
Proceedings of the ESSLLI 2021 Workshop on Computing Semantics with Types, Frames and Related Structures, pages 3–11
Utrecht, The Netherlands (online), 26–27 July, 2021. ©2021 Association for Computational Linguistics

So what’s all this structure good for?
Some uses of record types in TTR

Robin Cooper
Centre for Linguistic Theory and Studies in Probability

Department of Philosophy, Linguistics and Theory of Science
University of Gothenburg
cooper@ling.gu.se

Abstract

TTR, a type theory with records, makes use
of structured semantic objects such as record
types. In this paper we will first explore in what
sense this represents an increase in structure
over what we normally find in a classical Mon-
tague style semantics. We will then mention
some of the various uses of record types relat-
ing them to Σ-types in type theory, discourse
representation structures, frames, feature struc-
tures and various kinds of mental states.

Finally, we will consider how the introduction
of such structured semantic objects compares
with the kind of proof theoretic approaches
common in type theoretical approaches to lin-
guistic semantics on the one hand and on the
other hand linguistic theories which introduce
a level of logical form or discourse representa-
tion structure as a mediation between natural
language syntax and model theory. I will try
to argue that, in general terms, all these ap-
proaches introduce similar notions of structure
but that there are advantages to introducing the
structure in terms of semantic objects.

1 Structured objects in TTR

In this paper we will address and reflect on the
use of structured objects in TTR, a Type Theory
with Records (Cooper, 2012; Cooper and Ginzburg,
2015; Cooper, in prep). TTR is inspired by Martin-
Löf type theory (Martin-Löf, 1984; Nordström
et al., 1990) and is a rich type theory in the sense
that it does not contain just basic ontological types
as in simple type theory such as Montague’s e (“en-
tities”) and t (“truth-values”) and function types
defined on these but types of objects like Tree and
events like boy-hugs-dog. Central to such a type
theory is the notion of judging an object or situa-
tion/event, a, to be of a type, T . In symbols this is
expressed as (1).

(1) a : T

Types in TTR can be structured objects. One
example of this is ptypes, types where a predicate
is used to construct a type from appropriate argu-
ments to the predicate. Suppose that b is some
particular boy and that d is some particular dog.
We use (2) to represent the type of situations in
which b hugs d.

(2) hug(b,d)

The notation in (2) is thought of as representing
a labelled set (the graph of a function whose do-
main is a designated set of labels and whose range
is {hug, b, d}). Thus we encode it as the set of
ordered pairs in (3).

(3) {〈pred, hug〉, 〈arg1, b〉, 〈arg2, d〉}
Note that the labelled set in (3) is NOT the set of
witnesses of the type. Thus the structure of the type
is not given by the set of its witnesses and the type
is not identified by the set of its witnesses. If s is
a witness for the type ‘hug(b,d)’, that means that s
stands in the of-type relation to the set (3).

This gives types the ontological status of mathe-
matical objects (such as sets) whatever you think
that is. One view is that mathematical objects are
part of the basic furniture of the world. Another
view is that they are mental constructs imposed
on physical reality. We could also place them in
Frege’s (1918/1919) third realm. Yet another view,
akin to the relational view of meaning of Barwise
and Perry (1983) and more recently the relational
interpretation of quantum theory (Rovelli, 2021)
is that they are inherent in the relation between an
observer and the world. Whatever view we take,
they should be no more (and probably no less) mys-
terious than sets. It would probably be a mistake to
think of individuals or events as being less myste-
rious. The boy and the dog in our example do not
correspond to any unique collection of physical par-
ticles since the physical reality which we identify

3



as these individuals is constantly changing. At best,
we can say that these individuals represent strings
of events that cohere in a certain way. But what
kind of coherence of events counts as identifying
an individual seems to depend on the nature of the
observer (cf. the discussion of schemes of individ-
uation by Barwise, 1989, Chapters 10 and 11 and,
for a recent view on how we construct reality from
the neuroscience perspective, Seth, 2021).

The type in (2) is the type of situations where
a particular boy, b, hugs a particular dog, d. We
use record types to represent a more general record
type, boy-hugs-dog, the type of situations were
some boy hugs some dog. Such a record type is
given in (4).

(4)




x : Ind
cboy : boy(x)
y : Ind
cdog : dog(y)
e : hug(x,y)




A record type is a finite set of fields, each consisting
of a label and a type (or a dependent type together
with a sequence of paths in the type, as we will
explain below). The witnesses of record types are
records. A record of the type (4) could be of the
form (5)

(5)




x = sam
cboy = s1
y = fido
cdog = s2
e = s3
. . .




where the conditions in (6) hold.

(6) sam : Ind
s1 : boy(sam)
fido : Ind
s2 : dog(fido)
s3 : hug(sam, fido)

Records are also finite sets of fields. For a record,
r, to be a witness for a record type, T , for each
of the fields in T , there must be a field in r with
the same label where the value in the record field
is of the type in the field of the record type. Note
that this allows for there to be more fields in the
record with labels not occurring in the type. (This
is represented by the ‘. . . ’ in (5).)

In TTR, (4) is a convenient notation for (7)
where the dependent fields are spelt out as con-
taining a pair consisting of a dependent type (a

function which returns a type) and a sequence of
paths within the type (the paths where arguments
to the dependent type are to be found in the record
being tested against the type).

(7) 


x:Ind
cboy:〈λv:Ind . boy(v), 〈x〉〉
y:Ind
cdog:〈λv:Ind . dog(v), 〈x〉〉
e:〈λv1:Ind . λv2:Ind . hug(v1, v2), 〈x, y〉〉




Record types in TTR are labelled sets like ptypes,
though using a different stock of labels to ptypes.
This means that a record type whose graphical dis-
play is of the form (8a) is actually the set of ordered
pairs (8b).1

(8) a.




`1 : T1
`2 : T2
. . .
`n : Tn




b. {〈`1, T1〉, 〈`2, T2〉, . . . , 〈`n, Tn〉}

Record types are, then, another kind of structured
object in TTR.

Types play an important role in type theories not
only as types of objects or situations but also in that
they can be used to model propositions. See Wadler
(2015) for a discussion of the history of this idea
which has a number of sources. The “propositions
as types” dictum is of central importance in Martin-
Löf type theories. A type, T , as a proposition is
said to be “true” just in case there is something,
a, such that a : T , that is, T has a witness. As
propositions associated with linguistic interpreta-
tion are normally taken to be record types in TTR,
it follows that we treat propositions as structured
objects.

An unconsidered first reaction to this fact is that
this makes propositions in TTR very different from
the kind of unstructured propositions that one finds
in Montague semantics. However, this claim is not
true given that we have based our claim of structure
on the fact that record types are sets of ordered
pairs. For Montague, a proposition is a function
from world-time pairs to truth values. That is, a
proposition is a set of ordered pairs since functions
are modelled as sets of ordered pairs. For us, a
proposition can be a record type and, as we have
seen, a record type is a set of ordered pairs. So

1This is actually a slight simplification. See the discussion
of flavours in labelled sets in Cooper (in prep).

4



what is it that makes us think that TTR’s record
types are structured objects whereas Montague’s
propositions are not?

TTR’s record types differ from Montague’s
propositions in two main respects. The first is size.
For Montague, the functions modelling proposi-
tions are infinite, defined on an uncountable do-
main, the set of world-time pairs. Record types,
on the other hand, are finite functions defined on
a (normally small) finite set of labels. The other
respect in which they differ is content. For Mon-
tague, the proposition a boy hugs a dog contains
nothing corresponding to boy, dog or hugs. These
are used, of course, in defining what function from
possible worlds and times to truth values is the
proposition but you cannot look at the resulting
function and determine what was used to define
it. Record types, on the other hand, contain all
the elements that were used to build them up in
their various fields, so, in a rather trivial sense, you
can look at the record type and determine what
was used to define it. For Montague, then, the pro-
cess of compositional interpretation involves loss
of information, a kind of “catastrophic forgetting”
to borrow a term for a rather different (but never-
theless not entirely unrelated) problem from the
literature on neural networks. It is precisely this
difference which leads us to think of Montague’s
propositions as unstructured and record types as
structured.

2 Some uses of structured types

In this section we will briefly review some of the
uses to which structured types have been put in
TTR.

2.1 Types as models of propositions
On p. 2, we introduced the “propositions as types”
dictum and explained its importance in type the-
oretic approaches to semantics. One opportunity
this offers, depending on how you define your type
theory, is a direct way of dealing with what is often
referred to as hyperintensionality in the possible
worlds approach to natural language semantics. In
TTR we allow distinct types to have the same wit-
nesses. Consider the ptypes represented in (9).

(9) a. buy(kim,syntactic structures,sam)
b. sell(sam,syntactic structures,kim)

(9a) represents the type of situations where Kim
buys Chomsky’s 1957 book Syntactic Structures

from Sam and (9b) represents the type of situations
where Sam sells Syntactic Structures to Kim. TTR
allows us to characterize type systems in which
(10) holds.

(10) s : buy(a, b, c)↔ s : sell(c, b, a)

(10) is a restriction on type systems in the same
way in which “meaning postulates” in Montague’s
semantics are restrictions on the possible worlds
to which we should direct our attention. In the
type theory version, however, we have two distinct
types (which can be used as propositions) which
have exactly the same witnesses.

This provides us with a good reason to think of
propositions as types rather than as sets of possi-
ble worlds (or in Montague’s version sets of world
time pairs). In a possible worlds theory the expres-
sion ‘buy(a,b,c)’ intuitively represents the set of
possible worlds in which a buys b from c. But we
have no independent way of characterizing which
worlds those are apart from saying that they are the
worlds in which ‘buy(a,b,c)’ is true. We cannot say
what it is that the worlds have in common which
makes them worlds in which the expression is true.
Types, on the other hand, provide a theory of what
situations (or possible worlds) might have in com-
mon and then expressions are related to the types.
From the perspective of possible world semantics,
types provide an “inside-out semantics” where you
start from the commonalities (the types) and reason
about what objects might be witnesses for the types,
rather than starting from a set of possible worlds
that have something in common but failing to pro-
vide a theory of what the commonality is (apart
from saying that a certain sentence is true in all the
worlds in the set). Possibly, if you have a theory of
situation types, you might try to recover a possible
worlds theory by looking at the sets of witnesses
of the types. But in order to do this you would
need to figure out a way of characterizing situation
sufficiently large to count as a world. Normally, in
a type theory (or a situation theory, for that matter)
there is nothing corresponding to a largest situa-
tion. For example, records are finite sets of fields
in TTR and can be used to model situations, but for
any record it is possible to create a new record by
adding an additional field.

2.2 Subtyping
Using structured record types allows us to intro-
duce a lattice-like notion of subtyping which is
supervenient on this structure. For example, any

5



situation in which a boy hugs a dog is a situation
in which there is a boy. This can be expressed as in
(11).

(11)




x : Ind
cboy : boy(x)
y : Ind
cdog : dog(y)
e : hug(x,y)



v

[
x : Ind
cboy : boy(x)

]

Here the supertype contains a subset of the fields
in the subtype. Exactly which subsets of fields are
available as supertypes is regulated by the depen-
dencies among the fields. If we remove a field on
which another field depends we have to remove the
dependent field as well.

2.3 Σ-types
It is often said in type theory that record types are
really just a variant notation for Σ-types. Intuitively
Σ-types correspond to existential quantification. A
Σ-type (Σx : A)B((x)) (where we use the nota-
tion B((x)) to indicate that B depends on x) is
the type of ordered pairs 〈a, b〉 where a : A and
b : B((a)), corresponding to “There is anA, a, such
that B((a))”. For example, if A is Dog and B is
Bark, the Σ-type (Σa : Dog)Bark((a)) can be con-
strued as the type of situation in which some dog
barks.

We can illustrate the relationship between record
types and Σ-types by looking at our running exam-
ple of a record type corresponding to “some boy
hugs some dog” in (12).

(12)




x : Ind
cboy : boy(x)
y : Ind
cdog : dog(y)
e : hug(x,y)



≈





(Σx : Ind)(Σcb :boy(x))(Σy : Ind)(Σcd :dog(y))hug(x, y)
(Σy : Ind)(Σcd :dog(y))(Σx : Ind)(Σcb :boy(x))hug(x, y)
. . .

Note that as TTR record types are sets of fields
there are several Σ-types which intuitively corre-
spond to a single record type. We have represented
just two of them in (12). Intuitively, all of these
Σ-types are equivalent since they all correspond
to “a boy hugs a dog”. Note, however, that this
equivalence is not directly derivable from the char-
acterization of Σ-types. These Σ-types do not have
a witness in common, for example. In TTR we use
record types in place of Σ-types.

2.4 Discourse representation structures
The labels in record types can play the same role
as discourse referents in discourse representation
structures (Kamp and Reyle, 1993) in that they
can be used to account for anaphora. In particu-
lar, the labels associated with situation types seem
intuitively related to the discourse referents in seg-
mented discourse representation theory (SDRT,
Asher and Lascarides, 2003). Here we will just
give an example in (13) of how our running exam-
ple of a record type can be seen as corresponding
to a discourse representation structure.

(13)




x : Ind
cboy : boy(x)
y : Ind
cdog : dog(y)
e : hug(x,y)



≈

x cb y cd e

cb :
boy(x)

cd :
dog(y)

e :
hug(x,y)

2.5 Dialogue gameboards/information states
Ginzburg (2012) used TTR record types to repre-
sent dialogue gameboards which keep track of the
current dialogue state (questions under discussion
among other things) according to a dialogue partic-
ipant. To illustrate this kind of use of record types
we present in (14) a preliminary version of the type
InfoState from Cooper (in prep, Chap. 2) based
on the characterization of dialogue gameboards as
information states in Larsson (2002).

(14)




private:
[
agenda:list(RecType)

]

shared:
[

latest-utterance:Sign∗

commitments:RecType

]



Here the information state is divided into two fields:
private and shared information, that is private to
the particular dialogue participant and shared with
the other dialogue participant(s). Among the pri-
vate information is an agenda, a list of record types,
corresponding to types that the dialogue participant
plans to realize in upcoming turns in the dialogue.

6



Among the shared information is the latest utter-
ance, a string of signs in the sense of head driven
phrase structure grammar (see 2.6) and commit-
ments, a record type representing what has been
agreed on between the dialogue participants for the
sake of the dialogue so far.

2.6 Feature structures
Record types have also been used in the role of
feature structures as used in head-driven phrase
structure (HPSG, Sag et al., 2003). To illustrate
this, we give, in (15), a version of the basic type
Sign from Cooper (in prep, Chap. 3).

(15) σ : Sign iff σ :




s-event : SEvent
syn : Syn
cont : Cont




where Syn is the type in (16).

(16) σ : Sign iff σ :




s-event : SEvent
syn : Syn
cont : Cont




Here a sign consists of two fields correponding to
the two parts of a Saussurean sign (de Saussure,
1916), speech event and content, and an additional
field for syntax, providing a category and a string
of signs as daughters. Sign is defined as a basic
type whose witnesses are witnesses of the record
type given rather than directly as that record type.
This is because signs can contain other signs (the
daughters) and the witnesses of the type Sign need
to be defined inductively rather than have the type
itself be a non-well founded object.

2.7 Frames
Record types have also been used to represent
frames in the sense of FrameNet (Ruppenhofer
et al., 2006) and in the sense of Barsalou (1992))
and the more recent developments in frame the-
ory represented in Löbner et al. (2021). For a dis-
cussion of frames in TTR see Cooper (2016) and
Cooper (in prep, Chap. 5).

2.8 Types as models of concepts, memories
and beliefs

We have talked of types as models of propositions.
It is natural also to use types to model various kinds
of “mental objects”. If we think of concepts as
types, then we can say that the concept is instanti-
ated if there is a witness for the type. If we think of
a memory as a type, then that memory is correct if
there is (or was) a witness for the type. It is natural

to think of beliefs as propositions and therefore, in
our terms, types. A belief is true, then, if there is
a witness for the type. Such a view demands that
we think of how types could be represented in the
brain. Some preliminary suggestions are made by
Cooper (2019), arguing that we should consider
types as implemented in the brain by patterns of
neural activation (rather than as neural architec-
ture). Thinking of mental objects as types, gives
the types a dual nature. They can be used to clas-
sify the world as in the standard view of types but
now in addition they can be used to classify mental
states in terms of which types are represented in
the mental states.

Let us consider how this idea might look in a lit-
tle more detail. (For a fuller discussion see Cooper,
in prep, Chap. 6.) We treat long term memory (or
beliefs) as a type: a type of how the world would
be if your memory is correct. An agent’s, a, long
term memory, Tltm(a), might be characterized as in
(17).

(17) Tltm(a) =


id1 :
[

x:Ind
e:boy(x)

]

id2 :
[

x:Ind
e:dog(x)

]

id3 :
[
e:hug(⇑id1.x, ⇑id2.x)

]

. . .




Here we have only specified the first three fields
of what would probably be a very large type. The
‘⇑’s in the field labelled ‘id3’ are notational sugar
to indicate that the path being referred to is not
within the immediate record type in which the path
notation occurs but one record type higher up.

Thinking of memory as a record type in this way
is similar to thinking of memory as a large mental
file (Recanati, 2012) with many subfiles. On this
view, the basic intuition about belief, is that a be-
lieves T (a type functioning as a proposition), that
is, the type ‘believe(a, T )’ is witnessed (“true”),
just in case Tltm(a) v T . This says that a believes
T just in case any way the world could be that is
consistent with a’s memory would be of type T .

However, this basic intuition is not technically
quite sufficient to do the job that we need. Suppose
that T is our running example of a record type,
repeated in (18).

7



(18)




x : Ind
cboy : boy(x)
y : Ind
cdog : dog(y)
e : hug(x,y)




Intuitively, we would want to say that a does be-
lieve T if T is (18) and a’s long term memory is
(17). But (17) is not a subtype of (18). In fact the
two types have no witnesses in common because
the labelling required by the two types is different.
However, if we relabel (18) as indicated in (19) the
appropriate subtype relation will hold.

(19) x ; id1.x, cboy ; id1.e, y ; id2.x, cdog ;
id2.e, e ; id3.e

The relabelling here replaces paths in a type with
new paths and thus is able to significantly alter the
way in which types are structured, as in this case.

Thus we refine our characterization of what it
means for a to believe T by saying that the type
‘believe(a,T )’ is witnessed just in case there is a re-
labelling, η, of T such that Tltm(a) v η(T ). An im-
portant consequence of this is that if ‘believe(a,T )’
is witnessed, so is ‘believe(a,T ′)’ where T ′ is a
relabelling of T . That is, labelling is irrelevant
for identifying beliefs, even though the labelling
is important for other purposes such as identifying
anaphora DRT-style.

3 Semantic objects vs languages

Let us remind ourselves of the central goal of Mon-
tague’s original semantic project. It was to show
that there is in principle no difference between nat-
ural languages and formal languages defined by
logicians in respect of the fact that it is possible
to provide a model theoretic semantics defined on
the syntax of natural languages (without first hav-
ing to translate them into a formal language and
characterize a model theoretic semantics for that).
This is made explicit in the paper ‘English as a
Formal Language’ (EFL) included in Montague
(1974). In ‘Universal Grammar’ (UG) (also in-
cluded in Montague, 1974) Montague present a
rigorous framework showing how we can use a for-
mal language to represent model theoretic objects
and guarantee that translating natural language into
this formal language induces a model theoretic se-
mantics defined on the natural language syntax. He
does this by composing a homomorphism from the
natural language syntactic algebra to the formal
language syntactic algebra with a homomorphism

from the formal language syntactic algebra to an
algebra of semantic objects. This composed homo-
morphism is from the NL syntactic algebra to the
algebra of semantic objects. ‘The Proper Treatment
of Quanitification in Ordinary English’ (PTQ) in
(Montague, 1974) is an instance of the framework
in UG. Translation into intensional logic is used
to induce a model theoretic semantics defined di-
rectly on the syntax of English. This makes the
presentation much easier to read than the explicit
direct interpretation of English syntax into model
theory in EFL. The direct interpretation of natural
language syntax into the model theory is essential
to Montague’s original claim that natural languages
are formal languages.

TTR introduces structured objects (in the sense
that we have discussed) into the realm of semantic
objects which play the role of Montague’s model
theoretic objects and eschews an intermediate lan-
guage between the natural language syntax and the
semantic objects. In this sense TTR adheres to
Montague’s original project as we have presented
it here. There is, however, something puzzling
about introducing structured semantic objects in
this way: they begin to take on the kind of structure
you might expect in syntactic expressions of a for-
mal language. An example, of this is ptypes such
as ‘hug(b,d)’ as discussed earlier. In TTR we also
have conjunctive types (T1 ∧ T2), disjunctive types
(T1 ∨ T2) and negative types (¬T ). While record
types do not have the kind of structure we normally
see in a standard logic they do nevertheless have
similar structures to those of feature matrices used
in syntactic and phonological description.

The construction and inference operations we
need to describe and relate structured objects like
this seem to take on the syntactic nature of corre-
sponding operations used in proof theory. TTR is
not alone in this. It always seems to happen when
structured objects are introduced into the seman-
tic domain. Examples from the past are situation
semantics (Barwise and Perry, 1983) and logical
atomism (Russell, 1918, 1924). Given the normal
assumption that model theory models aspects of
the world, many find it problematic that the world
takes on the structure of a language in this way
and for this reason, perhaps, think that a traditional
possible worlds semantics is more realistic — de-
spite the intractability of possible worlds and the
problems with intensionality.

There are alternatives to introducing structured

8



objects among the objects in the semantic domain.
One of these is to take a radical proof theoretic ap-
proach to semantics. According to this we think of
semantic theory as providing a mapping from natu-
ral language to a proof theoretic language. There
may, or may not, be a model theory associated
with this language. If there is a model theory it
is more concerned with the metalogical study of
the proof theoretic language rather than a central
component of the semantic theory for natural lan-
guage. Semantics is seen as primarily involving a
correct account of inference rather than associating
natural language expressions with the right kind of
semantic objects. Perhaps most of the work on a
Martin-Löf style type theoretic approach to natu-
ral language semantics takes some version of this
approach. While inference is undeniably central
to semantics and lies at the heart of the motivation
for the semantic objects associated with natural lan-
guage expressions in a model theoretic approach,
such a purely proof theoretic approach to inference
appears to give up any hope of building a semantic
theory which is related to how we perceive and
interact with the world.

A second alternative is to introduce an interme-
diate semantic representation language between
natural language syntax and the model theory. An
example of this is the use of a discourse representa-
tion structure (DRS) language in the early versions
of Discourse Representation Theory (Kamp and
Reyle, 1993). The use of a Chomskyan logical
form together with a formal semantics is another
example of this strategy. The point of such theo-
ries is that the intermediate representation language
introduces structure which is not present in the nat-
ural language but which appears to be necessary
to facilitate semantic interpretation. Such an inter-
mediate language, therefore, does not follow the
discipline set out in Montague’s UG and is thus not
eliminable in the way that Montague’s intensional
logic is in PTQ. In effect the argument is that the
intermediate language is a necessary part of the
theory precisely because it does not meet the con-
ditions inlvolving homomorphisms which is set up
in UG. The claim that an intermediate language is
necessary is, of course, interesting and non-trivial,
but we should be clear that it is abandoning a cen-
tral tenet of Montague’s original project, namely
that there is no significant difference between nat-
ural languages and formal languages in that they
can both have a model theory defined recursively

on their syntactic structure. It seems like we can-
not give a semantics for natural language after all
— we first have to translate it to another language
which is suitable for model theoretic interpretation.

Here is a question for both of these alternatives:
if we have to translate natural language into a for-
mal language, L, in order to give a semantics for the
natural language, why is it that we have not evolved
to speak L rather than the natural language? Per-
haps we can see Montague’s insistance on giving
a semantics directly on the structure of the natural
language as marking him out as an early pioneer
of natural logic (van Benthem, 1986, Chapter 6)
albeit from a model theoretic rather than a proof
theoretic perspective.

Why is it, then, that if we incorporate the kind
of structured objects we need into our semantic
universe, then these objects appear to take on as-
pects of structure similar to that of a language? I
would like to turn this question around. Perhaps it
is not that the objects take on aspects of structure
of the language but rather that the language takes
on aspects of the structure in terms of which we
perceive the world. In TTR we think of the types
as providing structured relations between objects
in the world, independently of language. This view
seems not unrelated to the relational interpretation
of quantum theory (Rovelli, 2021) in which the
world is structured in terms of observable relations.
It seems attractive to say that our languages in cer-
tain respects reflect the structure of the world as we
perceive it.

This raises the question as to whether the dif-
ference between a proof theoretic approach and a
model theoretic approach with structured objects
is one of philosophical perspective rather than a
matter of empirical analysis. One might think that
the interesting questions lie not so much in whether
you choose a model theoretic or a proof theoretic
approach but rather in which kinds of structure you
need in order to achieve an adequate account of
inference in natural language. This seems to be a
reasonable claim.2 However, there are some rea-
sons which seem to make working with semantic
objects preferable to working with expressions in a
language.

One reason is the very general one that using
semantic objects helps us not lose sight of the fact
that the project involves accounting for interaction

2And one that I have made a number of times in an ongoing
conversation with Ruth Kempson over the past thirty years or
so.

9



with the world, for example, that we need to be talk-
ing about the individuation of objects in the real
world in addition to making sure that certain ex-
pressions stand in appropriate inferential relations.
Another reason is that using semantic objects keeps
us honest about the exact nature of the structure we
are proposing. It can sometimes be easy to write
down expressions without being precise about the
nature of the structure they encode, for example,
whether variables are being used as variables over
objects or variables over variables or whether the
absence of parentheses is a notational abbreviation
or an indication that parentheses are not present in
the expression.

A more substantial reason perhaps is that using
semantic languages can impose unnecessary or un-
wanted linguistic structure without us realizing that
this is happening. We will take record types as an
example of this. Consider a record type as in (20).

(20)
[
`1 : T1
`2 : T2

]

In general in the type theory community this record
type would be notated as (21).

(21) {`1 : T1; `2 : T2}
As an object it is natural to think of this record type
as a set, (22), as we have done in this paper.

(22) {〈`1, T 〉, 〈`2, T2〉}
If the record type is a set of fields, then the order
of the fields does not matter. On the other hand, if
we think of the record type as an expression in a
language, then it is natural to think of the fields as
ordered. This means that there are two expression
record types corresponding the one object record
type as in (23).

(23) a. {`1 : T1; `2 : T2}
b. {`2 : T2; `1 : T1}

In general, then, thinking of the record types as
expressions leads us into a considerable (and pos-
sibly undesirable) multiplication in the number of
available record types. An argument for the order-
ing when thinking of record types as expressions
in a language is that if T2 depends on the field
`1 : T1 then the `2-field must be ordered after the
`1-field. This is a convention which is standardly
followed in proof-theoretically based approaches
to type theory. But it is just a convention on the
order in which things are written down. Consider
the two alternative conventions represented in (24).

(24) a. “Let n be a natural number. Consider
succ(n). . . ”

b. “Consider succ(n), where n is a natural
number. . . ”

When we think of the type as a set it becomes
clear that the relevant order involves the order in
which the fields are added to the set in constructing
it. We can only add a dependent field to a record
type which already contains the field on which it
depends. This is made clear in the definition of
dependent record types given in Cooper (2012, in
prep). This does not require us to think of the
record type itself as an ordered set.

This might seem like a rather abstract discus-
sion which does not seem to have significant con-
sequences for actual semantic analysis. But note
that this discussion points to the difference between
record types and Σ-types discussed in 2.3, where
it did have consequences for the inferences we can
make.

4 Conclusion

In this paper we have discussed what it means to be
a structured semantic object and the uses to which
structured semantic objects can be put in TTR. In
the previous section we discussed the relationship
between using structured semantic objects and ex-
pressions in a language and suggested that we are
presented with a three-way choice in building a
semantic theory:

• importing proof theoretic techniques into the
model theory

• going entirely proof theoretic

• have an intermediate language between nat-
ural language syntax and model theory (and
thereby giving up on Montague’s project of
providing a semantics directly for natural lan-
guages)

I have indicated my preference for the first option.
Whatever your choice, it does seem that some kind
of structured objects or representations are neces-
sary in order to be able to give an adequate seman-
tics for natural languages.

Acknowledgments

The research reported in this paper was supported
by a grant from the Swedish Research Council (VR
project 2014-39) for the establishment of the Centre

10



for Linguistic Theory and Studies in Probability
(CLASP) at the University of Gothenburg.

References
Nicholas Asher and Alex Lascarides. 2003. Logics of

conversation. Cambridge University Press.

Lawrence W. Barsalou. 1992. Frames, concepts, and
conceptual fields. In A. Lehrer and E. F. Kittay,
editors, Frames, fields, and contrasts: New essays
in semantic and lexical organization, pages 21–74.
Lawrence Erlbaum Associates, Hillsdale, NJ.

Jon Barwise. 1989. The Situation in Logic. CSLI Publi-
cations, Stanford.

Jon Barwise and John Perry. 1983. Situations and At-
titudes. Bradford Books. MIT Press, Cambridge,
Mass.

Johan van Benthem. 1986. Essays in Logical Semantics.
Springer Netherlands.

Robin Cooper. 2012. Type Theory and Semantics in
Flux. In Ruth Kempson, Nicholas Asher, and Tim
Fernando, editors, Handbook of the Philosophy of Sci-
ence, volume 14: Philosophy of Linguistics, pages
271–323. Elsevier BV. General editors: Dov M. Gab-
bay, Paul Thagard and John Woods.

Robin Cooper. 2016. Frames as Records. In Annie
Foret, Glyn Morrill, Reinhard Muskens, Rainer Oss-
wald, and Sylvain Pogodalla, editors, Formal Gram-
mar: 20th and 21st International Conferences FG
2015, Barcelona, Spain, August 2015, Revised Se-
lected Papers FG 2016, Bozen, Italy, August 2016,
Proceedings, number 9804 in LNCS, pages 3–18.
Springer.

Robin Cooper. 2019. Representing Types as Neural
Events. Journal of Logic, Language and Information,
28(2):131–155.

Robin Cooper. in prep. From perception to commu-
nication: An analysis of meaning and action using
a theory of types with records (TTR). Draft avail-
able from https://sites.google.com/site/
typetheorywithrecords/drafts.

Robin Cooper and Jonathan Ginzburg. 2015. Type the-
ory with records for natural language semantics. In
Shalom Lappin and Chris Fox, editors, The Hand-
book of Contemporary Semantic Theory, second edi-
tion, pages 375–407. Wiley-Blackwell.

Gottlob Frege. 1918/1919. Der Gedanke. Eine logi-
sche Untersuchung. Beiträge zur Philosophie des
deutschen Idealismus, 1:58–77.

Jonathan Ginzburg. 2012. The Interactive Stance:
Meaning for Conversation. Oxford University Press,
Oxford.

Hans Kamp and Uwe Reyle. 1993. From Discourse to
Logic. Kluwer, Dordrecht.

Staffan Larsson. 2002. Issue-based Dialogue Manage-
ment. Ph.D. thesis, University of Gothenburg.

Sebastian Löbner, Thomas Gamerschlag, Tobias Kalen-
scher, Markus Schrenk, and Henk Zeevat, editors.
2021. Concepts, Frames and Cascades in Seman-
tics, Cognition and Ontology. Springer International
Publishing.

Per Martin-Löf. 1984. Intuitionistic Type Theory. Bib-
liopolis, Naples.

Richard Montague. 1974. Formal Philosophy: Selected
Papers of Richard Montague. Yale University Press,
New Haven. Ed. and with an introduction by Rich-
mond H. Thomason.

Bengt Nordström, Kent Petersson, and Jan M. Smith.
1990. Programming in Martin-Löf’s Type Theory,
volume 7 of International Series of Monographs on
Computer Science. Clarendon Press, Oxford.

François Recanati. 2012. Mental Files. Oxford Univer-
sity Press.

Carlo Rovelli. 2021. Helgoland. Penguin Books Ltd
(UK).

Josef Ruppenhofer, Michael Ellsworth, Miriam R.L.
Petruck, Christopher R. Johnson, and Jan Scheffczyk.
2006. FrameNet II: Extended Theory and Practice.
Available from the FrameNet website.

Bertrand Russell. 1918. The Philosophy of Logical
Atomism. The Monist. Reprinted in (Russell, 1956).

Bertrand Russell. 1924. Logical Atomism. In J. H.
Muirhead, editor, Contemporary British Philosophy.
Routledge. Reprinted in (Russell, 1956).

Bertrand Russell. 1956. Logic and Knowledge: Es-
says 1901–1950. George Allen & Unwin. Edited by
Robert C. Marsh.

Ivan A. Sag, Thomas Wasow, and Emily M. Bender.
2003. Syntactic Theory: A Formal Introduction, 2nd
edition. CSLI Publications, Stanford.

Ferdinand de Saussure. 1916. Cours de linguistique
générale. Payot, Lausanne and Paris. edited by
Charles Bally and Albert Séchehaye.

Anil Seth. 2021. Being You: a New Science of Con-
sciousness. Faber and Faber.

Philip Wadler. 2015. Propositions as Types. Communi-
cations of the ACM, 58(12):75–84.

11


