
Towards CNL-based verbalization of computational contracts

Inari Listenmaa
Maryam Hanafiah

Regina Cheong
Andreas Källberg

{ilistenmaa, maryammh, reginacheong, akallberg}@smu.edu.sg
Singapore Management University

Abstract

We present a CNL, which is a component of
L4, a domain-specific programming language
for drafting laws and contracts. Along with for-
mal verification, L4’s core functionalities in-
clude natural language generation. We present
the NLG pipeline and an interactive process
for ambiguity resolution.

1 Introduction

We introduce L4, a prototype1 domain-specific lan-
guage (DSL) for drafting laws and contracts. L4’s
applied focus places it within the “Rules as Code”
movement (e.g. OpenFisca, Catala (Merigoux
et al., 2021)) that itself draws on early compu-
tational law thinking (Sergot et al., 1986; Love
and Genesereth, 2005). But rather than focusing
on encoding laws into existing programming lan-
guages, we devise an external DSL designed for
legal specification. From this specification, we gen-
erate a range of output formats. Key augmentations
include IDE support, formal verification engines,
transpilation to operational rule engines, and natu-
ral language generation (NLG). The latter is done
via a CNL implemented in Grammatical Frame-
work (GF, Ranta 2004), and will be the focus of
this paper.

Motivation for a DSL The intended user of L4
is not a law firm, but rather an organization or a
person who wants to bypass law firms. As a pos-
sible early adopter profile, we envision a technol-
ogy startup drafting their initial agreements in L4.
Drafting rules as code enables the owners to keep
track of dependencies and detect potential conflicts,
without needing a lawyer.

More generally, a formal encoding of rules al-
lows the creation of different end-user applications.

1L4 is a work in progress, and this article presents a snap-
shot of the project as of June 2021. Any concrete examples of
L4 code or the CNL may change in a few months.

When the specification changes, it is only neces-
sary to implement the change in the L4 source, and
regenerate the applications.

Motivation for NLG In order to communicate
with the rest of the world, the L4 encoding needs to
be translated into non-technical end-user products,
such as natural language documents and interactive
web applications. We present two NLG applica-
tions in this paper.

• An expert system, which generates interview
questions from L4 code, uses the user input to
query an automated reasoner, and presents the
reasoner’s answers in natural language (Sec-
tion 3.1).

• In the future we aim to support the generation
of an isomorphic natural language version of
L4 code (Section 3.2).

In the remainder of the paper, we present a small
example of L4 code in Section 2, a brief introduc-
tion to the NLG pipeline in Section 3, the CNL
in Sections 4 and 5, and finally, future work in
Section 6.

2 L4 example

We demonstrate L4 with the following scenario,
simplified from an experiment to draft existing reg-
ulations in L4 (Morris, 2021). There are certain
rules for whether a legal practitioner may accept
an appointment in a business. For instance, if the
business would share the legal practitioner’s fees
with unauthorized persons, the legal practitioner is
not allowed to accept the appointment.

In Figure 1, we model this rule in L4 (in
its current syntax). First, we declare the data
types for Business and LegalPractitioner,
and two predicates, MayAcceptAppointment and
UnauthorizedSharingFees. Then, we formulate
a rule to say that a legal practitioner may not accept

types and predicates
class

Business
LegalPractitioner

decl
MayAcceptAppointment

: LegalPractitioner ->
Business -> Bool

UnauthorizedSharingFees
: Business -> Bool

rules
rule <no_sharing_fees>
for b : Business,

l : LegalPractitioner
if UnauthorizedSharingFees b

then not MayAcceptAppointment l b

Figure 1: L4 code for a rule "legal practitioner may
not accept an appointment in a business that involves
sharing fees with unauthorized persons"

an appointment in a business which involves shar-
ing fees with unauthorized persons. The current
syntax of L4 is adopted from functional program-
ming languages. For example, the type signature
for F : A → B → Bool means “the function F
takes an A and a B, and returns a Boolean”.

In the simplest case, we can look up the
names of the classes and predicates from any
large lexicon: Business is just a single noun,
and LegalPractitioner is either a compositional
noun phrase of legal (adjective) and practitioner
(noun), or a multi-word expression in a domain-
specific lexicon. The two predicates are more com-
plex, since they involve a full verb phrase. Figure 2
shows an optional lexicon, where the user can write
a CNL description of the predicates.

A predicate name like UnauthorizedSharing-

Fees is used throughout the program code, and
the NLG engine will use the description involves
sharing fees with unauthorized persons—not as an
immutable string, but parsed with a GF grammar
into a deep syntax tree. The placeholders, shown in
the description of MayAcceptAppointment, are op-
tional, if the arguments appear predictably: subject
for a unary predicate, and subject and object for a
binary predicate. Any CNL description of the form
predicate is treated as {Arg1} predicate {Arg2}.
However, if we wanted to have an argument in an-

optional CNL descriptions
lexicon

UnauthorizedSharingFees
@ "involves sharing fees with

unauthorized persons"
MayAcceptAppointment
@ "{LegalPractitioner} may

accept an appointment
in {Business}"

Figure 2: Optional lexicon with CNL description of
predicates

other role, then the placeholders are obligatory, as
shown in Figure 3.

3 NLG from L4

L4 is implemented using Alex (Dornan and Jones,
2003) and Happy (Marlow and Gill, 1997).

First, an L4 program is parsed into an L4 abstract
syntax tree (AST). That tree is used as an input to
all of the output formats named in Section 1. The
L4 abstract syntax and the CNL descriptions are
used in two NLG applications, which are presented
in the remainder of this section.

3.1 Expert system

Listenmaa et al. (2021) presents the expert system
in more detail. In this paper, we only introduce
what is necessary to set the context for the CNL.

Interview questions The first output target for
the expert system is a set of interview ques-
tions. Suppose we want to ask a user interactively
whether their business may employ a legal practi-
tioner: then we transform every predicate that is
a precondition to MayAcceptAppointment into a
question.

decl
UnauthorizedSharingFees
: Business

-> LegalPractitioner
-> Bool

@ "{Business} involves sharing
{LegalPractitioner}'s fees
with unauthorized persons"

Figure 3: Alternative example, where Unauthorized-
SharingFees is a binary predicate

1. Is your business incompatible with
the dignity of the legal profession?

2. Does your business involve sharing
fees with unauthorized persons?

3. . . .

The questions are embedded in a Docassemble
interview. Docassemble is an open-source legal ex-
pert system, where users answer a set of questions
through a browser interface. Their responses are
then compiled together into a document, or pro-
cessed further in other applications. In our system,
we use the answers to query an automated reasoner.

Reasoner output in natural language The sec-
ond output target is a verbalization of answers that
we get from an automated reasoner. Previously
we posed questions to the user—suppose they an-
swered “yes” to question 2. The user input is sent
to an automated reasoner, in order to query whether
the user may employ a legal practitioner in their
company. The reasoner’s answer to the query is
then rendered in natural language.

Your business may not employ a legal
practitioner, because

• it involves sharing fees with unau-
thorized persons, and

• a legal practitioner may not accept
an appointment in a business that
shares fees with unauthorized per-
sons.

The reasoner we use is s(CASP) (Arias et al.,
2018): a logic programming language for Con-
straint Answer Set Programming. The parameters
defined in an L4 source file are used for produc-
ing the Docassemble interview and s(CASP) code.
Using the user inputs to the interview questions to
execute the s(CASP) code, a solution satisfying all
the constraints is generated. The solution is then
restructured in natural language and becomes the
conclusion the user receives.

As the NLG process involves restructuring, this
necessitates disambiguation at the input phase. For
instance, the transformation of involves sharing
fees to a business that shares fees is only possible
if we know that sharing is a gerund form of the verb
share, and not just a noun. The disambiguation is
discussed further in Section 5.

Our work differs from approaches such as
Schwitter (2012) in that we don’t use CNL to for-
mulate a specification or query—we use CNL as

means to thoroughly understand the user predicates,
so that we can verbalize answers. Our approach is
more similar to De Vos et al. (2012), who annotate
answer-set programs for verbalization, except that
we are not limited to ASP.

3.2 Isomorphic natural language
representation

Our future work includes an isomorphic representa-
tion of the L4 rules in a natural language as an out-
put target. Suppose our previous rule about unau-
thorized fee sharing is just one rule among many
that dictate whether or not a lawyer is allowed to
accept an appointment. Then the isomorphic rep-
resentation would print out a comprehensive guide
on employing legal practitioners—for instance, in
a form of a contract to be signed, or as a set of
regulations to be published on a web page. If the
underlying rules change, then a new document can
be generated from an updated L4 source.

On the level of individual rules, we follow
Ranta’s (2011) translation from logic to natural
language: the first step is a literal translation from
the programming language abstract syntax to GF
abstract syntax, followed by internal transforma-
tion of the GF trees to achieve more natural output.
However, this work is only in the absolute begin-
ning, and we haven’t solved the difficult questions
of generating a full NLG pipeline (Reiter and Dale,
2000) to output a complete document from the L4
code.

4 CNL

All of the NLG depends on correct understanding
of whatever entities the user defines. Therefore
we are using a CNL to restrict user input. In this
section, we explain the general principles of the
design and implementation, and in Section 5, we
explain how ambiguous user input is transformed
into CNL variants, with concrete examples.

4.1 Goal of the CNL

Note that the CNL does not have formal
semantics—L4 as an actual programming language,
with its formal verification and transpilation to op-
erational engines, is better suited for that. The CNL
is primarily a tool for getting a syntactically precise
source for NLG. The default mode of the NLG is
a natural-looking, potentially imprecise language.
But we envision an option to output syntactically
precise CNL as well, if the user so wishes.

4.2 CNL design
The CNL itself is a subset of English language,
with disambiguation techniques à la Attempto
Controlled English (Fuchs and Schwitter, 1996),
ClearTalk (Skuce, 2003) and other CNLs with an
unambiguous syntax—see Kuhn (2014) for a sur-
vey. The current language features include

• Hyphens for compound nouns: parking-fee

• Brackets and word order to show attachment:
[saw with a telescope] the astronomer
any [(business, trade or calling) in Bali]

• Disambiguation for past tense. If the fragment
has no disambiguating context, we assume:
did prohibit is past tense, prohibited is past
participle.

Ambiguity between transitive and intransitive is
resolved based on the arity of the predicate. Note
that a predicate can be any part of speech, and
any part of speech can be transitive or intransitive.
Take a word like clear, which can be a noun, verb
or an adjective. If no CNL description is given, we
assume the following:

• Clear : X → Y → Bool is a transitive verb,
X clears Y, and

• Clear : X → Bool is an intransitive adjec-
tive, X is clear.

If we want to use another part of speech or arity,
we need to provide a CNL description.

• Clear : X → Bool

Clear @ "{X} clears"

is an intransitive verb (e.g. “the clouds clear”),

• Clear : X → Bool

Clear @ "{X} is in the clear"

is an adverbial where clear is a noun, and

• Clear : X → Y → Bool

Clear @ "{X} is clear to {Y}"

is a transitive adjective, which takes its com-
plement with the preposition to.

As the project is still in an early stage, the details
of the CNL are likely to change. Furthermore, we
expect that the CNL features have to be adjusted for
every new language. For example, Malay does not
differentiate between past tense or past participle,
in this case did prohibit and prohibited both trans-
late as dilarangkan. We may opt for a compulsory
adverbial like already to make a past tense explicit.

4.3 Implementation

Our CNL is implemented in Grammatical Frame-
work (GF, Ranta, 2004), a programming language
for multilingual grammar applications. A grammar
specification in GF consists of an abstract syntax,
with one or more concrete syntaxes that contain
linearization rules for the ASTs. The mapping is
bidirectional: a GF AST is linearized to various
strings admitted by different concrete syntaxes, and
a string is parsed into all the ASTs that generate it.

Inspired by Ranta (2014), the base of our CNL
is the GF Resource Grammar Library (RGL, Ranta
et al., 2009), a wide-coverage syntactic library for
over 30 languages. We presented modifications
that make the CNL unambiguous in Section 4.2. In
addition to those, the CNL contains other custom
extensions, some of which are explained below.

• Accept predicates with placeholders:
{Business] provides {Service} ;
{Business}’s jurisdiction is {Country} .

• Accept predicates without arguments:
held as representative of is treated as
{X} is held as representative of {Y}.

• Accept predicates that require a copula with-
out one: prohibited, is prohibited and {X} is
prohibited produce identical results.

• Valency is determined by the predicate’s arity,
as explained in Section 4.2. In a GF lexicon,
each word has its own valency, so V and V2
are different categories and can’t be used in-
terchangeably; the same applies for the pairs
N–N2 and A–A2. In our CNL grammar, we
relax the subcategory rules when parsing: this
leads to many redundant parses, but we filter
them out based on the predicate’s arity.

• Ad hoc constructions on top of the grammar
to accommodate for legal language.

The CNL has two concrete syntaxes for English:
one with the features listed in Section 4.2, and one
without. Thus, if we parse business or trade in Bali
in the imprecise concrete syntax, we get two trees,
which are linearized unambiguously in the precise
concrete syntax: [(business or trade) in Bali] and
(business or [trade in Bali]). We will use this to our
advantage: let the user type imprecise description,
and then transform it into a precise CNL version

1. Sharing is noun:

1a [involves with u.p.] sharing-fees
1b involves [sharing-fees with u.p.]

2. Sharing is verb:

2a [involves with u.p.] sharing fees
2b involves [sharing with u.p.] fees
2c involves sharing [fees with u.p.]

Figure 4: All different parses for involves sharing fees
with unauthorized persons in precise CNL

for interactive disambiguation, similarly to meth-
ods used in discriminant-based treebanking (Carter,
1997), but aimed at non-linguists.

5 Parsing user input

Let us return to Figure 2, with the L4 predicate
UnauthorizedSharingFees. As a first step, we
parse the description "involves sharing fees with
unauthorized persons". For now, we assume that it
parses—robust fall-back is future work.

The description is ambiguous in two orthogonal
ways: part-of-speech for sharing and attachment
of the adverbial. These two ambiguities result in
five different parses, shown in Figure 4. We disam-
biguate the description interactively, and verify the
answer by rendering the result in the precise CNL.

Top-level ambiguity The first step in disam-
biguation is to temporarily remove all postmod-
ifier adjuncts (see Table 1) from the initial trees,
thereby reducing the tree depth until the heads with
light modifiers remain. The goal is to sieve out the
main structure, and make it easier for the user to
disambiguate one feature at a time.

In our example "involves sharing fees with unau-
thorized persons", removing the postmodifier ad-
junct "with unauthorized persons" reduces the five
trees to two: compound noun (sharing-fees) vs.
verbal complement (involves sharing). We trans-
form the trees into disambiguation alternatives and
show the user:

1. the business involves sharing-fees

2. the business shares fees

To get these disambiguation alternatives, we
have hand-crafted a large number of very specific
transformation functions, which manipulate the

Figure 5: Future editor support (mockup)

sentence directly at the GF abstract syntax tree.
For example, the following transformation applies
to any sentence with the same structure.

• Match a finite transitive verb (involves) with a
gerund complement (sharing fees).

• Remove the original finite verb, and transform
the gerund verb phrase into finite verb phrase
(shares fees).

In addition, we apply a subject to all of the alter-
natives. As seen in the examples, we use the noun
business, which we get from the type signature of
the predicate, Business → Bool.

Disambiguate adjuncts internally After the
top-level disambiguation, we check whether the
temporarily excluded adjuncts have something to
disambiguate internally.

Suppose, for the sake of example, that the orig-
inal predicate was, instead involves sharing fees
with any business or trade in Bali. In such a case,
we first disambiguate the internal structure of the
adverbial (with any business or. . .), using the same
method as before: apply another set of transfor-
mation functions to the adjuncts to produce disam-
biguation alternatives, and ask the user which one
they meant.

Sometimes, the difference in adjuncts is linked
to the difference in the main tree, in which case,
we’re done after picking the correct adjunct. But
in our example case, the ambiguity is orthogonal
to the adverbial attachment, so we need one more
step.

Disambiguate adjunct attachment Once we
have disambigated everything else—in the main
tree or recursively in the subtrees—the remaining
ambiguities (if any) should be related to attachment.
If the user chose sharing to be a verb, we present
the following alternatives.

a) involves with unauthorized persons

b) shares with unauthorized persons

c) fees with unauthorized persons

an old astronomer with a telescope Adverbial with a telescope removed. Determiner and ad-
jective are kept, because they are premodifiers.

sleeps on a soft mattress on introduces an adjunct. The whole adjunct is removed.
depends on legal work performed
by a legal practitioner

on introduces an obligatory complement. The complement
on legal work is kept, but internally reduced.

Table 1: Examples of postmodifier adjuncts that are temporarily removed for the first stage of disambiguation

Verifying the answer After the interactive dis-
amgibuation, we show the result: involves [sharing
with unauthorized persons] fees. If the user is un-
happy with the result, they may revert the disam-
biguation and start over.

Once a user is familiar with the precise CNL,
they may write the initial description with it, and
hence skip the interactive process. The IDE tries to
parse the input as both variants.

6 Future work

At present, we have worked on the CNL only inside
the project, occasionally consulting an expert le-
gal knowledge engineer, who is a part of our team.
Next steps are to find a real-life use case with a
more diverse team of users and conduct an evalua-
tion. We expect that we need to change the CNL, as
it goes from our hands to the hands of non-experts.
It will be interesting to see whether it also needs
to change from domain to domain: aside from dif-
ferent lexicon, would two unrelated fields, such as
insurance and construction site regulations, need
any changes in the core CNL?

In order to make L4 and the CNL easier to use,
we will add editor support and robust fall-back
options. We will also create a specification and
resources for user guidance for the CNL, and add
languages other than English.

IDE support L4 has a plugin for Visual Studio
Code, and we plan to integrate editor support for
the CNL as well. Figure 5 shows a sketch of a
potential user interaction. We may also experiment
with hovering over single words to provide infor-
mation about part-of-speech, or show dependency
structure—for instance, an arrow from with unau-
thorized persons to all of its possible heads.

Robust fall-back options First, suppose that the
natural language description is parsed in the host
grammar, the GF RGL, but there are no transfor-
mation functions that spell out the ambiguities (as
explained in Section 5), nor is it covered by the
precise CNL. We will experiment with alternative

methods of disambiguation, such as choosing a part
of speech for individual words and showing depen-
dency relations between words. These require more
knowledge about grammar, but they work for any
tree that is successfully parsed, and are thus more
robust.

Currently lexicon entries are generated from a
WordNet lexicon in GF (Angelov, 2020), and a few
words that we have added after finding them in the
sources of our small experiments. Where a word or
phrase cannot be parsed from a pre-existing lexicon,
the user will be prompted to define every out-of-
vocabulary word, and include it in a user-defined
lexicon. We will use GF’s smart paradigms (Détrez
and Ranta, 2012) to make an initial guess from a
limited number of word forms, with a possibility
to correct any wrong guesses.

In the case that parsing still fails, the sentence is
syntactically out of scope from the CNL. Already
now, the parser could try to break the sentence
down into phrases that can be parsed, but we would
need to guide the user how to reconstruct the whole
sentence to be within the scope. We recognize the
limits of the GF parser in handling ungrammati-
cal output, and may look into more robust parsing
pipelines, such as dependency trees to GF abstract
syntax (Kolachina and Ranta, 2016).

Multilingual support So far, we support the
translation of L4 to English, with a view to sup-
port multiple languages in the near future. With
multilingual output, we need to also support word
sense disambiguation and multi-word expressions.
For instance, a term like sole proprietor will be
wrong in many languages, if translated composi-
tionally: “lonely proprietor” instead of the correct
multi-word term. As we work on a use case in a
specific domain, it will be more realistic to have a
good coverage for a lexicon.

As for word sense disambiguation, our short-
term plan is to use WordNet (Fellbaum, 1998)
glosses to ask the correct sense for each word.
Longer-term, we may look into statistical methods
for guessing the most likely word senses.

Acknowledgements

This research is supported by the National Research
Foundation (NRF), Singapore, under its Industry
Alignment Fund — Pre-Positioning Programme, as
the Research Programme in Computational Law.
Any opinions, findings and conclusions or recom-
mendations expressed in this material are those of
the author(s) and do not reflect the views of Na-
tional Research Foundation, Singapore.

References
Krasimir Angelov. 2020. A Parallel WordNet for En-

glish, Swedish and Bulgarian. In Proceedings of
The 12th Language Resources and Evaluation Con-
ference, pages 3008–3015.

Joaquín Arias, Manuel Carro, Elmer Salazar, Kyle
Marple, and Gopal Gupta. 2018. Constraint answer
set programming without grounding. Theory and
Practice of Logic Programming, 18(3-4):337–354.

David Carter. 1997. The TreeBanker: A tool for su-
pervised training of parsed corpora. In Workshop
on Computational Environments for Grammar De-
velopment and Linguistic Engineering, pages 9–15,
Madrid, Spain.

Marina De Vos, Doğa Gizem Kisa, Johannes Oetsch,
Jörg Pührer, and Hans Tompits. 2012. Annotating
answer-set programs in LANA. Theory and Prac-
tice of Logic Programming, 12(4-5):619–637.

Grégoire Détrez and Aarne Ranta. 2012. Smart
paradigms and the predictability and complexity of
inflectional morphology. In Proceedings of the 13th
Conference of the European Chapter of the Asso-
ciation for Computational Linguistics, pages 645–
653, Avignon, France. Association for Computa-
tional Linguistics.

Docassemble. https:/docassemble.org [on-
line].

Chris Dornan and Isaac Jones. Alex user guide [online].
2003.

Christiane Fellbaum. 1998. WordNet: An electronic
lexical database. MIT press.

Norbert E. Fuchs and Rolf Schwitter. 1996. Attempto
Controlled English (ACE). In Proceedings of the
First International Workshop on Controlled Lan-
guage Applications.

Prasanth Kolachina and Aarnte Ranta. 2016. From ab-
stract syntax to universal dependencies. In Linguis-
tic Issues in Language Technology, Volume 13, 2016.

Tobias Kuhn. 2014. A survey and classification of con-
trolled natural languages. Computational linguis-
tics, 40(1):121–170.

Inari Listenmaa, Jason Morris, Alfred Ang, Maryam
Hanafiah, and Regina Cheong. 2021. An NLG
pipeline for a legal expert system: a work in
progress.

Nathaniel Love and Michael Genesereth. 2005. Com-
putational Law. In Proceedings of the 10th interna-
tional conference on Artificial intelligence and law,
ICAIL ’05, pages 205–209, New York, NY, USA.
Association for Computing Machinery.

Simon Marlow and Andy Gill. Happy user guide [on-
line]. 1997.

Denis Merigoux, Raphaël Monat, and Jonathan
Protzenko. 2021. A Modern Compiler for the
French Tax Code. In CC ’21: 30th ACM SIGPLAN
International Conference on Compiler Construction,
pages 71–82, Virtual, South Korea. ACM.

Jason Morris. 2021. Constraint Answer Set Program-
ming as a Tool to Improve Legislative Drafting: A
Rules as Code Experiment. In ICAIL ’21: Proceed-
ings of the 18th edition of the International Confer-
ence on Articial Intelligence and Law.

OpenFisca. https://openfisca.org [online].

Aarne Ranta. 2004. Grammatical Framework. Journal
of Functional Programming, 14(2):145–189. Pub-
lisher: Cambridge University Press.

Aarne Ranta. 2011. Translating between language and
logic: what is easy and what is difficult. In Interna-
tional Conference on Automated Deduction, pages
5–25. Springer.

Aarne Ranta. 2014. Embedded controlled languages.
In International Workshop on Controlled Natural
Language, pages 1–7. Springer.

Aarne Ranta, Ali El Dada, and Janna Khegai. 2009.
The GF Resource Grammar Library. Linguistic Is-
sues in Language Technology, 2(2):1–63.

Ehud Reiter and Robert Dale. 2000. Building Natural
Language Generation Systems. Studies in Natural
Language Processing. Cambridge University Press.

Rolf Schwitter. 2012. Answer set programming via
controlled natural language processing. In Interna-
tional Workshop on Controlled Natural Language,
pages 26–43. Springer.

M. J. Sergot, F. Sadri, R. A. Kowalski, F. Kriwaczek,
P. Hammond, and H. T. Cory. 1986. The British Na-
tionality Act as a logic program. Communications
of the ACM, 29(5):370–386.

Doug Skuce. 2003. A controlled language for knowl-
edge formulation on the semantic web.

https://doi.org/10.1017/S147106841200021X
https://doi.org/10.1017/S147106841200021X
https://www.aclweb.org/anthology/E12-1066
https://www.aclweb.org/anthology/E12-1066
https://www.aclweb.org/anthology/E12-1066
https://docassemble.org/
https:/docassemble.org
https://www.haskell.org/alex/doc/alex.pdf
http://arxiv.org/abs/2107.02421
http://arxiv.org/abs/2107.02421
http://arxiv.org/abs/2107.02421
https://doi.org/10.1145/1165485.1165517
https://doi.org/10.1145/1165485.1165517
https://www.haskell.org/happy/doc/html/
https://doi.org/10.1145/3446804.3446850
https://doi.org/10.1145/3446804.3446850
https://openfisca.org/en/
https://openfisca.org
http://elanguage.net/journals/index.php/lilt/article/viewFile/214/158
https://doi.org/10.1017/CBO9780511519857
https://doi.org/10.1017/CBO9780511519857
https://doi.org/10.1145/5689.5920
https://doi.org/10.1145/5689.5920
https://www.site.uottawa.ca/~tcl/factguru1/factguru2.pdf
https://www.site.uottawa.ca/~tcl/factguru1/factguru2.pdf

