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Introduction

Welcome to the 2nd Workshop on NLP for Music and Spoken Audio. The aim of NLP4MuSA is to bring
together researchers from various disciplines related to music and audio content, on one hand, and NLP
on the other. It embraces the following topics.

• NLP architectures applied to music analysis and generation

• Lyrics analysis and generation

• Exploiting music related texts in music recommendation

• Taxonomy learning

• Podcasts recommendations

• Music captioning

• Multimodal representations

The workshop spans one day split into two days to accommodate an online format while preserving a
timezone friendly schedule, which features both live and asynchronous presentations and Q/A sessions.
The main topics covered in the accepted papers

The talks of our keynote speakers highlight topics of high relevance in the intersection between music,
audio and NLP. The presentation by Yunyao Li discusses the challenges posed by the current Wild West
of NLP research. Invited speakers cover different areas in at the crossroads between Music, Spoken Audi
oand NLP, in particular: Longqi Yang focuses on goal-directed music recommendation; Markus Schedl
describes different approaches for emotion-aware music exploration; Juham Nam provides a review on
music auto-tagging; and finally, Anna Huang discusses a preliminary approach to “tuning” Music Trans-
former.

In total, we accepted 8 papers (47% of submissions), following the recommendations of our peer review-
ers. Each paper was reviewed by three experts. We are extremely grateful to the Programme Committee
members for their detailed and helpful reviews.

Sergio Oramas, Elena Epure, Luis Espinosa-Anke, Rosie Jones, Mohamed Sordo, Massimo Quadrana
and Kento Watanabe

Online

November 2021
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Invited Talks

Yunyao Li: Taming the Wild West of Natural Language Processing

Natural language processing (NLP) is becoming increasingly adapted in the real-world. To many, NLP is
the new resource of growth and wealth. However, the NLP landscape is like the Wild West now: many
and growing numbers of players, fast innovations, and limited oversight. In this talk, I will discuss the
major challenges in taming the Wild West of NLP. I will present our work in recent years in in addressing
these challenges. I will showcase some of the work in concrete domains (e.g. compliance). I will also
share thoughts on a general approach towards adapting NLP to solve real-world problems.

Longqi Yang: Towards Goal-directed Content Recommendation

People’s content choices (e.g., Podcast, music, etc.) are driven by their short-term intentions and long-
term goals, which are often underserved by today’s recommendation systems. This is mainly due to the
fact that higher-ordered goals are often unobserved, and recommenders are typically trained to promote
popular items and to reinforce users’ historical behavior. As a result, the utility and user experience
of content consumption can be affected undesirably. This talk will cover behavioral experiments that
quantify the effects of goal-agnostic recommenders and algorithmic techniques to improve them.

Markus Schedl: Using NLP for emotion-aware music exploration, lyrics and playlist analysis

In this talk, I will showcase the use of NLP techniques for several music-related tasks, which are carried
out at the Institute of Computational Perception of the Johannes Kepler University Linz. More precisely,
I will briefly introduce our latest research on lyrics analysis, text-based playlist clustering, and emotion-
aware music exploration and recommendation.

I will report findings of our studies on genre and temporal differences of song lyrics, and on uncover-
ing the extent to which the sequential ordering of tracks in user-generated playlists matters for different
playlist types identified by their title. Furthermore, I will briefly introduce EmoMTB, our emotion-aware
music exploration and recommendation interface which adopts emotion recognition techniques from user-
generated texts.

Juhan Nam: Music Auto-Tagging: from Audio Classification to Word Embedding

Music auto-tagging is one of the main audio classification tasks in the field of music information retrieval.
Leveraging the advances of deep learning, particularly, convolutional neural networks for image classifi-
cation, researchers have proposed novel neural network architectures for music to improve the annotation
and retrieval performances. However, this classification approach has the limitation that the model can
handle only a fixed set of labels that describe music and does not consider the semantic correlations be-
tween the labels. Recent approaches have addressed the issues by associating audio embedding with word
embedding where labels are located in a vector space. This allowed the model to predict unseen labels
in the training stage from music or retrieve music from any word query. This talk reviews the advance
of music auto-tagging where research interests are moving toward combination with natural language
processing techniques.

Anna Huang: Tuning Music Transformer

Music Transformer is an expressive language model for music, offering exciting potential for creative
exploration. In the AI Song Contest, we see artists obtain a range of compelling results, by feeding it
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different musical fragments to elaborate. However, finding something novel and appropriate could take
many iterations. If there’s more control, then it could be possible to steer the exploration process. In this
talk, I’ll discuss preliminary work in taking both ML and HCI approaches to "tuning" Music Transformer
towards users’ creative goals, and also a common framework for evaluating progress in generative models
and interfaces.
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Improving Real-time Score Following in Opera
by Combining Music with Lyrics Tracking

Charles Brazier1 Gerhard Widmer1,2
1Institute of Computational Perception, Johannes Kepler University Linz, Austria

2LIT AI Lab, Linz Institute of Technology, Austria
firstname.lastname@jku.at

Abstract

Fully automatic opera tracking is challeng-
ing because of the acoustic complexity of the
genre, combining musical and linguistic infor-
mation (singing, speech) in complex ways. In
this paper, we propose a new pipeline for com-
plete opera tracking. The pipeline is based on
two trackers. A music tracker that has proven
to be effective at tracking orchestral parts, will
lead the tracking process. In addition, a lyrics
tracker, that has recently been shown to reli-
ably track the lyrics of opera songs, will cor-
rect the music tracker when tracking parts that
have a text dominance over the music. We
will demonstrate the efficiency of this method
on the opera Don Giovanni, showing that this
technique helps improving accuracy and ro-
bustness of a complete opera tracker.

1 Introduction and Contribution

Score following aims at aligning classical mu-
sic performances with their corresponding scores
(sheet music), in order to assign a score position at
each time step in the performance. There has been
constant progress in this domain, starting with
the tracking of monophonic melodies in (Dannen-
berg, 1984), all the way to recent systems that can
follow, under real conditions, complex orchestral
works (Arzt and Widmer, 2015) in a completely
autonomous process. This has led to the devel-
opment of new applications such as automatic
page-turning for pianists (Arzt et al., 2008), live
performance visualization (Lartillot et al., 2020),
or score viewing and automatic contextualization
in orchestra concerts (Prockup et al., 2013; Arzt
et al., 2015) to enrich the viewers’ experience.

Tracking live opera performances would be-
come an essential tool for all future opera halls,
supporting functionalities like fully automatic sub-
titles display, or automatic camera control and
video editing for live streaming services. How-

ever, and compared to previous existing works, op-
eras are more challenging to track, due to the setup
with a complete orchestra and singers that act and
sing on stage, one or several at a time, for several
hours, with various noises, acting breaks, intermit-
tent applause, musical (sometimes improvised) in-
terludes, etc.

First attempts at opera tracking (Brazier and
Widmer, 2020b,a) use an On-Line Dynamic Time
Warping (OLTW) algorithm (Dixon, 2005) to align
complete performances with a reference perfor-
mance (some other recording of the work in ques-
tion) that has been aligned to the score beforehand
and serves as a proxy to the score. This audio-
to-audio alignment strategy is an elegant way to
circumvent the unavailability of complete opera
score files in symbolic format. Also, using a real
recording is advantageous because the sounds in
the reference are much more realistic and simi-
lar to what is to be expected in the real perfor-
mance than anything one could synthesize from
a score. Brazier and Widmer (2020b) combine
alignment with three audio event detectors for mu-
sic, speech/singing voice, and applause, which
halt the tracking process during long silences, ap-
plause, or interlude passages that can occur in be-
tween the parts. Brazier and Widmer (2020a) fur-
ther improve tracking accuracy by using two track-
ers working in parallel, one using audio features
tuned on orchestral music (Gadermaier and Wid-
mer, 2019), the other using features tuned on the
recitative subset of one opera performance.

In this work, we propose to exploit an additional
source of information: the lyrics sung or spoken in
the audio recordings. We do not assume the writ-
ten lyrics to be available in textual form. Rather,
the idea is to train an acoustic phoneme recogni-
tion model that extracts phoneme sequence esti-
mates both from the reference (off-line) and the
live performance (on-line), and to align these in
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Conductor Place Year Duration Role

H.v. Karajan Berlin 1985 2:57:53 Reference
Á. Fischer Vienna 2018 3:12:54 Target
A. Manacorda Vienna 2019 3:07:09 Target

Table 1: Dataset used in this study.

real time, giving us a real-time lyrics tracking al-
gorithm. More specifically, the acoustic model
will predict, for each audio frame, a probability
vector over a set of phonemes. For each part
(aria, recitative, etc.) in the score, we assign a
voice on music ratio value, calculated on the ref-
erence recording with the help of dedicated mu-
sic/speech audio classifiers. The music tracker
leads the alignment process. As soon as the score
position corresponds to a voice-dominant part in
the score, the lyrics tracker starts and we rely on its
score position. When the score position reaches a
music-dominant part, the lyrics tracker is stopped
and the music tracker alone is used.

Acoustic model and lyrics tracker have already
been presented in a recent publication (Brazier and
Widmer, 2021b), but only evaluated on selected
text-heavy recitativo passages. Here we demon-
strate, for the first time, the benefit of combining
lyrics with music tracking in an automated way.

2 Data Description

Score followers are evaluated by computing their
alignment accuracy on audio performances that
have been manually annotated to the correspond-
ing score. As no such dataset exists for opera, we
had to create our own. The dataset focuses on
the opera Don Giovanni by W.A.Mozart. As the
reference, serving as a proxy to the score, we se-
lected a commercial CD recording conducted by
Herbert von Karajan in 1985. As target perfor-
mances that we want to align to the score in real
time, we use two full live performances, with dif-
ferent casts and stagings, that have been recently
recorded at and by the Vienna State Opera, one
conducted by Ádam Fischer in 2018, the other
by Antonello Manacorda in 2019. There are two
parts in the reference that are not played in the two
live recordings. For this study, we decided to re-
move these to align performances that follow the
same score structure. Compared to the reference,
the live performances contain applause, breaks,
and interludes that can appear between parts. The
dataset details are given in Table 1.

For each performance in the dataset, we man-
ually affixed 5,304 bar annotations, 2,866 for the
first act and 2,438 for the second, corresponding
to the total number of bars present in the 500-
pages score book. The annotations in the refer-
ence performance permit to link the complete per-
formance to the score book. The annotations in the
target performances serve for evaluating the align-
ment accuracy of our tracker. Thus, our dataset
comprises more than 9 hours of opera recordings
played and sung in real conditions by different or-
chestras and singers and recorded with different
recording setups. It contains around 16,000 man-
ual bar-level annotations assigned to the 530 pages
score book, which is available online thanks to the
Mozarteum Foundation Salzburg1. Precisely, an-
notating these 9 hours of music took about 300
hours of work.

3 Real-Time Opera Trackers

Operas are complex works that combine music,
singing, and speech in complex ways. Most of the
time, the piece is led by the music, with singers
singing on top of the orchestra. However, operas
also include passages, such as recitativo sections,
where the dominant signal is the lyrics spoken or
sung by the singers, with a sparse musical accom-
paniment that is played differently across perfor-
mances (e.g., arpeggiated chords, not aligned to
the lyrics, partly improvised, and played by differ-
ent instruments). To tackle this, we propose to al-
ternate between two trackers, one focusing on the
music information and the other on the lyrics in-
formation. We first describe our music tracker that
serves as a baseline in this study and that leads
the tracking process. We then describe our lyrics
tracker, and then propose one simple way of com-
bining them for achieving a better global tracking
accuracy. This combination strategy will be exper-
imentally verified in the next chapter.

3.1 Music Tracker

The music tracker is based on an adaptive ver-
sion of the On-Line Time Warping (OLTW) al-
gorithm (Dixon, 2005) that has been successfully
used in orchestra (Arzt et al., 2008) and also in
opera tracking (Brazier and Widmer, 2020b,a).
The OLTW algorithm updates an accumulated
cost vector that has the length of the reference
feature sequence, where the index of its minimal

1https://dme.mozarteum.at/DME/nma/
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value corresponds to the score position given by
the algorithm. Per audio frame, it receives as in-
put a feature vector of 100 MFCCs (120 MFCCs
are calculated from the audio sampled at 44.1 kHz,
but the first 20 are discarded (Gadermaier and
Widmer, 2019)), computed with a window size of
20 ms, and a hop size of 10 ms. The features of the
reference audio are computed beforehand, while
those of the target performance are computed in
real-time. For each new incoming target feature,
we compute the cosine distance between the fea-
ture and an interval of reference features of length
c, centered around the expected score position (in
practice c is fixed to 4000, corresponding to a con-
text of 40 seconds of audio). Then, considering
the previous score position sp, the previously ac-
cumulated cost vector Dprev, and the current dis-
tance vector d, we compute the value of the new
accumulated cost vector D by first initializing its
values by +∞, and then applying the following
recursive formula:
∀i ∈ [sp− c/2 : spj−1 + c/2] ,

D[i] = d[i− (sp− c/2)] +min





Dprev[i− 1]

Dprev[i]

D[i− 1]
(1)

To compare costs in D among themselves and
not favor shorter paths over longer ones, we nor-
malize them by dividing all values by their dis-
tance from the initial score position (i.e. by the
sum of their index in the accumulated vector and
an incremental counter representing the number of
iterations since the beginning of the tracking).

Our target performances are performed under
real conditions and thus include applause, breaks,
or interludes that can be played in between the
parts. We make use of the applause, music, and
speech detectors detailed in (Brazier and Widmer,
2020a) to halt the tracking process when detected.

3.2 Lyrics Tracker

The lyrics tracker makes use of an on-line audio-
to-lyrics alignment method that has been shown to
robustly track the lyrics of different languages, in
the genre of opera (Brazier and Widmer, 2021b).
The tracker is composed of an acoustic model that
generates, in real-time, posteriograms represent-
ing the frame-wise probability distribution over a
set of predefined phonemes through time. Then,
it employs the same OLTW algorithm described

in Section 3.1, but in this case, aligning the pos-
teriogram of the reference performance generated
beforehand, and the posteriogram of the target per-
formance generated online. This obviates the need
for a text-to-phoneme tool to translate the written-
out lyrics, as well as a manual alignment of the
lyrics to the reference performance. It works with-
out having the lyrics themselves and can track a
language other than the language(s) the acoustic
model was trained on, as shown in (Brazier and
Widmer, 2021b).

The acoustic model is the core element of our
lyrics tracker; its role is to estimate in real-time
a posteriogram matrix from the audio recording.
Its architecture is the CP-ResNet (Koutini et al.,
2019), composed of convolutional layers with
residual connections between layers, and has a re-
ceptive field of 57 frames in the input feature se-
quence centered around its time position, fixing
the delay of the model to 28 frames. The model
takes as input 80 MFCCs that are extracted from
an audio window of 20 ms, sampled at 16 kHz,
with a hop size of 10 ms; it outputs a vector every
40 ms. The output vector is of length 60, repre-
senting the classes of the 57 different phonemes
that are included in the multilingual DALI dataset
(Meseguer-Brocal et al., 2018) used to train the
model. The dataset collects 275 hours of Western
musical genres with lyrics annotations at the sen-
tence, word, or note level, and includes English,
German, French, Spanish and Italian languages.
The phoneme representation permits to train a sin-
gle model on different languages (Vaglio et al.,
2020). The output vector also adds the space to-
ken, the instrumental token, and the blank token,
essential to a Connectionist Temporal Classifica-
tion (CTC) training (Graves et al., 2006) (the blank
class will be ignored when applying Equation 1).

3.3 M&L Tracker: Combining Music and
Lyrics Trackers

To exploit the complementarity between the two
previously described trackers, we first classify
each part of the opera in two classes (in the given
reference performance): parts dominated by the
music and parts dominated by the voice. To do
so, we use the structure detailed in the Table of
Contents of the Opera2, and consider each title as
an individual part. For each part, we use the mu-

2dme.mozarteum.at/DME/nma/nma_toc.php?
vsep=68
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sic and voice detectors (already used to halt the
tracking process in between parts, as mentioned in
Section 3.1 above) to calculate a voice over mu-
sic ratio that is given by the percentage of voice
along the part divided by the percentage of music.
Thus, an instrumental part will have a ratio close
to 0, whereas a part that contains more voice than
music will have a ratio higher than 1.

The combination of the two proposed tracking
models is delicate because they both work at a dif-
ferent pace (10ms for the music tracker, and 40ms
for the lyrics tracker), the lyrics tracker has a de-
lay of 280ms in its output due to its receptive field,
and neither of them is able to track accurately full
opera performances. More precisely, the music
tracker is inaccurate when an improvised accom-
paniment is played during a part led by the lyrics,
and the lyrics tracker is entirely lost during instru-
mental parts. Our approach is to use the music
tracker continuously, along with the complete tar-
get performance. When the score position given
by the music tracker corresponds to a part in the
score that, according to our estimated voice/music
ratio, is dominated by voice(s), we initialize the
accumulated cost vector of the lyrics tracker by
values of +∞ everywhere, and a value of 0 at the
score position given by the music tracker. We then
use separately music and lyrics trackers but we
rely only on the score position given by the lyrics
tracker. As soon as the score position given by
the lyrics tracker corresponds to a part in the score
dominated by music, we stop the lyrics tracker and
rely on the position given by the music tracker.

4 Experiments and Discussion

For our experiments, we compare three different
tracking models. The first, music, reproduces the
work in (Brazier and Widmer, 2020b) and uses
the music tracker only (including acoustic event
detectors to deal with interludes and other unex-
pected events such as applause and acting pauses).
The second one, musicP, is the state-of-the-art
opera tracker (Brazier and Widmer, 2020a); it uses
two music trackers in parallel, one using the fea-
tures detailed in Section 3.1, the other using opti-
mized audio features that have been tuned on the
recitative subset of the Fischer performance. Fi-
nally, the third tracker M&L is the contribution
of this paper. The systems are evaluated by their
alignment accuracies (Cont et al., 2007). We re-
port the mean error in ms, as well as the propor-

Conductor Tracker Mean ≤ 1s ≤ 2s ≤ 5s

Fischer music 811ms 91.8% 95.0% 97.3%
musicP 373ms 93.4% 96.8% 99.0%
M&L 335ms 94.1% 97.3% 99.2%

Manacorda music 561ms 90.1% 94.5% 97.9%
musicP 547ms 90.3% 94.7% 98.0%
M&L 410ms 91.6% 95.9% 99.0%

Table 2: Tracking error of three trackers: music (Bra-
zier and Widmer, 2020b), musicP (Brazier and Wid-
mer, 2020a), and Music and Lyrics (M&L).

tions of bar boundaries (which reflect the precision
of our ground truth annotations) that are detected
with an error less than 1, 2, and 5 seconds. The
results are given in Table 2.

For both live target performances, the proposed
music & lyrics tracker achieves the best accuracy,
beating the music tracker, and also the musicP
tracker whose features were tuned on the Fischer
performance. The accuracy improvement on Fis-
cher is relatively small, but no fine-tuning on fea-
tures is done in our proposal. The improvements
on Manacorda are more substantial, dropping the
mean error to 410 ms and increasing all the 3 per-
centages by at least one point.

We tried to take into account the delay of the
lyrics tracker, in adding an offset to the score posi-
tion given by the tracker, but the best results were
achieved in ignoring this delay.

5 Conclusion

We have presented a new state-of-the-art method
for tracking full-length opera performances. The
method makes use of an acoustic model that es-
timates the sung lyrics (phoneme probability vec-
tors) over time. The final model combines lyrics
and music information (without requiring the writ-
ten lyrics as input) via two specific trackers. The
combination helps to improve the tracking accu-
racy of the performance.

The proposed method requires a part segmen-
tation of the reference performance. The begin-
nings and ends of each part are directly given by
the manual bar annotations, useful to also handle
structural mismatches in opera (Brazier and Wid-
mer, 2021a). However, we plan to emancipate our-
selves from the manual annotations with the devel-
opment of a method that fully autonomously seg-
ments a piece.

4



Acknowledgments

The research is supported by the European Union
under the EU’s Horizon 2020 research and inno-
vation programme, Marie Skłodowska-Curie grant
agreement No. 765068 (“MIP-Frontiers”). The
LIT AI Lab is supported by the Federal State of
Upper Austria.

References
Andreas Arzt, Harald Frostel, Thassilo Gadermaier,

Martin Gasser, Maarten Grachten, and Gerhard Wid-
mer. 2015. Artificial Intelligence in the Concertge-
bouw. In Proc. of the International Joint Conference
on Artificial Intelligence (IJCAI), pages 2424–2430,
Buenos Aires, Argentina.

Andreas Arzt and Gerhard Widmer. 2015. Real-Time
Music Tracking Using Multiple Performances as a
Reference. In Proc. of the International Society for
Music Information Retrieval Conference (ISMIR),
pages 357–363, Málaga, Spain.

Andreas Arzt, Gerhard Widmer, and Simon Dixon.
2008. Automatic Page Turning for Musicians via
Real-Time Machine Listening. In Proc. of the Euro-
pean Conference on Artificial Intelligence (ECAI),
pages 241–245, Patras, Greece.

Charles Brazier and Gerhard Widmer. 2020a. Ad-
dressing the Recitative Problem in Real-time Opera
Tracking. In Proc. of the Frontiers of Research in
Speech and Music conference (FRSM), Silchar, In-
dia.

Charles Brazier and Gerhard Widmer. 2020b. To-
wards Reliable Real-Time Opera Tracking: Com-
bining Alignment with Audio Event Detectors to In-
crease Robustness. In Proc. of the Sound and Mu-
sic Computing Conference (SMC), pages 371–377,
Turin, Italy.

Charles Brazier and Gerhard Widmer. 2021a. Handling
Structural Mismatches in Real-time Opera Tracking.
In Proc. of the European Signal Processing Confer-
ence (EUSIPCO), Dublin, Ireland.

Charles Brazier and Gerhard Widmer. 2021b. On-Line
Audio-to-Lyrics Alignment Based on a Reference
Performance. In Proc. of the International Soci-
ety for Music Information Retrieval Conference (IS-
MIR), Online.

Arshia Cont, Diemo Schwarz, Norbert Schnell, and
Christopher Raphael. 2007. Evaluation of Real-
Time Audio-to-Score Alignment. In International
Symp. on Music Information Retrieval (ISMIR),
pages 315–316, Vienna, Austria.

Roger B Dannenberg. 1984. An On-Line Algorithm
For Real-Time Accompaniment. In Proc. of the
International Computer Music Conference (ICMC),
pages 193–198, Paris, France.

Simon Dixon. 2005. An On-Line Time Warping Algo-
rithm for Tracking Musical Performances. In Proc.
of International Joint Conference on Artificial Intel-
ligence (IJCAI), pages 1727–1728, Edinburgh, Scot-
land, UK.

Thassilo Gadermaier and Gerhard Widmer. 2019. A
Study of Annotation and Alignment Accuracy for
Performance Comparison in Complex Orchestral
Music. In Proc. of the International Society for
Music Information Retrieval Conference (ISMIR),
pages 769–775, Delft, The Netherlands.

Alex Graves, Santiago Fernández, Faustino Gomez,
and Jürgen Schmidhuber. 2006. Connectionist Tem-
poral Classification: Labelling Unsegmented Se-
quence Data with Recurrent Neural Networks. In
Proc. of the International Conference on Machine
Learning (ICML), pages 369–376, Pittsburgh, Penn-
sylvania, USA.

Khaled Koutini, Hamid Eghbal-zadeh, Matthias Dor-
fer, and Gerhard Widmer. 2019. The Receptive
Field as a Regularizer in Deep Convolutional Neu-
ral Networks for Acoustic Scene Classification. In
Proc. of the European Signal Processing Conference
(EUSIPCO), A Coruña, Spain.

Olivier Lartillot, Carlos Cancino-Chacón, and Charles
Brazier. 2020. Real-Time Visualisation of Fugue
Played by a String Quartet. In Proc. of the Sound
and Music Computing Conference (SMC), pages
115–122, Turin, Italy.

Gabriel Meseguer-Brocal, Alice Cohen-Hadria, and
Geoffroy Peeters. 2018. DALI: A Large Dataset
of Synchronized Audio, Lyrics and Notes, Auto-
matically Created using Teacher-Student Machine
Learning Paradigm. In Proc. of the International
Society for Music Information Retrieval Conference
(ISMIR), pages 431–437, Paris, France.

Matthew Prockup, David Grunberg, Alex Hrybyk,
and Youngmoo E. Kim. 2013. Orchestral Per-
formance Companion: Using Real-Time Audio to
Score Alignment. IEEE MultiMedia, 20(2):52–60.

Andrea Vaglio, Romain Hennequin, Manuel Mous-
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What Musical Knowledge Does Self-Attention Learn ?
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Abstract

Since their conception for NLP tasks in 2017,
Transformer neural networks have been in-
creasingly used with compelling results for a
variety of symbolic MIR tasks including mu-
sic analysis, classification and generation. Al-
though the concept of self-attention between
words in text can intuitively be transposed as
a relation between musical objects such as
notes or chords in a score, it remains rel-
atively unknown what kind of musical rela-
tions precisely tend to be captured by self at-
tention mechanisms when applied to musical
data. Moreover, the principle of self-attention
has been elaborated in NLP to help model the
“meaning” of a sentence while in the musical
domain this concept appears to be more sub-
jective. In this explorative work, we open the
music transformer black box looking to iden-
tify which aspects of music are actually learnt
by the self-attention mechanism. We apply
this approach to two MIR probing tasks : com-
poser classification and cadence identification.

1 Introduction

The Transformer (Vaswani et al., 2017) is a neu-
ral network architecture based on the self-attention
mechanism that was designed for sequence pre-
diction tasks (machine translation, syntactic pars-
ing, etc.) in NLP. Subsequently, the self-attention
principle has also been applied with success to
improve MIR tasks including harmony analy-
sis (Chen and Su, 2021) and generation with
long-term coherence as demonstrated with Mu-
sic Transformer (Huang et al., 2018b). The Mu-
sic Transformer model has then inspired various
researches including the generation of pop mu-
sic (Huang and Yang, 2020) and guitar tabla-
ture (Chen et al., 2020).

Despite its increasing use in MIR tasks, the na-
ture of the musical knowledge learned by Trans-
formers is rarely studied. (Huang et al., 2018a)

proposes a tool to visualise self-attention weights
associated to a musical extract but without any
systematic analysis. Inspired by NLP litera-
ture(Conneau et al., 2018; Coenen et al., 2019;
Tenney et al., 2019; Manning et al., 2020) our
work aims at opening the Music Transformer
black box in order to extract its abstract represen-
tation of musical sequences and submit those rep-
resentations to two selected MIR “probing” tasks
: composer classification and cadence detection.

The self-attention mechanism is encoded within
a transformer through matrices of coefficients,
produced by attention heads, which are distributed
in the subsequent layers of the network. Given a
sequence of tokens x1, . . . , xT an attention head
produces an attention matrix A = (aij)1≤i,j≤T

where aij encodes “the attention that token xi
gives to token xj” or the weight that xj is going
to play in in the next layer representation of xi.
The goal of our study1 consists in identifying the
musical knowledge that is encoded within these
matrices in a trained Transformer. For this pur-
pose we designed two “probing” datasets of musi-
cal sequences labeled with informations that were
not explicitly available to the Transformer during
training. The first dataset is labeled by the com-
poser of the sequence. In the second dataset the se-
quences are characterized as containing a cadence
(musical phrase ending) or not.

In the following we show, that a simple linear
classifier fed with isolated attention matrices is
able to discriminate between two composers when
their styles are different enough. In contrast, an
analogous experiment shows that marks of struc-
tural phenomena such as cadences appear more
challenging to detect in attention matrices.

In the second part of our study, we examine at-
tention values in order to gain insights into the

1Code avaliable at https://github.com/
Music-NLP/MusicalSelfAttention
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classification results. Our observations reveal var-
ious orientations (past or future) of attention spans
among composers, as well as prominent attention
values on theoretic cadence preparation points.

2 Attention Based Sequence
Representation

In this work, the Music Transformer is used as a
representation tool, to compute self-attention rela-
tions for any arbitrary musical sequence.

The MAESTRO dataset is used in this study to
train the Music Transformer. This dataset gath-
ers 1276 piano performances of pieces composed
by 54 major composers of different styles, includ-
ing Bach, Mozart, Beethoven or Debussy. In order
to be compatible with the Transformer input for-
mat, the MAESTRO dataset is converted into se-
quences of tokens following the syntax proposed
by (Huang et al., 2018b). This token represen-
tation includes NOTE ON, NOTE OFF, TIME
SHIFT, and VELOCITY types. In this study, we
trained2 a Music Transformer neural network on
this corpus as explained in (Huang et al., 2018b).

The Transformer architecture trained for this
study includes an encoder with 6 layers, each com-
posed of 4 attention heads. Given an input se-
quence of T elements an attention head produces
a square real-valued attention matrix X = (xij)
of dimension T × T . The value xij is usually in-
terpreted as the attention that the elements at posi-
tion i has for the element at position j. Once the
transformer is trained, it has the ability to system-
atically abstract any musical sequence of size T
by a set of 6 × 4 = 24 attention matrices of size
T×T . Through probing tasks NLP literature (Ten-
ney et al., 2019; Manning et al., 2020) has reported
that lower attention heads seem to attend to lower
level abstractions, such as syntactic parsing, while
deeper layers attend to higher level abstract such
as coreference resolution. Assuming that some of
this knowledge is transferable to the musical do-
main we have chosen to focus on the deeper layer
of the encoder for representing the sequences in
our MIR inspired probing tasks. We have chosen
to collapse the 4 attention matrices produced by
the last layer into an average matrice, and to use
these T × T coefficients as the input to the clas-
sification tasks that we define in the next section3.

2Using the implementation in
https://github.com/jason9693/
MusicTransformer-tensorflow2.0

3Although probing tasks are often performed on other out-

Figure 1 illustrates this pipeline.

3 Agnostic Probing Tasks

In this section, we describe two probing tasks that
aim at highlighting the musical knowledge en-
coded in attention values computed by the Music
Transformer. The first task is a composer classi-
fication and the second one is cadence detection.
Both tasks are formulated as supervised binary
classification performed on the attention matrices
described in section 2.

3.1 Composer Identification
We evaluate the ability of learned attention repre-
sentations to model musical style through a com-
poser identification task.

We used a subset of the MAESTRO dataset that
contains unique composer performances to create
several binary classification tasks composer1 vs
composer2. To better highlight the ability of
attention values to capture stylistic information,
we deliberately selected composers that are known
to be close in term of style, such as Haydn and
Mozart, and far apart, such as Bach and Chopin.

For each couple, a set of training musical se-
quences of fixed size are abstractly represented
as attention matrices (see Section 2). The train-
ing sets are balanced and contain 2648 sequences
from each of the composers. The corresponding
abstract representations are then given as input to a
logistic regression classifier with l2-regularization
that is trained to assign composer authorship to
any input attention matrix. The experiment is re-
peated 5 times, sampling various training sets for
every couple of composers and for various sizes of
sequences. Figure 2 displays the average perfor-
mance of the classifiers over a separate and fixed
test set4 of 426*2 sequences. A random classifier
is here expected to have a 50% accuracy.

Low standard deviations, illustrated by verti-
cal lines on each experiment, show that given a
couple of composers the accuracy is quite sta-
ble with respect to the various training sets. Fig-
ure 2 also shows that the accuracy generally tends
to increase with the size of the sequences (which
was not obvious since when increasing the size of
the sequence we increase quadratically the search
space number of dimensions without increasing

puts of the transformer, limiting the transformation of atten-
tion values facilitates their musical interpretation in this work.

4We used MAESTRO train/test split to insure that a same
piece could not appear both in the train and the test set
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Figure 1: Pipeline used for the two probing tasks. The left part illustrates the systematic representation of a midi
sequence into a set of self-attention values thanks to the Music Transformer. The right part illustrates how a probing
task is formulated as a classification problem on attention values.

Figure 2: Mean accuracy of composer identification on
attention matrices computed from sequences of various
lengths.

the number of examples). The difficulty of the
classification task of a pair of composers certainly
relates to how they differ in style. Interestingly, by
using birth date gaps as rough proxy for style dif-
ferences, the accuracies appears to match the dif-
ficulty of the tasks5.

3.2 Cadence Detection

Cadences are structural breaks widely used in
the classical repertoire to emphasize the end of
a musical phrase. Cadence are often associated
with a closure feeling that resolves a tension re-
gion (Blombach, 1987). This concept therefore
appears as a promising candidate to validate the
principle of self-attention in music as the short
past that precedes a cadence is supposed to be or-
ganized in close relation with the upcoming ca-
dence. This short past is sometime referred to as
the preparation of the cadence.

The present task consists in evaluating how

5Birth date gaps (in years) : Chopin-Bach: 125, Debussy-
Mozart: 106, Debussy-Chopin: 52, Mozart-Haydn: 24 and
Chopin-Schubert: 13

much the attention values encode the presence of
a cadence. Our hypothesis is that cadential points
and preparation points should have important mu-
tual attention one for each other if they appear con-
comitantly within the training set. Attention matri-
ces are computed as explained in section 2 through
a Transformer which is trained on the MAESTRO
corpus. Given the pieces of music present in the
MAESTRO dataset, it can reasonably hypothe-
sized that cadences, that are typical of the classi-
cal era, are sufficiently represented in the training
set to be modeled by the Transformer. Similarly
to the composer identification task, a set of at-
tention matrices, that represent musical sequences
with and without cadences, are used to train a lo-
gistic regression classifier. For this purpose, we
use a dataset of 24 fugues from J.-S. Bach with
cadence annotation (Giraud et al., 2015). A set of
3864 sequences of 64 tokens is sampled from the
fugue dataset, a third of which include a cadence6

while the remaining do not include any cadence.
We use a leave-one-piece-out strategy to evaluate
the performance of the cadence classification and
compare it to a random classification on each fold
of the cross-validation. The micro-averaged F1
score of the cadence classifiers is 0.458 as com-
pared to 0.315 for the random classifier. This re-
sults seems to suggest that attention values learned
by the Transformer do encode some information
about the notion of cadence.

3.3 Discussion

Cadences belong to high level elements of tonal
musical language. Despite their unified closure
meaning, they can be realized through a large vari-

6A same cadence can appear several time in our dataset
but at different positions and necessarily in the 2nd half of the
sequence in order to favor the inclusion of the preparation of
the cadence within the sequence.
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Figure 3: Distribution of the attention spans. The hor-
izontal axis shows the length of attention spans (in to-
kens).

ety of musical surfaces, which makes their model-
ing particularly complex (Bigo et al., 2018). Musi-
cal style, on the other hand, can refer to lower level
relationships between musical objects, like pitch
intervals. It is therefore interesting to observe that
our attention based classification approach give re-
sults better than chance both on style modelling
and on cadence detection.

4 Musical Interpretation of
Self-Attention Relations

In this section, we provide a few exploratory anal-
ysis to gain musical insights on the data that was
given in input to the probing classifiers.

4.1 How Do Transformers Learn About
Composers ?

As explained in section 2, the composer discrimi-
nation probing task was performed using an aver-
age attention matrix Ax computed from each se-
quence x. We averaged Ax for each composer
over a subset of 1000 sequences used for training
the linear classifiers. The sequence are of fixed
size (T = 64). The result is a matrix M =
(mij)1≤i,j≤T where mij is the average attention
that the ith token gives to the jth token in the se-
quences of a given composer. We consider that a
token at position i “looks at” a token in position j,
ie it has an attention span of at least i − j, if the
coefficient mij is greater than a certain threshold.
In Figure 3 we report the distribution of attention
spans for a threshold of 0.04 (≈ 7%− 10% of co-
efficients) for several composers.

The figure shows that the learned attention span
rarely exceeds five tokens in the past or in the fu-
ture. Interestingly, the attention learned on early
composers such as Bach, Haydn, Mozart, and
Schubert seem to focuse towards tokens in the
short past. In contrast, Chopin and Debussy atten-
tion is turned towards tokens in the short future,
which might be partly related to a stylistic rupture

Figure 4: Cumulated attention on successive offsets of
bar 29 of Fugue 2 of the Well-Tempered Clavier from
Bach. A perfect authentic cadence is annotated on beat
3 (blue frame). Other points of prominent attention (red
and green) correspond to important preparation points
of the cadence.

of the composers with the classical era. Confirm-
ing this hypothesis would require a deeper study.

4.2 How Do Transformers Learn About
Cadences ?

In this experiment we observe the information
within the attention matrix Ax of a sequence con-
taining a cadence. The sequence can be divided
into TIME SHIFT events that can be aligned with
the beat pulse of the piece extract. Figure 4 shows
the cumulated attention between TIME SHIFT
events in regard with the sheet music.

5 Conclusions and Perspectives

We proposed in this work an original approach to
improve our understanding of the musical knowl-
edge that self-attention mechanism can learn. In
spite of instructive results, these experiments high-
light the difficulty to interpret neural values within
a multi layer model but also confirm the necessity
to pursue our efforts in that quest of comprehen-
sion of music deep learning models.

Futur works include experimenting with other
probing tasks, such as harmony and tonality analy-
sis, in order to better understand how Transformer
architectures learn these high level concepts. It
could also be interesting to test those tasks on dif-
ferent layers of the network to see if there is a gra-
dation in the information levels of abstraction.
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Abstract

In this paper we present a previously unex-
plored task, the generation of lyrics and vo-
cal melody for a given instrumental music
piece in the symbolic domain. We model the
above as a sequence-to-sequence task, using
a memory efficient Transformer architecture,
which we train on text event sequences that
describe entire songs. Towards this end, we
build a suitable dataset and apply musical anal-
ysis, compressing the instrumental part and
making it key-independent. We further de-
sign a novel architecture to decouple lyrics and
melody generation, making it possible to use
pretrained language models and conditioning
on lyrics. Finally, Mellotron is used to turn the
generated sequences into singing audio.

1 Introduction

A significant part of research on singing has
focused on information retrieval tasks, such as
lyrics or melody transcription (Stoller et al., 2019;
Nishikimi et al., 2019), as well as on singing voice
synthesis (Nishimura et al., 2016). Generating the
(symbolic) content of singing, namely lyrics and
vocal melody, has only recently started gaining
more attention. Relevant work has focused on gen-
erating lyrics for a specific music style or melody
and lyrics-conditioned vocal melody generation.

Vocal music coexists with instrumental in most
contemporary genres. However, despite the grow-
ing interest on studying the relation of lyrics and
vocal melody, the connection of both to the ac-
companiment remains overlooked. In this work
we aspire to fill this substantial gap.

We model the instrumental-conditioned gener-
ation of vocal melody and lyrics as a seq2seq
task. First, we create pairs of text event se-
quences, which we use to train a baseline encoder-
decoder Transformer architecture. We then pro-
pose a way to decouple lyrics from vocal melody

generation, by inserting another decoder. Finally,
we bring this symbolic output into the audio do-
main and perform a subjective evaluation study,
using a singing voice synthesis model. In con-
trast to previous works that study vocal generation
on the sentence level, we model full songs, which
presents additional technical challenges.

Our main contributions to the field are the fol-
lowing: (a) We introduce the task of lyrics and vo-
cal melody generation conditioned on the accom-
paniment. (b) We build a suitable dataset for this
task by enforcing consistent tokenization. We ap-
ply musical analysis to compress the instrumental
part up to 20% of the original, resulting to faster
training. (c) We optimize the Transformer archi-
tecture in order to model full song sequences of
up to 60k tokens in a single GPU. (d) We pro-
pose an architecture that decouples lyrics and vo-
cal melody generation, providing the ability to use
pretrained language models and predefined lyrics.

We release all code, datasets and some gener-
ated samples1.

2 Related Work

Conditional Vocal Melody Generation In
(Madhumani et al., 2020) a combination of word
and syllable embeddings is used as input to an
LSTM encoder (Hochreiter and Schmidhuber,
1997) that uses a vector to attend to three separate
decoders, for note, duration and rest. Yu et al.
(2021) use an LSTM that takes as input lyrics
embeddings and noise vectors to sample MIDI
sequences, which are provided to another LSTM
alongside text embeddings and classified as real or
fake. Another approach (Liu et al., 2020) studies
singing voice generation without any melody
or lyrics information, using GANs (Goodfellow
et al., 2014) conditioned also on accompaniment.

1github.com/gulnazaki/lyrics-melody
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Lyrics Generation In (Vechtomova et al.,
2020) an LSTM-VAE creates latent representa-
tions of lyrics that condition lyrics generation
on audio embeddings. Lu et al. (2019) use an
encoder-decoder LSTM to generate lyrics, tak-
ing into account the only rhythmic quality of the
melody. In (Watanabe et al., 2018) conditioning
is done by concatenating each syllable to a local
window of the corresponding melody note, before
feeding it as input to an LSTM language model.

3 Dataset Description

Our dataset is built upon a subset of the Lakh
MIDI Dataset (LMD) (Raffel, 2016) that consists
of 45, 129 uniquely matched MIDI files.

3.1 Creating A More Consistent Dataset

LMD is not oriented towards the analysis of vo-
cals. Therefore, many files do not include a vocal
melody or synchronized lyrics. Moreover, the an-
notation of lyrics is not always consistent. Many
tracks include different sentence and verse separa-
tors, mixing of MIDI lyrics and metadata, as well
as inconsistent division of lyrics into sung sylla-
bles. The latter depends not only on the annota-
tor but on the way the lyrics are sung, resulting,
among others, to irregular tokenization of words.

In order to formalize our dataset, we construct
a pre-processing pipeline. We keep only English
lyrics, remove any metadata and use standard sen-
tence and verse separators. To derive the vocal
part, we assign each lyric to the closest note and
choose the track with the most matches. To make
the division of lyrics consistent and reversible at
inference time we enforce a strict syllabified for-
mat, using Phonetisaurus (Novak et al., 2015) for
grapheme-to-phoneme conversion. We split words
into syllables, each one ending at a vowel. If a
note corresponds to n > 1 syllables we divide it
to n equal duration notes and if a syllable spans
n > 1 notes we match it to the first one and assign
the next n− 1 notes to a special symbol.

After completing the above process we are left
with 8505 valid MIDI tracks.

3.2 Text Event Format

We create separate text event sequences for the in-
strumental and the vocal parts.

All sequences consist of the following types of
tokens: (1) Note on (a note of this pitch starts), (2)

Note off (a note ends), (3) Wait time (time passed
in MIDI ticks2).

Figure 1: Instrumental Text Event Representation

We restrict notes in the piano range, shifting
octaves if needed, resulting in 88 MIDI pitches.
All instruments are grouped into 8 classes (Guitar,
Bass, etc.) and each name is appended to the cor-
responding note token. An instrumental sequence
can be seen in Figure 1.

Figure 2: Vocal Text Event Representation with
phonemes corresponding to the lyrics: in a marke(-e)t

Vocal sequences contain additional tokens: (1)
Syllable/phoneme (syllable of the following note),
(2) Extension (following note extends previous
syllable), (3) Boundary (comma, word, line or
verse separators) events.

For lyrics we use the extracted phonemes to re-
duce the vocabulary and account for rhyming and
homophones. Figure 2 shows a vocal melody se-
quence with phonemes preceding each note.

3.3 Chord Reduction

The above representation results in very long se-
quences when applied to full instrumental tracks,
imposing infeasible memory requirements and
slow training. A more compact representation can
benefit both model performance and robustness.

Vocal scores in jazz or orchestral music com-
monly use a reduced representation of the accom-
paniment that informs the singer about the har-
monic and rhythmical structure of a song. Inspired
by this, we create a chord reduction of the instru-
mental, using the music21 library (Cuthbert and
Ariza, 2010). Individual instruments are merged
and every new note results in the formation of a

2Takes values in [1, 2000] (more tokens needed for larger
durations). Each tick corresponds to 60

TR
seconds, T being

tempo in Beats Per Minute and R being the file resolution in
Pulses Per Quarter Note.
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new chord. This method achieves a substantial re-
duction factor of 1

5 , as shown in Table 1.

Vocal Instrumental Reduced
median 1645 13041 3220

max 6115 59120 11730

Table 1: Number of tokens for Vocal, Instrumental and
Reduced Instrumental Sequences

We decide not to include the percussion part
and instead use notions such as beats and down-
beats events, which give more abstract but con-
crete rhythmical information. Besides the signif-
icant reduction in the instrumental sequences, we
avoid inserting noise to the process, since drum
parts are interpreted as pitches by music21.

3.4 Roman Numeral Analysis

To further capitalize on this chord representation,
we employ a type of musical analysis, called Ro-
man Numeral Analysis. Its core idea is that chords
and notes can be represented by a degree of the
musical scale they belong in3. Usage of roman nu-
merals reduces the token vocabulary and enables
us to model the relative position of chords, es-
sentially performing data augmentation, since all
songs are transposed to a common but abstract key.

Figure 3: Instrumental Text Event Representation with
Roman Numeral Chords, Rests, Downbeats and Beats

We get a key estimation using the Krumhansl-
Schmuckler algorithm (Temperley, 1999) and
based on that we represent each chord as a roman
numeral. An example of this representation for in-
strumental sequences can be seen in Figure 34.

We apply a similar procedure for the vocal
melody, by converting each note to a scale de-
gree. Since pitch information is important to get
more expressive vocal performances, we comple-
ment each token with its octave number.

3Uppercase roman numerals are used to represent major
chords, while lowercase represent minor ones. Numbers de-
note inversions and extra chord notes.

4Since the formed chords mostly succeed each other di-
rectly, we do not need note off events and instead use rest
events when required.

4 Proposed Method

4.1 Encoder-Decoder Architecture

We optimize a Transformer architecture to model
long sequences and use it as our baseline to gener-
ate vocal sequences, given the instrumental.

A drawback of the Transformer architecture is
that the memory footprint of the dot-product at-
tention mechanism scales quadratically with the
sequence length. To avoid this, we use the Per-
former (Choromanski et al., 2020), an architecture
that achieves linear space and time complexity by
using a mechanism called FAVOR+, which makes
an unbiased linear estimation of full-rank softmax
attention.

We further use reversible layers (Gomez et al.,
2017), storing the activations of only the last layer,
and feed-forward chunking as showcased in (Ki-
taev et al., 2020). We perform layer normaliza-
tion before each sublayer (pre-norm) (Chen et al.,
2018), reporting more stable training, with no
need to do warm-up. Finally, we use learnable po-
sitional embeddings and tie the token embeddings
of the decoder (Press and Wolf, 2017).

4.2 Decoupled Architecture

We augment the above architecture by adding a
separate decoder for lyrics. We use the encod-
ings of its last layer to further condition the vocal
melody decoder, adding a second cross-attention
layer to it (Libovický et al., 2018). The architec-
ture is presented in detail in Figure 4.

It should be noted that in this architecture lyrics
are generated without any instrumental condition-
ing. While we experimented with models that also
use cross-attention in the lyrics decoder, we found
them to perform poorly and be much harder to
train in comparison to this simplified version.

We train our model to minimize the sum of the
cross-entropy losses of the lyrics text and the vo-
cal sequence (without phonemes). The lyrics de-
coder can use its own tokenization and the two
sequences are merged at inference time, follow-
ing the syllable tokenization process of Subsection
3.1. This decoupling allows us to predefine lyrics
and use prior knowledge, which we achieve by us-
ing a language model pretrained on English lyrics.

To this end, we use a distilled5 version of GPT-2
(Radford et al., 2019) that fits our low-resource re-
quirements. We load the model’s weights into an

5https://huggingface.co/distilgpt2
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Figure 4: The Decoupled Architecture includes an in-
strumental encoder (bottom left), one decoder for lyrics
(top left) and one decoder for vocal melody (right) with
two cross-attention sublayers. The vocal melody de-
coder is conditioned by both instrumental and lyrics.

unconditional and causal decoder with FAVOR+
attention, which we then fine-tune on a dataset
of 263, 666 complete song lyrics. The purpose
of this is twofold. As discussed in (Choroman-
ski et al., 2020), fine-tuning is necessary for a Per-
former model to utilize the weights of a pretrained
Transformer. Moreover, it helps our model adapt
to the style of lyrics text (verse-chorus structure,
repetition of words, onomatopoeia, etc.).

4.3 Experimental setup

We train (a) an encoder-decoder model on the
full instrumental representation of Subsection 3.2
(Vanilla Full - model A), (b) an encoder-decoder
on the reduced representation of Subsections 3.3,
3.4 (Vanilla - model B) and (c) a decoupled model
on the latter representation (Decoupled - model C).

We use 6 layers with inner dimension of 512
and 8 attention heads for all models. The AdamW
optimizer (Loshchilov and Hutter, 2019) is used
with 0.001 learning rate and 0.1 weight decay.

During generation we use top-k sampling (Fan
et al., 2018) keeping the top 0.1 tokens. We also
take advantage of structural constrains in our rep-
resentation (e.g. note on followed by wait time
events only), by masking the valid tokens during
inference.

We report that training for 6 epochs with batch

size 8 takes a total of 74.6, 26.9 and 49.2 hours
in an NVIDIA Tesla T4 GPU for models A, B and
C respectively.

4.4 Subjective Evaluation

For 5 random instrumental tracks in the test set, we
convert the outputs of our three models to audio,
using a singing voice synthesis model called Mel-
lotron (Valle et al., 2020). We then mix it with the
synthesized instrumental. We ask 28 participant to
choose between these samples on the basis of: (a)
Rhythmic/Melodic Quality: how musical or inter-
esting the vocal part is, (b) Relation to the Music:
how well the vocal part fits with the instrumental,
(c) Lyrical Content: quality of the generated lyrics.
Table 2 shows the mean model preference values
for all three objectives.

Melody Relation Lyrics
Vanilla Full 0.369 0.246* 0.070

Vanilla 0.257* 0.374 0.052
Decoupled 0.374 0.380 0.878*

Table 2: Mean value of each model preference for all
28 users. * denotes statistical significance (p < 0.05)
using one-tail paired t-test (pairwise)

We observe that the reduced representation
favors the instrumental-vocal relation, since it
is more compact, but produces less interesting
melodies. The decoupled model performs well on
both metrics, which can be attributed to the sep-
arate modeling of the sequences, but does not re-
flect the independence between instrumental and
lyrics. Finally, the lyrics generated by the decou-
pled model are significantly superior, which can be
linked to the usage of a pretrained language model.

Using objective metrics to better understand the
performance of these models remains to be done.

5 Conclusions

In this paper, we presented a pipeline to generate
lyrics and vocal melody for any given instrumen-
tal MIDI file, using Transformer-based models. To
this end, we have built and released a dataset ori-
ented towards generation and study of vocals. We
report that compressing the instrumental represen-
tation leads to substantially faster training and fa-
vors its connection to the vocal part. We further
propose a decoupled architecture that allows us to
use prior knowledge from language models and
therefore generate more convincing lyrics.
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Abstract

Note segmentation of vocal pitch tracks is
an inherently difficult problem, on which hu-
man judgments often disagree. We propose
a novel note segmentation method that lever-
ages phonemic information. Phonemes and
pitch tracks are automatically extracted and
jointly utilised to estimate note transition re-
gions. Note onsets are determined within these
regions using an onset detection function. Fi-
nally, an HMM-based note tracker adds further
note boundaries for the case where multiple
notes are sung on the same vowel. Our note
segmentation method outperforms the previ-
ous best method on a standard public test set,
and is shown to be somewhat robust against
different types of lyrical content. Because
its performance is less convincing on another
dataset, we analyse problem cases and suggest
possible confounding issues.

1 Introduction

Automatic music transcription refers to converting
an acoustic waveform into a symbolic representa-
tion. While monophonic instrument transcription
is often considered to be a solved problem in mu-
sic information retrieval (Benetos et al., 2013), this
is not the case for singing, where pitch is rarely
stable (Dai and Dixon, 2019).

A singing transcription system usually consists
of two main steps: pitch tracking and note seg-
mentation. Firstly, the pitch and voicing are esti-
mated at each time point in the audio; secondly,
the continuous pitch track is segmented into notes
which have onset, offset and an indicative pitch.
For the first step, we use the PYIN algorithm
(Mauch and Dixon, 2014), which improves on the
widely used YIN algorithm (de Cheveigné and

∗YL is supported by a China Scholarship Council and
Queen Mary University of London joint Ph.D. Scholarship.

†ED receives funding from the European Union’s Horizon
2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement No. 765068.

Kawahara, 2002) for estimating the fundamental
frequency and voicing (presence or absence of
pitch) of a monophonic signal. As PYIN works
well for monophonic pitch estimation, we only fo-
cus on note segmentation in this paper.

Despite the high level of research activity in this
area, the average F-measures of note-level tran-
scription metrics (Correct Onset, Pitch and Offset,
COnPOff (Molina et al., 2014)) obtained by state-
of-the-art systems are all lower than 60%. Detec-
tion of “soft” onsets and offsets is still an unsolved
problem in note segmentation. Soft onsets and off-
sets occur when adjacent notes are smoothly con-
nected without obvious loudness variations. In
most cases, however, there is a phonetic change
between notes. Various spectral features have been
used to detect timbre changes, either by selecting
as boundaries peaks above a threshold in the mea-
sure of timbre change (Gómez and Bonada, 2013;
Yang et al., 2017), or by modelling vowels and
their transitions using an HMM (Hsuan-Huei Shih
et al., 2002; Heo and Lee, 2017). More recently,
utilising the flexibility of deep neural networks,
Fu and Su (2019) augmented their input data with
onset- and offset-related features to improve note
segmentation and transcription performance.

To solve the problem of soft onsets and off-
sets, this paper investigates whether phonemes
extracted by a state-of-the-art automatic lyrics
transcription system (Demirel et al., 2020) can
make a positive contribution. We hypothesise that
phoneme information can be used to narrow down
the range of frames where onsets and offsets are
likely to occur. In particular, consonants are possi-
ble indicators of note boundaries, whereas vowels,
unless there is a significant change of pitch or of
the vowel, indicate the body of a note.

2 Method

Based on the annotation approach of Molina et al.
(2014), our method assumes that note boundaries

17



Figure 1: Proposed 3-step note segmentation method.

can be categorised into three types: (1) the begin-
nings and ends of voiced segments; (2) phonetic
changes; (3) pitch1 and amplitude changes. We
detect these types of note boundaries and segment
the vocal track in a three-step cascading approach
which produces successively finer segmentations
at each step (Figure 1).

In Step 1, voiced segments (segments of contin-
uous pitch activity) are determined, based on the
PYIN pitch track. In Step 2, the voiced segments
are further segmented based on phonetic change,
to create what we call extended vowel regions,
as described in Section 2.1. In Step 3, extended
vowel segments are further divided based on pitch
and amplitude changes given by the PYIN algo-
rithm. The main novelty of this approach is the
incorporation of phonetic information into an ex-
isting framework for note segmentation, through
the introduction of the second step, which we now
describe in detail. 2

2.1 Step 2: Phoneme-Informed Segmentation
In order to detect phonetic change, the phonemes
are automatically transcribed and temporally
aligned using a state of the art lyrics transcription
system (Demirel et al., 2020). The Spectral Reflux
onset detection function (Sapp, 2006) is then used
to estimate the note boundaries more precisely.

Demirel et al.’s system provides a transcribed
phoneme sequence with aligned timings, but it
claims a boundary accuracy tolerance of 50 ms.
To detect note boundaries more precisely, we fine-
tune the phonetic output with a simple additional
signal processing step. First, we categorise the
phonemes into vowels and consonants, determin-

1We follow PYIN (Mauch et al., 2015) in setting the
threshold of pitch change required for a note boundary to 2

3
of a semitone.

2Step 1 is simple and does not require further description.
3We use non-integer values to represent continuous pitch.

(a) Adjacent vowels with similar pitches erroneously merged
into a single note.

(b) Successive notes sung on similar pitches with voiced
phonemes between vowels, leading to multiple merge errors.

Figure 2: Examples of common errors made by the
Tony software (Mauch et al., 2015). The ground truth
segmentation (red) is labelled with median pitch in
semitones (MIDI).3 The PYIN pitch track is yellow,
the note region extracted by Tony is bright green, de-
tected phoneme boundaries are orange, and spectral
flux is represented by the brightness of vertical lines.

ing the inter-vowel regions. We expand the inter-
vowel regions by 50 ms each side to account for
the system’s tolerance. Finally, the maximum of
spectral reflux in the expanded inter-vowel region
determines the exact note boundary. The pitch of
each segment is calculated as the median of the
pitch track within the segment.

Figure 2 illustrates the need for this step,
showing examples where Tony, a benchmark
method for monophonic singing voice transcrip-
tion (Mauch et al., 2015), makes the systematic
error of under-segmentation of successive notes
having continuous steady pitch tracks during note
transitions. These instances occur when consec-
utive notes are sung either with no consonants or
silent gaps (breathing, articulation, etc.), or with
short voiced consonants, between the successive
vowels. When there are two adjacent vowels with
no gap in between (Figure 2a), the note boundary
is determined by the timing of the vowel transi-
tion. Where there is a gap between consecutive
vowels (Figure 2b), we determine the note bound-
ary as the location of the local maximum of the
spectral reflux between the vowels in question.

2.2 Step 3: Pitch and Amplitude Changes

Steps 1 and 2 detect inter-vowel note boundaries,
but there are also note boundaries within vowels
that are communicated via pitch and amplitude
changes. In such cases, phoneme-based segmen-
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tation is unable to determine the note boundaries.
To estimate the timings of such boundaries, we ap-
ply the HMM-based segmentation method of Tony
(Mauch et al., 2015) within the extended vowel re-
gions resulting from steps 1 and 2 (Fig. 2).

3 Evaluation

For evaluation, we use the framework proposed by
Molina et al. (2014), including their monophonic
singing dataset (38 recordings with total duration
1154 seconds). We first show results from an ab-
lation study using standard metrics on this dataset,
and then follow this up with a comparison with re-
cently published systems. We then examine the ef-
fect of linguistic properties of the data on segmen-
tation results, and test on another publicly avail-
able dataset (Dai et al., 2015).

3.1 Ablation Experiments
To illustrate the contribution of each step in our
approach to the overall performance, we report re-
sults for different combinations of the steps de-
scribed in Section 2. Table 1 lists the methods,
the features used, and their performance on three
metrics. Since we consider voicing analysis (Step
1) as fundamental to any singing segmentation ap-
proach, we always include this feature, and test
different combinations of Steps 2 and 3.

The first three evaluation metrics (columns) in
Table 1 are the F-measures of COnPOff, COnP
and COn, as used in MIREX, and the other three
are the count proportions for various types of seg-
mentation errors (Molina et al., 2014). COnPOff
measures the rate of transcribed notes with correct
onset (±50 ms), pitch (±0.5 semitones) and offset
(±50 ms or ±20% of the duration of the reference
note). COnP represents correct onset and pitch,
and COn evaluates correct onset only. A “Split”
error means the ground truth note is split into mul-
tiple notes in the transcription, while a “Merged”
error is the opposite. A “Spurious” note error oc-
curs when a transcribed note does not overlap in
time with any ground truth note. The results indi-
cate that the various components of our approach
each contribute positively to the overall perfor-
mance on all three note-level metrics. In partic-
ular, disabling either Step 2 or 3 reduces perfor-
mance by ∼9% on the strictest measure, with Step
2 making the greater contribution to the results.

In addition, for all versions of the system, re-
laxing the requirement of correct offset detection
results in 15–20% better results, whereas relaxing
the requirement to estimate the correct pitch only

contributes a further 5% to the results. The re-
maining errors (relating to the onset) account for
20–25% of the results, so it is clear that a high
proportion of errors relate to onsets and offsets, or
in other words, the segmentation.

3.2 Comparison to the State-of-the-Art

In Table 2 we compare our results to published
work on singing transcription. We tested our
three-step method on Molina et al.’s dataset4

(Molina et al., 2014), and compared its perfor-
mance with six of the previous best sung note seg-
mentation and transcription methods.

Overall, the results demonstrate that our pro-
posed method achieves the best overall perfor-
mance (F-measure), by a small margin over Fu and
Su’s recent work (Fu and Su, 2019). In addition,
we have the lowest rates of merged and spurious
note errors, and only on the split error metric are
our results inferior to other systems. This means
that the system has a tendency to over-segment
the sung notes, compared to other published work.
Looking more closely at the results, however, we
see that most of the systems with lower split errors
have very high rates of merged errors, so they are
in fact under-segmenting the signal.

3.3 The Effect of Language

In this subsection, we investigate the robustness
of the proposed system to various types of lyric
content, including different languages and non-
linguistic content. In addition, we discuss the
sources of errors made by our system. We cate-
gorised the dataset by Molina et al. (2014) into the
five groups represented by the columns of Table
3. Melodies in this dataset are sung either in En-
glish, Spanish and/or the following isolated sylla-
bles: /Na/, /Da/ and /La/. Using the F-measure of
COnPOff, we compare performance of three ver-
sions of our system.

Several surprising results appear in Table 3.
Starting with the complete system (the final row),
the results for Spanish are about 19% higher than
those for English. It is not entirely unexpected that
Spanish is easier to segment, but this should be
weighed against the fact that the phoneme predic-
tions come from a lyrics transcriber that is trained
on English language songs (Demirel et al., 2020).

4For methodological correctness, we exclude 3 sam-
ples during evaluation which had been used during analysis
and development, even though we did not tune any hyper-
parameters on these samples. The results do not change sub-
stantially between the two versions of the dataset.
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Methods Features Used COnPOff COnP COn Split Merged Spurious
Steps 1+2 voicing(1), phoneme(2), onset(2) 0.525 0.712 0.761 0.013 0.235 0.128
Steps 1+3 voicing(1), pitch(3), amplitude(3) 0.520 0.683 0.741 0.079 0.233 0.114

Steps 1+2+3 voicing(1), phoneme(2), onset(2), pitch(3), amplitude(3) 0.610 0.762 0.807 0.093 0.078 0.035

Table 1: Transcription performance (F-measure) on the Molina dataset for three versions of our approach. Columns
represent correct (C) onset (On), pitch (P) and/or offset (Off), respectively, and three types of error (see Sec. 3.1).

Method Precision Recall F-measure Split Merged Spurious
Ryynänen & Klapuri (Ryynänen and Klapuri, 2004) 0.304 0.315 0.308 0.105 0.248 0.116

Gómez & Bonada (Gómez and Bonada, 2013) 0.430 0.373 0.398 0.140 0.167 0.071
Molina et al. (SiPTH) (Molina et al., 2015) 0.397 0.440 0.415 0.074 0.309 0.157

Yang et al. (Yang et al., 2017) 0.409 0.436 0.421 0.064 0.230 0.120
Mauch et al. (Tony) (Mauch et al., 2015) 0.510 0.534 0.520 0.079 0.230 0.112

Fu and Su (Fu and Su, 2019) 0.625 0.569 0.594 0.048 0.080 0.044
Steps 1+2+3 (whole dataset) 0.626 0.597 0.610 0.093 0.078 0.035

Steps 1+2+3 (test set) 0.634 0.606 0.618 0.090 0.080 0.035

Table 2: Transcription and segmentation performance on the whole dataset of Molina et al. (2014), compared
with published results (best results in bold). The first three rows are reported by Molina et al. (2015), and the
following two are quoted from Yang et al. (2017). The final row compares performance evaluated on the smaller
test set. The first three columns refer to COnPOff (correct pitch, onset and offset) results; the remaining columns
are segmentation error types (see Sec. 3.1).

English Spanish /Na/ and /La/ /Da/ and /La/ Syllable and Lyrics Mixed
Number of recordings 10 15 7 1 5

Steps 1+2 0.612 0.609 0.325 0.178 0.448
Steps 1+3 0.443 0.602 0.396 0.652 0.575

Steps 1+2+3 0.523 0.709 0.520 0.677 0.596

Table 3: Comparison of transcription performance (F-measure of COnPOff) for different categories of lyrics.

Methods COnPOff (F-measure) Merged Split
Step 1 0.645 0.023 0.004

Steps 1+2 0.603 0.018 0.045
Steps 1+2+3 0.614 0.005 0.069

Table 4: Transcription and segmentation performance comparison for the dataset of Dai et al. (2015).

Since the English language songs match the train-
ing data quite well, there are very few merge errors
in these songs after Step 2, and the subsequent seg-
mentation causes over-segmentation and degrades
performance. In other cases, Step 3 improves per-
formance, especially for non-linguistic samples.

For non-linguistic content, we are wary of mak-
ing strong claims as the amount of data is quite
small. We observe that the Step 2 output is con-
siderably worse with non-linguistic syllables than
on songs with linguistic content, but this differ-
ence is diminished when Step 3 is included in the
pipeline. Overall, Table 3 shows that the inclusion
of phonetic information is consistently beneficial
for segmentation in various linguistic scenarios.

We also test our methods on data from another
dataset (Dai et al., 2015), in which singers per-
form three tunes using the syllable /Ta/. In Ta-
ble 4, we show results for 12 recordings (singers
1,2,4,7). Step 1 performs relatively well because

in this case each musical note comprises a voiced
segment preceded by a voiceless consonant, so
the voicing-based segmentation reflects the note
boundaries. In this context Steps 2 and 3 cause
split errors and reduce performance.

By analysing specific examples, we identified
two sources of errors made by our system. Firstly,
there are unrecognized phonemes that lead to
merged errors, which could potentially be due to
the constraints exerted by the pronunciation and
language models of the lyrics transcriber. Sec-
ondly, the input pitch track is inactive during
voiceless consonants, while the ground truth anno-
tations of the dataset usually include the voiceless
consonant at the end of a syllable, resulting in a
longer duration note. This disagreement causes a
number of offset errors. Despite these errors, we
obtained state-of-the-art results on a public dataset
for the task of sung note segmentation.
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Abstract
Incorporating listeners’ interpretations of song
lyrics has been shown to significantly improve
topic classification accuracy. Using a different
type of interpretation, as compared to previous
research, we propose four possible representa-
tions of songs as input for classification sys-
tems. The results show that (a) some represen-
tations are consistently better than others, and
(b) the similarity of topic classes along with
the ambiguity of song lyrics may affect the
classification accuracy, which argues for us-
ing top-n classification (n>1) and associating
multiple top ranking classes with each song.
We also examine the case of training a system
on both lyrics and interpretations and testing it
on songs that lack interpretations.

1 Introduction

Song lyrics differ from prose text in various ways:
they tend to be more ambiguous, to contain more
figures of speech, to break syntactic rules, to be ac-
companied by music and to have a rhythm. Con-
sidering that the majority of popular music con-
tains lyrics, it is assumed that a lot of information
about songs can be extracted from lyrics. This in-
formation can be useful for many Music Informa-
tion Retrieval (MIR) tasks, such as music recom-
mendation, classification, and search.

We focus on the task of automatic topic classi-
fication of English-language songs based on song
lyrics and interpretations of them. The interpre-
tations have been retrieved from a website that
hosts song lyrics and interpretations generated by
the website’s users. Our approach is novel in that
(a) opposed to previous research, the interpreta-
tions we use refer to specific fragments of lyrics
and not to the whole song (so it is less proba-
ble that they contain information unrelated to the
topic of the song), (b) we propose a novel repre-
sentation of songs using lyrics and interpretations,
which consistently achieves high classification ac-
curacy, (c) we examine a top-n topic classification

approach, and (d) we combine lyrics and interpre-
tations in an attempt to improve classification of
unseen lyrics for which there are no available in-
terpretations (e.g., recently released songs).

Our aim is to investigate what is the best song
representation for the task and to create a system
which predicts topics that meet listeners’ needs
and expectations. Our main hypotheses are that
interpretations are more informative than lyrics in
determining the topic of a song, and that a top-n
topic classification approach is useful from the
users’ perspective. The intuition for the latter is
that a song can actually belong to more than one
topic class either because some topic classes are
semantically related or because the song has in-
deed more than one topic. To illustrate our point,
let us consider the case of a song A which talks
about a breakup and heartache, and a song B
which talks about a breakup but not heartache Al-
though we could initially consider these two topics
to be similar, there are cases of songs which do not
belong to both topics. We assume that a user who
searches for music based on the topic of the lyrics
would be satisfied if multiple related topics were
assigned to a song instead of a single one.

Our results suggest that listeners’ interpreta-
tions of lyrics indeed improve the accuracy of the
classification, and that top-n classification is an ef-
fective approach. However, using lyrics and their
interpretations in the training stage and lyrics in
the test stage does not significantly and consis-
tently improve accuracy compared to using solely
lyrics for both stages.

2 Related Work

Lyrics have been used in a range of MIR tasks,
sometimes combined with acoustic properties of
the respective songs. Watanabe and Goto (2020)
introduce Lyrics Information Processing (LIP) as
a research field specific to analysis and generation
of lyrics, and present a range of applications. It is
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Song Topics
Sex 317 Political statement 191
Heartache 294 Death 190
Girl 277 War 185
Religion 272 Events in the news 179
Drugs 265 Cheating 158
Ex-partner 240 Dealing with fame 156
Parent 208 Autobiographical 154
Dead friend 205 Depression 154
Places 203 Criminals 147
Breakup 199 Loneliness/isolation 147

Table 1: Number of songs per topic in the dataset (prior
to splitting into training and test set).

also worth mentioning that users of music search
systems appear to use lyrics frequently (Lee and
Downie, 2004).

Some of the first approaches to topic detection
of song lyrics use clustering methods. Kleedorfer
et al. (2008) used Non-Negative Matrix Factorisa-
tion; Sasaki et al. (2014) used Latent Dirichlet Al-
location in order to detect and visualise five of the
latent topics of the lyrics in an interactive system.

More recent research exploits listeners’ inter-
pretations of lyrics for topic classification (Choi,
2018; Choi and Downie, 2018; Choi et al., 2016,
2014). The highest accuracy was achieved when
interpretations or the concatenation of lyrics and
interpretations were used as features instead of the
lyrics alone.

3 Data

Song topics and song titles are collected from
Songfacts1. Songfacts provides information about
songs and artists and assigns categories to the
songs manually, based on sources like interviews,
publicity releases, press, etc. We collect all the
song titles and topics from the category “about”,
which contains 206 topics. There is no hierarchy
in the topics, and some songs belong to more than
one topic.

These song titles are then searched for in Ge-
nius2, from where their lyrics and their interpreta-
tions are collected. In Genius, users annotate spe-
cific fragments of lyrics (e.g., one or more consec-
utive words or lines) with an interpretation. The
users can upvote and downvote the suggested an-
notations, so the final interpretations usually re-
flect the single most widely acceptable view on the
meaning of the song.

1https://www.songfacts.com
2https://genius.com

We selected the 20 most populated topics for
our dataset (Table 1). The intuition is that in order
to meet listeners’ needs, the system should cover
a relatively large number of topics, while at the
same time guarantee that there are enough songs
per topic for training the classifier. In this set the
vast majority of songs belong to a single topic.
The few songs left belonging to multiple topics
are then assigned to the less populated of the 20
topics. Prior to this, we ensure that the language
of each selected song’s lyrics is English, using the
Python module langdetect3, a port of a library by
Nakatani (2010). The final training dataset is bal-
anced, consisting of 20 topics (130 songs each)
and a total number of 2,600 songs, and we also
have an unbalanced test set with 1,541 songs. We
represent each song in four ways:

1. Lyrics: only the lyrics of the song (without
the song title).

2. Interpretations: concatenation of all inter-
pretations of the lyrics. If the annotated lyric
fragments are repeated, the respective inter-
pretations are repeated as well.

3. Mixed: starting with the lyrics, we detect
fragments which have been annotated with
an interpretation and replace these fragments
with their respective interpretations. The rest
of the lyrics remain unchanged (repetitions
are preserved).

4. Concatenation of the first two representa-
tions.

All text is lowercased, contractions are expanded
using the Python module contractions4, song
structure annotations (e.g.: “[Chorus]”) are re-
moved, and lemmatisation (WordNet lemmatiser)
and stemming (Porter stemmer) are performed, us-
ing the Python module NLTK5.

4 Experimental Setup

Using the scikit-learn Python library6, we use
TFIDF scores of unigrams as features for each of
our four song representations. Unigrams with doc-
ument frequency less than 5 are discarded. Us-
ing 5-fold stratified cross-validation we train each

3https://pypi.org/project/langdetect
4https://pypi.org/project/contractions
5https://www.nltk.org
6https://scikit-learn.org version 0.24.1
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Lyrics Interpretations Mixed Concatenation Concat. & Lyrics
top-1 top-3 top-1 top-3 top-1 top-3 top-1 top-3 top-1 top-3

kNN 0.1901 0.3790 0.2842 0.4822 0.2862 0.4646 0.2706 0.4763 0.1707 0.3310
LR 0.3348 0.5892 0.4549 0.6788 0.4692 0.7333 0.4802 0.7352 0.3355 0.5964
MNB 0.2732 0.5204 0.3180 0.5626 0.3731 0.6230 0.3679 0.6178 0.2726 0.5088
RF 0.2330 0.4276 0.3783 0.5912 0.4114 0.6424 0.3855 0.6275 0.2524 0.4640

Table 2: Accuracy scores for top-1 and top-3 classification with N=20 topic classes.

of four classification algorithms (described in the
next paragraph) on each representation. In the
top-1 classification approach, we consider the pre-
dicted topic to be the one that the classifier pre-
dicts. In the top-n classification approach for
n>1, during the testing stage each of the classi-
fiers returns the predicted probabilities per topic
class for the current song. If the true topic class
is one of the top-n predicted topic classes, then we
consider the song to have been classified correctly;
otherwise we consider the class with the highest
probability to be the predicted class and the song
to have been classified incorrectly. The intuition
is that a song with a true label A but predicted la-
bel B should not be considered misclassified if A
and B are in the top-n predicted classes. Besides,
songs can be interpreted in different ways, so re-
turning a small number of possible topics to a user
who searches for songs on a specific topic is ac-
ceptable. Moreover, this approach covers cases of
topics that are semantically similar to each other
(if A and B are semantically similar, then predict-
ing B should not be considered incorrect). Since
we have a dataset with N=20 classes, we have se-
lected n=3. For smaller N values we prefer de-
creasing n as well (e.g., for N=10, n=2 is intu-
itively more appropriate).

We have experimented with the following
classification algorithms7 (their parameters were
selected using grid search): k-Nearest Neigh-
bours (kNN, n neighbors=5, weights=‘distance’),
Logistic Regression (LR, random state=17,
max iter=1000), Multinomial Naı̈ve Bayes
(MNB, default parameters), Random Forest
(RF, random state=17, class weight=‘balanced’,
criterion=‘gini’)

We also perform two classification experiments:
in the first experiment, the training and test stages
use features of the same song representation (i.e.,
either lyrics or interpretations or mixed represen-
tation or concatenation), while in the second ex-

7From scikit-learn.

periment the training stage uses the mixed con-
catenation of lyrics and interpretations, and the
test stage uses only lyrics. This is to test the
hypothesis that training on lyrics and interpreta-
tions will lead to better classification of new songs
without accompanying interpretations. We use the
same training and test sets for both experiments.

5 Results

Table 2 contains the accuracy scores for each al-
gorithm for both experiments. LR consistently
returns the highest accuracy for all settings. For
the first experiment, the two representations that
return the highest accuracy are the mixed lyrics-
interpretations representation and the concatena-
tion of lyrics and interpretations. When only lyrics
are used, the accuracy is consistently lower.

Training each classifier on the concatenation
of lyrics and interpretations and testing on lyrics
compared to training solely on lyrics (second ex-
periment, last column in Table 2) improves re-
sults significantly with RF and marginally with
LR, while it actually reduces accuracy scores with
kNN and MNB.

6 Discussion

Results do not support the hypothesis that training
on lyrics and interpretations will improve classi-
fication of unseen lyrics without interpretations.
However, this does not necessarily imply that
combining lyrics with interpretations is not help-
ful in improving classification of song lyrics. It
is possible that better feature engineering and pre-
processing might actually make this approach very
effective.

Comparing the results between top-1 and top-3
classification approaches we noticed that there are
indeed some frequently confused topic classes,
such as: (a) events in the news, political state-
ments, war, (b) heartache, breakup, ex-partner,
cheating. In both examples, the classes seem to be
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Lyrics Interpretations Mixed Concatenation Concat. & Lyrics
top-1 top-2 top-1 top-2 top-1 top-2 top-1 top-2 top-1 top-2

kNN 0.3082 0.6123 0.4073 0.6974 0.4184 0.7322 0.4254 0.7280 0.3040 0.5858
LR 0.4784 0.8020 0.5593 0.8466 0.6318 0.9038 0.6346 0.9052 0.4909 0.7894
MNB 0.4198 0.7378 0.4658 0.7922 0.5467 0.8131 0.5467 0.8020 0.4561 0.6960
RF 0.4114 0.7308 0.5216 0.8089 0.5858 0.8452 0.5635 0.8466 0.4059 0.7075

Table 3: Accuracy scores for top-1 and top-2 classification with N=8 topic classes.

similar to each other. This suggests that topic sim-
ilarity should be taken into account in our dataset.

A comparison of our results to previous re-
search is very useful in order to evaluate our ap-
proach. In previous research (Choi, 2018; Choi
and Downie, 2018; Choi et al., 2016, 2014), in-
terpretations are in the form of general comments
about the lyrics of the whole song and frequently
contain information other than the meaning of the
lyrics (e.g., how much the particular listener likes
the song and why, what it reminds them of, com-
ments about the album or a live concert in which
the song was played or a music video, etc.). Both
Choi’s and our research retrieve song titles and
topics from Songfacts. A direct comparison be-
tween the results of Choi’s and our research is dif-
ficult, as we cannot use the same songs mostly due
to the availability of interpretations and the fact
that we cannot obtain the same dataset from Song-
facts, which is updated regularly with new songs
and information. However, we try to follow simi-
lar preprocessing and feature extraction steps, with
the difference that we do not eliminate stopwords;
the use of TFIDF weighting lowers the impact of
terms with very high frequency in the dataset, so
that using a list of standard and corpus-specific
stopwords is not required, and in our experiments
we did not notice any significant difference with
stopword removal. Choi et al. (2016) use a dataset
of 800 songs and 8 balanced topic classes that con-
sists of lyrics, interpretations, and concatenation
of them. Then, using TFIDF features, they com-
pare four classifiers: kNN, SVM with a linear ker-
nel, SVM with radial basis function kernel, and
Naı̈ve Bayes. The highest accuracy score (0.66)
is achieved by Linear SVM, using the concatena-
tion of lyrics and interpretations. Interpretations
and concatenation consistently return higher accu-
racy than lyrics. Using fasttext8 word embeddings
and Naı̈ve Bayes on the same dataset, concatena-
tion returns again the highest accuracy (0.5788)

8https://fasttext.cc

(Choi, 2018). Table 3 shows the accuracy scores
we achieve with the same four classifiers using our
four representations, on the top 8 balanced topic
classes (training set: 1,440 songs, test set: 717
songs). For top-1 classification, the highest ac-
curacy score is 0.6346 using concatenation with
LR, which appears to be similar with the results
achieved in Choi et al. (2016). Using top-2 clas-
sification, the accuracy score is significantly im-
proved, reaching 0.9052. For training on concate-
nation and testing on lyrics, accuracy scores fol-
low a different trend than with N=20, but are still
low. Finally, we preferred to use top-2 instead of
top-3, due to the small number of topic classes.

7 Conclusion and Future Work

Our results suggest that the interpretations of the
lyrics are indeed more informative than lyrics
alone for identifying the topic of the lyrics, which
is in line with previous research. The main dif-
ferences compared to previous research are that:
(a) we use interpretations targeted on specific frag-
ments of lyrics instead of interpretations which are
in the form of general comments about the lyrics,
(b) we examine the impact that training a model
with lyrics and their interpretations has on predict-
ing the topic class of unseen song that lack inter-
pretations, and (c) we allow for more flexibility in
classification by accepting as correctly classified
the songs which have the correct topic class as one
of their top-n predicted topic classes. The latter is
a reasonable approach for MIR applications which
return to the user a list of songs of a selected topic
or predict the topic of a specific song.

Using interpretations in the form of comments
on specific fragments of lyrics allows us to anal-
yse song lyrics in detail. We are planning to study
the possible different impact of chorus and verse
terms in topic classification, as well as to exper-
iment with features other than TFIDF unigrams,
e.g. word embeddings, and to examine human per-
formance as an evaluation of our approach.
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Abstract
We propose a machine-translation approach to
automatically generate a playlist title from a
set of music tracks. We take a sequence of
track IDs as input and a sequence of words in a
playlist title as output, adapting the sequence-
to-sequence framework based on Recurrent
Neural Network (RNN) and Transformer to
the music data. Considering the orderless na-
ture of music tracks in a playlist, we propose
two techniques that remove the order of the
input sequence. One is data augmentation by
shuffling and the other is deleting the posi-
tional encoding. We also reorganize the exist-
ing music playlist datasets to generate phrase-
level playlist titles. The result shows that the
Transformer models generally outperform the
RNN model. Also, removing the order of input
sequence improves the performance further.

1 Introduction

Music playlists have gained progressively more
importance in music streaming services. A playlist
represents a group of music tracks that shares sim-
ilar genre, mood or musical context. When a new
playlists is created by curators or users, or gener-
ated by recommender systems, they deliver mes-
sages about musical needs by providing playlist
titles in a phrase (Pichl et al., 2015; Dias et al.,
2017). However, it is not trivial to blend seman-
tics of the music tracks and express them with a
phrase. As a result, we often find noisy playlist ti-
tles which do not accord with the music tracks.

A fundamental issue in automatic playlist title
generation is to extract the common semantic fea-
tures from the music tracks in a playlist, indepen-
dent of the number of tracks. This issue has been
addressed by representing a playlist with track em-
bedding averaging (Hao and Downie, 2020) or a
sequential model (Choi et al., 2020). In (Hao and
Downie, 2020), they treated playlists as the equiv-
alent of phrases, and tracks as the equivalent of

Figure 1: Diagram of track ID sequence to word se-
quence in a title.

words. They then used the the word2vec model to
learn the track embedding. In (Choi et al., 2020),
they represented playlists and tracks as a matrix
where the columns correspond to playlist IDs and
the rows to track IDs. They then used a matrix fac-
torization technique to learn the track embedding
and, furthermore, applied an average or sequence
model to predict high-level categorical labels.

Another issue is to generate a natural word se-
quence (e.g., a phrase or a sentence) as a playlist
title from the common semantics of music tracks.
This sequence-to-sequence setting is similar to the
machine translation task. Therefore it is natural
to attempt the methods in machine translation, in
particular, the encoder-decoder models (Bahdanau
et al., 2014; Vaswani et al., 2017). This approach
was previously attempted for playlist title gen-
eration (Samaniego, 2018). However, the model
output was mostly tag-level titles (e.g., a single
word or short phrase) rather than phrase-level ti-
tles, presumably because they used an unfiltered
noisy dataset and a simple RNN model. Also, they
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used the track name as an input sequence. This in-
put setting can confine tracks with similar names
to have similar semantics, and also can learn the
order of input sequence, which may be discarded
in music playlists (Hao and Downie, 2020).

In this paper, we present another machine trans-
lation approach based on the encoder-decoder
framework for automatic playlist title generation
as illustrated in Figure 1. Our contribution is
as follows: (i) we compare two encoder-decoder
models based on RNN and Transformer, (ii) we
propose two simple techniques to make track ID
sequence orderless and show that they improve the
performance, and (iii) we propose a new data split
by filtering existing playlist datasets and extract-
ing phrase-level playlist title.

2 Dataset and Preprocessing

We apply our proposed approach to two differ-
ent datasets respectively: Melon Playlist Dataset
(Melon) (Ferraro et al., 2021) and Spotify Mil-
lion Playlist Dataset (MPD) (Chen et al., 2018).
As our task is generating a playlist title in phrase
for a given track ID sequence, we need a dataset
of playlists that contains a pair of track ID se-
quence and title. Both Melon and MPD satisfy
this requirement and support different languages
(Korean and English). In Melon, playlist titles are
written in both Korean and English (some of titles
are mixed with both languages). In case of English
words, normalization was done by substituting all
characters with lowercase. Both of the languages
were simply tokenized by white spaces.

In our task, an ideal playlist title is a phrase that
incorporates common features among the songs in
a playlist. However, Melon and MPD were orig-
inally constructed for automatic playlist continu-
ation (APC) task and so they have several prob-
lems to directly use them. First, there are many
playlist titles that cannot be considered as a phrase.
Melon includes 27,420 playlists with empty titles
which is 18.4% of the total playlists. In the case
of MPD, 646,868 playlists have titles with a sin-
gle word which amount to 64.7% of the total. In
addition, there are playlist titles that have multi-
ple tokens but not a phrase, for example, “G e o
r g e W i n s t o n e” and “beyonce - 4”. Finally,
some playlists have zero or few songs which are
typically not considered as a playlist. The statistic
of the two datasets is summarized in the Original
column of Table 1.

Dataset Statistic Original Filtered

Melon
Playlist

Playlist Number 148,826 51,723
Unique Track Number 649,092 430,746
Unique Title Number 115,318 50,296
Unique Word Number 88,524 56,296
Average Char Length 2.8 3.6
Average Title Length 3.6 4.7
Average Track Length 39.7 46.2

Spotify
Million
Playlist

Playlist Number 1,000,000 50083
Unique Track Number 2,262,292 402,523
Unique Title Number 17,381 1,859
Unique Word Number 11,146 1,886
Average Char Length 5.2 4.2
Average Title Length 1.4 3.4
Average Track Length 66.3 66.3

Table 1: Compare statistic of datasets. After filtering,
as the average title length increases, it can be seen that
the noise of each phrase has been removed.

We reorganized the two datasets with the same
criteria to improve the quality of data samples
for playlist title generation. First, we gather all
playlists provided by each dataset. In the case of
Melon, we merged the provided train, validation,
and test set into one, and then filtered out some
playlists with three criteria. First, the number of
title tokens should be more than 3. Second, the
number of tracks should be more than 10. Third,
the average character length of title tokens should
be more than 3.

Finally, the filtered dataset is split by the num-
ber of title tokens. Playlists with the same num-
ber of title tokens are randomly split with a ra-
tio of 8:1:1 and merged among different numbers
of tokens subsequently to form train, validation,
and test set. As a result, the statistics of data was
changed as as shown in Filtered column of Ta-
ble 1. The longer average character length and ti-
tle length indicate the portion of playlist titles in
phrases within the dataset has increased.

3 Playlist Title Generation

3.1 Encoder-Decoder Model
The model for playlist title generation is composed
of an encoder and a decoder. The goal of the model
is to find a title word sequence y that maximizes
the conditional probability of y given a source
track ID sequence x. The encoder reads a track
ID sequence x = (x1, .., xn), represents track ID
as an embedding vector using random initialized
embedding matrix E ∈ R|V |×d, and transforms it
to hidden states z = (z1.., zn). The decoder takes
these hidden states as a context input and outputs a
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Figure 2: Compare distribution of datasets(original, filtered), title length 0 means missing data, and title length 1
means tag-level title.

summary y = (y1.., ym). At each step the model is
auto-regressive, consuming the previously gener-
ated symbols as an additional input when generat-
ing the next. During training, we used the softmax
cross-entropy loss. The encoders and decoders can
be RNN (Bahdanau et al., 2014), Convolutional
Neural Network (CNN) (Gehring et al., 2017) or
self-attention layer (Vaswani et al., 2017). In this
paper, we compare the RNN model and the Trans-
former model composed of self-attention layers.

RNN Model: Our baseline model corresponds
to the neural machine translation model used in
(Bahdanau et al., 2014). The encoder consists of
bidirectional Gated Recurrent Unit (GRU) (Chung
et al., 2014), while the decoder consists of a uni-
directional GRU with the same hidden-state size
as that of the encoder, and an attention mechanism
over the source-hidden states and a soft-max layer
over the target vocabulary to generate words.

Transformer: The encoder and decoder are com-
posed of multi-head self-attention layers and
position-wise fully connected feed-forward net-
work with a residual connection and a layer nor-
malization.(Vaswani et al., 2017). The transformer
views the encoded representation of the input as a
set of key-value pairs and both the keys and val-
ues are the encoder hidden states. In the decoder,
the previous output is compressed into a query and
the next output is produced by mapping this query
and the set of keys and values. The output of self-
attention layer is a weighted sum of the values,
where the weight is calculate by the dot-product
the query with all the keys.

3.2 Ignoring the Order in Track Sequences

One of the characteristics of playlists is that the
order of tracks in a playlist is generally not impor-
tant. This feature can be exploited for data aug-
mentation. In this paper, we propose two different

Model
Melon MPD

Val NLL Test NLL Val NLL Test NLL

RNN Model 7.482 7.384 2.453 2.357

Transformer 7.150 7.124 1.821 1.805
+ shuffle aug 6.952 7.019 1.543 1.502
+ delete pos 7.036 7.099 1.552 1.538

Table 2: Validation and test NLL for melon and spotify
million playlist dataset. The shffle aug means data aug-
mentation through shuffling the input track sequence,
and delete pos means that delete encoder’s positional
encoding in vanilla transformer.

techniques. The first is sequence shuffling which
randomly changes the order of tracks in the same
playlist. The second is to remove the positional
encoding of the encoder. According to the loss of
position information, the model can recognize the
track sequence except for the sequence informa-
tion of the data. On the other hand, the decoder
applies the positional encoding to the word se-
quence for title generation. We applied the two
techniques independently, because, when the posi-
tional encoding is removed, the transformer model
does not recognize the input sequence differently
regardless of shuffling.

3.3 Training Details

We fixed the number of layers of encoder and de-
coder to two and 128 embedding dimensions and
256 hidden dimensions for fair comparison in the
two types of encoder-decoder models. We trained
the model using a single GPU. We optimized the
model using the Adam optimizer (Kingma and Ba,
2014) with a 0.005 learning rate, and 0.0001 learn-
ing rate decay for all models and datasets. We used
a batch size of 64 and randomly shuffled the train-
ing data at every epoch. We used early stopping
on the validation set, monitoring with the valida-
tion loss, and used the best model on the validation
set to report all performance numbers.
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Playlist ID 49169 22501

Input Tracks

Swear by Inc., Millionairess by Inc.,
Her Favorite Song (w/Crossfade) by Mayer Hawthorne,
Dontcha by The Internet, All I Do by Majid Jordan,
Her by Majid Jordan, Us by MOVEMENT,
The Place by Inc., Coffee (Feat. Wale) by Miguel,
Under Control by The Internet,
Somthing‘s Missing by The Internet,
Ocean Drive by Duke Dumont, Drive by Dornik,
Make It Work by Majid Jordan,
Jump Hi (Feat. Childish Gambino) by Lion Babe,
Treat Me Like Fire by Lion Babe, sHe by ZAYN,
Hallucinations by dvsn,
Dapper (Feat. Anderson .Paak) by Domo Genesis,
Bone + Tissue by Gallant, Miyazaki by Gallant,
...

Take Five by Michel Camilo,
Angelina by Tommy Emmanuel,
Monk‘s Dream (Live) by Martin Reiter,
Stairway To Love by George Benson,
Birdsong by Tommy Flanagan,
Come Fly With Me by Frank Sinatra,
Gemini by Chick Corea, Cheesecake by Dexter Gordon,
Kathy by Horace Silver, Love Me by The Little Willies,
Perdido by Earl Hines, ‘Round Midnight by Hank Jones,
I Just Called To Say I Love You by Harry Allen,
Killing Me Softly With His Song by Harry Allen,
Let‘s Fall In Love by Diana Krall,
Flight To Jordan by Duke Jordan,
Quizas Quizas Quizas by Lisa Ono,
...

Ground Truth late night drive 가을밤로맨틱재즈곡들
romantic jazz songs for an autumn night (translated)

RNN Model 몽환적인 r&b r&b
dreamy r&b r&b (translated) jazz jazz jazz jazz

Transfomer
생생한고음질로만나는 hi-fi위클리 12월 16일 vol 1
lively and high-quality sound in hi-fi weekly December 16th
vol 1 (translated)

카페에서듣는음악들
music in a cafe (translated)

Transfomer
+ shuffle aug

들을수록좋은세련되고감각적인 pop
stylish and sensual pop that you feel better as you listen more
(translated)

카페에서듣는감각적인재즈
sensational jazz in a cafe (translated)

Transfomer
+ delete pos

내가좋아하는노래
my favorite song (translated)

카페에서듣는잔잔한음악
calm music in a cafe (translated)

Table 3: Inference example from the melon playlist test dataset. Reference refers to the ground turth of the dataset.
Each first line is a generation result, and the second line is a phrase translated from Korean to English. Source
means input track sequence, and track index over 15 are excluded.

4 Results and Discussion

4.1 Quantitative Results
We used negative log-likelihood (NLL) as an eval-
uation metric for the models. Table 2 lists the
NLL values for the RNN and Transformer mod-
els on the two datasets. The result shows that
the Transformer models generally outperform the
baseline RNN model on both datasets. In addition,
the Transformer models that ignore the order of
track sequence improve the performance further.
Between the two techniques, shuffling augmenta-
tion has a slightly lower NLL value than deleting
the positional encoding on on both datasets. This
indicates the data augmentation approach that in-
volves ignoring the order is more effective than
simply removing the order information.

4.2 Qualitative Results
Table 3 shows two examples of title generation
given an input track sequence. We can first see
that the RNN models generate a short title. They
even have repetitions of the genre words (e.g., rb,
jazz). On the other hands, the Transformer mod-
els generates a natural phrase composed of more
than 3 different words. An interesting result in the

example on the left side is that the basic Trans-
former model has a very specific title which seems
to be copied from data with strong context (“hi-fi
weekly December 16th, vol. 1”). This problem is
alleviated in the Transformer models with shuffle
augmentation or deleting the position encoding.

5 Conclusions

In this work, we propose music playlist title gener-
ation with a machine translation approach. There
are several future directions to extend this work.
First, we can try various track embedding vectors
for the input sequence. For example, we can use
tag prediction vectors or audio embedding vectors
from music auto-tagging models or track embed-
ding vector from matrix factorization of user lis-
tening data. Second, we should investigate more
quantitative metrics to evaluate the models. The
BLEU score used in machine translation may be a
possibility in terms of accuracy but we should also
consider the diversity of the generated playlist ti-
tles to provide rich expressions for music listeners.
Finally, we need to have a user study designed sys-
temically that compare different models of playlist
title generation.
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Abstract

Music forms a big part of our identity and
as such, people with a shared preference for
certain kinds of music may also share similar
traits. In this study, we explore differences in
the emotional language of fan communities of
different music genres. In focusing on Red-
dit, we analyze the utterances on online com-
munity forums of different music genres us-
ing lexicon-based sentiment (emotion) analy-
sis. Upon clustering Subreddit forums, we ob-
tained two clusters: forums discussing genres
like Rock, RnB, Country, and Jazz were found
to have a higher abundance of positively va-
lenced emotions and a lower amount of neg-
atively valenced emotions. Likewise, Subred-
dits discussing genres like Metal, Punk, and
Rap had a lower amount of positively valenced
emotions and a higher abundance of negatively
valenced emotion. We observed a high corre-
lation between counts in lyrics of a genre and
counts in a fan community for the emotions of
anger, disgust, fear, and joy. In sum, we found
differences in the emotional language of fan
utterances by genre, and these could be par-
tially attributed to the emotions contained in
the lyrics.

1 Introduction

How music and emotions relate to each other has
long been a matter of interest to researchers. Mu-
sic can induce certain feelings or emotions in
the listeners, which can differ from the emotions
expressed explicitly in the music. This mood-
induction function of music is why music is com-
monly used for mood regulation or mood manage-
ment (Saarikallio 2011; Thoma et al. 2012; Pap-
inczak et al. 2015). It has also been found that
different styles, or genres of music, are associ-
ated with different strategies of mood regulation.
For example, Cook et al. (2019) found that gen-
res of electronica and dance music were associated

with use for increasing emotional arousal, while
classical music was associated with use for neg-
ative mood management. These results suggest
that preference for a certain style of music may be
associated with a particular set of emotions. Al-
though the link of emotions to various styles of
music has been explored in the music psychology
literature, these studies have mostly focused on
the immediate reactions induced by the music in
study participants (Zentner et al. 2008; Sharman
and Dingle 2015; Merz et al. 2020). While there
have been a few studies that explored the emotions
related to specific genre preferences, they have
mainly relied on self-reported surveys and ques-
tionnaires which can be subjective. Emotionality,
or emotional language, associated with preference
for music genres has not yet been explored using
real-world, naturalistic data. Motivated by this re-
search gap, we explore the emotions expressed in
online fan communities of 10 different music gen-
res, to identify the emotion they are strongly asso-
ciated with. Specifically, we investigate the emo-
tional language associated with 10 Subreddits cor-
responding to the music genres listed in Table 1.

Reddit1 is a website having content rating and
discussion forums dedicated to different topics and
each discussion forum on Reddit is called a Sub-
reddit. For example, r/electronicmusic is a Sub-
reddit for discussing all things related to electronic
music.

Additionally, we also run correlation analyses to
determine if the prevalence of a type of emotion in
the Subreddit is reflective of its prevalence in the
music itself. We analyze the track lyrics of each
genre in a fashion similar to the comments on the
Subreddits to get the prevalence of each type of
emotion.

1https://www.reddit.com/
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Genre Subreddit Number of
comments

Avg. number of
tokens

Number of
unique users Lyrics genre Number of

tracks
Avg. number of

tokens
Avg. release

year
r/Metal 2,069k 30.4 109k Metal 8.0k 185 2002
r/electronicmusic 858k 26.3 128k Electronic 5.6k 180 2003
r/punk 728k 26.3 64k Punk 2.7k 193 1995
r/Jazz 434k 33.0 58k Jazz 3.3k 173 1991
r/rap 218k 21.4 54k Rap 7.3k 572 2002
r/country 58k 27.9 12k Country 6.8k 219 1996
r/blues 48k 26.3 11k Blues 2.4k 193 1986
r/Rock 44k 25.8 12k Rock 54.6k 210 1997
r/folk 24k 24.8 8k Folk 2.8k 214 1996
r/rnb 13k 20.1 4k RnB 6.6k 332 1993

Table 1: General statistics about Subreddit comments and track lyrics

2 Related Work

Literature on Music Psychology is rich with stud-
ies measuring the reactions to different genres of
music. A study by Cook et al. (2019) found
that reactions to music genres like Pop and Rock
were associated with anger and revolt while gen-
res like Classical and Jazz were associated with
peacefulness and spirituality. Another study also
claimed that ‘extreme’ music genres like Metal,
punk, etc leads to anger and even aggressive be-
havior (Zalk et al., 2008). On the other hand, sev-
eral recent studies claimed no such association ex-
ists between intense genres of music and aggres-
sion (Merz et al. 2020; Sharman and Dingle 2015;
Susino and Schubert 2019). Some of these studies
suggested that negative associations with a partic-
ular style of music might simply be due to low fa-
miliarity with the style of music or even due to
holding negative stereotypes about the culture re-
lated to that music. Given this ambiguity, we ap-
proached this research with the intent to explore
and uncover possible relationships in naturalistic
data. Furthermore, as we focused on online fan
communities, we also assumed that users were fa-
miliar with that specific genre when posting on a
genre’s Subreddit.

3 Methods

3.1 Dataset

For all 10 Subreddits, we collected all the com-
ments posted before March 2nd, 2021, using the
Pushshift Reddit API (Baumgartner et al., 2020).
Table 1 shows the statistical summary about the
genre Subreddits. For every Subreddit, we re-
moved the comments that were deleted and were
marked ‘[deleted]’, or ‘[removed]’. We also fil-
tered the comments posted by bots using string
matching of phrases like ’I’m a bot’. Finally,
the comments for each genre Subreddit were rid
of mentions of the particular genre name and its

subgenre. This was done to mitigate bias caused
by the genre and subgenre names when com-
puting counts for each emotion. The subgenre
names were collected and cleaned manually from
Wikipedia.

For analysis with lyrics, we first obtained a list
of tracks for each genre using the genre anno-
tations provided with the Million Song Dataset2

called tagtraum genre annotations. Using the Ge-
nius API3, we then retrieved the lyrics of tracks
using these track names and artist names. The
Genius API returned responses for about 160, 000
tracks. We filtered the noisy responses from the
API using string matching for track title and artist
name. We finally got lyrics for a total of about
115, 000 tracks. A general statistics of the lyrics
collected in this way is given in Table 1.

3.2 Sentiment Analysis

We rely primarily on lexicon-based sentiment
analysis methods for analyzing the emotionality
of each Subreddit, following similar approaches
used by Yinger and Springer (2019). Using the
emotional categories from the National Research
Council of Canada (NRC) Lexicon (Mohammad
and Turney, 2013), we group the Subreddits based
on how close the emotional language of people is
between the Subreddits using the k-means algo-
rithm. Then, we use decision trees to interpret the
clustering produced by k-means. Then, we exam-
ine if the prevalence of a type of emotion in the
comments of a genre Subreddit is reflective of the
prevalence of that type of emotion in the music it-
self.

We used the NRCLex python library4 to obtain
the counts for emotional words for all the Sub-
reddits. The NRC Lexicon consists of words la-
beled with one or more of the 8 emotion cate-

2http://millionsongdataset.com/
3https://docs.genius.com/
4https://pypi.org/project/NRCLex/
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gories: anger, anticipation, disgust, fear, joy, sad-
ness, surprise, and trust. It has been used for a
diverse range of tasks, including in the detection
of hate speech (Gao and Huang, 2017), and for
studying the emotional development of COVID-
19 Twitter communities (Marinov et al., 2020),
etc. The python library fuses about additional
17, 000 wordnet-based synonyms to the NRCLex
and holds an emotion dictionary of approximately
27, 000 words in total. As counts were larger for
Subreddits with more comments, in order to com-
pare the genre Subreddits with subsequent analy-
ses, we normalized the counts of each genre.

3.3 Experiments

The Subreddits were clustered using the k-means
algorithm according to the normalized emotion
counts. The optimal number of clusters was found
to be 2 using the elbow method (Thorndike, 1953).
We visualize the clustering results using Principal
Component Analysis (PCA) in Figure 1. To inter-
pret our results from the k-means clustering, we
used the labels predicted by k-means and trained
decision trees. Decision trees was chosen due to
their ease of interpretation. An example of the de-
cision tree is shown in Figure 3.

To verify whether the results we obtained were
not simply due to the a large number of com-
mon users between the Subreddits of a cluster, we
also clustered Subreddits based on the number of
common users. First, about 4000 unique users
were randomly sampled from each of the Subred-
dits. Then, the number of common users within
the 4,000 users was calculated for all the Subred-
dit pairs. We constructed a fully connected graph
with the Subreddits as the nodes and the number
of common users as the edge weights. We used
Gephi’s modularity class function (Bastian et al.,
2009) to detect the communities in this graph. The
result of the community detection on the common
users graph is shown in Figure 2. We also cal-
culated the adjusted rand score to check the simi-
larity of the clustering obtained from the k-means
clustering of the normalized emotion counts and
the common users graph community detection.

In the second stage of experiments, we exam-
ine the correlations between lyrics and Subred-
dit posts for each emotion category. We obtained
normalized counts for the lyrics of each genre in
the same way as with the comments. We exam-
ined Spearman’s rank-order correlation between
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Figure 1: Results of the Subreddits clustering based on
the normalized emotion counts. The clustering is visu-
alized using Principal Component Analysis (PCA).

the prevalence of a particular emotion in the com-
ment with that emotion’s prevalence in the lyrics.

4 Results

With the k-means clustering of the Subreddits, we
got two clear clusters with the first cluster having
Subreddits of r/blues, r/country, r/electronicmusic,
r/folk, r/Jazz, r/Rock, and r/rnb and the second
cluster had Subreddits of r/Metal, r/punk, and
r/rap. This clustering is also reflected in the PCA
visualization as shown in Figure 1. Similarly, as
shown in Figure 2, the common users analysis
within the Subreddits revealed two communities.
One of the communities contains Subreddits of
r/rnb, r/rap, r/Metal, and r/electronicmusic and the
other community contains Subreddits of r/blues,
r/country, r/folk, and r/Jazz, r/Rock, and r/punk.
Subreddits in a community have a higher number
of common users amongst themselves compared
to Subreddits in other communities. Number of
communities detected can differ according to the
chosen modularity threshold. However, the mod-
ularity threshold was left at a default value of 1.0
which resulted in two detected communities. The
adjusted rand score of the clustering obtained from
the emotional features and the common users anal-
ysis was calculated to be 0.07.

Next, we discuss the analysis with decision
trees trained using the cluster labels from k-means.
We trained 100 different decision trees, all of
which yielded trees of depth 1. The decision trees
classified the clusters perfectly using only one of
5 emotions each time i.e a single feature had im-
portance of 1.0 each time. These emotions were
anger, disgust, fear, joy, and surprise.

Finally, the correlation analysis with the Sub-
reddit comments and the lyrics revealed a strong
positive correlation for anger (r=0.818, p=0.004),
disgust (r=0.794, p=0.006), and fear(r=0.697,
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Figure 2: Detection of communities of Subreddits with
high number of common users. Force atlas layout is
used for arrangement of the nodes. Similar colored
nodes belong to the same community.

gini = 0.0
samples = 7
value = [7, 0]
class = y[0]

gini = 0.0
samples = 3
value = [0, 3]
class = y[1]

anger <= 0.088
gini = 0.42

samples = 10
value = [7, 3]
class = y[0]

Figure 3: An example of decision tree fit to the clus-
tered Subreddits. This illustrates that the two clusters
are clearly distinguished by anger. All Subreddits in
cluster 1 have a lower amount of anger words compared
to Subreddits in cluster 2.

p=0.025). A positive correlation was also ob-
served for joy emotion (r=0.661, p=0.038). No
significant correlations were found for the other
emotions. The scripts used for the analysis and full
results can be found on our GitHub repository5.

5 Discussion

Our results provide insight on the difference in
how fans of different music genres express them-
selves. The k-means clustering of the emotion
counts yielded two clusters of genre Subreddits.
The first cluster is characterized by having a rel-
ative abundance of positive-valence emotions i.e.
joy, anticipation, and surprise. The second clus-
ter is characterized by the higher prevalence of
words expressing negative-valence emotions of
anger, disgust, and fear. The adjusted rand score
between the clustering obtained from the common
users analysis and the clustering found through
the k-means clustering normalized emotion counts
was close to zero. This signifies that emotional
difference in the Subreddit clusters is not simply

5https://github.com/
nlp4musa-emotional-language/
fan-community-emotion.git

due to a large number of common users within the
Subreddits of the cluster. Rather, the Subreddit
clustering hints at a difference in the expressive
style of people associated with their music listen-
ing habits. Furthermore, we found evidence that
a higher degree of high-arousal negative-valence
emotions of anger, disgust, and fear expressed in
the genre through lyrics is reflected in the fans’
emotional expression. These results are in line
with previous work by Rubin et al. (2001) that
linked fans of metal and rap/hip-hop with trait
anger, suggesting that fans of these genres do in-
deed use more extreme and negative emotional
words. However, this does not necessarily dis-
prove research by Merz et al. (2020) that found no
correlational or causal link between music genre
and psychopathology. One explanation could be
due to the specificity of the platform: Subred-
dit users, in the company of other like-minded
users, may express themselves in a manner con-
gruent with the music genre, which may have set
the prevailing social norms and standards mod-
eled by the lyrics. Thus, these behaviors may
not extend to their daily life beyond the Subred-
dit. Alternatively, these extreme expressions could
function as cathartic release, towards the mainte-
nance of emotional well-being and positive self-
regulation Olsen et al. 2020; Sharman and Din-
gle 2015. This might explain our result, that the
prevalence of ’joy’ in lyrics of a genre is also re-
flected with higher amounts of joyful words in
the utterances of a genres’ Subreddit. However,
more research is needed before a definite conclu-
sion can be made, and future research can consider
the emotional mechanisms involving genres and
fan communities. Our study however has several
limitations. We use a single emotion lexicon to
quantify the emotions in the comments which can
potentially produce biased results. There is a need
to validate the results with other emotion lexicons
or emotion detection methods. The study also pro-
cesses comment data only from music listeners on
Reddit. Therefore, the findings of this study might
also not generalize to the average music listener
of a genre. Additionally, we examine the relation-
ship between the emotion expressed by the music
and its reflection in the comments using only mu-
sic with lyrics, without considering the audio com-
ponent. Therefore, the use of emotion measures
computed from the audio could be a direction for
future research.
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Abstract

This paper addresses the novel task of lyrics
completion for creative support. Our proposed
task aims to suggest words that are (1) atypical
but (2) suitable for musical audio signals. Pre-
vious approaches focused on fully automatic
lyrics generation tasks using language mod-
els that tend to generate frequent phrases, de-
spite the importance of atypicality for creative
support. In this study, we propose a novel
vector space model and hypothesize that em-
bedding multimodal aspects (words, draft sen-
tences, and music audio) in a unified vector
space contributes to capturing (1) the atypical-
ity of words and (2) the relationships between
words and the moods of music audio. To test
our hypothesis, we used a large-scale dataset
to investigate whether the proposed model sug-
gests atypical words.

1 Introduction

Lyrics are important in conveying emotions and
messages in popular music, and the recently in-
creasing popularity of user-generated content on
video sharing services makes writing lyrics popular
even for novice writers. Lyrics writers, however,
unlike the writers of prose text, need to create at-
tractive phrases suitable for the given music. Writ-
ing lyrics is thus not an easy job.

Its difficulty has motivated a range of studies for
automatic lyrics generation (Oliveira et al., 2007;
Potash et al., 2015; Watanabe et al., 2018). For
example, Watanabe et al. train a Recurrent Neural
Network Language Model (RNN-LM) that gener-
ates fluent lyrics while maintaining compatibility
between the boundaries of lyrics and melody struc-
tures. However, even if LMs generate perfect lyrics,
a fully automatic generation system cannot support
writers because it ignores their intentions.

In this study, for creative support instead of lyrics
generation, we design a lyrics completion task that

Figure 1: Overview of lyrics completion task.

recommends candidate words for the blank in a
given sentence (Fig. 1). Specifically, we focus on
the following two properties of lyrics. (1) Lyrics
sometimes depend on the moods of music audio
(e.g., “death” is often used in metal songs) (Watan-
abe and Goto, 2019). We propose a task in which a
system recommends words suitable for the mood
of a given song excerpt represented as an audio sig-
nal. (2) Atypicality is important in writing lyrics; to
make lyrics attractive, writers consider both typical
and atypical phrases. However, previous study on
lyrics generation has used LMs that predict highly
frequent (i.e., typical) words (Barbieri et al., 2012;
Potash et al., 2015; Watanabe et al., 2017, 2018).
Creative support systems need to recommend un-
usual and rare (i.e., atypical) words while maintain-
ing the fluency of the sentence.

We therefore propose a multimodal vector space
model (VSM), lyrics-context2vec, that, given a
draft sentence with a blank, suggests atypical words
while maintaining the relationship with the mood
of the music audio. With lyrics-context2vec, in-
put vectors (i.e., combinations of music audios and
draft sentences) and output vectors (i.e., atypical
words) are located near each other in a unified high-
dimensional vector space (Fig. 1). This model sug-
gests atypical words because we use typical words
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as negative examples in its training.
The contributions of this study are summarized

as follows: (1) We propose, for creative support, a
novel multimodal vector space model that captures
the relationship between atypical words and the
mood of music audio. (2) We demonstrate that our
model suggests words suitable for the mood of the
input musical audio signal. (3) We demonstrate
that our model suggests words more atypical than
those suggested by RNN-LMs.

This paper is a short version of our MMM 2021
paper (Watanabe and Goto, 2021).

2 Lyrics-audio data

To model the relationship between lyrics and
moods of music audio, we obtained 458,572 songs,
each consisting of a pair comprising a text file of
English lyrics and an audio file of a music excerpt1.
Here each text file contains all sentences of the
lyrics of a song, and each audio file is a music
excerpt (30 sec) that was collected from the Inter-
net and provided for trial listening. We embedded
the moods of audio signals as well as the words
of lyrics into a unified vector space without using
coarse metadata (e.g., genre tags).

2.1 Bag-of-Audio-Words
To represent the mood feature of a short music
excerpt, we use a discrete symbol called an audio-
word (Liu et al., 2010). The bag-of-audio-words
(BoAW) creation procedure is as follows. (1) Each
music excerpt is downsampled to 22,050 Hz. (2)
LibROSA, a python package for music and audio
analysis, is used to extract 20-dimensional mel-
frequency cepstral coefficients (MFCCs) with the
FFT size of 2048 samples and the hop size of 512
samples. This result is represented as an MFCC ma-
trix (20 × 1280). (3) The MFCC matrix is divided
into 128 submatrices (20 × 10) without overlap.
(4) To create a vocabulary of k audio-words, we
apply the k-means++ algorithm to all the divided
MFCCs of all the songs. In other words, each k-th
cluster corresponds to an audio-word (aw). In this
study we made 3000 audio-words.

3 Atypical word completion model

We propose a multimodal vector space model
lyrics-context2vec that, given a music audio signal
and a draft sentence with a blank, suggests atypi-
cal words while maintaining the relationship with

1Lyrics were provided by a lyrics distribution company.

the mood of the music audio. Specifically, lyrics-
context2vec suggests the best N atypical words
w1, ..., wN that could fit with the context. Here we
assume two types of contexts: (1) the words on the
left and right sides of the blank and (2) the BoAW
converted from the audio signal.

There are two technical problems in recommend-
ing atypical words suitable for the music audio.
First, since most LMs learn to predict highly fre-
quent words, it is hard to suggest atypical words
that are important for creative support. Second,
how to model the relationship between words and
musical audio signals is not obvious.

To address the first problem, we focus on the
negative sampling strategy in word2vec (Mikolov
et al., 2013). This strategy was proposed for the
purpose of approximation because computation of
loss function is time-consuming. We, however, use
negative sampling for the purpose of suppression of
typical word recommendation because we want to
suggest atypical words for creative support. Since
negative examples are drawn from the distribution
of highly frequent words, it is expected that input
vectors of contexts are located far from vectors of
typical words. It is not obvious that the negative
sampling contributes to suggesting atypical words.

To address the second problem, we utilize the
mechanism of lyrics2vec proposed by Watanabe
and Goto. In lyrics2vec, co-occurring audio-words
and lyric words are located near each other under
the assumption that some words of lyrics are writ-
ten depending on the musical audio signal.

3.1 Model construction

Lyrics-context2vec is based on lyrics2vec and con-
text2vec (Melamud et al., 2016). Formally, con-
text2vec is a vector space model that encodes
left draft words w1, ..., wt−1 and right draft words
wt+1, ..., wT into latent vectors z1 and z2, re-
spectively, using two Recurrent Neural Networks
(RNNs). Then the target word vector v(wt) and
a vector that is nonlinearly transformed from the
latent vectors are mapped closely into a unified vec-
tor space. The loss function of context2vec Ec2v

is defined so that the inner product of the target
word vector v(wt) and the nonlinearly transformed
vector is maximized:

Ec2v = −logσ
(
v(wt)

T ·MLP([z1, z2])
)

−
S∑

s=1

logσ
(
−v(w′s)T ·MLP([z1, z2])

)
, (1)
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where σ(·) is a sigmoid function. To obtain an
x-dimensional word vector representation, we de-
fine an embedding function v(·) that maps the
target word to an x-dimensional vector. S is
the number of negative examples w′s. [z1, z2]
denotes a concatenation of latent vectors z1

and z2. MLP(·) stands for multilayer percep-
tron. In this loss function, negative examples
w′s are sampled from the distribution P (w′s) =
D(w′s)

0.75/
∑

w′∈V (D(w′)0.75) where V is the vo-
cabulary and D(w′) is the document frequency of
a word w′. In other words, since frequent words
tend to be sampled as negative examples, we expect
that a draft sentence vector and the vector of highly
frequent typical words are located far away from
each other. When computing word completion, our
system displays target words with high cosine sim-
ilarity to the input context vector MLP([z1, z2]).

Then we extend context2vec to suggest atypical
words suitable for both the music audio and the
draft sentence by embedding three aspects (i.e., tar-
get words, draft sentences, and song-level audio).
We concatenate song-level audio and draft vectors
and define the loss function E so that the concate-
nated vector [z1, z2,

1
M

∑M
m=1 u(awm)] is located

close to the target word vector v(w):

E = −logσ
(
v(wt)

T · [z1, z2,
1

M

M∑

m=1

u(awm)]
)

−
S∑

s=1

logσ
(
−v(w′s)T · [z1, z2,

1

M

M∑

m=1

u(awm)]
)
, (2)

where we define the dimension of draft vectors
z1, z2 as d and define an embedding function u(·)
that maps the context word/audio-word to a d-
dimensional vector. M is the number of audio-
words in the song. We define the average of audio-
word vectors as a song-level audio vector.

4 Experiments

To evaluate whether lyrics-context2vec can sug-
gest (1) atypical words and (2) words suitable
for music audio, we designed word completion
tasks. The input of these tasks is T − 1 draft
words w1, ..., wt−1, wt+1, ..., wT of each sentence
in a test song. Therefore the model needs to fill
in the t-th blank with a word. We used the fol-
lowing Score to evaluate the performance of mod-
els in the lyrics completion task: Score@N =∑

r∈R 1(r ∈ {h1, ..., hN})/|R|, where r denotes
the correct word and |R| is the number of blanks

in the test data. h1, ..., hN are the top N suggested
words. 1(·) is the indicator function. In this study
we calculated Score@N , with N ranging from 1
to 20 under the assumption that our support system
suggests 20 words to users.

Here it is important to define which word in each
sentence is the correct word r. We defined four
types of correct answers:
Typicality We defined a randomly chosen word in
each sentence of the test song as the correct word
r. In this metric, high-frequency words tend to be
chosen as the correct answer. In other words, this
metric is a measure of typical word completion.
Atypicality We first calculated the document fre-
quency of words of the test song and then defined
the minimum-document-frequency word in each
sentence as the correct word. This metric is a mea-
sure of atypical word completion.
Music+Typicality In each sentence of the test song,
we extracted the word most similar to the music au-
dio of the song by using the pre-trained lyrics2vec
that was proposed by Watanabe and Goto. If the
document frequency of the extracted word was
more than 1,000, we defined this word as the cor-
rect word for the sentence and did not use the other
words. This metric is a measure of prediction of
typical words suitable for the music audio.
Music+Atypicality We extracted the word most
similar to the music audio of the song as with Mu-
sic+Typicality. If the document frequency of the
extracted word was less than or equal to 1,000,
we defined this word as the correct word for the
sentence and did not use the other words. This
metric is a measure of prediction of atypical words
suitable for the music audio of the song.

4.1 Comparison methods

To investigate the effect of our lyrics-context2vec,
we compared the following four models. (1) Bi-
RNN-LM, a bidirectional RNN-LM trained with
lyrics without audio. (2) Encoder-Decoder, a Bi-
RNN-LM in which the song-level audio vector
1
M

∑M
m=1 u(awm) is input to the initial RNN state.

(3) Context2vec (Melamud et al., 2016). (4) Lyrics-
context2vec, the proposed model. The RNN-LMs
(Bi-RNN-LM and Encoder-Decoder) predict words
with high predicted probability in the blank, and the
VSMs (context2vec and lyrics-context2vec) predict
the most similar words in the blank. Examples of
words suggested by the models are available at
a web page (https://kentow.github.io/
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Figure 2: Results of the lyrics completion tasks.

nlp4musa2021/).

4.2 Settings

We randomly split our dataset into 80-10-10% divi-
sions to construct the training, validation, and test
data. In all models, we utilized Long Short-Term
Memory (LSTM) (Hochreiter and Schmidhuber,
1997) as the RNN layer. We chose d = 300 for the
dimension of the audio-word vector u(·) and the
dimension of the LSTM hidden state z. We chose
x = 900 for the dimension of the target word vec-
tor v(·). We used negative sampling with S = 20
negative examples. We used Adam (Kingma and
Ba, 2015) with an initial learning rate of 0.001
for parameter optimization. The model used for
testing was the one that achieved the best Mu-
sic+Atypicality score on the validation set.

4.3 Results

Figure 2(a) shows the result of the typical word
completion task (Typicality). As shown in this fig-
ure, RNN-LMs achieved higher scores than VSMs.
This is because the RNN-LMs are trained to maxi-
mize the probability of generating highly frequent
phrases. Interestingly, we can see that there is no
difference between the scores of Bi-RNN-LM and
Encoder-Decoder. This indicates that audio infor-
mation does not contribute to predicting typical
words. Typical words were thus expected to be
correlated with draft sentences rather than audio.

Regarding the task of predicting the typical
words suitable for music audio (Fig. 2 (c)), we can
observe results similar to those for the task Typical-
ity. This reinforces the fact that typical words can
be predicted from only the draft sentence, without
using audio information.

Regarding the atypical word completion (Fig. 2
(b)), VSMs achieved higher scores than RNN-LMs.
This indicates that negative sampling contributes to
suppression of typical word completion. Overall,

for atypical word completion tasks it is desirable
to use a VSM with negative sampling rather than a
LM aimed at generating typical phrases.

Regarding the main task Music+Atypicality
(Fig. 2 (d)), lyrics-context2vec predicted atypical
words suitable for music audio better than any of
the other models. This means that our model cap-
tures both the atypicality and the relationship be-
tween a music audio and words simultaneously.
Moreover, we can see that lyrics-context2vec per-
forms better than context2vec and that Encoder-
Decoder performs better than Bi-RNN-LM. This
indicates that using audio information contributes
to suggesting atypical words suitable for the music
audio.

5 Conclusion

We proposed lyrics-context2vec, a multimodal vec-
tor space model that suggests atypical but appro-
priate words for the given music audio and draft
sentence. In the vector space of lyrics-context2vec,
a vector corresponding to an atypical word in a
song and a song-level audio vector corresponding
to an audio excerpt of the song are located near
each other. We trained the models to suggest atypi-
cal words by embedding the highly frequent word
vector away from the song-level audio vector.

In the experiment, we used a large-scale dataset
to investigate whether the proposed model suggests
atypical but appropriate lyrics. Several findings
were obtained from experiment results. One is that
the negative sampling contributes to suggesting
atypical words. Another is that embedding audio
signals contributes to suggesting words suitable for
the mood of the music audio. We conclude that
embedding multiple aspects into a vector space
contributes to capturing atypicality and relationship
with audio.
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