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Preface

We are glad to pen the first few words for the proceedings of SIGDIAL 2021, the 22nd Annual Meeting of
the Special Interest Group on Discourse and Dialogue. The SIGDIAL conference is a premier publication
venue for research in discourse and dialogue.

This year, the conference is organized as a hybrid event with both in-person and virtual participation
on July 29-31, 2021, right before ACL-IJCNLP 2021. The 2021 Young Researchers’ Roundtable on
Spoken Dialog Systems (YRRSDS 2021) is also held as a satellite event. The SIGDIAL 2021 program
features three keynote talks, 6 paper presentation sessions, 1 demo session, and 2 special sessions,
entitled “Summarization of Dialogues and Multi-Party Meetings”, and “Safety for E2E Conversational
Al”.

COVID has changed the way we work, but it doesn’t hamper our research progress. We received 142
submissions this year, comprising 88 long papers, 49 short papers, and 5 demo descriptions. We had
12 Senior Program Committee (SPC) members who were each responsible for 11-12 papers, leading the
discussion process and also contributing meta-reviews. Each submission was assigned to an SPC member
and received at least three reviews. Decisions carefully considered the original reviews, meta-reviews,
and discussions among reviewers facilitated by the SPCs. We are immensely grateful to the members
of the Program Committee and Senior Program Committee for efforts in providing excellent, thoughtful
reviews of the large number of submissions. Their contributions have been essential to selecting the
accepted papers and providing a high-quality technical program for the conference. We have aimed
to develop a broad, varied program spanning the many positively rated papers identified by the review
process. We accepted 59 papers in total: 40 long papers (45%), 15 short papers (31%), and 4 demo
descriptions, for an overall acceptance rate of 41.5%, in line with prior years.

One keynote will highlight each of the three days of the conference. In organizing this hybrid in-
person/virtual conference, we have tried to maintain as much of the spirit of a fully online conference
as possible. Recordings for all papers and demos have been made available several days before the
start of the conference, for participants to watch asynchronously. Long and short papers are organized
into sessions taking into consideration the presenters’ time zones. Regular papers sessions span 8-11
papers, each presented as a two-minute pre-recorded talk followed by five minutes of live Q&A. For
demos, we organized four parallel zoom rooms to allow participants to interact with and observe live
interactions with the systems. The topics represent the breadth of research in discourse and dialogue. A
conference of this size requires the energy, guidance, and contributions of many parties, and we would
like to take this opportunity to thank and acknowledge them all. We thank our three keynote speakers,
Julia Hirschberg (Columbia University), Raymond J. Mooney (University of Texas at Austin), and Jason
Weston (Facebook Al & NYU), for their inspiring talks on “Whom Do We Trust in Dialogue Systems?”,
“Dialog with Robots: Perceptually Grounded Communication with Lifelong Learning”, and “A journey
from ML & NNs to NLP and Beyond: Just more of the same isn’t enough?” We also thank the organizers
of the two special sessions: “Summarization of Dialogues and Multi-Party Meetings”, and “Safety for
E2E Conversational AI”. We are grateful for their coordination with the main conference.

SIGDIAL 2021 is made possible by the dedication and hard work of our community. We are indebted to
many. The SIGDIAL track record of excellence continues this year. This would not have been possible
without the advice and support of the SIGDIAL board, particularly Gabriel Skantze and Mikio Nakano
for their guidance. Special mention must be made of the fact that, for the first time, we pilot a hybrid
conference to facilitate the participation. This inevitably increases the workload for the organizers.

We take this opportunity to express our gratitude to the local chairs, Chitralekha Gupta, and Berrak
Sisman for coordinating everything flawlessly, the local co-chairs, Yi Zhou, Mingyang Zhang, Grandee
Lee, Rui Liu, Zongyang Du, Kun Zhou, and Chen Zhang for managing the virtual platform and local
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matters professionally; the COLIPS council members Yan Wu, Minghui Dong, and Lei Wang for their
tremendous support to the arrangement of venue and social programs. Special thanks go to local chair
Sigi Cai for her tireless effort in managing the website with timely updates, and to local co-chair
Bidisha Sharma for conference registration, last but not least, to Celine Cheong and Min Yuan for their
administrative support. SIGDIAL 2021 would not have been possible without their extraordinary effort.

We would also like to thank the sponsorship chair David Vandyke, who has been our SIGDIAL
ambassador to the industry year after year. He continued to bring to the conference an impressive panel
of conference sponsors. We thank David for his dedicated effort. We gratefully acknowledge the support
of our sponsors: LivePerson (Platinum), Apple, DataBaker, Google and Rasa Technologies (Gold) and
Furhat Robotics, Toshiba Research Europe (Silver). In addition, we thank Jessy Li, the publication chair,
Nina Dethlefs, the mentoring chair for their dedicated services.

Finally, it is our great pleasure to welcome you physically and virtually to the conference. We hope that
you will have an enjoyable and productive time, and leave with fond memories of SIGDIAL 2021. With
our best wishes for a successful conference!

Haizhou Li, General Chair

Gina-Anne Levow, Zhou Yu, Program Co-Chairs
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Systems: A Survey
Vevake Balaraman, Seyedmostafa Sheikhalishahi and Bernardo Magnini
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July 30, 2021 (continued)

16:00-17:00

17:30-19:00

19:00-20:00

20:00-21:00

21:00-22:15

Demo Session

Scikit-talk: A toolkit for processing real-world conversational speech data
Andreas Liesenfeld, Gabor Parti and Chu-Ren Huang

ERICA: An Empathetic Android Companion for Covid-19 Quarantine
Etsuko Ishii, Genta Indra Winata, Samuel Cahyawijaya, Divesh Lala, Tatsuya
Kawahara and Pascale Fung

A multi-party attentive listening robot which stimulates involvement from side par-
ticipants

Koji Inoue, Hiromi Sakamoto, Kenta Yamamoto, Divesh Lala and Tatsuya Kawa-
hara

A Cloud-based User-Centered Time-Offset Interaction Application

Alberto Chierici, Tyeece Kiana Fredorcia Hensley, Wahib Kamran, Kertu Koss, Ar-
maan Agrawal, Erin Meekhof, Goffredo Puccetti and Nizar Habash

Panel

Virtual Tour (ALL) and Dinner (Physical only)

Sponsor Session SPS1

Keynote 2: A journey from ML and NNs to NLP and Beyond: Just more of the same

isn’t enough?
Jason Weston
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July 30, 2021 (continued)

23:00-00:00 Paper Session P4

Telling Stories through Multi-User Dialogue by Modeling Character Relations
Wai Man Si, Prithviraj Ammanabrolu and Mark Ried]l

Summarizing Behavioral Change Goals from SMS Exchanges to Support Health
Coaches

Itika Gupta, Barbara Di Eugenio, Brian D. Ziebart, Bing Liu, Ben S. Gerber and
Lisa K. Sharp

Rare-Class Dialogue Act Tagging for Alzheimer’s Disease Diagnosis
Shamila Nasreen, Julian Hough and Matthew Purver

CIDER: Commonsense Inference for Dialogue Explanation and Reasoning
Deepanway Ghosal, Pengfei Hong, Sigi Shen, Navonil Majumder, Rada Mihalcea
and Soujanya Poria

Where Are We in Discourse Relation Recognition?
Katherine Atwell, Junyi Jessy Li and Malihe Alikhani

Annotation Inconsistency and Entity Bias in MultiwOZ
Kun Qian, Ahmad Beirami, Zhouhan Lin, Ankita De, Alborz Geramifard, Zhou Yu
and Chinnadhurai Sankar

On the Need for Thoughtful Data Collection for Multi-Party Dialogue: A Survey of
Available Corpora and Collection Methods
Khyati Mahajan and Samira Shaikh

How Should Agents Ask Questions For Situated Learning? An Annotated Dialogue
Corpus

Felix Gervits, Antonio Roque, Gordon Briggs, Matthias Scheutz and Matthew
Marge
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July 31, 2021

19:00-20:00

20:00-21:00

Sponsor Session SPS2

Paper Session P5

How Will I Argue? A Dataset for Evaluating Recommender Systems for Argumen-
tations
Markus Brenneis, Maike Behrendt and Stefan Harmeling

From Argument Search to Argumentative Dialogue: A Topic-independent Approach
to Argument Acquisition for Dialogue Systems

Niklas Rach, Carolin Schindler, Isabel Feustel, Johannes Daxenberger, Wolfgang
Minker and Stefan Ultes

What to Fact-Check: Guiding Check-Worthy Information Detection in News Articles
through Argumentative Discourse Structure
Tariq Alhindi, Brennan McManus and Smaranda Muresan

How "open" are the conversations with open-domain chatbots? A proposal for
Speech Event based evaluation
A. Seza Dogru6z and Gabriel Skantze

Blending Task Success and User Satisfaction: Analysis of Learned Dialogue Be-
haviour with Multiple Rewards
Stefan Ultes and Wolfgang Maier

Diversity as a By-Product: Goal-oriented Language Generation Leads to Linguistic
Variation

Simeon Schiiz, Ting Han and Sina Zarrief3

DTAFA: Decoupled Training Architecture for Efficient FAQ Retrieval
Haytham Assem, Sourav Dutta and Edward Burgin

Projection of Turn Completion in Incremental Spoken Dialogue Systems
Erik Ekstedt and Gabriel Skantze
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July 31, 2021 (continued)

21:00-22:00

22:00-22:30

22:30-23:45

00:00-01:00

Paper Session P6

A Task-Oriented Dialogue Architecture via Transformer Neural Language Models
and Symbolic Injection

Oscar J Romero, Antian Wang, John Zimmerman, Aaron Steinfeld and Anthony
Tomasic

Domain-independent User Simulation with Transformers for Task-oriented Dia-
logue Systems

Hsien-chin Lin, Nurul Lubis, Songbo Hu, Carel van Niekerk, Christian Geishauser,
Michael Heck, Shutong Feng and Milica Gasic

A Practical 2-step Approach to Assist Enterprise Question-Answering Live Chat
Ling-Yen Liao and Tarec Fares

A Brief Study on the Effects of Training Generative Dialogue Models with a Seman-
tic loss

Prasanna Parthasarathi, Mohamed Abdelsalam, Sarath Chandar and Joelle Pineau
Do Encoder Representations of Generative Dialogue Models have sufficient sum-
mary of the Information about the task ?

Prasanna Parthasarathi, Joelle Pineau and Sarath Chandar

GenSF: Simultaneous Adaptation of Generative Pre-trained Models and Slot Filling
Shikib Mehri and Maxine Eskenazi

Schema-Guided Paradigm for Zero-Shot Dialog
Shikib Mehri and Maxine Eskenazi

BREAKOUT

Keynote 3: Whom Do We Trust in Dialogue Systems?

Julia Hirschberg

Business Meeting and Closing Ceremony
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Special Session: Summarization of Dialogues and Multi-Party Meetings (SummDial)

22:30-22:45

22:45-23:30

23:30-23:35

23:35-23:55

23:55-00:15

00:15-00:35

00:35-00:45

00:45-01:45

01:45-01:50

01:50-02:10

02:10-02:30

02:30-02:50

Opening

Keynote 1: Who discussed what with whom: is meeting summarization a solved
problem?

Klaus Zechner

Break

Coreference-Aware Dialogue Summarization
Zhengyuan Liu, Ke Shi and Nancy Chen

Weakly Supervised Extractive Summarization with Attention
Yingying Zhuang, Yichao Lu and Simi Wang

Incremental temporal summarization in multi-party meetings
Ramesh Manuvinakurike, Saurav Sahay, Wenda Chen and Lama Nachman

Break

Panel Discussion: Dialogue and Meeting Summarization: Taking Stock and Look-
ing Ahead

Ani Nenkova, Klaus Zechner, Diyi Yang, and Chenguang Zhu

Break

Mitigating Topic Bias when Detecting Decisions in Dialogue
Mladen Karan, Prashant Khare, Patrick Healey and Matthew Purver

Creating a data set of abstractive summaries of turn-labeled spoken human-
computer conversations

Iris Hendrickx and Virginia Meijer

Dynamic Sliding Window for Meeting Summarization
Zhengyuan Liu and Nancy Chen
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Special Session: Summarization of Dialogues and Multi-Party Meetings (SummDial) (continued)

02:50-03:00 Closing

Special Session: Safety for E2E Conversational AI (SafeConvAl)

22:00-22:10  Welcome by the organisers
Verena Rieser

22:10-22:50  Keynote
Laurence Devillers

22:50-23:00 Coffee break

23:00-23:30 Paper presentations

Assessing Political Prudence of Open-domain Chatbots
Yejin Bang, Nayeon Lee, Etsuko Ishii, Andrea Madotto and Pascale Fung

Large-Scale Quantitative Evaluation of Dialogue Agents’ Response Strategies
against Offensive Users
Haojun Li, Dilara Soylu and Christopher Manning

Panel discussion

Pascale Fung, Pilar Manchon, Ehud Reiter, Michelle Zhou, Emily Dinan (session
chair)

XXV



XXVi



Keynote Abstracts

Keynote 1 - Dialog with Robots: Perceptually Grounded Communication with Lifelong
Learning

Raymond J. Mooney

The University of Texas at Austin

Abstract

Developing robots that can accept instructions from and collaborate with human users is greatly en-
hanced by an ability to engage in natural language dialog. Unlike most other dialog scenarios, this
requires grounding the semantic analysis of language in perception and action in the world. Although
deep-learning has greatly enhanced methods for such grounded language understanding, it is difficult to
ensure that the data used to train such models covers all of the concepts that a robot might encounter
in practice. Therefore, we have developed methods that can continue to learn from dialog with users
during ordinary use by acquiring additional targeted training data from the responses to intentionally
designed clarification and active learning queries. These methods use reinforcement learning to automat-
ically acquire dialog strategies that support both effective immediate task completion as well as learning
that improves future performance. Using both experiments in simulation and with real robots, we have
demonstrated that these methods exhibit life-long learning that improves long-term performance.

Biography

Raymond J. Mooney is a Professor in the Department of Computer Science at the University of Texas
at Austin. He received his Ph.D. in 1988 from the University of Illinois at Urbana/Champaign. He is
an author of over 180 published research papers, primarily in the areas of machine learning and natural
language processing. He was the President of the International Machine Learning Society from 2008-
2011, program co-chair for AAAI 2006, general chair for HLT-EMNLP 2005, and co-chair for ICML
1990. He is a Fellow of AAAI, ACM, and ACL and the recipient of the Classic Paper award from
AAAI-19 and best paper awards from AAAI-96, KDD-04, ICML-05 and ACL-07.
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Keynote 2 - A journey from ML & NNs to NLP and Beyond: Just more of the same isn’t
enough?

Jason Weston

Facebook AI & NYU

Abstract

The first half of the talk will look back on the last two decades of machine learning, neural network and
natural language processing research for dialogue, through my personal lens, to discuss the advances that
have been made and the circumstances in which they happened —- to try to give clues of what we should
be working on for the future. The second half will dive deeper into some current first steps in those future
directions, in particular trying to fix the problems of neural generative models to enable deeper reasoning
with short and long-term coherence, and to ground such dialogue agents to an environment where they
can act and learn. We will argue that just scaling up current techniques, while a worthy investigation,
will not be enough to solve these problems.

Biography

Jason Weston is a research scientist at Facebook, NY and a Visiting Research Professor at NYU. He
earned his PhD in machine learning at Royal Holloway, University of London and at AT&T Research in
Red Bank, NJ (advisors: Alex Gammerman, Volodya Vovk and Vladimir Vapnik) in 2000. From 2000
to 2001, he was a researcher at Biowulf technologies. From 2002 to 2003 he was a research scientist at
the Max Planck Institute for Biological Cybernetics, Tuebingen, Germany. From 2003 to 2009 he was
a research staff member at NEC Labs America, Princeton. From 2009 to 2014 he was a research scien-
tist at Google, NY. His interests lie in statistical machine learning, with a focus on reasoning, memory,
perception, interaction and communication. Jason has published over 100 papers, including best paper
awards at ICML and ECML, and a Test of Time Award for his work “A Unified Architecture for Natural
Language Processing: Deep Neural Networks with Multitask Learning”, ICML 2008 (with Ronan Col-
lobert). He was part of the YouTube team that won a National Academy of Television Arts & Sciences
Emmy Award for Technology and Engineering for Personalized Recommendation Engines for Video
Discovery. He was listed as the 16th most influential machine learning scholar at AMiner and one of the
top 50 authors in Computer Science in Science.
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Keynote 3 - Whom Do We Trust in Dialogue Systems?
Julia Hirschberg
Columbia University

Abstract

It is important for computer systems today to encourage user trust: for recommender systems, knowledge-
delivery systems, and dialogue systems in general. What aspects of text or speech production do humans
tend to trust? It is also important for these systems to be able to identify whether in fact a user does trust
them. But producing trusted speech and recognizing user trust are still challenging questions. Our work
on trusted and mistrusted speech has produced some useful information about the first issue, exploring
the types of lexical and acoustic-prosodic features in human speech that listeners tend to trust or to mis-
trust. Using the very large Columbia Cross-cultural Deception Corpus we created to detect truth vs. lie,
we created a LieCatcher game to crowd-source a project on trusted vs. mistrusted speech from multiple
raters listening to question responses and rating them as true or false. We present results on the types of
speech raters trusted or did not trust and their reasoning behind their answers. We then describe ongoing
research on the second issue: How do we determine whether a user trusts the system and do aspects of
their speech reveal useful information?

Biography

Julia Hirschberg is Percy K. and Vida L. W. Hudson Professor of Computer Science at Columbia Univer-
sity. She previously worked at Bell Laboratories and AT&T Labs on text-to-speech synthesis (TTs) and
created their first HCI Research Department. She is a fellow of AAAI, ISCA, ACL, ACM, and IEEE,
and a member of the NAE, the American Academy of Arts and Sciences, and the American Philosoph-
ical Society, and has received the IEEE James L. Flanagan Speech and Audio Processing Award, the
ISCA Medal for Scientific Achievement and the ISCA Special Service Medal. She studies speech and
NLP, currently TTS; deceptive, trusted, emotional, and charismatic speech; false information and intent
on social media; multimodal humor; and radicalization. She has worked for diversity for many years at
AT&T and Columbia.
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SummDial Keynote - Who discussed what with whom: is meeting summarization a solved
problem?

Klaus Zechner

Educational Testing Service, United States

Abstract

While creating audio and video records of multi-party meetings has become easier than ever in recent
years, obtaining access to the key contents or a summary of a meeting is non-trivial. In this talk, I will
first provide an overview of the main differences between multi-party meetings and news articles — the
prototypical domain for most research on summarization so far. In the second part of the talk, a few
example approaches to meeting summarization will be presented and discussed, spanning from early
research to late-breaking system papers. Finally, I will conclude with thoughts about the current state-
of-the-art of the field of meeting summarization and open issues that still need to be addressed by the
research community.

Biography

Klaus Zechner received his Ph.D. from Carnegie Mellon University in 2001 for research on automated
speech summarization. This work was published at SIGIR-2001 and in Computational Linguistics
(2002). Klaus Zechner is now a Senior Research Scientist in the Natural Language Processing Lab
in the Research and Development Division of Educational Testing Service (ETS) in Princeton, New Jer-
sey, USA. Since joining ETS in 2002, he has been pioneering research and development of technologies
for automated scoring of non-native speech, leading large R&D projects dedicated to the continuous
improvement of automated speech scoring technology. He holds more than 20 patents on technology
related to SpeechRater®, an automated speech scoring system he and his team have been developing at
ETS. SpeechRater is currently used operationally as sole score for the TOEFL®Practice Online (TPO)
Speaking assessment and, in a hybrid scoring approach, also for TOEFL iBT Speaking. Klaus Zechner
authored more than 80 peer-reviewed publications in journals, book chapters, conference and workshop
proceedings, and research reports. He also edited a book on automated speaking assessment that was
published by Routledge in 2019; it provides an overview of the current state-of-the-art in automated
speech scoring of spontaneous non-native speech.

XXX



SafeConvAl Keynote - Emotional manipulation of chatbots: the nudge
Laurence Devillers
Sorbonne University - CNRS-LISN (Saclay)

Abstract

While creating audio and video records of multi-party meetings has become easier than ever in recent
years, obtaining access to the key contents or a summary of a meeting is non-trivial. In this talk, I will
first provide an overview of the main differences between multi-party meetings and news articles — the
prototypical domain for most research on summarization so far. In the second part of the talk, a few
example approaches to meeting summarization will be presented and discussed, spanning from early
research to late-breaking system papers. Finally, I will conclude with thoughts about the current state-
of-the-art of the field of meeting summarization and open issues that still need to be addressed by the
research community.

Biography

Laurence Devillers is a full Professor of Artificial Intelligence at Sorbonne University and heads the
team of research “Affective and social dimensions in Spoken interaction with (ro)bots: ethical issues” at
CNRS-LISN (Saclay). Since 2020, she heads the interdisciplinary Chair on Artificial Intelligence HU-
MAAINE: HUman-MAchine Affective INteraction & Ethics (2020-24) at CNRS. Her topics of research
are Human-Machine Co-adaptation: from the modeling of emotions and human-robot dialogue to the
ethical impacts for society and the risks and benefits of Al notably for vulnerable people. She is a mem-
ber of National Comity Pilot on Ethics of Numeric (CNPEN) working on conversational Agents, social
robots, Al and Ethics. She is now an expert member of the GPAI on “the future of work™ since June 2020
(international group). In March 2020, she wrote the book “Les robots émotionnels” (Ed. L’ Observatoire)
and in March 2017 “Des Robots et des Hommes: mythes, fantasmes et réalité” (Ed. Plon) for explaining
the urgency of building Social and Affective Robotic/Al Systems with Ethics by design.
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Understanding and predicting user dissatisfaction
in a neural generative chatbot

Abigail See
Stanford NLP
abiseelstanford.edu

Abstract

Neural generative dialogue agents have shown
an increasing ability to hold short chitchat con-
versations, when evaluated by crowdworkers
in controlled settings. However, their per-
formance in real-life deployment — talking to
intrinsically-motivated users in noisy environ-
ments — is less well-explored. In this paper, we
perform a detailed case study of a neural gener-
ative model deployed as part of Chirpy Cardi-
nal, an Alexa Prize socialbot. We find that un-
clear user utterances are a major source of gen-
erative errors such as ignoring, hallucination,
unclearness and repetition. However, even in
unambiguous contexts the model frequently
makes reasoning errors. Though users express
dissatisfaction in correlation with these errors,
certain dissatisfaction types (such as offensive-
ness and privacy objections) depend on addi-
tional factors — such as the user’s personal at-
titudes, and prior unaddressed dissatisfaction
in the conversation. Finally, we show that dis-
satisfied user utterances can be used as a semi-
supervised learning signal to improve the dia-
logue system. We train a model to predict next-
turn dissatisfaction, and show through human
evaluation that as a ranking function, it selects
higher-quality neural-generated utterances.

1 Introduction

Neural generative dialogue agents have become
sufficiently mature to make contact with real users
through programs such as the Alexa Prize (Gabriel
et al., 2020). Though these models have known
problems with factual correctness (Mielke et al.,
2020), using dialogue history (Sankar et al., 2019),
and bias (Dinan et al., 2020), they have nevertheless
produced good written conversations when evalu-
ated by crowdworkers or volunteers in carefully-
controlled scenarios (Zhang et al., 2020; Adiwar-
dana et al., 2020; Roller et al., 2020).

1

Christopher D. Manning
Stanford NLP
manning@stanford.edu

4 How are you doing today? }

ok but my cat threw up on the couch "

< Dissatisfaction
@ oh no! did you
get a new cat?

Predictor
what

yeah "

(I
dissatisfied=1 dissatisfied=0

Figure 1: Users tend to express dissatisfaction (such as
requests for clarification, left) after the neural genera-
tive chatbot makes errors (such as logical errors, left).
Using past conversations, we train a model to predict
dissatisfaction before it occurs. The model is used to
reduce the likelihood of poor-quality bot utterances.

By contrast, real-life settings such as the Alexa
Prize, in which intrinsically-motivated users speak
to open-domain chatbots in noisy environments, of-
fer unique challenges. Unlike crowdworkers, users
have their own expectations that may differ from
those of the chatbot or its designers, and they may
express dissatisfaction if those expectations are not
met. It is not yet well-understood how neural gen-
erative models perform in these settings, nor the
types and causes of dissatisfaction they encounter.
By studying a neural generative model deployed in
Chirpy Cardinal, an Alexa Prize chatbot, we seek
to provide the first in-depth analysis of a neural gen-
erative model in large-scale real-life deployment,
focusing on understanding the root causes of user
dissatisfaction.

Real-life settings such as the Alexa Prize also of-
fer unique opportunities. Dialogue systems can be
difficult to build due to a lack of sufficient publicly-
available data in the appropriate domain; mean-
while synthetic crowdsourced dialogue datasets
can contain unnatural patterns or behaviors that
are then replicated by a model trained on them. We
use our chatbot’s real-life conversations as a source

Proceedings of the 22nd Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 1-12
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of natural in-domain data. In particular, we train a
model that can predict authentic user dissatisfaction
before it occurs, thus helping us to avoid it.

Our Contributions. Through a detailed case-
study of a neural generative model speaking with
intrinsically-motivated users, we define taxonomies
of neural generative errors and user dissatisfaction,
and identify the relationships between them. We
find that generative errors are common, though the
noisy environment influences the rate and types of
error. Our analysis suggests that improving com-
monsense reasoning and conditioning on history
are high-priority areas for improvement. Though
generative errors are correlated with user dissatis-
faction, we find that the majority of errors do not
immediately elicit user-expressed dissatisfaction,
and some types of dissatisfaction (such as offensive-
ness and privacy objections) depend substantially
on other factors, such as the user’s own attitudes.

We then demonstrate a semi-supervised method
to improve a neural generative dialogue system
after deployment. We use an automatic classifier
to silver-label dissatisfied user utterances in past
conversations. Using these silver labels as training
targets, we train another model to predict whether a
given bot utterance will lead to user dissatisfaction
(Figure 1). We show that this model is predictive
of most dissatisfaction types, and when deployed
as a ranking function, a human evaluation shows
that it chooses higher-quality bot utterances.

2 Chirpy Cardinal

Chirpy Cardinal, aka CHIRPY (Paranjape et al.,
2020)! is an open-domain socialbot developed for
the Third Alexa Prize (Gabriel et al., 2020). Dur-
ing the competition (December 2019 to June 2020),
US Alexa customers could say Alexa, let’s chat to
connect to a random socialbot. Users would chat
to the bot in English for as long as desired, then
provide a 1-5 rating. At the end of the competi-
tion, CHIRPY had an average rating of 3.6/5.0 and
a median conversation duration of 2 minutes 16
seconds.

Like most Alexa Prize bots (Gabriel et al., 2020),
CHIRPY is modular in design, combining a mix of
rule-based, retrieval-based, knowledge-based and
neural generative components specializing in dif-
ferent topics. However, this paper focuses solely
on the Neural Chat module, which uses neural gen-

Yhttps://stanfordnlp.github.io/chirpycardinal

eration. An open-source version of CHIRPY is
available, including the code and pretrained model
for the Neural Chat module.?

2.1 Neural Chat module

The Neural Chat module has seven discussion areas,
all relating to personal experiences and emotions:
Current and Recent Activities, Future Activities,
General Activities, Emotions, Family Members,
Living Situation, and Food. A Neural Chat discus-
sion begins by asking the user a handwritten starter
question from one of the discussion areas; these
are designed to be easy-to-answer and applicable
to most users. See Appendix D for more details.

For subsequent turns of the discussion, we use a
GPT-2-medium (Radford et al., 2019) model fine-
tuned on the EmpatheticDialogues dataset (Rashkin
et al., 2019).> Though larger GPT-2 models are
now available, their latency and cost is prohibitively
high for inclusion in CHIRPY. On each turn, we
provide the current Neural Chat discussion history
as context to the GPT-2 model, and generate 20 pos-
sible responses using top-p sampling with p = 0.9
and temperature 0.7. Repetitive responses (contain-
ing previously-used trigrams) are removed. Except
when transitioning out of the Neural Chat discus-
sion (see below), we always choose a neural re-
sponse containing a question.* Of the responses
satisfying these criteria, we choose the longest re-
sponse, as it tends to be the most substantive and
interesting.

A Neural Chat discussion can end in several
ways. The user may initiate a topic better handled
by another CHIRPY module (what do you know
about baseball), or express dissatisfaction (see Sec-
tion 3), in which case another CHIRPY module
will take over. Otherwise, if under a third of the
sampled Neural Chat responses contain questions,
we interpret this as a heuristic indication that the
model is not confident in asking a question on this
turn. In this case, we choose a non-question, and
transition to a different CHIRPY module. Paranjape
et al. (2020) provides full details of the Neural Chat
module and how it fits into CHIRPY.

thtps ://github.com/stanfordnlp/chirpycardinal

*EmpatheticDialogues consists of conversations between
a speaker, who describes an emotional personal experience,
and a listener, who responds empathetically to the speaker’s
story. Our model is trained in the listener role.

“Many Alexa Prize bots end most utterances with a ques-
tion (Gabriel et al., 2020). We found that users were unsure
what to say if the bot did not offer a clear direction. However,
constant questions can fatigue users (Paranjape et al., 2020).



Dissatisfaction Definition Examples Freq.

Type

Clarification Indicates the bot’s meaning isn’t clear what do you mean, i don’t understand what you're 2.28%

talking about

Misheard Indicates the bot has misheard, misunder-  that’s not what i said, you're not listening to me 0.24%
stood or ignored the user

Repetition Indicates the bot has repeated itself you already said that, we talked about this already 0.03%

Criticism Expresses a critical opinion of the bot you're so rude, you're bad at this, you’re not smart 0.56%

Privacy Indicates the bot has overstepped a pri- none of your business, why are you asking me that, 0.11%
vacy boundary you're being creepy

Offensive Contains obscene/offensive words or top-  will you talk dirty, what size are your boobs, stick it 1.54%
ics up your ass

Negative Expresses desire to end current topic change the subject, i don’t want to talk about this 0.59%

Navigation

Stop Expresses desire to end conversation i have to go bye bye, end the conversation please 3.68%

Any Expresses one or more of the above Any of the above examples 11.56%

Table 1: User dissatisfaction types. Frequency of type D is estimated by the proportion of NeuralChatTurns
examples (¢, b, u) where the k-NN classifier for D assigns u a score of 0.5 or more: Pinn(D|u) > 0.5.

Dissatisfaction Type Optimal & AUPRC 1
Clarification 10 0.616
Misheard 26 0.474
Privacy 8 0.504
Repetition 4 0.476
Criticism 28 0.647
Negative Navigation 4 0.492
Oftensive 5 0.705
Stop 4 0.828
Any 7 0.787

Table 2: Performance (AUPRC) of k£-NN dissatisfac-
tion classifiers on the human-labelled set (Section 3).

Under this strategy, each Neural Chat discussion
contains a mean of 2.75 bot utterances. While this
is shorter than ideal, we found that if we extended
the Neural Chat conversations, after a few turns
the bot would often give a poor-quality response
that would derail the conversation. The brevity
of the Neural Chat discussions limits its conver-
sational depth, and thus its ability to provide the
desired empathetic user experience. The rest of this
paper focuses on understanding what kinds of poor-
quality neural responses derail the discussions, and
how we can learn to avoid them.

3 Detecting user dissatisfaction

We consider a user utterance to express dissatisfac-
tion if it meets any of the definitions in Table 1. An
utterance can express multiple types of dissatisfac-
tion; e.g., what do you mean stop is both Clarifica-
tion and Stop. Though some types, such as Stop,
might not necessarily represent dissatisfaction (as
every user must eventually end the conversation)
these dissatisfaction types are strong indicators that
the bot has recently given a poor-quality response.

Regex classifiers In CHIRPY, we manually de-
signed regex classifiers to identify each of the dis-
satisfaction types in Table 1.° If a user utterance
triggers one of these classifiers, CHIRPY takes the
appropriate action (e.g., ending the conversation,
switching topic, apologizing). The classifiers are
designed to capture the most commonly-expressed
forms of each dissatisfaction type; they are high
precision but lower recall (Paranjape et al., 2020).

Human-labelled set To help us develop higher
recall dissatisfaction classifiers, one expert anno-
tator® gathered a set of 3240 user utterances. For
each utterance u and dissatisfaction type D, they
provided a label HumLabelp(u) € {0, 1}. The ut-
terances are drawn from several sources, including
most common utterances, utterances drawn from
1-rated conversations, and utterances which scored
highly for the clarifying, closing and complaint di-
alogue acts in CHIRPY’s Dialogue Act classifier
(Paranjape et al., 2020).”

Nearest Neighbors classifiers To represent a
user utterance u, we take a DialoGPT-large model
(Zhang et al., 2020) that was finetuned on CHIRPY
conversations (Appendix C), input u, and average
the top-layer hidden states across the sequence. Us-
ing this embedding for each utterance, we build a
FAISS (Johnson et al., 2017) index of the human-
labelled set. To compute a new utterance u’s score

>The regexes are in the CHIRPY open-source code: https:
//github.com/stanfordnlp/chirpycardinal

®Due to privacy constraints, Alexa Prize user conversa-
tions can only be viewed by official team members. Thus all
annotators in this paper are team members, not crowdworkers.

"These sources were chosen to obtain a greater proportion
of dissatisfied examples; this increases the sensitivity of the
human-labelled set without needing to label a very large set.



Problem Definition % in ctrl set % when no user prob.

User ?"r?ady The user has already expressed dissatisfaction in c. 12.0% 0.0%

dissatisfied

User unclear The main gist of the user’s latest utterance in c is unclear 22.0% 0.0%
or obscured.

Bot repetitive The primary content of b was already said/asked by the 6.0% 43%
bot earlier in c.

Bot rc.tdundant bis gskmg foF 1nformat10n that the user has already 12.0% 15.9%

question provided earlier in c.

Bot unclear It’s hard to find an interpretation of b that makes sense. 12.0% 7.2%
b refers to something that hasn’t been mentioned, acts like

Bot hallucination the user said something they didn’t, confuses self with 17.0% 10.1%
user, or seems to be responding to own utterance.
b ignores or fails to acknowledge the user’s latest

Bot ignore utterance, doesn’t answer a question, doesn’t adequately 20.0% 14.5%
respond to a request, or switches to an unrelated topic.

Bot logical error bis gjcn§rally 013—tpp1c, but makes an assumption or 15.0% 17.4%
association that’s incorrect, unfounded or strange.

. . b says or implies something insulting about the user, or
Bot insulting about others in a way that might offend the user. 1.0% 1.4%
Any bot error True iff any of the above bot errors are true. 53.0% 46.4%

Table 3: Definitions of problems that may be present in a NeuralChatTurns example (¢ = context, b = bot utter-
ance); prevalence in the control set (n = 100); prevalence in control set examples with no user problems (n = 69).

for dissatisfaction type D (including Any), we find
its k& Nearest Neighbors u/, ..., uj, in the human-
labelled set (w.r.t. cosine distance), then compute
Pinn(Dlu) € [0, 1] as follows:

HumLabelp (u) if u human-labelled
1 if u matches D-regex

% Z?:l HumlLabel p (u;) otherwise.

That is, we first check if « has a human label or is
a positive match for D’s regex; if not we compute
the proportion of u’s neighbors that are labelled D.

For each D, we evaluate the k-NN classifier on
the human-labelled set for £k = 1, ..., 30 via leave-
one-out cross-validation. Table 2 shows the op-
timal k£ and area under the precision-recall curve
(AUPRC) for each D.

4 NeuralChatTurns dataset

Over the period that CHIRPY was online, we collect
examples of the form (¢, b, u) where b is a purely
neural-generated bot utterance, c is the Neural Chat
context that preceded b, and u is the user response
to b. The NeuralChatTurns dataset has 393,841
examples in total, which we split into 315,072 train,
39,384 validation, and 39,385 test. Due to user
privacy constraints, we are not permitted to publicly
release the NeuralChatTurns dataset.

5 What causes user dissatisfaction?

To understand dissatisfaction, we annotate errors
in the generative model’s conversations.

5.1 Annotation details

By inspecting the neural-generated output, we de-
velop a taxonomy of bot errors; these are defined
in Table 3 with examples in Appendix A. In addi-
tion to bot errors, we consider two other potential
causes of dissatisfaction: first, whether the user is
already dissatisfied in the Neural Chat context c;
second, whether the user’s utterance is clear. Un-
clear user utterances — caused by ASR errors, miss-
peaking, ambiguity, or background noise — present
challenges in CHIRPY (Paranjape et al., 2020) and
across the Alexa Prize (Gabriel et al., 2020).
From the NeuralChatTurns validation set, we
randomly sample a control set of 100 (¢, b, u) ex-
amples, and annotate u’s dissatisfaction types. As
dissatisfaction is relatively rare (Table 1), for each
dissatisfaction type D we additionally gather 100
(¢,b,u) examples where u is of type D.® For
these 900 (c,b,u) examples, one expert annota-
tor viewed each (¢, b) example (without seeing u),
and annotated it for the problems in Table 3. As
the bot error types are somewhat subjective, we col-
lected some additional second annotations to mea-
sure inter-annotator agreement (see Appendix B).
Annotators were provided the definitions in Table 3

¥To obtain these, we sample (c, b, u) where Paw (D|u) >
0 without replacement, and manually verify until we have 100.



and the examples in Appendix A.

5.2 Effect of unclear utterances and prior
dissatisfaction on bot errors

Table 3 shows that the user’s utterance is unclear in
22% of control set examples. In these contexts, it’s
impossible for the bot to reliably produce a good
response. Indeed, Figure 2 shows that unclear user
utterances are significantly (p < 0.05) predictive
of bot hallucinations and unclear bot utterances. In
practice, we observe that when the user’s utterance
is unclear, the generative model tends to hallucinate
(in many cases, responding as if the user had said
something more expected), or respond unclearly
(often, this is a vague question such as What is it?)
— examples of both are in Appendix A.

Table 3 also shows that, in 12% of examples, the
user has already expressed dissatisfaction in the
Neural Chat context c. Ordinarily, the regex-based
dissatisfaction classifiers should detect dissatisfac-
tion and interrupt the Neural Chat conversation to
handle it (see Section 3) — thus these examples rep-
resent false negatives of the regex classifiers. As
the generative model is generally unable to ade-
quately respond to dissatisfaction (e.g., requesting
to stop the conversation), most of these examples
are also impossible for the generative model to han-
dle. Accordingly, we find a significant positive
relationship between prior user dissatisfaction and
bot ignoring (Figure 2).

Nevertheless, after removing these user prob-
lems, bot errors are still common: for the 69 con-
trol set examples where the user is clear and not
already dissatisfied, 46.4% of bot utterances con-
tain at least one type of error (down from 53% in
the whole set; see Table 3). Among these examples,
the more basic errors (repetitive, unclear, hallucina-
tion, ignoring) become less common, and the errors
relating to reasoning or social abilities (redundant,
logical, insulting) are more common.

5.3 Effect of bot errors on user dissatisfaction

Despite the high rate of bot errors in the control
set (53 in 100), only a minority of users express
dissatisfaction immediately after an error (8 in 53;
15%). In fact, we observe that some users respond
to errors by helpfully teaching CHIRPY about the
world — e.g., you pick things up and put them away
to explain the concept ‘cleaning your room’.
Figure 3 shows the contribution (as a logistic re-
gression coefficient) of each problem in Table 3
to each dissatisfaction type. We find that each

bot error (except logical error’) is significantly
(p < 0.05) predictive of at least one dissatisfac-
tion type. We find that bot repetition is the least-
tolerated error, being significantly predictive of six
dissatisfaction types. Other than bot repetition,
the likelihood of ending the conversation (Neg-
Nav/Stop) is significantly raised by unclear bot
utterances — perhaps because it becomes impossi-
ble to continue the conversation — and by bot in-
sults. Other positive relationships include unclear
user with Misheard, repetitive and redundant bot
with Repetition, unclear bot with Clarification, bot
hallucination and ignoring with Misheard, and bot
insulting with Criticism.

Six of the eight dissatisfaction types have a sig-
nificant positive correlation with Any bot error.
Privacy is least-correlated with bot errors; this
makes sense, as privacy boundaries are extremely
subjective (Section 5.5). Offensive is next least-
correlated, reflecting that offensive users can be
motivated by factors other than poor bot perfor-
mance — e.g., a curiosity to test the bot (De Angeli
et al., 2005; De Angeli and Brahnam, 2008). Rep-
etition has the third weakest correlation; indeed,
we find that 28% of Repetition complaints occur
in the absence of an annotated bot error. These
users may be complaining about the bot repeating
something from outside the Neural Chat context c,
or something said by a different Alexa Prize bot.

5.4 Unaddressed dissatisfaction escalates

Figure 3 shows that prior user dissatisfaction is sig-
nificantly (p < 0.05) predictive of several types
of subsequent dissatisfaction. We recompute this
analysis for two cases: with and without a bot
error. Among bot error examples, we find prior
dissatisfaction is significantly correlated with Crit-
icism, Stop, Privacy, and Offensive — indicating
that already-dissatisfied users are more likely to
respond to bot errors with complaining, quitting, or
offensiveness. Among examples without a bot er-
ror, prior dissatisfaction is significantly correlated
with Offensive — indicating that already-dissatisfied
users are more likely to be offensive, even in re-
sponse to a good-quality bot utterance.

°This exception may be because by definition (Table 3),
logical errors tend to occur in the absence of more basic errors
(such as repetition, unclear, ignoring, and hallucination) so are
less likely to completely derail the conversation.
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p-values from Likelihood Ratio Test for feature significance
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Bot repetitive -
Bot redundant q
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Figure 2: For each bot error E, we use the control set (Section 5.1) to fit a Logistic Regression model to predict
E using the two rows above as features. For each feature we perform a Likelihood Ratio Test to determine if
including that feature results in a statistically-significant improvement to the model’s fit.

Logistic Regression Coefficients relating problems and user dissatisfaction
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Figure 3: For each dissatisfaction type D, we take the 100 control examples plus the 100 D examples (Section 5.1),
and fit a Logistic Regression model to predict D using the first 9 rows above as features. To obtain the values in
the Any bot error row, we use just the first two and last row as features. For each feature, we use a Likelihood
Ratio Test to determine if including that feature results in a statistically-significant improvement to the model’s fit.
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Figure 4: Privacy dissatisfaction rate (with 95% ClIs)
for each Neural Chat discussion area (see Appendix D).

5.5 Privacy boundaries vary

Empathy is a fundamental part of human commu-
nication, and can improve user experience of dia-
logue agents (Ma et al., 2020). The Neural Chat
module aims to offer an empathetic experience by
showing an interest in the user’s feelings and ex-
periences. However, users have varying attitudes
to self-disclosure. Croes and Antheunis (2020)
report that chatbots are perceived as more anony-
mous and non-judgmental than humans; this can
increase user self-disclosure. However, some users
perceive chatbots as lacking trust and social pres-
ence, inhibiting user self-disclosure. We observe
both phenomena — some users share their thoughts
and feelings candidly, while others react with sus-
picion (e.g., are you spying on me) to questions

typically regarded as appropriate between strangers
in US society (What are you up to today?).

Figure 4 shows that emotional topics (includ-
ing Living Situation, see Appendix D) are most
likely to be rejected on privacy grounds. Users
are more comfortable discussing general activities
(e.g., What are your hobbies ?) than specific activi-
ties in the present or future (What are your plans
for the weekend?). For the Family Members discus-
sion area, users are more comfortable discussing
pets, siblings, kids and friends, and less comfort-
able discussing partners and older generations.

6 Learning to predict user dissatisfaction

In this section we build a system to predict, and
thus reduce the likelihood of, dissatisfaction.

6.1 Predictor training details

We take a DialoGPT-large model (Zhang et al.,
2020) that was finetuned on CHIRPY conversations,
and finetune it on NeuralChatTurns training exam-
ples (¢, b, u) as follows. The input to the model is a
context and bot utterance (c, b), with the utterances
separated by the <|endoftext |> token. We
wish to predict Pyreq(Any|c, b), the probability that
the next user utterance u will express Any dissat-
isfaction. To compute this, we take Hy, ; € R280,
the hidden state of the top-layer L for the last



did you have fun?
did you enjoy it?

did you have a good time?

what kind of sandwich?

what is your favorite dish?
pizza?

what was it?

what is it?

oh really?

where are you going?

oh yea? ——

what is your favorite hobby?

i did what?

what are you planning on doing?
oh yeah?

what's been going on?

what are you going to do?
what's going on?

what happened?

what are you doing?

last bot question
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k-NN score for Any dissatisfaction
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Figure 5: For each of the 20 most common bot questions, mean scores and 95% ClIs for Any dissatisfaction given

by the k-NN classifier (left) and the predictor (right).

Dissatisfaction Predictor correlation p T p-value
Clarification 0.274  8.7e-05
Misheard 0.295  2.2e-05
Repetition -0.038  6.5¢-01
Criticism 0.429  2.2e-10
Privacy 0.326  3.5e-06
Offensive 0.394  7.7e-09
Neg. nav. 0.204  3.8e-03
Stop 0.209  3.0e-03

Table 4: Spearman correlation between predictor out-
put and each human-annotated dissatisfaction type D
(computed on 100 control and 100 D examples).

timestep ¢ of the input, and apply a linear layer
(W € IR'?®0) and sigmoid activation:

Poea(Anyle,b) = o(WT Hp,) € [0,1]

We train the predictor with Mean Squared Error to
match the probability that v expresses Any dissat-
isfaction, as given by the k-NN classifier:

n

1

2
MSE = £ 37 (Pues(Anyle, ) — P (Any)

=1

Punn(Any|u;) is as defined in Section 3, using the
optimal & for Any (Table 2). Full training details
are supplied in Appendix C.

6.2 How accurately does the predictor

predict dissatisfaction?

On the NeuralChatTurns validation set, the predic-
tor’s output and the PNy targets have a Spearman
correlation p = 0.30.'° This indicates a statisti-
cally significant but noisy correlation between the
predictor’s output and the automatically-provided
targets. With respect to the human-provided la-
bels for Any dissatisfaction (Section 5), the pre-
dictor has a a similar correlation of p = 0.28
(p = 0.0043). This indicates that the difference be-
tween the true dissatisfaction labels and the Pinn

10 <1e-5, Fisher transformation test (null hypothesis p=0)

training estimates is not a primary limitation of the
predictor’s accuracy.

Table 4 shows that the predictor has significant
(p < 0.05) positive correlation with each dissat-
isfaction type except Repetition. This may be be-
cause Repetition is the rarest type in the training set
(Table 1), or because some Repetition complaints
are not predictable from the Neural Chat context
(Section 5.3).

6.3 What information does the predictor use?

First, we perform an ablation analysis. Compared
to the full model’s correlation of p = 0.30 with
the Finn targets, the predictor achieves p = 0.25
if trained only on the context ¢, and p = 0.23 if
trained only on the bot utterance b (all p <le-5).

Separately, on the human-annotated control set
we find that the full predictor model has a posi-
tive correlation p = 0.26 (p = 0.0087) with prior
user dissatisfaction, a weaker correlation p = 0.21
(p = 0.035) with unclear user utterance, and no
significant correlation with the presence of any bot
problem: p = 0.022 (p = 0.83).

Together this evidence indicates that the predic-
tor learns to condition more strongly on c (in par-
ticular prior user dissatisfaction) and less on b (in
particular bot errors). Though concerning, this is
unsurprising, as user dissatisfaction (which we can
detect automatically) is simpler to detect than bot
errors (which require human annotation).

However, as evidenced by the b-only ablation
result, the predictor does find some useful signal
in 0. In particular, we find that the full model con-
ditions strongly on the bot’s question. Figure 5
(left) shows that in NeuralChatTurns data, What
happened?, What are you doing? lead to more dis-
satisfaction,!! whereas positive questions such as

"These questions are often used repetitively, if the user’s
answer to the first asking is unclear/negative (see Appendix A).



Did you have fun?, Did you enjoy it? tend to lead
to less. Figure 5 (right) shows that the predictor
learns these patterns quite closely.

7 Ranking neural generations to
minimize dissatisfaction

In this section we use the predictor to select better-
quality bot utterances.

7.1 Human evaluation details

Given that the generative model is generally inca-
pable of responding well when the user is unclear
or already dissatisfied, we focus on improving its
performance on the remaining cases (which we call
achievable). We sample 400 examples from the
NeuralChatTurns validation set, then manually fil-
ter to obtain 270 achievable examples. For these,
we take the context ¢ and generate 20 possible bot
responses by, . .., bag, using the generative model
and decoding procedure in Section 2.1. Let byreq
be the response with best (i.e., lowest) predictor
score: bpreq = argminy, ¢y, y,0 Pprea(Any|c, bj).
We randomly sample an alternative by,q uniformly
from the other 19 responses. One expert evaluator
viewed each c, then chose which of byreq OF brang
(presented blind) is a higher-quality response. If
only one of the two has an error (defined in Ta-
ble 3), the non-error response is preferred. If nei-
ther or both have an error, the response that better
responds to the user’s utterance and continues the
conversation is deemed higher-quality.

7.2 Results

We find that bpeq is preferred in 46.3% of cases,
brand in 35.6%, and no preference in 18.1%. A bi-
nomial test (null hypothesis: bpreq and brang €qually
likely to be preferred) returns a p-value of 0.03.
This raises the question: if the predictor’s outputs
have no significant correlation with bot errors in the
NeuralChatTurns distribution (Section 6.3), how
does the predictor select better-quality bot utter-
ances on average? Section 6.3 showed that the
predictor does condition on b, in particular the bot
question, but it conditions on ¢ more strongly. It’s
possible that when ¢; = ¢; (as in this evaluation),
the predictor is able to distinguish quality differ-
ences between (c;, b;) and (c;,b;); however, on
the NeuralChatTurns dataset where the ¢; and ¢;
are distinct, the effect of ¢; and ¢; dominates the
predictor’s ranking.

8 Related work

Previous work has used a variety of user signals to
improve dialogue agents. When learning from a
variable-quality human-human dataset such as Red-
dit, Gao et al. (2020) showed that engagement mea-
sures like upvotes and replies are more effective
than perplexity to train a ranking model. For one-
on-one empathetic conversations like ours, Shin
et al. (2019) trained a neural generative model with
reinforcement learning to improve next-turn user
sentiment (as simulated by a user response model,
rather than human responses). Though we consid-
ered taking a sentiment-based approach in CHIRPY,
we found that user sentiment doesn’t always align
with good user experience: first, expressing nega-
tive emotions is sometimes unavoidable, and sec-
ond, sentiment classifiers tend not to distinguish
between sentiment about the conversation and sen-
timent about other issues. We find next-turn user
dissatisfaction to be a comparatively more precise,
well-aligned learning signal.

Dialogue systems that learn from their own in-
teractions with humans are relatively rare. Han-
cock et al. (2019) also use user satisfaction to iden-
tify high-quality bot utterances; these become ad-
ditional training examples for the neural genera-
tive model. However, this work uses paid crowd-
workers; research involving intrinsically-motivated,
unpaid users is rarer still. In symmetric settings
such as the role-playing game LIGHT (Shuster
et al., 2020), the user utterances themselves can
be used to retrain the dialogue agent. In the asym-
metric Alexa Prize setting, Shalyminov et al. (2018)
show that conversation-level metrics like rating and
length can also be used to train an effective ranker.

9 Limitations

Our findings on user behavior are particular to
the demographics of the US Alexa customers who
spoke to CHIRPY in 2019-2020. While users in
other locations or time periods may differ, our anal-
ysis gives a valuable snapshot of the current atti-
tudes and expectations of US users interacting with
a voice-based socialbot or virtual assistant.
Second, our results are dependent on the Alexa
Prize conversational context and the technical de-
tails of our generative model. In particular, due to
latency and cost constraints, our GPT-2-medium
generative model is orders of magnitude smaller
than the current largest generative models, and
trained on a fraction of the data (Brown et al., 2020).



Given that very large models have shown genera-
tive abilities that are absent at smaller scale, it is
likely that if we had built our dialogue agent with
such a model, its errors and interactions with users
would have been very different. Nonetheless, we
believe our analysis gives useful insight into the
performance of neural generative models of more
accessible scale, in particular highlighting issues
occurring in real-life scenarios that might not occur
in crowdsourced conversations.

10 Conclusion

In this study of an open-domain neural generative
dialogue agent in real-life deployment, we found
that poor-quality bot turns are common. The noisy
environment — in which user utterances are often
unclear — plays a large part in the bot’s more basic
errors (repetition, ignoring, and nonsensical utter-
ances). However, even in clear examples where
the generative model could succeed, it still makes
many unforced errors; these are more likely to in-
volve faults in reasoning or social abilities. This
highlights the importance of improving neural gen-
erative dialogue models’ state-tracking, common-
sense abilities and use of conversational history.

Despite the frequency of errors, users are gener-
ally polite; most don’t express overt dissatisfaction
even after an error. However, unaddressed dissat-
isfaction escalates: it makes users more critical,
offensive, and likely to quit when encountering an
error, and more offensive even if there are no fur-
ther errors. We find that dissatisfaction correlates
with bot errors, however, it can arise unpredictably
for other reasons — e.g., as a result of privacy bound-
aries, which are variable and personal to each user.

Dissatisfaction is relatively easy to automati-
cally detect, and thus feasible as a scalable semi-
supervised learning signal that could be used for
online learning. However, it is difficult to predict;
this makes it a challenging learning signal. Indeed,
we find that our predictor conditions more strongly
on easier-to-recognize factors such as prior user
dissatisfaction, than on harder-to-recognize factors
such as bot errors. Nonetheless, we find that when
used as a ranking function to choose between alter-
native bot utterances, the predictor chooses better
than random selection.
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Appendix
A Annotation examples

User unclear

* User hesitated/cutoff: What did you have for din-
ner today? — well

* ASR errors / misspeaking has corrupted user
utterance: What are your plans for today? —
maybe go to cost coat

* Answering yes/no to a non-yes/no question:
What do you like to do to relax? — yes

Bot repetitive

* Asking same essential question, even if reworded:
What are your plans today? — i don’t know —
I’m sorry to hear that. What will you do?

* Repeating question, even if we didn’t get a clear
answer the first time: What are your plans today?
— it’s not monday — What will you do today?
This is repetitive but not redundant.

Bot redundant question

» Repeating a question the user already answered:
What are your plans today? — i don’t know —
I’m sorry to hear that. What will you do?

* Asking for info the user has provided, even if the
question is new: What did you do today? — i
played with my sister — Oh cool! Do you have
a sister? This is redundant but not repetitive.

Bot unclear

* Hard to understand or answer bot’s question:
How are you feeling? — what feeling feeling
i'm — What is it?

* Most bot hallucination examples

* Poor fluency or phrasing obscures bot’s meaning:
What do you like to do to keep busy? — reading
— 1 like to read, watch movies, do any sports?

Bot hallucination

* Referring to something not mentioned: What'’s
quarantine been like for you? — ok actually —
That’s good. How long have you been together?

* Acting like the user said something they didn’t:
What did you have for lunch? — well i — Oh
cool, what kind of sandwich?

* Confusing self with user: What did you do today?
— uh — I did what?

* Responding to own utterance: I'm feeling kinda
down. How are you? — ok — I’'m sorry to hear
that, what’s bothering you?
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Bot ignoring

* Ignore / fail to acknowledge user’s utterance:
What are some recipes I should cook? — maybe
pasta — I love cooking, do you?

* Doesn’t answer a question: What are your plans
for the weekend? — do you have a boyfriend —
a boyfriend? how long have you been together?

* Doesn’t adequately respond to a request: What
are your plans for the weekend? — alexa play
music — I love music. Do you like live concerts?

» Switching to unrelated topic: What are your hob-
bies? — painting — How about fishing?

Bot logical error

* Question makes sense, but is strange: Tell me
about your mom — she’s cool — is she a nurse?

* Reacting the wrong way (e.g. wrong sentiment):
What are you doing tomorrow? — visiting
grandma — I’'m sorry to hear that.

* Bot is inconsistent with itself: I've been feeling
down. How are you feeling? — great how about
you — I’'m doing great too.

* Mixing up different people in the scenario: 7ell
me about your sister — she’s at college — Oh
cool, what’s your major?

* Wrong word sense: What did you today? — i
played tag — What kind of name tag?

Bot insulting

* Saying/implying something insulting about the
user: How are you feeling? — sad — Oh, 1
suppose you have no friends?

* Rudely saying/implying the user should do some-
thing: What did you do today? — nothing — I
see. Why don’t you get a job?

» Expressing a negative opinion of someone (be-
yond just sympathizing/acknowledging user’s
opinion): Tell me about your brother. — he’s
always bugging me — He sounds so annoying.

B Inter-annotator agreement

For 122 randomly-selected examples annotated by
the first annotator, we collected annotations from a
second annotator. This table shows the frequency
of each label (among the pooled 244 judgments),
and Scott’s pi agreement (Scott, 1955), divided
into unclear examples (where at least one annotator
judged the user utterance unclear), all examples,
and clear examples (where both annotators judged
the user utterance clear). In all cases, agreement is
higher when the user utterance is clear. We found
bot errors harder to diagnose when the user’s ut-
terance is unclear — e.g., if the user’s utterance is



completely nonsensical, what does it mean for the
bot to adequately acknowledge it?

Problem Freq. Scott’s pi
(unclear/all/clear)
User unclear 35.7% -10.70/ -
Bot repetitive 20.1% 0.50/0.62/0.72
Botredundantq. 15.6% 0.19/0.50/0.58
Bot unclear 16.4% 0.45/0.52/0.56
Bot halluc. 31.6% 0.35/0.45/0.43
Bot ignore 25.8% -0.13/0.34/0.59
Bot logical err. 23.0% 0.02/0.17/0.27
Bot insulting 5.7% -0.04/0.24/70.35
Any bot err. 75.0% 0.08/0.45/0.68

C Training details

Finetuning DialoGPT-large on CHIRPY con-
versations The CHIRPY conversations com-
prise 1.2GB of text data, collected over the
competition. We separate utterances with the
<|lendoftext |> token (as DialoGPT was
trained), and divide the data into chunks of 256
tokens. Using Huggingface Transformers (Wolf
et al., 2020), we trained on a Titan RTX for 1 epoch
(more led to overfitting), with batch size 4, 2 gra-
dient accumulation steps, Adam optimizer with
51 = 0.9, By = 0.999, ¢ =1e-8, and initial learn-
ing rate Se-5. The DialoGPT-large model reached
a perplexity of 2.17 on the CHIRPY validation set
(2.30 for DialoGPT-medium, 2.58 for DialoGPT-
small).

Training predictor To train the predictor (Sec-
tion 6.1), we finetuned the DialoGPT-large-
CHIRPY model for 1 epoch (more led to overfitting)
with the same hardware and hyperparameters as
above (except learning rate 2e-05). The DialoGPT-
large-CHIRPY model reached a MSE of 0.0727
on the NeuralChatTurns validation set (0.0728 for
without CHIRPY pretraining).

D Starter question examples

This section provides examples of starter questions
used in the Neural Chat module’s discussion areas
(Section 2.1). A full list can be found in the open-
source release of CHIRPY.!?

Current and Recent Activities Questions typ-

ically reference the day of the week, then ask a

question depending on the user’s time of day:

* It’s a beautiful Saturday here in the cloud. What
are your plans for the rest of today? (morning)

* [ hope you're having a wonderful Monday. What
did you do today? (evening)

lzhttps ://github.com/stanfordnlp/chirpycardinal
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Future Activities The question depends on the
day of the week and the user’s time of day:
* [t’s the weekend soon! Do you have any plans

for the weekend? (Friday)
* Before I go to bed I like to think about some-

thing I'm looking forward to tomorrow. What
about you, are you doing anything nice tomor-
row? (9pm—2am)

General Activities

* Recently, I've been trying meditation to help me
relax during this stressful time. What do you like
to do to relax?

* [ was reading earlier today that staying busy

helps people stay calm and healthy during stress-
ful times. What do you like to do to keep busy?

Emotions The starter question I hope you don’t
mind me asking, how are you feeling? is preceded
by several possible preambles, that might involve
the bot sharing its own (negative or positive) feel-
ings, and/or a personal anecdote.

» [ wanted to check in with you. I hope [..] feeling?

* [ wanted to say that I'm feeling pretty positive
today! I hope [..] feeling?

o [ wanted to say that I've been feeling kind of
down recently. I've been missing my friends a lot
and finding it hard to focus. I hope |[..] feeling?

Family Members This area is triggered if the

user mentions one of several predefined phrases

referring to family members (e.g. parents, grand-
parents, siblings, cousins, children), friends, or pets.

Questions depend on the type of family member:

* You mentioned your parents. 1'd love to hear
more about them, if you’d like to share. How did
they meet?

* You mentioned your dog. 1I'd love to hear more
about them, if you’d like to share. What kind of
dog do you have?

Living Situation This area is targeted at living

experiences during the COVID-19 pandemic:

* It seems that a lot of people are finding the quar-
antine lonely, and other people can’t get enough
space away from their families or roommates.
What'’s it been like for you?

Food Depending on the user’s time of day, ques-
tions typically ask about a meal that is likely to be
upcoming or recently eaten:

e [t’s breakfast time, my favorite time of day! What

are you having for breakfast today?
* [ hope you’re having a wonderful evening. What

did you have for dinner today?
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Abstract

We collected a corpus of human-human task-
oriented dialogs rich in dissatisfaction and
built a model that used prosodic features to pre-
dict when the user was likely dissatisfied. For
utterances this attained a F o5 score of 0.62,
against a baseline of 0.39. Based on qualita-
tive observations and failure analysis, we dis-
cuss likely ways to improve this result to make
it have practical utility.

1 Motivation

Accurate models of dialog quality are needed for
many purposes, including closed-loop improve-
ment of dialog systems (Walker et al., 2000; Moller
et al., 2008; Lykartsis et al., 2018; Ponnusamy et al.,
2020; Roller et al., 2020; Lin et al., 2020; Deriu
et al., 2021). Spoken dialog includes much infor-
mation that can be used to predict quality judg-
ments, and successful prediction has been shown
for many genres, and in particular in call-center
analytics (Ang et al., 2002; Zweig et al., 2006;
Morrison et al., 2007; Kim, 2008; Vaudable and
Devillers, 2012; Pandharipande and Kopparapu,
2013; Chowdhury et al., 2016; Luque et al., 2017;
Egorow et al., 2017; Irastorza and Torres, 2018; Ab-
hinav et al., 2019; Cabarrao et al., 2019; Li et al.,
2019).

While most work on dialog quality has focused
on the quality of entire interactions, finer-grained
quality estimates are more useful for many pur-
poses. Casual observation suggests that in conver-
sation people are often not shy about indicating,
moment by moment, how they feel about things,
both in terms of making progress towards their goal
and in terms of how happy they are with the con-
tributions and behavior of their interlocutor. To
date, however, predictive modeling of quality at the
level of turns has been rarely attempted, and has
focused mostly on interaction quality and conver-
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sational proficiency, and in only a few dialog gen-
res, both for human-machine and human-human di-
alogs (Ultes and Minker, 2014; Ultes et al., 2017a;
Lykartsis et al., 2018; Bodigutla et al., 2019; Stoy-
anchev et al., 2019; Spirina et al., 2016; Rama-
narayanan et al., 2019; Ando et al., 2020; Katada
et al., 2020). In this work we attempt turn-level
quality estimation in human-human dialogs in a
new genre: short calls to an unknown merchant to
make an appointment or arrange a simple transac-
tion.

This paper presents the first publicly available
corpus of (mock) customer-service calls, describes
observations on how dissatisfaction occurs in con-
versations gone wrong, discusses prosodic and turn-
taking indications, presents a simple model giving
modest performance on the tasks of detecting dis-
satisfaction moment by moment and at the utter-
ance level, and discusses what more is needed.

2 Scenario and Data

Among the many possible contexts in which to
study aspects dialog quality, we chose to exam-
ine what happens when a person is trying to get
something done and expects that it can be easily
accomplished, but finds that it is not possible. We
would have liked to study real commercial dialogs,
where customers or users often have a goal that the
agent or system may be unable or unwilling to sat-
isfy, but there appear to be no datasets in this genre
available for study. We therefore did our own data
collection, with the details chosen to align with the
goals of our sponsor, Google.

In some markets, Google enables users to find
merchants by voice search, leading to the presen-
tation of phone numbers to call. This is especially
useful for illiterate users. Unfortunately, the ecosys-
tem includes bad actors, who purchase adwords to
entice callers, but then do not offer the expected

Proceedings of the 22nd Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 13-20
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service, offer it at an excessive price, or otherwise
disappoint or trick callers. Google would like bet-
ter ways to flag such abusive merchants, ideally
from automatic analysis of behavior in the call it-
self. Unlike most conversations addressed in call
analytics, there is no large reference corpus of good
behavior in the domain, these callers have no pre-
vious relationship with the business, and, conve-
niently for our purposes, many confounds and com-
plexities are reduced (Moller and Ward, 2008) and
the causes of any negative feelings will be largely
dialog-internal.

We accordingly collected a new corpus of tele-
phone calls. Each participant was given rough in-
structions, for example, in the customer role, to call
to arrange to get a flat tire patched for no more than
$10, and, for the merchant, to get the customer’s in-
formation and set an appointment time. In half the
cases the two sets of instructions were aligned, so
that the merchant was able to satisfy the customer’s
need (although often only after an attempt to upsell,
to make things more realistic). In the other half, the
merchant’s instructions included constraints that
precluded satisfying the customer’s need. Thus, for
example, they might be instructed to only make an
appointment if the customer agreed to the $60 tire
care package or accepted an additional $40 rush
fee. Thus these calls were designed to reflect the
behavior of abusive merchants, and to accordingly
elicit the behavior of unsuspecting callers as they
came to realize that they were dealing with a bad
actor.

Wanting a wide sampling of customer-side be-
havior, we recruited participants for that role
through a crowdsourcing site. These participants
were given two to four tasks to accomplish, with
a number to call for each. The base rate was $5
and they were incentivized with a $1 bonus for
each call where they successfully made arrange-
ments with a merchant within budget, but were
told that this would not always be possible. The
merchant-role participants were six trained confed-
erates. The calls were in English, with the con-
federates mostly native speakers of American En-
glish and the customer actors, it turned out, mostly
non-native speakers from European countries, with
Poland and Portugal overrepresented. In total we
collected 191 calls.

Most of the calls were, in our judgment, quite
realistic, with each side trying hard to achieve their
assigned goals. Indeed, some callers were able to
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get our confederates to deviate from instructions
and agree to provide the requested service at the
requested price; conversely, the confederates were
sometimes able to wear down callers into agreeing
to a price that violated their instructions. Exclud-
ing the latter category and other special cases, we
had 52 “doomed” (bad-actor) calls and 62 fully
satisfactory calls.

Calls were recorded in stereo. They were typi-
cally 1 to 4 minutes in length. Full documentation
is available (Avila et al., 2021), and the corpus itself
is freely downloadable (Avila, 2021b).

3 Subjective Observations and
Annotation of Dissatisfaction

Callers in the doomed-to-fail dialogs reacted di-
versely. Often they showed surprise at the first in-
dication that the merchant was not going to behave
according to expectation. Often they attempted
repair, usually by restating their goals, generally
more assertively than the first time. Often they ex-
pressed annoyance or other negative assessment,
although always politely, never with raw emotion.
Occasionally callers engaged in other behaviors, in-
cluding negotiating, pleading, and even displaying
anger. Across these specific behaviors, there was
often an underlying feeling of growing dissatisfac-
tion. Doomed conversations also generally lasted
longer (Miramirkhani et al., 2017) and lacked the
warm and appreciative/grateful closings that were
common in the control dialogs.

While most call analytics systems rely on speech
recognition (Ando et al., 2020), this makes sense
mostly for high quality audio, for languages where
good speech recognizers exist, and for focusing on
how to improve agents’ behavior; none of these are
the case in our sponsor’s scenario. In particular, the
bad actors strive to be indistinguishable from good
actors, so we chose to focus on acoustic-prosodic
features of the caller.

There are two lines of work that we might have
built on: first, work identifying the prosodic corre-
lates of specific dialog acts, including some rele-
vant here (Selting, 1996; Ogden, 2010), but the va-
riety of behaviors across speakers and calls would
make it difficult to leverage this work; and sec-
ond work on the prosodic correlates of emotion,
but the behaviors observed here were more social
and linguistic than visceral or paralinguistic, so we
again decided not to attempt to leverage such find-
ings. Instead, we chose to approach the problem



as one of modeling undifferentiated dissatisfaction.
We hoped that this would be generally, if weakly,
detectable, using the same features across all con-
texts. Although dissatisfaction was often subtle
to the point that we were unsure exactly when it
was present, prosodic models are often able to ex-
ploit indications below conscious awareness, and
we hoped that would also be the case here. Focus-
ing on general dissatisfaction also aligns with our
broader goal of better automatic quality judgments.

We accordingly labeled each utterance with d
for those with indications of dissatisfaction, de-
fined broadly, to include disappointment, annoy-
ance, sadness, disengagement and so on, n for
non-dissatisfied or “neutral” utterances, and ? for
those that were inaudible or otherwise impossi-
ble to classify (Avila et al., 2021). Initially 18
dialogs were annotated, each by four people, and,
for frames within utterance spans labeled by all
four, the Fleiss Kappa was 0.57. The weak agree-
ment, illustrated in the Appendix, seemed to be
mostly due to varying preferences for classifying
borderline utterances as d versus ? or n, rather than
substantive differences in perception. Accordingly
the rest of the corpus was labeled by only one an-
notator, and the results below are reported for these
annotations.

4 Experiment Set-Up

We set ourselves two tasks: 1) Utterance-level pre-
diction: distinguishing dissatisfied utterances from
neutral utterances, and 2) Frame-level prediction:
distinguishing moments within dissatisfied utter-
ances from moments within non-dissatisfied utter-
ances. For both tasks, the input was only those
frames (or utterances) which had been given a d or
n utterance; silent regions and ambiguous regions
were thus excluded.

For the utterance-level and frame-level models,
there are many more negative samples, as there are
fewer dissatisfied dialogs and even in those many
utterances are not dissatisfied. There are many
more neutral utterances, since not all utterances in
the dissatisfied dialogs are dissatisfied. The number
of n and d utterances in the training, dev, and test
sets are 46 and 24, 52 and 23, and 256 and 82. The
average labeled utterance being about 2 seconds
long, for the test set the frame counts were 54543
neutral and 20893 disappointed.

As our primary goal is detecting dissatisfaction,
the baseline is to always predict dissatisfaction, and
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high precision is our primary goal. However recall
also has some importance, so we also report F o5
results.

5 Initial Feature Set

Most research in this area uses utterance-aligned
features, but we wanted to avoid the travails of
defining or performing segmentation, so we simply
computed prosodic features everywhere. Specifi-
cally, we compute features for timepoints sampled
every 10 milliseconds (a 10 ms stride), using fea-
tures that span about 3 seconds on either side of
the point being classified. Much research on par-
alinguistic prosody assumes that affective states
directly affect the prosody in stable ways for a sec-
ond or more, and accordingly uses global averages
or simple functionals, but work on the prosodic
correlates of stance and dialog acts suggests that
here we need the ability to represent temporal con-
figurations of prosodic features (Ward, 2019; Ward
and Jodoin, 2019). Accordingly, we used a fea-
ture set that includes time-offset features which
together tile a local span. Specifically we based
this on a feature inventory included in the Midlevel
Prosodic Features Toolkit (Ward, 2021), mono.fss.
This includes measures of intensity, of pitch height
(high or low), of pitch range (narrow or wide), of
speaking rate (using energy flux as a proxy), and
of creakiness, as this set worked well for detect-
ing various stances (Ward et al., 2018). To this we
added features for the Cepstral Peak Prominence
(Smoothed) (CPPS) across two windows, based on
our observation that breathy voice was saliently
present in many dissatisfied utterances. CPPS is
an effective measure for breathiness in clinical ap-
plications (Heman-Ackah et al., 2003), although
seldom yet used in studies of dialog.

6 Analysis

To understand how each feature was contributing,
we looked at correlations and also histograms, since
the relationships were seldom simply linear. Dis-
satisfied utterances tended to include more silent
or very quiet frames, with neutral utterances richer
in relatively loud frames.

A clearer picture emerges when we examine the
coefficients in the model for the features at specific
temporal offsets, as seen in Figure 1. (The actual
values are available at the companion website:
http://www.cs.utep.edu/nigel/disappointment/.)
Low intensity features over about 3 seconds around
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Figure 1: Features with relatively strong weights in the linear model for predicting the label dissatisfied per frame,

where 0 ms is the start of the frame.

the frame being predicted had positive weights,
with the more distant intensity features having
negative weights; thus intensity that is low relative
to the local context is the informative pattern. Both
the wide pitch and narrow pitch features were
indicative of disappointment, marking departures
from a normal moderate pitch range. This fact
aligns with the literature about the prosodic
constructions used in complaining (Ogden, 2010;
Ward, 2019). Creaky voice was also indicative of
disappointment, which may relate to its reported
role in marking disengagement (Ward, 2019).
So did a couple hundred milliseconds of high
CPPS, contrary to expectation. Low creakiness
and high volume also correlated with a lack
of dissatisfaction, which may reflect a general
tendency for people when pleased to use clear
and “pleasant” voices, with strong periodicity and
harmonicity. In general the prosodic indications
are not local to single syllables or words, but are
present distributed across wider spans.

Seeking further understanding, we listened to
a sampling of successes. Although our simplistic
model could only learn one pattern, that pattern
matched diverse ways of expressing dissatisfaction.
This included a complaint,  think this is still too
much, with narrow pitch on the first words and
stress with high CPPS on the word still, and a quiet,
annoyed no thank you (audio for these examples are
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at http://www.cs.utep.edu/nigel/disappointment/).
Inversely, an example of a successful non-
dissatisfied prediction was for a warm, fairly loud,
slightly harmonic, moderately high-pitched, clos-
ing thank you.

We also listened to a sampling of failures.
Misses included many frames from one dialog
where excessive record gain had caused constant
clipping, and some frames near a loud beep in the
background. Our feature computations are not ro-
bust to such noise. We also examined false alarms.
Many were in frames near regions of silence, such
as at the start of an utterances or in the vicinity
of a disfluent pause, even for pauses that, to our
ears, did not seem perplexed or emphatic. Some
false alarms occurred during the customer’s expla-
nation of their need, for example in the word flat
in my front left tire that is flat because of a nail.
While these did not express dissatisfaction with the
merchant’s behaviors, and so were not annotated as
dissatisfaction, they certainly did express a negative
assessment. While this could suggest tweaking the
annotation guidelines, the more important lesson is
that accurately predicting dissatisfaction requires
modeling the stage of the dialog, not just the local
context.

This analysis suggested that our model has ex-
planatory value and validity, and thus may be likely
to generalize well.



precision recall F o5
baseline 43 1.00 45
model .57 81 .58

Table 1: Frame-level Predictions of Dissatisfaction

precision recall F o5
baseline .38 1.00 .39
model .62 g3 .62

Table 2: Utterance-level Predictions of Dissatisfaction.

7 Revised Feature Set and Models

Based on the above analysis, we augmented the
prosodic feature set with a time-into-dialog feature,
for a total of 91 features. (We also did some small
experiments with alternative feature sets based on
OpenSmile’s eGeMaps configuration (Eyben et al.,
2016), but obtained no benefit.) We continued to
use the simple linear regression model for our ba-
sic task, of predicting dissatisfaction at the frame-
level. (Small experiments with logistic regression
and k-nearest neighbors provided no benefit.) For
utterance-level predictions we simply averaged the
predictions for every frame within the utterance.

8 Results

Tables 1 and 2 show the performance of our frame-
level and utterance-level models, on the test data.
While the choice of threshold ultimately depends
on the use scenario, here for each model we report
performance at the value which maximizes F 5.

For the frame-level detections, the performance
was modest. As an indication of the scope for im-
provement, our model’s agreement with the annota-
tor, in terms of Cohen’s Kappa, was .32, far below
that of our secondary human annotators, whose
agreements ranged from .57 to .71. Nevertheless,
the frame-level model was good enough to sup-
port reasonable performance for the utterance-level
discriminations.

9 Discussion and Future Work

Much previous work seems to assume that model-
ing dialog quality requires sophisticated methods
to infer elusive hidden states. However here, thanks
to a broad set of prosodic features and modeling in
terms of temporal configurations, we obtain promis-
ing results without sophisticated modeling. This
may open the way to a strong, incremental training
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signal useful for rapidly tuning spoken language
chatbots and other dialog systems to better satisfy
their users, after significant future work.

Future work should address the weaknesses
noted above, perhaps in part by adding features to
capture cross-participant behaviors (Gorisch et al.,
2012) and timings. Better models are another pri-
ority topic. To consider the stage of the dialog and
other factors, models that represent wider context
should be tried (Ultes et al., 2017b). To support
such advances, code for our existing, simple mod-
els is freely available (Avila, 2021a).

We also should try these methods on dialogs
from different genres and exhibiting quality issues
of other kinds. We also need to do ablation studies
to better identify the sources of performance and to
evaluate our model in comparison to others. Such
comparisons have been rare in this research area,
due to a lack of shared datasets, but our new cor-
pus will enable other researchers to report directly
comparable results.

Finally, since we see some level of performance
across speakers with different native languages,
we should investigate the possibility of universal,
language-independent detection of dissatisfaction.
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Appendix: Supplementary Materials

Transcript of a doomed dialog. Post-
utterance tags indicate how many annota-
tors marked each for disappointment. The
audio is available at the paper website:

http://www.cs.utep.edu/nigel/disappointment.

2:10 M How can I help you today?

2:12 C Well, I have a Honda Civic and I need to
repair a tire that is flat.

2:22 M Alright, you got a flat? So right now our
shop’s pretty busy and so if you wanted it repaired
today we’re gonna have to add a forty dollars just
for convenience because we’re really booked today
and then it would be a ten dollar tire repair. But,
I could help you out with a deal. I can give you a
bundle and I can waive that convenience fee. So let
me tell you some bundles we have.

2:45 C Alright. d(1)

2:46 M So the first one we have is the Dream Car
bundle. It comes with a car detail, a tire rotation, a
full tire inspection, and the tire repair for only two
hundred ten dollars.

2:57 C Alright, it’s off my budget. d(1)

3:01 M Little bit off your budget? How about the
Premium bundle then? It comes with a car wash, a
tire rotation, and tire repair for a hundred fifty.

3:12 C Alright, it’s very off my budget. d(3) I only
have ten dollars to spend and I only need that tire
fixed. d(2)

3:23 M Okay, well, how ’bout, I could, let me
introduce you to our lowest bundle then. I know
you only have ten and this one’s sixty, but it’s the
Ease of Mind bundle because when you fix the
tire you want to make sure everything else is fine
so we’ll fix the flat and we’ll do a complete tire
inspection and make sure there aren’t any holes
in any of your tires. And you know, I think it’s
the best option really because you get to look at
everything and make sure everything is okay with
your car. It gives you the ease of mind.

3:50 C And it cost, how much?
3:55 M Sixty dollars.

3:56 C Sixty dollars? d(2)
3:58 M Yes.

3:59 C Oh. d(3) I can’t, I really can’t. d(3) Can
you, you can’t fix it for ten dollars? d(1) Can you,
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I need the tire ready tomorrow at 6 PM. d(1)

4:13 M Oh okay, well the best I can do then without
a bundle would just be the fifty dollars with the tire
repair for ten dollars and the convenience fee since
there’s not gonna be a bundle. Is that okay?

4:29 C Can you repeat please?

4:31 M So the only option I can give you then
would be the standard tire repair, but since we
weren’t able to come to an agreement on the bundle
it would still have that forty dollar convenience fee
so it would come out to fifty dollars. Is that okay?

4:45 C So it’s forty dollars? You’re saying?
4:50 M Yes.

4:51 C Yeah, I can’t. d(4) I really can’t, I’'m sorry.
d4)

4:54 M Okay, well I’'m sorry we weren’t able to
help you sir.

4:57 C Yeah, no problem.
4:59 M Alright, well have a good day.
5:02 C You too. Thank you, good bye.
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Abstract

Real-world conversational agents must effec-
tively handle long conversations that span mul-
tiple contexts. Such context can be inter-
spersed with chitchat (dialog turns not directly
related to the task at hand), and potentially
grounded in a multimodal setting. While prior
work focused on the above aspects in isolation,
there is a lack of a unified framework that stud-
ies them together. To overcome this, we pro-
pose DialogStitch, a novel framework to seam-
lessly ‘stitch’ multiple conversations and high-
light these desirable traits in a task-oriented
dialog. After stitching, our dialogs are prov-
ably deeper, contain longer-term dependen-
cies, and span multiple contexts, when com-
pared with the source dialogs— all by leverag-
ing existing human annotations! Though our
framework generalizes to a variety of combi-
nations, we demonstrate its benefits in two set-
tings: (a) multimodal, image-grounded conver-
sations, and, (b) task-oriented dialogs fused
with chit-chat conversations. We benchmark
state-of-the-art dialog models on our datasets
and find accuracy drops of (a) 12% and (b)
45% respectively, indicating the additional
challenges in the stitched dialogs. Our code
and data are publicly available'.

1

Task-oriented dialog agents have become increas-
ingly popular in the recent years due to their ready
deployment to several real-world applications. For
such agents to be effective, they need to carryout
long conversations spanning multiple contexts, in-
terspersed with social chit-chat, and potentially
grounded in multimodal settings.

Introduction

Though prior works propose several datasets and
task formulations to model these desired traits, we

* Joint first authors
T Work done with ZY was visiting Facebook Al
lgithub.com/facebookresearch/
DialogStitch
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Figure 1: DialogStitch combines multiple dialogs

together making them longer, contain longer term
dependencies, and span multiple contexts—desirable
for a task-oriented, multimodal conversational agent—
without any additional annotation cost.

believe that they fall short on two counts. They ei-
ther study these traits in isolation or in a simplified
setting that does not cover the spectrum of require-
ments for real-world applications. The well-known
task-oriented datasets MultiwOZ (Budzianowski
et al., 2020) and Google Schema Guided (Rastogi
et al., 2020) datasets contain only 13.4 and 20.4
turns respectively, on an average. While adequate
for their intended purposes (e.g., find a restaurant
or book a flight), these datasets do not support mod-
eling task-oriented agents that need to go beyond
and handle longer conversations (also argued by
Roller et al. (2020)). For instance, a real world cus-
tomer service task might require conversations that
last for hours, thus requiring more than 20 turns.

As a step to bridge these gaps, we propose Di-
alogStitch, a novel framework that takes existing
dialog dataset and creates dialogs that compara-
tively are longer, contain longer-term dependen-
cies, and span multiple contexts. Unlike existing
works that either combine dialogs using human an-
notators (Smith et al., 2020; Moirangthem and Lee,
2018), our framework imparts these desirable traits
to task-oriented dialogs by using the available hu-
man annotations without collecting any additional
ones and thus free of cost, due to its synthetic

Proceedings of the 22nd Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 21-26
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N &

a U-10: Does it have any red objects?

U-18: If there is a thing in front of the

aforementioned green thing, what is its material?

o I

U-21: There are 6 small objects in the scene.

8 U-22: How many yellow objects in the group?

a

(a) DialogStitch on CLEVR-Dialog.

nature. As shown in Fig. 1, DialogStitch takes
multiple dialogs and interleaves them carefully to
ensure the resultant dialog is coherent, consistent,
and more closely resembles the real-world scenar-
ios. As the cherry on top, DialogStitch allows for
the construction of dialog tasks analogous to the
copying memory task (Hochreiter and Schmidhu-
ber, 1997), a synthetic task to benchmark model ‘s
capability to retain information over many time
steps, i.e., modeling long-term dependencies.

To summarize our contributions:

* We propose DialogStitch, a novel framework to
create task-oriented dialogs that are longer, con-
tain longer-term dependencies, and handle multi-
ple contexts by leveraging existing annotations.

* We show the effectiveness of our approach
in two settings: stitching multimodal (image-
grounded) conversations, and task-oriented with
open-domain conversations.

* We benchmark the state-of-the-art models on our
datasets to serve as baselines for future research.

2 Our Approach

Consider a set of K dialogs {D; }*"¥ where each
dialog Dj consists of n; turns with each turn

J J §J o
T = (uj, s;) containing a user and a system ut-

i
terance respectively. Each dialog can also have a
turn-independent2 multimodal context M, for ex-
ample, an image in which the dialog is grounded.

As shown in Fig. 1, DialogStitch interleaves di-

2Our framework readily extends to turn-dependent multi-

modal context Mf For brevity, we only discuss the simpler
scenario here.

U-1: A green thing is at the extreme left.

U-9: The view has 2 metallic objects.

No

Rubber

1

a U-30: What size is the earlier cylinder? Small
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a | love eating pizza any day of the week. Do you enjoy pizza?

a U-2: If there is a thing in front of it, what size is it? [NIECRE ] Who doesn't love that traditional Italian dish! @&
8 U-3: What about color? Purple a Can you tell me more about Italian's favorite dish?

@ Well, it can be topped with vegetables, meats, and condiments,

and can be made without cheese!

a | am looking for pasquale pizzeria

ar
@ | have found a don pasquale pizzeria located in centre, would
you like that address ?
a a When was the first pizza created?
@ Modern pizza was invented in Naples @
Anyways, getting back to the hotel, | would like the address ,
- a as well as the phone number. And what is the price range for
. dinner there ?
s
R The address is 12 market hill city centre in postcode cb23nj. The -
- phone number is 01223350106 , and it's an expensive

(b) DialogStitch on MultiwOZ 2.2 + WoW

Figure 2: Examples of dialogs generated by DialogStitch, spanning multiple contexts (red, blue, green) for both
our settings (Sec. 3, 4). (a) Images (left) denote contexts in the stitched dialog. Context switch happens with the
introduction of a new context (U-9, U-21) or at a context recaller question that typically refers back to an object in
the scene (U18: aforementioned green thing, U-30: earlier cylinder). Though there could be similar objects (other
cylinders) in other contexts, the object mention is unique and unambiguous in the dialog, making the DialogStitch
output consistent and coherent task-oriented dialogs. (b) Context switch between task-oriented and chit-chat turns.

alogs by inserting turns from one dialog into an-
other. The exact strategy to interleave dialogs is
domain-specific and uses the additional annotations
accompanying the source datasets. However, care
is taken to ensure that: (a) the user and system
utterance in a turn are not separated, though the
turns themselves are interleaved, (b) after stitch-
ing, the ordering among the turns in each dialog is
preserved in the final dialog to avoid inconsisten-
cies, and (c) no ambiguity (e.g., multiple referents
for coreference, values for slots) results from this
process of stitching. Hence the resulting dialog is
meaningful and coherent.

The stitched dialog DS({D;)}*¥) has the fol-
K
lowing properties: (a) it has > n; turns, deeper

than each of the individual soilrée dialogs Dy, (b)
the gap between the turns of any dependency (e.g.,
coreference, slot carryover) in a dialog D; will
only increase on an average since new turns from
other dialogs would separate them further, thus
making the dependencies longer-term, (c) it spans
multiple contexts { M;}'**. Note that there is no
additional human annotation required and all the
above benefits are solely due to our novel frame-
work, and thus free of cost. We demonstrate the
effectiveness of DialogStitch by instantiating it in
two settings: multimodal, image-grounded conver-
sations (Sec. 3), and, task-oriented dialogs fused
with chit-chat conversations (Sec. 4).

3 Stitching Multimodal Dialogs

We showcase the ability of DialogStitch to han-
dle and stitch dialogs with complex multi-round



reasoning spanning across different multimodal
contexts using the CLEVR-Dialog dataset (Kot-
tur et al., 2019). CLEVR-Dialog is a visually-
simple yet reasoning-wise complex visual dialog
(Das et al., 2017) dataset, which contains a series
of related question-answers pairs as dialog turns.
These questions are grounded in an image, set in
the abstract CLEVR world (Johnson et al., 2017),
and is made of spatially arranged objects (with
shape, size, material, color attributes) against a
plain background (see Fig. 2a). By design, dialogs
in CLEVR-Dialog have strong multi-turn depen-
dencies. In addition, these dialogs also come with
complete state annotations like type of question,
objects/attributes of interest, and coreferences, for
each turn. These two reasons make CLEVR-Dialog
a perfect testbed for DialogStitch.

DialogStitch on CLEVR-Dialog. Each dialog
D; in CLEVR-Dialog starts off with a caption
C; that partially describes the image, followed
by 10 question-answer pairs (Q7, A7)0, as illus-
trated in Fig. 1. To align with our framework in
Sec. 2, we treat the caption as the first turn with
an empty assistant utterance 7)) (Cy,0), and
the question-answer pairs as following turns, i.e.,
T = (u, 57) = (@, A))-

To stitch K different dialogs together, we: (a)
identify the recaller questions that can help us re-
call their corresponding multimodal context (im-
age) in the stitched dialog, using the question type
annotations. These questions (with early tag)
typically contain a reference to previously men-
tioned objects in the dialog, for example, ‘What
size is the earlier cylinder?’. Refer (Kottur et al.,
2019) for a full list of question types and tags in
CLEVR-Dialog. (b) breakdown each dialog into
2-3 chunks at randomly selected recaller question
pivots. For each of these chunks, we note all the
objects and attributes mentioned in the dialog so far.
Note that this is possible only due to the available
annotations. (c) starting with the first chunk of a
randomly selected dialog, we select a chunk from
dialogs different from the one previous selected as
a candidate. We then check for stitch compatibility
by ensuring that there is no overlap of objects and
attributes mentioned in both the stitched dialog and
the candidate. If compatible, we append the candi-
date at the end and repeat the process, else discard
and re-select a new one. Note that when selecting
chunks from a dialog, priority is given to the one
that appear earlier. This ensures that the resultant
stitched dialog respects the turn ordering from all
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Model  Source DS (Ours) Table 1: Accuracy
of VisDial-BERT
\\,/]]3381 22; 22(3) on CLEVR-Dialog
VB-QH 458 502 (source), CLEVR-
VB-QIH 682 56.5 Dialog+ (DS).

the source dialogs and is coherent.

Stitched Dataset. CLEVR-Dialog comprises 85k
images x 5 dialogs per image x 10 question-answer
pairs per image = 4.25M question-answer pairs,
split into train (82%) and val (18%). We set
K = 3 and run DialogStitch to obtain CLEVR-
Dialog+. For a fair comparison, we keep the num-
ber of question-answer pairs constant between the
datasets. As a result, CLEVR-Dialog+ contains
142k dialogs x 30 question-answer pairs per dialog
= 4.25M question-answer pairs, split proportion-
ally into train and val. Note that stitching is
performed without cross data contamination, i.e.,
dialogs for train of CLEVR-Dialog+ are sam-
pled from CLEVR-Dialog train, and similarly
for val. CLEVR-Dialog+ dialogs are trivially 3 x
deeper, contain 3x the number of multimodal con-
texts, and most importantly, have longer range de-
pendencies (2x mean coreference distance of 5.6
vs. 3.2), when compared with CLEVR-Dialog.

Experiments and Metrics. To benchmark perfor-
mance on CLEVR-Dialog+, we select the state-of-
the-art visual dialog model, VisDial-BERT (Mura-
hari et al., 2020), and adapt it to our setting. Follow-
ing Kottur et al. (2019), we ablate VisDial-BERT
(VB) to model different valid combinations of the
question (Q), history (H), and image (I) for the
given dialog. We use answer accuracy, similar to
CLEVR-Dialog, to compare the these models. Im-
plementation and adaption details are in supp.

Results. Tab. 1 shows the performance of VB (and
ablations) on both CLEVR-Dialog (source) and
CLEVR-Dialog+ (DS). Key observations are:

* As expected, Q models perform the worst on
both the source and DS datasets, followed by QH
models that are also blind (no access to image).
Surprisingly, the gap between Q and QH mod-
els is larger for DS (10% vs 6.7%) than source,
even though DS has irrelevant turns in its history.
A possible explanation is that since dialogs are
stitched together ensuring there is no overlap of
attributes/objects, it gives away information that
the models are able to leverage.

As DialogStitch reorganizes the dialog history,
history-agnostic models (Q, QI) have similar per-
formances on both source and DS.



Corpus #Turns(Avg) JGA w/o Slot-P/R w/o JGA w/ Slot-P/R w/
MWOZ-2.2 13.4 55.340.1 95.240.2/0.93.840.1 - -
MWOZ—2.2+Dai1yDialog 21.3 53.3i1_0 91.2i0_2 / 87.4i0_4 45.4i2_0 92.0i1_3 /82,1i1_3
MWOZ-2.2 + WoW 22.5 51.3+0.7 91.340.6 / 88.0+0.8 45.741.9 91.8415/82.641.5
MWOZ-2.2 + PersonaChat 28.2 48.341.7 88.341.3/83.241.9 44.441 5 88.241.2/80.941.0
MWOZ-2.2 + WoW + DailyDialog 30.4 38.7+3.1 83.244.0/75.342.9 15.542.5 44.745.6/29.344.7
MWOZ-2.2 + WoW + PersonaChat 37.3 30.6+1.0 T7.74+1.2/69.542.6 224423 69.243.2/63.943.4
Schema 20.4 53.0+0.6 93.840.7/74.440.3 - -

Schema + WoW 29.5 49.841 5 91.240.4 /73.042.2 46.640.1 89.240.3/71.140.9

Table 2: Joint Goal Accuracy (JGA) (%) & Slot-Precision/Recall (%) of various stitched datasets with the Simple-
TOD (Hosseini-Asl et al., 2020) model. We report mean and std-dev across 3 runs. JGA w/ — model trained to
generate both dialog states and chit-chat responses & JGA w/o — only dialog states. With Dialog Stitch, the avg.
dialog-state dependency (turn-id of the utterance corresponding to each dialog-state) increased from 6.33 to 8.97).

Performance improves when models have access
to H and I, confirming importance for the task.
QIH outperforms all other models in both the
cases. However, the lead is only 6.3% for DS
vs 15.5% for source. Further, QIH model on
DS is inferior to that of source by a huge 11.7%
points. This shows the additional challenges in
the stitched dialog that are deeper, have longer
dependencies, and span multiple contexts.

4 Stitching Open-Domain Dialogs

Being socially engaging is a desirable trait for
task-orientated dialog agent as it facilitates a wider
adoption in everyday applications. To achieve this,
agents must additionally handle chit-chit about so-
cial topics. We emulate these scenarios to syntheti-
cally stitch task-oriented and open-domain dialogs.

Datasets. We adopt the ParlAl framework (Miller
et al., 2017) as a testbed for DialogStitch, since it
grants a unified access to a vast repository of both
open-domain and task-oriented dialog datasets.
Though DialogStitch is easily extendable to all
these datasets within ParlAl, we consider the fol-
lowing datasets (see supp. for dataset statistics):

* Task-Oriented: MultiWOZ 2.2 (Zang et al.,
2020) and Schema Guided (Rastogi et al., 2020)

* Open-Dialog: Wizard Of Wikipedia (WoW) (Di-
nan et al., 2019), PersonaChat (Zhang et al.,
2018), and DailyDialog (Li et al., 2017)

Stitched Datasets. Similar to multimodal Stitched
datasets described in Sec. 3, we divide the dialogs
into multiple chunks (2-5) at randomly selected
pivot turns and take the following precautions while
fusing them into a single conversation.

The context switch at the pivot turns is always
initiated by the user utterance.

For coherency, we use conversational cues to
indicate a context-switch turn (e.g., ‘getting back
to the restaurant booking’) from task-oriented to
open-domain, and vice-versa.

Additionally, we re-sample a pivot if the open-
domain assistant turn preceding asks a question.
This avoids dialogs where the user changes con-
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text instead of responding to the question asked
by the assistant, thus improving naturalness.

To generate longer conversations and multiple con-
texts, we can configure DialogStitch to stitch a
task-oriented dialog with multiple open-domain di-
alogs within the same conversation.

Human Evaluation. To evaluate the quality, we
compare 50 stitched dialogs with corresponding
human stitched dialogs (where human annotators
manually stitch the task-oriented and a chit-chat di-
alog chosen from three options). Overall, humans
found our stitched dialogs to be 54% coherent and
66% natural compared to the human stitched di-
alogs (74% coherence, 72% naturalness). This in-
dicates that our stitched dialogs trade coherence
and naturalness reasonably with annotation cost.

Experiments and Metrics. We benchmark the
stitched datasets using the SimpleTOD model
(Hosseini-Asl et al., 2020). to generate the dialog
states (SlotType-SlotValue, e.g., Cuisine-Italian,
Time-5pm) and the next utterance given the conver-
sation history. We track dialog states using Slot-
precision & recall (Slot-P/R) and joint goal accu-
racy (JGA). JGA computes the percentage of the
turns in which the model correctly predicts all the
dialog states corresponding to that turn. Following
(Hosseini-Asl et al., 2020), we truncate the dialog
history to 1024 tokens. See supp. for more details.

Observations. We observe that the JGA consis-
tently drops with increasing dialog length (Tab. 2).
For instance, JGA drops from 55.3% to 30.6%
when fused with WoW and PersonaChat datasets.
It drops further when the model is also tasked to
engage in open-domain dialogs. When trained to
additionally generate responses for a dialog context,
JGA drops from 53.3% to 45.4% (DailyDialog).

Conclusion. DialogStitch generates dialogs that
are longer, involve multiple contexts, and contain
longer term dependencies compared to prior work.
Performance of state-of-the-art models drops when
benchmarked on our datasets, thus suggesting a
need to better model multiple-contexts and longer-



term dependencies. We hope it stimulates research
in designing architectures and training techniques
adept at deep conversations amid the dearth of
crowd-sourced datasets with longer contexts.

A Implementation Details

Multimodal Dialogs. Our DialogStitch is imple-
mented entirely in Python, without any other sig-
nificant package dependencies. To train Visdial-
BERT (Murahari et al., 2020), we use the provided
open source implementation® built on PyTorch
(Paszke et al., 2019). Visdial-BERT uses bottom-
up, top-down (BUTD) image features (Anderson
et al., 2018) for images. We use publicly avail-
able BUTD features* for CLEVR images, thanks
to (Shrestha et al., 2019). Similar to (Kottur et al.,
2019), we set aside a subset (500 images) of the
train and use it to pick the best performing mod-
els via early stopping. We follow the steps below
to adapt Visdial-BERT to CLEVR-Dialog+:

VisDial-BERT augments the question at a par-
ticular turn with image features and dialog his-
tory, and then concatenates with ground-truth
answer to predict a binary positive class for the
alignment. Negative instances are selected by
randomly pairing the question + image + dialog
history with other answers in a given batch of
training. In our work, we replace this binary
classifier and replace it with a N 4-way classifier
head, where N4 = 29 is the size of the output
answer space for CLEVR-Dialog.

Since CLEVR-Dialog contains templated lan-
guage, the weight for the masked language pre-
diction loss is reduced by 50% each epoch.

Due to the longer nature of CLEVR-Dialog+, a
small percent of the dialogs ( 1%) were longer
than 512 tokens. In these cases, we simply re-
move an equal number of tokens from the start of
the dialog to clip the total length to 512 tokens.

Rest of the hyperparameters are kept similar to

(Murahari et al., 2020). We perform all our experi-
ments on 8§ NVIDIA Tesla V100 GPUs.

B Further Details: Stitching Open
Dialogs

Model Details. SimpleTOD (Hosseini-Asl et al.,
2020) builds a dialog model by fine-tuning GPT2
(Radford et al., 2019), a large pre-trained language

*https://github.com/vmurahari3/
visdial-bert
*nttps://github.com/erobic/ramen
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Corpus Dialogs #turns Turns(Avg.)  Domain/Topics
MultiwOZ-2.2 10,420 71,410 13.4 7
Schema 22,825 463,284 20.4 17
DailyDialog 13,118 103,632 79 10
WoW 21,343 193,217 9.1 1,247

PersonaChat 10,907 162,064 14.8 1,155

Table 3: Statistics for the datasets used in this work.

model. It combines dialog history, previous dialog
states and user utterance into a single sequence as
input and let the language model learn to generate
a sequence, containing dialog states and system
response.

Experimental Setup. We perform all our
experiments using a single NVIDIA P100 16GB
GPU. We train with a batch-size of 8 with a
learning rate of le — 4, adam optimizer with
hyper-parameters in (Radford et al., 2019) and
set the training time to 6000 secs with validation
performed every epoch. Following (Hosseini-Asl
et al., 2020), we truncate in the input and output
sequences to 1024.

Human Evaluation Setup We compiled a
list of 60 stitching tasks where the annotator
manually stitches a task-oriented (MultiwOZ
2.2) and chit-chat (Wizard of Wikipedia). The
annotators could either start the conversation with
either a task-oriented or chit-chat turn but need to
exhaust all turns while maintaining order of the
turns. In the second part of the experiment, the
human stitched dialogs and our stitched dialogs
were compared by three independent annotators
with respect to naturalness and coherency.

Approach to Retrieving Relevant Open-
Domain Dialogs. Certain open-domain dialogs
like WoW and PersonaChat are annotated with
the topic of the conversation. We also have the
option in DialogStitch to only fuse open-domain
dialogs with topics relevant to the task-oriented
domain. See supp. for details. We curate a set of
relevant keywords (e.g., italian cuisine) related to
the task-oriented dialog domain (e.g., restaurant)
and use them filter the open-domain dialog based
on overlapping keywords and topics. In our human
evaluation experiment where human annotators
picked the relevant dialog based on the technique
mentioned above 55% (random 33%) times when
presented with four chit-chat dialogs to blend
with the task-oriented dialog. We leave the task
exploring more techniques of finding in-domain
open-dialog conversations from a given dataset to
the future work.
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Abstract

There is increasing interest in modeling style
choices in dialog, for example for enabling di-
alog systems to adapt to their users. It is com-
monly assumed that each user has his or her
own stable characteristics, but for interaction
style the truth of this assumption has not been
well examined. I investigated using a vector-
space model of interaction styles, derived from
the Switchboard corpus of telephone conver-
sations and a broad set of prosodic-behavior
features. While most individuals exhibited in-
teraction style tendencies, these were gener-
ally far from stable, with a predictive model
based on individual tendencies outperforming a
speaker-independent model by only 3.6%. The
tendencies were somewhat stronger for some
speakers, including generally males, and for
some dimensions of variation.

1 Introduction

To create dialog systems that are able to work very
well for any user will require modeling and adapt-
ing to individual interaction styles (Eskenazi and
Zhao, 2020; Marge et al., submitted, 2021). For
example, Metcalf et al. (2019) demonstrated a Siri
extension to detect which users are more talkative
and then provide them information in a more chatty
style. Sociolinguists, going back to Tannen (1980),
have identified other ways in which people vary in
interaction styles, such as focus on content vs inter-
personal involvement, and domineering vs meek,
among many others.

A general assumption, implicitly underlying
much work across the broad area of user modeling
and adaptation, is that that each user has consistent
behavior tendencies. But how true is this for inter-
action styles? While variation and adaptation have
been studied for many specific components — in-
cluding utterance selection, lexical choice, speech
synthesis, paralinguistic and turn-based prosody,
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and language generation (Eskenazi, 1993; Wang
et al., 2018; Cao et al., 2020; Niu and Bansal, 2018;
Hu et al., 2018; Cheng et al., 2019; Chaves and
Gerosa, 2020) — the overall question seems not
yet to have been examined. Thus this paper ad-
dresses, the questions of whether individual inter-
action styles exist and how much they explain. I
also examine gender differences in style and adap-
tation, and other related questions.

2 Data

Work on individual differences in dialog has been
limited, mostly using data sets with only a few
dozen participants, and mostly considering only
tightly structured dialogs, mostly task-oriented, but
more speakers and more variety can lead to more
general models. Most work has been limited to text
or transcripts, but spoken data can be more infor-
mative. For these reasons I chose to use the Switch-
board corpus of American English telephone con-
versations (Godfrey et al., 1992). Interaction styles
are not instantaneous, but nor are they constant
over long times, so I chose 30-second fragments as
the unit of analysis. This seemed appropriate for a
first study, and well-suited to Switchboard, where
the topic, tone, and style often shift from minute
to minute. Leaving some conversations for future
validation work, I used a set of 33022 fragments,
including 335 speakers.

3 Markers of Interaction Style

There are many possible choices for markers of
interaction style. Like much previous work, I
wanted to include prosodic features and features
of turn-taking behavior (Grothendieck et al., 2011;
Laskowski, 2014, 2016; Levitan, 2020), in part
because being densely present, unlike word fre-
quencies, they make analysis easier. However,
wanting to consider more information, I created
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1 13% both participants engaged
2 11% focal speaker mostly talking
3 8% positive assessment
4 5% focal speaker more dominant
5 5% factual
6 4% envisioning positive change
7 3% leading up to some larger point
8 3% unfussed

lack of shared engagement

focal speaker listening actively
negative feelings

nonfocal speaker more dominant

asking questions or speculating

accepting things beyond individual control
making contrasts

emphatic

Table 1: Functions of the Top 8 Dimensions. The second column is the amounts of variance explained by each
dimension, in terms of the 84 prosodic behavior frequency features.

a more inclusive set to track various prosodic be-
havior frequencies, including those relating to a
wide range of dialog states, activities, and events,
including many of those often considered most im-
portant in human interaction (Couper-Kuhlen and
Selting, 2018), such as the extent and timing of turn
holding, turn-taking, filler use and backchannel-
ing; topic opening, development, and closing; bids
for empathy; making positive and negative assess-
ments; marking contrast; and so on. The specific
features were based on a prosodic constructions
model (Ward, 2019), in part because this enabled
the use of a tool for automatic feature computation,
including proper speaker and track normalization
(Ward, 2021).

The feature computation starts by computing the
quality of the match between each prosodic con-
struction’s prototypical configuration and the actual
behavior of the interactants, every 20 milliseconds
across each conversation fragment. Next, for each
fragment, it computes the frequencies of occur-
rence for seven match-quality bins. For example,
the fraction of timepoints at which the Enthusi-
astic Overlap Construction is strongly matching
indicates the frequency of strong engagement, the
fraction where it is weakly present indicates the fre-
quency of mild engagement, and the fraction where
there is no evidence for it indicates the prevalence
of lack of engagement. Together these bin frequen-
cies represent the extent to which the speakers are
engaged in various interaction routines and the ex-
tent to which the dialog tends to dwell in certain
states. With 12 prosodic configurations and 7 bins
each, this gave 84 features per fragment.

4 The Space and the Dimensions

Given these 84 features, each fragment can be
represented as a point in a 84-dimensional vector
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space. While hopeful that this space corresponds
well with the perceptual space of interaction styles,
for lack of previous work on perceptions of styles,
I can here only present indirect evidence.

For current purposes, the most desirable property
of this space is for fragments perceived closer in
style to be closer in this space. Spot checking a few
of the pairs that were closest in this space confirmed
that each pair was indeed very similar in style.

Another desirable property is interpretability.
Here, following Biber (2004), I choose to apply
Principal Component Analysis to the data, expect-
ing that the resulting dimension would be mean-
ingful, thereby providing further evidence for the
relevance of this space. Full discussion of the mean-
ings of these dimensions will appear in another
publication, but, in short, the top 8 dimensions in-
deed turned out to be meaningful, as revealed by
good correlations with topics, lexical frequencies,
and LIWC word categories frequencies. Table 1
summarizes. I illustrate the correlations seen by
discussing Dimensions 3 and 6, chosen because
there will later be interesting things to say about
them.

One pole of Dimension 3 relates to a negative
stance, with clear lexical tendencies: for example
gang, gangs, convicted, stole, offense, and disagree
all occurring over 3 times more commonly in these
fragments. Topics in fragments near this pole were
overwhelmingly things the speakers were not happy
about, such as income tax, lawn problems, the futil-
ity of overseas aid, and time flying by. Prosodically,
there is an overall lack of normal turn taking, with
frequent long silences often serving to mark how
breathtakingly inappropriate something was, for
example the mathematical ignorance of junior col-
lege students, and frequent overlaps, often wryly
sympathetic laughter. This style is also rich in the
prosody of topic continuation and topic develop-



dimension distance
predictor 1 2 3 4 5 6 7 8
speaker’s average style 5.8% 4.0% 17.0% 25% 53% 8.0% 05% 2.7% 3.57%
gender average style 0.6% 00% 06% 00% 12% 0.1% 0.1% 0.4% 0.21%
age-range average style 0.1% 0.1% 03% 03% 00% 00% 04% 0.0% 0.06%

Table 2: Average prediction error reductions for various models: reductions per-dimension in mean squared error
and reductions overall in Euclidean distance, all relative to always predicting the global average style.

ment, often used when piling up evidence for an
opinion, for example about a politician. Conversely
the other pole relates to a positive stance.

For Dimension 6, one pole involves a style of ac-
cepting things beyond individual control. This can
involve situations like living in a small town where
the big touring bands never come, or a new cor-
porate promotion policy, or the prevalence of gun-
safety carelessness in the population. The prosodic
tendencies are complex, but the most salient is the
frequent occurrence of fairly lengthy silences. The
lexical tendencies are also diverse, but relatively
common words include nope, uncomfortable, and
weeds. Conversely the other pole exhibits topic
continuation prosody and a general lack of turn-
taking, and relates to envisioning positive change.

Working in a reduced dimensionality space has
numerous advantages, so for the analysis below I
focused on just the top 8 dimensions. Checking
the relationship between perceptual similarity and
proximity in this simplified space, again by examin-
ing the closest pairs; again these were perceptually
similar, and this was true in diverse regions of the
space, for example, for reminiscing about child-
hood situations that were annoying at the time but
now seem nostalgic, with the interlocutor support-
ively showing empathy based on similar experi-
ences; for jumping right in to address the assigned
topic with a near monologue, with the interlocutor
just occasionally chiming in with agreement; and
for explaining political or commercial policies that
the interlocutor is also familiar with and views in
the same way.

5 Measure and Models

Adaptive dialog systems need to predict what in-
teraction style will be most appropriate for an up-
coming dialog. Using speaker information should
enable more accurate predictions, if indeed inter-
action styles are stable properties of individuals
(Weise and Levitan, 2020). The vector space rep-
resentation of styles enables us to measure the dis-
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tance between any two interaction styles, and in
particular, between a predicted style and the ob-
served style. This can serve as a metric for the
evaluation of predictive models of interaction style.
Specifically, I use the mean squared difference for
each dimension, and also the Euclidean distance
across dimensions. While I report distance results
below using only the top 8 dimensions, with all 84
the results were very similar.

The baseline model is to predict the global aver-
age style for every fragment. The model exploiting
individual information predicts the interaction style
as the average of the interaction styles in other frag-
ments with one of the participants, excluding frag-
ments from the same dialog. The models were eval-
uated using only fragments for which the 33022-
fragment subset included at least 20 others by the
same speaker in different conversations, that is, at
least 10 minutes of reference data for independent
estimation of the individual’s style. There were
31931 such fragments.

6 Results

The first row of Table 2 shows the reductions in pre-
diction error obtained using the individual models,
compared to the global-average baseline. Overall,
knowing the speaker identity reduces the average
prediction error by only 3.6%, a surprisingly mod-
est amount.

However, predictability varied across speakers.
Some were highly predictable: at one extreme, one
speaker’s mean distance for predictions was only
50% of the average (she consistently took a passive
listening role); at the other extreme, one speaker’s
mean distance was over 4 times the average. Over-
all, speaker-specific knowledge enabled better pre-
dictions for 78% of the speakers.

Table 2 also shows the per-dimension prediction
error reductions. The largest are 17% for Dimen-
sion 3, suggesting that for the negative vs positive
dimension individuals tend to be relatively con-
sistent, and 8% for Dimension 6, the resigned vs



progress-oriented dimension. Reductions for the
other dimensions were all relatively low.

Digressing slightly, as entrainment in general
takes time (Wynn and Borrie, 2020), one might
expect that fragments taken from later into the calls
would be closer to the participants’ “true” styles,
as they come to discover, reveal, relax into, and
compromise towards their preferred styles. I there-
fore hypothesized that the styles of later fragments
would be more predictable, but this turned out not
to be the case.

7 Demographic Differences

The remaining rows of Table 2 show the results
when predicting using two other types of knowl-
edge: the speaker’s gender and their age range,
above or below 38 years old, the mean for this cor-
pus. Men and women are known to often differ
significantly in interaction styles (Tannen, 1990),
but here predictions based on gender are only about
0.2% better than generic predictions, and the age-
class predictions show even less benefit. Thus,
the variation within these subpopulations is hugely
greater than the variation between them.

Since women are often said to take more of the
burden of adapting to their interlocutor, I hypoth-
esized that women would generally exhibit more
style variation than men. The average prediction
error reduction obtained by using the individual
models for women was 2.1% and for men 6.1%,
so the women did indeed diverge more from their
average styles.

Although the subpopulation means had little pre-
dictive power, it is interesting to consider what the
per-dimension tendencies suggest. I examined four
splits of the 33022 fragments: by gender, by age
group, by order of joining the call, and by time
into the call. Statistically, fragments with women
participating tend to more engaged, negative, and
factual styles (Dimensions 1, 3, and 5, effect sizes
.16, .16, and .22 standard deviations, respectively).
Fragments with the older speakers tend to be more
negative, and the older speakers tend to a more
dominating style (Dimensions 3 and 4, .13 and .10).
Fragments later in the conversation, specifically
those occurring after 4 minutes in, tend to be more
negative (.14). The speaker who joined the con-
versation first tended slightly to talk more and to
dominate (Dimensions 2 and 4, .04 and .05), which
makes sense, as they were instructed by the robot
operator to ‘“Please think about the topic while I
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locate another caller” (Godfrey et al., 1992), which
sometimes took several minutes. All of these dif-
ferences are statistically significant (p < 0.0005,
two-sided, unmatched-pairs, t-tests with Bonfer-
roni correction).

8 Discussion

While there was evidence that most individuals
have their own interaction styles, these explained
little, reducing the error of style predictions by
only 3.6%. This implies that the styles are not very
stable: that individuals vary greatly in style. Even
if we could somehow create systems as good as the
participants in this corpus at adapting their style
to their interlocutor, they would generally perform
only 3.6% better than systems that did not bother.

While this result came as a suprise to me, it is
not really hard to understand; in real life we know
that how people talk varies with the situation, topic,
interlocutor, time of day, and other factors. This
suggests that future research on interaction style
adaptation for spoken dialog systems should priori-
tize adaptation to factors such as the topic, situation,
and dialog activity type, rather than adaptation to
the user.

Other surprises include the finding that gender
explains very little of the variation in interaction
styles, and the finding that the most stable aspect of
interaction style is the extent to which the speaker
tends to a positive or negative stance.

These findings and interpretations are tentative.
Future work should examine the generality of this
finding, with more features, various fragment sizes,
more powerful models, and larger and more di-
verse data, including text-only dialogs. Future work
should also examine not only behaviors but also
preferences: although people in these conversations
exhibited a variety of styles, perhaps, as users, peo-
ple would prefer dialog systems that consistently
use a fixed, individually-congenial interaction style.
Examining this might further lead to a detailed un-
derstanding of preferences, leading ultimately to
individualized mappings from system behavior to
satisfaction properties (Yang et al., 2012). Finally,
future work should include empirical explorations
of human perception of the space of interaction
styles.

To support such work, the code for the
investigations so far is available at https://
github.com/nigelgward/istyles.



9 Acknowledgments

I thank Aaron M. Alarcon for feature extraction
code for a preliminary investigation, and Jonathan
E. Avila, Olac Fuentes, and David Novick for dis-
cussion.

References

Douglas Biber. 2004. Conversation text types: A multi-
dimensional analysis. In Le poids des mots: Pro-
ceedings of the 7th International Conference on the
Statistical Analysis of Textual Data, pages 15-34.
Presses Universitaires de Louvain.

Yixin Cao, Ruihao Shui, Liangming Pan, Min-Yen Kan,
Zhiyuan Liu, and Tat-Seng Chua. 2020. Expertise
style transfer: A new task towards better communi-
cation between experts and laymen. In Association
for Computational Linguistics, 58th Annual Meeting,
pages 1061-1071.

Ana Paula Chaves and Marco Aurelio Gerosa. 2020.
How should my chatbot interact? A survey on social
characteristics in human—chatbot interaction design.
International Journal of Human—Computer Interac-

tion, 37:729-758.

Hao Cheng, Hao Fang, and Mari Ostendorf. 2019. A dy-
namic speaker model for conversational interactions.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-

tional Linguistics: Human Language Technologies,
pages 2772-2785.

Elizabeth Couper-Kuhlen and Margret Selting. 2018. In-
teractional Linguistics. Cambridge University Press.

Maxine Eskenazi. 1993. Trends in speaking styles re-
search. In Eurospeech, pages 501-509.

Maxine Eskenazi and Tiancheng Zhao. 2020. Report
from the NSF future directions workshop: Toward
user-oriented agents: Research directions and chal-
lenges. arXiv preprint arXiv:2006.06026.

John J. Godfrey, Edward C. Holliman, and Jane Mc-
Daniel. 1992. Switchboard: Telephone speech cor-
pus for research and development. In Proceedings of
ICASSP, pages 517-520.

John Grothendieck, Allen L. Gorin, and Nash M. Borges.
2011. Social correlates of turn-taking style. Com-
puter Speech and Language, 25:789-801.

Zhichao Hu, Jean E. Fox Tree, and Marilyn Walker.
2018. Modeling linguistic and personality adaptation
for natural language generation. In Proceedings of
the 19th annual SIGdial meeting on discourse and
dialogue, pages 20-31.

Kornel Laskowski. 2014. On the conversant-specificity
of stochastic turn-taking models. In Fifteenth Annual
Conference of the International Speech Communica-
tion Association, pages 2026-2030.

31

Kornel Laskowski. 2016. A framework for the auto-
matic inference of stochastic turn-taking styles. In
Proceedings of the 17th Annual Meeting of the Spe-
cial Interest Group on Discourse and Dialogue, pages
202-211.

Rivka Levitan. 2020. Developing an integrated model
of speech entrainment. In IJCAI, pages 5159 — 5163.

Matthew Marge, Carol Espy-Wilson, Nigel G. Ward,
et al. submitted, 2021. Spoken language interaction
with robots: Research issues and recommendations.
Computer Speech and Language.

Katherine Metcalf, Barry-John Theobald, Garrett Wein-
berg, Robert Lee, Ing-Marie Jonsson, Russ Webb,
and Nicholas Apostoloff. 2019. Mirroring to build
trust in digital assistants. Interspeech.

Tong Niu and Mohit Bansal. 2018. Polite dialogue
generation without parallel data. Transactions of the
Association for Computational Linguistics, 6:373—
389.

Deborah Tannen. 1980. The parameters of conversa-
tional style. In 18th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 39—40.

Deborah Tannen. 1990. You Just Don’t Understand:
Men and women in conversation. William Morrow.

Yuxuan Wang, Daisy Stanton, Yu Zhang, RJ Skerry-
Ryan, Eric Battenberg, Joel Shor, Ying Xiao, Fei
Ren, Ye Jia, and Rif A. Saurous. 2018. Style tokens:
Unsupervised style modeling, control and transfer in
end-to-end speech synthesis. In International Con-
ference on Machine Learning.

Nigel G. Ward. 2019. Prosodic Pattterns in English
Conversation. Cambridge University Press.

Nigel G. Ward. 2021. Midlevel prosodic fea-
tures toolkit (2016-2021). https://github.com/nigelg
ward/midlevel.

Andreas Weise and Rivka Levitan. 2020. Decoupling
entrainment from consistency using deep neural net-
works. ArXiv preprint arXiv:2011.01860.

Camille J. Wynn and Stephanie A Borrie. 2020. Classi-
fying conversational entrainment of speech behavior:
An updated framework and review. PsyArXiv.

Zhaojun Yang, Gina-Anne Levow, and Helen Meng.
2012. Predicting user satisfaction in spoken dia-
log system evaluation with collaborative filtering.
IEEE Journal of Selected Topics in Signal Processing,
6:971-981.



Evaluation of In-Person Counseling Strategies To Develop Physical
Activity Chatbot for Women

Kai-Hui Liang Patrick Lange Yoo Jung Oh
Columbia University University of California, Davis University of California, Davis
kaihui.liang @columbia.edu pllange @ucdavis.edu yjeoh@ucdavis.edu
Jingwen Zhang Yoshimi Fukuoka Zhou Yu
University of California, Davis  University of California, Columbia University
jwzzhang @ucdavis.edu San Francisco zy2461 @columbia.edu

Yoshimi.Fukuoka@ucsf.edu

Abstract

Artificial intelligence chatbots are the van-
guard in technology-based intervention to
change people’s behavior. To develop inter-
vention chatbots, the first step is to understand
natural language conversation strategies in hu-
man conversation. This work introduces an in-
tervention conversation dataset collected from
a real-world physical activity intervention pro-
gram for women. We designed comprehen-
sive annotation schemes in four dimensions
(domain, strategy, social exchange, and task-
focused exchange) and annotated a subset of
dialogs. We built a strategy classifier with con-
text information to detect strategies from both
trainers and participants based on the annota-
tion. To understand how human intervention
induces effective behavior changes, we ana-
lyzed the relationships between the interven-
tion strategies and the participants’ changes
in the barrier and social support for physical
activity. We also analyzed how participant’s
baseline weight correlates to the amount of oc-
currence of the corresponding strategy. This
work lays the foundation for developing a per-
sonalized physical activity intervention bot. !

1 Introduction

Physical inactivity is a leading risk factor for pre-
mature death from noncommunicable diseases such
as heart disease, stroke, and type 2 diabetes (Soci-
ety, 2013; Murphy et al., 2013). Despite the known
benefits of physical activity (PA) in reducing mor-
bidity and mortality (Samitz et al., 2011; Wen
et al., 2011), physical inactivity is common among
Americans. About 80% of American adults do not
meet the guidelines for both aerobic and muscle-
strengthening activities (Clarke et al., 2019). Com-
mon reasons women are more likely than men to

'"The dataset and code are available at
https://github.com/KaihuilLiang/

physical-activity-counseling
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not meeting physical activity guidelines include
lack of motivation, lack of social support, lack of
time in exercising, etc. Effective interventions that
can help women overcome these barriers and en-
gage in more regular activity are needed to reduce
multiple health risks.

Physical activity intervention programs have
evolved with emerging digital and communication
technologies (Vandelanotte et al., 2016; Case et al.,
2015; Mateo et al., 2015; Zhang et al., 2016, 2015,
2017). Recently, effective technology-based in-
terventions have been published. For example, a
pilot randomized clinical trial (RCT) of a mobile
app-based online group intervention for African
American young women (Zhang and Jemmott III,
2019) showed the online tracking and social sup-
port increased objectively measured daily physical
activity in comparison to a control condition where
participants only used the Fitbit for self-monitoring.
Another RCT tested the use of a mobile app in con-
junction with brief in-person counseling and found
the combination increased objectively measured
physical activity over three months compared to a
control condition in which participants only used
accelerometers (Fukuoka et al., 2011, 2019).

These interventions lack the capacity to tailor
the intervention messages to accommodate differ-
ent individuals’ needs and circumstances and au-
tomate such personalized messages through mo-
bile technologies. Artificial intelligence (AI)-based
chatbots are the vanguard in technology-based in-
terventions, and they can deliver intervention mes-
sages and tailor contents to meet individual needs
through natural conversations with no spatial or
time restraints.

The first step to develop physical activity inter-
vention chatbots is to learn natural language conver-
sation strategies from human-human conversations
in physical activity intervention domains. Specif-
ically, it is vital to understand how participants’

Proceedings of the 22nd Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 32-44
July 29-31, 2021. ©2021 Association for Computational Linguistics



and trainers’ conversation strategies influence the
outcomes and how trainers could adapt to different
physical activity statuses, socio-demographics, and
conversation behaviors to achieve better results.

In this research, we aim to address this question
by analyzing a real-world intervention conversation
dataset collected as a part of an effective physical
activity intervention program for women (Fukuoka
et al., 2011, 2019). Unlike the commonly used
role-play dialog datasets, our dataset consists of
actual dialogs between research staff (trainer) and
study participants. We developed a comprehen-
sive annotation scheme based on how the origi-
nal intervention was organized to extract both so-
cial and persuasive conversational strategies. Then
we manually annotated a set of 17 conversations
with 7,808 sentences. After achieving high inter-
rater reliability levels, we developed a BERT-based
classifier to detect the whole unannotated dataset’s
strategy. Lastly, we analyzed which and to what
extent specific conversational strategies decrease
physical activity barriers and increase social sup-
port among the intervention participants from the
first visit (baseline) to the 3-month visit.

The following research questions guide our anal-
ysis: RQ1: Does using more barrier strategies by
trainers and participants in the intervention session
decrease participants’ physical activity-related bar-
riers? RQ2: Does using more support strategies by
trainers and participants in the intervention session
increase participants’ physical activity-related so-
cial support? RQ3: Do participants with a heavier
weight at baseline use more weight strategies in the
intervention session than participants with lighter
weight?

This work’s main contribution is that we cre-
ated a real-world human-human intervention dialog
dataset that can be used to build physical activity
promotion dialog systems. We also developed and
designed a set of comprehensive four dimension an-
notation schemes that can be leveraged to behavior-
change dialogs. Lastly, our analysis revealed how
trainers’ and participants’ usage of conversational
strategies influence the outcome and how a physi-
cal activity intervention chatbot could better adapt
to participants’ individual needs.

2 Related Work

Applying Al chatbots to lifestyle modification pro-
grams (e.g., physical activity and diet promotion)
has great potential to provide cost-effective, sus-
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tainable, and broadly applicable solutions and is
anticipated to benefit health across application do-
mains (Laranjo et al., 2018; Zhang et al., 2020).
Previous studies that developed and tested the ef-
ficacy of chatbot-delivered physical activity and
diet interventions have demonstrated the potential
of using chatbots as a practical solution to pro-
mote positive behavior changes (Casas et al., 2018;
Kramer et al., 2020; Mabher et al., 2020; Piao et al.,
2020; Stephens et al., 2019). Among these studies,
some have demonstrated how theory-driven inter-
vention strategies combined with Al chatbot tech-
nologies can effectively yield behavioral changes
(Kramer et al., 2020; Piao et al., 2020; Stephens
et al., 2019). It was also shown that a chatbot could
provide richer intervention when combined with
behavior monitoring technology, such as mobile or
wearable tracking tools that enable real-time moni-
toring of user activity (Kramer et al., 2020; Kiinzler
et al., 2019).

Such developments in physical activity and diet
change promotion chatbots have contributed to our
understanding of the feasibility and effectiveness
of chatbot-delivered interventions. To this extent,
the existing studies using chatbots for interventions
mainly focused on examining the effectiveness of
chatbot-delivered strategies (e.g., intervention mes-
sages) on physical activity and diet outcomes. Al-
though users’ conversational inputs can be valuable
to successful interventions, previous studies lacked
discussion of how users’ conversational inputs dur-
ing the interventions, such as their reflections of
behaviors and environments, may have affected the
outcomes (Kocielnik et al., 2018). Hence, a quan-
titative analysis of user responses to the chatbot’s
messages is necessary to better grasp the bot and
users’ conversational patterns and how they lead to
positive outcomes.

In this study, we investigate the effects of barrier
and support strategies used by the trainer and partic-
ipants during a 3-month physical activity interven-
tion program and on the intervention outcomes (i.e.,
changes in participants’ physical activity-related
barriers and social support). In addition, we ex-
plore whether participants’ baseline weight (i.e.,
one’s weight before the intervention) would influ-
ence the amount of weight-related strategies they
mentioned in the conversations.



3 Dataset

This paper used the data collected from the mobile
phone-based physical activity education program
(mPED) study in community-dwelling women
aged 25 to 69. The study protocol was approved by
the University of California, San Francisco, Com-
mittee on Human Research, and the mPED Data
and Safety Monitoring Board. Detailed descrip-
tions of the study design and outcomes have been
previously published (Fukuoka et al., 2011, 2019).
In brief, the mPED trial was an unblinded, paral-
lel randomized clinical trial (RCT) conducted with
three groups (control, regular, and plus groups).
In this study, we used the data from the interven-
tion groups (regular and plus groups) who received
the identical physical activity intervention, con-
sisting of brief in-person counseling sessions, an
accelerometer, and the mPED trial app for the first
three months.

At the baseline visit, research staff collected
participants’ sociodemographic information (e.g.,
age, education, marital status, employment, and
racial/ethnicity), assessed participants’ weight, and
administered the Barriers to Being Physically Ac-
tive Quiz and the Social Support and Exercise Sur-
vey. The Barriers to Being Physically Active Quiz
developed by the Centers for Disease Control and
Prevention (CDC) (Sallis et al., 1987) is a 21-item
measure assessing the following barriers to physi-
cal activity: 1) lack of time, 2) social influence, 3)
lack of energy, 4) lack of willpower, 5) fear of in-
jury, 6) lack of skill, and 7) lack of resources (e.g.,
recreational facilities, exercise equipment). Each
domain contains three items, with a total score
range of 0 to 63, with higher scores indicating more
barriers. Respondents rate the degree of activity in-
terference on a 4-point scale, ranging from 0="very
unlikely” to 3 = “very likely.” The Social Sup-
port and Exercise Survey was used to assess both
friend and family social support related to phys-
ical activity during the past three months (Sallis
et al., 1987). The measure consists of two sub-
scales (friend and family support subscales). Each
subscale has 13 items with 5-point Likert scales
(ranging from 1="none” to 5="very often”). The
ratings of all 13 items were summed for a subtotal
score. Scores can range from 13 to 65, with higher
scores indicating more support.

Women who met eligibility criteria (A.1) and
were randomized to the intervention groups re-
ceived brief in-person physical activity counseling
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by trained research staff. All counseling sessions
were digitally recorded. The average length of
the counseling was 28.8 (SD 6.6) minutes. We
randomly selected 107 sessions and had the audio
recordings transcribed verbatim by a professional
transcriptionist. On average, the trainers and par-
ticipants spoke 213.91 and 209.63 turns respec-
tively per session. The average sentence length and
the average words per sentence from the trainers
(397.07 sentences and 10.02 words/sentence) are
longer than the participants’ (277.67 sentences and
5.99 words/sentence). This is understandable as the
trainers were supposed to deliver physical activity
educational content during the counseling.

After three months, the Barriers to Being Physi-
cally Active Quiz and the Social Support and Ex-
ercise Survey were administered again to assess
the changes (from 3 months to baseline) in these
measures. Among the 107 transcribed dialogs, two
dialogs were dropped due to missing survey re-
sults, 17 dialogs (7,808 sentences) were randomly
picked for annotation, and the remaining 88 di-
alogs (63,288 sentences) were used for classifier
pretraining and data analysis.

Since releasing the original interview data is not
approved by our IRB and HIPPA, we created and re-
leased 44 simulated dialogs (772 sentences) based
on the original interview data for our community to
use. (More statistics are listed in Appendix A.3).

4 Annotation Scheme

After the data collection, we developed an annota-
tion scheme to categorize different conversational
behaviors used by trainers and participants sys-
tematically. The annotation scheme largely con-
sisted of intervention-related categories and gen-
eral conversational categories. Intervention-related
categories included domain categories which were
used to segment larger stretches of the conversa-
tions by topic. In addition, categories pertaining
to specific strategies used during the intervention
were included. For general conversational cat-
egories, we included social exchange and task-
focused exchange categories that were borrowed
from the Roter Method of Interaction Process
Analysis (Roter, 1991). Based on our annotation
scheme, we annotated the in-person counseling ses-
sions on a per-sentence level (sentences have been
obtained using NLTK’s PunktSentenceTokenizer)
across four different dimensions: domain, strategy,
social exchange, and task-focused exchange. A



Utterance Domain | Strategy Strategy | Social Task-
1 2 Exchange | Focused
T: So again your long-term goal, you’ll reach ten thousand | Goal Goal None None Give-
steps at week seven and to maintain it from there. Genlnfo
P: Okay. Goal None None Agree None
T: So how confident do you feel that you can meet your long- | Goal Self- Goal None Ask-
term each week? efficacy Opinion
P: [ feel confident. Goal Self- None None Give-
efficacy Opinion
T: Okay, great. Goal None None Agree None
T: So to break it down a little bit more for you, ten minutes | Goal Monitoring | None None Give-
brisk walking is gonna give you about a thousand to twelve Genlnfo
hundred steps.
P: Okay. Goal None None Agree None
T: So, think about brisk walking as a pace where you can still | Goal Monitoring | None None Give-
carry a conversation, but you can’t sing. Genlnfo
T: And then make sure you walk for at least ten to fifteen | Goal Monitoring | None None Give-
minutes each time. Genlnfo
T: And the reason for that is that’s going to give you the most | Benefit | Monitoring | Benefit None Give-
health benefits of physical activity when you do it. GenlInfo
P: Yeah. Benefit | None None Agree None
T: And some of the health benefits of physical activity, re- | Benefit | Benefit None None Give-
gardless of your BMI, are decreased risk of breast and colon Genlnfo
cancer, coronary heart disease, high blood pressure, diabetes,
stress, depressive symptoms, 0Steoporosis.
T: And then increased energy level, emotional wellbeing, self- | Benefit | Benefit None None Give-
confidence, body image, and weight management, okay? Genlnfo
P: Okay. Benefit | None None Agree None
T: So which benefits of physical activity are the most impor- | Benefit | Benefit None None Ask-
tant to you? PerInfo
P: To me it’s a decreased risk of breast and colon cancer: Benefit | Benefit None None Give-
PerlInfo
T: Mm-hmm (affirmative), great. Benefit | None None Agree None
T: All right, so a lot of women who have been inactive identify | Barrier | Barrier None None Give-
different barriers to physical activity, some of which are like Genlnfo
lack of time, lack of social support, family obligations, maybe
their neighborhood isn’t great for walking.
T: Lack of resources, maybe they feel like they can only really | Barrier | Barrier None None Give-
workout in a gym, and they don’t have the money. Genlnfo
P: Yeah. Barrier | None None Agree None
T: So tell me about some of the barriers that have been for | Barrier | Barrier None None Ask-
you. PerlInfo
P: Lack of support, yeah, I used to have a couple of walking | Barrier | Barrier Support | None Give-
partners who are not there anymore. PerlInfo

Table 1: Example dialog snippet with the four dimension annotations. (T: trainer, P: participant)

sample dialog snippet with annotations is shown in
Table 1. Descriptions for the four dimensions and
the included categories are as follows:

Domain was used to segment larger stretches
(i.e., modules) of the conversations by topic. There-
fore, it was coded based on the large conversational
segment’s overall topic, not each sentence’s content.
The domain categories were mainly derived from
the agenda of the counseling session. In total, 14
domain categories were used in the study: Introduc-
tion category covers the beginning of the conver-
sations, Guideline category covered conversations
that refer to the physical activity guidelines for
Americans, Benefit category covered conversations
addressing the health benefits of physical activity,
Goal category was related to setting short-term and
long-term goals, Monitoring category pertained to
conversations on self-monitoring and adherence,
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Motivation category was related to talking about
staying motivated to being active, Barrier category
was about identifying and overcoming barriers to
being active, Relapse category pertained to talking
about relapse and prevention, Safety category ad-
dressed safety of physical activity, Diet category
addressed healthy diet, Weight category denoted
weight loss and maintenance, and Off-Task cate-
gory covered sustained conversations that do not
fall into any of the above domain categories.

Strategy refers to the intention of the sentence.
Categories for strategy dimension largely over-
lapped with categories in the domain categories
except for that Introduction category was omitted,
and None category was used instead of an Off-
Task category (i.e., sentences without strategy were
coded into the None category). Although the cate-
gories of the strategy and domain dimensions were



Strategy Example (Trainer) Example (Participant)

Guideline The guidelines recommend that adults get a mini- I didn’t realize that I was supposed to be getting that
mum of 150 minutes, or 2.5 hours, of moderate to  much.
vigorous exercise per week.

Benefit Some benefits that’ll help you and everyone regard- — Weight maintenance, the body image, and definitely the
less of their BMI or age or anything like is you have  decrease in diabetes, stress, high blood pressure
decreased risk of breast and colon cancer, coro-
nary heart disease, high blood pressure diabetes,
stress, depressive symptoms, 0steoporosis.

Goal Each week, we want you to increase your daily step I would love it to be even more than that, but I think [
count goal by 20%. should put my goal as to start with thirty minutes.

Monitoring  How realistic is for you to get out of the house — Sometimes I know it’s hard, umm, so usually I'm off on
every now and then and go do ten, twelve-minute ~ Wednesdays and Fridays, so I can walk him three times
bouts, or half an hour about, whatever you need?  a day.

Support Even just talking to the people around you about I have friends and stuff that I work with that we, we
your goals is a fantastic first step, but it can also  always talk about because we all have our little things
help to get them directly involved. and our little agendas, and always comparing notes,

and, you know, just saying, ”Oh, what are you doing,”
or, you know, "How’s this?”

Self-efficacy  If you stick to each short-term goal, I think you’ll — I'm pretty sure I can do that.
be surprised by just how capable you really are.

Motivation It sounds like you might be able to stay more moti-  So umm, I have a couple of workouts that I can do at
vated if you shake up your routine a little bit. home if I decide I don’t wanna drive out to the gym and

then there’s a new gym thing that’s a couple of blocks
down that I can try.

Barrier Has it been any easier lately to fit some physical I mean, I said my worst thing is sometimes if I feel
activity into your schedule? like I'm too busy or work is doing something over my

schedule, umm, it gets a little tough.

Relapse What is causing you to relapse into old habits? So I'was just like, this is not definitely something I can

keep up with right now.

Safety It’s very important to keep safety in mind while — Yeah, I try not to do that because, you know, you just
being physically active. make yourself a easy target.

Diet It’s important to choose breakfast foods that fill — Well I've been actually the last two weeks, three weeks,
you up and give you long-lasting energy. or maybe it’s probably when I started here, I'm with

Diets-To-Go, so I'm getting that...the low carb.

Weight So today we want to talk about healthy weight — So according to my scale, of course, you know, there

management.

was Super Bowl Sunday on Sunday, so that probably
messed everything up, I did lose some pounds.

Table 2: Example sentences of the strategy annotation scheme.

very similar as they were both intervention-related,
the strategies were annotated based on the specific
sentence instead of the overall stretches, revealing
which intervention strategies are used in the sen-
tence. The strategies may or may not overlap with
the domain. For example, the sentence “Which ben-
efits of physical activity are the most important to
you?” is annotated with Benefit for both domain
and strategy, while “How confident do you feel that
you can meet your long-term goals each week?”
belongs to the Goal domain but has the strategy
of Self-efficacy. Considering in a few cases one
sentence might belong to multiple strategies, we
annotated up to two strategies (as strategyl and
strategy?) for each sentence. The order of the la-
beled categories was based on their relevance to
the utterance. Example sentences for each strategy
category are presented in Table 2.

Social exchange covered personal remarks and
social conversations. Greeting and Goodbye cat-
egories covered statements formal greetings and
goodbyes. Approve/Encourage covered positive
responses such as compliments, encouragements,
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gratitude, and respect. Disapprove/Discourage cov-
ered negative responses such as discouragement,
criticism, and denial. Agree category pertained
to showing agreement or understanding. Incom-
plete category was used only for grammatically
incomplete utterances. Sentences without a social
exchange were coded as ‘None’.

Task-focused exchange covered utterances ask-
ing for and providing information relevant to the
task. Orient category covered introductory state-
ments about the intervention. Ask-Genlnfo and
Give-Genlnfo categories covered utterances ask-
ing and providing non-personal information. On
the other hand, Ask-PerInfo and Give-PerInfo per-
tained to utterances that ask and provide personal
information. Ask-Opinion and Give-Opinion cate-
gories included utterances asking for and providing
one’s subjective thoughts and feelings. Other cate-
gories included Ask-Repeat category for sentences
requesting repetition of a previous utterance and
Check-Understanding category for sentences con-
firming information that was just said has been un-
derstood. Sentences without task-focused content



Domain Strategy

Barrier 2,177 1 2
Support 1,450 None 4,790 6,901
Off-task 1,120 Motivation 593 152
Motivation 791 Support 542 39
Goal 639 Monitoring 374 236
Safety 439 Barrier 328 54
Benefit 346 Safety 280 11
Weight 316 Diet 174 53
Diet 185 Goal 169 71
Introduction 133 Benefit 160 12
Guideline 0 Self-efficacy 99 28
Relapse 0 Weight 72 25
Monitoring 0 Relapse 15 14
Self-efficacy 0 Guideline 0 0

(a) Domain (b) Strategy

Task Focused
None 3,702
Social Exchange Give-Genlnfo 2,014
None 5,219 Give-PerInfo 1,059
Agree 1,830 Ask-PerInfo 451
Incomplete 350 Give-Opinion 119
Approve 107 Orient 95
/Encourage Ask-GenlInfo 56
Disapprove Ask-Repeat 49
/Di 90
iscourage Check-
. 39
. Understanding
(c) Social exchange Ask-Opinion 12

(d) Task-Focused

Table 3: Annotation statistics: number of sentences annotated for the four dimensions: domain, strategy, social

exchange and task-focused exchange.

were coded as None.

Two coders with expertise in the field annotated
17 unique in-person counseling dialogs (7,808 sen-
tences in total). Class distributions for each dimen-
sion are shown in Table 3. For domain dimension,
barrier and support had the highest occurrence. For
strategy, motivation is the leading one, followed
by support, monitoring, and barrier. Note that a
large number of sentences did not contain any strat-
egy. As for social exchange, the amount of agree
was much higher than the others. For task-focused,
most sentences were related to information-giving,
especially general information (Give-Genlnfo) and
personal information Give-PerlInfo.

We computed Cohen’s kappa on three double
annotated in-person counseling dialogs (1,332 sen-
tences in total) for each dimension to measure inter-
rater reliability. We reach a kappa value of 0.96
for Domain, 0.76 for strategy one, 0.50 for Strat-
egy two, 0.75 for Social Exchange, and 0.80 for
Task-Focused dimensions.

5 Strategy Classifier

To built a dialog system capable of delivering phys-
ical activity interventions, it was first necessary
to understand patterns in human-delivered inter-
vention counseling sessions. Since the strategy di-
mension is intervention-related and represents each
sentence’s intention, in this study, we focused on
examining how the strategy dimension influenced
people’s physical activity-related barriers and so-
cial support. Therefore, we built a BERT-based
strategy classifier to leverage a large number of
unannotated dialogs.

We started with the BERT-based model pre-
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trained on Wikipedia. We fine-tuned the model
with 63,288 unannotated utterances from the physi-
cal activity counseling sessions before training on
the classification task. We then trained a single-
label prediction model with the 17 annotated coun-
seling sessions (7,808 sentences in total) using
leave-one-out cross-validation, where each training
unit was composed of one session.

Contextual information is crucial in dialog act
predictions (Yu and Yu, 2019). Hence, we con-
sidered the previous ten sentences as the dialog
history. As an input to the model, we appended the
history to the current sentence and used a special
separate token to separate them. Table 3 shows the
dataset is highly imbalanced, so we balanced the
training data by randomly oversampling minority
classes and undersampling majority classes. After
balancing, each class had equal distribution and the
size of the training set doubled. The model used
12 layers with 12 attention heads and a hidden size
of 768. The fully connected layers used a dropout
rate of 0.1. After training, the model reached an
accuracy of 0.83 and a macro average F1 score of
0.70.

We then plotted the confusion matrix in Fig-
ure 1 to analyze the results. We found that the
main error came from the misclassification of Re-
lapse. Relapse was sometimes classified as Motiva-
tion mostly because people talked about recovering
from relapse or staying motivated without giving
up. For example, “I was doing yoga and Pilates
and needed to pick that up.” mentions activities
that motivate the participant to recover from relapse.
Another error was that Motivation was sometimes
mistaken as None due to the diverse activities train-
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Figure 1: Confusion matrix of the strategy classifica-
tion.

ers mentioned to motivate the participants.

We used the model to classify all the 88 unanno-
tated dialogs with 63,288 sentences. The statistics
are shown in Table 4. The distribution was simi-
lar to the annotation, where Motivation remained
the most frequent strategy, followed by Support,
Monitoring, Safety and Barrier.

#. Sentences

Strategy + Prg'&:;gi(:an ¢ Trainer Participant
None 45,079 23,391 21,688
Motivation 4,012 2,824 1,188
Support 3,753 2,766 987
Monitoring 3,341 2,677 664
Safety 2,049 1,785 264
Barrier 1,966 1,075 891
Diet 1,337 1,136 201
Benefit 1,158 775 383
Goal 1,113 1,003 110
Weight 520 368 152
Self-efficacy 498 200 298
Relapse 46 29 17

Table 4: Strategy classification statistics of the classi-
fied 88 dialogs (63,288 sentences).

6 Results

We conducted Pearson’s correlation analysis to as-
sess the relationship between the amount of barrier
and support strategies and the changes in their cor-
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responding survey scores. We also performed mul-
tiple linear regression analysis to see the strategy’s
effect after controlling for social-demographic fac-
tors and baseline survey scores (Aickin, 2009).

The results are shown in Table 5. We anticipated
that the effect of the amount of strategies used from
trainers would differ from participant, therefore we
first computed each side’s correlation separately.
Then, the combined effect of trainers and partic-
ipants was investigated. Lastly, we conducted a
similar analysis to examine whether participants
with heavier weight (measured at their baseline
visit) used more weight strategies.

Barrier survey

Changes in barrier survey (3 month - baseline)

40 baseline
. Q1
QL =2
-5 ® 0z
30 ® -
5 10 15 0 %

Sentences with barrier strategy

Figure 2: Relationship between the amount of sen-
tences with barrier strategies spoken by the trainer and
the participants’ changes in barrier survey (3 month -
baseline)

6.1 Does using more barrier strategies
decrease participants’ physical activity
related barriers? (RQ1)

As shown in Table 5, the number of barrier strate-
gies used by the trainer did not have a significant
effect on the changes in participants’ barrier sur-
vey. However, the multiple regression analysis
(R? = .38,F(8,79) = 5.98,p < .001) showed
that participants with a higher barrier score at the
baseline visit overcame more barriers after three
months (8 = —0.57,p < .001), and the result
remains significant after the Bonferroni multiple
tests correction (p < .001). This is understand-
able because people starting with higher barrier
scores have more room for improvement, and the
intervention effectively identifies and reduces their



Dependent Independent Trainer + Participant Trainer Participant
Variable Variable Pearson’s Multple Pearson’s Multple Pearson’s Multple
r Coeff. r Coeff. r Coeff.
Changes in #. Barrier strategy 0.28%#* 0.29%* 0.19 0.40 0.27%%* 0.34*
barrier survey Barrier survey baseline - -0.57%%% - -0.58%*%F | - -0.56%%%
Changes in support| #. Support strategy 0.17 -0.06 0.06 -0.11 0.23* -0.08
from friend survey | Support from friend survey baseline | - -0.28%%* - -0.19% - -0.28%%*
. #. Support strategy -0.16 -0.08 -0.18 -0.11 0.10 -0.17
ggf:?:;lilllys:lﬂg;;t Support from family survey baseline | - -0.19* - -0.19% - -0.18*
Marriage (married) - 3.57* - 3.68* - 2.33
Ethnicity (multi-race, Black and | - -4.84* - -4.95% - -6.59*
Hispanic)
#. Weight strategy | Weight baseline 0.13 0.012 0.00 0.00 0.21* 0.01

Table 5: Results of Pearson’s correlation analysis and multiple linear regression analysis. The coefficients are
calculated for different sets of dependent variables and independent variables. The “Trainer + Participant” column
counts the corresponding amount of strategy from both speakers, where the “Trainer” and “Participant” columns
counts the strategy from the trainer and participant respectively. Note that only the independent variables with
significant coefficient or of main interest are shown. Please find full results in Table 6. (x : p < .05;%¥;p <

.01; % % %; p < .001).

barriers. Moreover, there was significant inter-
action between the amount of barrier strategies
used by trainers and barrier survey baseline score
(F'(9,78) = 6.46). To investigate the interaction
between them, we divided data points into four
groups by the quartile values of barrier survey base-
line value, where (01 being the lowest quartile and
()3 the highest. As shown in Figure 2, people in
the group with the highest barrier baseline score
overcame more barriers when the trainer used more
barrier strategies, while the rest of the groups had
the opposite trends. This indicates that trainers’
usage of barrier strategy is beneficial for the people
starting with a high barrier. Therefore, a future
chatbot should discuss more barriers only to those
with a very high barrier baseline. It is not recom-
mended to do so to the rest to avoid adverse effects.

The results also showed a higher number of bar-
rier strategies from the participants significantly
predicted fewer decreases in barrier survey score
(r = 0.27,p < 0.01). The multiple regression
analysis (R? = .38, F(8,79) = 6.16,p < .001)
showed similar results (8 = 0.34,p = 0.032).
This was interesting since the more the participants
talked about their barriers, they were less likely
to overcome their barriers in the end. This could
mean that talking about barriers may not necessar-
ily help them overcome them. Rather, turning the
conversation to more future-directed, action-based
suggestions may be more beneficial. Thus, for fu-
ture chatbot development, if a participant tends
to talk too much about barriers, the bot should
stop discussing barriers to avoid negative effects.
We also found that the participants with a higher
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barrier score at baseline visit overcame more bar-
riers after three months (6 = —0.56,p < .001
adjusted with Bonferroni correction). As discussed
above, this may be due to the fact that they had
more room for improvement. However, there was
no significant interaction between the amount of
barrier strategy and barrier survey baseline score
(F(9,78) = 6.18, p = n.s.). The effect of the bar-
rier strategy from the combination of both trainer
and participant showed similar results to the partic-
ipants only.

6.2 Does using more support strategies
increase participants’ physical
activity-related social support? (RQ2)

To evaluate the participant’s social support changes,
we surveyed their support from friends and family
separately. As presented in Table 5, the changes
in support from friends were positively correlated
to the amount of support strategy from the partic-
ipants (r = 0.23,p < 0.5). This means that the
more the participants talked about social support,
the more they gained social support from friends at
the end. This suggests that a future chatbot should
encourage participants to talk more about social
support to achieve better outcomes. However, the
effect was not significant accounting for other fac-
tors in the multiple regression model.

The changes in support from family were not
significantly correlated to the amount of support
strategy regardless of the speaker. However, the
analysis of overall utterances (trainer + participant)
showed that women who were married gained more
social support from family (8 = 3.57,p < .05).



This suggests that a future chatbot should dis-
cuss social support from family targeting this spe-
cific demographic (i.e., married women) to gain
effective outcomes. The result also showed that
people belonging to multi-race, black, and His-
panic ethnicities gained less support from family
(8 = —4.84,p < .05). There was no interaction
effect found between ethnicity and the amount of
support strategy.

Overall, participants who had lower support
from friend at baseline gained more support at the
end (6 = —0.28,p < .001 (trainer+ participant),
68 = —0.19, p < .05 (trainer), 8 = —0.28,p <
.001 (participant)). The results of support from
family showed a similar trend (6 = —0.19,p < .05
(trainer + participant), 5 = —0.19, p < .05
(trainer), 8 = —0.18, p < .05 (participant), while
the correlation were not as high as the ones from
support from friend. The increase in family support
was not as high as from friends might be because
people cannot change their family members, but
there are more friends available to seek help. The
intervention was beneficial for participants who
lacked social support to gain support from friends
and family. This suggests that a future chatbot
should discuss more about social support with par-
ticipants who lack social support the most, espe-
cially those who lack support from friends. There
was no significant interaction between the amount
of barrier strategy and barrier survey baseline score.

6.3 Do participants with heavier weight use
more weight strategies? (RQ3)

Table 5 demonstrates that the higher the partici-
pant’s baseline weight, the more the weight strategy
was used by participants (r = 0.21, p = .05). This
could be because participants with heavier weight
might have had more concerns about their weight
management. Thus, a future chatbot could provide
more weight-related strategies towards participants
with heavier weight and see if this positively affects
the physical activity outcomes. Unfortunately, this
effect was not significant after the adjustment in
the multiple regression analysis.

7 Conclusions and Future Work

In this work, we presented the foundation work on
building an automatic physical activity interven-
tion chatbot. A human-human physical activity
intervention dialog dataset was created from a real
intervention setting. We also designed a set of com-
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prehensive annotation schemes and annotated the
dataset at the sentence level. A strategy classifier
with context embedding was shown to achieves
good results on intervention strategy detection.

The analyses showed that the amount of barrier
and support strategies used in the intervention were
correlated with the changes in the corresponding
score, and the effects differed based on participants’
baseline score and socio-demographic. We also
found that people with a heavier weight at the be-
ginning tend to talk more about weight. Given
the analysis result, we provided suggestions on de-
signing a behavior-change intervention chatbot that
could adapt to different individuals to yield better
outcomes.

This project lays the ground for the next step,
which is to build a physical activity intervention
chatbot that can effectively choose appropriate
strategies based on user profiles and survey base-
line result information to increase the intervention’s
effectiveness. In addition, although the main focus
of this study was to investigate the association be-
tween intervention strategies and physical activity
outcomes, social exchange and task-focused cate-
gories would also provide useful insights for iden-
tifying more effective conversational patterns in
future studies. For example, social-exchange cate-
gories provide information on patients’ acceptance
towards strategies used by healthcare providers.
Task-focused categories inform the exchange of
information and opinions. By combining social ex-
change and task-focused categories with strategy in-
formation, we will be able to provide richer content
and context to our interpretation of the conversa-
tion. Since the findings in our study are exploratory,
we will also confirm the multiple hypotheses in the
following study as pre-hoc hypotheses.
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A Appendix
A.1 Participant Eligibility Criteria

Eligibility criteria for inclusion in the study were:
female sex, age from 25 to 65 years, body mass
index (BMI; calculated as weight in kilograms di-
vided by height in meters squared) of 18.5 to 43.0,
physically inactive at work and/or during leisure
time based on the Stanford Brief Activity Survey
(Taylor-Piliae et al., 2006), intent to be physically
active, access to a home telephone or mobile phone,
ability to speak and read English, no medical con-
ditions or physical problems that required special
attention in an exercise program, no current par-
ticipation in other lifestyle modification programs,
and no mild cognitive impairment as determined
by the Mini-Cog test (Borson et al., 2000).

A.2 Multiple Linear Regression Analysis
Results

Please find the full multiple linear regression anal-

ysis results in Table 6.

A.3 Simulated Dialog Statistics

The annotation distributions of the simulated di-
alogs are demonstrated in Table 7.
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Dependent Independent Trainer + Participant Trainer Participant

Variable Variable Pearson’s  Multple | Pearson’s Multple | Pearson’s  Multple
r Coeff. r Coeff. r Coeff.
#. Barrier strategy 0.28%* 0.29%* 0.19 0.40 0.27%* 0.34*
Barrier survey baseline - -0.57%%% - -0.58%%* - -0.56%%*
Age - -0.17 - -0.17 - -0.15
Changes in Education (college/graduate) - 1.33 - 1.63 - 1.55
barrier survey Ethnicity (AP) - 1.00 - 0.66 - 1.10
Ethnicity (MBH) - -4.31 - -3.98 - -3.80
Marriage (married) - 0.26 - -0.13 - 0.08
Employment (employed) - 2.02 - 2.49 - 2.68
#. Support strategy 0.17 -0.06 0.06 -0.11 0.23* -0.08
Support from friend survey - -0.287%#* - -0.19%* - -0.28%#*
. baseline
Changes in Age : 0.02 - 0.01 : 0.03

support from

friend survey Education (college/graduate) - -1.05 - -2.85 - -1.09
Ethnicity (AP) - -0.19 - -2.09 - -0.21
Ethnicity (MBH) - -1.27 - -4.95 - -1.38
Marriage (married) - -1.05 - 3.68 - -1.02
Employment (employed) - 1.40 - 2.33 - 1.25
#. Support strategy -0.16 -0.08 -0.18 -0.11 0.10 -0.17
Support from family survey - -0.19% - -0.19% - -0.18*
Changes in basel‘ine -
support from Marr.la'ge (married) - 3.57* - 3.68* - 2.33
family survey Ethnicity (AP) - -2.09 - -2.09 - -1.87
Ethnicity (MBH) - -4.84* - -4.95* - -6.59*
Age - 0.01 - 0.01 - 0.00
Education (college/graduate) - -2.85 - -2.85 - -3.64
Employment (employed) - 2.33 - 2.33 - 3.40
Weight baseline 0.13 0.012 0.00 0.00 0.21* 0.01
Age - 0.00 - -0.01 - 0.01
. Education (college/graduate) - 0.08 - 0.02 - 0.07
ft‘rva‘t':;gyht Ethnicity (AP) : 039 - 041 : 20.80
Ethnicity (MBH) - 1.82 - 0.50 - 1.32
Marriage (married) - 0.30 - -0.28 - 0.58
Employment (employed) - -0.59 - -0.12 - -0.47

Table 6: Results of Pearson’s correlation analysis and multiple linear regression analysis. The coefficients are
calculated for different sets of dependent variables and independent variables. The “Trainer + Participant” column
counts the corresponding amount of strategy from both speakers, where the “Trainer” and “Participant” columns
counts the strategy from the trainer and participant respectively. (x: p < 0.05, *x: p < 0.01 and * * *: p < 0.001)
Ethnicity (AP): Asian and Pacific islander; Ethnicity (MBH): multi-race, Black and Hispanic.

Domain
Barrier 31 Strategy
S ¢ 43 None 301 Task Focused
Olil’gt);)srk 0 Motivation 68 Social Exchange None 264
Mo tiV;a tion 37 Support 32 None 4639 Give-GenlInfo 163
Monitoring 108 Agree 151 Give-PerInfo 168
Goal 63 .
Barrier 74 Incomplete 0 Ask-PerInfo 45
Safety 42 . .
Safety 17 Approve Give-Opinion 60
Benefit 29 . 87 .
Weight 61 Diet 21 /Epcourage Orient 37
. Goal 51 Disapprove Ask-GenlInfo 12
Diet 43 . 20
. Benefit 22 /Discourage Ask-Repeat 7
Introduction 148 .
o Self-efficacy 29 Greeting 50 Check-
Guideline 111 . . 1
Weight 23 Goodbye 1 Understanding
Relapse 63 -
S Relapse 9 . Ask-Opinion 15
Monitoring 60 Guideline 17 (c) Social exchange
Self-efficacy 41 (d) Task Focused

(a) Domain (b) Strategy

Table 7: Annotation statistics of the simulated dialog: number of sentences annotated for the four dimensions:
domain, strategy, social exchange and task focused.
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Abstract

While named entity recognition (NER) from
speech has been around as long as NER from
written text has, the accuracy of NER from
speech has generally been much lower than
that of NER from text. The rise in popularity
of spoken dialog systems such as Siri or Alexa
highlights the need for more accurate NER
from speech because NER is a core component
for understanding what users said in dialogs.
Deployed spoken dialog systems receive user
input in the form of automatic speech recog-
nition (ASR) transcripts, and simply applying
NER model trained on written text to ASR
transcripts often leads to low accuracy because
compared to written text, ASR transcripts lack
important cues such as punctuation and capi-
talization. Besides, errors in ASR transcripts
also make NER from speech challenging. We
propose two models that exploit dialog con-
text and speech pattern clues to extract named
entities more accurately from open-domain di-
alogs in spoken dialog systems. Our results
show the benefit of modeling dialog context
and speech patterns in two settings: a stan-
dard setting with random partition of data and
a more realistic but also more difficult setting
where many named entities encountered dur-
ing deployment are unseen during training.

1 Introduction

Named entity recognition (NER) is the task of ex-
tracting proper names of people, locations, and
so on from text or speech (Grishman and Sund-
heim, 1996). There has been a lot of work on
NER from written text with many systems achiev-
ing impressive results (Devlin et al., 2019; Akbik
et al., 2019). Although, NER from speech has
been around for the same time as NER from text
(starting with work by Kubala et al. (1998)), ac-
curacy of NER from speech still lags behind the
accuracy of NER from text. The rise in popular-
ity of spoken dialog systems such as Siri or Alexa
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highlights the need for more accurate NER from
speech because NER is a core component for un-
derstanding what users said in dialogs. In spoken
dialog systems, humans interact with the systems
using natural speech to accomplish certain tasks
(task-oriented dialog) or just to be entertained (chit-
chat or open-domain dialog) (Jurafsky and Martin,
2009). These systems require speech transcripts as
input in real-time and the transcripts are obtained
using automatic speech recognition (ASR) compo-
nents (Turmo et al., 2009).

Much previous work on NER from speech data,
such as broadcast news, applied text-based NER
systems to the output of an ASR system (Palmer
and Ostendorf, 2001). However, NER perfor-
mance degraded significantly (20 points drop in
F1 score) when applying a NER trained on written
data to transcribed speech (Kubala et al., 1998).
This could be because applying text-based NER
system to ASR output ignores the differences in
styles and conventions in written and spoken lan-
guage (Palmer and Ostendorf, 2001). For exam-
ple, spoken utterances in spontaneous speech are
usually much shorter than written prose so the ut-
terances could be ambiguous when taken out of
context. In addition, speech also contains disflu-
encies, repetitions, restarts and corrections (Turmo
et al., 2009). Besides, text-based NER system may
depend on cues such as sentence punctuation and
capitalization which are not present in ASR tran-
scripts (Shriberg et al., 2000). Furthermore, ASR
is not error-free and errors in ASR transcripts lead
to cascading errors in NER (Turmo et al., 2009).
Due to factors such as greater variation in speakers,
greater variation in content because of the open-
ended nature of open-domain dialogs, and less pro-
fessional recording environment, ASR transcripts
from spoken dialog systems often contain more er-
rors than that from broadcast news, making NER
in dialogs a much more challenging task.
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We propose two models that exploit dialog con-
text and speech patterns which are available in
open-domain dialogs from spoken dialog systems
to achieve more accurate NER. Our results show
the benefit of modeling dialog context and speech
patterns in two settings: a standard setting with ran-
dom partition of data and a more realistic but also
more difficult setting where there is little overlap
between named entities during training and testing.

2 Related Work

Recent NER models perform well on clean text
datasets such as CoNLL (Tjong Kim Sang and
De Meulder, 2003) and OntoNotes (Hovy et al.,
2006), but less well on noisy data (Mayhew et al.,
2020) such as the WNUT dataset (Derczynski et al.,
2017). In term of F1 score, the current state-of-the-
art model (Akbik et al., 2019) achieves 93% on the
CoNLL dataset but only 49% on the WNUT dataset.
The overreliance of NER models on the convention
of capitalizing named entities (Derczynski et al.,
2017) partly explains why they perform poorly on
text where capitalization is absent or noisy. In
spoken dialog systems, inputs to NER models are
ASR transcripts which not only lack capitaliza-
tion and punctuation but also contain transcription
errors (Sundheim, 1995; Lenzi et al., 2012). Al-
though, joint decoding of ASR transcript and NER
output (Caubriere et al., 2020) partly lessens the
impact of ASR errors on NER, detecting named
entities in ASR transcripts remains a challenging
problem (Galibert et al., 2014).

Prior work on NER from ASR transcripts focus
on reducing ASR errors (Palmer and Ostendorf,
2001), exploiting multiple ASR hypotheses (Hor-
lock and King, 2003; Béchet et al., 2004), or ex-
ploiting additional information such as speech pat-
tern features (Katerenchuk and Rosenberg, 2014).
Examples of speech pattern features are ASR con-
fidence (Sudoh et al., 2006), pauses, and word du-
rations (Hakkani-Tiir et al., 1999). Recently, Cer-
vantes and Ward (2020) used solely prosidic speech
features to spot location mentions. Our work is sim-
ilar to Katerenchuk and Rosenberg (2014) in that
we also utilize speech pattern features. However,
while Katerenchuk and Rosenberg (2014) focused
on broadcast news speech, our work focuses on spo-
ken dialogs. Thus, besides speech pattern features,
our models also exploit dialog context for more ac-
curate NER. In addition, Katerenchuk and Rosen-
berg (2014) used a separate classifier trained on
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data from a small set of speakers to derive speech
pattern features, so the predicted features may not
generalize to more diverse populations. In contrast,
our approach is more integrated since the speech
pattern features encoder is part of the proposed
models thereby encouraging the models to learn
features that are more generalizable.

3 Methods
3.1 Motivation

Dialog utterances are usually short and ambiguous
when taken out of context, therefore identifying
named entities in dialog utterances can be challeng-
ing. Figure 1 shows two challenging cases where
dialog context and speech patterns can aid NER.
Although users’ utterances are similar, the phrase

(a) Bot: Do you want to talk about Sandra Bullock ?
User: sure i love her
Tes:  [HON] [HON oW ol
Tokens: ‘ sure ‘ ‘ i ‘ ‘ love | | her |
Pauses: | No | | No | | No |

(b) Bot: What is your favorite sci-fi movie ?
User: i love her
Tegs: (O (O [NiOViE
Tokens: ‘ i ‘ ‘ love ‘ ‘ her |
Pauses:

Figure 1: Dialog context and speech patterns help dis-
tinguishing “her” in (a) is a mentioned pronoun and
“her” in (b) is a named entity (the 2013 sci-fi movie
Her). Examples are not actual interaction data.

“her” is a named entity in the second case but not
in the first case. Without knowing what the bot
said (i.e. dialog context), the best guess is that “her”
refers to a person and therefore not a named en-
tity. However, when “i like her” is a response to the
question “What is your favorite sci-fi movie?”, “her’
is a named entity (the 2013 sci-fi movie Her). Al-
though users usually mention their favorite movies
when asked, they can also change topic, making
contextual NER non-trivial. Thus, exploiting dia-
log context could help resolving named entities in
users’ utterances in more difficult cases.

Besides context, speech pattern features,
which include prosodic and non-prosodic fea-
tures (Shriberg et al., 2000), might also help iden-
tifying named entities. In particular, pauses’ dura-
tion, words’ duration, and tokens’ ASR confidence
are some readily available features that may be
useful for NER. Pauses might occur when speak-
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ers were choosing their words (Goldman-Eisler,
1958), so pauses might indicate subsequent named
entities in utterances. Figure 1b shows the user
pausing prior to uttering the named entity “her”
as the user might have been considering different
named entities. In contrast, in Figure 1a, there was
no pause probably because the user was saying a
set phrase so there was no difficult choice involved.
Furthermore, pauses could signal boundaries (punc-
tuation) between grammatical structures within ut-
terances (Reich, 1980; Chen, 1999). Since punc-
tuation is an important feature in NER (Nadeau
and Sekine, 2007) and punctuation is missing in
ASR transcript, pauses could potentially replace
the missing punctuation. Exaggerated variation in
word durations and pauses could be present when
pronouncing non-native names (Fitt, 1995; Ran-
garajan and Narayanan, 2006). Tokens’ confidence
might also predict the presence of named entities
since named entities appear less often than other
words in ASR training data. Tokens’ confidence
have been used previously in NER task (Palmer
and Ostendorf, 2001; Sudoh et al., 20006).

3.2 Model

We propose two NER models for dialog which take
a dialog exchange as input. A dialog exchange
consists of a bot’s utterance followed by an user’s
utterance, and the models must label named en-
tities in the user’s utterance, taking into account
the context (the bot’s utterance). The user’s ut-
terance includes lexical features (i.e. word tokens
or word pieces) and speech pattern features which
are pauses’ duration, words’ duration, and tokens’
ASR confidence. Both models have three compo-
nents: (1) a context encoder, (2) a speech pattern
encoder, and (3) a sequence tagger. The context
encoder and speech pattern encoder are the same
in both models and the encoders provide additional
clues for the sequence tagger to accurately label
named entities. The first model’s sequence tag-
ger is a widely used model for NER from writ-
ten text based on BiLSTM-CRF (Ma and Hovy,
2016; Lample et al., 2016), which combines bidi-
rectional LSTM (Graves and Schmidhuber, 2005)
with conditional random field (Lafferty et al., 2001).
The second model’s sequence tagger is based on
BERT (Devlin et al., 2019), which achieved state-
of-the-art result for the CoNLL dataset.

Figure 2 shows the models’ structure. The con-
text encoder is a bag-of-embedding model (Fig-
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(a)
Bot:
What
is
your
favorite
sci-fi
movie
?

c
(c) User’s Speech Pattern
Word E Ch. E

o Features
[T 0.8,03,0,1

‘ 07,02,1,1%
[

[

[

\

\
‘ 0.7,0.3,1,0
\
\

SP Repr.

BiLSTM
Feature
Extractor

I
I
[T
[T]
-
I

Context
Repr.

) |Hiaden LLLLLILLLIIILITLL]
User: WordE Ch.E ‘
i 0 O
love [ 1] 1]

her [1T1] [T
Lexical Repr.

lexical [T TJ[TI T IT]

Context

Figure 2: Models’ structure. (a) Aggregate context us-
ing bag of embeddings. (b) Construct lexical repr. of
tokens in user’s utterance. (c) Construct repr. from
speech pattern features. (d) Combine context, lexical,
and speech pattern repr., and then output the tokens’
tags. Word E: word embedding, Ch. E: character em-
bedding, SP: speech pattern, repr: representations

ure 2a), which encodes the bot’s utterance and
outputs a single context vector. Specifically, the
tokens’ embeddings (concatenation of word and
character embeddings) in the bot’s utterance are
fed through a max-pooling layer to produce the
context vector. The context vector and the lexical
vectors (Figure 2b) are combined as models’ in-
put using element-wise addition (Figure 2d). The
speech pattern encoder is a BILSTM (Figure 2c),
which encodes speech pattern features as vectors.
These vectors are concatenated with the outputs
from the last hidden layer of BiLSTM or BERT.
While BiLSTM uses a conditional random field to
tag the tokens, BERT uses a fully-connected layer
instead (similar to (Devlin et al., 2019)).

Since BERT uses sub-word tokens, some words
may be split into multiple tokens. For example,
“interstellar” is split into “inter” and “#stellar”.
However, as the speech pattern features are only
available for individual words and not for word
pieces, these features have to be split up for multi-
token words. In particular, the sub-word tokens
have the same ASR confidence and duration as the
word’s ASR confidence and duration. Although
the durations of the sub-word tokens should be
shorter than the word’s duration, it is not clear how
to derive the correct durations. For the pauses, the
preceding pause value is assigned to the first sub-
word token while the succeeding pause value is



‘ ‘ Tokens ‘ Avg. Len. Train Dev Test
‘ Turns ‘ Bot User ‘ Bot User Number of Tokens
Train ‘ 22,908 ‘ 624,168 146,858 ‘ 272 64 CoNLL 203,621 51,362 46,435
. OntoNotes 1,088,503 147,724 152,728
Standard Split
WNUT 62,730 15,733 23,394
Dev 3,000 | 80,749 19,585 | 269 6.5 y
Test 3,000 | 81,668 19.279 | 272 64 Standarq split 146,858 19,585 19,279
Hard split 146,858 19,984 20,583
Hard Split .
Number of Entities
Dev 3,000 | 81,585 19,984 | 27.1 6.6 CoNLL 53499 5 042 5 643
Test 3,000 | 82,137 20,583 | 27.3 6.8 0 ’ ’ ’
OntoNotes 81,829 11,066 11,257
Table 1: Data statistics. The data were collected dur- WNUT 1,975 836 1,079
ing the period from December 2019 to May 2020. The Standard split 7.402 934 952
data are divided into two different splits (standard and Hard split 7: 402 1,254 1.391

hard) with a shared training set. The hard split is used
to test the robustness of the proposed model while the
standard split is common practice in machine learning.

Standard Split Hard Split
Dev 46.26% 14.45%
Test 46.75% 14.36%

Table 2: Number of unique named entities that are also
in the training set (vocabulary transfer)

assigned to the last sub-word token.

4 Experiments

4.1 Data

The data are from conversations between humans
and the Gunrock chatbot (Liang et al., 2020), which
participated in the 2019 Amazon Alexa Prize. Con-
versations were collected during the period from
December 2019 to May 2020. Each data sample
consists of one chatbot utterance and the following
human utterance (Figure 1). Chatbot utterances are
in mixed-case while human utterances are output
from an ASR system and are in lower case.

The data are divided into two different splits: a
standard split and a hard split, and the two splits
share the same training set (Table 1). While the
training, development, and test set of the standard
split are formed by randomly partitioning the data,
the development and test set of the hard split are
created such that they have more named entities
that are not seen in the training set (i.e. little named
entity overlap). Table 2 illustrates the difference in
term of named entity overlap measured using vo-
cabulary transfer rate (Palmer and Day, 1997). Vo-
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Table 3: Comparing the dataset used in this paper
against public NER datasets.

cabulary transfer is the proportion of unique named
entities appearing in both training and test set, and
as expected, the development and test sets of the
hard split have much lower vocabulary transfer than
that of the standard split. Although standard split is
a common practice in machine learning, deep learn-
ing models can perform well on the standard split
by exploiting the spurious patterns in the data (Jia
and Liang, 2017). Thus, the hard split is necessary
for measuring how well the models can general-
ize, since NER models relying heavily on surface
patterns will underperform when there are a lot of
unseen named entities (Augenstein et al., 2017).
Furthermore, the test set of the hard split more
closely resembles the test data during deployment
because the data the models see during deployment
usually differ from the data collected during train-
ing (little overlap of named entities). Thus, the
performance on the hard split is a more realistic
reflection of the models performance during de-
ployment. A comparison between the size of the
dataset used in this paper and that of popular public
NER datasets is shown in Table 3.

Although named entities are typically classified
into three big types: Person, Location, and Orga-
nization (Nadeau and Sekine, 2007), fine-grained
typing may be more useful, especially for question-
answering and information retrieval (Fleischman,
2001). For example, Location can be subdivided
into City, State, and Country (Lee and Lee, 2005).
Similarly, Person can be subdivided into Politician



and Entertainer (Fleischman and Hovy, 2002). In
addition, special types may be used to address
systems’ specific needs, for example Film (Et-
zioni et al., 2005), Book title (Brin, 1998; Witten
et al., 1999), Brand (Bick, 2004), Protein (Shen
et al., 2003; Tsuruoka and Tsujii, 2003; Settles,
2004), Drug (Rindflesch et al., 1999), and Chemi-
cal (Narayanaswamy et al., 2002).

Since the Gunrock chatbot needs to converse
with users in different topics, fine-grained typing
is more useful for accurately retrieving informa-
tion about named entities. Named entities in data
samples were manually labelled by Gunrock team
members using 6 named entity types: Movie, Book,
Song, Person, Character, and Other. The BIO
scheme was used for labeling the data. Figure 3
and Table 4 show the distribution of named enti-
ties by types and the average entity length by types
respectively. The Movie, Book, and Song types

(a)

Name entities occurrence (All)

Test (H)  [IIIESAI 2700 94 447 157 169
Dev(H) [N246NN %28 80 328 (97 475
Test (s) |2 8T 80 310 66 94
pev(s) [IZOIINT720 67 347 56 82
Train | SR 33000538 2566 591 725

0% 20% 40% 60% 80% 100%

B Movie M Book 1 Song I Person B Character m Other

(b)

Name entities occurrence (Unique)

Test (H)  [JESSIN 33 73 263 77 87
Dev (H) [N 14000 68 229 68 82
Test () | EANEANN 77 258 (60178
Dev (s) |G 14500 65 279 49 62

Train [T 92200 468 1426 344 427

0% 20% 40% 60% 80% 100%

M Movie ® Book ® Song ' Person M Character m Other

Figure 3: Entities by types, S: Standard, H: Hard

are for names of movies and TV shows, books,
and songs respectively. The Person type includes
names of real people or musical groups (e.g. Tom
Hanks or Imagine Dragons). The Character type
includes names of fictional people in movies or sto-
ries (e.g. Anna and Elsa in the movie Frozen). The
Other type is for the other named entities (e.g. US
or Siri) that do not belong to any of the previous
5 types. For labeling polysemous entities, con-
text (i.e. chatbot utterance) is taken into account to
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Type Movie Book Song
Length 2.3 3.0 2.7
Type Person Character Other
Length 2.0 1.3 1.6

Table 4: Average entity length (tokens) by entity types

determine the correct type. For example, for the
human response “yes harry potter”, “harry potter”
is a Character with regard to the question “Do you
have a favorite character in the book?”. However,
when the question is “Did you watch any movie
recently?”, “harry potter” is labeled as a Movie.

4.2 Implementation Details

The models are implemented using Py-
Torch (Paszke et al., 2019) and transformers (Wolf
et al., 2020) libraries. For BILSTM-CRF models,
word embeddings and character embeddings
were concatenated to form the context input
and lexical input. The size of word embeddings
and character embeddings are 300 and 100
respectively. Word embeddings were initialized
using GloVe word vectors from (Pennington et al.,
2014). For BERT models, lexical input only
includes sub-word embeddings. The size of the
context encoder’s word embedding and character
layer are 600 and 168 respectively (so that the
concatenated size is 768, matching the dimension
of BERT). The parameters of the BERT model
were initialized using the pre-trained uncased
BERT base model. The speech pattern encoder is
a two-layer BiLSTM with the hidden state size
of 256. The dropout (Srivastava et al., 2014) rate
of the speech pattern encoder was set at 0.3. The
input to the encoder are speech pattern features
which include: token ASR confidence, token
duration, the pauses preceding and succeeding
the token. Due to constraints in the Alexa data
collection, other acoustic/prosodic speech features
are unavailable. The token duration is thresholded
at 1.5 second which is the 99th percentile value.
The preceding (succeeding) pause is a binary
variable, indicating whether there is a gap more
than 30 milliseconds before (after) the token.

All models were trained for 100 epochs with
the batch size of 128. BiLSTM-CRF mod-
els were trained using Adam (Kingma and Ba,
2014), while BERT models were trained using
AdamW (Loshchilov and Hutter, 2018). Linear
learning rate schedule is used for training BERT



BiLSTM-CRF Standard Split
Learning rate 3e-3, le-3, 3e-4, le-4, 3e-5 Lx. Ct. SP P R F1
Dropout (1)‘208’ (;;’6()'521’20-3’ 0.4,0.5 LSTM Y 508 66.1 62.8
EFILHS?;O{‘ 2 aa LSTM Y Y 69.2 724 708
1L b ayers e s LSTM Y Y 583 686 63.0
Weightdecay  le-7, le-6, le- LSTM Y Y Y 695 732 713
BERT BERT Y 664 683 673
Learning rate le-4, 6e-5, 3e-5, le-5 BERT Y Y 71.1 737 724
Weight decay 0.01 BERT Y Y 652 709 679
BERT Y Y Y 711 751 73.0
Table 5: Hyperparameter grids for random search Hard Split
F1 Standard spht 1 Hard Split ILx. Ct SP P R Fl
75 75
- ] | . LSTM Y 42,5 55.1 48.0
LSTM Y Y 51.3 62.0 56.1
— W] ] - LSTM Y Y 426 576 490
O - &0 LSTM Y Y Y 518 656 579
o ([ W] e BERT Y 560 628 59.2
S 111 - %0 BERT Y Y 62.9 66.7 64.7
45 — 45 A BERT Y Y 556 653 60.1
Lex. MMM MFAMMA
., . - s o BERT Y Y Y 625 69.0 65.6
SP MU FEEE M FMEM )
Table 6: Context and speech pattern features improve
LSTM BERT LSTM BERT

Figure 4: Context is always beneficial while speech pat-
tern features are more beneficial in the hard split evalu-
ation. Detailed results are in Table 6.

whereby learning rate peaks after 10% of the train-
ing steps and then decreases to 0. We find models’
hyperparameters using random search (Bergstra
and Bengio, 2012) in 80 trials (see Table 5).

4.3 Results

Following CoNLL evaluation method, the mod-
els are evaluated using F1 score computed using
complete spans of named entities. As shown in
Figure 4, modeling context consistently leads to
significant gain in F1 score, regardless of the data
split or the model structure. For the standard split,
the BILSTM-CRF’s F1 improved from 62.8% to
70.8% while BERT’s F1 improved from 67.3% to
72.4%. Similarly for the hard split, the BiLSTM-
CRF’s F1 improved from 48.0% to 56.1% while
BERT’s F1 improved from 59.2% to 64.7%.
Adding speech pattern features did not lead to
notable changes in F1 score when testing on the
standard split. BILSTM-CRF’s F1 improved by
0.2% (62.8% to 63.0%) while BERT’s F1 improved
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NER performance. Lx.: Lexical, Ct.: Context, SP:
Speech pattern features

by 0.6% (67.3% to 67.9%) (see Table 6). However,
when testing on the hard split, the gap between
using and not using speech pattern features is more
noticeable. BILSTM-CRF’s F1 improved by 1.0%
(48.0% to 49.0%) while BERT’s F1 improved by
0.9% (59.2% to 60.1%). This is perhaps unsur-
prising since the lexical overlap (i.e. number of
shared named entities) between the standard split’s
training and test set is quite high (see Table 2),
so exploiting complementary features like speech
pattern may be less beneficial.

In all setups, combining speech pattern features
with context resulted in the highest F1 scores. Be-
sides, BERT models outperformed BiLSTM-CRF
models as the former were pre-trained on a large
amount of data while the latter were trained from
scratch. Lastly, performance on the hard split is
still lower than that on the standard split, indicating
room for improving the models’ robustness.

4.4 Ablation

In order to determine the usefulness of different
speech pattern features, we conducted ablation



Standard Split Standard Split
Lx. Ct. SP P R Fl1 Lx. Ct. SP P R Fl1
BERT4F Y Y 652 709 679 LSTM Y Y Y 695 732 713
BERT3F Y Y 659 687 67.2 BERTf Y Y Y 629 706 665
BERT2F Y Y 66.0 702 68.0 BERT Y Y Y 7.1 751 73.0
BERT4F Y Y Y 711 751 73.0 Hard Split
BERT3F Y Y Y 717 762 1739 ILx. Ct SP P R FI
BERT2F Y Y Y 722 777 748
X LSTM Y Y Y 518 656 579
Hard Split BERTf Y Y Y 414 559 475
Lx. Ct. SP P R Fl1 BERT Y Y Y 625 690 65.6
BERT 4F Y Y 556 25'3 60.1 Table 8: Effect of pre-training. Lx.: Lexical, Ct.: Con-
BERT3F Y Y 568 29 597 text, SP: Speech pattern, t: trained from scratch
BERT2F Y Y 555 622 587
BERT4F Y Y Y 625 69.0 65.6 mance. Although, the NER performance of BERT
BERT3F Y Y Y 623 669 64.5 training from scratch could be improved via ex-
BERT2F Y Y Y 606 67.1 637 tensive hyperparameter search, BILSTM-CRF is a

Table 7: Speech pattern features ablation. 4F: all fea-
tures, 3F: without ASR confidence, 2F: without ASR
confidence and token duration. Lx.: Lexical, Ct.: Con-
text, SP: Speech pattern features

study by removing the features one by one. In
particular, starting with a model that uses all 4
features (denoted as 4F): namely token ASR con-
fidence, token duration, the pauses preceding and
succeeding the token, we first remove the ASR con-
fidence from the model input (denoted as 3F) and
then remove the token duration from the model in-
put (denoted as 2F). We trained all the models with
ablated features from scratch with hyperparameter
search similar to what was done in Section 4.2.
For the hard split, the BERT 4F model did bet-
ter than the BERT 3F model, showing that the
ASR confidence is probably useful. Low ASR
confidence can indicate names which appear infre-
quently (e.g. ASR: “herman hess”, ASR confidence
[0.3, 0.1], actual name: “Hermann Hesse’’). Simi-
larly, the BERT 3F model did better than the BERT
2F model, suggesting that token duration is also
probably useful. Surprisingly, for the standard split
BERT 2F outperformed BERT 4F, suggesting that
ASR confidence and token duration may be less
useful when there is high lexical overlap.
Although, the pre-trained BERT model beat
the BILSTM-CRF model (Section 4.3), when the
BERT model is trained from scratch, it did worse
than the BILSTM-CRF model (Table 8). Evidently,
pre-training provided a massive boost in perfor-

competitive model when pre-training is not viable.

5 Discussion

5.1 Roles of context and speech patterns

Although unknown words may pose a challenge to
NER systems, entities that have multiple types are
harder to deal with than unknown words (Bernier-
Colborne and Langlais, 2020). Dialog context may
help resolving the type of an entity when the entity
belongs to multiple types. Figure 5 ! shows that,
without context, both BILSTM-CRF and BERT
predicted “lord of the rings” as Book (incorrect) in-
stead of Movie. Knowing dialog context also helps
when named entities are common phrases. With-
out context, BILSTM-CRF missed the entity “the
notebook”, while BERT misclassified it as Book.

In contrast, speech pattern features may help
locating the named entities. Figure 6 shows that
NER models without speech pattern features might
predict the wrong text spans as named entities (e.g.
“jonas brothers once” instead of “jonas brothers”).
Interestingly, although the predicted type is not
correct, the type of “mclovin” predicted by BERT
is more plausible than BiLSTM-CREF. This might
be because BERT gained some world knowledge
after pre-training, and NER models usually benefit
from external sources of knowledge (Ratinov and
Roth, 2009; Passos et al., 2014).

"Examples shown in this section are from internal user
studies and are not in the training, development, or test sets.
Users have given consent for the release of these examples.
Some parts have been anonymized to protect users’ privacy.



Bot Do you have a favorite fantasy movie ?
User lord of the rings

LSTM w/o context [lord of the rings]Book

LSTM with context [lord of the rings]Movie

BERT w/o context [lord of the rings]Book

BERT with context [lord of the rings]Movie
Bot What movie would you recommend ?
User i would recommend the notebook

LSTM w/o context —

LSTM with context [the notebook]Movie
BERT w/o context [the notebook]Book
BERT with context [the notebook]Movie

Figure 5: Without context, both models either predicted
the wrong entity type or missed the named entity.

Bot Have you been to a live performance ?

User yes i saw the jonas brothers once

Pauses yes i saw the jonas brothers once

Confidence 0.9,0.9,0.9,0.9,0.9 059,08

LSTM w/o SP [jonas brothers once]Person

LSTM with SP [jonas brothers]Person

BERT w/o SP [jonas brothers once]Person

BERT with SP [the jonas brothers]Person

Bot What’s the last movie that made you laugh ?

User i’'m not sure probablythe movie with mclovin

Pauses i'm not sure PAUSE probably PAUSE the movie
PAUSE with PAUSE mclovin

Confidence 0.9,0.9,0.9,09059, 0.9, 0.9, 0.0

LSTM w/o SP [with mclovin]Movie

LSTM with SP [mclovin]Movie

BERT w/o SP [mclovin]person

BERT with SP [mclovin]Person

Figure 6: Speech pattern helps locating named enti-
ties. Without speech pattern, models predicted the
wrong entity spans (e.g. “jonas brothers once” and
“with mclovin™). SP: speech patterns

5.2 Towards robust NER in dialog system

Current ASR systems still perform poorly in do-
mains that require special vocabulary and under
noisy conditions (Georgila et al., 2020). Unfamil-
iar words or recording noise may lead to ASR er-
rors that affect downstream tasks such as NER. Al-
though continuously retraining the ASR and NER
models can reduce these errors, such effort may
be costly. Integrating features such as speech pat-
tern features, which are less affected by changing
vocabulary and recording conditions, could make
NER models more robust and reduce the frequency
of having to retrain the models.

Speech pattern features have been used for NER
in spoken broadcast news although this did not lead
to improvement in performance (Hakkani-Tiir et al.,
1999). This could be because these features might
also encode other phenomena such as stressing
that are not relevant for NER task (Hakkani-Tiir

et al., 1999). In contrast to (Hakkani-Tiir et al.,
1999) where the features encoder and the NER tag-
ging model were trained, we trained the models
jointly so they are more sensitive to cases when
speech pattern features are indicative of named
entities. Our proposed models show consistent
improvement over lexical-features-only baselines,
especially when training and testing data are signif-
icantly different, demonstrating that it is possible
to combine lexical and speech pattern features to
achieve more robust NER system.

5.3 Future work

We show that short context and minimal speech pat-
tern features can improve NER performance. Better
performance might be achieved by modeling longer
context and more features (e.g. prosodies, parts of
speech, punctuation) from a SOTA ASR system.
Prosodic features can also be extracted automati-
cally to better align to sub-word tokens (Tran et al.,
2018). It would also be interesting to see how ro-
bust NER would improve entity linking especially
when entity mentions contain ASR errors.

Since our work only explored open-domain con-
versations between humans and a chatbot, it is im-
portant to validate the benefits of modeling context
and speech pattern features in other settings. Exam-
ples of other settings include open-domain conver-
sations between humans or task-oriented conver-
sations between humans or between humans and
chatbots. For these different settings, NER models
might need longer context or speech pattern fea-
tures other than what were used in this paper. How-
ever, many previous studies have shown the useful-
ness of these additional features in other tasks so
there are reasons to believe that the findings should
translate to other datasets and settings.

6 Conclusions

Named entity recognition for dialogs is difficult be-
cause utterances are ambiguous out of context and
ASR transcripts are noisy due to ASR errors and
the lack of punctuation and capitalization. We pro-
posed two NER models exploiting dialog context
and speech patterns to address the ambiguity issue
and ASR noise. Our results show that context usu-
ally improves NER accuracy while speech patterns
help in the more difficult but more realistic scenario
with many unseen named entities. Further studies
on exploiting features from non-text modalities are
warranted to enhance NER in dialog systems.
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Abstract

We propose a novel on-device neural sequence
labeling model which uses embedding-free
projections and character information to con-
struct compact word representations to learn
a sequence model using a combination of
bidirectional LSTM with self-attention and
CRF. Unlike typical dialog models that rely
on huge, complex neural network architec-
tures and large-scale pre-trained Transformers
to achieve state-of-the-art results, our method
achieves comparable results to BERT and even
outperforms its smaller variant DistilBERT
on conversational slot extraction tasks. Our
method is faster than BERT models while
achieving significant model size reduction—our
model requires 135x and 81x fewer model pa-
rameters than BERT and DistilBERT, respec-
tively. We conduct experiments on multiple
conversational datasets and show significant
improvements over existing methods includ-
ing recent on-device models. Experimental re-
sults and ablation studies also show that our
neural models preserve tiny memory footprint
necessary to operate on smart devices, while
still maintaining high performance.

1 Introduction

In today’s world, people rely on their digital de-
vices like mobile phones, smartwatches, home as-
sistants like Google and Alexa to alleviate mun-
dane tasks like play favorite songs, recommend
food recipes among others. A big part of the lan-
guage understanding capabilities of such assistive
devices happens on cloud, where the relevant slots,
entities and intents are extracted in order for the
request to be fulfilled. However, is it not always
safe to send data to cloud, or when we travel it is
not always possible to have internet connectivity,
yet we want to enjoy the same capabilities.

These challenges can be solved by building on-
device neural models that can perform inference
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on device and extract the slot (entity) information
needed for language understanding. The model
will operate entirely on the device chip and will not
send or request any external information. Such on-
device models should have low latency, small mem-
ory and model sizes to fit on memory-constrained
devices like mobile phones, watches and 1oT.

Recently, there has been a lot of interest and
novel research in developing on-device models.
Large body of work focuses on wake word detec-
tion (Lin et al., 2018; He et al., 2017), text classifi-
cation like intent recognition (Ravi and Kozareva,
2018), news and product reviews (Kozareva and
Ravi, 2019; Ravi and Kozareva, 2019; Sankar et al.,
2021b,a).

In this paper, we propose a novel on-device neu-
ral sequence tagging model called SoDA . Our
novel approach uses embedding-free projections
and character-level information to construct com-
pact word representations and learns a sequence
model on top of the projected representations using
a combination of bidirectional LSTM with self-
attention and CRF model. We conduct exhaustive
evaluation on different conversational slot extrac-
tion datasets. The main contributions of our work
are as follows:

* Introduced a novel on-device neural sequence
tagging model called SoDA .

* Our novel neural network dynamically con-
structs embedding-free word representations
from raw text using embedding-free projec-
tions with task-specific conditioning and CNN
together with a bidirectional LSTM coupled
with self-attention and CRF layer. The re-
sulting network is compact, does not require
storing any pre-trained word embedding ta-
bles or huge parameters, and is suitable for
on-device applications.
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* Conducted exhaustive evaluation on multi-
ple conversational slot extraction tasks and
demonstrate that our on-device model SoDA
reaches state-of-the-art performance and even
outperforms larger, non-on-device models like
Capsule-NLU (Zhang et al., 2019), StackProp-
agation (Qin et al., 2019), Interrelated SF-
First with CRF (E et al., 2019), joint BILSTM
(Hakkani-Tur et al., 2016), attention RNN
(Liu and Lane, 2016), gated attention (Goo
et al., 2018) and even BERT models (Sanh
etal., 2019).

Our on-device SoDA model also significantly
outperforms state-of-the-art on-device slot ex-
traction models of (Ahuja and Desai, 2020),
which are based on convolution and are fur-
ther compressed with structured pruning and
distillation.

Finally, we conduct a series of ablation studies
that show SoDA ’s compact size needed for
conversational assistant devices like Google
and Alexa, smart watches while maintaining
high performance.

2 SoDa: On-device Sequence Labeling

In this section, we describe the components of our
SoDA architecture as shown in Figure 1.

2.1 Input Word Embeddings

Given an input text X containing a sequence of
words (x1, x2, ..., T, ), where x; refers to i-th word
in the sentence, we first construct a sequence of
vectors £(X) = (eq, ea, ..., €,) where e; denotes a
vector representation for word x;.

2.1.1 Word Embedding via Projection

Learning good representations for word types from
the limited training data (as in slot extraction)
is challenging since there are many parameters
to estimate. Most neural network approaches
for NLP tasks rely on word embedding matri-
ces to overcome this issue. Almost every recent
neural network model uses pre-trained word em-
beddings (e.g., Glove (Pennington et al., 2014),
word2vec (Mikolov et al., 2013)) learned from a
large corpus that are then plugged into the model
and looked up to construct vector representations
of individual words and optionally fine-tuned for
the specific task. However, these embedding ma-
trices are often huge and require lot of memory
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Figure 1: Model architecture for SODA On-device Se-
quence Labeling Neural Network.

O(V - d) which is infeasible for on-device applica-
tions where storage is limited. Here, V' is the vocab-
ulary size and can be huge from 100K to millions of
entries, and d is the embedding dimension. For ex-
ample, using 300-dimensional Glove embeddings
with 400K entries and f1oat 32 values requires
480MB in storage for the embedding table alone.
Even without any pre-training, O(V - d) parame-
ters still need to be estimated which contributes
to the model size and latency. Even methods that
resort to sub-word sequences and reduce vocabu-
lary size requires explicitly storing and looking up
these parameters. For English, simple character
trigrams with 36 alphanumeric characters requires
V = 363 = 47K entries in the embedding matrix.
Embedding-free Projections: For generating
E(X), we compute e; word vector representations
dynamically building on a locality-sensitive projec-
tion approach similar to (Ravi, 2017).

For each word z, we extract character-level in-
formation (i.e., character sequences) from the word
to construct a sparse feature vector F(x;).

Flx) = {{fr,w1), .. (fr,wr)} (D)



where, fi represents each feature id
(Fingerprint of the raw character skip-
gram) and wy, its corresponding weight (observed
count in the specific input ).

We use locality-sensitive projections (Ravi,
2017) to dynamically transform the intermediate
feature vector F(x) to binary representation P(x).

P(z) P(F(z)) 2)
= ]P)({<f1>w1>av<fKawK>}) (3)
This step uses locality-sensitive hashing

(LSH) (Charikar, 2002) to convert the high-
dimensional sparse feature vector F(z) into a very
compact, low-dimensional binary representation
on-the-fly. The transformation uses a series of d
binary hash functions Py, P, ...,[P; to generate
a binary value (-1 or +1) for each dimension j
resulting in a d-dimensional binary vector. Each
binary hash function is parameter-free since we
only use the dimension id j and observed features
ids fj to construct a randomized vector R;(z)
with same number of non-zero entries rx as F(x).

R](x) = {<f17r1>7"'7<fK7TK>} “4)
Pj(z) = sgn(R;(z)- F(z)) (5)
P(x) = (Pi(z),Pa(x),...,Ps(x)) (6)

For our sequence tagging model, we use J - d pro-
jection dimensions to model character sequences
occurring in the word (up to 5-grams, O-skip
character-level features). We use the remaining
(1 — 0) - d dimensions to model the whole word
feature. For sequence tagging experiments, we
set 0 = 0.9. The projection operations IP; can be
computed fast and on-the-fly during training and
inference without any embedding tables or addi-
tional parameters. The locality-sensitive nature of
the projections enable learning a compact repre-
sentation that captures semantic similarity (at word
and sub-word level) in the high-dimensional space
with a small memory footprint. For more details
on projection operations, refer (Ravi, 2017).
Conditioning Projections: We could use the dy-
namically constructed projection vector P(z) di-
rectly instead of embeddings to build the rest of
our model. But to prevent the models from depend-
ing on static projection representations too strongly,
we further condition or fine-tune the projections on
specific sequence tagging task during training to
learn better task-specific representations &(z).
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Note that unlike prior approaches that use pre-
trained embeddings and fine-tune the O(V - d) pa-
rameters on individual tasks, we use far fewer pa-
rameters O(M); M < V - d for the projection
conditioning step so as to keep the resulting model
size compact and not incur huge additional memory
or time complexity for inference on device.

For sequence tagging, we apply two types of
conditioning operators on the projection output P(.)
to generate the final £(.) vector representations for
words in the input sequence.

* Hadamard product (o):

E(X)=P(X)oW,, +b, @)

where, £(X) is the embedding for the input
sequence of size n x d. W, and b, are
d trainable weight and bias parameters used
for projection conditioning which are shared
across all words. Using point-wise operations
for this conditioning requires only d multiply
and d add operations, keeping the number of
parameters M = 2d in this step very small.

Dense product (D):

E(X)=P(X) x W,, +b, ®)

here W, is a trainable shared weight matrix
of size d x m and W, represents bias pa-
rameters. We choose m < d, so total number
of conditioning parameters M = d - (m + 1).

As noted, both projection conditioning operators
result in a tiny number of additional model param-
eters M < V - d that are tuned during training.

2.1.2 Extending Character-level
Representation using CNN

Earlier work (Chiu and Nichols, 2016; Ma and
Hovy, 2016) showed that CNNs can be effec-
tive to model morphological information within
words and encode it within neural networks using
character-level embeddings. However, these ap-
proaches typically compute both word-level (from
pre-trained tables) and character-level embeddings
(to model long sequence contexts) and combine
them to construct word vector representations in
their neural network architectures.

However as we noted, word embedding lookup
tables incur significant memory that are not suit-
able for on-device usecases. Previous results on
sequence labeling (Ma and Hovy, 2016) show that



character embeddings by themselves do not have
the same generalizability power of word embed-
dings trained on large corpora, especially for names
and common words appearing in regular text.

Our model SoDA uses the best of both ap-
proaches, by first constructing word embeddings
using conditioned projections as described in Sec-
tion 2.1.1. We further extend this with a character
CNN model with shared, trainable parameters to
augment the morphology information. The CNN
used in our model is similar to (Chiu and Nichols,
2016; Ma and Hovy, 2016). The combined em-
bedding layer in the SODA model still maintains a
small number of parameters (< V - d), correspond-
ing to projection conditioning and convolutions.

E(X) = concat(&p(X), Eonn(X))  (9)

A dropout layer (Srivastava et al., 2014) is then
applied to the joint embedding &£ (X)) for regulariza-
tion before being passed as input to the next layer
in the SoDA neural network.

2.2 Bi-directional LSTM

Next, we apply a recurrent neural network (RNN)
to operate on the sequence of projected vectors
E(X) = (e1,e9,...,epn) . We use LSTMs (Hochre-
iter and Schmidhuber, 1997) over the projected
word sequences to model the temporal dynam-
ics across the sequence to produce a state se-
quence H(X) = (hi, ho,...., hy), where h; cap-
tures higher-level information about the sequence
at time step 7. LSTM is a variant of RNN with
memory cells that enable capturing long-distance
dependencies. LSTMs are composed of multiple
gates to control the proportion of information to
forget and pass through to the next time step. We
use the following implementation in SoDA

For an input sentence X = (x1, x2, ..., x,) and
corresponding sequence of projected embeddings
E(X), where each e, = ep, - ecnn,] is a d-
dimensional vector, the LSTM layer in SoDA uses
input, forget and output gates to compute a new
state h; at time step ¢. For sequence tagging tasks,
both left and right contexts are useful to represent
information at any time step. Standard LSTM as
well as other sequence models only account for
previous history and know nothing about the future.
We use a bi-directional LSTM (Dyer et al., 2015) to
efficiently model both past and future information
in our SoDA model. The only change required is
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that model a separate forward and backward hid-
den state, which are updated in the same manner
and concatenated to form the final output state. We
also create deeper SODA sequence models by stack-
ing multiple bi-LSTM layers to get the projected
sequence output Py;_1.s7n7(X).

2.3 Self-Attention for Sequence

Attention mechanisms have become a core compo-
nent of powerful neural networks used for various
sequence labeling tasks (Bahdanau et al., 2014;
Kim et al., 2017). Adding this to a neural se-
quence network allows modeling of positional de-
pendencies without regard to their distance in the
input or output sequences. This has proven par-
ticularly useful for modeling complex sequence
tasks such as machine translation and led to power-
ful deep, attention-based neural network architec-
tures (Vaswani et al., 2017) in recent years.

We add self-attention on top of the bi-LSTM out-
put Py, .57 (X)) in SoDA to model positional de-
pendencies in the sequence. Self-attention relates
different positions of an input sequence to compute
a representation of the sequence and has been suc-
cessfully applied to tasks such as reading compre-
hension, abstractive summarization, and learning
task-independent sentence representations (Cheng
et al., 2016; Paulus et al., 2018; Lin et al., 2017).
We use a multi-head attention (Vaswani et al., 2017)
with H heads that allows SoDA sequence model
to jointly attend to information from multiple rep-
resentation sub-spaces at different positions. The
output from the projected bi-LSTM network fol-
lowed by self-attention layer in SoDA is a sequence

representation denoted by Sp,, ; ¢, (X).

2.4 CRF Tagging Model

For structured prediction tasks like sequence tag-
ging, it is useful to model the dependencies be-
tween neighboring labels (Ling et al., 2015) and
perform joint decoding of the label sequence for
a given input sentence. For example, in sequence
labeling tasks with BIO tagging scheme I-LOC la-
bel cannot follow B—PER. So, instead of decoding
labels at every position separately, similarly to prior
work, we perform joint decoding in our model us-
ing a condition random field (CRF) (Lafferty et al.,
2001).

For an input sentence X = (x1,x9,...,Zn),
the intermediate output vector from the projected
bi-LSTM network is denoted by Sp,, , o0, =
(s1,$2,...,Sn), Where s; represents the concate-



nated vector combining the forward and back-
ward states of the projected bi-LSTM at position .
Y = (y1,y2, ..., yn) represents the final output tag
sequence for the sentence given S, output from the
previous layer. Y € )(S), where Y(S) denotes
the set of all possible tag sequences for S. We
define the probabilistic CRF sequence model as a
conditional probability p(Y'|S; #) over all possible
label sequences Y given S as follows:

[T ¢i(yi-1,9i,S)

=1

2

y'eYV(S)

p(Y|S;0) = (10)

s

1 6:(5-1.41:)

-
Il

where, &;(yj, yx,S) = exp(W]'s; + bg) is a
parameterized transition matrix with weights Wy
and bias by that scores transition from tag y; to yy,
for each position i in the sentence. The transition
matrix is a square matrix of size L, where L repre-
sents the number of distinct tag labels that includes
special begin and end tags for a sentence.

We use maximum-likelihood estimation to
jointly optimize the CRF parameters ¢ along with
other network parameters during training Ly(.) =
> logp(Y'|S;0). Since we only use first-order
transition dependencies between labels, the parti-
tion functions can be computed efficiently using
the Viterbi algorithm for both training and infer-
ence. Once trained, we perform sequence decoding
as follows y* = argmaxy cys) p(Y|S; Otrained)-

2.5 Putting it all together: SoDA Network

Finally, we construct our end-to-end on-device neu-
ral network SoDA by combining all components
progressively: word representation (using condi-
tioned projections + CNN), projected bi-LSTM se-
quence model with self-attention layer and CRF
layer. The input sequence X is passed through
the on-device SoDA network and final layer to get
decoded output tag sequence Y.

3 SoDA Training and Parameters

We now describe details for training the on-device
SoDA neural network. We implement the model
using TensorFlow. For each sequence labeling task,
we train the parameters of the model on the cor-
responding dataset, then apply the same steps in
order for inference and evaluate the decoded tag
sequence output against the gold label sequence.
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3.1 Optimization

During training, we estimate the SODA parameters
with Adam optimizer (Kingma and Ba, 2014) that
is applied over shuffled mini-batches of size 20.
We choose an initial learning rate of 1e-3 with
gradient clipping.

Early Stopping: We use early stopping (Caruana
et al., 2000) based on performance on held-out dev
sets. In our experiments, we typically observe good
validation performance within 10-20 epochs.
Conditioning Projections: As described in Sec-
tion 2.1.1, we condition the dynamically con-
structed projected word representations to learn
task-specific projection parameters. We use two dif-
ferent types of conditioning operators: Hadamard
(o), and Dense (D). We choose m = d for the
dense version, yielding M = d? + d parameters
and M = 2d for the former. We observed that the
Dense version with slightly more parameters per-
formed better overall on sequence tasks and hence
use this as the default version for SODA in our ex-
periments. We did not do any data or task-specific
tuning or processing.

Dropout: During training, we apply dropout (Sri-
vastava et al., 2014) for regularization in our model
with a fixed rate 0. 3.

3.2 Hyper-Parameters

Word Representations: We use d = 300 projec-
tion size for &p(.). Unlike other neural models,
our on-device network does not require storing and
loading any pre-trained word embedding matrices
and does not need any O(V - d) parameters for
modeling the vocabulary. Hence, we do not have to
apply any pruning techniques to keep vocabularies
small.

Projected Sequence Layer: For the sequence
layer we use 2-layer bi-LSTM with 100 state size.
Self-Attention Layer: We set H = 4 heads for
the multi-head attention model and attention size =
bi-LSTM state size.

CRF Tagging: We use CRF model as the default
output model for all SODA networks.

4 Datasets and Experimental Setup

4.1 Dataset Description

We evaluate our on-device SoODA model on widely
used and popular conversational slot extraction
datasets.

o ATIS: Slot Extraction The Airline Travel In-
formation Systems dataset (Tiir et al., 2010) is



ATIS SNIPS
Model F1 Sent. Acc. F1 Sent. Acc.
SoDA (our on-device model) 95.8 88.1 93.6 85.1
DistillBERT (66M) (Ahuja and Desai, 2020; Sanh et al., 2019) | 95.4% - 94.6 -
BERT (110M) (Ahuja and Desai, 2020; Devlin et al., 2019) 96.0 - 95.1 -
Capsule-NLU (Zhang et al., 2019) 9521 83.4 1 91.81 80.9 1
StackPropagation (Qin et al., 2019) 95.9 86.51 94.2 86.9
Interrelated SF-First with CRF (E et al., 2019) 95.71 86.8 1 91.41 80.61
GatedFullAtten. (Goo et al., 2018) 94.8 1 82.2 1 88.8 1 7551
GatedIntentAtten. (Goo et al., 2018) 9521 82.6 1 88.3 1 74.6 1
JointBiLSTM (Hakkani-Tur et al., 2016) 94.3 1 80.7 1 87.31 73271
Atten.RNN (Liu and Lane, 2016) 94.2 1 7891 87.8 1 74.1 1

Table 1: Comparison of SODA against other Non-On-Device Conversational Slot Extraction Methods. All meth-
ods are significantly larger in model size than SoDA ; 1 indicates SODA improvement

Model ATIS (F1) | SNIPS(F1)
SoDA (our on-device model) 95.83 93.6
Convolution (Ahuja and Desai, 2020)
Single-task 94.011 85.06 1
Multi-task 943071 84.381
Convolution-Compressed (Ahuja and Desai, 2020)
Structured Pruning Single-task 94.611 85.111
Structured Pruning Multi-task 94.4271 83.81 1

Table 2: Comparison of SODA against other On-Device Conversational Slot Extraction Methods; 1 indicates

SoDA improvement

widely used in spoken language understanding re-
search. The dataset contains audio recordings of
people making flight reservations. We used the
same data as (Tiir et al., 2010; Goo et al., 2018).

e SNIPS: Slot Extraction To verify the gen-
eralization of the proposed model for slot extrac-
tion, we use another natural language understand-
ing dataset with custom intent-engines collected by
the Snips personal voice assistant. We used the data
from (Goo et al., 2018). Compared to the single-
domain ATIS dataset, Snips has multiple domains
resulting in larger vocabulary.

Table 3 shows the characteristics of the two con-
versational slot extraction datasets such as number
of entity/slot types, number of sentences in train
and test data.

Dataset | #Slot Types | Train | Test
ATIS 120 4,478 | 893
SNIPS 72 13,084 | 700

Table 3: Conversational Slot Extraction Dataset Char-
acteristics
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4.2 Experimental Setup & Metrics

We setup our experiments as given a sequence label-
ing task and a dataset, we train an on-device SoDA
model. Similarly to prior work, for each ATIS and
SNIPS datasets, we report I} score on the test set
and the overall sentence accuracy (Hakkani-Tur
et al., 2016; Goo et al., 2018).

5 Results for Conversational Slot
Extraction

This section presents results from the conversa-
tional slot extraction task on the ATIS and SNIPS
datasets. Tables 1 and 2 show the obtained results
from our on-device SoDA approach, which outper-
formed prior state-of-the-art on-device slot extrac-
tors based on single and multi-task convolution in-
cluding the compressed convolution models (Ahuja
and Desai, 2020). Our on-device SoDA even out-
performed prior non-on-device state-of-the-art neu-
ral models like Capsule-NLU, StackPropagation,
RNN, CNN, Gated full attention, joint intent-slot
modeling and even BERT models on ATIS and
SNIPS datasets.



5.1 Comparison with On-Device
State-of-the-art Slot Extractors

An important study in this work is a comparison
between our on-device model against prior state-
of-the-art on-device slot extraction models (Ahuja
and Desai, 2020). The models of (Ahuja and Desai,
2020) are based on simple convolution model com-
pressed with structured pruning. Two variations of
this model are developed: single task where only
one task is performed like slot extraction and multi-
task model where two conversational tasks (slot ex-
traction and intent detection) are jointly optimized.
The multi-task approach was commonly used in
earlier works (Hakkani-Tur et al., 2016) to improve
the performance of the individual tasks. (Ahuja
and Desai, 2020) further compressed these models
with structured pruning and distillation. As shown
in Table 2, SoDA outperforms the convolution sin-
gle and multi-task approaches by 1.82% for ATIS
and 8.54% for SNIPS datasets. Similarly, SoDA
outperforms even the compressed single and multi-
task model variants by 1.22% ATIS and 9.76%
for SNIPS without relying on pruning or distilla-
tion. The significant performance improvements
for SoDA model stem from the memory-efficient
and robust projection representations which better
capture word and semantic similarity.

5.2 Comparison with Non-On-Device Slot
Extractors

The main objective of on-device work is to de-
velop small and efficient models that fit on devices
with limited memory and capacity. In contrast,
non-on-device models do not have any memory
and capacity constraints, as they use all resources
available on the server side. Therefore, a direct
comparison between on-device and non-on-device
models is not fair. Taking into consideration these
major differences, we show in Table 1 results from
SoDA and state-of-the-art non-on-device models
with the objective to highlight the power of our on-
device work in achieving competitive results and
even outperforming widely used approaches such
as Capsule-NLU, StackPropagation, RNN, CNN,
Gated full attention, joint intent-slot modeling and
even BERT models on ATIS and SNIPS datasets.
SoDA on-device model significantly improves
over Capsule-NLU (Zhang et al., 2019) which uses
capsule networks to model semantic hierarchy be-
tween words, slots and intent using dynamic rout-
ing by agreement schema. SoDA also improves
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over the Interrelated SF-First with CRF approach
(E et al., 2019), which uses BILSTM with attentive
sub-networks for slot and intent modeling. Sim-
ilarly, improvements are seen over the attention
RNN model (Liu and Lane, 2016) on ATIS and
SNIPS. SoDA also achieves better performance
than the joint BiLSTM model of (Hakkani-Tur
et al., 2016), which uses intents to guide the pos-
sible slot types associated with the intent. Unlike
those approaches, SoDA does not use any addi-
tional information such as the intent classes to
further constraint the slot types nor it uses any
pre-trained embeddings, yet SODA achieves bet-
ter performance than the joint BILSTM models and
capsule networks on both datasets.

Finally, we also compare results against the most
recent state-of-the-art neural models of (Goo et al.,
2018). Both models are non-on-device. One uses
full attention, while the other uses gated intent at-
tention for the slot extractor. Overall, SODA signif-
icantly improves over both gated attention neural
models (Goo et al., 2018) with +0.6% to +1% ac-
curacy on ATIS and +4.8% to +5.3% accuracy on
SNIPS. This is pretty impressive given that SODA
does not rely on any intent information to constraint
the slot type during extraction and also SoDA is an
embedding free method that learns the representa-
tions on the fly resulting in producing magnitudes
smaller models, which remain highly accurate.

We also compare our approach SoDA against
much larger, contemporary BERT models (Devlin
et al., 2019; Sanh et al., 2019) that rely on large-
scale, pre-trained Transformer networks. Surpris-
ingly, SoDA achieves comparable results to BERT
and even outperforms its memory-optimized vari-
ant DistilBERT (Sanh et al., 2019) while achieving
135x and 81x compression rates, respectively.

6 SoDA Performance Analysis

Next, we show various ablation studies that evalu-
ate the performance of different SODA components.

6.1 Parameters vs I}

We study the impact of the number of parameters
on SoDA F} performance. We control the model
size by varying the parameters corresponding to
the projection and BiLSTM state sizes. For in-
stance, on ATIS SoDA achieves 95.83% F; with
814556 parameters; 94.75% with 212540 parame-
ters; 93.85% with 73290 parameters; 92.69% with
as few as 59365 parameters. This study shows that



even with less parameters, SODA achieves high
performance.

6.2 Model Size vs F}

We study how the model size affects SODA ’s per-
formance. Figure 2 shows results of the model size
with the corresponding F; of SoDA on ATIS slot
extraction. Even with very small memory size of
286KB SoDA still achieves high performance of
93.85 F. Moreover, SoDA achieves results com-
parable to BERT Transformer models but at a tiny
fraction of the model size.

‘® SoDA (on-device) @ BERT (Transformer)
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Figure 2: Effect of SoDA and BERT Model Sizes on
Slot Extraction Accuracy for ATIS.

6.3 Impact of Projection Conditioning on F}

We compare the projection conditioning mecha-
nisms we introduced. On ATIS, the Hadamard
(o) conditioning reaches 94.8% F7 vs Dense (D)
conditioning reaches 95.8% F1. This comparison
shows that Dense conditioning is better.

6.4 Impact of CNN on F}

We evaluate the impact of CNN model on SoDA
for ATIS. SoDA without CNN reaches 88.85%
F1 compared to 95.8% F} for SoDA with CNN.
This shows that adding character information to
embedding-free projections further boosts perfor-
mance for on-device sequence tagging.

6.5 Impact of CRF on F}

We evaluate the impact of CRF model on SoDA
for ATIS. Adding CRF to the SoDA model yields
+1.07% going from 94.73% to 95.80% F, which
shows the benefit of CRF also for on-device.

6.6 Efficiency/Speed of Training Time on
Single CPU

Training SoDA on a single machine with CPU
1.3GHz Intel core and 8GB memory for ATIS
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takes 9.6 min to converge with 0.8 min per epoch
with 56K tokens. Inference takes << 10ms on
Nexus 5 smartphone device which is an order mag-
nitude faster than DistilBERT and BERT models
running on CPU.

7 Conclusion

We introduced a novel on-device conversational
slot extraction model called SoDA which uses
embedding-free projections and character informa-
tion to construct compact word representations, and
then learn a sequence model using a combination
of bidirectional LSTM with self-attention and CRF.
We evaluate our approach on multiple slot extrac-
tion datasets. Our on-device model SoDA achieves
state-of-the-art results and also improved over non-
on-device models like Capsule-NLU (Zhang et al.,
2019), StackPropagation (Qin et al., 2019), Interre-
lated SF-First with CRF (E et al., 2019), joint BiL-
STM (Hakkani-Tur et al., 2016), attention RNN
(Liu and Lane, 2016), gated attention (Goo et al.,
2018) and even BERT models (Sanh et al., 2019).

Our on-device SoDA model also significantly
outperforms state-of-the-art on-device slot extrac-
tion models of (Ahuja and Desai, 2020), which are
based on convolution and are further compressed
with structured pruning and distillation.

As shown in the evaluation and ablation stud-
ies, unlike existing large neural networks that rely
on additional information such as pre-frained em-
beddings, intent information and knowledge bases,
SoDA does not use any external resources, and yet
it achieves good performance, while maintaining
compact size.
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Abstract

In this paper, we study the utilization of pre-
trained language models to enable few-shot
Natural Language Generation (NLG) in task-
oriented dialog systems. We introduce a sys-
tem consisting of iterative self-training and an
extensible mini-template framework that tex-
tualizes the structured input data into semi-
natural text to fully take advantage of pre-
trained language models. We compare var-
ious representations of NLG models’ input
and output and show that transforming the
input and output to be similar to what the
language model has seen before during pre-
training improves the model’s few-shot perfor-
mance substantially. We show that neural mod-
els can be trained with as few as 300 annotated
examples while providing high fidelity, con-
siderably lowering the resource requirements
for standing up a new domain or language.
This level of data efficiency removes the need
for crowd-sourced data collection resulting in
higher quality data annotated by expert lin-
guists. In addition, model maintenance and
debugging processes will improve in this few-
shot setting. Finally, we explore distillation
and using a caching system to satisfy latency
requirements of real-world systems.

1 Introduction

Task-oriented dialog systems are commonplace in
automated systems such as voice-controlled assis-
tants, customer service agents, and website naviga-
tion helpers. Natural Language generation (NLG)
is an essential part of task-oriented dialog systems,
which converts data into natural language output to
be subsequently served to the users. Since an NLG
response directly impacts the user’s experience, it
should convey all of the information accurately,
should be contextualized with respect to the user
request, and be fluent and natural.

*Work done while on leave from Ohio State University.
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Commercial NLG systems are typically built
on rule- or template-based text generation meth-
ods (Reiter and Dale, 2000; Gatt and Krahmer,
2018; Dale, 2020). These systems often consist of
a human-authored collection of response templates
with slot value placeholders. The placeholders are
later filled with the dialog input at the runtime.
Template-based NLG modules provide inherent
fidelity, strictly controlled style and wording, and
low latency, which makes them an appealing choice.
However, template-based systems are challenging
to scale since new templates need to be authored for
different response variations; templates authored
for a prior domain are not usually reusable for fu-
ture domains; and it becomes increasingly ardu-
ous to author high-quality templates for complex
domains. More importantly, in spite of the high
amount of time and resources it usually takes to in-
still linguistic information into the templates, they
are not contextualized on the user query, and the
limited set of templates results in bounded natural-
ness of the system’s responses.

Recently, generative models (Wen et al., 2015;
Dusek and Jurcicek, 2016; Rao et al., 2019) have
become popular for their data-driven scaling story
and superior naturalness over the typical template-
based systems (Gatt and Krahmer, 2018; Dale,
2020). However, training reliable and low-latency
generative models has typically required tens of
thousands of training samples (Balakrishnan et al.,
2019; Novikova et al., 2017). Model maintenance
with such a large dataset has proven to be chal-
lenging, as it is resource-intensive to debug and fix
responses, make stylistic changes, and add new ca-
pabilities. Therefore, it is of paramount importance
to bring up new domains and languages with as few
examples as possible while maintaining quality.

Pre-trained models like GPT2 (Radford et al.,
2019) have been recently adapted to perform few-
shot learning for task-oriented dialog (Peng et al.,
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2020; Chen et al., 2020). However, these methods
have not usually addressed production concerns
such as balancing latency and accuracy, which we
explore in this paper. Arun et al. (2020) do also con-
sider this trade-off in their data efficiency study, ul-
timately recommending several sampling and mod-
eling techniques to attain production quality with
fast, light-weight neural network models. Since
their work is the most similar to ours, we focus our
experiments on the most complex domain exam-
ined by Arun et al. (2020), the weather dataset, and
demonstrate that we can achieve production qual-
ity with approximately 8X higher data-efficiency
levels by making use of textualized inputs and itera-
tive self-training. In particular, we propose scalable
mini-templates to convert structured input into sub-
natural text that is more suitable for re-writing by
language models. We also utilize knowledge dis-
tillation and caching to make our models suitable
for production. Finally, we explore model-based
acceptability classifiers to ensure fidelity of the
generated responses, which is essential for a real-
life NLG system. Using this framework, we show
that we can bring up a new domain with realistic
complexity using only 300 annotated examples.
Our specific contributions are as follows:

1. we introduce a generalizable bottom-up tem-
plating strategy to convert structured inputs to
semi-natural text;

we present results of experiments with differ-
ent representations of input data and output
text including structured vs. textual and lexi-
calized vs. partially delexicalized;

. we propose a combination of using pre-trained
language models, self-training, knowledge
distillation, and caching to train production-
grade few-shot NLG models; and

. we release datasets, model predictions, and
human judgements to study the NLG domain
stand-up under the few-shot setting.

2 Related Work

Pre-trained language models have shown promis-
ing results for generation tasks such as translation,
summarization and data-to-text (Lewis et al., 2020;
Yang et al., 2020). As noted above, Peng et al.
(2020) and Chen et al. (2020) likewise explore pre-
trained models for few-shot NLG in task-oriented
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dialog, but they do not investigate how to achieve
acceptable latency while maintaining high quality.

Using templates alongside pre-trained language
models for NLG has been recently introduced by
Kale and Rastogi (2020), where templates for sim-
ple input scenarios are concatenated to form a tem-
plate for a more complicated scenario. The tem-
plated scenario is then fed to a pre-trained language
model instead of the structured input. In contrast
to this flat approach, which creates a verbose in-
put for the models to re-write, we use an efficient
bottom-up approach with simple mini-templates
to “textualize” the individual slots and dialog acts
to semi-natural and telegraphic text. As such, we
don’t need to have various templates for simple sce-
narios and require only one rule for each new slot to
be published with the possibility of choosing from
several predefined rules. Moreover, the rules can be
reused across domains which helps with efficiency
and generalization. Also related is the approach of
Kasner and Dusek (2020), who use templates ex-
tracted from the training data in part, though their
approach is then followed by automatic editing and
reranking steps.

Self-training has been previously investigated for
NLG by Kedzie and McKeown (2019) and Qader
et al. (2019), though they do not explore using pre-
trained models with self-training. Also related are
earlier approaches that use cycle consistency be-
tween parsing and generation models for automatic
data cleaning (Nie et al., 2019; Chisholm et al.,
2017). More recently, Chang et al. (2021) have
developed a method for randomly generating new
text samples with GPT-2 then automatically pair-
ing them with data samples. By comparison, we
take a much more direct and traditional approach to
generating new text samples from unpaired inputs
in self-training (He et al., 2020), using pre-trained
models fine-tuned on the few-shot data for both
generation and reconstruction filtering.

3 Task

Our task is to convert a tree-based scenario into nat-
ural text, given the original query. An example data
item together with its transformations (Section 4)
is shown in Table 1.

3.1 Data

Our experiments were conducted using 4 task-
oriented datasets. We focused on the most chal-
lenging dataset, Conversational Weather, which is



Query How is the weather over the next weekend?
INFORM 1l[temp_low[20] temp_-high[45] date_time]| next weekend]]]
Structured CONTRAST_1[
MR INFORM 2 [condition|[ sun ] date_time]| Saturday]]]
INFORM 3[condition[ rain ] date_time]| Sunday | ]1]
]
INFORM.1[temp_low[temp-low_1] temp-high[temp-high_ 1] date_time|
Delexicalized [next weekend]]]
Structured CONTRAST_1[
MR INFORM 2 [condition[ sun ] date_time]| weekday_111]]
INFORM 3[condition[ rain ] date_time]| weekday-2111
]
Textualized MR J:.nf orm low temperature 20, high temperature 45, next weekend.
inform sun, on Saturday but inform rain, on Sunday.
Delexicalized inform low temperature temp_low_1, high temperature temp_high_1, next weekend.
Textualized MR inform sun, on weekday-1 but informrain, on weekday_2.
INFORM 1[date_time[ next weekend] Jexpect a low of temp_-low[20]
and a high of temp_high[45].]
Structured CONTRAST_1[
Reference INFORM 2[it will be condition[sunny] date_time[on Saturday]]]
but
INFORM 3[ it’1ll condition[rain] date_time[on Sunday]]1]
-1
INFORM. 1 [date_time [ next weekend] Jexpect a low of
temp_-low|[temp-low_-1]and a high of temp-high[temp_-high_1].]
Delexicalized CONTRAST_1[
Structured INFORM 2[it will be condition[sunny] date_time[on weekday_1]]1]
Reference but
INFORM 3[ it’1ll condition[rain] date_time[on weekday_2]11]
-1
Reference Next weekend expect a low of 20 and a high of 45. It will be sunny on Saturday but it’1l rain on Sunday.
Delexicalized Next weekend expect a low of temp_low_1 and a high of temp_high_1.
Reference It will be sunny on weekday-1 but it’ll rain on weekday_2.

Table 1: Representations of NLG input and output. Query, Structured MR, and Delexicalized Structured MR
are inputs to the NLG task. Textualized MR and Delexicalized Textualized MR are intermediate model inputs.
Reference is our desired output, which can be delexicalized in text format as seen in Delexicalized Reference or
annotated as seen in Structured Reference and Delexicalized Structured MR.

similar to the one introduced in Balakrishnan et al.
(2019). We also used three additional datasets for
joint training, namely the Reminder, Time, and
Alarm domains released in Arun et al. (2020).

All of the datasets use a tree structure to convey
the meaning representation (MR) that has been dis-
cussed in Balakrishnan et al. (2019). Discourse re-
lations (CONTRAST and JUSTIFY) were used in
some examples to connect a possible list of dialog
acts (REQUEST, INFORM, etc.). Many examples
contain only a few dialog acts without discourse
relations.The dialog acts contain a list of slot key
and value pairs. The synthetic user queries and
scenarios were generated by engineers, while the
annotated responses were created by human annota-
tors following guidelines written by computational
linguists. The responses were verified to be gram-
matical and correct by the linguists to ensure data
quality.

We used two test sets for the Weather domain:
(1) a challenging version which consists of data
from a wider distribution of inputs compared to
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those we expect to encounter in production, and (2)
a real-world version to evaluate the performance
realistically. All of our data is simulated and cre-
ated by expert linguists, who were responsible for
adding the annotations illustrated in the references
in Table 1. The challenging test set is used to dif-
ferentiate between models and to measure model
robustness in case of possible upstream changes.
All reported numbers are against the challenging
test set unless otherwise stated. Descriptive statis-
tics of the datasets are shown in Table 2. The new
real-world test set for Weather contains 800 sam-
ples.!

3.2 Maetrics

Human evaluation is used to compare the effect of
input and output structure and delexicalization on
model performance. Judgments were obtained for
493 samples out of the challenging test set. Fol-

"The textualized datasets, model outputs, and human
evaluation data can be found at https://github.com/
facebookresearch/FewShotNLG



Domain Training | Validation | Test
Weather 25390 3078 3121
Reminder 9716 2794 1397
Time 5530 1529 790
Alarm 7163 2024 1024

Table 2: Number of examples in training, validation,
and test sets for all datasets.

lowing Arun et al. (2020), each sample was eval-
uated by two separate annotators followed by a
tie-breaker for correctness and grammaticality:

Correctness Evaluation of semantic correctness
of a response. Annotators check for missing
slots, hallucinations, and bad slot aggregation.

Grammaticality Checks for grammatical correct-
ness of a sentence, which includes complete-
ness, subject-verb agreement, word order, sen-
tence structure, etc.

In the results, we report the correctness and gram-
maticality percentage as the proportion of the test
items judged to be both correct and grammatical.

We also use Reconstruction Accuracy as an of-
fline metric to measure the effect of data reduction
and self-training on model performance. We fine-
tune BART large as a reverse model converting
responses to input scenarios. After the generation
task, the reconstruction model is used to regenerate
the scenario. For each sample, if the reconstructed
scenario is exactly the same as the original scenario,
we count that as a correct generation (Qader et al.,
2019). Note that using reconstruction in production
is prohibitive due to its high latency.

3.3 Models

The model architectures used in this study are either
LSTM-based sequence-to-sequence (S2S) models
(Bahdanau et al., 2014) or derivatives of a pre-
trained large transformer-based S2S model called
BART (Lewis et al., 2019). For BART, we use four
variants with a total of 6 to 24 encoder and decoder
layers (Section 4.3). BART uses byte pair encod-
ing as the tokenization method. For each model
fine-tuning, we use the ADAM optimizer with 300
warm-up steps. The initial learning rate of 5Se-5 is
reduced by a factor of 0.5 if validation loss plateaus
for 3 epochs. Each model is trained for 100 epochs
with a batch size of 32 (across 8 GPUS) with an
early stopping strategy terminating the training if
the validation loss stops decreasing for 5 epochs.
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To decrease latency, all models use a beam size
of 1.

In the LSTM-based models, we use trainable
50d GloVe embeddings. The tokenization is word
based with possibility of out of vocabulary tokens.
We use the ADAM optimizer to train the models
from random initialization. An initial learning rate
of 0.01 is used, which gets reduced by a factor of
0.1 if validation loss plateaus for 2 epochs. The loss
function is label smoothed cross entropy, where the
beta parameter is between [0.01, 1]. A batch size
of 32 is used and all models are trained for 100
epochs with early stopping after 5 epochs.?

4 Methodology

4.1 Input and Output Representation

The Meaning Representation (MR) consumed by
our NLG model is a tree consisting of discourse
relations, dialog acts, and slots (possibly nested).
An example of such input is shown in Table 1. We
hypothesize that we can utilize the power of pre-
trained models more effectively by transforming
the input to a form closer to what the models have
seen during pre-training. As such, we textualize
the input trees using mini-templates. We provide
templates for the individual nodes in the tree (i.e.,
dialog acts and slot labels). As such, we traverse
the scenario tree and textualize the input iteratively
by combining the templates for the nodes we come
across (Table 1).

As mentioned earlier, Kale and Rastogi (2020)
propose an approach of using templates for sim-
ple input scenarios to form input for more com-
plicated flat scenarios, which where subsequently
fed to a pre-trained language model. Our approach
requires less manual effort since it adopts a bottom-
up approach with simpler mini-templates to “tex-
tualize” the individual slots (possibly nested) as
shown in Figure 1. We recommend several templat-
ing schemes which enable us to add new domains
to the framework with less resources. As a guide-
line, one should choose a templating scheme for

2Since the model response is conditioned on the user query
as well as the meaning representation, there is in principle
some risk that BART could generate inappropriate (e.g., pro-
fane) outputs in response to specific user queries. While we
leave a full investigation of this issue to future work, in prac-
tice we have observed that the risk appears to be very low, as
the user’s query must be recognized as a valid intent before
the model is invoked to generate a response, and the model
learns to condition the response on the input only in limited
ways. Additionally, for task-oriented domains such as weather,

it is possible to use a limited vocabulary to further reduce any
such risk.



Input dialog acts and
discourse relations

First textualization
step

Second textualization
step

Third textualization
step

INFORM_1[
temp_low[ 20 ]
temp_high[ 45 ]
date_time|[

next weekend

]

CONTRAST_1[

INFORM_2[
condition[ sun ]
date_time[

Saturday

|

1

INFORM_3[

condition| rain ]
date_time|[

Sunday

INFORM_1[
low temperature 20
high temperature 45

next weekend
Custom Function
|

CONTRAST_1[
INFORM_2[
sun

On Saturday
Custom Function

]
INFORM_3[

rain

On Sunday
Custom Function

inform
low temperature 20,
high temperature 45,

next weekend

CONTRAST_1[
inform
sun,

on Saturday

inform
rain,

on Sunday

inform
low temperature 20,
high temperature 45,

next weekend

inform
sun,

on Saturday

but
inform
rain,

on Sunday

Resulting textaulized input: Inform low temperature 20, high temperature 45, next weekend . inform sun, on Saturday but inform rain, on Sunday.

Figure 1: Textualization process using configurable pre-defined templates and custom templates.

new slots that makes the textualized representa-
tion understandable for humans. While some slots
might require custom templates, our experiments
have shown that those are just a small fraction of
all slots. Our proposed templating schemes are:

 Dialog acts: We prepend the name of the in-

tended dialog act to textualize them after all
their slots have been previously textualized.

* Discourse relations: Since discourse rela-
tions always encompass dialog acts, we use a
mapping of them with discourse connectives.
For example, dialog acts inside a Contrast
relation are joined using a but, while those
inside Join are mapped to and.

* Slot values: A possible behavior for textual-
izing slots inside dialog acts is just to mention
the slot value. For example, we chose to repre-
sent weather condition using this scheme.

* Slot name and values: Slot names are
replaced by an engineer-defined string and
placed before slot values. For example, we
represent slots such as low_temperature

and high temperature using this
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method since just using slot values is
misleading for the models.

Custom: Writing custom templates for com-
plex slots might be necessary to give the mod-
els a better chance to produce high-quality
responses. For example, date_time and

date_time_range are textualized using
this method in this work.

* Default: The default behavior for textualizing
any slot which has not been assigned another
method is to remove underscores from slot
names and prepend it to its slot value. This de-
fault behavior enables us to use this system on
new domains without any change and expect
reasonable performance.

The second technique that we explore is delexi-
calizing the slot values in order to mitigate model
hallucination. During our initial experiments, we
observed that in few-shot settings, pre-trained lan-
guage models can drop some slots or fail to exactly
copy their values, which can be catastrophic in
a production system. This has been observed in
other generation tasks using pre-trained models as
well (Einolghozati et al., 2020). Therefore, we ex-



plore delexicalization of slots when linguistically
permissible. For example, weather condition
can not be delexicalized since its different values
such as sand storm or fog will change the sur-
face form of the sentence significantly while a slot
such as weekday can be delexicalized. We also
combine the few-shot Weather samples with data
for three other domains to provide the model with
more task-oriented data.

Balakrishnan et al. (2019) have previously
shown that even with delexicalization of slot val-
ues, maintaining the tree structure in the output as
generated semantic annotations (as shown in Ta-
ble 1) is useful for rule-based correctness checking
of low-capacity LSTM-based NLG models in the
full-data setting. Our hypothesis is instead that gen-
erating plain (rather than structured) text, together
with textualizing the input structure and delexical-
ization, can help the few-shot NLG task with better
utilization of large pre-trained models. In addition,
we observe that maintaining the structure in the
output increases the sequence length and therefore
increases the latency of the models significantly.
Therefore, we perform experiments with different
variations of the input and output structures as well
as various BART sizes.

4.2 Self-Training

Annotating large quantities of high-quality data is
time and resource consuming. However, it is often
possible to automatically generate a lot of unla-
beled data using a synthetic framework. Here, we
adapt and extend the semi-supervised self-training
strategy introduced by He et al. (2020). As shown
in Figure 2, self-training consists of multiple cycles
of generation and reconstruction.

We fine-tune BART (Lewis et al., 2020), a pre-
trained seq2seq language model, for both steps. For
generation, we experiment with various ways of
textualizing the scenario tree, concatenated with
the input query, before using it as input to the gen-
eration model. The reason for the latter is that
there could be some subtleties in the original query
which would be helpful in the response generation
that are not included in the scenario tree. For ex-
ample, Yes/No-questions are not reflected in the
tree: Is it cold? and What’s the weather? have
the same scenario tree, though the former would
require a Yes/No confirmation in the result. In par-
allel, the same generation data is used to fine-tune
a reconstruction BART large model to obtain the
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Model Latency (ms) | Encoder x Decoder (layers)
BART large 935 12X 12
BART base 525 6X6
BART _3.3 253 3X3
BART _5_1 114 5X1
LSTM 34 1X1
Cache 9 -

Table 3: The median inference latency of different mod-
els (1000 inferences using 16GB Quadro GP100 GPUs)
compared to cache latency.

generation input (without the input query), given
the responses. After generation in each cycle, we
use the reconstruction model to select samples with
exact reconstruction match. Finally, the selected
samples are added to the training pool for knowl-
edge distillation or the next self-training cycle.?

4.3 Knowledge Distillation

One of the biggest obstacles in real-world applica-
tion of pre-trained language models such as BART
is their prohibitive latency. We explored knowledge
distillation to mitigate this issue, here. We perform
sequence-level knowledge distillation (Kim and
Rush, 2016) from BART large to BART models
with various smaller sizes, in addition to a small
LSTM model (Table 3).

4.4 Caching

Another solution to mitigate the latency concerns
of large models for production systems is to use
caching. A median limit of 100ms for produc-
tions systems is reasonable in our view. However,
as shown in Table 3, the median inference latency
even after knowledge distillation into a small BART
model is more than 100ms. As such, we can uti-
lize a caching approach that stores model input and
output as key-value pairs. Our cache implementa-
tion is an RPC call to an indexed datastore, with a
median lookup time of 9 ms. Even with a caching
solution, knowledge distillation is essential to limit
latency of 90th and 95th percentile of the traffic.

The efficacy of using a cache is largely depen-
dent on the hit rate, which can vary by domain
complexity, the inclusion of the user query in the
model input, and the amount of delexicalization.

3As an alternative to using a reconstruction model to vali-
date the generated responses, we could use our acceptability
model (Section 4.5) to filter or rank the responses; we leave
these options for future work.
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Figure 2: Few-shot NLG process consists of several cycles of self-training followed by knowledge distillation.

4.5 Acceptability Checking

In a production neural NLG system, reliable and
low-latency filters are essential to guard against in-
correct and ungrammatical model responses. Arun
et al. (2020) proposed coupling neural models with
fall-back templates to deliver more fluent model
responses in a safe manner.* Their suggested ac-
ceptability checking method, tree accuracy (Bal-
akrishnan et al., 2019), requires retention of the
tree-based structure that we are proposing to re-
move. We explored several recent model-based
acceptability checking mechanisms as alternatives
(Harkous et al., 2020; Anonymous, 2021). Building
an acceptability model requires collecting positive
and negative examples. We use the samples that
pass the reconstruction step of self-training as the
positive ones. The challenge lies in approximating
mistakes a model is likely to make in production,
and creating a dataset of synthetic negative exam-
ples. Anonymous (2021) use mask filling with
pre-trained models for creating synthetic incorrect
examples, which we adopt using BART.

We train two models, a production-grade convo-
lutional (DocNN) model (Jacovi et al., 2018) with
median latency of 8 ms and a high-capacity pre-
trained RoBERTa-Base model (Liu et al., 2019)
with latency 100 ms. These binary classification
models determine whether a sequence of delexical-
ized textualized input MR concatenated with the
delexicalized model output is correct at runtime.

*Note that in the case of the Weather domain, the fall-back
templates only convey simplified content, as the domain was
deemed too complex to develop satisfactory templates for all
possible combinations of dialog acts that can appear in the full
input MRs.
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4.6 End-to-End Architecture

To summarize, we first transform and delexical-
ize the input and output of all samples using the
aforementioned input transformation framework.
We subsequently annotate several hundred samples
from our target domain. The annotated samples
are then added to the data from other domains for
joint-training. Next, several (usually two) cycles
of self-training (generation and reconstruction) are
carried out to auto-annotate the remaining target
domain input data. Subsequently, sequence-level
knowledge distillation from BART large to smaller
models is performed. A schematic of the training
process can be seen in Figure 2. Finally, a caching
system and a few-shot acceptability classifier are
trained to cover all production requirements.

5 Results
5.1 Input and Output Representation

Table 4 shows the correctness and grammaticality
(c&g) evaluations for various few-shot models in
comparison to the full data setting. The results vali-
date our hypothesis that transforming the structured
data into a textual form (similar to those used for
pre-training BART) increases model performance
in few-shot settings. In addition, we observe that
delexicalizing some slot values consistently boosts
the performance of the NLG models. The correct-
ness and grammaticality score is highly correlated
with automatic BLEU scores.Therefore, we recom-
mend adoption of delexed textualized input and
delexed text output for training production-quality
few-shot NLG models.

In the full data setting, retaining the tree structure



Input representation | Output representation | BART large BART base BART-3.3 BART.5_1 LSTM | Full BART
Lexed Structured Lexed Structured 73.0 71.2 70.2 69.2 69.6 90.2
Lexed Structured Delexed Structured 71.4 71.0 67.3 67.5 66.3 92.5
Lexed Structured Lexed Text 79.9 72.4 65.3 66.3 62.1 90.9
Lexed Structured Delexed Text 81.5 76.1 72.2 68.8 66.5 91.7
Delexed Structured | Delexed Structured 77.3 72.8 67.1 71.2 74.4 90.2
Delexed Structured | Delexed Text 71.8 72.0 66.7 64.7 64.9 90.2
Lexed Textualized Lexed Text 84.0 78.7 80.5 77.1 73.6 88.9
Delexed Textualized | Delexed Text 85.2 80.3 78.9 79.5 78.5 88.8

Table 4: Effect of input & output representation on correctness and grammaticality (c&g%) of few-shot model re-
sponses (using 250 annotated samples). Full BART uses all annotated training data with a BART base model as the
top line. Delexed Textualized input with Delexed Text output achieves the highest performance with most few-shot
models. Lexed Structured input with Delexed Structured output reaches the highest full data performance, while
performing among the worst combinations in the few-shot setting. Generating delexed text boosts performance

consistently compared to lexed text.

helps with more accurate natural language gener-
ation (Table 4), which is in line with observations
in Balakrishnan et al. (2019). The highest c&g%
of 92.5 is achieved when input is lexed structured
and output is delexed structured: it is 2.3% higher
than performance of the model with the same lexed
structured input but with lexed structured output,
which is due to the lower possibility of halluci-
nation when the model output is delexed. In ad-
dition, this combination has higher performance
compared to the one with delexed structured input
and delexed structured output, which is possibly
due to higher utilization of BART’s encoder knowl-
edge while processing the input sequence.

Interestingly, the lexed structured input / delexed
structured output combination with the highest full
data performance performs poorly in few-shot set-
ting across the board. Indeed, its correctness and
grammaticality is more than 10.0% lower than the
delexed textualized input / delexed text output com-
bination regardless of the capacity of the model
used for knowledge distillation. This is more evi-
dence validating our hypothesis that transforming
the structured data into a textual form will result
in more utilization of the language knowledge of
pre-trained BART models.

5.2 Data Efficiency

We ran experiments at different levels of data-
efficiency using BART small5.1 and evaluated their
performance using a reconstruction model (trained
with full data). Figure 3 shows that the recon-
struction accuracy increases with more annotated
data, as expected. However, even with 250 anno-
tated samples, we achieve a reconstruction accu-
racy of 75.0% on the challenging test set, and our
low-latency few-shot correctness model improves
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Figure 3: The effect of dataset size on model perfor-
mance (BART small5.1) with two self-training cycles.

this to 88.7%. Interestingly, human annotations
revealed a performance of 97.8% on the real-world
test set for a similar model, and the same correct-
ness model improves this to 98.8%. This observa-
tion suggests that even though there remains a sub-
stantial gap between few-shot and full-data perfor-
mance on the challenging set, the few-shot models
will perform satisfactorily in a real-world setting.

5.3 Self-Training

We also performed experiments to optimize the
number of self-training cycles. As shown in Fig-
ure 4, even one cycle of self-training increases the
performance of the model by 20.0%. From a pool
of 31,400 unlabeled samples, more than 13,500
are added during the first self-training cycle, 5,000
more are added in the second cycle followed by just
1,400 in the third cycle. The rate of addition de-
creases more after the third cycle. We recommend
2-3 self-training cycles considering computational
limits. For comparison, we also ran similar ex-
periments without joint training (not using other
domains) and self-training, which yields a baseline
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Figure 4: Model performance (BART small5.1 with
250 samples) as a function of the number of self-
training cycles.

Model Macro-F1 Precision (Co) Recall (InCo)
DoCNN 70.5 88.8 40.9
RoBERTa 75.1 90.9 54.2

Table 5: Correctness model metrics on 493 delexed
samples (83 incorrect) from a distilled BART small5.1
model (Co stands for Correct and InCo stands for In-
correct classes). Recall (Co) is kept fixed at 94.9%.

reconstruction accuracy of only 42.7%, more than
10% lower than with joint training.

5.4 Caching

For Weather, we expect a cache rate of about
60% with keys made through concatenation of user
query with delexicalized textualized input MR. For
BART small5.1, this bring down the median latency
to 51 ms, yielding a 64% improvement. We believe
that delexicalizing the user input has the potential
to improve the hit rate even further. This can be
done by replacing the user query words with values
that have been delexicalized in the MR.

Using this cache will not reduce the variation
of model responses because of how the cache key
is constructed. The delexicalized MR used in the
cache key will be the same for two requests only
if the MRs differ at most in the values of slots that
do not affect the model response. For example, if
two MRs differ only in the value of weekday, the
cache will get a hit. However, if anything else such
as the weather condition is different, there will
not be a hit. More importantly, since our models
are deterministic, if the model is delexicalized as
proposed here and the user query is used in the
cache key, the input to the model and the cache key
will be exactly the same removing any possibility
of reduction in response variation.
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5.5 Acceptability Checking

Table 5 shows that it is possible to train correct-
ness models with fully synthetic negative data in
a few-shot setting. Complementing high-fidelity
generation models with a correctness model similar
to the one here makes it possible for few-shot NLG
models to meet high production quality bars.

We experimented with using distilled LSTM-
based models together with tree accuracy filtering
as the correctness checking mechanism, which re-
quires structured output representations, following
the recommendations in Arun et al. (2020). Our cor-
rectness models with BART small5.1 demonstrated
2.0% higher precision compared to tree accuracy
with LSTMs. More importantly, tree accuracy with
LSTMs filtered out many more examples (14.4%)
compared to the correctness models with BART
small5.1 (3.6%), making this combination less suit-
able at these levels of data efficiency (8X higher).

6 Conclusion

In this paper, we explored for the first time whether
few-shot NLG models can be productionized, en-
abling us to much more effectively scale to new
domains and languages. By using a system consist-
ing of a templating approach, pre-trained language
models, self-training, and an acceptability classifier,
we found that we can stand up domains with a few
hundred annotated samples compared to several
thousands previously, while also addressing pro-
duction latency needs via knowledge distillation
and caching. At this level of data efficiency, there
is no need for crowd-sourced data collection as ex-
pert linguists can instead annotate the data used
by the system. In addition, model maintenance—
including addition of new capabilities, debugging,
and changing response style—will become signifi-
cantly easier using the few-shot system.
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Abstract

Human-assisting systems such as dialogue
systems must take thoughtful, appropriate ac-
tions not only for clear and unambiguous user
requests, but also for ambiguous user requests,
even if the users themselves are not aware of
their potential requirements. To construct such
a dialogue agent, we collected a corpus and
developed a model that classifies ambiguous
user requests into corresponding system ac-
tions. In order to collect a high-quality corpus,
we asked workers to input antecedent user re-
quests whose pre-defined actions could be re-
garded as thoughtful. Although multiple ac-
tions could be identified as thoughtful for a
single user request, annotating all combina-
tions of user requests and system actions is
impractical. For this reason, we fully anno-
tated only the test data and left the annotation
of the training data incomplete. In order to
train the classification model on such training
data, we applied the positive/unlabeled (PU)
learning method, which assumes that only a
part of the data is labeled with positive ex-
amples. The experimental results show that
the PU learning method achieved better perfor-
mance than the general positive/negative (PN)
learning method to classify thoughtful actions
given an ambiguous user request.

1 Introduction

Task-oriented dialogue systems satisfy user re-
quests by using pre-defined system functions
(Application Programming Interface (API) calls).
Natural language understanding, a module to
bridge user requests and system API calls, is an
important technology for spoken language appli-
cations such as smart speakers (Wu et al., 2019).
Although existing spoken dialogue systems as-
sume that users give explicit requests to the sys-
tem (Young et al., 2010), users may not always be
able to define and verbalize the content and condi-
tions of their own requests clearly (Yoshino et al.,
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2017). On the other hand, human concierges or
guides can respond thoughtfully even when the
users’ requests are ambiguous. For example, when
a user says, “I love the view here,” they can re-
spond, “Shall I take a picture?” If a dialogue agent
can respond thoughtfully to a user who does not
explicitly request a specific function, but has some
potential request, the agent can provide effective
user support in many cases. We aim to develop
such a system by collecting a corpus of user re-
quests and thoughtful actions (responses) of the
dialogue agent. We also investigate whether the
system responds thoughtfully to the user requests.

The Wizard of Oz (WOZ) method, in which two
subjects are assigned to play the roles of a user
and a system, is a common method for collecting a
user-system dialogue corpus (Budzianowski et al.,
2018; Kang et al., 2019). However, in the col-
lection of thoughtful dialogues, the WOZ method
faces the following two problems. First, even hu-
mans have difficulty responding thoughtfully to
every ambiguous user request. Second, since the
system actions are constrained by its API calls,
the collected actions sometimes are infeasible. To
solve these problems, we pre-defined 70 system
actions and asked crowd workers to provide the
antecedent requests for which each action could
be regarded as thoughtful.

We built a classification model to recognize sin-
gle thoughtful system actions given the ambigu-
ous user requests. However, such ambiguous user
requests can be regarded as antecedent requests
of multiple system actions. For example, if the
function “searching for fast food” and the function
“searching for a cafe” are invoked in action to the
antecedent request “I’m hungry,” both are thought-
ful actions. Thus, we investigated whether the
ambiguous user requests have other correspond-
ing system actions in the 69 system actions other
than the pre-defined system actions. We isolated a
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Level | Definition
Ql The actual, but unexpressed request
Q2 The conscious, within-brain description of the
request
Q3 The formal statement of the request
Q4 The request as presented to the dialogue agent
Table 1: Levels of ambiguity in requests (queries)

(Taylor, 1962, 1968)

portion of collected ambiguous user requests from
the corpus and added additional annotation using
crowdsourcing. The results show that an average
of 9.55 different actions to a single user request
are regarded as thoughtful.

Since annotating completely multi-class labels
is difficult in actual data collection (Lin et al.,
2014), we left the training data as incomplete data
prepared as one-to-one user requests and system
actions. We defined a problem to train a model
on the incompletely annotated data and tested
on the completely annotated data'. In order to
train the model on the incomplete training data,
we applied the positive/unlabeled (PU) learning
method (Elkan and Noto, 2008; Cevikalp et al.,
2020), which assumes that some of the data are
annotated as positive and the rest are not. The
experimental results show that the proposed clas-
sifier based on PU learning has higher classifica-
tion performances than the conventional classifier,
which is based on general positive/negative (PN)
learning.

2 Thoughtful System Action to
Ambiguous User Request

Existing task-oriented dialogue systems assume
that user intentions are clarified and uttered in an
explicit manner; however, users often do not know
what they want to request. User requests in such
cases are ambiguous. Taylor (1962, 1968) cate-
gorizes user states in information search into four
levels according to their clarity, as shown in Table
1.

Most of the existing task-oriented dialogue sys-
tems (Madotto et al., 2018; Vanzo et al., 2019)
convert explicit user requests (Q3) into machine
readable expressions (Q4). Future dialogue sys-
tems need to take appropriate actions even in
situations such as Q1 and Q2, where the users
are not able to clearly verbalize their requests

IThe dataset is available at
https://github.com/ahclab/arta_corpus.
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A | love the
> view here!

Shall I launch the
Ser | camera application?

Dialogue Agent

Figure 1: Example of thoughtful dialogue

(Yoshino et al., 2017). We used crowdsourcing to
collect ambiguous user requests and link them to
appropriate system actions. This section describes
the data collection.

2.1 Corpus Collection

We assume a dialogue between a user and a di-
alogue agent on a smartphone application in the
domain of tourist information. The user can make
ambiguous requests or monologues, and the agent
responds with thoughtful actions. Figure 1 shows
an example dialogue between a user and a dia-
logue agent. The user utterance “I love the view
here!” 1is not verbalized as a request for a spe-
cific function. The dialogue agent responds with
a thoughtful action, “Shall I launch the camera ap-
plication?” and launches the camera application.

The WOZ method, in which two subjects are
assigned to play the roles of a user and a dia-
logue agent, is widely used to collect dialogue
samples. However, even human workers have dif-
ficulty always responding with thoughtful actions
to ambiguous user requests. In other words, the
general WOZ dialogue is not appropriate for col-
lecting such thoughtful actions. Moreover, these
thoughtful actions must be linked to a system’s
API functions because possible agent actions are
limited with its applications. In other words, we
can qualify the corpus by collecting antecedent
ambiguous user requests to defined possible agent
actions. Therefore, we collected request-action
pairs by asking crowd workers to input antecedent
ambiguous user requests for the pre-defined agent
action categories.

We defined three major functions of the dia-
logue agent: “spot search,” “restaurant search,”
and “application (app) launch.” Table 2 shows the
defined functions. Each function has its own cat-
egories. The actions of the dialogue agent in the
corpus are generated by linking them to these cat-
egories. There are 70 categories in total. The func-
tions and categories are defined heuristically ac-



cording to Web sites for Kyoto sightseeing. “Spot
search” is a function to search for specific spots
and is presented to the user in the form of an action
such as “Shall I search for an art museum around
here?” “Restaurant search” is a function to search
for specific restaurants and is presented to the user
in the form of an action such as “Shall I search
for shaved ice around here?” “App launch” is a
function to launch a specific application and is pre-
sented to the user in the form of an action such as
“Shall I launch the camera application?”

We used crowdsourcing® to collect a Japanese
corpus based on the pre-defined action categories
of the dialogue agent’. The statistics of the col-
lected corpus are shown in Table 4. The request
examples in the corpus are shown in Table 3. Ta-
ble 3 shows that we collected ambiguous user re-
quests where the pre-defined action could be re-
garded as thoughtful. The collected corpus con-
taining 27,230 user requests was split into training
data:validation data:test data = 24,430 : 1,400 :
1,400. Each data set contains every category in
the same proportion.

2.2 Multi-Class Problem on Ambiguous User
Request

Since the user requests collected in Sec. 2.1 are
ambiguous in terms of their requests, some of the
69 unannotated actions other than the pre-defined
actions can be thoughtful. Although labeling all
combinations of user requests and system actions
as thoughtful or not is costly and impractical, a
comprehensive study is necessary to determine
real thoughtful actions. Thus, we completely an-
notated all combinations of 1,400 user requests
and system actions in the test data.

We used crowdsourcing for this additional an-
notation. The crowd workers were presented with
a pair of a user request and an unannotated action,
and asked to make a binary judgment on whether
the action was “contextually natural and thought-
ful to the user request” or not. Each pair was
judged by three workers and the final decision was
made by majority vote.

The number of added action categories that
were identified as thoughtful is shown in Table
5. 8.55 different categories on average were iden-
tified as thoughtful. The standard deviation was

2https://crowdworks.jp/
3The details of the instruction and the input form are avail-
able in Appendix A.1.
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Function
spot
search

Category

amusement park, park, sports facil-
ity, experience-based facility, sou-
venir shop, zoo, aquarium, botanical
garden, tourist information center,
shopping mall, hot spring, temple,
shrine, castle, nature or landscape,
art museum, historic museum, Kki-
mono rental, red leaves, cherry blos-
som, rickshaw, station, bus stop, rest
area, Wi-Fi spot, quiet place, beauti-
ful place, fun place, wide place, nice
view place

cafe, matcha, shaved ice, Japanese
sweets, western-style sweets, curry,
obanzai (traditional Kyoto food),
tofu cuisine, bakery, fast food, noo-
dles, nabe (Japanese stew), rice bowl
or fried food, meat dishes, sushi
or fish dishes, flour-based foods,
Kyoto cuisine, Chinese, Italian,
French, child-friendly restaurant or
family restaurant, cha-kaiseki (tea-
ceremony dishes), shojin (Japanese
Buddhist vegetarian cuisine), veg-
etarian restaurant, izakaya or bar,
food court, breakfast, inexpensive
restaurant, average priced restaurant,
expensive restaurant

camera, photo, weather, music,
transfer navigation, message, phone,
alarm, browser, map

restaurant 30

search

app 10

launch

Table 2: Functions and categories of dialogue agent. #
means the number of categories.

7.84; this indicates that the number of added cat-
egories varies greatly for each user request. Com-
paring the number of added categories for each
function, “restaurant search” has the highest aver-
age at 9.81 and “app launch” has the lowest aver-
age at 5.06. The difference is caused by the target
range of functions; “restaurant search” contains
the same intention with different slots, while “app
launch” covers different types of system roles. For
the second example showed in Table 3, “I’ve been
eating a lot of Japanese food lately, and I'm get-
ting a little bored of it,” suggesting any type of
restaurant other than Japanese can be a thoughtful
response in this dialogue context.

Table 6 shows the detailed decision ratios of
the additional annotation. The ratios that two or
three workers identified each pair of a user request
and a system action as thoughtful are 7.23 and
5.16, respectively; this indicates that one worker
identified about 60% added action categories as
not thoughtful. Fleiss’ kappa value is 0.4191; the
inter-annotator agreement is moderate.

Figure 2 shows the heatmap of the given and



User request (collecting with crowdsourcing)

System action (pre-defined)

I’'m sweaty and uncomfortable.

I’ve been eating a lot of Japanese food lately and I'm getting
a little bored of it.

Nice view.

Shall I search for a hot spring around here?
Shall I search for meat dishes around here?

Shall I launch the camera application?

Table 3: Examples of user requests in corpus. The texts are translated from Japanese to English. User requests for
all pre-defined system actions are available in Appendix A.2.

Function Ave. length # requests
spot search 13.44 (+4.69) 11,670
restaurant search | 14.08 (£4.82) 11,670
app launch 13.08 (+4.65) 3,890
all 13.66 (+£4.76) 27,230
Table 4: Corpus statistics

Function # added categories

spot search 8.45 (£7.34)

restaurant search 9.81 (£7.77)

app launch 5.06 (£8.48)

all 8.55 (£7.84)

Table 5: # of added action categories

added categories. From the top left of both the
vertical and horizontal axes, each line indicates
one category in the order listed in Table 2. The
highest value corresponding to the darkest color
in Figure 2 is 20 because 20 ambiguous user re-
quests are contained for each given action in the
test data. Actions related to the same role are an-
notated in functions of “spot search” and “restau-
rant search.” One of the actions near the right-
most column is identified as thoughtful for many
contexts. This action category was “browser” in
the “app launch” function, which is expressed in
the form of “Shall I display the information about
XX7?’ “Spot search” and “restaurant search” also
had one action category annotated as thoughtful
action for many antecedent requests. These cate-
gories are, respectively, “tourist information cen-
ter” and “food court.”

Table 7 shows some pairs that have large values
in Fig. 2. For any combination, both actions can
be responses to the given ambiguous requests.

3 Thoughtful Action Classification

We collected pairs of ambiguous user requests
and thoughtful system action categories in Sec.
2. Using this data, we developed a model that
outputs thoughtful actions to given ambiguous
user requests. The model classifies user requests
into categories of corresponding actions. Posi-
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Figure 2: Heat map of given and added categories
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96, 600

W = Ol 3

all

Table 6: Decision ratios of additional annotation. #
means the number of workers that identified each pair
of a request and an action as thoughtful. The Fleiss’
kappa value is 0.4191.

tive/negative (PN) learning is widely used for clas-
sification, where the collected ambiguous user re-
quests and the corresponding system action cate-
gories are taken as positive examples, and other
combinations are taken as negative examples.
However, as indicated in Sec. 2.2, several action
candidates can be thoughtful response actions to
one ambiguous user request. Since complete an-
notation to any possible system action is costly,
we apply positive/unlabeled (PU) learning to con-
sider the data property; one action is annotated as
a thoughtful response to one ambiguous user re-
quest, but labels of other system actions are not
explicitly decided. In this section, we describe the
classifiers we used: a baseline system based on PN
learning and the proposed system trained by the
PU learning objective.



Pre-defined category | Added category Frequency | Example user request

map browser 20 | Is XX within walking distance?

red leaves nature or landscape 20 | Ilike somewhere that feels like autumn.
shaved ice cafe 20 | I'm going to get heatstroke.

French expensive restaurant 20 | I'm having a luxurious meal today!

Kyoto cuisine cha-kaiseki 20 | I'd like to try some traditional Japanese food.

Table 7: Frequent pairs of pre-defined and additional categories. The user requests in Japanese are translated into

English.

Oh!| found a
rare flower!

User Request

Classifier

BERT

mmstributed
]

rest sto 0.02

-

lshavgd ice ILO?/
02

<— Target Category

Categories

Representation

MLP

Figure 3: User request classifier

3.1 Classifier

Figure 3 shows the overview of the classification
model. The model classifies the ambiguous user
requests into thoughtful action (positive example)
categories of the dialogue agent. We made a rep-
resentation of a user request by Bidirectional En-
coder Representations from Transformers (BERT)
(Devlin et al., 2019), computed the mean vectors
of the distributed representations given by BERT,
and used them as inputs of a single-layer Multi-
Layer Perceptron (MLP).

3.2 Loss Function in PN Learning
When we simply build a classifier based on

PN learning, the following loss function
(Cevikalp et al., 2020) is used to train the
model:
[Utrainl |C;—i| 1Cz, |
Loss = Z Z Z L('rj)RS(w;—xifW-eri)
i j=1 k=1
|Utrainl IC|

+HZ

i

> Relyis(w;xi)). )
j=1

Utrain 1s the set of user requests included in the
training data. C;:, and C are, respectively, the
set of the positive example action categories asso-
ciated with the user request z; and the set of the
action categories without any annotation. r; is the
rank predicted by the model for the positive cate-
gory j and L(r;) is the weight function satisfying
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the following equation:

2

Equation (2) takes a larger value when the pre-
dicted rank is far from first place. w is the weight
vector corresponding to category j. Xx; is the dis-
tributed representation corresponding to user re-
quest z;. Rs(t) is the ramp loss, which is ex-
pressed as,

Rs(t) = min(l —m,max(0,1—1¢)). (3)
m is a hyperparameter that determines the classifi-
cation boundary. Let C' be the set of defined cate-
gories, with |C| = 70. y;; is 1 if the category j is a
positive example for user request z; and —1 if it is
not annotated. x is a hyperparameter representing
the weight of the second term.

3.3 Loss Function in PU Learning

Although the loss function of PN learning treats
all combinations of unlabeled user requests and
system action categories as negative examples,
about 10% of these combinations should be treated
as positive examples in our corpus, as investi-
gated in Sec. 2.2. In order to consider the data
property, we apply PU learning (Elkan and Noto,
2008), which is an effective method for problems
that are difficult to annotate completely, such as
object recognition in images with various objects
(Kanehira and Harada, 2016).

We use a PU learning method proposed by
Cevikalp et al. (2020), which is based on la-
bel propagation (Zhou et al., 2005; Cevikalp et al.,
2008). This method propagates labels of anno-
tated samples to unlabeled samples using distance
on a distributed representation space. The origi-
nal method (Cevikalp et al., 2020) propagates la-
bels from the nearest neighbor samples on the dis-
tributed representation space. The method calcu-
lates the similarity score s;; of the propagated la-



bels (categories) as follows:

d(x;,x;) 70
exp<—(xng)'69>- 4

x; is the vector of distributed representations of
the nearest neighbor user request whose category
Jj is a positive example. d(x;,x;) is the Euclidean
distance between x; and x;, and d is the mean of
all distances. The value range of s;; is 0 < s;; <
1. It takes larger values when the Euclidean dis-
tance between two distributed representations be-
comes smaller. We call this method (PU, nearest).

However, the original method is sensitive for
outliers. Thus, we propose a method to use the
mean vectors of the user requests with the same
category. This method propagates labels accord-
ing to their distance from these mean vectors. We
update the similarity score s;; in Eq. (4) as fol-

d(Xi7 )Zj) 70

lows:
exp (— 7 69) . &)

X; is the mean vector of distributed representa-
tions of the user requests whose category j is
a positive example. We call this method (PU,
mean). The proposed method scales the similar-
ity score s;; to arange of —1 < s;; < 1 using the
following formula:

Sij

Sij

2(s — min(s))
max(s) — min(s)’

—1+ (6)

sij =
If the scaled score s;; is 0 < s3; < 1, we add
the category j to C;L_ and let s;; be the weight of
category j as a positive category. If s;; is —1 <
s;5 < 0, category j is assigned a negative label
and the weight is set to —s;;. Using the similarity
score s;;, we update Eq. (1) as follows:

Loss =
T _
[Utrain] 1C2; 1 1Cz; |

Z Z S;jS;kL(T]’)RS(W‘;!—Xi — Win)
i =1 k=1
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In Eq. (7), s;; is a weight representing the contri-
bution of the propagated category to the loss func-
tion. The similarity score s;; of the annotated sam-
plesissetto 1.

4 Experiments

We evaluate the models developed in Sec. 3,
which classify user requests into the correspond-
ing action categories.
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4.1 Model Configuration

PyTorch (Paszke et al., 2019) is used to implement
the models. We used the Japanese BERT model
(Shibata et al., 2019), which was pre-trained on
Wikipedia articles. Both BASE and LARGE
model sizes (Devlin et al., 2019) were used for the
experiments.

We used Adam (Kingma and Ba, 2015) to op-
timize the model parameters and set the learning
rate to le—>5. For m in Eq. (3) and k in Eq. (1), we
set m = —0.8,kx = 5 according to the literature
(Cevikalp et al., 2020). We used the distributed
representations output by BERT as the vector x;
in the label propagation. Since the parameters of
BERT are also optimized during the training, we
reran the label propagation every five epochs. We
pre-trained the model by PN learning before we
applied PU learning. Similarity score s;; of (PU,
nearest) is also scaled by Eq. (6) as with (PU,
mean). The parameters of each model used in
the experiments were determined by the validation
data.

4.2 Evaluation Metrics

Accuracy (Acc.), R@5 (Recall@5), and Mean Re-
ciprocal Rank (MRR) were used as evaluation
metrics. R@5 counts the ratio of test samples,
which have at least one correct answer category
in their top five. MRR (0 < M RR < 1) is calcu-
lated as follows:

UES
1 Qe

MRR —
|Utest ’ i Ty,

(®)

ry, means the rank output by the classification
model for the correct answer category correspond-
ing to user request x;. Upes is the set of user re-
quests included in the test data. For all metrics, a
higher value means better performance of the clas-
sification model. The performance of each model
was calculated from the average of ten trials. For
the test data, the correct action categories were an-
notated completely, as shown in Sec. 2.2; thus,
multi-label scores were calculated for each model.

4.3 Experimental Results

The experimental results are shown in Table 8.
“PN” is the scores of the PN learning method (Sec.
3.2) and “PU” is the scores of the PU learning
methods (Sec. 3.3). “Nearest” means the label
propagation considering only the nearest neighbor
samples in the distributed representation space.



Model Acc. (%) R@5 (%) MRR
BASE (PN) 88.33 (£0.92) | 97.99 (+0.25) | 0.9255 (40.0056)
BASE (PU, Nearest) 88.29 (£0.96) | 97.81 (+0.27) | 0.9245 (£0.0056)
BASE (PU, Mean) 189.37 (+0.78) | 97.85 (£0.26) 10.9305 (£0.0050)
LARGE (PN) 89.16 (£0.57) | 98.08 (+0.22) | 0.9316 (4-0.0032)
LARGE (PU, Nearest) | 89.06 (+0.66) | 98.01 (£0.24) | 0.9295 (£0.0036)
LARGE (PU, Mean) 190.13 (£0.51) | 98.11 (£0.27) 10.9354 (£0.0035)

Table 8: Classification results. The results are the averages of ten trials.

Rank Pre-defined category | # Misclassifications
1 browser 6.95 (£1.23)
2 | average priced restaurant 6.40 (£1.50)
3 transfer navigation 4.90 (£1.02)
4 meat dishes 4.35 (£1.27)
5 park 4.30 (£1.30)

Table 9: Frequent misclassification

“Mean” means the proposed label propagation us-
ing the mean vector of each category. For each
model, a paired t-test was used to test for signifi-
cant differences in performance from the baseline
(PN). t means that p < 0.01 for a significant im-
provement in performance.

Each system achieved more than 88 points for
accuracy and 97 points for R@5. The proposed
method (PU, Mean) achieved significant improve-
ment over the baseline method (PN); even the ex-
isting PU-based method (PU, Nearest) did not see
this level of improvement. We did not observe any
improvements on R@5. This probably means that
most of the correct samples are already included
in the top five, even in the baseline. We calcu-
lated the ratio of “positive categories predicted by
the PU learning model in the first place that are
included in the positive categories predicted by
the PN learning model in the second through fifth
places” when the following conditions were satis-
fied: “the PN learning model does not predict any
positive category in the first place,” “the PN learn-
ing model predicts some positive category in the
second through fifth places,” and “the PU learning
model predicts some positive category in the first
place.” The percentage is 95.53 (£2.60)%, thus
supporting our hypothesis for R@5.

Table 9 shows the frequency of misclassifica-
tion for each action category. The number of mis-
classifications is calculated as the average of all
models. The results show that the most difficult
category was “browser,” a common response cate-
gory for any user request.
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4.4 Label Propagation Performance

In order to verify the effect of label propagation
in PU learning, we evaluated the performance of
the label propagation itself in the proposed method
(PU, Mean) on the test data. Table 11 shows the re-
sults. Comparing Table 8 and Table 11, the higher
the precision of the label propagation, the higher
the performance of the model. For both models,
more than 78% of the propagated labels qualify
as thoughtful. We conclude that the label prop-
agation is able to add thoughtful action categories
as positive examples with high precision; however,
there is still room for improvement on their recalls.

Table 10 shows examples in which the label
propagation failed. “Nearest request” is the near-
est neighbor of “original request” among the re-
quests labeled with “propagated category” as a
positive example. Comparing “nearest request”
and “original request” in Table 10, the label prop-
agation is mistaken when the sentence intentions
are completely different or when the two requests
contain similar words, but the sentence intentions
are altered by negative forms or other factors.

Table 12 shows the ratios of errors in the la-
bel propagation between the functions. More than
40% of the label propagation errors happened in
the “restaurant search” category. This is because
the user request to eat is the same, but the narrow-
ing down of the requested food is subject to subtle
nuances, as shown in Table 10.

5 Related Work

We addressed the problem of building a natu-
ral language understanding system for ambiguous
user requests, which is essential for task-oriented
dialogue systems. In this section, we discuss how
our study differs from existing studies in terms
of corpora for task-oriented dialogue systems and
dealing with ambiguous user requests.



Original request Pre-defined category

Nearest request Propagated category

I got some extra income today.
All the restaurants in the area
seem to be expensive.

It’s too rainy to go sightseeing.

expensive restaurant
average priced restau-
rant

fun place

It’s before payday.

I want to try expensive ingredi-
ents.

I wonder when it’s going to start
raining today.

inexpensive restaurant
expensive restaurant

weather

Table 10: Examples of wrong label propagations

Model Pre. (%) | Rec. (%) F1
78.06 8.53 0.1533
BASE | ((335) | (£1.31) | (0.0206)
79.27 7.91 0.1435
LARGE (£4.43) | (£1.10) | (£0.0172)

Table 11: Label propagation performance

Original Propagated Ratio (%)
spot search 16.71 (£2.59)
spot search restaurant search | 4.06 (£1.27)
app launch 6.81 (£1.84)
spot search 3.43 (£1.01)
restaurant search | restaurant search | 43.06 (+4.82)
app launch 2.70 (£0.64)
spot search 10.94 (£1.75)
app launch restaurant search | 3.24 (£1.13)
app launch 9.06 (£1.73)

Table 12: Ratios of false positive in label propagation

5.1 Task-Oriented Dialogue Corpus

Many dialogue corpora for task-oriented dia-
logue have been proposed, such as Frames
(El Asri et al., 2017), In-Car (Eric et al., 2017),
bADbI dialog (Bordes and Weston, 2016), and Mul-
tiWwOZ (Budzianowski et al., 2018). These cor-
pora assume that the user requests are clear, as in
Q3 in Table 1 defined by Taylor (1962, 1968), and
do not assume that user requests are ambiguous,
as is the case in our study. The corpus collected in
our study assumes cases where the user requests
are ambiguous, such as Q1 and Q2 in Table 1.

Some dialogue corpora are proposed to treat
user requests that are not always clear: OpenDi-
alKG (Moon et al., 2019), ReDial (Li et al., 2018),
and RCG (Kang et al., 2019). They assume that
the system makes recommendations even if the
user does not have a specific request, in partic-
ular, dialogue domains such as movies or music.
In our study, we focus on conversational utterance
and monologue during sightseeing, which can be
a trigger of thoughtful actions from the system.
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5.2 Disambiguation for User Requests

User query disambiguation is also a conven-
tional and important research issue in infor-
mation retrieval (Di Marco and Navigli, 2013;
Wang and Agichtein, 2010; Leeetal.,, 2002;
Towell and Voorhees, 1998). These studies
mainly focus on problems of lexical variation,
polysemy, and keyword estimation. In con-
trast, our study focuses on cases where the user
intentions are unclear.

An interactive system to shape user inten-
tion is another research trend (Hixon et al., 2012;
Guo et al., 2017). Such systems clarify user re-
quests by interacting with the user with clarifica-
tion questions. Bapna et al. (2017) collected a cor-
pus and modeled the process with pre-defined dia-
logue acts. These studies assume that the user has
a clear goal request, while our system assumes that
the user’s intention is not clear. In the corpus col-
lected by Cohen and Lane (2012), which assumes
a car navigation dialogue agent, the agent responds
to user requests classified as Q1, such as suggest-
ing a stop at a gas station when the user is running
out of gasoline. Our study collected a variation of
ambiguous user utterances to cover several situa-
tions in sightseeing.

Ohtake et al. (2009); Yoshino et al. (2017) tack-
led sightseeing dialogue domains. The corpus col-
lected by Ohtake et al. (2009) consisted of dia-
logues by a tourist and guide for making a one-
day plan to sightsee in Kyoto. However, it was
difficult for the developed system to make particu-
lar recommendations for conversational utterances
or monologues. Yoshino et al. (2017) developed
a dialogue agent that presented information with
a proactive dialogue strategy. Although the situ-
ation is similar to our task, their agent does not
have clear natural language understanding (NLU)
systems to bridge the user requests to a particular
system action.



6 Conclusion

We collected a dialogue corpus that bridges am-
biguous user requests to thoughtful system ac-
tions while focusing on system action functions
(API calls). We asked crowd workers to input an-
tecedent user requests for which pre-defined dia-
logue agent actions could be regarded as thought-
ful. We also constructed test data as a multi-
class classification problem, assuming cases in
which multiple action candidates are qualified as
thoughtful for the ambiguous user requests. Fur-
thermore, using the collected corpus, we devel-
oped classifiers that classify ambiguous user re-
quests into corresponding categories of thoughtful
system actions. The proposed PU learning method
achieved high accuracy on the test data, even when
the model was trained on incomplete training data
as the multi-class classification task.

As future work, we will study the model archi-
tecture to improve classification performance. It is
particularly necessary to improve the performance
of the label propagation. We will also investigate
the features of user requests that are difficult to
classify.
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A Appendix

A.1 Instruction and Input Form

[Abstract]
Input utterances that precede thoughtful responses during sightseeing navigation.

[Task Details]

Task:

For you sightseeing in Kyoto, a sightseeing navigation application

has generated responses searching for specific category spots.

Input the antecedent utterances for which the responses could be regarded as thoughtful.
Examples are given below.

e.g-
- Dialogue (Good Example)

Your Utterance (Your input) : I'm a little tired of walking.

System Response (Given)  : Shall | search for a rest area around here?

- Dialogue (Bad Example 1)
Your Utterance (Your input) : Search for rest areas around here.
System Response (Given)  :Shall | search for a rest area around here?

- Dialogue (Bad Example 2)
Your Utterance (Your input) : | want to go to a rest area.
System Response (Given)  : Shall | search for a rest area around here?

[Reward]
100 yen per user utterances input in 10 different situations

[Note]

Your utterance must not explicitly request a search.

Your utterance must not contain the spot name being searched for.

If your input does not meet the requirements, or if you do not fill out the form, it may not be approved.
You select one task from the two available tasks and fill in the form.

Only one input per worker is allowed for each task.

If you have any other questions, do not hesitate to contact us.
We look forward to your application!

Dialogue 1 Required
Your Utterance : (Please input here; Up to 30 characters)
System Response : Shall | search for an amusement park around here?

Figure 4: Instruction and input form for corpus collection. The actual form is in Japanese; the figure is translated

into English.

Figure 4 shows an example of an instruction and input form for the corpus collection. Since the user
requests (utterances) to be collected in our study need to be ambiguous, a bad example is an utterance
with a clear request, such as, “Search for rest areas around here.” Each worker was asked to input user

requests for ten different categories.

A.2 Additional Examples of User Requests

Table 13 shows examples of user requests for all pre-defined system actions.
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User request (collecting with crowdsourcing)

System action (pre-defined)

Is there a place where we can have fun as a family for a day?
I want to take a nap on the grass.

I want to move my body as much as I can.

I’d like to do something more than just watch.

I want a Kyoto-style key chain.

‘Where can I see pandas?

I haven’t seen any penguins lately.

I want to relax in nature.

I don’t know where to go.

It’s suddenly getting cold. I need a jacket.

I’m sweaty and uncomfortable.

I’'m interested in historical places.

This year has not been a good one.

I wonder if there are any famous buildings.

I need some healing.

It’s autumn and it’s nice to experience art.

Is there a tourist spot where I can study as well?

I’d love to walk around a place like here wearing a kimono.
I"d like to see some autumnal scenery.

I want to feel spring.

I want to go on an interesting ride.

It would be faster to go by train.

It takes time on foot.

I"d like to sit down and relax.

I’'m having trouble getting good reception.

I want to relax.

I’d like to take a picture to remember the day.

I wonder if there are any places where children can play.
I want to feel liberated.

I want to see the night view.

Shall I search for an amusement park around here?
Shall I search for a park around here?

Shall I search for a sports facility around here?

Shall I search for an experience-based facility around here?
Shall I search for a souvenir shop around here?

Shall I search for a zoo around here?

Shall I search for an aquarium around here?

Shall I search for a botanical garden around here?
Shall I search for a tourist information center around here?
Shall I search for a shopping mall around here?

Shall I search for a hot spring around here?

Shall I search for a temple around here?

Shall I search for a shrine around here?

Shall I search for a castle around here?

Shall I search for nature or landscapes around here?
Shall I search for an art museum around here?

Shall I search for an historic museum around here?
Shall I search for a kimono rental shop around here?
Shall I search for red leaves around here?

Shall I search for cherry blossoms around here?

Shall I search for a rickshaw around here?

Shall I search for a station around here?

Shall I search for a bus stop around here?

Shall I search for a rest area around here?

Shall I search for a WiFi spot around here?

Shall I search for a quiet place around here?

Shall I search for a beautiful place around here?

Shall I search for a fun place around here?

Shall I search for a wide place around here?

Shall I search for a place with a nice view around here?

I'm thirsty.

I bought some delicious Japanese sweets!

It’s so hot, I'm sweating all over.

I’'m getting bored with cake.

I feel like having a 3 o’clock snack.

I want something spicy!

I’d like to eat something homey.

I want to eat something healthy.

I want to buy some breakfast for tomorrow.

I think it’s time for a snack.

I’'m not really in the mood for rice.

It’s cold today, so I'd like to eat something that will warm me up.
I want to eat a heavy meal.

I've been eating a lot of Japanese food lately, and I’'m getting a little bored
of it.

I think I've been eating a lot of meat lately.

Let’s have a nice meal together.

I want to eat something typical of Kyoto.

My daughter wants to eat fried rice.

I’'m not in the mood for Japanese or Chinese food today.
It’s a special day.

The kids are hungry and whining.

I wonder if there is a calm restaurant.

I want to lose weight.

I hear the vegetables are delicious around here.

It’s nice to have a night out drinking in Kyoto!

There are so many things I want to eat, it’s hard to decide.
When I travel, I get hungry from the morning.

I don’t have much money right now.

I"d like a reasonably priced restaurant.

I"d like to have a luxurious meal.

Shall I search for a cafe around here?

Shall I search for matcha around here?

Shall I search for shaved ice around here?

Shall I search for Japanese sweets around here?
Shall I search for western-style sweets around here?
Shall I search for curry around here?

Shall I search for obanzai around here?

Shall I search for tofu cuisine around here?

Shall I search for a bakery around here?

Shall I search for fast food around here?

Shall I search for noodles around here?

Shall I search for nabe around here?

Shall I search for rice bowls or fried food around here?
Shall I search for meat dishes around here?

Shall I search for sushi or fish dishes around here?

Shall I search for flour-based foods around here?

Shall I search for Kyoto cuisine around here?

Shall I search for Chinese food around here?

Shall I search for Italian food around here?

Shall I search for French food around here?

Shall I search for a child-friendly restaurant or family restaurant around here?
Shall I search for cha-kaiseki around here?

Shall I search for shojin around here?

Shall I search for a vegetarian restaurant around here?
Shall I search for an izakaya or bar around here?

Shall I search for a food court around here?

Shall I search for breakfast around here?

Shall I search for an inexpensive restaurant around here?
Shall I search for an average priced restaurant around here?
Shall I search for an expensive restaurant around here?

Nice view.

What did I photograph today?

I hope it’s sunny tomorrow.

I want to get excited.

I’'m worried about catching the next train.

I have to tell my friends my hotel room number.

I wonder if XX is back yet.

The appointment is at XX.

I wonder what events are going on at XX right now.
How do we get to XX?

Shall I launch the camera application?

Shall I launch the photo application?

Shall I launch the weather application?

Shall I launch the music application?

Shall I launch the transfer navigation application?
Shall I launch the message application?

Shall I call XX?

Shall I set an alarm for XX o’clock?

Shall I display the information about XX?

Shall I search for a route to XX?

Table 13: User requests for all pre-defined system actions. The texts are translated from Japanese to English.
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Abstract

This paper proposes a taxonomy of errors in
chat-oriented dialogue systems. Previously,
two taxonomies were proposed; one is theory-
driven and the other data-driven. The former
suffers from the fact that dialogue theories for
human conversation are often not appropriate
for categorizing errors made by chat-oriented
dialogue systems. The latter has limitations
in that it can only cope with errors of systems
for which we have data. This paper integrates
these two taxonomies to create a comprehen-
sive taxonomy of errors in chat-oriented dia-
logue systems. We found that, with our in-
tegrated taxonomy, errors can be reliably an-
notated with a higher Fleiss’ kappa compared
with the previously proposed taxonomies.

1 Introduction

From their social aspects, chat-oriented dialogue
systems have been attracting much attention
in recent years (Wallace, 2009; Banchs and Li,
2012; Higashinakaetal., 2014; Rametal.,
2018).  Neural-based methods have been ex-
tensively studied and have yielded promising
results (Vinyals and Le, 2015; Zhang et al., 2018;
Dinan et al., 2019; Adiwardanaetal., 2020;
Roller et al., 2020). Yet, the performance of these
systems is still unsatisfactory, causing dialogues
to often break down.

One way to reduce the errors made by the
systems is to understand what kinds of errors
the systems are making and find solutions to
counter them. For such a purpose, a taxonomy
of errors will be useful. For task-oriented di-
alogue systems, several taxonomies have been
proposed (Dybkjer et al., 1996; Bernsen et al.,
1996; Aberdeen and Ferro, 2003; Dzikovska et al.,
2009), leading to effective analyses for improving
system performance. For dialogue systems that

*Currently mainly affiliated with Nagoya University.
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are chat-oriented, such taxonomies have also been
proposed. Higashinaka et al. (2015a; 2015b) pro-
posed two taxonomies; one is theory-driven and
the other data-driven. However, the former suf-
fers from the fact that dialogue theories for hu-
man conversation on which the taxonomy is based,
such as Grice’s maxims (Grice, 1975) and adja-
cency pairs (Schegloff and Sacks, 1973), are of-
ten not appropriate for categorizing errors made
by chat-oriented dialogue systems. The latter has
limitations in that it can only cope with errors
for which we have data. Because of such short-
comings, these taxonomies suffer from low inter-
annotator agreements, failing to successfully con-
ceptualize the errors (Higashinaka et al., 2019).

This paper aims to create a new taxonomy of
errors in chat-oriented dialogue systems. On the
basis of the two taxonomies previously proposed,
we discuss their merits and demerits, and we inte-
grate the two into a comprehensive one. We verify
the appropriateness of the integrated taxonomy by
its inter-annotator agreement. We found that the
kappa values were reasonable at 0.567 and 0.488
when expert annotators and crowd workers were
used for annotation, respectively, and these values
were much better than those of the previous tax-
onomies. This indicates that the errors have suc-
cessfully been conceptualized, and we can safely
use them to analyze errors made by chat-oriented
dialogue systems.

2 Previous Taxonomies and Integration

Higashinaka et al. proposed two taxonomies of
errors in chat-oriented dialogue systems: theory-
driven (Higashinaka et al., 2015a) and data-driven
(Higashinaka et al., 2015b).!

'Note that although Higashinaka et al. used “top-down”
and “bottom-up” to name their taxonomies, we use “theory-
driven” and “data-driven,” which we consider to be more ap-
propriate.
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The theory-driven taxonomy is based on prin-
ciples in dialogue theories that explain the coop-
erative behavior in human dialogues. The taxon-
omy uses the deviations from such principles as
error types. In contrast, the data-driven taxonomy
uses the dialogue data of chat-oriented systems in
order to identify typical errors made by such sys-
tems. The taxonomy was created by first collect-
ing comments (textual descriptions) describing er-
rors made by systems and then clustering the com-
ments; each resulting cluster corresponds to an er-
ror type.

2.1 Theory-driven taxonomy

The theory-driven taxonomy (Higashinaka et al.,
2015a) is mainly based on Grice’s maxims of con-
versation (Grice, 1975), which are principles in
cooperative dialogue. Grice’s maxims of conver-
sation identify the cooperative principles to be
met in a general conversation between humans
in terms of quantity, quality, relevance, and man-
ner. Since the scope of a dialogue can be typically
classified into utterance, response [adjacency pair
(Schegloff and Sacks, 1973)], context (discourse),
and environment (outside of dialogue), the taxon-
omy was created by combining the four maxims
with the four scopes, namely, a deviation from
each principle in each scope.

By eliminating invalid combinations of princi-
ple and scope (such as “relevance” and “utterance”
because relevance cannot be considered for a sep-
arate utterance) and by adding system-specific er-
rors identified through observation, 16 error types
were identified for the taxonomy as shown in Ta-
ble 1. The taxonomy has a main category repre-
senting the scope and a subcategory representing
the deviation from Grice’s maxims. For example,
“Excess/lack of information” denotes the violation
of the maxim of quantity in the scope of response.
For further details, see (Higashinaka et al., 2015a).

The taxonomy was evaluated on the basis of
inter-annotator agreement. This was done by an-
notating system utterances that caused dialogue
breakdowns with the error types. The inter-
annotator agreement was reported to be low at
about 0.24 (Higashinaka et al., 2019). One of the
possible reasons was the nature of human-system
dialogue, which is fraught with errors, making the
dialogue and the behavior of users different from
those of human-human dialogue. This could have
made the notions of Grice’s maxims difficult to ap-
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Main category
Utterance

Subcategory

Syntactic error

Semantic error
Uninterpretable
Excess/lack of information
Non-understanding

No relevance

Unclear intention
Misunderstanding
Excess/lack of proposition
Contradiction
Non-relevant topic
Unclear relation

Topic switch error

Lack of common ground
Lack of common sense
Lack of sociality

Response

Context

Environment

Table 1: Theory-driven taxonomy

ply, leading to the low inter-annotator agreement.

2.2 Data-driven taxonomy

The data-driven taxonomy (Higashinaka et al.,
2015b) was created by clustering comments (tex-
tual descriptions) that describe errors made by
chat-oriented dialogue systems. The comments
were written by researchers working on dialogue
systems. Since the number of clusters is difficult
to know in advance, a non-parametric Bayesian
method called the “Chinese restaurant process”
(CRP) was used as a clustering method; CRP can
infer the number of clusters automatically from
data (Pitman, 1995). By clustering over 1,500
comments, 17 clusters were found, leading to the
same number of error types. Table 2 shows the
data-driven taxonomy. The names of the error
types were made on the basis of observing the
comments in each cluster.

The taxonomy was evaluated on the basis of
the inter-annotator agreement (Higashinaka et al.,
2019), in which it was found that the kappa was
better than that of the theory-driven taxonomy,
by which the authors concluded that it was bet-
ter to use the data-driven taxonomy instead of the
theory-driven one. However, there is a significant
problem with the data-driven taxonomy, which is
that it is too dependent on the data under analysis.
The categories obtained are those brought about
by the analysis of dialogue systems at a particular
technical stage. The taxonomy may not be able to
cope with new types of errors that may arise as a
result of future development.



Category

General quality

Not understandable
Ignore user utterance
Ignore user question
Unclear intention
Contradiction

Analysis failure
Inappropriate answer
Repetition

Grammatical error
Expression error
Topic-change error
Violation of common sense
Word usage error
Diversion

Mismatch in conversation
Social error

Table 2: Data-driven taxonomy

2.3 Integration of taxonomies

On the basis of our observations in the previ-
ous section, we decided to integrate the two tax-
onomies in order to create a comprehensive one be-
cause each has shortcomings that can be covered
by the other; the theory-driven taxonomy is weak
in handling human-system dialogue, but the data-
driven taxonomy can appropriately handle such di-
alogue. In contrast, the theory-driven taxonomy
may cover more comprehensive dialogue phenom-
ena on the basis of dialogue theories.

First, we decided to expand the theory-driven
taxonomy to facilitate the annotation of human-
system dialogue. Since system errors often deviate
from the form of dialogue entirely, making Grice’s
maxims inapplicable, we added the distinction of
“form” and “content,” indicating whether or not ut-
terances violate the normative form of dialogue,
which frequently occurs in human-system dia-
logue. For the form, we use the normative form of
language, adjacency pairs (Allen and Core, 1997),
topic relevance, and social norms?. These repre-
sent the form in conversation that humans typi-
cally abide by and thus should be easy to detect
and conceptualize. When an error does not ex-
hibit a violation of form, we consider it to be a
violation of content. Second, we placed the error
types in the theory- and data-driven taxonomies
into the frame of the theory-driven taxonomy ex-
panded with form and content. Some error types
fit the frame successfully, but some needed to be
renamed, merged, or split to better fit the frame.

2Since we introduced social norms, we decided to change
the scope of “environment” to “society” in the integrated tax-
onomy.
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3 Integrated Taxonomy

Table 3 shows our taxonomy integrated through
the process described in the previous section. We
have 17 error types (I1-117), each of which corre-
sponds to a combination of the scope of dialogue
and the violation of form or content. In what fol-
lows, we describe each error type in detail with di-
alogue examples mostly taken from actual human-
system dialogues. The dialogues were originally
in Japanese and were translated by the authors.

3.1 Utterance-level errors

3.1.1 Violation of Form

The violation of form at the utterance level indi-
cates the violation of the form of language, i.e.,
the Japanese language in this work.

(I1): Uninterpretable: The utterance is not un-
derstandable. There are no recognizable words, or
it is just a fragment of an utterance.

(1) Withha (Meaningless word in Japanese)

(I2): Grammatical error: The utterance is not
grammatical or lacks important elements, such as
necessary arguments and particles, for it to be a
valid sentence.

*Necchuushoni ki wo tsuke ka
Heat stroke DAT care ACC take Q

“Do you take care against heat stroke?”

2)

Here, “tsuke” (take) should be “tsukeru” or “tsuke-
masu” for valid Japanese conjugation.

3.1.2 Violation of Content

(I3): Semantic error: The utterance is semanti-
cally invalid such as when the combination of a
predicate and its arguments cannot constitute any
meaning.

(3) Iam good at raining.
(one cannot be good at raining)

(I4): Wrong information: The utterance con-
tains information that is clearly wrong to the
extent that it is difficult to interpret its meaning.

(4) Bob Dylan, who is a member of the Beat-
les, has released a new album.
(Bob Dylan is not a member of the Beat-
les.)



Violation of Form

Violation of Content

Utterance | (I1) Uninterpretable

(I2) Grammatical error

(I3) Semantic error
(I4) Wrong information

Response | (I5) Ignore question (19) Ignore expectation

(I6) Ignore request
(I7) Ignore proposal
(I8) Ignore greeting

Context (I10) Unclear intention (I13) Self-contradiction
(I11) Topic transition error (I14) Contradiction
(I12) Lack of information (I15) Repetition

Society (I16) Lack of sociality (I17) Lack of common sense

Table 3: Integrated taxonomy of errors

3.2 Response-level errors
3.2.1 Violation of Form

The violation of form at the response level indi-
cates that the utterance does not exhibit an ap-
propriate backward-looking function for a user’s
previous utterance when it has a forward-looking
function represented mainly by a question, request,
proposal, and greeting.

(I5): Ignore question: The utterance ignores a
user’s question. More specifically, the utterance
does not contain the content that matches the an-
swer type requested by the question. The an-
swer types include yes/no, agree/disagree, selec-
tion from a list, types denoted by the WH inter-
rogatives, and entity types (person, place, etc.) re-
quested by the question.

(5) U: What do you eat?
S: Ilike sports.
(6) U: In which prefecture is Yokosuka?
S: I’'m moving to Yokosuka from Yoko-

hama.

(I6): Ignore request: The utterance ignores a
user’s request to do something.

(7) U: Please buy it next time.

S: The costume is made to fit the hot sum-
mer, isn’t it?

(I7): Ignore proposal: The utterance ignores a
user’s proposal/offer to do something.

(8) U: Let’s talk about hobbies.

S: Which do you think is better, Ura-
bandai (tourist location in Japan) or
Taiwan?

(I8): Ignore greeting: The utterance ignores a
user’s greeting.
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(9) U: Iwill go then.

S: Hello. (The system utters a greeting
for opening instead of closing.)

3.2.2 Violation of Content

The violation of content at the response level in-
dicates that, even though the surface form of the
adjacency pair is appropriate, the utterance may
cause a dialogue breakdown.

(19): Ignore expectation: The utterance contains
an appropriate backward-looking function for a
user’s previous forward-looking function; how-
ever, the utterance does not have the expected con-
tent if the underlying intention has been success-
fully conveyed.

(10) U: Do you have favorite sweets?

S: Yes. (The system should tell the user
the name of its favorite sweets.)

Although the above example may seem to be a
perfectly valid utterance, we observe cases where
such a response can be inappropriate in some co-
operative contexts.

3.3 Context-level errors

3.3.1 Violation of Form

We define the form for the context level as
topic relevance, that is, the continuation of topics.
When the system utterance is off-topic or has un-
clear/missing elements that keep it from being rel-
evant to the current topics, the form is considered
to be violated.

(I10): Unclear intention: Although the utterance
is on a relevant topic, it does not exhibit underly-
ing intentions (i.e., why it is mentioned) for it to
be relevant. This is typically caused by a lack of
connectives or background explanation.



(11) U:
: Ilike apples.
I like the color red.

Hello, I like strawberries. And you?

: Strawberries are delicious.
(It is not clear why the system sud-
denly mentions strawberries although
it said it liked apples.)

(I11): Topic transition error: The utterance
transitions to another topic without reasonable
explanation. This error type includes bringing up
previous topics without reason. General top-level
categories, such as food, fashion, and travel, are
used as the granularity of topics.

(12) S: Oh, I love the clarinet.

U: It was really hard, but I liked it.
S: Well, what bread do you like?

When adjacent utterances do not have clear topics,
this error type does not apply. In addition, when
a topic transition occurs after an utterance with a
backward-looking function that acknowledges the
previous topic, this error type does not apply. For
example, the following is not an example of a topic
transition error.

(13) S: Do you plan to watch the Olympics on
TV?
U: Yes, I want to.
S: On a day like today, one wants to eat

hot pot for dinner.

(I12): Lack of information: The utterance
misses important pieces of information, such
as the subject, object, and modifier, for it to be
relevant to current topics.

(14) U: Good morning! It’s been nice and
cool recently.
S: Ilike. (missing object for a predicate)
(15) U: It’s too expensive, isn’t it?
S: The difference is terrible. (“differ-

ence” needs things being compared)

3.3.2 Violation of Content

The violation of content at the context level in-
dicates inconsistency or redundancy among utter-
ances.

(I13): Self-contradiction: The utterance contra-
dicts what has been said by that speaker.
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(16) U: Where are you from?

S: I’m from Chita in Aichi. It is on the
Chita peninsula.

U: Oh, Aichi. It’s a nice place.

S: I just joined a company in Nagoya
(city in Aichi prefecture).

U: What kind of job?

S: I’m a house wife.

(contradicts with joining a company in
Nagoya)

(I14): Contradiction: The utterance contradicts
or denies what has been said by the conversational
partner.

(17) S: Which do you like, central league or
pacific league?
U: Ilike central league.
S: Oh, you don’t like central league.

(I15): Repetition: The utterance repeats the pre-
vious utterance (including paraphrases). This error
type applies to repeated questioning.

(18) S: I'm looking forward to watching a

movie.

Oh, yes?

Yeah.

What else do you like?

I look forward to watching a movie.

3.4 Society-level errors

3.4.1 Violation of Form

The violation of form at the society level indicates
that the utterance is violating a social norm in a
conversation, for example, being offensive to the
user.

(I16): Lack of sociality: The utterance lacks con-
sideration toward the conversational partner or par-
ticular groups of people (i.e., hate speech).

(19) U: The other day, I went to XX (country
name).

S: People in XX are foolish, aren’t they?

3.4.2 Violation of Content

The violation of content at the society level indi-
cates that although the utterance is not intended to
offend the user, its content is generally unaccept-
able.



(I17): Lack of common sense: The  utterance
lacks common sense. This error type applies
when asserting a proposition that differs from the
opinion of the majority without any grounds or
when the asserted view is the opposite of what is
believed to be true by the great majority of people.

(20) U: Do you want to talk about heat stroke?

S: Heat stroke is good, isn’t it?

4 Evaluation

We evaluated the integrated taxonomy by annotat-
ing dialogues with error types and calculating the
inter-annotator agreement. The same dialogues
were annotated with the theory- and data-driven
taxonomies by the same annotators for compari-
son.

4.1 Procedure

We used the datasets collected in past dialogue
breakdown detection challenges (DBDCs), i.e.,
DBDC and DBDC2 (Higashinaka et al., 2016,
2017)3, for annotating error types to system ut-
terances that caused dialogue breakdowns. In
the datasets, each system utterance was labeled
with dialogue breakdown labels (B: breakdown,
PB: possible breakdown, and NB: not a break-
down) by 30 annotators. We picked system
utterances that were deemed inappropriate by
more than a half of the annotators, that is, an-
notated with 15 or more B or PB dialogue
breakdown labels. The dialogues were those
conducted between each of three chat-oriented
dialogue systems [DCM (Onishi and Yoshimura,
2014), DIT (Tsukahara and Uchiumi, 2015), and
IRS (Ritter et al., 2011)] and human users. Hav-
ing dialogues from multiple dialogue systems al-
low us to verify the applicability and coverage of
our taxonomy. All dialogues were in Japanese.

There were 400 dialogues in total across the
datasets. We divided the datasets into five subsets,
A-E, each containing 80 dialogues. We used sub-
sets A—C to come up with how to integrate the tax-
onomies. We used subset D for evaluation. We did
not use subset E, which was spared for future eval-
uation. In the 80 dialogues, there were 599 system
utterances used as a target for our error-type anno-
tation.

*https://dbd-challenge.github.io/
dbdc3/datasets
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We annotated the error types by employing two
groups of annotators. One consisted of two experts
in language-annotation tasks, and the other con-
sisted of ten crowd workers, six females and four
males in their 20’s to 50’s. They were all certified
workers of a crowdsourcing service* in Japan. All
annotators were native Japanese. The rationale for
employing the crowd workers was to ensure that
the concepts of the error types were well concep-
tualized and easy for non-experts to understand.

All annotators performed multi-label annotation
with the proposed taxonomy as well as the theory-
and data-driven taxonomies. Here, since some of
the error types in the data-driven taxonomy were
regarded as difficult to annotate due to the ambi-
guity or reliance on one’s understanding of dia-
logue systems as suggested in (Higashinaka et al.,
2019), we removed “General quality,” “Analysis
failure,” and “Mismatch in conversation” from the
error types of the data-driven taxonomy. We also
merged “Expression error” and “Word usage er-
ror,” which were conceptually close. As a result,
we had 16 and 13 error types for the theory- and
data-driven taxonomies, respectively. The anno-
tators read annotation manuals containing defini-
tions of the error types with examples and anno-
tated the error types on spreadsheets.

4.2 Metric for inter-annotator agreement

We used Fleiss’ k coefficient (Fleiss and Cohen,
1973) as a measure for inter-annotator agreement.
Following (Ravenscroft et al., 2016), who calcu-
lated the weighted Cohen’s kappa, we devised a
way to calculate the weighted Fleiss’ kappa. The
weighted inter-annotator agreement rate FP,, ex-
tended for multi-label annotation, is calculated by,

C
1 Zczl Z(u/) Wpel Wnel!

N = Y Y (Went? + wenr?) /2]

ey
where w,, is the weight of error type c for tar-
get utterance n labeled by annotator [, IV is the
total number of targets for annotation, C' is the
number of error types, and the summation }_;
is taken over all combinations of annotator pairs.
Note that the weights are non-negative and nor-
malized as ZCC:1 Wpe = 1. In this paper, we
assume that the weights are equally distributed
among the error types assigned to a target utter-
ance. The weighted Fleiss’ x coefficient is calcu-

N

a

‘https://www.lancers. jp/



Theory-driven taxonomy

Data-driven taxonomy

Integrated taxonomy (Proposed)

Experts | Crowd workers
0.186 0.206
0.362 0.427
0.567 0.488

Table 4: Weighted Fleiss’s « coefficient for theory-driven, data-driven, and integrated taxonomy (proposed) by

expert annotators and crowd workers.

lated by k = (P, — P.)/(1 — P,), where

( zNj Zwmz>2, )

n=1 =1
and L is the number of annotators. The weighted
agreement and Fleiss’  coefficient are reduced to
the standard ones when one of the weights is 1.

C

P=y

c=1

NL

4.3 Results

The weighted Fleiss’ kappa for the annotations is
shown in Table 4. We can see that the agreement
was higher for the integrated taxonomy compared
with the theory- and data-driven ones, with reason-
able kappa values of 0.576 and 0.488 for the ex-
perts and crowd workers, respectively. This result
indicates that our integrated taxonomy is effective.

Using the annotations by the crowd workers,
we counted the number of target utterances for
which five (a half) or more annotators agreed or
disagreed on the set of error types. When using the
proposed taxonomy, we found that, out of 599 ut-
terances, there were 507 utterances on which they
agreed and 92 utterances on which they disagreed.

When using the theory-driven taxonomy, for the
same 599 utterances, there were 126 utterances on
which the annotators agreed and 473 utterances
on which they disagreed. By using the proposed
taxonomy, within the 473 utterances, 396 of them
turned into those on which the annotators could
agree. Our analysis revealed that utterances that
were annotated with either “Non-understanding”
or “Unclear intention” came to be reliably anno-
tated with “Ignore question.” In addition, “No rele-
vance” and “Non-relevant topic,” for which guess-
ing the dialogue scope seems difficult, came to
be reliably annotated with “Unclear intention.” In
addition, the introduction of “Wrong information”
greatly improved the inter-annotator agreement for
utterances that were otherwise labeled as “No rel-
evance,” “Unclear relation,” or “Lack of common
sense.”

When using the data-driven taxonomy, there
were 347 utterances on which the annotators
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agreed and 252 utterances on which they dis-
agreed. By using the proposed taxonomy, within
the 252 utterances, 193 of them became those on
which the annotators could agree. Similarly to the
case of the theory-driven taxonomy, the introduc-
tion of “Wrong information” was successful. In
addition, such error types as ‘“Unclear intention”
and “Topic-change error” came to be reliably an-
notated with “Unclear intention.”

Figure 1 shows a confusion matrix of annota-
tions by the crowd workers. The matrix is calcu-

lated by
L
(4. o

which is the averaged weighted count of labels
where one annotator labels type ¢ and another la-
bels type ¢’. An off-diagonal element with a large
value compared with its diagonal element means
confusion.

From the figure, we observed some confusions
between (i) (I5) Ignore question and (I110) Unclear
intention, (ii) (I10) Unclear intention and (I11)
Topic transition error, and (iii) (I10) Unclear in-
tention and (I12) Lack of information.

As for the confusion pattern (i), we observed
many cases where I5 and I10 were labeled together
for the same utterance. It is likely that failing to
answer a question can make its interpretation dif-
ficult, leading one to wonder why the system did
not respond appropriately.

Confusion pattern (ii) is probably caused by in-
dividual differences in recognizing the topic in the
utterances. A typical example is as follows.

N
Meer = E E wnclwnc’l’/

(L1 n=1

21) U:
S:
U:
S:

It is scary to get used to death.

What? Did you fall off a Tetrapod?

I didn’t.

Watermelons don’t grow on trees.

In this dialogue, at the last utterance, the system

suddenly talks about “watermelons.” Some anno-
tators focused on the word “watermelons” and con-
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Figure 1: Confusion matrix for integrated taxonomy. [1-117 denote error types in Table 3. Upper off-diagonal part

is omitted because matrix is symmetric.

sidered the topic to be abruptly shifted. Other an-
notators sensed some connection in topics (prob-
ably between death and the growing of trees) but
could not recognize the underlying intention.

Confusion pattern (iii) was observed for sys-
tem utterances relatively short in length, which
suggests that individual differences of ability in
how much information can be complemented from
the dialogue context cause this type of confusion.
That is, if an annotator cannot complement the in-
formation, “Lack of information” is assigned; oth-
erwise, “Unclear intention” is assigned as in the
following example:

(22) U: Which do you like, domestic trips or
overseas trips?
S: Travel is expensive, isn’t it?
U: It depends on the tour plan. There are
ones you can go on cheaply.
S: Plans sound good.

The last utterance lacks words qualifying the
plans as well as explaining why or how they are
“good.” In such cases, it is likely that some annota-
tors considered some expression should be added
to specify the content of plans and assigned the
type “Lack of information,” while other annotators
could not understand why “plans” are good and in
what sense and used the label “Unclear intention.”

4.4 Distribution of error types

Table 5 shows the distribution of error types by
the proposed taxonomy for the data we used
for evaluation, which includes the data of the
three systems: DCM, DIT, and IRS. In addi-
tion, we also annotated the dialogues of two re-
cently developed neural-based chatbots, Hobbyist
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DCM DIT IRS | HBY ILA
I 0.003  0.000 0.001 | 0.000 0.000
12 0.030  0.001  0.005 | 0.000 0.000
I3 0.044 0.013 0.005 | 0.000 0.121
14 0.002 0.565 0.001 | 0.300 0.181
I5 0.244 0.177 0.206 | 0.014 0.036
I6 0.003  0.003 0.000 | 0.000 0.012
17 0.009 0.000 0.006 | 0.000 0.000
I8 0.002  0.002 0.001 | 0.000 0.000
19 0.012 0.002 0.018 | 0.067 0.061
110 | 0.334 0.170 0.458 | 0.094 0.205
I11 | 0.054 0.047 0.128 | 0.028 0.072
112 | 0.130 0.002 0.106 | 0.033 0.024
113 | 0.023 0.004 0.011 | 0.272 0.120
114 | 0.020 0.006 0.016 | 0.083 0.072
I15 | 0.052 0.008 0.016 | 0.094 0.060
I16 | 0.015 0.000 0.019 | 0.000 0.024
117 | 0.025 0.001 0.003 | 0.014 0.012

Table 5: Distribution of error types. Three most fre-
quent error types for each system are shown in bold.

(HBY) and ILYS-AOBA (ILA), by using two ex-
perts. For each of these two systems, we used
ten dialogues that we obtained via the organiz-
ers of the dialogue system live competition that
the systems were entered in (Higashinaka et al.,
2020a). HBY is a Japanese version of Blender-
Bot (Roller et al., 2020). It utilizes 2.1B utterance
pairs obtained from Twitter for pre-training and
was fine-tuned by using Japanese in-house chat
data (Sugiyama et al., 2020). ILA uses a similar ar-
chitecture but has been trained with smaller-sized
data (Fujihara et al., 2020). The two annotators
first annotated dialogue breakdown labels to sys-
tem utterances. Then, they performed the error-
type annotation on the utterances annotated with B
(breakdown) or PB (possible breakdown) labels.

The table shows that (I5) Ignore question and

Shttps://github.com/cl-tohoku/
ILYS—aoba—-chatbot



(I10) Unclear intention were frequent for DCM,
DIT, and IRS, whereas there was a tendency for
recent neural-based systems to suffer from (I4)
Wrong information and (I13) Self-contradiction.
It is interesting to see consistency in factuality
and personality becoming issues in recent systems.
This brief analysis shows that our taxonomy is
useful for grasping error types in various chat-
oriented dialogue systems.

5 Summary and Future Work

This paper proposed a new taxonomy of errors
in chat-oriented dialogue systems. We integrated
previously proposed theory- and data-driven tax-
onomies to create an integrated taxonomy. We
evaluated the integrated taxonomy with Fleiss’
kappa and found that our taxonomy was better
than the previously proposed ones. Although there
still remains some confusion between some error
types, the reasonable kappa values of our taxon-
omy verify its validity.

As future work, we want to test the language in-
dependence because we only worked in Japanese,
although we consider our taxonomy to be gener-
ally language-independent. Another possible use
of the taxonomy will be to use it as a guide-
line for artificially generating errors so as to im-
prove dialogue modeling in unlikelihood training
(Lietal., 2019). Although the proposed taxon-
omy will be useful for reducing errors by sys-
tems, it will be also interesting to consider ways
to recover from dialogue breakdowns after they
have occurred (Higashinaka et al., 2020b). Vari-
ous studies have been done on understanding how
people react during miscommunication, such as
by making repairs (Purver et al., 2018) and clarifi-
cation requests (Liu et al., 2014; Stoyancheyv et al.,
2013; Rodriguez and Schlangen, 2004). We aim
to expand our work to deal with various phenom-
ena centering around dialogue breakdown. Fi-
nally, we have released the annotation manual®
(Japanese version and its English translation) so
that it can be used for the analysis of various chat-
oriented dialogue systems in the community.
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Effective Social Chatbot Strategies for Increasing User Initiative
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Abstract

Many existing chatbots do not effectively
support mixed initiative, forcing their users to
either respond passively or lead constantly. We
seek to improve this experience by introducing
new mechanisms to encourage user initiative
in social chatbot conversations. Since user ini-
tiative in this setting is distinct from initiative
in human-human or task-oriented dialogue,
we first propose a new definition that accounts
for the unique behaviors users take in this
context. Drawing from linguistics, we propose
three mechanisms to promote user initiative:
back-channeling, personal disclosure, and
replacing questions with statements. We show
that simple automatic metrics of utterance
length, number of noun phrases, and diver-
sity of user responses correlate with human
judgement of initiative. Finally, we use these
metrics to suggest that these strategies do result
in statistically significant increases in user
initiative, where frequent, but not excessive,
back-channeling is the most effective strategy.

1 Introduction

Chatbots serve in a broad range of roles, from task-
based assistants to social companions. However,
the experience of dialogue agents differs starkly
from human interaction. One key difference is how
initiative, or conversational control, is shared. In
human-human dialogue, participants take turns
leading the conversation and introducing new topics
(Walker and Whittaker, 1990), but in most human-
bot dialogue the bot either leads unilaterally (social
chatbots) or responds passively (task-oriented as-
sistants). Socially, it is unpleasant and unengaging
to be responsible for all topic selection and equally
undesirable to have no agency. However, these
one-sided experiences persist as a natural conse-
quence of rule-based bot design, which only works
well when user intents are narrowly confined. With
advances in neurally generated dialogue, agents
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Q Alice

So, you’re taking a
government course?

Bob {

Uh-huh
At the university?
At Tarrant County Junior
College.
Oh
Yeah
Okay

It’s really enjoyable. They
asked us if we think it’s
possible to make laws that
eliminate all corruption. I

-

db

Christopher D. Manning
Stanford University
manning @cs.stanford.edu

Bot g

@ Human

What are you interested
in?

Dogs.

I was wondering what
your opinion was, do you
like dogs?

Me too! What about cats,
do you like cats?

We don’t have a theater in
the cloud, but I love
movies. Have you seen any
good movies recently?

don’t think we can make
laws to eliminate anything
totally.

I like Frozen 2
Frozen 2 is a great film.

You can make laws What did you like about

against corruption Frozen 2?
Yeah Elsa
But that docst I heard that Idina Menzel
climinate i as it? !
eliminate it, does it’ played Elsa in Frozen 2.
Uh-huh Would you like to hear

more about Idina Menzel?

I don’t think making

laws will stop it. Who is Idina Menzel?

Statement | Back-channel

Figure 1: In Human-Human dialogue' (left), Bob first
takes initiative by asking a question, and then uses back-
channels to encourage Alice to take initiative, which she
does by introducing a new topic: corruption. In a typical
current Human-Bot dialoguez, the bot has initiative and
the user responds passively and compliantly, except
when interjecting to give a command or ask a question.

can now handle less-restricted user responses, but
require the adoption and development of specific
mechanisms that encourage the user’s initiative. By
studying these methods, we seek to create a more
human-like and engaging experience.

"From the Switchboard dataset, edited for length and clarity
“This dialogue is representative of user conversations with
our bot; however, it does not contain any actual user data

Proceedings of the 22nd Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 99-110
July 29-31, 2021. ©2021 Association for Computational Linguistics



Figure 2: In a cocktail party setting, participants Alice
and Bob take turns directing the conversation. First,
Alice asks Bob about himself and later, Bob asks
Alice about herself. In the job interview scenario, the
interviewer sets all topics and the interviewee passively
responds, following the interviewer’s direction

Existing work on mixed-initiative human-bot di-
alogue has focused on task-oriented settings, where
the space of potential user actions is smaller and
success is easier to measure (Horvitz, 1999; Allen
etal., 1999; Heeman et al., 2003; Core et al., 2003).
Prior work on social dialogue is limited to human-
human conversations, which also have different
patterns and mechanisms of initiative compared
with human-bot social conversations. But neither
lines of work effectively transfers to the human-bot
social conversations. Our first contribution is
defining granular levels of user initiative in the
context of an open-domain social chatbot.

Current social chatbots designs do not explicitly
consider user initiative, neither measuring nor en-
couraging it. We propose measuring user initiative
with automated metrics: utterance length, noun
phrases (for meaningful content), and response
entropies (for diversity) and validate their correla-
tion with user initiative with a small study (Section
6.2). Informed by work in sociolinguistics and
psychology, our second set of contributions are
three strategies for increasing user initiative in
open-domain human-bot conversations.

First, back-channeling or giving responses such
as “I'see” or “Mm-hmm”. Discourse research sug-
gests that back-channeling signals the other speaker
to continue directing the conversation (Duncan,
1974). Second, using open-ended statements as
prompts, because repeatedly forcing the user to
respond to questions limits their agency. Third, self-
disclosure by the conversational agent, which has
been shown to have a reciprocal effect on users (Lee
et al., 2020), since sharing unprompted information
indicates higher initiative (Cohen et al., 1999).

We study the effect of these strategies in an Alexa
Prize bot, a unique research setting where users
engage with the bot socially for the sole purpose of
entertainment (Section 4). All three strategies sig-
nificantly increase user initiative as measured by the
automatic metrics. Separately, we annotate a small
subset of utterances with the level of initiative taken
by the user to validate our metrics (Section 6.2). We
find that a simple strategy of back-channeling on
one-third of turns encourages many users taking low
initiative to start taking high initiative. Replacing
questions with statements increases average user
utterance length by 23%, in particular, personal
statements are very effective in encouraging low
initiative taking users to take medium or high initia-
tive. We verify these findings by annotating another
set of user utterances, to confirm that the observed
increases in automated metrics are truly reflective of
increased user initiative (Section 7.5). Our results
suggest that incorporating these mechanisms into
future chatbot design will facilitate greater user con-
trol and more engaging, human-like conversations.

2 Rethinking Initiative

Initiative is a participant’s degree of control at a
given moment. Consider two dialogue settings with
markedly different patterns of control: the cocktail
party and the job interview (Figure 2). At a cocktail
party participants share the agency to direct the
conversation and take initiative in turns, whereas the
interviewer takes initiative throughout the interview
and retains control of the conversation’s direction.
In human-bot social conversation, a user who
steers the conversation by suggesting new topics
has high initiative, whereas one who follows the
bot’s lead has low initiative. We examine ideas from
prior work on human-human (Section 2.1) and task-
oriented human-bot (Section 2.2) conversation and
build upon them to offer a novel definition (Section
2.3) of initiative in human-bot social conversation.

2.1 Human-Human Conversation

Control rules based on dialogue acts have been pro-
posed (Whittaker and Stenton, 1988; Walker and
Whittaker, 1990); however they do not account for
varying degrees of initiative which are common in
social conversations. Addressing this, Cohen et al.
(1999) defines initiative on a spectrum. For example,
acommand (“Let’s talk about cats™) is stronger than
a suggestion (“Maybe we should talk about cats™).
We extend this idea and account for the effect
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of conversational context on the degree of initia-
tive in an utterance. For instance, the answer “I
love dogs” displays a lower initiative in response to
“What’s your favorite animal?” but higher initiative
in response to “What would you like to talk about?”.
In the first case, the other speaker set the overall
direction of the conversation to be about animals
whereas in the second case it was left open and the
topic was chosen from a wider variety of options.

Determining who has initiative also depends
on the granularity at which it is being measured.
Chu-Carroll and Brown (1998) formalize this
notion for task-oriented dialogues. One speaker can
set the overarching task level initiative (making a
reservation) while the other can take utterance level
initiative (asking for information, e.g., reservation
time). Such a hierarchy is too restrictive for
social dialogue so we consider instead the notion
of local initiative, which considers how an
utterance alters the bot’s path. For example,
replying “I like dogs, what about you?” to “What’s
your favorite animal?” takes more initiative at the
utterance level than replying “cats” because the
former likely changes the conversation’s direction,
while the latter stays the course.

2.2 Human-Bot Conversation

Past work on initiative in human-bot conversations
has focused on a task-oriented setting (Novick
and Sutton, 1997; Horvitz, 1999; Allen et al.,
1999; Harms et al., 2019). In this setting, initiative
frameworks are based on “collaboration” around
a goal, which is accomplished through a series
of sub-goals. Although -collaborative, social
conversation has no clearly-defined objective. The
closest analogue is topic, since just as task-oriented
conversation breaks down into units of sub-goals,
social conversation breaks down into units of
topics. We therefore consider the degree of
contribution to topical direction as initiative.
Defining a dialogue act schema for human-bot
social conversations, Yu and Yu (2021) highlight
key differences from human-human dialogue acts,
most notably the prevalence of user commands
as a means of directing conversation. This brings
to the fore the asymmetry of the human-bot
social setting. Current implementations of social
chatbots railroad the user and are less perceptive
to implicit cues. This forces the user to use explicit
commands to take initiative, which is uncommon
in human-human conversations, since humans
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generally prefer interrogatives over imperatives
when making requests (Ervin-Tripp, 1976).

° Do you like What’s your
=t dogs? favorite animal?
[©)

Z Yes I’m not sure

What’s your What do you like

% favorite animal? about dogs?

— Dogs They’re friendly
g What would you What's your

5 like to talk about? favorite animal?
5] D Ilove dogs. I want to

0gs .
2 get a golden retriever.

What’s your

favorite animal? favorite animal?
I like dogs. What Dogs. Let’s talk about
about yo golden retrievers.
What’s your
favorite animal?
This is boring. I

want to talk about
something else.

gs.
u?
What’s your
favorite color?

Talk to me
about dogs.

Figure 3: Although the user (orange) and bot (blue) use
the same basic dialogue acts in these scenarios, with the
bot asking questions and the user replying in statements,
their relative levels of initiative differ based on context.
The rows of this figure illustrate possible (question,
statement) pairs for a given level of initiative.

2.3 Defining Initiative for Social Chatbots

We are now ready to define initiative in the
social chatbot domain. Drawing from work on
human-human conversations, we define initiative
on a spectrum. While dialogue acts are necessary
for determining initiative, they are not sufficient.
For example, the user (orange) in the scenarios illus-
trated in Figure 3 always responds with a statement,
but has differing levels of initiative. For this reason,
we also consider context in our definition.

As these examples show, simple dialogue act-
based heuristics fail to capture the more nuanced
degrees of initiative. In all of the examples, the bot
is asking a question and the user is answering it;
however, the user has varying degrees of control.
Determining which participant has initiative
depends on dialogue act, content, and context.
Definition Based on the extent to which the user
is changing the conversation’s path, we determine
their degree of initiative to be either None, Low,
Medium, High, or Abrupt. We say that the user’s
initiative level is None when the user’s utterance
does not alter the bot’s dialogue path. For instance,



this is the case when the user gives a yes/no answer
to a yes/no question, since they are choosing
between two options pre-defined by the bot. The
user also takes no initiative when responding “I’'m
not sure” to the bot’s question, since this answer
does not in any way steer the conversation.

The user has more initiative when responding
compliantly to the questions shown on the Low
level. These questions give the user more flexibility
than those on the None level, but still limit the
response space by confining it to a particular topic.
Nonetheless, when answering these questions, the
user is able to assert some meaningful direction.
On the Medium level, the user has greater initiative
when answering “What would you like to talk
about?” since this question offers even broader
control. The user also has greater initiative when
answering “What’s your favorite animal?”” with “I
love dogs. I want to get a golden retriever,” since
they are sharing information outside the expected
response and thus contributing to the dialogue’s
course beyond what they were asked for. The user
has High initiative both when asking questions and
giving commands. These actions directly assert a
divergence from the bot’s proposed direction. We
intentionally distinguish these cases from those on
the Abrupt level, since in the latter the user is taking
initiative in a way that shows discontent and which
would be unnatural in human-human conversation.

3 Mechanisms of Initiative

Our goal is to improve the quality and naturalness
of social bot conversations by enabling and encour-
aging the user to take greater initiative. We study
three mechanisms for increasing user initiative:
statements, back-channels, and personal disclosure.

Statements. In human dialogues, utterance type
predicts shifts of control (Whittaker and Stenton,
1988). We focus in particular on the effect of
statements. When codifying changes in initiative,
Whittaker and Stenton (1988) define four utterance
categories: questions, assertions (declarative,
factual statements), commands, and prompts
(utterances without propositional content, e.g. “uh
huh”). Whittaker and Stenton propose control rules
based on these categories. Notably, the schemas of
both (Walker and Whittaker, 1990) and (Whittaker
and Stenton, 1988) do not consider a control shift to
take place if the listener is responding compliantly
to the speaker’s question, since the question is
controlling the conversation’s direction.

Duncan (1972) associates similar actions with a
change in control. He gives six “turn-yielding sig-
nals,” which are behavioral cues from the speaker to
the listener that the listener should start talking. Of
these signals, four out of six cannot be replicated on
our bot, since they depend on dialogue features that
our bot neither gives, nor receives: pitch, intonation,
and body language. The remaining two are trailing
off sequences, such as “you know” and syntactic
completion of a grammatical clause. It follows from
the conclusions of (Duncan, 1972) and (Whittaker
and Stenton, 1988) that while both statements and
questions cue the user to take a turn, statements
alone truly provide them with the opportunity for
initiative on that turn.

Back-channeling. In addition to statements, we
study back-channels as a signal that the user should
take initiative. Duncan distinguishes turn-yielding
signals from back-channels. Since they do not
introduce new content, back-channels do not
constitute a turn (Duncan, 1974). Instead, Duncan
finds that they are used by the listener to signal
that the speaker should continue. Turn-yielding
signals, which tell the listener to begin speaking,
trigger a change in speaker, while back-channels
do not. (Whittaker and Stenton, 1988) also observe
that back-channels are used by one participant to
give control to the other. However, (Whittaker and
Stenton, 1988) frame this slightly differently, with
control transferring from the speaker to the listener.
Simultaneous back-channelling is a central marker
of shifting control in human-human conversations.
However, chat bots cannot perfectly replicate this
behavior due to technical limitations which allow
only one speaker at a time.

Personal Disclosure. The final mechanism we
study is the use of personal self-disclosure as
a means for increasing user participation. In
human-human conversations, self-disclosure
not only increases connection, but produces
“disclosure-reciprocity effect”: when one partici-
pant discloses, the other is more likely to disclose
as well (Collins and Miller, 1994). This effect has
also been measured in human-bot conversations.
Chatbot self-disclosure encourages users to share
more about themselves than they would otherwise
(Leeetal., 2020). Increasing this behavior increases
user control, since sharing information without an
explicit prompt is a form of initiative (Cohen et al.,
1999). Figure 3’s Medium level gives an example
of how greater user sharing increases initiative.
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4 Our Bot

We conducted our experiments using an Alexa Prize
competition bot (Khatri et al., 2018). A user saying
“let’s chat” to an Alexa device is randomly connected
to one of the bots participating in the competition.
To protect user privacy, teams receive user utter-
ances as text only, so we could not leverage the addi-
tional signals, such as intonation, that are present in
audio recordings. Explicit evaluation is limited to
a single and optional Likert-scale rating at the end
of the conversation. Alexa Prize Likert ratings have
been shown to be noisy (Khatri et al., 2018); how-
ever, the competition rules prevent introducing more
fine-grained evaluation questions. Instead, we use
other automated metrics, as described in Section 6.
Our bot has a modular design, which allows us to
restrict our experiments to the modules that are most
compatible. Specifically, these are the modules that
are partially or entirely neural, such as our neural
chit-chat module, since they are more flexible to
changing user behaviors. Amazon user data is con-
fidential, so dialogues shown in this paper are taken
from the authors’ interactions with the bot. They are
representative of typical user conversations, based
on an extensive survey of conversation transcripts.

5 Experiment Design and Setup

We conduct four experiments in our bot, studying
the effects of combining statements and questions,
using personal disclosure, removing questions from
responses, and back-channeling.

Comparing Statements and Questions Drawing
upon the literature discussed in Section 3, we hy-
pothesize that users will be more likely to take initia-
tive in response to statements rather than questions.

To test whether user initiative is affected by
giving a statement, asking a question, or giving a
statement and then asking a question, we altered a
module of our bot which uses scripted content. We
wrote a set of statements and questions that could
be combined in coherent pairs (Figure 4). During
each conversation, we randomly selected whether
users would receive a statement, statement and
question, or question alone. To limit variability, we
conducted this experiment on a single turn, outside
of which we made no other changes.

Using Personal Statements We tested our hy-
pothesis that users would take greater initiative
in response to personal statements by randomly
selecting the type of statement that users would
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Statement

Question

Statement
+ Question

Figure 4: Example prompts for comparing statements
vs questions and example replies. To a question, users
generally answer compliantly, in this case by naming
foods. To a statement alone, the actions users take in
answering are more diverse.

@ Q

Personal
Opinion

Personal

Statement | Experience

General

Figure 5: Statement types and representative user re-
sponses. Users are more likely to reciprocate opinions,
reciprocate to or follow up on experiences, and to either
agree or disagree with general statements.

receive when given a statement or a combined
statement and question. We experimented with
three types of statements: personal experience,
personal opinion, and general statement, as shown
in Figure 5. As with the previous experiment, this
was limited to a single turn.

Changing Question Frequency Expanding on
our first experiment, we theorize that omitting
questions across multiple conversation modules
will increase initiative at a conversation-level.

Many modules of our bot rely on appending
statements with questions to provide a clear contin-
uation path. To further test the effect of questions in
suppressing user initiative, we ran a new experiment
across multiple scripted and non-scripted (neural)
components of our bot. We removed questions
from responses, a fixed percentage (0, 33, 66, or
100) of the time, leaving only the statements. The
components of our bot that could not be re-designed
to omit questions were not changed.

Introducing Back-channeling In human-human
conversation, back-channels are used to signal that



that the listener should either begin or continue
speaking (Duncan, 1974), so we hypothesize that
back-channeling will increase use initiative.
Back-channeling can break up a long and
contentful answer into smaller chunks that are hard
for scripted components to analyze. To mitigate
this effect, we limited this experiment to our bot’s
neural chit-chat component, since it has the greatest
flexibility and takes many previous turns into
account. Within this component, we replaced the
generated utterances with back-channels 0, 33, 66,
or 100 percent of the time. To avoid a negative
and confounding user experience, we did not
back-channel in response to utterances less than
three words long, or to questions and commands
detected by our bot’s dialogue act classifier.

Dataset For the Statement vs. Question and Per-
sonal Statements experiments, we collected 8,889
turns of user conversation, which were roughly
40% Question, 40% Statement and Question, and
20% Statement. Responses including a statement
were equally divided between the Personal Opinion,
Personal Experience, and General Statement
categories. We only collect the turn immediately
following the bot utterance being studied.

We collected 157,363 turns for the Frequency
of Questions experiment and 23,783 turns for the
Back-channeling experiment. Both were equally
divided between the 0, 33, 66, and 100 percent
categories. We used all turns from a conversation
with the Frequency of Questions experiment. Since
the Back-channeling experiment only ran in a single
module, we only analyzed turns from that module.

6 Evaluation

Although human evaluation can provide high levels
of detail and accuracy, it is not scalable. This
makes it an impractical method for analyzing
large-scale conversational data. We therefore
propose and validate a set of automated metrics
as a good proxy for our levels of intiative. To
evaluate our hypotheses (Section 5), we use several
different metrics indicative of user initiative: user
utterance length, number of noun phrases in the user
utterance, and negative log likelihood of responses.
We validated our metrics on a hand-labeled set of
user conversations, see Section 6.2.

6.1 Metrics

Utterance Length We used utterance length as
a metric, since sharing unprompted information
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demonstrates higher initiative (Cohen et al., 1999).

Noun Phrases Some long answers may be non-
informative, such as “Uhh I’m not really sure about
that,” thus we also considered the number of distinct
noun phrases in user responses, which we detected
using spaCy”.

Negative Log Likelihood If user initiative is truly
increasing, then users would have more opportu-
nities to take more conversational directions, so
we would expect to see an increase in the diversity
of their responses. This increase in diversity can
be given by an increase in entropy. To compute
entropy, we model the probability of a user response
with a language model that had been fine-tuned on a
large corpus of user responses. This model gives us
the negative log-likelihood (nll) of a user response;
we obtain estimated response entropy H,, from nll
using a resubstitution estimate:

1 n
Hy=—=> Infn(X;) (1)
ni:l

where n is the number of responses we sample and
fn 1s our probability estimate function. If a response
is unique and non-generic, then it will be less likely,
resulting in a higher nll and higher entropy.

We compute In f;,, using a GPT2 model (Radford
etal., 2019) fine-tuned on user data (see Appendix
A.2 for details). For some utterance X, f,,(X;) is
the probability our model assigns to that utterance.
Since our goal was to test whether users were
volunteering more information rather than simply
answering a question, we removed turns consisting
of the most common non-contentful utterances (see
Appendix ??) before calculating entropy, so that
they would not dominate the measurement.

6.2 Validation

To validate that these metrics were correlated with
initiative, the authors hand-labeled a set of 245 turns
of conversation, where each turn was a pair (bot
prompt, user response). We annotated the user’s
degree of initiative on each turn as either None,
Low, Medium, High, or Abrupt, following the
instructions in Appendix A.1 and had substantial
agreement (Cohen’s Kappa 0.71). Figure 6 shows
the plots of our metrics’ averages for each initiative
level. The correlation between the automated
metrics and our labeled dataset suggests that they
give a reasonable estimate.

*https://spacy.io/
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Figure 6: Automated Metrics vs. Hand-Labeled Initia-
tive Levels. Bars show 95% confidence intervals. Due
to the small number of High examples in our dataset,
we collapsed Medium and High levels in the figure.

Hypo. #tokens #NPs nll

Stmt 4.3695@ 1.39°¢  21.595¢
Stmt+Ques 3.745¢ 1.495¢  19.5°
Ques 3.55%5¢  1.425@  19.1°
Table 1: Effect of only statement (S), state-

ment+question (SQ) and only question (Q) on
initiative. Superscript indicates significance (p < 0.05;
paired t-test) w.r.t. other experiment.

7 Analysis and Results

7.1 Statements outperform questions

Table 1 shows the effect of using statements,
questions, or combined statements and questions.
We found that utterance length was greatest for
statements alone and least for questions alone.
Using statements increased average nll (entropy),
but there was no effect on entropy when comparing
questions with and without statements. Number
of noun phrases was greatest for the combined
statement and question; however that effect is much
smaller than the effect on utterance length.

A possible explanation for these results is that the
questions in this module were written to elicit enti-
ties, so compliant answers would generally be short.
When no explicit question is provided, the range of
appropriate responses is much larger. We examined
anumber of conversations where users were given a
statement rather than a question, and confirmed that
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Hypo. #tokens # NPs nll.

Per. Exp. (E) 4.25 1.349 21.1
Per. Opi. (O) 4.61° 1.52F5 225
Stmt. (S) 4159  1.279 20.6

Table 2: Effect of personal experience (E), personal
opinion (O) and general statement (S) on initiative. Sig-
nificant (p < 0.05; paired t-test) w.r.t. other hypotheses
in superscript.

QRem. #tokens #NPs #turns nll

0% (0) 3.77%3 1.25%3 213 16.9
33% (1) 3.75%3  1.25%3  21.8 16.2023
66% (2) 3.91%1:3 128013 210 16.9

100% (3) 4.01%12 1.31%12 211 17.0!

Table 3: Effect of removing an increasing fraction of
questions on initiative. Significant (p < 0.05; paired
t-test) w.r.t. other hypotheses in superscript.

users were disclosing more and not giving longer un-
informative answers. Figure 4 shows representative
user responses which illustrate this behavior.

7.2 Personal Statements are reciprocated

We compare the effects of personal opinion,
personal experience, and general statements (Table
2). When the statement preceded a question, there
was no significant effect based on the type of
statement. When a statement was presented alone,
user utterances were longer in response to both
personal experience and personal opinion-type
statements than in response to general statements.
Figure 5 gives examples of these types of statements
and user responses to them. In general, users
reciprocate personal opinions and experiences.

7.3 Fewer questions, greater initiative

We studied the effect of omitting questions across
multiple turns (Table 3) and found that utterance
length and number of noun phrases increased mono-
tonically as the number of questions decreased. One
possible explanation for this result is that our bot’s
questions are designed to elicit short answers and al-
though users can give longer responses or direct the
conversation to a new topic, most do not. As with ut-
terance length and number of noun phrases, negative
log-likelihood was greatest when 100% of questions
were omitted. Since the question experiments were
run across many of the bot’s modules, we also mea-
sured their effect on number of turns, which was
greatest when removing 33% of questions.



Backchan. #tokens #NPs #turns nll
0% (0) 4.11%3 1.41 24.0 18.91
33% (1) 4.39%2 1.48 25.823 19.8023
66% (2) 4.201 142 236' 188!
100% (3) 4.30°  1.44 23.5! 19.21

Table 4: Effect of differing degrees of back-channeling
on initiative. Significant (p < 0.05; paired t-test) w.r.t.
other hypotheses in superscript.

None Medium & High
Stmt+Ques I
Stmt Type .
Back-Chan. .
Question l
10 0 10

Figure 7: Each bar shows the number of responses
which were initially low that converted to low, medium,
or high initiative after the intervention. From top to bot-
tom, the number of responses that stayed low initiative
after each interventionis: 2, 1, 2, and 0. From a baseline
of 0, none is worse than low (toward left), medium and
high is better (toward right). See Table 9 for full details.

7.4 Back-channel (but not too much)

Introducing back-channeling had a non-monotonic
effect. We found that all of our metrics were greatest
when our bot back-channeled 33% of the time. This
suggests that there is a point of diminishing returns,
after which additional back-channeling leads to de-
creased engagement. Analyzing user conversations
supported this hypothesis. We observed that when
the bot always back-channels, some users either
back-channel in response (e.g. “oh really?”, “yep”),
or continue repeating their original utterance.

7.5 To reduce low initiative, be open-ended

While the proposed strategies significantly in-
creased the automated metrics for initiative, what
was their effect on levels of initiative as defined in
Section 2.3? For each experiment, we identified the
most effective strategy as per automated metrics:
Statement alone (Table 1), Personal Opinion (Table
2), Question Removal on 100% of turns (Table 3),
and Backchanneling on 33% of turns (Table 4). For
each of these strategies, we sampled 50 user utter-
ances from turns where it had been used (in the bot’s
prior utterance) and a corresponding 50 turns where
it had not (baseline). Three computer science gradu-

ate students without any knowledge of the strategies
labelled each turn for the level of user initiative with
substantial agreement (Cohen’s Kappa of 0.67).

The bot’s baseline responses typically asked a
question to which the user would generally answer
with something short and limited. As expected,
when there was no intervention, users tended to take
low initiative. All of our interventions replaced ques-
tions with different forms of open-ended responses.
According to our definition of initiative, “low” initia-
tive can only occur when the user is presented with
a relatively small range of options, in the form of
a close-ended question. For example, the question
“what is your favorite animal?” restricts the range
of compliant answers to the space of animals. With
our interventions, very few users (at most 2/50, see
Figure 7) responded with low initiative, and the rest
instead chose between None, Medium, or High ini-
tiative. This is expected, since in the absence of ques-
tions, users can either direct the conversation them-
selves by introducing new information (Medium
and High levels of initiative), or leave direction up
to the bot by giving a non-informative answer such
as “I’m not sure” (None level of initiative).

When measuring this effect with our annotations,
we found that the bot’s personal opinions lead
to maximal conversion from low to medium
and high initiative (Figure 7). Out of the four
strategies, Statement alone performs the worst,
but still increases user initiative in half the cases.
Interestingly, Backchanneling on 33% of turns and
Question Removal on 100% of turns converts a
relatively larger fraction of low initiative responses
to high initiative. These results indicate that
statistically significant improvements in the formal
metrics due to the best strategies also translate to
areal and qualitative change in user initiative.

8 Discussion

Our goal in experimenting with initiative was to
create a more human-like and engaging experience,
in which the user had greater agency to direct the
conversation. Our results, using both validated
automated metrics and manual evaluation (see
Figures 4, 5, 7, and 8), show it is possible to
encourage the user to share more information by
using linguistic cues. These findings suggest that
when given the opportunity, many users will choose
to take initiative rather than continuing passively.
Alexa Prize Likert ratings are noisy and a poor
proxy for overall satisfaction (Khatri et al., 2018).
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Since Alexa Prize evaluation is strictly limited to
this rating, we were unable to ask more nuanced
questions about initiative from the user’s point of
view and were unable to directly measure improve-
ment in user experience. While we did find a slight
reduction in average ratings as we omitted questions
(the only experiment affecting large portions of
the bot), this result is likely confounded by the
particular experience of our bot. As we see in Figure
7, omitting questions leads users to take higher
initiative by suggesting topics or asking questions;
however, our bot was not initially designed for this
behavior and it is likely that it performed worse
on these new types of inputs. We studied whether
changing one of the bot’s utterances affected the
subsequent user response; however, we did not
study how effectively the bot followed up. In prac-
tice, a difficulty with successfully using this strategy
remains that it is harder to produce high-quality bot
follow-up turns after the user has taken initiative.
In general, users appear to share more information
in response to our strategies (Section 7.5), which
seems likely to reflect a better experience than the
brief, passive responses given previously.

Due to user privacy concerns only Alexa Prize
team members could label the data in that study.
While the relatively small size is indeed a limitation,
we believe the qualitative conclusions to be
generalizable. More generally, prior work (Reeves
and Nass, 1996) suggests that humans expect chat
bots to behave like humans. Despite lacking direct
empirical evidence for increase in user satisfaction,
we believe that more human-like turn taking will
likely be satisfying to users.

Another limiting factor to our experiments is
that we programmed the bot to back-channel or
to omit questions at random. We expect that user
preferences for initiative would vary across both
individual users and particular topics and that our
randomized method was much less natural than one
that accounted for context. Both of these factors are
likely to have inhibited our effect size. Additionally,
as noted in Section 3, we are using a turn-based
dialog system and therefore back-channeling
cannot be done while the user speaks, but can only
be attempted as a turn after they pause. This limits
both its usefulness and realisticness as a strategy.
Still, the fact that these methods were effective
even when timing was chosen at random suggests
the strength of their potential for future context-
dependent approaches. All of our strategies were
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tested independently of each other, and we leave it
for future work to test their effects in combination.

The question-answer design paradigm is com-
mon in open domain chatbot conversations, since
it is an easy pattern to engineer. However, it has
significant drawbacks. It restricts users’ agency,
potentially forcing them to discuss topics they
aren’t interested in. Requiring users to answer
questions on every turn can also cause fatigue. In
our data, we found that some users would explicitly
criticize this behavior, with utterances such as “you
ask too many questions.” Without mixed-initiative,
the bot and user cannot converse as equals. Closing
the initiative gap is therefore essential to a truly
natural socialbot conversation.

9 Conclusion

We found that it is possible to increase user initiative,
as measured by utterance length, number of noun
phrases, and response diversity, by giving linguistic
cues that the user should steer the conversation. Ask-
ing fewer questions produced longer responses with
more noun phrases, as did back-channeling 33% of
the time. When the bot gave statements, personal
ones evoked more engagement than general ones.
Natural, human-like dialogue agents must share
initiative with the user, and incorporating these
strategies is an important step towards that goal.
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A Appendix

A.1 Data Labeling

To validate the metrics in Section 6, the authors
labeled a set of 245 turns of conversation, where

each turn was a pair (bot prompt, user response).

The instructions used are shown in Figure 11. For
a distribution across labels, see Figure 8. The same
instructions were used for the task described in
Section 7.5, in which three annotators labeled 400
turns of conversation.

A.2 Model Training Details

To calculate negative log-likelihood and entropy
(avg. negative log-likelihood), we used a GPT-2
medium model (Radford et al., 2019), which
was pre-trained on the English Webtext dataset
and has 345M parameters. We fine-tuned this
model on 130,000 examples of dialogue from our
bot, where each example contained a single user
utterance. This was divided into a training split with
91,000 examples and a validation split with 39,000
examples. During fine-tuning, we used the default
hyperparameters and selected the model with the
lowest negative log-likelihood loss (3.19) and had
been trained for 4 epochs. The model was trained
on a Titan RTX using a single GPU and 24 GB of
memory. Training took 5 hours and 22 minutes.

Level # Examples
None 84
Low 77
Medium 50
High 20
Abrupt 14

Figure 8: Label distribution for validation dataset

I don’t know, no, yeah, yes, okay, none, uh, cool,
what, me too, don’t know, not sure, I’m not sure,
right, wow

Figure 10: The 15 most common non-informative user
responses

Experiment #None #Low  #Med. #High # Abrupt

Stmt+ Ques. 22 (+14) 2(-29) 16(+12) S5(+2) 4 (+0)

Stmt Type 15(+5)  1(27) 21(+14) 6(+4)  T(+4)

Back-Chan. 16 (+5) 2(-15) 21(#2) 6(+5)  5(+3)

Question 18 (+3) 0(-6) 17(+2)  5(+3) 4(+2)
Figure 9: Each column indicates the number of

responses at each level after the intervention. Values
in parentheses indicate the difference in number of
responses from turns without the intervention.
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Level

Includes

Examples

None

Yes/No responses to binary questions

Uninformative answers

Bot: have you seen any good movies lately?
User: Not really.

Bot: I was wondering, do you like dogs?
User: Yes.

Bot: What’s your favorite animal?
User: I don’t know.

Low

Responses to closed-ended questions
without extra information

Bot: What’s your favorite color?
User: Blue.

Bot: What’s your favorite animal?
User: I like dogs.

Bot: How was your day?
User: Pretty good.

Medium

Responses to open-ended questions

Responses that share unprompted
information

Bot: What do you want to talk about?
User: Dogs.

Bot: What’s your favorite animal?
User: I love dogs. I want to get a golden retriever.

Bot: How was your day?
User: Pretty good. I went for a walk around
my neighborhood.

High

Questions

Commanding/requesting a topic naturally

Bot: What’s your favorite color?
User: Blue. What about you?

Bot: What’s your favorite animal?
User: I love lions. I want to go to Africa so I can
see them. Let’s talk about Africa.

Bot: How was your day?
User: Pretty good. Tell me about your day.

Abrupt

Commanding/requesting a topic unnaturally

Complaints

Bot: What’s your favorite color?
User: Let’s talk about dogs.

Bot: What’s your favorite animal?
User: You’re boring.

Bot: How was your day?
User: I don’t want to talk about that.

Figure 11: Instructions used to label validation examples
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Generative Conversational Networks
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Abstract

Inspired by recent work in meta-learning and
generative teaching networks, we propose a
framework called Generative Conversational
Networks, in which conversational agents
learn to generate their own labelled training
data (given some seed data) and then train
themselves from that data to perform a given
task. We use reinforcement learning to opti-
mize the data generation process where the re-
ward signal is the agent’s performance on the
task. The task can be any language-related
task, from intent detection to full task-oriented
conversations. In this work, we show that our
approach is able to generalise from seed data
and performs well in limited data and limited
computation settings, with significant gains for
intent detection and slot tagging across multi-
ple datasets: ATIS, TOD, SNIPS, and Restau-
rants8k. We show an average improvement of
35% in intent detection and 21% in slot tag-
ging over a baseline model trained from the
seed data. We also conduct an analysis of the
novelty of the generated data and provide gen-
erated examples for intent detection, slot tag-
ging, and non-goal oriented conversations.

1 Introduction

In the past few years, large language models (some
with tens of billions of parameters) have shown
great success and have propelled the field of Nat-
ural Language Processing (NLP) and the indus-
try forward. In parallel, recent advances in Meta
Learning have shown great promise in computer vi-
sion, robotics, and machine learning in general (see
(Hospedales et al., 2020) for a survey), as these
approaches have the potential to overcome deep
learning challenges such as data bottlenecks, com-
putation requirements, and generalization. All of
these challenges are particularly relevant to conver-
sational Al, as we are still lacking large annotated
conversational datasets, but we have orders of mag-
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nitude larger generic text data. Moreover, it can be
very costly to annotate such data in their entirety
and train high-performing task-specific conversa-
tional agents.

By adopting recent advances in Meta-Learning
and Neural Architecture Search, we envision the
next generation of intelligent conversational agents,
that can create the data they need in order to train
themselves to perform a task. We take a step to-
wards this direction by adapting Generative Teach-
ing Networks (GTNs) (Such et al., 2020) from im-
age recognition (MNIST, CIFAR10) to conversa-
tional Al and training it with Reinforcement Learn-
ing (RL) using Proximal Policy Optimisation (PPO)
(Ziegler et al., 2019). Our approach, called Gen-
erative Conversational Networks (GCN), allows
a conversational agent to generate its own anno-
tated training data and uses RL to optimize the
data generation process. It then uses that data to
train an agent to perform according to given spec-
ifications. These specifications can refer to any
language-related task, from intent detection to full
task-oriented conversations.

Similar to Generative Adversarial Networks
(GAN), GCN effectively trains two models, a data
generator and a learner. Unlike GAN-based ap-
proaches, however, GCN do not require a discrimi-
nator, only a numerical reward that can be obtained
by any means and reflects the performance of the
learner. This frees the architecture from tight do-
main constraints and allows it to be more adap-
tive and creative; some analysis and examples are
shown in the respective section. Moreover, contrary
to earlier approaches (Hou et al., 2020b, e.g.), we
do not generate delexicalised utterances therefore
we are not limiting our models to the vocabulary
that exists in the data nor do we require a vocab-
ulary to be provided. This allows GCN to better
generalise from seed data, and create annotated
training examples that are task-focused but also

Proceedings of the 22nd Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 111-120
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Figure 1: Generative Conversational Networks Architecture. We use PPO as described in (Ziegler et al., 2019) to
perform the generator update using the meta-loss. USR refers to the user side and SYS to the system side.

diverse and help increase the overall performance.

Potential use cases for GCN include quick pro-
totyping when limited resources are available, or
when human feedback is available for training to
continuously adapt to changes in the incoming data.
GCN can also be applied when creating simulated
agents with different characteristics (roles, person-
alities, etc) that can be used for training or evalu-
ation. Our main contributions can be summarized
as follows:

* We propose GCN, a meta-learning approach
for training conversational agents using RL

* We demonstrate that GCN can generalise from
seed data in limited-resource settings (data
and computation) and achieve competitive per-
formance in two NLP tasks: intent detection
and slot tagging

* We show that GCN can also be applied to
multi-turn, non-goal oriented conversations.

2 Related Work

There have been plenty of prior works in few-
shot learning for dialogue tasks including natu-
ral language understanding (Shah et al., 2019; Liu
et al., 2020; Hou et al., 2020a), dialogue state track-
ing (Wu et al., 2019; Dingliwal et al., 2021) and re-
sponse generation (Tran and Le Nguyen, 2018; Mi
et al., 2019; Chen et al., 2020; Peng et al., 2020a),
which aim to make each model transferable to a
low-resource new domain. Another line of recent
work proposes data augmentation techniques for
conversational agents (Campagna et al., 2020; Kale
and Rastogi, 2020; Lee et al., 2021). While these
studies focus on one-time augmentation by heuris-
tics or static neural models, our proposed approach
keeps improving the data generation and hence
models trained with that data, using RL.

C2C-GenDA (cluster to cluster generation for
data augmentation) (Hou et al., 2020b) is a gener-
ative data augmentation approach focused on slot
filling. This method jointly encodes multiple re-
alisations (i.e. a cluster) with the same semantic
interpretation and generates multiple previously un-
seen realisations. A “duplication-aware attention”
model guarantees that there are no replications of
the input in the output, since the model receives
all realisations of a given semantic interpretation.
The authors train their model with paraphrasing
pairs and show that they outperform existing sys-
tems. Contrary to our work, C2C-GenDA gener-
ates delexicalised utterances that need to be post-
processed.

With SC-GPT (Peng et al., 2020b), the authors
finetune GPT-2 on dialogue act - utterance pairs on
two scenarios, when the ontology is available (i.e.
many valid dialogue act sequences are available) or
when unlabeled data sets are available (i.e. many
valid utterances are available). They finetune for
each condition differently and achieve good results
for intent and slot tagging. Our approach is differ-
ent in that we directly generate annotated data and
do not require large data for fine-tuning.

PROTODA (Kumar et al., 2021) is a method
similar in spirit to our work in that it uses seed
data and generates new data to train intent classi-
fiers. The authors use prototypical networks that
are trained on a large number of intents and are
evaluated on unseen intents, showing good perfor-
mance. Our approach is more universal and geared
towards multiple conversational Al tasks.

3 Generative Conversational Networks

Following (Such et al., 2020) and (Ziegler et al.,
2019), we propose a new Meta-Learning architec-
ture combining the two, for training conversational
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agents using RL. Our approach can be helpful in
settings with limited resources, or in settings where
we want to augment data along some dimension
(e.g. dialect, terminology, small talk, user types,
expand to other domains, etc.).

3.1 Generative Teaching Networks

Generative Teaching Networks (GTNs) (Such et al.,
2020) is a meta-learning approach to generate syn-
thetic supervised data to train Al systems. Specif-
ically, GTNs are data-generating networks that
given Gaussian noise and a label in the input, gen-
erate data. The input label is optional as GTNs
can also produce labelled data. This data is used
by another model (e.g. a classifier) and the per-
formance of the second model on a given task is
then used as a loss signal to train the GTN. Eventu-
ally, GTNs learn to generate good quality data so
that the classifier model can perform well on the
given task. GTNs have been successfully applied to
train MNIST (LeCunn and Cortes) and CIFAR10
(Krizhevsky et al., 2009) classifiers from synthetic
data with very good performance and, besides su-
pervised tasks, they can be applied to unsupervised
and reinforcement learning. A broader application
of GTNs is to evaluate candidate neural architec-
tures in neural architecture search.

3.2 GCN Architecture

We pair GTNs with (Ziegler et al., 2019), who use
PPO to train transformers from human feedback. '
Using RL to optimize the data generation process is
crucial to generalize from the training data’, as we
discuss later in the paper (section 5.4). We compute
a reward for each datapoint rather than for each
batch or for the entire generated data, to provide
a more fine-grained signal which allows GCN to
better handle the complexities of conversational
tasks and avoid language degradation.

Figure 1 shows an overview of the GCN architec-
ture. It has three main parts: a) a data generator, b)
a learner, and c) an evaluator. The training process
iterates over the following steps until good perfor-
mance is achieved: a) a generation step, where data
is generated in batches; b) a learner training step,
where a new learner model is spawned and trained
on the data provided by the generator; and c) a gen-

!Using the Transformer Reinforcement Learning (TRL)
implementation: https://github.com/lvwerra/trl

Theoretically, we can train the generator from scratch
using noise in the input. We have not tested this condition in
this work, however.
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erator update step, where the learner is evaluated
on a validation set or by humans using the learner
and feedback is provided back to the generator. Al-
gorithm 1 describes the training process.

Algorithm 1 GCN training procedure.

1: procedure TRAIN(Dgeed, Dyais Diest)

2 Initialize Generator g

3 if D,..q then

4 g.train(Dgeeq)

5: while Performance,, ¢, < € do > training
6 Dyen < g.generate()

7 D <« Curriculum(Dgen, Dseed)

8 Sample and initialize new Learner [

9 [.train(D)
10: Performance,,,¢;q < [.evaluate(D,;)
11: g.update(Performance, ;)
12: D < g.generate() > evaluation
13: Sample and initialize new Learner [
14: [.train(D)
15: l.evaluate(Dyest) > or other evaluator

The generator can be any model of choice. It
generates data on demand and can receive vari-
ous kinds of input, depending on the configuration
and task: noise to encourage diverse data, spe-
cific labels to generate focused data, goals, dia-
logue acts, or knowledge base results to encourage
task-oriented dialogues, and so on. The genera-
tor’s output will be a batch of data that is then
sent to a learner model. At each meta-iteration, a
new learner is created either from a pool of avail-
able model architectures or using the same type
of model (our approach in this work). The learner
is trained on the generated batches of data using
a held-out validation set (generated or provided)
and its performance on the validation set is used
as a reward to train the generator using PPO. Af-
ter the training phase, the generator trains a new,
final learner that is evaluated on an external test set,
never seen by the generator or any learner, or by a
human or an evaluator agent. In theory, GCN can
train the generator and the learner from scratch; in
practice, however, we rely on pre-trained models
for the generator and the learners, to speed up the
process. We use a distilled version of GPT2 (distil-
GPT2, 82M parameters) to demonstrate the power
of GCN without requiring very large models.

We implement a form of curriculum learning
by providing the learner with seed data and grad-
ually introducing generated samples. This is done



at batch-level, to avoid cases where some batches
contain mostly good examples and some contain
mostly bad ones, in the early stages of training.
As the training progresses, the percentage of gen-
erated data grows to 100%. Other forms of cur-
riculum learning are left for future work (i.e. one
can provide the generator with labels from which
to generate utterances, or goals, dialogue states,
and knowledge base entries to generate dialogues,
etc.). Equation 1 shows how we calculate the num-
ber of learner training iterations that contain seed
data (warmup iterations %,,) at each meta-iteration
Imetq (data generation & learner training cycle)
and equation 2 shows how we calculate the number
of datapoints (1) per batch during the warmup
iterations:

. Iwarmup — Ulmeta
Ly =

Ilearner (1)

Iwarmup

where 7., is the number of warmup learner itera-
tions for the current meta-iteration %meta. Lwarmup
is the number of meta-iterations for which we have
warmup learner iterations and Ijeqy e, 1S the num-
ber of learner iterations at each meta-iteration.

ben
’9 ’(

Nwb = Iwarmup - imeta) (2)

Iwarmup

where n,;, is the number of datapoints in the cur-
rent learner iteration batch that will be pulled from
the seed data (the rest are generated) and |bgey, | is
the generator’s batch size.

3.3 Data Generation

Since our generator is a GPT-2 based model, we
train it using special tokens that act as separators
between labels and utterances:
<BOS> label <GO> utterance <EOS>

If we want the generator to create labelled data,
we prompt it with a <BOS> token (our approach
in the experiments); if we want to provide the label
and get a corresponding utterance, we prompt it
with <BOS> label <GO>. Depending on the task,
the label can be an intent, a collection of slot-value
pairs, a previous utterance, etc.:

* <BOS> flight <GO>...
e <BOS> people 5 time after 9am <GO>...
o <BOS> previous utterance <GO>...

for intent detection, slot tagging, and conversa-
tional response generation, respectively. Each
learner will receive data in this format and will have

to parse it to retrieve the input (between <GO> and
<EOS>) and the target label (between <BOS>
and <GO>) in order to train itself. When training
for the slot tagging task, we convert all slot names
to words or phrases (e.g. convert “arrival_time” to
“arrival time”) in the label portion of the input to
better take advantage of distilGPT2. In this setting,
the generator outputs IOB tags in addition to the
output described previously and those tags are used
as the learner’s labels.

For more complex tasks such as task-oriented di-
alogues, we can use more special token separators
to separate the various kinds of input. Alternatively,
we can design task-specific generators where GPT-
2 can be a part of the model and we can have other
encoders and decoders for the various kinds of op-
tional inputs (belief states, goals, etc.).

3.4 Learner Training

Intent Detection. For this task we use a RoOBERTa-
base sentence classifier (Liu et al., 2019) as a
learner. Upon receipt of a batch of data, the learner
will parse it and create an input and a target tensor,
containing the utterances and labels respectively.
Slot Tagging. For this task we use a RoBERTa-
base slot tagger (Liu et al., 2019). Similarly to
intent detection, the learner will parse the batch of
data but using the utterance part to create the input
tensor and the IOB tags to create the rarget tensor.
Non-goal oriented interaction. For this task we
use the Bert2Bert model (Rothe et al., 2020) where,
similarly to intent detection, the learner will cre-
ate the input and target tensors that represent one
dialogue turn.

3.5 Generator Training

Following (Ziegler et al., 2019), we use two gener-
ator models, 7 and p. 7 is the model that is being
trained and p is a reference model (distilGPT2 in
our case) that keeps 7 from diverging too much,
via a Kullback-Leibler (KL) term in the reward
function. PPO is then used to update 7.

In GCN, each datapoint created by the generator
is saved as is the performance of the learner for that
particular datapoint. When the generator is being
trained, we combine the per-datapoint performance
P,; with the validation performance P,,¢t, Of the
learner to compute the reward:

Rd = aPeta + (1 - a)Pd (3)

where d is the datapoint, R is the reward for that
datapoint, and P is a measure of performance, e.g.
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accuracy, F1 score, perplexity, etc.. In our experi-
ments, we use equal weighting for the reward com-
ponents: a = 0.5. Ry is then used to train the
generator 7:

m(ald)
plald)
where a is the “action”, i.e. the system’s response
and the coefficient § is varied dynamically (see
(Ziegler et al., 2019) for details). After some pre-

defined number of training epochs, we copy the
parameters of p to .

R(d,a) = Rq — Blog “4)

3.6 Training from Human Feedback

One of the benefits of using RL to train GCN is that
it allows for continuous adaptation based on human
feedback. In a GCN-trained production system,
for example, we can combine human ratings with
other metrics (appropriateness, time lag, factual
correctness, etc) to compute a reward signal. As the
rated conversations include the human side as well,
that reward can only be used to characterise the
batch of GCN-produced data that were generated to
train the agent in production. Using reward shaping
methods (El Asri et al., 2013; Su et al., 2015, e.g.),
we can derive a reward per individual conversation
or even per dialogue turn.

4 Experiments

We assess GCN along two dimensions, creativity
in data generation and task performance. Regard-
ing task performance, we conduct experiments in
limited-resource settings along two tasks across
four datasets and compare against baseline mod-
els. Specifically, we conduct few-shot experiments
where for each experiment we allow a limited num-
ber of updates (100 learner iterations for the learn-
ers and 15 meta-iterations for the generators). We
use a batch size of 10 for intent detection and 50 for
slot tagging. We evaluate GCN on the following
tasks:

Intent detection. For intent detection, simi-
larly to (Kumar et al., 2021), we evaluate our ap-
proach on Facebook’s Task-Oriented Dialogues
(TOD) (Schuster et al., 2019), ATIS (Hemphill
et al., 1990), and SNIPS (Coucke et al., 2018) us-
ing random samples of the data of various sizes
(from 0.5% to 10%). In this setting, the generator
produces pairs of utterances and intent labels. The
learner is a RoBERTa-base sentence classifier.

Slot tagging. For slot tagging we use TOD,
SNIPS, and the Restaurants8k dataset (Coope et al.,
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Baselines
Intent Classification (Accuracy)
ATIS TOD SNIPS

0.929 0.963 0.939
Slot Tagging (F1 Score)
TOD Restaurants8k SNIPS

0.969 0.92 0.938
GCN+RL
Intent Classification (Accuracy)
ATIS TOD SNIPS
0.956 0.99 0.944

Slot Tagging (F1 Score)
TOD Restaurants8k SNIPS
0.968 0.947 0.943

Table 1: Performance at 5000 training iterations.

ATIS Accuracy (100 learner iterations)
0.5% 1% 2% 5% 10%
Base 0.532 0516  0.72  0.695 0.78
GCN-RL | 0.738 0.757 0.769 0.78  0.803
GCN+RL | 0.732 0.734 0.809 0.816 0.851
SNIPS Accuracy (100 learner iterations)
0.5% 1% 2% 5% 10%
Base 0.262 0.292 0344 0.661 0.686
GCN-RL | 0.229 0424 0.547 0.715 0.783
GCN+RL | 0.602 0.638 0.734 0.798 0.865
TOD Accuracy (100 learner iterations)
0.5% 1% 2% 5% 10%
Base 0.7 0.706  0.71  0.765 0.769
GCN-RL | 078 0855 0.84 0904 0.899
GCN+RL | 0.836 0.895 0.903 0.927 0.959

Table 2: Intent detection limited-resource results vari-
ous random subsets of the data.

2020), again using random samples of the data of
various sizes (from 0.5% to 10%). In this case,
the generator produces slot-value pairs and utter-
ances that realise them exactly. The learner is a
RoBERTa-base token classifier. In these initial ex-
periments, we generate the tags via approximate
matching, by looking at the label (slots and values)
produced by the generator and finding them in the
utterance that is also produced by the generator.
Since we ask the generator to produce a structured
dataset, we found that if we also ask it to produce
IOB tags (i.e. asking the generator to learn how to
do tagging) the system became very fragile due to
small misalignments that result in low rewards.

4.1 Experimental Setup

We use the original train / validation / test splits pro-
vided with each dataset. For Restaurants8k, we ran-
domly split the training set into training (80%) and



SNIPS-3 |

PROTODA | 0.881
GCN-RL | 0.822
GCN+RL | 0.926

Table 3: Results on the SNIPS-3 test set. We allow
5000 learner iterations here for a fairer comparison.

SNIPS Intent classification (accuracy)
1% 2.5% 5% 10%
C2C-GenDA 0.481 - 0.679 -
(encoder-decoder)
SC-GPT - 0.941 - 0.981
(GPT-2)
GCN-RL 0.907 0.901 0906 0.926
(distilGPT2)
GCN+RL 0914 0917 0934 0.939
(distilGPT2)

Table 4: Comparison with C2C (Hou et al., 2020b) and
SC-GPT (Peng et al., 2020b) on few-shot intent detec-
tion. We allow our learners to train for 5000 iterations.

validation (20%). Specifically for ATIS, we remove
intents with less than 20 utterances as per (Kumar
et al., 2021). To conduct our limited-resource ex-
periments, we sample the respective percentage
of training and validation data, making sure we
preserve the distribution of classes as much as pos-
sible® and always evaluate on the full test set. We
pre-train the generator with the available training
data of each few-shot setting and use a curricu-
lum batch schedule to mix seed and generated data.
The learner is trained on those batches for 100 it-
erations and once the iterations are finished, the
learner is evaluated on the sampled validation set
and its performance is used as a reward for training
the generator. After 15 meta-iterations, the gener-
ator creates a final dataset that is used to train a
learner that is evaluated on the held-out test set. To
show the value of training the generator with RL,
we compare two conditions against the baselines:
GCN-RL, where the generator used to augment the
data is finetuned with the seed data but not trained
with RL (this can be thought of as “GTN for text”
instead of image recognition), and GCN+RL where
the generator is finetuned and trained using RL.

4.2 Training Details

Training a GPT-2 model with PPO in the context
of GCN can be sensitive to hyperparameters for a
variety of reasons, the most important being that
we receive a numerical reward that characterises

3We make sure that there is at least one datapoint for each
intent / slot.

an entire batch of data. As mentioned in section
3.5, calculating per-datapoint performance seems
to help speed up training. An option we do not ex-
plore in this work is to calculate per-token rewards.
We also find that if we gradually unfreeze the gener-
ator’s layers during training, the training becomes
more stable. These strategies make training fairly
stable and robust to hyperparameter values and
apart from setting an appropriate learning rate, no
other hyperparameter tuning was needed. We use
the following PPO hyperparameters (I7: learning
rate):

8 = 0.2 (adaptive)

e train for 4 epochs per batch
* ITgenerator =1€-5

* ITlearner =3€-3 (intents)

* ITiearner =1e-4 (slots)

* ITlcqrner =le-4 (chit-chat)

We train the learners using Adam (Kingma and
Ba, 2014) and we train the generator using Stochas-
tic Gradient Descent because we found it to be
much more stable than Adam.

5 Task Results

In this section, we present the results of our evalu-
ation; all reported numbers are averages of 3 runs.
We conduct limited-resource experiments, i.e. re-
stricting the available computation as well as the
available data. We show that we achieve an average
improvement of 35% in intent detection and 21%
in slot tagging over a baseline model trained from
the seed data.

As the focus of our work is on a novel training
framework, we do not explicitly compare against
few-shot approaches (that would take the place of
the learner model) and typically do not restrict com-
putation. However, for completeness, we compare
against approaches that are similar to ours and not
specifically designed for one task.

5.1 Baselines

We use the learners trained directly on the available
seed data as our baselines. Table 1 shows the per-
formance of our learners (Baselines) when trained
directly on each dataset for 5000 iterations using
all available training data and the performance of
GCN+RL under the same conditions.
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5.2 Intent Detection

Table 2 shows the limited-resource experiments
where we compare GCN to the baseline (RoBERTa
sentence classifier). Base refers to the baseline,
GCN-RL refers to GCN without RL fine-tuning,
and GCN+RL refers to GCN with RL finetuning.
We see that GCN+RL outperforms the other condi-
tions in all settings.

In Table 3, we show a comparison with PRO-
TODA (Kumar et al., 2021) in the SNIPS-3 setting.
In that setting, the evaluation is performed on 3 in-
tents: GetWeather, PlayMusic, and SearchCreative-
Work, and training is performed on ATIS, TOD,
and SNIPS.

In Table 4, we show a comparison with C2C-
GenDA (Hou et al., 2020b) and SC-GPT (Peng
et al., 2020b) on SNIPS. GCN outperforms C2C-
GenDA while SC-GPT performs better than GCN,
which is expected since it is based on GPT-2 (in-
stead of distilGPT?2) and fine-tuned on 400K addi-
tional dialogue act - utterance pairs. Another rea-
son may be that we allow 5000 learner iterations
for GCN due to computation resource constraints
which could explain the lower performance.

5.3 Slot Tagging

Table 5 shows the results from our limited-resource
experiments for slot tagging. Similarly to the pre-
vious task, we see that GCN+RL outperforms the
other conditions in most settings but we do see
less gains here compared to GCN-RL. This can be
explained by the increased complexity of the data
the generator is required to produce: slots, values,
and corresponding utterances (compared, for exam-
ple, to intents and corresponding utterances). Such
complexity means that small mistakes (generating
paraphrases of slots or values, over or under gen-
eration of the corresponding utterance, other mis-
alignments) can cause the learner to under perform
and thus lead to that datapoint receiving a very low
reward, even though only a small mistake occurred.
In future work, we are looking to alleviate this by
working with per-token rewards.

6 Non-Goal-Oriented Interactions

To demonstrate the ability of GCN to handle con-
versational tasks, we use TopicalChat (Gopalakrish-
nan et al., 2019) and train a Bert2Bert learner. The
generator here produces utterance pairs if prompted
with the <BOS> token, or produces a response if
prompted with <BOS>utterance<GO>. To pro-
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TOD F1 (100 learner iterations)

0.5% 1% 2% 5% 10%

Base 0.541 0567 0.617 0.723 0.741
GCN-RL | 0.558 0.689 0.793 0.748 0.86
GCN+RL | 0.597 0.728 0.815 0.838 0.868

Restaurants8k F1 (100 learner iterations)

0.5% 1% 2% 5% 10%

Base 0.182 036 0.627 0.626 0.774
GCN-RL | 0313 0481 0.633 0.622 0.771
GCN+RL | 0.334 0.564 0.659 0.696 0.827

SNIPS F1 (100 learner iterations)

0.5% 1% 2% 5% 10%

Base 0.347 0454 0.618 0.705 0.77
GCN-RL | 0.342 0.494 0.654 0.782 0.819
GCN+RL | 0.326 0.483 0.719 0.804 0.899

Table 5: Slot tagging limited-resource F1 results.

—4~ Vocab Size: ATIS Sced =¥- Vocab Size: GCN-RL
—— OOV Rate: ATIS Sced —— OO0V Rate: GCN-RL

=*= Vocab Size: GCNIRL
—#— OOV Rate: GON+RL

500

400
]
7
£

8
3007

Unigram OOV rate (%)
s

200

10.0

Figure 2: Unigram out of vocabulary rates and vocabu-
lary sizes with respect to the ATIS test set.

duce a batch of data, we first prompt the generator
with a <BOS> token and observe its output pair
(u, u’). For the next turns, we prompt the generator
with <BOS> u' <GO>, observe its output u”,
and feed that to the following turn. Table 7 shows
example data generated by GCN that do not exist
in the TopicalChat dataset. We leave a thorough
evaluation for future work.

7 GCN Generator Creativity

To better understand the quality of the generated
data, we analyze the creativity of GCN, or how
many examples are copied from the data vs cre-
ated or paraphrased. We compare the seed data
with data generated by GCN-RL and GCN+RL
choosing ATIS as our use case. We calculate ex-
act match rates (EM) with respect to the seed data
and Self-BLEU scores (Zhu et al., 2018) in Table
6 and unigram OOV rates (OOV) with respect to
the test set and vocabulary sizes in Figure 2. We
see that GCN-RL is more influenced by the seed
data as the seed data size grows but when trained
with RL it maintains a higher OOV rate. While



Seed EM Train EM Self-BLEU
ATIS % | GCN-RL GCN+RL | GCN-RL GCN+RL | GCN-RL GCN+RL
0.5% 1.57% 0.0% 0.0% 17.45% 0.977 0.982
1% 0.37% 0.0% 0.0% 5.82% 0.996 0.971
2% 0.37% 0.23% 0.63% 7.72% 0.997 0.974
5% 3.27% 0.68% 0.3% 8.34% 0.998 0.967
10% 7.83% 1.08% 1.0% 6.6% 0.997 0.966
100% 66.33% 15.97% 14.33% 15.97% 0.985 0.963

Table 6: GCN exact match (EM) wrt the seed or the full train data and Self-BLEU scores on ATIS (micro avg).

datetime today

Intent Utterance
flight+airfare $5 or less on the fly from boston to atlanta
city is there one way on i-town on august eighteenth
flight what continental flights leave phoenix on friday
reminder set 1 want to be reminded to finish seasoning the steaks
Slots & Values Utterance
weather jacket do i need a light jacket today?

datetime for the first
of every month

every month for flea and tick prevent

set an alarm for the first of

generic

cancel my earliest alarm

object_type tv series
object all around
performance horse

look for the tv series
all around
performance horse weekly

weekly
movie the fox and the fox what time does the fox play

Speaker Utterance
SP 1 Hi, how are you today?
SP2 I’m great! how are you?
SP 1 I am well, thanks! I am a fan of football. Are you?
SP2 A little, I know there is a league. Some players in the NFL are really competitive.
SP 1 Interesting. I used to watch it all the time, but I don’t really watch a lot anymore.

I think it’s sad they don’t get a chance anymore.

Table 7: A mix of good and bad examples generated by GCN. The errors may be at the label or utterance part.

not all OOV words are good, this trend in combina-
tion with the results on section 5 means that GCN
creates more diverse data that are focused on the
task and this is why we see the increase in task per-
formance. As we can see from Table 6, RL helps
reduce repetitions in the data and GCN in general
creates data outside of the seed but that are valid (a
larger portion exist in the full train data).

This means that GCN learns to produce good
quality novel data that can be used to train higher
performing learners. It is clear from the results in
section 5 that applying RL to GCN helps gener-
ate more diverse data, that in turn result in higher
task performance. For instance, using 10% of the
data, after 15 meta-iterations, the data generated
by GCN+RL achieve an average 94.4% of the top
baseline performance (Table 1) using 2% of the
training iterations on intent detection. For slot
tagging, we achieve an average of 91.8% of the
baseline performance.

Table 7 show some example datapoints gener-
ated by GCN+RL in all three tasks.

8 Conclusion

We have presented Generative Conversational Net-
works, an approach that takes a step towards con-
versational agents that generate their own data and
learn to perform well in conversational tasks. We
conducted an analysis on GCN’s creative ability
and demonstrated its performance and efficiency
on two sample language understanding tasks, in-
tent detection and slot tagging. However, GCN
has the potential to perform many more tasks and
we are currently evaluating it for non-knowledge-
and knowledge-grounded conversations. As future
work, we will investigate per-token rewards as well
as having populations of learners with different ar-
chitectures evaluated on the same task, and having
learners evaluated on multiple tasks.
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Abstract

Smooth and effective communication requires
the ability to perform latent or explicit com-
monsense inference. Prior commonsense rea-
soning benchmarks (such as SociallQA and
CommonsenseQA) mainly focus on the dis-
criminative task of choosing the right answer
from a set of candidates, and do not involve
interactive language generation as in dialogue.
Moreover, existing dialogue datasets do not
explicitly focus on exhibiting commonsense
as a facet. In this paper, we present an em-
pirical study of commonsense in dialogue re-
sponse generation. We first auto-extract com-
monsensical dialogues from existing dialogue
datasets by leveraging ConceptNet, a common-
sense knowledge graph. Furthermore, build-
ing on social contexts/situations in SociallQA,
we collect a new dialogue dataset with 25K
dialogues aimed at exhibiting social common-
sense in an interactive setting. We evaluate re-
sponse generation models trained using these
datasets and find that models trained on both
extracted and our collected data produce re-
sponses that consistently exhibit more com-
monsense than baselines. Finally we propose
an approach for automatic evaluation of com-
monsense that relies on features derived from
ConceptNet and pretrained language and dia-
log models, and show reasonable correlation
with human evaluation of responses’ common-
sense quality. !

1 Introduction

Open-domain dialogue response generation (RG)
models aim to provide human-like natural lan-
guage responses given dialogue histories (Chen
et al., 2017). To improve generated response qual-
ity, many studies have been conducted to develop
knowledge-grounded RG (Ghazvininejad et al.,

* Work done while Pei Zhou was an intern at Amazon
Alexa Al

"Data and code will be released soon.
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2018; Gopalakrishnan et al., 2019), personalized
dialogue agents (Zhang et al., 2018), empathetic
response (Rashkin et al., 2019), etc. For all the
above-mentioned directions for RG, large-scale
dialogue data geared towards the specific goals
is crucial, since most current state-of-the-art neu-
ral RG models require training on appropriate and
large data. Therefore several datasets have been
collected to support such research efforts such
as knowledge-grounded dialogues (Ghazvininejad
et al., 2018; Gopalakrishnan et al., 2019), Per-
sonaChat (Zhang et al., 2018), and Empathetic-
Dialogues (Rashkin et al., 2019). Producing nat-
ural and logically-coherent responses given dia-
logue contexts involves making commonsense in-
ferences during the communication. For example,
if someone says “I’'m going to perform in front of a
thousand people tomorrow...” the listener is likely
to conclude that the speaker is probably feeling
nervous and respond by comforting them: “Relax,
you’ll do great!” In contrast to other efforts to make
RG models more empathetic or knowledgeable,
there is a lack of commonsense focused dialogue
data for both training neural models and evalua-
tion. An ideal dataset for studying commonsense
in RG needs to simulate how humans have multi-
turn conversations as much as possible. Existing
commonsense-focused work in RG uses extracted
post-response pairs from Reddit (Zhou et al., 2018),
which are single-turn and rough approximations for
real-life conversations.

Aiming to bridge the gap in commonsense for di-
alogue response generation, we collect a large-scale
multi-turn open-domain dialogue dataset that is fo-
cused on commonsense knowledge. We first con-
sider extracting commonsense-focused dialogues
from three existing dialogue datasets by identifying
responses that contain commonsense inferences us-
ing ConceptNet (Liu and Singh, 2004). This filter-
ing results in 21k dialogues. Then we collect 25k

Proceedings of the 22nd Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 121-132
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new dialogues focusing on social commonsense
inferences, where prompts are context sentences
describing an event in the SociallQA data (Sap
et al., 2019b).

To study commonsense in RG, we train large
generative language models on our datasets and
compare with models trained on existing datasets.
We find through sampled human evaluation that our
dataset helps to generate more commonsensical re-
sponses (average score of 6.9 out of 10 compared to
4.8 using other data), and automatically generated
responses still have a large gap in comparison to
human performances (9.2 out of 10). To help lower
the evaluation cost and increase the efficiency of
evaluating commonsense in RG, we further pro-
pose an automatic metric using combined neural
and symbolic features derived from ConceptNet,
and show that this metric has reasonable correla-
tion with human annotations and symbolic features
contribute positively to system performance.

Our contributions are as follows: (1) We create
the first large-scale open-domain dialogue dataset
focusing on social commonsense inferences. This
includes a new collection of 25k dialogues based on
SociallQA event prompts, and ConceptNet filtered
data from some existing data sets. (2) We bench-
mark our dataset and show that models trained on
our dataset helps make models produce more com-
monsensical responses. (3) We propose the first
automatic metric for evaluating the commonsense
plausibility in response generation that reaches sta-
tistically significant correlation with human anno-
tations.

2 Task Introduction and Motivations

2.1 Commonsense-Focused Dialogue
Response Generation

We study commonsense-focused response genera-
tion for dialogues. Commonsense can be defined as
“the basic level of practical knowledge and reason-
ing concerning everyday situations and events that
are commonly shared among most people” (Sap
et al., 2020). Dialogue response generation is the
task of generating a response turn r in a conversa-
tional setting given previous history turns h. Thus
by combining these two together, we want to exam-
ine models’ ability to produce responses that make
sense or is plausible in terms of commonsense.

2.2 Motivations

Lack of Commonsense-Focused Analysis on Ex-
isting Dialogue Datasets Numerous dialogue
data has been collected for training RG models
and other dialogue-related tasks. As mentioned
before, many different aspects of RG have been ex-
plored, such as knowledge-grounded (Ghazvinine-
jad et al., 2018; Gopalakrishnan et al., 2019) and
empathy (Rashkin et al., 2019), whereas, to the
best of our knowledge, there is no study or large-
scale multi-turn data for analyzing whether model-
generated responses present the ability to commu-
nicate with commonsense knowledge or reasoning.

Lack of real-life interactive setting for Com-
monsense Reasoning Benchmarks Current
commonsense reasoning (CSR) benchmarks
mostly target models’ ability to choose a right
answer from several candidates given a question.
We argue that this is a highly artificial scenario
as models do not get options to choose from in
real-life, and often they need to generate utterances.
Recent work such as CommonGen (Lin et al.,
2020) has started to explore generative settings
to examine commonsense in natural language
processing (NLP) models. This line of work,
however, is still far from real use cases as it does
not consider a real-life interaction task setup such
as conversations. Thus we argue that existing
commonsense benchmarks in NLP are not enough
to train a language agent that produces smooth
interpersonal communications, nor evaluate
whether models have such capabilities.

3 Commonsense Focused Dialogue
Collection

To collect more commonsense focused dialogues
for response generation model training and evalua-
tion, our effort is along two directions: filtering ex-
isting data to collect dialogues with responses that
consist of commonsense (Section 3.1), and curat-
ing new data using prompts from a commonsense
reasoning multiple-choice benchmark SociallQA
(Section 3.2).

3.1 Filtering Based on Existing Dialogue
Datasets

We propose a simple process for filtering com-
monsense in dialogues and present our analy-
sis of three dialogue datasets with different fo-
cuses: DailyDialog (Li et al., 2017), Empathetic-
Dialogues (Rashkin et al., 2019), and MuTual (Cui
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et al., 2020). The general idea is to refer to a com-
monsense knowledge graph (CSKG) such as Con-
ceptNet (Liu and Singh, 2004) to identify potential
commonsense triples (e, 7, e2) expressing a com-
monsense assertion between turns in a dialogue.
The following describes the detailed process.

Identify Candidate Concepts The first step is to
identify potential candidates for concept entities in
the commonsense triples. For a turn in a dialogue,
we use a part-of-speech (POS) tagger to find the
nouns, verbs, and adjectives that are not stopwords
and then construct a set of potential concepts by
including the lemmatized version of these words.
We use the POS tagger, lemmatizer, and stopword
list from the Natural Language Toolkit (NLTK)
package (Bird et al., 2009). This step results in a
set of concept words for each turn of a dialogue.
For example, consider an exchange between two
participants in a conversation: “Hi, I want to find a
doctor”, “What kind of doctor are you looking for?
A general doctor or a specialist?”, the concept sets
for the two turns are “want, find, doctor” and “look,
general, doctor, specialist”, respectively.

Query ConceptNet for Neighboring Entities
With a set of concepts we extract for every di-
alogue turn, we then identify a list of candidate
triples (e1,r, e2) expressing commonsense asser-
tions about each concept such that we can later
check if some of those assertions indeed appear
in this dialogue. We rely on the widely-used Con-
ceptNet (Liu and Singh, 2004) as the knowledge
resource, which consists of commonsense knowl-
edge about various concepts. Specifically we use
the ConceptNet containing single-word concepts
pre-processed by Zhou et al. (2018). For each con-
cept we identified in a turn, we store all triples in
ConceptNet that contain this concept, either as sub-
ject or object. Using the above example, example
triples about “doctor” include “doctor LocateAt
hospital”, “patient RelatedTo doctor”, and “special-
ist TypeOf doctor”.

Search Entities in the Next Turn After getting a
list of commonsense triples (e1, 7, e2) containing
concepts in a particular turn using ConceptNet, we
next examine if any of the other entity in the triples
appears in the concept set of the next turn. In the
example dialogue exchange above, where “doctor”
is a concept appearing in a turn, for the triple “spe-
cialist TypeOf doctor”, we search if “specialist” is
in the concept set of the next turn. Since we find
such a match, we record this triple to be a com-
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monsense assertion that might be implied in the
response.

Filtering Results We filter dialogues using the
above-mentioned approach: if we can successfully
find a matching triple between two adjacent turns,
we keep the dialogue as it might contain common-
sense assertions identified from ConceptNet. We
consider three dialogue datasets in this study:

e DailyDialog(DD) (Li et al., 2017). It includes
general-domain day-to-day dialogues crawled
from various English learning websites.

EmpatheticDialogues (ED) (Rashkin et al.,
2019). It is an empathy-focused dialogue

dataset crowdsourced from Amazon Mechani-
cal Turk (MTurk).

MuTual (Cui et al., 2020). It is a reasoning-
focused response selection dataset based on
English listening comprehension exams for
Chinese students.

We choose these three datasets to examine three
different types of focuses in dialogue datasets:
general-domain, empathy, and general reasoning
(but not specifically on commonsense).

After the process, we find that in the training
sets, around 7k out of the 11k dialogues (63%)
from Dailydialogue contain at least one matched
triple between their turns, and 9.5k out of the 18k
for EmpatheticDialogues (53%), and 5k out of 7k
(73%) for MuTual dialogues. For the valid and test
sets, the proportion of such dialogues is similar to
that in the training sets for these three data sets.

Note that there are some limitations in our Con-
ceptNet based data selection approach. First, we
match concept entities based on just surface form,
rather than semantic meaning or word senses in the
context. Second, we are only using single word
concepts, not phrases. Third, we are only consider-
ing one-hop concept relation identified in Concept-
Net. The first one may affect the precision of the
selected dialogues, and the other two reasons affect
the recall. Without human annotated commonsense
reasoning for dialog turns, we can not compute the
exact performance of our filtering method. We plan
to conduct some human annotation in our future
work. Among the three data sets used in this study,
the fact that there is a higher percentage of dia-
logues selected in MuTual may indicate that data
focuses more on reasoning and thus is more likely
to contain commonsense relations.



3.2 New Data Collection Using SociallQA
Prompts

To facilitate commonsense-guided response gener-
ation training, we collect more dialogues with a fo-
cus on getting responses that require commonsense.
Specifically, we make use of an existing common-
sense multiple-choice benchmark SociallQA (Sap
et al., 2019b) to crowdsource dialogues. This sec-
tion provides background on SociallQA, the crowd-
sourcing process, and the resulting dialogues.

Background and motivation We collect dia-
logues by prompting crowdsourcing workers on
Amazon Mechanical Turk (MTurk) with context
sentences from SociallQA that describe an event
in everyday social scenarios. SociallQA (Sap et al.,
2019b) is a large-scale commonsense reasoning
benchmark about social situations. It contains
around 38k multiple-choice questions, each con-
sisting of a context sentence, a question, and three
answer choices. Context was generated by rewrit-
ing events from ATOMIC (Sap et al., 2019a), a
large knowledge graph (KG) that contains inferen-
tial knowledge about the causes and effects of 24k
short events. An example event in ATOMIC is “Per-
sonX spills all over the floor”, which crowd work-
ers were asked to turn into a sentence by adding
names, fixing potential grammar errors, and filling
in placeholders, resulting in a context like “Alex
spilled food all over the floor.”

We choose to use SociallQA contexts because
of three reasons: (1) they are specific instantiations
of the event phrases found in the knowledge graph
ATOMIC, which guarantees that there is at least
one potential commonsense inference that can be
made from the event; (2) ATOMIC covers a wide
range of commonsense motivations and reactions
and thus the contexts also embed diverse common-
sense; (3) the rewriting process from SociallQA
ensures that the context sentences are well-formed
and similar to natural sentences, which we expect
is not hard for crowd workers to come up with a
dialogue.

Prompt selection We inspected around 200 con-
texts trying to write a dialogue and found that the
contexts that we had the most difficulty with are
the ones that are too short or do not contain an in-
teresting event to start a conversation. For example,
contexts such as “Robin stopped eating the food to
save room for dessert” might not be an interesting
event to talk about in a dialogue. To select appro-
priate contexts as prompts for dialog writing, we
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apply a simple heuristic criteria: the context has to
be either longer than 15 words or contains a punc-
tuation such as a comma or a period in the middle.
The intuition is that longer contexts are easier to
write a dialogue with because they contain more
information and a punctuation often indicates a de-
velopment in the narrative of the event (e.g., “Tracy
performed her function. Their employer gave them
araise”). This makes the event more complicated,
and thus avoids too trivial events. We also filter out
context sentences that do not contain any person
names. As a result of this preprocessing, we kept
12.8k out of 33k contexts in the training set and 754
out of 2k contexts in the development set, adding
up to 13.5k contexts from SociallQA.

Dialogue Collection Using selected contexts from
SociallQA, we ran a task on MTurk asking each
worker to write a dialogue with 4 to 6 turns between
two friends about the event described in the con-
text. Note that, this is a ‘self-talk’ dialog collection.
Specifically, since there will be a name appearing
in the context after filtering, we ask a worker to
write a dialogue by first imagining that they are
the person mentioned in the context and are talking
with their friend about the event described. For
example, consider the context above (‘“Tracy per-
formed her function. Their employer gave them
araise”), we ask a worker to imagine themselves
to be “Tracy” and that they are talking to a friend
(also played by themselves) about getting a raise.

We pose three requirements for turkers in order
to work on our task: locate in US, UK, or Canada;
successful HITS are over 1000, and with more than
95% HIT acceptance rate. We pay MTurk workers
$0.5 for each instance, roughly translating to 10
dollars per hour, well above the minimum wage of
US.

To account for multiple plausible dialogues ex-
panded from the context event, we assign each con-
text to five different MTurk workers. We randomly
sample 5k context sentences out of 13.5k filtered
ones and collect five dialogues for each context,
resulting in 25k dialogues. The average number
of turns is 6 for our 25k collected dialogues. Ex-
amples of our collected dialogues are shown in
Table 1.

For our collected data, we follow the same fil-
tering steps as used for other existing data (Sec-
tion 3.1). This ConceptNet filtering identifies 11k
dialog from the entire collection. Though we ex-
pect the SociallQA contexts are from ATOMIC



Prompts

Dialogue Examples

Tracy performed her function.

Tracy: I got a raise today. Totally unexpected.

My boss told me I was doing a great job.

Friend: It feels good to be rewarded for hard work.
Tracy: I’ve been trying my best at this job. I've been
putting in long hours to make sure I get everything done.
Friend: Sounds like your boss recognized that.

Tracy: It’s great when people can work well together.

Tracy: Get dressed. We’re going out to celebrate my raise.
Friend: Awesome. What did your boss say when you got it?
Tracy: She said I did my job very well and deserved it.
Friend: You should be so proud. You’ve earned it.

Addison wanted to go on a trip to Mexico,
and messaged all of his friends to set up a schedule.

Addison: Hey guys! I'm planning a Mexico vacation for everyone!
Let’s work out a schedule so we can all do somethings we

want to do together.

Friend: I'm down! We should get in some scuba diving. I've been
wanted to get some good underwater photos for my gallery.
Addison: That sounds fun! I’ve never scuba dived before. Do you
have to have any training?

Friend: They give you a little course on how to use the equipment.
You can opt out and just do the snorkeling if it’s too intimidating.

Addison: I think we’ll go to Mexico next.

Friend: That sounds exciting. Did you find a time that works for everyone.

Addison: No! But I'm going to message them right now to find out!
Friend: Yeah, You had better figure out a time as soon as possible.
Scheduling is super hard with more than 3 people.

Addison: Yep. But we’ll get it done! My friends are the best at this!

Table 1: Examples for prompts from SociallQA and generated dialogues from crowdsourcing on MTurk.

and may trigger more commonsensical dialogue,
we find this is not the case since the percentage
of dialogues containing ConceptNet triples is even
lower than what we observed for the other existing
data sets. This may be because of the limitations of
the filtering method we are using as described ear-
lier: matching to ConceptNet is based on surface
textual form and concepts are on word-level, which
omits deeper and more contextual commonsense
relationships

4 Experiment Setup and Evaluation
Methods

The focus of this study is to examine how common-
sense plays a role in dialogue response generation.
In previous sections, we propose a simple filtering
method to obtain commonsense-focused dialogues
from existing three datasets and crowdsource more
dialogues based on the SociallQA commonsense
reasoning benchmark. Here we aim to evaluate
response generation models’ ability to produce re-
sponses that follow commonsense and if training
on commonsense-focused dialogue data helps boost
model performance. In addition to using automatic
referenced metrics and human evaluation, we also
propose a new automatic unreferenced metric aim-
ing to evaluate responses for commonsense quality.
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4.1 Experiment Settings

For response generation models, we take one of
the state-of-the-art pre-trained language models,
GPT2 (Radford et al., 2019), and further train it
on our training data sets. Specifically, the model
is trained in a multitask fashion that minimizes the
LM loss as well as the multiple choice loss follow-
ing Wolf et al. (2019), and generates responses for
a given dialog history.

We consider the follow three types of training
data setups.

e Existing data sets, including DailyDia-
log (Li et al., 2017) (DD), EmpatheticDi-
alogues (Rashkin et al., 2019)(ED), and
Topical-Chat (Gopalakrishnan et al., 2019),
a knowledge-grounded open-domain dataset
with around 11k dialogues. MuTual (Cui et al.,
2020) is not included since it is designed for
response selection.

As described in Section 3.1, we use Concept-
Net to search for potential triples in response
turns and filter three dialogue datasets, DD,
ED, and MuTual. We combine the three fil-
tered dialogues from these datasets to form
our training data, named ‘filter existing’ (FE,
total around 21K dialogues).



e The third category includes our collected di-
alogues using SociallQA contexts. This is
used along with the FE data above: FE and
all of the 25k collected dialogues (FE+new
crowdsourced), and FE plus the 11K filtered
dialogues of our collected data (FE+filtered
crowdsourced).

To evaluate models’ response generation capabil-
ities, we sample 10% of the FE+new data, resulting
in 4.6k testing dialogues with no overlap with the
training set of any of the settings above. We use
GPT2 trained on different versions of dialogue data
(6 trained GPT2 models in total) to generate a ran-
domly sampled response for each turn of our test
set dialogues.

4.2 Evaluation Metrics

We perform automatic evaluation on the test set
and human evaluation on sampled dialogs.

Automatic Evaluation We consider several
widely-used automatic metrics for evaluating re-
sponse generation: perplexity of the reference re-
sponses in the data, Meteor score (Banerjee and
Lavie, 2005), ROUGE score (Lin, 2004), and
BERTScore (Zhang et al., 2019). Note that these
metrics (except perplexity) provide general evalua-
tion of the generated responses, but do not specifi-
cally focus on commonsense plausibility.

Human Evaluation Since there is no existing eval-
uation method that reliably examines whether a re-
sponse follows commonsense and correlates with
human judgements, we ask humans to score sys-
tem generated responses as well as the reference
response given a dialogue history. We sample 300
history-response pairs from dialogues in our test
set to perform human evaluation. All the model-
generated responses from the 6 trained models
above and the original response (human response)
(around 2100 responses in total) are scored in terms
of commonsense plausibility by MTurkers. We
specifically asked workers to score the responses in
terms of commonsense plausibility using a scale of
1 to 10. We also instructed them that criteria such as
grammatical correctness and fluency should not be
taken into much account and they should focus on
evaluating the commonsense aspect of the response.
Three annotators evaluated each response. We cal-
culate the average human scores and variance to
measure the performances of different responses.

4.3 Proposed Automatic Metric for
Commonsense

Human evaluation is expensive to obtain, especially
when the dataset is large. In addition, they are also
subjective and hard to reproduce. Aiming to pro-
vide a reliable and scalable automatic metric focus-
ing on commonsense in response generation, we
propose an unreferenced automatic metric, which
is a regression model trained from the human anno-
tation scores for different responses. The metric is
reference-free, meaning that it does not require hu-
man ground truth response when scoring a model-
generated response, unlike referenced metrics such
as BLEU, ROUGE, Meteor.

Regressor model We use a simple multi-layer per-
ceptron (MLP) as our regressor and consider both
neural and symbolic features to train the MLP
model. For symbolic features, we consider the
number of one-hop and two-hop triples that can
be found between the dialogue history and the re-
sponse turn from ConceptNet. The triple identi-
fying process is the same as our filtering process
described earlier (Section 3.1). That is, we first
identify a set of concepts in the response turn and
query ConceptNet for potential triples and match
those with the other concepts appearing in the di-
alogue history. Two-hop triples are searched in a
similar manner, with the only difference being that
the number of potential triples will be much larger.
We also include the length of the response as an
additional feature. As for neural features, we use
the scores from a dialogue-focused language model
DialoGPT (Zhang et al., 2020) on both the response
itself and the dialogue history concatenated with
the response. The score from DialoGPT can be
considered as the plausibility of the sentence. We
train this MLP model using the human evaluation
scores for different responses.

5 Results and Analysis

5.1 Automatic Evaluation Results

Table 2 shows results according to automatic met-
rics on our 4.6K testing dialogues. We find that
perplexity scores for the GPT2 model trained on
filtered existing dialogue data (FE), or plus new col-
lected data (FE+Crowdsourced), are much lower
than that just trained on existing datasets as is.
There are several reasons for this. One is that since
the testing dialogues are from the filtered version,
training on those better matches the evaluation sce-
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nario. In addition, the test set is a sample of mul-
tiple data sets, and thus training on just one data
set does not perform well. Finally the combined
data (the last three rows in the table) is larger in
size (see training size in Table 3). However, note
the gain from the increasing training data size de-
creases in comparison to the difference between
using the filter data settings and those single data
sets. Meteor and ROUGE scores for all the trained
models are quite low, and show less differences,
probably indicating the limitation of these metrics
for dialog response evaluation. BERTScore shows
a similar pattern as perplexity in terms of model
quality.

Data ‘ Perplexity ‘ Meteor ‘ ROUGE | BERTScore
DD 31.25 0.06 0.06 0.12
ED 24.80 0.08 0.08 0.14
TC 28.48 0.09 0.08 0.11
Filtered Existing (FE) 13.20 0.09 0.08 0.16
FE+Crowdsourced 11.31 0.09 0.08 0.17
FE+Filtered Crowdsourced 12.27 0.09 0.08 0.17

Table 2: Automatic evaluation results for different mod-
els on the test set.

5.2 Human Evaluation Results

Table 3 shows the human evaluation scores on 300
responses for models trained with different types of
data. The most obvious and perhaps expected find-
ing is that GPT2, no matter trained on what types of
data, is still way behind human performance (6.86
with high variance versus 9.3 with low variance).
By analyzing different variables that cause perfor-
mance difference, we find the following patterns,
some of which are similar to using automatic met-
rics. (1) Using the Filtered Existing dialogue data
(FE) helps improve the average of commonsense
scores (more than 1 point improvement compar-
ing to using individual data sets), but variance re-
mains high; (2) Including our collected dialogues
further increases the average (FE+Crowdsourced),
and also decreases the variance in response quality
in terms of commonsense plausibility; (3) Regard-
ing our collected data, using the filter subset of it
yields slightly better performance than using the en-
tire data collection. This suggests that even though
our data is collected using SociallQA events, some
dialogues may not be commonsense rich, which is
also reflected by the percentage of dialogues that
contain ConceptNet triples as discussed earlier. In
addition, it shows that though overall increasing
training data size benefits model performance, the
quality of data plays a more important role. We

plan to perform more sophisticated data selection
and commonsense annotation for our data set in the
future. We include examples of responses from hu-
mans and models trained on these different types of
data as well as annotation scores in Appendix A Ta-
ble 5. It shows some different characteristics of the
responses, for example, empathy in the responses
using ED model, and richer information (though
inappropriate since they are off topic) using TC
model.

Data ‘ Training Size ‘ Avg. Score ‘ Variance
DD 11k 4.677 11.977
ED 18k 4.998 12.233
TC 10k 4.558 11.562
Filtered Existing (FE) 21k 5.968 12.426
FE+Crowdsourced 46k 6.767 9.067
FE+Filtered Crowdsourced 31k 6.865 8.684
Human response ‘ N/A ‘ 9.298 ‘ 2.544

Table 3: Average human scores and variance on human
responses and system generated responses from GPT2
models trained on different data.

5.3 Proposed Commonsense Automatic
Evaluation Results

We now examine the correlation of our proposed
automatic metric (MLP regressor) with human
scores on the testing portion of our annotations.
We cross-validate on the collected dialogues with
0.8/0.1/0.1 proportions. For comparison, we con-
sider three baselines: our MLP with only symbolic
features, our MLP with only neural features, and
FED (Mehri and Eskenazi, 2020a), which uses Di-
aloGPT to score how likely the next turn after the
response expresses confusion. It requires no train-
ing nor human references, and has been shown to
correlate with humans judgements on different cri-
teria (commonsense not included). Table 4 shows
the Spearman’s correlation of the system computed
scores and human annotation scores using all the
annotated data in a cross-validation setup. We can
see that our simple MLP-based regressor reaches
the highest spearman’s correlation with human
scores, outperforming other baselines significantly.
However, such a correlation result still suggests a
large gap for a reliable scorer targeting common-
sense evaluation for dialogue response generation.
We also notice that FED performs poorly in terms
of commonsense evaluation. Furthermore, there
is a large correlation drop when considering either
symbolic or neural features alone in our model, in-
dicating that they might each capture a different
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aspect for evaluating commonsense.

Metrics ‘ Spearman’s Correlation ‘ p-Value
FED \ -0.00797 | 0.80569
Symbolic 0.12336 1.27E-08

Ours Neural 0.06176 0.00450
All features 0.20789 4.53E-22

Table 4: Spearman’s correlation and p-values for differ-
ent automatic metrics with human scores.

6 Related Work

6.1 Commonsense Reasoning

The majority of recent commonsense reasoning
benchmarks (Zellers et al., 2018; Talmor et al.,
2019; Bisk et al., 2020; Sap et al., 2019b) test a
model’s ability to choose the correct option given
a context and a question; pre-trained language
models have reached high performance on these
benchmarks after fine-tuning. There have been
many benchmarks that focus on reasoning abili-
ties in multiple tasks such as reading comprehen-
sion (Huang et al., 2019; Yu et al., 2020), dialogue
systems (Cui et al., 2020), and natural language
inference (Williams et al., 2018), which involve
inferences on language. Recent work also aims to
probe models in these tasks to see if reasoning is ac-
tually achieved (Richardson and Sabharwal, 2020;
Richardson et al., 2020; Zhou et al., 2020). In this
study we tackle the response generation problem
in dialogues, with a focus on collecting common-
sense rich dialog data and evaluating commonsense
quality of model responses.

6.2 Open Domain Dialogue Response
Generation

Recently open domain dialog systems have been
modeled using end-to-end approaches, more specif-
ically encoder-decoder architectures (Sordoni et al.,
2015; Serban et al., 2017, 2016; Vinyals and
Le, 2015). Recent work focused on finetun-
ing large pre-trained transformer models (Rad-
ford et al., 2019; Zhang et al., 2020) on dialog
data. Many dialog datasets have been collected
with different focuses such as incorporating knowl-
edge (Gopalakrishnan et al., 2019; Dinan et al.,
2018), empathy (Rashkin et al., 2019), task comple-
tion (Budzianowski et al., 2018), consistency (Nie
et al., 2020), personality (Zhang et al., 2018) and
reasoning (Cui et al., 2020) within dialog systems.
There has also been work on combining a variety of
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datasets to exhibit multiple attributes (Roller et al.,
2020).

6.3 Dialog Response Evaluation

Due to the diverse responses that a dialog system
can output, referenced automatic metrics (such as
BLEU, ROUGE, Perplexity) do not correlate well
with human judgement of these systems (Deriu
et al., 2020; Liu et al., 2016). As a result, human
evaluation has become the de-facto standard to eval-
uate dialog systems. However human evaluation
is costly. Recently model-based metrics have been
proposed with good correlation with human annota-
tions (Zhang et al., 2019; Sellam et al., 2020; Mehri
and Eskenazi, 2020b,a; Tao et al., 2018; Lowe et al.,
2017). Most metrics focus on evaluating the coher-
ence or appropriatness of a response with respect
to its dialog context. (Mehri and Eskenazi, 2020a)
identified 18 different dialog qualities such as in-
teresting and topic depth. However none of these
metrics evaluate the commonsense of a response,
which is the focus of this work.

7 Conclusion

We present our empirical study on commonsense
in dialogue response generation. To obtain data
for commonsense-focused analysis in open domain
response generation, we use two strategies: filter-
ing existing dialogue data using a commonsense
knowledge graph ConcepetNet, and collecting new
dialogues using prompts from multiple-choice com-
monsense benchmark. Our data has a few limita-
tions such as our filtering process focuses on word-
level matching to ConceptNet, which might omit
more complex commonsense relations embedded
in dialogues. We leave deeper analysis of how im-
plicit commonsense is represented in dialogues and
how to elicit multi-hop granular reasoning steps
during communications to future work.

Our experimental results show that our newly
collected data helps boost response generation
model performance based on human evaluation of
commonsense. To close the gap in automatic evalu-
ation metric for response generation, we propose a
simple MLP regressor using both neural and sym-
bolic features, and show promising correlation with
human judgements. We hope our work helps with
future attempts to make models produce responses
with more commonsense, which is a challenging
but crucial task to tackle in dialog systems.



Ethics and Broader Impact

Our work uses ConceptNet to filter for
commonsense-focused dialogues, but Mehrabi
et al. (2021) have found representational harms
in common sense resources. We acknowledge
that the generated responses from models we
use might contain biases. All of the dialogue
datasets and models are in English, which benefits
English speakers more. We have conducted human
verification using Amazon Mechanical Turks.
We pay turkers around $14 per hour, well above
the highest state minimum wage and engage in
constructive discussions if they have concerns
about the process. We also give each annotation
instance enough time so that we do not pressure
annotators.
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A Example Responses and Scores

Table 5 shows responses to some dialogue histories
from both human and models. We also include
scores from human annotations described in 5.2.
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History

A: my pet dog

is always there for me.
No matter what,

I can count on her.

A: james , why are

you watching tv ?

your train leaves

at 4:30. there are just

2 hours left .

have you finished packing ?

A:iam up for

a promotion at my job.
I positive I will get it.
B: That is great!

you should celebrate
and enjoy this moment

Human and Model
Responses with
Annotation Scores
(1-10)

Human Response

B: I feel the same
way about my dog.
They’re the greatest! [10]

B: i ’ve almost
finished packing . now
i ’m waiting for the
jacket i lent to david
last week . [9]

A: I already have plans

to goouttoa

nice restaurant and

celebrate with my family [10]

B: yes, I've already

DD B: I hope so. [3] oo the files ready. [1] A: You are so wonderful! [3]
B: That is so sweet. B: i hope you get A: yeah i know, it is
ED How long has she through it [1] such a blessing to
been with you? [10] have a mom. [1]
B: I have a dog, A: Tlove when my kids
and it is a good B: I am watching tv, get something too!
TC thing that I don’t just to catch up on My kids have been

have a cat, because
I am afraid of them.
My dog is a border collie. [2]

some shows, how
about you? [2]

very successful and
I love how they
have friends. [2]

Filtered Existing (FE)

B: That’s great.
You must miss her. [10]

B: i’m not sure.

i’m going to the movies.
i’m not sure if i ’11 have
time to finish packing. [3]

A:iam so happy for
my promotion. [4]

FE+Crowdsourced

B: That is nice.
I have two dogs. [7]

B: oh, yes. i have.
i ’1l be home at 7:30. [6]

A:Thope so. I am so
excited about it. [7]

FE+Filtered Crowdsourced

B: That’s nice.
What breed is it? [10]

B: oh, i finished
packing. i 1l go to
the station and

get my things. [9]

A: Thanks! I am going
to get a new car! [8]

Table 5: Example responses of human and GPT2 trained on different data with scores from human annotations in
brackets, ranging from 1 to 10.
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Abstract

We introduce a synthetic dialogue generation
framework, Velocidapter, which addresses the
corpus availability problem for dialogue com-
prehension. Velocidapter augments datasets
by simulating synthetic conversations for a
task-oriented dialogue domain, requiring a
small amount of bootstrapping work for each
new domain. We evaluate the efficacy of our
framework on a task-oriented dialogue com-
prehension dataset, MRCWOZ, which we cu-
rate by annotating questions for slots in the
restaurant, taxi, and hotel domains of the Mul-
tiWOZ 2.2 dataset (Zang et al., 2020).

We run experiments within a low-resource set-
ting, where we pretrain a model on SQuAD,
fine-tuning it on either a small original data or
on the synthetic data generated by our frame-
work. Velocidapter shows significant improve-
ments using both the transformer-based BERT-
Base and BiDAF as base models. We fur-
ther show that the framework is easy to use
by novice users and conclude that Velocidapter
can greatly help training over task-oriented di-
alogues, especially for low-resourced emerg-
ing domains.

1 Introduction

Humans perform dialogue interactions to accom-
plish common tasks: work email threads, nurse—
patient conversations, customer service conversa-
tions, efc. (cf. Table 1). Systems that can com-
prehend and answer key questions about these dia-
logues can significantly speed up information ex-
traction from such documents. However, studies
in machine reading comprehension (MRC) largely
focus on the written form of text, such as news
articles, Wikipedia documents, efc. These are
not directly applicable to dialogue comprehension.
While there are datasets that incorporate dialogue
components in MRC (Sun et al., 2020; Reddy et al.,
2020; Choi et al., 2018), they are not representative
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Ul: Hi I would like a British food restaurant in the centre.
S1: Sure, do you have a preference over the price range?
U2: Only the best for my family, we’ll take the expensive
one. Book us a table for 5 at 14:00 today.

S2: Sorry, I am afraid there is no such place, shall we try
another cuisine?

U3: Let’s try Italian instead.

S3: Caffe Uno is a very nice, expensive Italian restaurant in
the center. Would you like a table?

U4: Actually, I think I will stick with food.

S4: Firzbillies Restaurant is an expensive place centrally
located and serves British.

US: Can you book me a table for Thursday for 5 people at
13:00?

S5: Your reservation at Fitzbillies Restaurant is successful
for 5 people at 13:00 today. Anything else I can help you
with?

U6: No, that’s all I need. Thanks for your help!

Ql:
Al:

What type of food does the user want to have?

Q2:
A2:

What part of town is the restaurant located at?
Centre

Q3:
A3:

What is the preferred price range of the user?
Expensive

‘What time is the reservation for?
13:00

Q4:
Ad:

What is the name of the booked restaurant?
Fitzbillies Restaurant

Q5:
AS:

Table 1: (top) Sample dialogue between a user and the
system in the restaurant booking domain; (bottom) and
its associated question—answer pairs. Italicized, col-
ored words indicate answer spans in the text.

of task-oriented dialogue. Such dialogue compre-
hension systems are currently constrained by the
lack of annotated data.

A task-oriented dialogue is a form of informa-
tion exchange where the system obtains user pref-
erences (i.e. slot values for attributes) by conversa-
tion. The dynamic flow between speakers in these
dialogues introduces additional challenges such as:
(1) Mind change: Speakers might state their pref-
erence over some attribute/slot two or more times
(cf. Table 1 U3&U4: Italian — British food); (2)
Topic drift: Speakers might change the topic of the
conversation abruptly (cf. Table 1 U2: price range
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f Dialogue #1 \
U - /\
S e at in the town Slot Values
Vi U: He t ltaliar Food e:
I S: Yes plenty, Luigi’s is an expensive restaurant you might “Vietrﬁ%zse"
1 like. “Chinese”,...
U: Book me a table for 3 people, tomorrow 2 p.m, Book_day:
| SI\S' Sure thing, your table is booked. / “Tomorrow”
l| “Monday”,...
Dialogue #2 Book_people:
1 U: | want tq book a table for 2 tomorrow at 6 p.m. Book_time:
11 anywhere in the south area. “Noon”, “2
1 : What price range are we looking for? p.m.,...
| 44Y: Anything really. Price_range:
I S: There is an one gxpensive restaurant that is a fit “Cheap”,
I} U: Please go ahead and book it. 1 “Expensive’, ...
] Ik S: Your table is booked, enjoy your dinner! )
)
|}' e Generated Dialogue |l \
1
1 U 1
1, Ns 1
\
1y 0 f
1 ( B price range are we Iook@g_for? V2
Al qU: Anything really. T T Tt ~e e __-~ -
S: There is one gheap restaurant that is a fit. -
N fU: Book me a table for § people, Monday 7 p.m.
\S’ Sure thing, your table is booked. /

Figure 1: An example of how Velocidapter generates a
synthetic dialogue using turn templates from two exist-
ing dialogues in the restaurant booking domain.

— date and time); (3) Zero anaphora: Information
is represented in several turns that are spoken by
different speakers. Thus, speakers may use a gap
in the text to refer back to a previous expression
(cf. Table 1 U5: “book me a table ...” — “Fitzbil-
lies Restaurant”); (4) Over-explanation: Decisions
are taken real-time during the conversation thus
speakers might make overly verbose explanations
of their preferences (cf. Table 1 U2: “Only the best
for my family...”).

Among recent data augmentation studies, Liu
et al. (2019) contribute the sole prior work ex-
plicitly on task-oriented dialogue comprehension.
However, their synthetic data generation is scoped
within a clinical scenario, with templates of inquiry—
response pairs between nurses and patients. This
limits dialogue-specific traits, such as mind change
and co-reference, to consecutive turns only.

Inspired by this prior work, we introduce Ve-
locidapter, which can augment a handful of task-
oriented dialogues to a synthetic dataset that is
larger by several orders of magnitudes. Figure 1
shows a simple, intuitive example of Velocidapter’s
synthetic generation in the restaurant booking do-
main. Different from prior work, we define tem-
plates as dialogue chunks (i.e. several contiguous
turns), which we call discourse templates. This lets
us design dialogue-specific challenges that span
over multiple dialogue turns (e.g. mind change,
zero anaphora, etc.). We further aim to expand prior
work by addressing scalability issues for task-based
dialogue comprehension by leveraging synthetic
generation with a mutual concept: domain adap-
tation (DA). This pairing is synergistic: DA gives

the model the necessary pretraining to generalize
well, and the synthetic generation process yields
sufficient data in the target domain to effectively
fine-tune the model.

To use Velocidapter, a user extracts pairs of
discourse templates from a few development di-
alogues in the target domain (cf. colored dialogue
chunks within dialogues 1 and 2 in Figure 1), a
value list for each slot (c¢f. slot values in Figure 1),
and a question list for each slot. With these inputs,
Velocidapter simulates a synthetic corpus of task-
oriented dialogues by mixing turn templates from
several dialogues and filling templates with values
from the slot value list. Finally, it matches each
dialogue to a set of questions according to the slots
they contain. This synthetic dataset is then used to
train or fine-tune a dialogue comprehension model
in the target domain.

We contribute a new dataset, MRCWOZ, to eval-
uate our framework!. This dataset is generated
from the existing large dialogue corpus, MultiwOZ
2.2 (Zang et al., 2020), which is used for DST (di-
alogue state tracking) task. We form training and
test sets of MRCWOZ from the respective sets in
MultiWOZ by annotating questions for each unique
slot type in the restaurant, hotel, and taxi domains.
Note that the formation of MRCWOZ is completely
separate from our augmentation framework. We
show that within a low resource setting, models us-
ing our framework significantly outperform models
using original target data (raw data). Specifically,
Velocidapter outperforms the raw training by 0.26,
3.82, and 13.23 F1 scores in the restaurant, hotel,
and taxi domains, respectively. These gains are
obtained at little human time cost and are robust:
through a user study, we show that templates ex-
tracted by a novice human in under an hour, still
lead to significant improvements over raw training.

To the best of our knowledge, this is the first
study to make use of the inherent clustered struc-
ture of task-oriented conversations to augment a
large set of instantiated dialogue datasets. Our
framework is also the first to address dialogue-
specific challenges that span over several turns
within a machine comprehension perspective. We
thus conclude that this approach potentially can
greatly facilitate the rapid advancement of under-
studied task-oriented dialogue areas, which lack
sufficient corpora.

"Framework and experimental data available at https :
//github.com/cuthalionn/Velocidapter
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2 Related Work

Reading Comprehension. Corpora on read-
ing comprehension are largely limited to writ-
ten text, e.g., SQuUAD (Rajpurkar et al., 2018b),
MARCO (Nguyen et al., 2016), RACE (Lai et al.,
2017), TriviaQA (Joshi et al., 2017) and many
others (Hermann et al., 2015; Hill et al., 2016;
Richardson et al., 2013; Kocisky et al., 2017; He
et al., 2018). These datasets are all collections of
written passages: SQuAD collects Q—A pairs for
Wikipedia articles; MARCO collects pairs from
Bing, along with context passages; RACE from
English exams; and TriviaQA collects pairs with
evidence documents.

A few incorporate a conversational component to
the MRC task. DREAM (Sun et al., 2020), Friend-
sQA (Yang and Choi, 2019) and a study by Ma et al.
(2018) are all dialogue comprehension datasets. Al-
though a valuable source, these do not apply to task-
oriented dialogue comprehension, as all three are
open-domain and multi-party. In contrast, CoQa
and QuAC do employ two-party dialogue; however,
their task is to conversationally answer questions
about a passage, diverging from our task defini-
tion (Reddy et al., 2020; Choi et al., 2018).

Synthetic Text Generation. Natural language
generation (NLG) systems are basic components
of text generation. These systems can be classified
into three different categories by their approach:
data-driven, rule-based, and template-based. The
analysis in the English-to-English NLG challenge
(Dusek et al., 2020) concluded that template-based
systems outperform neural systems in terms of out-
put diversity and complexity.

Liu et al. (2019) try to train a task-oriented dia-
logue comprehension model with data from a syn-
thetic data generator that simulates human-human
dialogues. However, their system is confined to
turn-level transformations, limiting the information
flow within the generated dialogue. Shah et al.
(2018) also use a template-based approach: they
simulate dialogue templates with a rule-based sys-
tem and then use crowdsourced workers to fill in
the templates, generating a dialogue corpus. This
process requires manual work for each dialogue
created.

Data-driven approaches largely lack the trans-
parent controllability and diversity provided by
a template-based approach (Dusek et al., 2020).
There are, however, studies that tackle this prob-
lem. Wiseman et al. (2018); Ye et al. (2020) try to
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learn templates from data and use them to generate
text. Peng et al. (2020) uses few-shot learning to
train models that can be easily adapted to new do-
mains. However, these are not convenient for use in
our setting, as they all assume at least an unlabeled
dataset in the domain to generate the synthetic data.

Domain adaptation (DA). With the recent in-
crease in the number of large corpora, DA has at-
tracted the attention of many MRC researchers.
Zhao and Liu (2018) and Wiese et al. (2017) use
models pretrained with the SQuAD dataset to in-
crease performance in the target domain, utilizing
small amounts of labeled data. In (Hazen et al.,
2019), the authors pretrain models over the many
large MRC corpora (SQuAD, NewsQA, etc.), then
fine-tune them on the associated development set.
Golub et al. (2017) and Wang et al. (2019) both
use a data-driven approach generating synthetic
questions on target unlabeled data and fine-tuning
models on this synthetic data. In a variant, Li et al.
(2019) instead ensemble pretrained language mod-
els, before appropriate fine-tuning.

3 Velocidapter: Data Generation
Framework

Let us first formalize our task. Our goal is to create
a task-oriented dialogue-augmentation framework
F, that given a list of dialogue turn templates 7',
a slot label-value list Sy, and finally a slot label-
question list Sy, can generate a large dialogue com-
prehension dataset D. F' creates individual syn-
thetic dialogues in D by composing turn templates
from T, filling these turn templates with values
from Sy, and finally matching these to questions
from Sg. D then can be used to train or fine-tune
a task-oriented dialogue comprehension model.
Task-oriented dialogues can be deconstructed as
having dialogue units that convey slot values for
particular attributes. We name these atomic units
that are composed to creat dialogues in our frame-
work as discourse templates. Velocidapter takes
as input a set of manually-extracted discourse tem-
plates and outputs instantiated dialogues that are
of orders of magnitudes larger in scale. This facili-
tates the robust training of large models from just a
few dialogue instances. Figure 2 shows the end-to-
end pipeline of our framework. To use Velocidapter
a user extracts the turn templates from a small, task-
oriented dialogue development set (e.g. in Figure 2
turn templates in 2A are extracted from dialogues
in 1A), a list of values for each slot (2B), and a



2A. Turn Templates

U: What do you want to eat?
S: lwant to eat [food_slot] food.

1A. Dev Set Dialogues

U: Hi, 1 am looking for a restaurant in the contro.
S: What do you want to eat?
U: | want to eat italian food.
S: Great, will you
U: There will be thr
S: Sure, thanks for using

:an you book for today 2 p.m?
system!

3A. Generated Dialogues

:  What do you want to eat?
: | want to eat chinese food.

4A. Matched Questions

2B. Slot-Value List

Food_type -
Chinese,Turkish...

=]

3B. Slot—question List

Food_type - “What type of food
does the user want to have?”,
“What would the user like to eat”...

+ What type of food does
the user want to have? -
Chinese

Figure 2: Velocidapter starts with manual turn template extractions from a small development set of dialogues
(left). We additionally provide a list of questions and values for each possible slot (middle). Velocidapter then
using the turn templates and slot values creates a new set of synthetic dialogues and matches each dialogue to their
relevant question. This final synthetic dataset is then used to train/fine-tune an MRC model.

list of questions for each slot (3B). Velocidapter
then generates individual dialogues (3A) and their
associated Inquiry—Response pairs (4A), by execut-
ing three steps: (1) structured corpus construction,
(2) dialogue template generation, and (3) dialogue
corpus generation.

3.1 Structured Corpus Construction

Traditionally, creating a corpus is a painstaking
process, involving the collection of data from au-
thentic environments, creation of coding guidelines,
followed by manual coding with checks. Veloci-
dapter eases this by structuring this once-only man-
ual process into three stages: discourse template
construction, slot value enumeration, and question
construction. We review these steps grounded with
examples taken from the restaurant domain of the
MRCWOZ dataset.

3.1.1 Discourse Template Construction

We classity the discourse templates into two forms
of communication: 1) Salutation and 2) Request—
Response. Salutation templates provide the prag-
matic framing of the conversation, such as a greet-
ing and farewell (i.e. “Hello, I am looking for a
restaurant to dine in”’), whereas request-response
templates concern information exchange through
requests (by system or user) and responses; Table 3
depicts some sample request—response templates.
Each request-response template is associated with
at least one slot label, where each slot label consists
of a base and an optional arbitrary prefix separated
by a dash (e.g. arbitrary-food_type, price_range,
city_area). The base determines the values and
questions that the slot will be matched to. The pre-
fix arbitrary indicates that this placeholder’s value
is not the final answer for the subject slot label.
The framework considers this keyword to guaran-
tee two conditions: (1) that two slots with the same
base, are filled with different values, and (2) that

the final answer is indexed to point to the one that
is not arbitrary.

There is no restriction on the number of turns
a discourse template can contain. This feature is
useful in designing complex conversations that may
be expected in the test set. Table 3 shows examples
of such turn templates. The first sample in the
table illustrates a frequent phenomenon in dialogue,
where the user over-explains the background of a
slot decision. The correct area slot in this discourse
template is given by the latter slot label city_area.
The second sample shows a discourse template
with four turns that instantiates another common
flaw where a user changes a decision she made
in an earlier turn. The framework expects each
request—response discourse template to start with
a system turn. However, by supporting multiple
turns in a discourse template, Velocidapter allows
for mixed initiative, where the user can change the
conversation topic (cf. final sample in Table 3).

3.1.2 Slot Label-Value List Construction

The slot label-value list (Figure 2-2B) is a mapping
from each label to its possible values. The slot
label—value list must have an entry for each unique
slot label introduced in the discourse templates,
along with its possible filler values. The left hand
side of the Table 2 shows shortened lists for three
slot labels food_type, city_area and price_range.

3.1.3 Question List Construction

The question list (Figure 2-3B) is provided to match
each dialogue to a set of questions. The question
list must also have an entry for each slot label in-
troduced in the discourse templates, along with
the possible questions that refer to the label. Ta-
ble 2 (R) shows question lists of three slot labels in
the restaurant booking domain.
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Slot Label Slot Values Slot Label Questions

food_type Turkish food_type What type of food does the user want to have?
Mexican What would the user like to eat?

city_area Centre city_area What part of the town does the user willing to dine in?
Noth In which area does the user want to reserve the restaurant?
South
East

price_range  Expensive price_range  What is the preferred price range of the user?
Cheap Which price range is the user comfortable with?
Moderate

Table 2: (L) Snippet of a Sample Slot Label-Value List which includes a corresponding entry for each unique slot
defined. (R) Snippet of a Sample Slot Label-Question List which includes a corresponding entry for every unique

slot label defined.

Speaker  Turn

Over-Explanation:

System  Which part of the city would you favor?

User The arbitrary-city_area is too far from my
place, I think city_area would work the best.

Mind Change:

System  What cuisine would you like to try?

User Lets try arbitrary-food_type, please.

System  Okay, sounds good.

User Sorry, I want to have food_type type instead.

Mixed-Initiative:

System  What are you planning to eat?
User I am planning to eat food_type.
System  Sure thing, I can check for that.
User Please find me a place that is in

price_range price range.

Table 3: Sample Request—Response Discourse Tem-
plates. Each Request—Response template provides an
information exchange between the user and system
over at least one slot label (i.e. food_type).

3.2 Dialogue Template Generation

The dialogue template generation uses discourse
templates provided by the user in the previous sec-
tion to create the dialogue templates. The sys-
tem starts by choosing a salutation discourse tem-
plate from the template pool. It then iteratively
chooses a request—response template to add to the
dialogue template (constrained to not add duplicate
slot labels), until a predetermined lower boundary
is reached. A generated dialogue template in the
restaurant domain can be seen on the left-hand side
of Table 4. As each extracted template is an infor-
mation exchange about certain slot labels and does
not depend on previous or next templates, adding
them one-by-one creates a fluent and coherent dia-
logue that can feature common conversational phe-
nomena, such as mind change, during the discourse
template construction process.
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3.3 Dialogue Corpus Generation

The final step, dialogue generation, fills the dia-
logue templates generated in the last step using
the list of slot label—value pairs. The process is
randomized, but also constrained to avoid select
values for any previously instantiated label. The
framework permutes each dialogue template by fill-
ing in a range of slot values until it exceeds a pre-
determined user-specified count. Each generated
dialogue is stored with a list of questions according
to the slot labels they contain. The right hand side
of Table 4 illustrates a generated fully-instantiated
dialogue. This ends the synthetic data generation
process. By running this process many times, we
can create an arbitrarily-large dataset that can be
used to train a dialogue comprehension model.

4 Experiments

To evaluate we need a dataset for dialogue compre-
hension. Unfortunately, no suitable dataset exists
for this purpose, so we pick an existing dialogue
dataset and retrofit it for our evaluation purposes.
We start with the MultiWOZ dataset, commonly
used for DST.

We choose a range of domains from MultiwWOZ
to work with to showcase domain agnostic feature
of our framework. We leave hospital and police
domains out, following past work (Campagna et al.,
2020) since they lack correct annotations and val-
idation and test sets. From the remaining five we
choose restaurant, hotel, and taxi domains as their
pools of slot labels show very few overlaps thus
resulting in a diverse dataset. The resulting corpus
contains 2,409 dialogues, averaging 8.92 turns per
dialogue, and 12.2 tokens per turn. But since Multi-
WOZ does not come with dialogue comprehension
questions natively, we supply our our own hand
annotated questions as detailed next.



Speaker  Turn Speaker  Turn

User Hello, I would like to find a place to dine in, User Hello, I would like to find a place to dine in,
there will be restaurant_bookpeople of us. there will be 4 of us.

System  What cuisine would like to try? System  What cuisine would like to try?

User Let’s try food_type, please. User Let’s try British, please.

System  Okay sounds good. System  Okay sounds good.

User Sorry, I want to have food_type instead. User Sorry, I want to have Italian instead.

System  Which part of the city would you favor? System  Which part of the city would you favor?

User The arbitrary-city_area is too far from my User The center is too far from my
place, I think city_area would work the best. place, I think south would work the best.

System  Okay, does restaurant_bookday sound good? System  Okay, does Friday sound good?

User Yes, that should work. User Yes, that should work.

System  Great, your booking is successful. Anything System  Great, your booking is successful. Anything
else I can help you with? else I can help you with?

User This is all I wanted for today, thank you. User This is all I wanted for today, thank you.

System  Thanks, good bye. System  Thanks, goodbye.

Table 4: (L) Velocidapter-generated dialogue template, using the user-provided discourse templates. (R) Fully-
instantiated Velocidapter-generated dialogue, created by filling the generated dialogue template in (L).

Train Test
Domain #Dial | #5-Q | #Dial | #5-Q
Hotel 650 | 2859 | 71 318
Restaurant 1250 | 4495 65 316
Taxi 321 | 965 52 157

Table 5: Domain specific dialogue (Dial.) and slot—
question (S—Q) number statistics of MRCWOZ for
both train and test splits. As there is a question cor-
responding to each slot in a dialogue, their numbers are
identical.

For each slot type in MultiWwOZ, we manually
create a list with a few questions. We then match
each dialogue to a set of questions according to the
slots present in the dialogue to create our Multi-
WOZ dialogue comprehension dataset, which we
term MRCWOZ. As a result of this process, MR-
CWOZ pairs each dialogue with an average of 4.2
questions. The domain-specific statistics of MRC-
WOZ data can be seen in Table 5. This resultant
training and testing split are identical with Multi-
WOZ. Note specifically that this generation process
is completely separate from the dialogue augmen-
tation in Velocidapter that we evaluate.

We also randomly sample a small development
set, vel_dev containing few dialogue (e.g. 2-10
dialogues) from the training set of each domain
to extract turn templates for Velocidapter. During
sampling, we ensure that the final set of dialogues
cover all possible slots encountered in the test set so
that the trained model will be exposed to each slot
at least once (e.g. food_type, booking_day, efc.).

We fine-tune the BERT-Base (Devlin et al.,
2019a) and BiDAF models (Seo et al., 2016) in
experiments representing three different scenar-
ios/datasets: (1) In a high-resource scenario on
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MRCWOZ, which serves as an upper bound for our
experimental setup. We term the models that are
fine-tuned with this dataset WOZ_Large; (2) In a
low resource setting on the small vel_dev set, which
uses only a handful of dialogues. We term models
fine-tuned with this other training set WOZ_Small.
(3) In our proposed setting on our framework’s syn-
thetic dataset. We term models trained with this
set as Velocidapter. Considering that our synthetic
data is generated by templates extracted from the
vel_dev set, this is a low resource scenario. More-
over, we also train a model version that also has its
respective pre-trained versions on SQUAD, we add
an “SQ” prefix to the name of each model to denote
them: (1')-SQ+WOZ _Large (2')-SQ+Velocidapter
(3")-SQ+WOZ_Small.

The careful reader will note that the second and
third settings are directly comparable, as they both
utilise the same vel_dev dataset, but our framework
multiply augments this initial dataset to a large
volume of synthetic data.

We evaluate the performance of models on the
MRCWOZ test set using the proposed F; and ex-
act match (EM) metrics as in SQuAD (Rajpurkar
et al., 2018b), using the official evaluation scripts
provided.

4.1 Implementation Details

We use BERT-Base for the larger portion of our
experiments. BERT-Base is a transformer-based
language representation model pretrained in an un-
supervised manner, often followed by finetuning
in the target domain. Since our data is formatted
following the SQuAD dataset, we use the official
script provided by Devlin et al. (2019b) to train our



Restaurant Hotel Taxi Restaurant
Training Setting F1 EM F1 EM F1 EM Training Setting F1 EM
High Resource High Resource
WOZ Large 97.99 | 97.78 | 94.99 94.63 99.78 99.35 WOZ Large 97.93 97.46
SQ+WOZ Large | 97.27 | 96.51 97.27 96.51 98.18 97.43 SQ+WOZ_Large | 98.02 97.46
Low Resource Low Resource
WOZ_Small 5521 | 52.23 23.28 21.45 46.38 39.10 WOZ_Small 14.51 12.65
SQ+WOZ_Small | 84.14 | 81.01 81.40 79.8 70.19 67.30 SQ+WOZ_Small 30.23 27.84
Velocidapter 70.46 | 66.77 80.45 78.54 64.24 62.17 Velocidapter 22.93 21.20
SQ+Velocidapter | 84.40 | 81.70 | 85.22* | 84.85* | 83.42* | 81.40* SQ+Velocidapter | 36.15* | 31.64*

User Study
[ SQ+Velocidapter | 83.50 [ 81.50 [ 86.0% | 84.80* | 75.30* | 70.0 |

(a) BERT-Base, all three domains. (b) BiDAF, restaurant domain.

Table 6: (a) Results of all three training settings on all three domains of the MRCWOZ dataset using the BERT-
Base model, including the user study. (b) Results of all three training settings on the restaurant domain of the
MRCWOZ dataset using the BiDAF model. Each result is an average of 5 runs. The first two rows show rich
resource, upper bound results. The next 4 rows show low resource setting results. The last row in (a) is showing
the results of training with novice templates from our user study. For each column, the upper-bound result is
underlined and the best result in the low-resource setting is bolded. SQ+Velocidapter results are marked with an
asterisk if significant when compared against SQ+WOZ_Small (p < .05).

Synthetic Data Size Effect | Hotel Domain Synthetic Data Size Effect | Restaurant Domain Synthetic Data Size Effect | Taxi Domain

85 _—t— 85 . 85

F1 Score
F1 Score

10 100 1k sk 10k 20k 10 100 1k sk 10k 20k 10 100 1k sk 10k 20k
Synthetic data Size Synthetic data Size Synthetic data Size

Figure 3: Plots showing synthetic data size effect in each domain: hotel, restaurant, taxi from left to right. The F}
scores are averages over 5 different training sessions with 5 different synthetic datasets. The vertical ticks give a
notion of experimental variance, denoting the maximum and minimum scores across the 5 runs.

model. During training we use the default hyperpa-  with and without pretraining, our framework out-
rameters that proved best in the original paper. We  performs other models in all three domains un-
set the total number of steps for the original and  der the low-resource setting. The performance im-
synthetic training equal so that the their comparison ~ provement introduced by our framework is larger
stays fair. in the taxi domain than the hotel and the restaurant
To demonstrate that our framework is model- domains. We believe this is due to the out of vo-
agnostic, we also demonstrate our technique on  cabulary (OOV) challenge being more significant
BiDAF (Seo et al., 2016). This is a hierarchi- in the former. Because our framework enriches the
cal model that forms multiple levels of context  dialogue templates with diverse set of slot values,
representations using attention in both directions: it addresses unseen vocabulary problem.
context-to-query and query-to-context. During We repeat the restaurant domain experiments us-
training, we again use the same hypermeter set  ing the recurrent BiDAF model. Table 6b shows
that was facilitated within the paper and limit the  that the BiDAF model performs poorly in compar-
training of both synthetic and original training to  ison to the BERT. This phenomenon parallels re-
20k steps. sults on the SQuAD leaderboard where transformer-
based models over-perform the recurrent BiDAF
42 Results model by large (Rajpurkar et al., 2018a). Our
Table 6a gives the main results of our experiments.  framework is still able to boost the performance
For the BERT-Base model, these suggest that both by a significant margin, showing that it works in a
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model-agnostic manner.

4.3 Synthetic Data Size Effect

Similar to Liu et al. (2019), we find that the amount
of synthetic data generated does not linearly bene-
fit the model. To find the optimal amount for each
domain, we set the size of the synthetic dataset as
a hyperparameter during BiDAF experiments and
plot the results in Figure 3. We hypothesize that
the reason for the differing optima across domains
is indicative of the coverage of the development
sets from which we choose the dialogue turn tem-
plates. As these sets only have a few examples
for each slot, they are not representative of the en-
tire dataset. Although the augmentation process
results in a more comprehensive set that improves
the results, the synthetic data is (greatly) biased
towards the examples in this small development set.
When this bias becomes too pronounced through
over-augmentation, we posit that the generalization
of the model suffers. Hence, the synthetic data gen-
eration has still an ideal size that achieves optimal
results in the low-resource setting, outperforming
raw training over the development set.

Our analysis also points to the possibility of im-
provement by optimizing the choice of examples
to cater for coverage and representativeness over
the dataset’s instance space. This can be achieved
through a pipelined setting where the model directs
the augmentation framework to create dialogues
similar to which it shows low confidence on within
the development set. We leave this as a field of
study for future work.

4.4 Error Analysis in the Taxi Domain

We compare the two methods SQ+WOZ_Small and
SQ+Velocidapter trained on BiDAF model quali-
tatively by analyzing errors made by the models
on the taxi domain test set. We characterize the
system errors to get a better sense of the overall
causes (and potential solutions):

 Partial value match are errors that occur
when the model predicts the slot only partially
(an inexact match). An example is predicting
the destination in the sentence “I want a ride to
Shanghai restaurant” as “Shanghai” (partial)
or “ride to Shanghai restaurant” (overshot).

* Value mismatch happens when the model
predicts a value that is sound and appropriate
for the given question but is not the ground-
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SQ + SQ +

Error type WOZ Small | Velocidapter
1. Partial value match 6 1
2. Value mismatch 28 7
3. Slot mismatch 7 5
4. Former value match 3 3
5. Overly long match 2 -
6*. Missing article “the” 3 21
7*. Capital letter mistakes 1 1
8*. Punctuation mistakes 1 9
9. Unrelated 3 2

| Total [ 54 [ 49

Table 7: Distribution of errors over error types made by
the SQ+WOZ_Small and SQ+Velocidapter models in
the taxi domain test set. Minor error types are marked
with a star.

truth answer. This happens frequently by con-
fusing destination and source places in the
taxi domain; Slot mismatch is a common er-
ror where the model answers a question for
one slot with another slot. Some observed pat-
terns are replying with time when the question
is asking for a place, and vice versa;

* Former value match occurs when the user
states a value for some slot and then change
their mind either in the same turn or in another
upcoming turn and the model confuses the
answer with the preceding value;

* Overly long match, this error type only hap-
pens within the SQ+WOZ_Small model, the
prediction covers a very long span which takes
up several turns;

¢ Minor errors (Rows 6-8) constitute the ma-
jority of the errors made by Velocidapter.
These errors are small discrepancies from the
ground truth such as punctuation, capitaliza-
tion, or missing determiners.

* Finally, Unrelated errors occur when the an-
swer provided by the system is unrelated to
the question in any way.

From Table 7, we see that Velocidapter significantly
reduces the incidence of many major dialogue-
specific errors (Rows 1-5), indicating that the dia-
logue structure is smoother. It is also evident that
the biggest difference in performance is in value-
based errors. This proves that enriching templates



with a diverse set of values increases model robust-
ness. When we omit minor error types and run
McNemar’s test, the results indicate that Veloci-
dapter shows statistically significant improvements
over WOZ_Small with a 99% confidence level. We
believe this is fair since such minor errors are less
indicative of dialogue quality, and concern surface
realization and inconsistencies in annotated slots.
Including every error type in McNemar’s test, the
difference between the two systems becomes in-
significant. We believe that further improvements
to Velocidapter that may include additional lan-
guage model (LM) smoothing may help address
minor errors. LMs can also further diminish value-
based errors by masking values with place holders
and filling in with LM predictions, increasing the
diversity of values.

4.5 User Study

Velocidapter’s minimal dependence on human la-
bor can be seen as an advantage or a disadvantage.
We view our method as a means of providing a
choice point to task-oriented dialogue systems de-
signers that yields performance improvement with
little manual investment. As we have argued that
our framework is easy to replicate, we conduct
a user study with two computer science graduate
student participants who were aware of the nature
of our research. Both students are not co-authors
nor did they have any expertise in authoring di-
alogues. As training for the annotation process,
we first narrated the written instructions?, then per-
formed a sample template construction with each
subject. The subjects then followed the instructions
to construct new templates from a few dialogues in
a target domain, after which our team performed
some post-formatting to facilitate the automation.
The actual template construction took between 10—
40 minutes, mostly dependent on the number of
the dialogues being processed (e.g. 2 for taxi, 7
for restaurant). On average subjects generated 0.8
templates per minute. With these templates, Ve-
locidapter leverages these starting few dialogues
to create a training dataset 4 orders of magnitude
larger.

Results of our user study correlate well with our
experiments done using the author-generated data:
our framework outperforms SQ+WQOZ_Small sub-
stantially for hotel and taxi domains (cf. Table 6a,

*Instruction manuscript available at https: //github.
com/cuthalionn/Velocidapter.
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last row) at the 95% significance level, whereas the
difference for restaurant results are not significant
(observation and discussion in Section 4.2). Addi-
tionally, the participants reported more familiarity
with the process on later domains, pointing towards
further amortization of time cost.

5 Conclusion

In this work, we introduce a template-based aug-
mentation framework for the task-oriented dialogue
comprehension task. Our framework, Velocidapter,
combines the two mutually beneficial concepts
of synthetic data generation and domain adapta-
tion to strategically utilize limited human input to
greatly enrich sparse dialogue training data. Ve-
locidapter leverages the turn-based nature of dia-
logue to strategically involve humans-in-the-loop
to greatly reduce error in a robust fashion. It can
be used to augment task-specific domain dialogues
in the low-resource, few-shot setting by generat-
ing several orders of magnitude larger datasets,
substantially decreasing dialogue-specific errors
of a model (e.g. partial value match, value mis-
match, etc.). This process only requires a little
manual intervention: under an hour’s time of a
novice human creator for each new domain. Our
experiments indicate that Velocidapter is a viable
approach in addressing the data gap in compre-
hension of task-oriented dialogue systems. In the
future, we look forward to using our framework on
other task-oriented dialogue tasks. We further want
to discover the automated extraction of dialogue
chunks and generation of templates which can also
benefit from controlled text generation techniques.
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Abstract

There is a growing interest in virtual assis-
tants with multimodal capabilities, e.g., infer-
ring the context of a conversation through
scene understanding. The recently released Sit-
uvated and Interactive Multimodal Conversa-
tions (SIMMC) dataset addresses this trend by
enabling research to create virtual assistants,
which are capable of taking into account the
scene that user sees when conversing with the
user and also interacting with items in the
scene. The SIMMC dataset is novel in that
it contains fully annotated user-assistant, task-
oriented dialogs where the user and an assis-
tant co-observe the same visual elements and
the latter can take actions to update the scene.

The SIMMC challenge, held as part of the
Ninth Dialog System Technology Challenge
(DSTCY), propelled the development of vari-
ous models which together set a new state-of-
the-art on the SIMMC dataset. In this work, we
compare and analyze these models to identify
‘what worked?’, and the remaining gaps; ‘what
next?’. Our analysis shows that even though
pretrained language models adapted to this set-
ting show great promise, there are indications
that multimodal context isn’t fully utilised, and
there is a need for better and scalable knowl-
edge base integration. We hope this first-of-
its-kind analysis for SIMMC models provides
useful insights and opportunities for further re-
search in multimodal conversational agents.

1 Introduction

The Situated Interactive MultiModal Conversations
(SIMMC) challenge1 at DSTC9 (Gunasekara et al.,
2020) aims to lay the foundations for virtual as-
sistant agents that can engage with the real-world,
handle multimodal inputs, and perform multimodal
actions. It focuses on task-oriented dialogs that
encompass a situated multimodal user context in

* Joint first authors
t Work done when EC and RS were at Facebook
1qithub .com/facebookresearch/simmc

144

e . Dialog Acts &
want to buy some chairs.

- Y Slots / Attributes
| DA:REQUEST:GET:CHAIR | Annotetion

Prefab IDs: 128, 763, 130

z‘:"“'ti;m"da' How do you like these ones?
Agr:itation DA:ASK:GET:CHAIR

|
@ | |like the brown one! Show me the back

of it and tell me about the materials.
| DA: INFORM: PREFER : CHAIR |
| DA:REQUEST:GET:CHAIR || DA:ASK:GET:CHAIR |

PrefablnFocus: 128

This is how the back looks, it has a
solid brown color with a foam fitting,
DA: INFORM: GET : CHAIR |

Figure 1: Illustration of a SIMMC dialog: a user and an
assistant interact in a co-observed, evolving multimodal
environment for a shopping scenario. For the sake of
brevity, the annotations shown are incomplete. For de-
tails of the annotation schema, see Moon et al. (2020).
Figure adapted from Moon et al. (2020).

the form of a co-observed image or virtual reality
(VR) environment, which is dynamically updated
on each turn based on the user input and the assis-
tant action.

Figure 1 illustrates an exemplary SIMMC dia-
log, where a user interacts with an assistant with
the goal of browsing for furniture. Here, the assis-
tant updates the co-observed environment leading
to a new multimodal context based on the dialog,
e.g., visually presenting recommended chairs in a
VR environment, or responding to the request “I
like the brown one. Show me the back of it." by
executing the actions of focusing on, and rotating
the indicated item. These actions in turn update the
co-observed multimodal context, which grounds

Proceedings of the 22nd Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 144-153
July 29-31, 2021. ©2021 Association for Computational Linguistics



Dataset Modality Task Provided Context Updated Annotation
Q’er A’er Context Granularity
Visual Dialog (Das et al., 2017) Image Q&A N/A Visual N/A N/A
CLEVR-Dialog (Kottur et al., 2019) Simulated Q&A N/A Visual N/A N/A
GuessWhat (de Vries et al., 2017) Image Q&A N/A Visual N/A N/A
Audio Visual Scene-Aware Dialog (Hori et al., 2018) Video Q&A N/A Visual N/A N/A
TalkTheWalk (de Vries et al., 2018) Image Navigation Visual  Visual + Meta Location U< A
Visual-Dialog Navigation (Thomason et al., 2019) Simulated Navigation Visual  Visual + Meta Location U< A
Relative Captioning (Guo et al., 2018) Image Image Retrieval ~ Visual  Visual + Meta  New Image U< A
MMD (Saha et al., 2018) Image Image Retrieval ~ Visual  Visual + Meta  New Image U< A
SIMMC (Moon et al., 2020) Image/VR  Task-oriented Visual Visual + Meta Situated U < A + Semantic

Table 1: Comparison with the existing multimodal dialog corpora (Moon et al., 2020). Notation: (U <> A)
Utterance to action pair labels. (Task-oriented) Includes API action prediction, Q&A, recommendation, item /
image retrieval and interaction. (Semantic) Dialog annotations such as NLU, NLG, DST, and Coref. (Situated) VR

environment and/or new highlighted images.

the next turn of the dialog. The example highlights
challenges such as multimodal action prediction
(italics above) and multimodal coreference resolu-
tion (underlined elements).

2 SIMMC Challenge Details

We briefly review the datasets, task definitions,
and evaluation used in the SIMMC challenge. See
Moon et al. (2020) for additional details.

Datasets. Two SIMMC datasets in the domain of
interactive shopping have been provided: (1) Fur-
niture and (2) Fashion. These datasets collectively
contain about 13k human-to-human dialogs (to-
taling about 169k utterances). Moon et al. (2020)
argue that shopping domains provide a dynamic
environment, where rich multimodal interactions
happen around visually grounded items.

Annotations. The SIMMC datasets are accompa-
nied with the semantic-level annotation of utter-
ances (dialog acts), multimodal state tracking, mul-
timodal co-reference, actions and also ground truth
semantic information about each scene. The latter
allows training of virtual assistant models without
the necessity of focusing on computer vision.

Tasks and Evaluation. There are three subtasks in
the challenge with a priority list of metrics:
(Subtask 1) Structural API Call Prediction fo-
cuses on predicting the human-assistant action as
an API call given the dialog and the multimodal
contexts. Metrics for this subtask: action accuracy,
action attribute accuracy, and action perplexity.
(Subtask 2) Assistant Response Prediction
evaluates the relevance of the assistant response
in the current turn; (a) as a conditional language
model generation problem that uses BLEU-4 to
score the similarity to the ground-truth response,
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and, (b) as a retrieval problem, where the goal is to
retrieve ground-truth responses from a pool of 100
candidates (randomly chosen and unique to each
turn). Priority metric list is mean reciprocal rank,
recall@k (k = {1, 5,10}), and mean rank.
(Subtask 3) Dialog State Tracking (DST) aims
to systematically track the dialog acts and the as-
sociated slot pairs across multiple turns, as repre-
sented in the flexible ontology developed to repre-
sent the SIMMC multimodal context (Moon et al.,
2020). The metrics for this subtask are slot and in-
tent prediction F1, in line with prior work in DST.

3 Related Datasets and Challenges

Table 1 presents main distinctions of SIMMC
compared to the the existing multimodal dialog
datasets/challenges. The SIMMC dataset provides
scenarios in which the situated multimodal context
is dynamically updated, reflecting the agent actions.
In the SIMMC settings, agent actions can be en-
acted on both the object-level — changing the view
of a specific object within a scene, and the scene-
level — introducing a new scene or an image. While
the dialog-based image retrieval tasks (Guo et al.,
2018; Saha et al., 2018) and the visual navigation
tasks (Thomason et al., 2019; de Vries et al., 2018)
do comprise context updates, they are limited to the
introduction of new visual scenes, e.g., new images
or locations.

Compared with previous multimodal dialog
datasets SIMMC offers four key advantages : (a)
SIMMC assumes a co-observed multimodal con-
text between a user and an assistant and records the
ground-truth item appearance logs of each item that
appears. (b) Compared with the conventional task-
oriented conversational datasets, the agent actions
in the SIMMC dataset span across a diverse mul-



Systems Models Eval. Joint Train Ens. Pl\lrt;a;n MM Rep. D’;‘scx:lm. Approx. Rank
subtasks  x-domain ode ram - qbl  sub2a sub2b sub3
GPT-2 + FullCon. 1,2a,3 1,2a,3 yes yes GPT-2 stringified . 4 5 . 5
Kung etal. 2021) above + BLEU/METEOR 2b 1,2a,3 yes yes GPT-2 stringified no - E 6 (7) .
MM Fusion Ens.A 1 1,2a no yes - MAG/MMI . 1 .
Kim et al. (2021) MM Fusion Ens.B 2a 1,2a no yes - MAG/MMI . . 7 .

MM Fusion Ens.C 2b 1,2a no yes GPT-2 MAG/MMI no . . 7(8)
GPT-2 Ens.A 1 1,2a,3 no yes GPT-2 stringified - 5 - - -
GPT-2 Ens.B 2a,3 2a,3 no yes GPT-2 stringified - - 3 - 2
Jeong et al. (2021) GPT-2 Ens.C 2a,3 2a,3 no yes GPT-2 stringified . g 1 1
GPT-2 Ens.D 2a,3 2a,3 no yes GPT-2 stringified . . 2 . 3
B,C,D + cosine sim. 2b 2a,3 no yes GPT-2 stringified no 3-5 (4-6) .
BART-Base 1,2a,3 1,2a,3 no no BART stringified . 3 6 . 6
BART-Large 1,2a,3 1,2a,3 no no BART stringified . 2 4 . 4

Huangetal. 2021) " pARTL Bi-Encoder  2b 2 no no  BART  stringified  yes . . 1(1)

BART-L Poly-Encoder 2b 2b no no adaptedon  stringified yes . . 2(2)

1,2a,3
Senese et al. (2021)  BERT+log-likelihood 2b 2b no no BERT stringified no . . -(3)

Table 2: Summary of the developed models. Rank in parenthesis is for SIMMC-Fashion only.

System :

<SOM> OBJECT_O0 : pos left color

This is our Hedon Kitchen Island with Stainless Steel Top. It
features a natural wood countertop. User
["White’]

and what are the dimensions?
class_name Kitchen Islands decor_style

["Rustic’, ’Sophisticated’] OBJECT_1

: pos center color

["White’] class_name

Kitchen Islands decor_style

[ Traditional’,

"Modern’] <EOM> System : The width

is 52 inches, depth 18 inches,

and height is 36 inches.

User and how much is it

Table 3: Example of “‘stringified”” multimodal context concatenated with user and system utterances.

timodal action space (e.g., ‘rotate,” ‘search,” and
‘add to cart’). (c) Agent actions can be enacted
on both the object level (e.g., changing the view
of a specific object within a scene) and the scene
level (e.g., introducing a new scene or an image).
(d) SIMMC tasks emphasize semantic processing,
while work in this area has traditionally focused
heavily on raw image processing. The SIMMC
annotation schema allows for a more systematic
and structural approach for “visual” grounding of
conversations, which is essential for solving chal-
lenging problems in real-world scenarios.

4 Survey of the Developed Systems

Table 2 provides a comparative summary of the 13
models that were developed by 5 different groups.

As an example of how to read this table; Jeong et al.
(2021) proposed four different ensembles (Ens.) of
GPT-2 (Radford et al., 2019) models (A, B, C, D).
Ens.A was evaluated (Eval.) only for subtask 1 but
was jointly trained on three subtasks. Multimodal
context was ingested by the model as a string of
“word” tokens (stringified), i.e. formal descriptions
of the scenes were flattened into a sequence of to-
kens and concatenated along with assistant and user
utterances as shown in Table 3. Other ingestion ap-
proaches used specialized multimodal fusion (MM
Fusion) gates; MAG (Rahman et al., 2020) and
MMI (Yu et al., 2020). Ens.B, C and D were trained

and evaluated on 2 substasks and adapted to the re-
sponse retrieval task (2b) using cosine similarly
over word vectors between the predicted response
(2a) and candidate responses. Discriminative train-
ing (Discrim. Train) on subtask 2b was used only
by Huang et al. (2021). Approx. Rank is the model
rank using the top metric for each subtask without
std. err considerations and is thus only indicative.
We provide the detailed descriptions of each entry
below.

Kung et al. (2021) proposed an ensemble of GPT-

2 (Radford et al., 2019) models trained jointly on
all three subtasks and across both domains. Specif-
ically, they added a discriminative classifier con-
sisting of multiple fully connected layers for sub-
task 1 (API Prediction), while keeping subtasks
2a (Response Generation) and 3 (DST) as gen-
erative tasks, following the baseline provided by
Moon et al. (2020). For the response retrieval sub-
task 2b, they ranked the retrieval candidates based
on their BLEU and METEOR similarity scores
with the generated responses from subtask 2a. In
addition, auxiliary features such as segment em-
beddings were used as input to better leverage the
visual information.

Kim et al. (2021) proposed an ensemble of mod-
els based on the baselines by Moon et al. (2020).
While the baselines model subtask 1 and 2 jointly
and subtask 3 separately, Kim et al. (2021) used
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the predicted dialog state outputs from subtask 3
baseline as inputs for subtasks 1 and 2. Addition-
ally, they used two sophisticated multimodal fusion
models designed for transformer architectures—
MAG (Rahman et al., 2020) and MMI (Yu et al.,
2020) in their implementation—to fuse the pre-
dicted dialog state with the utterance encoding at
the current turn. The final predictions from the en-
semble was obtained by averaging the individual
model scores for subtask 1 and 2. Though this aug-
mentation hurt their performance for subtask 2,
their model achieved a gain of about 3 points on
action accuracy and 6 points on action attribute
accuracy for API call prediction (subtask 1).

Jeong et al. (2021) proposed a varied set of ensem-
bles of GPT-2 models that were of differing sizes
(large, medium and small) and trained on differing
partitions of the training data; train only, or train
plus dev. For the ensemble evaluated for subtask 1,
each GPT-2 model was independently trained on
three joint tasks—subtask 1, subtask 2a and subtask
3—using a simple language model loss that opti-
mized over the concatenated string containing the
dialog history, multimodal context, user utterance,
dialog state, system response, and API call. This
model can predict all three subtasks on which it
was trained, but its results were only evaluated for
subtask 1. In the ensemble developed for subtasks
2a and 3, each GPT-2 model was again indepen-
dently trained with a simple language model loss
but only on the joint tasks of subtask 2a and subtask
3, i.e., the above concatenated string excluding API
call. For subtask 2b, the generated response of the
model trained on subtask 2a and 3 was compared to
each candidate response using word tokenization
and cosine similarity to select the response. For
all models, the dialog state representation was pre-
processed to remove camel-case and non-natural
punctuation before training. An ensemble beam
search over each model’s prediction was used to
generate the final prediction.

With reference to Table 2; (a) Ens.A by Jeong
etal. (2021) consists of a medium and small GPT-2
model, both trained on the train and dev sets, (b)
Ens.B is two large GPT-2 models, one trained on
just the training set and other trained on both train
and dev sets, (c) Ens.C is a large and small GPT-2
model, both trained on the train and dev sets, and,
(d) Ens.D is two large and one small GPT-2 model,
where all but one large model were trained on train
and dev sets, while the large model was trained on
just the training set.

Huang et al. (2021) proposed two BART (Lewis
etal., 2020) models (BART-Large and BART-Base)
for subtasks 1, 2a, and 3. Both were trained to
jointly predict the dialog state (subtask 3), API call
(subtask 1) and response (subtask 2a) as a single
string target when given the dialog history, mul-
timodal context and user utterance. For response
retrieval, they proposed two BART-encoder based
models; Bi-encoder and Poly-encoder (Humeau
et al., 2020; Mazaré et al., 2018; Dinan et al.,
2019). In both of these models, the encoder weights
were initialized from the jointly trained BART mod-
els trained on subtasks 1, 2a, and 3. These model
weights are then further adapted. Four model com-
binations exist for this subtask (2b), i.e., BART-
Large or BART-Base with Bi-encoder or Poly-
encoder, but Table 2 only includes results for BART-
Large Bi/Poly-encoders.

Senese et al. (2021) proposed a BERT-based
model addressing the Assistant response retrieval
task (subtask 2b), trained using the cross-entropy
loss. Specifically, the proposed model includes a
self-attention module, an encoder-decoder attention
module, and an item-attention module. The item-
attention module (part of the decoder) computes
attention over the states of a transformer which en-
codes the attributes of the reference item, e.g. the
shared item in the scene. At inference time, the
log-likelihood of each candidate response (given
the input utterances and multimodal context) is
calculated for each token. To rank the candidate
responses, two scoring modules were used: (1) nor-
malized sum of log-likelihood scores for each token
(to avoid a scoring bias towards short responses),
and (2) token match rate of the annotated item at-
tributes in each candidate response. The latter score
rewards responses that mention item attributes that
appear in the reference item. Candidate responses
with the highest sum of these two scores were used
as final predictions.

5 Performance Analysis

5.1 Summary

The developed models set a new state-of-the-art
in all three subtasks. Table 4 summarizes their
performance. For the structural API call predic-
tion subtask (subtask 1), the BART-Large model by
Huang et al. (2021) achieved the best overall perfor-
mance (taking into account both API and attribute
accuracy). This model also achieved the second-
best performance on subtask 2a, and on subtask
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Subtask 1. API Prediction Subtask 2. Response Generation Subtask 3. DST

Systems
Acct  A.Acct Perpl BLEUT MRRT r@117 r@5t r@101T Mean| SlotF11 Intent F17
Baseline (Moon et al., 2020)  79.3 63.7 1.9 0.061 0.145 7.2 19.8 27.3 39.2 62.4 62.1
Kung et al. (2021) 80.2 74.6 2.0 0.105 0.326 21.1 43.6 56.8 18.8 77.8 76.7
Kim et al. (2021) 82.5 69.8 1.8 0.082 0.074 2.5 8.3 13.6 47.7 - -
Jeong et al. (2021) 79.4 73.2 - 0.128 0.381 263 503 61.8 15.5 79.1 78.1

Huang et al. (2021) 81.3 73.9 35 0.108  0.673 526 874 95.1 32 78.6 71.7
Senese et al. (2021)* - - - 0390 267 521 66.0 14.8 -

Table 4: Summary of the results on Test-Std split, average of Furniture and Fashion (*Senese et al. (2021) submitted
results only for Fashion). Best results from each system are shown. (1) API prediction via Accuracy, Perplexity
and Attribute Accuracy, and, (2) Response Generation via BLEU, recall@k (k=1,5,10), Mean rank, ‘and mean
reciprocal rank (MRR). (3) Dialog State Tracking (DST), via Slot and Intent prediction F1. 1: higher is better, |
lower is better.

SIMMC-Furniture SIMMC-Fashion

3. For the response retrieval subtask (subtask 2b),
the BART-Large Bi-encoder model by Huang et al.
(2021) achieved the best performance. For the re-
sponse generation (subtask 2a) and DST subtasks
(subtask 3), the GPT-2 model ensemble by Jeong
et al. (2021) achieved the best performance.

5.2 Subtask 1: Structural API Call
Prediction Figure 2: Breakdown of the API Call Prediction accu-

racy (subtask 1) according to actions.
Figure 2 shows the breakdown of action accuracy

by type for both datasets. The key observations are:
yIPp Y v 5.3 Subtask 2: Assistant Response

* All systems successfully predict AddToCart Generation

and SpecifyInfo with 90% and 95% ac-

curacy respectively, for both the domains. Intu-  We compare BLEU-4 scores (generation category)
itively, the models seem to pick up on important ~ based on: (a) length of ground-truth assistant utter-
cues informing the user intents for these particu-  ance in Figure 3a, and (b) corresponding ground-
lar API calls. For example, “Can you please add  truth API call in Figure 3b. Following are the take-
this to my cart?" indicates the intention to add the =~ aways:

discussed product to the cart. Slmllarly, “What is e As expected’ BLEU-4 score decreases (On aver-

its price and customer rating?" denotes a request age) with the length of the utterances.
to provide additional product information. * Though the smoothing for BLEU-4 contributes
* On the other hand, all models perform poorly partially to the low values for utterance lengths
on NavigateCarousel and None actions of 1-3, a good proportion of these utterances con-
for SIMMC-Furniture, and SearchMemory for tained information about the catalog item, e.g.,
fashion. The accuracy for these actions are in the price and dimension. On further investigation,
20%-40% range for most models. A possible ex- we found that most of the models were unable to
planation is due to the equally valid choice of correctly respond with these attributes. This high-
either showing items from the catalog with exist- lights the need for a better catalog integration
ing filters (mapped to SearchFurniture or with the response generation model.
SearchDatabase) or requesting more infor-  « Comparing BLEU-4 scores for AddToCart,
mation to refine the search (mapped to None). models perform better on SIMMC-Fashion on av-
* Note that Huang et al. (2021) (winner) and Kim erage compared to SIMMC-Furniture. This could
et al. (2021) (runner-up) perform similarly on the be due to a larger percent of AddToCart in the
API call prediction task with an overall accuracy former (18%) when compared to the latter (3%),

of 81.3% and 82.5% respectively (Table 4). The leading to this discrepancy.
winner was declared based on the action attribute  « BLEU-4 for SpecifyInfo is lower than the

accuracy. overall score for all models, points to the need
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Ground Truth Winner (Team 3) Runner-up (Team 4) Category

It is reasonable priced at  The price is $69.99. It is priced at $69.99 Both models predict the
$69.99. right attributes

It’s $48.00. Itis $135.99. It is $82.81. Both models are incor-

rect

The dimensions for that The dimensions are Width 60 Depth The dimensions are Both models are incor-
one is 53.5” x 307 x 44.92 Height 44.33 60"W x 44.92”D x rect but consistent with
36” (L x W x H) 44.33" H. each other

The width is 18, depth It is 18 inches wide, 15.06 inches The dimensions are Winner model is correct
15.06 and height is 16.5.  deep and 16.5 inches high. 18.5”W x 15.5”D x  while the runner-up is in-

35.5" H. correct

Sure. Dimensions are
86 x 37 x 32 inches and
cost is $829.

and I can show you.

This sofa is made by Jarrard. If you
would like to know details such as
price or see a different angle, tell me

This is the Jarrard Sofa.
It has tapered wood legs
and a plush back.

Both models respond
with mismatched
attributes about the
catalog items

Table 5: Examples of assistant responses generated by the winner (Team 3) and runner-up (Team 4) for subtask
2a from SIMMC-Furniture, where the ground-truth API call is SpecifyInfo, ie., seeking information about
catalog items. The category of examples compared to the ground-truth assistant response is mentioned in the last

column.

SIMMC-Furniture

BLEU-4 Score
BLEU-4 Score. 5

20 25 20 25

10 15 10 15
Utterance Length Utterance Length

(a) Breakdown of Assistant Response Generation BLEU-4
score (subtask 2) according to the length of the ground-truth
assistant utterance. All utterances longer than 25 are mapped
to 25.

SIMMC-Furniture  —— Kungetal SIMMC-Fashion
Kim et al.
_e— Jeong etal. (W)

—+ Huangetal (R)

(b) Breakdown of Assistant Response Generation BLEU-4
score (subtask 2) according to actions.

Figure 3: Analysis of the entries for Assistant Response
Generation (Subtask 2). See text for more details.

for a better catalog modeling again.

Interestingly, Huang et al. (2021) (the best model
for subtask 2) used discriminative training for this
subtask to achieve superior performance (26 points
lead on the r@1). Specifically, they train not only
to increase the likelihood of ground-truth response
(similar to a language model) but also to decrease
that of other response targets in the batch that act as
negative examples. This enables the model to dis-
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criminatively pick the ground truth over the other
distractor candidates. Das et al. (2017) also observe
a similar phenomenon.

5.4 Subtask 3: Dialog State Tracking (DST)

Figure 4a shows a breakdown of the DST re-
sults based on slot types. Specifically, we re-
port F1 scores for attribute slot types that de-
scribe objects (e.g., “How many [O.color green]
ones do you have?") or intents (e.g., “I am
looking for [.intendedRoom bedroom] lamps"),
and for object slots, which represent object in-
dices that correspond to their parent intents
(e.g. “IDA:REQUEST:GET:TABLE Please add
[TABLE_1 it] to the cart.]") The object slot pre-
diction task thus can also be framed as multimodal
coreference resolution problem. F1 scores for at-
tribute slots have higher variances across different
entries compared to those for object slots. This
shows that the different approaches proposed by
each system had relatively small influences on the
multimodal coreference resolution performance.

Figure 4b and Figure 4c show the object slot
F1 tracking snapshots at varying turn indices as
cohorts, averaged over the dialogs, for SIMMC-
Furniture and SIMMC-Fashion, respectively. For
both domains, we observe that the object slot F1
performances decrease in general as more objects
are mentioned and introduced in the multimodal
context. Note that none of the proposed models
showed significant improvement over other base-
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Figure 4: Analysis for Dialog State Tracking (Subtask 3). (

Turn Index

(b) Object F1 for SIMMC-Furniture

X Kungetal. A Jeongetal @ Huangetal

F1

Turn Index
(c) Object F1 for SIMMC-Fashion

a) Breakdown of Slot F1 results by slot types (object &

attribute slots). (b, ¢) Average object slot tracking results at varying turn indices. See text for more details.

Subtask 1. API Prediction Subtask 2. Response Generation

Subtask 3. DST

Model
Acct A.AcctT  Perpl BLEU?T Slot F11  Intent F11
Original (Huang et al., 2021)  79.6 79.5 5.9 0.099 61.3 62.6
multimodal-context-ablated ~ 79.2 78.3 59 0.098 55.7 63.2

Table 6: Summary of multimodal-context-ablation results on Dev-Std split, average of Furniture and Fashion. (1)
API prediction via accuracy, perplexity and attribute accuracy, and, (2) Response Generation via BLEU, (3)
Dialog State Tracking (DST), via slot and intent prediction F1. 1: higher is better, |: lower is better.

lines in suppressing the degradation in the object
slot predictions over time.

5.5 Breakdown based on “all’”’ and “none”

We identify instances on which all and none of the
developed models were able to accurately predict
the ground-truth API call. We breakdown each of
these instance categories further into the ground-
truth actions in Figure 5. For SIMMC-Furniture,
the all and none categories compose 62% and 8%
of all the test instances, respectively. The corre-
sponding numbers for SIMMC-Fashion are 77%
and 10%. Using these categories as weak indicators
of easy and hard instances for subtask 1, one could
conclude that SIMMC-Furniture contains a smaller
percent of both easy and difficult instances when
compared to SIMMC-Fashion.

6 Ablation Study

To further test the extent to which the available mul-
timodal context is improving model results on the
subtask metrics, we conduct an ablation experiment
where we prepare a version of the datasets with the
multimodal context removed. We then train and
test the BART-Large model (Huang et al., 2021) on
the original and ablated versions of the datasets.
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SIMMC-Furniture : all [62] %

SIMMC-Furniture : none [8] %

Figure 5: Breakdown of instances categorized based on
whether all or none of the model entries predicted ac-
curately.



6.1 Methodology

For model training, we conduct a parameter search
over batch size and learning rate, and train three
models for each combination of parameters. We
select models that achieved the lowest dev set
loss during training. We repeat this process for
the four combinations of SIMMC-Furniture or
SIMMC-Fashion with original or multimodal-
context-ablation versions of the dataset. The aim
is to ensure that the models trained on the ablated
datasets are trained and selected under the same
conditions as the models that have the multimodal
context available. Note that this process does not
guarantee to reproduce the reported results for this
model.

6.2 Results

Results are presented in Table 6. Multimodal con-
text does boost performance on slot F1 metric in
subtask 3 (DST) in line with findings by Moon et al.
(2020). It also provides a marginal improvement in
attribute accuracy in subtask 1 (API calls). Other
metrics like BLEU are largely unmoved. Given
that the multimodal context should inform the as-
sistant’s responses, this is somewhat surprising.

7 Findings & Conclusions

Pretrained language models show promise in
multimodal settings. The strong performance of
pretrained language models such as GPT-2 and
BART when adapted to these task indicate their
flexibility to ingest relatively simple multimodal
context and thus be used in a multimodal setting
with a high degree of success.

Multimodal context helps but gaps remain. To
examine how effectively models use the multi-
modal context we conduct an ablation experi-
ment where we train the BART-Large-based model
(Huang et al., 2021) on two versions of the datasets;
including and excluding multimodal context. The
results (Table 6) indicate that multimodal context
does boost performance on slot F1 metric in sub-
task 3 (DST) and provides a marginal improvement
in attribute accuracy in subtask 1 (API calls). How-
ever BLEU scores for response generation (subtask
2a) are relatively unaffected. In SIMMC-Furniture,
the multimodal context provides, for each turn, a
grounded set of items which are likely to be the
most salient. Given this, the ablation results when
considered alongside both the overall relatively low
BLEU scores, and the accuracy falloff in DST met-
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rics with increasing dialog length, suggests that
the multimodal context isn’t currently utilized to
the fullest extent and indicates that there remains
a significant opportunity for improving assistant
response prediction.

Need for a better and scalable catalog integra-
tion. Generated responses (see Table 5) indicate
that these models are powerful enough to avoid
returning bland and safe responses (often observed
in generative models (Li et al., 2015)) but fail to
reliably integrate catalog information. This maybe
indicative of a failure of model architectures to
utilise the knowledge in the catalog or a more gen-
eral problem with utilisation of multimodal context
in response generation.

Approaches that may address this issue include:
encoding additional information from the catalog,
such as price and description, for each item in the
scene; integrating explicit database API calls to the
catalog and database responses as part of predic-
tion task and model input respectively (c.f. Peng
et al. (2020); Hosseini-Asl et al. (2020)); discour-
age memorization of the catalog by randomly vary-
ing attributes, such as price, (while maintaining
consistency in the data between model input and
target); extending the test set with examples drawn
from a held out catalog to penalize memorization.

Better and scalable multimodal integration for
knowledge bases, e.g. catalogs, is crucial in task-
oriented settings where systems are expected to
relay accurate information to users.

Scaling up multimodal complexity. An addi-
tional area for future investigation is to examine
the related question of how well does the simple
‘stringified” approach to ingesting multimodal con-
text handle increasingly complex scenarios. As the
number of items in the scene increases, so does
the string representation making it harder for the
model to capture scene related information due to
increased nesting.
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A Simple yet Effective Method for Sentence Ordering

Aili Shen

Abstract

Sentence ordering is the task of arranging a
given bag of sentences so as to maximise the
coherence of the overall text. In this work, we
propose a simple yet effective training method
that improves the capacity of models to cap-
ture overall text coherence based on training
over pairs of sentences/segments. Experimen-
tal results show the superiority of our proposed
method in in- and cross-domain settings. The
utility of our method is also verified over a
multi-document summarisation task.

1 Introduction and Background

Document coherence understanding plays an im-
portant role in natural language understanding,
where a coherent document is connected by rhetor-
ical relations, such as contrast, elaboration, narra-
tion, and justification, allowing us to communicate
cooperatively in understanding one another. In this
work, we measure the ability of models to capture
document coherence in the strictest setting: sen-
tence ordering (Barzilay and Lapata, 2005; Elsner
et al., 2007; Barzilay and Lapata, 2008; Prabhu-
moye et al., 2020), a task of ordering an unordered
bag of sentences from a document, aiming to max-
imise document coherence.

The task of sentence ordering is to restore the
original order for a given bag of sentences, based on
the coherence of the resulting document. The abil-
ity of a model to reconstruct the original sentence
order is a demonstration of its capacity to capture
document coherence. Figure 1 presents such an
example, where the (shuffled) sentences are from a
paper abstract discussing the relationship between
word informativeness and pitch prominence, and
the gold-standard sentence ordering is (4, 5, 1, 7,
3, 2, 6). Furthermore, the task of sentence order-
ing is potentially beneficial for downstream tasks
such as multi-document summarisation (Nallapati

Timothy Baldwin
The University of Melbourne
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(1) But there are others who express doubts about such a
correlation.

(2) They also show that informativeness enables statisti-
cally significant improvements in pitch accent prediction.
(3) Our experiments how that there is a positive correla-
tion between the informativeness of a word and its pitch
accent assignment.

(4) In intonational phonology and speech synthesis re-
search, it has been suggested that the relative informative-
ness of a word can be used to predict pitch prominence.
(5) The more information conveyed by a word, the more
likely it will be accented.

(6) The computation of word informativeness is inex-
pensive and can be incorporated into speech synthesis
systems easily.

(7) In this paper, we provide some empirical evidence to
support he existence of such a correlation by employing
two widely accepted measures of informativeness.

Figure 1: An example of shuffled sentences from the
same document.

etal., 2017), storytelling (Fan et al., 2019; Hu et al.,
2020), cooking recipe generation (Chandu et al.,
2019), and essay scoring (Tay et al., 2018; Li et al.,
2018), where document coherence plays an impor-
tant role.

Traditional approaches to sentence ordering used
hand-engineered features to capture document co-
herence (Barzilay and Lapata, 2005; Elsner et al.,
2007; Barzilay and Lapata, 2008; Elsner and Char-
niak, 2011; Mesgar and Strube, 2016), e.g. using an
entity matrix (Barzilay and Lapata, 2005, 2008) or
graph (Guinaudeau and Strube, 2013) to represent
entity transitions across sentences, and maximising
transition probabilities between adjacent sentences.

Neural work has modelled the task either gen-
eratively (Li and Hovy, 2014; Li and Jurafsky,
2017; Gong et al., 2016; Logeswaran et al., 2018;
Cui et al., 2018; Wang and Wan, 2019; Oh et al.,
2019; Cui et al., 2020; Yin et al., 2020; Kumar
et al., 2020) or discriminatively (Chen et al., 2016;
Prabhumoye et al., 2020). As example genera-
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tive approaches, Cui et al. (2020) obtain sentence
and paragraph representations from BERT (Devlin
et al., 2019) and then use a pointer network to de-
code the sentence ordering for a given paragraph,
whereas Yin et al. (2019) use a graph-based neural
network over sentences and entities. The shortcom-
ing of generative methods is the difficulty in ob-
taining good paragraph representations, especially
for longer paragraphs. To mitigate this, various at-
tention mechanisms have been explored (Cui et al.,
2018; Wang and Wan, 2019; Kumar et al., 2020).

Discriminative approaches, on the other hand,
can readily capture the relative order between sen-
tence pairs, and paragraph decoding can then be
achieved through methods such as beam-search
(Chen et al., 2016) or topological sort (Tarjan, 1976;
Prabhumoye et al., 2020). However, even with ex-
act decoding methods such as topological sort, is-
sues remain, including: (1) coherence scores for
sentence pairs that are distant in the document tend
to be noisy; and (2) it can be difficult to determine
the relative order of adjacent sentences without
broader context. To mitigate these two drawbacks,
we propose a simple yet effective training method.
Instance pairs are only constructed from adjacent
segments to provide stronger coherence signals,
but to capture broader context, up to 3 continu-
ous sentences are combined to form a single seg-
ment in an instance pair. The effectiveness of our
method is demonstrated across multiple datasets,
in in- and cross-domain settings, and the setting of
multi-document summarisation.

2 Methodology

The method proposed by Prabhumoye et al. (2020)
exploits the relative order between any two sen-
tences in a given paragraph. As in Figure 2a, the
pairs connected by blue and red lines (pointing
right and left, resp.) are the resulting positive and
negative coherence instances for sentence sa, re-
spectively. These instances are used to train a text
coherence model, which we denote as “allpairs”.
In contrast, our method utilises the relative order
between adjacent segments only, resulting in an
order of magnitude less training data than allpairs
(O(n) vs. O(n?)) but stronger supervision signal;
we denote this as “adjonly”. As in Figure 2b, the
blue/red lines connect adjacent sentences for sen-
tence so, resulting in positive/negative coherence
instances. To capture broader context, we also con-
struct pairs based on segments made up of multi-

(a) all-pairs comparison method.

Lo [ [ s [ s | = [ s |
N~ 0
(b) adjacent pairs-only segment comparison method.

Figure 2: Illustration of the baseline method of Prab-
humoye et al. (2020) (a) and our proposed training
method (b), where blue and red lines indicate positive
and negative segment pairs, respectively.

ple continuous sentences (not shown in the figure),
such as (s1.2, S2:3) and (s1.3, S2:4) as positive in-
stances, and (2.3, S1.2) and (S2.4, S1.3) as negative
instances, where s;.;1; denotes the concatenation
of sentences s; to s;; inclusive (j > 0). In this
work, we experiment with j € {0, 1,2} (i.e. sen-
tence unigrams, bigrams, and trigrams), resulting
in (at most) 6(n — 2) instances for a paragraph with
n sentences (noting that the segment cannot extend
beyond the extremities of the document).

At test time, following Prabhumoye et al. (2020),
we predict the relative order of each sentence pair
(only sentence unigram), then order the sentences
with topological sort.

We also trialled other training methods — in-
cluding regressing over the distance between two
sentences, and training with constraints over sen-
tence triplets inspired from Xu et al. (2019a) in
computer vision — but observed no improvement.

3 Experiments

3.1 Datasets

We perform experiments over six publicly available
datasets from Logeswaran et al. (2018) and Xu et al.
(2019b), resp.:

e NeurIPS, ACL, and NSF: abstracts from
NeurIPS papers, ACL papers, and NSF grants
(ave. sentences = 6.2, 5.0, and 8.9, resp.).

o Athlete, Artist, and Institution: paragraphs
with >10 sentences from Wikipedia articles
of athletes, artists, and educational institutions
(ave. sentences ~ 12).

3.2 Evaluation Metrics

Following previous work, we use 4 evaluation met-
rics (higher is better in each case):



o Perfect Match Ratio (PMR): % of para-
graphs for which the entire sequence is correct
(Chen et al., 2016).

e Accuracy (Acc): % of sentences whose abso-
lute positions are correct (Logeswaran et al.,
2018).

e Longest Common Subsequence (LCS): %
overlap in the longest common subsequence
between the predicted and correct orders
(Gong et al., 2016).

e Kendall’s Tau (7): rank-based correlation be-
tween between the predicted and correct order
(Lapata, 2006).

3.3 Model Configuration

We benchmark against Prabhumoye et al. (2020),
using a range of text encoders, each of which is
trained separately over allpairs and adjonly data.

LSTM: each segment is fed into a separate bilL-
STM (Hochreiter and Schmidhuber, 1997) with the
same architecture and shared word embeddings to
obtain representations, and the segment representa-
tions are concatenated together to feed into a linear
layer and softmax layer. We use 300d pre-trained
GloVe word embeddings (Pennington et al., 2014)
with updating, LSTM cell size of 128, and train
with a mini-batch size of 128 for 10 epochs (with
early stopping) and learning rate of 1le-3.

BERT: predict the relative order from the “CLS”
token using pre-trained BERT (Devlin et al., 2019),
or alternatively ALBERT (Lan et al., 2020) (due
to its specific focus on document coherence) or
SciBERT (Beltagy et al., 2019) (due to the domain
fit with the datasets). For BERT and ALBERT, we
use the base uncased version,' and finetune for 2

epochs in each case with a learning rate of {5e-5,
5e-6}.

BERTSON (Clui et al., 2020): the current SOTA
for sentence ordering, in the form of a BERT-based
generative model which feeds representations of
each sentence (given the context of the full doc-
ument) into a self-attention based paragraph en-
coder to obtain the document representation, which
is used to initialise the initial state of an LSTM-
based pointer network. During decoding, a deep
relational module is integrated with the pointer net-
work, to predict the relative order of a pair of sen-

"For SciBERT, we use scivocab base uncased version,
where the vocabulary is based on scientific text.
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tences.2

3.4 In-domain Results

Table 1 presents the results over the academic ab-
stract datasets. The adjacency-only method per-
forms better than the all-pairs method for all en-
coders over all evaluation metrics, underlining
the effectiveness of our proposed training method.
Comparing sentence encoders, the pretrained lan-
guage models outperform LSTM, with ALBERT
and SciBERT generally outperforming BERT by a
small margin, demonstrating the importance of ex-
plicit document coherence training (ALBERT) and
domain knowledge (SciBERT). Overall, SciBERT-
adjonly achieves the best over NeurIPS and ACL,
and ALBERT-adjonly achieves the best over NSF.

As BERTSON is trained on BERT base,
the fairest comparison is with BERT-adjonly.
Over NeurIPS, BERTSON has a clear advantage,
whereas the two models are perform almost iden-
tically over ACL, and BERT-adjonly has a clear
advantage over NSF. Note that this correlates with
an increase in average sentence length (NSF >
ACL > NeurIPS), suggesting that our method is
better over longer documents.

Looking to the results over the Wikipedia
datasets in Table 2, once again the adjacency-
only model is consistently better than the all-pairs
method. Here, ALBERT-adjonly is the best of
BERT-based models (noting SciBERT has no do-
main advantage in this case), and despite the doc-
uments being longer again than NSF on average,
there is remarkable consistency with the results in
Table 1 in terms of the evaluation metrics which
are explicitly normalised for document length (LCS
and 7).

3.5 Cross-domain Results

To examine the robustness of our method in a
cross-domain setting, we focus exclusively on AL-
BERT, given its overall superiority in an in-domain
setting. We finetune ALBERT over the Athlete
dataset, and test over the Artist, Institution, and
NeurIPS datasets, resulting in different degrees of
topic and domain shift: Athlete — Artist (similar

2Note that the code for BERTSON has not been released,
and given the complexity of the model, we were not confident
of our ability to faithfully reproduce the model. As such, we
only report on results from the paper, for those datasets it
was evaluated over. Similar to Prabhumoye et al. (2020), all
sentence pairs are used to learn the sentence representations,
aiming to capture the pairwise relationship between sentences.



NeurIPS ACL NSF
Models
PMR Acc LCS 7 PMR Acc LCS 7 PMR Acc LCS 7

BERTSON 48.01 73.87 — 0.85 59.79 78.03 — 0.85 23.07 50.02 — 0.67
LSTM-allpairs 14.18 43.62 71.58 0.66 26.76 50.19 75.05 0.66 6.05 23.20 56.82 0.48
LSTM-adjonly 18.16 47.10 74.44 0.69 30.66 53.08 76.94 0.70 9.34 3498 67.36 0.65
BERT-allpairs 33.83 61.91 83.10 0.82 50.34 69.35 85.94 0.83 14.43 38.58 71.05 0.70
BERT-adjonly 42.29 68.06 86.23 0.85 59.79 75.96 89.72 0.86 23.24 54.23 81.12 0.81
ALBERT-allpairs 37.31 65.12 85.00 0.83 54.01 71.71 87.36 0.85 14.33 38.79 71.22 0.70
ALBERT-adjonly 41.79 68.95 86.23 (0.84 60.97 76.40 90.09 0.87 25.34 56.71 82.62 0.82
SciBERT-allpairs  37.31 65.55 84.65 0.84 54.74 72.23 87.40 0.85 14.84 39.56 71.80 0.71
SciBERT-adjonly 44.53 71.00 87.74 0.87 63.04 78.98 90.87 0.89 24.65 5591 82.18 0.82

Table 1: Results over the academic abstract datasets (results for BERTSON are those reported in Cui et al. (2020);
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” indicates the number was not reported in the original paper).

Athlete Artist Institution
Models
PMR Acc LCS 7 PMR Acc LCS 7 PMR Acc LCS 7
LSTM-allpairs 0.00 15.31 49.32 0.28 0.00 12.62 46.23 0.20 9.04 28.59 58.47 0.40
LSTM-adjonly 0.89 30.54 64.91 0.63 0.00 24.32 60.24 0.51 21.16 45.56 72.07 0.70
BERT-allpairs 2.53 32.81 68.24 0.63 0.66 24.45 61.16 0.50 22.01 43.94 71.85 0.64
BERT-adjonly 10.17 50.52 79.56 0.79 6.93 46.59 76.82 0.76 25.94 56.12 80.60 0.79
ALBERT-allpairs  2.78 35.03 69.99 0.65 1.23 29.57 66.25 0.59 21.84 47.64 75.19 0.71
ALBERT-adjonly 14.89 56.25 82.59 0.82 9.31 49.66 79.64 0.78 28.50 58.86 82.93 0.81
SciBERT-allpairs  1.14 27.97 64.47 0.56 0.38 22.36 59.72 0.47 17.41 40.06 70.11 0.61
SciBERT-adjonly  6.08 45.40 76.27 0.75 2.18 39.42 72.40 0.71 21.33 51.71 77.96 0.77
Table 2: Results over the Wikipedia datasets.
Models Artist Institution NeurIPS
PMR Acc LCS 7 PMR Acc LCS 7 PMR Acc LCS 7

ALBERT-allpairs  1.14 29.37 66.15 0.58
ALBERT-adjonly ~ 8.83 48.74 78.93 0.78

0.34 26.69 64.12 0.54
4.78 41.43 74.31 0.72

20.90 49.57 76.18
35.82 61.41 83.29

0.66
0.78

Table 3: Cross-domain results, with finetuning over the Athlete dataset.

topic), Athlete — Institution (topic change), Ath-
lete — NeurIPS (topic and domain change).

From Table 3, we can see that both ALBERT-
adjonly and ALBERT-allpairs only experience
marginal performance drops over Artist (similar
topic), but for Institution and NeurIPS, perfor-
mance drops substantially, but the relative drop
for the adjacency-only method is smaller, suggest-
ing that it captures a more generalised represen-
tation of coherence. Indeed, the performance of
ALBERT-adjonly in the cross-domain setting is
superior or competitive with that for ALBERT-
allpairs in the in-domain setting except for PMR
over Institution, demonstrating the effectiveness of
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our training method.

3.6 Evaluation over Multi-document
Summarisation

For multi-document summarisation, extractive doc-
ument summarisation models extract sentences
from different documents, not necessarily in an
order which maximises discourse coherence. Thus,
reordering the extracted sentences is potentially re-
quired to maximise the coherence of the extracted
text.

We apply our proposed method to multi-
document summarisation, in applying ALBERT-
allpairs and ALBERT-adjonly to reorder sum-



A=0.0 A=03 X=0.5 X=0.7 X=1.0
TextRank 91.28 69.97 5576 41.55 20.24
allpairs 91.02 70.88 5745 44.03 23.89
adjonly 9194 7176 5830 44.85 24.67

Table 4: Coherence scores for reordered summaries.
“allpairs” indicates ALBERT-allpairs and “adjonly” in-
dicates ALBERT-adjonly (our model).

maries generated by an extractive multi-document
summarisation system. Following Yin et al. (2020),
we finetune ALBERT-allpairs and ALBERT-
adjonly over 500 reference summaries randomly
sampled from a large-scale news summarisation
dataset (Fabbri et al., 2019). We then generate
extractive summaries from DUC 2004 documents
(Task 2) with TextRank (Barrios et al., 2016), and
use ALBERT-allpairs and ALBERT-adjonly to re-
order the summaries.

To evaluate the coherence of generated sum-
maries, Nayeem and Chali (2017) and Yin et al.
(2020) use the weighted sum of cosine similarity
and named entity similarity,? defined as:

1 n—1
Coherence = Z Sim(s;, Si+1),
i=1

n—14%

Sim(si, Si+1) = A% NESIHI(SZ, Si+1)
+(1 — A) = Sim(s;, Si41),

where 7 is the number of sentences, Sim(s;, S;+1)
is the cosine similarity over representations (sum
of word embeddings) of adjacent sentences, and
NESim(s;, s;+1) measures the fraction of shared
named entities between adjacent sentences. Higher
values indicate better performance.

Table 4 shows the results for different A val-
ues (different emphasis on shared named entities).
We can see that ALBERT-adjonly achieves higher
scores than ALBERT-allpairs and the baseline Text-
Rank for all X\ values, once again demonstrating
the effectiveness of our method.

4 Conclusion and Future Work

We propose a simple yet effective training method
to predict the relative ordering of sentences in a
document, based on sentence adjacency and topo-
logical sort. Experiments on six datasets from dif-
ferent domains demonstrate the superiority of our

SROUGE score is not used, as it measures content similar-

ity, and does not capture intrinsic text coherence (Koto et al.,
2020).
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proposed method, in addition to results in a cross-
domain setting and for multi-document summarisa-
tion.
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Abstract

Topic diversion occurs frequently with engag-
ing open-domain dialogue systems like virtual
assistants. The balance between staying on
topic and rectifying the topic drift is impor-
tant for a good collaborative system. In this
paper, we present a model which uses a fine-
tuned XLNet-base to classify the utterances
pertaining to the major topic of conversation
and those which are not, with a precision of
84%. We propose a preliminary study, clas-
sifying utterances into major, minor and off-
topics, which further extends into a system ini-
tiative for diversion rectification. A case study
was conducted where a system initiative is em-
ulated as a response to the user going off-topic,
mimicking a common occurrence of mixed ini-
tiative present in natural human-human conver-
sation. This task of classifying utterances into
those which belong to the major theme or not,
would also help us in identification of relevant
sentences for tasks like dialogue summariza-
tion and information extraction from conversa-
tions.

1 Introduction

Conversational systems have become a part and par-
cel of our everyday life and virtual assistants like
Amazon’s Alexa', Google Home? or Apple’s Siri 3
are soon becoming conventional household items
(Terzopoulos and Satratzemi, 2020). Most of the
conversational systems were built with the primary
goal of accessing information, completing tasks, or
executing transactions. However, recent conversa-
tional agents are transitioning towards a novel hy-
brid of both task-oriented and a non-task-oriented
systems (Akasaki and Kaji, 2017) from the earlier
models that resembled factual information systems
(Leuski et al., 2006). But with this transition, they

"https://developer.amazon.com/en-US/alexa
Zhttps://assistant.google.com/
3https://www.apple.com/siri/

are failing to engage in complex information seek-
ing tasks and conversations where multiple turns
tend to get involved (Trippas et al., 2020). These
new-age open-domain dialogue systems also suf-
fer from a different kind of user behaviour called
“anomalous state of knowledge” (Belkin and Vick-
ery, 1985) where the user has vague information
requirements and is often unable to articulate it
with enough precision. This leads to the user devi-
ating from their original path and traversing into a
sub-topic without their knowledge (Larsson, 2017).
Thus, we need a context-dependent user guidance
without presupposing a strict hierarchy of plans
and task goals of the user. Such a guidance, with-
out topic information provided beforehand, is a
difficult task to achieve in an open-domain system.

In this work, we observe how a human-human
open-domain conversation with an initial topic to
begin with, handles topic drift and its rectifica-
tion in a conversation. We work on the Switch-
board dataset (Godfrey et al., 1992) and annotate
74 conversations with ‘major’, ‘minor’ and ‘off-
topic’ tags (Section 4). A key result of our finding
was that most of the topic shift detection models
[(Takanobu et al., 2018), (Wang and Goutte, 2018),
(Stewart et al., 2006)] have previously defined topic
set to assign to utterances. But as we see in Switch-
board dataset, modeling such a pre-defined set is
not a property of an open-domain non-task-oriented
conversational system. We create a novel model
which can, with a precision of 84%, predict the
utterances that belong to the major topic and those
which are deviating from the same, without a pre-
determined topic set. This is a major contribution
as it can help in informational retrieval in conversa-
tional systems (Bartl and Spanakis, 2017), dialogue
summarization (Gurevych and Strube, 2004) and
in the case study that we explored viz. introducing
a system initiative in a conversation.
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2 Task Definition

Mixed Initiative (MI) is an important aspect for
effectively solving multi-agent collaboration prob-
lems and is generally referred to as a flexible inter-
action strategy where each agent can contribute to
a task that it is best at (Horvitz, 1999). Here, we’ll
look into an example of topic shift in a conversation,
which sheds light on this issue in a conversation
that is common in our day-to-day lives.

A:  Hello, what are your hobbies?

B: My hobbies, umm, I used to dance a lot in
high school, what are yours?

MT
A: T used to paint, but these days I am just
occupied with whatever my kids are occu-
pied with at that moment.
B:  Ooh that’s nice, how many kids do you
have?
A: I have two kids, one boy aged 6 and a
or daughter aged 3 What about you?
B:  Yes, two twin girls aged 4.
A:  Aww that’s such a lovely age.
B:  Yaitis, but they can also be a little handful
at times.
MI Anyways, let’s go back to the topic at
hand, tell me more about your hobbies?

The above example shows how the topic transi-
tioned between the two users, from hobbies which
was their major topic given by a prompt, to talk-
ing about their kids. We see from the marked area
that they transitioned from the major topic (MT)
to an off-topic (OT) and rectified the topic shift as
well. This shift occurs abruptly, with stark differ-
ence in the semantic space between the two topics.
Such a topic diversion and rectification is a natural
phenomenon in a human-human conversation.

3 Related work

A good conversation is one which focuses on a bal-
ance between staying on topic and changing it in
an interactive multi-turn conversation system (See
et al., 2019). Detection of what constitutes as on-
topic can be viewed as segmentation of conversa-
tion into relevant and irrelevant of the conversation
(Stewart et al., 2006). Earlier work in segmenting
conversations into topics expected a high lexical
cohesion within a topic segment (Hearst, 1997).
However, we see that they fail to have regard of
sentence-level dependencies leading to fragmented
segmentation (Takanobu et al., 2018). Various su-
pervised methods approached this task as a classifi-

cation problem (Arguello and Rosé, 2006) but anno-
tations for them can be expensive and not scalable
for large datasets. Unsupervised methods on goal-
oriented conversations also have limited ability to
learn from the dataset (Joty et al., 2013). Modelling
this problem into detection of global topic structure
and local topic continuity (Takanobu et al., 2018)
results in a weakly supervised approach, using a
hierarchical LSTM, to analyse dialogue context
and content. However, a major drawback in that
method is that the topic sets are predefined and the
utterances are bucketed into the same. In an un-
bounded natural conversation, specifying the topic
set in advance is not a feasible task.

Our proposed topic segmentation would help us
introduce a system initiative module by figuring out
when to give refinement or guidance and how to
best contribute in solving a user’s problem (Horvitz,
1999), by detecting the major topic of the conver-
sation and steering the user towards it in case of a
diversion.

4 Annotation Framework

We use the human-transcribed conversations from
the NXT-format Switchboard corpus (Calhoun
et al., 2010) in our task. In this dataset, partici-
pants are given a topic prompt and were asked to
converse with each other for around ten minutes.
This dataset was chosen for annotation, amongst
others, as some did not have enough turns to ob-
serve a topic shift [(Lowe et al., 2015), (Gliwa et al.,
2019)] or had fixed topics of conversation [(Mc-
Cowan et al., 2005), (Janin et al., 2003)] neither of
which were favourable for us to model an off-topic
shift detection for open-domain conversations.

In Switchboard, we observe the freedom with
which the participants drift from the given topic
prompt, leading to different off-topic threads in the
conversation and several statements by the users to
steer the conversation back to the original topic. To
model this property, we annotated the dataset, into
three labels - major, minor and off-topic tags. Dia-
logues are inherently hierarchical in structure, but
we see that human annotators cannot definitively
agree on a hierarchical segmentation (Passonneau
and Litman, 1997). Thus we adopt a flat model of
annotation where a strong shift from the original
topic of conversation is annotated as off-topic and
a subsidiary shift is labelled as minor topic.

e Major Topic (MT) - The utterances which
belong to the topic with which the conversa-
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tion commenced with and is largely talked
about were tagged as major topic. Each con-
versation has a solitary Major topic.

e Minor Topic (MiT) - The utterances that are
part of a sub-topic, which was a natural di-
gression from the major topic but lies in the
semantic space of the major topic, are tagged
as minor topic. A conversation can consist of
multiple Minor Topics.

» Off-topic (OT) - The utterances that are part
of a complete digression of the topic at hand
were tagged as off-topic. Each conversation
could encompass multiple instances of Off
Topic clusters.

A conversational speech is not as structured as writ-
ten text; it consists of overlaps of turns between the
participants and interruptions. That is why each
turn is divided into an utterance consisting of a
single independent clause (Meteer and Iyer, 1996).
This also helps us in narrowing down each utter-
ance to have a single topic of discussion and thus
a single tag to belong to. For our ease of annota-
tion, we have considered incomplete sentence as
complete sentences and annotated accordingly. We
have also made a conscious decision to drop one
word sentences.

4.1 Annotation Guidelines

The annotation process starts with the annotators
identifying topic shifts in a conversation and brack-
eting the utterances. Each bracket is then mapped
to an annotation tag of major, minor or off topic as
seen in conversation 6. The annotators were given
the following guidelines

(i) Annotators are advised to go through the entire
conversation first before beginning the annotation
process to get a better understanding of the topic
flow. (ii) In most instances, conversations begin
with a major topic bracket. (iii) Minor and off
topic brackets are not further segmented. (iv) Mi-
nor topic bracket is always preceded by a major
topic bracket.

A document tailing these guidelines along with ap-
propriate examples was given to the annotators for
reference. We have annotated the dataset * using
three independent annotators and each utterance
belonged to either major, minor or off-topic. The

“The dataset and annotation guidelines are available at this
link

Topic tag Frequency
Major Topic 3206(30.4%)
Minor Topic 4759(45.2%)
off-topic 2560(24.4%)
Table 1: Frequencies of major, minor and off topic

utterances in the dataset.

Figure 1: Image (left) shows the t-SNE representation
of MT vs MiT vs OT classes whereas the (right) shows
the t-SNE representation of MT vs rest classes.

Cohen’s kappa score or the inter evaluator agree-
ment is 0.64 for our annotation, which indicates
reliability.

We had observed that the major issue for dis-
agreement lie in whether to tag a conversation as
minor or off-topic. In cases of confusion, anno-
tators were advised to tag the turn as minor-topic
since the degree of digression from the major topic
is subjective in nature. This resulted in the increase
of minor topic tags over rest.

5 Experiments and Results

Prior to designing the topic classifier, we wanted
to understand the characteristics of Switchboard
corpus and visualize the classes that we have de-
fined in Section 4. We plotted the t-SNE embed-
dings(Van der Maaten and Hinton, 2008) for the 3
classes in Fig 1(left). We observe that minor and
off-topic classes are entangled and thus decided to
merge these two classes into a rest class. The t-
SNE plot for the data with the merged class can be
seen in Fig 1(right), and the classes are now less en-
tangled. Our task is now a binary classification task
with the two classes being major and rest. This is
further backed by the poor results obtained on the
application of classification models to classify each
classes individually, which we omit for brevity.

5.1 Methodology

Our task is to segment the conversation and la-
bel each segment with the tag of major or rest.
More formally, given a conversation X having
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Model Precision | Recall | F1 score
SVM 0.55 0.59 0.56
LightGBM 0.65 0.69 0.66
BERT-base 0.69 0.69 0.69
RoBERTa-base | 0.77 0.63 0.69
XLNet-base 0.84 0.72 0.77
Table 2: LightGBM gives best results amongst the

baselines. XLNet-base gives best results overall.

utterances 1, o, ..., T, and the topic set S =
{major,rest}. Our task is to segment these utter-
ances into major topic or rest i.e., a binary classifi-
cation task. To achieve this, we started with clas-
sical machine learning algorithms like SVM and
LightGBM (Ke et al., 2017) and then we tested the
latest sequence classification deep learning models
like BERT (Devlin et al., 2018).

SVM and LightGBM are the two baselines cal-
culated to compare against BERT and its variants.
We have not used TextTiling, which is commonly
used for dialog segmentation tasks as one of our
baselines, because TextTiling measures the similar-
ity of each adjacent sentence pair and uses valleys
of similarities for segment detection. This is useful
for datasets which have conversations with well
defined topic shifts but the conversations in Switch-
board do not have that property.

BERT and its variant models (RoBERTa (Liu
et al., 2019), XLNet (Yang et al., 2020)) are trans-
former based deep learning models. RoBERTa
improves the training procedure by removing the
Next Sentence Prediction (NSP) task from BERT’s
pre-training and introduces dynamic masking so
that the masked token changes during the train-
ing epochs. XLNet on the other hand is a bidirec-
tional transformer, that uses better training method-
ology, larger data and more computational power
to improve upon BERT. Our model was evaluated
against precision, recall and F1 score. We see
that good precision is a reliable metric to measure
against. Our prime focus is on detection of the
topic shift away from major topic, thus high preci-
sion gives us a better system to identify when topic
shift occurs and label it accordingly.

5.2 Results

We fine-tune BERT by taking a pre-trained model,
adding an additional untrained classifier layer and
training this new model for our task. This is done
because pre-trained Transformer model weights

already encode a lot of information about our lan-
guage which is helpful in cases where the datasets
are small. For the sequence classification task, we
use a special [CLS] token at the beginning of our
sentence-chain which encodes the information of
the sentence-chain into it. This token is used in
the final layer to classify whether a sentence-chain
belongs to a major topic or rest class. On observing
the results, we find that the XL Net-based model
outperforms BERT, RoBERTa and the baselines.
We hypothesize that XLNet performs better than
BERT and RoBERTa because it does not suffer
from the problem of a fixed maximum length for
tokens. Both BERT and RoBERTa allow maximum
512 tokens in a sentence whereas XLNet has no
such limitation. This indicates a better coverage of
utterances which consist of more than 512 tokens,
a phenomenon observed many times in the dataset.
During training entire context of the conversation
is taken into account and the model is trained using
the labels used for each sentence chain belonging
to that conversation. While evaluating the model, a
conversation is taken and every sentence chain is
tested whether it belongs to major topic or not.

6 Case Study

The system response generated in this case study
is a System Initiative (SI) given to a snippet of
the Switchboard corpus, prompting the user to go
back to the major topic of the conversation, when
it detects a topic shift from it.

Setup The major bottleneck in generating a SI
response is the detection of MT in an open-domain
conversation. Since there are no predefined topics
at hand, we see that one manner of MT detection
could be using word importance scores which are
scored using a bidirectional LSTM in the range of
0 to 5. (Kafle and Huenerfauth, 2018)

Major Topic Detection Our assumption in this
case study was that the set of words with word
importance scores > 4, in the first K turns of the
conversation, contain the major topic in them. We
test our assumption using the human-annotated ma-
jor topics of the conversation. We evaluate the
extracted Bag of Words (BoW) and the annotated
data using cosine similarity score. After sampling
for values of K ranging from 0 to 40, we see that
the major topic is detected best when K = 15.
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A:  So, do you fish?
B:  Oh, yeah. My dad has a lake cabin.
MT B:  and so we go there for the small lake, uh,
just outside of the Dallas Fort Worth area.
A:  Oh, that’s nice
A: 1,1, You see, I'm from west Texas.
B:  Oh, are you? Where are you from?
A: Lubbock
or .
B:  Oh, I'm from Midland.
A:  Oh, another west Texan.
B: I went to college at Tech,
ST { Do you want to go back to topic of fishing? }

Observation We observe the BoW extracted us-
ing word importance scores has a cosine similarity
of 0.652 on an average with the human-annotated
MT of the dataset. This helps us in generating a
SI that can contribute towards the user’s objective.
We use a simple template-based response and add
the component of major topic, to generate a user
guided SI to steer the conversation back in case of
a topic shift. The turn at which this SI should occur,
is detected using our XLNet-based model to iden-
tify a shift from the major topic of the conversation.
This helps us to support the user in their task and
add a collaborative feature to the interactive agent.

7 Conclusion

In this paper, we looked at generating a system
initiative module in a conversational system that
does not interrupt the user and also works towards
achieving the common goal of the user. We present
a dataset that helps in training an XLNet-based
model to correctly detect a digression from the
major topic of the conversation. We have also
looked at an application of this model as a case
study where we detect topic shift and generate a
system initiative for the rectification of the same.
A predictable limitation of our system lies in not
detecting minor and off-topic individually. This
categorisation would help in giving a leeway in
case of a shift to a minor topic thread and a sys-
tem rectification initiative in case of a shift to an
off-topic thread .
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Abstract

Dialogue topic segmentation is critical in sev-
eral dialogue modeling problems. However,
popular unsupervised approaches only exploit
surface features in assessing topical coherence
among utterances. In this work, we address
this limitation by leveraging supervisory sig-
nals from the utterance-pair coherence scor-
ing task. First, we present a simple yet effec-
tive strategy to generate a training corpus for
utterance-pair coherence scoring. Then, we
train a BERT-based neural utterance-pair co-
herence model with the obtained training cor-
pus. Finally, such model is used to measure the
topical relevance between utterances, acting as
the basis of the segmentation inference'. Ex-
periments on three public datasets in English
and Chinese demonstrate that our proposal out-
performs the state-of-the-art baselines.

1 Introduction

Dialogue Topic Segmentation (DTS), as a funda-
mental task of dialogue modeling, has received con-
siderable attention in recent years. In essence, DTS
aims to reveal the topic structure of a dialogue by
segmenting the dialogue session into its topically
coherent pieces. An example is given in Table 1.
Topic transition happens after Turn-4 and Turn-6,
where the topic is correspondingly switched from
“the requirement of the insurance coverage” to “the
information presented on the insurance card”, and
then to “the way of submitting the insurance card”.
Dialogue topic segmentation plays a vital role for a
variety of downstream dialogue-related NLP tasks,
such as dialogue generation (Li et al., 2016), sum-
marization (Bokaei et al., 2016) and response pre-
diction (Xu et al., 2021).

Different from the monologue topic segmenta-
tion (MTYS) task (Koshorek et al., 2018; Xing et al.,

'Our code, proposed fine-tuned models and data

can be found at https://github.com/1xing532/
Dialogue-Topic—-Segmenter.
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Turns

Turn-1: A: For how long should the liability insurance
coverage remain in effect?

Turn-2: B: As long as the registration of your vehicle
remains valid.

Turn-3: A: Does this apply for motorcycles too?

Turn-4: B: There are some exceptions for motorcycles.

Dialogue Text

Turn-5: A: Regarding the name on my vehicle registration
application and the one on the Insurance Identification
Card, do they need to be the same?

Turn-6: B: yes, the names must match in both documents.

Turn-7: A: Can I submit copies or faxes of my Insurance
identification card to the DMV?

Turn-8: B: yes, you can. But take into consideration that
the card will be rejected if the DMV barcode reader can

not scan the barcode.

Table 1: A dialogue topic segmentation example sam-
pled from Doc2Dial (Feng et al., 2020). This dialogue
is segmented into three topical-coherent units (utter-
ances in the same color are about the same topic).

2020), the shortage of labeled dialogue corpora has
always been a very serious problem for DTS. Col-
lecting annotations about topic shifting between
the utterances of dialogues is highly expensive and
time-consuming. Hence, most of the proposed la-
beled datasets for DTS are typically used for model
evaluation rather than training. They are either
small in size (Xu et al., 2021) or artificially gen-
erated and possibly noisy (Feng et al., 2020). Be-
cause of the lack of training data, most previously
proposed methods for DTS follow the unsupervised
paradigm. The common assumption behind these
unsupervised methods is that the utterances associ-
ated with the same topic should be more coherent
together than the utterances about different topics
(Hearst, 1997; Purver et al., 2006). Hence, effec-
tively modeling the coherence among utterances
becomes the key ingredient of a successful DTS
model. However, the performances of the prior
unsupervised DTS models are usually limited since
the coherence measurements between utterances
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are typically based on surface features (eg,. lexical
overlap) (Hearst, 1997; Eisenstein and Barzilay,
2008) or word-level semantics (Song et al., 2016;
Xu et al., 2021). Even though these features are
easy to extract and thus make models more gener-
ally applicable, they can only reflect the coherence
between utterances in a rather shallow way. More
recently, there is work departing from the unsuper-
vised setting by casting DTS as a weakly super-
vised learning task and utilizing a RL-based neural
model as the basic framework (Takanobu et al.,
2018). However, while this approach has been
at least partially successful on goal-oriented dia-
logues when provided with predefined in-domain
topics, it cannot deal effectively with more general
open-domain dialogues.

To alleviate the aforementioned limitations in
previous work, in this paper, we still cast DTS as
an unsupervised learning task to make it applicable
to dialogues from diverse domains and resources.
However, instead of merely utilizing shallow fea-
tures for coherence prediction, we leverage the su-
pervised information from the text-pair coherence
scoring task (i.e., measuring the coherence of ad-
jacent textual units (Wang et al., 2017; Xu et al.,
2019; Wang et al., 2020)), which can more effec-
tively capture the deeper semantic (topical) rela-
tions between them. Due to the absence of supervi-
sion, we propose a simple yet effective strategy to
generate a training corpus for the utterance-pair co-
herence scoring task, with the paired coherent/not-
utterance pairs as datapoints. Then, after applying
such strategy, we use the resulting corpus to train
an utterance-pair coherence scoring model with the
relative ranking objective (Li, 2011).

In practice, we create a training corpus from
large conversational datasets containing real daily
communications and covering various topics (pro-
posed in Li et al. (2017) and Wang et al. (2021)).
In particular, all the adjacent utterance pairs are
firstly extracted to form the positive sample set.
Then for each positive sample, the corresponding
negative samples are generated by replacing the
subsequent turn in the positive sample with (1) an
non-adjacent turn randomly picked from the same
dialogue, and (2) a turn randomly picked from an-
other dialogue talking about another topic. Once
the training corpus is ready, we re-purpose the Next
Sentence Prediction (NSP) BERT model (Devlin
et al., 2019) as the basic framework of our utterace-
pair coherence scoring model. After fine-tuning
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the pretrained NSP BERT on our automatically
generated training corpus with the marginal rank-
ing loss, the resulting model can then be applied
to produce the topical coherence score for all the
consecutive utterance pairs in any given dialogue.
Such scores can finally be used for the inference of
topic segmentation for that dialogue.

We empirically test the popular TextTiling algo-
rithm (Hearst, 1997) enhanced by the supervisory
signal provided by our learned utterance-pair co-
herence scoring model on two languages (English
and Chinese). The experimental results show that
TextTiling enhanced by our proposal outperforms
the state-of-the-art (SOTA) unsupervised dialogue
topic segmenters by a substaintial margin on the
testing sets of both languages. Finally, in a quali-
tative analysis, by visualizing the segment predic-
tions of the different DTS segmenters on a sample
dialogue, we show that the effectiveness of our pro-
posal seems to come from better capturing topical
relations and consideration for dialogue flows.

2 Related Work

Dialogue Topic Segmentation (DTS) Similar to
the topic segmentation for monologue, dialogue
topic segmentation aims to segment a dialogue
session into the topical-coherent units. Therefore,
a wide variety of approaches which were origi-
nally proposed for monologue topic segmentation,
have also been widely applied to conversational
corpora. Early approaches, due to lack of train-
ing data, are usually unsupervised and exploit the
word co-occurrence statistics (Hearst, 1997; Gal-
ley et al., 2003; Eisenstein and Barzilay, 2008)
or sentences’ topical distribution (Riedl and Bie-
mann, 2012; Du et al., 2013) to measure the sen-
tence similarity between turns, so that topical or
semantic changes can be detected. More recently,
with the availability of large-scale corpora sam-
pled from Wikipedia, by taking the section mark
as the ground-truth segment boundary (Koshorek
et al., 2018; Arnold et al., 2019), there has been a
rapid growth in supervised approaches for mono-
logue topic segmentation, especially neural-based
approaches (Koshorek et al., 2018; Badjatiya et al.,
2018; Arnold et al., 2019). These supervised solu-
tions are favored by researchers due to their more
robust performance and efficiency.

However, compared with monologue documents,
dialogues are generally more fragmented and con-
tain many more informal expressions. The dis-



course relation between utterances are also rather
different from the monologue text. These distinc-
tive features may introduce undesirable noise and
cause limited performance when the supervised ap-
proaches trained on Wikipedia is applied. Since
the lack of training data still remains a problem for
DTS, unsupervised methods, especially the ones ex-
tending TextTiling (Hearst, 1997), are still the main-
stream options. For instance, Song et al. (2016)
enhanced TextTiling with word embeddings, which
better capture the underlying semantics than bag-
of-words style features. Later, Xu et al. (2021)
replaced word embeddings with BERT as the ut-
terance encoder to produce the input for TextTiling,
because pretrained language models like BERT
better capture more utterance-level dependencies.
Also, to avoid a too fragmented topic segmenta-
tion, they adjusted the 7extTiling algorithm into
a greedy manner, which however requires more
hyper-parameters and greatly limits the model’s
transferability. In contrast, here we adopt the orig-
inal TextTiling to minimize the need of hyperpa-
rameters and use coherence signals for utterances
learned from real-world dialogues to make our pro-
posal more suitable for conversational data.

Another line of research explores casting DTS
as a topic tracking problem (Khan et al., 2015;
Takanobu et al., 2018), with the predefined con-
versation topics as part of the supervisory signals.
Even though they have achieved SOTA perfor-
mance on the in-distribution data, their reliability
on the out-of-distribution data is rather poor. In
contrast, our proposal does not require any prior
knowledge (i.e., predefined topics) as input, so it is
more transferable to out-of-distribution data.

Coherence Scoring Early on Barzilay and Lap-
ata (2005, 2008) observed that particular patterns of
grammatical role transition for entities can reveal
the coherence of monologue documents. Hence,
they proposed the entity-grid approach by using
entity role transitions mined from documents as
the features for document coherence scoring. Later,
Cervone and Riccardi (2020) explored the poten-
tial of the entity-grid approach on conversational
data and further proved that it was also suitable
for dialogues. However, one key limitation of the
entity-grid model is that by excessively relying on
the identification of entity tokens and their corre-
sponding roles, its performance can be reduced by
errors from other NLP pre-processing tasks, like
coreference resolution, which can be very noisy.
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In order to resolve this limitation, researchers
have explored scoring a document coherence by
measuring and aggregating the coherence of its ad-
jacent text pairs (e.g., Xu et al. (2019)), with Wang
et al. (2017) being the first work demonstrating the
strong relation between text-pair coherence scoring
and monologue topic segmentation. In particular,
they argued that a pair of texts from the same seg-
ment should be ranked more coherent than a pair
of texts randomly picked from different paragraphs.
With this assumption, they proposed a CNN-based
model to predict text-pair semantic coherence, and
further use this model to directly conduct topic seg-
mentation. In this paper, we investigate how their
proposal can be effectively extended to dialogues.
Furthermore, we propose a novel method for data
generation and model training, so that DTS and
coherence scoring can mutually benefit each other.

3 Methodology

Following most of the previous work, we adopt
TextTiling (Hearst, 1997) as the basic algorithm
for DTS to predict segment boundaries for dia-
logues ((b) in Figure 1). Formally, given a dia-
logue d in the form of a sequence of utterances
{u1,ug, ..., ux}, there are k — 1 consecutive utter-
ance pairs. Then an utterance-pair coherence scor-
ing model is applied to all these pairs and finally get
a sequence of coherence scores {c1, C, ..., Ck—1},
where ¢; € [0,1] indicates how topically related
two utterances in the ¢th pair are. Instead of di-
rectly using the coherence scores to infer seg-
ment boundaries, a sequence of “depth scores”
{dp1,dpa, ..., dpi_1 } is calculated to measure how
sharp a valley is by looking at the highest coherence
scores hl(i) and hr(i) on the left and right of in-
terval i: dp; w Higher depth score
means the pair of utterances are less topically re-
lated to each other. The threshold 7 to identify seg-
ment boundaries is computed from the mean y and
standard deviation o of depth scores: 7 = 1 — 3. A
pair of utterances with the depth score over 7 will
be select to have a segment boundary in between.

Next, we describe our novel training data gen-
eration strategy and the architecture of our new
utterance-pair coherence scoring model, which are
the two key contributions of this paper.

3.1 Training Data for Coherence Scoring

We follow previous work (Wang et al., 2017; Xu
et al., 2019; Huang et al., 2020) to optimize the



utterance-pair coherence scoring model (described
in Section 3.2) with marginal ranking loss. For-
mally, the coherence scoring model CS receives
two utterances (u1,uz) as input and return the co-
herence score ¢ = CS(uq, uz), which reflects the
topical relevance of this pair of utterances. Due
to the lack of corpora labeled with ground-truth
coherence scores, we follow the strategy in Wang
et al. (2017) to train CS based on the pairwise rank-
ing with ordering relations of coherence between
utterance pairs as supervisory signals.

In order to create the training data labeled with
coherence ordering relations, we make two assump-
tions: (1) A pair of adjacent utterances is more
likely to be more topical coherent than a pair of
non-adjacent utterances but still in the same dia-
logue session. (2) A pair of utterances from the
same dialogue is more likely to be more topical
coherent than a pair of utterances sampled from
different dialogues. To formalize the ordering rela-
tions, we notate a source dialogue corpus as C and
use uf to represent the ¢th utterance in the dialogue
dy, € C. Then the two ordering relations based on
the above assumptions can be formulated as:

CS(uf, ufyy) > CS(uf,uf),
j¢ {z’—l,i,H—l}

OS(uf, uf) > OS(uf, ul),
k#m

Since the ranking objective is pairwise, given two
utterance pairs, we deem the pair with higher/lower
coherence score as the positive/negative instance.
Taking eq. 1 as an example, (u¥, uf, ;) and (uf, uf)
are positive and negative instance respectively.
Since the generality of the obtained coherence
scoring model will significantly impact the ro-
bustness of the overall segmentation system, hav-
ing a proper source dialogue corpus C to gen-
erate training data from is a critical step. We
believe that an ideal source corpus should sat-
isfy the following key requirements: (1) having
a fairly large size; (2) covering as many topics
as possible; (3) containing both formal and infor-
mal expressions. To test the strength of our pro-
posal in a multilingual setting, we select DailyDi-
alog2 (Li et al., 2017) and NaturalConv® (Wang
et al., 2021) for English and Chinese respectively.
These two conversational corpora both consist of

(1)

2)

’yanran.li/dailydialog
3ai.tencent.com/ailab/nlp/dialogue/

Dataset DailyDialog NaturalConv
Total dialogues 13,118 19,919
Language English Chinese
Avg. # turns per dialog 7.9 20.1
Avg. # tokens per turn 14.6 12.2

# covered topics 10 6

Table 2: Statistics of the two conversational corpora
used for coherence scoring training data generation.

open-domain conversations about daily topics. Ta-
ble 2 gives some statistics about them. Different
from task-oriented dialogues, open-domain dia-
logues usually contain more diverse topics and
expressions. From Table 2, we can see that
both corpora cover multiple topics* and some
topics like Politics, Finance and Tech
are supposed to have more technical language,
while others like Sports, Entertainment
and Ordinary Life should include more ca-
sual expressions. Due to the lack of space, next we
will only use DailyDialog as our running example
source dialogue corpus C to illustrate the training
data generation process for coherence scoring.

Given the source corpus DailyDialog, we first
collect positive instances by extracting the adja-
cent utterance pairs which meet the Bi-turn Dia-
log Flow described in Li et al. (2017). The ut-
terances in this corpus are labeled with the di-
alogue acts including {Questions, Inform,
Directives, Commissives}. Among all the
possible combinations, Questions—-Inform
and Directives-Commissives are deemed
as basic dialogue act flows which happen regu-
larly during conversations. Once positive instances
P = {(si,t])]i € N} have been collected, we
adopt negative sampling to construct the negative
instance for each positive instance by randomly
picking:

— t,; : an utterance not adjacent to s; but in the
same dialogue.

— t;_: an utterance from another dialogue different
from s;.

These utterances will replace t;L in the positive
instance to form two negative instances: (s;,t; )
and (s;,t,”), where CS(s;, t) > CS(si,t;) >
CS(si, t;_). In order to further enlarge the mar-
gins of coherence relations presented above, we set
two constraints. Firstly, ¢;” should be labeled with

“We omit topic categories of these two corpus for space,
please refer original papers for more details.
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Figure 1: The overview of our proposed dialogue topic segmentation procedure. (a) Fine-tuning the NSP BERT on
the training data of utterance-pair coherence scoring generated from the source dialogue corpus C. (2) Leveraging
the fine-tuned BERT as the coherence scoring model to predict coherence scores for all the consecutive utterance
pairs in a testing dialogue. TextTiling algorithm is further utilized to infer segment boundaries.

the dialogue act different from ¢;". Secondly, t;_
should be sampled from a dialogue about a topic
different from the dialogue which t;L belongs to.
Notice that the second corpus NaturalConv does
not have dialogue act labels, so all the instance gen-
eration strategies with dialog acts in need are not
applicable. In particular, positive instances for Nat-
uralConv are simply adjacent utterances and the ad-
ditional constraint for creating negative instances,
in which ¢;” should be labeled with the dialogue
act different from tj, cannot be applied as well.
By applying our novel data generation process, we
obtain 91,581 and 599,148 paired pos/neg samples
for DailyDialog and NaturalConv respectively. We
split them into training (80%), validation (10%)
and testing sets (10%) for further model training
and evaluation.

3.2 Utterance-Pair Coherence Scoring Model

As illustrated in Figure 1(a), we choose the Next
Sentence Prediction (NSP) BERT (Devlin et al.,
2019) (trained for the Next Sentence Prediction
task) as the basic framework of our utterance-pair
coherence scoring model due to the similarity of
these two tasks®. They both take a pair of sen-
tences/utterances as input and only a topically re-

SInstead of NSP BERT (a cross-encoder), we could have
also modelled such pairwise scoring with a bi-encoder, which
first encodes each utterance independently. We eventually
selected the cross-encoder due to the results in Thakur et al.

(2021) showing that cross-encoders usually outperform bi-
encoders for pairwise sentence scoring.
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lated sentence should be predicted as the appro-
priate next sentence. We first initialize the model
with BERTy,,., which was pretrained on multi-
billion publicly available data. At the fine-tuning
stage, we expect the model to learn to discrimi-
nate the positive utterance pairs from their corre-
sponding negative pairs. More specifically, the
positive (s;, ;") and negative (s;, ¢; ) as instances
are fed into the model respectively in the form of
((CLS]||s:|| [SEP1||t/ || [SEP 1), where || de-
notes the concatenation operation for sequences
and [CLS], [SEP] are both special tokens in
BERT. Following the original NSP BERT train-
ing procedure, we also add position embeddings,
segment embeddings and token embeddings of to-
kens all together to get the comprehensive input for
BERT. The NSP BERT is formed by a sequence
of transformer encoder layers, where each layer
consists of a self-attentive layer and a skip con-
nection layer. Here we use the contextualized rep-
resentation of [CLS] as the topic-aware embed-
ding to predict how much the two input utterances
are matched in topic. The topical coherence score
will be estimated by passing [CLS] representation
through another multilayer perceptron (MLP).

To encourage the model to learn to assign a posi-
tive instance (s;,t;") a coherence score c; higher
than its paired negative instance (s;, ¢; ) score c; ,
we minimize the following marginal ranking loss:



N
1 -+
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where N is the size of the training set, 7 is the
margin hyper-parameter tuned at validation set.

4 Experiments

We comprehensively test our proposal by empiri-
cally comparing it with multiple baselines on three
datasets in two languages.

4.1 Data for Evaluation

DialSeg 711 (Xu et al., 2021): a real-world dataset
consisting of 711 English dialogues sampled from
two task-oriented multi-turn dialogue corpora:
MultiwOZ (Budzianowski et al., 2018) and Stan-
ford Dialog Dataset (Eric et al., 2017). Topic seg-
ments of this dataset are from manual annotation.
Doc2Dial (Feng et al., 2020): This dataset consists
of 4,130 synthetic English dialogues between a user
and an assistant from the goal-oriented document-
grounded dialogue corpus Doc2Dial. This dataset
is generated by first constructing the dialogue flow
automatically based on the content elements sam-
pled from text sections of the grounding document.
Then crowd workers create the utterance sequence
based on the obtained artificial dialogue flow. Topic
segments of this dataset are extracted based on text
sections of the grounding document where the ut-
terances’ information comes from.
ZYS (Xu et al., 2021): is a real-world Chinese
dataset consisting of 505 conversations recorded
during customer service phone calls on banking
consultation. Similar to DialSeg_711, gold topic
segments of this dataset are manually annotated.
More details of the three datasets are in Table 3.

4.2 Baselines

We compare our dialogue topic segmenter with fol-
lowing unsupervised baselines:

Random: Given a dialogue with £ utterances,
we first randomly sample the number of segment
boundaries b € {0,...,k — 1} for this dialogue.
Then we determine if an utterance is the end of a
segment with the probability %

BayesSeg (Eisenstein and Barzilay, 2008): This
method models the words in each topic segment
as draws from a multinomial language model as-
sociated with the segment. Maximizing the obser-
vation likelihood of the dialogue yields a lexically-
cohesive segmentation.

Dataset DialSeg 711 Doc2Dial 7YS
documents 711 4,130 505
language English English Chinses
# sent/seg 5.6 3.5 6.4
# seg/doc 4.9 3.7 4.0
real-world v X v

Table 3: Statistics of the three dialogue topic segmen-
tation testing sets for model evaluation.

GraphSeg (Glavas et al., 2016): This method gen-
erates a semantic relatedness graph with utterances
as nodes. Segments are then predicted by finding
the maximal cliques of the graph.

GreedySeg (Xu et al., 2021): This method greedily
determines segment boundaries based on the sim-
ilarity of adjacent utterances computed from the
output of the pretrained BERT sentence encoder.
TextTiling (TeT) (Hearst, 1997): The detailed de-
scription of this method can be found in Section 3.
TeT + Embedding (Song et al., 2016): TextTiling
enhanced by GloVe word embeddings, by applying
word embeddings to compute the semantic coher-
ence for consecutive utterance pairs.

TeT + CLS (Xu et al., 2021): TextTiling enhanced
by the pretrained BERT sentence encoder, by using
output embeddings of BERT encoder to compute
semantic similarity for consecutive utterance pairs.
TeT + NSP: TextTiling enhanced by the pretrained
BERT for Next Sentence Prediction (NSP), by
leveraging the output probability to represent the
semantic coherence for consecutive utterance pairs.

4.3 Evaluation Metrics

We apply three standard metrics to evaluate the
performances of our proposal and baselines. They
are: Py error score (Beeferman et al., 1999), Win-
Diff (WD) (Pevzner and Hearst, 2002) and F} score
(macro). P, and WD are both calculated based
on the overlap between ground-truth segments and
model’s predictions within a certain size sliding
window. Since they are both penalty metrics, lower
score indicates better performance. F is the stan-
dard armonic mean of precision and recall, with
higher scores indicating better performance

4.4 Experimental Setup

We fine-tune the utterance-pair coherence scoring
model on BERT},, s which consists of 12 layers and
12 heads in each layer. The hidden dimension of
BERT}, s, 1s 768. Training is executed with AdamW
(Loshchilov and Hutter, 2019) as our optimizer and
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Method DialSeg 711 Doc2Dial

Pl WDl kT | PB| WD| kRt
Random 5292 70.04 0410 | 55.60 65.29 0.420
BayesSeg (Eisenstein and Barzilay, 2008) | 30.97 35.60 0.517 | 46.65 62.13 0.433
GraphSeg (Glavas et al., 2016) 4374 44776  0.537 | 51.54 5159 0.403
GreedySeg (Xu et al., 2021) 50.95 53.85 0401 | 50.66 51.56 0.406
TextTiling (TeT) (Hearst, 1997) 40.44 44.63 0.608 | 52.02 57.42 0.539
TeT + Embedding (Song et al., 2016) 39.37 41.27 0.637 | 53.72 55.73 0.602
TeT + CLS (Xu et al., 2021) 4049 43.14 0.610 | 54.34 5792 0.518
TeT + NSP 46.84 48.50 0.512 | 50.79 54.86 0.550
Ours (w/o Dialog Flows) 32.60 3797 0.750 | 48.76  50.83 0.636
Ours (w/o Dialog Topics) 2695 2898 0.761 | 46.61 4858 0.657
Ours (full) 26.80 2824 0.776 | 45.23 47.32 0.660

Table 4: The experimental results on two English testing sets: DialSeg_711 (Xu et al., 2021) and Doc2Dial (Feng
et al., 2020). 1/] after the name of metrics indicates if the higher/lower value means better performance. The best

performances among the listed methods are in bold.

Method Pl WD| Fi 7
Random 5279  67.73 0.398
GreedySeg 4412 4829 0.502
TextTiling 45.86 49.31 0.485
TeT + Embedding | 43.85 45.13 0.510
TeT + CLS 43.01 43.60 0.502
TeT + NSP 42.59 4395 0.500
Ours 40.99 4132 0.521

Table 5: The experimental results on the Chinese test-
ing set proposed in Xu et al. (2021). The best perfor-
mances among the listed methods are in bold.

the scheduled learning rate with warm-up (initial
learning rate Ir= 2e-5). Model training is done
for 10 epochs with the batch size 16. Model’s per-
formance is monitored over the validation set and
finally the margin hyper-parameter 7 in eq. 3 is set
to 1 from the set of candidates {0.1,0.5,1,2,5}.

4.5 Results and Analysis

Table 4 compares the results of baselines and our
proposal on two English dialogue topic segmenta-
tion evaluation benchmarks. The chosen baselines
are clustered into the top three sub-tables in Ta-
ble 4: random baseline, unsupervised baselines not
extended from TextTiling and unsupervised base-
lines extended from 7extTiling. Overall, our pro-
posal (full) is the clear winner for both testing sets
in all metrics. Another observation is that the set
of segmenters 7eT + X, which were proved to be
effective for monologue topic segmentation, can-
not consistently outperform the basic TextTiling on
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conversational data. The reason may be that the co-
herence prediction components of such approaches
all rely on signals learned from monologue text (eg.,
GloVe and pretrained BERT). Due to the grammat-
ical and lexical difference, signals learned from
monologues tend to introduce unnecessary noise
and limit the effectiveness of unsupervised topic
segmemters when applied to dialogues. In con-
trast, our coherence scoring model trained on the
dataset of coherent/non-coherent utterance pairs
automatically generated from dialogues performs
better than all comparisons by a substantial margin.
Overall, this validates that by effectively using the
topical relations of utterances in dialogue corpora,
the BERT for next sentence prediction is able to
produce coherence scores reflecting to what extend
the two input utterances are matched in topic.

To confirm the benefit of taking dialogue flows
and topics into account, we also conduct an abla-
tion study by removing either one of these two parts
from the training data generation process for coher-
ence scoring. As reported in the bottom sub-table
of Table 4, sampling positive/negative utterance
pairs (tl—+ /t; in Section 3.1) without using dialogue
flows causes substantial performance drop on both
testing sets, while sampling the other negative ut-
terance pair (t;_ in Section 3.1) without taking
dialogue topics into consideration seems to have a
smaller impact on the trained model’s performance.
This observation shows that the dialogue flow is a
more effective signal than the dialogue topic. One
possible explanation is that there are some basic di-
alogue flows that are commonly followed and gen-
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Figure 2: Behaviors of four TextTiling-based segmenters on an example dialogue selected from Doc2Dial (Feng
et al., 2020). The horizonal axis is the index of intervals in a session, and the vertical axis is the value of depth
score (higher value means more topical unrelated). The reference and prediction of topic boundaries are marked
by blue and red vertical lines respectively. The overlaps of reference and prediction are marked by purple lines.

Method DialSeg_711 Doc2Dial ZYS
TextTiling 0.122 0.102 0.113
TeT + Embedding 0.136 0.125 0.131
TeT + CLS 0.166 0.154 0.158
Ours 0.366 0.319 0.320

Table 6: The average variance of depth scores on three
testing sets. Highest values are in bold

eralize across different types of dialogues, while
dialogue topics are more specific and vary much
more between different dialogue corpora.

To further investigate the generality of our pro-
posal for different languages, we train a Chinese
coherence scoring model on the training data gen-
erated from NaturalConv (in Section 3.1) and use
it together with TextTiling to infer segmentation
for Chinese dialogues. Table 5 exhibits the perfor-
mances of our method and baselines on the testing
set ZYS. Since the publicly available implemen-
tations for BayesSeg and GraphSeg only support
English text as input, they are not included in this
comparison. We note that although we observe a
pattern similar to English, namely that our method
surpasses all the selected baselines, gains seem to
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be smaller. While this still validates the reliability
of our proposal for languages other than English,
explaining this interlingual difference is left as fu-
ture work. With a proper open-domain dialogue
corpus for a particular language, TextTiling can
be enhanced by the high-quality topical coherence
signals in that language captured by our proposal.

4.6 Case Study

To more intuitively analyze the performance of our
method and of the baselines, a sample dialogue is
presented in Figure 2. First, notice that in models
using more advanced features to compute coher-
ence (line charts from top to bottom), the variation
of depth scores (see §3) becomes more pronounced,
which seem to indicate the more advanced models
learn stronger signals to discriminate topically re-
lated and unrelated content. In particular, as shown
again on the right-top of Figure 2, the plain TextTil-
ing, which uses TF-IDF to estimate the coherence
for utterance pairs, yields depth scores close to
each other. With features carrying more complex
semantic information, like word embeddings and
BERT encoder pretrained on large-scale textual
data, the difference of depth scores becomes more



obvious. Remarkably, our utterance-pair coher-
ence scoring model optimized by marginal ranking
loss further enlarges the difference. More tellingly,
this trend holds in general for all three corpora as
shown quantitatively in Table 6. We can observe
that with more advanced features informing coher-
ence computation, the variation of depth scores
becomes more pronounced, which indicates that
more advanced models can learn stronger signals
to discriminate topically related and unrelated con-
tent. Remarkably, among all the presented methods,
our proposal yields the largest average variance of
depth scores across all three testing corpora.

A second key observation is about the benefit
of our proposal taking dialogue flows into con-
sideration in the training process. Consider (U7,
U8) as an example, the first three segmenters tend
to assign relatively high depth score (low coher-
ence) to this utterance pair due to the very lit-
tle content overlap between them. However, our
method manages to assign this pair the minimal
depth score. This is because such utterance pair is
aQuestions-Inform in the Dialog Flow, thus
even if there is very limited content in common,
the two utterances should still very likely belong to
the same topic segment.

5 Conclusions and Future Work

This paper addresses a key limitation of unsuper-
vised dialogue topic segmenters, namely their in-
ability to model topical coherence among utter-
ances in the dialogue. To this end, we leverage
signals learned from a neural utterance-pair co-
herence scoring model based on fine-tuning NSP
BERT. With no data labeled with gold coherence
score, we also propose a simple yet effective way to
automatically construct a training dataset from any
source dialogue corpus. The experimental results
on three testing sets in English and Chinese show
that our proposal outperforms all the alternative
unsupervised approaches.

For the future, although most recent work has
built on TextTiling, we plan to explore if our pro-
posal can also be integrated with other unsuper-
vised topic segmentation methods, like GraphSeg
and BayesSeg, rather than just TextTiling. Further-
more, we also plan to explore effective strategies
to exploit external commonsense knowledge (eg.,
ConceptNet (Speer et al., 2017)) or user characters
(Xing and Paul, 2017) in topic segmentation, since
they have been shown to be beneficial in dialogue

generation (Qiao et al., 2020; Ji et al., 2020b) and
summarization (Ji et al., 2020a).

Acknowledgments

We thank the anonymous reviewers and the UBC-
NLP group for their insightful comments and sug-
gestions. This research was supported by the Lan-
guage & Speech Innovation Lab of Cloud BU,
Huawei Technologies Co., Ltd.

References

Sebastian Arnold, Rudolf Schneider, Philippe Cudré-
Mauroux, Felix A. Gers, and Alexander Loser. 2019.
SECTOR: A neural model for coherent topic seg-
mentation and classification. Transactions of the As-
sociation for Computational Linguistics, 7:169-184.

Pinkesh Badjatiya, Litton J. Kurisinkel, Manish Gupta,
and Vasudeva Varma. 2018. Attention-based neu-
ral text segmentation. In Advances in Information
Retrieval, pages 180-193, Cham. Springer Interna-
tional Publishing.

Regina Barzilay and Mirella Lapata. 2005. Model-
ing local coherence: An entity-based approach. In
Proceedings of the 43rd Annual Meeting of the As-
sociation for Computational Linguistics (ACL’05),
pages 141-148, Ann Arbor, Michigan. Association
for Computational Linguistics.

Regina Barzilay and Mirella Lapata. 2008. Modeling
local coherence: An entity-based approach. Compu-
tational Linguistics, 34(1):1-34.

Doug Beeferman, Adam Berger, and John Lafferty.
1999. Statistical models for text segmentation. Ma-
chine Learning, 34(1):177-210.

Mohammad Hadi Bokaei, Hossein Sameti, and Yang
Liu. 2016. Extractive summarization of multi-party
meetings through discourse segmentation. Natural
Language Engineering, 22(1):41-72.

Pawel Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Iiigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gasi¢. 2018. MultiwWOZ - a
large-scale multi-domain Wizard-of-Oz dataset for
task-oriented dialogue modelling. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 50165026, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Alessandra Cervone and Giuseppe Riccardi. 2020. Is
this dialogue coherent? learning from dialogue acts
and entities. In Proceedings of the 21th Annual
Meeting of the Special Interest Group on Discourse
and Dialogue, pages 162—174, 1st virtual meeting.
Association for Computational Linguistics.

175



Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Lan Du, Wray Buntine, and Mark Johnson. 2013.
Topic segmentation with a structured topic model.
In Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 190-200, Atlanta, Georgia. Association for
Computational Linguistics.

Jacob Eisenstein and Regina Barzilay. 2008. Bayesian
unsupervised topic segmentation. In Proceedings of
the 2008 Conference on Empirical Methods in Natu-
ral Language Processing, pages 334-343, Honolulu,
Hawaii. Association for Computational Linguistics.

Mihail Eric, Lakshmi Krishnan, Francois Charette, and
Christopher D. Manning. 2017. Key-value retrieval
networks for task-oriented dialogue. In Proceedings
of the 18th Annual SIGdial Meeting on Discourse
and Dialogue, pages 37-49, Saarbriicken, Germany.
Association for Computational Linguistics.

Song Feng, Hui Wan, Chulaka Gunasekara, Siva
Patel, Sachindra Joshi, and Luis Lastras. 2020.
doc2dial: A goal-oriented document-grounded dia-
logue dataset. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 8118-8128, Online. As-
sociation for Computational Linguistics.

Michel Galley, Kathleen R. McKeown, Eric Fosler-
Lussier, and Hongyan Jing. 2003. Discourse seg-
mentation of multi-party conversation. In Proceed-
ings of the 41st Annual Meeting of the Association
for Computational Linguistics, pages 562-569, Sap-
poro, Japan. Association for Computational Linguis-
tics.

Goran Glavas, Federico Nanni, and Simone Paolo
Ponzetto. 2016. Unsupervised text segmentation us-
ing semantic relatedness graphs. In Proceedings of
the Fifth Joint Conference on Lexical and Computa-
tional Semantics, pages 125-130, Berlin, Germany.
Association for Computational Linguistics.

Marti A. Hearst. 1997. Text tiling: Segmenting text
into multi-paragraph subtopic passages. Computa-
tional Linguistics, 23(1):33-64.

Lishan Huang, Zheng Ye, Jinghui Qin, Liang Lin, and
Xiaodan Liang. 2020. GRADE: Automatic graph-
enhanced coherence metric for evaluating open-
domain dialogue systems. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 9230-9240,
Online. Association for Computational Linguistics.

176

Haozhe Ji, Pei Ke, Shaohan Huang, Furu Wei, and Min-
lie Huang. 2020a. Generating commonsense expla-
nation by extracting bridge concepts from reasoning
paths. In Proceedings of the Ist Conference of the
Asia-Pacific Chapter of the Association for Compu-
tational Linguistics and the 10th International Joint
Conference on Natural Language Processing, pages
248-257, Suzhou, China. Association for Computa-
tional Linguistics.

Haozhe Ji, Pei Ke, Shaohan Huang, Furu Wei, Xiaoyan
Zhu, and Minlie Huang. 2020b. Language gen-
eration with multi-hop reasoning on commonsense
knowledge graph. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 725-736, Online. Asso-
ciation for Computational Linguistics.

O. Z. Khan, Jean-Philippe Robichaud, Paul A. Crook,
and R. Sarikaya. 2015. Hypotheses ranking and
state tracking for a multi-domain dialog system us-
ing multiple asr alternates. In INTERSPEECH, page
1810-1814.

Omri Koshorek, Adir Cohen, Noam Mor, Michael Rot-
man, and Jonathan Berant. 2018. Text segmentation
as a supervised learning task. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 2 (Short Pa-
pers), pages 469—-473, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Hang Li. 2011. A short introduction to learning to
rank. [EICE Transactions on Information and Sys-
tems, E94.D(10):1854-1862.

Jiwei Li, Will Monroe, Alan Ritter, Dan Jurafsky,
Michel Galley, and Jianfeng Gao. 2016. Deep rein-
forcement learning for dialogue generation. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1192—
1202, Austin, Texas. Association for Computational
Linguistics.

Yanran Li, Hui Su, Xiaoyu Shen, Wenjie Li, Zigiang
Cao, and Shuzi Niu. 2017. DailyDialog: A manu-
ally labelled multi-turn dialogue dataset. In Proceed-
ings of the Eighth International Joint Conference on
Natural Language Processing (Volume 1: Long Pa-
pers), pages 986995, Taipei, Taiwan. Asian Federa-
tion of Natural Language Processing.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In ICLR.

Lev Pevzner and Marti A. Hearst. 2002. A critique
and improvement of an evaluation metric for text

segmentation. Computational Linguistics, 28(1):19—
36.

Matthew Purver, Konrad P. Kérding, Thomas L. Grif-
fiths, and Joshua B. Tenenbaum. 2006. Unsuper-
vised topic modelling for multi-party spoken dis-
course. In Proceedings of the 21st International



Conference on Computational Linguistics and 44th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 17-24, Sydney, Australia.
Association for Computational Linguistics.

Lin Qiao, Jianhao Yan, Fandong Meng, Zhendong
Yang, and Jie Zhou. 2020. A sentiment-controllable
topic-to-essay generator with topic knowledge
graph. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 3336-3344,
Online. Association for Computational Linguistics.

Martin Riedl and Chris Biemann. 2012. TopicTiling:
A text segmentation algorithm based on LDA. In
Proceedings of ACL 2012 Student Research Work-
shop, pages 37-42, Jeju Island, Korea. Association
for Computational Linguistics.

Yiping Song, Lili Mou, R. Yan, Li Yi, Zinan Zhu,
X. Hu, and M. Zhang. 2016. Dialogue session seg-
mentation by embedding-enhanced texttiling. In IN-
TERSPEECH, page 2706-2710.

Robyn Speer, Joshua Chin, and Catherine Havasi. 2017.
Conceptnet 5.5: An open multilingual graph of
general knowledge. In Proceedings of the Thirty-
First AAAI Conference on Artificial Intelligence,
AAAT’ 17, page 4444—4451. AAAI Press.

Ryuichi Takanobu, Minlie Huang, Zhongzhou Zhao,
Fenglin Li, Haiqing Chen, Xiaoyan Zhu, and
Ligiang Nie. 2018. A weakly supervised method
for topic segmentation and labeling in goal-oriented
dialogues via reinforcement learning. In Proceed-
ings of the Twenty-Seventh International Joint Con-
ference on Artificial Intelligence, IJCAI-18, pages
4403-4410. International Joint Conferences on Ar-
tificial Intelligence Organization.

Nandan Thakur, Nils Reimers, Johannes Daxen-
berger, and Iryna Gurevych. 2021. Augmented
SBERT: Data augmentation method for improving
bi-encoders for pairwise sentence scoring tasks. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 296-310, Online. Association for Computa-
tional Linguistics.

Liang Wang, Sujian Li, Yajuan Lv, and Houfeng Wang.
2017. Learning to rank semantic coherence for topic
segmentation. In Proceedings of the 2017 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 1340-1344, Copenhagen, Den-
mark. Association for Computational Linguistics.

Weishi Wang, Steven C.H. Hoi, and Shafiq Joty. 2020.
Response selection for multi-party conversations
with dynamic topic tracking. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6581-6591,
Online. Association for Computational Linguistics.

Xiaoyang Wang, Chen Li, Jiangiao Zhao, and Dong
Yu. 2021. Naturalconv: A chinese dialogue dataset

towards multi-turn topic-driven conversation. Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence, 35(16):14006-14014.

Linzi Xing, Brad Hackinen, Giuseppe Carenini, and
Francesco Trebbi. 2020. Improving context model-
ing in neural topic segmentation. In Proceedings of
the st Conference of the Asia-Pacific Chapter of the
Association for Computational Linguistics and the
10th International Joint Conference on Natural Lan-
guage Processing, pages 626-636, Suzhou, China.
Association for Computational Linguistics.

Linzi Xing and Michael J. Paul. 2017. Incorporating
metadata into content-based user embeddings. In
Proceedings of the 3rd Workshop on Noisy User-
generated Text, pages 4549, Copenhagen, Den-
mark. Association for Computational Linguistics.

Peng Xu, Hamidreza Saghir, Jin Sung Kang, Teng
Long, Avishek Joey Bose, Yanshuai Cao, and Jackie
Chi Kit Cheung. 2019. A cross-domain transfer-
able neural coherence model. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 678-687, Florence, Italy.
Association for Computational Linguistics.

Yi Xu, Hai Zhao, and Zhuosheng Zhang. 2021. Topic-
aware multi-turn dialogue modeling. Proceedings
of the AAAI Conference on Artificial Intelligence,
35(16):14176-14184.

177



Fundamental Exploration of Evaluation Metrics for
Persona Characteristics of Text Utterances

Chiaki Miyazaki Saya Kanno

Makoto Yoda

Junya Ono Hiromi Wakaki

Sony Group Corporation, Japan
{chiaki.miyazaki, saya.kanno, makoto.yoda,
junya.ono, hiromi.wakaki}@sony.com

Abstract

To maintain utterance quality of a persona-
aware dialog system, inappropriate utterances
for the persona should be thoroughly filtered.
When evaluating the appropriateness of a large
number of arbitrary utterances to be registered
in the utterance database of a retrieval-based
dialog system, evaluation metrics that require
a reference (or a “correct” utterance) for each
evaluation target cannot be used. In addition,
practical utterance filtering requires the abil-
ity to select utterances based on the intensity
of persona characteristics. Therefore, we are
developing metrics that can be used to capture
the intensity of persona characteristics and can
be computed without references tailored to the
evaluation targets. To this end, we explore ex-
isting metrics and propose two new metrics:
persona speaker probability and persona term
salience. Experimental results show that our
proposed metrics show weak to moderate cor-
relations between scores of persona character-
istics based on human judgments and outper-
form other metrics overall in filtering inappro-
priate utterances for particular personas.

1 Introduction

Maintaining utterance quality is important for
commercial dialog systems. To achieve better
quality, methods of filtering inappropriate utter-
ances have been proposed from the perspectives
of offensive language (Xu et al., 2020), grammar,
topics (Tsunomori et al., 2020), discourse rela-
tion (Otsuka et al., 2017), and so on. In addi-
tion to these perspectives, we need a filter for
personas of dialog systems. Persona-aware dia-
log systems are important in that having a con-
sistent persona makes a dialog system believ-
able (Higashinaka et al., 2018) and entertaining
(Miyazaki et al., 2016). Throughout this paper, we
use the term persona to indicate individuals such
as real-life people and fictional characters. In ad-
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Utterance Automatic Utterance
creation [ | evaluation [ | selection
Utterance Score Utterance Score
utt. 1 0.52 Utt. 1 0.52
utt. 147 0.30 uUtt. 147 0.30
Utt. 148 0.29
Utt. 499 0.02
Pool of utterances utt. 500 0.00 Utterance DB
varying in quality for dialog system

Figure 1: Process of selecting appropriate utterances
for dialog system responses.

dition, we use the term persona characteristics to
indicate the distinctive qualities of a persona.

Figure 1 shows how we would like to auto-
matically evaluate the appropriateness of a large
number of arbitrary utterances and select utter-
ances to be registered in the utterance database
of a retrieval-based dialog system. Doing this is
preferable for commercial use in terms of pre-
venting unexpected utterances from being out-
put. Evaluation metrics based on word over-
lap between an evaluation target and a refer-
ence (or a “correct” utterance) are often used to
evaluate persona-aware utterance generation (e.g.,
FI, BLEU, and ROUGE in (Wolfetal., 2019;
Madotto et al., 2019; Olabiyi et al., 2019)). How-
ever, these metrics are not applicable to utterance
selection because preparing references for a large
number of arbitrary utterances is extremely time-
consuming. In other words, these metrics are not
supposed to be used to evaluate utterances outside
a predefined evaluation dataset. Therefore, met-
rics need to be computed without the references
tailored to the evaluation targets. In addition, prac-
tical utterance selection requires the ability to se-
lect utterances based on the intensity of persona

Proceedings of the 22nd Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 178—189
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characteristics.

Accordingly, we explore the metrics that can be
used to capture the intensity of persona character-
istics and can be computed without the references
tailored to the evaluation targets. The contribu-
tions of this paper are as follows:

e We provide summaries of existing metrics
used for evaluating persona-aware utterances.

e We propose two new metrics to evaluate per-
sona characteristics without the references
tailored to the evaluation targets.

e We investigate the effectiveness of the exist-
ing metrics and our proposed metrics in cap-
turing the intensity of persona characteristics.

The rest of this paper is structured as follows. In
Section 2, we introduce related work. In Section
3, we overview the existing evaluation metrics. In
Section 4, we propose two new metrics. In Sec-
tion 5, we investigate the correlation coefficient of
the metrics between human judgments. In Section
6, we investigate filtering inappropriate utterances
considering the practicality of the utterance selec-
tion.

2 Related Work

Since the release of the PERSONA-CHAT dataset
(Zhang et al., 2018), many more studies have
been conducted on persona-aware utterance gen-
eration (Songetal., 2019; Jiangetal.,, 2020;
Liuet al,, 2020), including studies by the 23
teams that participated in the ConvAlI2 competi-
tion (Dinan et al., 2019). The PERSONA-CHAT
dataset was created by crowdworkers who were
asked to converse as the personas described in the
given descriptions. Each description consisted of
five sentences on average, such as “I am a vegetar-
ian,” “I like swimming,” “My father used to work
for Ford,” “My favorite band is Maroon5,” and “I
got a new job last month, which is about advertis-
ing design.” In this manner, facts about the per-
sonas are described. However, the linguistic styles
of the personas were not focused on.

Linguistic style is also an important aspect of
persona-aware utterances. For example, Big Five
personalities (Mairesse and Walker, 2007), gen-
der, age, and area of residence (Miyazaki et al.,
2015) can affect the linguistic styles of the utter-
ances. In text style transfer, transfer success is of-
ten measured by transfer accuracy (Krishna et al.,
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Category Metric
Persona- Trained |Persona accuracy
description- |Untrained | P-F1
based P-Cover
Sample- Trained |Personality classifica-
monologue- tion accuracy
based uPPL
Untrained | MaxBLEU

Table 1: List of existing metrics.

2020). For example, when transferring negative
sentences into positive ones, transfer success is
measured by the fraction of sentences that are clas-
sified as positive (Fu et al., 2018).

The same idea can be used to evaluate persona-
aware utterances. In fact, there is a study that uses
a similar evaluation metric called personality clas-
sification accuracy (Su et al., 2019), which is the
accuracy of the speaker classification for the eval-
uation target utterances. We utilize and modify
this idea so that we can measure the persona char-
acteristics of each utterance.

3 Existing Metrics

This section introduces the existing evaluation
metrics for persona-aware utterances that can be
computed without the references being tailored to
the evaluation targets. Table 1 shows the list of the
existing metrics. The metrics are roughly divided
into those that are based on the persona descrip-
tions as used in the PERSONA-CHAT dataset and
those that are based on the sample monologues
of the personas. In addition, they can be catego-
rized by the involvement of machine learning, i.e.,
trained or untrained. Hereinafter, we use the term
monologue to refer to a set of independent utter-
ances that are not associated with the preceding or
the following utterances in a dialog.

31

3.1.1 Persona Accuracy

Metrics Based on Persona Descriptions

Persona accuracy (Zheng et al., 2020) is the ac-
curacy with which the binary classification distin-
guishes if a persona description is expressed in the
evaluation target utterances.

3.1.2 Persona F1 (P-F1)

P-FI is an untrained evaluation metric used by
Jiang et al. (2020) that was adapted from a pre-
vious study (Dinan et al., 2018). P-F1 is the har-
monic mean of persona precision and persona re-



call, which are computed based on the number of
non-stop words shared between an evaluation tar-
get and a persona description.

3.1.3 Persona Coverage (P-Cover)

P-Cover is another untrained metric used by
Jiang et al. (2020) that was adapted from a previ-
ous study (Song et al., 2019). Though this is also
based on the non-stop words shared between an
evaluation target and the persona description, it
utilizes inverse term frequency' to place weight on
words.

3.2 Metrics Based on Sample Monologues

3.2.1 Personality Classification Accuracy

Personality classification accuracy (Suetal.,
2019) is the speaker classification accuracy for the
evaluation targets. The speaker classification can
be achieved by building a classifier to distinguish
the speakers of the utterances in a monologue
corpus of the target personas.

3.2.2 User Language Perplexity (uPPL)

uPPL (Wu et al., 2020) is a metric that evaluates
whether an utterance satisfies the linguistic style
of a given persona. It can be obtained by building
a statistical language model for a persona using
a sample monologue and computing the perplex-
ity of an evaluation target given by the language
model. Wuetal. (2020) employed users of the
Chinese social networking service Douban as per-
sonas and used their postings to train the language
models.

3.2.3 MaxBLEU

Su et al. (2019) used MaxBLEU (Xu et al., 2018)
to measure similarities between the evaluation
target and the monologue of a persona. The
MaxBLEU of an evaluation target can be obtained
by calculating the BLEU score for each utterance
in the monologue and finding the largest score.
MaxBLEU is the only untrained metric among
the existing sample-monologue-based metrics pre-
sented in this paper.

1Though Jiang et al. (2020) and Song et al. (2019) used
the term “inverse document frequency” for this, we chose
the term used in the PERSONA-CHAT paper (Zhang et al.,
2018) to avoid confusion with the inverse document fre-
quency (IDF) used in the calculation of term frequency-
inverse document frequency (TF-IDF), which will be men-
tioned in Section 4.2.

180

Probability of being

/) pe /i | speaker | SREN oo
("m a student.) classifier ‘o

Persona B: 0.15

Figure 2: Process of obtaining an utterance score using
PSProb.
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Figure 3: Process of obtaining an utterance score using
PTSal.

4 Proposed Metrics

We propose a trained persona speaker probabil-
ity (PSProb) metric and an untrained persona term
salience (PTSal) metric.

4.1 Persona Speaker Probability (PSProb)

To measure the intensity of the persona character-
istics of an utterance, we use the probability of
the utterance being said by a persona. Figure 2
shows the process of obtaining an utterance score.
First, we train a multinomial classifier to distin-
guish which persona is the speaker of each utter-
ance in the training data. Then, we estimate the
speaker to obtain the probability of an arbitrary
utterance being said by a persona. This idea is
quite similar to personality classification accuracy
(Su et al., 2019). The sole difference is in their
output: Persona classification accuracy is a metric
that evaluates a set of utterances as a whole, while
PSProb can be used to evaluate each utterance in-
dividually.

4.2 Persona Term Salience (PTSal)

We propose a metric that can be obtained with-
out using machine-learning-based persona classi-
fication. We refrain from using such a classifica-
tion to avoid complex conditions such as classifi-
cation performance, machine learning algorithms,
and training parameters. We assume evaluation
metrics should be as simple as possible.

We define PTSal as the score that measures the
importance of a term for a persona. Figure 3 shows
the process of obtaining a score for an utterance.



Conv. ID Topic

Character Utterance (created by crowdworkers)

4

Movie Asuna
Lizbeth

Asuna

R[AEHITIENZITZ 5 & WAV WARR Y

(Let’s go see a movie for a change. What would you like to see?)

ZBha, RIZPBBIAT B 0Wits, [@MHYLWAR TAFH-TE?

(I"d like to see a romantic comedy. Do you know what’s playing, Asuna?)
BEIAATAe, MABDHo/0075 ko LML E TRAIZITMARWV?

(A romantic comedy? I wonder what movies are playing now. Why don’t we go down to
the movie theater and check it out?)

18

Fashion Kirito

Sinon

Kirito

SEECIHESAEN - VI VR EABRT 7y a VDM ERARE?

(Just for reference... What kind of fashion do you like?)

TYEBHoTOHED, BERTVRE, —AKL,

(As you know, I wear comfortable clothes. That’s all.)

i, BEBEEMZE AR, BB o EFHLREREZZ0WE RS T, filrAd AR
MRH o7 6HMATIEL WA,

(Haha, you only care about function in fashion, right? Actually, I was thinking of changing
my fashion a bit. If you have any suggestions, please let me know.)

Table 2: Examples of crowdsourced conversations.

First, we prepare a table of the PTSal for each term
observed in the sample monologues of the target
personas. Then, we calculate the average score of
the terms in an arbitrary utterance by consulting
the prepared table.

To calculate the PTSal, we adapt and modify
the calculation of TF-IDF, which is widely used to
capture the importance of a term in a document.
By adapting the metric, we can capture the impor-
tance of a term for a persona. PTSal can be cal-
culated using the following formulae:

PTSal(t,p) = UttFreq(t,p) - SpkrRarity(t)

n(t, p)
m(p)
SpkrRarity(t) = log 1Pl

s(t)’
where n(t,p) is the number of utterances with
term ¢ in the monologue of persona p and m(p)
is the total number of utterances in the monologue
of persona p. s(t) is the number of personas that
used term ¢, and |P| is the total number of per-
sonas. UttF'req is used to capture how often a
term is used by a persona, and SpkrRarity is
used to capture how few personas use a term. In
short, UttF'req is used instead of term frequency
(TF), and Spkr Rarity is used instead of IDF.

UttFreq(t,p) =

S Experiment 1: Correlation with Scores
Based on Human Judgments
5.1 Purpose and Procedure

To examine whether the evaluation metrics can
capture the intensity of persona characteristics, we

i Collecting utterances via
crowdsourcing

Utterance
preparation

Randomly selecting utterances
for the evaluation

]

Collecting human judgments
on the speakers of the utterances

Reference score
preparation

Converting the human judgments
into reference scores

Figure 4: Process of preparing evaluation dataset.

calculated the correlation coefficient (Spearman’s
rho) of the metrics between human judgments. We
used ten characters from two popular anime se-
ries as personas: Kirito, Asuna, Sinon, Leafa, and
Lizbeth from Sword Art Online (SAO) and Ran,
Sonoko, Shinichi, Heiji, and Kazuha from Case
Closed (CONAN), which is also known as Detec-
tive Conan. The characters are all Japanese high
school students. Kirito, Shinichi, and Heiji are
male, and the others are female.

5.2 Evaluation Dataset

We prepared the evaluation dataset by following
the process shown in Figure 4. First, we col-
lected utterances via crowdsourcing. To obtain the
utterances that have characteristics of the target
personas, we assigned a character to each crowd-
worker and asked the crowdworkers to converse
as their characters. All the crowdworkers had
watched the anime involved, with 92% of them
having watched more than ten episodes. We in-
cluded 26 topics (18 general topics and four top-
ics specific to each anime) in the evaluation data
and paired the crowdworkers to start conversa-
tions with an utterance regarding a given topic.



Anime  #utts. # words # uniq. words
SAO 498 12,779 1,797
CONAN 500 10,882 1,730

Table 3: Statistics of evaluation data.

Q: Do you think the utterance is likely to be said by Kirito?

Utterances Human judgments # likely
Al A2 A3 A4 A5
[BFEREL] (’'mfine.) Yes Yes Yes Yes Yes
DA ] (Thanks.) No No Yes Yes Yes
[EREZA (Lovely.) No No No No Yes 1

Figure 5: Examples of human judgments with “likely”
judgments being used as reference utterance scores.

The general topics consisted of self-introductions,
movies, fashion, family, and so on. Table 2 shows
examples of the crowdsourced conversations.
Through the data collection process, we ob-
tained 2,070 utterances for each anime. For Ex-
periment 1, we randomly extracted 100 utterances
from each character and created a dataset that con-
sisted of 500 utterances for each anime. Table 3
shows the statistics of the dataset. Note that the
dataset for SAO consists of 498 utterances because
there were misoperations for two utterances in the
annotation process described in Section 5.3.

5.3 Preparation of Reference Scores

To obtain reference scores of persona characteris-
tics, we asked crowdworkers for annotations. We
gave each crowdworker a list of utterances” and a
character, and we asked them to answer if the char-
acter was likely to say each utterance on the list.
Note that judgments about one persona are inde-
pendent of judgments about other personas; there-
fore, an utterance can be labeled as “likely” for
multiple personas. Five crowdworkers were as-
signed to judge each combination of an utterance
and a character, so the number of crowdworkers
who chose “likely” for each combination ranged
from O to 5. Figure 5 shows examples of the anno-
tation results. It should be noted that all the an-
notation crowdworkers had experience watching
the anime involved, and 80% of them had watched
more than ten episodes.

Hereinafter, we refer to the number of “likely”

2We split 500 utterances into ten lists consisting of 50 ut-
terances per list and assigned five workers to each list, so we
needed 50 crowdworkers for each character. Since we used

ten characters, we used 500 crowdworkers in total for the an-
notation.

# utts.
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Ran Sonoko  Shinichi Heiji Kazuha

Figure 6: Numbers of utterances with NoL scores for
each character (upper figure for SAO; lower figure for
CONAN).

judgments as NoL for convenience. We used the
NoL instead of a Likert scale because we wanted
to make the annotation easier for crowdworkers.
We considered binary judgment would be easier
than judgment on a scale. Figure 6 shows the dis-
tribution of the NoL. Since the evaluation data is a
mixture of the utterances of five characters, there
are many utterances whose NoL is O for each char-
acter. For example, Kirito is the only male among
the five characters chosen from SAQ; therefore,
many utterances from female characters did not
suit Kirito and scored 0. Similarly, many utter-
ances were scored 0 for Heiji of CONAN, who
speaks with a strong Kansai dialect, which is spo-
ken in the western region of Japan.

5.4 Metric Implementation Details

In this section, we describe the implementation
details of the evaluation metrics used in this
experiment, namely PSProb, PTSal, uPPL, and
MaxBLEU. Of the metrics described in Section
3, persona accuracy and personality classification
accuracy were not used because they are not ap-
plicable for scoring each utterance. Because P-F1
and P-Cover (based on persona descriptions) were
proposed for evaluating utterances generated us-
ing persona descriptions, we assume they could be
unsuitable for evaluating utterances created inde-
pendently of the persona descriptions. Therefore,
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we evaluate these metrics as supplementary infor-
mation in Section A of the appendix.

Unless otherwise noted, we tokenized utter-
ances by using MeCab (Kudo et al., 2004) with the
UniDic dictionary (Den et al., 2008). We chose
that dictionary because it contains many colloquial
expressions we consider suitable for tokenizing ut-
terances.

5.4.1 Proposed 1: PSProb

As previously discussed, this metric is the proba-
bility of an utterance being said by a persona. We
trained a multinomial classifier using logistic re-
gression for SAO and CONAN. We used TF-IDF-
weighted word unigrams as features. To train the
models, we used monologue corpora consisting of
lines extracted from SAO screenplays and subti-
tles from CONAN episodes. For SAO, we used
screenplays for around 100 episodes; for CONAN,
we used TV subtitles from 12 episodes. The lines
in the subtitles are separated into short fragments,
so we concatenated the consecutive lines of the
same character. The numbers of lines, words, and
unique words of the corpora are shown in Table 4.
To adjust the imbalance of the data size among the
characters, we randomly extracted the same num-
ber of lines for each character based on the small-
est number. As a result, we used 1,955 lines for
SAO (391 lines from each character) and 310 lines
for CONAN (62 lines from each character). For
each anime, we used 90% for training and used
the remaining 10% for evaluating the classifica-
tion performance. The performance of the speaker
classifiers that we used to compute PSProb will be
provided in Table B.2 of the appendix as supple-
mentary information.

5.4.2 Proposed 2: PTSal

As previously stated, this is a metric to measure
the importance of a term for a persona. We used
all lines in the corpora shown in Table 4 as the
sample monologues to calculate the PTSal. We
used bigrams as terms of the words included in the
lines. Table 5 shows example scores for the utter-
ances. The first utterance, “f” (first-person pro-
noun for male), strongly affected the score for Kir-
ito. The second utterance, “F VJ bk < A (“Kirito-
kun,” a nickname for Kirito), strongly affected the
score for Asuna because other characters rarely
use the nickname to refer to or address Kirito. The
third utterance, “H 5.5 % A (“older brother™),
strongly affected the score for Leafa because she
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Anime  Character #lines # words # uniq.
words

SAO Kirito 4,356 60,666 5,067
Asuna 1,826 26,499 2,887
Sinon 936 14,574 2,075
Leafa 885 11,265 1,639
Lizbeth 391 5,933 1,292

CONAN Ran 241 2,765 603
Sonoko 147 1,572 440
Shinichi 103 1,844 559
Heiji 94 1,684 482
Kazuha 62 625 213

Table 4: Statistics of corpora used to compute PSProb,
PTSal, uPPL, and MaxBLEU.

mentions her brother frequently.

5.4.3 Existing 1: uPPL

To obtain the uPPL (Wu et al., 2020) of an utter-
ance u, a statistical language model for the tar-
get persona LM, should be trained first. Then,
the uPPL can be calculated as the perplexity of
u given by LM ,. Because the numbers of each
persona’s utterances are limited, Wu et al. (2020)
trained a language model using all the training
data and fine-tuned the model using each persona’s
utterances.

Because our monologue corpora are too small
to construct a language model, we used a pre-
trained Japanese BERT? as a language model, and
we fine-tuned the model with our corpora shown
in Table 4. We used 80% of the lines as training
data, 10% as validation data, and 10% as evalu-
ation data. We fine-tuned 100 epochs and chose
the model whose validation loss was the lowest for
each character. To calculate the perplexity of an
utterance, first, we tokenized the utterance with the
tokenizer for BERT, then we masked each word
in the utterance, predicted the masked words us-
ing a language model, and obtained cross entropy
loss for the probability distributions of predicted
words. The perplexities of the evaluation data will
be shown in Table B.3 of the appendix as supple-
mentary information.

5.4.4 Existing 2: MaxBLEU

Based on a previous study (Suetal., 2019), we
used MaxBLEU (Xu et al., 2018) as a metric that
measures the similarities between an evaluation

3BERT-base_mecab-ipadic-bpe-32k_whole-word-mask
obtained here: https://github.com/cl-tohoku/bert-japanese



Utterances (created by crowdworkers) Kirito  Asuna Sinon Leafa Lizbeth

ZATBIE, EIWSRE0TRIIMT AAA, FHERED [ 0.0029 0.0001  0.0002 0.0000  0.0001

BT ST AT

(Hello, where are you from? I'm Kazuto Kirigaya. I'm from

Kawagoe City in Saitama Prefecture.)

FU N A, BT 0 70 ] 0.0002 0.0042 0.0001 0.0001  0.0000

(Kirito-kun, you keep talking about food...!)

KEE P, BRABRALE I Es~, 0.0000 0.0001 0.0001 0.0089  0.0011

(I'll be with my friends or with my brother.)

Table 5: Examples of PTSal scores for utterances.

target utterance and the sample monologue of a Character Ts
persona. We used the corpora shown in Table 4 PSProb PTSal uPPL MaxBLEU
as the sample monologues. We calculated the tri-  SAO Kirito = 0.53 s+ (.39 s -0.20 =+ 0,17 ==
gram BLEU score* between the evaluation target Asuna  0.28 == 0.33 == -0.06 ns. 0.32 #=
utterance and each utterance of the sample mono- Sinon  0.21 =+ 0.16 + -0.03 ns. 0.37 =+
logue, and we used the highest score as the evalu- Leafa  0.35 #+ 0.16 = -0.02 ns. 0.27 ===
ation target utterance score. To obtain the BLEU Lizbeth 0.32 ##+ 0.11 ns. -0.01 ns. 0.03 ns.
scores, we usedmulti-bleu.perl included in CON- Ran 0.44 += 0.39 =+ -0.08 ns. 0.07 ns.

the Moses statistical machine translation system
(Koehn et al., 2007) based on Xu et al. (2018).

5.5 Results

Table 6 shows the correlation coefficients (75) be-
tween the metrics and the NoL. In the table, the
largest and the second-largest absolute values for
each character are in bold. Note that the uPPL
shows negative correlations because the smaller
the perplexity is, the better the language model
performs.

Our PSProb and PTSal metrics outperformed
other metrics overall. The best and second-best
performances were all PSProb or PTSal for CO-
NAN in particular. The best performance of all
was the case of PSProb for Sonoko, and the rg
was 0.67, which can be considered a strong cor-
relation. Though PTSal could not perform as well
as PSProb, PTSal did well without the assistance
of machine learning. PTSal showed moderate to
weak correlations for six out of ten characters,
moderate correlations for Sonoko (0.48) and Heiji
(0.48), and weak correlations for Kirito (0.39),
Asuna (0.33), Ran (0.39), and Kazuha (0.27).

MaxBLEU was also computed without the as-
sistance of machine learning; it did well for SAO,
as we expected. However, it did not work well for
CONAN, possibly because the size of the mono-
logue corpus for CONAN was too small to find ut-
terances sufficiently similar to the evaluation tar-
gets. In fact, while around 40% of the SAO ut-

*We chose BLEU-3 because it performed the best among

BLEU-1 to 4 on the evaluation of SAO. As for CONAN,
MaxBLEU did not perform well overall in this experiment.
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AN  Sonoko 0.67 =+ 0.48 += -0.18 =+ 0.02 ns.
Shinichi 0.20 == 0.17 +* -0.11 ns. -0.01 ns.
Heiji  0.52 #= 0.48 =+ -0.45 == (.14 =
Kazuha 0.56 = 0.27 ++ -0.09 ns. 0.10 ns.

Table 6: Correlation coefficients (rg) with NoL. “***
“*%> and “*” indicate that r, differs significantly from
0 at 0.1%, 1%, and 5%, respectively. “n.s.” means r;
is not significantly different from 0. Significances are
based on Holm-adjusted P-values.

terances scored more than 20 in MaxBLEU, only
around 9% of the CONAN utterances scored more
than 20.

Although the uPPL did not work well overall,
it performed well for Kirito and Heiji. The rg of
Kirito was -0.20, and the r; of Heiji was -0.45,
which can be considered weak to moderate corre-
lations. As described in relation to Figure 6, their
utterances have very different characteristics from
other characters’ utterances, assumedly a factor
behind uPPL’s good performance.

6 Experiment 2: Filtering Inappropriate
Utterances

6.1 Purpose and Procedure

Considering the practicality of the utterance selec-
tion, we conducted another experiment to exam-
ine whether inappropriate utterances for personas
can be filtered using the evaluation metrics. We
used the same metrics as those used in Experiment
1, namely PSProb, PTSal, uPPL, and MaxBLEU.
The implementation details of the metrics are the



Anime Charac- AUPR
ter PSProb PTSal uPPL MaxBLEU

SAO Kirito 0.83 0.72 0.65 0.68
Asuna 040 042 0.34 0.43
Sinon 0.52 0.53 0.46 0.63
Leafa 045 0.34 0.28 0.38
Lizbeth 0.33 0.29 0.16 0.19

CONAN Ran 0.79 0.68 0.53 0.65
Sonoko 0.87 0.66 0.48 0.59
Shinichi  0.76 0.69 0.61 0.75
Heiji 0.89 0.88 0.86 0.82
Kazuha 0.78 0.68 0.55 0.64

Table 7: AUPR for each metric.

same as those described in Section 5.4. We used
the same data described in Section 5.2 and Section
5.3 as the evaluation dataset. In this experiment,
we regarded the utterances whose NoL is 0 or 1
to be inappropriate and tried to extract them. For
each PSProb, PTSal, and MaxBLEU, we extracted
an utterance if the score for the metric was less
than or equal to a threshold. As for uPPL, we ex-
tracted an utterance if the score for the metric was
more than or equal to a threshold.

6.2 Results

Figure 7 shows precision-recall curves for extract-
ing inappropriate utterances. The upper figure is
for Kirito of SAO, and the lower figure is for Ran
of CONAN. Table 7 shows the area under the
precision-recall curve (AUPR) for all the charac-
ters. The larger the score is, the better the ex-
traction performance. In the table, the largest and
the second-largest scores for each character are in
bold. As in Experiment 1, our PSProb and PTSal
metrics outperformed other metrics overall. Ex-
cept for the case of Shinichi, the best and second-
best performances were all PSProb or PTSal for
CONAN. MaxBLEU also performed well overall.
It performed best for Asuna and Sinon and sec-
ond best for Leafa and Shinichi. However, uPPL
had the lowest performance for all the characters.
The overall trend in the results of this experiment
is consistent with Experiment 1.

7 Conclusion

We investigated the performances of existing met-
rics and new metrics (namely PSProb and PTSal)
to find metrics that we can use to capture the in-
tensity of persona characteristics and we can com-
pute without the references tailored to the evalua-
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Figure 7: Precision-recall curves for utterance filtering
(upper figure for Kirito of SAO; lower figure for Ran
of CONAN).

tion targets. Experimental results showed that our
PSProb and PTSal metrics generally outperformed
others in terms of correlation with scores based
on human judgments and performance in filtering
inappropriate utterances. We would like to clar-
ify the strengths and weaknesses of the metrics by
considering various practical cases of evaluating
persona characteristics. In addition, we would like
to investigate the effectiveness of the metrics on
automatically generated utterances and utterances
written in other languages.
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A Evaluation of Metrics Based on
Persona Descriptions

Regarding Experiment 1, we report evaluating the
metrics based on persona descriptions, namely P-
F1 and P-Cover. The evaluation dataset and the
reference scores used for this evaluation are the
same as those described in Section 5.

Al P-F1

P-F1 is a metric that evaluates how well a persona
is expressed in an utterance (Jiang et al., 2020). It
can be calculated using the following formulae:

2 - Recall - Precision
Persona F1 =

Recall 4 Precision
max;e(y, ) |[Wynd,|
[Wa, |
max;c(i,r] |WYmdi |
Wy

Persona Recall =

Persona Precision =

Y

where Wy is a set of non-stop words in utterance
Y and Wy, is a set of non-stop words in the sen-
tence d; in the persona description.

The personas used by Jiangetal. (2020)
are those in the PERSONA-CHAT dataset
(Zhang et al., 2018), which means that each per-
sona consisted of five sentences on average. In
this experiment, we used persona descriptions that
consisted of 20 sentences on average. We created
the persona descriptions by extracting character
descriptions from Wikipedia and removing sen-
tences inappropriate for persona description (e.g.,
background of the anime series). The following
is an excerpt of Kirito’s persona description ex-
tracted from Wikipedia®:

In the work, his birthday is October 7, 2008. He lives in
Kawagoe City, Saitama Prefecture. He lost his parents
in an accident shortly after his birth, and he was adopted
by the Kirigaya family consisting of his mother’s sister
and her husband.

A.2 P-Cover

P-Cover is another metric that evaluates how well
a persona is expressed in an utterance (Jiang et al.,
2020). It can be calculated by the following for-
mulae:

>The original sentences are in Japanese.
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Ts

Character P-Fl  P-Cover
SAO Kirito 0.13 = 0.09 ns.
Asuna 0.00 ns. 0.05 us.

Sinon  -0.06 ns. -0.08 ns.

Leafa 0.00 ns. -0.04 ns.

Lizbeth -0.05 ns. -0.01 ns.
CONAN Ran 0.04 ns. -0.02 ns.
Sonoko 0.08 ns. 0.01 ns.

Shinichi -0.10 ns. -0.11 ns.

Heiji 0.01 ns. 0.00 ns.

Kazuha -0.03 ns. -0.02 ns.

Table A.1: Correlation coefficients (r;) with NoL. “*”
indicates that rg differs significantly from 0 at 5%.
“n.s.” means 7 is not significantly different from 0.
Significances are based on Holm-adjusted P-values.

P C _ Zw]‘EWdei O[]
ersona Loverage = mMaX;ci1, L]~ |

Wy na,|
1
o =
7 14 log(1+ tf)
le6
tfj = idp 107

J

where idz; is the GloVe index and if; is com-
puted via Zipf’s law. The computation of ¢f ; was
adapted from Zhang et al. (2018). We trained the
GloVe (Pennington et al., 2014) using all the data
shown in Table 4 and the persona descriptions. It
should be noted that Jiang et al. (2020) seems to
use the same GloVe model for both utterance gen-
eration and evaluation, but our evaluation target ut-
terances were manually created independently of
the GloVe model and the data used to train the
model. The persona descriptions used for P-Cover
are identical to those used for P-F1.

A.3 Results

Table A.1 shows the correlation coefficients (7;)
between the metrics and the NoL. The table indi-
cates that neither P-F1 nor P-Cover showed sig-
nificant correlation for most of the cases, primar-
ily because the utterances did not have many exact
words in common with the persona descriptions.

B Supplementary Information for
Metric Implementation
B.1 PSProb

Table B.1 shows the breakdown of the data used
for PSProb. As previously discussed, we used



. # lines
Anime - Character Total Train Eval.
SAO Kirito 391 349 42

Asuna 391 356 35
Sinon 391 351 40
Leafa 391 351 40
Lizbeth 391 352 39
All 1,955 1,759 196
CONAN Ran 62 57 5
Sonoko 62 56 6
Shinichi 62 56 6
Heiji 62 55 7
Kazuha 62 55 7
All 310 279 31

Table B.1: Breakdown of data used for PSProb.

Anime Character Precision Recall Stl:nce
SAO Kirito 047 0.64 0.21
Asuna 0.51 0.51 0.18
Sinon 0.55 0.53 0.20
Leafa 0.56 0.45 0.20
Lizbeth 042 0.36 0.20
CONAN Ran 0.38 0.60 0.16
Sonoko 0.50 0.50 0.19
Shinichi 0.50 0.67 0.19
Heiji 1.00 0.43 0.23
Kazuha 0.83 0.71 0.23

Table B.2: Classification performance of models used
to compute PSProb.

1,955 lines for SAO and 310 lines for CONAN,
and we separated the lines into training data (90%)
and evaluation data (10%).

Table B.2 shows the performance of the speaker
classifiers that we used to compute PSProb.
Though the scores do not seem to be that high,
the precisions and recalls were all higher than the
chance rates. All the precisions and recalls for
SAO were significantly different from the chance
rates (p<0.05; two-sided binomial test). The sam-
ple sizes for CONAN were too small to test for
significance.

B.2 uPPL

Table B.3 shows the perplexities of the language
models that we used to compute uPPL. Except for
Lizbeth and Sonoko, the perplexity being at its
lowest when characters of a model and evaluation
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Evaluation data
Kirito Asuna Sinon Leafa Lizbeth
241 47.1 413 56.8 107.1
80.2 28.8 558 66.8 96.3
Sinon 1239 83.9 40.4 102.8 172.5
Leafa 179.5 100.7 121.8 69.9 188.3
Lizbeth 219.6 163.5 165.1 181.8 166.4

Model

Kirito
Asuna

Evaluation data

Model Ran Sonoko Shinichi Heiji Kazuha

Ran 2543 1,576.0 604.2 1,258.8 457.8
Sonoko 386.1 773.3 771.0 2,497.0 1,304.3
Shinichi 1,177.5 4,211.4 612.6 3,262.7 2,271.5
Heiji  1,348.2 1,538.7 1,072.1 263.7 465.8
Kazuha 3,444.4 3,592.7 2,529.8 1,824.8 392.6

Table B.3: Perplexities for language models fine-tuned
on each character (upper table for SAO; lower table for
CONAN). Scores in bold are lowest perplexity for each
model.

data were identical meant the models were appro-
priately fine-tuned in general.
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Abstract

In open-domain dialogue response generation,
a dialogue context can be continued with
diverse responses, and the dialogue models
should capture such one-to-many relations. In
this work, we first analyze the training ob-
jective of dialogue models from the view of
Kullback-Leibler divergence (KLD) and show
that the gap between the real world probability
distribution and the single-referenced data’s
probability distribution prevents the model
from learning the one-to-many relations effi-
ciently. Then we explore approaches to multi-
referenced training in two aspects. Data-wise,
we generate diverse pseudo references from
a powerful pretrained model to build multi-
referenced data that provides a better approx-
imation of the real-world distribution. Model-
wise, we propose to equip variational models
with an expressive prior, named linear Gaus-
sian model (LGM). Experimental results of
automated evaluation and human evaluation
show that the methods yield significant im-
provements over baselines.'

1 Introduction

Open-domain dialogue modeling has been formu-
lated as a seq2seq problem since Ritter et al. (2011)
and Vinyals and Le (2015) borrowed machine
translation (MT) techniques (Koehn et al., 2007;
Sutskever et al., 2014) to build dialogue systems,
where a model learns to map from one context to
one response. In MT, one-to-one mapping is a rea-
sonable assumption since an MT output is highly
constrained by its input. Though we may use a
variety of expressions to translate the same input
sentence, these different translations still highly
overlap with each other lexically and semantically

!Code and data are available at https://github.
com/ZHAOTING/dialog-processing/tree/
master/src/tasks/response_gen_multi_
response.
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Translation (en-jp) Dialogue
Input 1 like cheese.
Output 1 F—ADFE, Me too.
Output2 FAlFF—IHEE, | find it disgusting.
Output3 F—ANPFETI, What type of cheese?

Figure 1: Examples of multiple valid outputs given the
same input in machine translation and dialogue.

(see the translation example in Figure 1), and learn-
ing from one output reference is often sufficient for
training a good MT system (Kim and Rush, 2016).
In dialogues, however, the same input can be con-
tinued with multiple diverse outputs which are dif-
ferent in both the used lexicons and the expressed
semantic meanings (see the dialogue example in
Figure 1). Learning from barely one output ref-
erence ignores the possibility of responding with
other valid outputs and is thus insufficient for build-
ing a good dialogue system.

The current dialogue modeling paradigm is
largely derived from MT research, and it trains
dialogue models with one output reference given
each input. In this paper, we will investigate why
single-referenced training harms our dialogue mod-
els and how to apply multi-referenced training.

2  Why Multi-Referenced Training
Matters?

A dialogue context X can be continued with a set
of different responses {Y1,---,Y;,---}. In the
training of a response generation model, we expect
to model the real probability distribution P(Y | X)
with model probability distribution Py(Y |X) for
each context X, where 0 is the model parameters.
In most scenarios, however, we can only rely on

Proceedings of the 22nd Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 190-201
July 29-31, 2021. ©2021 Association for Computational Linguistics



a data set D = {(X(j),Yl(j))}L-le where only
one valid response is presented. This results in a
data probability distribution Pp(Y | X) that is very
different from P(Y |X). In fact, Pp(Y|X) is an
one-hot vector where the first element is 1 while
others are 0.

Emprical training objective As a result, we op-
timize a model to match the model probability
distribution and the data probability distribution.
From the view of Kullback-Leibler divergence
(KLD), we can see it as to minimize Dxy (FPp||FPp):

Py (Yi]X)

=i Po(Yi]|X) log Bo(Y;[X)

which is identical to minimize the following target
function after ignoring terms that are not related to
the model parameter 0:

Lp(X,Y) = =3, Pp(Yi|X) log Fy(Yi| X)

=2 1{i = 1} log Py(Yi| X)
—log Pp(Y1]X).

The resulting objective is the negative log likeli-
hood (NLL) loss function commonly used in the
implementation of dialogue models.

Ideal training objective We hope to minimize
the KLD between the model probability dis-
tribution and the real probability distribution,
Dy (P Fy):

Py(YilX)

_Zi P(YL‘X) log pg(yi|X)a

which is identical to minimize:
LY(X,Y) ==, P(Yi|X)log Py(Yi| X).

However, £* is intractable because 1) there are
often an enormous number of valid responses, and
2) we cannot obtain the real probability of a certain
response P(Y;|X).

The problem and proposed solutions The gap
between Lp and L£* is caused by the difference be-
tween Pp(Y|X) and P(Y|X), and it prevents dia-
logue models from learning one-to-many mappings
efficiently. To alleviate this problem, we propose
methods to allow for multi-referenced training in
two aspects.

2For simplicity, we define a response in D as the first
response to its context, and thus its subscript is 1. We will
omit the superscript in the rest of the paper.

191

» Data-wise, we replace the original data distri-
bution Pp(Y|X) with an approximated real
distribution P,(Y'|X') by generating up to
100 pseudo references from a teacher model
parameterized by ¢. We show that using the
newly created data yields significant improve-
ment.

Model-wise, we argue that a model requires an
encoder of large capacity to capture sentence-
level diversity, and thus we propose to equip
the variational hierarchical recurrent encoder-
decoder (VHRED) model with a linear Gaus-
sian model (LGM) prior. The proposed model
outperforms VHRED baselines with unimodal
Gaussian prior and Gaussian Mixture Model
(GMM) prior in evaluation experiments.

3 Related Works
3.1 Knowledge Distillation

In the context of machine translation, Kim and
Rush (2016) proposed that a teacher model’s
knowledge can be transferred to a student model
on a sequence level. They showed that transferring
sequence-level knowledge is roughly equal to train-
ing on sequences generated by the teacher model
as references. However, one generated reference
given each input is sufficient for transferring the
teacher’s MT knowledge, while we will show in
following experiments that training with multiple
generated references can yield far better results in
dialogue response generation. This confirms our
earlier hypothesis that the one-to-many nature is
an important characteristic that distinguishes open-
domain dialogue modeling from other tasks such
as machine translation.

In task-oriented dialogues, Peng et al. (2019) pro-
posed to transfer knowledge from multiple teachers
for multi-domain task-oriented dialogue response
generation via policy distillation and word-level
output distillation. Tan et al. (2019) applied a
similar approach to multilingual machine transla-
tion. Kuncoro et al. (2019) transferred syntactic
knowledge from recurrent neural network grammar
(RNNG, Dyer et al., 2016) models to a sequential
language model.

3.2 Data Augmentation and Manipulation

The multi-referenced training approach can be seen
as a data augmentation method. Prior works on data
augmentation in text generation tasks often oper-
ate on a word level while our method performs



sentence-level augmentation. Niu and Bansal
(2019) proposed to apply semantic-preserving per-
turbations to input words for augmenting data in
dialogue tasks. Zheng et al. (2018) investigated
generating pseudo references by compressing ex-
isting multiple references into a lattice and pick-
ing new sequences from it. Hu et al. (2019) used
finetuned BERT (Devlin et al., 2019) as the data
manipulation model to generate word substitutions
via reinforcement learning.

Another line of research focuses on filtering
high-quality training examples for dialogue re-
sponse generation. Csdky et al. (2019) proposed to
remove generic responses using an entropy-based
approach. Shang et al. (2018) trained a data cali-
bration network to assign higher instance weight to
more appropriate responses.

3.3 Expressive Dialogue Models

Besides manipulating the training data, dialogue
researchers have attempted to strengthen dialogue
models’ capacity for capturing complex relations
between the input context and the output responses.
Zhou et al. (2017) incorporated mechanism em-
beddings m into a seq2seq model for dialogue re-
sponse generation. The mechanism-aware model
decodes a response by selecting a mechanism em-
bedding my and combining it with context encod-
ing c. Therefore, the model is capable of generat-
ing diverse responses by choosing different mech-
anisms. Zhang et al. (2018) borrowed the con-
ditional value-at-risk (CVaR) from finance as an
alternative to sentence likelihood (which is negated
Lp) for optimization. Optimizing the CVaR objec-
tive can be seen as rejecting to optimize on easy
instances whose model probabilities are larger than
a threshold av. Qiu et al. (2019) proposed a two-step
VHRED variant for modeling one-to-many relation.
In the first step, they forced the dialogue encoding
vector c to store common features of all response
hypotheses Ya2. 41 by adversarial training. In the
second step, they trained the latent variable z to
capture response-specific information by training
with a multiple bag-of-words (MBoW) loss. These
three methods will be compared with the proposed
model in this work as they have focused on mod-
eling one-to-many relations in dialogue response
generation.

Gao et al. (2019) relied on vocabulary prediction
to model sentence-level discrepancy. Chen et al.
(2019) utilized a mechanism-based architecture and

proposed a posterior mapping method to select the
most proper mechanism. Gu et al. (2019) proposed
to train latent dialogue models in the framework
of generative adversarial network (GAN). They
optimized the model by minimizing the distance
between its prior distribution and its posterior dis-
tribution via adversarial training.

4 Preliminary

4.1 Models

HRED We use the hierarchical recurrent encoder
decoder (HRED, Serban et al., 2016) as the baseline
model, where a hierarchical RNN-based encoder
Ey(+) encodes the context X and produces an en-
coding vector ¢, and an RNN-based decoder Dy(-)
takes c as input and computes the conditional prob-
ability of a response Py(Y;|X) as the product of
word probabilities.

C = 59(X)
Py(Yi|X) =TI}y Po(YilYin—1, X)
=TI, Do(Yig|Yiui—1, ),

where Y; ; stands for the j-th word in Y; and L is
the length of Y.

VHRED For a given context, the HRED pro-
duces a fixed-length encoding vector ¢ and relies on
it to decode various responses. However, the one-
to-many mapping in dialogues is often too complex
to capture with a single vector c. Serban et al.
(2017) proposed variational HRED (VHRED) and
used a stochastic latent variable z that follows a
multivariate Gaussian distribution to strengthen the
model’s expressiveness.

p, o = MLPy(c)
z ~ Gaussian(p, o°1)
Py(Yi|X) =TI, Do(Yiy|Yii-1,c,2),

where p and o2 are parameters of the Gaussian
distribution. In order to mitigate the infamous pos-
terior collapse problem in variational models, it
is common to apply tricks such as annealing KLD
loss (Bowman et al., 2016) and minimizing a bag-
of-words (BoW) loss (Zhao et al., 2017).

VHRED with GMM prior Gu et al. (2019)
showed that the performance of the vanilla VHRED
is limited by the single-modal nature of Gaussian
distribution, and thus they proposed to use as prior
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a Gaussian Mixture Model (GMM) with K compo-
nents to capture multiple modes in z’s probability
distribution, such that z is sampled in the following
way:

My, Tk, T = MLPg 1. (c)
z ~ GMM({py, U%Iaﬂ'k}szl)’

where 7, is the weight of the k-th component. We
refer to the VHRED with K-component GMM
prior as VHRED g, ¢ .

GPT2 We finetune a pre-trained medium-sized
GPT2 (Radford et al., 2019) on dialogues and use
it as the teacher model to obtain Py(Y | X) as an
approximation of P(Y'|X'). GPT2 has been shown
to reach low perplexity on real-world texts, and it
can generate high-quality responses (Wolf et al.,
2019; Zhang et al., 2019). Therefore, we expect it
to provide a relatively accurate approximation of
the real-world distribution.

4.2 Data

We use the DailyDialog corpus (Li et al., 2017) to
investigate the effects of the proposed methods. We
make a roughly 0.8:0.1:0.1 session-level split for
training, validation, and test, respectively.’

4.3 Metrics

Automated Metrics We use perplexity on the
test data as the metric for intrinsic evaluation. For
extrinsic evaluation, we choose BLEU-2 and three
types of word embedding similarities (Embedding
Extrema, Embedding Average, Embedding Greedy)
to measure the closeness between a hypothesis and
the corresponding ground-truth reference. For di-
versity evaluation, we choose to count the number
of generated unigram and bigram types at a corpus-
level.

Dialogue Response Evaluator Besides the auto-
mated metrics above, we also use RoBERTa-eval,
a model-based dialogue response evaluator, to ap-
proximate human judgement (Zhao et al., 2020).
RoBERTa-eval computes the appropriateness (a
real value from 1 to 5) of a response hypothesis by
conditioning on its context instead of by comparing
with its reference. It has been shown to correlate
with human judgement significantly better than au-
tomated metrics. The authors reported Pearson’s p
=0.64 and Spearman’s p = 0.66 on the DailyDialog
corpus.

3See the Appendix for more details about the data set.
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Human Evaluation Following Adiwardana et al.
(2020), we ask Amazon MTurk human annotators
to evaluate each response on two criteria, sensi-
bleness and specificity. Both metrics take binary
values, and we use their average (knowns as Sen-
sibleness and Specificity Average, SSA) to assess
the overall quality.

5 Proposal: Enhancing Data for
Multi-Referenced Training

To enhance the training data, we try to close the gap
between Pp(Y |X) and P(Y|X). Since all prob-
ability mass is on a single response in Pp(Y | X),
the gap can be closed by assigning some mass to
other valid responses. We use a finetuned GPT2,,;
to generate IV hypotheses as valid responses, and
let the probability mass to be assigned to them uni-
formly. It results in Py (Y |X') wherein N elements
have % probability. The new training objective is:

LHX)Y) =%t

TN 2ui=2 log Py(Y;|X),

where we assume responses Y2 to Y1 are gener-
ated responses.

Training with the new loss function can be
achieved by directly replacing the ground-truth re-
sponses in the training data with the hypotheses.*

Sequences generated by beam search often
highly overlap both lexically and semantically (Li
et al., 2016). Therefore, we use nucleus sampling
with top probability 0.95 (Holtzman et al., 2019) to
generate 100 hypotheses as for each context in the
training data.

5.1 Training with Hypotheses

In this part, we compare baseline HRED models
trained with only ground truth (GT) and with dif-
ferent numbers of hypotheses. Since using N hy-
potheses makes the training data NV times larger,
we accordingly adjust the maximum number of
training epochs. We found that all the models can
converge in the given epochs. >

As shown in Table 1, replacing 1 GT with 1
hypothesis yields a boost on most metrics. Fur-
ther increasing the number of hypotheses will con-
tinue to improve the model’s performance. It is
worth noting that when the number of hypotheses

“We will refer to the original response as ground truth and
the generated responses as hypotheses. A reference can be
either a ground-truth response or a hypothesis response.

3See the Appendix for experimental settings and statistics
of model size and training cost.



Param Trn Time

Embedding Similarity

Model (in M) (in sec.) Data ppl BLEU-2 Ext Avg Grd Reval D1 D2
Teacher model
GPT2,4 338.39 3000 1GT 21.16 8.67 41.02 65.17 4844 428 4372 23430
Single-referenced training (baseline w/o KD)
HRED 8.04 150 1GT 29.00 6.46 3940 60.80 4392 342 1914 7369
Single-referenced training (baseline tok-KD, §5.2)
HRED, -k 8.04 700 1GT 27.68 6.90 39.83 6233 4511 345 1820 7118
Single-referenced training (baseline seq-KD, §5.1)
HRED 8.04 150 lhyp 35.08 6.62 39.66 6196 4475 3.61 1914 7369
Multi-referenced training (proposed seq-KD, §5.1)
Shyp 23.10 7.13 40.23 6243 4544 382 1788 7267
HRED 8.04 150 20hyp 21.15 7.38 40.52 6253 45.64 387 1707 6945
100 hyp  20.93 7.28 40.26 6222 4530 3.89 1704 6794

Table 1: Experimental results of data enhancement. Param shows the number of model parameters in M (220);
Trn Time shows the approximate time of training on 1 GT data for 1 epoch; GT — ground truth; hyp — hy-
potheses; ppl — perplexity; Ext — Embedding Extrema; Avg — Embedding Average; Grd — Embedding Greedy;
Reval — RoBERTa-eval score; D1 — the number of generated unigram types in the entire test data; D2 — the number

of generated bigram types in the entire test data.

is increased from 20 to 100, the performance gain
is limited. This suggests that as training data in-
creases, the model’s capacity might have become a
bottleneck.

5.2 Comparing with Knowledge Distillation

The proposed data enhancement can be considered
as a multi-sequence sequence-level knowledge dis-
tillation (seq-KD), and it has been shown to sig-
nificantly outperform single-sequence seq-KD (i.e.
the 1 hyp setting). We would also like to compare
it with token-level KD (tok-KD), where the stu-
dent HRED learns to match its softmax output with
the teacher GPT2 on every token (Kim and Rush,
2016). The model is referred to as HRED, ;_kp.

While tok-KD outperforms single-sequence seq-
KD in some metrics according to Table 1, the pro-
posed multi-sequence seq-KD is much better than
tok-KD in all metrics. Other drawbacks of tok-KD
include: 1) It requires the student model to have
the same vocabulary as the teacher model; 2) The
teacher model has to predict the probability distri-
bution for every output token and thus makes the
training extremely slow.

6 Proposal: Enhancing Model for
Multi-Referenced Training

We have previously seen the HRED’s performance
gain when we increase the number of hypotheses
from 1 to 20, but it starts to degrade when we
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further increase the number to 100. A conjecture is
that the model’s capacity is insufficient to learn too
complex input-output relations.

6.1 Larger-Sized Model

The simplest way to increase a model’s capacity
is to use more hidden units and layers. Since the
baseline HRED has 1 hidden layer with 500 hid-
den units, we experimented with larger HREDs,
which are 1) HRED; with 2 layers and 1000 hidden
units per layer and 2) HRED,; with 2 layers and
2000 hidden units per layer. As shown in Table 2,
HRED; slightly outperforms the original HRED
but a larger HRED; yields worse results in some
metrics. It suggests that increasing model size is
not a consistent way to improve performance.

6.2 Variational Model

VHRED and VHRED,,,,, have the potential to
learn one-to-many relations better since they can
generate different output sequences by sampling
different values from its encoding distributions.
However, their performance is not even compa-
rable with the baseline HRED according to Table 2.
We also found the performance of VHRED and
VHREDy,,,5 with larger latent variable size and
more components to be worse, which is partially
due to the fact that their KLD losses are positively
correlated with the latent variable size and thus are
unbalanced with their reconstruction losses. These



Param

Trn Time

Embedding Similarity

Model (in M) (in sec.) Data ppl BLEU-2 Ext Avg Grd Reval D1 D2
Teacher model
GPT2,4 338.39 3000 1 GT 21.16 8.67 41.02 65.17 48.44 428 4372 23430
Baseline model
HRED 8.04 150 100 hyp 20.93 7.28 40.26 6222 4530  3.89 1704 6794
Baseline larger model (§6.1)

HRED, 21.04 170 100 hyp 20.81 7.36 40.66 6253 4548 390 1734 7032
HREDy 52.52 190 100 hyp  20.69 7.21 40.43  62.51 45.65 3.85 1743 6986
Baseline variational model (§6.2)

VHRED 11.02 160 100 hyp 56.54 5.39 3849 6238 4459 325 2124 10903
VHREDg,5 11.36 160 100 hyp 50.44 5.44 3877 6255 4479 333 2058 10879
Proposed variational model (§6.3)

1GT 39.97 6.10 4030 64.03 4592  3.33 1934 8789

lhyp 50.44 6.12 40.26 64.17 46.05 350 1989 9427

VHRED g5 11.36 160 Shyp 30.85 6.61 4131 6531 47.19 3.73 1825 8522
20hyp 29.74 6.82 4133 6529 4739 376 1786 8395

100 hyp 28.76 6.79 4131 65.18 47.19 3.76 1777 8364

1GT 46.46 6.70 41.12 6498 46.83 3.64 1907 8941

1hyp 4645 6.65 41.10 6495 4677 3.64 1895 8869

VHREDgm20 12.52 160 Shyp 29.18 6.99 41.80 6572 47.68 3.82 1725 7757
20hyp 2693 7.07 4229 66.13 48.01 3.86 1604 7255

100 hyp 26.40 7.31 4231 6632 4832 391 1677 7641

VHREDgm100 18.67 160 100 hyp 26.25 7.39 4228 66.19 48.16  3.92 1612 7302

Prior works (§6.4)
MHRED 8.51 300 100 hyp 24.27 6.59 39.65 61.64 4479 3.80 1829 7729
HREDcvir 8.04 150 100 hyp 20.92 7.32 40.49 6243 4553 3.88 1738 6908
VHREDuyz,w 11.02 900 100 hyp 51.74 5.68 38.71 62.81 4507 3.41 2334 12116
Table 2: Experimental results of model enhancement.

results suggest that existing variational baselines
are not expressive enough and difficult to optimize.

6.3 VHRED with Linear Gaussian Model
(LGM) Prior

To allow for stronger expressiveness, we propose
a linear Gaussian model (LGM) prior. Instead of
relying on a single Gaussian latent variable, we
exploit K Gaussian latent variables z; to zx and
use their linear combination to encode a dialogue:

My, Ok, T = MLPg’k(C)
z), ~ Gaussian(py, o21)

z= Zszl TkZk,
and we refer to the VHRED with K -variable LGM
prior as VHRED g, ¢ .

This simple modification significantly improves
VHRED’s performance according to results in Ta-
ble 2. We experimented with K in {5, 20,100}
and found the performance improvement to be con-
sistent with more hypotheses and larger K.
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Regarding how the interaction between a
model’s expressiveness (i.e. K) and the amount of
hypotheses affects model performance, we notice
that:

* When K is small (K =5), we can hardly ob-
tain performance gain by training with more
hypotheses (from 20 to 100).

* When we increase K to 20, further perfor-
mance gain is achievable. It suggests that the
performance bottleneck can be widened to al-
low for learning from more hypotheses.

* When we increase K to 100, the performance
gap between VHRED;g,,,20 and VHRED g,1100
is very small. It suggests that we may need
more hypotheses to exploit the expressiveness
of VHREDlgml()() .

6.4 Comparing with Prior Works

Three models from prior works are also used for
comparison in Table 2, including the mechanism-



Human Scores (in %)

Model Sensible Specific SSA
Trained on 1-GT data
HRED 59.50 60.00  59.75
VHREDyg,,,,.5 38.50 56.00 47.25
VHREDy,,20  52.50 63.50  58.00
Trained on 100-hypotheses data
HRED 68.50 67.00 67.75
VHRED,,,,,5  44.50 66.50  55.50
VHREDyg,20  72.50 74.00 73.25

Table 3: Results of human evaluation on 3 models
trained on 2 types of data.

aware model (MHRED, Zhou et al., 2017), the con-
ditional value-at-risk model designed for learning
different dialogue scenarios (HRED¢y,r, Zhang
et al., 2018), and the two-step variational model
(VHREDB,w, Qiu et al., 2019). Their details have
been discussed in Section 3.3.

For the VHRED5,w model, We only imple-
mented the second step (multiple BoW loss part)
because the paper has not provided sufficient de-
tails for implementing its first step, and the reported
results suggest that the model still works well with-
out the first step processing (Qiu et al., 2019).

As shown in Table 2, these models are not com-
petitive in the multi-referenced setting, and two of
them cannot even beat the baseline HRED.

7 Human Evaluation

Besides automated evaluation, we also conduct hu-
man evaluation to provide a more accurate assess-
ment of model performance. We sample 100 dia-
logues randomly from the test data and generate
responses using 3 models (HRED, VHREDy,,, .5,
VHREDy,,,;5) trained on 2 types of data (the 1-
GT data and the 100-hypotheses data). We ask
4 Amazon MTurk human workers to annotate
the sensibleness and the specificity of the 600
(context,response) pairs. The collected data
reach good inter-rater agreement (Krippendorff’s
a > 0.6). Then we calculate the average of the two
metrics (SSA, Adiwardana et al., 2020) as intro-
duced in Section 4.3.

The results of the human evaluation are given in
Table 3. First, all three models obtain significant
improvements on all three metrics by training on
the multi-referenced data, which confirms the effec-
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tiveness of the proposed data enhancement method.
Then, VHRED .20 is better than its GMM coun-
terpart and the HRED. And a larger performance
gain is obtained for VHRED 4,29 than other models
when we train it on the multi-referenced data. The
result suggests that an expressive prior is indeed
necessary and useful for latent dialogue models,
especially in the multi-referenced setting.

8 Analysis

8.1 Combining Ground Truth and
Hypotheses

One issue that readers may be concerned about is
whether it is better to combine ground truth with
hypotheses than to use them separately. We take
the VHRED ;20 as an example and conduct ex-
periments using mixed training data. As shown in
Table 4, we can get performance gain by training
with mixed data. The improvement is larger when
the original data is smaller (1 hypothesis) because
it doubles the training data. When using 100 hy-
potheses, we can almost fully rely on the generated
data and discard ground truth.

8.2 What do variables in LGM learn?

We combine latent variables linearly in the LGM
prior. To investigate how each variable contributes,
we ftrain a standard VHRED,,20 on the 100-
hypotheses data, but evaluate it by using only 1
variable to generate responses. Besides the met-
rics introduced above, we calculate the average
selection probability 7, on the test data (as denoted
by 7). Out of the results, we find four obvious
patterns regarding their selection probability (avg
prob.), perplexity (PPL), and RoBERTa-eval scores
(Reval.). The results of these patterns are shown in
Table 5.

In general, selection probability correlates posi-
tively with RoBERTa-eval score, while perplexity
is less relevant to the other two metrics. For vari-
ables that have high probabilities and RoBERTa-
eval scores (e.g. the 8th and the 1st), there is a per-
formance discrepancy on other metrics, and thus
we believe LGM can capture different aspects of
responses. For instance, we notice that the 1st vari-
able tends to generate generic and safe responses,
while the 8th variable is likely to produce sentences
with more diverse word types. A dialogue example
is given in Table 6.° A more comprehensive inter-

®More examples and results can be found in the Appendix.



Embedding Similarity Reval

Use GT #hyp. ppl BLEU-2 Ext  Avg Grd
X 1 4645 6.65 41.10 6495 46.77 3.64
v 1 30.12 6.70 4148 65.01 4691 3.71
X 5 29.18 6.99 41.80 65.72 47.68  3.82
v 5 2731 7.26 4221 6633 4832 383
X 20 26.93 7.07 4229 66.13 48.01 3.86
v 20 26.46 7.25 42.00 65.81 4771 3.88
X 100 26.40 7.31 4231 66.32 4832 391
v 100 26.49 7.23 4228 65.83 4760 3.88

Table 4: Experimental results of combining ground truth and hypotheses. (§8.1)

k T ppl BLEU-2 Reval

Bad prob. / bad PPL / bad Reval.
4 0.12% 4865.8 1.77 1.51
Bad prob. / good PPL / bad Reval.

0 038% 112.10 5.42 2.73
Medium prob. / bad PPL / good Reval.
8 8.22% 2740.2 6.22 3.74
Good prob. / good PPL / good Reval.

1 3924% 72.34 5.52 3.59

Table 5: Experimental results of VHREDy,,,,59 decod-
ing with the k-th latent variable. (§8.2)

pretation of the variables remains challenging, and
we leave this to future works.

9 Conclusion

In this work, we analyzed the training objective
of dialogue response generation models from the
view of distribution distance as measured by Kull-
back—Leibler divergence. The analysis showed that
single-referenced dialogue data cannot characterize
the one-to-many feature of open-domain dialogues
and that multi-referenced training is necessary. To-
wards multi-referenced training, we first proposed
to enhance the training data by replacing every
single reference with multiple hypotheses gener-
ated by a finetuned GPT2, which provided us with
a better approximation of the real data distribu-
tion. Secondly, we proposed to equip variational
dialogue models with an expressive prior, named
linear Gaussian model (LGM), to capture the one-
to-many relations. The automated and human eval-
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Dialogue Example #422
Floor Context Utterance
A i’m so hungry. shall we go eat now,
rick?
B sure. where do you want to go? are you

in the mood for anything in particular?
A how about some dumplings? i just

can’t get enough of them.

[to be predicted]

k Response Utterance

tables tables tables there any any any
any pale, medium rare.

0 ok. i don’t think we have any soup at
the moment.

8 i’ve heard that some dumplings are
really good. but i don’t know what to
eat.

1 ok. i’ll go to the restaurant.

Table 6: Samples of VHREDg,20 decoding with the
k-th latent variable. (§8.2)

uation confirmed the effectiveness of the proposed
methods.
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A  Human Evaluation

We recieved 2400 annotations in total (4 annota-
tors for each of the 600 (context, response) pairs).
We first remove annotation outliers following Leys
et al. (2013). After removing 208 annotations for
sensibleness and 253 for specificity, the remain-
ing annotations have reasonable inter-rater agree-
ment meansured by Krippendorff’s o (Krippen-
dorff, 2018) as shown in Table 7.

B Experimental Settings

B.1 Model Implementation

For HRED and VHRED models, we implement
encoders and decoders with gated recurrent unit
(GRU) networks. Sentence-level encoders are bidi-
rectional, while dialogue-level encoders and de-
coders are unidirectional. All the GRU networks
have 1 layer and 500 hidden units. We use 30-
dimensional floor embeddings to encode the switch
of floor. For VHREDs, latent variables have 200
dimensions. Prior and posterior networks are imple-
mented by feedforward networks with hyperbolic
tangent activation function. While priors have dif-
ferent forms (unimodal Gaussian, Gaussian mix-
ture model, and linear Gaussian model), we use
unimodal Gaussian for all the posteriors. We use
attentional mechanism for all decoders. All models
were trained on a single NVIDIA TITAN RTX
card. When training on K-hypotheses data, the
training time per epoch is roughly K times of the
reported number.

B.2 Training Details

We optimize all the models with the Adam
method (Kingma and Ba, 2015). The initial learn-
ing rate is 0.001 and gradients are clipped within
[-1.0, 1.0]. We decay the learning rate with decay
rate 0.75 and patience 3. The training process is
early stopped when the learning rate is less than
1x10~7. The numbers of training epochs and steps
are shown in Table 9. Batch size is 30 during train-
ing. We use up to 5 history utterances as context,
and all utterances are truncated to have 40 tokens
to most. We set dropout probability as 0.2 and
shuffle training data every epoch for better gener-
alization. VHREDs are optimized by maximizing
their variational lower bound (Sohn et al., 2015).
We apply linear KL annealing in the first 40,000
training steps.

For finetuning the GPT2 model, we use a smaller
batch size of 10 to fit the model into memory. As

Item Krippendorff’s o
Sensibleness 0.76
Specificity 0.60

Table 7: Inter-rater agreement of human annotations.

Ttem Statistics
Train  Validation  Test
sessions 9237 1157 1159
(ctz,resp) pairs 59305 9906 9716

Table 8: Corpus statistics.

Training Data Max Epochs Max Steps
1 GT 100 5.93M
1 hyp. 100 5.93M
1 GT + 1 hyp. 50 5.93M
5 hyp. 20 5.93M
1 GT + 5 hyp. 20 7.12M
20 hyp. 10 11.86M
1 GT + 20 hyp. 10 12.45M
100 hyp. 2 11.86M
1 GT + 100 hyp. 2 11.98M

Table 9: Maximum training epochs and steps in differ-
ent data settings.

with other hyperparameters such as learning rate
and weight regularization factor, we follow the set-
tings used by Wolf et al. (2019). And the GPT?2 is
finetuned on the 1-GT data for only 2 epochs.

C Extra Samples

We show three more dialogue samples in Table 10
and 11.
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Dialogue #100

Floor Context Utterance
A i have never shopped there, but i think price club is a kind of membership store.
B what does that mean?

A that means you have to pay a membership fee to shop there. i have heard they have very good

prices on electronics.
B electronics?

A ves. like stereos and [UNK].

B [TO BE PREDICTED]

Model Trn. Data Response Utterance
Ground truth - how much is the membership fee?
HRED 1 GT do you have any other advantages?
VHRED 5 1 GT how do you want to buy?
VHRED,,,20 1 GT so what? i don’t have a current account.
HRED 100 hyp. i see. i’ll buy a new one.
VHREDg5 100 hyp. that’s a good idea. how about the one?
VHREDg/n20 100 hyp. i see. is there a warranty?
- the 4th variable 100 hyp. sure. which service do you use?
- the Oth variable 100 hyp.  how much money can you get it?
- the 8th variable 100 hyp. i have a membership card. it’s very expensive.
- the 1st variable 100 hyp. i see. it’s a good deal.

Table 10: More samples on the test data. (§C)

Dialogue #500
Floor Context Utterance
A i am not sleepy.
B it’s getting late, and you have to wake up early tomorrow.
A there is no way that i can fall asleep right now.
B try listening to some soft music.
A it won’t work. i’m nowhere close to being tired.
B [TO BE PREDICTED]
Model Trn. Data Response Utterance
Ground truth - ireally don’t care, just go to sleep.
HRED 1 GT you're too tired.
VHREDg5 1 GT what’s up?
VHREDg/n20 1 GT  you shouldn’t have to sleep.
HRED 100 hyp. don’t worry. i’ll get you up.
VHREDy,,5 100 hyp. idon’t know. i just want to relax.
VHREDg;,20 100 hyp. you should be tired. you can get a good sleep.
- the 4th variable 100 hyp. do do let you gift you gift you gift you live you live here i sing for
here friendship akimbo?
- the Oth variable 100 hyp. don’t be at the evening.
- the 8th variable 100 hyp. you are always sleepy.
- the 1st variable 100 hyp. come on. you can get a good sleep.

Table 11: More samples on the test data. (§C)
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Contrastive Response Pairs for Automatic Evaluation of
Non-task-oriented Neural Conversational Models

Koshiro Okano
Doshisha University
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Abstract

Responses generated by neural conversational
models (NCMs) for non-task-oriented sys-
tems are difficult to evaluate. We propose
contrastive response pairs (CRPs) for auto-
matically evaluating responses from non-task-
oriented NCMs. We conducted an error anal-
ysis on responses generated by an encoder-
decoder recurrent neural network (RNN) type
NCM and created three types of CRPs cor-
responding to the three most frequent errors
found in the analysis. Three NCMs of dif-
ferent response quality were objectively evalu-
ated with the CRPs and compared to a subjec-
tive assessment. The correctness obtained by
the three types of CRPs were consistent with
the results of the subjective assessment.

1 Introduction

Non-task-oriented dialogue systems must gen-
erate responses based on dialogue contexts al-
though possible responses are not limited to a
few correct answers. Neural conversational mod-
els (NCMs), such as an encoder-decoder RNN
with an attention mechanism (Bahdanau et al.,
2014; Shang et al., 2015; Sordoni et al., 2015) and
Transformer (Vaswani et al., 2017), generate flu-
ent responses; however, an automatic evaluation of
response quality in non-task-oriented NCMs has
not been established yet. Reference-based eval-
uation indices such as BLEU have a low correla-
tion with subjective scores because of the diversity
of possible responses. To address this problem,
there have been various proposals such as an in-
dex referencing a model response and taking into
account the previous utterance of the interlocu-
tor (Tao et al., 2017), an index integrating subjec-
tive and statistical evaluations (Hashimoto et al.,
2019), and an interactive evaluation method as-
suming that the quality can only be evaluated
through interaction (Ghandeharioun et al., 2019).
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On the other hand, neural machine translation
(NMT) has improved its quality at the sentence
level, and context awareness (i.e., consistency be-
tween translated sentences when processing a text
or series of sentences) still remains a challenge.
Sennrich et al. proposed contrastive discourse
sets to evaluate how well NMT models handle
anaphoric pronouns, and coherence and cohesion
for context-aware NMT (Bawden et al., 2018),
by extending his proposed contrastive translation
pairs (CTPs) (Sennrich, 2017). A CTP consists
of a correct translation and an incorrect one in
which a minimal number of words is substituted
with wrong ones. The model quality is measured
on correctness, i.e., the ratio of the number of pairs
in which the correct translation received a higher
score in forced decoding than the incorrect one
to the total number of pairs. Voita et al. further
analyzed errors in context-aware English-Russian
NMT to extract frequent error patterns and pro-
posed a set of CTPs to evaluate the accuracy of
an NMT in terms of the frequent error patterns
(Voita et al., 2019).

In this paper, we propose contrastive response
pairs (CRPs) for automatically evaluating the
quality of NCM responses with reference to the
CTPs for evaluating context-aware NMT. We first
conducted an error analysis on responses gener-
ated by NCMs trained on a large-scale conversa-
tion corpus. Then, we created a set of CRPs corre-
sponding to three frequent error patterns. Finally,
we examined whether the CRPs correctly reflected
the difference in NCM response quality by com-
paring the correctness of the CRPs and the results
of a subjective assessment on three NCMs with
varying levels of quality. Specifically, we pro-
ceeded in the following steps.

1. Error Analysis: We conducted a binary clas-
sification of responses generated by NCMs in

Proceedings of the 22nd Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 202-207
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terms of naturalness in the dialogue context.
Then, we further classified the responses that
were judged unnatural into 10 error classes
manually and counted their frequencies.

Creation of CRPs: A set of CRPs was cre-
ated by manually extracting contextually-
correct responses from the conversation cor-
pus, adding an error with minimal modifica-
tion to every correct response, and pairing it
with the correct response to form a CRP.

. Model Evaluation: Forced decoding was con-
ducted on the correct and incorrect responses
of each CRP, and the correctness was mea-
sured. The correctness of the different mod-
els was compared to see if they are consistent
with the results of the subjective assessment.

These three steps are discussed in the following
sections in detail.

2 Error Analysis of Responses Generated
by Neural Conversational Models

We simulated conversation between women using
NCMs. We used a large-scale fictive conversa-
tion corpus between two Japanese ladies “Miss
Yoshida” and “Miss Sasaki” for training and eval-
uating the NCMs. The corpus consists of 1.68 mil-
lion fictive conversations compiled by 200 crowd-
workers. The characters were kept consistent
by specifying detailed personas across 80 items,
which were shared among crowd-workers. We ex-
tracted 1.1M, 64k and 64k of Yoshida’s utterances
with preceding dialogue contexts for training, val-
idation, and evaluation of Yoshida model.

We trained a GRU-based encoder-decoder RNN
model with an attention mechanism, the net-
work architecture of which is shown in Figure 1.
The model received Yoshida’s and Sasaki’s pre-
vious utterances with two encoders, and output
Yoshida’s response. We refer to this model as

Table 1: Definition of ten error classes.

Label Description

ICW Containing contextually inappropriate content words
RUDE Speaking rudely to interlocutor
FNC Selecting inappropriate function words
ESE Selecting inappropriate end-of-sentence expression
SC  Self-contradicting to one’s own previous utterance
RP Repeating one’s own previous utterance
NA Not answering interlocutor
DIS Incomprehensible response
COL Collision of content word’s attribute to past utterances
ETC Others
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Figure 2: Relative frequency distribution of ten error
classes labeled by three raters.

the “Double attention model.” The model was
trained by teacher forcing with the cross-entropy
loss function.

The double attention model generated responses
on the basis of the maximum mutual information
criterion (Li et al., 2016). We randomly sampled
3,000 responses from the validation set. Three of
the authors manually analyzed errors in the 3,000
responses. First, they rated each response as nat-
ural or unnatural in its dialogue context. If it was
unnatural, they determined the reason for unnat-
uralness using their own criteria. Then they ne-
gotiated with each other to unify the error classes
and criteria. After the unity, they determined the
reason for unnaturalness with the unified criteria
for responses deemed unnatural by more than one
rater. Table 1 lists the error classes, and Figure
2 shows the relative frequency distributions of the
error classes labeled by the three raters.

On average, 41.9% of the responses were clas-
sified as unnatural. Cohen’s kappa coefficients
between all the pairs were 0.61. The unnatu-
ral responses were broken down into the distribu-
tion shown in Figure 2. The most frequent errors
were caused by contextually-inappropriate content
words (ICW, 28.9%), followed by inappropriate
function words (FNC, 9.8%), inappropriate end-
of-sentence expressions (ESE, 8.9%) and not an-
swering the previous question (NA, 8.0%), not in-
cluding others (ETC, 15.0%). We created CRPs to
evaluate the performance of the NCM on the three



Table 2: Relative frequency distributions of subclasses
in inappropriate end-of-sentence expression.

subclass %
Switch between declarative and interrogative  33.3
Switch between affirmative and negative 11.1
Change of implicitly-meant subject 11.1
Missing empathic expression 8.9
Mischoice of tense 4.4
Mischoice of verb 44
Missing wishful expression 4.4
Others 22.2

most common errors, ICW, FNC and ESE.

3 Creation of Contrastive Response Pairs

3.1 CRP with Substituted Content Words

This CRP evaluates NCMs on selecting appro-
priate content words in terms of the dialogue
context. To create a pair, we needed to select
which content word to substitute, and what word
to substitute it with. We processed the substitu-
tion semi-automatically. We manually selected a
contextually-sensitive noun or compound noun to
substitute, and examined two criteria to select a
substitute word from a large vocabulary list.

Since it was not appropriate to select a linguis-
tically unlikely substitute word, we trained a bi-
gram language model and selected a substitute
word on the basis of the following criteria: 1) A
linguistic probability nearly equal to that of the
original noun in the reference sentence (Equally-
likely, EL), and 2) The highest linguistic probabil-
ity (Most-likely, ML). When a word w; in a sen-
tence W = {wi,...,w,} is substituted with a
word w;, the criteria were represented in equation
(1) for EL and (2) for ML.

w; = argmin{{log P(vjwi-1) }2
‘ veV P(wi‘wi—l)
P(wiy1]v) }2}
+<log —————= 1
s i .
w; = argmax {log P(v|w;—1) + log P(wi+1|v)}  (2)

veV
Note that the vocabulary V' consists of nouns ap-
pearing in the corpus more than once and excludes
words included in the inputs into the encoders. Ta-
ble 7 in Appendix shows an example of the con-
trastive response pair (ML) with a substituted con-
tent word.

3.2 CRP with Substituted End-of-Sentence
Expression

Japanese is an agglutinative language, so the
meaning of a sentence changes depending on its
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end-of-sentence expression. Affirmative or neg-
ative, declarative or interrogative, and other nu-
ances are determined by the end-of-sentence ex-
pression. We further classified the ESE errors into
subclasses manually. Table 2 shows the subclasses
and their relative frequency distribution. The most
frequent subclass was switching between declara-
tive and interrogative, followed by switching be-
tween affirmative and negative, and changing an
implicit subject due to an ESE error. Japanese is a
null-object language; thus, a subject can be omit-
ted from a sentence when it is obvious from con-
text. An inappropriate ESE may change the im-
plicit subject. Here, we omit details of the less
frequent subclasses due to limitations in space.
We created CRPs corresponding to the two most
frequent error subclasses “declarative and inter-
rogative” and “affirmative and negative.” We cre-
ated the two types of CRPs manually on the ba-
sis of a simple rule that switch the two types of
end-of-sentence expression randomly. Table 8 in
Appendix shows an example of the CRP with a
substituted end-of-sentence expression.

3.3 CRP with Substituted Function Words

Japanese has flexible word order, and function
words, namely particles, determine the deep cases
of content words. Incorrect use of function words
results in unnaturalness and sometimes makes a
sentence incomprehensible.

We created CRPs in which a particle was substi-
tuted with another particle. Since some particles
are similar in meaning, we substituted particles
randomly under the condition that they change the
deep case of the content word. An example of
CRPs with substitution of function words is listed
in Table 9 in Appendix.

4 Evaluation

4.1 Experimental Setup: NCMs for
Comparison and Subjective Assessment

We created a total of 1,160 CRPs: 350 pairs each
for EL and ML for substituted content words, 270
pairs with substituted end-of-sentence expression,
and 190 pairs with substituted function words.

We trained the following three NCMs each hav-
ing a different performance level:

¢ Double attention: A model with two en-
coders, one decoder, and an attention for each
encoder. The model was used in the error
analysis in Section 2.



Table 3: Relative frequency distributions of subjective
assessment scores on appropriateness of responses.

1 2 3
No attention 274% 20.6% 52.0%
Single attention  26.6% 20.5% 53.0%
Double attention 23.3% 22.2% 54.5%

Table 4: Ratios of three error classes subjectively la-
beled on responses that were rated 1.

a) ICW Db)ESE c¢) FNC
No attention 22.5% 5.2% 2.9%
Single attention 22.0% 5.0% 3.3%
Double attention  19.5% 4.9% 4.4%

 Single attention: A model with an encoder, a
decoder, and an attention for Sasaki’s previ-
ous utterance. Yoshida’s previous utterance
cannot be taken into account.

* No attention: A model with an encoder for
Sasaki’s previous utterance and an decoder,
but no attention.

Since the Single attention and No attention
models were degraded models with respect to
Double attention model, the quality of the gener-
ated responses was expected to be lower in the or-
der of Double attention, Single attention and No
attention. We conducted a crowdsourced subjec-
tive assessment to verify the order of the quality.
The three NCMs generated responses for 1,200
dialogue contexts. The crowd-workers were in-
structed to assess the appropriateness of the re-
sponses on a 3-point scale: 1: inappropriate, 2:
difficult to judge and 3: appropriate. Additionally,
we asked them to check any of the following three
boxes: a) inappropriate content word (ICW), b)
inappropriate end-of-sentence expression (ESE),
and c) inappropriate function word (FNC) if a re-
sponse that they rated 1 falls into any of the error
classes. Each response was assessed by five raters,
resulting in 6,000 votes in total for each NCM.

Table 3 shows the relative frequency distribu-
tion of the subjective scores. The number of re-
sponses rated 3 increased and those rated 1 de-
creased in the order of No attention, Single atten-
tion and Double attention as expected.

Table 4 shows the ratios of the error classes sub-
jectively labeled by the raters on the responses
they rated 1 in Table 3. The ratios of ICW and
ESE decreased in the order of No attention, Single
attention, and Double attention, while the ratio of
FNC increased in that order.
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Table 5: Correctness of three models with whole set
and subsets of contrastive response pairs.

ALL ICW (EL) ICW (ML)

ESE FNC

No attention 88.9%  94.8% 80.0%  90.0% 93.1%
Single attention 89.2%  96.2% 81.1% 89.2% 91.5%
Double attention 89.5%  94.5% 82.0% 92.6% 89.4%

4.2 Results of CRP Evaluation

The correctness of the models with the whole set
and subsets of CRPs is shown in Table 5. The cor-
rectness with the whole set (ALL) increased in the
order of No attention, Single attention, and Dou-
ble attention. This result was consistent with the
overall results of the subjective assessment, i.e.,
responses rated 3 increased and those rated 1 de-
creased in that order.

The correctness with the two subsets of ICW
showed different results. The correctness with the
subset of ICW(EL) was very high in general and
inconsistent with the ratio of subjectively labeled
ICW errors shown in Table 4. Meanwhile, the cor-
rectness with the subset of ICW (ML) was not very
high and consistent with the results of subjectively
labeled ICW errors. The results indicate that the
subset of ICW (EL) was too easy for the NCMs
to select the right answer, and the subset of ICW
(ML) was better-suited for automatic evaluation.

The correctness with the subset of ESE in-
creased in the order of Single attention, No atten-
tion and Double attention. The result was consis-
tent with the results of subjectively labeled ESE
errors in that Double attention was the most ef-
fective among the three, while it was partly in-
consistent in that No attention surpassed Single at-
tention. Lastly, the correctness with the subset of
FNC decreased in the same order, which was con-
sistent with the ratio of subjectively labeled FNC
errors.

5 Conclusion

We proposed contrastive response pairs (CRPs)
for automatically evaluating neural conversational
models for non-task-oriented dialogue systems.
Three types of CRPs were created on the basis of
an error analysis of responses generated by NCMs,
and their capability of measuring NCM perfor-
mance was examined using three NCMs of vary-
ing quality. The correctness given by automatic
evaluation with the CRPs was mostly consistent
with the results of a subjective assessment. In fu-
ture work, we will increase the size of CRPs and
create CRPs automatically.
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A Appendix

Table 6: Sample responses of ten error classes

NA (Original in Japanese)

Yoshida RaRaEPHHEWTT X
Sasaki LINE D7 —ATL7z21}?
Yoshida ®2WEL T3

NA (Translation in English)

ICW (Original in Japanese) Yoshida There are interesting games like Pokopoco.
) Mol ECT RADNBENR-L 25T Sasaki Isita game on LINE?
Yoshida EH ol — Yoshida It has a relaxing mood.
Sasaki FADTT IV EZAToTI LI 04 DIS (Original in Japanese)
Yoshida A F27EEIWXHBATITN? . FICIEBL T ETAVHTEDR OIS
ICW (Translation in English) Yoshida L7zWVWT3 4
Yoshida I like dumplings, too. I feel like eating them. Sasaki HHIAIFELRANZVWIATIT»?
Sasaki  So do I. I will buy one at a convenience store. Yoshida WEEAI~~WVET X
Yoshida Where are the buffet? DIS (Translation in English)
RUDE (Original in Japanese) Yoshida .I’m not married either, I would like to
Yoshida 77 = DFIIRAIE VTS L4 if I had a good partner.
Sasaki HEBWHIRDO A 7 2o THENAZE > ATT Sasaki ~ Ms. Yoshida, do you have someone you like?
Yoshida XA RAEWTTH Yoshida No, I don’t. Yes, I do.

RUDE (Translation in English)

COL (Original in Japanese)

Yoshida Uniforms worn at cafés are cute, aren’t they?
Sasaki I've wanted to wear a cute uniform at a café.
Yoshida You must look like a maid.

FNC (Original in Japanese)

Yoshida & - Z 5 DRV VEZATT A
Sasaki Z97RATIT IO 7WTT
Yoshida &SERAFTHHWD ZVTTh

FNC (Translation in English)

Yoshida Ah. You need a driver’s license.
Sasaki  Yes, [ want to get my license.
Yoshida It’s good to get it also in a driver’s license camp.

ESE (Original in Japanese)

Yoshida HOERRA > NIEZMAE LT
Sasaki FOZFIDHLAIADPVTLANTELWTT
Yoshida HELTWEI &

ESE (Translation in English)

Yoshida Your scoring one after another took my breath

away.
Sasaki ~ Oh, yes. I'm happy that you knew that.

Yoshida I am so excited.

SC (Original in Japanese)

Yoshida BHFEANEDITAD OMEBENET X
Sasaki £ 27K ATIH—
Yoshida VHENEFRATT X

SC (Translation in English)

Yoshida I usually eat sushi with wasabi.
Sasaki  Oh, I see.
Yoshida I do not like wasabi.

RP (Original in Japanese)

Yoshida BTAIWKIEMBDOTEREADL?
Sasaki £ TITRFFICOITTERA
Yoshida BTAWIIMTTH?

RP (Translation in English)

Yoshida Don’t you put anything on oden?
Sasaki  No, nothing.
Yoshida What do you put on oden?
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Yoshida & DIRRABRICAD TI A ?
Sasaki DO LIFEHER T hilgaRIZ

OO MEPro/lZATIHN?
Yoshida HEERIPIEHTT X

COL (Translation in English)

Yoshida What is your favorite hot spring?
Sasaki I like Kusatsu Onsen hot spring.
What did you like about Dogo Onsen hot spring?
Yoshida

Kusatsu Onsen is famous.
ETC (Original in Japanese)

Yoshida ECHLILTHMRIEEFTLRITERA
Sasaki £ CIHMPEREABREDDETHIrLA
Yoshida NEZNXANKXT 54

ETC (Translation in English)

Yoshida I wasn’t very good at studying anyway, though.
Sasaki ~ Well, we all have strong and weak points.
Yoshida Butter butter butterfly.

Table 7: Example of contrastive response pair with sub-
stituted content word (in translation)

I feel Japanese food is best-suited
for me.

It’s Japanese food that we can eat
every day and never get tired of it.
What is your favorite ingredient for
miso soup?

What is your favorite ingredient for
holidays?

Yoshida
Sasaki
Yoshida (reference)

Yoshida (error)

Table 8: Example of contrastive response pair with sub-
stituted end-of-sentence expression (in translation)

Yoshida I prefer curry in a sweet taste.
Sasaki Are you weak in a hot curry?
Yoshida (reference)  Yes, I am.
Yoshida (error) Am I?

Table 9: Example of contrastive response pair with sub-
stituted function word (in translation)

If you live on your own, you can
probably enjoy cooking more.

It is probably true.

A lady good at cooking is popular
with men, huh?

A lady who is cooked is popular
with men, huh?

Yoshida
Sasaki

Yoshida (reference)

Yoshida (error)
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Abstract

Natural conversations are filled with disflu-
encies. This study investigates if and how
BERT understands disfluency with three exper-
iments: (1) a behavioural study using a down-
stream task, (2) an analysis of sentence em-
beddings and (3) an analysis of the attention
mechanism on disfluency. The behavioural
study shows that without fine-tuning on disflu-
ent data, BERT does not suffer significant per-
formance loss when presented disfluent com-
pared to fluent inputs (expl). Analysis on sen-
tence embeddings of disfluent and fluent sen-
tence pairs reveals that the deeper the layer, the
more similar their representation (exp2). This
indicates that deep layers of BERT become rel-
atively invariant to disfluency. We pinpoint at-
tention as a potential mechanism that could ex-
plain this phenomenon (exp3). Overall, the
study suggests that BERT has knowledge of
disfluency structure. We emphasise the poten-
tial of using BERT to understand natural utter-
ances without disfluency removal.

1 Introduction

Natural conversations are often disfluent. Consider
the following utterance: “How does, I mean, does
BERT understand disfluency?”” Upon hearing this
question, you understand that the speaker first tried
to ask a ’how’ question with a presupposition that
BERT understands disfluency, but then corrected it
to a yes-no question, thus removing this presuppo-
sition. Disfluent utterances like these are prevalent
in natural dialogues, but rare in written texts. Re-
cent Transformer-based language models such as
BERT have amazed us in a sweep of NLP tasks re-
quiring language understanding. Since BERT was
pre-trained on written corpora, one might expect it
to struggle with disfluent inputs like the one above.
Traditionally, considerable effort in NLP has been
devoted to disfluency detection and removal, espe-
cially in the context of dialogue systems.
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But is disfluency removal necessary for
Transformer-based language models or can they
understand disfluent sentences out of the box? We
approach this question from the outside in with
three experiments. Experiment 1 stands outside
the blackbox and explores how BERT performs be-
haviourally in a downstream task when presented
with fluent vs disfluent language. Experiment 2
gets into the blackbox and investigates how embed-
dings of disfluent inputs change from the lowest to
the highest layers. Finally, experiment 3 attempts to
explain BERT’s mechanism of disfluency process-
ing by looking at attention on disfluent sentence
parts.

We discovered that the results of all three experi-
ments are congruent in that semantic understand-
ing is only weakly impaired by the presence of
disfluencies. Crucially, BERT represents disfluent
utterances similarly to their fluent counterparts in
deeper layers. This ability could be explained by
the self-attention mechanism which is central to
Transformed-based architectures. We hypothesise
that BERT balances a trade-off between seman-
tic selectivity and disfluency invariance', and that
disfluency is processed similar to other syntactic
features.

1.1 Disfluency is structured

Disfluency is ubiquitous in natural speech, found in
about six out of 100 words on one estimate (Tree,
1995), and between 10% to 20% of utterances in
natural dialogues on another estimate (Hough et al.,
2016).

!Selectivity and invariance are notions more widely known
in computer vision. Neurons of vertebrates develop selectivity
to specific shapes or objects while being invariant to spatial
and chromatic arrangements. This trade-off gives rise to object
recognition robust to changes in position, rotation, occlusion
and contrast. Invariance and selectivity are equally important
in language. Since the essence of a sentence is found in
its meaning, a robust model should develop selectivity to

Proceedings of the 22nd Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 208-217
July 29-31, 2021. ©2021 Association for Computational Linguistics



until you're | atthe le- || Imean | at the right-hand
\ edge
start reparandum 1 editing  alteration
term

moment of interruption

Figure 1: Structure of disfluency

Disfluencies have a consistent structure (Figure
1). They typically contain a moment of interrup-
tion, a reparandum, an editing term and an alter-
ation (Shriberg, 1994), out of which only the mo-
ment of interruption is obligatory. Disfluencies can
be forward- or backward-looking (Ginzburg et al.,
2014). They are forward-looking when an utter-
ance is interrupted by a filled or a silent pause, but
are continued without an alteration. Disfluencies
are backward-looking when an utterance is inter-
rupted and replaced with an alteration that refers
back to an already uttered reparandum.

This study focuses on three types of backward-
looking disfluencies: revision, repetition and aban-
donment.

* A revision contains a reparandum and an al-
teration, which are both different. In the fol-
lowing example, “Paris” is the reparandum,
“Prague” is the alteration and “I mean” is an
editing term (Tian et al., 2015):

— “I'went to Paris,  mean, Prague last week”.

* A repetition contains a reparandum and an
alteration, and the two are the same. In this
example, the first “what’s your” is the reparan-
dum and the second the alteration:

— “What’s your, what’s your old address?”.

* An abandonment contains only a reparan-
dum, but no alteration. In this example, “shall
we” is the abandoned reparandum, “actually”
is an editing term and there is no alteration:
— “Shall we, actually, what’s the weather like
tomorrow?”

We chose to focus on backward-looking disflu-
encies because they are semantically more complex
than forword-looking ones. For forward-looking
disfluencies, a model only needs to ignore silent
or filled pauses and most commercial Automatic
Speech Recognition (ASR) systems can already
cope with filled pauses such as ‘um’ and ‘uh’. For

semantics while being invariant to disfluencies.

backward-looking disfluencies, there are several
components such as reparanda, alterations and edit-
ing terms. Thus, a robust language model would
need to not only recognise the disfluent compo-
nents, but also know how they relate to each other
as well as to the rest of the sentence.

1.2 Motivation

The motivation of this study is twofold: We want
to explore the inner workings of BERT on dis-
fluency processing, and we want to challenge the
commonly-held belief that disfluency removal is
necessary for dialogue systems.

Disfluency is rarely noise. It can aid comprehen-
sion and contribute to communicative meaning. For
example, upon hearing “we believe, well, I believe
that aliens exist”, you understand that by changing
“we believe” to “I believe”, I communicate that I
retract my implication of this belief being shared,
to which you can respond “no, no, I believe it too”.
This reply would not make sense if my original
utterance was the fluent counterpart “I believe that
aliens exist”.

Psycholinguistics studies have shown that partic-
ipants anticipate more complicated concepts after
a filled pause (Arnold and Tanenhaus, 2011); they
remember the story better if it was told with disflu-
encies rather than without (Fraundorf and Watson,
2011). The processing of the reparandum helps
identify the repair and has positive effects on com-
prehension (Shriberg, 1996). Ginzburg et al. (2014)
point out that there is a continuity between self-
repair and other repair types in dialogues.

Humans adapt their speech patterns to their con-
versational partners. Studies show that human par-
ticipants tend to be more fluent when addressing
a computational dialogue system than in human-
human dialogues (Healey et al., 2011). However,
this does not mean that humans prefer to speak
fluently to a machine. If dialogue systems become
better at understanding disfluency and are able to
incrementally acknowledge and respond to disflu-
encies, humans will likely interact more naturally
with machines. This is only possible if disfluencies
are retained and gracefully handled by dialogue
systems.

1.3 Related Work

The current study is related to both disfluency re-
search and also to the study of the inner workings
of BERT, often coined “BERTology”. BERT (De-
vlin et al., 2019) is a large Transformer network
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pre-trained on 3.3 billion tokens of written cor-
pora including the BookCorpus and the English
Wikipedia (Vaswani et al., 2017). Each layer con-
tains multiple self-attention heads that compute
attention weights between all pairs of tokens in the
input. Attention weights can be seen as deciding
how relevant every token is in relation to every
other token for producing the representation on the
following layer.

BERTology: In terms of syntax, Htut et al.
(2019) showed that BERT’s representations are hi-
erarchical rather than linear. Jawahar et al. (2019a)
found that dependency tree structures can be ex-
tracted from self-attention weights. On the other
hand, studies on adversarial attacks (Ettinger, 2020)
show that BERT struggles with role-based event
prediction and negation. Syntactic information
seems to be encoded primarily in the middle layers
of BERT (Hewitt and Manning, 2019).

In terms of semantics, studies disagree in terms
of where semantic information is encoded. Tenney
et al. (2019) suggest that semantics is spread across
the entire model. In contrast, Jawahar et al. (2019b)
found “surface features in lower layers, syntactic
features in middle layers and semantic features in
higher layers”.

Disfluency detection, removal and generation:
Despite an abundance of research in probing the
linguistic knowledge of written language in BERT,
there is little work on probing the model on its
knowledge of disfluency processing. The most
related research is on disfluency detection and
removal, which shifted from feature-based ap-
proaches (Hough, 2014) to more end-to-end sys-
tems (Lou and Johnson, 2020) in the past several
years. Most studies use textual input, and train or
fine-tune a seq2seq model using annotated disflu-
ency data (Wang et al., 2017; Dong et al., 2019).
Some studies take into account prosody (Zayats and
Ostendorf, 2019). Some research stresses the im-
portance of incremental disfluency detection (Sha-
lyminov et al., 2018). A related emergent field is
disfluency generation (Yang et al., 2020).

2 Experiments

2.1 Experiment 1: Behavioural study

Experiment 1 investigates how well BERT per-
forms on a downstream task containing disfluent
language without being exposed to disfluent data.
Specifically, we used the Natural Language Infer-

ence (NLI) task (Bowman et al., 2015), where
the model sees two sentences A and B, such as
“A woman is singing” and “A young woman is
singing”. It then decides whether A entails B, con-
tradicts B, or is neutral to B. The NLI task was
chosen since it allows to quantify semantic under-
standing with a performance metric. By using an
existing dataset and introducing disfluencies, we
can observe the extent to which the accuracy de-
grades for different disfluency types.

Dataset: In order to compare the performance
of BERT on fluent and disfluent pairs, we used
data from the Stanford Natural Language Inference
(SNLI) Corpus (Bowman et al., 2015), which is a
collection of 570,000 sentence pairs annotated with
the labels “contradiction”, “entailment” and “neu-
tral”. We took a subset of 100 sentences from the
dataset and injected three types of disfluency using
a combination of heuristics and manual methods?.
Repetition was created by picking a random point
of interruption in the sentence and by repeating the
previous 2-4 words. Manual selection ensured that
the points of interruption sounded natural. Revision
and abandonment were manually created so that the
disfluencies are natural and comparable between
sentence A and sentence B in each pair. The final
data set contains 100 fluent sentence pairs, each
augmented three times for the disfluencies revision,
repetition and abandonment. The introduced disflu-
encies do not alter the semantic meaning of these
sentences. An example data point can be seen in
table 1.

Fluent
Abandonment

Sentence A A woman is hanging the laundry outside.

A woman is hanging the laundry outside, and it was te-

Repetition A woman is hanging the laundry hanging the laundry
outside.
Revision A woman is doing, I mean, hanging laundry inside.
Sentence B Fluent A woman is putting her clothes out to dry.
Abandonment A woman is putting her clothes out to dry, and it was te-
Repetition A woman is putting is putting her clothes out to dry.

Revision A woman is doing, I mean, putting her clothes out to dry.

Table 1: Example data point - Experiment 1 NLI.

2.1.1 Methods and Results

We used the medium-sized BERT model
(bert-base-cased) which contains 12 layers,

2We also tried neural methods taking advantage of pre-
trained language models. To generate revision, we masked
between 2-4 tokens at an arbitrary position in the sentence
and used BERT to “fill in the blank™. The output was then
concatenated with the rest of the sentence. This method often
gave rise to unnatural disfluencies. Therefore, we did not use
this method for data creation.
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12 attention heads, and a total of 110M parameters.
Using the Transformers Python library (Wolf
et al., 2020), we trained a classifier by adding a
softmax layer. The classifier was trained on the
original SNLI data for one epoch with a batch
size of 16. We then tested this model on fluent
and their corresponding three disfluent sentences.
The aim of experiment 1 is to assess how different
disfluency types penalise the performance while
using a model not trained on disfluent NLI
sentences.

The results (figure 2) show that compared to the
baseline accuracy of 87.5% for fluent sentences,
the accuracy for abandonment drops slightly to
84.80% for abandonment, to 81.3% for repetition
and to 80.4% for revision.

These findings suggest that without any fine-
tuning on data containing disfluency, BERT already
performs fairly well on the NLI task with disfluent
data. With the caveat of the dataset being small
and synthetic, the behaviour in experiment 1 leads
to the hypothesis that BERT has an innate under-
standing of disfluencies. Can we find evidence for
this understanding in a bigger and natural dataset?
To answer this question, we carry out analyses on
sentence embeddings in experiment 2.

0.9 87.50%
84.82%
81.25%
80.36%
.08
Q
Y
5
(5]
<
0.7
0.6
Fluent ~ Abandonment Repetition Revision
Type

Figure 2: Experiment 1 - Model accuracy on SNLI task
across Fluent, Abandonment, Repetition and Revision

2.2 Experiment 2: Inside the blackbox -
Embedding Analysis

Experiment 1 shows that the performance of BERT
is largely retained when the task contains a small
amount of disfluency. Experiment 2 looks inside
the blackbox and investigates how the embeddings
of disfluent sentences change over BERT layers.
Because a disfluent sentence and its fluent coun-
terpart are more similar in meaning than in form,
we expect the sentence embeddings of the pair to
be more similar in layers associated with semantic
representation than layers associated with surface
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form and syntactic representation. If BERT indeed
encodes surface form in early layers, syntax in the
mid layers, and semantics in the deep layers, we
should see that sentence embeddings of disfluent
and fluent pairs become more similar in deep lay-
ers.

Dataset: In experiment 1, we used synthetic data.
The original SNLI data is a written corpus, and
disfluencies were injected manually. As such, the
sentences have a different distribution from utter-
ances appearing in natural conversations. To study
the behaviour of BERT on naturally occurring dis-
fluency, we used data from the Switchboard corpus
(Godfrey et al., 1992), which is a collection of
about 2,400 telephone conversations from speak-
ers across the United States. The sentences are
annotated for disfluency structure. We extracted a
sample of 900 utterances balanced by disfluency
type, resulting in 300 instances for abandonment,
repetition and revision respectively. For each dis-
fluent utterance we created a fluent counterpart by
removing filled pauses, interjections and reparan-
dam. Here is an example from this data set:

¢ Abandonment:

— Disfluent: and we just, every time you tossed the
line in, you pull up a five, six, seven inch minimum
bass.

— Fluent: every time you tossed the line in, you pull
up a five, six, seven inch minimum bass.

* Repetition:

— Disfluent: um you’re not supposed to, I mean,
you're not supposed to eat them dead.

— Fluent: you’re not supposed to eat them dead.

¢ Revision:

— Disfluent: well, today it was, I mean, the air was
Jjust so sticky, so damp.

— Fluent: today the air was just so sticky, so damp.

2.2.1 Methods and Results

Let S denote the dataset of all (disfluent, fluent)
sentence tuples. We determine whether BERT’s
representation of a disfluent sentence is similar to
fluent sentences using two metrics:

e Metric 1: the raw cosine similarity
— Sd'Sf
d(8a,5f) = max(Tsalla s T Computed for

all (sq,sf) € S.

* Metric 2: the cosine similarity ranking com-
puted for all (s4,t¢) with (s,t) € S x S.
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Figure 3: Experiment 2: In figures A and B, we plot the raw cosine similarity between each disfluent and fluent
pairs, as well as between a disfluent sentence and a random fluent sentence (baseline). Figure A plots all sentence
tokens and figure B plots the [CLS] token. The X axis represents layers. The Y axis represents the average cosine
similarity with a range of (0,1], the closer to 1 the more similar the two vectors. In figures C and D, we plot the
similarity ranking of the fluent counterpart - the closer to zero, the more similar the fluent counterpart compared to
controls. Figure C ranks embeddings of all sentence tokens and figure D ranks the embedding of the [CLS] token.
The X axis represents layers. The Y axis represents distance to top rank, so -50 means that the fluent counterpart

is ranked on average 50 out of 300 in similarity.

The raw similarity (1) indicates how close a
disfluent-fluent pair is in the embedding space,
while a top rank in (2) determines the quality of an
embedding in capturing semantic nuances. A close
disfluent-fluent pair should converge to a high rank.
The reasoning is that a disfluent sentence s is com-
pared against all other fluent sentences ¢, some
of which will be semantically similar. If the rank
is high, the embeddings encode the semantic in-
formation that allows the ranking to disambiguate
the correct fluent counterpart across all sentences.
In other words, one could conclude that BERT’s
embeddings encode semantic content invariant to
disfluency perturbations.

We compare two ways of sentence representa-
tion’: a concatenation of the embeddings of all

3There is no consensus on which embeddings best rep-
resent sentence meaning. The original BERT paper (Devlin
et al., 2018) proposed the hidden state of the [CLS] token on
the last layer as an aggregation of sequence representation.
Other studies compared pooling methods on hidden states
from different layers and showed that pooling strategies are fit
for downstream tasks (Ma et al., 2019).

sentence tokens, as well as the embedding of the
[CLS] token. These embeddings are evaluated at
all 12 layers of BERT. For comparison, we also
evaluate the input vectors presented to the network.

Cosine similarity: We aggregate the activations
of all sentence tokens into a single flattened vector®.
In addition, we evaluate the activation of the [CLS]
token. We calculate the cosine similarity between
each disfluent sentence and its fluent counterpart.
As a baseline, we calculate the cosine similarity
between a disfluent sentence and a random fluent
sentence. In all cases, we report the mean cosine
similarity.

The results are shown in Figure 3A and 3B. Fig-
ure 3A shows that overall, the cosine similarity of a
disfluent and fluent pair is higher than the baseline.
The embeddings become more similar in deeper
layers. An identical embedding would have a sim-
ilarity of 1. At the input layer, the embeddings

“To calculate the cosine similarity between two sentences
of different lengths, we pad the shorter sentence in each pair
with [PAD] so that the two have the same number of tokens.
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are semantically dissimilar with a mean value of
0.3. However, this value increases steadily until
layer 6, plateaus on layer 7 and 8, peaks on layer
11 at around 0.72, before dropping slightly on layer
12. A similar drop was reported by Wang and Kuo
(2020). The result indicates that embeddings in-
crease in their semantic selectivity while maintain-
ing invariance to disfluencies. We did not observe
any significant difference between the three types
of disfluency.

For [CLS] embedding similarity, we observe that
the cosine similarity of disfluent and fluent pairs de-
creases as the layer gets deeper. Figure 3B shows
that [CLS] embedding similarities start off at 1
on input layer, drops gradually until layer 11 to
about 0.975, and increases again on layer 12. From
layer 3 onwards, the [CLS] embedding similarity is
higher for abandonment than for repetition and re-
vision. The reason [CLS] similarity starts of at 1 is
because at input layer, [CLS] embedding does not
contain any information from the sentence, and is
identical for all sentences. In deeper layers, [CLS]
“absorbs” information and becomes more dissimilar
for different sentences. Crucially, the [CLS] sim-
ilarity of the baseline drops significantly over the
layers compared to the three disfluent-fluent pairs.

Disfluent-fluent sentence pair ranking: In or-
der to find out how the raw cosine similarity com-
pares across fluent sentences for a specific disfluent
sentence, we calculate the cosine similarities and
compute the rank of the correct fluent counterpart.
To reduce the computational overhead, the ranking
is performed separately for each disfluency type,
yielding a maximum rank of 300.

The results are shown in Figure 3C and 3D. Fig-
ure 3C shows that the similarity ranking of the
fluent counterpart starts off low at around 70 on the
input layer, suggesting that the tokenised surface
forms of a disfluent sentence and the fluent counter-
part vary significantly, which is unsurprising since
disfluencies indeed render the sentences different
in surface form. The ranking then sharply improves
on layer 1, drops on layer 2, steadily rises all the
way to layer 10, before fluctuating on layer 11 and
layer 12, to a mean rank of 17 out of 300.

Why does the ranking first sharply improve on
layer 1 and then drop on layers 2 to 3? We believe
that this is because BERT’s layer 1 primarily en-
codes lexical presence instead of how the tokens
relate to each other. We can see that the improve-
ment is the highest for repetition than for abandon-
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ment and revision. This is because in repetition, the
tokens between the disfluent and fluent pairs are
more similar. However, the advantage of repetition
disappears from layer 2 onwards, suggesting that
from layer 2, BERT starts to represent the structure
and focuses less on the presence of tokens.

Among the three disfluency types, ranking for
abandonment is the highest from layers 3 to 12.
This shows that although the surface form of aban-
donment is just as different to its fluent counter-
part as revision and repetition, the syntactic and
semantic meaning representation of abandonment
is more similar compared to repetition and revision,
and also aligns with the results of experiment 1 (cf.
figure 2).

Figure 3D shows the ranking of the [CLS] em-
bedding of a fluent counterpart among all sentences.
We removed the ranking for the input layer where
the [CLS] embedding is identical for all sentences.
The ranking of the [CLS] embedding of a fluent
counterpart is already high at around top 15 (out
of 299) on layer 1; it increases to around top 8 on
layer 4, drops to top 20 on layer 8, and increases
steadily until peaking on layer 12 close to the top
rank.

Overall, experiment 2 shows that BERT ranks a
disfluent sentence high in similarity compared to all
possible fluent counterparts. In terms of the [CLS]
token, the embedding on the final layer achieves
top rank among 300 sentences, supporting previous
studies that the final layer [CLS] embedding is a
relatively good aggregation of sentence meaning.
In terms of all sentence tokens, the similarity im-
proves steadily in deeper layers, pointing towards
increasing semantic selectivity and invariance to
disfluencies. What could explain this selectivity-
invariance tradeoff in BERT? A cornerstone of
BERT is its attention mechanism which we will
analyse closely in experiment 3.

2.3 Experiment 3: Attention analysis -
Looking for the root cause

To understand disfluency, BERT will have to (1)
identify which part in the sentence is the reparan-
dum and which part is the alteration (if it exists),
and (2) relate the reparandum and the alteration
to the sentence. To investigate both aspects, we
analysed attention on these disfluent segments. Pre-
vious studies show that attention weights reflect
syntactic and semantic features (Clark et al., 2019).
If BERT understands the structure of disfluency,
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we should expect that it pays a disproportionate
amount of attention to the reparandum compared
to the alteration.

2.3.1 Methods and results

In order to compare the attention to reparandum
and alteration, experiment 3 studies only revision
and repetition. We identify the indices of the
reparandum and alteration, and for each layer and
each attention head, we calculated the average at-
tention of the following:

* from the reparandum towards the alteration,
and from the alteration towards the reparan-
dum (Figure 4A, 5A)

» from all other sentence tokens towards the
alteration and towards the reparandum (Figure
4B, 5B)

¢ from the [CLS] tokens towards the alteration
and towards the reparandum (Figure 4C, 5C)

Figure 4 plots the average attention on each layer
of BERT. Overall, we see that the reparandum re-
ceives less attention than the alteration from layer
3 onwards, both from all sentence tokens and from
the [CLS] token. We also see that the reparan-
dum pays more attention to the alteration than the
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other way around. These results suggest that in
the initial layers 1-3, BERT has not distinguished
the structure and different roles of the reparandum
and the alteration. However, from layers 4 to 12,
the reparandum contributes less to meaning rep-
resentation than the alteration. The reparandum
and alteration have an asymmetric relationship: the
former pays attention to the later more than vice-
versa.

Figure 5 plots the average attention from each
attention head. Every attention head pays less at-
tention to the reparandum than the alteration. In
addition, there is more variation among attention
heads on the alteration than the reparandum. Some
attention heads, specifically heads 5, 6, 11 and
12 pay significantly more attention than the rest
of the attention heads on the alteration. Experi-
ment 3 once again supports the finding that the
final layer [CLS] token is a good aggregation of
sentence meaning. The attention heads’ behaviour
from [CLS] shows the same pattern as the attention
from all sentence tokens.

Experiment 3 provides evidence that BERT has
knowledge of the structure of disfluency, and this
knowledge is present from the mid layers to the
deep layers, akin to other syntactic and semantic
knowledge. This result aligns with results from



experiments 1 and 2, and gives an insight into ~ow
the sentence representation of a disfluent sentence
becomes more similar in deeper layers. It does so
by paying less attention to the reparandum, while
the reparandum attends specifically to the alteration.
As a result, the meaning of the reparandum relates
more weakly to the rest of the sentence compared
to the alteration.

3 Discussion

Disfluencies are prevalent in natural conversations.
This study investigates how Transformer-based lan-
guage models such as BERT process disfluent ut-
terances and asks whether these models have an
“innate” understanding of disfluency. There are ben-
efits of retaining instead of removing disfluencies
when building dialogue systems because disfluency
contributes to communicative meaning. A system
that is better at understanding and responding to
disfluent utterances will allow users to speak more
naturally while also reducing the burden for engi-
neers to introduce additional pipeline steps for data
cleaning.

We investigated if and how BERT understands
disfluency from the outside in; first by assessing the
performance on a downstream task (experiment 1),
then by computing sentence embedding similarities
between disfluent-fluent sentence pairs (experiment
2), and finally by probing attention on disfluent
segments (experiment 3).

Experiment 1 shows that without fine-tuning on
disfluent data, BERT can perform fairly well on a
natural language inference task containing disfluent
language using a small synthetic dataset.

Experiment 2 shows that the sentence embed-
ding of a disfluent sentence becomes more similar
to its fluent counterpart the deeper the layer. Sim-
ilarities of [CLS] tokens are low in earlier layers,
but improve steadily in the final four layers. In
addition to insights into disfluency processing, the
results also suggest that layer 1 of BERT represents
lexical presence without information on the rela-
tion among the tokens. The fact that pairs are most
similar in the deepest layers supports previous find-
ings that semantic meaning is more concentrated
in the deeper layers of BERT.

Experiment 3 investigates why embedding simi-
larity increases by looking at attention on disfluent
segments. We found that BERT distinguishes the
reparandum and alteration by paying less attention
to the reparandum from layers 4 to 12.
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Overall, the results are congruent in three exper-
iments for two datasets. We conclude that BERT
has knowledge of the structure of disfluency. It
processes disfluency similar to other syntactic fea-
tures and extracts semantic meaning by selectively
attending to different parts of the disfluency at dif-
ferent intensities. Thus, we believe that attention is
the key mechanism that modulates the selectivity-
invariance tradeoff and allows BERT to embed dis-
fluent sentences similar to fluent ones in deep lay-
ers.

4 Future work

For future studies, we could expand the scope from
BERT to other Transformer language models such
as DistillBERT (Sanh et al., 2019), GPT-2 (Rad-
ford et al., 2019) and XLNet (Yang et al., 2019).
It would be interesting to see if language models
trained with different objectives and on different
data also possess the capability of resolving disflu-
ent inputs.

In addition to more models, we could expand the
scope to more languages and study if models such
as multilingual BERT or MT5 (Xue et al., 2020)
have knowledge of disfluency using the annotated
disfluency data in German, French and Chinese
from the DUEL corpus (Hough et al., 2016).

5 Conclusion

Natural conversations are filled with disfluencies
such as self-repairs, repetitions and abandonment.
This study shows that BERT has an out-of-the-box
understanding of disfluency: it represents a dis-
fluent sentence similar to its fluent counterpart in
deeper layers. This is achieved by identifying the
disfluency’s structure and paying less attention to
the reparandum. The results of this study raise the
question whether we can use Transformer models
to process disfluent utterances directly instead of
first removing disfluent components in a prepro-
cessing step. We argue that retaining disfluencies
is beneficial for dialogue systems, both in terms
of better capturing communicative meaning and
enabling users to communicate more naturally with
dialogue systems.
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Abstract

Dialogue State Tracking (DST) is a sub-task
of task-based dialogue systems where the user
intention is tracked through a set of (domain,
slot, slot-value) triplets. Existing DST models
can be difficult to extend for new datasets with
larger domains/slots mainly due to either of the
two reasons- i) prediction of domain-slot as a
pair, and ii) dependency of model parameters
on the number of slots and domains. In this
work, we propose to address these issues us-
ing a Hierarchical DST (Hi-DST) model. At
a given turn, the model first detects a change
in domain followed by domain prediction if re-
quired. Then it decides suitable action for each
slot in the predicted domains and finds their
value accordingly. The model parameters of
Hi-DST are independent of the number of do-
mains/slots. Due to the hierarchical modeling,
it achieves O(|M| + |N|) belief state predic-
tion for a single turn where M and N are the
set of unique domains and slots respectively.
We argue that the hierarchical structure helps
in the model explainability and makes it eas-
ily extensible to new datasets. Experiments on
the MultiWOZ dataset show that our proposed
model achieves comparable joint accuracy per-
formance to state-of-the-art DST models.

1 Introduction

In a goal-oriented or task-oriented dialogue sys-
tem, Dialogue State Tracking (DST) refers to the
problem of extracting the goal or intention shown
by the user at each turn. The user’s goals are cap-
tured through a set of dialogue states which are
the system’s internal representation of the ongoing
conversation. DST is essential because it not only
helps to understand the user’s requirement but also
impacts the next dialogue generation. In this era
of immersive Al, task-based dialogue systems are
gaining popularity day by day. As a result, dealing
with a large number of domains and slots will soon

Maunendra Sankar Desarkar
Indian Institute of Technology,
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maunendralcse.iith.ac.in

Uy: Can you help me find some attractions in the east part of
town?
By: { (attraction, area, east) }

S, : Definitely! My favorite place in the east is the Funky Fun
House. It's funky and fun!

U,: Can | have the number please?

B;: { (attraction, area, east), (attraction, name, Funky Fun House) }

S, 1 It's 01223304705. Do you need anything else?

U,: Yeah, | need a restaurant. They need to serve Indian food and
be in the same area as Funky Fun House.

B,: { (attraction, area, east), (attraction, name, Funky Fun House),
(restaurant, area, east), (restaurant, food, Indian) }

S3: There are 4 Indian restaurants in the area. Two are
moderately priced and two are expensive. Can | ask what price
range you would like?

Us: | would prefer one in the moderate price range.

Bj: { (attraction, area, east), (attraction, name, Funky Fun House),
(restaurant, area, east), (restaurant, food, Indian), (restaurant,
price, moderate) }

S, : May | suggest the Rajmabhal located at 7 Barnwell Road Fen
Ditton.

U,: Can | also have their phone number and postcode?

B, : { (attraction, area, east), (attraction, name, Funky Fun House),
(restaurant, area, east), (restaurant, food, Indian), (restaurant,
price, moderate), (restaurant, name, Rajmahal) }

S5 : Sure, their phone number is 01223244955 and the postcode is
cb58rg. Is there anything else | could help you with?
Us: That is all | need.

Figure 1: A sample conversation from the Multi-
WOZ (Budzianowski et al., 2018) dataset (dialogue id
PMUL3336).

become a real problem for task-based chatbots. In
this work, we propose a scalable and extensible
solution framework for DST to address this forth-
coming issue.

We now briefly define DST with an illustra-
tion shown in Fig 1. Let U; and S; be the user
and system utterance respectively at turn ¢. Then
a task-based conversation is generally expressed
as D = {Uy, (S1,U1),- -+, (Sn,Uy,)}. Let belief
state B; be the ground-truth dialogue state for turn
t. By represents the set of (domain, slot, slot-value)
triplets that have been extracted so far till turn ¢.
The task of DST is to predict B; given the dialogue
history till turn ¢.

The solution framework for the DST model

218

Proceedings of the 22nd Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 218-227
July 29-31, 2021. ©2021 Association for Computational Linguistics



can be broadly categorized into three classes - 1)
picklist-based, ii) generation-based, and iii) end-
to-end modeling. The first two methods approach
the DST problem explicitly, whereas the third class
solves it as a part of end-to-end modeling of the
task-based dialogue system. Picklist-based models
(Mrksi¢ et al., 2017; Nouri and Hosseini-Asl, 2018;
Zhong et al., 2018; Goel et al., 2019) find the value
of a given domain-slot pair from a pre-defined can-
didate set. This is why these methods need access
to the complete ontology of the dataset. This type
of modeling can be used only when the candidate
set is limited. But in reality, there are many slots
(e.g. name, time, etc.) where the range of val-
ues can be indefinitely large. Generation-based
approaches (Gao et al., 2019; Wu et al., 2019; Kim
et al., 2020; Heck et al., 2020) solve this problem
by generating the slot-value directly from the dia-
logue history. These methods usually formulate the
slot-value prediction as a reading comprehension
(Chen et al., 2017) or text summarization (See et al.,
2017) task. There are hybrid models (Zhang et al.,
2020) which take the advantages of both picklist
and generation-based methods by choosing the slot-
value prediction strategy based on the type of slot.
On the other hand, end-to-end models (Hosseini-
Asl et al., 2020; Wu et al., 2020; Lin et al., 2020;
Mehri et al., 2020) aim to unify multiple sub-tasks
of a task-oriented dialogue system using a single
model. They have the advantage of being fully gen-
erative and are usually trained as a conditional or
causal language model to generate the next system
utterance.

Although recent progress in generation-based
and end-to-end approaches has shown significant
performance gain in DST, there are still some scal-
ability and extensibility issues that need to be ad-
dressed. These issues mainly occur due to two
properties - i) predicting domain and slot as a pair,
ii) dependency of model parameters on number do-
mains and slots. All the existing DST solutions
hold either of these properties and in most cases
both. The first property leads to O(]S|) belief state
prediction time for each turn where S is the set of
all possible domain-slot pairs in a given dataset.
In the worst case, |S| = |M| x |N| where M and
N are the sets of unique domains and slots respec-
tively. Since task-based chatbots are designed to
work in real-time, reducing time complexity is of
critical need. Ren et al. (2019) tackles this issue by
predicting domain and slot sequentially and thereby
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reducing the time complexity to O(N) using their
O(1) domain prediction strategy. However, their
domain prediction depends on the ordering of do-
mains which can be hard to maintain in a real setup.
They also satisfy the second property due to the
inclusion of the previous belief state as input. Even
though this kind of auxiliary feature has been help-
ful in improving the joint accuracy (Kim et al.,
2020; Heck et al., 2020), it makes the model dif-
ficult to extend. The end-to-end models also pos-
sess the second property because they encode the
previous belief state along with dialogue history
to represent a complete turn (Hosseini-Asl et al.,
2020). With the growing popularity of task-based
conversational systems, we can anticipate larger
datasets with lots of domains and slots to be used
in the future for the training and development of
such systems. Since these datasets will contain
a large set of unique domains and slots, scalabil-
ity and extensibility will become an issue for the
existing models.

In this paper, we propose a Hierarchical DST (Hi-
DST) model to tackle the issues discussed above.
We break the DST task into a hierarchy of four
generic sub-tasks - domain change prediction, do-
main prediction, slot action prediction, and slot-
value prediction. We adopt the triple copy strategy
(Heck et al., 2020) for slot-value prediction and use
the neural span-based question-answering method
to extract the slot values from the utterances di-
rectly. In contrast to others, we reduce the problem
of slot-value prediction to SQuAD (Rajpurkar et al.,
2016) to leverage transfer learning. We keep our
model parameters independent of the number of
domains/slots. This is why we refrain from using
any kind of auxiliary features that depend on the
domain/slot set. Contributions of our work can be
summarized as follows- !

* We present Hi-DST, a scalable and extensible
DST solution that adopts hierarchical mod-
eling without any dependency on the num-
ber of domains and slots. Hi-DST achieves
O(|M| + | N| belief state prediction for each
turn where M and N are the sets of unique
domain and slot respectively.

* We show that Hi-DST achieves a comparable
performance to existing DST models while
being scalable and extensible simultaneously.

!Code is available at github.com/SuvodipDey/Hi-DST



* We argue that the hierarchical structure helps
in the explainability of the model and makes it
easily extensible to new datasets with a much
larger number of domains and slots.

2 Hierarchical DST (Hi-DST)

The core idea behind our approach is to decouple
the prediction of domain-slot pairs to achieve belief
state prediction in O(|M| + |N|) time. We also
keep our model free from any kind of dependency
on the number of domains and slots to make it eas-
ily extensible. We propose Hi-DST that comprises
of four generic components: domain change pre-
diction (section 2.1), domain prediction (section
2.2), slot-action prediction (section 2.3), and slot-
value prediction (section 2.4). During prediction
(section 2.5), we first detect any change in domain.
If there is a change in domain predicted, we run
domain prediction and update the set of current do-
main(s) that keeps track of the active domains for a
given turn. We next predict the appropriate actions
necessary for relevant domain-slot pairs. Finally,
we extract the slot values using span-based method
(Chen et al., 2017) when required. We incremen-
tally update our predicted dialogue states at each
turn to get the desired belief state. Fig. 2 shows the
workflow of our proposed approach.

2.1 Domain Change Prediction

In a task-based conversation, a user can converse
about multiple domains and switch between them
if necessary. The objective of this component is to
detect the point of domain changes. We formulate
it as a ternary classification problem. A prediction
of 0 represents that there is no change in domain.
In this case, we use the domain set of the previous

general No prediction required
Domain onversation
change? yes

systemy, userg

label slot action no

0 |irrelevant (value is none) Predict Domain
1 request (value is ?) T
2 value is don't care

- Predict slot action for each slots of \U\Et/
3 value is yes the current domains Update
4 value is no

ion: states

5 value resides in user, | S'ot action: 5’6’7i =
6 | value resides in system: | Extract slot value or reference
7 refer previous states ||domain using span-based method

Figure 2: Workflow of proposed DST model. System
and user utterance of turn ¢ are represented as system,
and user; respectively. The figure shows only the gen-
eral slot actions.

turn as current domains. Prediction 1 indicates a
domain change in the current turn. Here, we need
to run the domain prediction model to get the new
domains. Finally, class label 2 represents a general
conversation (like greeting, thanking, etc.). In this
case, we do no further prediction as the user is not
showing any additional intention. Basically, this
model component captures the theme of a dialogue
turn in an abstract way and guides the subsequent
predictions accordingly.

We model this three-class classification problem
using BERT (Devlin et al., 2019) finetuning. Let
St and U, be the system and user utterances at turn
t. Then the objective of this model is to find the
probability of p(y|St, Uy) where y € {0,1,2}. Let
X; € R? be the encoding of utterance pair (S;,
U;) where d=768 be the dimension of the BERT
embedding. We compute X; by taking an average
of the token embeddings of BERT’s second-last
hidden layer with ([CLS]S;[SEP]U;) as input. We
pass X; through a linear layer of dimension (d X
3) to find the class probabilities. We use a cross-
entropy loss to update the model parameters.

2.2 Domain Prediction

The objective of this component is to find the set
of relevant domains in a given user turn. We use a
binary classification model to predict 1 if a given
domain is relevant and O otherwise. Let D be the
set of unique domains. Then the goal of the do-
main prediction model is to find the probability of
p(y|Se, Ur, dj) where y € {0,1}, and d; € D. We
run this prediction for each domain to obtain the
set of current domains.

We encode a specific domain using pre-trained
GloVe (Pennington et al., 2014) embedding of di-
mension d; followed by a linear layer and GeLu
(Hendrycks and Gimpel, 2020) activation. Let
Z be the encoding of domain d;. So, Z =
GeLu(l1(Glove(d;))) € R% where [ is a linear
layer of dimension of (dy x d2).

Next, we encode the utterances using BERT. Let
G be the token representation of utterance pair
(St Up) generated by BERT tokenization. Let
H;, € R%*L be the output of BERT’s second-
to-last hidden layer with input G; where L is the
maximum sequence length and dy = 768 is the di-
mension of the BERT embedding. To put attention
on relevant tokens, we take a linear combination of
the column-vectors of H; using scaled dot-product
attention (Vaswani et al., 2017). We express our fi-
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nal utterance encoding as X; = ZZL: 1 o Hy where
X, € R%2, Hy € R% is the output vector of the [th
token, and attention o = softmax(H{ 2/\/a;) €
RY. We now concatenate X; and Z and pass it
through a linear classification head of dimension
(2dz2 x 2) to find the class probabilities. We use a
softmax classifier with cross-entropy loss. We do
not update the GloVe embeddings of the domains
during back propagation to extend the model easily
for unseen domains.

2.3 Slot Action Prediction

In this component, we find the relevant slots from
the predicted set of domains for a given turn. We
achieve this by a slot action model that predicts
suitable action for a given domain-slot pair. Let
D be the set of current domains at turn ¢. Let C;
be the set of slots in the domain d; and A be the
set of actions. Then the objective of this model is
to find the probability of p(y|St, Uy, cij, di) Vi, j
where y € A, ¢;j € Cj,and d; € D.

Based on our analysis, we define eight general
and two dataset-speficic actions described in Table
1. Slot-action 0 (NONE) indicates that a domain-
slot pair is irrelevant. All the slot-actions between
1 and 4 indicate that the slot-value needs to be in-
ferred because it cannot be extracted directly from
the utterances. Slot action 5 (EXT,,) represents
that the slot-value resides in the current user utter-
ance U;. Slot action 6 (EXTjys) indicates that the
slot-value is informed/recommended by the system
and can be extracted from the current system utter-
ance .S;. Finally, slot action 7 (REF) means that the
slot-value is referred to some previous slot-value
in the belief state. Besides the general actions, we
have two non-trivial slot-actions specific to Multi-
WOZ dataset. The first one is HTL;,, for (hotel,
type, hotel) triplet. We add this action because the
annotation for this triplet is inconsistent throughout
the dataset (Wu et al., 2019). The second one is
PPL; for triplet (d, people, 1) for any domain d.
This triplet often needs to be inferred rather than
extracted directly as shown in the example in Ta-
ble 1. We found that it is better to handle such
dataset-specific non-trivial cases with a new slot ac-
tion since these values are difficult to extract using
span-based approaches.

Our slot action prediction model is very similar
to the domain prediction model of Section 2.2. In-
stead of a domain, here we encode a domain-slot
pair in a similar fashion. Here, the encoding of
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Label Action Description Example
. In “I want an expensive
slot is ) .
irrelevant place to stay in the west
0 NONE 7 side.”, slots like Name
slot-value is .
“None” and Parking are
irrelevant.
slot is In “What is their
requested address and phone
1 REQ by the user, number?”, use has
slot-value is  requested Address and
“r” Phone.
user doesn’t In “I’m looking for a
care about hotel in the west,
2 DNC the slot, internet is optional”,
slot-value is slot-value for Internet
“don’t care” will be “don’t care”.
slot-value is In I need free
3 YES e parking”, slot-value for
Yes . vy
Parking is “Yes”.
In “I don’t need
slot-value is internet or free
4 NO “No” parking”, slot-value for
Internet and Parking is
“No™.
slot-value S; : Okay, where would
needs to be .
be extracted YU like to depart from?
5 EXTysr Uy: I'd like to leave
from the .
from Cambridge,
current user
please.
utterance
nséggsvil)ubee S;: I recommend
Kettle’s Yard on
be extracted L.
Castle Street which is a
6 EXTsys from the
current museum. U;: Could I
get the postcode for that
system
museum?
utterance
In “I’d like to go see a
the value of college that’s in the
the slot same area as the
7 REF hotel”, slot-value of
needs to be
Area refers to a
be referred .
previously extracted
value.
type of the »
] HTL.ype hotel is 1 also need l‘Oﬁfld a?
“hotel” star room .
St : How many tickets
number of would you like?
0 PPLy people is 1 Uy : Just for myself ,

please.

Table 1: Description of slot actions with example.

a given domain-slot pair (d, c) can be expressed
as Z = GeLu(l1([Glove(c); Glove(d)])) where
Z € R% and [, is a linear layer of dimension of
(2d; % dg). The rest of the modeling remains the
same as the domain prediction model except for
the final classification head. The dimension of the
final linear layer becomes (2d2 x k) where k is the
number of slot actions. GloVe embedding of the
domains or slots is not updated during training just
like our domain prediction model.



2.4 Slot Value Prediction

The fourth and final component of Hi-DST is the
slot-value prediction for a given domain-slot pair.
We need slot-value prediction model for slot ac-
tions 5 (EXTysr), 6 (EXT,ys), and 7 (REF) be-
cause for the rest it can be inferred directly. If the
predicted slot-action for a given domain-slot pair
is 5 and 6, we need to extract the slot-value from
the current user and system utterance respectively.
Whereas for slot-action 7, we have to find the refer-
ence point of the slot-value from the user utterance
and then copy its value. This kind of strategy for
slot-value prediction is called triple copy strategy
(Heck et al., 2020) and has been shown to be ben-
eficial for DST. We reduce these three kinds of
slot-value prediction to the span-based question an-
swering problem of the SQuAD dataset (Rajpurkar
et al., 2016). By doing so we can directly finetune
the span-based neural comprehension model (Chen
et al., 2017) pre-trained on SQuAD and reap the
benefits of transfer learning. In the SQuAD dataset,
the input is a pair of a question and context and
the objective is to predict the span (start and end
index) of the answer in the given context. We re-
duce our slot-value prediction problem to SQuUAD
as follows:

Extract from User Utterance (EXT,,,): For
slot action 5 (EXT,,), the value of a given do-
main slot pair is present in the current user utter-
ance. So, we set the context to U;. We generate
the question by converting the given domain-slot
pair into an English sentence. For example, (hotel-
name) becomes “What is the name of the hotel?”,
(train-destination) becomes “What is the destina-
tion of the train?”, and so on. The motivation for
such question generation is to match the format of
SQuAD. In this work, we use rule-based question
generation like DS-DST (Zhang et al., 2020) as the
set of domain-slot pairs is limited. It would be nice
to have a model-based approach to handle question
generation on a large scale.

Extract from System utterance (EXT,,,): In
this scenario, the value of a given domain slot pair
is present in the current system utterance. It occurs
when the user accepts the system’s recommenda-
tion/suggestion. The reduction is absolutely similar
to the earlier case except the context now being the
current system utterance S;. If the set of informed
slots by the system at each turn is available, then
we do not need to extract the slot value. Instead,
we can copy the slot-value of the domain-slot pair

directly from that set during prediction.

Refer (REF): In this case, the slot-value for a
given domain-slot pair refers to a previously ex-
tracted value. Hence, our objective here is to find
the appropriate reference point in the belief state of
the previous turn and then copy its value. Let the
reference point for a given domain slot pair (d, s)
be (d"¢f, s7¢f). In general, we observe that slots s
and "¢/ remain the same. So, the main challenge
is to find the reference domain d"¢/. We formulate
the problem of finding the reference domain similar
to the formulation of slot action 5 (EXT,s,-) and
6 (EXTys). The context is set to be the current
user utterance U;. We convert a domain-slot pair
into a question in a slightly different manner. For
example, the REF instance shown in Table 1, we
form the question as “What is the reference point
of the attraction area?” and the model is trained
to extract the reference domain “hotel”. There are
few special cases where the original slot s does
not match the reference slot s/, For instance in
the MultiwWOZ dataset, slots like destination and
departure refers name. In this work, we resolve
these slot references manually while creating the
training data for this phase, since such examples
were limited in number.

2.5 Predictive Algorithm

We now briefly describe our predictive algorithm
for a single conversation. Let D be the set of cur-
rent domain(s) that keeps track of the active do-
mains for a given turn. Let B be the set of pre-
dicted belief states. Initially, both D and B are
empty. Before moving on to the next turn, B and
D are updated based on the predictions made for
the current turn. For each user turn ¢ with input (.S,
Ui, D, B), we do the following:

* Step 1: Run the domain change prediction model
(Section 2.1).

— If the prediction is a general conversation
(Class 2), we make D = @ and skip all
subsequent predictions for the current turn.

— If domain change is detected (Class 1), we
go to Step 2.

— If no change in the domain is predicted
(Class 0), we do the following:

# If the cardinality of the set of current
domains (D) is 1, we directly go to the
slot action prediction in Step 3.

* Otherwise, we go to Step 2 to update D.
It gives the model an extra chance to find
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a domain when D = @&. Whereas, it
helps to remove extraneous domains in
case of more than one relevant domain.

* Step 2: Run domain prediction model (Section
2.2) to get the set of current domains for turn ¢.

e Step 3: Predict slot action (Section 2.3) for
each slots of the current domains. If slot action
EXTys, EXTgys or REF is detected, we go to
Step 4. Otherwise, the slot-values are directly
inferred and updated in the belief state for turn ¢.

» Step 4: Extract the slot-value or reference
domain using span-based question-answering
method (Section 2.4) and update the belief state
B accordingly.

The main purpose of steps 1 and 2 is to predict
the relevant domains that are subsequently used for
slot value prediction (wherever necessary). This
is required due to our decoupling of the domain
and slot predictions. We observe that in Step 4 for
slot action REF, the model sometimes fails to find
the reference domain. This occurs when the user
does not explicitly mention the reference domain.
For example, “Could you please book train tickets
for the same group?”. In such cases, we select the
most recent domain that contains the reference slot
s"¢f as the reference domain d"¢/.

3 Dataset and Experimental Setups

3.1 Dataset

We use the MultiWOZ dataset (Budzianowski et al.,
2018) for experimentation. It is one of the largest
multi-domain conversation corpus available for
task-oriented dialogue systems. We perform our
experiments on MultiwOZ 2.1 (Eric et al., 2020)
and MultiwOZ 2.2 (Zang et al., 2020). Both the
datasets are updated versions of the original Multi-
WOZ dataset and contain fixes to some noisy anno-
tations. Table 2 and 3 shows some basic statistics
of the dataset.

3.2 Evaluation Metric

Dialogue state tracking is broadly evaluated using
several metrics like joint accuracy, slot accuracy,

Data #Dialogues #Turns Avg turns per dialogue
Train 8420 56668 6.73
Dev 1000 7374 7.37
Test 999 7368 7.37

Table 2: Data statistics of MultiwOZ 2.1

Domain Slots Conversations
attraction name, type, area 33.47%
name, type, parking, area,
hotel day, stay, internet, people, 40.1%
stars, price
name, food, area, day, time,
restaurant . 45.48%
people, price
taxi arrive, departqre, leave, 18.01%
destination
train | ATTIVE, day, leave, destination, 37 64%

departure, people

Table 3: Unique domain-slot pairs for which slot-value
needs to be extracted in MultiwOZ 2.1.

and average joint accuracy (Rastogi et al., 2020).
The primary metric for DST is joint accuracy or
joint goal accuracy. Joint accuracy is defined by
the fraction of turns where the predicted belief state
exactly matches the ground truth (Wu et al., 2019).
In this work, we only use joint accuracy so that we
can directly compare Hi-DST with other models.

There are a lot of instances in the MultiwOZ
dataset where the labeled slot value for a given
domain-slot pair is not present in the dialogues in
its exact form. Rather some variant of the slot value
exists like cafe jello instead of cafe jello gallery,
centre instead of center, and so on. This can cause
a problem for a fair evaluation of span-based slot
value prediction. TripPy (Heck et al., 2020) ad-
dresses this issue using a label variant map > where
each value is mapped to a set of variants. A match
is considered if the predicted slot value exactly
matches the ground truth or any of its variants. We
follow the same to evaluate Hi-DST.

3.3 Data Preparation

We now summarize the training data generation for
Hi-DST. We use the turn-level belief state rather
than the cumulative one in our training process.
Let B; be the set of belief state at turn t. Then
T; = B, \ B;_1 be the turn-level belief state for
turn t. We ignore the turns for data preparation
where T; = @.

Let D; be the set of domains in 7;. Then for
the domain change component, we compare D,
and D;_;. If there is no change, we label 0, and
1 otherwise. Annotation for general conversation
is available in the MultiWOZ dataset. If this anno-
tation is not available in a dataset, we can ignore
this class and train the domain change model with
only two classes. For the domain model, we label

2gitlab.cs.uni-duesseldorf.de/general/dsml/trippy-
public/blob/master/dataset_config/multiwoz21.json
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Data Metric domain change model domain model slot action model
0 I 2 0 1 0 1 2 3 4 5 6 7 8 9
Precision 0.96 0.94 1.0 0.99 0.98 0.98 0.98 0.79 0.95 0.61 0.98 0.88 0.84 0.90 0.81
Train Recall 0.99 0.85 0.97 1.0 0.96 0.98 0.97 0.81 0.95 0.60 0.99 0.74 0.84 0.55 0.92
F1-score 0.97 0.89 0.98 0.99 0.97 0.98 0.98 0.80 0.95 0.60 0.98 0.80 0.84 0.69 0.86
Support 31060 7371 9879 90486 16999 136797 12813 1942 3005 203 52238 5264 2747 377 1450
Precision 0.95 0.91 0.99 0.99 0.95 0.97 0.96 0.62 0.92 0.59 0.97 0.75 0.78 0.68 0.74
Dev Recall 0.98 0.85 0.97 0.99 0.94 0.97 0.96 0.71 0.88 0.71 0.98 0.59 0.77 0.37 0.84
F1-score 0.97 0.88 0.98 0.99 0.95 0.97 0.96 0.66 0.90 0.65 0.98 0.66 0.78 0.48 0.79
Support 4052 1065 1249 11955 2227 18206 1691 160 366 14 7214 598 356 57 143
Precision 0.95 0.91 0.99 0.99 0.96 0.96 0.96 0.75 0.90 0.27 0.96 0.82 0.80 0.76 0.80
Test Recall 0.98 0.83 0.96 0.99 0.93 0.97 0.97 0.69 0.89 0.36 0.98 0.51 0.78 0.48 0.84
F1-score 0.96 0.87 0.98 0.99 0.94 0.97 0.96 0.72 0.89 0.31 0.97 0.63 0.79 0.59 0.82
Support 4059 1078 1235 11949 2289 18646 1803 236 362 11 7168 794 359 71 170

Table 4: Class-wise performance of domain change, domain, and slot action models on MultiwOZ 2.1 dataset.

Data Accuracy Support
Train 0.983 137,185
Dev 0.979 18,293
Test 0.979 18,551

Table 5: Individual performance of slot-value predic-
tion model on MultiWOZ 2.1 dataset.

adomain d as 1 if d € D; and 0 otherwise.

Let C} be the set of domain-slot pairs in 7;. We
use C' to generate the labels for slot action as de-
scribed in Table 1. We take the help of the span
index annotation in MultiWwOZ for generating the
data for the slot-value model. We also added neg-
ative samples for irrelevant domain-slot pairs for
which the start and end index is set to 0.

3.4 Training Details

We implemented our models using PyTorch and
Huggingface (Wolf et al., 2020) libraries in Python
3.7. All the experiments were performed on an
Nvidia Tesla P100 machine with 16GB of memory.
We used AdamW (Loshchilov and Hutter, 2019) op-
timizer and set the learning rate and adam’s epsi