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Message from the Program Chairs

Welcome to the Findings of ACL: ACL-IJCNLP 2021! To continue the success of Findings of ACL:
EMNLP 2020, we decided to follow this initiative to produce this accompanying volume, consisting of
papers that are not accepted for publication in the main conference, but nonetheless have been assessed
by the Program Committee as solid work with sufficient substance, quality and novelty. Out of the
3,350 full submissions to ACL-IJCNLP 2021, 493 papers were invited to be included in the Findings.
Thirty-six papers declined the offer, leading to 457 papers (118 short and 339 long) to be published in
the Findings of ACL: ACL-IJCNLP 2021.

Papers published in Findings of ACL count as full publications. They are not assigned a presentation
slot in the main conference, but rather are published online in a separate volume in the ACL Anthology.
There are a number of motivations for this new publication, from allowing timely work to be published
quickly, to being more accepting of solid work, and helping to manage the increasing reviewing burden
on the community. To increase the visibility of the Findings papers, this year the authors of Findings
papers can choose to make a 3-minute video to be included in the virtual conference. Our workshop
chairs also helped to pair Findings papers with ACL-IJCNLP 2021 workshops, and as a result, more than
100 Findings papers will be presented at those workshops.

The reviewing process for Findings is largely the same as for the main conference and accordingly
we wish to thank all involved in ACL-IJCNLP 2021 for their efforts, as detailed in the Preface to the
Proceedings of ACL-IJCNLP 2021. We would like to specifically thank:

* The whole Program Committee for reviewing the submissions, and in particular, the Senior Area
Chairs for making paper recommendation decisions for Findings.

* The Ethics Advisory Committee, chaired by Min-Yen Kan, Malvina Nissim, and Xanda
Schofield, for their hard work to ensure that all the accepted Findings papers have addressed the
ethical issues appropriately.

* The Publication Co-Chairs, Jing-Shin Chang, Yuki Arase, and Yvette Graham, for their
tremendous effort in making the volume of Findings of ACL: ACL-IJCNLP 2021.

* The Workshop Chairs, Kentaro Inui and Michael Strube, for connecting Findings paper authors
with individual workshops for possible presentations.

* The Program Co-Chairs of EMNLP 2020, Trevor Cohn, Yulan He and Yang Liu, for sharing
their experience with Findings papers.

We hope that Findings will continue to serve as a companion to future conferences, and become an
important venue for excellent, widely-read, and highly cited work in NLP.

Fei Xia, University of Washington
Wenjie Li, The Hong Kong Polytechnic University
Roberto Navigli, Sapienza University of Rome

ACL-IJCNLP 2021 Program Committee Co-Chairs
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Abstract

We propose an explainable inference approach
for science questions by reasoning on ground-
ing and abstract inference chains. This paper
frames question answering as a natural lan-
guage abductive reasoning problem, construct-
ing plausible explanations for each candidate
answer and then selecting the candidate with
the best explanation as the final answer. Our
method, ExplanationLP, elicits explanations
by constructing a weighted graph of relevant
facts for each candidate answer and employs
a linear programming formalism designed to
select the optimal subgraph of explanatory
facts. The graphs’ weighting function is com-
posed of a set of parameters targeting rele-
vance, cohesion and diversity, which we fine-
tune for answer selection via Bayesian Opti-
misation. We carry out our experiments on the
WorldTree and ARC-Challenge datasets to em-
pirically demonstrate the following contribu-
tions: (1) ExplanationLP obtains strong perfor-
mance when compared to transformer-based
and multi-hop approaches despite having a sig-
nificantly lower number of parameters; (2) We
show that our model is able to generate plausi-
ble explanations for answer prediction; (3) Our
model demonstrates better robustness towards
semantic drift when compared to transformer-
based and multi-hop approaches.

1 Introduction

Answering science questions remain a fundamen-
tal challenge in Natural Language Processing and
Al as it requires complex forms of inference, in-
cluding causal, model-based and example-based
reasoning (Jansen, 2018; Clark et al., 2018; Jansen
etal., 2016; Clark et al., 2013). Current state-of-the-
art (SOTA) approaches for answering questions in
the science domain are dominated by transformer-
based models (Devlin et al., 2019; Sun et al., 2019).
Despite remarkable performance on answer pre-
diction, these approaches are black-box by nature,
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lacking the capability of providing explanations for
their predictions (Thayaparan et al., 2020; Miller,
2019; Biran and Cotton, 2017; Jansen et al., 2016).

Explainable Science Question Answering
(XSQA) is often framed as a natural language
abductive reasoning problem (Khashabi et al.,
2018; Jansen et al., 2017). Abductive reasoning
represents a distinct inference process, known
as inference to the best explanation (Peirce,
1960; Lipton, 2017), which starts from a set of
complete or incomplete observations to find the
hypothesis, from a set of plausible alternatives,
that best explains the observations. Several
approaches (Khashabi et al., 2018; Jansen et al.,
2017; Khot et al., 2017a; Khashabi et al., 2016)
employ this form of reasoning for multiple-choice
science questions to build a set of plausible
explanations for each candidate answer and select
the one with the best explanation as the final
answer.

XSQA solvers typically treat explanation gener-
ation as a multi-hop graph traversal problem. Here,
the solver attempts to compose multiple facts that
connect the question to a candidate answer. These
multi-hop approaches have shown diminishing re-
turns with an increasing number of hops (Jansen
et al., 2018; Jansen, 2018). Fried et al. (2015) con-
clude that this phenomenon is due to semantic drift
—1i.e., as the number of aggregated facts increases,
so does the probability of drifting out of context.
Khashabi et al. (2019) propose a theoretical frame-
work, empirically supported by Jansen et al. (2018);
Fried et al. (2015), attesting that ongoing efforts
with very long multi-hop reasoning chains are un-
likely to succeed, emphasising the need for a richer
representation with fewer hops and higher impor-
tance to abstraction and grounding mechanisms.

Consider the example in Figure 1A where the
central concept the question examines is the under-
standing of friction. Here, an inference solver’s

Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 1-12
August 1-6, 2021. ©2021 Association for Computational Linguistics



For each Candidate Hypothesis: ‘

Question(Q):
What is an example of force producing heat?

Fact Graph Construction:

Candidate Answer (Cy):
Two sticks getting warm when rubbed together

Hypothesis (Hj):
Two sticks getting warm when rubbed together
is an example of force producing heat

Grounding Facts:

[/] a stick is an object: Fgy
[/] friction is a force: Fgy
[X] a pull is a force: Fg3
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(V] to rub together means to move against: Fgq ..b A
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movement: Fgs v

7N

“Fes)

Abstract Facts: —/
Grouding
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Figure 1: Overview of our approach: (A) Depicts a question, answer and formulated hypothesis along with the set
of facts retrieved from a fact retrieval approach (B) Illustrates the optimisation process behind extracting explana-
tory facts for the provided hypothesis and facts. (C) Details the end-to-end architecture diagram.

challenge is to identify the core scientific facts
(Abstract Facts) that best explain the answer. To
achieve this goal, a QA solver should be able first
to go from force to friction, stick to object and
rubbing together to move against. These are the
Grounding Facts that link generic or abstract con-
cepts in a core scientific statement to specific terms
occurring in question and candidate answer (Jansen
et al., 2018). The grounding process is followed by
the identification of the abstract facts about friction.
A complete explanation for this question would
require the composition of five facts to derive the
correct answer successfully. However, it is pos-
sible to reduce the global reasoning in two hops,
modelling it with grounding and abstract facts.

In line with these observations, this work
presents a novel approach that explicitly models
abstract and grounding mechanisms. The contribu-
tions of the paper are:

1. We present a novel approach that performs
natural language abductive reasoning via
grounding-abstract chains combining Linear
Programming with Bayesian optimisation for
science question answering (Section 2).

2. We obtain comparable performance when
compared to transformers, multi-hop ap-
proaches and previous Linear Programming
models despite having a significantly lower
number of parameters (Section 3.1).

3. We demonstrate that our model can generate
plausible explanations for answer prediction
(Section 3.2) and validate the importance of
grounding-abstract chains via ablation analy-
sis (Section 3.3).

2 ExplanationLP: Abductive Reasoning
with Linear Programming

ExplanationLLP answers and explains multiple-
choice science questions via abductive natural lan-
guage reasoning. Specifically, the task of answer-
ing multiple-choice science questions is reformu-
lated as the problem of finding the candidate an-
swer that is supported by the best explanation. For
each Question () and candidate answer ¢; € C,
ExplanationLLP converts to a hypothesis h; and at-
tempts to construct a plausible explanation.
Figure 1C illustrates the end-to-end framework.
From an initial set of facts selected using a re-
trieval model, ExplanationLP constructs a fact
graph where each node is a fact, and the nodes
and edges have a score according to three prop-
erties: relevance, cohesion and diversity. Subse-
quently, an optimal subgraph is extracted using
Linear Programming, whose role is to select the
best sub-set of facts while preserving structural
constraints imposed via grounding-abstract chains.
The subgraphs’ global scores computed by sum-
ming up the nodes and edges scores are adopted to
select the final answer. Since the subgraph scores
depend on the sum of nodes and edge scores, each
property is multiplied by a learnable weight which



is optimised via Bayesian Optimisation to obtain
the best possible combination with the highest ac-
curacy for answer selection. To the best of our
knowledge, we are the first to combine a parameter
optimisation method with Linear Programming for
inference. The rest of this section describes the
model in detail.

2.1 Relevant facts retrival

Given a question () and candidate answers C' =
{c1, c2, c3,..., ¢} we convert them to hypothe-
ses {h1, he, hs,..., h,} using the approach pro-
posed by Demszky et al. (2018). For each hy-
pothesis h; we adopt fact retrieval approaches
(e.g: BM25, Unification-retrieval (Valentino et al.,
2021)) to select the top m relevant abstract facts
in = (M fh i fhY from a knowl-
edge base containing abstract facts (Abstract Facts
KB) and top [ relevant grounding facts Fgf =
{ffi,thi,f;”, ...,flhi} from a knowledge base
containing grounding facts (Grounding Facts KB)
that at least connects one abstract fact with the hy-
pothesis, such that F7 = FZiUng and [+m = k.

2.2 Fact graph construction

For each hypothesis h; we build a weighted undi-
rected graph G = (VP EM, w,, w.) with
vertices V" ¢ {{h;} U F"}, edges E", edge-
weight function we(e;; #1) and node-weight func-
tion w,(v;; 02) where e; € EM, v; € V" and
01,02 € [0,1] is a learnable parameter which is
optimised via Bayesian optimisation.

The model scores the nodes and edges based on
the following three properties (See Figure 1B):

(1) Relevance: We promote the inclusion of highly
relevant facts in the explanations by encouraging
the selection of sentences with higher lexical rele-
vance and semantic similarity with the hypothesis.
We use the following scores to measure the rele-
vance and the semantic similarity of the facts:
Lexical Relevance score (L): Obtained from the
upstream facts retrieval model (e.g: BM25 score/
Unification score (Valentino et al., 2021)).
Semantic Similarity score (.5): Cosine similarity
obtained from neural sentence representation
models. For our experiments, we adopt Sentence-
BERT (Reimers et al., 2019) since it shows
state-of-the-art performance in semantic textual
similarity tasks.

(2) Cohesion: Explanations should be cohesive,
implying that grounding-abstract chains should re-
main within the same context. To achieve cohe-
sion, we encourage a high degree of overlaps be-
tween different hops (e.g. hypothesis-grounding,
grounding-abstract, hypothesis-abstract) to prevent
the inference chains from drifting away from the
original context. The overlap across two hops is
quantified using the following scoring function:
Cohesion score (C): We denote the set of unique
terms of a given fact fihi as t( fzhz) after being lem-
matized and stripped of stopwords. The overlap
score of two facts f;” and fj’»” is given by:

(1) (£
max(\t(f]hi)‘v \t(f;i“)\)

Therefore, the higher the number of term overlaps,
the higher the cohesion score.

C(fI, fl) =

(3) Diversity: While maximizing relevance and co-
hesion between different hops, we encourage diver-
sity between facts of the same type (e.g. abstract-
abstract, grounding-grounding) to address different
parts of the hypothesis and promote completeness
in the explanations. We measure diversity via the
following function:

Diversity score (D): We denote the overlaps be-
tween hypothesis h; and the fact fihi as tp, (f hi) =

)

t( fih ") N t(h;). The diversity score of two facts f]]-”
and f]}-” is given by:

tn, (F1) O, (£
maz([tn, (F1)], [bn, (F1)])

The goal is to maximise diversity and avoid redun-
dant facts in the explanations. Therefore, if two
facts overlap with different parts of the hypothesis,
they will have a higher diversity score compared to
two facts that overlap with the same part.

Given these premises, the weight functions of
the graph is designed as follows:

D(fl, fi) = -1

049D (vj,v8) vj,v5 € ng
0aaD(vj,v)  vj, v € Fj{”
We(vj, Vg3 01) = { 04aC (vj,v) vj € Fli e € in
049C (v, v6) v € Fl vy = hy
05aC(vj,v) v € in, v = hy

I QZTL(U]', hl) +4 GSSS(’Uj, hl) v; € le
wy(v;";02) =<0 v; € F
0 v, = h;



where 0gg, Oua, 0ga, Ogq, Oga € 01 and 0y, 0,5 €
5.

2.3 Subgraph extraction with Linear
Programming (LP) optimisation

The construction of the explanation graph has to
be optimised for the downstream answer selection
task. Specifically, from the whole set of facts re-
trieved by the upstream retrieval models, we need
to select the optimal subgraph that maximises the
performance of answer prediction. To achieve this
goal, we adopt a Linear Programming approach.
The selection of the explanation graph is framed
as a rooted maximum-weight connected subgraph
problem with a maximum number of K vertices
(R-MWCSg). This formalism is derived from the
generalized maximum-weight connected subgraph
problem (Loboda et al., 2016). R-MWCS g has two
parts: objective function to be maximized and con-
straints to build a connected subgraph of explana-
tory facts. The formal definition of the objective
function is as follows:
Definition 1. Given a connected undirected graph
G = (V, E) with edge-weight function w, : £ —
IR, node-weight function w, : V' — IR, root ver-
tex r € V and expected number of vertices K, the
rooted maximum-weight connected subgraph prob-
lem with K number of vertices (R-MWCS k) prob-
lem is finding the connected subgraph G' = (V, E))
such that » € V, |V|< K and

QG 03) = Oy Y _ wy(v;61)

veV

+ 0w Z we(e; 02) — max
eckE

where 0y, Ocyy € 03, 05 € [0, 1] and 03 is a learn-
able parameter optimized via Bayesian optimisa-
tion. The LP solver will seek to extract the optimal
subgraph with the highest possible sum of node and
edge weights. Since the solver seeks to obtain the
highest possible score, it will avoid negative edges
and will prioritise high-value positive edges result-
ing in higher diversity, cohesion and relevance. We
adopt the following binary variables to represent
the presence of nodes and edges in the subgraph:

1. Binary variable y, takes the value of 1 iff v €
V" belongs to the subgraph.

2. Binary variable z. takes the value of 1 iff e €
E"™ belongs to the subgraph.

In order to emulate the grounding-abstract infer-
ence chains and obtain a valid subgraph, we impose
the set constraints described in Table 1 for the LP
solver.

2.4 Bayesian Optimisation for Answer

Selection
Given Question () and choices C =
{c1, ca, cs,..., ¢} we extract the optimal expla-

nation graphs G9 = {G°, G2, G, .., G}
for each choice. We consider the hypothesis
with the highest relevance, cohesion and di-
versity to be the correct the answer. Based on
this premise we define the correct answer as
Cans = arg maxy, (Q(GM)).

In order to automatically optimize the Linear
Programming model (i.e, 61, 62, 03) we use
Bayesian optimisation. The algorithm is defined as
below (Here GP is Gaussian Process and LP is the
Linear Programming module).

Algorithm 1: Bayesian Optimisation
01, 02, 03 = initRandom(seed)
G = fact—graph—construction(we(9;), wU(G;))
G =LP(G?, Q(03))
X = evaluate—accuracy(GQ)
model = Q’P(X, {91, 02, 95})
iteration = 0
while iteration < N do
49/1, (/9%, 9;, = get-next-exploration-point()

G? = fact-graph-construction(we (01 ), W (6/2))
GO =LP(G? , Q(65))
X = evaluate—accuracy(GQ )

model.update(X/ , {49/1, 9;, 9;,})
iteration = iteration + 1

end
Result: Best accuracy for model and respective
parameters 61, 02, 03

3 Empirical Evaluation

Background Knowledge: We construct the re-
quired knowledge bases using the following
sources.

(1) Abstract KB: Our Abstract knowledge base
is constructed from the WorldTree Tablestore cor-
pus (Xie et al., 2020; Jansen et al., 2018). The
Tablestore corpus contains a set of common sense
and scientific facts adopted to create explanations
for multiple-choice science questions. The corpus
is built for answering elementary science questions
encouraging possible knowledge reuse to elicit ex-
planatory patterns. We extract the core scientific
facts to build the Abstract KB. Core scientific facts
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Chaining constraint: Equation 1 states that the subgraph should al-
ways contain the hypothesis node. Inequality 2 states that if a vertex
is to be part of the subgraph, then at least one of its neighbors with a
lexical overlap should also be part of the subgraph. Equation 1 and
Inequality 2 restrict the LP method to construct explanations that orig-
inate from the hypothesis and perform multi-hop aggregation based
on the existence of lexical overlap. Inequalities 3, 4 and 5 state that if
two vertices are in the subgraph then the edges connecting the vertices
should be also in the subgraph. These inequality constraints will force
the LP method to avoid grounding nodes with high overlap regardless
of their relevance.

Yo, € Fii o (6)

Zyvi <K

Abstract fact limit constraint: Equation 6 limits the total number
of abstract facts to K. Instead of limiting of total selected number
of nodes to K, by limiting the abstract facts we dictate the need for
grounding facts based on the number of terms present in the hypothesis
and in the abstract facts.

STy —2>-21—y,) Yui € Nan, (v),
v v; € {FZL U hi},
vj € ng

(M

Grounding neighbor constraint: Inequality 7 states that if a ground-
ing fact is selected, then at least two of its neighbors should be either
both abstract facts or a hypothesis and an abstract fact. This con-
straint ensures that grounding facts play the linking role connecting
hypothesis-abstract facts.

Table 1: Linear programming constraints employed by ExplanationLP to emulate grounding-abstract inference chains and

extract the optimal subgraph

are independent from the specific questions and rep-
resent general scientific and commonsense knowl-
edge, such as Actions (friction occurs when
two object’s surfaces move against each other) or
Affordances (friction causes the temperature
of an object to increase).

(2) Grounding KB: The grounding knowledge
base consists of definitional knowledge (e.g.,
synonymy and taxonomy) that can take into
account lexical variability of questions and help
it link it to abstract facts. To achieve this goal,
we select the is-a and synonymy facts from
ConceptNet (Speer et al., 2017) as our grounding
facts. ConceptNet has high coverage and precision,
enabling us to answer a wide variety of questions.

Question Sets: We use the following question
sets to evaluate ExplanationL.P’s performance and
compare it against other explainable approaches:
(1) WorldTree Corpus: The 2,290 questions in
the WorldTree corpus are split into three different
subsets: frain-set (987), dev-set (226) and test-set
(1,077). We use the dev-set to assess the explain-
ability performance and robustness analysis since
the explanations for fest-set are not publicly avail-
able.

(2) ARC-Challenge Corpus: ARC-Challenge is a

multiple-choice question dataset which consists
of question from science exams from grade 3 to
grade 9 (Clark et al., 2018). We only consider
the Challenge set of questions. These questions
have proven to be challenging to answer for
other LP-based question answering and neural
approaches. ExplanationLP rely only on the
train-set (1,119) and test on the test-set (1,172).
ExplanationL.P does not require dev-set, since the
possibility of over-fitting is non-existent with only
ten parameters.

Relevant Facts Retrieval (FR): We experiment
with two different fact retrieval scores. The first
model —i.e. BM25 Retrieval, adopts a BM25 vec-
tor representation for hypothesis and explanation
facts. We apply this retrieval for both Grounding
and Abstract retrieval. We use the IDF score from
BM25 as our downstream model’s relevance score.
The second approach —i.e. Unification Retrieval
(UR), represents the BM25 implementation of the
Unification-based Reconstruction framework de-
scribed in Valentino et al. (2021). The unification
score for a given fact depends on how often the
same fact appears in explanations for similar ques-
tions.

Baselines: The following baselines are replicated



on the WorldTree corpus to compare against Expla-
nationLP:

(1) Bert-Based models: We compare the Ex-
planationLP model’s performance against a set
of BERT baselines. The first baseline — i.e.
BERTRase/BERT [4rqe, 1s Tepresented by a stan-
dard BERT language model (Devlin et al., 2019)
fine-tuned for multiple-choice question answering.
Specifically, the model is trained for binary clas-
sification on each question-candidate answer pair
to maximize the correct choice (i.e., predict 1) and
minimize the wrong choices (i.e., predict 0). Dur-
ing inference, we select the choice with the highest
prediction score as the correct answer. BERT base-
lines are further enhanced with explanatory facts re-
trieved by the retrieval models. BERT + BM25 and
BERT + UR, is fine-tuned for binary classification
by complementing the question-answer pair with
grounding and abstract facts selected by BM25 and
Unification retrieval, respectively.

Similarly, the second model BERT + UR comple-
ments the question-answer pair with grounding and
abstract facts selected using BM25 and Unification
retrieval, respectively.

(2) PathNet (Kundu et al., 2019): PathNet is a neu-
ral approach that constructs a single linear path
composed of two facts connected via entity pairs
for reasoning. PathNet also can explain its rea-
soning via explicit reasoning paths. They have
exhibited strong performance for multiple-choice
science questions by composing two facts. Sim-
ilar to Bert-based models, we employ PathNET
with the top k facts retrieved utilizing Unification
(PathNet + UR) and BM25 (PathNet + BM25) re-
trieval. We concatenate the facts retrieved for each
candidate answer and provide as supporting facts.

Further details regarding the hyperparameters
and code used for each model, along with informa-
tion concerning the knowledge base construction
and dataset information, can be found in the Sup-
plementary Materials.

3.1 Answer Selection

WorldTree Corpus: We retrieve the top / relevant
grounding facts from Grounding KB and the top
m relevant abstract facts from Abstract KB such
that [ + m = k and [ = m. To ensure fairness
across the approaches, the same amount of facts
are presented to each model. We experimented
with k& = {10, 20, 30, 40, 50} and report the
accuracy across Easy and Challenge split of the

# Model Accuracy
Easy Challenge
1 BERT gase 51.04 28.75
2 BERT Large 54.58 29.39
3 BERT ggse + BM25 (k=10) 53.92 4272
4 BERT Large + BM25 (k=10) 54.05 4345
5 BERT gse + UR (k=10) 52.87 42.17
6 BERTqrge + UR (k=10) 58.50 43.72
7 PathNet + BM25 (k=20) 4332 36.42
8 PathNet + UR (k=15) 47.64 33.55
9 Ours + BM25 (k=30) 63.82 48.24
10 Ours + UR (k=30) 66.23 50.15

Table 2: Accuracy on Easy (764) and Challenge split (313)
of WorldTree test-set corpus from the best performing k of
each model

# Model Explainable Accuracy
1 BERT Large No 35.11
2 IR Solver (Clark et al., 2016) Yes 20.26
3 Tuplelnf (Khot et al., 2017b) Yes 23.83
4 TableILP (Khashabi et al., 2016) Yes 26.97
5 DGEM (Clark et al., 2016) Partial 27.11
6 KG™2 (Zhang et al., 2018) Partial 31.70
7 ET-RR (Ni et al., 2019) Partial 36.61
8 Unsupervised AHE (Yadav  Partial 33.87
et al., 2019a)
9 Supervised AHE (Yadav et al.,  Partial 34.47
2019a)
10 AutoRocc (Yadav et al., 2019b)  Partial 41.24
11 Ours + BM25 (k=40) Yes 40.21
12 Ours + UR (k=40) Yes 39.84

Table 3: ARC challenge scores compared with other Fully
or Partially explainable approaches trained only on the ARC
dataset.

best performing setting in Table 2. We draw the
following conclusions:

(1) Despite having a smaller number of param-
eters to train (BERTp.s: 110M parameters,
BERT 1,4ge: 340M parameters, ExplanationLP: 9
parameters), the best performing ExplanationL.P
(#10) overall outperforms all the BERT g, and
BERT/,4;gc models on both Challenge and Easy
split. We outperform the best performing BERT
model with facts (BERT,4;.gc (#6)) by 7.74% in
Easy and 6.43% in Challenge. We also outperform
best performing BERT without facts (BERT 1,4.ge
(#2)) by 11.66% in Easy and 20.76% in Challenge.
(2) BERT is inherently a black-box model, not be-
ing entirely possible to explain its prediction. By
contrast, ExplanationL.P is fully explainable and
produces a complete explanatory graph.

(3) Similar to ExplanationLLP, PathNet is also ex-
plainable and demonstrates robustness to noise.



CASE I: All the selected facts are in the gold explanation (Frequency: 33%)

Question: A company wants to make a game that uses a magnet that sticks to a board. Which material should it use for
the board? Answer: steel

Explanations: (1) steel is a metal (Grounding), (2) if a magnet is attracted to a metal then that magnet will stick to that
metal (Abstract), (3) a magnet attracts magnetic metals through magnetism (Abstract),

CASE II: At least one selected facts are in the gold explanation (Frequency: 58%)

Question: A large piece of ice is placed on the sidewalk on a warm day. What will happen to the ice? Answer: It will
melt to form liquid water.

Explanations: (1) drop is liquid small amount (Grounding), (2) forming something is change (Grounding), (3) ice
wedging is mechanical weathering (Grounding), (4) melting means changing from a solid into a liquid by adding heat
energy (Abstract), (5) weathering means breaking down surface materials from larger whole into smaller pieces by

weather (Abstract),

CASE III: No retrieved facts is in the gold explanation (Frequency: 9%)

Question:Wind is a natural resource that benefits the southeastern shore of the Chesapeake Bay. How could these winds
best benefit humans? Answer: The winds could be converted to electrical energy

Explanations: (1) renewable resource is natural resource (Grounding), (2) wind is a renewable resource (Abstract), (3)
electrical devices convert electricity into other forms of energy (Abstract)

Table 4: Case study of explanation extracted by ExplanationLP

ExplanationLLP also outperforms PathNet’s best
performance setting (#8) by 18.59% in Easy and
16.60% in Challenge.

(4) ExplanationLP consistently exhibits better
scores on both BM25 and UR than BERT and Path-
Net, demonstrating independence of the upstream
retrieval model for performance.

ARC-Challenge : We also evaluated our model
on the ARC-Challenge corpus (Clark et al., 2018)
to evaluate ExplanationLP on a more extensive
general question set and compare against contem-
porary approaches that provide explanations for
an inference that has only been trained on ARC
corpus. Table 3 reports the results on the fest-set.
We compare ExplanationLP against published ap-
proaches that are fully/partly explainable. Here
explainability indicates if the model produces an
explanation/evidence for the predicted answer. A
subset of the approaches produces evidence for the
answer but remains intrinsically black-box. These
models have been marked as Partial.

As depicted in the Table 3, we outperform the
best performing fully explainable (#4 TablelLLP)
model by 13.28%. We also outperform specific
neural approaches with larger parameter sets (#5
- #9) that provide explanations for their inference
and BERT (#1). Despite having a smaller number
of training parameters, we also exhibit competitive
performance with a state-of-the-art Bert-based ap-
proach (#10) that do not use external resources to
train the QA system.

3.2 Explainability

Precision Recall F1

21.56  36.55 29.06
57.96 49.92 48.13

Approach

PathNet + UR (k=20)
Ours + UR (k=30)

Table 5: Explanation retrieval performance on the
WorldTree Corpus dev-set.

Table 5 shows the Precision, Recall and F1 37410
score for explanation retrieval for PathNet and Ex-
planationLLP. These scores are computed using gold
abstract explanations from WorldTree corpus. We
outperform PathNet across all spectrum by a sig-
nificant margin.

Table 4 reports three representative cases that
show how explanation generation relates to cor-
rect answer prediction. The first example (Case I)
represents the situation in which all the selected
sentences are annotated as gold explanations in the
WorldTree corpus (dev-set). The second example
(Case II) shows the case in which at least one sen-
tence in the explanation is labelled as gold. Finally,
the third example (Case III) represents the case
in which the explanation generated by the method
does not contain any gold fact. We observe Case
I and Case II occur over 91% of the questions,
demonstrating that the correct answers are mostly
derived from plausible explanations.

3.3 Ablation Study

In order to understand the contribution lent by
different components, we choose the best setting



# Approach Accuracy
WT ARC
1 ExplanationLP (Best) 61.37 40.21
Structure
2 Grounding-Abstract Categories 58.3335.13
3 Edge weights 43.78 29.45
4 Node weights 42.8027.87
Cohesion
5 Hypothesis-Abstract cohesion 38.71 30.37
6 Hypothesis-Grounding cohesion 59.3338.73
7 Grounding-Abstract cohesion 59.12 38.14
Diversity
8 Abstract-Abstract diversity 60.16 37.62
9 Grounding-Grounding diversity 60.44 37.71
Relevance
10 Hypothesis-Abstract semantic similarity =~ 55.38 35.49
11 Hypothesis-Abstract lexical relevance 54.68 36.01

Table 6: Ablation study, removing different components of
ExplanationL.P. The scores reported here are accuracy for
answer selection on the WorldTree (WT) and ARC-Challenge
(ARC) test-set.
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Figure 2: Change in accuracy of answer prediction the de-
velopment set varying across different models with increasing
explanation length for WorldTree dev-set. Red dashed line
represents ExplanationLP + UR (k=30), blue line represents
BERT 4rge + UR (k=10) and green dotted line represents
PathNet + UR (k=20)

(WorldTree: ExplanationLP + UR (k=30) and ARC:
ExplanationL.P + BM25 (k=40)) and drop different
components to perform an ablation analysis. We re-
tain the ensemble after removing each component.
The results are summarized in Table 6.

(1) The grounding-abstract chains (#2) play a sig-
nificant role, particularly in the reasoning mech-
anism on a challenging question set like ARC-
Challenge.

(2) As observed in #3, #4 removing node weights
and edge weights lead to a dramatic drop in perfor-
mance. This drop indicates that both are fundamen-
tal for the final prediction, highlighting the role of
graph structure in explainable inference.

(3) The importance of cohesion varies across dif-
ferent types of facts. We observe that Hypothesis-

Abstract cohesion (#5) is significantly more impor-
tant than the others. We attribute this to the fact that
without Hypothesis-Abstract cohesion, multi-hop
inference can quickly go out of context.

(4) From the ablation analysis, we can see how
lexical relevance and semantic similarity (#10, 11)
complements each other towards the final predic-
tion. For WorldTree corpus, the relevance score has
a higher parameter score translating into a higher
impact and vice-versa for ARC.

(5) Diversity plays a smaller role when compared
to cohesion and relevance. The impact of diversity
in ARC is higher than that of WorldTree.

Semantic Drift To validate the performance
across an increasing number of hops, we plot the
accuracy against explanation length as illustrated
in Figure 2. As demonstrated in explanation regen-
eration (Valentino et al., 2021; Jansen and Ustalov,
2019), the complexity of a science question is di-
rectly correlated with the explanation length —i.e.
the number of facts required in the gold explanation.
Unlike BERT, PathNet and ExplanationLLP use ex-
ternal background knowledge, addressing the multi-
hop process in two main reasoning steps. However,
in contrast to ExplanationLP, PathNet combines
only two explanatory facts to answer a given ques-
tion. This assumption has a negative impact on
answering complex questions requiring long expla-
nations. This is evident in the graph, where we ob-
serve a sharp decrease in accuracy with increasing
explanation length. Comparatively, ExplanationLLP
achieves more stable performance, showing a lower
degradation with an increasing number of explana-
tion sentences. These results crucially demonstrate
the positive impact of grounding-abstract mech-
anisms on semantic drift. We also exhibit con-
sistently better performance when compared with
BERT as well.

4 Related Work

Our approach broadly falls into Linear Program-
ming based approaches for science question an-
swering. LP-based approaches perform inference
over either semi-structured tables (Khashabi et al.,
2016) or structural representations extracted from
the text (Khashabi et al., 2018; Khot et al., 2017a).
These approaches treat all facts homogeneously
and attempt to connect the question with the cor-
rect answer through long hops. While they have
exhibited good performance with no supervision,
the performance tends to be lower when answer-



ing complex questions requiring long explanatory
chains. In contrast, our approach performs infer-
ence over unstructured text by imposing structural
constraints via grounding-abstract chains, lowering
the hops, and also combine parametric optimisation
to extract the best performing model.

The other class of approaches that provide ex-
planations are graph-based approaches. Graph-
based approaches have been successfully applied
for open-domain question answering (Fang et al.,
2020; Qiu et al., 2019; Thayaparan et al., 2019)
where the question only requires only two hops.
PathNet (Kundu et al., 2019) operates within the
same design principles and has been applied on
OpenbookQA science dataset. As indicated in
the empirical evaluation, it struggles with long-
chain explanations since it relies only on two facts.
Graph-based approaches have also been employed
for mathematical reasoning (Ferreira and Freitas,
2020a,b) and textual entailment (Silva et al., 2019,
2018).

The third category of partially explainable ap-
proaches employs black-box neural models in com-
bination with a retrieval approach. The SOTA
model for Science Question (Khashabi et al., 2020)
answering is pretrained across multiple datasets
and is not explainable. The current partially ex-
plainable SOTA approach that does not rely on
external resource (Yadav et al., 2019b) employs
a large parameter BERT model for question an-
swering resulting. In contrast, with a low number
of parameters, we have introduced a model that
demonstrates competitive performance and leaves
a smaller carbon footprint in terms of energy con-
sumption (Henderson et al., 2020). Other methods
construct explanation chains by leveraging explana-
tory patterns emerging in a corpus of scientific ex-
planations (Valentino et al., 2020, 2021).

5 Conclusion

This paper presented a robust, explainable and ef-
ficient science question answering model that per-
forms abductive natural language inference. We
also presented an in-depth systematic evaluation
demonstrating the impact on the various set of de-
sign principles via an in-depth ablation analysis.
Despite having a significantly lower number of
parameters, we demonstrated competitive perfor-
mance compared with contemporary explainable
approaches while also showcasing its robustness,
explainability and interpretability.
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A Supplementary Material

This section consists of all the hyperparameters,
code and libaries used in our approach. We present
this in the hope it fosters reproducibility.

A.1 Linear Programming Optimization

The components of the linear programming system
is as follows:

* Solver: CPLEX optimization studio
V12.9.0 nttps://www.ibm.com/products/
ilog-cplex-optimization-studio

The hyperparatemers used in the LP constraints:

¢ Maximum number of abstract facts (K): 2

* Average time per epoch: 6 minutes for train-
set

* Number of Epochs: 200
Infrastructures used:
¢ CPU Cores: 32

e CPU Model: Intel(R) Core(TM) i7-6700 CPU
@ 3.40GHz

* Memory: 128GB

e OS: Ubuntu 18.04 LTS



A.2 Parameter tuning

Our work employed Bayesian optmiza-
tion with Gaussian process for hyper-
paramter tuning. We used the https:

//github.com/fmfn/BayesianOptimization:
Bayesian-Optimization python library to im-
plement the code. These parameters are as
follows:

¢ Gaussian Kernels:

— RationalQuadratic Kernel with default
parameters

— WhiteKernel with noise level of le-5,
noise level bounds (1e-10, 1el) and rest
of the default parameters

e Number of iterations: 200
* alpha (a): 1e-8
¢ random state: 1

A.3 Sentence-BERT for Semantic Similarity
Scores

We use: roberta-large nli-stsb mean-tokens model
to calculate the semantic similarity scores.

A.4 BERT model

The BERT model was taken from the Hug-
ginface Transformers (https://github.com/
huggingface/transformers) HbHHy and fine-
tuned using 4 Tesla V100 GPUs for 10 epochs in
total with batch size 16 for BERT 1,4, and 32 for
for BERT g,se. The hyperparameters adopted for
BERT are as follows:

gradient accumulation steps: 1

learning rate: le-5

weight decay: 0.0

adam epsilon: le-8

warmup steps: 0

max grad norm: 1.0

seed: 42
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A.5 PathNet

We use the code and dependencies pro-
vided by the PathNet github repository
(https://github.com/allenai/PathNet).

We used the training config provided
for OpenBookQA as a baseline: https:
//github.com/allenai/PathNet, file name:

blob/master/training_configs/config_obqa.json.

A.6 Relevant facts retrieval

The code for BM25 and Unification retrieval
approaches were adopted from the Unifi-
cation Explanation Retrieval GitHub repos-
itory (https://github.com/ai-systems/

unification_reconstruction_explanations)

A7 Code

The code for reproducing the Explanation.P and
the experiments described in this paper are at-
tached with the code appendix and will be avail-
able at the following GitHub repository (with
a Dockerized container): https://github.com/

ali-systems/explanationlp.

A.8 Data

WorldTree Dataset : The 2,290 questions in the
WorldTree corpus are split into three different sub-
sets: train-set (987), dev-set (226), and test-set
(1,077). We only considered questions with expla-
nations for our evaluation. The reasoning behind
omitting questions without explanations was to en-
sure fact coverage for all questions. For Abstrac-
tKB building we excluded facts from *KINDOF’
and 'SYNONYMY' table, as these are the one pri-
marily composed of grounding facts.

ARC-Challenge Dataset : Only used the Chal-
lenge split: https://allenai.org/data/arc.
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Abstract

Modern pre-trained language models are
mostly built upon backbones stacking self-
attention and feed-forward layers in an in-
terleaved order. In this paper, beyond this
stereotyped layer pattern, we aim to improve
pre-trained models by exploiting layer vari-
ety from two aspects: the layer type set and
the layer order. Specifically, besides the origi-
nal self-attention and feed-forward layers, we
introduce convolution into the layer type set,
which is experimentally found beneficial to
pre-trained models. Furthermore, beyond the
original interleaved order, we explore more
layer orders to discover more powerful archi-
tectures. However, the introduced layer variety
leads to a large architecture space of more than
billions of candidates, while training a single
candidate model from scratch already requires
huge computation cost, making it not afford-
able to search such a space by directly training
large amounts of candidate models. To solve
this problem, we first pre-train a supernet from
which the weights of all candidate models can
be inherited, and then adopt an evolutionary
algorithm guided by pre-training accuracy to
find the optimal architecture. Extensive exper-
iments show that LV-BERT model obtained by
our method outperforms BERT and its variants
on various downstream tasks. For example,
LV-BERT-small achieves 78.8 on the GLUE
testing set, 1.8 higher than the strong baseline
ELECTRA-small. !

1 Introduction

In recent years, pre-trained language models, such
as the representative BERT (Devlin et al., 2019)
and GPT-3 (Brown et al., 2020), have gained great
success in natural language processing tasks (Pe-
ters et al., 2018a; Radford et al., 2018; Yang et al.,
2019; Clark et al., 2020). The backbone architec-
tures of these models mostly adopt a stereotyped

"https://github.com/yuweihao/LV-BERT
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Figure 1: (a) Illustration of layer variety. This concept
consists of two aspects: layer type and layer order. (b)
Different models represented by layer variety. (c) Per-
formance of different models with hidden size of 256
on GLUE (Wang et al., 2018) development set. Except
BERT pre-trained with the Masked Language Model-
ing objective (Devlin et al., 2019), the other models
are pre-trained with Replaced Token Detection objec-
tive (Clark et al., 2020) to save computation cost.

layer pattern, in which the self-attention and feed-
forward layers are arrayed in an interleaved order
(Vaswani et al., 2017). However, there is no evi-
dence supporting that this layer pattern is optimal
(Press et al., 2020). We then consider a straightfor-
ward and interesting question: Could we change
the layer pattern to improve pre-trained models?
We attempt to answer this question by exploiting
more layer variety from two aspects, as shown in
Figure 1(a): the layer type set and the layer order.

Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 13-27
August 1-6, 2021. ©2021 Association for Computational Linguistics



We first consider the layer types. In previous
pre-trained language models, the most widely-used
layer set contains the self-attention layer for captur-
ing global information and the feed-forward layer
for non-linear transformation. However, some re-
cent works have unveiled that some self-attention
heads in pre-trained models tend to learn local de-
pendencies due to the inherent property of natural
language (Kovaleva et al., 2019; Brunner et al.,
2020; Jiang et al., 2020), incurring computation
redundancy for capturing local information. In
contrast, convolution is a local operator (LeCun
et al., 1998; Krizhevsky et al., 2012; Simonyan and
Zisserman, 2015; He et al., 2016) and has shown
effectiveness on extracting local information for
language models (Zeng et al., 2014; Kim, 2014;
Kalchbrenner et al., 2014; Wu et al., 2018, 2019b;
Jiang et al., 2020). Thus, we propose to augment
the layer set by including convolution for local in-
formation extraction.

For layer orders, most of the existing pre-trained
models adopt an interleaved order to arrange the
different types of layers. Differently, Press et al.
(2020) presented the sandwich order, i.e., stacking
consecutive self-attention and feed-forward layers
at the bottom and top, respectively, while keep-
ing the interleaved order in the middle. It has
been shown that the sandwich order can bring im-
provement on language modeling task, indicating
the layer order contributes to model performance.
However, Press et al. (2020) did not show the gen-
eralization capability of this order to other tasks.
There is still a large room for exploring more ef-
fective orders for pre-trained models. We show
the different layer variety designs of existing mod-
els in Figure 1(b), including BERT (Devlin et al.,
2019)/ELECTRA (Clark et al., 2020), Dynamic-
Conv (Wu et al., 2018) and Sandwich (Press et al.,
2020). Their performance is summarized in Figure
1(c). It can be seen that layer variety significantly
influences model performance. We thus claim it is
necessary to investigate layer variety for promot-
ing pre-trained models. However, to perform such
investigation for a common model backbone, e.g.,
with 24 layers, we need to evaluate performance
of every candidate within an architecture space of
324 ~ 2.8 x 10" candidates. Pre-training a sin-
gle language model already needs to consume a
large amount of computation, e.g., 2400 P100 GPU
days for pre-training BERT (Lin et al., 2020). It is
barely affordable to pre-train such a large amount
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of model candidates from scratch. To reduce the
computation cost, inspired by recent works on Neu-
ral Architecture Search (NAS) (Guo et al., 2020;
Cai et al., 2019), we construct a supernet according
to the layer variety discussed above and pre-train
it with Masked Language Modeling (MLM) (De-
vlin et al., 2019) objective. After obtaining the
pre-trained supernet, we develop an evolutionary
algorithm guided by MLM evaluation accuracy to
search an effective architecture with specific layer
variety. We call the resulted model LV-BERT. Ex-
tensive experiments show that LV-BERT outper-
forms BERT and its variants. The contributions of
our paper are two-fold. Firstly, to the best of our
knowledge, this work is the first to exploit layer
variety w.r.t. both layer types and orders for pre-
trained language models. We found convolutions
and layer orders both benefit pre-trained model
performance. We hope our observations would fa-
cilitate the development of pre-trained lauguage
models. Secondly, our obtained LV-BERT shows
superiority over BERT and its variants. For ex-
ample, LV-BERT-small achieves 79.8 on GLUE
testing set, 1.8 higher than the baseline ELECTRA-
small (Clark et al., 2020).

2 Related Work

Pre-trained Language Models Pre-trained lan-
guage models have achieved great success and pro-
moted the development of NLP techniques. Instead
of separate word representation (Mikolov et al.,
2013a,b), McCann et al. (2017) and Peters et al.
(2018b) propose CoVe and ELMo respectively
which both utilize LSTM (Hochreiter and Schmid-
huber, 1997) to generate contextualized word rep-
resentations. Later, Radford et al. (2018) introduce
GPT that changes the backbone to transformers
where self-attention and feed-forward layers are ar-
rayed interleavedly. They also propose generative
pre-training objectives. BERT (Devlin et al., 2019)
continues to use the same layer set and order for
backbone but employs different pre-training objec-
tives, i.e., Masked Language Modeling and Next
Sentence Prediction. Then more works introduce
new effective pre-training objectives, like General-
ized Autoregressive Pretraining (Yang et al., 2019),
Span Boundary Objective (Joshi et al., 2020) and
Replaced Token Detection (Clark et al., 2020). Be-
sides designing pre-training objectives, some other
works try to extend BERT by incorporating knowl-
edge (Zhang et al., 2019; Peters et al., 2019; Liu



et al., 2020; Xiong et al., 2020) or with multiple
languages (Huang et al., 2019; Conneau and Lam-
ple, 2019; Chi et al., 2019). These works utilize
the stereotyped layer pattern, which is unneces-
sarily optimal (Press et al., 2020), inspiring us to
further investigate more layer variety to improve
pre-trained models. To the best of our knowledge,
we are the first to exploit layer variety from both
the layer type set and the layer order for pre-trained
language models.

Neural Architecture Search Manually design-
ing neural architecture is a time-consuming and
error-prone process (Elsken et al., 2019). To solve
this, many neural architecture search algorithms
are proposed. Pioneering works utilize reinforce-
ment learning (Zoph and Le, 2017; Baker et al.,
2017) or evolutionary algorithm (Real et al., 2017)
to sample architecture candidates and train them
from scratch, which demand huge computation that
ordinary researchers can not afford. To reduce com-
putation cost, recent methods (Pham et al., 2018;
Liu et al., 2018; Xie et al., 2018; Brock et al., 2018;
Cai et al., 2018; Bender et al., 2018; Wu et al.,
2019a; Guo et al., 2020) adopt a weight sharing
strategy that a supernet subsuming all architectures
is trained only once and all architecture candidates
can inherit their weights from the supernet. De-
spite the boom of NAS research, most works focus
on computer vision tasks (Chen et al., 2019; Ghi-
asi et al., 2019; Liu et al., 2019a), while NAS on
NLP is not fully investigated. Recently, So et al.
(2019) and Wang et al. (2020) search architectures
of transformers for translation tasks. Chen et al.
(2020) leverage differentiable neural architecture to
automatically compress BERT with task-oriented
knowledge distillation for specific tasks. Zhu et al.
(2020) utilize architecture search to improve mod-
els based on pre-trained BERT for the relation clas-
sification task. However, these methods only focus
on specific tasks or the fine-tuning phase. Besides,
Khetan and Karnin (2020) employ pre-training loss
to help prune BERT, but their method can not find
new architectures. Different from them, our work
is the first to use NAS to help explore new architec-
tures in a pre-training scenario for general language
understanding.

3 Method

An overview of our approach is shown in Figure
2. We first define the layer variety to introduce a
large architecture search space, and then pre-train
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a supernet subsuming all candidate architectures,
followed by an evolutionary algorithm guided by
pre-training MLM (Devlin et al., 2019) accuracy to
search an effective model. In what follows, we will
give detailed descriptions.

3.1 Layer Variety

As shown in Figure 1(a), the proposed layer variety
contains two aspects: layer type and layer order,
both of which are important for the performance of
pre-trained models but not exploited before.

Layer Type The layer type set of current BERT-
like models consists of self-attention for infor-
mation communication and feed-forward for non-
linear transformation. However, as a global opera-
tor, self-attention needs to take as input all tokens
to compute attention weights for each token, which
is inefficient in capturing local information (Wu
et al., 2019b; Jiang et al., 2020). We notice that
convolution (LeCun et al., 1998; Krizhevsky et al.,
2012), as a local operator, has been successfully
applied in language models (Zeng et al., 2014; Kim,
2014; Kalchbrenner et al., 2014; Wu et al., 2018,
2019b; Jiang et al., 2020). A typical example is the
dynamic convolution (Wu et al., 2018) for machine
translation, language modeling and summarization.
Therefore, we augment the layer type set by intro-
ducing dynamic convolution as a new layer type.
The layer set considered in this work thus contains
three types of layers,

Etype — {LSA, LFF, LDC},

(1
where the set elements denote self-attention, feed-
forward and dynamic convolution layers respec-
tively. See Appendix for more detailed formulation
description on them.

Layer Order The other variety aspect is layer
order. The most widely-used order for pre-trained
models is the interleaved order (Vaswani et al.,
2017; Devlin et al., 2019). For a model with 24
layers, the interleaved order can be expressed by

the following list,
(L%, 157, L% LAY L83, LEF).

2

Similarly, the sandwich order (Press et al., 2020)
can be expressed as

SA 7SA SA
[L3%, L™, ..., L2,

SA 7FF ySA 7FF SA 7FF

L6 ,L 7L8 ,Lg ""’L18 ,ng 5 (3)
FF 7FF FF

L20 7L21 7"'7L24]'
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Figure 2: Overview on how to search LV-BERT. @ Construct a supernet with small hidden size by including all
types of layers at each layer. @ Pre-train the supernet with Masked Language Modeling (MLM) objective (Devlin
et al., 2019) by only uniformly sampling one type of layer into training at each layer. ® Apply evolutionary
algorithm to produce candidate models. @ The candidate models inherit their weights from the supernet. ® The
candidate models with inherited weights are directly evaluated with pre-training MLM accuracy on validation set.
® The accuracy is used to guide the evolutionary algorithm for generating new candidate models. @ After T'
iterations, the candidate with best pre-training accuracy is output as LV-BERT-small. ® LV-BERT-small can be
scaled up to LV-BERT-medium/base with larger hidden size.

Beyond the above manually designed orders, we
take advantage of neural architecture search to iden-
tify more effective layer orders for pre-trained mod-
els. The order to be discovered can be expressed as

[L15L2a"'aLi)"')LN]a (4)

where L; € L%P° and N is the number of layers.
Here, N is set to 24, following common practice.

3.2 Supernet

The layer variety introduced above leads to a huge
architecture space of 324 ~ 2.8 x 10*! candidate
models to be explored. Thus, it is not affordable
to pre-train every candidate model in the space
from scratch to evaluate their performance since
the pre-training procedure requires huge computa-
tions. To reduce the search computations, recent
NAS works (Pham et al., 2018; Guo et al., 2020;
Cai et al., 2019) exploit a weight sharing strategy.
It first trains a supernet subsuming all candidate
architectures, and then each candidate architecture
can inherit its weights from the trained supernet
to avoid training from scratch. Inspired by this
strategy, we construct a supernet where each layer
contains all types of layers, i.e., self-attention, feed-
forward, and dynamic convolution. The supernet
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architecture can be expressed as

A= [{L54, LY LPCY {154, L5F, LDCY, .,
{LSA,LFF,LRC}].
5)

Masked Language Modeling (MLM) (Devlin et al.,
2019) is utilized as the pre-training objective to pre-
train the supernet since MLM accuracy can reflect
the model performance on downstream tasks (Lan
et al., 2020). Most weight sharing approaches on
NAS (Wu et al., 2019a; Liu et al., 2018) train and
optimize the full supernet: the output of each layer
is the weighted sum of all types of candidate layers.
However, it cannot guarantee the sampled single
type of layer also works (Guo et al., 2020).

To handle this issue, we propose to randomly
sample a submodel from the supernet to participate
in forward and backward propagation per training
step (Cai et al., 2018; Guo et al., 2020). The sam-
pled submodel architecture can be expressed as

a = [Ll,Lg,...,LZ’,...,L]\[], (6)

where L; € L%P® ~ U with uniform probability
distribution Pr = 1/3. In this pre-training method,
the optimized supernet weights can be expressed



Algorithm 1: Evolutionary Search Guided
by Pre-training MLM Accuracy
Input: W 4: supernet weights; P:
population size; Dyy,): pre-training
validation set; T': # iteration; N°: #
crossover; N™U: # mutation; p: mutation
probability; k: # top candidates for
crossover and mutation
Output: ¢*: the architecture with the best
pre-trianing MLLM validation accuracy
So := Init(P); / Randomly generate P
architecture candidates
Stopk .— (: // The set of top k candidates
for:=1:Tdo
SMLM . g
for a in Sl'fl do
MLMY,, =
Inference(N (a, Wa(a)), Dyal);
SMEM = SMEM U MLM, s
Stopk . — Update(S*Pk,S; 1, S%ITM);
Sero .= Crossover(StoPk N¢ro);
Smut :— Mutation(S*PK, N™Ut )
B Sz -— §cro Smut;
return a* = argmax,c gtopk MLM

a .
val’

as

Wy = arg{;}nin Eov(a) [Lpre—train(N (a, W(a)))],
(7

where W (a) denotes the submodel weights inher-
ited from the supernet, N' means the submodel
with specific architecture and weights, Lyre—train
denotes the pre-training MLM loss and a ~ U (.A)
means «a is uniformly sampled from .A.

3.3 Evolutionary Search

Inspired by the recent NAS works (Elsken et al.,
2019; Ren et al., 2020; Guo et al., 2020; Wang
et al., 2020), we adopt an evolutionary algorithm
(EA) to search the model. Previously Real et al.
(2017) utilized an evolutionary method in NAS but
they trained each candidate model from scratch
which is costly and inefficient. Instead, thanks to
the supernet mentioned above, we do not need to
train the candidate models from scratch since their
weights can be inherited from the supernet. Next
problem is how to select indicator of the candidate
models to guide the EA. Note that our goal is to
search a general pre-trained model to benefit a va-
riety of downstream tasks instead of a specific task.
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Traditional NAS methods (Chen et al., 2020; Zhu
et al., 2020) use downstream task performance as
the objective to search for task-specific models. In-
stead, similar to the work by Khetan and Karnin
(2020) that utilize pre-training loss to prune BERT,
our method uses pre-training MLM accuracy to
search for a unified architecture that can generalize
well to different downstream tasks. Besides, us-
ing this accuracy, candidate models can be directly
evaluated on pre-training validation set without any
fine-tuning on specific tasks, which can help save
computations.

The detailed algorithm description is shown
in Algorithm 1. Crossover(S'*PX N°°) means
the procedure to generate N'° new candidate ar-
chitectures that two candidate architectures ran-
domly selected from top k candidate set S*Pk
are crossed to produce a new one. Similarly,
Mutation(S%*Pk, N™ut 1) denotes the procedure
to generate N™"* new candidates that a random
candidate from S*°P¥ mutates its every layer choice
with probability p to generate a new one. Finally,
the candidate architecture with highest pre-training
validation accuracy in S*P¥ is returned as LV-
BERT. The algorithm is set with population size P
of 50, search iteration number 7" of 20, crossover
number N of 25, mutation number M™% of 25,
mutation probability p of 0.1, top candidate number
k of 10 for crossover and mutation.

4 Experiments

4.1 Datasets

Pre-training Datasets Devlin et al. (2019) pro-
pose WikiBooks corpus for training BERT includ-
ing English Wikipedia and BooksCorpus (Zhu
et al., 2015). However, BooksCorpus is no longer
publicly available. To ease reproduction, we train
models on OpenWebText (Gokaslan and Cohen,
2019) that is open-sourced and of similar size with
the corpus used by BERT. When pre-training the
supernet, we leave 2% data as our validation set for
evolutionary search.

Fine-tuning Datasets To compare our model
with other pre-trained models, we fine-tune LV-
BERT on GLUE (Wang et al., 2018), including
various tasks for general language understanding,
and SQuAD 1.1/2.0 (Rajpurkar et al., 2016, 2018)
for question answering. See Appendix for more
details of all tasks.



Model Layer Variety Params GLUE

DC SA FF Order Word Emb  Backbone
BERT-small (Devlin et al., 2019) v v' Interleaved 9.5M 75.1
ELECTRA-small (Clark et al., 2020) v v Interleaved 30M 9.5M 80.4
DynamicConv-small* (Wu et al., 2018) v v Interleaved ’ 9.6M 64.4
Sandwich-small* (Press et al., 2020) v v' Sandwich 9.5M 78.6
v v" Random 9.5M 80.8
v v Randomly searched 9.8M 81.1
v v' EA searched 10.3M 81.2
v v" Random 9.6M 64.9
v v" Randomly searched 9.6M 65.4
LV-BERT-small variants v v' EA searched 3.9M 9.6M 65.7
v v Random 6.4M 79.7
v v Randomly searched 6.4M 79.9
v v EA searched 6.4M 79.8
v v v" Random 7.7 80.6
v v v' Randomly searched 8.8M 80.9
LV-BERT-small v v v' EA searched 3.9M 8.5M 81.8

Table 1: Performance of the models with different layer types and orders on the GLUE development set. DC,
SA and FF denote dynamic convolution, self-attention and feed-forward layers respectively. For each design of
layer type set, “Random” means the best order among five randomly generated ones that are estimated by training
model from scratch. “Randomly searched” or “EA searched” are both based on the supernet. “Randomly searched”
denotes the orders searched at random while “EA searched” denotes ones searched by evolutionary algorithm. *
denotes the methods implemented by us for language pre-training. All models are pre-trained on OpenWebText by
1M steps with sequence length 128 using ELECTRA (Clark et al., 2020) pre-training objective except BERT-small
using MLM objective.

Model Size Params CoLA MPRC MNLI SST RTE QNLI QQP STS Avg.
Word Emb Backbone
ELECTRA (Clark et al., 2020)  Small 3.9M 9.5M 56.8 874 789 88.3 68.5 87.9 88.3 86.8 80.4

Medium*  3.9M 213M 612 895 821 89.1 657 889 90.5 89.3 82.0
Base* 23.4M 85.0M 64.8 885 857 92.6 76.5 91.7 91.1 89.9 85.1

DynamicConv' (Wu et al., 2018) Small 3.9M 96M 602 692 56.6 85.6 49.5 68.0 82.1 44.1 64.4
Medium  39M  214M 615 67.9 557 859 49.1 683 83.3 51.6 65.4
Base 234M  852M 621 70.6 61.0 88.5 51.3 72.0 85.6 64.7 69.5
Sandwich' (Press et al., 2020) _ Small 3.9M 95M 532 87.1 775 88.1 63.9 864 883 84.6 78.6
Medium  39M  213M 556 862 815 903 63.0 889 89.6 86.6 80.2
Base 234M  850M 588 89.7 83.8 91.9 72.6 90.2 90.1 88.5 83.2
LV-BERT Small 3.0M 85M 623 869 8I.I 899 69.0 83.9 89.3 37.4 81.8
Medium  39M  19.0M 644 88.0 824 90.5 68.6 89.4 90.1 89.7 82.9
Base 234M  757M 668 903 863 93.2 769 923 90.9 90.8 85.9

Table 2: Performance of different models in different sizes on GLUE development set. * denotes results obtained
by running official code. T denotes the methods implemented by us for language pre-training. All models are pre-
trained on OpenWebText by 1M steps with sequence length 128 using ELECTRA (Clark et al., 2020) pre-training
objective.

4.2 Implementation Details the obtained architecture of LV-BERT-small can
be easily scaled up to the ones of medium and
base sizes. We use Adam (Kingma and Ba, 2015)
to pre-train the supernet with MLM loss (Devlin
et al., 2019) , learning rate of 2e-4, batch size of
128, max sequence length of 128 and pre-training
step number of 2 million. See Appendix for more
details.

Model Size Similar to Devlin et al. (2019), Clark
et al. (2020) and Jiang et al. (2020), we define dif-
ferent model sizes, i.e., “small”, “medium” and
“base”, with the same layer number of 24 but dif-
ferent hidden sizes of 256, 384, and 768, respec-
tively. The detailed hyperparameters are shown in
Appendix.

Pre-training Supernet To reduce training cost, Evaluation Setup To compare with other pre-
we construct the supernet only in small size. Since  trained models, we pre-train the searched LV-BERT
the layer number of models in medium and base  architecture for 1M steps from scratch on the Open-
sizes are the same as that of the small-sized one, =~ WebText (Gokaslan and Cohen, 2019) using Re-
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placed Token Detection (Clark et al., 2020) since
it can save computation cost. We fine-tune LV-
BERT on GLUE (Wang et al., 2018) and SQuAD
(Rajpurkar et al., 2016, 2018) downstream tasks
with most hyperparameters the same as those of
ELECTRA (Clark et al., 2020) for fair compari-
son. For GLUE tasks, the evaluation metrics are
Matthews correlation for CoLA, Spearman correla-
tion for STS, and accuracy for other tasks, which
are averaged to get GLUE score. We utilize eval-
uation metrics of Exact-Match (EM) and F1 for
SQuAD 1.1/2.0. Some of the fine-tuning datasets
are small, and consequently, the results may vary
substantially for different random seeds. Similar
to ELECTRA (Clark et al., 2020), we report the
median of 10 fine-tuning runs from the same pre-
trained model for each result. See Appendix for
more evaluation details.

4.3 Ablation Study

Layer Variety Various models are constructed
with different layer variety designs, and their re-
sults on GLUE development set are shown in Table
1. For the layer types, if only two layer types are
provided, selecting self-attention and feed-forward
yields the best result, which can always achieve
performance higher than 80 under different search
methods. With only dynamic convolution and feed-
forward, the performance drops dramatically to
around 65. Surprisingly, without feed-forward, the
layer set of dynamic convolution and self-attention
can still achieve relatively good score, near 80.
When using all the three layer types, we can ob-
tain the best 81.8 score, 1.4 higher than the strong
baseline ELECTRA (80.4) and 0.6 higher than the
model searched with only self-attention and feed-
forward (81.2). This indicates that it is effective
to augment the layer type set by including convo-
lution to extract local information for pre-trained
models.

For layer orders, with the same layer types, the
models with either EA or randomly searched or-
ders perform better than those with randomly sam-
pled orders, reflecting the importance of investi-
gating layer orders. For example, with the same
layer types of self-attention and feed-forward, the
EA searched model obtains 81.2 score, improving
BERT/ELECTRA by 6.1/0.8 as well as Sandwich
by 2.6.

Search Method Table 1 shows the results with
different search methods. “Random” means for
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Figure 3: The pre-training MLM validation accuracy
comparison between random search and evolutionary
search with the layer set of all three types of layers.
Blue and yellow dots denote the accuracy of top 10 can-
didates for each method respectively, while the plots
mean their averages.

each design of layer type set, the order is the
best one among 5 randomly generated orders that
are estimated by training models from scratch.
“Randomly searched” and “EA searched” are both
supernet-based methods, in which the weights of
candidate models are inherited from the supernet.
“Randomly searched” produces candidate models at
random for estimation while “EA searched” gener-
ates candidate models with evolutionary algorithm
guided by the pre-training MLM accuracy. With
the same layer types, EA searched orders are gener-
ally better than randomly searched ones while the
randomly searched ones are generally better than
random ones. Figure 3 plots the pre-trianing MLM
evaluation accuracy over search iterations with both
random and evolutionary search methods. It shows
that the accuracy of evolutionary search is obvi-
ously higher than that of random search, demon-
strating the effectiveness of evolutionary search.

4.4 LV-BERT Architecture

As shown in Table 1, LV-BERT achieves the best
performance. Its architecture is

DC yDC ySA 7FF 7FF 7SA
[Ll 7L2 7L3 7L4 ’L 7L6 )
DC 7FF yFF 7ySA 7yDC 7yDC
L7 7L 7L 7L107L11 7L12 ’
SA 7FF yDC 7FF 7rSA 7DC
L13 7L14 7L15 7L16 7L17 7L18 )
LDC LSA

FF SA ;FF 7SA
Lig, Lyy’, L1, Lay , Las , Loy ]

®)

Pre-trained with MLM from scratch by 1M steps
(sequence length 128) on OpenWebText, LV-BERT-
small can achieve 61.2% MLM accuracy while
BERT-small is 60.4%. More specific architectures
of the models in Table 1 are listed in Appendix.



Model Train FLOPs Params CoLA MPRC MNLI SST RTE QNLI QQP STS Avg.
TinyBERT* (Jiao et al., 2020) 6.4e19+ (54x+) 15SM  51.1 826 84.6 93.1 70.0 904 89.1 83.7 80.6
MobileBERT* (Sun et al., 2020) 6.4e19+ (54x+) 25M  51.1 845 843 92.6 704 91.6 883 84.8 81.0
ELECTRA-small (Clark et al., 2020) 1.4e18 (1.2x) 14M 546 837 79.7 89.1 60.8 87.77 88.0 80.2 78.0
GPT (Radford et al., 2018) 4.0e19 (33x) 117M 454 757 82.1 91.3 56.0 88.1 88.5 80.0 75.9
BERT-base (Devlin et al., 2019) 6.4e19 (54x) 110M 521 848 846 93.5 66.4 905 89.2 85.8 80.9
ELECTRA-base (Clark et al., 2020) 6.4e19 (54x) 110M 59.7 86.7 858 934 73.1 92.7 89.1 87.7 83.5
LV-BERT-small 1.2¢18 (1x)7 1I3M 572 841 81.0 904 64.6 889 882 83.8 79.8
LV-BERT-medium 3.1e18 (2.6x)  23M  60.1 850 820 914 67.6 89.7 889 859 81.3
LV-BERT-base 1.8¢19 (15x)T  100M 64.0 879 864 947 77.0 92.6 89.5 88.8 85.1

Table 3: Performance of models with similar size on GLUE testing set. * denotes knowledge distillation methods
that rely on large pre-trained teacher models and are orthogonal to other methods. T We set the sequence length as
128 for pre-training to save computation although it hurts the performance.

Model Train FLOPs Params SQuAD 1.1 SQuAD 2.0
EM F1 EM F1
DistilBERT* (Sanh et al., 2019) 6.4e19+ (54x+) 52M 71.8 812 60.6 64.1
TinyBERT* (Jiao et al., 2020) 6.4e19+ (54x+) 15M 72.7 82.1 653 68.8
MobileBERT* (Sun et al., 2020) 6.4e19+ (54x+) 25M 834 903 77.6 80.2
ELECTRA-small” (Clark et al., 2020)  1.4e18 (1.2x) 14M 743 81.8 66.8 694
BERT-base (Devlin et al., 2019) 6.4e19 (54x) 110M 80.7 884 742 77.1
ELECTRA-base (Clark et al., 2020) 6.4e19 (54x) 110M 845 908 805 833
LV-BERT-small 1.2¢18 (1x)* 13M 77.1 841 71.0 737
LV-BERT-medium 3.1e18 (2.6x)F 23M 79.6 864 749 715
LV-BERT-base 1.8¢19 (15x)* 100M 848 908 809 83.7

Table 4: Performance of models with similar model size on SQuAD 1.1/2.0 development set. * denotes knowledge
distillation methods that rely on large pre-trained teacher models and are orthogonal to other methods. T denotes
results obtained by running official code. ¥ We set the sequence length as 128 for pre-training to save computation

although it hurts the performance.

When running the evolutionary method with dif-
ferent seeds, we see that the resulting models pre-
fer stacking dynamic convolutions at the bottom
two layers for extracting local information and
self-attention at the top layer to fuse the global
information. According to these observation, for
ELECTRA-small, if we replace the bottom two lay-
ers with dynamic convolutions or the top layer with
self-attention, the performance can be improved by
0.3 or 0.5 respectively on GLUE development set.
If we replace the bottom 8 layers with manually
designed ‘ccsfeest” (‘c’, ‘s’ and ‘f” denote dynamic
convolution, self-attention and feed-forward layers,
respectively) and replace the top 8 layers with man-
ually designed ‘ssfsssfs’ together, we observe 0.7
performance improvement. These results show that
it is helpful to stack dynamic convolution at the
bottom and self-attention at the top.

4.5 Generalization to Larger Models

We only investigate layer variety and search mod-
els in a small-sized setting to save computation
cost. It is interesting to know whether the searched
models can be generalized to larger models with
large hidden size. The results are shown in Table
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2. For larger model size “medium” and “base”,
LV-BERTs still outperform other baseline models,
demonstrating the good generalization in terms of
model size.

4.6 Comparison with State-of-the-arts

We compare LV-BERT with state-of-the-art pre-
trained models (Radford et al., 2018; Devlin et al.,
2019; Clark et al., 2020; Sanh et al., 2019; Jiao
et al., 2020; Sun et al., 2020) on GLUE testing
set and SQuAD 1.1/2.0 to show its advantages.
Although more pre-training data/steps and lager
model size can significantly help improve perfor-
mance (Yang et al., 2019; Liu et al., 2019b; Lan
et al., 2020), due to the computation resource limit,
we only pre-train our models in small/medium/base
sizes for 1M steps with OpenWebText (Gokaslan
and Cohen, 2019). We leave evaluating models
with more pre-training data/steps and larger model
size for future work. We also list some knowl-
edge distillation methods for comparison. How-
ever, note that these methods rely on a pre-trained
large teacher network and thus are orthogonal to
LV-BERT and other methods.

Table 3 presents the performance of LV-BERT



and other pre-trained models on GLUE testing
set. It shows that LV-BERT outperforms other
pre-trained models with similar model size. Re-
markably, LV-BERT-small/base achieve 79.8/85.1,
1.8/1.6 higher than strong baselines ELECTRA-
small/base. Even compared with knowledge distil-
lation based model MobileBERT (Sun et al., 2020),
LV-BERT-medium still outperforms it by 0.3.

Since there is nearly no single model submis-
sion on SQuUAD leaderboard?, we only compare
LV-BERT with other pre-trained models on the
development sets. The results are shown in Ta-
ble 4. We find that LV-BERT-small outperforms
ELECTRA-small significantly, like F1 score 73.7
versus 69.4 on SQuAD 2.0. However, when we
generalize LV-BERT-small to base size, the gap
between LV-BERT and ELECTRA with base size
is narrower than that with small size. One reason
may be LV-BERT-small is searched by our method
while LV-BERT-base is only generalized from LV-
BERT-small with larger hidden size.

5 Conclusion

We are the first to exploit layer variety for im-
proving pre-trained language models, from two
aspects, i.e., layer types and layer orders. For layer
types, we augment the layer type set by including
convolution for local information extraction. For
layer orders, beyond the stereotyped interleaved
one, we explore more effective orders by using an
evolutionary based search algorithm. Experiment
results show our obtained model LV-BERT out-
performs BERT and its variants on various down-
stream tasks.
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A Details about Layer Types

For a layer, assume its input is / € R**¢ and out-
put is O € R**¢, where s is the sequence length
and c is the hidden size (channel dimension). For
simplicity, c takes the same value for the input and
output.

Self-Attention The self-Attention layer, also
known as multi-head self-attention (Vaswani et al.,
2017), transforms the input by three linear trans-
formations into the key K, query () and value V'
vectors respectively,

K = Reshape(IWX + b¥)

Q = Reshape(IW? + b?)
V = Reshape(IWY +bY),

©)

where K,Q,V € RMsxd WK w wV ¢
Re*¢, and b, b9, bV € R®. Notice that b x d = ¢
where h is the number of heads and d is the head
dimension.

The above K and () are used to compute their
similarity matrix M which is then used to generate
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new value V':

M = Softmax(KQ" /Vd) 10)

V' = Reshape(MV), (
where M € R"@*5 and V' € R**¢. Finally, a
linear transformation is used to exchange informa-
tion between different heads, followed by shortcut
connection and layer normalization,

O = Norm(V'Wo + bo + 1), (1)

where Wo € R°*¢ and bp € R€.

Feed-Forward The feed-forward layer (Vaswani
et al., 2017) includes two linear transformations
with a non-linear activation, followed by a shortcut
connection and layer normalization,

N = GELU(IW; + by)

(12)
0= NOI‘m(NWQ + by + I),
where W7 € R°*"¢ and Wy € R"*¢ with a ratio .
GELU(+) denotes the Gaussian Error Linear Unit
(Hendrycks and Gimpel, 2016).

Dynamic Convolution Dynamic convolution is
introduced by Wu et al. (2018) to replace self-
attention, which shows strong competitiveness in
the tasks of machine translation, language model-
ing and summarization. The dynamic convolution
first uses gated linear unit (GLU) (Dauphin et al.,
2017) to generate new representation,

V = GLU(I). (13)
Different from the vanilla dynamic convolution that
directly generates dynamic kernel from V' € R$*€,
in this work, we supplement a separate convolu-
tion (Howard et al., 2017) with depthwise weights
WPep ¢ RFXc (L is the convolution kernel size,
set as 9 in this paper) and pointwise weights
WPel ¢ Rex¢ to extract local information to help
the following kernel generation. Denoting the out-
put as S € R**¢, the separate convolution can be
formulated as

wro  (14)

'7: 7/"".7_ 2 I

k
Sie= D WPV xn
j=1

Then the output of separate convolution is used to
generate dynamic kernels,

D = Softmax(Reshape(SWPY1)), (15)



where WP¥" ¢ R and D € R"***¥_ Then
lightweight convolution is applied to the reshaped
V' = Reshape(V) € R"***4_ The output C' €
R*sxd can be expressed as

Cris = Dpig Vi (16)

k+1 .-
3 2
Jj=1

Finally, C is reshaped to C’ = Reshape(C) €
R**¢ and a linear transformer is applied to fuse the
information among multiple heads, followed by a
short connection and layer normalization,

O = Norm(C'WOU" £ 9 1. 1), (17)

where WO ¢ Re*¢ and pOU ¢ Re,

B Details about Datasets

B.1 GLUE Dataset

Introduced by Wang et al. (2018), General Lan-
guage Understanding Evaluation (GLUE) bench-
mark is a collection of nine tasks for natural lan-
guage understanding, where testing set labels are
hidden and predictions need to be submitted to the
evaluation server’. We provide details about the
GLUE tasks below.

CoLLA The Corpus of Linguistic Acceptability
(Warstadt et al., 2019) is a binary single-sentence
classification dataset for predicting whether an sen-
tence is grammatical or not. The samples are from
books and journal articles on linguistic theory.

MRPC The Microsoft Research Paraphrase Cor-
pus (Dolan and Brockett, 2005) is a dataset for the
task to predict whether two sentences are semanti-
cally equivalent or not. It is extracted from online
news sources with human annotations.

MNLI The Multi-Genre Natural Language Infer-
ence Corpus (Williams et al., 2018) is a dataset of
sentence pairs. Each pair has a premise sentence
and a hypothesis sentence, requiring models to pre-
dict its relationships containing ententailment, con-
tradiction or neutral. It is from ten distinct genres
of spoken and written English.

SST The Stanford Sentiment Treebank (Socher
et al., 2013) is a dataset for the task to predict
whether a sentence is positive or negative in sen-
timent. The dataset is from movie reviews with
human annotations.

Shttps://gluebenchmark.com

26

Hyperparameter Supernet Small Medium Base

Layer number 24 24 24 24
Word emb. size 128 128 128 768
Hidden size 256 256 384 768
FF inner hidden size 1024 1024 1536 3072
Generator size N/A 1/4 1/3 1/3
Head number 4 4 6 12
Head size 64 64 64 64
Learning rate 2e-4 Se-4  5Se-4 2e-4
Learning rate decay Linear  Linear Linear Linear
Warmup steps 10000 10000 10000 10000
Adam € le-6 le-6 le-6 le-6
Adam S 0.9 09 09 0.9
Adam f2 0.999 0.999 0.999  0.999
Dropout 0.1 0.1 0.1 0.1
Batch size 128 128 128 256
Input sequence length 128 128 128 128

Table 5: Pre-training hyperparameters. Generator size
means the multiplier for hidden size, feed-forward in-
ner hidden size and head number to construct genera-
tor for Replaced Token Detection pre-trianing objective
(Clark et al., 2020).

Value

3e-4 for small/medium size
le-4 (except 2e-4 for SQuAD)
for base size

Hyperparameter

Learning rate

Adam € le-6
Adam S 0.9
Adam [2 0.999
Layerwise LR decay 0.8 for every two layers
Learning rate decay ~ Linear
Warmup fraction 0.1
Attention Dropout 0.1
Dropout 0.1
Weight eecay 0.01
Batch size 32
10 for RTE and STS,
Train epochs 2 for SQUAD,

and 3 for other tasks

Table 6: Fine-tuning hyperparameters.

RTE The Recognizing Textual Entailment (RTE)
dataset is for the task to determine whether the
relationship of a pair of premise and hypothesis
sentences is entailment. The dataset is from sev-
eral annual textual entailment challenges including
RTE1 (Dagan et al., 2005), RTE2 (Haim et al.,
2006), RTE3 (Giampiccolo et al., 2007), and RTES
(Bentivogli et al., 2009).

QNLI Question Natural Language Inference is
a dataset converted from The Stanford Question
Answering Dataset (Rajpurkar et al., 2016). An ex-
ample is a pair of a context sentence and a question,
requiring to predict whether the context sentence
contains the answer to the given question.

QQP The Quora Question Pairs dataset (Chen
et al., 2018) is the dataset from Quora, requiring to



Model Layer Variety Architecture GLUE
DC SA FF Order
BERT-small vV Interleaved 1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2] 75.1
ELECTRA-small v' v Interleaved 1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2] 80.4
DynamicConv-small* v V' Interleaved [0,2,0,2,0,2,0,2,0,2,0,2,0,2,0,2,0,2,0,2,0,2,0,2] 64.4
Sandwich-small* v v’ Sandwich h,1,1,1,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,2,2,2,2,2] 78.6
v' v/ Random 1,1,1,2,2,1,2,2,2,1,1,2,2,2,1,1,1,1,2,2,2,2,1, 1] 80.8
v v Randomly searched [1,2,1,1,2,2,1,2,1,2,2,1,2,2,2,1,1,2,2,1,1,2,2,1] 81.1
v' v EA searched 1,2,1,2,2,1,2,2,1,2,2,1,2,1,2,2,1,2,2,1,2,1,2,2] 81.2
v v Random [2,0,0,2,2,0,0,2,2,2,0,2,2,0,0,0,2,2,0,2,2,0,0,0] 64.9
v v' Randomly searched [2, 2,0, 2,2, 0, 2,2,2,0,0,2,2,0,0,0,0,2,0,0,2,0,0,2] 654
LV-BERT-small variants v~ v EA searched [0,0,2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,2,0,0,0,2] 657
v v Random [0,1,1,0,1,1,0,0,1,0,0,0,0,0,1,1,1,1,0,0,0,1,1,1] 79.7
v v Randomly searched [0, 1,0, 1,0,1,0,1,0,0,0,1,0,0,0,1,0,1,0,1,1,0,1,0] 79.9
v v EA searched [0,1,0,0,0,1,1,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1] 79.8
v v v Random [1,1,0,0,0,0,1,1,0,1,1,0,2,2,2,1,0,1,0,1,0,2,2,1] 80.6
v" v/ v Randomly searched [1,1,0,2,0,1,2,0,2,2,1,2,0,1,2,0,2,2,0,0,1,1,2,1] 80.9
LV-BERT-small v v v EA searched [0,0,1,2,2,1,0,2,2,1,0,0,1,2,0,2,1,0,2,0,1,1,2,1] 81.8

Table 7: Architectures of different models and their performance on GLUE development set. In Architecture
column, 0, 1, and 2 denote dynamic convolution, self-attention, and feed-forward layers respectively * denotes

methods implemented by us for language pre-training.

determine whether a pair of questions are semanti-
cally equivalent or not.

STS The Semantic Textual Similarity Bench-
mark (Cer et al., 2017) is a collection of sentence
pairs with human-annotated similarity score on a
1-5 scare.

WNLI Winograd NLI (Levesque et al., 2012)
is a small dataset for natural language inference.
However, there are issues with the construction of
this dataset*. Therefore, this dataset is exclude in
this paper for comparison as BERT (Devlin et al.,
2019) etc.

B.1.1 SQuAD dataset

The Stanford Question Answering Dataset
(SQuAD 1.1) (Rajpurkar et al., 2016) is a dataset
of more than 100K questions which all can be
answered by locating a span of text from the
corresponding context passage. Besides this data,
the upgraded version SQuAD 2.0 (Rajpurkar et al.,
2018) supplements it with over S0K unanswerable
questions.

C Pre-training Details

For supernet, We pre-train it for 2M steps with
hyperparameters listed in Table 5, using Masked
Language Modeling (MLM) pre-training objective
(Devlin et al., 2019). This objective masks 15%
input tokens that require the model to predict. The
reason to use this objective is that the MLM valida-

*nttps://gluebenchmark.com/faq
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tion accuracy can reflect the performance of models
on downstream tasks (Lan et al., 2020).

For pre-training LV-BERT's and other compared
baselines like DynamicConv (Wu et al., 2018) and
Sandwich (Press et al., 2020) from scratch, we uti-
lize Replaced Token Detection (RTE) pre-training
objective (Clark et al., 2020). This objective em-
ploys a small generator to predict masked tokens
and utilize a larger discriminator to determine pre-
dicted tokens from the generator are the same as
original ones or not. RTE can help save compu-
tation cost but achieve good performance (Clark
et al., 2020). We pre-train the models for 1M steps,
mostly using the same hyperparameters as ELEC-
TRA (Clark et al., 2020). We set the pre-training
sequence length 128 that can help us save computa-
tion cost. For downstream task SQuAD 1.1/2.0 that
needs longer input sequence length, we pre-train
more 10% steps with the sequence length of 512
to learn the position embedding before fine-tuning.
The hyperparameters are listed in Table 5.

D Fine-tuning Details

For fine-tuning on downstream tasks, most of the
hyperparameters are the same as ELECTRA (Clark
et al., 2020). See Table 6.

E Searched Architectures

The different searched architectures are listed in
Table 7.
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Abstract

Event detection tends to struggle when it needs
to recognize novel event types with a few sam-
ples. The previous work attempts to solve this
problem in the identify-then-classify manner
but ignores the trigger discrepancy between
event types, thus suffering from the error prop-
agation. In this paper, we present a novel
unified model which converts the task to a
few-shot tagging problem with a double-part
tagging scheme. To this end, we first pro-
pose the Prototypical Amortized Conditional
Random Field (PA-CRF) to model the label
dependency in the few-shot scenario, which
approximates the transition scores between la-
bels based on the label prototypes. Then Gaus-
sian distribution is introduced for modeling
of the transition scores to alleviate the un-
certain estimation resulting from insufficient
data. Experimental results show that the uni-
fied models work better than existing identify-
then-classify models and our PA-CRF further
achieves the best results on the benchmark
dataset FewEvent. Our code and data are avail-
able at http://github.com/congxin95/
PA-CREF.

1 Introduction

Event detection (ED) systems extract events of
specific types from the given text. Traditionally,
researchers use pipeline approaches (Ahn, 2006)
where a trigger identification (TI) system is used
to identify event triggers in a sentence and then a
trigger classifier (TC) is used to find the event types
of extracted triggers. Such a framework makes the
task easy to conduct but ignores the interaction and
correlation between the two subtasks, being suscep-
tible to cascading errors. In the last few years, sev-
eral neural network-based models were proposed
to jointly identify triggers and classify event types
from a sentence (Chen et al., 2015; Nguyen and

*Corresponding Author
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Marry | It served as the location of Bogart's to Bacall.

E-Mail | If you have a better idea, please me.

Figure 1: An example from FewEvent dataset revealing
the trigger discrepancy. “[-]” marks the event trigger.

Grishman, 2015, 2018; Liu et al., 2018; Yan et al.,
2019; Cui et al., 2020b,a). These models have
achieved promising performance and proved the
effectiveness of solving ED in the joint framework.
But they almost followed the supervised learning
paradigm and depended on the large-scale human-
annotated dataset, while new event types emerge
every day and most of them suffer from the lack of
sufficient annotated data. In the case of insufficient
resources, existing joint models cannot recognize
the novel event types with only few samples, i.e.,
Few-Shot Event Detection (FSED).

One intuitive way to solve this problem is to first
identify event triggers in the conventional way and
then classify the event types based on the few-shot
learning (Vinyals et al., 2016; Snell et al., 2017;
Sung et al., 2018), these two subtasks can be trained
jointly by parameter sharing. Such identify-then-
classify paradigm (Deng et al., 2020) seems to be
convincing because TI aims to recognize triggers
and does not need to adapt to novel classes, so
we just need to solve the TC in the few-shot man-
ner. Unfortunately, our preliminary experiments
reveal that TI tends to struggle when recognizing
triggers of novel event types because novel events
usually contain completely different triggers with
the semantic distinction from the known events, i.e.,
Trigger discrepancy problem. Figure 1 gives an
example that the trigger “e-mail” would only occur
in event E-Mail but not in Marry and triggers of two
events have disparate context. And experiments on
FewEvent (a benchmark dataset for FSED) show
that 59.21% triggers in the test set do not trigger
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any events in the training set and the F1 score of TI
with the SOTA TI model BERT-tagger (Yang et al.,
2019) is only 31.06%. Thus, the performance of
the identify-then-classify paradigm will be limited
by the TI part due to the cascading errors.

In this paper, we present a new unified method
to solve FSED. Specifically, we convert this task to
a sequence labeling problem and design a double-
part tagging scheme using trigger and event parts
to describe the features of each word in a sentence.
The key to the sequence labeling framework is to
model the dependency between labels. Conditional
Random Field (CRF) is a popular choice to cap-
ture such label dependency by learning transition
scores of fixed label space in the training dataset.
Nevertheless, in FSED, CRF cannot be applied di-
rectly due to the label discrepancy problem, that
is the label space of the test set is non-overlapping
with the training set since FSED aims to recognize
novel event types. Therefore, the learned transition
scores of CRF from the training set do not model
the dependency of the novel labels in the test set.

To address the label discrepancy problem,
we propose Prototypical Amortized Conditional
Random Field (PA-CRF), which approximates
the transition scores based on the label proto-
types (Snell et al., 2017) instead of learning by
optimization. Specifically, we first apply the self-
attention mechanism to capture the dependency
information between labels and then map the la-
bel prototype pairs to the corresponding transition
scores. In this way, PA-CRF can produce label-
specific transition scores based on the few support-
ive samples, which can adapt to arbitrary novel
event types. However, predicting the transition
score as a single fixed value actually acts as the
point estimation, which usually acquires a large
amount of annotated data to achieve accurate es-
timation. Estimated from the handful of samples,
the transition scores may suffer from the statisti-
cal uncertainty due to the random fluctuation of
scant data. To release this issue, inspired by varia-
tional inference (Kingma and Welling, 2014; Yoon
et al., 2018; Gordon et al., 2019), we treat the tran-
sition score as the random variable and utilize the
Gaussian distribution to approximate its distribu-
tion to model the uncertainty. Thus, our PA-CRF
is to estimate the parameters of the Gaussian dis-
tribution rather than the transition scores directly,
i.e., in the amortized manner (Kingma and Welling,
2014; Gordon et al., 2019). The Probabilistic In-
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ference (Gordon et al., 2019) is employed based
on the Gaussian distribution to make the inference
robust by taking the possible perturbation of tran-
sition scores into account since the perturbation is
also learned in a way that coherently explains the
uncertainty of the samples.

To summarize, our contributions are as follows:

e We devise a tagging-based unified model for
FSED. To the best of our knowledge, we are
the first to solve this task in a unified manner,
free from the cascading errors.

We propose a novel model, PA-CRF, which
estimates the distributions of transition scores
for modeling the specific label dependency in
the few-shot sequence labeling setting.

Experimental results show that our proposed
PA-CRF outperforms other competitive base-
lines on the FewEvent dataset. Further anal-
yses show the effectiveness of our unified
model and the limitation of the identify-then-
classify models.

2 Related Work

Few-shot Event Detection Event Detection
(ED) aims to recognize the specific type of events
in a sentence. In recent years, various neural-based
models have been proposed and achieved promis-
ing performance in ED (Chen et al., 2015; Nguyen
and Grishman, 2015, 2018; Liu et al., 2018; Yan
et al., 2019; Cui et al., 2020b). Chen et al. (2015)
and Nguyen and Grishman (2015) proposed the
convolution architecture to capture the semantic
information in the sentence. Nguyen et al. (2016)
introduced the recurrent neural network to model
the sequence contextual information of words. Re-
cently, GCN-based models (Nguyen and Grishman,
2018; Liu et al., 2018; Yan et al., 2019; Cui et al.,
2020b) have been proposed to exploit the syntactic
dependency information and achieved state-of-the-
art performance. However, all these models are
data-hungry, limiting dramatically their usability
and deployability in real-world scenarios.
Recently, there has been an increasing research
interest in solving event detection in the few-shot
scenarios (Deng et al., 2020; Lai et al., 2020a,b), by
exploiting the Few-Shot Learning (Vinyals et al.,
2016; Snell et al., 2017; Finn et al., 2017; Sung
et al., 2018; Cong et al., 2020). Lai et al. (2020a)
proposed LolLoss which splits the part of the sup-
port set to act as the auxiliary query set to train the



model. Lai et al. (2020b) introduced two regulariza-
tion matching losses to improve the performance
of models. These works only focus on the few-
shot trigger classification which classifies the event
type of the annotated trigger according to the con-
text based on few samples. This is unrealistic as
triggers of novel events are predicted by some ex-
isting toolkits in advance. Deng et al. (2020) first
proposed the benchmark dataset, FewEvent, for
FSED and designed the DMBPN based on the dy-
namic memory networks. They train a conventional
trigger identifier and a few-shot trigger classifier
jointly and evaluated the model performance in the
identify-then-classify paradigm. Moreover, our pre-
liminary experiments reveal that the conventional
trigger identification model tends to struggle when
recognizing triggers of novel event types because
of the trigger discrepancy between different event
types. Thus, errors of the trigger identifier might
be propagated to the event classification. Different
from the previous identify-then-classify framework,
for the first time, we solve Few-Shot Event Detec-
tion with two subtasks in a unified manner.

Few-shot Sequence Labeling In recent years,
several works (Fritzler et al., 2019; Hou et al., 2020;
Yang and Katiyar, 2020) have been proposed to
solve the few-shot named entity recognition using
sequence labeling methods. Fritzler et al. (2019)
applied the vanilla CRF in the few-shot scenario
directly. Hou et al. (2020) proposed a collapsed
dependency transfer mechanism (CDT) into CRF,
which learns label dependency patterns of a set of
task-agnostic abstract labels and utilizes these pat-
terns as transition scores for novel labels. Yang and
Katiyar (2020) trains their model on the training
data in a standard supervised learning manner and
then uses the prototypical networks and the CDT
for prediction in the inference phase. Different
from these methods learning the transition scores
by optimization, we build a network to generate
the transition scores based on the label prototypes
instead. In this way, we can generate exact label-
specific transition scores of arbitrary novel event
types to achieve adaptation ability. And we further
introduce the Gaussian distribution to estimate the
data uncertainty. Experiments prove the effective-
ness of our method over the previous methods.

3 Problem Formulation

We convert event detection to a sequence labeling
task. Each word is assigned a label that contributes
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to detecting the events. Labels consist of two parts:
the word position in the trigger and the event type.
We use the “BI” (Begin, Inside) signs to represent
the position information of a word in the event
trigger. The event type information is obtained
from a predefined set of events. Label “O” (Other)
means that the corresponding word is independent
of the target events. Thus, the total number of labels
is 2N + 1 (N for B-EventType, N for I-EventType,
and an additional O label), where N is the number
of predefined event types.

Furthermore, we formulate the Few-Shot Event
Detection in the typical N-way-K -shot paradigm.
Let ¢ = {wi,wy,...,w,} denote an n-word
sequence, and y = {y1,¥2,...,yn} denote the
label sequence of the . Given a support set
S = {(z, y®)} VXK which contains N event
types and each event type has only K instances,
FSED aims to predict the labels of a unlabeled
query set Q based on the support set S. Formally,
a {S, Q} pair is called a N-way-K-shot task 7.
There exist two datasets consisting of a set of tasks
. Dtr(zin = {T(z)}lj\itfam and Dtest = {T(l)}f\itht
where My, qin and My.s; denote the number of the
task in two datasets respectively. As the name sug-
gests, Dyyqin 18 used to train models in the training
phase while D,.g; is for evaluation. It is noted
that these two datasets have their own event types,
which means that the label space of two datasets is
disjoint with each other.

4 Methodology

4.1 Overview

As described above, we formulate FSED as the
few-shot sequence labeling task with interdepen-
dent labels. Following the widely used CRF frame-
work, we propose a novel PA-CRF model to model
such label dependency in the few-shot setting, and
decode the best-predicted label sequence. Our PA-
CREF contains three modules: 1) Emission Module:
It first computes the prototype of each label based
on the support set, and then calculates the similar-
ity between prototypes and each token in the query
set as the emission scores. 2) Transition Module:
It exploits the prototypes to generate the parame-
ters of Gaussian distribution of the transition scores
for decoding. 3) Decoding Module: Based on the
emission scores and Gaussian distributed transition
scores, the Decoding Module calculates the prob-
abilities of possible label sequences for the given
query set and decodes the predicted label sequence.
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Figure 2: Architecture of our proposed PA-CREF. It consists of three modules: a) Emission Module calculates the
emission scores for the query instance based on the prototypes derived from the support set. b) Transition Module
generates the Gaussian distributed transition scores with respect to prototypes. c¢) Decoding Module exploits the
emission scores and approximated Gaussian distributed transition scores to decode the predicted label sequence

with the Monte Carlo Sampling.

Figure 2 gives an illustration of PA-CRF. We detail
each component from the bottom to the top.

4.2 Emission Module

The Emission Module assigns the emission scores
to each token of sentences in the query set Q with
regard to each label based on the support set S.

4.2.1 Base Encoder

Base Encoder aims to embed tokens in both support
set S and query set Q into real-value embedding
vectors to capture the semantic information.

Since BERT (Devlin et al., 2019) shows its ad-
vanced ability to capture the sequence information
and has been widely used in NLP tasks recently,
we use it as the backbone. Given an input word
sequence «, BERT first maps all tokens into hid-
den embedding representations. We denote this
operation as:

{h1,hs,...,h,} = BERT(x) 1)
where h; € R refers to the hidden representation
of token w;, dj, is the dimension of the hidden
representation.
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4.2.2 Prototype Layer

Prototype Layer is to derive the prototypes of each
label from the support set S. As described in the
problem formulation, we use the BIO schema to
annotate the event trigger and IV event types could
contain 2N + 1 labels. Thus, indeed, we could
get 2N + 1 prototypes. Following the previous
work (Snell et al., 2017), we calculate the proto-
type of each label by averaging all the word rep-
resentations with that label in the support set S:

> h

weS(y;)

i=1,2,....2N+1, (2

yz

where c¢; denotes the prototype for label y;, S(y;)
refers to the token set containing all words in the
support set S with label y;, h represents the corre-
sponding hidden representation of token w, and | - |
is the number of set elements.

4.2.3 Emission Scorer

Emission Scorer aims to calculate the emission
score for each token in the query set Q. The emis-
sion scores are calculated according to the similar-
ities between tokens and prototypes. The compu-
tation of the emission score of the label y; for the



word wj is defined as:

fe(yiw;, S) = d(ei, hy), (©)
where d(+, -) is the similarity function. In practice,
we choose the dot product operation to measure the
similarity.

Finally, given a word sequence x, the emission
score of the whole sentence with its corresponding

ground-truth label sequence y is computed as:

ZfE yl7wla

EMIT (y, «,S) (€))

4.3 Transition Module

In vanilla CREF, the transition scores are learnable
parameters and optimized from large-scale data to
model the label dependency. However, in the few-
shot scenarios, the learned transition scores cannot
adapt to the novel label set due to the disjoint label
space. To overcome this problem, we use neural
networks to generate the transition scores based on
the label prototypes instead of learning transition
scores by optimization to achieve adaptation ability.
In this case, a problem needing to be solved is that
using few support instances with random data fluc-
tuation to generate transition scores would cause
uncertain estimation and result in wrong inference.
To model the uncertainty, we treat the transition
score as a random variable and use the Gaussian
distribution to approximate its distribution. Specif-
ically, the Transition Module is to generate the
distributional parameters (mean and variance) of
transition scores based on the label prototypes. It
consists of two layers: 1) Prototypical Interaction
Layer and 2) Distribution Approximator. Details
of each layer are listed in the following parts.

4.3.1 Prototype Interaction Layer

Since the transition score is to model the depen-
dency between labels, the individual prototype for
each event type with rare dependency information
is hard to generate their transition scores. Thus,
we propose a Prototype Interaction Layer which
exploits the self-attention mechanism to capture
the dependency between labels.

We first calculate the attention scores of each
prototype c; with others:

( (9) (k))

explc (5)
Q5 =
J anN;ll exp(c! (@) cs,lf))
where cgq) and cl(.k) are transformed from c; by two

32

linear layers respectively:

(q) W(q)c +b(tz)

—w®e, 4™ ©

(k)
Getting the attention scores, the prototype c¢;
with dependency information is calculated as fol-

lows:
2N+1

_ E : (v)
= QijC; 7,
Jj=1

is also transformed linearly from c;:

o

@)

(v)

where c;

e =wWe; + ™ ®)

4.3.2 Distribution Approximator

This module aims to generate the mean and vari-
ance of Gaussian distributions based on the proto-
types with dependency information.

Given the label set ) with total 2N + 1 la-
bels, we first denote the transition score matrix
as T, € REN+DXEN+1) for all label pairs, and
denote the the i-th row j-th column element of
T, as [T;];; which refers to the transition score
for i-th label transiting to j-th label in the label
set ). As treating [1}];; as random variable, We
use the Gaussian distribution [T}.];; ~ N (uij, 07 )
to approximate [7];;, where N (-, -) refers to the
Gaussian distribution. To estimate the mean y;;
and variance o;; of [1}];;, we concatenate the cor-
responding prototypes ¢; and ¢; and feed into two
feed-forward neural networks respectively:

pog = W &) + 4

2 2
O',L'Qj = exp (W(U ) [EZHéJ] + b(a ))

®
10)

where [-||-] means the concatenation operation.
Given a label sequence vy, the transition score of
the whole label sequence is approximated by:

n—1

Z[T i I(yi)I(yit1)

i=1

TRANS(y,T,) = (1n

where [(y;) refers to the label index in ) of y;.

4.4 Decoding Module

Decoding Module derives the probabilities for a
specific label sequence of the query set according
to the emission scores and approximated Gaussian
distributions of transition scores.

Since the approximated transition score is Gaus-
sian distributional and not a single value, we de-
note the probability density function of the approx-
imated transition score matrix as ¢(7}|S). Accord-
ing to the Probabilistic Inference (Gordon et al.,



2019), the probability of label sequence y of a
word sequence x based on the support set S is
calculated as:

P(ylz, ) = / Plylz, S, T)(ThS)AT,  (12)

Following the CRF algorithm, the probability
can be calculated based on the Equation 4 and
Equation 11:

P(ylz,S) =

/ %exp (BMIT(y, 2,5) + TRANS(y, 7)) a(T:|S)dT,
(13)

where

Z=3 exp (EMIT(y’, x,S) + TRANS(y/, T}))
y’ey
(14)

and Y refers to all possible label sequences.
In the training phase, we use negative log-
likelihood loss as our objective function:

L=— E
(z,y)~Q

[log P(y|, S)] (15)
Due to the hardness to compute the integral of
Equation 13, in practice, we use the Monte Carlo
sampling technique (Gordon et al., 2019) to approx-
imate the integral. To make the sampling process
differentiable for optimization, we employ the repa-
rameterization trick (Kingma and Welling, 2014)
for each transition score [T}];;:

[T7]ij = pij + €0ij, where e ~ N(0,1) (16)

In the inference phase, the Viterbi algo-
rithm (Forney, 1973) is employed to decode the
best-predicted label sequence for the query set.

S Experiment

5.1 Dataset

We conduct experiments on the benchmark
FewEvent dataset introduced in the previous
work (Deng et al., 2020), which is the currently
largest few-shot dataset for event detection. It
contains 70,852 instances for 100 event types and
each event type owns about 700 instances on av-
erage. Since Deng et al. (2020) do not share their
split train/dev/test set, we re-split the FewEvent in
the same ratio as Deng et al. (2020). We use 80
event types as the training set, 10 event types as
the dev set, and the rest 10 event types as the test
set. More statistics of FewEvent dataset are listed
in Appendix A.
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5.2 Evaluation

We follow the evaluation metrics in previous event
detection works (Chen et al., 2015; Liu et al., 2018;
Cui et al., 2020b), an event trigger is marked correct
if and only if its event type and its offsets in the
sentence are both correct. We adopt the standard
micro F1 score to evaluate the results and report the
averages and standard deviations over 5 randomly
initialized runs.

6 Implementation Details

We employ BERT-BASE-UNCASED (Devlin et al.,
2019) as the base encoder. The maximum sentence
length is set as 128. Our model is trained using
AdamW optimizer with the learning rate of le-5.
All the hyper-parameters are tuned on the dev set
manually. In the training phase, we follow the
widely used episodic training (Vinyals et al., 2016)
in few-shot learning. Episodic training aims to
mimic N-way-K-shot scenario in the training phase.
In each epoch, we randomly sample N event types
from the training set and each event type randomly
sample K instances as support set and other M
instances as the query set. We train our model with
20,000 iterations on the training set and evaluate
its performance with 3,000 iterations on the test
set following the episodic paradigm. We run all
experiments using PyTorch 1.5.1 on the Nvidia
Tesla T4 GPU, Intel(R) Xeon(R) Silver 4110 CPU
with 256GB memory on Red Hat 4.8.3 OS.

6.1 Baselines

To investigate the effectiveness of our proposed
method, we compare it with a range of base-
lines and state-of-the-art models, which can
be categorized into three classes: fine-tuning
paradigm, identify-then-classify paradigm and uni-
fied paradigm.

Fine-tuning paradigm solves the FSED in the
standard supervised learning, i.e., pre-training on
the large scale dataset and fine-tuning on the hand-
ful target data. We adopt the state-of-the-art model,
PLMEE (Yang et al., 2019), of the standard ED
into the FSED directly.

Identify-then-classify models first perform
trigger identification (named as TT) and then clas-
sify the event types based on the few-shot learning
methods (named as FSTC). We investigate two
typed of identify-then-classify paradigms: sepa-
rate and multi-task. For the separate models, the
trigger identifier and few-shot trigger classifier are



Paradigm ‘ Model ‘ 5-Way-5-Shot  5-Way-10-Shot 10-Way-5-Shot 10-Way-10-Shot
Fine-tuning | PLMEE | 4434+0.19  4.69+0.85 2.52+£0.28 2.76 £ 0.55
Separae | LOLOSS 30.14+£030 3091029  2933+£040  30.08+0.39
P MatchLoss | 29.78 +£0.14  30.75+0.15  28.75+023  29.59 40.21
LoLoss 3151£1.56 31704+ 121 3046+1.38  30.32+0.89
Multi-task | MatchLoss | 3044 +0.99  30.68+£0.78  28.97+0.61  30.05+0.93
DMBPN 37514260 38144232  3421+£145 3531+ 1.69
Match 3993+ 1.67 46.02+£1.20  30.88+£1.08  3591+1.19
Proto 50.11£0.77 52974095  4351+£1.16 4270 +£0.98
Proto-Dot | 58.82+0.88 ~ 61.01£0.23  55.04+1.62 5878 +0.88
: Relation 2891+£1.13  2983+0.78  1849+£125  21.47+1.40

Unified

Vanilla CRF | 59.01 +£0.81  6221+1.94  56.00+1.51  59.35+1.09
CDT 59.30 £0.23 62774012 5641 +1.09  59.44 & 1.83
StructShot | 57.69 £091  61.54+1.23  5454+095  57.14+0.79
| PA-CRF | 62.25% +1.42 64.45% £ 049 5848* +0.68  61.64* + 0.81

Table 1: FI scores (10~2) of different models on the FewEvent test set. Bold marks the highest number among
all models, underline marks the second-highest number, and 4= marks the standard deviation. * marks statistically
significant improvements over the best baseline with p < 0.01 under a boostrap test.

trained separately without parameter sharing. We
first exploit the state-of-the-art BERT-tagger for
the TT task. It uses BERT (Devlin et al., 2019)
and a linear layer to tag the trigger in the sentence
as a sequence labeling task. Since TI just aims
to recognize the occurrence of the trigger, the la-
bel set only contains three labels: O, B-Trigger,
I-Trigger. For the FSTC task, we reimplement
two FSTC models: LoLoss (Lai et al., 2020a),
MatchLoss (Lai et al., 2020b). In the multi-task
models, we reimplement DMBPN (Deng et al.,
2020) and replace its encoder with BERT for the
fair comparison. DMBPN combines a conventional
trigger identification module and a few-shot trigger
classification module by parameter sharing. But in
the inference phase, it detects the event trigger still
in the identify-then-classify paradigm. Addition-
ally, we also provide the multi-task version of the
LoLoss and MatchLoss which are trained jointly
with BERT-tagger with shared BERT parameters.

Unified models perform few-shot event detec-
tion with a single model without task decomposi-
tion. Because we are the first to solve this task in
a unified way, there is no previous unified model
that can be compared. But for the comprehensive
evaluation of our proposed PA-CRF model, we also
construct two groups of variants of PA-CRF: non-
CRF models and CRF-based models. Non-CRF
models use emission scores to predict via softmax

34

and do not take the label dependency into consider-
ation. We implement four typical few-shot classi-
fiers: 1) Match (Vinyals et al., 2016) uses cosine
function to measure the similarity, 2) Proto (Snell
et al., 2017) uses Euclidean Distance as the sim-
ilarity metric, 3) Proto-Dot uses dot product to
compute the similarity, 4) Relation (Sung et al.,
2018) builds a two-layer neural networks to mea-
sure the similarity. Since CRF with the capacity
of modeling label dependency is widely used in
sequence labeling task, we implement three kinds
of CRF-based models as our baselines: 1) Vanilla
CREF (Fritzler et al., 2019): We adopt the vanilla
CRF in the FSED task without considering the
adaptation problem. 2) CDT (Hou et al., 2020):
As the SOTA of the few-shot NER task, we re-
implement it according to the official code and
adapt it in the FSED task to replace our Transition
Module. 3) StructShot (Yang and Katiyar, 2020):
It is also a few-shot NER model. It first pre-trains
on the training set and utilizes the prototypical net-
works and the CDT for prediction based on the
support set in the inference phase. For the fair com-
parison, the emission module of these CRF-based
baseline models is the same as our PA-CRF.

6.2 Main Results

Table 1 summarizes the results of our PA-CRF
against other baseline models on the FewEvent test



set.

Comparison with fine-tuning model It is obvi-
ous that PLMEE performs poorly in all four few-
shot settings and all few-shot-based methods out-
perform it with an absolute gap, which powerfully
proves that the conventional supervised methods is
incapable of solving FSED.

Comparison with identify-then-classify mod-
els (1) Most of unified models (except Relation)
perform higher than all identify-then-classify mod-
els, especially for PA-CRF with huge gaps about
30%, proving the effectiveness of the unified frame-
work. (2) Comparing with the separate paradigm,
the multi-task paradigm is able to improve perfor-
mance but it still cannot catch up with the unified
paradigm. (3) DMBPN works better than other two
models but still works poorly to handle the FSED
due to the limitation of the TI. We will discuss the
bottleneck of the identify-then-classify paradigm
in Section 6.3.

Comparison with unified models (1) Over
the best non-CRF baseline model Proto-Dot, PA-
CREF achieves substantial improvements of 3.43%,
3.44%, 3.44% and 2.86% on four few-shot scenar-
ios respectively, which confirms the effectiveness
and rationality of PA-CRF to model the label depen-
dency. (2) Vanilla CRF performs better than other
non-CRF baseline methods, which demonstrates
that CRF is able to improve the performance by
modeling the label dependency, even if the learned
transition scores do not match the label space of the
test set. (3) Compared to Vanilla CRF, both CDT
and StructShot achieve slightly higher F1 scores, in-
dicating the transition scores of abstract BIO labels
can improve the model adaptation ability to some
extent. (4) CDT exceeds the StructShot since CDT
is trained based on the episodic training, which
makes it learns the class-agnostic token represen-
tations. (5) PA-CRF outperforms CDT (2.95%,
1.68%, 2.07% and 2.20% in four few-shot settings
respectively) with absolute gaps. We consider that
it is because CDT learning the transition scores
of the abstract labels cannot model the exact de-
pendency of specific label set, so its adaptation
ability is limited. In contrast, PA-CRF generates
the label-specific transition scores based on the la-
bel prototype, which can capture the dependency
for specific novel event types. (6) Comparing four
few-shot scenarios, we can find that the F1 score
increases as the K-shot increases, which shows that
more support samples can provide more informa-
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Model TI FSTC FSED
LoLoss 31.06 9527 30.14
DMBPN 40.64 95.44 37.51
DMBPN(CDT-TI) 54.69 9549 53.93
PA-CRF 63.68 96.76 62.25

Table 2: Comparison of PA-CRF and baselines on two
subtasks. F1 scores are reported on the FewEvent test
set in the 5-way-5-shot setting.

tion of the event type. The F1 score decreases as
the N-way increases when the shot number is fixed,
which reveals that the larger way number causes
more event types to predict which increases the
difficulty of the correct detection.

To summarize, we can draw the conclusion that
(1) The identify-then-classify paradigm is inca-
pable of solving the FSED task. (2) Compared
to the identify-then-classify paradigm, the unified
paradigm works more effectively for the FSED task.
(3) Approximating transition scores based on the
label prototypes not by optimization, our PA-CRF
achieves better adaptation on novel event types.

6.3 Bottleneck Analysis

To investigate the bottleneck of the identify-then-
classify paradigm, we evaluate LoLoss (separate
model), DMBPN (multi-task model) and PA-CRF
(unified model) on two subtasks: TI and FSTC sep-
arately in the 5-way-5-shot setting on the FewEvent
test set. To reduce the influence of the cascading
errors, we use the ground truth trigger span for
evaluation in the FSTC. The experimental results
are reported in Table 2. From Table 2, we find that:
(1) All models achieve more than 95% F1 score on
the FSTC task, indicating that both identify-then-
classify and unified models is capable enough of
solving the FSTC problem. (2) For the TI task, two
identify-then-classify baselines perform 31.06%
and 40.64% F1 score respectively, which demon-
strates that the conventional TI module has diffi-
culty in adapting to novel event triggers. Hence,
due to the cascading errors, the poorly-performed
TI module limits the performance of the identify-
then-classify models. (3) PA-CRF achieves 63.68%
F1 score on TI task, which exceeds the two kinds of
identify-then-classify models significantly. Unlike
identify-then-classify models recognizing triggers
based on seen triggers, PA-CRF utilizes the trigger
representations from the support set of the novel
event types to identify novel triggers so our unified



Model 5-Shot 10-Shot
PA-CRF 44.39 51.06
- Distribution Estimation  43.47 49.41
- Interaction Layer 41.62 4574
- Transition Score 39.83 45.07

Table 3: Ablation study of PA-CRF in 5-Way settings.
F1 scores are reported on the FewEvent dev set.

model works better in the TI task of FSED. In con-
clusion, the conventional trigger identifier cannot
identify novel triggers in FSED, and exploiting the
support set of novel event types is necessary.

6.4 Effectiveness Analysis

To verify the effectiveness of the unified framework,
we adapt our best baseline model, CDT, to replace
TI module of DMBPN to solve trigger identifica-
tion in the few-shot manner. It identifies triggers
based on the emission scores between tokens and
label prototypes calculating from the support set
and learned abstract transition scores. In this case,
we rename it as DMBPN(CDT-TI) and evaluate it
in TI and FSTC subtasks. Results are also reported
based on the 5-way-5-shot setting in Table 2 and we
observe that: The CDT-TI-based DMBPN achieve
54.69% in TI task, exceeding the conventional TI
based models, which shows that solving TI in the
few-shot manner by utilizing the support set can
reduce the trigger discrepancy to some extent. Al-
though the performance of FSTC is similar to the
original DMBPN, owing to the improvements of
TI task, the final performance of FSED exceeds
the original DMBPN by 16.42% but they are still
inferior to PA-CRF with a huge gap (8.99% on
TI task). Therefore, we draw the conclusion that
solving FSED in the unified manner can utilize the
correlation between two subtasks to improve the
model performance significantly.

6.5 Ablation Study

To study the contribution of each component in
our PA-CRF model, we run the ablation study on
the FewEvent dev set. From these ablations (see
Table 3), we find that: (1) - Distribution Estima-
tion: To study whether distributional estimation is
helpful to improve the performance, we remove it
and make the Distribution Approximator generate
a single value as the transition score directly as the
point estimation. And the inference is based on the
generated transition scores without Probabilistic
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Inference. As a result, the F1 score drops 1.02%
and 1.65% in two scenarios, respectively. We at-
tribute these gaps to our proposed Gaussian-based
distributional estimation which can model the data
fluctuation to relieve the influence of data uncer-
tainty. (2) - Interaction Layer: To certify that the
Prototype Interaction Layer contributes to captur-
ing the information between prototypes, we remove
it and evaluate in two scenarios. We read from Ta-
ble 3 that F1 scores decrease significantly by 2.77%
and 5.32% respectively, which indicates that the
Prototype Interaction Layer is able to capture the
dependency among prototypes. (3) - Transition
Score: To prove the contribution of the label depen-
dency, we remove the Transition Module and only
use the emission score for prediction. Results show
that without transition scores, the performance of
the model drops dramatically by 4.56% and 5.99%
respectively, which powerfully proves that the tran-
sition score can improve the performance of the
few-shot sequence labeling task.

Furthermore, we have conducted case study and
error analysis to validate the strength of our PA-
CRF and explore its weakness. Details are listed in
Appendix B and Appendix C.

7 Conclusion

In this paper, we explore a new viewpoint of solv-
ing few-shot event detection in a unified manner.
Specifically, we propose a prototypical amortized
conditional random field to generate the transition
scores to achieve adaptation ability for novel event
types based on the label prototypes. Furthermore,
we present the Gaussian-based distributional esti-
mation to approximate transition scores to relieve
the statistical uncertainty of data fluctuation. Fi-
nally, experimental results on the benchmark Few-
Event dataset prove the effectiveness of our pro-
posed method. In the future, we plan to adapt our
method to other few-shot sequence labeling tasks
such as named entity recognition.
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A Dataset Statistics

Training Set Dev Set  Test Set
# Cls. 80 10 10
# Sent. 67982 2173 697
# Tok./sent 36.5 38.6 30.8

Table 4: Statistics of FewEvent Dataset.

Table 4 lists the statistics of FewEvent dataset
containing the number of event type (#Cls.), the
number of sentence(# Sent.), the number of token
per sentence (# Tok./sent) for the train/dev/test set.

Figure 3 demonstrates the data imbalance prob-
lem of FewEvent dataset. Event “Marry” has the
most instance (26135 instances) while event “E-
Mail” only has 30 instances. 69% event types have
less than 100 instances while 7% event types have
more than 1000 instances. However, since we use
episodic training (Vinyals et al., 2016) to train our
model, the data imbalance problem can be relieved
to some extent.

B Case Study

We compare our method with the best identify-
then-classify baseline, DMBPN and the best uni-
fied baseline, CDT in some cases, as shown in
Table 5.
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As demonstrated by the first example of a
Sponsorship event, DMBPN, in the identify-then-
classify paradigm, fails to identify the trigger spon-
sorship. According to our statistics about the
FewEvent dataset, 95.16% triggers of Sponsor-
ship event do not occur in the training set. Since
DMBPN uses the conventional TI module which is
trained on the training set to identify the event trig-
ger, it is incapable of identifying the Sponsorship
event trigger. Although the classification module
of DMBPN succeeds to distinguish the event type
as Sponsorship, due to the cascading errors, the fi-
nal prediction of event trigger (containing the span
and type) is incorrect. As a result, the performance
of DMBPN as an identify-then-classify model on
the FSED task is limited. In contrast, our unified
PA-CREF is successful to detect the event trigger
sponsorship of this case since PA-CRF utilizes the
information of the support set of Sponsorship event
in which word sponsorship appears and acts the
trigger.

In the second example, the best unified baseline,
CDT, tags the first trigger word locked with I-Jail
label wrongly. That is because CDT learns the
abstract transition scores among a set of abstract
labels which cannot model the label dependency
for this specific event type accurately. Thanks to
the PA-CRF which models the label dependency
based on the label prototypes from the support set
of Jail event, our model is capable of tagging the
word locked with B-Jail label correctly.

C Error Study

Although our method outperforms all baseline mod-
els, we still observe some failure cases. Table 6
gives a typical example of the wrong prediction of
event Transport (Trans for short). For the query
instance, the ground truth event trigger is “pouring
out”. The word “pouring” should be labeled as
B-Trans and the out should be labeled as I-Trans.
However, our model only detects “pouring” with
B-Trans while missing “out”. From the support set,
we find that all support instances of this event type
only contain the one-word trigger without I-Trans
label tokens, resulting in that the prototype of /-
Trans is zero vector. As a result, the emission score
for the label I-Trans of each query token is calcu-
lated as zero and the transition scores based on the
prototypes are also affected. Therefore, our model
is not able to detect the I-Trans label correctly in
this case. In the future, we will further study to
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Figure 3: The data imbalance of FewEvent dataset.
Model ‘ Prediction
DBMPN | Candlestick Park was dropped when the [sponsorship]o agreement expired.
PA-CRF | Candlestick Park was dropped when the agreement expired.
CDT Willmore will tell everyone for wanting to keep the poor man [locked];_ jqi [upli— jail-
PA-CRF | Willmore will tell everyone for wanting to keep the poor man luplr— jail-

Table 5: Output of PA-CRF, DMBPN and CDT on samples from the FewEvent test set. The subscripts denote the

labels tagged by the models.

Support #1 | Cult members and built a laser weapon mounted on a truck

Support #2 | Israel the West Bank and Gaza and dismantle Jewish settlements.
Truth Refugees have been [out];—Trans of Fallujah over the last few days.
Prediction | Refugees have been [out] of Fallujah over the last few days.

Table 6: A case of the wrong prediction from the FewEvent test set. The subscripts denote the triggers and their
event types. We only list two support instances to reduce space.

solve the missing / label problem.

D Analyses about Various Dataset Split

Model \Rl R2 R3 R4 R5
PA-CRF | 59.0 334 53.1 424 480
DMBPN | 449 31.1 408 32.6 279

Table 7: Performance of our PA-CRF and DMBPN in
various split FewEvent dataset in the 5-Way-5-Shot sce-
nario. F1 scores (10~2) are reported.

Since Deng et al. (2020) do not public their split
train/dev/test set of FewEvent dataset, to compare
our PA-CRF with DMBPN (Deng et al., 2020),
we re-split the FewEvent randomly in the same
split ratio as the Deng et al. (2020) (80 event
types for training set, 10 event types for dev set
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and the rest 10 event types for test set) and evalu-
ate the DBMPN performance on our split test set.
However, in our experiments, the performance of
DMBPN is lower than the original paper. We as-
sume that the different data split may influence
the model performance badly. To validate our as-
sumption, we re-split the FewEvent dataset for five
random seeds and conduct more experiments on
these various split train/dev/test set. The results are
reported in Table 7. From Table 7, it can be ob-
served that: (1) Data split does influence the model
performance significantly indeed. In these five dif-
ferent split train/dev/test set, the performance of
PA-CREF varies from 59.0% to 33.4% with a huge
range. Similarly, DMBPN also varies from 44.9%
to 27.9%, owning a huge gap about 20%. It demon-
strates that for the FewEvent dataset, different split
could cause huge fluctuation of the model perfor-



mance. Therefore, our PA-CRF including baselines
performs lower than those Deng et al. (2020) re-
ported due to the different data split. (2) PA-CRF
outperforms DMBPN in all five random split set-
tings, which powerfully proves the robustness of
PA-CREF over the identify-then-classify paradigm.
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Abstract

The democratization/decentralization of both
the production and consumption of informa-
tion has resulted in a subjective and often
misleading depiction of facts known as Fake
News - a phenomenon that is effectively shap-
ing the perception of reality for many individ-
uals. Manual fact-checking is time-consuming
and cannot scale and although automatic fact-
checking, vis a vis machine learning holds
promise, it is significantly hindered by a deficit
of suitable training data. We present both
a novel dataset, VERITAS(VERIfying Tex-
tual Aspects), a collection of fact-checked
claims, containing their original documents
and LUX(Language Under eXamination), a
text classifier that makes use of an extensive
linguistic analysis to infer the likelihood of the
input being a piece of fake-news.

1 Introduction

Often defined as the intentional or unintentional
spread of false information (K et al., 2019), Fake
News has found fertile ground in the actual sce-
nario of ever-growing data consumption and gen-
eration, where factors like news source decentral-
ization, citizen journalism, democratization of me-
dia and astroturfing! (Lee, 2010) make the task
of manually checking and correcting disinforma-
tion across the internet impractical if not infeasi-
ble, (Shao et al., 2016) despite the significant ef-
forts of Fact-Checking Agencies - organised groups
of journalists that manually identify and investigate
rumours conveyed by Fake-news articles.

Consequently, it is imperative that we develop an
efficient and reliable way to account for the veracity
of what is produced and spread as information; this
process is known as automatic fact-checking. (Has-
san et al., 2015)

! Astroturfing is the practice of masking the sponsors of

a message or organization to make it appear as though it
originates from and is supported by grassroots participants.
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Although the there has been significant re-
search effort to tackle the task of automatic fact-
checking (Azevedo, 2018), the deficit of datasets
containing organic news articles - in their entirety -
which have been manually labeled with respect to
their veracity is a common obstacle for the devel-
opment of supervised classification models. The
absence of such datasets makes researchers rely on
other approaches, e.g., stance determination (Popat
et al., 2017), knowledge base matching (Wu et al.,
2014), trust assessment of sources (Balakrishnan
and Kambhampati, 2011), data structuring (Conroy
et al., 2015), network pattern analysis (Shao et al.,
2016), etc.

In this work we present the challenges faced
in the process of developing a language model
enriched by discourse features for fake-news de-
tection, along with experimental results. The
contributions of this work are mainly two: the
dataset creation process, described in Section 2 and
the introduction of the text classification model, -
LUX(Language Under eXamination), in Section 3.

Section 4 brings a comprehensive evaluation of
both VERITAS and LUX, while also featuring an
ablation analysis of the latter.

2 Datasets for Fake News Classification

2.1 Available Corpora on Fake News

The deficit of suitable corpora for the intended ap-
proach is the main influence behind the creation
of the VERITAS Dataset, and by consequence, the
VERITAS Annotator. Below we present a list of
datasets commonly used in related tasks. Note
that although the following are considered valuable
resources for many related tasks, none of them in-
clude all of the three most important characteristics
required for a content based supervised classifier
which are i) a significant volume of entries, ii) gold
standard labels and iii) the entire fake news articles

Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 41-56
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(i.e., the origin).

Emergentl6 a collection of 300 rumours and
2,595 associated news articles - a counterpart
to ‘origin’ in the VERITAS Dataset. Each
claim’s veracity is estimated by journalists af-
ter they have judged that enough evidence has
been collected (Ferreira and Vlachos, 2016).
Besides the claim labeling, each associated
article is summarized into a headline and also
labelled according to its stance towards the
claim. Given the fixed structured of the web-
site we were able to obtain valid labeled ex-
amples using a scraper.> Unfortunately they
sum up to less than 100 usable claim-origin
pairs (discussed in subsection 2.3).

LIAR17 includes around 13K human-labeled
short statements which are rated by the fact-
checking website PolitiFact into: “pants
on fire”, “false”, “barely true”, “half true”,
“mostly true”, or “true” (Wang, 2017). The
domain-restricted data as well as the reduced
length of text that can be retrieved from this
corpus makes it unsuitable for generic domain
linguistic fake news detection.

FakeNewsNet18 is a data repository containing a
collection of around 22K real and fake news
obtained from Politifact and GossipCop® fact-
checking websites. Each row contains an ID,
URL, title, and a list of tweets that shared the
URL. It also includes linguistic, visual, social,
and spatiotemporal context regarding the ar-
ticles. This repository could still be used for
supervised learning models if it were not for
the fact that it does not provide sufficiently
long texts to be used by a classifier based
on linguistic aspects. For the same reason,
CREDBANK (Mitra and Gilbert, 2015) and
PHEME (Derczynski and Bontcheva, 2014)
are also unsuitable for the authors’ use case.
Those three datasets focus on network indi-
cators (e.g. number of retweets, sharing pat-
terns, etc.) of fake news, instead of its con-
tents. CREDBANK is a crowd sourced corpus
of “more than 60 million tweets grouped into
1,049 real-world events, each annotated by 30
human annotators”, while PHEME includes

2While web scraping can be done manually by a software
user, the term typically refers to automated processes imple-
mented using a bot or web crawler.

Shttps://www.gossipcop.com
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4,842 tweets, in the form of 330 threads, re-
lated to 9 events.

FEVER18 (Thorne et al., 2018) created FEVER,
a set of more than 185K claims by modifying
sentences from a collection of 50K Wikipedia
articles. Annotators were tasked with anno-
tating other sentences from the same article
in respect to their stance towards the modi-
fied sentence. The corpus is the largest to our
knowledge, but since it is synthetically created
and focused on a sentence-level stance clas-
sification approach, it is unlikely to perform
efficiently on heterogeneous web documents
as a fake news classifier.

Snopes19 (Hanselowski et al., 2019) provides a
large collection of more than 16 thousand
manually annotated text snippets extracted
from 6,422 snopes.com articles. Unfortu-
nately, less than half of those snippets present
a stance (agreeing or disagreeing) towards the
fact-checked claim. Also, the annotated snip-
pets are, by definition, only a portion of the
original article. Nevertheless, an origin iden-
tification process could generate a significant
amount of valid examples from this data.

Due to space restrictions, we cannot provide
a detailed description of the following list of
datasets, although is important to include them:
BuzzFeed16 (Potthast et al., 2018), Kaggle* and
NELA17 (Horne et al., 2018).

2.2 The VERITAS Dataset

The VERITAS Dataset is, to our knowledge, the
most complete data collection of manually anno-
tated claims in regards to their veracity. It is the
only dataset to contain not only the mentioned ve-
racity labels but also the document (in its entirety)
from which the checked claim originated. VER-
ITAS has been developed in a two step process:
1) Fact-Checking articles scraping and 2) Claim
Origin Identification.

Step 1: Scraping FCAs As the cost for manu-
ally checking a large number of disputed claims
is extensive, both in time and money, we have
started the dataset creation process by scraping arti-
cles from fact-checking agencies and consequently
trusting the work made by their journalists that un-
dertake the processes of: 1)selecting controversial

*https://www.kaggle.com/mrisdal/fake-
news/data



claims, 2)leveraging web documents that either sup-
port or deny those statements to 3) finally come to a
veracity verdict. In simple terms, a Fact-Checking
Atrticle (FCA) is a narrative of this investigative
process.

For each scraped FCA, we create an entry in the
dataset and extract a number of attributes, most
importantly: the claim, the veracity label, and the
list of hyperlinks to the mentioned web documents,
which we call Origin Candidates, since they will be
the subject of the Origin Identification process. The
code used to scrap the pages is openly available>.

Step 2: Claim Origin Identification One of
the most important steps of the dataset creation
pipeline was a task we defined as “origin iden-
tification”. In short, after three automatic ways
of identifying the article in which a fact-checked
claim originated were carried out and yielded non-
satisfactory results, it was decided that a manual
annotation process would be used to select the cor-
rect entries from the totality of the dataset. An
annotation tool® was developed in order to make
the task easier and faster. This annotation process
not only provided a large and complete version of
the dataset, but also leaves a possibility for an au-
tomation of the origin identification process as a
future improvement of the project.

The final structure of each entry contains the
following fields: Fact-Checking Article URL,
Checked Claim, Claim Label, Tags, FCA date,
Origin URL, Origin Domain, Origin Body, Ori-
gin Title, Origin Summary, Origin Keywords, Ori-
gin Date and Origin Author. Given the limited
space, a more in-depth description of each field is
not provided but can be found within the supple-
mentary material (appendix 1) and also along an
extensive description of the origin annotation pro-
cess in (Azevedo and Moustafa, 2019). The past
versions of the dataset are also openly available’

2.3 Consolidation of VERITAS Dataset

A consolidation of the VERITAS dataset followed
the large annotation process over the scraped FCA
pages that augmented both the quantity of anno-
tated origins (1032 consolidated origins from more
than 10k annotations) and the quality of the anno-

Shttps://github.com/lucas0/
VeritasCrawler

*https://github.com/lucas0/Annotator

"https://github.com/lucas0/
VeritasCorpus
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tations, measured by Krippendorff’s Alpha®, reach-
ing a substantial score of 0.6014. This consoli-
dation generated the fourth version of the dataset,
here addressed as V4.

Given the constant structure of Emergent .info
articles, we have also incorporated its few valid
claims, i.e., the ones with “true” or "false” verdict,
and their respective sources.

Although the majority of origins obtained from
Emergent were linked to "true” claims, when aggre-
gated to the consolidated origins from VERITAS
v4.0, the data collection showed a false/true class
imbalance ratio of ~ 1.44. Therefore, in order to
quickly obtain “true” labeled news articles to bal-
ance the scraped Dataset, reporting articles were
scraped and automatically labeled as “true” and
composed a separated dataset where their head-
lines are used for the claim field. The sources of
those articles were selected according to studies
determining the least biased” and/or most trusted'”
news outlets in the U.S..

We are aware that the label assumption of those
articles is far from ideal. Notwithstanding, it of-
fers another option of palliative solution for the
label unbalance issue and yielded positive results
in similar works (Horne and Adali, 2017; Ireland,
2018). It should, however, be tested with caution
and compared with other - also sub-optimal - meth-
ods, i.e., discarding “false” entries and/or imple-
menting class weights on the model training. Both
the collection of reporting articles and the emergent
articles are provided separately so they can be op-
tionally disregarded and eventually substituted by
gold-standard data. Table 1 provides additional
details about each subset.

Since the improvement of incorporating the en-
tries from emergent was still to be evaluated by
the proposed classifier, two different sample sets
from the trusted sources were created, to balance
both the v4.0 dataset by itself (V4+T1), as well
as the concatenation of VERITAS and emergent
(VA+EM+T2). The evaluation results will be pre-
sented at Section 4, as they are also the evaluation
for the linguistic model. By comparing both bal-
anced sets we can gain a better understanding of the

8https://en.wikipedia.org/wiki/
Krippendorff%$27s_alpha

*https://www.businessinsider.com/most~
biased-news-outlets—-in-america-cnn-fox—
nytimes-2018-8

yusinessinsider.com/most-and-least—
trusted-news-outlets—in-america-cnn—-fox—
news—-new-york—-times—-2019-4



Table 1: VERITAS Subsets

#E #T #F #U
VERITAS v4.0 (V4) 1032 276 664 92
Emergent (EM) 865 308 179 378
Trusted1 (T1) 388 388 - -
Trusted2 (T2) 259 259 - -
V4+T1 1420 664 664 92
V4+EM+T2 2156 843 843 470

Columns represent #E: total entries, #T :true entries,
#F: false entries, #U:unverified entries

quality of the data obtained from emergent, keep-
ing in mind that the difference in volume of entries
would still affect the performance.

3 LUX - Language Under eXamination

The core contribution of this work is the investiga-
tion of the usage of linguistic aspects as discrim-
inative features in a text classification model that
should determine whether the given article is fake
or not. We call this classifier LUX, short for Lan-
guage Under eXamination.

Previous work investigated the use of such lin-
guistic aspects as features for similar tasks such as
deception detection (Reichel and Lendvai, 2016;
Zhou et al., 2004), document clustering (Yu and
Hatzivassiloglou, 2003a), text classification (Louis
and Nenkova, 2011; Biyani et al., 2016) among oth-
ers. Related works make use of few (mainly one)
of those aspects and the majority of them report an
improvement of their results by doing so.

Here we present a set of linguistic aspects that
were shown to be correlated to deception. For each
of these aspects, we present their contextual def-
inition, along with a short literature review and
a description of the methods we use to evaluate
its presence or absence in a given piece of text.
The objective is to build LUX (Language Under
eXamination), a Fake News Classifier, effectively
using these linguistic aspects to estimate the like-
lihood of an article containing fake news. Here,
we present the results obtained with two baseline
language models (BERT!! (Devlin et al., 2018) and
Word2Vec (W2V) (Mikolov et al., 2013)) towards
building this classifier.

"Bidirectional Encoder Representations from Transform-
ers
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We are aware of an imbued redundancy that our
features might present, since the aspects analyzed
by the different approaches, in some cases, overlap
with each other, but expect that the eventual bias
this redundancy might add to the model can be
overcome with the implementations of techniques
such as LDA (Linear Discriminant Analysis) or
PCA (principal component analysis).

3.1 Linguistic Aspects

Subjectivity Louis and Nenkova (Louis and
Nenkova, 2011) observed that general sen-
tences tend to be more subjective. Some of
the shallow features that are correlated to the
subjectivity level of a sentence are also used in
their model, for example, punctuation marks,
average number of characters and average
number of words.

Pattern'?, a python library for text analysis,
states in its section about subjectivity: “Writ-
ten texts can be broadly categorized into two
types: facts and opinions.” Based on a lexi-
con of adjectives produced for product review
analysis, pattern.en provides a function that
maps the subjectivity score of a sentence to a
range between 0 and 1 depending on the num-
ber of adjectives it contains. It also provides
implementations of measuring functions for
mood and polarity.

Riloff et Wiebe (Riloff et al., 2003) presents
a methodology for the creation of the MPQA
Subjectivity Lexicon. In summary, the au-
thors: 1) use an automatic subjectivity clas-
sifier to label data while also 2) identifying
patterns present in the sentences labeled as
subjective and 3) use the learned patterns to
improve the classification model(1) and iterate
between the three steps, making bootstrapping
possible. The MPQA Lexicon is also used
for us to measure the subjectivity of a given
text. Based on the lexicon, (Wilson et al.,
2005) also created OpinionFinder, a Subjec-
tivity Classifier.

Another interesting method was presented
by (Yu and Hatzivassiloglou, 2003a), where a
Naive Bayes classifier is trained over a Wall
Street Journal dataset containing two classes:
Subjective (every article with type Editorial or
Letter to Editor) and Objective (Business or

Phttps://pypi.org/project/Pattern/



News). By analysing low level features on the
texts, the NB classifier achieved a 0.91 recall
and (.86 precision on the binary classification
task.

In order to measure the subjectivity of a text,
two values are calculated. Both are a sum of
each word’s subjectivity score normalized by
the length of the document (in words) but use
as reference different lexicons: the TextBlob!?
(a python library based on Pattern'?) lexicon
and the MPQA lexicon, described above.

Specificity Zhou et al. (Yu and Hatzivassiloglou,

2003b) uses specificity and measures it by
words depicting the following aspects: per-
ceptual information (sounds, smells, physi-
cal sensations and visual details) and spatio-
temporal. (Fuller et al., 2009) measure bi-
logarithmic type-token ratio (LogTTR) for
evaluating specificity.

(Li and Nenkova, 2015) introduced Spe-
citeller, a python framework for fast and accu-
rate prediction of sentence specificity, which
was enhanced and presented by (Ko et al.,
2019). It introduces a new algorithm that ad-
just its weights to the training set, making
it applicable to any domain, out-of-the-box.
Speciteller is a machine learning classifier that
uses as input a combination of:

Shallow features extracted from the text
Number of words, number of symbols,
average number of characters per word,
number of stop-words, explicit discourse
connectives (Prasad et al., 2008). From
lexicons (General Inquirer (Stone et al.,
1962), MRC (Wilson, 1988) and MPQA)
other features like sentiment, subjectiv-
ity, polarity, familiarity, concreteness,
imageability and meaningfulness are
also evaluated.

Non-sparse features Brown clusters (Brown
et al., 1992) are used to classify words
into 100 groups and a vector of corre-
sponding cardinality is used to keep track
of the frequency of each class in the input
text. Speciteller also uses averaged Word
embeddings to represent a sentence em-
bedding. These also are 100-dimensional
vectors provided by (Turian et al., 2010).

Bhttps://textblob.readthedocs.io/en/

dev/
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The ablation results show that Speciteller con-
tributes significantly to the LUX classifier
and suggest that the framework could be even
more impactful if contemporary word embed-
ding generation techniques were to be used.

Complexity (Biyani et al., 2016) focused on the

detection of click-baits (that can be seen as a
subcategory of fake news) and reported that
features used to measure the formality of a
text were the most correlated to click bait ar-
ticles. Using a slang lexicon and a list of bad
words, as well as several readability scores,
they obtained a reasonable F-1 score of 74,9.

A 1999 paper by (Heylighen and Dewaele,
1999) presents a famous metric for Formal-
ity evaluation, named the F-measure (not to
be confused with the F1 score). (Pavlick and
Tetreault, 2016) present a statistical model for
predicting formality, but do not provide access
to the model’s code.

Another famous work on the formality area
is Coh-Metrix (Graesser et al., 2014), but the
only access to its implementation is through
a simple HTML portal, so we have discarded
this option.

Fortunately, a python library'# provides sev-
eral readability measuring tools, including
known metrics as the Flesch-Kinkaid (Kincaid
et al., 1975) and Coleman-Liau (Coleman and
Liau, 1975), LIX (Bjornsson, 1968) and RIX,
which were also used by (Biyani et al., 2016).
Those last two metrics are simple but effec-
tive, being the first one (LIX) calculated as
W/S+C /W %100 where W is the number of
words in a text, S is the number of sentences
and C is the number of complex words (words
with more than 6 letters). The RIX metric is
a simpler and graded version of LIX and is
calculated as C'/S.

Another python library'?, initially developed
for the AFEL project (d’Aquin et al., 2018),
provides more measuring tools for semantic
complexity analyzer. The library starts by
identifying the entities present in the input
text and the relations between them in order
to represent it as a knowledge graph which

Yhttps://pypi.org/project/readability/

Bhttps://github.com/afel-project/

pySemanticComplexity/blob/master/
pysemcom.py



is then used to extract metrics as number of
nodes, radius, assortativity'® and other graph
properties.

Both readability and pySemCom libraries are
used by us to implement the highest amount
of unique metrics for Complexity, Formality
and Readability.

Uncertainty According to (Szarvas et al., 2012),

“Uncertainty can be interpreted as lack of in-
formation: The receiver of the information
cannot be certain about some pieces of infor-
mation”.

Rubin (Rubin et al., 2006) provides a solid
survey on Certainty Identification. Building
on that, (Vincze, 2015) elaborates on the same
subject and achieves great results (Vincze
et al., 2008) on the CoNLL Shared Task 10,
that aimed for the classification of uncertain
texts from the BioScope corpus. The ap-
proach was implemented very conveniently
as a python library for Uncertainty detection,
that is used by us for uncertainty measurement.
The classifier is a simple model trained on a
corpus of words that were assigned a binary la-
bel regarding their certainty. The model only
requires the input text to be P.O.S-tagged in
order to resolve syntactic ambiguity.

(Reichel and Lendvai, 2016) tried to identify
hoax-resolving tweets by using the ratio be-
tween four data augmented lexicons (knowl-
edge, report, belief, and doubt) as features,
along with low-level syntactic features, not
achieving good results.

Loughran and McDonald Sentiment Word
Lists (Loughran and McDonald, 2011) and
MPQA (Deng and Wiebe, 2015) are Uncer-
tainty Lexicons that are leveraged by us for
the evaluation of this aspect. A simple average
of uncertain words over the number of words
of the input text is used in our model.

Affect (Pang and Lee, 2008) is an extensive review

of the literature on sentiment analysis and
opinion mining that encompasses the field of
linguistic aspect evaluation, which this work
is focused on.

(Whissell, 2004) provides the Dictionary of
Affect in Language, which includes people’s

Verbal Immediacy (Mehrabian

mean ratings for the Pleasantness, Activation,
and Imagery of close to 9,000 words. The dic-
tionary is a lexicon with ratings representing
the two main dimensions of emotional space,
valence and arousal, along with another rating
for people’s assessment of imageability, i.e.,
how easily it is to form a mental picture of a
word.

A better definition of Affect in the context of
deception detection is necessary in order to
decide which resource is more appropriate for
the aspect evaluation, for now we are going to
let the experiments evaluations indicate what
is the most appropriate way of measuring af-
fect for our task.

(Li and Nenkova, 2015) mention the MRC
Psycholinguistic Database (Wilson, 1988) has
words annotated w.r.t imageability among
other aspects, while VADER (Valence Aware
Dictionary and sEntiment Reasoner) (Hutto
and Gilbert, 2014) is a lexicon and rule-based
sentiment analysis tool that is specifically at-
tuned to social media. Thus, it seems to be
quite appropriate for us.

For this aspect we make use of two dif-
ferent sentiment classifiers: VADER and
Pattern/TextBlob!3, already mentioned on the
Subjectivity section. From each one of the
two classifiers we obtain three metrics: the
sum of all the positive scores, the sum of all
negative scores and the total sum of scores, all
averaged respectively by the number of words
with positive score, words with negative score
and total number of words in the input text.
By using these metrics we ensure that statis-
tics as variance and range of emotion within
the text is passed to the LUX classifier.

and Wiener,
1966) first defined Immediacy as a linguistic
property that refers to the degree to which
a source associates himself/herself with the
topics of a message; that is, “immediacy is the
degree to which a source approaches or avoids
a topic”. Based on that definition, (Zhou
et al., 2004) measured it by analysing spatial
and temporal terms, passive voice ratio, self
reference manner and group reference manner,
among others. Different works relate the
non-immediacy to the presence of deception

“nttps://en.wikipedia.org/wiki/

Assortativity in text since these try to disassociate oneself
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from one’s communication.

Negative affect and passive voice are some
indicators of non-immediacy. Since the first
is already addressed by us, we will be using
a ratio between passive sentences over the
total number of sentences to determine how
passive is the text. In this context, a sentence
is deemed passive, if it contains a “BE” verb
followed by some other, non-BE verb, except
for a gerund.

Diversity / Quantity / Pausality Those are syn-
tactic features and some of the previous de-
fined ones already make use of one or more
ways of measuring them. For example, the
diversity measurement is used to evaluate a
sentence’s Complexity. Still, there are many
different ways to measure diversity and since
we intend to remove the redundancy of the fea-
tures anyways, we will measure it with many
different formulas.

In a 2013 article, (Jarvis, 2013) proposed that
the six properties of lexical diversity should
be measured by Variability, Volume, Even-
ness, Rarity, Dispersion and Disparity. Us-
ing a python library!'”, we measure some of
those metrics, namely different types of type-
token ratio (TTR), vocd (McCarthy and Jarvis,
2007) and measure of textual lexical diversity
(MTLD) (McCarthy, 2005).

Other simple aspects are also taken into ac-
count, as the overall quantity of words in ab-
solute number and by P.O.S.-tag as well as
the pausality, measured by the ratio between
punctuation marks and number of sentences.

4 Evaluation and results

In simple terms LUX is a binary model for classi-
fying general text into fake news / real news and it
was originally proposed as a way to evaluate the ef-
ficiency of the above mentioned linguistic features.
Aiming for generality, this model takes a text docu-
ment (that could be a long article or a simple head-
line) as sole input and outputs the probabilities of
it being fake or not, based on its psycho-linguistic
profile and contextual representation. For the latter,
different types of text encodings were tested and
it became clear that the usage of fixed-size BERT
document embeddings outperformed Word2Vec,

17https://github.com/kristopherkyle/
lexical_diversity
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which was tested on RNN, LSTM (Hochreiter and
Schmidhuber, 1997) and Bi-LSTM (Schuster and
Paliwal, 1997), with the latter having the best re-
sults, but still inferior to BERT.

After performing a grid search with different op-
timizers, activation functions, learning rates, train-
ing epochs and fully connected layer(FLC) dimen-
sions, the initial model was decided to be composed
of a simple ReLu'® activated 64-dimensional FLC
with a dropout of 30% attached to the final layer,
of dimensionality 2 where a softmax filter would
represent the false and true labels probabilities.
Adam (Kingma and Ba, 2014) was the best per-
forming optimizer and a combination of o = 0.001
over 100 training epochs generally yielded the best
results. Figure 1 brings an outline of the model.

Label

Input
Text

%

Pre-processing

Linguistic Features

Extraction BERT Encoding

97-dim array + 865-dim array

LUX

—>{Evaluation]
Figure 1: Outline of LUX classifier

All the reported values in Table 2 for Accuracy
and F1 score come from a 9-fold training over the
data. The results for the two best baseline models
are also included, namely the same model using
only the BERT document embeddings and only the
w2v embeddings over a simple Bi-LSTM with 128
dimensions on the recurrent layer.

Since the data from FEVERI18 (Thorne et al.,
2018) and Snopes19 (Hanselowski et al., 2019) is
composed of short statements a comparative analy-
sis is also presented alongside a V4+EM+T?2 run
using only the claims as input text, instead of the
larger body texts.

The final input for each article is a an ensem-
ble of a document embedding generated by BERT

Bhttps://deepai.org/machine-learning-
glossary-and-terms/relu



Table 2: First Evaluation

Model Dataset Avg. Acc  Avg. F1

BERT* V4 0.7365 0.734
W2V V4 0.6000 0.598
LUX V4 0.7896 0.768
LUX V4+T1 0.7603 0.757
LUX EM 0.7911 0.778
LUX V4+EM 0.7928 0.767
LUX V4+EM+T2 0.8050 0.804
LUX FEVERI8 0.6942 0.691
LUX Snopes19 0.7405 0.517
LUX V4+EM+T2* 0.7723 0.708

*:0Only the embeddings were used as input, these results
serve as baselines to analyse the improvement added by
LUX’s linguistic features
#.A version of V4+EM+T2 using the claim (and not the
origin body) as input for comparison with other datasets
focused on small texts.

trained on the BERT-Large uncased corpus!® and
the 97 linguistic features described in the previ-
ous section. A version of the code repository is
available at https://github.com/lucas0/Lux.

Given the initial results, the robustness added
from the a different source, i.e. emergent, with
the benefit from balancing classes using the trusted
news (T2) yielded the best results. Consequently,
it was decided this was the selected subset for the
linguistic features ablation analysis.

4.1 Ablation

Table 3 presents the three most impactful positive
and negative features, i.e. features that, when re-
moved, most decrease or most increase the accu-
racy of the model, respectively. Those are all re-
sults using as base the best model run, i.e., LUX
model over the V4A+EM+T2 data, depicted in Ta-
ble 2. A longer table containing the results for
the full ablation analysis can be found within the
supplementary material (appendix 2).

Positive Features(PF): When individually re-
moved, each of the 97 features of the model, 50
have report a decreased accuracy of the model by
an average of 0.056%, where 21 ‘contribute’ with
more than the average of all the positive features

Ygithub.com/google-research/bert/blob/
master/README .md
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and only 10 features decrease more than 1% ac-
curacy when absent. All three top PF fall into the
Quantity group, as P.O.S.-tag counts, while most of
the most sophisticated, i.e. higher semantic level,
make to the top 10. Besides the ones featured(pun
intended) in the table, the top 10 also comprises,
unordered: Pausability, Coleman-Liau informality
score, specificity, measure of lexical textual diver-
sity(MTLD), and three features from the semantic
complexity evaluator (Venant and d’ Aquin, 2019):
assortativity, average number of in-links, and the
density. In short, those features are metrics from
a graph generated from entities identified in the
text, when matched against DBpedia knowledge
graph. They refer to, respectively, the similarity of
connections with respect to the vertice the number
of edges a vertex has to other vertices; the number
of links that go from entities of the global DBPedia
to the identified entities; and the density of a graph
stresses how much nodes are connected to each
other.

Negative Features(NF): As expected, the nega-
tive features account for the other 47 features. On
average, each negative feature increases the accu-
racy of the model by 0.6% when removed individ-
ually. From those, 17 have a better-than-average
impact. Avoiding the risk of removing important
features from the model and given the high number
of negative features, we mention the 9 features that,
when not considered, improved LUX’s accuracy by
more than 1%, but focus the discussion on the top
3. Our results point to the number of VBD (verbs,
in the past tense form) in the input text as being the
third least important feature of the model, while
the top two NF are metrics from the same complex-
ity evaluation approach mentioned above. They
are nbTypesStd and diameter of nodes, meaning
respectively: the standard deviation on the number
of different link types per node and the “spread-
ness”(sic.) of concepts, i.e., the more unrelated and
specific concepts we have, the higher the diameter
will be. The other six NF improved the accuracy
of the model in more than 1% when removed are:
the number of words P.O.S.-tagged as PDT (prede-
terminer), two readability metrics (Dale—Chall and
Flesch Reading Ease) and three other features from
PySemCom: number of entities, entities density
in the text, standard deviation over the number of
in-links.



Table 3: Ablation Results

Feat.Idx Feature Avg. Acc  ~Removal
Impact
Most Positive Features
55 ‘CD’ 0.7864 -1.8%
74 ‘RBR’ 0.7871 -1.7%
71 ‘PRP’ 0.7904 -1.4%
Most Negative Features
17 diameter 0.8215 +1.6%
23 nbTypesStd  0.8208 +1.5%
81 ‘VBD’ 0.8201 +1.5%

5 Conclusion and Future Work

This work has done the following two significant
contributions: 1)the consolidation of the VERITAS
Dataset, which is unique due its provision of or-
ganic origins for each given claim in the collection,
which has, in turn, been manually verified by FCAs.
Given the completeness of the released data, it can
be an useful resource for a number of related tasks,
namely: Document Retrieval, Stance Detection and
Claim Validation. As a second contribution, we
have confirmed the hypothesis that the inclusion
of linguistic metrics as model features allows for
a better text classification performance, at least in
the target task of identifying fake-news.

After having set up an initial version of the clas-
sifier, named LUX, we could demonstrate an im-
provement from its first evaluation by increasing
the quality and quantity of the training data, as
well removing the most negative features from the
model. The final LUX version performs better
than both tested baselines. When used to evaluate
the quality of datasets, LUX yields better scores
when trained with VERITAS, than when compared
with two other fake-news datasets, FEVER18 and
Snopes19.

Future work would involve the development of
an automatic origin identification step for the VER-
ITAS dataset would allow for a much larger version
of it, which in turn could further enhance the clas-
sification model (LUX). If this step is achieved,
a bootstrapping loop for claim veracity checking
with origin identification would be complete, and
both the inclusion of new entries to the data col-
lection as well as the further training of classifi-
cation model could be fully automated, having as
their only bottleneck, the permanent scraping of
manually fact-checked claims, which is already an
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automatic process.

Another enhancement being added to this work
is the output and analysis of BERT attention
weights (Vaswani et al., 2017) for both explain-
ability and interpretability of the model. (Yin et al.,
2016; Rush et al., 2015)

Increasing the size of the VERITAS dataset
could also be achieved by leveraging the work done
by (Hanselowski et al., 2019) and identifying as the
origins of a claim, the website containing the snip-
pets annotated as ’supportive’ of the claim. This
task is currently ongoing.
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6 Appendix

6.1 Description of VERITAS fields

Fact-Checking Article URL The article where
the fact-checker journalist analyses the claim,
its source(s), characteristics, possible counter
arguments, etc.

Checked Claim The main affirmation being veri-
fied in the article.

Claim Label The verdict, along with the source
document of a fact candidate compose the in-
put/outcome pairs of the dataset to be used in
our classification model. In other applications
or tasks it might not even be necessary.

We assign the gold-standard status to this an-
notation, given that each one of those checked
documents was manually investigated by one
or more fact-checking journalists, before com-
ing to a verdict regarding its veracity, and thus,
are as trustworthy as the journalists and corre-
spondent fact-checking agencies themselves.

Different FCAs use different labels,
e.g.‘mostly-true’, ‘mixture’, ‘unproven’, etc.
consequently there is a need for normalization
or removal of the ones that cannot be directly
mapped into “true” nor “false”.

Tags The set of tags used by the journalist that
wrote the fact-checking article. These are
mainly used for navigation within the web-
site but could be used for clustering of the
dataset and retrieval of other claims regarding
the same topic.

FCA Date The date the claim was checked by one
of the fact-checking agencies.

Origin URL The URL of the web document that
originated the claim, i.e. its origin. Here, ori-
gin is defined as a source that directly supports
the claim.

Note that an origin does not have to be the
very first article that stated the claim and that
there could be multiple origins for a single
claim.

Origin Domain The origin URL domain. This
can have great impacts in results of a neural
network classifier’s accuracy, or even in the
weighting of a simpler classifier method. Ex-
amples of using the URL domain as a feature
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for it’s content veracity are not new. (Nakas-
hole and Mitchell, 2014; Balakrishnan and
Kambhampati, 2011)

Origin Body The whole text extracted from the
origin URL. Which method is used to obtain
the Origin Body is the main difference across
the versions, as discussed above.

Origin Title The title of the origin page. This
is another possibly useful feature for related
tasks or extra features for our classifier. (Popat
etal., 2017)

Since the title and the checked claim have sim-
ilar lengths, using this attribute instead of the
whole origin text would have probably yielded
better results on the stance classification rank-
ing.

Origin Summary Besides being faster than the
previously used crawling methods, the cur-
rent version of the crawler’ also generates a
summary of the origin. This could be a valu-
able piece of information but would demand
checking whether it is a valid depiction of the
content of the origin.

Origin Keywords Similar to the Tags of the fact-
checking article with the difference that these
are obtained by the great article curator news-
paper3k?°. This could also be used as a feature
for the Origin Identification Classifier (see on
Future Work section).

Origin Date The date at which the origin article
was published.

Origin Author The author of the origin article.

Pnttps://newspaper.readthedocs.io/en/

latest/



6.2 LUX’s full ablation table

Table 4: Ablation Results (Ordered from most Positive
Features to most Negative Features)

Feat.Idx Feature Avg. Acc  ~Removal
Impact
55 ‘CD’ 0.8237 -0.01862
74 ‘RBR’ 0.82304 -0.01796
71 ‘PRP’ 0.81973 -0.01465
52 0.81775 -0.01267
2 Coleman-Liau 0.81709 -0.01201
18 assortativity 0.81576 -0.01068
24 nbLinkInMean 0.81576 -0.01068
41 Measure of lexical textual diversity (MTLD) 0.81576 -0.01068
94 Speciteller scores 0.81576 -0.01068
29 densityDBPedia 0.8151 -0.01002
16 radius 0.81444 -0.00936
43 MTLD (moving average, bi-directional) 0.81444 -0.00936
34 Simple TTR 0.81378 -0.0087
40 Hypergeometric distribution D (HDD) 0.81378 -0.0087
76 ‘RP’ 0.81378 -0.0087
15 nbNodes 0.81246 -0.00738
26 nbLinkOutMean 0.81246 -0.00738
6 SMOGIndex 0.8118 -0.00672
50 )y 0.8118 -0.00672
70 ‘POS’ 0.8118 -0.00672
82 ‘VBG’ 0.81113 -0.00605
7 RIX 0.81047 -0.00539
64 ‘MD’ 0.81047 -0.00539
77 ‘SYM’ 0.81047 -0.00539
68 ‘NNS’ 0.80981 -0.00473
85 ‘VBZ’ 0.80981 -0.00473
27 nbLinkOutStd 0.80915 -0.00407
32 nbNodes-yago 0.80915 -0.00407
46 # 0.80849 -0.00341
59 ‘IN’ 0.80849 -0.00341
62 ANY 0.80849 -0.00341

Continued on next page
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Table 4 — Continued from previous page

Feat.Idx Feature Avg. Acc  ~Removal
Impact
93 Sum TextBlob’s Subjectivity score over sentences 0.80849 -0.00341
87 ‘WP’ 0.80783 -0.00275
1 ARI 0.80717 -0.00209
28 nbNodes-DBPedia 0.80717 -0.00209
51 0.80717 -0.00209
35 Root TTR 0.8065 -0.00143
39 Moving average TTR (MATTR) 0.8065 -0.00143
53 7 0.8065 -0.00143
86 ‘WDT’ 0.8065 -0.00143
12 nbUniqueConcepts 0.80584 -0.00076
13 conceptsWordsRatio 0.80584 -0.00076
38 Mean segmental TTR (MSTTR) 0.80584 -0.00076
45 #tokens 0.80584 -0.00076
63 ‘LS’ 0.80584 -0.00076
65 ‘NN’ 0.80584 -0.00076
66 ‘NNP’ 0.80584 -0.00076
84 ‘VBP’ 0.80584 -0.00076
36 Log TTR 0.80518 -0.0001
72 ‘PRP$’ 0.80452 0.00056
0 Kincaid 0.80386 0.00122
57 ‘EX’ 0.80386 0.00122
79 ‘UH’ 0.80386 0.00122
80 ‘VB’ 0.80386 0.00122
91 Sum TextBlob’s Polarity score over sentences 0.80386 0.00122
58 ‘FW’ 0.8032 0.00188
95 Count of .’-tag tokens 0.8032 0.00188
22 nbTypesMean 0.80254 0.00254
31 density-Schema 0.80254 0.00254
54 ‘cC 0.80254 0.00254
78 ‘TO? 0.80254 0.00254
19 density 0.80187 0.0032
47 ‘$ 0.80187 0.0032
60 Jr 0.80187 0.0032
21 textDensityStd 0.80121 0.00387
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Table 4 — Continued from previous page

Feat.Idx Feature Avg. Acc  ~Removal
Impact
30 nbNodes-Schema 0.80121 0.00387
37 Mass TTR 0.80121 0.00387
44 #terms 0.80121 0.00387
61 ‘JIR 0.80121 0.00387
67 ‘NNPS’ 0.80121 0.00387
90 “o 0.80121 0.00387
9 nbNodesKB 0.80055 0.00453
10 nbWord 0.80055 0.00453
48 > 0.80055 0.00453
49 ‘C 0.80055 0.00453
56 ‘DT 0.80055 0.00453
75 ‘RBS’ 0.79989 0.00519
92 Sum VADER'’s Polarity score over sentences 0.79989 0.00519
4 GunningFogIndex 0.79923 0.00585
5 LIX 0.79791 0.00717
33 density-yago 0.79725 0.00783
42 Measure of lexical textual diversity (moving average, wrap)  0.79725 0.00783
88 ‘WP$’ 0.79725 0.00783
73 ‘RB’ 0.79658 0.0085
14 uniqueConceptsWordsRatio 0.79592 0.00916
83 ‘VBN’ 0.79592 0.00916
25 nbLinkInStd 0.79526 0.00982
3 FleschReadingEase 0.7946 0.01048
&9 ‘WRB’ 0.7946 0.01048
8 DaleChalllndex 0.79328 0.0118
11 nbConcepts 0.79328 0.0118
69 ‘PDT’ 0.79129 0.01379
20 textDensityMean 0.78997 0.01511
81 ‘VBD’ 0.78997 0.01511
23 nbTypesStd 0.78931 0.01577
17 diameter 0.78865 0.01643
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Abstract

Modern task-oriented semantic parsing ap-
proaches typically use seq2seq transformers
to map textual utterances to semantic frames
comprised of intents and slots. While these
models are empirically strong, their specific
strengths and weaknesses have largely re-
mained unexplored. In this work, we study
BART (Lewis et al., 2020) and XLM-R (Con-
neau et al., 2020), two state-of-the-art parsers,
across both monolingual and multilingual set-
tings. Our experiments yield several key re-
sults: transformer-based parsers struggle not
only with disambiguating intents/slots, but sur-
prisingly also with producing syntactically-
valid frames. Though pre-training imbues
transformers with syntactic inductive biases,
we find the ambiguity of copying utterance
spans into frames often leads to tree invalid-
ity, indicating span extraction is a major bot-
tleneck for current parsers. However, as a sil-
ver lining, we show transformer-based parsers
give sufficient indicators for whether a frame is
likely to be correct or incorrect, making them
easier to deploy in production settings.

1

Task-oriented semantic parsing—mapping textual
utterances to semantic frames—is a critical compo-
nent of modern conversational Al systems (Gupta
et al., 2018; Aghajanyan et al., 2020). Recent
methodology casts parsing as transduction, using
seq2seq pre-trained transformers to produce lin-
earized parse trees (Aghajanyan et al., 2020; Chen
et al., 2020; Li et al., 2021); here, each frame token
is either copied from the utterance or generated
from an ontology. Compared to explicit grammar-
based approaches (Gupta et al., 2018), this plug-
and-play of transformers simplifies the learning
objective and scales to multilingual settings, but
the lack of provenance makes it challenging to un-
derstand model behavior “under the hood.”

In this work, we investigate the strengths and
weaknesses of transformer-based semantic parsers

Introduction
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IN:GET DIRECTIONS
SL:DE STlINAT ION
IN: GETl_EVENT
A
SL:NAME EVENT SL:CAT_EVENT
| |
Warriors game

Figure 1: Example decoupled semantic frame represen-
tation (Aghajanyan et al., 2020) for the utterance Direc-
tions to the Warriors game.

and provide modeling directions based on data-
driven insights. Specifically, we study BART
(Lewis et al., 2020) and XLM-R (Conneau et al.,
2020), two state-of-the-art conversational semantic
parsers, on both monolingual (TOP/TOPv2; (Gupta
et al., 2018; Chen et al., 2020)) and multilingual
(MTOP; (Li et al., 2021)) datasets. The compo-
sitionality of utterances in these datasets provide
a strong testbed for resolving both complex syn-
tactic structure and semantic ambiguity, mirroring
the types of challenges our parsers are likely to
encounter in practice.

We design our experiments around three main
questions. First, broadly speaking, what types of
errors do transformer-based parsers make? We be-
gin by annotating 500+ predicted frames across 6
languages and categorize them with fine-grained
types. We find transformer-based parsers struggle
not only with classification (i.e., disambiguating
intents/slots) but also planning (i.e., switching be-
tween copying/generating). Planning errors are
more egregious: misplacing close brackets, for ex-
ample, can violate tree constraints, rendering the
entire frame unusable.

Next, we investigate transformer-based parsers’
abilities to generate syntactically-valid trees.
Specifically, are planning mistakes caused by gen-
eral uncertainty, or worse, a pathology of seq2seq
learning? To address this, we devise an oracle set-

Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 57-62
August 1-6, 2021. ©2021 Association for Computational Linguistics



split TOP TOPv2 MTOP
train 31,279 124,579 73,956
dev 4462 17,160 10,852
test 9,042 38,785 30,541

Table 1: Dataset splits for TOP, TOPv2, and MTOP.

N dmode]
6

dse
1024 4096

h dk: d?;
16 64 64

Table 2: Dimensions of transformer decoder added to
XLM-R for MTOP fine-tuning. Notation is borrowed
from Vaswani et al. (2017).

ting where a model conditions on partially gold in-
formation (either utterance spans or syntactic struc-
ture) and predicts the remaining parts of the frame.
Surprisingly, we find conditioning on gold spans—
not gold structures—results in near-perfect trees at
most depths, pointing towards span extraction as a
major bottleneck for current parsers.

Finally, though transformer-based parsers are
susceptible to error, ideally, we should be able to
proactively diagnose mistakes. Using features from
model generations (e.g., confidence), can we in-
trinsically judge if a sequence is correct or incor-
rect? Encouragingly, we show that a confidence
estimation system combining a transformer-based
parser and feature-based classifier can detect cor-
rect frames with 90%+ F1, indicating usability in
production settings.

2 Experimental Setup

We conduct experiments on the following task-
oriented semantic parsing datasets: (1) TOP: par-
allel corpus consisting of English utterances and
corresponding semantic frames (Gupta et al., 2018);
(2) TOPv2: monolingual extension of TOP to 6
domains (Chen et al., 2020); (3) MTOP: multilin-
gual extension of TOP spanning English, Spanish,
French, German, Hindi, and Thai (Li et al., 2021).
Table 1 shows train, dev, and test splits for the
datasets.

Each dataset sample consists of a textual utter-
ance x and (linearized) semantic frame y. Here,
frames are in decoupled form (Aghajanyan et al.,
2020), as each token is derived either from copy-
ing from the utterance or generating from the on-
tology (see Figure 1). Following prior work, we
fine-tune seq2seq transformers to maximize the log
likelihood of the gold frame token at each timestep:

2 () 221 108 P(yely<t, x;6).
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split TOP TOPv2 MTOP
dev 8541 87.53 76.00
test 85.74  87.52 77.20

Table 3: Exact match (EM) of BART and XLM-R on
TOP/TOPv2 and MTOP, respectively.

setting TOP TOPv2 MTOP
model BART BART XLM-R
dropout 8.68e-2 1.82e-1 0
batch size 16 16 16
epochs 50 50 50
optimizer Lamb Lamb Lamb
Ir 3.72e-4 4.88e-4 69le4
weight decay 6.25e-7 6.26e-7 6.25¢-7
swa lr 2.08e-4 1.86e-4 3.96e-4
swa start 8945 18876 19450
swa freq 219 233 185
scheduler exp exp exp
warmup 5000 5000 5000
gamma 0.95 0.95 0.95

Table 4: Hyperparameters for fine-tuning models on
TOP, TOPv2, and MTOP.

On TOP/TOPv2, we fine-tune BART (Lewis
et al., 2020), a seq2seq transformer pre-trained
with a denoising autoencoder objective on monolin-
gual corpora, and on MTOP, we fine-tune XLM-R
(Conneau et al., 2020) (equipped with a randomly-
initialized decoder), a transformer encoder pre-
trained with a masked language modeling objective
on multilingual corpora. For XLLM-R, specifically,
we attach a randomly-initialized decoder (see Ta-
ble 2). Table 3 shows model performance as judged
by exact match. Hyperparameters for all models
are listed in Table 4.

3 Error Analysis

In this section, we seek to better understand the
types of errors transformer-based parsers make
across both monolingual and multilingual settings.

3.1 Error Types

To standardize our analysis, we categorize model
errors under the following types: intent (incorrect
intent prediction), slot (incorrect slot prediction),
out-of-domain (incorrect out-of-domain intent pre-
diction), mode (confusion between copying an ut-
terance token or generating an ontology token), and
leaf (incorrect span in a frame leaf slot). In addi-
tion, we report the syntactic validity of parse trees
separately, though we note mode errors typically
result in invalid constructions.



Exact Match Tree Validity
d TOP TOPv2 MTOP TOP TOPv2 MTOP
1 7803 86.58 84.75 98.65 9457 91.23
2 9230 90.67 8573 9697 96.82 93.80
3 9094 8850 7456 97.10 96.35 90.85
4 8824 8632 6453 9593 9547 85.73
5 83.39 83.63 9429 9485  69.55
6 83.06 84.54 94.00 9445 62.50
Table 5: Benchmarks of BART and XLM-R on

TOP/TOPv2 and MTOP, respectively, according to ex-
act match and tree validity at increasing tree depths (d).

One complicating factor is that a predicted se-
quence may potentially contain several errors, and
because decoding is conducted autoregressively, a
given error may be influenced by earlier errors (if
any such exist). Therefore, to reduce the number
of confounding variables, we only consider set-
tings where an incorrect prediction has gold history
argmax,, P(y:|yZs, ¥) # y;'; put another way, we
only count the first error in a sequence.

Using the framework discussed above, we an-
notate 700 errors across BART and XLM-R on
TOP and MTOP, respectively; 100 errors are from
TOP and 6x 100 errors are from MTOP (100 per
language).

3.2 Results

Table 5 benchmarks overall model performance
and Figure 2 categorizes errors with fine-grained
types; from these results, we draw the following
conclusions:

Transformer-based parsers typically struggle
with both classification and planning. In the
seq2seq formulation, models must jointly classify
(i.e., provide intent and slot labels) and plan (i.e.,
switch between copying and generating) when pro-
ducing a semantic frame. Our results show in-
tent/slot and mode errors, which generally fall un-
der the theme of classification and planning, re-
spectively, account for nearly 70-80% of errors. A
key observation, however, is that classification and
planning error statistics are relatively consistent
across languages, suggesting our models may not
need language-specific fine-tuning to address these
particular errors.

Nearly 40 % of incorrectly predicted frames are
syntactically invalid. Surprisingly, a large per-
centage of incorrectly predicted frames violate tree
constraints; for linearized frames, this implies the
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Figure 2: Distribution of errors across TOP and MTOP
categorized by intent (in), slot (sl), out-of-domain (od),
mode (md), and leaf (If). Dashed lines indicate the per-
centage of trees which are syntactically valid.

number of open brackets ([in or [s1) do not match
the number of close brackets (1). Though well-
formedness is correlated with depth, we see tree
validity (1) is not substantially improved by increas-
ing the number of monolingual samples (TOP —
TOPv2) and (2) drops off quite rapidly for multilin-
gual samples (TOP/TOPv2 — MTOP).

Span extraction is more challenging in mul-
tilingual settings. Leaf errors in English
(TOP[MTOP)-en are typically twice as lower
compared to those in non-English languages
MTOP-(es|fr|de|hi]|th). Upon closer in-
spection, we find most leaf errors in English
are relatively benign; the model may drop a
preposition when copying a span (e.g., Monday as
opposed to on Monday). However, for languages
beyond English, extracted spans in leaf slots
typically consist of hallucinated or duplicated
subwords, which are much more serious in nature.
Finally, though languages with non-projective



structures (e.g., German) can populate leaf slots
with non-contiguous spans, we noticed errors on
these types of samples were infrequent.

Out-of-domain detection is also a significant
source of error. TOP, in particular, mixes the
canonical semantic parsing task with out-of-
domain detection by assigning such utterances
the frame [in:unsupported ].! Though well-
motivated, roughly 20% of errors are related to in-
correct out-of-domain predictions, suggesting our
models have not precisely learned the boundary be-
tween in-domain and out-of-domain utterances. If
high detection accuracy is preferred, multi-tasking
parsers in this fashion may not be an effective use of
parameters (assuming more data is not available);
instead, out-of-domain detection can be conducted
independently with alternate methodology (Gangal
etal., 2019).

4 Syntactic Structure

Our case study above demonstrates transformer-
based parsers can produce syntactically-invalid
frames at a high rate. These structural errors are
more serious than disambiguation errors since they
render the frame unusable, potentially causing cas-
cading failures in a task-oriented dialog system.
Therefore, in this section, we dive deeper into why
tree constraints are not satisfied and question the
possibility of achieving perfect tree validity.

While transduction models do not explicitly im-
pose tree constraints, there is precedent that strong
neural representations do implicitly model tree
structures; recent studies demonstrate large-scale
pre-training, in particular, imbues strong notions of
syntax (Goldberg, 2019; Jawahar et al., 2019; Ten-
ney et al., 2019). Taking these results together, we
hypothesize that transformer representations may
be “good enough”, but instead there exist ambigu-
ous aspects of our task-oriented semantic parsing
task which cause tree invalidity.

Previously, we saw transformer-based semantic
parsers largely struggled with classification- and
planning-related errors. Therefore, the question
we pose is: if we resolve these ambiguities by
creating oracle models, can we achieve perfect
tree validity? This setup also enables us to gain a
deeper understand of the upper-bound performance
of transformer-based semantic parsers, even as their
representations get stronger.

!There also exist more fine-grained out-of-domain cate-
gories, such as [in:unsupported-event ].
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Figure 3: Exact match (EM) and tree validity (TV) er-
ror (%) of the regular, span oracle, and structure oracle
models on TOPv2 and MTOP. Dots from left — right
indicate increasing frame compositionality (the graph
depths of 1 — 6).

Oracle Models. Because classification and plan-
ning target inherently different phenomena, cre-
ating an oracle that simultaneously makes both
less ambiguous is challenging. Instead, we ex-
periment with two separate oracles—span ora-
cle and structure oracle models for classification
and planning, respectively—which map an utter-
ance x along with a “partially gold” snippet z
to generate the frame y, inducing the objective
D (w2 2t 108 P(yely<t, , 2;0).

For example, given an utterance x Where can 1
see fireworks tonight? and frame y [in [sl fire-
works [s1 tonight 1 ], the span oracle model de-
fines z as [span1] fireworks [span2] tonight and
the structure oracle model defines z as [in [sl
[span1] [sl [span2] ] 1.2 Here, providing z
as input helps the model learn y \ z; span oracle
models optimize for correct structure and structure
oracle models optimize for correct spans. Table 6
shows example source and target pairs for the regu-
lar, span oracle, and structure oracle models.

Results. Figure 3 shows the oracle model results;
we measure both exact match and tree validity er-
ror. A key phenomenon we observe is that con-
ditioning on gold spans results in near-zero tree
validity error at most depths. Surprisingly, we
see conditioning on gold structures (to stress, the
exact syntactic structure) never consistently results
in well-formed trees, especially as the depth in-

“Fine-grained intent/slot labels are omitted for visual clar-
ity, but are included during model training.



model type utterance x (+ snippet z)

frame y

regular
span oracle
struct oracle

Where can I see fireworks tonight?
+ [span1] fireworks [span2] tonight
+ [in [sl [span1] [sl [span2] ] 1]

[in [sl fireworks [s1 tonight ] ]

Table 6: Example source and target pairs for oracle experiments. The span oracle specifies the gold spans while
the struct oracle specifies the gold structure. Note that [in and [s1 are used for brevity.

creases. Structure oracle models still suffer from
mode errors during generation: augmenting a leaf
span with an extra word instead of placing a close
bracket, for example, is a typical mistake. Further-
more, we see this problem is magnified in MTOP,
which connects to the notion that span extraction
tends to be difficult in multilingual settings.

Our experiments suggest seq2seq transformer-
based parsers can achieve near-perfect tree
validity—even at large depths—provided that span
extraction is precise. Currently, however, this is
a major source of ambiguity our parsers are not
well-equipped to handle, especially when scaling
to languages beyond English.

5 Confidence Estimation

Despite the criticism we have presented of state-of-
the-art, transformer-based conversational semantic
parsers, these models do demonstrate strong perfor-
mance over prior baselines, and correctly parse a
vast majority of samples. A property that can make
these models easier to deploy in practice is if they
“know what they don’t know” (Desai and Durrett,
2020); besides interpretability, this is particularly
useful for identifying and correcting errors in tail
scenarios via active learning (Dredze and Crammer,
2008; Duong et al., 2018; Sen and Yilmaz, 2020).
We frame this problem as confidence estimation
(Blatz et al., 2004): given an utterance x, predicted
frame 3/, and gold frame y, we seek to learn a bi-
nary classifier which uses target-side features f(y')
to estimate P(y’ = y) = sigmoid(w ' f(y/')).

To make our approach as generalizable as possi-
ble, we constrain f(y’) to be as model-agnostic
and recall-oriented as possible. We select the
following features: (1) length: |y/|; (2) valid-
ity: max(0,37,1[y; € V] —1y; € VY]
where V' and V'~ are the set of open and
close brackets, respectively; and (3) confidence:
ﬁ > P(yilyLy, x). Using our best transformer-
based parsers, we obtain predictions on a held-out
set Dyey and test set Dies. Then, we train and test
a SVM on Dyey and Dy, respectively, using the
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TOPv2 MTOP
P R F1 P R F1
SVM 97.2 857 912 95.0 852 89.8
—length 97.7 84.8 90.8 95.1 84.7 89.6
—validity 97.0 82.6 892 949 80.5 87.1
—confidence 91.6 98.8 95.1 853 958 90.2

Table 7: Precision (P), recall (R), and F1 of the SVM-
based confidence estimator. —x indicates an ablation of
feature x (i.e., it is omitted during learning).

features defined above.

In addition to the standard hinge loss, we also
add a class imbalance penalty as positive exam-
ples are typically 5-8 x as prevalent depending on
the dataset. We chiefly evaluate the binary clas-
sifier’s ability to identify semantic frames which
are correct (i.e., the positive class). From an ac-
tive learning standpoint, getting positive samples
wrong is more serious than getting negative sam-
ples wrong; annotation resources are best directed
towards boundary or incorrect predictions.

Table 7 shows the performance and ablations of
our confidence estimator. In both monolingual
and multilingual settings, using transformer-
based features, we can detect correct semantic
frames with 90%+ F1. In particular, we see
length and validity largely capture the space of
correct frames (recall) and confidence effectively
distinguishes between correct and incorrect frames
(precision). Practitioners may select an SVM vari-
ant depending on whether precision or recall is
preferred.

6 Conclusion

In this work, we assess the strengths and weak-
nesses of seq2seq transformers for task-oriented
semantic parsing. These models “know what they
don’t know”, making them easier to depoy in prac-
tice, but cannot perfectly model compositional ut-
terances, as indicated by the challenges of span
extraction. We believe that modeling efforts in this
direction—as opposed to simply annotating more
data—can improve parsers substantially.
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Abstract

Change captioning is to describe the difference
in a pair of images with a natural language
sentence. In this task, the distractors, such
as the illumination or viewpoint change, bring
the huge challenges about learning the differ-
ence representation. In this paper, we propose
a semantic relation-aware difference represen-
tation learning network to explicitly learn the
difference representation in the existence of
distractors. Specifically, we introduce a self-
semantic relation embedding block to explore
the underlying changed objects and design a
cross-semantic relation measuring block to lo-
calize the real change and learn the discrimina-
tive difference representation. Besides, relying
on the POS of words, we devise an attention-
based visual switch to dynamically use visual
information for caption generation. Extensive
experiments show that our method achieves
the state-of-the-art performances on CLEVR-
Change and Spot-the-Diff datasets '.

1 Introduction

Change Captioning aims to describe a seman-
tic change between a pair of “before” and “af-
ter” images, which has many practical applica-
tions such as facility monitoring (Sakurada and
Okatani, 2015), medical imaging (Patriarche and
Erickson, 2004), and aerial photography (Gueguen
and Hamid, 2015).

The previous work (Jhamtani and Berg-
Kirkpatrick, 2018) introduced this task with an
ideal assumption that there is a semantic change
between a completely-aligned image pair. How-
ever, there is always illumination change in a dy-
namic world, and same or similar scenes are prone
% This work was done when Yunbin Tu visited VIPL
research group, CAS and was supervised by Prof. Liang Li.

T Corresponding author

!The code of this paper has been made publicly available
athttps://github.com/tuyunbin/SRDRL
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<After>

<Before>

<Change Caption>

The tiny cylinder
has disappeared.

A person on the
far corner of the
sidewalk is now
gone.

Figure 1: Two examples of change captioning with and
without a viewpoint change.

to shoot under different viewpoints. Compared
to semantic changes, both illumination and view-
point changes are irrelevant distractors, so realistic
change captioning requires a model: 1) distinguish-
ing semantic changes (e.g., an object has moved)
from distractors (e.g., a viewpoint change) and 2)
conveying the detected change in a logically and
grammatically accurate sentence. To this end, re-
cent works (Park et al., 2019; Shi et al., 2020)
focused on addressing change captioning in the
presence of distractors.

Despite the progress, there are still two limi-
tations for their approaches. First, the semantic
difference was modeled only relying on the seman-
tic features of objects, while ignoring their self-
semantic relations. Hence, the feature difference is
hard to capture the tiny change. As shown in Fig-
ure 1, compared with many unchanged objects, the
dropped object is tiny and easy to ignore. Differ-
ently, if one of the objects has changed, especially
number or position change (e.g., “add”, “drop”,
or “move”), the semantic relations surrounding it
would change as well, which would be beneficial to
explore the underlying objects that have changed.
Second, due to the existing of irrelevant distractors,
the model would capture the semantic difference

Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 63-73
August 1-6, 2021. ©2021 Association for Computational Linguistics



with noises and thus learn a wrong difference repre-
sentation. However, both distractors are irrelevant
to the semantics of image contents. Therefore, the
cross-semantic relation between the captured se-
mantic difference and the image pair is beneficial
to judge whether the semantic change has actually
happened, and further learn the difference represen-
tation in the “before” and “after” images.

Besides, during caption generation, previous
works exploited visual information to generate each
word, which is unnecessary or even misleading
(Lu et al., 2017; Song et al., 2017). As words
with different part-of-speech (POS) information
not only play different grammatical roles in a sen-
tence (Wang et al., 2019), but also have different re-
lationships with the visual information in an image.
As shown in the first example of Figure 1, some
words (e.g., “tiny”, “cylinder” and “disappeared”)
belong to adjective, noun and verb words, which
denote the size, category, and state of the visual
object, while the word (i.e.,“the”) is a determiner
word which does not have corresponding canoni-
cal visual signals. Thus, it is useful to introduce
the POS of words for switching visual information
during change caption generation.

In this paper, we propose a Semantic Relation-
aware Difference Representation Learning (SR-
DRL) network to localize the semantic change
in the presence of distractors, and introduce an
Attention-based Visual Switch (AVS) to dynami-
cally decide when to use visual information during
change caption generation. Specifically, first, a
Self-Semantic Relation Embedding block (SSRE)
builds semantic relations of objects for each image
in the “before”/““after” pair via the self-attention
mechanism. The built relations are embedded into
image features for computing a relation-embedded
feature difference. Second, a Cross-Semantic Re-
lation Measuring block (CSRM) leverages the ob-
tained difference to query the underlying “candi-
date change” in the each image. Further, CSRM
uses the difference to generate an attention gate
measuring its cross-semantic relations with respect
to each image. Subsequently, the attention gate
is applied to the candidate change to distinguish
semantic change from the viewpoint/illumination
change. Third, the change localizer is introduced to
learn the accurate difference representation in the
image pair under the guidance of a prior knowledge
(the above distinguished information).

Finally, according to POS information of words,
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an Attention-based Visual Switch (AVYS) is devised
and incorporated into the caption generator to dy-
namically control visual information when predict-
ing the next word. Extensive experiments show
that our approach outperforms the state-of-the-art
change captioning models with a large margin.

In summary, the contributions of this work have
threefold: (1) We propose SRDRL that explicitly
learns the semantic difference representation in the
image pair by embedding self-semantic relations
into object features of each image and further mea-
suring the cross-semantic relations between the
image pair and their difference. (2) Both SSRE and
CSRM blocks are designed to help the change lo-
calizer to accurately focus on the changed objects.
(3) An AVS is customized to dynamically utilize
visual information for caption generation based on
the POS information of words.

2 Related Work

Different from conventional image (Liu et al., 2020,
2019; Li et al., 2020; Yan et al., 2019, 2020a, 2021)
or video captioning (Deng et al., 2021; Zhang et al.,
2017; Tu et al., 2017, 2020; Yan et al., 2020b),
change captioning addresses two-image captioning,
especially to describe their difference. Jhamtani
et al. (Jhamtani and Berg-Kirkpatrick, 2018) is
the first work for change captioning. However, it
is built upon an ideal situation by assuming there
are no distractors (illumination/viewpoint change)
between a pair of images. To make this task more
close to our dynamic world, Park et al. and Shi et
al. (Park et al., 2019; Shi et al., 2020) both aimed
to address change captioning in the existence of
distractors. On one hand, Park et al. directly con-
catenated the coarse feature difference with the
image pair to operate spatial attention to localize
the change. However, due to the existing of dis-
tractors, when the captured feature difference is
not what the model really expects, the spatial at-
tention module could be misled to give fallacious
results. On the other hand, Shi et al. first exploited
a cross-attention mechanism to search the most sim-
ilar patches between the image pair and they are
regarded as the unchanged representation. Then,
they subtracted them from the original image to
get the difference representation. However, as our
aforementioned, the changed object is tiny and easy
to ignore, so it is insufficient to capture the differ-
ence representation only at feature level.

Different from the above state-of-the-art meth-
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Figure 2: The architecture of the proposed semantic relation-aware difference representation learning (SRDRL)
network and an attention-based visual switch (AVS). The SRDRL consists of a self-semantic relation embedding
block (SSRE), a cross-semantic relation measuring block (CSRM) and a prior knowledge-guided change localizer.
The AVS is incorporated into the caption generator and guided by a POS predictor.

ods, we first use SSRE to improve the fine-grained
representation ability of object features by embed-
ding the self-semantic relations among them. Then,
we exploit CSRM to distinguish the actual seman-
tic change from irrelevant distractors via measuring
cross-semantic relations between the captured can-
didate difference and the original images. Finally,
we use POS information to devise an attention-
based visual switch that dynamically determines
not only when to use visual information, but also
which to use ( e.g., “before” and “after”’). Com-
pared to the aforementioned methods, our method
not only can learn discriminative difference repre-
sentation, but also can describe it using an accurate
natural language sentence.

3 Methodology

We present a semantic relation-aware difference
representation learning (SRDRL) network for
change localization and devise an attention-based
Visual Switch (AVS) under the guidance of POS
information for caption generation. When a pair of
“before” and “after” images are given (denoted as
Itey and 1,y¢), our SRDRL first detects what (po-
sition, number, attribute, or nothing) has changed
in a scene and further decides where to localize on
both Ij.¢ and I,¢;. Then, during caption genera-
tion, the AVS is able to dynamically decide when
to use visual information and which to use (e.g.,
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“before” and “after”).

3.1 Semantic Relation-aware Difference
Representation Learning Network

3.1.1 Self-Semantic Relation Embedding

Formally, given a pair of .y and Iz, we first
use pre-trained CNN model to extract object-level
features and denote them as Xy, and X 4, where
X, € REXHXW. Cc H, W indicate the number
of channels, height, and width. However, These
original object features are independent, and there
exist semantic relations among them (Huang et al.,
2020; Wu et al., 2019; Yin et al., 2020). Inspired
by the self-attention (Vaswani et al., 2017) using
in machine translation, the self-semantic relation
embedding block (SSRE) relies on it to implicitly
model the semantic relations among objects in each
image. Specifically, we first reshape X; to X; €
RNXC (N = HW), where i € (bef,aft). Then,
given (key, value), SSRE exploits the scaled dot-
product attention on queries () by:

QK > V. )
Vdj,

In our case, the queries, keys and values are all
projections of the object features of X;:

T

SSRE(Q, K,V) = softmax (

(Q, K, V)= (X;We, Xx,WX x;w") . (2



Though the SSRE, the semantic relations are em-
bedded in the original object features; both X ¢
and X, can be updated to X; . and X . Finally,
we subtract X;_, from X ., to capture the seman-
tic difference X, if in the both object feature and
relation aspects.

3.1.2 Cross-Semantic Relation Measuring

Due to the existing of distractors, the resulting
X/ ¢ Would include some irrelevant information,
which would be noises for the accurate difference
representation learning on both X . and X/ .
Thus, we propose a cross-semantic relation mea-
suring block (CSRM) to distinguish the semantic
change from the irrelevant illumination or view-
point change by measuring the cross-semantic re-
lation between the X/, spand X, he X ! #¢)- Con-
cretely, the CSRM utilizes the X, srto first query
the possible “candidate change” Cj. s on the X7, £
and then generates an “attention gate” A,y mea-
suring its semantic relations with respect to X; .
These are defined by using two separate non-linear
transformations:

Chey = ¢ (X;wag + X}, Wi+ bi) .
Apes = o (Xbg WE + Xjo WE +19)
where Wg, Wi, Wd Wi e REXC b b9 € RE,
and C is the dimension of X, . and Xj . ; o and
¢ denote the sigmoid and tanh function. The value
in the “attention gate” indicates the semantic rel-
evance between the “candidate change” and the
“before”. Thus, the more information in the “candi-
date change” passes through the “attention gate”,
the more X/, sy isrelevant to X he 2

Next, the CSRM applies the Ay to the Cy to
filter all the underlying change information and fo-
cus on only the information about semantic change
via element-wise multiplication:

Céef = Abef © Cbef- 4)

Besides, the information about semantic change
/

aft is computed via the similar operation between
the Xp, - and X[, :

Caft = ¢ (Xclhfoé + Xéfth) + Zi> ,
Aaft =0 (X&lfog + X(/lftUg + Zg> s
C(,zft = Aaft ® Caft-

(&)
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3.1.3 Prior Knowledge-guided Change
Localizer

After obtaining the Cy, ; and Cy, ;,, we use them as
the prior knowledge to guide the change localizer
to learn the difference representation. Specifically,
the change localizer first predicts two separate at-
tention maps under the guidance of Cj, , and C (,,
respectively:
Xoer = [Xper s Xaier : Crer ]

aper = 0 (convy (ReLU (convy (X{)))) ,
Xate = X s Xaigr s Cae ]

aate = 0 (convy (ReLU (convy (X)),

(6)
where [; ], conv, and o indicate concatenation, con-
volutional layer, and element-wise sigmoid, respec-
tively. After that, the difference representation fea-
tures lper and [y are attended to by applying apet
and a,f to the input image features X{_, and X/, :

Ibet = D0 g1y @bet © Xiops loet € RY,
lage = ZH,W Qaft © Xigo las € RC.
3.2 Change Caption Generation
3.2.1 POS Predictor
Inspired by POS used in machine translation (Yin
et al., 2019), we dynamically predict POS tags ! of
target words based on the previous hidden states

hgt_l) of the caption generator. The predicted tags
help the captioning model use visual information
in a dynamic way.

(N

Specifically, at time ¢, hgt_l) is first fed into

a single hidden layer with the ReLLU activation
function:

&’ = ReLU (W;Uhgt—” + bé”) ,(®
where ngl) € RMxM and bél) € RM and M is
the dimension of the hidden state in caption gener-
ator. Then, a POS tag probability is predicted by a
linear transformation with a softmax function:

p (Wi2dp + )

w; = softmax

(©))

where W;,@ € RM>n and bz(,2) € R", and n is
the number of POS tag. After obtaining w!, we
represent the POS tag of the target word w; using
a semantic representation py:

(10)

where E), € R™N is a POS embedding matrix and
N is the dimension of the POS representation.

— p
bt = Epwt7

'The POS tags of words in ground truth are processed by
Stanford Log-linear Part-Of-Speech Tagger (Toutanova et al.,
2003).



3.2.2 Attention-based Visual Switch

Visual Attention. We first use a visual attention
module to select a candidate feature from lper, L,
or lgite (Latt - lper ), which could be relevant to the

target word:
) _ E : (t)
ldyn = A OéZ- li,

where ¢ € ( bef, diff, aft ). agt) are current visual
attention weights and they are computed by an
attention LSTM,;:

v = ReLU (Wy, [lver ; Laitr ; Lats] + ay)
u® = |v; R
h((zt) = LSTM, (h((lt) | U(t) th:t_l)

() Softmax <Wd2h(t) + bdz)

Q; a
where Wy, , bg, , W, , and by, are learnable parame-
ters. hg*) and hg*) are hidden states of the attention
module LSTM,, and the caption generator LSTM,,
respectively.

Visual Switch. Then, we exploit a visual switch
to decide whether to rely on visual information to
predict the next word based on the predicted POS
information p;. At time step ¢, the visual switch 3;
is defined as:

(11)

(12)

my = [pt; B

(13)
By = 0(Ws2(ReLU(Ws1my))),

where o is the sigmoid function and W5, are the
learnable parameters. The range of j; is [0,1] and
the value of it indicates how much visual informa-

tion to use when predicting the target word. Then,

(t)

we apply this switch to attended visual feature [/

to control the use of visual information:

=B ol

t
LY o

dyn (14)

3.2.3 Caption generator

After the proper visual information is obtained, we

use it and the previous word w;_; (ground-truth

word during training, predicted word during infer-

ence) to the caption generator LSTM.. to predict a

series of distributions over the next word:
e = |E [wi): L4, |

P = 1STM, (B | ®, n1) |

wy ~ Softmax <Wch((;t) + bc> ,

(15)

where F is a word embedding matrix; W, and b,
are learnable parameters.
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3.3 Joint Training

We jointly train the POS predictor and the caption
generator end-to-end by maximizing the likelihood
of the observed POS and word sequence. For the
POS predictor, given the target ground-truth POS
tags (w?, ..., wh,), we minimize its negative log-
likelihood loss:

Lpos(0p) = = logp (wf [ wy;6,), (16)
t=1

where 0,, are the parameters of the POS predictor
and m is the length of the POS tag.

For the caption generator, given the target
ground-truth caption words (w¥, ..., wS,), we min-
imize its negative log-likelihood loss:

Leap(0e) = — Zlogp (wi | wSys6e), (A7)

t=1
where 6, are the parameters of the caption generator
and m is the length of the caption. Thus, the final
loss function is optimized as follows:

L(0) = Lpos + Leap

4 Experiments

(18)

4.1 Datasets

CLEVR-Change. This dataset (Park et al., 2019)
is a large scale dataset with a set of basic geometry
objects, which consists of 79,606 image pairs and
493,735 captions. The change types consist of five
cases, i.e., “Color”, “Texture”, “Add”, “Drop”, and
“Move”. We use the official split with image pairs
of 67,660 for training, 3, 976 for validation and
7,970 for testing.

Spot-the-Diff. This dataset (Jhamtani and Berg-
Kirkpatrick, 2018) contains 13,192 real image pairs
which are well aligned image pairs, with one or
more changes between the images (but no distrac-
tors). Similar to (Park et al., 2019), we only evalu-
ate our model in a single change setting and split it
into training, validation, and test sets with a ratio
of 8:1:1.

4.2 Evaluation Metrics

We use five standard metrics to evaluate the qual-
ity of generated sentences, i.e., BLEU-4 (Papineni
etal., 2002), METEOR (Banerjee and Lavie, 2005),
ROUGE-L (Lin, 2004), CIDEr (Vedantam et al.,
2015) and SPICE (Anderson et al., 2016). We
get all the results in this paper according to the
Microsoft COCO evaluation server (Chen et al.,
2015).



Table 1: Ablation studies on CLEVR-Change in terms of total performance,
where B-4, M, R, C, and S are short for BLEU-4, METEOR, ROUGE-L, CIDE:r,

and SPICE, respectively.

Total

Method BLEU-4 | METEOR | ROUGE-L | CIDEr | SPICE
Baseline 53.1 37.3 70.6 115.6 31.2
SSRE 54.2 39.2 72.2 120.1 32.0
CSRM 53.7 38.5 71.6 118.0 32.0
SRDRL 54.8 40.1 73.2 121.0 32.6
AVS 53.2 38.5 71.3 115.7 31.6
SRDRL+AVS 54.9 40.2 73.3 122.2 329

Table 2: Ablation studies on CLEVR-Change in terms of different settings.

Scene Change None-scene Change

Method B4 | M R C S B4 | M R C S
Baseline 509 | 33.0 | 65.3 | 100.9 | 27.7 | 62.0 | 50.0 | 75.9 | 116.1 | 34.7
SSRE 51.7 1350 | 67.7 | 111.2 | 29.3 | 62.0 | 51.2 | 76.8 | 115.6 | 34.8
CSRM 51.8 | 346 | 673 | 106.5 | 29.4 | 61.4 | 499 | 759 | 1155 | 34.7
SRDRL 52.0 | 358 | 689 | 112.3 | 30.3 | 62.1 | 52.0 | 77.5 | 116.3 | 34.9
AVS 509 | 342 | 66.5 | 103.6 | 28.8 | 60.3 | 50.5 | 76.1 | 113.5 | 344
SRDRL+AVS | 52.7 | 36.4 | 69.7 | 114.2 | 30.8 | 62.2 | 51.3 | 769 | 117.0 | 34.9

4.3 Implementation Details

To extract image features, we use ResNet-101 (He
et al., 2016) pre-trained on the Imagenet dataset
(Russakovsky et al., 2015). We use features from
the convolutional layer with dimensionality of 1024
x 14 x 14. The hidden size is set to 512 and the
number of attention heads in SSRE is set to 4. The
words are represented by trainable 300D word em-
bedding features. POS tags are divided into 16 cat-
egories. In the training phase, on CLEVR-Change
and Spot-the-Diff, we respectively set the mini-
batch size as 128 and 96. We use Adam optimizer
(Kingma and Ba, 2014) with the learning rate of 1
x 1073 and 5 x 10~%, respectively. At inference,
greedy decoding strategy is used to generate target
captions. Both training and inference are imple-
mented with PyTorch (Paszke et al., 2019) on a
TITAN Xp GPU.

4.4 Ablation studies

In order to figure out the contribution of each mod-
ule, we carry out the following ablation studies on
CLEVR-Change: (1) Baseline which is based on
DDUA (Park et al., 2019); (2) SSRE which only
embeds the self-semantic relations of objects into
their representations; (3) CSRM which only mea-
sures the cross-semantic relations between the cap-
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tured candidate difference and the original images,
and the learned discriminative difference represen-
tation is used as a prior knowledge to guide the
change localizer; (4) SRDRL which is the combi-
nation of (2) and (3); (5) AVS which only relies
on the POS information to determine when to use
visual information and which of them should be
used; (6) SRDRL+AVS which is the combination
of (4) and (5).

The Evaluation on Total Performance. We
frist study the total performance of each block of
the proposed method under the whole dataset, in-
cluding scene change and none-scene change. Ex-
perimental results are shown in Table 1. We can
observe that each module of the proposed method
improves the total performance of the baseline.
Moreover, the best performance is achieved when
putting them together, which indicates each block
not only plays its unique role, but also can be a sup-
plementary role for the others. This global statisti-
cal performance validates the generalization ability
of the proposed method, that is, it not only can
explicitly judge whether there is a semantic change
between a pair of unaligned images, but also can
describe the change using an accurate sentence.

The Evaluation on Scene Change and None-
scene Change. The experimental results are shown



Table 3: Comparing with state-of-the-art methods on CLEVR-Change in Total Perfor-
mance. RL is short for reinforcement learning training strategies.

Total
Method RL | B4 | M R C S
Capt-Dual (Park et al., 2019) X | 43.5 | 32.7 - 108.5 | 234
DDUA (Park et al., 2019) x | 47.3 | 33.9 - 112.3 | 24.5
M-VAM (Shi et al., 2020) x | 503 1]37.0 | 69.7 | 1149 | 30.5
M-VAM+RAF (Shi et al., 2020) | v | 51.3 | 37.8 | 70.4 | 115.8 | 30.7
SRDRL+AVS X | 549 | 40.2 | 73.3 | 122.2 | 329

Table 4: Comparing with state-of-the-art methods on CLEVR-Change in terms of two settings.

Scene Change None-scene Change
Method RL | B4 | M C S B4 | M C S
Capt-Dual (Park et al., 2019) x | 385]285 | 89.8 | 182|563 | 44.0 | 108.9 | 28.7
DDUA (Park et al., 2019) x 4291297 | 94.6 | 199 | 59.8 | 45.2 | 110.8 | 29.1
M-VAM-+RAF (Shi et al., 2020) | v - - - - - 66.4 | 122.6 | 33.4
SRDRL+AVS x | 527|364 | 114.2 | 30.8 | 62.2 | 51.3 | 117.0 | 34.9

in Table 2, in terms of scene change, we can ob-
serve that 1) SSRE, CSRM and AVS all achieve
improvements over the baseline; 2) compared with
SSRE, the improvement is relatively small when
respectively using CSRM and AVS; 3) better per-
formances are achieved when using two kinds of
combinations (SRDRL and SRDRL+AVS). These
indicate 1) the effectiveness of our proposed SR-
DRL and its single block, as well as the AVS; 2)
the priority of this task is to capture the semantic
difference in the image pair. The reason is that only
if the semantic difference is captured sufficiently,
can the following specific change localization and
caption generation do well on itself part.

Besides, we can observe that although each sin-
gle block can improve the baseline in the case of
scene change, but they are worse than the baseline
in one or more metrics in the case of none-scene
change. Our conjecture is that the robustness of sin-
gle block is relatively weak, so it would sometimes
misidentify the illumination or viewpoint change
as the actual semantic change. When observing
the performance of two kinds of combinations (SR-
DRL and SRDRL+AVS), both of them improve the
baseline in all metrics, which indicates the robust-
ness of our overall model is strong.

4.5 Performance Comparison

4.5.1 Results on CLEVR-Change

In this dataset, we compare with four state-of-the-
art methods, Capt-Dual (Park et al., 2019), DUDA
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(Park et al., 2019), M-VAM (Shi et al., 2020) and
M-VAM+RAF (Shi et al., 2020), in four dimen-
sions: 1) the total performance of scene change
and none-scene change; 2) only scene change; 3)
only none-scene change; 4) specific type of scene
change. The comparison results are shown in Table
3, Table 4, and Table 5, respectively.

From Table 3, in terms of total performance, we
can clearly observe that our method achieves sig-
nificant improvements over them in all evaluation
metrics, in particular with an increase of 34.3%
and 7.2% in SPICE, respectively. From Table 4,
under two kinds of settings, we can observe that
our method outperforms DDUA with a large mar-
gin. Furthermore, since the M-VAM+RAF did not
report the results on scene change, we only com-
pare with them in the setting of none-change. We
can observe that it outperforms us in METEOR and
CIDEr. This superiority could derive from the rein-
forcement learning strategy. However, this strategy
will remarkably increase training time and compu-
tation complexity. Moreover, as reported in Table
3, our total performance is much better than them,
which is evaluated under the both scene change and
none-scene change. Hence, compared to them, our
method is more robust due to the discriminative
difference representation learning.

Table 5 is the detailed breakdown of the eval-
uation based on five change types: “Color” (C),
“Texture” (T), “Add” (A), “Drop” (D), and “Move”
(M). Specifically, compare to all SOTA methods,



Table 5: A Detailed breakdown of Change Captioning evaluation on CLEVR-Change by different
change types: “Color” (C), “Texture” (T), “Add” (A), “Drop” (D), and “Move” (M).

Method RL | Metrics C T A D M
Capt-Dual (Park et al., 2019) X CIDEr 115.8 | 82.7 85.7 | 103.0 | 52.6
DDUA (Park et al., 2019) X CIDEr 1204 | 86.7 | 108.3 | 103.4 | 56.4
M-VAM+RAF (Shi et al., 2020) | v CIDEr 122.1 | 98.7 | 126.3 | 115.8 | 82.0
SRDRL+AVS X CIDEr 136.1 | 122.7 | 121.0 | 126.0 | 78.9
Capt-Dual (Park et al., 2019) x | METEOR | 32.1 26.7 29.5 31.7 | 224
DDUA (Park et al., 2019) x | METEOR | 32.8 27.3 334 | 314 | 235
M-VAM+RAF (Shi et al., 2020) | v | METEOR | 35.8 32.3 37.8 36.2 | 27.9
SRDRL+AVS x | METEOR | 39.0 | 35,6 | 389 | 38.0 | 30.1
Capt-Dual (Park et al., 2019) X SPICE 19.8 17.6 16.9 21.9 | 14.7
DDUA (Park et al., 2019) X SPICE 21.2 18.3 224 | 222 | 154
M-VAM+RAF (Shi et al., 2020) | v SPICE 28.0 | 26.7 30.8 323 | 225
SRDRL+AVS X SPICE 324 | 309 | 33.0 | 324 | 254
<Before> <After>
Table 6: Comparing with state-of-the-art methods on Ground Truth:

Spot-the-Diff.

Method RL| M R C S
DDLA x | 12.0 | 28.6 | 32.8 -
DDUA x | 11.8 | 29.1 | 32.5 -
SDCM x | 12.7 | 29.7 | 36.3 -
FCC x | 12.9 299 | 36.8 -
static rel-att x | 13.0 | 28.3 | 34.0 -
dynamic rel-att | x | 12.2 | 314 | 35.3 -
M-VAM x | 12.4 | 31.3 | 38.1 | 14.0
M-VAM+RAF | v | 129 | 33.2 | 425 | 17.1
SRDRL+AVS | x | 13.0 | 31.0 | 35.3 | 18.0

our method significantly raises the CIDEr scores
in “Color” and “Texture” types, which indicates
our method can better distinguish the attribute
change of objects from an illumination change. Be-
sides, for the number or position change of objects
(“Add”, “Drop”, and “Move”), our method all out-
performs them in most of metrics. Especially for
SPICE, compared to them, our method has 64.9%
and 12.9% improvements for “Move” case, respec-
tively, which also shows our method can better
localize the object movement from the viewpoint
change. In particular, the most challenging change
types are “Texture” and “Move” in this dataset, be-
cause they are most often confused with the illumi-
nation or viewpoint changes (Park et al., 2019). The
relative experiments show that our method is more
robust than SOTAs, and this benefits from the fact
that the CSRM block helps attend to the actually
semantic change by measuring the cross-semantic
relations of the image pair and their difference.
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The tiny blue cylinder
changed its location.

Baseline:

The small blue matte
cylinder that is behind
the big blue matte object
__________________________________ is no longer there. | ___
The small blue shiny
cylinder that is to the left
of the tiny green matte
thing has been added.

SRDRLA+AVS:

The small blue metal
cylinder that is behind the
tiny green metallic object
changed its location.

Figure 3: A comparative example about “Move” case
from the test set of CLEVR-Change, which involves
the caption generated by the baseline, SRDRL, and
SRDRLA+AVS. We visualize the localization results on
“before” (blue) and “after” (red).

4.5.2 Results on Spot-the-Diff

To validate the generalization ability of the pro-
posed method, we conduct the experiments on a
recent published Spot-the-Diff dataset, where the
image pairs are mostly well aligned and their is
no viewpoint change. We compare with eight
SOTA methods and most of them cannot consider
handling viewpoint changes: DDLA (Jhamtani
and Berg-Kirkpatrick, 2018), DDUA (Park et al.,
2019), SDCM (Oluwasanmi et al., 2019a), FCC
(Oluwasanmi et al., 2019b), static rel-att / dyan-
mic rel-att (Tan et al., 2019), and M-VAM / M-
VAM-+RAF (Shi et al., 2020).



<After>

<Before>

Ground Truth
The small blue thing is
in a different location.

SRDRL+AVS
The small blue metal

the large gray matte thin
is in a different location.

cube that is to the right of

g

<Before> <After>
Ground Truth
The large green matte
sphere that is behind
the purple cylinder is
in a different location.

SRDRL+AVS
The scene is the
same as before.

Figure 4: Qualitative examples of SRDRL+AVS. The left is a successful case that SRDRL+AVS localizes the
accurate changed object and generates a correct sentence to describe the change. The right is a failure case that a

slight movement of the object is not detected.

The results are reported in Table 6. We can
observe that our method achieves the best perfor-
mance in terms of METEOR and SPICE. Espe-
cially for SPICE which is recently designed for
evaluating the image captioning task, our method
achives 28.6% and 5.3% improvements over the
current SOTA method M-VAM and M-VAM+RAF.
Hence, compared to the above methods, the gener-
ated captions by our method are more in line with
standards of human caption evaluation. This superi-
ority results from that the SSRE block can capture
the relation-embedded feature difference so as to
better explore those tiny changed objects.

4.6 Qualitative Analysis

Figure 3 shows a comparative example about
“Move” from the CLEVR-Change dataset, which
includes the change captions generated by humans,
baseline, SRDRL, and SRDRL+AVS. We also visu-
alize the results of change detection. The baseline
is implemented based on DDUA (Park et al., 2019).
We can clearly observe that it localizes a wrong
region on the “after” and thus misidentifies “Move”
as “Drop”. By contrast, both proposed methods
(SRDRL and SRDRLA+AVS) can accurately local-
ize the moved object on both “before” and “after”
images, which validates the effectiveness of the
proposed SRDRL. Moreover, it is interesting to
note that, for the proposed methods, although the
results of change localization are accurate, only
using SRDRL generates a wrong caption, which
indicates the POS tags of target words indeed guide
and regularize the change caption generation.
Figure 4 illustrates two examples with viewpoint
changes on CLEVR-Change dataset. The left ex-
ample is a success in which SRDRL+AVA can dis-
tinguish the small blue changed cube from the ir-
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relevant viewpoint change. This benefits from that
SRDRL can learn discriminative difference repre-
sentation and overcome viewpoint changes. The
right example shows a failure, where SRDRL+AVA
judges there is no difference. Our conjecture is that
the movement of this sphere is very slight and thus
confused with the viewpoint change. Hence, we
will improve our method to learn more fine-grained
difference representation in the future work.

5 Conclusion

In this paper, we propose a semantic relation-aware
difference representation learning network (SR-
DRL) and attention-based visual switch (AVS) to
address change captioning in the presence of dis-
tractors, where SRDRL can explicitly learn the dif-
ference representation in the image pair and AVS
can aid the caption generator to convey the local-
ized change in a logically and grammatically accu-
rate sentence. Extensive experiments conducted on
both CLEVR-Change and Spot-the-Diff datasets
show that the proposed method achieves state-of-
the-art results.
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Abstract

It is evident that deep text classification mod-
els trained on human data could be biased. In
particular, they produce biased outcomes for
texts that explicitly include identity terms of
certain demographic groups. We refer to this
type of bias as explicit bias, which has been
extensively studied. However, deep text clas-
sification models can also produce biased out-
comes for texts written by authors of certain
demographic groups. We refer to such bias as
implicit bias, of which we still have a rather
limited understanding. In this paper, we first
demonstrate that implicit bias exists in differ-
ent text classification tasks for different demo-
graphic groups. Then, we build a learning-
based interpretation method to deepen our
knowledge of implicit bias. Specifically, we
verify that classifiers learn to make predictions
based on language features that are related
to the demographic attributes of the authors.
Next, we propose a framework Debiased-TC
to train deep text classifiers to make predic-
tions on the right features and consequently
mitigate implicit bias. We conduct extensive
experiments on three real-world datasets. The
results show that the text classification models
trained under our proposed framework outper-
form traditional models significantly in terms
of fairness, and also slightly in terms of classi-
fication performance.

1 Introduction

Many recent studies have suggested that machine
learning algorithms can learn social prejudices
from data produced by humans, and thereby show
systemic bias in performance towards specific de-
mographic groups or individuals (Mehrabi et al.,
2019; Blodgett et al., 2020; Shah et al., 2020).
As one machine learning application, text classi-
fication has been proven to be discriminatory to-
wards certain groups of people (Dixon et al., 2018;

* The corresponding author: Zitao Liu
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Borkan et al., 2019). Text classification applica-
tions such as sentiment analysis and hate speech
detection are common and widely used in our daily
lives. If a biased hate speech detection model is
deployed by a social media service provider to filter
users’ comments, the comments related to differ-
ent demographic groups can have uneven chances
to be recognized and removed. Such a case will
cause unfairness and bring in negative experiences
to users. Thus, it is highly desired to mitigate the
bias in text classification.

The majority of existing studies on bias and
fairness in text classification have mainly focused
on the bias towards the individuals mentioned in
the text content. For example, in (Dixon et al.,
2018; Park et al., 2018; Zhang et al., 2020), it is
investigated how text classification models perform
unfairly on texts containing demographic identity
terms such as “gay” and “muslim”. In such scenar-
ios, the demographic attributes of the individuals
subject to bias explicitly exist in the text. In this
work, we refer to this kind of bias as explicit bias.
Bias in texts, however, can be reflected more sub-
tly and insidiously. While a text may not contain
any reference to a specific group or individual, the
content can somehow be revealing of the demo-
graphic information of the author. As shown in
(Coulmas, 2013; Preotiuc-Pietro and Ungar, 2018),
the language style (e.g., wordings and tone) of a
text can be highly correlated with its author’s de-
mographic attributes (e.g., age, gender, and race).
We find that a text classifier can learn to associate
the content with demographic information and con-
sequently make unfair decisions towards certain
groups. We refer to such bias as implicit bias.
Table 1 demonstrates an example of implicit bias.
There are two short texts where the first text is
written by a white American and the second one
is written by an African American. The task is to
predict the sentiment of a text by a convolutional

Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 74-85
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Table 1: An illustrative example on the implicit bias of a CNN text classification model.

Author Text Label Prediction
White American Can’t wait to visit your new home. Yes, I going to be a - guest! positive positive
African American | Can’t wait to visit [your new home. Yup ,I goin to be a great guest! || positive | negative

neural network (CNN) model. Words with a red
background indicate those with the salient predic-
tive capability by the model where the darker the
color, the more salient the words. The words “yup”
and “goin” in the second text are commonly used
by African Americans (Liu et al., 2020a) and are
irrelevant to the sentiment. However, the CNN
model has hinted at them and consequently has
predicted a positive text to be negative.

In this work, we aim to understand and miti-
gate implicit bias in deep text classification models.
One key source of bias is the imbalance of train-
ing data (Dixon et al., 2018; Park et al., 2018).
Thus, existing debiasing methods mainly focus on
balancing the training data, such as adding new
training data (Dixon et al., 2018) and augmenting
data based on identity-term swap (Park et al., 2018).
However, these methods cannot be directly applied
to mitigate implicit bias. Obtaining new texts from
authors of various demographic groups is very ex-
pensive. It requires heavy human labor. Mean-
while, given that there is no explicit demographic
information in texts, identity-term swap data aug-
mentation is not applicable. Thus, we propose to
enhance deep text classification models to mitigate
implicit bias in the training process. To achieve
this goal, we face tremendous challenges. First, to
mitigate the implicit bias, we have to understand
how deep models behave. For example, how they
correlate implicit features in text with demographic
attributes and how the models make biased predic-
tions. Second, we need to design new mechanisms
to take advantage of our understandings to mitigate
the implicit bias in deep text classifiers.

To address the above challenges, in this paper,
we first propose an interpretation method, which
sheds light on the formation mechanism of implicit
bias in deep text classification models. We show
that the implicit bias is caused by the fact that the
models make predictions based on incorrect lan-
guage features in texts. Second, based on this find-
ing, we propose a novel framework Debiased-TC
(Debiased Text Classification) to mitigate the im-
plicit bias of deep text classifiers. More specifically,
we equip the deep classifiers with an additional
saliency selection layer that first determines the
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correct language features which the model should
base on to make predictions. We also propose an
optimization method to train the classifiers with
the saliency selection layer. Note that both our
proposed interpretation method and the learning
framework are model-agnostic, which means that
they can be applied to any deep text classifier. We
evaluate the framework with two popular deep text
classification models across various text classifi-
cation tasks on three public datasets. The experi-
mental results demonstrate that our method signifi-
cantly mitigates the implicit bias in the classifica-
tion models while maintaining or even improving
their prediction performance.

2 Preliminary Study

In this section, we perform a preliminary study to
validate the existence of implicit bias in deep text
classification models. We first introduce the data
and text classification tasks, and then present the
empirical results.

2.1 Data and Tasks

In the preliminary study, we investigate different
text classification tasks and various demographic
groups to validate the implicit bias. We use three
datasets, including the DIAL and PAN16 datasets
processed by (Elazar and Goldberg, 2018) and the
Multilingual Twitter Corpus (MTC) introduced in
(Huang et al., 2020).

The DIAL dataset contains dialectal texts col-
lected from Twitter. Each tweet’s text is associated
with the race of the author as the demographic
attribute, denoted as “white” or “black”, respec-
tively. This dataset is annotated for two classifica-
tion tasks: sentiment analysis and mention detec-
tion. The sentiment analysis task aims to categorize
a text as “happy” or “sad”. The mention detection
task tries to determine whether a tweet mentions an-
other user, which can also be viewed as distinguish-
ing conversational tweets from non-conversational
ones.

The PAN16 dataset consists of tweets. For each
tweet, age and gender of its author have been man-
ually labelled. The demographic attribute age has
two categories of “18-34” and “> 35, and gender



has “male” and “female”. Also, this dataset is an-
notated for the mention detection task as described
above.

The MTC dataset contains multilingual tweets
for the hate speech detection task. Each tweet is
annotated as “hate speech” or “non hate speech”
and associated with four author’s demographic at-
tributes: race, gender, age, and country. We only
use the English corpus with the attribute race. In
this dataset, the attribute race has two categories,
i.e., “white” and “nonwhite”.

More information about these three datasets, in-
cluding their statistical information, annotation pro-
cess, and the links to downloadable versions of the
data can be found in Appendix A.

2.2 Empirical study

In this subsection, we aim to empirically study
if text classification models make the predictions
dependent on the demographic attributes of the
authors of the texts. The explicit bias in text classi-
fication tasks stems from the imbalance of training
data (Dixon et al., 2018; Park et al., 2018). For
example, when there are more negative examples
from one group in the training data, the model
learns to correlate that group with the negative la-
bel, which results in bias. Inspired by this obser-
vation, to validate the existence of implicit bias,
we investigate if the imbalance of training data in
terms of demographic attributes of the authors can
lead to biased predictions. To answer this question,
we consider the following setting: (1) the training
data has an equal number of positive and negative
examples; and (2) positive and negative examples
in the training data are imbalanced among differ-
ent groups of the authors according to their demo-
graphic attributes. Intuitively, if the predictions are
independent of the demographic attributes of au-
thors, the model should still perform similarly for
different groups.

For each task and demographic attribute of au-
thors, we consider two labels (i.e., positive and
negative) and two demographic groups (i.e., Group
I and Group II). For each dataset, we follow the
aforementioned setting to build a training set. We
make the training set overall balanced in terms of
the labels and demographic groups. That is, we
set the overall ratio of positive and negative exam-
ples as 1:1, and the overall ratio of examples from
Group I and Group II as 1:1 as well. Meanwhile,
we make the data in each group imbalanced. In
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particular, for Group I, we set the ratio of its posi-
tive and negative examples to 4:1, while the ratio
is automatically set to 1:4 for Group II. We name
the proportion of positive and negative samples in
Group I as the “balance rate”. We train a CNN text
classifier as a representative model on the training
set and evaluate it on the test set. We use the false
positive/negative rates (Dixon et al., 2018) and the
demographic parity rate (a.k.a., positive outcome
rate, the probability of the model predicting a pos-
itive outcome for one group) (Dwork et al., 2012;
Kusner et al., 2017) to evaluate the fairness of the
classification models.

The results are shown in Table 2. For the
demographic attribute race, Group I/Group II
stands for white/black in the DIAL dataset, and
white/nonwhite in the MTC dataset. For gender
and age, Group I/Group II stands for male/female
and age ranges (18-34)/(>35), respectively. From
the table, we observe that in terms of different tasks
and demographic attributes of authors, the model
shows significant bias with the same pattern. For all
cases, the demographic group with more positive
examples (Group I) always gets a higher false posi-
tive rate, a lower false negative rate, and a higher
demographic parity rate than the other group. This
demonstrates that imbalanced data can cause im-
plicit bias, and the predictions are not independent
of the demographic attributes of authors. Since
the text itself doesn’t explicitly contain any demo-
graphic information, the model could learn to rec-
ognize the demographic attributes of authors based
on implicit features such as language styles and
associate them with a biased outcome. Next, we
will understand one formation of implicit bias and
then propose Debiased-TC to mitigate it.

3 Understanding Implicit Bias

In this section, we aim to understand the possible
underlying formation mechanism of implicit bias.
Our intuition is — when a training set for sentiment
analysis has more positive examples from white
authors and more negative examples from black
authors, a classification model trained on such a
dataset may learn a “shortcut” (Mahabadi et al.,
2020) to indiscriminately associates the language
style features of white people with the positive sen-
timent and those of black people with the negative
sentiment. In other words, the model does not
use the correct language features (e.g., emotional
words) to make the prediction. Thus, we attempt



Table 2: Preliminary study.

Dataset Task Demo False Positive (%) False Negative (%) Demographic Parity (%)
GroupI GroupIl GroupI GroupIl Groupl Group I1
DIAL Sentiment Race 46.97 23.38 21.29 62.75 62.84 30.32
Mention Race 48.72 15.99 17.32 34.90 65.70 40.55
PAN16 Mention Gender 23.90 12.30 13.06 23.01 55.42 44.64
Mention Age 2491 9.88 16.48 26.43 54.22 41.72
MTC  Hate Speech Race 80.33 1.77 12.13 49.35 84.10 26.21
to examine the following hypothesis: A deep text Y o /
classification model presents implicit bias since it
. . Z
makes predictions based on language features that M°de' i M°de' z
should be irrelevant to the classification task but E H E * E E j
are correlated with a certain demographic group of Yl © 05 ‘"Y @ =s" = 5' © T 5@ 40
authors. To verify this hypothesis, we first propose sY Explalner Y Explalner z

an interpretation method to detect the salient words
a text classification model relies on to make the
prediction. The interpretation model enables us to
check the overlapping between the salient words
and the words related to the authors’ demographic
attributes. Consequently, it allows us to understand
the relationship between such overlapping and the
model’s implicit bias.

3.1 An Interpretation Method

We follow the idea of the learning-based interpre-
tation method L2X (Chen et al., 2018) to train an
explainer to interpret a given model. The reasons
for choosing L2X are — 1) as a learning-based ex-
plainer, it learns to globally explain the behavior of
a model, instead of explaining a single instance at
one time; and 2) the explainer has the potential to
be integrated into our debiasing framework to miti-
gate implicit bias in an end-to-end manner, which
will be introduced in Section 4.

A binary text classification model M : X — Y
maps an input text X = (z1,z2,...,2,) to a
label Y € {0,1}. For a certain model M, we
seek to specify the contribution of each word in
X for M to make the prediction Y. The contri-
butions can be denoted as a saliency distribution
S = (s1,82,-..,5n), where s; is the saliency score
of the word z;, and ) ;" | s; = 1. Given a model
M, we train an explainer £M : X — S to estimate
the saliency distribution S of an input text X.

The explainer is trained by maximizing
I(Xg,Y), the mutual information (Cover, 1999)
between the response variable Y and the selected
feature X g of X under saliency distribution S. The
selected feature Xg = X © § = (s1 - 21,82 -

Xy ey Spt Tp) I'is calculated as the element-wise

"Without confusion, we use z; to denote both a word and
its word embedding vector.
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Figure 1:
model.

An illustration of the bias interpretation

product between X and S. In our implementation,
we parametrize the explainer by a bi-directional
recurrent neural network (RNN) followed by a lin-
ear layer and a Softmax layer. More details about
the optimization of the explainer can be found in
Appendix B.

3.2 Saliency Correlation Measurement

In this work, we assume that the text classification
task is totally independent of the demographic at-
tribute of the author of the text. In other words, lan-
guage features that reflect the author’s demographic
information should not be taken as evidence for the
main task. Thus, we propose to understand the
implicit bias of a deep text classification model by
examining the overlapping between salient words
for the main task and the words correlated with the
demographic attribute.

With the interpretation model, we can estimate
the saliency distributions of the input words for the
classification task and the demographic attribute
prediction task, respectively, and then check their
overlapping. As shown in Figure 1, we train two
models MY and M?Z with the same architecture
for the former and the latter tasks, respectively.
Then, two corresponding explainers £Y and £7 are
trained for them. Thus, given an input text X, two
explainers can estimate the saliency distributions
SY and SZ on two tasks, respectively. We use the
Jensen-Shannon (JS) divergence J.S(SY||S%) to
measure the overlap between language features that
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Figure 2: The average JS divergence (solid lines) and
DPD (dash lines) vs. the balance rate. The x-axis indi-
cates the balance rate of the training set. The y-axis on
the left hand indicates the average JS divergence, and
the y-axis on the right hand is the DPD.

these two tasks relying on to make the predictions
onY and Z.

3.3 Empirical Analysis

In this subsection, we present the experiments to
verify our hypothesis on the formulation of implicit
bias. Following the experimental settings in Sec-
tion 2.2, we vary the “balance rate” of the training
data and then observe how the saliency correlation
changes. We use CNN text classifiers (see Ap-
pendix C for details) for both MY and MZ. In
Figure 2, we show how the average JS divergence
and the demographic parity difference (DPD) vary
with the changes of the balance rate. DPD is the
absolute value of the difference between the demo-
graphic parity rates for the two groups. We only
report the results for DIAL and PAN16 datasets
and DPD as the fairness metric since we achieved
similar results for other settings. For each task and
each demographic attribute, the DPD is small when
the training data are balanced and becomes large
when the data are imbalanced. However, the JS di-
vergence is large for balanced data while small for
imbalanced data. A larger DPD indicates stronger
implicit bias and a smaller JS divergence stands for
a stronger overlap between the saliency distribu-
tions for the two tasks. Thus, these observations
suggest that when the training data are imbalanced,
the text classifiers tend to use language features
related to the demographic attribute of authors to
make the prediction.

DPD
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Figure 3: An illustration of the bias mitigation model.

4 The Bias Mitigation Framework

In the previous section, we showed that a model
with implicit bias tends to utilize features related
to the demographic attribute of authors to make
the prediction, especially when training data is
imbalanced in terms of the demographic attribute
of authors. One potential solution is to balance
the training data by augmenting more examples
from underrepresented groups. However, collect-
ing new data from authors of different demograph-
ics is expensive. Thus, to mitigate the implicit
bias, we propose a novel framework Debiased-TC.
Our proposed approach can mitigate implicit bias
by automatically correcting their selection of in-
put features. In this section, we will introduce the
proposed framework with the corresponding opti-
mization method.

4.1 Debiased Text Classification Model

An illustration of Debiased-TC is shown in Fig-
ure 3. Similar to the explainer in the interpreta-
tion model, we equip the base model MY with
a corrector layer C after the input layer. The
corrector C : X — S learns to correct the
model’s feature selection. It first maps an input
text X = (x1,x9,...,x,) to a saliency distribu-
tion S = (s1,S2,...,5y), Which is expected to
give high scores to words related to the main tasks
and low scores to words related to demographic
attributes of authors. Then, it assigns weights to
the input features with the saliency scores by cal-
culating Xg = X © S, which is fed into the classi-
fication model MY for prediction.

To train a corrector to achieve the expected goal,
we adopt the idea of adversarial training. More
specifically, in addition to the main classifier MY,
we introduce an adversarial classifier M?Z, which



takes X g as the input and predicts the demographic
attribute Z. During the adversarial training, the
corrector attempts to help MY make correct pre-
dictions while preventing M# from predicting de-
mographic attributes. To make this feasible, we use
the gradient reversal technique (Ganin and Lempit-
sky, 2015), where we add a gradient-reversal layer
between the weighted inputs X g and the adversar-
ial classifier M?. The gradient-reversal layer has
no effect on its downstream components (i.e., the
adversarial classifier M#). However, during back-
propagation, the gradients that pass down through
this layer to its upstream components (i.e., the cor-
rector C) are getting reversed. As a result, the cor-
rector C receives opposite gradients from M?. The
outputs of the MY and M7 are used as signals to
train the corrector such that it can upweight the
words correlated with the main task label Y and
downweight the words correlated with the demo-
graphic attribute Z. We set the adversarial classifier
M? with the same architecture as the main classi-
fier MY . The corrector C has the same architecture
as the explainer introduced in Section 3.

4.2 An Optimization Method for
Debiased-TC

In this subsection, we discuss the optimization
method for the proposed framework. We denote
the parameters of MY, MZ and C as WY, W#4
and O, respectively. The optimization task is to
jointly optimize the parameters of the classifiers,
i.e., WY and W7, and the parameters of the cor-
rector, i.e., ®. We can view the optimization as
an architecture search problem. Since our debi-
asing framework is end-to-end and differentiable,
we develop an optimization method for our frame-
work based on the differentiable architecture search
(DARTYS) technique (Liu et al., 2018). We update
MY, MZ by optimizing the training losses Lz;am
and Lthm on the training set and update ® by op-
timizing the validation loss L,,; on the validation
set through gradient descent. We denote the cross-
entropy losses for MY and M?Z as LY and L?,
respectively. L}; ain and Lﬁ, «in, Indicate the cross-
entropy losses LY and LZ on the training set. L,q;
denotes the combined loss of the two cross-entropy
losses L = LY 4 L7 on the validation set.

The goal of optimizing the corrector is to find
optimal parameters @* that minimizes the valida-
tion 10ss Lyq (WY *, WZ* @), where the optimal
parameters WY * and W#* are obtained by mini-
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mizing the training losses as follows.
WY* = arg min LY i (WY, ©%)
w

W7 = arg Ivrézlg LtZrain (WZ7 6*)

The above goal forms a bi-level optimization prob-
lem (Maclaurin et al., 2015; Pham et al., 2018),
where @ is the upper-level variable and WY and

WZ are the lower-level variables:
min Loy (WY*(©),W?*(©),0)

Y * _ . Y
s.t. W (@) = arg %VuynL

train

(W', ©%)
WZ*(@) = arg min LE (W2 ©%)

Optimizing O is time-consuming due to the expen-
sive inner optimization of WY and WZ. There-
fore, we leverage the approximation scheme as
DARTS:

Ve Lua(WY* (@), W?*(0),0)
~ Ve Lya(WY = Vwr LY 0in (WY, ©),
WZ — ¢VwzLE . (W?,0),0)

where ¢ is the learning rate for updating WY
and WZ. The approximation scheme estimates
WY*(@®) and W#*(®) by updating WY and
WZ for a single training step, which avoids
the total optimization W*(@®) arg minwy
Lirain (W, ©*) to the convergence. In our imple-
mentation, we apply first-order approximation with
& = 0, which can even lead to more speed-up. Also,
in our specific experiments, since the amount of
validation data is limited, we build an augmented
validation dataset V' =V U T combining the orig-
inal validation set )V with the training set 7 for
optimizing ©.

We present our DARTS-based optimization al-
gorithm in Algorithm 1. In each iteration, we first
update the corrector’s parameters based on the aug-
mented validation set V' (lines 2-3). Then, we col-
lect a new mini-batch of training data (line 4). We
generate the saliency scores S = (51, S2,...,8)
for the training examples via the corrector with
its current parameters (line 5). Next, we make
predictions via the classifiers with their current pa-
rameters and Xg (line 6). Eventually, we update
the parameters of the classifiers (line 7).

S Experiment

In this section, we conduct experiments to evaluate
our proposed debiasing framework. Through the



Algorithm 1: The DARTS-based optimiza-
tion method for Debiased-TC.

1 Input: Training data 7 = {X;, Vs, ZZ}LZ‘l and
Validation data V = {X;, Y;, Z; 1Y)
2 Output: classifier parameters WY * and W%*; and
corrector parameters @™
3 Initialize WY, W7 and ©
1: while not converged do
2: Sample a mini-batch of validation data from
V' =VUuT
3: Update ® by descending
v@ Lval (WY - évWY Lz'/rain (WY7 9)5
WZ - fvwz Liain (WZ7 9)7 ®)
(& = 0 for first-order approximation)

4:  Collect a mini-batch of training data from 7

5: Generate S via the corrector with current parameters
(C]

6: Generate predictions via the classifiers with current

parameters WY W¥Z and X
7:  Update WY and W7 by descending

VWY Lg‘ain(wya 9) and vWZ Lg"ain (WZ7 9)
8: end while

experiments, we try to answer two questions: 1)
Does our framework effectively mitigate the im-
plicit bias in various deep text classification mod-
els? and 2) Does our framework maintain the per-
formance of the original models (without debasing)
while reducing the bias?

5.1 Baselines

In our experiments, we compare our proposed de-
biasing framework with two baselines. Since there
is no established method for mitigating implicit
bias, we adopt two debiasing methods designed for
traditional explicit bias and adapt them for implicit
bias.

Data Augmentation* (Data Aug) (Dixon et al.,
2018). We manually balance the training data of
two demographic groups by adding sufficient neg-
ative examples for Group I and positive examples
for Group II. As a result, the ratio of positive and
negative training examples for both groups is 1:1.
As discussed in the introduction, obtaining addi-
tional labeled data from specific authors is very
expensive. In this work, we seek to develop a bias
mitigation methodology without extra data. Since
Data Aug introduces more training data, it’s not
fair to directly compare it with other debiasing
methods that only utilize original training data (in-
cluding our method). We include Data Aug as a
special baseline for reference.

Instance Weighting (Ins Weigh) (Zhang et al.,
2020). We re-weight ea(‘ah training instance with

P(Y

a numerical weight % based on the label dis-
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tribution for each demographic group to mitigate
explicit bias. In this method, a random forest clas-
sifier is built to estimate the conditional distribu-
tion P(Y'|Z) and the marginal distribution P(Y")
is manually calculated.

5.2 Experimental Settings

We conduct our experiments for implicit bias mit-
igation on two representative base models: CNN
(Kim, 2014) and RNN (Chung et al., 2014). We
use the same datasets with manually designed pro-
portions, as described in Section 2.2. The details of
the base models, as well as the implementation de-
tails of the experiments, can be found in Appendix
C.

5.3 Performance Comparison

We train the base models with our proposed debi-
asing framework as well as the baseline debiasing
methods. We report the performance on the test set
in terms of fairness and classification performance.

Fairness Evaluation. Table 3 shows the results
for fairness evaluation metrics: false positive equal-
ity difference (FPED), false negative equality dif-
ference (FNED), and DPD. FPED/FNED indicates
the absolute value of the difference between the
false positive/negative rates of the two groups. We
make the following observations. First, the base
models attain high FPED, FNED, and DPD, which
indicates the existence of significant implicit bias
towards the authors of the texts. Ins Weigh seems
ineffective in mitigating implicit bias since it only
achieved comparable fairness scores with the base
models. Note that not every example that belongs
to a certain group necessarily results in bias towards
that group. Thus, assigning a uniform weight for all
examples with the same label Y and demographic
attribute Z is not a proper way to reduce implicit
bias. Third, both Data Aug and Debiased-TC can
mitigate the implicit bias by achieving lower equal-
ity and demographic parity differences. However,
compared to Data Aug, Debiased-TC has two ad-
vantages. First, Data Aug needs to add more train-
ing data while Debiased-TC does not. Debiased-
TC can locate the main source of implicit bias by
analyzing how it forms in a deep text classification
model. Due to the proposed corrector model, it can
make a classification model focus on the relevant
features for predictions and discard the features that
may lead to implicit bias. Second, Debiased-TC
is more stable than Data Aug. For the sentiment
classification task with race as the demographic



Table 3: Fairness Performance Comparison. Note that Data Aug is a special baseline for reference.

Task Methods CNN RNN
FPED (%) FNED (%) DPD (%) | FPED (%) FNED (%) DPD (%)

Base Model 23.59 41.45 32.52 26.86 42.36 34.61
Sentiment Data Aug* 21.00* 3.88% 12.44%* 19.84* 0.59* 10.22*
Race Ins Weigh 25.47 41.43 33.45 26.86 42.36 34.61

(DIAL) Debiased-TC 6.08 4.63 0.73 6.67 5.68 0.50
Base Model 32.73 17.58 25.16 30.44 17.55 24.00

Mention Data Aug* 1.31* 7.31% 3.00% 0.77* 7.91* 4.34%
Race Ins Weigh 24.66 19.46 22.06 28.83 17.26 23.05

(DIAL) Debiased-TC 3.61 2.40 0.61 4.97 1.07 1.95

Base Model 11.60 9.95 10.78 10.62 8.33 9.47

Mention Data Aug* 0.84%* 0.19% 0.32* 2.42% 0.72* 1.57*
Gender Ins Weigh 12.73 10.22 11.47 11.20 9.35 10.28

(PAN16) Debiased-TC 3.95 3.04 3.49 5.41 3.73 4.57
Base Model 15.03 9.96 12.49 13.07 7.34 10.20

Mention Data Aug* 3.71% 1.59* 1.06* 0.17* 2.69* 1.26*
Age Ins Weigh 16.53 8.71 12.62 13.24 7.94 10.59

(PAN16) Debiased-TC 7.29 291 5.10 7.64 2.69 5.16
Base Model 78.56 37.22 57.89 81.51 28.50 55.01
Hate Speech Data Aug* 88.81* 26.15* 57.48% 83.51* 22.73* 53.12*
Race Ins Weigh 87.51 31.92 59.72 84.45 27.44 55.95
MTC) Debiased-TC 75.97 17.08 46.53 74.56 18.85 46.70

attribute, the CNN and RNN classifiers trained on
augmented data still result in high FPED and DPD
scores. This suggests that balancing the training
data cannot always mitigate implicit bias. In fact,
only training examples with demographic language
features can contribute to the implicit bias. Since
some texts in the training set do not contain any lan-
guage features belonging to a demographic group,
they do not help balance the data.

Text Classification Performance Evaluation.
The prediction performance of the text classifica-
tion models trained under various debiasing meth-
ods is shown in Table 4, where we report the ac-
curacy and F1 scores. First, it is not surprising to
see that Data Aug achieves the best performances,
since the data augmentation technique introduces
more training data. It’s not fair to directly compare
it with other debiasing methods that only utilize
original training data. Second, in most cases, our
method achieves comparable or even better perfor-
mance than the original base models. As we veri-
fied before, the implicit bias of a text classification
model is caused by the fact that it learns a wrong
correlation between labels and demographic lan-
guage features. Debiased-TC corrects the model’s
selection of language features for predictions and
thereby improves its performance on the classifica-
tion task.

In conclusion, our proposed debiasing frame-
work significantly mitigates the implicit bias, while
maintaining or even slightly improving the classifi-
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cation performance.

6 Related Work

Fairness in Machine Learning. With the wide
spread of the machine learning (ML) applications
in our daily lives, bias and fairness issues in them
are drawing increasing attention from the com-
munity. Researches are conducted to detect and
mitigate the bias in ML models on various tasks.
Specifically, studies investigate how algorithms can
be biased in classification (Kamiran and Calders,
2009; Chouldechova, 2017), regression (Berk et al.,
2017; Agarwal et al., 2019), and clustering tasks
(Backurs et al., 2019; Chen et al., 2019). In the
domain of computer vision, researchers show that
ML-based face recognition (Buolamwini and Ge-
bru, 2018) and object detection (Ryu et al., 2017)
models perform unfairly for different demographic
groups. Besides, a lot of works examine the bias
in language related tasks, including word embed-
ding (Bolukbasi et al., 2016), coreference resolu-
tion (Zhao et al., 2018), machine translation (Prates
et al., 2019) and dialogue generation (Liu et al.,
2020a,b), etc. Moreover, some recent studies also
explore the relationship between the fairness of
an ML model and its other properties, such as ro-
bustness (Xu et al., 2020; Nanda et al., 2021) and
privacy (Cummings et al., 2019).

Fairness in Text Classification. In this work,
we focus on the fairness issues in the text clas-
sification task. In this task, Dixon et al. (2018)



Table 4: Text Classification Performance Comparison (%). Note that Data Aug is a special baseline for reference.

Sentiment/Race Mention/Race  Mention/Gender Mention/Age Hate Speech/Race
Methods (DIAL) (DIAL) (PAN16) (PAN16) MTC)
Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1
CNN
Base Model 61.40 60.03 70.77 71.65 81.93 81.94 80.57 80.17 64.10 65.86
Data Aug* 67.58* 71.53* 76.42* 76.03* 84.11* 84.31* 84.08* 84.36* 66.96* 71.10*
Ins Weigh 61.06 60.36 71.62 69.66 81.86 81.85 80.70 81.05 65.25 68.73
Debiased-TC  63.60 66.58 73.15 71.84 81.67 82.01 80.41 79.68 69.14 72.69
RNN
Base Model 61.23 61.53 72.97 73.68 83.46 83.40 82.78 82.43 66.31 69.57
Data Aug* 67.82*  69.35* 78.42* 77.26% 86.25*  86.05* 86.12* 85.68* 68.55* 72.37*
Ins Weigh 61.23 61.53 73.37 73.79 83.46 83.32 82.80 82.58 67.26 70.94
Debiased-TC  63.68 66.70 74.05 73.41 81.81 81.51 80.21 79.17 66.76 70.76

demonstrate that the source of unintended bias in
models is the imbalance of training data, and they
provide a debiasing method, which introduces new
data to balance the training data. In (Park et al.,
2018), gender bias is measured on abusive language
detection models, and the effects of different pre-
trained word embeddings and model architectures
are analyzed. By considering the various ways that
a classifier’s score distribution can vary across des-
ignated groups, a suite of threshold-agnostic met-
rics is introduced in (Borkan et al., 2019), which
provides a nuanced view of unintended bias. Fur-
thermore, the work (Zhang et al., 2020) proposes
to debias text classification models using instance
weighting, i.e., different weights are assigned to the
training samples involving different demographic
groups. The works discussed above focus on ex-
plicit bias, where the demographic attributes are
explicitly expressed in the text. However, works
studying implicit bias are rather limited. Huang
et al. (2020) introduce the first multilingual hate
speech dataset with inferred author demographic
attributes. Through experiments on this dataset,
they show that popular text classifiers can learn
the bias towards the demographic attribute of the
author. But this work doesn’t discuss how the bias
is produced, and no debiasing method is provided.

7 Conclusion

In this paper, we demonstrate that a text classifier
with implicit bias makes predictions based on lan-
guage features correlated with demographic groups
of authors, and propose a novel learning framework
Debiased-TC to mitigate such implicit bias. The
experimental results show that Debiased-TC sig-
nificantly mitigates implicit bias, and maintains or
even improves the text classification performance
of the original models. In the future, we will inves-
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tigate implicit bias in other NLP applications.
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20.

A Details of the Datasets

In this section, we describe the statistical informa-
tion and the annotation process of the three datasets
DIAL, PAN16, and MTC used in our experiments.
The datasets DIAL and PAN16 can be downloaded
from the link 2. The dataset MTC can be down-
loaded from the link 3.

A.1 Data Statistics

The statistics of the datasets DIAL, PAN16, and
MTC are shown in Table 5. In the table, the “task”
section shows the text classification tasks included
in a dataset. ‘““Sentiment” is short for sentiment
analysis. “Mention” is short for mention detec-
tion. “Hate Speech” is short for hate speech detec-
tion. “Demog.” indicates the demographic attribute
of the tweet authors collected in a dataset. The
“Size” section shows the total number of instances
in a dataset. Each instance is a tweet text. The
“Avg.Len.” section shows the average number of
words in one instance in a dataset.

Table 5: Statistics of the datasets.

Dataset Task Demog. Size Avg.Len.
DIAL Sentiment Race 317,151 11.20
Mention Race 400,000 10.56
Mention Gender | 175,871 14.64
PANT6 Mention Age 175,471 14.55
MTC Hate Speech Race 47,627 19.60

A.2 Data Annotation

The DIAL dataset is annotated based on the di-
alectal tweet corpus (Blodgett et al., 2016), which
contains 59.2 million tweets from 2.8 million users.
The race attribute is annotated by an automated
probabilistic inference method based on the geolo-
cation information of the user and the tweet text.
Given that geolocation information (residence) is
highly associated with the race of a user, the model
can make accurate predictions. To further ensure
the accuracy, DIAL only keeps annotations with
confidence above 80%.

https://github.com/yanaiela/
demog-text—removal

*https://github.com/xiaoleihuang/
Multilingual_Fairness_LREC



The PAN16 dataset (Rangel et al., 2016) con-
tain 436 Twitter users, each of which has up to
1,000 tweets. The age and gender of the users are
manually annotated by referring to their LinkedIn
profiles. Specifically, annotators judge the gender
based on the user’s name and profile photo. The
age is inferred based on the user’s birth date or
degree starting date.

The MTC dataset (Huang et al., 2020) is an-
notated based on 7 published Twitter hate speech
datasets in five languages. The dataset contains
user demographic information such as race, gender,
age, and country. We only focus on the English cor-
pus and the attribute race in our experiments. The
race of a user is inferred by the computer vision
API, Face++*, based on the profile photo.

B Optimization of the Explainer

We train the explainer £ by maximizing the mu-
tual information between the response variable Y
and the selected features Xg. The optimization
problem can be formulated as:

mgax I(Xs;Y) (1
st. S~ Pe(S|X)
where
 P(XgY
I(Xs,Y) = E|log P()((S*)SPO)/)}
Pu(Y[X5s)

:E:k’g P(Y) ]

log P (Y |Xs)]

=ExEgxEy|xs [10»?; PM(Y|XS)}

x E

Solving the optimization problem in Eq. (1) is
equivalent to finding an explainer £ satisfying the
following:

H?D(fﬁA(Yw}(s) S.t. S/\ff%(Sﬂ)()

Hence, we train the explainer £ by optimizing
Py (Y] Xg) with the parameters of the classifica-
tion model M fixed. In our implementation, we
adopt the cross-entropy loss for training, as we do
when we train the classification model M.

*nttps://www.faceplusplus.com/
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C Implementation Details

C.1 Details of Base Models

In the base model CNN, we use 100 filters with
three different kernel sizes (3, 4, and 5) in the con-
volution layer, where we use a Rectified Linear
Unit (ReLU) as the non-linear activation function.
Each obtained feature map is processed by a max-
pooling layer. Then, the features are concatenated
and fed into a linear prediction layer to get the final
predictions. A dropout with a rate of 0.3 is applied
before the linear prediction layer.

For the base model RNN, we use a one-layer
unidirectional RNN with Gated Recurrent Units
(GRU). The hidden size is set to 300. The last
hidden state of the RNN is fed into a linear predic-
tion layer to get the final predictions. We apply a
dropout with a rate of 0.2 before the linear predic-
tion layer.

C.2 Details of Experimental Settings

For the text classifiers, we use randomly initialized
word embeddings with a size of 300. All the mod-
els are trained by an Adam optimizer (Kingma and
Ba, 2015) with an initial learning rate of 0.001. We
apply gradient clipping with a clip-value of 0.25 to
prevent the exploding gradient problem. The batch
size is set to 64. For the base model and the base-
line methods, when the prediction accuracy of the
validation data doesn’t improve for 5 consecutive
epochs, the training is terminated, and we pick the
model with the best performance on the validation
set. Our model utilizes the validation data for train-
ing. To avoid it overfitting the validation data, we
don’t select the model based on its performance
on the validation set. Instead, we train the model
for a fixed number of epochs (5 epochs, the same
for all the three datasets) and evaluate the obtained
model.
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Abstract

Which type of information affects the existing
neural relation extraction (RE) models to make
correct decisions is an important question. In
this paper, we observe that entity type and trig-
ger are the most indicative information for RE
in each instance. Moreover, these indicative
clues are always constrained to co-occur with
specific relations at the corpus level. Moti-
vated by this, we propose a novel RAtionale
Graph (RAG) to organize such co-occurrence
constraints among entity types, triggers and re-
lations in a holistic graph view. By introducing
two subtasks of entity type prediction and trig-
ger labeling, we build the connection between
each instance and RAG, and then leverage rele-
vant global co-occurrence knowledge stored in
the graph to improve the performance of neu-
ral RE models. Extensive experimental results
indicate that our method outperforms strong
baselines significantly and achieves state-of-
the-art performance on the document-level and
sentence-level RE benchmarks.

1 Introduction

Relation extraction (RE), which aims to identify
the semantic relation between two entities in plain
text, is one of the fundamental tasks in informa-
tion extraction (IE). In the deep learning era, many
approaches are proposed including models based
on attention mechanism (Lin et al., 2016; Zhang
et al., 2017), graph neural networks (Zhang et al.,
2018; Guo et al., 2019), and pre-trained language
models (Joshi et al., 2020; Yu et al., 2020).

While these neural RE models have achieved
the latest state-of-the-art results, little is known
about which type of information affects the models
to make decisions. Recently, an empirical study
shows that the understanding of two main informa-
tion sources, entity type, and textual context, is nec-
essary and effective for training a RE model (Peng

* Corresponding Author.
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object trigger subject
is the youngest of ﬁve| childrenl of |Hawkins|.
,,,,,, R R S SO,
i (type) i (lemma) ! (type)
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Figure 1: Illustration of the decision-making process in
RE, where patterns are the most indicative information.

et al., 2020). Entity type, is always an important
side information for RE (Liu et al., 2014; Vashishth
et al., 2018). In the textual context, some words
play an indicative role in relation expression. Yu
et al. (2020) initially annotated the minimal con-
tiguous indicative word span and named them trig-
ger. For example, in Figure 1, when we notice that
both the subject and object entities are person, as
well as the trigger children appears in the con-
text, our immediate reaction is that they probably
hold a parent-child relation, then we make a further
judgment by reading the complete text.

What is the support behind such rapid and accu-
rate decision-making of human beings? In RE, if
we look at the entire corpus from a global view, we
can find a common phenomenon that one certain
entity type or trigger is constrained to co-occur with
specific relations. Taking entity type as an example,
two entities of type person can only participate
in person-related relations (e.g., per :parents,
per:siblings). Such global co-occurrence in-
duced by multiple seen instances serves as the cru-
cial prior knowledge in the process of human cogni-
tion (Chater et al., 2006), and can naturally form a
bipartite graph, in which the nodes on two sides are
entity types and relations respectively. Similarly,
the same logic can also go for triggers.

Inspired by the above observation, in this paper,
we propose a RAtionale Graph (RAG) to organize
the global co-occurrence statistics aggregated from
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the corpus. Specifically, nodes in the graph are con-
structed based on the relations and patterns'. There
are totally four types of directed edges that exist
between different types of nodes. For example, the
edge between a trigger node and a relation node
depicts the co-occurrence probability of a text ex-
pressing the relation when the trigger appears in the
text. This probabilistic knowledge, together with
the involved nodes, is collectively referred to as
rationale. In the end, RAG is excepted to present a
holistic view of all patterns and relations, and then
facilitate the relation prediction.

Now we incorporate RAG with neural networks
to improve the RE performance. Given an instance
with a text and two entities, we first predict the en-
tity type and label the trigger, then establish the link
between the input instance with the known patterns
in RAG, and finally enhance the instance represen-
tation with the attended relation node features in the
graph. Meanwhile, we introduce the gate mecha-
nism and graph neural networks (GNNs) to perform
the information propagation from the input instance
to relation nodes. Hence, this workflow makes full
use of all aforementioned rationale knowledge to
guide the processing of new instances by linking
them to each seen pattern stored in the graph, like
humans recognizing new things by intuitively asso-
ciating with the knowledge they have memorized.
In the training phase, the model learns simultane-
ously (1) the relation along with (2) the entity type
and trigger for each instance. This means that we
care about not only the final relation label (what),
but also the intermediate results, i.e., whether the
entity type and trigger are correctly predicted (why).
By doing so, we can retrieve the relevant global pat-
tern knowledge from the graph with the predicted
trigger and entity types, during testing.

To evaluate our approach, we first conduct ex-
periments on the document-level RE task Dialo-
gRE (Yu et al., 2020). Experimental results show
the benefits of the proposed method, leading to
state-of-the-art performance. An exciting discovery
is that our method is very effective in small-scale
annotation scenes, using only half (with 2,584 posi-
tive instances) of the pattern-annotated instances re-
sults in a comparable performance as using all con-
ventional annotated instances. To further validate
this advantage, we manually annotate 20% (with
2,585 positive instances) patterns of the sentence-

"For the sake of generality, we refer to the entity type and
trigger as pattern in the remaining of this paper.
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level RE benchmark TACRED (Zhang et al., 2017),
and empirically demonstrate similar experimental
conclusions with DialogRE.

2 Related Work

Extracting relational facts between entities from
text is an essential and classical problem in natural
language processing. The popular research meth-
ods have gone through the iteration from pattern-
based methods (Mooney, 1999; Chang and Lui,
2001) to feature-based methods (Kambhatla, 2004;
Zhou et al., 2005), and then to neural-based meth-
ods (Zeng et al., 2014; Zhang et al., 2017). Nowa-
days, most state-of-the-art work develops powerful
neural models based on pre-trained language mod-
els or graph neural networks (Soares et al., 2019;
Zhang et al., 2019; Guo et al., 2019). All the time,
there are two main consensuses in the community:
when extracting a relation, entity types are impor-
tant side indicators, which are often used to en-
hance the input or output layer (Vashishth et al.,
2018; Kuang et al., 2020). On the other hand, not
all the words in the text are beneficial to RE. Thus
there are also efforts focusing on the heuristic or
implicit selection of the key clues related to rela-
tion expression (Zhang et al., 2018; Yu et al., 2019),
and Yu et al. (2020) is the first work to annotate
such clue words in texts and name them trigger.
However, most previous studies are only based
on local features, in other words, models are trained
on individual instance, limiting the ability to cap-
ture the connection between textual indicative infor-
mation and relations globally. Conversely, Su et al.
(2018) emphasized the importance of the global
view, and embed the textual relations with global
statistics to combat the wrong labeling problem of
distant supervision. Wang et al. (2020) proposed an
interpretable network embedding model based on
a corpus-level entity graph to rationalize medical
relation prediction. Unfortunately, their methods
are not suitable for the supervised RE task in the
general domain. The most related work, (Zhang
et al., 2020), collected a global type-relation map-
ping as prior knowledge to guide the optimization
with knowledge distillation. One major difference
is that we systematically consider both entity type
and textual trigger to collect all indicative knowl-
edge in a holistic view. Another unique aspect of
this work is that we perform the prediction of entity
type and trigger as two subtasks, while previous
studies only focus on the final relation labels.



3 Rationale Graph (RAG)

Different from existing work only using raw text for
RE, we assume the global co-occurrence statistics
among relations, triggers, and entity types is given,
which are pre-construed based on the whole corpus,
and denoted as a graph G = (V, &), where each
vertex v € V refers the relation, trigger, or entity
type pair extracted from the corpus and each edge
e € & is associated with the global co-occurrence
count for the connected nodes. Inspired by Zhang
et al. (2020), we organize the global co-occurrence
count between two kinds of nodes as bipartite ra-
tionale mapping and pack all bipartite mappings
together to obtain a rationale graph (RAG). Figure
2 shows the schematic diagram for clarity.

3.1 Bipartite Rationale Mapping

Here we take type (short for entity type pair) and
relation as an example to describe the construction
process of bipartite rationale mapping. Specifically,
for instance with a text x and two entities (s, 0),
we combine two entity types to achieve a pattern p.
From this step, we obtain the pattern set 7 = {¢;}
and formulate a support set S(¢;) for each ¢;, in
which the support set S(¢;) contains all instances
with pattern ¢;. Besides, we also collect a set of
relations R = {r;}, and the support set S(r;) de-
noting the set of instances holding relation r;. The
co-occurrence number of pattern ¢; and relation r;
is defined as w;; = |S(t;) N S(r;)|. In other word,
every instance (x, s, 0) with pattern ¢; and relation
r; is counted as a co-occurrence of ¢; and r;.
However, it is inappropriate to take the raw co-
occurrence count as mapping weight directly. The
relation distribution in reality typically has a power-
law tail (Zhang et al., 2017), meaning that the
count spans several orders of magnitude in dif-
ferent relations. To meet this challenge, for each
pattern, we normalize its co-occurrence count to
form a valid probability distribution over relations.
In the end, the bipartite mapping M;po.c is con-
structed, with one node set being the types, the
other being the relations, and the weighted edges
w;; = p(rj|ti) = wij/ > wij representing the
normalized global co-occurrence probability.

3.2 Graph Construction

Considering that trigger and type are two kinds of
information sources for RE (Peng et al., 2020), we
first introduce the bipartite rationale mapping from
type to relation M2, and the mapping from trig-
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Figure 2: Schematic diagram of RAG, in which edges
are weighted by normalized co-occurrence statistics.

ger to relation Mg, in RAG. In this way, we
assume that the graph reflects the prior probabil-
ity of relation when some indicative information
appears in the text. Furthermore, triggers are actu-
ally relations in the form of natural language (Hu
et al., 2020) and entity types are tightly bound to
certain trigger words within the context (Lin et al.,
2020). In other words, type and trigger are mutu-
ally related and restricted. Therefore, we introduce
a set of bidirectional mapping, that is, from type
to trigger My;,2¢4 and from trigger to type Mgop.
Finally, we place four kinds of edges in the graph:
&+ {Mtp2rea Mt92r67 Mthtga Mthtp}z-

4 Relation Extraction with RAG

In this section, we exemplify how to incorporate ex-
isting RE models with RAG. Given a text, a subject
entity, and an object entity, the model aims to iden-
tify the semantic relationship between these two
entities with the aid of RAG. Moreover, we also
require the model to predict entity type pair and
label trigger (if possible) as two auxiliary subtasks.
For the example in Figure 3, we build a unified
model that not only accurately predicts the relation
per:parents, but also provides meaningful ra-
tionales on how the prediction is made: the subject
and object entities are both person, and the key
clue children appears in the context.

4.1 Encoding Module

We utilize BERT (Devlin et al., 2019) as the feature
encoder to extract token representations due to its
effectiveness in representation learning. Theoreti-
cally, the encoding module can be easily replaced
by other advanced models. The encoder receives a
BERT-style packed sequence and outputs a context
representation matrix H € R"*? with an overall
vector h,, € RY (the representation of the [CLS]
token in BERT), where d is the vector dimension

?In view of the diversity of natural language, we use spaCy

(https://spacy.io/) to perform lemmatization on trig-
gers, before putting them into RAG as vertexes.
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Figure 3: The overall architecture of the proposed model. Rationale enhancing module is the core component in
our approach, which enhances the instance representation by retrieving pertinent rationales stored in RAG.

of the last layer of BERT. Typically, existing BERT-
based RE solutions first concatenate target entities
with the text or mark them in the input sequence
with special tokens, and then directly take h.; as
the input of final classification module (Joshi et al.,
2020; Yu et al., 2020).

4.2 Rationale Enhancing Module

The rationale enhancing module consists of two
enhancing branches and one rationale integration
unit. In each branch, we first predict pattern (type
or trigger) for the input instance and then calculate
the pattern probability that the instance belongs to
each pattern in RAG. The integration unit aims to
collect rationale enhancing features for final rela-
tion extraction based on the pattern probability and
the rationale in the graph.

4.2.1 Type Enhancing Branch

In this branch, we predict the types of subject and
object entities at the same time. Similar to RE, type
prediction is regarded as a closed-world classifica-
tion problem, and the class space is all seen entity
type pairs, that is, all type nodes in RAG. Follow-
ing the classification paradigm of BERT (Devlin
et al., 2019), we project the overall vector h;; into
a new space for type prediction:

h?l)s = tanh<MLP{d,d} (hcls)>7 o
piyp = SoftMax (MLP{d,ntp}(hZ’s)) .

Here MLP g5, (-) denotes a multi-layer perceptron
module with input dimension d and output dimen-
sion nyp, Pyp € R™P is the type probability that the
given instance belongs to each type pair, where ny),
is the number of all known type pairs.

4.2.2 Trigger Enhancing Branch

Different from the prediction of entity type, triggers
are flexible and can be any word or phrase in the

&9

text. We formulate the trigger recognition task as a
labeling problem with two label sequences.

Given the representation matrix H output from
BERT, the model predicts two probabilities of each
token being the start index and end index of a trig-
ger, respectively. To handle the instances with-
out clear trigger (about half of them), we concate-
nate H with h, to form H = [H; h.], and set
the boundary index pointing to the [CLS] token.
These two probability distributions over the entire
sequence Psta, Pend € R +1) can be obtained by

Psta = SoftMax (MLP{dJ}(I—{)) ,

- )
Pend = SoftMax (MLP 413 (H)) .

To align the labeling result with the triggers in
RAG, we first weight each token in H based on
the two index probabilities and get the representa-
tion of predicted trigger hﬁe € R, then calculate
and normalize the similarity between hf,%e and all
known triggers V, € R"to*;

(psta + pend) H7

2
Pig = SoftMax (sim(h;gre,Vtg)) ,

tg
hpre -

3)

where p;, € R™9 is the probability of the given
instance corresponding to each known trigger, ny,
is the number of all triggers, and sim(-) is a simi-
larity function as follows:

S im(hg?]”ev V%g) =MLP {4d,1} ( [h;g“a Vgg;

tg .1 lg 7
hpre ) hpre © Vtg])ﬂ

i “)
— Vi,

where vgg € R? s the i-th trigger in V4 and o de-
notes element-wise product. In that case, even if we
run into a new trigger that we have never seen be-
fore, we can also estimate the correlation between
the new trigger and the known triggers via semantic
similarity, and then absorb more global statistics
from similar triggers. It provides the possibility for
the rationale enhancing on trigger branch.



4.2.3 Rationale Integration
For each type node in RAG, we update its embed-
ding with the instance type feature hi’; o Itis intu-
itive that the higher the probability of an instance
to a type, the more its contribution to the updating
process of that type. Specifically, we first compute
the update representation for each type node based
on the pattern probability p¢,, and then aggregate
information on the text side V., € R™»*¢ and
graph side Vy, € R™» *d yvia a gate mechanism:
V?p = p;htp

cls?

0tp = Sigmoid (MLP{zd,l}([th3 VZ;])) ’

th == (1 - 5tp) ¢} th + 5tp o V?p
&)

Similarly, we perform the same computation on
the trigger branch to reconstruct the trigger node
embeddings in RAG and result in Vtg € Rntaxd,

Next, we execute GNNs-based algorithm on the
RAG to update the representation of relation nodes.
R-GCN (Schlichtkrull et al., 2018) is chosen as the
message propagation strategy here because RAG is
naturally a heterogeneous graph:

tha Vtg> v?‘e = R-GCN (tha Vtga VTe) . (6)

After that, for the type enhancing branch, we
first calculate the mapping probability of an in-
stance to each relation based on the type probability
Ptp and corresponding bipartite rationale mapping
Mipore € R™X7re (ie., the edge weight Mypoye),
and then weight the updated relation embeddings
based on the mapping probability to obtain type
enhancing vector hy, € R?. Meanwhile, similar
operations are performed in the trigger branch:

htp = ptthpQTeVrea

(7
htg = pththTeVre .

4.3 Classification Module

The output module combines the overall vector and
two enhancing features to get final representation,
which is fed into a multi-layer perceptron followed
by a softmax function for relation classification:

h,. = [hcls; htp; htg]7

8
Pre = SoftMax (MLP34.p,.} (hre)) - ®)

4.4 Training Objectives

Recall that there are totally three tasks in our model,
including relation extraction, type prediction, and
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trigger (start and end indexes) labeling, which are
all reduced to the classification problem. In opti-
mization, we train the model end-to-end in a multi-
task manner here, and adopt cross-entropy as the
loss function for each task:

&)

where yy,s; denotes the ground truth, represented
by one-hot vector, Piyske(re,tp,sta,end) 1S the esti-
mated probability for each class.

Towards learning to perceive the strong signal
that a known trigger exactly in the text, we utilize
contrastive loss (Hadsell et al., 2006). The intu-
ition is that the trigger in text h;ﬁ«@ and the matched
trigger in RAG v{;“t should have similar represen-
tations (i.e., have a small distance in vector space,
d). For the mismatched trigger, we expect a margin
m between their embeddings. The contrastive loss
of trigger matching is as follows, where 1,4 is 1
if a trigger is originally in the text and O if it is not:

Liask = CIOSSEntrOPY(ymsk>ptask)7

d = [[hy, — vig™[l2.

Lonat = (1 = Liat)(max{0,m —d})?>  (10)
+ (ﬂmat)(d)Q
The joint loss of trigger labeling is thus
['tg = ﬁsta + ﬁend + Emat- (1 1)

Finally, the losses from the main RE task and
two subtasks are aggregated to form the training
objective, with two weight factors Ay, and Azy:

L= £re + )\tpﬁtp + )\tgﬁtg- (12)

Extension. Here, we introduce a simple extension
to simultaneously make full use of all data with
relation label and any number of data with pattern
annotation. Specifically, when there are intact pat-
tern annotations for an instance, we set 1., to 1
and calculate the losses of type prediction and trig-
ger labeling. Otherwise, we do not calculate them
and set 1., to 0. In this way, the training objective
(Equation 12) is modified as follow,

L= Loe+ VontOipLp + MigLeg).  (13)

5 Experiments

We name our proposed model RARE?, which can
be adopted to both document-level and sentence-
level RE tasks. Due to the differences in data for-
mats, applicable baseline models, and the custom

3abbreviation of RAtionale enhanced Relation Extraction



Dev Test

Model Fl+o Flc+ o Fl+o Fle+ o

Majority (Yu et al., 2020) 389400 387+00 358+00 358400
CNN (Yu et al., 2020) 461407 437405 480415 450+14
LSTM (Yu et al., 2020) 467+ 1.1 442408 474406 449407
BiLSTM (Yu et al., 2020) 4814+ 1.0 443413 486410 450+13
BERT (Devlin et al., 2019) 60.6+12 554409 585420 532416
TypeKDpexr (Zhang et al., 2020)) 624+ 1.1 577+1.0 608+1.5 556+ 1.4
RAREgzzr (ours) 64.6+07 601+08 642+12 587+1.1
BERTS (Yu et al., 2020) 63.0+£15 573+12 612409 554+09
TypeKDpgrry (Zhang et al., 2020)7  65.1£12 594+£09 635+13 578412
RAREjzrz, (ours) 675+08 626+10 664+08 61.0+1.0

Table 1: Main results on the document-level RE (DialogRE) task, o denotes the standard deviation computed from
five independent runs of each model. T marks the results we reproduce based on the official released code.

in handling entities, we conduct two sets of ex-
periments, comparing RARE to their respective
state-of-the-art models on the two tasks. In the ex-
periment, we take bert-base-uncased as backbone
encoder to verify the effectiveness of RARE and
perform further analysis. Besides, we reproduce
TypeKD (Zhang et al., 2020) as an extra baseline,
which is a recent work using global statistics be-
tween entity types and relations in RE.
Implementation Details. We follow the same in-
put format and hyper-parameter settings as in base-
lines for fair composition. Besides, the layer num-
ber of RAG is set to 2 (chosen from {1, 2,3}), the
match margin in L, is set to 0.1 (chosen from
{1,0.1,0.01}) for the two sets of experiments. We
tune the loss weights Ay, and Ay, with grid search
(chosen from [0.01, 0.05] in steps of 0.01) and set
Atp 10 0.01 and A4 to 0.03. For the nodes in RAG,
we regard entity types, triggers, and relations as
plain text, then employ the encoding module to
achieve their initial embeddings. All the hyper-
parameters are tuned based on dev set.
Evaluation Metrics. Following popular choices
and previous work, we use F1/Flc scores as eval-
uation metrics in the document-level RE task (i.e.,
DialogRE), where Flc is computed by only tak-
ing in the early part of a dialogue as input, instead
of the entire dialogue. In the sentence-level RE
task (i.e., TACRED/V), we report micro-averaged
Precision, Recall, and F1 scores.

5.1 Document-Level Relation Extraction

DialogRE (Yu et al., 2020) is a human-annotated
document-level RE dataset constructed from the
transcripts of an American television situation com-
edy Friends. It is also the first RE dataset with both
entity type and trigger annotation.
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P R Fl1
Type Prediction ~ 79.3 774 783
Trigger Labeling 51.5 542 527

Table 2: Performance of two subtasks on DialogRE.

5.1.1 Experimental Setup

We employ BERT and BERTs (Yu et al., 2020) as
the encoding module of RARE in this task. BERTs
is a speaker-aware version of BERT, achieving the
best performance on the dataset. For the complete-
ness of experiments, we include all official base-
lines: Majority strategy and CNN/LSTM/BiLSTM-
based models (Yu et al., 2020).

5.1.2 Results and Analysis

Main Results. Comparing the performance of dif-
ferent models in Table 1, the first conclusion we
draw is that RAREgggys outperforms all baseline
models in all evaluation matrices, which demon-
strates the effectiveness of our rationale enhanced
approach, as well as the motivation of using global
pattern co-occurrence statistics to boost the per-
formance of RE models. Secondly, RAREggrTs
improves by a relative margin against RAREggg7.
It is strong evidence that RARE is flexible enough
to adapt to various encoders. Thus, we have reason
to believe that a more powerful encoding module
could bring further performance gain for RARE.
Lastly, TypeKD-based models have a similar trend,
but their performance is relatively worse than mod-
els based on RARE, which shows that trigger and
type are two non-overlapping information sources,
and only considering one of them is not enough to
capture complete indicative knowledge.

We report the performance of RAREgggy, on the
two subtasks in Table 2. From the results, we find



Dev F1

RAREgerr 64.6
w/o Rationale graph 62.3
w/o Type enhancing branch 62.8
w/o Trigger enhancing branch 63.3
w/o Trigger matching loss 64.0
w/o Probabilistic edge weights 63.7
w/o Gate mechanism & GNNs 63.5

Table 3: Ablation study on DialogRE dev set.

that type prediction is relatively simpler than trigger
labeling. We explain that the entity type is a kind of
shallow linguistic feature, while the labeling trigger
requires a full understanding of context semantics.
We also notice that trigger labeling performance is
even worse than that of RE, since about half of the
positive instances have no explicit trigger (Yu et al.,
2020), meaning that the recognition of trigger faces
a more serious data imbalance problem than RE.
Overall, there is still a long way to improve the
performance of these two subtasks, which can be
left as a possible future direction.

Ablation Study. To investigate the effectiveness
of each module in RARE, we conduct an ablation
study on the DialogRE dev set. From the ablations
in Table 3, we observe that: (1) Rationale graph is
a necessary component that contributes 2.3% F1.
The performance superiority of this ablation over
BERT also shows that the two auxiliary subtasks of
type prediction and trigger labeling are beneficial
to RE. (2) Without the type or trigger enhancing
branch, the performance degradation suggests that
both type and trigger are necessary for our RARE.
(3) The ablation of removing the trigger matching
loss hurts the final result by 0.6% F1, which justi-
fies the design philosophy of entrusting the model
with the ability to perceive whether the trigger is
exactly in text. (4) We also try to remove the proba-
bilistic edge weights in RAG to make it degenerate
into a standard heterogeneous graph. In that case,
the performance drops by 0.9% F1. We think that
such probabilistic weights are capable of carrying
more global information than one-hot constraints.
(5) The information propagation (i.e., gate mecha-
nism and GNNs) brings the improvement of 1.1%
F1, which provides a channel to integrate the fea-
tures of input instance in the output layer.

Labor-Efficiency Study. Considering that most
RE datasets have no trigger annotation, we seek to
study the cost-effectiveness of adding patterns as
additional annotation in this experiment. Accord-
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Figure 4: Performance of models on DialogRE dev set
with partial training data. The positive instance number
with pattern annotation is shown in brackets.

ingly, we explore the performance of RAREpggr
and BERT for various fractions of training data.
From Figure 4, we can see that RAREggrr with
pattern annotations delivers competitive or even
better performance as BERT with twice the tradi-
tional training data. The drastic performance gain
justifies the slightly additional cost incurred in an-
notating patterns. Furthermore, we also introduce
RARE-Ext, the extension of RARE, to fully use
the partial data with pattern annotations and the
remaining data with only relation labels in training,
which provides a plug-and-play manner to utilize
pattern annotations. The results show that with the
increase of annotations, the performance improve-
ment becomes less significant. When using 50%
(with 2,584 positive instances) pattern annotations,
the performance of the model is comparable to that
of 100% annotations.

5.2 Sentence-Level Relation Extraction

In this section, we evaluate RARE on the sentence-
level RE task with two datasets TACRED (Zhang
et al., 2017) and TACREV (Alt et al., 2020). TA-
CRED is the most widely used sentence-level RE
dataset that constructed from New York Times. The
recent TACREYV (a.k.a TACRED-Revised) dataset
has the same training set as TACRED, which cor-
rects the wrong labels in the dev and test sets.

5.2.1 Experimental Setup

To our knowledge, SpanBERT (Joshi et al., 2020)
is the best performance model without external
knowledge in TACRED. We employ it as another
encoder (besides BERT) for RARE. For complete-
ness, we also include two official baselines, LSTM
and PA-LSTM (Zhang et al., 2017), as well as two
recent graph-based models, AG-GCN (Guo et al.,
2019) and LST-AGCN (Sun et al., 2020), here.
Different from DialogRE, TACRED/V annotates
only entity types. Inspired by the results of the
label-efficiency study on DialogRE, we annotate



Model TACRED TACREV

P R Fl1 P R Fl1
LSTM (Zhang et al., 2017) 657 599 627 715 697 70.6
PA-LSTM (Zhang et al., 2017) 657 645 651 745 741 743
AG-GCN (Guo et al., 2019) 73.1 609 682 777 734 155
LST-AGCN (Sun et al., 2020) - - 68.8 - - -
BERT (Devlin et al., 2019)* 672 693 682 760 756 751
TypeKDpzxr (Zhang et al., 2020)° 70.6 687 69.6 779 76.1 77.0
RAREggrr-Ext (ours)* 714 681 698 786 762 774
SpanBERT (Joshi et al., 2020) 70.8 709 708 75.7 80.7 78.0
TypeKDspanperr (Zhang et al., 2020)" 71,7 704 710 798 783 78.8
RARESspanserr-Ext (ours)™ 725 693 708 80.1 78.0 79.0

Table 4: Main results on the sentence-level RE (TACRED/V) task. I marks the results we reproduce based on the
repository released by (Joshi et al., 2020). We implement RARE-Ext with 20% extra annotations ().
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Figure 5: Performance of models on TACREV dev set
with partial training data.

triggers for 2,585 positive instances, which ac-
counts for about 20% of all positive instances in
the training set of TACRED/V, to verify whether
RARE could maintain such excellent lab efficient
performance on sentence-level RE task. We repeat
our experiments for five random seed initializations,
and the results are statistically significant with a
p-value of less than 0.05.

5.2.2 Results and Analysis

Main Results. With 20% pattern annotations, we
compare RARE-Ext against several representative
baselines and summarize the results in Table 4.
Similar observations hold that RARE is capable
of achieving superior performances with advanced
encoding modules. Moreover, RARE-Ext achieves
or even surpasses the performance of TypeKD that
using 100% type annotations. Although sometimes
RARE does not make significant improvements on
TACRED, it outperforms the baselines in TACREV
and leads to state-of-the-art performances, which is
a more accurate evaluation set. Overall, the perfor-
mance gain of RARE on this task is not as amaz-
ing as the document-level task. We analyze that
because the sentence is much shorter than the doc-
ument, and involves fewer relations, BERT-based
models are sufficient in capturing the key seman-
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tic clue for decision-making, thus the benefits of
global knowledge are slightly limited.
Labor-Efficiency Study. Following the approxi-
mate number of positive instances in DialogRE, we
split the pattern-annotated data to perform the labor-
efficiency study on TACREV (see Figure 5). The
results indicate that when both using partial data,
RAREgggy consistently outperforms BERT. It en-
lightens us to fully exploit the potential knowledge
of the dataset, including local annotation and global
statistics, to improve the performance of RE, espe-
cially under a low-resource scenario. The consider-
able progress of RAREggrr-Ext demonstrates that
RARE is able to improve RE by annotating patterns
on any part of an existing dataset. Considering
the differences between DialogRE and TACREV
(e.g., relation number, domain and style, the ratio
of positive and negative instances), it is under in-
vestigation whether further improvements could be
made by increasing annotations on TACREYV, and
we leave it as future work.

5.3 Case Study

In Figure 6, we select two representative cases to
demonstrate the working principle of RARE. The
first case is a short snippet from a DialogRE docu-
ment, in which two entities are scattered in different
sentences, and the context semantics is complex
and changeable, BERT fails to capture the relation
between them. Conversely, RARE predicts the trig-
ger engaged and aligns it with the known trigger
engagement, and then highlights the strong sig-
nal to identify the relation correctly. In the second
case, which is from TACREYV, BERT mistakenly re-
gards Jackson Hewitt as a person, leading to a
wrong answer of person-related relation. With the
help of type prediction and the global type-relation



Speaker 2;syp,: Phoebe, I'm engaged!
Speaker 1: I'm just saying, get his number just in case. But no
Chandlerogy; is in an accident

BERT: unanswerable (0.63)

(0.77)

RARE:per:girl /boyfriend

PATTERN: person ...

RATIONALE:
0.99)

engaged ...

person

per:girl/boyfriend ]

(0.68)

Jackson Hewittsypy;, based in Parsippany oy, NJ, is the nation’s
second-largest tax preparation chain after H&R Block.

BERT: per:cities of residence (0.90)

(0.64)

RARE:org:city of headquarters

PATTERN: organization ...
RATIONALE:
0.72)

based in city

org:city of headquarters ]

(0.84)

Figure 6: Internal principles of RARE. The number in
bracket refers the probabilities predicted by model.

constraints in RAG, RARE could avoid this error
and make the right decision.

6 Conclusion

In this paper, we propose a novel rationale graph to
organize the global co-occurrence statistics among
entity types, triggers, and relations. By introducing
the two subtasks of entity type prediction and trig-
ger labeling, we build the connection between input
instance and the known patterns in rationale graph,
which provides the model with the possibility to
benefit from the global co-occurrence knowledge
stored in the graph, so as to improve the perfor-
mance of RE. Experimental results on two public
datasets prove the effectiveness of our method. We
also highlight two directions for future work: the
first is to improve the performance of two subtasks,
especially trigger labeling, the other is to adopt the
proposed approach in more RE scenarios.
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Abstract

This work studies the long-standing prob-
lems of model capacity and negative interfer-
ence in multilingual neural machine transla-
tion (MNMT). We use network pruning tech-
niques and observe that pruning 50-70% of
the parameters from a trained MNMT model
results only in a 0.29-1.98 drop in the BLEU
score. Suggesting that there exist large re-
dundancies in MNMT models. These observa-
tions motivate us to use the redundant parame-
ters and counter the interference problem effi-
ciently. We propose a novel adaptation strat-
egy, where we iteratively prune and retrain
the redundant parameters of an MNMT to im-
prove bilingual representations while retain-
ing the multilinguality. Negative interference
severely affects high resource languages, and
our method alleviates it without any additional
adapter modules. Hence, we call it parameter-
free adaptation strategy, paving way for the ef-
ficient adaptation of MNMT. We demonstrate
the effectiveness of our method on a 9 lan-
guage MNMT trained on TED talks, and report
an average improvement of +1.36 on high re-
source pairs. Code will be released here.

1 Introduction

Multilingual neural machine translation(MNMT)
has seen various advances in recent years (Dong
et al., 2015; Firat et al., 2016; Zoph et al., 2016;
Tan et al., 2019; Aharoni et al., 2019; Arivazhagan
et al., 2019). However, the core principle behind
the effectiveness in terms of modelling multiple
languages remains the same, i.e., sharing all the
model parameters between all the languages (John-
son et al., 2017). Although highly scalable and
effective, the performance on high resource lan-
guages decreases as more low resource languages
are added in the model; this is called negative in-
terference. To overcome this, recent works (Bapna
and Firat, 2019; Philip et al., 2020; Zhang et al.,
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2020) proposed language-specific adapter modules,
which provide extra parameters to learn language
specific representations, and overcomes the effect
of negative interference caused by a high degree of
parameter sharing.

In this paper, we propose an alternative to
adapter modules. Instead of adding more parame-
ters, we show that the Transformer (Vaswani et al.,
2017) has enough capacity to model multiple lan-
guages and overcome negative interference effec-
tively. Inspired by the work of Mallya and Lazeb-
nik (2018), we apply iterative pruning to free up the
redundant parameters from an MNMT, and retrain
them to learn language specific representations. We
start with a trained MNMT model, and prune a frac-
tion of the model parameters, we freeze the surviv-
ing parameters and retrain the free ones on a bilin-
gual dataset. This process is iteratively applied for
each bilingual pair to get bilingual masks over all
the model parameters, as illustrated in figure 1. We
show that using only a fraction of redundant param-
eters, significantly improves the performance on
high resource languages. Also, we retain the multi-
linguality and the zero-shot translation ability after
adaptation. By demonstrating the effectiveness of
this approach, we open a potential research direc-
tion towards parameter-free adaptation in MNMT.

2 Related Work

Adding multiple tasks to a single network: Due
to the over-parameterized nature of deep neural
networks, prior works (Kirkpatrick et al., 2017;
Lee et al., 2017; Li and Hoiem, 2017; Triki et al.,
2017) aimed at developing methods to learn mul-
tiple tasks while avoiding catastrophic forgetting.
Mallya and Lazebnik (2018) proposed an iterative
pruning approach to free up parameters for adding
new tasks and retain the previously trained param-
eters at the same time. Inspired by the concept,

Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 96-102
August 1-6, 2021. ©2021 Association for Computational Linguistics
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Figure 1: (Better seen in colour.) Illustration of the evolution of model parameters. (a) shows the multilingual
parameters in grey. Through 60% pruning and retraining, we arrive at (b), here white represents the free weights
with value=0. The surviving weights in grey will be fixed for the rest of the method. Now, we train the free
parameters on the first bilingual pair (L-1) and arrive at (c), which represents the initial parameters of L-1 in
orange, and share weights with the previously trained multilingual parameters in grey. Again, with 50% pruning
and retraining on the current L-1 specific weights in orange, we get the final parameters for L-1 shown in (d) and
extract the final mask for L-1 in (f). We repeat the same procedure for all the bilingual pairs and extract the masks

for each pair.

we show that an MNMT Transformer model can be
heavily pruned and the freed up parameters can be
retrained to improve bilingual performance, while
retaining the multilinguality.

Adapting multilingual model to a new lan-
guage pair and domain adaptation: Prior works
on adaptation (Neubig and Hu, 2018; Vari$ and
Bojar, 2019; Stickland et al., 2020; Escolano et al.,
2020; Akella et al., 2020; Bapna and Firat, 2019;
Philip et al., 2020; Zhang et al., 2020) aims at im-
proving language specific performance by either
fine-tuning the same MNMT model or adding lan-
guage specific modules. While being effective,
these methods either lose their multilinguality or
introduce additional parameters. Sharing the same
objective, we propose a method to adapt an MNMT,
without adding language-specific modules, while
retaining the multilinguality at the same time. An-
other line of work (Thompson et al., 2018; Wuebker
et al., 2018), proposed training of subnetworks and
freezing the rest for domain adaptation.

3 Method

The central idea of our method is to use magnitude
pruning to free up parameters in the model and
learn bilingual specific representations. Figure 1
depicts the evolution of model weights during the
training procedure, with (a) representing the initial
multilingual weights in grey. We prune away a frac-
tion of parameters using the one-shot magnitude
pruning technique (Han et al., 2015), which results
in a compressed multilingual representation. We
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further train the survived multilingual weights for
a few more epochs on the multilingual dataset to
compensate for extreme pruning, now the multilin-
gual parameters will remain fixed. Then, we use the
free parameters to learn the first language-specific
representations. We select the first bilingual dataset
and train the free parameters. Next we again prune
a fraction of weights from the current bilingual
parameters only, to accommodate more bilingual
representations. We repeat the same procedure for
all the existing bilingual pairs. A point to note is
that during a forward pass data flows through all
the shared and specific weights, while during the
backward pass only the current bilingual-specific
parameters get updated. Hence, the accuracy is re-
tained for all the previously trained bilingual pairs
and it enables a high degree of sharing and speci-
ficity at the same time.

Pruning Approach: We perform magnitude
pruning (Han et al., 2015) over the weights of all
layers. For simplicity, we do not use the more so-
phisticated pruning methods (Frankle and Carbin,
2019; Michel et al., 2019; Voita et al., 2019). We
do not perform pruning over biases and layer nor-
malization parameters, since they correspond to
less than 1% of the total parameters, which is in-
significant. Also, we do not prune the embeddings,
as they are data specific parameters. All are kept
fixed after training the multilingual model.

Inference: After finishing the training for each
bilingual pair, we get the final mask over all the
parameters of the model. Values of the mask range



from 1 — N, where N is the total number of
bilingual pairs. Each model parameter is masked
according to the bilingual pair of interest. To pre-
dict a translation for the ¢** pair, all the parameters
learned for languages 1 — ¢ will be used, as shown
in figure 1(f) and (g).

4 Experiments

4.1 Datasets

We use the TED talks (Qi et al., 2018) in all our
experiments, and all the numbers are BLEU (Pap-
ineni et al., 2002) scores over the test set'. Here we
have chosen to train on 8 English centring language
pairs” en-xx covering a spectrum of sizes from high
resource Ar (Arabic), 214K to low resource Be (Be-
larusian), 4.5K.

4.2 Training

Architecture: We use Transformer architecture
(Vaswani et al., 2017), implemented in fairseq
(Ottet al., 2019), which was modified to include the
pruning and masking modules. We train a joint BPE
model (Sennrich et al., 2016) on all languages to the
vocabulary size of 40K. The Transformer (Vaswani
et al., 2017) architecture used in this work> has 8
attention heads, 6 encoder and decoder layers, an
embedding size of 512, and a feed-forward dimen-
sion of 2048. We set the dropout to 0.3.

MNMT Training: We train a standard MNMT
model following similar settings as Johnson et al.
(2017). A single many-to-many model is trained
on all the English-centric data, using a source-side
control token to indicate the target language. We
use Adam (Kingma and Ba, 2015) with an inverse
square root schedule, with 4500 warm-up updates
and a maximum learning rate of 0.0003. We set the
maximum batch size per GPU to 3050 tokens and
train on 4 GPUs. Like Arivazhagan et al. (2019), to
avoid the size imbalance, we use the temperature-
based sampling strategy with T" = 5. The MNMT
is trained for 40 epochs over 8 English-centric lan-
guage pairs, i.e., 16 directions. As shown in table
1, we train a strong parent MNMT baseline.

Pruning MNMT: We prune 50% of parameters
from a fully converged MNMT model, and retrain
the surviving parameters on the same multilingual
dataset for ten more epochs, to compensate for the
lost parameters.

'Scores reported are SacreBLEU (Post, 2018)
ar, az, be, de, gl, he, it, sk
3transformer in fairseq
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Adapting MNMT to bilingual specific repre-
sentations: After pruning the MNMT model, we
select each bi-direction datasets (en-xx and xx-en)
in the descending order of dataset sizes. We use the
original source side control token, reset the learn-
ing rate scheduler and train all the free parameters
for 20 epochs. Then, we prune 75% of parame-
ters from the current bilingual specific parameters
and retrain for ten more epochs to compensate for
heavy pruning.

Pruning ratios are decided based on the trade
off between the accuracy lost and the space left to
adapt all the languages. We prune 50-70% of pa-
rameters from the parent MNMT and observe that it
leads to a drop of 0.29-1.98 Bleu score. Therefore,
we select 50% to be the first pruning ratio, and is
kept constant in all the experiments. The second
pruning ratio is kept 75% such that the last lan-
guage pairs get at least 2-5% of parameters. More
variations in the second pruning ratio is demon-
strated in section 5.4.

5 Results and Discussions

5.1 Overcoming interference for high
resource pairs:

In table 1, we present a comparative study of a high
resource language scenario, severely affected by
negative interference. Adapted MNMT outperforms
the parent MNMT on all the 8 directions, with an
average improvement of +1.40 on xx-en, and +1.32
on en-xx directions, and closes the gap with high
performing bilingual baselines.

Analysing model capacity and negative inter-
ference: Now, we expound on the problems of
model capacity and interference. As shown in ta-
ble 1, pruning 50% of parameters from the par-
ent MNMT model leads to an average loss of just
0.29 BLEU points. This observation confirms, that
there exists large redundancies even in a 9-language
MNMT model. The drop in the performance of
an MNMT over its counterpart bilingual models is
loosely associated with the lack of capacity. As
can be seen in figure 2, by using only a fraction
of parameters for each bilingual pair, we can sig-
nificantly improve the performance over the par-
ent MNMT. Our results demonstrate the ability of
parameter-free adaptation to fight negative inter-
ference, and improve the performance of severely
affected high resource language pairs.



xXx— en en— xx
Ar De He It Ar De He It
1) Abharoni et al. (2019) 27.84 30.50 34.37 33.64 1295 23.31 23.66 30.33
Philip et al. (2020) 32.99 37.36 39.00 39.73 17.22 2994 2747 3542
Our Bilingual 33.11 39.01 39.11 41.40 16.79 29.73 26.80 36.23
Abharoni et al. (2019) 28.32 32,97 33.18 35.14 1425 2795 24.16 33.26
Philip et al. (2020) 30.68 36.53 36.00 38.77 1540 28.60 24.53 34.02
(2) Parent MNMT 31.33 37.13 36.86 39.54 15.71 26.32 24.60 3391
50% Pruned MNMT  30.84 37.10 36.29 39.44 1541 26.20 24.06 33.70
Adapted MNMT 32.68 38.41 38.31 41.04 16.72 27.63 25.76 35.76

Table 1: BLEU scores of our models on the TED test sets compared to the literature, (1) - Bilingual baselines. (2) -
Multilingual models scores. Here Aharoni et al. (2019) and Philip et al. (2020) are trained on 59 and 20 languages
respectively. Parent MNMT is our multilingual model trained till convergence on 9 languages. 50% pruned MNMT
is the compressed parent MNMT. Adapted MNMT is the proposed model.
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Figure 2: Absolute difference in the BLEU scores, with
the parent MNMT, for 8 bilingual pairs. Each bilingual
pair is the average over both the English-centric direc-
tions. The languages are arranged in the exact order
of the training sequence. Numbers on the x-axis are
percentages of the bilingual specific parameters used.

5.2 Analysing differences in the adaptation of
high and low resource pairs:

To understand the impact of parameter-free adap-
tation on both the high and low resource language
pairs in an unbiased setting. We train two models in
opposite orders of adding bilingual pairs. First, we
train in the order of high to low resource languages
(Ar to Be). Second, we train in the order of low to
high resource languages (Be to Ar). Now, we as-
sign the same proportion of parameters, to the high
and low resource languages (Ar, He) in case 1, and
(Be, Az) in case 2 respectively. As evident from
figure 2 and 3, the improvements in Ar and He in
case 1 is significantly more, than the improvement
in Be and Az in case 2. This observation agrees
with the fact that negative interference severely af-
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Figure 3: Same as figure 2, trained in the reverse order

fects the high resource languages in an MNMT, and
it needs adaptation to be improved. But, the perfor-
mance of low resource languages in an MNMT, is
already near saturation due to the positive transfer
from high resource languages. Hence, to extract
the most out of parameter-free adaptation, it is bet-
ter to prune and retrain the network in the order of
high to low resource languages. This assigns high
proportion of parameters to high resource pairs, to
effectively overcome negative interference.

5.3 Zero-shot Translation:

Zero-shot translation in the context of MNMT,
refers to inference between pairs that are not seen
directly during the training phase xx-xx. We show
that we retain this important ability in our adapted
MNMT. Adapted MNMT consists of 50% pruned
MNMT weights and 50% language specific weights.
The pruned MNMT weights are used to evaluate
on zero-shot pairs, just like a traditional MNMT by
appending the source side language control token



Xx— en en— xx
Ar He It De Ar He It De
(Bilingual) Full-FT 33.89 39.66 41.64 40.00 17.38 27.50 36.72  29.87
Ar only 33.01 - - - 16.80 - - -
Ar-He 3321 3826 - - 16.72 25.52 - -
(Multilingual)  Ar-He-It 3299 3845 41.03 - 16.61 26.00 35.56 -
Ar-He-It-De 32.68 38.43 41.14 38.39 16.72 25.89 36.08 27.25

Table 2: Full-FT represents the bilingual models derived from finetuning the full parent MNMT. Rest are the
adapted MNMTs adapted over 50% free parameters of the pruned MNMT. 1) Ar only with 50% parameters, 2) Ar,
He with 25% each, 3) Ar, He, It with 16.6% each, and 4) Ar, He, It, De with 12.5% each.

Johnson et al. (2017). As shown in figure 4, adapted
MNMT performs as good as the parent MNMT on
all the 56, xx-xx directions even with only 50% of
the total parameters.

16 —— Parent MNMT
Adapted MNMT
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Figure 4: Absolute BLEU scores for the parent and the
adapted MNMT on all the 56 zero-shot xx-xx pairs ar-
ranged from high to low resource.

5.4 Adapting to a subset of languages and
retaining the multilinguality:

Due to limited and fixed number of parameters,
we cannot adapt to arbitrary number of languages.
However, this framework allows high flexibility in
adapting the parent MNMT to only the languages
of interest, while retaining the multilinguality si-
multaneously. We adapt the parent MNMT to four
models: 1) Ar, 2) Ar, He, 3) Ar, He, It and, 4) Ar,
He, It, De. This way, we can assign all the free
parameters to only the languages of interest and
increase their capacities. The first pruning ratio is
set to 50% for all four models. The second prun-
ing ratio is set such that each language receives
equal proportion of parameters. From the results
in table 2, we observe that assigning more param-
eters improve the performance marginally. The
four adapted MNMTs have similar performances,
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even with a significant difference in the proportion
of parameters assigned for each language. The
4" model, with only 12.5% parameters reserved
for Ar, performs competitively with the 15¢ model
with 50% parameters for Ar. This implies, that a
small fraction of parameters can effectively over-
come negative interference, hence allowing space
to adapt to multiple languages. To infer on the
remaining languages which are not adapted, we
can use 50% pruned MNMT weights, as done for
zero-shot translation in the previous section, hence
retaining the multilinguality.

In table 2, we also compare the results of the
four adapted MNMTs, with naive finetuning of the
full parent MNMT to bilingual pairs (Full-FT). The
difference between naive finetuning and the pro-
posed adaptation approach is that the former uses
all the 100% of model parameters and the embed-
dings to adapt to a single bilingual pair, thus the
multilinguality is lost. While in our approach, the
pruned MNMT weights and the embeddings are
fixed, and we only retrain the free parameters very
efficiently, allowing to adapt to multiple languages.
As can be seen in table 2, adapted MNMTs per-
form competitively with Full-FT while retaining
the multilinguality.

6 Conclusion

We investigate the problems of model capacity and
negative interference in multilingual neural ma-
chine translation. We show that even a 9 language
MNMT has a large proportion of redundant param-
eters, which are efficiently retrained to overcome
interference. We propose a parameter-free adap-
tation strategy. Where, we use iterative pruning
and retraining to improve bilingual representations,
without any additional parameters. We hope that
our work will attract more attention to practical and
efficient ways of adapting an MNMT.
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Abstract

Recently, deep neural networks (DNNs) have
achieved great success in semantically chal-
lenging NLP tasks, yet it remains unclear
whether DNN models can capture composi-
tional meanings, those aspects of meaning that
have been long studied in formal semantics.
To investigate this issue, we propose a Sys-
tematic Generalization testbed based on Natu-
ral language Semantics (SyGNS), whose chal-
lenge is to map natural language sentences to
multiple forms of scoped meaning representa-
tions, designed to account for various semantic
phenomena. Using SyGNS, we test whether
neural networks can systematically parse sen-
tences involving novel combinations of logi-
cal expressions such as quantifiers and nega-
tion. Experiments show that Transformer and
GRU models can generalize to unseen combi-
nations of quantifiers, negations, and modifiers
that are similar to given training instances in
form, but not to the others. We also find that
the generalization performance to unseen com-
binations is better when the form of meaning
representations is simpler. The data and code
for SyGNS are publicly available at https:
//github.com/verypluming/SyGNS.

1 Introduction

Deep neural networks (DNNs) have shown im-
pressive performance in various language under-
standing tasks (Wang et al., 2019a,b, i.a.), in-
cluding semantically challenging tasks such as
Natural Language Inference (NLI; Dagan et al.,
2013; Bowman et al., 2015). However, a number
of studies to probe DNN models with various NLI
datasets (Naik et al., 2018; Dasgupta et al., 2018;
Yanaka et al., 2019; Kim et al., 2019; Richardson
et al., 2020; Saha et al., 2020; Geiger et al., 2020)
have reported that current DNN models have some
limitations to generalize to diverse semantic phe-
nomena, and it is still not clear whether DNN mod-
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Training Sentences Generalization Test

One dog ran  MODIFIER dogs ran
-&ogs-r-a-n """" QUANTIFIER™ ™™
dogs |did not| run
One dog |did not| run
NEGATION

Multiple meaning representations Evaluation methods

Exact matching: G = P?
MRI1: Vz.(dog*(x) A wild*(z)) — (run’(z)) N
Theorem Proving: G < P?
MR2: ALL AND DOG WILD RUN Polarity: {dogﬂwildl,runﬁ}
bl IMP b2 b3
b2 REF x1
b2 wild x1
b2 dog x1
b3 run x1

T
wild(z1)
dog(x1)

MR3: = | run(z1) Clausal form:

Figure 1: Illustration of our evaluation protocol using
SyGNS. The goal is to map English sentences to mean-
ing representations. The generalization test evaluates
novel combinations of operations (modifier, quantifier,
negation) in the training set. We use multiple meaning
representations and evaluation methods.

els obtain the ability to capture compositional as-
pects of meaning in natural language.

There are two issues to consider here. First, re-
cent analyses (Talmor and Berant, 2019; Liu et al.,
2019; McCoy et al., 2019) have pointed out that
the standard paradigm for evaluation, where a test
set is drawn from the same distribution as the train-
ing set, does not always indicate that the model
has obtained the intended generalization ability for
language understanding. Second, the NLI task of
predicting the relationship between a premise sen-
tence and an associated hypothesis without asking
their semantic interpretation tends to be black-box,
in that it is often difficult to isolate the reasons why
models make incorrect predictions (Bos, 2008).

To address these issues, we propose SyGNS
(pronounced as signs), a Systematic Generaliza-
tion testbed based on Natural language Semantics.
The goal is to map English sentences to various
meaning representations, so it can be taken as a
sequence-to-sequence semantic parsing task.

Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 103-119
August 1-6, 2021. ©2021 Association for Computational Linguistics



Figure 1 illustrates our evaluation protocol us-
ing SyGNS. To address the first issue above, we
probe the generalization capability of DNN mod-
els on two out-of-distribution tests: systematic-
ity (Section 3.1) and productivity (Section 3.2),
two concepts treated as hallmarks of human cog-
nitive capacities in cognitive sciences (Fodor and
Pylyshyn, 1988; Calvo and Symons, 2014). We
use a train-test split controlled by each target con-
cept and train models with a minimally sized train-
ing set (Basic set) involving primitive patterns
composed of semantic phenomena such as quan-
tifiers, modifiers, and negation. If a model learns
different properties of each semantic phenomenon
from the Basic set, it should be able to parse a sen-
tence with novel combination patterns. Otherwise,
a model has to memorize an exponential number
of combinations of linguistic expressions.

To address the second issue, we use multi-
ple forms of meaning representations developed
in formal semantics (Montague, 1973; Heim and
Kratzer, 1998; Jacobson, 2014) and their respec-
tive evaluation methods. We use three scoped
meaning representation forms, each of which
preserves the same semantic information (Sec-
tion 3.3). In formal semantics, it is gener-
ally assumed that scoped meaning representations
are standard forms for handling diverse semantic
phenomena such as quantification and negation.
Scoped meaning representations also enable us to
evaluate the compositional generalization ability
of the models to capture semantic phenomena in
a more fine-grained way. By decomposing an out-
put meaning representation into constituents (e.g.,
words) in accordance with its structure, we can
compute the matching ratio between the output
representation and the gold standard representa-
tion. Evaluating the models on multiple mean-
ing representation forms also allows us to explore
whether the performance depends on the complex-
ity of the representation forms.

This paper provides three main contributions.
First, we develop the SyGNS testbed to test model
ability to systematically transform sentences in-
volving linguistic phenomena into multiple forms
of scoped meaning representations. The data and
code for SyGNS are publicly available at https:
//github.com/verypluming/SyGNS. Second, we
use SyGNS to analyze the systematic generaliza-
tion capacity of two standard DNN models: Gated
Recurrent Unit (GRU) and Transformer. Experi-

ments show that these models can generalize to
unseen combinations of quantifiers, negations, and
modifiers to some extent. However, the generaliza-
tion ability is limited to the combinations whose
forms are similar to those of the training instances.
In addition, the models struggle with parsing sen-
tences involving nested clauses. We also show that
the extent of generalization depends on the choice
of primitive patterns and representation forms.

2 Related Work

The question of whether neural networks obtain
the systematic generalization capacity has long
been discussed (Fodor and Pylyshyn, 1988; Mar-
cus, 2003; Baroni, 2020). Recently, empirical
studies using NLI tasks have revisited this ques-
tion, showing that current models learn undesired
biases (Glockner et al., 2018; Poliak et al., 2018;
Tsuchiya, 2018; Geva et al., 2019; Liu et al., 2019)
and heuristics (McCoy et al., 2019), and fail to
consistently learn various inference types (Rozen
et al., 2019; Nie et al., 2019; Yanaka et al., 2019;
Richardson et al., 2020; Joshi et al., 2020). In
particular, previous works (Goodwin et al., 2020;
Yanaka et al., 2020; Geiger et al., 2020; Yanaka
et al., 2021) have examined whether models learn
the systematicity of NLI on monotonicity and
veridicality. While this line of work has shown
certain limitations of model generalization capac-
ity, it is often difficult to figure out why the NLI
model fails and how to improve it, partly because
NLI tasks depend on multiple factors, including
semantic interpretation of target phenomena and
acquisition of background knowledge. By focus-
ing on semantic parsing rather than NLI, one can
probe to what extent models systematically inter-
pret the meaning of sentences according to their
structures and the meanings of their constituents.
Meanwhile, datasets for analysing the compo-
sitional generalization ability of DNN models in
semantic parsing have been proposed, including
SCAN (Lake and Baroni, 2017; Baroni, 2020),
CLUTRR (Sinha et al., 2019), and CFQ (Keysers
et al., 2020). For example, the SCAN task is to
investigate whether models trained with a set of
primitive instructions (e.g., jump — JUMP) and
modifiers (e.g., walk twice — WALK WALK) gen-
eralize to new combinations of primitives (e.g.,
jump twice — JUMP JUMP). However, these
datasets deal with artificial languages, where the
variation of linguistic expressions is limited, so it
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is not clear to what extent the models systemati-
cally interpret various semantic phenomena in nat-
ural language, such as quantification and negation.

Regarding the generalization capacity of DNN
models in natural language, previous studies have
focused on syntactic and morphological general-
ization capacities such as subject-verb agreement
tasks (Linzen et al., 2016; Gulordava et al., 2018;
Marvin and Linzen, 2018, i.a.). Perhaps closest
to our work is the COGS task (Kim and Linzen,
2020) for probing the generalization capacity of se-
mantic parsing in a synthetic natural language frag-
ment. For instance, the task is to see whether mod-
els trained to parse sentences where some lexical
items only appear in subject position (e.g., John
ate the meat) can generalize to structurally related
sentences where these items appear in object posi-
tion (e.g., The kid liked John). In contrast to this
work, our focus is more on semantic parsing of
sentences with logical and semantic phenomena
that require scoped meaning representations. Our
study also improves previous work on the compo-
sitional generalization capacity in semantic pars-
ing in that we compare three types of meaning rep-
resentations and evaluate them at multiple levels,
including logical entailment, polarity assignment,
and partial clause matching (Section 3.3).

3 Overview of SyGNS

We use two evaluation concepts to assess the sys-
tematic capability of models: systematicity (Sec-
tion 3.1) and productivity (Section 3.2). In evalu-
ating these two concepts, we use synthesized pairs
of sentences and their meaning representations to
control a train-test split (Section 3.4). The main
idea is to analyze models trained with a minimum
size of a training set (Basic set) involving prim-
itive patterns composed of various semantic phe-
nomena; if a model systematically learns primitive
combination patterns in the Basic set, it should
parse a new sentence with different combination
patterns. We target three types of scoped meaning
representations and use their respective evaluation
methods, according to the function and structure
of each representation form (Section 3.3).

3.1 Systematicity

Table 1 illustrates how we test systematicity, i.e.,
the capacity to interpret novel combinations of
primitive semantic phenomena. We generate Ba-
sic set 1 by combining various quantifiers with sen-

Pattern Sentence
Train
Primitive quantifier One tiger ran
Basic 1 EXI A tiger ran
NuM Two tigers ran
UNI Every tiger ran
Basic2 ADJ One small tiger ran
ADV One tiger ran quickly
CoN One tiger ran or came
Test
EX1+ADJ A small tiger ran
NUM+ADV Two tigers ran quickly
UNI4-CON Every tiger ran or came

Table 1: Training and test instances for systematicity.

tences without modifiers. We also generate Basic
set 2 by setting an arbitrary quantifier (e.g., one)
to a primitive quantifier and combining it with var-
ious types of modifiers. We then evaluate whether
models trained with Basic sets 1 and 2 can parse
sentences involving unseen combinations of quan-
tifiers and modifiers. We also test the combination
of quantifiers and negation in the same manner;
the detail is given in Appendix D.

To provide a controlled setup, we use three
quantifier types: existential quantifiers (EXI), nu-
merals (NUM), and universal quantifiers (UNI).
Each type has two patterns: one and a for EXI, two
and three for NUM, and all and every for UNI. We
consider three settings where the primitive quanti-
fier is set to the type EXI, NUM, or UNI.

For modifiers, we distinguish three types — ad-
jectives (ADJ), adverbs (ADV), and logical con-
nectives (CON; conjunction and, disjunction or)
— and ten patterns for each. Note that each modi-
fier type differs in its position; an adjective appears
inside a noun phrase (e.g., one small tiger), while
an adverb (e.g., quickly) and a coordinated phrase
with a logical connective (e.g., or came) appears
at the end of a sentence. Although Table 1 only
shows the pattern generated by the primitive quan-
tifier one and the noun tiger, the noun can be re-
placed with ten other nouns (e.g., dog, cat, etc.) in
each setting. See Appendix A for more details on
the fragment of English considered here.

3.2 Productivity

Productivity refers to the capacity to interpret an
indefinite number of sentences with recursive oper-
ations. To test productivity, we use embedded rela-
tive clauses, which interact with quantifiers to gen-
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Pattern Sentence
Train (Basic 1: depth 0, Basic 2: depth 1)
Basicl NON Two dogs loved Ann
Basic2 PER Bob liked a bear [that chased
all polite cats]
CEN Two dogs [that all cats
kicked] loved Ann

Test (examples: depth 2)

PER+PER Bob liked a bear
[that chased all polite cats
[that loves Ann]]
PER+CEN Two dogs [that a bear

[that chased all polite cats]
kicked] loved Ann

Table 2: Training and test instances for productivity.

erate logically complex sentences. Table 2 shows
examples. We provide two Basic sets; Basic set 1
consists of sentences without embedded clauses
(NON) and Basic set 2 consists of sentences with a
single embedded clause, which we call sentences
with depth one. We then test whether models
trained with Basic sets 1 and 2 can parse a sentence
involving deeper embedded clauses, i.e., sentences
whose depth is two or more. As Table 2 shows,
we consider both peripheral-embedding (PER) and
center-embedding (CEN) clauses.

3.3 Meaning representation and evaluation

Overview To evaluate generalization capacity
in semantic parsing at multiple levels, we use
three types of scoped meaning representations:
(i) First-Order Logic (FOL) formulas, (ii) Dis-
course Representation Structures (DRSs; Kamp
and Reyle, 1993), and (iii) Variable-Free (VF) for-
mulas (Baader et al., 2003; Prat-Hartmann and
Moss, 2009). DRSs can be converted to clausal
forms (van Noord et al., 2018a) for evaluation. For
instance, the sentence (1) is mapped to the FOL
formula in (2), the DRS in (3a), its clausal form in
(3b), and the VF formula in (4).

(1) One white dog did not run.
(2) Jzi.(white(z1) Adog(z1) A —run(zy))

1 bl REF x1
white(z;) bl white x1
(3) a | dog(a) b. bildogxl
bl NOT b2
ﬂIﬁaﬂaul b2 run x1

(4) EXIST AND WHITE DOG NOT RUN

Using these multiple forms enables us to analyze
whether the difficulty in semantic generalization

106

depends on the format of meaning representations.

Previous studies for probing generalization ca-
pacity in semantic parsing (e.g., Lake and Baroni,
2017; Sinha et al., 2019; Keysers et al., 2020; Kim
and Linzen, 2020) use a fixed type of meaning
representation, with its evaluation method limited
to the exact-match percentage, where an output
is considered correct only if it exactly matches
the gold standard. However, this does not prop-
erly assess whether models capture the structure
and function of meaning representation. First,
exact matching does not directly take into ac-
count whether two meanings are logically equiv-
alent (Blackburn and Bos, 2005): for instance,
schematically two formulas A A B and B A A
are different in form but have the same meaning.
Relatedly, scoped meaning representations for nat-
ural languages can be made complex by includ-
ing parentheses and variable renaming mechanism
(the so-called a-conversion in A-calculus). For in-
stance, we want to identify two formulas which
only differ in variable naming, e.g., Jz1.F(z1)
and Jzo.F(xz2). It is desirable to compare ex-
act matching with alternative evaluation methods,
and to consider alternative meaning representa-
tions that avoid these problems. Having this back-
ground in mind, below we will describe each type
of meaning representation in detail.

FOL formula FOL formulas are standard forms
in formal and computational semantics (Blackburn
and Bos, 2005; Jurafsky and Martin, 2009), where
content words such as nouns and verbs are rep-
resented as predicates, and function words such
as quantifiers, negation, and connectives are rep-
resented as logical operators with scope relations
(cf. the example in (2)). To address the issue
on evaluation, we consider two ways of evalu-
ating FOL formulas in addition to exact match-
ing: (i) automated theorem proving (ATP) and (ii)
monotonicity-based polarity assignment.

First, FOL formulas can be evaluated by check-
ing the logical entailment relationships that di-
rectly consider whether two formulas are logically
equivalent. Thus we evaluate predicted FOL for-
mulas by using ATP. We check whether a gold for-
mula G entails prediction P and vice versa, using
an off-the-shelf FOL theorem prover'. To see the
logical relationship between GG and P, we measure
the accuracy for unidirectional and bidirectional

'We use a state-of-the-art FOL prover Vampire available
athttps://github.com/vprover/vampire



Jz.(dog' (z) A run'(x))
Vz.(dog*(x) — run'(z))
Vz.(dog*(x) — —run*(z))

One dog' ran':
All dogs* ran’:
All dogs* did not run*:

Table 3: Examples of monotonicity-based polarity as-
signments for FOL formulas.

entailment: G = P,G <« P,and G < P.

Second, the polarity of each content word ap-
pearing in a sentence can be extracted from the
FOL formula using its monotonicity property (van
Benthem, 1986; MacCartney and Manning, 2007).
This enables us to analyze whether models can
correctly capture entailment relations triggered by
quantifier and negation scopes. Table 3 shows
some examples of monotonicity-based polarity as-
signments. For example, existential quantifiers
such as one are upward monotone (shown as 7)
with respect to the subject NP and the VP, because
they can be substituted with their hypernyms (e.g.,
One dog ran = One animal moved). These po-
larities can be extracted from the FOL formula be-
cause 3 and A are upward monotone operators in
FOL. Universal quantifiers such as all are down-
ward monotone (shown as |) with respect to the
subject NP and upward monotone with respect to
the VP. Expressions in downward monotone po-
sition can be substituted with their hyponymous
expressions (e.g., All dogs ran = All white dogs
ran). The polarity can be reversed by embedding
another downward entailing context like negation,
so the polarity of run in the third case in Table 3
is flipped to downward monotone.? For evaluation
based on monotonicity, we extract a polarity for
each content word in a gold formula and a predic-
tion and calculate the F-score for each monotonic-
ity direction (upward and downward).

DRS A DRS is a form of scoped meaning repre-
sentations proposed in Discourse Representation
Theory, a well-studied formalism in formal se-
mantics (Kamp and Reyle, 1993; Asher, 1993;
Muskens, 1996). By translating a box notation as
in (3a) to the clausal form as in (3b), one can evalu-
ate DRSs by COUNTER?, which is a standard tool
for evaluating neural DRS parsers (Liu et al., 2018;
van Noord et al., 2018b). COUNTER searches for
the best variable mapping between predicted DRS
clauses and gold DRS clauses and calculates an

2We follow the surface order of NPs and take it that the
subject NP always take scope over the VP.
Shttps://github.com/RikVN/DRS_parsing
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F-score over matching clause, which is similar to
SMATCH (Cai and Knight, 2013), an evaluation
metric designed for Abstract Meaning Represen-
tation (AMR; Banarescu et al., 2013). COUNTER
alleviates the process of variable renaming and
correctly evaluates the cases where the order of
clauses is different from that of gold answers.

VF formula FOL formulas in our fragment
have logically equivalent forms in a variable-
free format, which does not contain parenthe-
ses nor variables as in the example (4). Our
format is similar to a variable-free form in De-
scription Logic (Baader et al., 2003) and Natural
Logic (Prat-Hartmann and Moss, 2009). VF for-
mulas alleviate the problem of parentheses and
variable renaming, while preserving semantic in-
formation (cf. Wang et al., 2017). Due to the
equivalence with FOL formulas, it is possible to
extract polarities from VF formulas. See Ap-
pendix A for more examples of VF formulas.

3.4 Data generation

To provide synthesized data, we generate sen-
tences using a context-free grammar (CFG) as-
sociated with semantic composition rules in the
standard A-calculus (see Appendix A for details).
Each sentence is mapped to an FOL formula and
VF formula by using the semantic composition
rules specified in the CFG. DRSs are converted
from the generated FOL formulas using the stan-
dard mapping (Kamp and Reyle, 1993). To gen-
erate controlled fragments for each train-test split,
the CFG rules automatically annotate the types of
semantic phenomena involved in sentences gener-
ated. We annotate seven types: the positions of
quantifiers (subject or object), negation, adjectives,
adverbs, conjunction, disjunction, and embedded
clause types (peripheral or center embedding).

To test systematicity, we generate sentences us-
ing the CFG, randomly select 50,000 examples,
and then split them into 12,000 training examples
and 38,000 test examples according to a primitive
quantifier. To test productivity, we apply up to four
recursive rules and randomly select 20,000 exam-
ples for each depth.

4 Experiments and Analysis

Using SyGNS, we test the performance of Gated
Recurrent Unit (GRU; Cho et al.,, 2014) and
Transformer (Vaswani et al., 2017) in an encoder-
decoder setup. These are widely used models



Test GRU Transformer
FOL DRS DRS(ent) VF | FOL DRS DRS(cnt) VF
primitive quantifier: existential quantifier one
Exr | 96.1 995 99.9 99.7 | 999 99.8 99.9 100.0
Num | 7.6 127 86.0 370 | 181 969 99.7 20.7
UNI 3.1 44 56.8 39.5 8.3 22 74.2 17.7
Valid | 98.2  99.7 100.0 99.6 | 100.0 100.0 100.0 100.0
primitive quantifier: numeral rwo
EX1 11.6 42.1 914 453 | 340 845 98.3 10.5
NuM | 59.5 83.6 98.7 428 | 999 974 99.8 80.9
UNI 2.5 1.8 68.6 39.2 0.0 0.1 72.3 90.9
Valid | 843  99.7 100.0 98.9 | 100.0 100.0 100.0 100.0
primitive quantifier: universal quantifier every
EX1 1.6 0.3 43.8 61.3 2.1 0.2 70.8 20.8
Num | 1.4 0.3 75.9 69.3 0.1 0.1 76.8 99.7
UNI | 338 96.5 99.4 100.0 | 100.0 100.0 100.0 99.9
Valid | 93.4 100.0 100.0 99.3 | 100.0 100.0 100.0 99.9
primitive quantifiers: one, two, every

Ext | 99.7 99.0 100.0 100.0 | 100.0 100.0 100.0 100.0
NumMm | 91.2 964 99.2 99.3 | 100.0 100.0 100.0 100.0
UNI | 957 97.6 99.4 100.0 | 99.9 100.0 100.0 100.0
Valid | 98.4 100.0 100.0 99.3 | 100.0 100.0 100.0 100.0

Table 4: Accuracy by quantifier type. “DRS (cnt)” columns show the accuracy of predicted DRSs by COUNTER,
and “Valid” rows show the validation accuracy. Each accuracy is measured by exact matching, except for “DRS

(cnt)” columns.

to perform well on hierarchical generalization
tasks (McCoy et al., 2018; Russin et al., 2020).

4.1 Experimental setup

In all experiments, we trained each model for 25
epochs with early stopping (patience = 3). We per-
formed five runs and reported their average accu-
racies. The input sentence is represented as a se-
quence of words, using spaces as a separator. The
maximum input and output sequence length is set
to the length of a sequence with maximum depths
of embedded clauses. We set the dropout proba-
bility to 0.1 on the output and used a batch size
of 128 and an embedding size of 256. Since in-
corporating pre-training would make it hard to dis-
tinguish whether the models’ ability to perform se-
mantic parsing comes from training data or from
pre-training data, we did not use any pre-training.

For the GRU, we used a single-layer encoder-
decoder with global attention and a dot-product
score function. Since a previous work (Kim and
Linzen, 2020) reported that unidirectional models
are more robust regarding sentence structures than
bi-directional models, we selected a unidirectional
GRU encoder. For the Transformer, we used a
three-layer encoder-decoder, a model size of 512,
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and a hidden size of 256. The number of model pa-
rameters was 10M, respectively. See Appendix B
for additional training details.

4.2 Results on systematicity

Generalization on quantifiers Table 4 shows
the accuracy by quantifier type. When the exis-
tential quantifier one was the primitive quantifier,
the accuracy on the problems involving existential
quantifiers, which have the same type as the primi-
tive quantifier, was nearly perfect. Similarly, when
the universal quantifier every was the primitive
quantifier, the accuracy on the problems involv-
ing universal quantifiers was much better than that
on the problems involving other quantifier types.
These results indicate that models can easily gener-
alize to problems involving quantifiers of the same
type as the primitive quantifier, while the models
struggle with generalizing to the others. We also
experimented with larger models and observed the
same trend (see Appendix C). The extent of gen-
eralization varies according to the primitive quan-
tifier type and meaning representation forms. For
example, when the primitive quantifier is the nu-
meral expression two, models generalize to prob-
lems of VF formulas involving universal quanti-



fiers. This can be explained by the fact that VF
formulas involving universal quantifiers like (5b)
have a similar form to those involving numerals
as in (6b), whereas FOL formulas involving uni-
versal quantifiers have a different form from those
involving numerals as in (5¢) and (6c).

5 All small cats chased Bob

ALL AND CAT SMALL EXIST BOB
CHASE

a.

Vzi.(cat(z1) A small(z)
— Jzs.(bob(z2) A chase(z1, z2)))

(6) Two small cats chased Bob

TWO AND CAT SMALL EXIST BOB
CHASE

Jz1.(two(x1) A cat(z1) A small(z1)
A Jza.(bob(z2) A chase(z1, 22)))

We also check the performance when three quanti-
fiers one, two, and every are set as primitive quanti-
fiers. This setting is easier than that for the system-
aticity in Table 1, since the models are exposed to
combination patterns of all the quantifier types and
all the modifier types. In this setting, the models
achieved almost perfect performance on the test
set involving non-primitive quantifiers (a, three,
all).

Generalization on modifiers Table 5 shows the
accuracy by modifier type where one is set to the
primitive quantifier (see Appendix C for the re-
sults where other quantifier types are set to the
primitive quantifier). No matter which quantifier
is set as the primitive quantifier, the accuracy for
problems involving logical connectives or adverbs
is better than those involving adjectives. As in
(8), an adjective is placed between a quantifier and
a noun, so the position of the noun dog with re-
spect to the quantifier every in the test set changes
from the example in the training (Basic) set in (7).
In contrast, adverbs and logical connectives are
placed at the end of a sentence, so the position of
the noun does not change from the training set, as
in (9). This suggests that models can more easily
generalize in problems involving unseen combina-
tions of quantifiers and modifiers where the posi-
tion of the noun is the same between the training
and test sets.

Train (Basic set)
Test (ADJ)
Test (CON)

(7) Every doig ran
(8) Every large dog ran
(9) Every doig ran and cried
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Table 5 also shows that the accuracy is nearly the
same regardless of the existence of negation. Ba-
sic set contains examples involving negation, and
this indicates that the existence of complex phe-
nomena like negation does not affect generaliza-
tion performance of models on modifiers so long
as such phenomena are included in the training set.

Meaning representation comparison Compar-
ing forms of meaning representations, accuracy by
exact matching is highest in the order of VF formu-
las, DRS clausal forms, and FOL formulas. This
indicates that models can more easily generalize to
unseen combinations where the form of meaning
representation is simpler; VF formulas do not con-
tain parentheses nor variables, DRS clausal forms
contain variables but not parentheses, and FOL for-
mulas contain both parentheses and variables.

4.3 Model comparison

Regarding the generalization capacity of models
for decoding meaning representations, the left two
figures in Figure 2 show learning curves on FOL
prediction tasks by quantifier type. While GRU
achieved perfect performance on the same quanti-
fier type as the primitive quantifier, where the num-
ber of training data is 2,500, Transformer achieved
the same performance when the number of train-
ing data is 8,000. The right two figures in Fig-
ure 2 show learning curves by modifier type. The
GRU accuracy is unstable even when the number
of training examples is maximal. In contrast, the
Transformer accuracy is stable when the number
of training data exceeds 8,000. These results indi-
cate that GRU generalizes to unseen combinations
of quantifiers and modifiers with a smaller training
set than can Transformer, while the Transformer
performance is more stable than that of GRU.

ATP-based evaluation Table 6 shows the ATP-
based evaluation results on FOL formulas. For
combinations involving numerals, both GRU and
Transformer achieve high accuracies for G = P
entailments but low accuracies for G < P entail-
ments. Since both models fail to output the formu-
las corresponding to modifiers, they fail to prove
G < P entailments. Regarding combinations in-
volving universal quantifiers, the GRU accuracy
for both G = P and G < P entailments is low,
and the Transformer accuracy for G < P entail-
ments is much higher than that for G = P entail-
ments. As indicated by examples shown in Table 7,



Test GRU Transformer

FOL DRS DRS(cnt) VF | FOL DRS DRS(cnt) VF
ADJ 189 20.1 78.1 423 | 26.8 59.1 91.3 27.6
ADJ+NEG | 188 20.2 80.5 39.7 | 23.1 59.5 93.6 27.5
ADV 20.1 47.7 87.5 584 | 362 673 97.6 50.7
ADV+NEG | 269 62.7 92.7 672 | 50.7 694 97.3 62.1
CON 28.9 58.3 84.7 729 | 543  66.8 88.3 65.9
CON+NEG | 33.6 62.8 86.6 749 | 60.1 65.1 89.9 69.1
Valid 98.2 99.7 100.0 99.6 | 100.0 100.0 100.0 100.0

Table 5: Accuracy by modifier type (primitive quantifier: existential quantifier one). +NEG indicates problems
involving negation. Each accuracy is measured by exact matching, except for “DRS (cnt)” columns.

Quantifiers (GRU) Quantifiers (Transformer)

100

Modifiers (GRU) Modifiers (Transformer)

100

100

- Adj + Adv+Neg AN
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g 40 Numeral 40 40 / S 40
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' 7
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Training examples Training examples Training examples Training examples
Figure 2: Learning curves on FOL formula generalization tasks (primitive quantifier: one).
GRU Transformer Monotonicity-based evaluation Table 8 shows
Test |G=P G«P G&P|G=P G&P G&P ies for th tonicitv-based polarit
Exi 998 1000 998 | 1000 1000 1000 a.ccurames or E“, monotonicity-based polarity as-
NuM | 771 190 104 | 913 211 124 signment evaluation on FOL formulas. The accu-
Unt | 71 187 27 | 211 834 123 racies were higher than those using exact match-

Table 6: ATP-based evaluation results on FOL formu-
las (primitive quantifier: one).

Input Every wild cat escaped and ran

Gold  Vz.((cat*(z) A wild*(z)) — (escape’(z) A run'(z)))
GRU  Vaz.(cat‘(z) — (escape'(z) A run'(z)))

Trans Vz.(cat*(z) — wild'(z) A (escape’(z) A run’(z)))

Table 7: Examples of typical errors.

Test GRU Transformer
Up Down | Up Down
Exr | 999 100.0 | 100.0 100.0
NuM | 84.8 96.8 88.1 97.5
UNI | 909 40.7 | 949 734

Table 8: Monotonicity-based evaluation results on FOL
(primitive quantifier: one). “Up” and “Down” columns
show upward and downward accuracy, respectively.

GRU tends to fail to output the formula for a mod-
ifier, e.g., wild(z) in this case, while Transformer
fails to correctly output the position of the implica-
tion (—). The ATP-based evaluation results reflect
such differences between error trends of models in
problems involving different forms of quantifiers.

ing (cf. Table 4). Monotonicity-based evaluation
captures the polarities assigned to content words
even for the problems that exact-matching judges
as incorrect because of the differences in form. Ta-
ble 7 shows examples of predicted polarity assign-
ments. Here both models predicted correct polari-
ties for three content words, cat™, escapeT, run’.
Exact-matching cannot take into account such par-
tial matching. The downward monotone accura-
cies for problems involving universal quantifiers
are low (40.7 and 73.4 in Table 8). In Table 7,
both models failed to predict the downward mono-
tonicity of wild*. The results indicate that both
models struggle with capturing the scope of univer-
sal quantifiers. Appendix C shows the evaluation
results on the polarities of VF formulas.

4.4 Results on productivity

Table 9 shows very low generalization accuracy
for both GRU and Transformer at unseen depths.
Although the evaluation results using COUNTER
on DRS prediction tasks is much higher than those
by exact matching, this is due to the fact that
COUNTER uses partial matching; both models
tended to correctly predict the clauses in the sub-
ject NP that are positioned at the beginning of the

110



Test GRU Transformer

FOL DRS DRS(cnt) VF FOL DRS DRS(cnt) VF
Dep2 | 0.36 0.41 55.5 0.32 | 0.61 0.61 64.6 0.58
Dep3 | 0.04 0.07 45.6 0.04 | 0.11 0.12 46.6 0.12
Dep4 | 0.00 0.01 38.0 0.00 | 0.02 0.02 37.6 0.02
Valid | 100.0 100.0 100.0 100.0 | 100.0 100.0 100.0 100.0

Table 9: Accuracy for productivity. “Dep” rows show embedding depths, “DRS (cnt)” columns show accuracy
of predicted DRSs by COUNTER, and “Valid” row shows the validation accuracy. Each accuracy is measured by

exact matching, except for “DRS (cnt)” columns.

Test GRU Transformer

FOL DRS DRS(cnt) VF | FOL DRS DRS(cnt) VF
Depl | 22.1 219 81.9 489 | 96.6 717.1 96.5 97.5
Dep2 | 3.52 3.89 59.1 123 | 76.3 54.6 90.5 85.4
Dep3 | 0.15 0.12 433 031 | 249 45 70.4 37.0
Dep4 | 0.08 0.15 37.7 0.46 | 4.4 1.6 60.3 5.57
Valid | 94.3 949 100.0 96.0 | 97.6 98.1 100.0 97.8

Table 10: Evaluation results for systematicity involving embedding quantifiers. “Dep” rows show embedding

depths.

sentence (see Appendix E for details).

We checked whether models can generalize to
unseen combinations involving embedded clauses
when the models are exposed to a part of training
instances at each depth. We provide Basic set 1 in-
volving non-embedding patterns like (10), where
Q can be replaced with any quantifier. This Basic
set 1 exposes models to all quantifier patterns. We
also expose models to Basic set 2 involving three
primitive quantifiers (one, two, and every) at each
embedding depth, like (11) and (12). We provide
around 2,000 training instances at each depth. We
then test models on a test set involving the other
quantifiers (a, three, and all) at each embedding
depth, like (13) and (14). If models can distinguish
quantifier types during training, they can correctly
compose meaning representations involving differ-
ent combinations of multiple quantifiers. Note that
this setting is easier than that for productivity in Ta-
ble 2, in that models are exposed to some instances
at each depth.

(10) Q dog(s) liked Bob
(11) One dog liked Bob [that loved two rats]

(12) One dog liked Bob [that loved two rats
[that knew every pig]]

A dog liked Bob [that loved three rats]

A dog liked Bob [that loved three rats
[that knew all pigs]]

(13)
(14)

Table 10 shows that both models partially gen-
eralize to the cases where the depth is 1 or 2. How-
ever, both models fail to generalize to the cases
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where the depth is 3 or more. This suggests that
even if models are trained with some instances at
each depth, the models fail to learn distinctions be-
tween different quantifier types and struggle with
parsing sentences whose embedding depth is 3 or
more.

5 Conclusion

We have introduced an analysis method using
SyGNS, a testbed for diagnosing the systematic
generalization capability of DNN models in se-
mantic parsing. We found that GRU and Trans-
former generalized to unseen combinations of
semantic phenomena whose meaning representa-
tions are similar in forms to those in a training set,
while the models struggle with generalizing to the
others. In addition, these models failed to general-
ize to cases involving nested clauses. Our analyses
using multiple meaning representation and evalu-
ation methods also revealed detailed behaviors of
models. We believe that SyGNS serves as an effec-
tive testbed for investigating the ability to capture
compositional meanings in natural language.

Acknowledgement

We thank the three anonymous reviewers for their
helpful comments and suggestions. This work
was partially supported by JSPS KAKENHI Grant
Number JP20K 19868.



References

Nicholas Asher. 1993. Reference to Abstract Objects
in Discourse. Springer.

Franz Baader, Diego Calvanese, Deborah McGuinness,
Peter Patel-Schneider, Daniele Nardi, et al. 2003.
The Description Logic Handbook: Theory, Imple-
mentation and Applications. Cambridge University
Press.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, UIf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, pages 178-186, Sofia, Bulgaria. Associa-
tion for Computational Linguistics.

Marco Baroni. 2020. Linguistic generalization and
compositionality in modern artificial neural net-
works. Philosophical Transactions of the Royal So-
ciety B, 375(1791):20190307.

Johan van Benthem. 1986. Essays in Logical Seman-
tics. Springer.

Patrick Blackburn and Johan Bos. 2005. Representa-
tion and Inference for Natural Language: A First
Course in Computational Semantics. Center for the
Study of Language and Information.

Johan Bos. 2008. Let’s not argue about seman-
tics. In Proceedings of the Sixth International
Conference on Language Resources and Evaluation
(LREC’08), Marrakech, Morocco. European Lan-
guage Resources Association (ELRA).

Samuel R. Bowman, Christopher Potts, and Christo-
pher D. Manning. 2015. Recursive neural networks
can learn logical semantics. In Proceedings of the
3rd Workshop on Continuous Vector Space Models
and their Compositionality, pages 12-21.

Shu Cai and Kevin Knight. 2013. Smatch: an evalua-
tion metric for semantic feature structures. In Pro-
ceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 748-752, Sofia, Bulgaria. Associa-
tion for Computational Linguistics.

Paco Calvo and John Symons. 2014. The Architecture
of Cognition: Rethinking Fodor and Pylyshyn’s Sys-
tematicity Challenge. MIT Press.

Kyunghyun Cho, Bart van Merriénboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder—decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724—
1734, Doha, Qatar. Association for Computational
Linguistics.

112

Ido Dagan, Dan Roth, Mark Sammons, and Fabio Mas-
simo Zanzotto. 2013. Recognizing Textual Entail-
ment: Models and Applications. Synthesis Lectures
on Human Language Technologies. Morgan & Clay-
pool Publishers.

Ishita Dasgupta, Demi Guo, Andreas Stuhlmiiller,
Samuel J. Gershman, and Noah D. Goodman. 2018.
Evaluating compositionality in sentence embed-
dings. In Proceedings of the 40th Annual Confer-
ence of the Cognitive Science Society, pages 1596—
1601.

Jerry A. Fodor and Zenon W. Pylyshyn. 1988. Connec-
tionism and cognitive architecture: A critical analy-
sis. Cognition, 28(1-2):3-71.

Atticus Geiger, Kyle Richardson, and Christopher
Potts. 2020. Neural natural language inference mod-
els partially embed theories of lexical entailment and
negation. In Proceedings of the Third BlackboxNLP
Workshop on Analyzing and Interpreting Neural Net-
works for NLP, pages 163—173, Online. Association
for Computational Linguistics.

Mor Geva, Yoav Goldberg, and Jonathan Berant. 2019.
Are we modeling the task or the annotator? an inves-
tigation of annotator bias in natural language under-
standing datasets. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 1161-1166, Hong Kong, China. As-
sociation for Computational Linguistics.

Max Glockner, Vered Shwartz, and Yoav Goldberg.
2018. Breaking NLI systems with sentences that re-
quire simple lexical inferences. In Proceedings of
the 56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers),
pages 650-655, Melbourne, Australia. Association
for Computational Linguistics.

Emily Goodwin, Koustuv Sinha, and Timothy J.
O’Donnell. 2020. Probing linguistic systematicity.
In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
1958-1969, Online. Association for Computational
Linguistics.

Kristina Gulordava, Piotr Bojanowski, Edouard Grave,
Tal Linzen, and Marco Baroni. 2018. Colorless
green recurrent networks dream hierarchically. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 1195-1205, New
Orleans, Louisiana. Association for Computational
Linguistics.

Irene Heim and Angelika Kratzer. 1998. Semantics in
Generative Grammar. Blackwell.

Pauline Jacobson. 2014. Compositional Semantics: An
Introduction to the Syntax/Semantics Interface. Ox-
ford University Press.



Pratik Joshi, Somak Aditya, Aalok Sathe, and Mono-
jit Choudhury. 2020. TaxiNLI: Taking a ride up the
NLU hill. In Proceedings of the 24th Conference on
Computational Natural Language Learning, pages
41-55, Online. Association for Computational Lin-
guistics.

Daniel Jurafsky and James H. Martin. 2009. Speech
and Language Processing (2nd Edition). Prentice-
Hall, Inc.

Hans Kamp and Uwe Reyle. 1993. From Discourse to
Logic. Dordrecht: Kluwer Academic Publishers.

Daniel Keysers, Nathanael Schirli, Nathan Scales,
Hylke Buisman, Daniel Furrer, Sergii Kashubin,
Nikola Momchev, Danila Sinopalnikov, Lukasz
Stafiniak, Tibor Tihon, Dmitry Tsarkov, Xiao Wang,
Marc van Zee, and Olivier Bousquet. 2020. Measur-
ing compositional generalization: A comprehensive
method on realistic data. In Proceedings of Inter-
national Conference on Learning Representations
(ICLR).

Najoung Kim and Tal Linzen. 2020. COGS: A com-
positional generalization challenge based on seman-
tic interpretation. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 9087-9105, Online. As-
sociation for Computational Linguistics.

Najoung Kim, Roma Patel, Adam Poliak, Patrick Xia,
Alex Wang, Tom McCoy, Ian Tenney, Alexis Ross,
Tal Linzen, Benjamin Van Durme, Samuel R. Bow-
man, and Ellie Pavlick. 2019. Probing what dif-
ferent NLP tasks teach machines about function
word comprehension. In Proceedings of the Eighth
Joint Conference on Lexical and Computational Se-
mantics (*SEM 2019), pages 235-249, Minneapolis,
Minnesota. Association for Computational Linguis-
tics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of International Conference on Learning Represen-
tations (ICLR).

Brenden M. Lake and Marco Baroni. 2017. General-
ization without systematicity: On the compositional
skills of sequence-to-sequence recurrent networks.
In Proceedings of International Conference on Ma-
chine Learning (ICML).

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of LSTMs to learn
syntax-sensitive dependencies. Transactions of the
Association for Computational Linguistics, 4:521—
535.

Jiangming Liu, Shay B. Cohen, and Mirella Lapata.
2018. Discourse representation structure parsing. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 429-439, Melbourne, Australia.
Association for Computational Linguistics.

113

Nelson F. Liu, Roy Schwartz, and Noah A. Smith. 2019.
Inoculation by fine-tuning: A method for analyz-
ing challenge datasets. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 2171-2179, Minneapolis, Minnesota.
Association for Computational Linguistics.

Bill MacCartney and Christopher D. Manning. 2007.
Natural logic for textual inference. In Proceedings
of the ACL-PASCAL Workshop on Textual Entail-
ment and Paraphrasing, pages 193-200.

Gary Marcus. 2003. The Algebraic Mind: Integrating
Connectionism and Cognitive Science. MIT Press.

Rebecca Marvin and Tal Linzen. 2018. Targeted syn-
tactic evaluation of language models. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1192-1202,
Brussels, Belgium. Association for Computational
Linguistics.

R. Thomas McCoy, Robert Frank, and Tal Linzen.
2018. Revisiting the poverty of the stimulus: hi-
erarchical generalization without a hierarchical bias
in recurrent neural networks. In Proceedings of the
40th Annual Meeting of the Cognitive Science So-
ciety, CogSci 2018, Madison, WI, USA, July 25-28,
2018.

Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019.
Right for the wrong reasons: Diagnosing syntactic
heuristics in natural language inference. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 3428-3448,
Florence, Italy. Association for Computational Lin-
guistics.

Richard Montague. 1973. The proper treatment of
quantification in ordinary English. In Jaakko Hin-
tikka, Julius M. E. Moravcsik, and Patrick Suppes,
editors, Approaches to Natural Language, pages
189-224. Reidel, Dordrecht. Reprinted in Rich-
mond H. Thomason (ed.), Formal Philosophy: Se-
lected Papers of Richard Montague, 247-270, 1974,
New Haven: Yale University Press.

Reinhard Muskens. 1996. Combining Montague se-
mantics and discourse representation. Linguistics
and philosophy, 19(2):143-186.

Aakanksha Naik, Abhilasha Ravichander, Norman
Sadeh, Carolyn Rose, and Graham Neubig. 2018.
Stress test evaluation for natural language inference.
In Proceedings of the 27th International Conference
on Computational Linguistics, pages 2340-2353,
Santa Fe, New Mexico, USA. Association for Com-
putational Linguistics.

Yixin Nie, Yicheng Wang, and Mohit Bansal. 2019.
Analyzing compositionality-sensitivity of NLI mod-
els. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence, pages 6867-6874.



Rik van Noord, Lasha Abzianidze, Hessel Haagsma,
and Johan Bos. 2018a. Evaluating scoped meaning
representations. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and
Evaluation (LREC 2018), Miyazaki, Japan. Euro-
pean Language Resources Association (ELRA).

Rik van Noord, Lasha Abzianidze, Antonio Toral, and
Johan Bos. 2018b. Exploring neural methods for
parsing discourse representation structures. Trans-
actions of the Association for Computational Lin-
guistics, 6:619-633.

Adam Poliak, Jason Naradowsky, Aparajita Haldar,
Rachel Rudinger, and Benjamin Van Durme. 2018.
Hypothesis only baselines in natural language in-
ference. In Proceedings of the Seventh Joint Con-
ference on Lexical and Computational Semantics,
pages 180-191, New Orleans, Louisiana. Associa-
tion for Computational Linguistics.

Ian Prat-Hartmann and Lawrence S. Moss. 2009. Log-
ics for the relational syllogistic. The Review of Sym-
bolic Logic, 2(4):647-683.

Kyle Richardson, Hai Hu, Lawrence S. Moss, and
Ashish Sabharwal. 2020. Probing natural language
inference models through semantic fragments. In
Proceedings of the AAAI Conference on Artificial In-
telligence.

Ohad Rozen, Vered Shwartz, Roee Aharoni, and Ido
Dagan. 2019. Diversify your datasets: Analyzing
generalization via controlled variance in adversar-
ial datasets. In Proceedings of the 23rd Confer-
ence on Computational Natural Language Learning
(CoNLL), pages 196-205, Hong Kong, China. Asso-
ciation for Computational Linguistics.

Jacob Russin, Jason Jo, Randall O’Reilly, and Yoshua
Bengio. 2020. Compositional generalization by fac-
torizing alignment and translation. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics: Student Research Work-
shop, pages 313-327, Online. Association for Com-
putational Linguistics.

Swarnadeep Saha, Yixin Nie, and Mohit Bansal. 2020.
ConjNLI: Natural language inference over conjunc-
tive sentences. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 8240—-8252, Online. As-
sociation for Computational Linguistics.

Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle
Pineau, and William L. Hamilton. 2019. CLUTRR:
A diagnostic benchmark for inductive reasoning
from text. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-1IJCNLP), pages
4506-4515, Hong Kong, China. Association for
Computational Linguistics.

114

Alon Talmor and Jonathan Berant. 2019. MultiQA: An
empirical investigation of generalization and trans-
fer in reading comprehension. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4911-4921, Florence,
Italy. Association for Computational Linguistics.

Masatoshi Tsuchiya. 2018. Performance impact
caused by hidden bias of training data for recog-
nizing textual entailment. In Proceedings of the
Eleventh International Conference on Language Re-
sources and Evaluation (LREC 2018), Miyazaki,
Japan. European Language Resources Association
(ELRA).

Jan Van Eijck. 2005. Natural logic for natural language.
In International Tbilisi Symposium on Logic, Lan-
guage, and Computation, pages 216-230. Springer.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, £ ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of Advances in Neural
Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems
(NeurIPS), pages 5998-6008.

Alex Wang, Yada Pruksachatkun, Nikita Nangia,
Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. 2019a. SuperGLUE: A
stickier benchmark for general-purpose language un-
derstanding systems. In Proceedings of Advances in
Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Sys-
tems (NeurIPS), pages 3266-3280.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2019b.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the International Conference on Learn-
ing Representations (ICLR).

Mingzhe Wang, Yihe Tang, Jian Wang, and Jia Deng.
2017. Premise selection for theorem proving by
deep graph embedding. In Proceedings of Advances
in Neural Information Processing Systems 30: An-
nual Conference on Neural Information Processing
Systems (NeurIPS), pages 2786-2796.

Hitomi Yanaka, Koji Mineshima, Daisuke Bekki, and
Kentaro Inui. 2020. Do neural models learn sys-
tematicity of monotonicity inference in natural lan-
guage? In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 6105-6117, Online. Association for Computa-
tional Linguistics.

Hitomi Yanaka, Koji Mineshima, Daisuke Bekki, Ken-
taro Inui, Satoshi Sekine, Lasha Abzianidze, and Jo-
han Bos. 2019. Can neural networks understand
monotonicity reasoning?  In Proceedings of the
2019 ACL Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP, pages 31-40,
Florence, Italy. Association for Computational Lin-
guistics.



Hitomi Yanaka, Koji Mineshima, and Kentaro Inui.
2021. Exploring transitivity in neural NLI models
through veridicality. In Proceedings of the 16th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Main Volume, pages

920-934.

115



A Data generation details

Table 12 shows a set of context-free grammar rules
and semantic composition rules we use to gener-
ate a fragment of English annotated with mean-
ing representations in the SyGNS dataset. Each
grammar rule is associated with two kinds of se-
mantic composition rules formulated in A-calculus.
One is for deriving first-order logic (FOL) for-
mulas, and the other is for deriving variable-free
(VF) formulas. For FOL, semantic composition
runs in the standard Montagovian fashion where
all NPs (including proper nouns) are treated as
generalized quantifiers (Heim and Kratzer, 1998;
Jacobson, 2014). From FOL formulas, we can ex-
tract the polarity of each content word using the
monotonicity calculus (Van Eijck, 2005). Table
13 shows some examples of polarized FOL for-
mulas. The derivation of VF formulas runs in
two steps. To begin with, a sentence is mapped
to a variable-free form by semantic composition
rules. For instance, the sentence a small dog
did not swim is mapped to a variable-free for-
mula EXIST(AND(SMALL,DOG),NOT(SWIM)) by
the rules in Table 12. Second, since this form is
in prefix notation, all brackets can be eliminated
without causing ambiguity. This produces the re-
sulting VF formula EXIST AND SMALL DOG NOT
SWIM. Some other examples are shown in Table
13. DRSs are converted from FOL formulas in the
standard way (Kamp and Reyle, 1993).

B Training details

We implemented the GRU model and the Trans-
former model using PyTorch. Both models were
optimized using Adam (Kingma and Ba, 2015)
at an initial learning rate of 0.0005. The hy-
perparameters (batch size, learning rate, number
of epochs, hidden units, and dropout probability)
were tuned by random search. In all experiments,
we trained models on eight NVIDIA DGX-1 Tesla
V100 GPUs. The runtime for training each model
was about 1-4 hours, depending on the size of the
training set. The order of training instances was
shuffled for each model. We used 10% of the train-
ing set for a validation set.

C Detailed evaluation results

Effect of Model Size The results we report are
from a model with 10M parameters. How does
the number of parameters affect the systematic

GRU Transformer
M 10M 27M | 4M  10M 27M
Ex1 96.8 99.9 97.1 | 999 99.8 99.3
Num | 7.1 11,5 104 | 123 122 124
UNI 6.0 49 2.9 7.8 5.9 7.9
Valid | 97.2 999 97.6 | 100.0 99.8 97.2

Test

Table 11: The effect of model size on generalization
performance (primitive quantifier: existential quantifier
one, representation form: FOL).

generalization performance of models? Table 11
shows the performance of three models of varying
size (large: 27M, medium: 10M, small: 4M). The
number of parameters did not have a large impact
on the generalization performance; all runs of the
models achieved higher than 90% accuracy on the
validation set and the test set involving quantifiers
of the same type as the primitive quantifier, while
they did not work well on the test set involving the
other types of quantifiers.

Modifier type Table 14 shows all evaluation re-
sults by modifier types where fwo or every is set
to the primitive quantifier. Regardless of prim-
itive quantifier type, accuracies for problems in-
volving logical connectives or adverbs were better
than those for problems involving adjectives.

Monotonicity Table 15 shows all evaluation re-
sults of predicted FOL formulas and VF formulas
based on monotonicity. We evaluate the precision,
recall, and F-score for each monotonicity direction
(upward and downward). Regardless of meaning
representation forms, downward monotone accu-
racy on problems involving universal quantifiers is
low. This indicates that both models struggle with
learning the scope of universal quantifiers.

D Evaluation on systematicity of
quantifiers and negation

We also analyze whether models can generalize to
unseen combinations of quantifiers and negation.
Here, we generate Basic set 1 by setting an arbi-
trary quantifier to a primitive quantifier and com-
bining it with negation. As in (15b), we fix the
primitive quantifier to the existential quantifier one
and generate the negated sentence One tiger did
not run. Next, as in (16a) and (16b), we generate
Basic set 2 by combining a primitive term (e.g.,
tiger) with various quantifiers. If a model has the
ability to systematically understand primitive com-
binations in Basic set, it can represent a new mean-
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Grammar rules

Semantic composition rules: FOL

Semantic composition rules: VF

S — NPVP [S] = [NPJ([VP]) [S] = [NPI(TVP])

S — NPdidnot VP [S] = [NP](Az.=[VP](z)) [S] = [NP](NOT([VP]))

NP — PN [NP] = [PN] [NP] = [PN]

NP - QN [NP] = [Q)(IN]) [NP] = [QI(IN))

NP — QADIN [NP] = [Q](Az-([N](x) A [ADI](x))) [NP] = [Q](aND([N], [ADJ]))

NP QNS [NP] = [Q)(\e-(IN](2) A [S](=)) [NP] = [Q](ax([N]. [S]))

VP - IV [VP] = [1V] [VP] = [1V]

VP — IV Abv [VP] = Az.([IV](z) A [ADV](x)) [VP] = anD([IV], [ADV]))

VP - IVorlV' [VP] = Az.([IV](z) v [IV'](x)) [VP] = or([IV]. [IV']))

VP — IVand IV’ [VP] = Az.([IV](z) A [IV'](x)) [VP] = anp([IV], [IV']))

VP — TV NP [VP] = Az.[NP](\y.[TV](z, ) [VP] = [NP]([TV])

S — that VP [S]=[VP] [S]=1[vP]

S —  that did not VP [S] = Az.~[VP](z) [S] = NoT([VP])

S — thatNPTV [S] = Ay.INPJ(Az.[TV](z,y)) [S] = INPJ(INV([TV]))

S —  that NP did not TV [S] = Ay.INP[(Az.=[TV](z,y)) [S] = INPJ(NOT(INV([TV])))

Q — {every, dll, a, one, two, three} [every] = [all] = AFAGNz(F(x) — G(z)) [every] = [all] = AFAG.ALL(F,G)
[a] = [one] = AFAG.3z.(F(z) A G(x)) [a] = [one] = AFAG.EXIST(F,G)
[two] = AFAG . 3x.(two(x) A F(z) A G(z)) [two] = AFAG.TWO(F, G)
[three] = AFAG.3z.(three(z) A F(z) AG(x)) [three] = AFAG.THREE(F, G)

N — {dog, rabbit, cat, bear, tiger,...} [dog] = Az.dog(x) [dog] = DOG

PN —  {ann, bob, fred, chris, eliott,...} [ann] = A\F.F(ann) [ann] = AF.EXIST(ANN, F')

IV —  {ran, walked, swam, danced, dawdled,...} [ran] = Az.run(z) [ran] = RUN

IV' —  {laughed, groaned, roared, screamed,...}  [laugh] = Az.laugh(z) [laugh] = LauGH

TV —  {kissed, kicked, cleaned, touched,...} [kissed] = AyAz Kiss(z,y) [kissed] = KISs

ADJ —  {small, large, crazy, polite, wild,...} [small] = Ax.small(z) [small] = sMALL

ADV —  {slowly, quickly, seriously, suddenly,...} [slowly] = Az.slowly(z) [slowly] = SLOWLY

Table 12: A set of context-free grammar rules and semantic composition rules used to generate the SyGNS dataset.
Sentence FOL VF
a small dog did not swim  3z.(small (z) A dog () A ~swim?'(z)) EXIST AND SMALL! DOGT NOT swIm

all tigers ran or swam
ann did not chase two dogs

Vz.(tigert(z) — run'(z) vV swim'(z))
—3z.(two(z) A dog*(z) A chase'(ann, z))

ALL TIGER' OR RUNT swiM'
EXIST ANN NOT TWO DOG CHASEY

Table 13: Example of (polarized) FOL formulas and VF formulas.

Test GRU Transformer

FOL DRS DRS(ent) VF | FOL DRS DRS(cnt) VF

primitive quantifier: numeral two
ADJ 10.7 16.8 74.9 22.8 | 344 582 91.6 52.0
ADJ+NEG | 10.1 223 79.7 243 | 334 587 94.4 51.0
ADV 12.8 293 79.8 46.9 | 403 56.1 89.1 60.5
ADV+NEG | 14.1 339 83.8 58.6 | 344 56.4 93.3 65.8
CON 183 379 80.2 648 | 343 524 83.4 67.2
CON+NEG | 244 40.6 82.6 68.7 | 31.3 50.8 88.0 68.5
primitive quantifier: universal quantifier every

ADJ 7.7 195 70.6 58.5 | 20.7 205 89.9 62.2
ADJ+NEG | 69 19.2 75.5 56.8 | 203 20.2 922 63.6
ADV 92 182 82.3 70.1 | 19.7 19.7 85.1 70.4
ADV+NEG | 148 18.1 79.4 76.1 | 227 19.8 89.3 75.5
CON 147 18.0 70.3 79.6 | 21.5 19.2 68.8 75.8
CON+NEG | 183 18.2 80.1 81.2 | 22.7 19.1 80.5 76.8

Table 14: Accuracy by modifier type where fwo or every is the primitive quantifier. “DRS (cnt)” columns show

accuracies of predicted DRSs by COUNTER.
GRU Transformer
Test | Exact Upward Downward Exact Upward Downward
Match Prec  Rec F Prec  Rec F Match  Prec Rec F Prec  Rec F
FOL formula
EX1 96.1 100.0 99.9 999 100.0 100.0 100.0 | 99.9 100.0 100.0 100.0 100.0 100.0 100.0
NumMm 7.6 99.2 755 84.8 99.6 947 96.8 18.1 1000 79.5 88.1 100.0 956 975
UNI 3.1 92.6 899 909 429 394 407 8.3 973 934 949 794 70.0 734
VF formula
EX1 99.7 1000 999 999 999 999 999 | 100.0 100.0 100.0 100.0 100.0 100.0 100.0
NuMm | 370 702 544 598 686 585 620 | 207 992 77.0 854 993 954 970
UNI 39.5 91.1 80.7 844 49.0 352 397 177 999 974 984 986 727 823

Table 15: Evaluation results on monotonicity. “Prec”, “Rec”, “F” indicate precision, recall, and F-score.
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ing representation with different combinations of
quantifiers and negations, like (17a) and (17b).

(15) One tiger ran

a.
b. One tiger did not run
(16) a. Every tiger ran

b. Two tigers ran
(17) a. Every tiger did not run
b. Two tigers did not run

Table 16 shows the accuracy on combinations of
quantifiers and negations by quantifier type. Sim-
ilar to the results with unseen combinations of
quantifiers and modifiers, models can easily gener-
alize to problems involving quantifiers of the same
type as the primitive quantifier. Table 17 shows
the accuracy on combinations of quantifiers and
negations by modifier types. Similar to the results
in Table 14, the accuracies on problems involving
logical connectives or adverbs were slightly better
than those on problems involving adjectives.

E Error analysis of predicted DRSs

In the productivity experiments, the evaluation re-
sults using COUNTER on DRS prediction tasks are
much higher than those by exact matching. Ta-
ble 18 shows an example of predicted DRSs for
the sentence all lions that did not follow two bears
that chased three monkeys did not cry. This sen-
tence contains embedded clauses with depth two,
having the following gold DRS:

L1
lion(z1)

T2,T3
two(xzz)
bear(z3) = | o cry(z1)
—| three(zs)
monkey(z3)
chase(za, x3)
follow (1, z2))

Both GRU and Transformer tend to correctly pre-
dict some of the clauses for content words, im-
plication, and negation that appear at the begin-
ning of the input sentence, while they fail to
capture long-distance dependencies between sub-
ject nouns and verbs (e.g., all lions ... did not
cry). Also, COUNTER correctly evaluates the
cases where the order of clauses is different from
that of gold answers.
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GRU Transformer

FOL DRS DRS(ent) VF | FOL DRS DRS(cnt) VF

primitive quantifier: existential quantifier one
Ex1t | 659 88.0 98.1 945 | 999 96.6 97.6 45.0
NuwMm | 484 71.0 96.7 545 | 658 86.6 98.8 26.3
UNI | 223 0.0 52.0 531 | 00 0.0 70.2 26.6
Valid | 96.6 98.1 100.0 99.8 | 100.0 100.0 100.0 100.0
primitive quantifier: numeral two
Exi | 364 63.6 89.8 139 | 144 496 86.9 11.5
NumMm | 40.0 66.7 94.1 215 | 330 59.1 87.6 14.3
UNI | 154 0.0 50.7 0.0 0.0 0.0 71.0 12.4
Valid | 964 97.8 100.0 99.3 | 100.0 100.0 100.0 100.0
primitive quantifier: universal quantifier every
EXI 128 00 73.7 78.6 | 0.8 0.5 522 59.4
NumMm | 17.1 0.0 75.3 78.1 | 0.0 0.6 59.2 65.1
UNI | 91.1 883 97.4 949 | 86.6 70.1 923 76.6
Valid | 98.8 98.1 100.0 98.8 | 100.0 100.0 100.0 100.0

Test

Table 16: Accuracy on combinations of quantifiers and negation by quantifier type. “DRS (cnt)” columns show
accuracies of predicted DRSs by COUNTER. “Valid” row shows the validation accuracy.

GRU Transformer

FOL DRS DRS(ent) VF | FOL DRS DRS(cnt) VF

primitive quantifier: existential quantifier one
ADJ+NEG | 34.6 332 68.3 45.8 | 194 451 84.1 253
ADV+NEG | 38.0 363 77.9 53.0 | 432 548 88.1 375
CON+NEG | 36.8 332 73.2 547 | 474 524 85.4 37.0
primitive quantifier: numeral two
ADJ+NEG | 212 182 69.3 80 | 11.6 293 759 1.2
ADV+NEG | 26.5 285 714 103 | 193 365 81.8 17.8
CON+NEG | 21.9 28.1 68.5 9.1 | 11.7 346 78.7 16.3
primitive quantifier: universal quantifier every
ADJ+NEG | 267 124 63.9 60.5 | 139 146 58.0 50.7
ADV+NEG | 259 132 69.2 66.1 | 21.9 152 60.9 63.3
CON+NEG | 285 18.8 71.4 659 | 202 146 59.7 62.8

Test

Table 17: Accuracy on combinations of quantifiers and negation by modifier type.

(a) Gold answer (b) GRU
bl IMP b2 b4 (F: 0.45) (c) Transformer
b2 REF x1 bl IMP b2 b3 (F:0.42)
b2 lion x1 b2 REF x1 bl IMP b2 b3
b2 NOT b3 b2 lionx1 b2 REF x1
b3 REF x2 b2 NOT b3 b2 lion x1
b3 REF %3 b3 REF x2 b2 NOT b3
b3 two x2 b3 two x2 b3 REF x2
b3 bear x2 b3 bear x2 b3 two x2
b3 three x3 b3 follow x2 x2 b3 monkey x2
b3 monkey %3 b3 REF x3 b3 follow x2 x1
b3 chase x3 x2 b3 three x3 b3 REF x3
b3 follow x2 x1 b4 monkey x3 b3 john x3
b4 NOT b5 b4 like x3 x2 b3 chase x1 x3
b5 cry x1 b4 like x1 x2

Table 18: Error analysis of DRSs for the sentence “all lions that did not follow two bears that chased three monkeys
did not cry”. Clauses in green are correct and those in red are incorrect. “F” shows F-score over matching clause.
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Fully non-autoregressive neural machine trans- 24

lation (NAT) simultaneously predicts tokens )
with single forward of neural networks, which 422

.. . m <« Vanilia 2017)

significantly reduces the inference latency at 204 CMLM (2019)

the expense of quality drop compared to the @ LevT (2019)

Transformer baseline. In this work, we target
on closing the performance gap while main-
taining the latency advantage. We first inspect
the fundamental issues of fully NAT models,
and adopt dependency reduction in the learn-
ing space of output tokens as the primary guid-
ance. Then, we revisit methods in four dif-
ferent aspects that have been proven effective
for improving NAT models, and carefully com-
bine these techniques with necessary modifi-
cations. Our extensive experiments on three
translation benchmarks show that the proposed
system achieves the state-of-the-art results for
fully NAT models, and obtains comparable
performance with the autoregressive and itera-
tive NAT systems. For instance, one of the pro-
posed models achieves 27.49 BLEU points
on WMT14 En-De with 16.5 X speed-up com-
pared to similar sized autoregressive baseline
under the same inference condition. The im-
plementation of our model is available here'.

1 Introduction

State-of-the-art neural machine translation (NMT)
systems are based on autoregressive models (Bah-
danau et al., 2015; Vaswani et al., 2017) where each
generation step depends on the previously gener-
ated tokens. This sequential nature inevitably leads
to inherent latency at inference time. On the other
hand, non-autoregressive neural machine transla-
tion models (NAT, Gu et al., 2018a) attempt to
generate output sequences in parallel to speed-up

* Equal contribution.

"https://github.com/pytorch/fairseq/
tree/master/examples/nonautoregressive_
translation

—A— LaNMT (2020)
181 -@- DisCo (2020)

-.- Transformer
0 2 4 6 8 10 12 14 16 18
Speed-up (x)

Figure 1: The translation quality v.s. inference speed-
up on WMT’ 14 En—De test set. The upper right corner
achieves the best trade-off.

the decoding process. The incorrect independence
assumption nevertheless prevents NAT models to
properly learn the dependency between target to-
kens in real data distribution, resulting in poorer
performance compared to autoregressive (AT) mod-
els. One popular solution to improve the NAT trans-
lation accuracy is to sacrifice the speed-up by incor-
porating an iterative refinement process, through
which the model explicitly learns the conditional
distribution over partially observed reference to-
kens (Ghazvininejad et al., 2019; Gu et al., 2019).
However, recent studies (Kasai et al., 2020b) indi-
cated that iterative NAT models seem to lose the
speed advantage compared to AT models with care-
ful tuning of the layer allocation. For instance, an
AT model with deep encoder and shallow decoder
obtains similar latency as iterative NAT models
without hurting the translation accuracy.

Therefore, how to build a competitive fully NAT
model without iterative refinements calls for more
exploration. Several works (Ghazvininejad et al.,
2020a; Saharia et al., 2020; Qian et al., 2020) have
recently been proposed to improve the training of
NAT, though the performance gap compared to the
iterative ones remains. In this work, we first ar-
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gue that the key to successfully training a fully
NAT model is to perform dependency reduction
in the learning space of output tokens (§ 2) from
all aspects. With this guidance, we revisit various
methods which are able to reduce the dependen-
cies among target tokens as much as possible in-
cluding four different perspectives, i.e., training
corpus (§ 3.1), model architecture (§ 3.2), training
objective (§ 3.3) and learning strategy (§ 3.4). The
performance gap can not be near closed unless we
combine these techniques’ advantages.

We validate the proposed fully NAT model on
standard translation benchmarks including 5 trans-
lation directions where our system achieves new
state-of-the-art results for fully NAT models on all
directions. We also demonstrate the quality-speed
trade-off comparing with AT and recent iterative
NAT models in Figure 1. Moreover, compared
to the Transformer baseline, our model achieves
16.5x inference speed-up under the same soft-
ware/hardware conditions while maintaining com-
parable translation quality.

2 Motivation

Given an input sequence € = x . . . £+, an autore-
gressive model (Bahdanau et al., 2015; Vaswani
et al., 2017) predicts the target y = y; ...yr se-
quentially based on the conditional distribution
p(Yt|y<t, x1.77; @), which tends to suffer from high
latency in generation especially for long sequences.
In contrast, non-autoregressive machine transla-
tion (NAT, Gu et al., 2018a), proposed for speeding-
up the inference by generating all the tokens in par-
allel, has recently been on trend due to its nature of
parallelizable on devices such as GPUs and TPUs.
A typical NAT system assumes a conditional inde-
pendence in the output token space, that is

T

log po(yl®) =Y _ log ps(yila1.7)
t=1

)

where 0 is the parameters of the model. Typically,
NAT models are modeled with Transformer with-
out causal attention map in the decoder side. As
noted in Gu et al. (2018a), the independence as-
sumption, however, generally does not hold in real
data distribution for sequence generation tasks such
as machine translation (Ren et al., 2020), where
the failure of capturing such dependency between
target tokens leads to a serious performance degra-
dation in NAT. This is a fairly understandable but
fundamental issue of NAT modeling which can
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Figure 2: Toy example shows that NAT fails to learn
when dependency exists in output space.

AB 50% BA 50%

AB 25% BA 25%

be easily shown with a toy example in Figure 2.
Given a simple corpus with only two examples:
AB and BA, each of which has 50% chances to ap-
pear. It is designed to represent the dependency
that symbol A and B should co-occur. Although
such simple distribution can be instantly captured
by any autoregressive model, learning the vanilla
NAT model with maximum likelihood estimation
(MLE, Eq. (1)) assigns probability mess to incor-
rect outputs (AA, BB) even these samples never
appear during training. In practice, the dependency
in real translation corpus is much more compli-
cated. As shown in Figure 1, despite the inference
speed-up, the vanilla NAT leads to a quality drop
over 10 BLEU points.

To ease the modeling difficulty, recent state-of-
the-art NAT systems (Lee et al., 2018; Stern et al.,
2019; Ghazvininejad et al., 2019; Gu et al., 2019;
Kasai et al., 2020a; Shu et al., 2020; Saharia et al.,
2020) trade accuracy with latency by incorporating
iterative refinement in non-autoregressive predic-
tion. For instance, Gu et al. (2019) learns to trans-
late by editing (deletion, insertion) on previously
generated sequence iteratively. Although iterative
NAT models have already achieved comparable or
even better performance than the autoregressive
counterpart, Kasai et al. (2020b) showed AT mod-
els with a deep encoder and a shallow decoder can
readily outperform strong iterative models with
similar latency, indicating that the latency advan-
tage of iterative NAT has been overestimated.

By contrast, while maintaining a clear speed ad-
vantage, fully NAT system — model makes parallel
predictions with single neural network forward —
still lags behind in translation quality and has not
been fully explored in literature (Libovicky and
Helcl, 2018; Li et al., 2018; Sun et al., 2019; Ma
et al., 2019; Ghazvininejad et al., 2020a). This
motivates us in this work to investigate various ap-
proaches to push the limits of learning a fully NAT
model towards autoregressive models regardless of
the architecture choices (Kasai et al., 2020b).
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Figure 3: The overall framework of our fully NAT model.

3 Methods

In this section, we discuss several essential ingredi-
ents to train a fully NAT model. As discussed in § 2,
we argue that the guiding principle of designing
any NAT models is to perform dependency reduc-
tion as much as possible in the output space so that
it can be captured by the NAT model. For example,
iterative-based models (Ghazvininejad et al., 2019)
explicitly reduce the dependencies between output
tokens by learning the conditional distribution over
the observed reference tokens. The overall frame-
work of training our fully NAT system is presented
in Figure 3. We also summarize the pros/cons for
each proposed method in Table 1 for reference.

3.1 Data: Knowledge Distillation

The most effective dependency reduction technique
is knowledge distillation (KD) (Hinton et al., 2015;
Kim and Rush, 2016) which is firstly proposed to
improve NAT in Gu et al. (2018a) and has been
widely employed for all subsequent NAT models.
The original target samples are replaced with sen-
tences generated from a pre-trained autoregressive
model. As analyzed in Zhou et al. (2020), KD is
able to simplify the training data where the gen-
erated targets have less noise and are aligned to
the inputs more deterministically. Also, it showed
that the capacity of the teacher model should be
constrained to match the desired NAT model to
avoid further degradation, especially for weak NAT
students without iterative refinement.

3.2 Model: Latent Variables

Different from iterative NAT, dependency reduc-
tion can be done with (nearly) zero additional cost
at inference by adding latent variables to the model.
In such case, output tokens y;.7 are modeled con-
ditionally independent over the latent variables z
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which are predicted from the prior distribution:

log py(y|x) —log/pe(z!w)pa(y!z,w)dz (2)

z
z can be either extracted by a fixed external library
(e.g. fertility in Gu et al. (2018a)), or jointly opti-
mized with the NAT model using variational auto-
encoders (VAEs) (Kaiser et al., 2018; Shu et al.,
2020) or normalizing flow (Ma et al., 2019).

In this work, we followed the formulation pro-
posed in Shu et al. (2020) where continuous latent
variables z € R”*P are modeled as spherical
Gaussian at the encoder output of each position.
Like typical VAEs (Kingma and Welling, 2013),
the model is trained by maximizing the evidence
lower-bound (ELBO) with a posterior network gg:

B logpo(ylz, )] ~Drw(gs (2], y)lpo(2|2)

likelihood
3)
where Dy is the Kullback—Leibler divergence be-
tween the prior and posterior. In this work, we
use a Transformer to encode g4 (2|x, y). Only the
embedding layers are shared between 6 and ¢

3.3 Loss Function: Latent Alignments

Standard NMT models are trained with the cross
entropy (CE) loss which compares the model’s out-
put with target tokens at each corresponded posi-
tion. However, as NAT ignores the dependency in
the output space, it is almost impossible for such
models to model token offset accurately. For in-
stance, while with little effect to the meaning, sim-
ply changing “Vielen Dank !I”” to *, Vielen Dank”
causes a huge penalty for fully NAT models.

To ease such limitation, recent works proposed
to consider the latent alignments between the tar-
get positions, and optimize (Ghazvininejad et al.,
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Distillation

Latent Variables

Latent Alignments

Glancing Targets

What it can do?

simplifying the training
data

model any types of de-
pendency in theory

handling token shifts in
the output space

ease the difficulty of
learning hard examples

What it cannot?

uncertainty exists in the
teacher model

constrained by the mod-
eling power of the used
latent variables

unable to model non-
monotonic dependency,
e.g. reordering

training / testing phase
mismatch

Potential issues

sub-optimal due to the
teacher’s capacity

difficult to train; poste-
rior collapse

decoder inputs must be
longer than targets

difficult to find the op-
timal masking ratio

Table 1: Comparison between the proposed techniques for improving fully NAT models.

2020a), or marginalize all alignments (Libovicky
and Helcl, 2018; Saharia et al., 2020). As a spe-
cial form of latent variables in loss computation,
latent alignments can be easily computed through
dynamic programming. The dependency is reduced
because the NAT model is able to freely choose the
best prediction regardless of the target offsets. In
this work, we put our primary focus on Connection-
ist Temporal Classification (CTC) (Graves et al.,
20006) as the latent alignments, considering its su-
perior performance and the flexibility of variable
length prediction. Formally, CTC is capable of effi-
ciently finding all valid aligned sequences a which
the target y can be recovered from, and marginalize
log-likelihood:

logpe(ylz) =log Y pylalz) @)
acl'(y)

where I'"!(a) is the collapse function that recov-
ers the target sequence by collapsing consecutive
repeated tokens, and then removing all blank to-
kens. Also, it is straightforward to apply the same
CTC loss into the VAE models (§ 3.2) by replacing
the likelihood term in Eq (3) with the CTC loss.
Because of the strong assumptions of monotonic
alignment, it is impossible to reduce all dependen-
cies between target tokens in real distribution.

3.4 Learning: Glancing Targets

Ghazvininejad et al. (2019) showed that it im-
proved test time performance by glancing the ref-
erence tokens when training NAT models. That is,
instead of log pg(y|x), we optimize log pg(y|m ©
y,x),m ~ (l,y),l ~ Uy, where m is the
mask, and -~y is the sampling function given the
number of masked tokens /. As mentioned earlier,
we suspect such explicit modeling of the distri-
bution conditional to unmasked tokens assists the
dependency reduction in the output space.

Naively applying random masks for every train-
ing example may cause severe mismatch between
training and testing. To migrate this, Qian et al.
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(2020) proposed GLAT — a curriculum learning
strategy, in which the ratio of glanced target tokens
is proportional to the translation error of the fully
NAT model. More precisely, instead of sampling
uniformly, we sample [ by:

[~ g(fratio ’ D(Q» y)) &)

where § = argmax, logpe(y|z), D is the dis-
crepancy between the model prediction and the
target sequence, e.g. Levenshtein distance (Leven-
shtein, 1966), and f4, is a hyperparameter to ad-
just the mask ratio. The original formulation (Qian
et al., 2020) utilized a deterministic mapping (g),
while we use a Poisson distribution to sample a
wider range of lengths including “no glancing”.
The original GLAT (Qian et al., 2020) assumes
to work with golden length so that it can glance
at the target by placing the target word embedding
to the corresponded inputs, which is incompatible
with CTC as we always require the inputs longer
than the targets. To enable GLAT training, we
glance at target tokens from the viterbi aligned to-
kens a* = arg max,cr(y) log pp(alz) which has
the same length as the decoder inputs. Intuitively,
a poorly trained model will glance at many tar-
get tokens. When the model becomes better and
generates higher quality sequences, the number of
masked words will be larger, which helps the model
gradually learn generating the whole sentence.

4 Experiments

We perform extensive experiments on three chal-
lenging translation datasets by combining all men-
tioned techniques to check (1) whether the pro-
posed aspects for dependency reduction are com-
plementary; (2) how much we can minimize the
gap between a fully non-autoregressive model with
the autoregressive counterpart.

4.1 Experimental Setup

Dataset and Preprocessing We validate our pro-
posed models on three standard translation bench-



marks with variant sizes, i.e., WMT14 English
(EN) <+ German (DE) (4.0M pairs), WMT16 En-
glish (EN) <+ Romanian (RO) (610k pairs) and
WMT?20 Japanese (JA) — English (EN) (13M pairs
after filtering). For EN<DE and EN<RO, we
apply the same prepossessing steps and learn sub-
words as mentioned in prior work (EN<>DE: Zhou
et al., 2020, EN<RO: Lee et al., 2018). For
JA—EN, the original data (16M pairs) is first fil-
tered with Bicleaner (Sdnchez-Cartagena et al.) 2
and we apply SentencePiece (Kudo and Richard-
son, 2018) to generate 32,000 subwords.

Knowledge Distillation Following previous ef-
forts, we also train the NAT models on distilled
data generated from pre-trained transformer models
(base for WMT14 EN<>DE and WMT16 EN<+RO
and big for WMT20 JA—EN) using beam search
with a beam size 5 and length penalty 1.0.

Decoding At inference time, the most straight-
forward way is to generate the sequence with the
highest probability at each position. The outputs
from the CTC-based NAT models require an ad-
ditional collapse process I' "' which can be done
instantly. A relatively more accurate method is
to decode multiple sequences, and rescore them
to obtain the best candidate in parallel, i.e. noisy
parallel decoding (NPD, Gu et al., 2018a). Fur-
thermore, CTC-based models are also capable of
decoding sequences using beam-search (Libovicky
and Helcl, 2018), and optionally combined with
n-gram language models (Heafield, 2011; Kasner
et al., 2020). More precisely, we search in a beam
to approximately find the optimal y* that maxi-
mizes:

log pg(y|x) + a - logprm(y) + Blog|y|  (6)

where « and /3 are hyperparameters for language
model scores and word insertion bonus. In prin-
ciple, it is no longer non-autoregressive as beam-
search is a sequential process by nature. However,
it does not contain any neural network computa-
tions and can be implemented efficiently in C++ 3.

Baselines We adopt Transformer (AT) and exist-
ing NAT approaches (see Table 2) for comparison.
For AT, except for the standard base and big archi-
tectures (Vaswani et al., 2017), we also compare
with a deep encoder, shallow decoder Transformer

https://github.com/bitextor/bicleaner
*https://github.com/parlance/ctcdecode

suggested in Kasai et al. (2020b) that follows the
model dimensions of base with 12 encoder layers
and 1 decoder layer (i.e. base (12-1) for short).

Evaluation BLEU (Papineni et al., 2002) is used
to evaluate the translation performance for all mod-
els. Following prior works, we compute tokenized
BLEUs for EN<-DE and EN<+RO, while using
SacreBLEU (Post, 2018) for JA—EN. In this work,
we use three measures to fully investigate the trans-
lation latency of all the models:

+ LSPU: translation latency by running the model
with one sentence/batch on single GPU, aligning
applications like instantaneous translation.

o LS§PU: the same as LEPV while running the model
without GPU speed-up. Compared to £$PY, it
is less friendly to NAT models that make use of
parallelism, however, closer to real scenarios.

* LSPU: the same as L$FV on GPU while running

the model in a batch with as many sentences
as possible. In this case, the hardware memory
bandwidth are taken into account.

We measure the wall-clock time for translating the
whole test set, and report the averaged time over
sentences as the latency measure. For more imple-
mentation details, please refer to Appendix A.

4.2 Results

WMT’14 EN~DE & WMT’16 EN~RO We
report the performance of our fully NAT model
comparing with AT and existing NAT approaches
(including both iterative and fully NAT models) in
Table 2. Iterative NAT models with enough num-
ber of iterations generally outperform fully NAT
baselines by a certain margin as they are able to re-
cover the generation errors by explicitly modeling
dependencies between (partially) generated tokens.
However, the speed advantage is relatively small
compared to AT base (12-1) which also achieves
2.5 times faster than the AT baseline.

Conversely, our fully NAT models are able to
readily achieve over 16 times speed-up on EN—DE
by restricting translation within a single iteration.
Surprisingly, merely training NAT with KD and
CTC loss already beats the state-of-the-art for sin-
gle iteration NAT models across all four directions.
Moreover, combining with either latent variables
(VAE) or glancing targets (GLAT) further closes
the performance gap or even outperforms the AT re-
sults on both language pairs. For example, our best
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WMT’14 WMT’16
Models Iter.  Speed pNDE DE-EN EN-RO RO-EN
Transformer base (teacher) N 1.0x 27.48 31.39 33.70 34.05
AT Transformer base (12-1) N 2.4% 26.21 30.80 33.17 33.21
+ KD N 2.5% 27.34 30.95 33.52 34.01
iNAT (Lee et al., 2018) 10 1.5% 21.61 25.48 29.32 30.19
Blockwise (Stern et al., 2018) ~ N/5 3.0x 27.40 - - -
lterative NAT InsT (Stern et al., 2019) ~ log N 4.8x 27.41 - -
CMLM (Ghazvininejad et al., 2019)* 10 1.7x 27.03 30.53 33.08 33.31
LevT (Gu et al., 2019) Adv. 4.0x 27.27 - - 33.26
KERMIT (Chan et al., 2019) ~ log N - 27.80 30.70 - -
LaNMT (Shu et al., 2020) 4 5.7x 26.30 - - 29.10
SMART (Ghazvininejad et al., 2020b)* 10 1.7x 27.65 31.27 - -
DisCO (Kasai et al., 2020a)* Adv. 3.5x% 27.34 31.31 33.22 33.25
Imputer (Saharia et al., 2020)" 8 3.9x% 28.20 31.80 34.40 34.10
Vanilla-NAT (Gu et al., 2018a) 1 15.6% 17.69 21.47 27.29 29.06
LT (Kaiser et al., 2018) 1 3.4x 19.80 - - -
CTC (Libovicky and Helcl, 2018) 1 - 16.56 18.64 19.54 24.67
NAT-REG (Wang et al., 2019) 1 - 20.65 24.77 - -
Bag-of-ngrams (Shao et al., 2020) 1 10.0x 20.90 24.60 28.30 29.30
Hint-NAT (Li et al., 2018) 1 - 21.11 25.24 - -
DCREF (Sun et al., 2019) 1 10.4 % 23.44 27.22 - -
Flowseq (Ma et al., 2019) 1 1.1 x 23.72 28.39 29.73 30.72
Fully NAT ReorderNAT (Ran et al., 2019) 1 16.1x 22.79 27.28 29.30 29.50
AXE (Ghazvininejad et al., 2020a)* 1 15.3% 23.53 27.90 30.75 31.54
ENGINE (Tu et al., 2020) 1 15.3% 22.15 - - 33.16
EM-+ODD (Sun and Yang, 2020) 1 16.4 x 24.54 27.93 - -
GLAT (Qian et al., 2020) 1 15.3% 25.21 29.84 31.19 32.04
Imputer (Saharia et al., 2020)* 1 18.6x 25.80 28.40 32.30 31.70
Ours (Fully NAT) 1 17.6% 11.40 16.47 24.52 24.79
+KD 1 17.6x 19.50 24.95 29.91 30.25
+ KD + CTC 1 16.8x 26.51 30.46 33.41 34.07
+ KD + CTC + VAE 1 16.5x% 27.49 31.10 33.79 33.87
+ KD + CTC + GLAT 1 16.8x 27.20 31.39 33.71 34.16

Table 2: Comparison between our models and existing methods. The speed-up is measured on WMT’ 14 En—De
test set. All results reported standalone are without re-scoring. Iter. denotes the number of iterations at inference
time, Adv. means adaptive, * denotes models trained with distillation from a big Transformer.

model achieves 27.49 BLEU on WMT14 EN-DE
— almost identical to the AT performance (27.48)
while 16.5 times faster in the inference time.

Table 2 also indicates the difficulties of learning
NAT on each dataset. For instance, EN<+RO is
relatively easier as “KD + CTC” is enough to close
the performance gap. By contrast, applying VAE
or GLAT helps to capture non-monotonic depen-
dencies and improve by 0.5 ~ 1 BLEU points on
EN«ED. For both datasets, we ONLY need a sin-
gle greedy generation to achieve similar translation
quality as AT beam-search results.

WMT’20 JA—EN In Table 3, we also present
results for training the fully NAT model on a more
challenging benchmark - WMT’ 20 JA—EN which
is much larger (13M pairs) and noisier. In addi-
tion, JA is linguistically distinct from EN which
makes it harder to learn mappings between them.
Consequently, both AT (12-1) and our fully NAT
models become less confident and tend to gener-
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ate shorter translations (BP < 0.9), which in turn
underperform the AT teacher even trained with KD.

Beam search & NPD Previous works (Gu et al.,
2018a; Libovicky and Helcl, 2018) find that NAT
performance can be effectively improved by allow-
ing advanced decoding methods, such as beam-
search and re-ranking (NPD). To fully examine our
proposed fully NAT model and demonstrate its ex-
tensibility with advanced decoding approaches, we
further conduct experiments on WMT’20 JA—EN.

For CTC beam search, we use a fixed beam-
size 20 while grid-search «, 8 (Eq.(6)) based on
the performance on the validation set. The lan-
guage model # is trained directly on the distilled
target sentences to avoid introducing additional in-
formation. We explored both 3-gram and 4-gram
LMs in our initial experiments, and found 4-gram
worked slightly better with no effect on the infer-

*nttps://github.com/kpu/kenlm



Configuration BLEU (4A) BP L5 (Speed-up) L5 (Speed-up)

big (teacher) 21.07 0.920 345 ms 1.0 x 923 ms 1.0 x

AT base 18.91 0.908 342 ms 1.0 x 653 ms 1.4 x
base (12-1) 15.47 0.806 152 ms 23 x 226 ms 4.0 x

base (12-1) + KD 18.76 0.887 145 ms 24 x 254 ms 3.6 X

KD + CTC 16.93 (+0.00) 0.828 173 ms 199 x 84 ms 11.0 x

KD + CTC + VAE 18.73 (+1.80) 0.862 16.4ms 21.0 x 83 ms 11.1 x

NAT w. BeamSearch20 19.80 (+2.87) 0958 28.5ms 12.1 x 99 ms 9.3 x
w. BeamSearch20 + 4-gram LM 2141 (+4.48) 0954 31.5ms 11.0x 106 ms 8.7 x

w. NPD5 18.88 (+1.95) 0.866 34.9 ms 99 x 313ms 2.9 x

w. NPD5 + BeamSearch20 + 4-gram LM~ 21.84 (+4.91) 0.962 57.6 ms 6.0 x 284 ms 3.2 x

Table 3: Performance comparison between fully NAT and AT models on WMT’ 20 JA—EN. Translation latency
on both the GPU and CPUs are reported over the test set. The brevity penalty (BP) is also shown for reference.
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and show them in Logarithmic scale for better visualization.

ence speed. For noisy parallel decoding (NPD), we
draw multiple z from the learned prior distribution
with temperature 0.1, and use the teacher model to
rerank the best z with the corresponded translation.

As shown in Table 3, with similar GPU latency
([,?PU), beam search is much more effective than
NPD with re-ranking, especially combined with a
4-gram LM where we achieve a BLEU score of
21.41, beating the teacher model with 11 x speed-
up. More importantly, by contributing the insertion
bonus (3rd term in Eq (6)) with 3 in beam search,
we have the explicit control to improve BP and
output longer translations. Also, we gain another
half point by combining NPD and beam search. To
have a fair comparison, we also report latency on
CPUs where it is limited to leverage parallelism of
the device. The speed advantage drops rapidly for
NAT models, especially for NAT with NPD, how-
ever, we still maintain around 100 ms latency via
beam search — over 2 x faster than the lightweight
AT (12-1) systems with higher translation quality.

Quality v.s. Latency We perform a full investi-
gation for the trade-off between translation quality
and latency under three measures defined in § 4.1.
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The results are plotted in Figure 4. For fully NAT
models, no beam search or NPD is considered. The
latency is measured by L$PV, £PU and LSPY 50 as
to understand this trade-off in various scenarios. In
all three setups, our fully NAT models obtain supe-
rior trade-off compared with AT and iterative NAT
models. Iterative NAT models (LevT and CMLM)
require multiple iterations to achieve reliable per-
formance with the sacrifice of latency, especially
under £§PY and L£EPY where iterative NAT per-
forms similarly or even worse than AT base (12-1),
leaving fully NAT models a more suitable position

in quality-latency trade-off.

Figure 4 also shows the speed advantage of fully
NAT models shrinks in the setup of £$PY and LSPV
where parallelism is constrained. Moreover, NAT
models particularly those with CTC consume more
computation and memory compared to AT models
with a shallow decoder. For instance when calcu-
lating £SPY, we notice that the maximum allowed
batch is 120K tokens for AT base (12-1), while we
can only compute 15K tokens at a time for NAT
with CTC due to the up-sampling step, even though

the NAT models still win the wall-clock time. We
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Table 4: Ablation on WMT’ 14 EN—DE test set with
different combinations of techniques. The default setup
shows a plain NAT model (Gu et al., 2018a) directly
trained on raw targets with the cross entropy (CE) loss.

A

mark it as one limitation for future research.

4.3 Ablation Study

Impact of various techniques Our fully NAT
models benefit from dependency reduction tech-
niques in four aspects (data, model, loss func-
tion and learning), and we analyze their effects
on translation accuracy through various combina-
tions in Table 4. First of all, the combinations
without KD have clear performance drop compared
to those with KD, showing its vital importance in
NAT training. For the loss function, although both
AXE (Ghazvininejad et al., 2019) and CTC con-
sider the latent alignments, the CTC-based model
obtains much better accuracy due to its flexibility
of output length. In all cases, incorporating latent
variables also effectively improves the accuracy,
especially for CTC without KD (~ 5 BLEU im-
provement). Because of the capability to reduce
the mismatch between training and inference time,
the model with GLAT is superior to those with ran-
domly (RND) sampled masks. To conclude, we
find that KD and CTC are necessary components
for a robust fully NAT model. Adding either VAE
or GLAT to them achieve similar improvements.

Distillation corpus We report the performance
of models trained on real data and distilled data
generated from AT base and big models in Table 5.
For base models, both AT (12-1) and NAT achieve
better accuracy with distillation, while AT benefits
more by moving from base to big distilled data. On

127

Distillation
Models base  big BLEU Speed-up

base 27.43 1.0x

big 28.14 0.9%

AT base 26.12 2.4x%
v 27.34 2.5%

(12-1)

v 27.83 2.4x%
23.58 16.5x
base v 27.49 16.5x
NAT v 2756 165x
big v 27.89 15.8x

Table 5: Performance comparison between AT and
NAT models on the test set of WMT’ 14 EN—DE. The
latency is measured one sentence per batch and com-
pared with the Transformer base. For NAT model, we
adopt CTC+VAE as the basic configuration.
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Figure 5: Principle component explained variance ra-
tios of latent variables on WMT’ 14 EN—DE test set.

the contrary, the NAT model improves marginally
indicating that in terms of the modeling capacity,
our fully NAT model is still worse than AT model
even with 1 decoder layer. It is not possible to fur-
ther boost the NAT performance by simply switch-
ing the target to a better distillation corpus, which
aligns the finding in Zhou et al. (2020). Nonethe-
less, we can increase the NAT capacity by learning
in big size. As shown in Table 5, we can achieve
superior accuracy compared to AT (12-1) with little
effect on the translation latency (E?PU).

Effective Latent Dimensionality of Latent Vari-
ables To confirm the necessity of combining
VAEs with CTC, We apply principal component
analysis (PCA) (Wold et al., 1987) on the learned
latent variables. More precisely, we extract the la-
tent variables from the posterior of various models
(see Table 4) on WMT’ 14 EN—DE test set. These
main components’ explained variance ratios, the
percentage of variance that is attributed by each of
the component, are shown in Figure 5.

First, we find that the number of effective latent



dimensionality (capturing at least 95% of the total
variance) is much lower than the number of latent
dimensions (8 in our experiments), which indicates
simply increasing the number of latent dimensions
does not lead to better representations, and the abil-
ity to capture dependencies is limited. Therefore,
VAESs need to be combined with other techniques
e.g. KD, CTC to take effect. Also, compared to
the AXE, the effective dimensionality of latent vari-
ables in CTC loss-based models is higher.

We include more analysis with qualitative exam-
ples in Appendix B.

5 Discussion and Future work

In this section, we go through the proposed four
techniques again for fully NAT models. In spite
of the success to close the gap with autoregressive
models on certain benchmarks, we still see limi-
tations when using non-autoregressive systems as
mentioned in Table 1.

We and most of the prior research have repeat-
edly found that knowledge distillation (KD) is the
indispensable dependency reduction components,
especially for training fully NAT models. Neverthe-
less, we argue that due to the model agnostic prop-
erty, KD may lose key information that is useful
for the model to translate. Moreover, Anonymous
(2021) pointed out KD does cause negative effects
on lexical choice errors for low-frequency words in
NAT models. Therefore, an alternative method that
improves the training of NAT models over raw tar-
gets using such as GANs (Bifikowski et al., 2019)
or domain specific discriminators (Donahue et al.,
2020) might be the future direction.

Apart from KD, we also notice that the usage
of CTC loss is another key component to boost
the performance of fully NAT models across all
datasets. As discussed in § 4.2, however, the need
of up-sampling constrains the usage of our model
on very long sequences or mobile devices with
limited memory. In future work, it is possible to ex-
plore models to hierarchically up-sample the length
with a dynamic ratio to optimize the memory usage.

Lastly, both experiments with VAE and GLAT
prove that it is helpful but not enough to train
NAT models with loss based on monotonic align-
ments (e.g. CTC) only. To work on difficult pairs
such as JA-EN, it may be a better option to adopt
stronger models to capture richer dependency infor-
mation, such as normalizing flows (van den Oord
et al., 2018; Ma et al., 2019) or non-parametric
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approaches (Gu et al., 2018b).

6 Related Work

Besides iterative NAT and fully NAT models, there
are other works trying to improve the decoding
speed of translation models from other aspects.
One research line is to hybrid AT and NAT models.
Wang et al. (2018) proposed a semi-autoregressive
model which adopted non-autoregressive decod-
ing locally but kept the autoregressive property in
global. On the contrary, Kong et al. (2020); Huang
et al. (2017) and Ran et al. (2020) introduced a
local autoregressive NAT models which retained
the non-autoregressive property in global.

Alternatively, there are also efforts improving
the decoding speed of AT models directly. Model
quantization and pruning have been widely stud-
ied as a way to improve the decoding speed (See
et al., 2016; Junczys-Dowmunt et al., 2018; Aji and
Heafield, 2020). Also, specialized light-weight AT
model (e.g. replacing self-attention with SSRU) to-
gether with improved teacher-student training (Kim
et al., 2019) are explored.

7 Conclusion

In this work, we aim to minimize the performance
gap between fully NAT and AT models. We in-
vestigate dependency reduction methods from four
perspectives and carefully unite them with neces-
sary revisions. Experiments on three translation
benchmarks demonstrate that the proposed fully
NAT models achieve the SoTA performance. For
future work, it is worth exploring simpler but more
effective diagrams for learning NAT models. For
instance, with the combination of CTC and more
powerful latent variable models, it is possible to
remove the necessity of knowledge distillation.
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Appendix
A Implementation Details

Architecture We design our fully NAT model
with the hyperparameters of the base Transformer:
8-512-2048 (Vaswani et al., 2017). For EN—DE
experiments, we also implement the NAT model in
big size: 8-1024-4096 for comparison.

VAEs For experiments using variational autoen-
coders (VAE), we use the last layer encoder hidden
states to predict the mean and variance of the prior
distribution. The latent dimension D is set to 8, and
the predicted z are linearly projected and added on
the encoder outputs. Following Shu et al. (2020),
we use a 3 layer encoder-decoder as the posterior
network, and apply freebits annealing (Chen et al.,
2016) to avoid posterior collapse.

CTC By default, we upsample the length of de-
coder inputs 3x as long as the source for CTC,
while using the golden length for other objectives
(CE and AXE). We also train an additional length
predictor when CTC is not used. For both cases, we
use SoftCopy (Wei et al., 2019) which interpolated
the encoder outputs as the decoder inputs based on
the relative distance of source and target positions.

GLAT The mask ratio, fiagio, is 0.5 for GLAT
training. The original GLAT (Qian et al., 2020) as-
sumes to work with the golden length so that it can
glance at the target by placing the target word em-
bedding to a clear corresponded inputs. It is incom-
patible with CTC loss where we always need longer
inputs than the targets. To enable GLAT learning,
we glance at target tokens from the viterbi aligned
tokens (v = argmax,eg(y) p(a|x)) which has
the same length as the decoder inputs.

Training For both AT and NAT models, we set
the dropout rate as 0.3 for EN<+DE and EN<+RO,
and 0.1 for JA—EN. We apply weight decay 0.01
as well as label smoothing ¢ = 0.01. All models
are trained for 300K updates using Nvidia V100
GPUs with a batch size of approximately 128K to-
kens. We measure the validation BLEU scores for
every 1000 updates, and average the last 5 check-
points to obtain the final model.

Inference We measure the GPU latency by run-
ning the model on a single Nvidia V100 GPU, and
CPU latency on Intel(R) Xeon(R) CPU E5-2698
v4 @ 2.20GHz with 80 cores. All models are im-
plemented on fairseq (Ottet al., 2019).
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A | BLEU  £§PY LY L5
1.5 | 26.16 179ms 0.95ms 66.6 ms
2.0 | 26.39 17.5ms 1.03ms 71.6ms
2.5 | 26.54 176 ms 1.16 ms 76.9 ms
3.0 | 26.51 170ms 132ms 81.8ms

Table 6: Performance comparison of different upsam-
ple ratios (\) for CTC-based models on WMT’14
EN—DE test set. All models are trained on distilled
data.

B More ablation study

Upsampling Ratio (\) for CTC Loss To meet
the length requirements in CTC loss, we upsample
the encoder output by a factor of 3 in our experi-
ments. We also explore other possible values and
report the performance in Table 6. The higher up-
sampling ratio provides a larger alignment space,
leading to better accuracy. Nevertheless, with a
large enough sampling ratio, a further increase will
not lead to the performance increase. Because of
the high degree of parallelism, LSPY speed is simi-
lar among these ratios. However, the model with
a larger ratio has a clear latency drop on CPU or
GPU with large batches.

Representation reordering in the latent space
In our main experiments, VAEs has been proven
to effectively improve the performance of NAT
models. Here, we perform a qualitative study to
show how VAEs helps NAT models.

Ott et al. (2018) collected additional refer-
ence translations for each source sentence in the
WMT’ 14 En—De test set. We first choose three
source sentences and show the alignments between
them and two of their different translations in Fig-
ure 6. In each sample, it is clear to find that the
word order of the first pair is more similar to the
second one (e.g., in the second sample, the verb
’light’” in the source sentence is translated to the
end of the second reference sentence). However,
given the monotonic alignment assumption, CTC
is difficult to align sentence pairs with different
word orders. Then, for each sample, we extract la-
tent variables of both sentence pairs and align them
by first computing the Euclidean distance between
every position and then employing the linear sum
assignment algorithm (LAP).

Regarding the first pair as the baseline, we find
that the latent variable is able to adjust the word
order according to the input sentence pair. For
example, the alignment between latent variables of



Src: The cause of the blast was not known , he gaid .
Ref1: Die Ursache der Explosion war nicht bekannt , sagte er .
Src: The cause of the blast was not known , he said .

\ — T —

\‘ —_— —
Ref2: Er sagte, die Ursache der Explosion wére nicht bekannt .

Src: Norway : Norwegian village lights itself up with hyge mirrors
Ref1: Norwegen : Norwegisches Dort beleuchtet sich mit riesigen Spiegeln
Src: Norway : Norwe@ village lights itself up with huge mirrors

Ref2: Norwegen : Norwegisches Dorf verschafft sich mit Riesenspiegeln Licht

Src: During Obama &apos;s@n to office in 2008 , he had an 82 % approval rating .

Ref1: Bei Obamas Amtseinflihrung im Jahr 2008 hatte er eine Zustimmungsrate von 82 % .

Src: Duiing Obama &apos;s transition to office jn 2008 , he had an 82@@ .

Ref2: Bei seinem Amtsantritt im Jahr 2008 besaB Obama eine Zustimmungsquote von 82 % .

Figure 6: Alignments between source sentences and their different translations.

the second sample is shown as: 0-0, 1-1, 2-2, 3-3, 4-
9,5-5, 6-6,7-7, 8-8, 9-4, which shows that the latent
representation of the 9th position in the second pair
is aligned to the 5th position of the second pair.
In another word, the latent representation of the
word ’lights’ is reordered to the last position in the
second pair’s latent variable, which corresponds
to the word order difference in the second pair.
Therefore, given various reference information, the
latent variable makes the alignment between the
source and target representation more monotonic.
CTC can consequently benefit from it to learn a
better NAT model.
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Abstract

Warning: rhis paper contains content that
may be offensive or upsetting.

Countermeasures to effectively fight the ever
increasing hate speech online without block-
ing freedom of speech is of great social in-
terest. Natural Language Generation (NLG),
is uniquely capable of developing scalable so-
lutions. However, off-the-shelf NLG meth-
ods are primarily sequence-to-sequence neu-
ral models and they are limited in that they
generate commonplace, repetitive and safe re-
sponses regardless of the hate speech (e.g.,
“Please refrain from using such language.”) or
irrelevant responses, making them ineffective
for de-escalating hateful conversations. In this
paper, we design a three-module pipeline ap-
proach to effectively improve the diversity and
relevance. Our proposed pipeline first gen-
erates various counterspeech candidates by a
generative model to promote diversity, then
filters the ungrammatical ones using a BERT
model, and finally selects the most relevant
counterspeech response using a novel retrieval-
based method. Extensive Experiments on
three representative datasets demonstrate the
efficacy of our approach in generating diverse
and relevant counterspeech.

1 Introduction

Hate speech is any form of expression through
which speakers intend to vilify, humiliate, or in-
cite hatred against a group or a class of persons on
the basis of some characteristics, including race,
religion, skin color, sexual identity, gender identity,
ethnicity, disability, or national origin (Ward, 1997;
Nockleby, 2000). Its ever-growing increase on the
Internet makes it a problem of significant societal
concern (Williams, 2019); effective countermea-
sures call for not blocking freedom of speech by
means of censorship or active moderation (Gagliar-
done et al., 2015; Strossen, 2018). A very promis-
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Hate I am done with Islam and isis. All Muslims
Speech:  should be sent to their homeland. Britain will
be better without their violence and ideology.
Expert: I agree that ISIS is an evil aberration, but to
extend this to include up to 3 million people
just in the UK is just plain silly.
Common- Hate speech is not tolerated. Please review our
place: user policies. Thank you for your cooperation.
Notrele- Use of the r-word is unacceptable as it de-
vant: means and insults people with disabilities.

Table 1: An illustrative example of hate speech and
counterspeech.

ing countermeasure is counterspeech—a response
that provides non-negative feedback through fact-
bound arguments and broader perspectives to miti-
gate hate speech and fostering a more harmonious
conversation in social platforms (Schieb and Preuss,
2016; Munger, 2017; Mathew et al., 2018; Shin and
Kim, 2018). Counterspeech as a measure to combat
abusive language online is also promoted in active
campaigns such as “Get The Trolls Out”.!

What makes an effective counterspeech? In-
formed by psychosocial and linguistic studies on
counterspeech (Mathew et al., 2019b) and the large
number of effective counterspeech examples cre-
ated by crowdsourcing (Qian et al., 2019) and by
experts (Chung et al., 2019), we identify that effec-
tive counterspeech should be diverse and relevant
to the hate speech instance. Diversity is the re-
quirement that a collection of counterspeech should
not be largely commonplace, repetitive and safe
responses without regard to the target or type of
hate speech (e.g., “Please refrain from using such
language.”). Relevance refers to the property that
counterspeech should directly address and target
the central aspects of the hate speech, enabling

'nttps://getthetrollsout.org/
stoppinghate

Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 134-149
August 1-6, 2021. ©2021 Association for Computational Linguistics



coherent conversations rather than irrelevant or off-
topic ones (e.g., the hate speech instance targets an
ethnic group, while the counterspeech talks about
people with disabilities). Comparative examples
are shown in Table 1 where we list some counter-
speech that lack diversity or relevance.

While NLG systems (in particular, sequence-to-
sequence models) offer much promise for generat-
ing text at scale (Sutskever et al., 2014; Zhu et al.,
2018; Lewis et al., 2020), the quality of the out-
puts is modest in the context of the requirements
identified above. Indeed, Qian et al. (2019), the
only existing quality work on counterspeech gen-
eration, has highlighted their limitations: the re-
sponses are largely commonplace and sometimes
irrelevant. These limitations apply more broadly to
general conversational language generation tasks,
arising primarily due to the intrinsic end-to-end
training nature of a single sequence-to-sequence ar-
chitecture (Sordoni et al., 2015; Li et al., 2016; Ser-
ban et al., 2017; Jiang and de Rijke, 2018). Model
refinements to account for these limitations have
been addressed individually: improved diversity
(Li et al., 2016; Xu et al., 2018) or improved rele-
vance (Gao et al., 2019; Li et al., 2020). However,
combining these improvements into a single model
is not straightforward. Such is the goal of this pa-
per.

We tackle the problem from an entirely novel an-
gle by proposing a three-module pipeline approach,
Generate, Prune, Select (denoted as “GPS”) to en-
sure the generated sentences adhere to the required
properties of diversity and relevance. First, the
Candidate Generation module generates a large
number of diverse response candidates using a gen-
erative model. As such, a large candidate pool is
made available for selection, which accounts for
improved diversity. Second, the Candidate Pruning
module prunes the ungrammatical candidates from
the candidate pool. Last, from the pruned coun-
terspeech candidate pool, the Response Selection
module selects the most relevant counterspeech for
a given hate speech instance by a novel retrieval-
based response selection method.

We demonstrate the efficacy of GPS, the first
pipeline approach for counterspeech generation, by
a systematic comparison with other competitive
NLG approaches in generating diverse and rele-
vant counterspeech. We derive new state-of-the-art
results on three benchmark datasets by showing
improved diversity and relevance using both auto-
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matic and human evaluations.

2  Proposed Model

We assume access to a corpus of la-
beled pairs of conversations D =
{(x1,11), (z2,92), -, (T, yn)}, where z; is

a hate speech and y; is the appropriate counter-
speech as decided by experts or by crowdsourcing.
The goal is to learn a model that takes as input a
hate speech x and outputs a counterspeech y. A
motivating example is shown in Table 1. Most
importantly, we aim at generating diverse and
relevant counterspeech. We present an overview of
the model in Figure 1 and describe each module in
detail below.

2.1 Candidate Generation

The main goal of this module is to create a diverse
candidate pool for counterspeech selection. We
extract all available counterspeech instances ¥ =
[y1,Y2, ..., yn] from the training dataset and enlarge
the counterspeech pool by a generative model.

Specifically, we utilize an RNN-based varia-
tional autoencoder (Bowman et al., 2016), that in-
corporates the global distributed latent representa-
tions of all sentences to generate candidates. Both
the encoder and the decoder have two layers with
512 nodes each, and we use two highway network
layers (Srivastava et al., 2015) to facilitate robust
training. Like all other generative models, it aims
to maximize the lower bound of the likelihood £
of generating the training data Y,

L= —KL(go(zly) || p(2)) + Eqy (213 [log po(y]2)]

where 6 denotes all parameters of the generative
model, z is a latent variable having a Gaussian dis-
tribution with a diagonal covariance matrix, p de-
notes the prior distribution, ¢ denotes the posterior
distribution, and K L denotes the KL-divergence
(Kullback and Leibler, 1951). In the training pro-
cess, we apply the KL annealing technique (Bow-
man et al., 2016) to prevent the undesirable stable
equilibrium problem (i.e., the first term of the like-
lihood function K L(qg(z|y)||p(2)) becomes zero).
Upon the completion of the training, we generate
candidates by simply decoding from noise € sam-
pled from a standard Gaussian distribution (i.e.,
e ~N(0,1)).

As demonstrated by Bowman et al. (2016) (and
as inferred from our own experiments described in
Section 3), the generative model not only captures
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Figure 1: Overview of GPS. The red ovals correspond to the individual modules.

holistic properties of sentences such as style, topic,
and high-level syntactic features, but also produces
diverse candidates.

2.2 Candidate Pruning

Though candidates generated by such an RNN-
based variational autoencoder are diverse, they are
not always grammatical as pointed out by Bowman
et al. (2016). Therefore, in this module, we prune
the candidate list and retain only the grammatical
ones. Toward this, we train a grammaticality classi-
fier on the corpus of linguistic acceptability (CoLA)
(Warstadt et al., 2018), a dataset with 10,657 En-
glish sentences labeled as grammatical or ungram-
matical from linguistics publications. We select
BERT (Devlin et al., 2019) as the classification
model, and fine-tune it on the CoL A dataset. The
choice of BERT is to best capture both the syntactic
and the contextual information, and we select the
‘bert-base-cased’ model for its better computational
efficiency.

2.3 Response Selection

We now have a collection of diverse and grammat-
ical counterspeech responses. Finally, we aim to
select the most relevant response to a given hate
speech instance.

Taking into consideration the limited training in-
stances that are realistically available (Chung et al.,
2019; Qian et al., 2019), and inspired by the re-
cent success of pretrained models (Devlin et al.,
2019), we innovate on a pretrained response se-
lection model for task-oriented dialogue systems
(Henderson et al., 2019) and perform fine-tuning
on our dataset. Henderson et al. (2019) proposed

two response selection methods, but we find that
neither of them is well-suited for our task.

1. Train a response selection classifier with the
negative sampling technique: It relies on ran-
domly drawing other candidates from the can-
didate pool as negative examples. However, in
our task, one hate speech instance usually has
multiple appropriate counterspeech instances.
For example, given the hate speech in Table 1,
there are many other instances that can work
as quality counterspeech, such as “You cannot
blame all people for the actions of a few. Ban-
ning something altogether will not solve any-
thing.” or “Does prohibition of anything ever
work? I thought religious tolerance was one of
our ‘British values’?”. Therefore, many wrongly
chosen negative examples may negatively im-
pact the inductive bias of the response selection
classifier.

2. Select by cosine similarity: we point out that
the embeddings of the input (hate speech) and
the responses (counterspeech candidates) do not
share the same latent vector space and therefore,
the learned embeddings and their cosine similar-
ities may not fully serve the purpose of relating
the response to the input.

Therefore, instead of adopting the two available
methods directly, we improve on the second one
by fusing the latent spaces of the input and the re-
sponses, inspired by Gao et al. (2019). Specifically,
we propose to learn a linear embedding mapping
from the latent space of the responses to the latent
space of the input, and then select the best response
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by cosine similarity. Mathematically, we use e,
to denote the input embedding and e, to denote
the response embedding. We aim to learn a linear
mapping from ey, to e;, where e, = (W + BI)-e,,
W and B are learnable parameters, and [ is an
identity matrix. We learn the mapping such that the
sum of the cosine similarities between e, and efy
for the training data is maximized. By way of this
transformation, e?’J now maps the vector space of
the responses to that of the input, and thus allows
the pretrained model to effectively utilize the dis-
criminative power of the sentence embeddings. We
empirically observe that the linear mapping works
well and leave other advanced mapping techniques
for future work.

3 Empirical Evaluation

In this section, we empirically evaluate the per-
formance of our proposed approach and a set of
baseline models.

3.1 Experimental Setup

Datasets: We use the benchmark datasets collected
by Qian et al. (2019), which are fully-labeled hate
speech intervention datasets collected from Red-
dit and Gab, comprising 5,257 and 14,614 hate
speech instances respectively. We use the filtered
conversation setting in Qian et al. (2019), which
includes the posts labeled as hate speech only and
discards other non-hateful conversations. Besides,
we use the English language portion of the CO-
NAN dataset (Chung et al., 2019), which contains
counterspeech for 408 hate speech instances, writ-
ten by experts trained on countering hatred. The
Reddit, Gab and CONAN datasets have on average
2.66, 2.86 and 9.47 ground truth counterspeech for
each hate speech respectively.

Training Data: Since each hate speech can have
multiple ground truth counterspeech, we follow
Qian et al. (2019) to dis-aggregate the counter-
speech and construct a pair (hate speech, counter-
speech) for each of the ground truth counterspeech
in each dataset. Given a counterspeech dataset, we
randomly choose 70% (hate speech, counterspeech)
pairs for model training, 15% for cross validation
and the rest 15% for testing.

Baselines: We compare our proposed approach
with the following competitive baseline models:

1. Seq2Seq (Sutskever et al., 2014; Cho et al.,
2014) is a widely used neural model for lan-
guage generation. We use 2 bidirectional Gated
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Recurrent Unit (GRU) layers for the encoder
and 2 GRU layers followed by a 3-layer neural
network as the decoder.

. Maximum Mutual Information (MMI) (Li et al.,
2016) is a diversity-promoting approach for neu-
ral conversation models. We implement the
MMI-bidi model (Li et al., 2016) and adopt
incremental learning (Ranzato et al., 2016) to
facilitate robust training.

. SpaceFusion (Gao et al., 2019) optimizes both
diversity and relevance by introducing a fused
latent space, where the direction and distance
from the predicted response vector roughly
match the relevance and diversity, respectively.
We align the direction parameter with the
ground truth counterspeech. To better exercise
the diversity power, we randomly choose the
distance parameter at each time of generation.

. BART (Lewis et al.,, 2020) is the state-of-
the-art pre-trained sequence-to-sequence model
for language generation. It has a standard
Transformers-based neural machine translation
architecture which can be seen as generalizing
BERT (Devlin et al., 2019), GPT (Radford et al.,
2018) and many pretraining schemes. We fine-
tune the BART model on our training data.

We compare with Seq2Seq since they are initially
proposed and used by Qian et al. (2019).2 We select
MM, SpaceFusion and BART as baselines because
they are the state-of-the-art models in promoting
diversity, optimizing both diversity and relevance,
and generating quality language respectively.

3.2 Evaluation

We evaluate all model outputs along three dimen-
sions: diversity, relevance and language quality.
Diversity refers to vocabulary richness, variety in
expression and the extent to which the response is
dissimilar from the rest in a generated collection of
responses. Relevance captures the extent to which
the counterspeech addresses the central aspect of
the hateful message and makes a coherent conver-
sation towards mitigating the hate speech. A low
relevance score means that the counterspeech is
irrelevant to the hate speech or off-topic (e.g., the
hate speech talks about LGBTQ whereas the coun-
terspeech is related to religious beliefs). Language

2We do not include the results of the variational auto-
encoder model and the reinforcement learning model in Qian
et al. (2019) for comparison as they has very similar perfor-

mance as Seq2Seq. Readers are referred to Qian et al. (2019)
for detailed performance.



Diversity | Relevance | LQ.

Dist-1 Dist-2 Ent-1 Ent-2 SB1* SB2* ‘ B2 R2 MS BS BM25 ‘ GR

Seq2Seq 0.06 0.23 5.12 6.63 0.54 030 | 34 3.0 4.4 0.83 2.66 0.38

<Zt MMI 0.06 0.23 4.88 6.41 0.57 035 [ 29 23 3.9 0.82 1.63 0.33
Z | SpaceFusion 0.00 0.00 1.06 1.86 0.98 098 | 0.0 0.0 -142 0.76 0.12 0.38
8 BART 0.04 0.23 5.98 7.80 0.52 026 | 39 3.6 7.1 0.84 1.86 0.71
GPS 0.06 0.27 5.77 7.41 0.43 019 | 71 65 109 0.85 5.43 0.71
Seq2Seq 0.04 0.24 5.07 6.61 0.58 0.31 6.5 4.0 6.8 0.85 0.14 0.64

.‘é MMI 0.05 0.32 5.11 6.76 0.56 029 | 64 40 6.9 0.85 0.14 0.56
= SpaceFusion 0.00 0.02 2.73 4.16 0.87 076 [ 09 00 -25 0.79 0.16 0.26
[~ BART 0.03 0.19 5.08 6.63 0.69 055 | 7.8 69 7.8 0.86 0.83 0.72
GPS 0.09 0.53 5.74 7.61 0.41 0.15 | 81 7.1 7.8 0.87 2.58 0.75
Seq2Seq 0.02 0.17 5.14 6.71 0.56 030 | 7.5 5.0 6.7 0.86 0.14 0.67

2 MMI 0.02 0.17 5.28 6.82 0.55 030 | 5.8 3.6 6.2 0.85 0.18 0.65
{; SpaceFusion 0.00 0.01 3.72 4.84 0.81 0.73 1.8 0.1 0.0 0.82 0.17 0.21
BART 0.03 0.17 5.42 7.25 0.60 038 | 6.9 64 6.8 0.86 0.81 0.72

GPS 0.06 0.40 5.82 7.83 0.39 015 | 7.6 64 6.8 0.87 1.94 0.76

Table 2: Automatic evaluation results. An asterisk * by the metric name indicates that the metric favors smaller
values. Best results are in bold. LQ.: Language Quality; SB1: Self-BLEU-1; SB2: Self-BLEU-2; B2: BLEU-2;
R2: ROUGE-2; MS: MoverScore; BS: BERTScore; GR: GRUEN.

Div. Rel. LQ.

7z | Seq2Seq | 0.50 022 0.06
<ZE MMI 0.55 0.08 0.02
o BART 0.40 0.73 0.65
&) GPS 0.80 0.83 0.66
o | Seq2Seq | 0.25 023 0.38
= MMI 0.35 023 0.35
E BART | 000 047 0.51
GPS 1.00 0.58 048
Seq2Seq | 0.35 0.36 0.31

= MMI 0.55 034 0.27
4] BART 0.10 042 0.35
GPS 0.80 047 0.36

Table 3: Human evaluation results. Div.: Diversity;
Rel.: Relevance; LQ.: Language Quality.

quality measures whether the generated responses
are grammatical, fluent and readable.

3.2.1 Automatic Evaluation

We evaluate diversity by distinct n-grams (Dist-n)
(Li et al., 2016), Entropy (Ent-n) (Zhang et al.,
2018) and Self-BLEU (Zhu et al., 2018). For rele-
vance, we compare 1) the generated response with
the ground truth counterspeech by BLEU (Pap-
ineni et al., 2002) and ROUGE (Lin and Hovy,
2003; Lin, 2004) for syntactic similarity, and by
MoverScore (Zhao et al., 2019) and BERTScore
(Zhang et al., 2020a) for semantic similarity; 2)
the generated response with the hate speech by
BM25 (Manning et al., 2008), a relevance estima-
tion function widely used in information retrieval.
We adopt GRUEN (Zhu and Bhat, 2020) to eval-

uate the language quality. Note that larger scores
indicate better quality, except for Self-BLEU.

3.2.2 Human Evaluation

Following Qian et al. (2019), we ask human an-
notators to perform “winner selection” instead of
numeric ratings. We randomly sampled 100 hate
speech instances from each dataset’s test collec-
tion, and corresponding model-generated counter-
speech outputs from Seq2Seq, MMI, BART, and
our model.> Two human annotators (native En-
glish speakers and sensitive about hate speech on-
line) were presented with one hate speech and the
four generated outputs, and were asked to evalu-
ate the outputs for relevance and language quality
separately. As for diversity, the annotators were
presented with 10 responses for each of the four
models each time, and were asked to select the
model with the best diversity. For each of the three
dimensions, the best output received a 1 (ties were
allowed, i.e., multiple outputs could receive a 1)
and the rest received a 0.

3.3 Results

We obtain the results of our model (denoted as
“GPS”) by generating 30k, 30k, 40k candidates
for the CONAN, Reddit and Gab datasets respec-
tively.* After the Candidate Pruning module, we

3To save human annotation effort, we asked human raters
to annotate only the best 4 models w.r.t. automatic metrics,
and therefore leave SpaceFusion out of annotation.

“The number of generated candidates are selected based
on the performance on the cross validation datasets.
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Hate Speech

Generated Counterspeech by GPS

(a): All the Muslims should have been punished for yester-
day, not only a few. Citizen will take action if the government
does not do anything.

You cannot blame all people for actions of a few. Banning
something altogether will not solve anything.

(b): The world would be a better place without Muslims.
They are only killing and raping our children.

The world would actually be a very dark place without Mus-
lims who contribute a lot to our society. What about our Mus-
lim doctors, scientists, philanthropists, actors, job-creators?

(c): What is the point in listening to black women? They are
all retarded.

The point of listening to black women, and women in general,
is that they could broaden and enlighten your view of the
world.

Table 4: Examples of the generated counterspeech

have 15.4k, 17.9k and 25.4k grammatical candi-
dates for each dataset respectively.

The results by automatic metrics and human eval-
uation metrics are presented in Table 2 and Table
3 respectively. Overall, GPS has the best diversity
with significant margins than the baselines. For
relevance, GPS has slightly better performance
for BLEU, ROUGE, MoverScore and BERTScore,
while has much better performance on BM25. This
implies the counterspeech generated by GPS are
more related to the hate speech and therefore, make
more coherent conversations. Examples of coun-
terspeech generated by GPS are presented in Table
4. We find that GPS is able to generate diverse
and relevant rather than merely commonplace re-
sponses, such as “Please refrain from using such
language”. Comparative case studies for different
baseline models are shown in Appendix A.4. There-
fore, we conclude that GPS has the best diversity
and relevance, compared to the baselines. Besides,
GPS has comparable language quality with the best
baseline model—BART.

Among these baselines, BART is the strongest
one with much better relevance and language qual-
ity. Yet, BART still suffers from the diversity issue,
as discussed in Section 4.3. SpaceFusion has very
poor results overall, though a manual inspection of
the latent space fusion visualization suggests oth-
erwise. One explanation is that SpaceFusion, with
substantially more parameters compared with the
Seq2Seq model may not have had sufficient train-
ing instances for its optimal performance. In their
own experiments, Gao et al. (2019), demonstrate
that SpaceFusion worked well on two datasets with
0.2M and 7.3M conversations, which is at least one
to two orders of magnitude larger than our dataset.
If provided with more training data, SpaceFusion
could possibly be a strong candidate too. In com-
parison, though BART is an even more complicated

model with 139M parameters, it was pre-trained
on the BooksCorpus dataset (Zhu et al., 2015) with
over 7,000 unique unpublished books and has the
fine-tunable property.

3.4 Ablation Study

We compare with the following ablations of GPS
and show the results in Figure 2.

1. G-BART: instead of generating the candidates
by the RNN-based variational autoencoder
(Bowman et al., 2016), we generate the can-
didates by BART (Lewis et al., 2020).

2. P-no: we exclude the pruning module and make
all generated candidates available for selection.

3. S-tfidf: we select the most relevant response by
tf-idf on raw texts.

4. S-cos: we exclude the latent space fusion step
and select the best response by the cosine simi-
larity of the response embeddings and the hate
speech embeddings (Henderson et al., 2019).

5. S-neg: we use the negative sampling technique
to train a response selection classifier (Hender-
son et al., 2019).

B GPS G-BART MP-no MS-tfidf MWS-cos MS-neg
8
7

BLEU-2 ROUGE-2 Dist-1 Entl GRUEN

Figure 2: Ablation study. Plots show average results
across all three datasets. We scale Dist-1 by 100 times
and GRUEN by 10 times for better visualization.
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G-BART has almost the same performance as
GPS. Therefore, we select the RNN-based varia-
tional autoencoder for candidate generation for its
better computational efficiency. Compared with
the full model, though P-no has slightly better per-
formance on diversity, it performs poorly on both
relevance and language quality. Three ablation
methods for response selection have similar per-
formance. They have comparable performance to
GPS on diversity and language quality, but worse
results on relevance.

The ablation study demonstrates the significance
of the Candidate Pruning module and our proposed
Res