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Abstract

We model the production of quantified refer-
ring expressions (QREs) that identity collec-
tions of visual items. A previous approach,
called Perceptual Cost Pruning, modeled hu-
man QRE production using a preference-based
referring expression generation algorithm, first
removing facts from the input knowledge base
based on a model of perceptual cost. In this
paper, we present an alternative model that in-
crementally constructs a symbolic knowledge
base through simulating human visual atten-
tion/perception from raw images. We demon-
strate that this model produces the same out-
put as Perceptual Cost Pruning. We argue that
this is a more extensible approach and a step
toward developing a wider range of process-
level models of human visual description.

1 Introduction

Modeling the generation of human-like referring
expressions in visual contexts is an ongoing chal-
lenge in the field of natural language generation
(NLG). One key aspect of this challenge is the
disparity between how humans and current com-
putational approaches operate at a process-level.
Humans have perceptual and cognitive limitations;
they can not mentally represent visual scenes down
to the exact detail of every visual object or collec-
tion of objects. Thus, people tend to selectively
attend to visual scenes in order to acquire enough
information to complete their task (Yarbus, 1967).

In contrast, current referring expression gener-
ation (REG) algorithms generally assume a fully-
specified, symbolic knowledge base (Van Deemter,
2016). Essentially, these approaches abstract away
the process of perception and seek to model pat-
terns of human language primarily at the content se-
lection phase. One task where this approach breaks
down is quantified reference expression (QRE) gen-
eration.
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Figure 1: Examples of QRE generation task problems,
based on examples from (Barr et al., 2013).

QRE tasks involve referring to collections of vi-
sual items by communicating information about
the quantities contained in each collection. Ini-
tial experimental work in human-produced QREs
showed regularities in responses that were not eas-
ily explained by content selection processes (Barr
et al., 2013). To illustrate this, consider the two
examples of QRE problems found in Figure 1. In
Problem A, it was found that participants favored
relative quantity expressions (e.g., “the box with
the most circles”) over exact number expressions
(e.g., “the box with thirty-one circles”). In contrast,
participants favored exact expressions in Problem
B (Barr et al., 2013).

To account for this finding, the experimenters
appealed to a principle of least perceptual effort.
Determining the exact number of approximately 30
objects is effortful and time-consuming, whereas
determining that there are exactly three objects is
quick and requires little effort. Thus, the findings
can be explained by people generating exact QREs
so long as determining the exact quantity did not
exceed some threshold of effort.

This explanation was validated using a compu-
tational method called Perceptual Cost Pruning,
proposed previously by (Briggs and Harner, 2019).
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Perceptual Cost Pruning was able to model human
QRE production by: (1) starting with a complete
symbolic knowledge base representing the visual
scene; (2) removing facts from the input knowl-
edge base based on a model of the time cost of
exact enumeration; (3) using a preference-based
referring expression generation algorithm (i.e., the
Incremental Algorithm) on this reduced knowledge
base. We call this approach a destructive approach,
wherein a full knowledge base is degraded to be
sparser.

In this paper, we present a constructive approach
to modeling the production of QREs, wherein a
sparse, symbolic scene representation is built up
from nothing. Specifically, we present an alterna-
tive model that incrementally builds a symbolic
knowledge base through simulating human visual
attention/perception from raw images. We demon-
strate that this model produces the same output as
perceptual cost pruning. Furthermore, we argue
that this is a more extensible approach and a step
toward developing a wider range of process-level
models of human visual description.

2 The QRE Task

Stimuli To model the QRE task we use the stimuli
described by (Barr et al., 2013). These stimuli
constitute 20 QRE generation problems, each
with one target collection and two distractor
collections. The items in each collection are
all the same with respect to size, shape, color,
and all other attributes. They are also randomly
distributed in their respective containers. Thus,
the total quantity of items in each collection
becomes a salient feature to differentiate collec-
tions, instead of individual object attributes or
collection attributes like structured arrangement
(e.g., shape of the group of items). While the
precise quantities for each target and distractor
pair were available, the original images were not.
As such, we constructed a series of 120 images,
six for each problem, corresponding to the differ-
ent possible target and distractor configurations.
Examples of these images can be found in Figure 1.

Output In the original study (Barr et al., 2013), par-
ticipants’ QREs were annotated as following into
different categories, and these annotations were
refined in subsequent work (Briggs and Harner,
2019). We use the latest annotation categories,
which are: Exact Number (NUM) (e.g., “the box

with 31 dots”); Relative quantity (REL) (e.g., “the
box with the most dots”); and Absolute description
(ABS) (e.g., “the box with dots”). The QRE genera-
tion algorithm presented in this paper is designed to
predict which of these categories is included given
a particular QRE task image.

3 A Constructive Model of QRE
Generation

Our model of QRE generation was devel-
oped within the ARCADIA cognitive framework
(Bridewell and Bello, 2016). ARCADIA provides
an ideal framework upon which to implement a
model of incremental perception and quantified de-
scription for the following reasons: (1) attention
and its strategic control is the central organizing
feature of the system; (2) it provides the represen-
tational flexibility necessary for modeling both an
approximate number system that supports group
quantity estimation and an object-tracking system
that supports exact enumeration (i.e., counting); (3)
it aims to implement a cognitively plausible model
of human visual processing; and (4) it operates
in discrete cycles, allowing for modeling the time
course of perceptual and cognitive processes. In
the interest of space, we omit more precise tech-
nical details regarding ARCADIA models, which
can be found in other work (Bridewell and Bello,
2016; Lovett et al., 2019).

3.1 Representations

To produce the range of exact, relative, or abso-
lute quantified expressions requires different forms
of numerical representation at different levels of
precision. Research shows that multiple forms of
numerical representation underlie human number
sense (Feigenson et al., 2004). Approximate repre-
sentations are obtained quickly through estimation
(Barth et al., 2003), while exact representations
are obtained slowly through counting for quantities
outside the subitizing range of about four items
(Gelman and Gallistel, 1986). Furthermore, evi-
dence suggests that approximate and exact repre-
sentations of quantity are obtained through differ-
ent ways of deploying spatial attention (Hyde and
Wood, 2011). Attention to groups results in esti-
mation and approximate representation of quantity,
while attention to individual objects underlies exact
enumeration.

In ARCADIA, approximate quantities are repre-
sented as Gaussians with a mean, µ = n, equal to
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Figure 2: A screenshot of the ARCADIA model of QRE production in mid-run. The vertically oriented red bar in
the task image indicates the current scope of spatial attention as it is being swept through the image. The Working
Memory display shows the current state of the symbolic scene representation. Note that the last box has not yet
been attended and encoded into working memory. Also note that no exact count was obtained for box-1, unlike
box-0, as the quantity estimate indicated that it was too high effort to enumerate exactly.

the number of items n in a group that receives atten-
tional focus, with a standard deviation, σ = w ∗ n,
where w is the Weber fraction associated with
the simulated approximate number system. Here
w = 0.13, based on empirical data (Odic et al.,
2013). Exact numbers are represented by count
words, and the correct sequence of count words is
represented in the system as assumed knowledge.

3.2 Process

Below we give a high-level description of how our
model operates. A screenshot of the model in op-
eration can be found in Figure 2. Videos of the
model operating over example problems can also
be found online.1

3.2.1 Incremental Perception
The model performs a left-to-right sweep of spatial
attention. For each lightly colored square box it
encounters, it encodes into the symbolic scene
representation in working memory the existence
of a new box of items. Likewise for each of these
boxes, spatial attention is then focused on the box
and a subtask that encodes information about each
collection within the box is initiated. The steps of
this subtask are described below.

Step 1: Target/Distractor Classification: The
model determines whether or not the current

1https://osf.io/6rsg7/?view only=
034f98a2449243e28e2a593797039093

collection is the target collection by considering
the background color of the box.

Step 2: Quantity Estimation: The model then
attends to the group of items within the box,
resulting in an quantity estimate that is encoded
and associated with the collection. This quantity
estimate is encoded into working memory. Infor-
mation is then encoded about whether or not items
are present or absent (abs-desc) from the box.

Step 3: Countability Judgment: Next, a number
is randomly sampled from the approximate
distribution encoded during the previous quantity
estimation step. If this number is lower than
a countability threshold value τcount, then the
quantity is deemed low effort enough to exactly
enumerate and the model proceeds to Step 4.
Otherwise, the model determines that exact
enumeration will be too high effort, and skips Step
4. Evidence from the literature on numerosity
perception provides support for this notion of
a countability judgment guiding enumeration
strategy (Mandler and Shebo, 1982). Furthermore,
we set our countability threshold value τcount = 7
based on experimental results from (Mandler and
Shebo, 1982).

Step 4: Exact Enumeration: In the case when
a collection is gauged to be countable, an exact
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count is associated with the box (num-desc).
Spatial attention is then swept downwards within
the collection. Individual objects are encoded into
visual short term memory, and for each new object
detected, the count is incremented.

Finally, after all applicable approximate and ex-
act quantity representations are encoded for each
box, the quantity information of each distractor
is then compared with that of the target to ascer-
tain information about the relative quantity of the
target (rel-desc) compared with the distractors.
Specifically, exact quantities are first compared if
available. In the absence of exact counts, the ap-
proximate representations are compared. This is
achieved by considering the Gaussian distribution
that results from subtracting the Gaussian repre-
senting the distractor estimate from the Gaussian
representing the target estimate. If the cumulative
probability distribution of this new distribution for
negative values above a threshold τrel, this indi-
cates that the target has a smaller quantity. Con-
versely, if the cumulative probability distribution
for positive values is above the threshold, this in-
dicates that the target has a larger quantity. In the
scope of this paper, we set τrel = 0.75. By com-
paring the target to each distractor in this manner,
we determine whether the target is the collection
with the most or fewest items (or neither).

3.2.2 Content Selection
Having completed the process of incrementally
constructing a symbolic scene representation, the
model then begins the REG process. To do this
we use a modified version of the the Incremental
Algorithm (Dale and Reiter, 1995). The modifica-
tion is based on the one proposed by Briggs and
Harner (2019), wherein attributes with missing val-
ues are skipped. To evaluate the model, we used
the best performing preference order from (Briggs
and Harner, 2019): num-desc > abs-desc >
rel-desc.

3.3 Evaluation

As a proof-of-concept evaluation, we ran the model
over images corresponding to the twenty unique
QRE task problems modeled by Perceptual Cost
Pruning by Briggs and Harner (2019). We then
compared the resulting output attribute selections
to the output reported for the Perceptual Cost Prun-
ing algorithm configured with the same attribute
preference order, verifying that it was the same

Problem Target Distractor Model
ID Quantity Quantities Output
1 31 {11,11} {REL}
2 31 {3,3} {REL}
3 11 {31,31} {REL}
4 3 {1,1} {NUM}
5 1 {3,3} {NUM}
6 3 {31,31} {NUM}
7 31 {21,11} {REL}
8 31 {11,3} {REL}
10 11 {21,31} {REL}
11 3 {2,1} {NUM}
13 1 {2,3} {NUM}
14 3 {21,31} {NUM}
15 21 {11,0} {REL,ABS}
16 11 {21,0} {REL,ABS}
17 3 {1,0} {NUM}
18 1 {3,0} {NUM}
19 11 {0,0} {ABS}
20 12 {0,0} {ABS}
21 3 {0,0} {NUM}
22 4 {0,0} {NUM}

Table 1: QRE problems and resulting model output.

for all problems. The problem descriptions and
corresponding model output is found in Table 1.

4 Discussion

People can not mentally represent complex visual
scenes down to the exact detail. Evidence suggests
that people strategically attend to scenes to col-
lect enough detail to complete their task. In other
words, people build up sparse scene representa-
tions. Successfully modeling human performance
on the QRE task requires the ability to model what
pieces of information people do or do not encode.
Prior work successfully modeled QRE generation
through a destructive process, in which a complete
scene representation is reduced according to mod-
els of perceptual cost. Here, we have presented
a constructive approach to modeling QRE genera-
tion by simulating a process of incremental scene
perception.

4.1 Approach Advantages

What does the constructive, incremental approach
give us over the destructive one? First, it provides
a model that begins with raw images, rather than
a symbolic knowledge base. Second, we argue
that the constructive approach is more extensible
when applied to a wider range of possible visual de-
scription or REG tasks. The destructive approach
requires the development of a separate model of
perceptual cost for each attribute that it considers,
which for complex domains could necessitate quite
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complicated collections of models. In the construc-
tive approach that we present, considerations of
perceptual cost and the order in which facts are
encoded are built into the perceptual process and
how attention is strategically controlled.

One example where a constructive approach in-
volving incremental scene representation would
be beneficial is in describing more complex vi-
sual scenes with grouped items. In contrast to the
stimuli in the present work, which are randomly
scattered collections of visual items, common vi-
sual scenes often contain items that are organized
together in multiple groups. In some cases, vi-
sual grouping can reduce the perceptual cost of
determining the total quantity of items. Visual
grouping allows for people to attend to and enu-
merate each group separately, establishing the to-
tal number through mental arithmetic, instead of
slowly counting each item one-by-one (Starkey and
McCandliss, 2014; Ciccione and Dehaene, 2020).
Recent work indicates that when generating quan-
tified descriptions of scenes with visual groups of
the same cardinality, people have a tendency to
omit descriptions of total quantity, and instead de-
scribe the number of groups and the number of
items within each group (Briggs et al., 2020). This
finding is consistent with the idea of incremental
scene representation and that knowledge about the
number of groups and cardinality of each group
precedes knowledge of total quantity.

4.2 Future Work

We intend to use the model presented in this paper
as a basis to explore how incremental perception
can explain individual variation in the forms of
QREs observed in (Barr et al., 2013). While the
present model waits for the scene representation
to be encoded before content generation is started,
it could be modified to begin the content planning
phase earlier, before the scene is fully processed.

We predict that in certain QRE problems, the
order in which distractors are perceived and com-
pared with the target may affect the content of gen-
erated expressions. Specifically, consider Problem
16 described in Table 1. The model predicts a QRE
containing both a relative and absolute description
of quantity. Examples of different expressions that
fit this template are: (A) “the one with some, but
not the most”; and (B) “the one with fewer, but not
the empty one”. Expressions similar to forms A
and B were found when the human data were reex-

amined (Briggs and Harner, 2019). We predict that
the order in which the two distractors are perceived
would determine which expression form is more
commonly produced. Form A would correspond
to the empty distractor being perceived first, while
form B would correspond to the empty distractor
being perceived second.
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