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Abstract

Many state-of-art neural models designed
for monotonicity reasoning perform poorly
on downward inference. To address this
shortcoming, we developed an attentive tree-
structured neural network. It consists of a tree-
based long-short-term-memory network (Tree-
LSTM) with soft attention. It is designed
to model the syntactic parse tree information
from the sentence pair of a reasoning task. A
self-attentive aggregator is used for aligning
the representations of the premise and the hy-
pothesis. We present our model and evaluate
it using the Monotonicity Entailment Dataset
(MED). We show and attempt to explain that
our model outperforms existing models on
MED.

1 Introduction

In this paper, we present and evaluate a tree-
structured long-short-term-memory (LSTM) net-
work in which the syntactic information of a sen-
tence is encoded and the alignment between the
premise-hypothesis pair is calculated through a
self-attention mechanism. Our work builds on the
Child-Sum Tree-LSTM from Tai et al. (2015). We
evaluate our model on several datasets to show that
it performs well on both upward and downward
inference. Particularly, our model demonstrated
good performance on downward inference, which
is a difficult task for most NLI models.

Natural language inference (NLI), also known as
recognizing textual entailment (RTE) is one of the
important benchmark tasks for natural language un-
derstanding. Many other language tasks can benefit
from NLI, such as question answering, text sum-
marization, and machine reading comprehension.
The goal of NLI is to determine whether a given
premise P semantically entails a given hypothe-
sis H (Dagan et al., 2013). Consider the example
below:

• P: An Irishman won the Nobel prize for literature.

• H: An Irishman won the Nobel prize.

The hypothesis can be inferred from the premise
and therefore the premise entails the hypothesis.
To arrive at a correct determination, an NLI model
often needs to perform different inferences includ-
ing various types of lexical and logical inferences.
In this paper, we are concerned with monotonic-
ity reasoning, a type of logical inference that is
based on word replacement. Below is an example
of monotonicity reasoning:

1. (a) All students↓ carry a MacBook↑.

(b) All students carry a laptop.

(c) All new students carry a MacBook.

2. (a) Not All new students↑ carry a laptop.

(b) Not All students carry a laptop.

An upward entailing phrase (↑) can allow infer-
ence from (1a) to (1b), where a more general con-
cept laptop replaces the more specific MacBook. A
downward entailing phrase (↓) allows an inference
from (1a) to (1c), where a more specific context
new students replaces the word students. The direc-
tion of the monotonicity can be reversed by adding
a downward entailing phrase like ”Not”; thus (2a)
entails (2b).

Recently, Yanaka et al. (2019a) constructed a
new dataset called the Monotonicity Entailment
Dataset (MED). The purpose of that dataset is to
evaluate the ability of a neural inference model
to perform monotonicity reasoning. It is the first
dataset ever created for such purpose. While many
neural language models have shown state-of-art
performance on large annotated NLI dataset such
as the Stanford Natural Language Inference (SNLI)
dataset (Bowman et al., 2015a; Chen et al., 2017;
Parikh et al., 2016), many of these models did not
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perform well on monotonicity reasoning. In partic-
ular, they had low accuracy when performing down-
ward monotonicity inference. Additionally, most
of the state-of-art inference models that do well on
upward monotonicity inference perform poorly on
downward inference (Yanaka et al., 2019a).

2 Related Work

Existing work in this area has adopted a recursive
tree-structured neural network for natural language
inference. Bowman et al. (2015b) proposed a tree-
structured neural tensor network (TreeRNTNs) that
can learn representations to correctly identify logi-
cal relationships such as entailment.

Zhou et al. (2016) extended the recursive neu-
ral tensor networks to a recursive long-short term
memory network, a tree-LSTM, which combines
the advantages of both the recursive neural net-
work structure and the sequential recurrent neural
network structure. The tree-LSTM can learn mem-
ory cells that reflect the historical memories of the
descendant cells and thus improved the model’s
ability to process long-distance interaction over hi-
erarchies, such as the language parse information.

Parikh et al. (2016) proposed a simple decom-
pose attention model for natural language inference.
Their model relies on the attention to decompose
the problem into sub-problems so that the smaller
problems can be solved separately and in parallel.

Chen et al. (2017), proposed the Enhanced Se-
quential Inference Model (ESIM) for natural lan-
guage inference task. It incorporated the sequential
LSTM encoder with the syntactic parsing infor-
mation from the tree-LSTM structure to form a
hybrid neural inference mode. They found that in-
corporating the parsing information can improve
the performance of the model.

A new type of inference model that relies on
external knowledge called the knowledge-based in-
ference model (KIM) was introduced by Chen et al.
(2018). They incorporated neural NLI models with
external knowledge in co-attention, local inference
collection, and inference composition components.
The KIM model achieved state-of-art performance
on the SNLI and MNLI datasets.

3 Our Model

In this section we present an attentive tree
structured network (AttentiveTreeNet) with self-
attention based aggregation. This model is com-
posed of the following main components: input

Figure 1: Architecture of our model.

sentence embedding, attentive tree-LSTM encoder,
self-attention aggregator and a multi-layer percep-
tron (MLP) classifier. Figure 1 shows the architec-
ture of our model. Given an input sentence pair,
consisting of a premise P and a hypothesis H, the
objective of the model is to determine whether P
entails H. Our model takes in four inputs: the word
embeddings of the premise and hypothesis and the
dependency parse trees of the premise and hypoth-
esis. The model initializes the embedding of P
and H with some pre-trained word embedding; the
parse trees are produced by a dependency parser.
Our model forms a Siamese neural network struc-
ture (Mueller and Thyagarajan, 2016), in which
the premise and the hypothesis are passed into a
pair of identical tree-LSTMs that share the same
parameters and weights. The main idea is to find
a function that can map the input sentences into
a target space such that we can approximate the
semantic distance in the input space.

3.1 Attentive Tree-LSTM Encoder

Child-Sum Tree-LSTM We employ Child-Sum
Tree-LSTMs (Tai et al., 2015) as the basic building
blocks for our model. A standard sequential LSTM
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network only permits sequential information prop-
agation. However, the lingistic principle of com-
positionality states that an expression’s meaning
is derived from the meanings of its parts and of
the way they are syntactically combined (Partee,
2007). A tree-structured LSTM network allows
each LSTM unit to be able to incorporate infor-
mation from multiple children units. This takes
advantage of the fact that sentences are syntacti-
cally formed bottom-up tree-structures.

A Child-Sum Tree-LSTM is a type of tree-
LSTM which contains units that conditioned their
components on the sum of their children’s hidden
states. While a standard sequential LSTM network
computes the current hidden state from the current
input and the previous hidden state, a child-sum
tree-LSTM computes the hidden state from the in-
put and the hidden states of an arbitrary number
of children nodes. This property allows relation
representations of non-leaf nodes to be recursively
computed by composing the relations of the chil-
dren, which can be viewed as natural logic for neu-
ral model (MacCartney and Manning, 2009; Zhao
et al., 2016). Using the child-sum tree structure is
beneficial in interpreting the entailment relations
between parts of the two sentences.

When encoding the sentence in a forward man-
ner, hidden states are passed recursively in a
bottom-up fashion. The information flow in each
LSTM cell is controlled by a gating mechanism
similar to the one in a sequential LSTM cell. The
computations in an LSTM cell are as follows:

h̃ = Σ1≤k≤nhk,

i = σ(W (i)x+ U (i)h̃+ b(i)),

o = σ(W (o)x+ U (o)h̃+ b(o)),

u = tanh(W (u)x+ U (u)h̃+ b(u)),

fk = σ(W (f)x+ U (f)hk + b(f)),

c = i� u+ Σ1<nfk � ck,
h = o� tanh(c),

Here, k is the number of children of the current
node, and h̃ is the sum of the hidden states from
the children of the current node. The forget gate
fk controls the amount of memory being passed
from the kth child. The input gate i controls the
amount of internal input u being updated and the
output gate o controls the degree of exposure of the
memory. The σ is the sigmoid activation function,
� is the element-wise product and W and U are
both trainable weights to be learned.

Figure 2: A comparison between a standard LSTM cell
and an attentive LSTM cell.

Attentive Tree-LSTM In our model, the stan-
dard tree-LSTM is extended to an attentive tree-
LSTM (Zhou et al., 2016) by incorporating the
attention mechanism into the LSTM cell. In a sen-
tence, some words are more related to the overall
context of the sentence than others. The benefit of
applying attention is that it considers this seman-
tic relevance by weighting each child according to
how relative that child is to the given context. The
attention mechanism can assign a higher weight to
a child node that is more relevant to the context of
the sentence and a lower weight to a child node that
is not relevant to the context.

To apply the attention mechanism, a common
soft-attention layer is used in the model. That layer
receives a set of hidden states {h1, h2, ..., hn} and
an external vector s, which is a vector representa-
tion of a sentence from a layer of sequential LSTM.
The layer then computes a weight α for each hid-
den state, and sums up the product of each hidden
state and its weight to output the context vector g.
Below are the equations for the soft-attention layer:

mk = tanh(W (m)hk + U (m)s),

αk =
exp(w>mk)

Σn
j=1exp(w

>mj)
,

g = Σ1≤k≤nαkhk

A new previous hidden state is then computed
through a transformation h̃ = tanh(W (a)g+ b(a)).
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Figure 3: Detailed view of the self-attention aggregator

Figure 2 illustrates the standard tree-LSTM cell
and the attentive tree-LSTM cell.

3.2 Self-Attention Aggregator

After both the premise and the hypothesis are en-
coded through the tree-LSTM, each tree’s hidden
states from the nodes are concatenated into a pair of
matrices Hp and Hh and passed to a self-attentive
aggregator. The aggregator contains a multi-hop
self-attention mechanism (Lin et al., 2017). A sen-
tence has multiple components such as groups of
related words and phrases to form an overall con-
text, especially for long sentences. By performing
multiple hops of attention, the model can get multi-
ple attentions that each focus on different parts of
the sentence. Given a matrix H , the self-attention
mechanism performs multiple hops of attention
and outputs an annotation matrix A which consists
of the weight vector from each hop. A is calcu-
lated from a 2-layer multi-layer perceptron (MLP)
and a softmax function. Below is the equation to
calculate A:

A = softmax(Ws2tanh(Ws1H
>))

The annotation matrix A is then multiplied by the
hidden state matrix H to obtain a context matrix:
M = AH . In the model, there will be a pair of
context matrices Mp and Mh. A batch dot product
and a tanh function is then applied to the context
matrices with a trainable weight to obtain a pair of

output Fp and Fh matrices:

Fp = tanh(bmm(Mp,Wf )),

Fh = tanh(bmm(Mh,Wf ))

To aggregate Fp and Fh, we follow Conneau et al.
(2017)’s generic NLI training scheme, which in-
cludes three matching methods: (i) a concatenation
of Fp and Fh, (ii) an absolute distance between Fp
and Fh, and (iii) an element wise product of Fp and
Fh. Results from the three methods are then con-
catenated to Fr as the factor of semantic relation
between the two sentences which can measure how
close the two vector representations of the sentence
pair are in the target space. This relatedness infor-
mation will help the classifier to determine whether
the hypothesis is entailed by the premise.

Fr = [Fp;Fh; |Fp − Fh|;Fp � Fh],

3.3 MLP
The factor of relation Fr is fed to a classic three
layer MLP classifier. The final prediction is a prob-
ability pθ representing the degree to which the hy-
pothesis is entailed by the premise. It is calculated
by a softmax function, which is a standard activa-
tion function used to calculate the probability of
the input being in a category for multi-way classifi-
cation tasks:

Y1 = ReLU(Wf1Fr + bf1),

Y2 = σ(Wf2Y1 + bf2),

yθ = softmax(Wf3Y2 + bf3),

For the classification, the binary cross-entropy loss
is used as the objective function:

−
∑
c

1(X, c)log(p(c|X)),

where 1 is the binary indicator (0 or 1) whether the
label c is the correct class for X.

4 Evaluation

4.1 Data
Six different types of training data are used to train
our model. Initially, we used the HELP dataset
(Yanaka et al., 2019b) to train our model. HELP
is a dataset for learning entailment with lexical
and logical phenomena. It embodies a combina-
tion of lexical and logical inferences focusing on
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Model Train Data Upward Downward None All
BiMPM (Wang et al., 2017) SNLI 53.5 57.6 27.4 54.6
ESIM (Chen et al., 2017) SNLI 71.1 45.2 41.8 53.8
DeComp (Parikh et al., 2016) SNLI 66.1 42.1 64.4 51.4
KIM (Chen et al., 2018) SNLI 78.8 30.3 53.1 48.0
BERT (Devlin et al., 2019) MNLI 82.7 22.8 52.7 44.7
BERT (Devlin et al., 2019) HELP+MNLI 76.0 70.3 59.9 71.6
AttentiveTreeNet (ours) MNLI 54.7 60.4 37.8 58.6
AttentiveTreeNet (ours) HELP 55.7 72.6 57.9 66.0
AttentiveTreeNet (ours) HELP+SubMNLI 81.4 74.5 53.8 75.7

Table 1: Accuracy of our model and other state-of-art NLI models evaluated on MED.

monotonicity. HELP consists of 36K sentence pairs
including those for upward monotone, downward
monotone, non-monotone, conjunction, and dis-
junction. Next we trained our model with the Multi-
Genre NLI Corpus (MNLI) dataset (Williams et al.,
2018). MNLI contains 433k pairs of sentences an-
notated with textual entailment information. That
dataset covers a wide range of genres of spo-
ken and written language. The majority of the
training examples in that dataset is upward mono-
tone. In order to provide more balanced training
data, we combined a subset of the MNLI dataset
with the HELP dataset to reduce the effect of the
large number of downward monotone examples
in the HELP dataset, we call this combined train-
ing data HELP+SubMNLI. The fourth training
data contains both the HELP+SubMNLI training
data and the training set for simple monotonicity
from Richardson et al. (2019)’s Semantic Frag-
ments. The fifth training data contains both the
HELP+SubMNLI training data and the training
set for hard monotonicity from Semantic Frag-
ments. Finally, the last training data contains the
HELP+SubMNLI training data and the training set
for simple and hard monotonicity from Semantic
Fragments.

To validate our model’s ability for monotonic-
ity reasoning and to evaluate its performance on
upward and downward inference, the Monotonic-
ity Entailment Dataset (MED) was used (Yanaka
et al., 2019a), which is designed to examine a
model’s ability of performing monotonicity rea-
soning. MED contains 5382 premise-hypothesis
pairs including 1820 upward inference examples,
3270 downward inference examples, and 292 non-
monotone examples. The sentences in MED cover
a variety of linguistic phenomena, including lexi-
cal knowledge, reverse, conjunction, disjunction,

conditional and negative polarity items. We re-
moved sentence pair with the label ”contradict”
from MNLI dataset since the test dataset MED and
the training dataset HELP do not contain the label
”contradict”. We furthermore tested our model on
the simple and hard monotonicity fragments test
sets from Semantic Fragments.

4.2 Training

Word embeddings are a common way to represent
words when training neural networks (Mikolov et
al., 2013). To train our model we used Stanford’s
pre-trained 300-D Glove 840B vectors (Penning-
ton et al., 2014) to initialize the word embeddings.
The Stanford Dependency Parser (Chen and Man-
ning, 2014) was used to parse each sentence in
the dataset. The model is trained with the Adam
optimizer (Kingma and Ba, 2014) which is com-
putationally efficient and helps a model to quickly
converge to an optimal result. A standard learning
rate for Adam, 0.001, is also used. Dropout with a
standard rate of 0.5 is applied to the feed-forward
layer in the self-attention aggregator and the clas-
sifier to reduce the over-fitting of the model. For
the number of hops of the self-attention, we used
the default 15 hops. The metric for evaluation is
accuracy based. The system is implemented using
a common deep learning framework, PyTorch and
is trained on a GPU for 20 epochs.

5 Results

5.1 Overall Performance

In this section, we evaluated our model’s ability
of performing monotonicity reasoning. Table 1
shows a comparison of the performance of differ-
ent models on the Monotonicity Entailment Dataset
(MED), including our model. The data for all
models except for ours was developed byYanaka



17

Test Model Training Data Upward Downward None All
- Full Model w/ vector-concat HELP 55.7 72.6 57.9 66.0
1 –Self-Attentive Aggregator HELP 65.1 67.1 53.7 65.7
2 –Tree-LSTM HELP 36.6 65.5 94.8 49.5
3 Full Model w/ mean-dist HELP 59.3 71.2 46.2 65.9
- Full Model w/ vector-concat HELP+SubMNLI 81.4 74.5 53.8 75.7
1 –Self-Attentive Aggregator HELP+SubMNLI 70.5 66.9 85.6 69.1
2 –Tree-LSTM HELP+SubMNLI 54.7 60.4 37.8 58.6
3 Full Model w/ mean-dist HELP+SubMNLI 68.9 73.7 91.0 73.0

Table 2: This table shows the accuracy of ablation tests trained on HELP and HELP+SubMNLI and tested on
MED. Three ablation test were performed: (i) Remove self-attentive aggregator (–Self-Attentive Aggregator), (ii)
Replace tree-LSTM with regular LSTM (–Tree-LSTM) (iii) Use mean distance as a matching method (Full Model
w/ mean-dist). The final model (Full Model w/ vector-concat) uses a concatenation of the sentence vectors as one of
the matching methods instead of mean distance.

et al. (2019a) who developed the MED dataset.
Our model achieves an overall accuracy of 75.7%
which outperforms all other models, even a state-
of-art language model like BERT. Table 1 shows
the ability of different models on performing up-
ward and downward inference. Our attentive tree
model performed better on downward inference
than other models with an accuracy of 74.5% . Our
model’s performance on upward inference outper-
forms other models except BERT. However, the up-
ward inference accuracy of our model (81.4) is very
close to the accuracy of BERT (82.7). We believe
the good performance on upward and downward in-
ference is due to considering parse tree information.
Furthermore, the accuracy on upward inference in-
creased significantly when trained with a combina-
tion of HELP and MNLI (HELP+SubMNLI) then
trained only with HELP; the accuracy increased
from 55.7 to 81.4 while the downward accuracy
did not change much. Such phenomena suggests
that adding MNLI to HELP does reduce the effect
of the large number of downward monotone ex-
amples in the HELP dataset and thus improve the
model’s ability on upward inference.

5.2 Robustness of Model

To demonstrate the robustness of our model, we
experimented with training the model on various
datasets. First, the model was trained on the HELP
dataset alone. The overall accuracy was 66.0%,
which outperformed other models from Table 1
except BERT trained with HELP+SubMNLI and
our model trained with HELP+SubMNLI. Even
on downward inference alone our model outper-
forms all other models with an accuracy of 72.6%
except our model trained with HELP+SubMNLI.

This result indicates that with a rich set of down-
ward monotone examples, the model can learn to
better predict a downward inference problem.

We then trained a model with the MNLI dataset
alone. It contains a large amount of upward infer-
ence examples and only a rare number of down-
ward inference examples. The result shows that
the model generalized to the training data, and
had an accuracy of 58.6% which is still higher
than most models from Table 1. Interestingly, the
model’s performance on downward inference is
still better than its performance on upward infer-
ence, even though the training dataset contains a
large number of upward monotone examples. This
suggests that the model is immune to significant
change of training data possibly due to the multiple
dropout layer added to the aggregator and the clas-
sifier which forces a the model to learn more robust
features. As Table 1 show, comparing to BERT
trained with MNLI along, our model trained with
MNLI along has better performance on downward
inference than BERT’s performance from Yanaka
et al. (2019a).

Finally, we trained our model on a combina-
tion of the MNLI dataset and the HELP dataset
(HELP+SubMNLI). Because of the large number
of upward training examples in MNLI, we sus-
pected that the combination would alleviate the
effects of this distortion and as such increase the
accuracy for upward inference. We selected 20%
of the complete MNLI dataset due to the long train-
ing period. As the results in Table 1 show, our
model still performs well on downward inference
with 74.5% accuracy, it also showed significant im-
provements on upward inference with an accuracy
of 81.4% . The overall performance also increased
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substantially to 75.7% . Compared to the results
of BERT trained with HELP+MNLI from Yanaka
et al. (2019a), our model performs better on both
upward inference and downward inference, and
achieves a higher overall accuracy. The result vali-
dates our hypothesis that training on a combination
of upward and downward monotone sentences can
help the model achieve good performance on both
upward and downward monotone, and that the use
of AttentiveTreeNet is a good choice.

5.3 Ablation Test

To further evaluate which part of the model con-
tributed the most for monotonicity reasoning, we
performed several ablation tests on the model.
The ablation tests were trained with HELP and
HELP+SubMNLI separately and the models were
evaluated on the MED dataset. The results are
shown in Table 2. We will focus our evaluation on
the HELP+SubMNLI data.

For ablation test 1, we removed the self-attentive
aggregator and built the feature vector for classifica-
tion right after the tree-LSTM encoder. As Table 2
(–Self-Attentive Aggregator) shows, performance
of the model trained on HELP+SubMNLI shows
a significant, 6.6 percentage point drop in overall
accuracy, a 10.9 percentage point drop in upward
inference accuracy and a 7.6 percentage point drop
in downward inference accuracy. The results of
this test suggest that the self-attentive aggregator is
an important component of the model that cannot
be removed.

For ablation test 2, we replaced the tree-LSTM
encoder with a standard LSTM encoder. Here, we
see an even larger drop in performance. As Table 2
(–Tree-LSTM) shows, performance of the model
trained on HELP+SubMNLI shows a large, 17.1
percentage point drop in overall accuracy, a 26.7
percentage point drop in upward inference accu-
racy and a 14.1 percentage point drop in downward
inference accuracy. Based on the results, replacing
tree-LSTM with standard LSTM has significant
negative impact on the model’s monotonicity rea-
soning performance. Thus, tree-LSTM is a major
component of the model that cannot be replaced.

For ablation test 3, we compared two match-
ing methods for aggregating the two sentence vec-
tors. In our final model (Full Model w/ vector-concat),
we updated the matching method by following the
generic NLI training scheme (Conneau et al., 2017).
In it, we concatenate the two sentence vectors with

Training Data SF HF MED
Pre-Trained Models

HELP 57.0 56.8 66.0
HELP+SubMNLI 46.0 63.0 75.7

Re-trained Models w/ SF-training fragments

HELP+frag 98.1 80.6 64.5
HELP+SubMNLI+frag 97.8 74.8 81.5

Re-trained Models w/ HF-training fragments

HELP+frag 74.3 95.6 68.9
HELP+SubMNLI+frag 73.9 93.2 73.3

Re-trained Models w/ SF and HF-training fragments

HELP+frag 96.9 94.6 64.5
HELP+SubMNLI+frag 96.4 98.3 75.4

Table 3: This table shows the result of the model
tested on MED and the simple monotonicity frag-
ments test set (SF) and hard monotonicty fragments
test set (HF) from the Semantic Fragments dataset.
The table includes three subsections: (i) test accu-
racy on the three test sets using models pre-trained
on HELP and HELP+SubMNLI; (ii) test accuracy on
the three test sets using the model re-trained after
adding simple monotonicity training set to HELP and
HELP+SubMNLI; (iii) test accuracy on the three test
sets using the model re-trained after adding hard mono-
tonicity training set to HELP and HELP+SubMNLI;
(iv) test accuracy on the three test sets using the model
re-trained after adding both simple and hard monotonic-
ity training sets to HELP and HELP+SubMNLI.

an absolute distance and an element-wise product
as the input vector for the classifier. We compared
the performance to our original model (Full Model
w/ mean-dist) which contains the tree-LSTM encoder,
the self-attentive aggregator, and the concatenation
of an absolute distance, an element-wise product,
and a mean distance as the input vector for the clas-
sifier. For this ablation test, the results from Table
2 (Full Model w/ mean-dist) are mixed, yet important.
While the overall accuracy decreases just slightly,
by 2.7 percentage points and the downward infer-
ence accuracy only decreases by 0.8 percentage
points, the accuracy for upward inference decreases
by a significant 12.5 percentage points. We believe
that these results justify the use of concatenation of
the sentence vector pair.

Overall, the removal of the Tree-LSTM encoder
affected the model’s performance most. Thus, we
conclude that the Tree-LSTM encoder contributes
the most to the model’s performance on monotonic-
ity reasoning.
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5.4 Additional Testings

To check if our pre-trained model can be gener-
alized to other monotonicity dataset, and to see
if the model can be easily trained to master the
new dataset while retaining its performance on the
original benchmark, we conducted some additional
testings on the model. We tested our pre-trained
models on the Semantic Fragments test dataset
which provides a more in-depth test for an NLI
model’s performance with semantic phenomena,
see (Richardson et al., 2019). Since our model fo-
cuses on monotonicity reasoning, we only selected
the simple and hard monotonicity fragments for
testing. Additionally, since our models are pre-
trained on datasets that only contain two labels:
”Entailment” and ”Neutral”, we removed sentence
pairs with the third label ”contradict” from the test
dataset.

Table 3 shows the results of our testing. While
we show the results for both, the HELP and
HELP+SubMNLI data sets, we will focus our
discussion again on the data obtained with the
HELP+SubMNLI data set.

The top portion of Table 3 shows that the model
trained on just HELP+SubMNLI performs poorly
on the simple and hard monotonicity fragments.
This performance is on par with other state-of-art
model’s, see (Richardson et al., 2019).

The first middle portion on Table 3 shows the
results of our model’s performance when only
the simple training fragments were added to the
HELP+SubMNLI training set. As the data shows,
the model masters the simple monotonicity reason-
ing tests, does well on the hard monotonicity rea-
soning tests and retains its accuracy on the original
benchmark MED.

The second middle portion of Table 3 shows
the results of our model’s performance when only
the hard training fragments were added to the
HELP+SubMNLI training set. In this case, the
model masters the hard monotonicity reasoning
tests, does well on the simple monotonicity rea-
soning tests and again retains its accuracy on the
original benchmark MED.

The bottom portion of Table 3 shows the results
of our model’s performance when both the sim-
ple and hard training fragments were added to the
HELP+SubMNLI training set. As the results show,
the model masters both the simple and hard mono-
tonicity reasoning tests while retaining its accuracy
on the original benchmark MED.

Overall, the results show that the model trained
on the fragments can be generalized to both simple
and hard monotonicity reasoning.

6 Conclusions

In this paper, we explained our attentive tree-
structured network to perform monotonicity reason-
ing. Our model combines a tree-structured LSTM
network and a self-attention mechanism, which is a
potential mechanism for future natural language in-
ference models, to incorporate syntactic structures
of the sentence to improve sentence-level mono-
tonicity reasoning. We evaluated our model and
showed that it achieves better accuracy on mono-
tonicity reasoning than other inference models. In
particular, our model is performing significantly
better on downward inference than others. We in-
terpret the results of the experiments as supporting
the thesis that using parse trees of a sentence are
helpful in inferring the entailment relation.

Future research on the attentive tree network
might extend a tree-LSTM architecture by replac-
ing the LSTM cell with newer language models
that have much better performance on various num-
ber of natural language processing tasks. One such
model is the transformer model. Furthermore, fu-
ture work might want to investigate how different
attention mechanism affect a model’s performance.
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