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Abstract

Music autotagging has typically been formu-
lated as a multi-label classification problem.
This approach assumes that tags associated
with a clip of music are an unordered set. With
recent success of image and video caption-
ing as well as environmental audio caption-
ing, we we propose formulating music auto-
tagging as a captioning task, which automat-
ically associates tags with a clip of music in
the order a human would apply them. Under
the formulation of captioning as a sequence-
to-sequence problem, previous music autotag-
ging systems can be used as the encoder, ex-
tracting a representation of the musical audio.
An attention-based decoder is added to learn to
predict a sequence of tags describing the given
clip. Experiments are conducted on data col-
lected from the MajorMiner game, which in-
cludes the order and timing that tags were ap-
plied to clips by individual users, and contains
3.95 captions per clip on average.

1 Introduction

Music autotagging has been well studied in mu-
sic information retrieval at ISMIR. From machine
learning to deep learning, the community has wit-
nessed progress over the past decade on this task,
with new methods (Choi et al., 2016), new model
architectures (Yan et al., 2015; Liu and Yang, 2016;
Ibrahim et al., 2020; Wang et al., 2019), and new
data sets (Law et al., 2009; Bogdanov et al., 2019).

Most studies in content-based autotagging focus on
automating the feature extraction to create better
representations of music.

What seldom changes, however, is the formula-
tion of the task as a multi-label classification prob-
lem (Tsoumakas and Katakis, 2009): treating tags
associated with a clip of music as an unordered set.
This formulation focuses on correlations between
tags, but when a user listens to a clip and provides
a sequence of tags, the user expresses his or her lis-
tening experience. What is the most “ear-catching”
element? What is unexpected? Does this clip fea-
ture an instrument or style? These questions cannot
be answered under the multi-label classification for-
mulation for music autotagging.

One reason for this formulation is the datasets
available for music tagging research, such as Mag-
naTagATune (Law et al., 2009) and the Million
Song Dataset (Bertin-Mahieux et al., 2011). We
base the current study on a new analysis of the
data collected by the MajorMiner tagging game
(Mandel and Ellis, 2008), which includes sequen-
tial information. In this game, players supply tags
in a particular order and get immediate feedback
about the relevance of their tags, further increasing
the importance of understanding tag order.

Our switch from multi-label to sequential cap-
tions follows similar switches in image and video
captioning (Staniute and Šešok, 2019; Chen et al.,
2019) and deep learning for acoustic scene and



Figure 1: The system uses a sequence-to-sequence
model to map mel spectrograms to sequences of tags.
The encoder and decoder can be replaced with archi-
tectures such as 1D-CNN, 2D-CNN (Choi et al., 2016),
MusiCNN (Pons et al., 2017), GRU, LSTM

Training captions per clip
One Multiple

Encoder Decoder B1 B2 B1 B2

1D CNN LSTM 9.5 02.2 38.5 38.5
2D CNN LSTM 10.9 18.3 39.3 48.4
2D CNN GRU 10.0 19.7 — —

MusiCNN LSTM 12.8 23.1 45.8 54.0
MusiCNN GRU 12.9 23.1 — —

Table 1: Results on the test set based on the best valida-
tion epoch of each model. B1 and B2 stand for BLEU1
and BLEU2, measured in percent.

event captioning. Drossos et al. (2017) presented
the first work of audio captioning, focusing on iden-
tifying the human-perceived information in a gen-
eral audio signal and expressing it through text
using natural language. The current paper expands
this audio captioning approach to the area of music
autotagging.

Following these typical captioning models, we
use the encoder-decoder architecture with attention
mechanism, as shown in Figure 1. We compared
three encoders and two decoders, all combined us-
ing vanilla attention (Bahdanau et al., 2014). The
2D-CNN for autotagging is from (Choi et al., 2016)
and the MusiCNN is from (Pons et al., 2017). We
remove the final prediction layer and use the fi-
nal embedding as the feature fed into the decoder.
For the decoder, we compare the most common
two choices in image captioning and video cap-
tioning: RNN-GRU and LSTM. All models are
trained using teacher forcing with cross-entropy of
the predicted tag as their loss. It is not attempted in
this paper to propose new captioning architecture
but to draw awareness of the potential and benefits
to re-define music autotagging task leveraging the
advancement in NLP.

2 Related Work

Several papers have explored the co-occurrence
relationships between tags: Miotto et al. (2010)
present one of the early works that explicitly used
tag co-occurrence modeled by a Dirichlet mixture.
Shao et al. (2018) modeled the tag co-occurrence
pattern of a song via Latent Music Semantic Analy-
sis (LMSA). Larochelle et al. (2012); Mandel et al.
(2010, 2011a,b) utilized tags alone to build a con-
ditional restricted boltzmann machine and hence
demonstrated the value of tag-tag relationships in
predicting tags.

Recent works such as (Choi et al., 2018) dis-
cussed the effect of tags from the perspective of
mislabeling under the theme of multi-label classifi-
cation.

Following (Drossos et al., 2017), Gharib et al.
(2018) also first applied domain adaptation tech-
niques as used in NLP to scene classification.
Drossos et al. (2019) added language modeling for
sound event detection. Ikawa and Kashino (2019)
used a captioning model to describe environmental
audio. They proposed an extension to the standard
sequence-to-sequence model in the captioning task
by adding a controllable parameter, specifying the
amount of context to provide in the caption.

Multi-label classification is a challenging and
important task not only in music information re-
trieval but also in field such as document catego-
rization, gene function classification and image
labeling. In image labeling, Wang et al. (2016) has
demonstrated the effectiveness of using RNNs to
learn correlation among labels. However, what we
propose is not only to learn the label correlations,
but also capture user experience with music from
the order of tags.

3 Dataset: MajorMiner

Guided by the goal of multi-label classification,
most datasets do not retain or make available in-
formation about the ordering of tags by users. Ma-
jorMiner (Mandel and Ellis, 2008) is a web-based
game1 that naturally collects this information. Par-
ticipants describe 10-second clips of songs and
score points when their descriptions match those of
other participants. Users are given the freedom to
use any tag they want, but the rules were designed
to encourage players to be thorough and the clip
length was chosen to make judgments objective

1http://majorminer.org/

http://majorminer.org/


MusiCNN+LSTM Human

Figure 2: Bleu score distribution of validation data set using (a) the best epoch of MusiCNN + LSTM model and
(b) inter-annotator BLEU score, both with multiple captions per clip.

and specific.
As required by the captioning task, one sample

consists of a pair consisting of one audio clip and
one corresponding caption provided by one user.
The MajorMiner game is designed to collect se-
quences of tags describing a clip one tag at a time
from a user. A sequence of tags is collected, which
are ordered by time stamps, and act as a caption.
By design, one clip is frequently heard by several
different users (this is the only way that any of
them may score it). Hence, one clip will receive
several captions. This fits into the multi-reference
scenario (Papineni et al., 2002) that is often encoun-
tered in NLP, for example, in machine translation,
where one source sentence has many valid transla-
tions into another language.

Caption data is pre-processed through case fold-
ing, removal of punctuation, and porter stemming.
Sequences of tags, which get validity confirmed,
are normalized and canonicalized. The longest
tag sequence for a single clip is 30 tags. The
total tag vocabulary is 984. Clips are randomly
partitioned into train/valid/test set in the ratios of
75%− 15%− 10%.

Log mel spectrograms with 96 mel bins are
used as input for all models. With sample rate
12,000 Hz, the length of the FFT window is 512
samples (42 ms), and 256 samples between succe-
sive frames (21 ms). Each 10-second clip becomes
a 469× 96 matrix.

4 Experiments and Analysis

A series of experiments is carried out, pairing three
encoders, 1D CNN, 2D CNN, MusiCNN, and two
decoders, GRU and LSTM, under two settings, mul-
tiple captions per clip and one caption per clip, as
shown in Table 1. BLEU1 and BLEU2 are used to
evaluate each model’s ability to capture tag orders.

Figure 3: Prediction examples from the best epoch of
the MusiCNN + LSTM model. Examples are from the
validation set.



Other metrics that are standard in music autotag-
ging will be used in future work. The reason to cre-
ate two caption settings is that, while there are mul-
tiple captions per clip, this potentially complicates
training a model. Thus, our initial experiments are
restricted to a single caption per clip where that
caption is selected at random from those applied
to that clip. In the multi-caption-per-clip scenario,
if a clip received four captions, it is presented in
four caption-clip pairs in training, one with each
caption. Yet, in the calculation of BLEU scores, all
four reference sequences are used for the one clip.

MusiCNN provides both a waveform-based front
end and spectrogram-based front end. We use the
spectrogram-based front end to make fair compar-
isons with other encoders. MusiCNN used in this
paper has the same configuration as in music auto-
tagging papers (Pons et al., 2017). The 2D CNN
used in this paper has six layers of 2D convolu-
tion, each followed by batch normalization and 2D
max pooling. We also compare a 1D-CNN as an
encoder in an attempt to retain more temporal infor-
mation. This is out of the consideration that some
tags appear only at some time steps. In the 1D-
CNN, the frequency axis of the mel-spectrogram
is taken as the “channel” so that convolutions are
computed along the time axis only. The 1D CNN
used in this paper has six layers of 1D convolu-
tion, each followed by batch normalization. Both
2D and 1D CNN use 256 filters and ReLu at each
convolution layer. Both GRU and LSTM decoders
have only one layer of RNN followed by two fully
connected layers. All models use sparse categor-
ical cross-entropy as loss function and Adam as
optimizer.

We create a naı̈ve baseline for the multi-
captioning setting by predicting the top k most
popular tags for all clips. This evaluates the amount
of information our models are learning beyond fre-
quency. Figure 4 shows that this baseline’s best
performance is to use top three most frequent tags,
which achieves a BLEU1 of 0.49 and a BLEU2 of
0.086. This BLEU1 is comparable to our model,
but the BLEU2 is much lower. A better baseline for
BLEU2 might apply the most common sequence
of bigrams. This will be evaluated in future work.

5 Results

The upper bound on the performance of our model
is the inter-annotator agreement. Thus, we mea-
sure the BLEU score of our ground truth captions

Figure 4: Average validation BLEU score for baseline
selecting the k most popular tags for all clips with mul-
tiple captions per clip.

with relation to the other captions of the same clip.
We find that the average BLEU1 in this case is
0.53 and the average BLEU2 is 0.09. Surpris-
ingly, this is far below that of our best model
MusiCNN+LSTM. Beyond the mean, the distri-
bution of inter-annotator BLEU scores is shown
in Figure 2(b). Comparing with Figure 2(a), the
BLEU score distribution for human tag sequences
is smoother and unimodal. This helps to understand
why our training/validation BLEU score curve im-
proves very slowly.

To further analyze our results, Figure 2(a) shows
a histogram of BLEU1 and BLEU2 scores for the
MusiCNN+LSTM model. As can be seen, there is
high variability in performance across clips with
some having very high scores and some very low
scores. This phenomenon may be because tags
such as “guitar” are quite frequent and heavily in-
fluence the model training, leading to better perfor-
mance on samples where those tags are relevant.
Dealing with imbalances in word frequencies is a
common issue in NLP, but we leave it for future
work.

Figure 3 shows example annotations, spectro-
grams, and predictions from the MusiCNN+LSTM
model on two example clips. It shows that the
model is able to capture general genre information
but lacks the nuance of the human annotations.

6 Conclusion and Future Work

The paper demonstrates the promise of formulat-
ing music autotagging as a captioning task. It also
opens up new possibilities for music autotagging.
More advanced NLP techniques such as Transform-
ers (Vaswani et al., 2017; Zhou et al., 2018; Yu
et al., 2019) and Masked Language Model pre-
training (Devlin et al., 2018) could be utilized to
enhance the performance of a language model for



music. There is still more information in the se-
quence of tags that are applied to a clip that we are
not using, such as the temporal locality of tags such
as “clap.” As pointed out in the recent audio cap-
tioning work (Çakır et al., 2020), the distribution of
words in captions is a significant challenge. Future
work will also address the issue of very frequent
yet less useful tags.
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