non-mask regions
in a speech sequence. Particularly, SpeechUT en-
ables this prediction task for both the output of
the speech encoder (H) and the output of the unit
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encoder (Cs),

LS2U = LS2U−H + LS2U−C

= −
∑

t∈M
(log p (zt|ht) + log p (zt|cst )) (1)

where M is a set of masked positions and zt is the
corresponding unit at position t. p(.) computes the
probabilities, i.e.,

p(z|ht) =
exp(cos(W sht, ez)/τ)∑

z′∈Z exp(cos(W sht, ez′ )/τ)
(2)

p(z|cst ) = softmax (W ucst ) (3)

where W s and W u are projection weights, τ is
the temperature coefficient set to 0.1, and Z is
the set of unit categories. cos(.) computes cosine
similarity between two vectors following HuBERT
(Hsu et al., 2021). Here e is a unit embedding
matrix preserved by the speech encoder, it does
not share parameters with the unit pre-net since
HuBERT uses a lower embedding dimension.

Unit-to-Text (U2T) Task SpeechUT performs
the unit-to-text task as a regular encoder-decoder
based sequence-to-sequence task (Vaswani et al.,
2017). The text sequence serves as the target and
the corresponding generated unit sequence serves
as the input. Conditioned on the output of the unit
encoder, Cu, the loss is formulated as

LU2T−CE = −
|Y |∑

i=1

log p(yi|Y<i,C
u) (4)

where Y = (y1, y2, . . . , y|Y |) is the text sequence
and Y<i is its prefix from position 0 to position i.
p(.) is parameterized by a linear softmax layer.

Besides, to enhance the unit-to-text generation,
following (Watanabe et al., 2017) we formulate a
joint CTC (Graves et al., 2006) objective which
directly predicts the target text sequence from the
unit encoder,

LU2T−CTC = −log pCTC(Y |Cu) (5)

LU2T = LU2T−CE + LU2T−CTC (6)

where pCTC(.) is parameterized by a single 1-D
convolutional layer with a kernel size of 2 and
channel of 768, followed by a linear projection to
the text vocabulary.

Masked Unit Modeling (MUM) Task Note that
in S2U and U2T tasks, the unit serves as the
target and the input, respectively. To enhance
the unit-in, unit-out property, inspired by BERT
(Vaswani et al., 2017) and HuBERT (Hsu et al.,
2021), SpeechUT performs an additional masked
unit modeling (MUM) task, with the training data
combining all the units in S2U and U2T tasks. The
unit encoder needs to predict the unit categories of
the masked positions in a unit sequence, with loss
formulated as

LMUM = −
∑

i∈M
log p(zi|cui ) (7)

where M is a set of masked positions and the prob-
ability p(.) is computed as

p(z|cui ) = softmax (W ucui ) (8)

Multi-task Learning In the pre-training stage,
SpeechUT performs multi-task pre-training with
three tasks,

L = LS2U + λLU2T + γLMUM (9)

where λ and γ control the balance of losses. During
multi-task learning, SpeechUT is expected to con-
nect the speech encoder and the text decoder by the
unit encoder. Thus the data could flow smoothly
from the speech input end to the text output end
even without consuming speech-text paired data.

3.3 Hidden-Unit Generation
Using these three tasks for pre-training, we need
to construct three kinds of training data, the unit
data, the speech-unit paired data, and the unit-text
paired data. The unit data is the combination of the
units in speech-unit and unit-text data. To get the
latter two, we introduce two off-line unit generators,
the speech-to-unit (S2U) generator and the text-to-
unit (T2U) generator. The S2U generator could
be any off-line unsupervised clustering model that
discretizes the unlabeled speech sequences into
the hidden units, e.g., the k-means model learned
from HuBERT (Hsu et al., 2021). Besides, our
T2U generator is a sequence-to-sequence model
(Vaswani et al., 2017). As the units generated from
the text should have the same style as the units
generated from speech, we leverage a small amount
of paired ASR data1 to train the T2U generator.

1A small amount of ASR data is enough to train the T2U
generator (see Appendix A).
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Specifically, we generate the units from speech
for a small paired dataset using the S2U generator,
and then remove the repetitive units of adjacent
frames to get reduced units (Ao et al., 2022b). The
reduced units and the corresponding transcription
form the training data for the T2U generator. With
the trained T2U generator, large-scale unpaired text
corpora can be converted to a large unit-text paired
corpus for the U2T pre-training task.

3.4 Embedding Mixing Mechanism

Multi-task learning assumes the representations of
different modalities are aligned to the same latent
space (Wang et al., 2022c). However, we found that
the unit encoder always performs two individual
tasks for speech and unit without providing explicit
alignment information between them. To better
align the speech and unit representations in the
unit encoder, we adopt a simple embedding mixing
mechanism for S2U task, which is to mix the em-
beddings of two modalities in one sequence. Since
each unlabeled speech sequence has the generated
units at each time position, we randomly replace a
portion of speech hidden states ht in the sequence
with the corresponding unit embeddings ut, i.e.,

h
′
t =

{
ut t ∈ R−M
ht otherwise

(10)

where M is the masked positions in Eqn. (1) and
R is a set of randomly selected positions. R−M
means the embedding mixing is restricted by only
operating on the non-mask positions. Different
from previous work (Chen et al., 2022; Wang et al.,
2022c; Fang et al., 2022), which rely on force-
aligned phoneme or word labels, SpeechUT uses
units for mixing, making it available for full of
unlabeled data.

3.5 Fine-Tuning for ASR and ST

After pre-training, we drop the unit pre-net and
stack the speech encoder, the unit encoder, and the
text decoder into a complete sequence-to-sequence
model, which can be fine-tuned for any speech-
to-text task, such as ASR and ST. Note that all
modules have been pre-trained, including the text
output layer, and no new parameters are introduced
in the fine-tuning stage.

4 Experiments

4.1 Dataset

We conducted experiments individually for the
ASR task on English and ST tasks in three direc-
tions: English (En) to German (De), Spanish (Es),
and French (Fr). For ASR pre-training, the S2U
task uses unlabeled speech data from LibriSpeech
(Panayotov et al., 2015) and LibriLight (Kahn et al.,
2020), which contain about 960 and 60,000 hours
of speech respectively. U2T task uses text from
LibriSpeech LM Corpus2, containing about 40M
sentences. MUM task uses the combination of units
generated from the speech and the text.

For ST pre-training, the S2U task uses unla-
beled speech data from LibriSpeech and MuST-C
(Di Gangi et al., 2019). The latter contains hun-
dreds of hours of speech (see Appendix B). U2T
task only optimizes LU2T−ED and uses the paired
machine translation (MT) data from WMT datasets,
where the English-side text is used to generate units,
and the target-side text serves as the target of the
text decoder. WMT contains about 4.6M, 15M
and 40M paired sentences for En-{De3,Es4,Fr5},
respectively. MUM task also uses the combination
of units from two sources.

The T2U generator is trained on LibriSpeech
100 hours subset (train-clean-100) and used
for both ASR and ST pre-training. For down-
stream tasks, we use LibriSpeech 100 and 960
hours training set for ASR fine-tuning and MuST-C
En-De/Es/Fr train sets for ST fine-tuning. More
details about the dataset and the text pre-processing
can be found in Appendix B.

4.2 Model Configuration

SpeechUT The base model consists of 6 Trans-
former layers with relative positional attention bias
(Shaw et al., 2018) for all encoder/decoders. The
model dimension is 768 and the FFN dimension
is 3072. The large model scales up to 12 Trans-
former layers for the speech/unit encoder with the
model dimension of 1024 and the FFN dimension
of 4096, and 12 Transformer layers for the text
decoder without changing model dimensions. We
use the character vocabulary for ASR tasks and 10k
SentencePiece (Kudo and Richardson, 2018) for
ST tasks. CTC prediction head is not applied for

2http://www.openslr.org/11/
3https://www.statmt.org/wmt16/
4https://www.statmt.org/wmt13/
5https://www.statmt.org/wmt14/
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Model Size
Pre-training Data WER (↓) Without LM WER (↓) With LM

Speech Paired Text test-clean test-other LM test-clean test-other

960h hours pre-trained

wav2vec 2.0 (Baevski et al., 2020) Base (0.1B) 960h - - 6.1 13.3 4-gram 3.4 8.0
HuBERT (Hsu et al., 2021) Base (0.1B) 960h - - 6.3 13.2 4-gram 3.4 8.1
WavLM (Chen et al., 2021) Base (0.1B) 960h - - 5.7 12.0 4-gram 3.4 7.7
ILS-SSL (Wang et al., 2022b) Base (0.1B) 960h - - 4.7 10.1 4-gram 3.0 6.9
data2vec (Baevski et al., 2022) Base (0.1B) 960h - - 4.2∗ 9.7∗ 4-gram 2.8 6.8
PBERT (Wang et al., 2022a) Base (0.15B) 960h 100h† - 4.7 10.7 4-gram 3.1 7.3
SpeechT5 (Ao et al., 2022a) Base (0.15B) 960h - 40M 4.4 10.4 Transf. 2.4 5.8
Speech2C (Ao et al., 2022b) Base (0.15B) 960h - - 4.3 9.0 Transf. 2.4 5.2
Wav2seq (Wu et al., 2022) Base (0.15B) 960h - - - 11.2 - - -
wav2vec 2.0 (Baevski et al., 2020) Large (0.3B) 960h - - 4.7 9.0 Transf. 2.3 5.0
Baseline (Ours) Base (0.15B) 960h - 40M 3.8 8.0 Transf. 2.3 5.1
SpeechUT (Ours) Base (0.15B) 960h 100h† 40M 2.7 6.8 Transf. 2.0 4.5

60kh hours pre-trained

wav2vec 2.0 (Baevski et al., 2020) Large (0.3B) 60kh - - 3.1 6.3 Transf. 2.0 4.0
HuBERT (Hsu et al., 2021) Large (0.3B) 60kh - - - - Transf. 2.1 3.9
WavLM (Chen et al., 2021) Large (0.3B) 94kh - - - - Transf. 2.1 4.0
ILS-SSL (Wang et al., 2022b) Large (0.3B) 60kh - - 2.9 5.8 Transf. 2.0 4.0
STPT (Tang et al., 2022) Base (0.16B) 60kh 100h 40M 3.5 7.2 - - -
SpeechUT (Ours) Large (0.38B) 60kh 100h† 40M 2.2 4.5 Transf. 1.9 3.6

Table 1: ASR performance on 100-hour LibriSpeech benchmark. Speech/Paired/Text indicates the unlabeled
speech data, the paired ASR data, and the unpaired text data respectively. ∗ indicates our reproduction results, and †

indicates the data is not directly used for pre-training.

ST tasks. The total parameter size is about 156M
for the ASR base model, 162M for the ST base
model, and 380M for ASR large model.

Baseline For comparison, we also implement a
baseline with similar architecture but without using
units as an intermediate modality. The baseline
combines the Speech2C (Ao et al., 2022b) task
with the BART (Lewis et al., 2020) task to perform
multi-task pre-training. Specifically, Speech2C
takes speech as input and predicts the correspond-
ing units at the decoder. BART takes the corrupted
character-level text sequence as input and predicts
the complete sequence at the decoder. The baseline
consists of a shared 12-layer encoder and a shared
6-layer decoder. The model size is the same as the
SpeechUT base model.

Unit Generators The S2U generator is a k-
means model with 500 classes learned from the
released HuBERT base model (Hsu et al., 2021).
The T2U generator has 6 Transformer layers for
both the encoder and the decoder, the model dimen-
sion is 768 and the FFN dimension is 3072.

4.3 Training Details
All the experiments are conducted in Fairseq (Ott
et al., 2019). The loss weights (λ, γ) are set to
(0.1, 0.5) for ASR pre-training and (1.0, 0.5) for
ST pre-training. Before each optimization step, the

model simultaneously consumes batched data from
3 tasks and accumulates their gradients. The mask-
ing in S2U and MUM tasks follows the same con-
figuration with HuBERT (Hsu et al., 2021), with
the mask probability of 8% and the mask length of
10. The selection of R also follows the masking
strategy, but with the probability of 4% and the
window length of 5.

For ASR fine-tuning, we keep the pre-trained
CTC prediction head and tune a CTC/Attention
multi-task model (Watanabe et al., 2017) with the
CTC weight of 0.5. For ST fine-tuning, only
encoder-decoder loss is optimized. More details
about pre-training and fine-tuning can be found in
Appendix C.

4.4 Evaluation on Speech Recognition
We evaluate the performance by the word error rate
(WER) computed on LibriSpeech test-clean and
test-other sets. We also leverage an external
Transformer language model (Transf. LM) for shal-
low fusion (Gulcehre et al., 2015). The LM has
a similar size to that used in the previous works
and is trained on LibriSpeech LM Corpus (see Ap-
pendix D). The results are summarized in Table
1, compared with several previous self-supervised
approaches, including encoder-based models like
wav2vec 2.0 (Baevski et al., 2020), HuBERT (Hsu
et al., 2021), data2vec (Baevski et al., 2022), and
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Models Sizes Pre-training Data Fine-tuning BLEU (↑)
Speech (h) ASR (h) MT (#utt) En-De En-Es En-Fr

FAT-ST (Zheng et al., 2021) - 3.7k 1.4∼1.5k 1.9∼2.0M 25.5 30.8 -
SATE (Xu et al., 2021a) - - 1.4k 18M 28.1 - -
STEMM (Fang et al., 2022) - 960 408∼504 4.6∼40M 28.7 31.0 37.4
ConST (Ye et al., 2022) 0.15B 960 408∼504 4.6∼40M 28.3 32.0 38.3
STPT (Tang et al., 2022) 0.16B 60k 408∼504 4.6∼40M 29.26 33.1 39.7
SpeechUT (Ours) 0.16B 1.4∼1.5k 100† 4.6∼40M 30.1 33.6 41.4

Table 2: ST performance on MuST-C dataset. Speech/ASR/MT indicates auxiliary unlabeled speech data, ASR
data, and MT data. † indicates the data is not directly used for pre-training.

PBERT (Wang et al., 2022a), and encoder-decoder
models like SpeechT5 (Ao et al., 2022a), Speech2C
(Ao et al., 2022b), and STPT (Tang et al., 2022).

Table 1 shows that SpeechUT outperforms all the
encoder-based models by a large margin. Our base
model even behaves better than the large model
of wav2vec 2.0 with 960 hours of pre-training
data. SpeechUT also outperforms all the previ-
ous encoder-decoder speech-text pre-trained mod-
els, including SpeechT5, STPT, and our baseline,
achieving a new state-of-the-art performance on the
train-clean-100 set. Moreover, the SpeechUT
Large with LM gets the WER of 1.9 and 3.6 on
test-clean and test-other sets. Due to the
space limitation, the results using 960 hours of
training data are given in Appendix E.

4.5 Evaluation on Speech Translation
We evaluate the proposed SpeechUT on En-{De,
Es, Fr} language pairs. The results are shown in
Table 2, with a comparison to recent state-of-the-
art approaches, such as ConST (Ye et al., 2022)
and STPT (Tang et al., 2022). For convenience,
we reuse the off-line T2U generator trained on Lib-
riSpeech, which is inevitably related to external
100-hour ASR data. But we do not use any ASR la-
bels of MuST-C as all the previous works do, which
is much more than 100 hours. As shown in Table
2, our SpeechUT achieves the performance of 30.1,
33.6, and 41.4 BLEU scores on En-De, En-Es, and
En-Fr, respectively, demonstrating the superiority
of SpeechUT over previous works. Specifically,
SpeechUT outperforms the previous state-of-the-
art methods by at most +1.7 BLEU (En-Fr) with
significantly less pre-training data.

5 Analysis & Discussion

5.1 Ablation Study
To better understand the effect of each component
of SpeechUT, we pre-train different models in the

LS2U LU2T LMUM Mix dev-c dev-o

✓ ✓ ✓ ✓ 2.5 7.0
✓ w\o CTC ✓ ✓ 2.6 7.2
✓ w\o CTC – ✓ 2.7 7.3
✓ w\o CTC – – 3.0 7.9

Table 3: Ablation study. The performance is evaluated
by WER on dev-clean and dev-other set after fine-
tuning on train-clean-100 set.

absence of different tasks as well as the embedding
mixing mechanism. Specifically, these models are
pre-trained on 960 hours of speech and fine-tuned
on train-clean-100. The results are listed in
Table 3. First, the embedding mixing mechanism
has the biggest impact, as the absence leads to the
biggest degeneration of WER, which demonstrates
its importance and effectiveness. Second, it can
be noticed that the CTC loss, as a part of the U2T
task, has a minor influence (0.1~0.2 WER) on the
fine-tuning performance. Finally, while the MUM
loss has the minimum effect, we speculate that the
U2T task has already modeled the unit well.

Model Size Dev Test
clean other clean other

Self-training (Xu et al., 2021b) 300M 2.2 4.6 2.4 5.0
Semi-supervised pre-training 156M 2.4 4.9 2.5 5.1

SpeechUT 156M 1.6 4.5 2.0 4.5
SpeechUT + Self-training 156M 1.7 4.0 1.9 4.2

Table 4: ASR performance (WER) using LibriSpeech
100-hour supervised and 860-hour unsupervised speech
data. LM is used for decoding.

5.2 Effect of Paired Data Usage

SpeechUT employs a small amount of paired ASR
data to train the T2U generator. Here, we an-
alyze and verify our method on using the ASR

6En-De result is from their released code.
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(b)

speech unit

layer = 0 layer = 3 layer = 6

(a)

text(char)

Figure 3: 2-D illustration of the token-level represen-
tations of the unit encoder. (a) Semi-supervised pre-
trained model; (b) SpeechUT.

data compared with the other two methods, in-
cluding 1) self-training (Xu et al., 2021b) and 2)
semi-supervised pre-training which combines su-
pervised and unsupervised learning in a multi-task
pre-training process like mSLAM (Bapna et al.,
2022). Since the ASR result in this setting is not
reported in mSLAM, we implemented the semi-
supervised pre-training based on encoder-decoder
model7. Experimental results in Table 4 show
our model behaves better than the self-training
and semi-supervised pre-training. Moreover, our
method has the following advantages: (1) instead
of using pseudo text in self-training, SpeechUT
uses real text data for the decoder pre-training; (2)
simply semi-supervised pre-training only learns
speech-text alignment within a small amount of
paired data, while SpeechUT could align large-
scale unpaired speech and text with units as a
bridge; (3) SpeechUT is also complementary to
self-training, achieving further performance im-
provement, as shown in Table 4.

5.3 Is the Encoder Getting Better?
The U2T and MUM tasks can pre-train the unit
encoder with the generated unit and unit-text data.
Here, we attempt at evaluating the effect of U2T
and MUM losses on the encoder and judging
whether they can help the encoder learn better. We
first fine-tune a CTC model based on SpeechUT
encoder, which obtains the 3.8 and 9.7 WER on
dev-clean and test-other sets as shown in Ta-
ble 5. Second, we pre-train an encoder without the
text decoder and U2T task, and pre-train another

7Specifically, it combines the speech-to-unit task (Eqn.
(1)), the text-to-text BART (Lewis et al., 2020) task and the
supervised CTC/Attention ASR task jointly for pre-training.

encoder model by further removing the MUM task,
whose results are summarized in the last two lines
of Table 5. The evaluation demonstrates that our
joint speech-unit-text pre-training method can still
boost the performance of the encoder-only model,
which means the encoder itself also learns better
with U2T and MUM tasks.

Pre-trained model dev-clean dev-other

SpeechUT (w\o decoder) 3.8 9.7

- w\o LU2T 4.3 10.3
- w\o LU2T , LMUM 4.5 10.7

Table 5: ASR performance (WER) of encoder-only
CTC models. SpeechUT (w\o decoder) is fine-tuned
by discarding the pre-trained decoder, other models are
pre-trained & fine-tuned without decoders.

Total Vowels Consonants Silence

85.4% 79.6% 85.5% 96.7%

Table 6: Proportion where the paired speech and unit
representations agree to the same phonemes.

5.4 Are the Speech and the Unit Aligned?

SpeechUT aims to align the representations of
speech and unit using the unit encoder as a bridge,
so that information can flow smoothly from the
speech end to the text end. To verify this, we
first demonstrate the alignment by validating the
data distribution, i.e., the speech representation and
the unit representation should follow the same dis-
tribution if they are aligned. Figure 3 plots the
token-level representations of different layers of
the unit encoder (layer=0 indices the inputs). The
data are sampled from unpaired speech and unit se-
quences from LibriSpeech dev-clean set. T-SNE
(Van der Maaten and Hinton, 2008) is performed
to reduce the dimension to 2D. Figure 3(a) shows
that the representations are divided into two dis-
tinct regions for speech and text respectively in the
semi-supervised pre-trained model, which means
the model processes the two kinds of inputs inde-
pendently, leading to no alignment between speech
and text. While, SpeechUT shows another behavior
as shown in Figure 3(b), where the hidden states of
the two modalities are mapped to the same distri-
bution as the layer increases.

We further validate the alignment by a linear
phoneme classifier. Specifically, we train the linear
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phoneme classifier using fixed speech representa-
tions extracted from the 6-th layer of the unit en-
coder paired with frame-level phoneme labels8 on
train-clean-100 set. The classifier is then tested
by the unit inputs on dev-clean set to see whether
they predict the same phonemes with their paired
speech inputs. Table 6 shows that SpeechUT is able
to align the most portion of units (about 85%) with
speech, where an interesting phenomenon shows
that the alignment varies distinctly with respect to
different kinds of phonemes.

6 Conclusion

In this paper, we propose SpeechUT, a unified-
modal speech-unit-text pre-training model, which
bridges the modality gap between speech and text
representation with hidden units. By pre-training
with the speech-to-unit task, masked unit modeling
task, and unit-to-text task, SpeechUT significantly
outperforms strong baselines as well as previous
works and achieves state-of-the-art performance on
downstream speech recognition and speech trans-
lation tasks. In the future, we are interested in
removing the dependence on a small amount of
paired ASR data before pre-training, and extending
SpeechUT to a multilingual model.

Limitations

While the proposed SpeechUT model leverages
hidden-unit representation as the bridge between
speech and text, and obtains significant improve-
ment over previous works, it still has some limita-
tions: (1) the current method is a semi-supervised
pre-training method, where the T2U generator
needs paired ASR data to train, and takes exter-
nal time to generate the units from the text; (2) the
proposed SpeechUT only supports speech-to-text
tasks, and it would be nice to able to help text-to-
speech and speech-to-speech tasks; (3) we have
to pre-train an independent model for each trans-
lation pair in the current method, which is time-
consuming and resource-consuming; (4) the effec-
tiveness of applying SpeechUT to other speech
domains (e.g. child speech, accented speech) needs
to be further investigated.

8http://www.kaldi-asr.org/downloads/build/6/
trunk/egs/librispeech/. The phoneme inventory size is
42, including 15 vowels, 24 consonants, and 3 silence phones.
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A Preliminary evaluation on hidden units

As a preliminary validation of using hidden units
as an intermediate modality between speech and
text, we 1) cascade a speech-to-unit model with
a unit-to-text model for speech-to-text evaluation,
and 2) cascade a text-to-unit model with a unit-to-
text model for text-to-text evaluation.

The speech-to-unit model is a k-means model
learned from the released HuBERT Base model,
which is exactly the S2U generator introduced in
Section 3.3. The text-to-unit model is an encoder-
decoder based sequence-to-sequence model trained
on (speech-generated units, text) paired data of Lib-
riSpeech train-clean-100, which is exactly the
T2U generator introduced in Section 3.3. The unit-
to-text model has the same architecture with the
text-to-unit model but with reversed inputs/outputs.
The training data of the unit-to-text model comes
from (1) train-clean-100 subset like training
text-to-unit model, and (2) pseudo unit-text data, in
which we use text-to-unit model to generate pseudo
unit from text data in LibriSpeech LM corpus.

The detailed results are listed in Table 7. Al-
though units lose some information (e.g., the repet-
itive frames are merged) of speech, it still achieves
low WER (7.3/18.1) compared to the oracle speech-
to-text (CTC) model. On the other hand, cascad-
ing T2U and U2T models, which means translat-
ing text into units and then translating back, also
achieves low WER. These results indicate the units
produced by the off-line S2U/T2U generators re-
main the main linguistic information of both speech
and text, thus working as a bridge between the two
modalities.

Model Dev Test
clean other clean other

Directly fine-tune CTC model from HuBERT
S2T - - 6.3 13.2

Cascade two off-line models
S2U → U2T 6.9 17.9 7.3 18.1
T2U → U2T 5.1 3.1 4.5 5.5

Table 7: WER between the true text and the generated
text by different models.

B Data statistics

All the data used in our experiments are listed in
Table 8. For LibriSpeech LM data, the text is di-
rectly processed into characters and sent to the T2U
generator. For WMT data which is much noisier,

we normalize the English-side text by removing
punctuation and converting digits to spoken words
before sending them to the T2U generator. We only
keep the samples shorter than 250 words. When
generating units from text, we filter out a few por-
tions (about 15%) of data by thresholding the token-
averaged decoding likelihood. The threshold is set
to -0.666.

C Training details

Pre-training For the base model, the pre-training
is conducted on 32 V100 GPUs with the update
frequency of 1. The max-tokens of S2U, U2T,
and MUM tasks on each GPU are 1,400,000 (87.5
seconds), 3,000, and 3,000, respectively. We use
Adam optimizer. The maximum learning rate is
5e− 4 and increases linearly in the first 32K steps,
then decays linearly to zero in the total 400k steps.
All modules are randomly initialized before pre-
training. The pre-training takes about 3 days.

For the large model, the pre-training is con-
ducted on 64 V100 GPUs with the update fre-
quency of 2. The max-tokens are set to 900,000
(56.25 seconds), 2000, and 2000 for S2U, U2T, and
MUM tasks respectively. Other optimization con-
figurations are the same as that of the base model.
The pre-training takes about 12 days.

ASR fine-tuning Due to the limitation of the
GPU memory, the max tokens are set to 1,300,000
(81.25 seconds). During fine-tuning, the speech
masking probability is set to 5%. We use the tri-
stage learning-rate scheduler with (warm-up, hold,
decay) periods of (10%, 40%, 50%). The maxi-
mum learning rate is set to 1e− 5. The base model
is fine-tuned on 8 GPUs with the update frequency
of 2 for 40k steps. The large model is fine-tuned
on 8 GPUs with the update frequency of 3 for 80k
steps.

ST fine-tuning The max-tokens are set to
800,000 (50 seconds) due to the GPU memory and
we drop the training samples longer than it. The
speech masking probability is set to 5%. The label
smoothing is set to 0.1. The learning rate increases
linearly to 3e − 5 in the first 5K steps, then de-
cays linearly to zero in total 50k steps. Models are
fine-tuned on 8 GPUs with the update frequency of
4.
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Task
Pre-training Data T2U training data Fine-tuning Data

Unlabeled Speech Unpaired Text MT ASR ASR ST
name #hour name #utt name #utt name #hour name #hour name #hour

ASR
Base LS 960 LS LM 40M - - LS 100 LS 100 - -
Large LL 60k LS LM 40M - - LS 100 LS 100/960 - -

ST
En-De LS, MuST-C 1.4k - - WMT16 4.6M LS 100 - - MuST-C 408
En-Es LS, MuST-C 1.5k - - WMT13 15.2M LS 100 - - MuST-C 504
En-Fr LS, MuST-C 1.5k - - WMT14 40.8M LS 100 - - MuST-C 492

Table 8: Statistics of datasets used in experiments. LS: LibriSpeech, LL: LibriLight.

Model Size
Pre-training Data WER (↓) Without LM WER (↓) With LM

Speech Paired Text test-clean test-other LM test-clean test-other

wav2vec 2.0 (Baevski et al., 2020) Large (0.3B) 60kh - - 2.2 4.5 Transf. 1.8 3.3
HuBERT (Hsu et al., 2021) Large (0.3B) 60kh - - - - Transf. 1.9 3.3
WavLM (Chen et al., 2021) Large (0.3B) 94kh - - - - Transf. 1.8 3.2
ILS-SSL (Wang et al., 2022b) Large (0.3B) 60kh - - 1.9 3.8 Transf. 1.8 3.2
STPT (Tang et al., 2022) Base (0.16B) 60kh 960h 40M 2.1 4.6 Unknown 2.1 4.5
w2v-Conformer (Zhang et al., 2020) X-Large (0.6B) 60kh - - 1.7 3.5 LSTM. 1.5 3.2
w2v-Conformer (Zhang et al., 2020) XX-Large (1.0B) 60kh - - 1.6 3.3 LSTM. 1.5 3.1
w2v-BERT (Chung et al., 2021a) X-Large (0.6B) 60kh - - 1.5 2.9 LSTM. 1.5 2.8
w2v-BERT (Chung et al., 2021a) XX-Large (1.0B) 60kh - - 1.5 2.8 LSTM. 1.5 2.7
SLAM (Bapna et al., 2021) X-Large (0.6B) 60kh 960h mC4-En 1.6 3.1 - - -
Maestro (Chen et al., 2022) X-Large (0.6B) 60kh ∼5kh 54M 1.5 2.8 Conf. 1.5 2.7

SpeechUT (Ours) Large (0.38B) 60kh 100h† 40M 1.6 3.6 Transf. 1.6 3.0

Table 9: ASR performance on 960-hour LibriSpeech benchmark. Speech/Paired/Text indicates the unlabeled
speech data, the paired ASR data, and the unpaired text data respectively. † indicates the data is not directly used for
pre-training. Transf./LSTM./Conf. indicate the Transformer/LSTM/Conformer language models.

D Inference details

ASR inference We select the model with the
highest accuracy on dev-other set as the final
model and apply the joint CTC/ED decoding (Hori
et al., 2017). We also use a character-level Trans-
former language model (LM) for shallow fusion
(Gulcehre et al., 2015), which is provided by Ao
et al. (2022a) 9. According to Ao et al. (2022a), the
LM has a similar or higher word-level perplexity
(means worse) than the Transformer LM used in
the previous works in Table 1, the latter is provided
by Synnaeve et al. (2019). During decoding, the
beam size is set to 30 with LM fusion and 10 with-
out it. The ED weight, CTC weight and the LM
weight are set to (0.7, 0.3, 0.7) and (0.8, 0.2, 0)
respectively after searching on dev-other set.

ST inference We average the parameters of the
last 10 checkpoints for inference. The decod-
ing beam is 10. We report the case-sensitive
detokenized BLEU (Papineni et al., 2002) on
tst-COMMON set.

9https://github.com/microsoft/SpeechT5

E ASR results on 960-hour dataset

Table 9 lists the results of the SpeechUT Large
model fine-tuned on full LibriSpeech 960 hours
of ASR data, compared with several previous self-
supervised methods. SpeechUT Large outperforms
the previous works in the large model setting like
wav2vec 2.0 (Baevski et al., 2020), HuBERT (Hsu
et al., 2021), WavLM (Chen et al., 2021), and ILS-
SSL (Wang et al., 2022b). While, w2v-Conformer
(Zhang et al., 2020), w2v-BERT (Chung et al.,
2021a), SLAM (Bapna et al., 2021), and Maestro
(Chen et al., 2022) use much larger models with
Conformer blocks and/or more speech/text data,
which are beyond fair comparison.
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