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Abstract

While humans process language incrementally,
the best language encoders currently used in
NLP do not. Both bidirectional LSTMs and
Transformers assume that the sequence that is
to be encoded is available in full, to be pro-
cessed either forwards and backwards (BiL-
STMs) or as a whole (Transformers). We in-
vestigate how they behave under incremental
interfaces, when partial output must be pro-
vided based on partial input seen up to a cer-
tain time step, which may happen in interactive
systems. We test five models on various NLU
datasets and compare their performance using
three incremental evaluation metrics. The re-
sults support the possibility of using bidirec-
tional encoders in incremental mode while re-
taining most of their non-incremental quality.
The “omni-directional” BERT model, which
achieves better non-incremental performance,
is impacted more by the incremental access.
This can be alleviated by adapting the training
regime (truncated training), or the testing pro-
cedure, by delaying the output until some right
context is available or by incorporating hypo-
thetical right contexts generated by a language
model like GPT-2.

1 Introduction

In “The Story of Your Life”, a science fiction short
story by Ted Chiang (2002), Earth is visited by
alien creatures whose writing system does not un-
fold in time but rather presents full thoughts instan-
taneously. In our world, however, language does
unfold over time, both in speaking and in writing.
There is ample evidence (Marslen-Wilson, 1975;
Tanenhaus and Brown-Schmidt, 2008, inter alia)
that it is also processed over time by humans, in
an incremental fashion where the interpretation of
a full utterance is continuously built up while the
utterance is being perceived.

In Computational Linguistics and Natural Lan-
guage Processing, this property is typically ab-
stracted away by assuming that the unit to be pro-
cessed (e.g., a sentence) is available as a whole.1

The return and subsequent mainstreaming of Re-
current Neural Networks (RNNs), originally in-
troduced by Elman (1990) and repopularized i.a.
by Mikolov et al. (2010), may have made it seem
that time had found a place as a first-class citizen
in NLP. However, it was quickly discovered that
certain technical issues of this type of model could
be overcome, for example in the application of ma-
chine translation, by encoding input sequences in
reverse temporal order (Sutskever et al., 2014).

This turns out to be a special case of the more
general strategy of bidirectional processing, pro-
posed earlier in the form of BiRNNs (Schuster
and Paliwal, 1997; Baldi et al., 1999) and BiL-
STMs (Hochreiter and Schmidhuber, 1997), which
combine a forward and a backward pass over a
sequence. More recently, Transformers (Vaswani
et al., 2017) also function with representations that
inherently have no notion of linear order. Atempo-
ral processing has thus become the standard again.

In this paper, we explore whether we can adapt
such bidirectional models to work in incremental
processing mode and what the performance cost
is of doing so. We first go back and reproduce
the work of Huang et al. (2015), who compare the
performance of LSTMs and BiLSTMs in sequence
tagging, extending it with a BERT-based encoder
and with a collection of different datasets for tag-
ging and classification tasks. Then we address the
following questions:

1An exception is the field of research on interactive sys-
tems, where it has been shown that incremental processing can
lead to preferable timing behavior (Aist et al., 2007; Skantze
and Schlangen, 2009) and work on incremental processing is
ongoing (Žilka and Jurčı́ček, 2015; Trinh et al., 2018; Coman
et al., 2019, inter alia).
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Figure 1: Incremental interface on a bidirectional tagging model (here for chunking). Each line represents the
input and output at a time step. Necessary additions are green/bold, substitutions are yellow/underlined, and the
dashed frame shows the output of the final time step, which is the same as the non-incremental model’s.

Q1. If we employ inherently non-incremental
models in an incremental system, do we get
functional representations that are adequate to
build correct and stable output along the way?
We examine how bidirectional encoders behave
under an incremental interface, revisiting the ap-
proach proposed by Beuck et al. (2011) for POS
taggers. After standard training, we modify the
testing procedure by allowing the system to see
only successively extended prefixes of the input
available so far with which they must produce suc-
cessively extended prefixes of the output, as shown
in Figure 1. The evaluation metrics are described
in Section 3, and the discussion is anchored on
the concepts of timeliness, monotonicity, and de-
cisiveness and their trade-off with respect to the
non-incremental quality (Beuck et al., 2011; Köhn,
2018). We show that it is possible to use them
as components of an incremental system (e.g. for
NLU) with some trade-offs.

Q2. How can we adapt the training regime
or the real-time procedure to mitigate the nega-
tive effect that the non-availability of right con-
text (i.e., future parts of the signal) has on non-
incremental models? To tackle this question, we
implement three strategies that help improve the
models’ incremental quality: truncated training,
delayed output and prophecies (see Section 4).

Our results are relevant for incremental Natural
Language Understanding, needed for the design of
dialogue systems and more generally interactive
systems, e.g. those following the incremental pro-
cessing model proposed by Schlangen and Skantze
(2011). These systems rely on the availability of
partial results, on which fast decisions can be based.
Similarly, simultaneous translation is an area where
decisions need to be based on partial input with in-
complete syntactical and semantic information.

2 Related Work

2.1 Bidirectionality

Language is one of the cognitive abilities that
have a temporal nature. The inaugural adoption
of RNNs (Elman, 1990) in NLP showed a pursuit
to provide connectionist models with a dynamic
memory in order to incorporate time implicitly, not
as a dimension but through its effects on processing.
Since then, the field has witnessed the emergence
of a miscellany of neural architectures that take
the temporal structure of language into account.
In particular, LSTMs (Hochreiter and Schmidhu-
ber, 1997) have been vastly used for sequence-to-
sequence or sequence classification tasks, which
are ubiquitous in NLP.

Bidirectional LSTMs (Schuster and Paliwal,
1997; Baldi et al., 1999) are an extension to LSTMs
that exploit bidirectionality and whose basic pro-
cessing units are full sentences. They achieved
remarkable results in many tasks, e.g. part-of-
speech tagging (Ling et al., 2015; Plank et al.,
2016), chunking (Zhai et al., 2017), named entity
recognition (Chiu and Nichols, 2016), semantic
role labeling (He et al., 2017), slot filling and in-
tent detection (E et al., 2019a) and opinion min-
ing (İrsoy and Cardie, 2014). Subsequent works
have confirmed that bidirectionality can afford an
increase in performance (Graves and Schmidhuber,
2005; Huang et al., 2015; Zhai et al., 2017).

More recently, Vaswani et al. (2017) has con-
solidated the application of attention mechanisms
on NLP tasks with Transformers, which are not
constrained by only two directions, as BiLSTMs.
Instead, complete sentences are accessed at once.
The need for NLP neural networks to be grounded
on robust language models and reliable word rep-
resentations has become clear. The full right and
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left context of words started to play a major role as
in Peters et al. (2018), which resorts to bidirection-
ality to train a language model. In a combination of
bidirectional word representations with the Trans-
former architecture, we observe the establishment
of BERT (Devlin et al., 2019) as a current state-of-
the-art model, on top of which an output layer can
be added to solve classification and tagging tasks.

2.2 Incremental processing

The motivation to build incremental processors,
as defined by Kempen and Hoenkamp (1982)
and Levelt (1989), is twofold: they are more
cognitively plausible and, from the viewpoint
of engineering, real-time applications such as
parsing (Nivre, 2004), SRL (Konstas et al.,
2014), NLU (Peldszus et al., 2012), dialog state
tracking (Trinh et al., 2018), NLG and speech syn-
thesis (Buschmeier et al., 2012) and ASR (Selfridge
et al., 2011) require that the input be continually
evaluated based on incoming prefixes while the
output is being produced and updated.

Another advantage is a better use of computa-
tional resources, as a module does not have to wait
for the completion of another one to start process-
ing (Skantze and Schlangen, 2009). In robots, lin-
guistic processing must also be intertwined with
its perceptions and actions, happening simultane-
ously (Brick and Scheutz, 2007).

Research on processing and generating language
incrementally has been done long before the cur-
rent wave of neural network models, using sev-
eral different methods. For example, in ASR, a
common strategy has been to process the input in-
crementally to produce some initial output, which
was then re-scored or re-processed with a more
complex model (Vergyri et al., 2003; Hwang et al.,
2009). While the recent accomplishments of neu-
ral encoders are cherished, bidirectional encoders
drift apart from a desirable temporal incremental
approach because they are trained to learn from
complete sequences.

There is some cognitive resemblance underly-
ing RNNs in the sense that they can process se-
quences word-by-word and build intermediary rep-
resentations at every time step. This feature pro-
vides a legitimate way to employ them in incre-
mental systems. Trinh et al. (2018) and Žilka and
Jurčı́ček (2015) explore this, for instance, using
the LSTM’s representations to predict dialogue
states after each word. Recent works on simul-

taneous translation also use RNNs as incremental
decoders (Dalvi et al., 2018).

Some works arouse interest in the incremental
abilities of RNNs. Hupkes et al. (2018) use a diag-
nostic classifier to analyze the representations that
are incrementally built by sequence-to-sequence
models in disfluency detection and conclude that
the semantic information is only kept encoded for
a few steps after it appears in the dialogue, be-
ing soon forgotten afterwards. Ulmer et al. (2019)
propose three metrics to assess the incremental en-
coding abilities of LSTMs and compare it with the
addition of attention mechanisms.

According to Beuck et al. (2011) and Schlangen
and Skantze (2011), incrementality is not a binary
feature. Besides using inherently incremental al-
gorithms, it is also possible to provide incremental
interfaces to non-incremental algorithms. Such
interfaces simply feed ever-increasing prefixes to
what remains a non-incremental algorithm, provid-
ing some “housekeeping” to manage the potentially
non-monotonic results.

To alleviate the effect of the partiality of the in-
put, we test the use of anticipated continuations,
inspired by the mechanism of predictive processing
discussed in cognitive science (Christiansen and
Chater, 2016) and the idea of interactive utterance
completion introduced by DeVault et al. (2011).
Related strategies to predict upcoming content and
to wait for more right context are also applied in re-
cent work on simultaneous translation (Grissom II
et al., 2014; Oda et al., 2015; Ma et al., 2019). The
use of truncated inputs during training, discussed
below, aims at making intermediate structures avail-
able during learning, an issue discussed in Köhn
(2018). This is a variation of chunked training used
in Dalvi et al. (2018).

3 Evaluation of incremental processors

The hierarchical nature of language makes it likely
that incremental processing leads to non-monotonic
output due to re-analysis, as in the well-known “gar-
den path” sentences. Incremental systems may edit
the output by adding, revoking, and substituting its
parts (Baumann et al., 2011). We expect an incre-
mental system to produce accurate output as soon
as possible (Trinh et al., 2018), with a minimum
amount of revocations and substitutions, ideally
only having correct additions, to avoid jittering
that may be detrimental to subsequent processors
working on partial outputs.
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To assess the incremental behavior of sequence
tagging and classification models, we use the eval-
uation metrics for incremental processors estab-
lished by Schlangen et al. (2009) and Baumann
et al. (2011). The latter defines three diachronic
metrics: edit overhead (EO ∈ [0, 1]), the propor-
tion of unnecessary edits (the closer to 0, the fewer
edits were made); correction time (CT ∈ [0, 1]),
the fraction of the utterance seen before the sys-
tem commits on a final decision for a piece of the
output (the closer to 0, the sooner final decisions
were made); and relative correctness (RC ∈ [0, 1]),
the proportion of outputs that are correct with re-
spect to the non-incremental output (being close to
1 means the system outputs were most of the time
correct prefixes of the non-incremental output).

The sequence tagging tasks we evaluate are mas-
sively incremental (Hildebrandt et al., 1999), mean-
ing that a new label is always added to the output
after a new word is processed. The models can
also substitute any previous labels in the output
sequence in the light of new input. Sequence classi-
fiers must add one label (the sequence’s class) after
seeing the first word and can only substitute that
single label after each new word. In both cases,
additions are obligatory and substitutions should
ideally be kept as low as possible, but there can be
no revocations. Moreover, our data is sequential,
discrete, and order-preserving (Köhn, 2018).

Given a sequence of length n, the number of
necessary edits is always the number of tokens in
the sequence (all additions) for sequence taggers
and we set it to 1 for sequence classifiers. All other
edits (substitutions) count as unnecessary and their
number is bounded by

∑n−1
i=1 i for tagging, and by

(n− 1), for classification.

We need to slightly adapt the CT measure for
sequences. It is originally defined as FD-F0, the
time step of a final decision minus the time step
when the output first appeared. F0 is fixed for every
word in a sequence (the systems always output
a new label corresponding to each new word it
sees), but each label will have a different FD. In
order not to penalize initial labels, which have more
opportunities of being substituted than final ones,
we instead sum the FD of each token and divide by
the sum of the number of times each one could be
modified, to get a score for the sequence as a whole.
Let the sequence length be n, then here CTscore
= (

∑n
i=1 FDi)/(

∑n
i=1 n − i). We define it to be

0 for sequences of one token. Again, 0 means
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RC = 4
2 + 4 = 0.66

                     4    +   3    +   0    +      0       +   0    +  0    
                     5    +   4    +   3    +      2       +   1    +  0     
CTscore = = 0.46  

Figure 2: How we estimate the evaluation metrics for
the complete sequence of outputs from Figure 1.

every label is immediately committed, 1 means all
final decisions are delayed until the last time step.
Figure 2 presents a concrete example of how to
estimate the metrics.

Based on the trade-off between responsiveness
and output quality (Skantze and Schlangen, 2009),
we also estimate whether there is any improvement
in the quality of the outputs if the encoder waits for
some right context to appear before committing on
output previously generated. For that, we use de-
layed EO and delayed RC (also named discounted
in Baumann et al., 2011), which allows one or two
words of the right context to be observed before
outputting previous labels, named EO/RC∆1 and
EO/RC∆2, respectively.

In order to concentrate on the incremental quality
despite the eventual non-incremental deficiencies,
we follow the approach by Baumann et al. (2011)
and evaluate intermediate outputs in comparison
to the processor’s final output, which may differ
from the gold output but is the same as the non-
incremental output. The general non-incremental
correctness should be guaranteed by having high
accuracy or F1 score in the non-incremental perfor-
mance.

4 Models

We test the behavior of five neural networks, illus-
trated in Figure 3, under an incremental processing
interface operating on word level and having full
sentences as processing units: a) a vanilla LSTM;
b) a vanilla BiLSTM; c) an LSTM with a CRF
(Conditional Random Field) layer; d) a BiLSTM
with a CRF layer; and e) BERT. The vanilla LSTM
is the only model that works solely in temporal
direction.

We choose to use the basic forms of each model
to isolate the effect of bidirectionality. They per-
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Figure 3: Models for sequence tagging, w=word and
l=label. (a) is the only inherently incremental. (a), (b)
and (e) can also be used for sequence classification if
we consider only their final representation.

form well enough on the tasks to enable a realistic
evaluation (see Table 1). Note that state-of-the-art
results are typically achieved by combining them
with more sophisticated mechanisms.

We use the models for both sequence tagging
and classification. They use the representation at
each time step to predict a corresponding label for
sentence tagging, whereas for sequence classifica-
tion they use the representation of the last time
step (LSTM) or a combination of the last forward
and backward representations (BiLSTM) or, in case
of BERT, the representation at the CLS (initial) to-
ken, as suggested in Devlin et al. (2019). The two
models with CRF cannot be used for classification,
as there are no transition probabilities to estimate.

Sequence tagging implies a one-to-one mapping
from words to labels, so that for every new word
the system receives, it outputs a sequence with one
extra label. In sequence classification, we map ev-
ery input to a single label. In that case, the LSTM
can also edit the output since it can change the
chosen label as it processes more information. Be-
cause the datasets we use are tokenized and each
token has a corresponding label, we follow the in-
structions given by Devlin et al. (2019) for dealing
with BERT’s subtokenization: the scores of the first
subtoken are used to predict its label, and further
subtoken scores are ignored.

Except for the LSTM on sequence tagging, all
models’ outputs are non-monotonic, i.e., they may
reassign labels from previous words. The concept
of timeliness is trivial here because we know ex-
actly that the label for the t-th word will appear for
the first time at the t-th version of the output, for
all t. Even so, we can delay the output to allow
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Figure 4: Incremental interface of a non-incremental
bidirectional model, showing the input and output at
time step 3. The context vector fed into the back-
ward LSTM can be zero or initialized with a hypotheti-
cal right context generated by a language model.

some lookahead. In terms of decisiveness, all mod-
els commit to a single output at every time step.
Figure 4 shows an example of the computation
graph. BiLSTMs can recompute only the backward
pass, while BERT needs a complete recomputation.

4.1 Strategies

We check the effect of three strategies: truncated
training, delayed output and prophecies. In the first
case, we modify the training regime by stripping
off the endings of each sentence in the training set.
We randomly sample a maximum length l ≤ n,
where n is the original sentence length, and cut
the subsequent words and labels. We expect this
to encourage the model to know how to deal with
truncated sequences that it will have to process
during testing.

The second strategy involves allowing some up-
coming words to be observed before outputting
a label corresponding to previous words. This is
a case of lookahead described in Baumann et al.
(2011), where the processor is allowed to wait for
some right context before making a first decision
with respect to previous time steps. We experiment
with right contexts of one or two words, ∆1 and
∆2, respectively. ∆1 means the model outputs the
first label for word t once it consumes word t + 1.
Analogously, ∆2 means the model can observe
words t + 1 and t + 2 before outputting the first
label for word t. Figure 5 illustrates how to calcu-
late EO with ∆1 delay for the same example as in
Figure 2.

In the third strategy, we first feed each prefix as
left context in the GPT-2 language model and let it
generate a continuation up to the end of a sentence
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Figure 5: Example of the calculation of Edit Over-
head with ∆1 delay for the example in Figure 2. The
first choice for each label happens once the subsequent
word has been observed, except for the last token in the
sentence.

to create a hypothetical full context that meets the
needs of the non-incremental nature of the models
(see Figure 6 for an example). Not surprisingly, the
mean BLEU scores of the prophecies with respect
to the real continuation of the sentences are less
than 0.004 for all datasets.2

out of the ground also enhances your overall body strength and 
stamina.

drove up costs compared to imports – driving 
costs down considerably. prices while leaving… 
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during rehydration.

as well as international crude can drive the increase, 
pushing up oil prices while leaving oil production… 

in April and further accelerated today, 
the New York Standard said, and in… 

Figure 6: Input throughout time steps using hypotheti-
cal right contexts generated by GPT-2, providing a full
sequence for the backward direction.

5 Experiments

5.1 Data

We examine the incremental evaluation metrics
on ten datasets in English, six for sequence tag-
ging: chunking (Sang et al., 2000), slot fill-
ing (Hemphill et al., 1990; Coucke et al., 2018,
ATIS and SNIPS, respectively), named entity recog-
nition, part-of-speech tagging and semantic role
labeling (Weischedel et al., 2013); and four for
sentence classification: intent (Hemphill et al.,

2Fine-tuning GPT-2 did not improve BLEU and caused
marginal difference in the evaluation metrics. We thus present
the results using the pre-trained model only, and leave more
exploration of fine-tuning for future work.

1990; Coucke et al., 2018, ATIS and SNIPS, respec-
tively) and sentiment (Kotzias et al., 2015; Gana-
pathibhotla and Liu, 2008, positive/negative and
pros/cons, respectively).

Chunking, NER, SRL, and slot filling use
the BIO labeling scheme and are evaluated us-
ing the F1 score adapted for sequence evaluation,
whereas the performance on POS tagging and clas-
sification tasks is measured by accuracy.

The models map from raw words to labels with-
out using any intermediate annotated layer, even
though they are available in some datasets. The
only exception is the SRL task, for which we
concatenate predicate embeddings to word embed-
dings following the procedure described in He et al.
(2017), because a sequence can have as many label
sequences as its number of predicates.

5.2 Implementation
During training, we minimize cross entropy us-
ing the Adam method for optimization (Kingma
and Ba, 2014). We perform hyperparameter search
for the LSTM model using Comet’s Bayes search
algorithm,3 to maximize the task’s performance
measure on the validation set and use its best hy-
perparameters for all other models, except BERT,
for which we use HuggingFace’s pre-trained bert-
base-cased model.

We use GloVe embeddings (Pennington et al.,
2014) to initialize word embeddings for all mod-
els except BERT, which uses its own embedding
mechanism. Random embeddings are used for out-
of-GloVe words. We randomly replace tokens by a
general <unk> token with probability 0.02 and use
this token for all unknown words in the validation
and test sets (Žilka and Jurčı́ček, 2015).

No parameters are kept frozen during training.
Overfitting is avoided with early stopping and
dropout. Our implementation uses PyTorch v.1.3.1,
and prophecies are generated with HuggingFace’s
port of the GPT-2 language model. The evaluation
of incrementality metrics is done on the test sets. 4

6 Results

The results in Table 1 (above) support the observa-
tion that, in general, bidirectional models do have
a better non-incremental performance than LSTMs
(except for IntentATIS and ProsCons) and that there

3http://www.comet.ml
4The code is available at https://github.com/

briemadu/inc-bidirectional. For more details on
implementation and data for reproducibility, see Appendix.
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Model

Task Metric LSTM LSTM+CRF BiLSTM BiLSTM+CRF BERT

Chunk 86.93 (84.23) 90.40 (88.13) 90.22 (88.07) 91.24 (89.44) 96.32 (96.11)
Named Entity Recognition 70.78 (67.64) 86.30 (83.98) 88.79 (84.72) 89.29 (87.50) 93.52 (92.54)

Semantic Role Labeling F1 Score 52.27 (49.63) 70.83 (68.71) 77.39 (73.34) 84.28 (80.88) 89.01 (87.23)
Slot Filling (ATIS) (%) 93.82 (90.78) 95.36 (92.09) 94.84 (91.41) 95.26 (92.63) 95.57 (93.88)

Slot Filling (SNIPS) 82.20 (78.09) 89.63 (85.28) 90.44 (85.41) 92.32 (87.82) 95.46 (92.93)

Intent (ATIS) 96.86 (93.06) - 95.74 (93.62) - 97.31 (95.86)
Intent (SNIPS) 96.86 (97.43) - 97.43 (97.43) - 97.57 (97.71)

Part-of-Speech Tagging Accuracy 94.98 (94.32) 96.02 (95.56) 96.44 (96.23) 96.64 (96.35) 97.87 (97.65)
Positive/Negative (%) 82.17 (72.83) - 83.33 (75.67) - 93.83 (92.50)

Pros/Cons 94.51 (93.85) - 94.40 (93.65) - 95.74 (95.17)

Table 1: Non-incremental performance of all models on test sets (truncated training in parentheses). The results
are not necessarily state-of-the-art because we use basic forms of each model in order to isolate the effect of
bidirectionality and have comparable results among different tasks.

is an overall considerable improvement in the use
of BERT model for all tasks. Truncated training re-
duces overall performance but even so BERT with
truncated training outperforms all models, even
with usual training, in most tasks (except for slot
filling and IntentATIS).

Figure 7 presents an overview of the incremental
evaluation metrics for all models and tasks. Se-
quence tagging has, in general, low EO and low
CT score; i.e., labels are not edited much and a
final decision is reached early. That does not hold
for BERT, whose CT score and EO is, in general,
higher. CT score and EO in sequence classification
are also higher because the label in this case should
capture a more global representation, which cannot
reasonably be expected to be very good when only
a small part of the sequence has yet been seen.

When it comes to RC (correctness relative to
the final output), again BERT has worse results
than other models, especially for tagging. For se-
quence classification, BERT’s performance is more
in line with the other models. Achieving high RC
is desirable because it means that, most of the time,
the partial outputs are correct prefixes of the non-
incremental output and can be trusted, at least to
the same degree that the final result can be trusted.

This overview shows that although BERT’s non-
incremental performance is normally the highest,
the quality of its incremental outputs is more un-
stable. The next step is examining the effect of the
three strategies that seek to improve the quality and
stability of incremental outputs. Figure 8 shows
that truncated training is always beneficial, as is
delayed evaluation, with both strategies reducing
EO and increasing RC. The fact that delay helps in
all cases indicates that most substitutions happen

in the last or last but one label (the right frontier,
given the current prefix), or, in other words, that
even having a limited right context improves qual-
ity substantially. 5

Prophecies are detrimental in classification tasks,
but they help in some tagging tasks, especially
for BERT. Most importantly, any of the strategies
cause a great improvement to BERT’s incremen-
tal performance in sequence tagging, making its
metrics be on the same level as other models while
retaining its superior non-incremental quality.

Note that while CT and RC can only be mea-
sured once the final output is available, an estimate
of EO may be evaluated on the fly if we consider
the edits and additions up to the last output. Figure
9 shows how the mean EO evolves, breaking out
the results for cases where the non-incremental fi-
nal output will be correct and those where it will
not with respect to the gold labels. We can observe
an intriguing pattern: the mean EO grows faster for
cases where the final response will be wrong; this
is most pronounced for the sequence classification
task. It might be possible to use this observation as
an indication of how much to trust the final result:
If the incremental computation was more unstable
than the average, we should not expect the final
result to be good. However, initial experiments
on building a classifier based on the instability of
partial outputs have so far not been successful in
cashing in on that observation.

5Results for SRL are not included in Figure 8, because
they go in the opposite direction of all other tasks. Since
this task depends on the predicate embedding, both truncating
the training sequence or adding a right context with no predi-
cate information reduces performance in most cases, except
for BERT. See Appendix for results separated by model and
task.
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Figure 7: Comparison of evaluation metrics for all mod-
els and tasks. The incremental behavior is more sta-
ble for sequence tagging than for sequence classifica-
tion. BERT takes longer to reach final decisions, and
its outputs are edited more often than other models, es-
pecially in sequence tagging tasks.

7 Discussion and conclusion

We show that bidirectional encoders can be adapted
to work under an incremental interface without
a too drastic impact on their performance. Even
though the training (being done on complete se-
quences) differs from the testing situation (which
exposes the model to partial input), the incremental

metrics of most models are, in general, good: in
sequence tagging, edit overhead is low, final deci-
sions are taken early, and often partial outputs are
a correct prefix of the complete non-incremental
output. Sequence classification is more unstable
because, at initial steps, there is a higher level of un-
certainty on what is coming next. Our experiments
show that the deficiencies of BERT in the incremen-
tal metrics can be mitigated with some adaptations
(truncated training or prophecies together with de-
lay), which make its incremental quality become
as good as those of other models.

Since the semantic information is only kept en-
coded for a few steps in RNNs (Hupkes et al.,
2018), this may be a reason why delay causes in-
cremental metrics to be much better. If long-range
dependencies are not captured, only neighboring
words exert more influence in the choice of a label,
so after seeing two words in the right context, the
system rarely revises labels further back. BERT,
having access to the whole sentence at any time
step, is less stable because new input can cause it
to reassess past labels more easily.

Besides, we also found evidence of different be-
havior of the instability of partial outputs between
correct and incorrect output sequences, which
could potentially be a signal of later lower qual-
ity. This could be used, for example, in dialog
systems: if edit overhead gets too high, a clarifi-
cation request should be made. A follow-up idea
is training a classifier that predicts more precisely
how likely it is that the final labels will be accu-
rate based on the development of EO. However,
our initial experiments on building such classifier
were not successful. We suppose this is due to the
fact that, in our datasets, incorrect final output se-
quences still usually have more than 90% correct
labels, so the learnable signal may be too weak.

The use of GPT-2 prophecies led to promising
improvements for BERT in sequence tagging. We
see room for improvement, e.g. resorting to domain
adaptation to make prophecies be more related to
each genre. A natural extension is training a lan-
guage model that generates the prophecies together
with the encoder.

Finally, we believe that using attention mecha-
nisms to study the grounding of the edits, similarly
to the ideas in Köhn (2018), can be an important
step towards understanding how the preliminary
representations are built and decoded; we want to
test this as well in future work.
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Figure 8: Comparison of mean Edit Overhead and mean Relative-Correctness on the baseline incremental interface
and the three strategies using observations from all tasks except SRL.
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Figure 9: Development of mean Edit Overhead over
time using observations from all tasks. correct means
that all final output labels of a sentence are right and in-
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sequence is wrong. All models are more unstable when
their non-incremental final output is incorrect with re-
spect to the gold output.
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A Reproducibility

Here we describe more details about hyperparame-
ters and the models. Table 2 to Table 11 present
more information about the hyperparameter search
and the datasets as well as explicit results for each
model and task, to be used for reproducibility
purposes.

Data

• We use only the WSJ section of OntoNotes,
with the train-valid-test splits provided
by Pradhan et al. (2013), as well as their con-
version to CoNLL format.

• The PosNeg and ProsCons datasets, which are
not published with a train-valid-test split, were
divided into 70%-10%-20% sets randomly.

• We removed the two longest sentences (>200
words) in Pros/Cons the dataset because they
were infeasible to compute with BERT.

• Sentences longer than 60 words were removed
in the hyperparameter search phase only.

Implementation

• Hyperparameter search is done for each
dataset in both the LSTM model and BERT.

• We use Comet’s Bayes algorithm6, which bal-
ances exploration and exploitation and, in our
experiments, tries to maximize the accuracy
(for sequence classification) of F1 score (for
sequence tagging) in the validation set.

• We set the maximum number of iterations to
50, but early stopping happens if no improve-
ment is seen during 10 iterations.

• The best configuration of the LSTM model is
also used for the LSTM+CRF, BiLSTM, and
BiLSTM+CRF models.

• We use a five-dimensional embedding for the
binary predicates in the SRL task.

• Hidden states are initialized as 0.

• All the weights and biases are initialized with
PyTorch’s default (uniformly sampled from
(−
√
hidden size),

√
hidden size).

6https://www.comet.ml/docs/python-sdk/
introduction-optimizer/

• Dropout is implemented after the embedding
layer and after the encoder layer with the same
value.

• PyTorch’s and Numpy’s manual seeds are set
to 2204 for all experiments.

• All experiments were run on a GPU GeForce
GTX 1080 Ti.

Hyperparameter LSTM

Batch size 32, 64, 128, 512
Clipping 0.25, 0.5, 1
Dropout 0.1, 0.2, 0.3, 0.5
Embedding dimension 50, 100, 200, 300
Hidden layer dimension 50, 100, 150, 200, 300
Learning rate 0.1, 0.01, 0.001
Number of layers 1, 2, 3, 4

BERT

Batch size 16, 32
Clipping 0.25, 0.5, 1
Learning rate 5e-05, 3e-05, 2e-05, 1e-05

Table 2: Hyperparameter search space.
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best configuration

Task/Model search
trials

avrg.
runtime

batch
size

clipping dropout embedding
layer

hidden
layer

learning
rate

number
of layers

SEQUENCE TAGGING

Chunk 24 6 32 0.5 0.5 300 200 0.001 1
Named Entity Recognition 24 16 32 1 0.3 50 300 0.001 2
Part-of-Speech Tagging 26 19 32 0.25 0.5 300 150 0.001 3
Semantic Role Labeling 34 33 32 1 0.3 100 300 0.001 2
Slot Filling (ATIS) 23 2 32 0.25 0.5 50 200 0.01 1
Slot Filling (SNIPS) 39 5 32 1 0.5 50 150 0.001 2

SEQUENCE CLASSIFICATION

Intent (ATIS) 60 1 64 0.5 0.1 200 200 0.001 2
Intent (SNIPS) 66 3 64 0.5 0.5 100 300 0.001 1
Positive/Negative 27 1 64 0.5 0.5 300 100 0.01 3
Pros/Cons 38 6 32 0.5 0.5 300 150 0.001 4

Table 3: Hyperparameter search for LSTM model. The best configuration was also used for LSTM+CRF, BiLSTM
and BiLSTM+CRF. Runtime in minutes.

best configuration

Task/Model search
trials

avrg.
runtime

batch
size

clipping learning
rate

SEQUENCE TAGGING

Chunk 8 24 16 0.25 2e-05
Named Entity Recognition 9 99 16 1 2e-05
Part-of-Speech Tagging 7 62 16 0.5 3e-05
Semantic Role Labeling 9 471 16 0.5 2e-05
Slot Filling (ATIS) 10 15 32 0.25 5e-05
Slot Filling (SNIPS) 11 33 16 0.5 2e-05

SEQUENCE CLASSIFICATION

Intent (ATIS) 10 12 32 0.25 5e-05
Intent (SNIPS) 10 23 16 0.5 3e-05
Positive/Negative 10 4 16 0.25 2e-05
Pros/Cons 10 70 32 0.5 3e-05

Table 4: Hyperparameter search for BERT model. Runtime in minutes.

Model

Task LSTM LSTM+CRF BiLSTM BiLSTM+CRF BERT

Chunking 5,775,023 5,775,598 6,181,223 6,181,798 108,327,959
NER 2,937,587 2,939,030 4,813,487 4,814,930 108,338,725
POS 11,330,748 11,333,148 12,331,548 12,333,948 108,347,184
SRL 4,829,016 4,840,464 6,791,616 6,803,064 108,391,786
SlotATIS 270,327 286,710 497,327 513,710 108,407,935
SlotSNIPS 876,522 881,850 1,369,722 1,375,050 108,365,640
IntentATIS 821,226 - 1,789,626 - 108,330,266
IntentSNIPS 1,611,007 - 2,095,507 - 108,315,655
PosNeg 1,764,402 - 2,247,002 - 108,311,810
ProsCons 4,905,302 - 6,260,402 - 108,311,810

Table 5: Number of parameters in each model.
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Task Dataset Reference Labels Train Valid Test

SENTENCE TAGGING
Chunking CoNLL 2000 Sang et al. (2000) 23 7,922 1,014 2,012
Named Entity Recognition OntoNotes 5.0 Weischedel et al. (2013) 37 30,060 5,315 1,640
Part-of-Speech Tagging OntoNotes 5.0 Weischedel et al. (2013) 48 30,060 5,315 1,640
Semantic Role Labeling OntoNotes 5.0 Weischedel et al. (2013) 106 83,920 15,208 4,781
Slot Filling ATIS Hemphill et al. (1990) 127 4,478 500 893
Slot Filling SNIPS Coucke et al. (2018) 72 13,084 700 700

SENTENCE CLASSIFICATION
Intent ATIS Hemphill et al. (1990) 26 4,478 500 893
Intent SNIPS Coucke et al. (2018) 7 13,084 700 700
Sentiment Positive/Negative Kotzias et al. (2015) 2 2,100 300 600
Sentiment Pros/Cons Ganapathibhotla and Liu (2008) 2 32,088 4,602 9,175

Table 6: Tasks and datasets.

Model

Task Metric LSTM LSTM+CRF BiLSTM BiLSTM+CRF BERT

Chunk 88.39 (88.42) 91.52 (90.79) 91.67 (90.93) 92.53 (91.76) 97.53 (97.00)
Named Entity Recognition 68.60 (67.36) 85.22 (82.08) 86.77 (83.02) 87.86 (84.78) 92.05 (89.38)

Semantic Role Labeling F1 Score 52.55 (49.78) 71.48 (67.22) 77.53 (70.57) 84.16 (77.91) 89.29 (82.81)
Slot Filling (ATIS) (%) 95.76 (94.54) 96.93 (95.91) 97.16 (96.07) 97.33 (96.62) 98.39 (96.67)

Slot Filling (SNIPS) 82.86 (80.12) 90.36 (86.12) 90.47 (84.90) 91.60 (87.26) 95.56 (88.52)

Intent (ATIS) 98.40 (90.60) - 98.20 (90.40) - 98.80 (93.60)
Intent (SNIPS) 99.71 (95.14) - 99.57 (94.00) - 99.29 (93.57)

Part-of-Speech Tagging Accuracy 94.72 (94.00) 95.75 (94.88) 96.24 (95.54) 96.27 (95.54) 97.90 (97.45)
Positive/Negative (%) 85.33 (70.67) - 85.67 (70.67) - 95.67 (76.33)

Pros/Cons 94.59 (90.24) - 94.74 (90.48) - 96.02 (91.81)

Table 7: Non-incremental performance all models on validation sets for the purpose of reproducibility. Values in
parentheses refer to using truncated samples during training.

Model

Task LSTM LSTM+CRF BiLSTM BiLSTM+CRF BERT

Sentence level correctness (%)

SEQUENCE TAGGING

Chunk 33.95 (28.03) 44.04 (37.48) 43.74 (36.38) 48.56 (43.39) 71.42 (69.68)
Named Entity Recognition 51.04 (48.60) 70.61 (66.83) 74.02 (68.05) 75.00 (72.44) 85.61 (83.17)

Part-of-Speech Tagging 36.77 (34.02) 45.12 (42.68) 49.33 (47.38) 50.55 (49.21) 63.41 (60.49)
Semantic Role Labeling 6.82 (6.65) 24.14 (21.36) 48.90 (41.92) 56.14 (49.42) 67.85 (63.75)

Slot Filling (ATIS) 84.10 (75.92) 87.46 (78.72) 86.34 (76.48) 87.68 (79.06) 89.36 (84.88)
Slot Filling (SNIPS) 61.29 (54.71) 75.00 (66.86) 79.00 (69.14) 81.71 (71.86) 89.29 (84.43)

SEQUENCE CLASSIFICATION

Intent (ATIS) 96.86 (93.06) - 95.74 (93.62) - 97.31 (95.86)
Intent (SNIPS) 96.86 (97.43) - 97.43 (97.43) - 97.57 (97.71)

Positive/Negative 82.17 (72.83) - 83.33 (75.67) - 93.83 (92.50)
Pros/Cons 94.51 (93.85) - 94.40 (93.65) - 95.74 (95.17)

Table 8: Sentence-level non-incremental performance of all models on test sets (the same as accuracy in sequence
classification). Values in parentheses refer to using truncated samples during training.
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Task/Model Metrics Metrics with prophecies

EO CT RC EO CT RC

SEQUENCE TAGGING

Chunk
LSTM 0.00 (0.00) 0.00 (0.00) 1.00 (1.00) 0.00 (0.00) 0.00 (0.00) 1.00 (1.00)
LSTM+CRF 0.06 (0.03) 0.01 (0.00) 0.94 (0.97) 0.03 (0.03) 0.00 (0.00) 0.97 (0.97)
BILSTM 0.10 (0.08) 0.03 (0.02) 0.84 (0.89) 0.09 (0.11) 0.02 (0.03) 0.90 (0.87)
BILSTM+CRF 0.16 (0.07) 0.04 (0.02) 0.79 (0.92) 0.10 (0.09) 0.02 (0.02) 0.91 (0.91)
BERT 0.17 (0.06) 0.06 (0.02) 0.67 (0.91) 0.10 (0.06) 0.02 (0.01) 0.87 (0.92)

Named Entity Recognition
LSTM 0.00 (0.00) 0.00 (0.00) 1.00 (1.00) 0.00 (0.00) 0.00 (0.00) 1.00 (1.00)
LSTM+CRF 0.05 (0.04) 0.01 (0.01) 0.95 (0.96) 0.04 (0.04) 0.01 (0.01) 0.96 (0.96)
BILSTM 0.07 (0.06) 0.02 (0.01) 0.91 (0.93) 0.08 (0.08) 0.02 (0.02) 0.91 (0.92)
BILSTM+CRF 0.08 (0.06) 0.02 (0.01) 0.92 (0.94) 0.09 (0.08) 0.02 (0.02) 0.92 (0.93)
BERT 0.17 (0.06) 0.12 (0.02) 0.49 (0.93) 0.08 (0.06) 0.02 (0.01) 0.90 (0.93)

Part-of-Speech Tagging
LSTM 0.00 (0.00) 0.00 (0.00) 1.00 (1.00) 0.00 (0.00) 0.00 (0.00) 1.00 (1.00)
LSTM+CRF 0.05 (0.03) 0.01 (0.01) 0.95 (0.96) 0.03 (0.03) 0.01 (0.01) 0.97 (0.97)
BILSTM 0.08 (0.06) 0.02 (0.01) 0.89 (0.93) 0.07 (0.06) 0.02 (0.02) 0.92 (0.93)
BILSTM+CRF 0.09 (0.06) 0.02 (0.01) 0.89 (0.92) 0.07 (0.06) 0.02 (0.02) 0.92 (0.93)
BERT 0.52 (0.05) 0.54 (0.01) 0.30 (0.93) 0.07 (0.05) 0.02 (0.01) 0.90 (0.93)

Semantic Role Labeling
LSTM 0.00 (0.00) 0.00 (0.00) 1.00 (1.00) 0.00 (0.00) 0.00 (0.00) 1.00 (1.00)
LSTM+CRF 0.21 (0.29) 0.07 (0.09) 0.71 (0.83) 0.32 (0.26) 0.10 (0.09) 0.82 (0.85)
BILSTM 0.31 (0.37) 0.15 (0.16) 0.59 (0.60) 0.34 (0.40) 0.16 (0.19) 0.62 (0.62)
BILSTM+CRF 0.28 (0.31) 0.15 (0.15) 0.65 (0.72) 0.28 (0.35) 0.15 (0.17) 0.71 (0.72)
BERT 0.43 (0.33) 0.31 (0.14) 0.25 (0.70) 0.22 (0.26) 0.12 (0.14) 0.69 (0.67)

Slot Filling (ATIS)
LSTM 0.00 (0.00) 0.00 (0.00) 1.00 (1.00) 0.00 (0.00) 0.00 (0.00) 1.00 (1.00)
LSTM+CRF 0.02 (0.01) 0.01 (0.00) 0.98 (0.98) 0.01 (0.03) 0.00 (0.01) 0.99 (0.97)
BILSTM 0.02 (0.02) 0.01 (0.01) 0.97 (0.98) 0.02 (0.02) 0.01 (0.01) 0.97 (0.98)
BILSTM+CRF 0.03 (0.01) 0.01 (0.01) 0.97 (0.98) 0.04 (0.02) 0.01 (0.01) 0.95 (0.98)
BERT 0.22 (0.03) 0.19 (0.01) 0.56 (0.97) 0.06 (0.03) 0.02 (0.01) 0.93 (0.97)

Slot Filling (SNIPS)
LSTM 0.00 (0.00) 0.00 (0.00) 1.00 (1.00) 0.00 (0.00) 0.00 (0.00) 1.00 (1.00)
LSTM+CRF 0.06 (0.04) 0.03 (0.02) 0.93 (0.96) 0.10 (0.07) 0.05 (0.03) 0.90 (0.93)
BILSTM 0.12 (0.08) 0.07 (0.05) 0.84 (0.90) 0.17 (0.13) 0.10 (0.07) 0.81 (0.85)
BILSTM+CRF 0.11 (0.08) 0.06 (0.04) 0.88 (0.91) 0.17 (0.14) 0.10 (0.07) 0.82 (0.86)
BERT 0.37 (0.08) 0.38 (0.04) 0.41 (0.91) 0.12 (0.09) 0.06 (0.05) 0.86 (0.90)

SEQUENCE CLASSIFICATION

Intent (ATIS)
LSTM 0.48 (0.21) 0.27 (0.12) 0.77 (0.91) 0.77 (0.78) 0.72 (0.68) 0.52 (0.54)
LSTM+CRF - - - - - -
BILSTM 0.40 (0.24) 0.23 (0.14) 0.85 (0.90) 0.66 (0.77) 0.38 (0.73) 0.70 (0.50)
BILSTM+CRF - - - - - -
BERT 0.49 (0.20) 0.20 (0.13) 0.84 (0.91) 0.38 (0.29) 0.19 (0.16) 0.88 (0.90)

Intent (SNIPS)
LSTM 0.31 (0.24) 0.20 (0.14) 0.85 (0.90) 0.57 (0.49) 0.48 (0.39) 0.71 (0.77)
LSTM+CRF - - - - - -
BILSTM 0.26 (0.23) 0.19 (0.13) 0.86 (0.91) 0.55 (0.49) 0.47 (0.41) 0.71 (0.76)
BILSTM+CRF - - - - - -
BERT 0.30 (0.22) 0.21 (0.13) 0.83 (0.91) 0.40 (0.35) 0.26 (0.20) 0.83 (0.86)

Positive/Negative
LSTM 0.38 (0.40) 0.31 (0.31) 0.78 (0.79) 0.65 (0.68) 0.59 (0.62) 0.74 (0.72)
LSTM+CRF - - - - - -
BILSTM 0.37 (0.39) 0.29 (0.30) 0.82 (0.83) 0.63 (0.58) 0.51 (0.49) 0.76 (0.77)
BILSTM+CRF - - - - - -
BERT 0.58 (0.45) 0.56 (0.30) 0.64 (0.80) 0.56 (0.55) 0.43 (0.43) 0.79 (0.79)

Pros/Cons
LSTM 0.15 (0.13) 0.11 (0.09) 0.93 (0.94) 0.32 (0.27) 0.26 (0.21) 0.88 (0.90)
LSTM+CRF - - - - - -
BILSTM 0.14 (0.14) 0.10 (0.10) 0.94 (0.94) 0.32 (0.30) 0.28 (0.24) 0.85 (0.88)
BILSTM+CRF - - - - - -
BERT 0.20 (0.14) 0.15 (0.10) 0.91 (0.94) 0.24 (0.22) 0.17 (0.16) 0.91 (0.92)

Table 9: Mean values of Edit Overhead, Correction Time Score and Relative-Correctness. Values in parentheses
refer to using truncated samples during training.
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Task/Model EO EO with prophecies

∆0 ∆1 ∆2 ∆0 ∆1 ∆2

SEQUENCE TAGGING

Chunk
LSTM 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
LSTM+CRF 0.06 (0.03) 0.01 (0.00) 0.00 (0.00) 0.03 (0.03) 0.00 (0.00) 0.00 (0.00)
BILSTM 0.10 (0.08) 0.06 (0.05) 0.03 (0.03) 0.09 (0.11) 0.05 (0.07) 0.04 (0.05)
BILSTM+CRF 0.16 (0.07) 0.06 (0.04) 0.03 (0.02) 0.10 (0.09) 0.06 (0.05) 0.04 (0.03)
BERT 0.17 (0.06) 0.10 (0.03) 0.09 (0.02) 0.10 (0.06) 0.03 (0.03) 0.03 (0.02)

Named Entity Recognition
LSTM 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
LSTM+CRF 0.05 (0.04) 0.02 (0.01) 0.00 (0.00) 0.04 (0.04) 0.01 (0.01) 0.00 (0.00)
BILSTM 0.07 (0.06) 0.04 (0.03) 0.02 (0.02) 0.08 (0.08) 0.05 (0.05) 0.04 (0.03)
BILSTM+CRF 0.08 (0.06) 0.04 (0.03) 0.02 (0.02) 0.09 (0.08) 0.05 (0.04) 0.04 (0.03)
BERT 0.17 (0.06) 0.14 (0.03) 0.13 (0.02) 0.08 (0.06) 0.04 (0.03) 0.03 (0.02)

Part-of-Speech Tagging
LSTM 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
LSTM+CRF 0.05 (0.03) 0.00 (0.00) 0.00 (0.00) 0.03 (0.03) 0.00 (0.00) 0.00 (0.00)
BILSTM 0.08 (0.06) 0.03 (0.02) 0.02 (0.01) 0.07 (0.06) 0.04 (0.03) 0.03 (0.02)
BILSTM+CRF 0.09 (0.06) 0.03 (0.03) 0.02 (0.02) 0.07 (0.06) 0.04 (0.03) 0.03 (0.02)
BERT 0.52 (0.05) 0.48 (0.01) 0.46 (0.01) 0.07 (0.05) 0.02 (0.02) 0.02 (0.02)

Semantic Role Labeling
LSTM 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
LSTM+CRF 0.21 (0.29) 0.13 (0.23) 0.09 (0.18) 0.32 (0.26) 0.26 (0.21) 0.21 (0.17)
BILSTM 0.31 (0.37) 0.26 (0.33) 0.23 (0.30) 0.34 (0.40) 0.31 (0.37) 0.28 (0.34)
BILSTM+CRF 0.28 (0.31) 0.24 (0.27) 0.21 (0.23) 0.28 (0.35) 0.25 (0.32) 0.22 (0.28)
BERT 0.43 (0.33) 0.40 (0.29) 0.37 (0.25) 0.22 (0.26) 0.19 (0.23) 0.16 (0.20)

Slot Filling (ATIS)
LSTM 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
LSTM+CRF 0.02 (0.01) 0.00 (0.00) 0.00 (0.00) 0.01 (0.03) 0.00 (0.00) 0.00 (0.00)
BILSTM 0.02 (0.02) 0.01 (0.01) 0.00 (0.00) 0.02 (0.02) 0.01 (0.01) 0.00 (0.00)
BILSTM+CRF 0.03 (0.01) 0.01 (0.00) 0.00 (0.00) 0.04 (0.02) 0.01 (0.01) 0.00 (0.00)
BERT 0.22 (0.03) 0.15 (0.01) 0.13 (0.00) 0.06 (0.03) 0.00 (0.01) 0.00 (0.00)

Slot Filling (SNIPS)
LSTM 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
LSTM+CRF 0.06 (0.04) 0.02 (0.01) 0.01 (0.00) 0.10 (0.07) 0.03 (0.02) 0.02 (0.00)
BILSTM 0.12 (0.08) 0.07 (0.05) 0.05 (0.03) 0.17 (0.13) 0.10 (0.07) 0.07 (0.04)
BILSTM+CRF 0.11 (0.08) 0.05 (0.05) 0.03 (0.03) 0.17 (0.14) 0.09 (0.07) 0.06 (0.05)
BERT 0.37 (0.08) 0.29 (0.04) 0.23 (0.02) 0.12 (0.09) 0.05 (0.04) 0.03 (0.02)

SEQUENCE CLASSIFICATION

Intent (ATIS)
LSTM 0.48 (0.21) 0.34 (0.13) 0.26 (0.09) 0.77 (0.78) 0.72 (0.72) 0.65 (0.64)
LSTM+CRF - - - - - -
BILSTM 0.40 (0.24) 0.32 (0.16) 0.25 (0.12) 0.66 (0.77) 0.51 (0.70) 0.36 (0.63)
BILSTM+CRF - - - - - -
BERT 0.49 (0.20) 0.16 (0.12) 0.11 (0.09) 0.38 (0.29) 0.24 (0.18) 0.15 (0.13)

Intent (SNIPS)
LSTM 0.31 (0.24) 0.23 (0.16) 0.16 (0.11) 0.57 (0.49) 0.48 (0.40) 0.40 (0.33)
LSTM+CRF - - - - - -
BILSTM 0.26 (0.23) 0.22 (0.16) 0.16 (0.10) 0.55 (0.49) 0.48 (0.42) 0.41 (0.34)
BILSTM+CRF - - - - - -
BERT 0.30 (0.22) 0.25 (0.14) 0.18 (0.08) 0.40 (0.35) 0.31 (0.26) 0.23 (0.16)

Positive/Negative
LSTM 0.38 (0.40) 0.31 (0.31) 0.24 (0.25) 0.65 (0.68) 0.59 (0.62) 0.52 (0.56)
LSTM+CRF - - - - - -
BILSTM 0.37 (0.39) 0.31 (0.31) 0.27 (0.27) 0.63 (0.58) 0.56 (0.52) 0.48 (0.46)
BILSTM+CRF - - - - - -
BERT 0.58 (0.45) 0.49 (0.35) 0.41 (0.27) 0.56 (0.55) 0.48 (0.48) 0.41 (0.41)

Pros/Cons
LSTM 0.15 (0.13) 0.10 (0.08) 0.07 (0.06) 0.32 (0.27) 0.25 (0.20) 0.19 (0.15)
LSTM+CRF - - - - - -
BILSTM 0.14 (0.14) 0.08 (0.09) 0.06 (0.06) 0.32 (0.30) 0.26 (0.23) 0.21 (0.17)
BILSTM+CRF - - - - - -
BERT 0.20 (0.14) 0.11 (0.08) 0.08 (0.06) 0.24 (0.22) 0.16 (0.14) 0.11 (0.10)

Table 10: Mean Edit Overhead and Delay of one or two time steps. Values in parentheses refer to using truncated
samples during training.
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Task/Model RC RC with prophecies

∆0 ∆1 ∆2 ∆0 ∆1 ∆2

SEQUENCE TAGGING

Chunk
LSTM 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
LSTM+CRF 0.94 (0.97) 0.99 (1.00) 1.00 (1.00) 0.97 (0.97) 1.00 (1.00) 1.00 (1.00)
BILSTM 0.84 (0.89) 0.91 (0.93) 0.94 (0.95) 0.90 (0.87) 0.94 (0.92) 0.96 (0.94)
BILSTM+CRF 0.79 (0.92) 0.93 (0.96) 0.95 (0.97) 0.91 (0.91) 0.94 (0.95) 0.96 (0.97)
BERT 0.67 (0.91) 0.74 (0.94) 0.75 (0.95) 0.87 (0.92) 0.94 (0.95) 0.95 (0.96)

Named Entity Recognition
LSTM 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
LSTM+CRF 0.95 (0.96) 0.98 (0.99) 1.00 (1.00) 0.96 (0.96) 0.99 (0.99) 1.00 (1.00)
BILSTM 0.91 (0.93) 0.95 (0.95) 0.96 (0.97) 0.91 (0.92) 0.95 (0.95) 0.96 (0.96)
BILSTM+CRF 0.92 (0.94) 0.95 (0.97) 0.97 (0.98) 0.92 (0.93) 0.95 (0.96) 0.97 (0.97)
BERT 0.49 (0.93) 0.51 (0.96) 0.53 (0.97) 0.90 (0.93) 0.94 (0.96) 0.96 (0.97)

Part-of-Speech Tagging
LSTM 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
LSTM+CRF 0.95 (0.96) 1.00 (1.00) 1.00 (1.00) 0.97 (0.97) 1.00 (1.00) 1.00 (1.00)
BILSTM 0.89 (0.93) 0.95 (0.96) 0.96 (0.98) 0.92 (0.93) 0.95 (0.96) 0.97 (0.98)
BILSTM+CRF 0.89 (0.92) 0.95 (0.96) 0.97 (0.97) 0.92 (0.93) 0.96 (0.96) 0.97 (0.97)
BERT 0.30 (0.93) 0.30 (0.97) 0.29 (0.97) 0.90 (0.93) 0.96 (0.96) 0.97 (0.97)

Semantic Role Labeling
LSTM 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
LSTM+CRF 0.71 (0.83) 0.83 (0.87) 0.89 (0.91) 0.82 (0.85) 0.87 (0.89) 0.90 (0.92)
BILSTM 0.59 (0.60) 0.66 (0.65) 0.70 (0.69) 0.62 (0.62) 0.66 (0.66) 0.70 (0.70)
BILSTM+CRF 0.65 (0.72) 0.72 (0.76) 0.76 (0.80) 0.71 (0.72) 0.75 (0.76) 0.79 (0.79)
BERT 0.25 (0.70) 0.27 (0.74) 0.28 (0.77) 0.69 (0.67) 0.74 (0.72) 0.77 (0.75)

Slot Filling (ATIS)
LSTM 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
LSTM+CRF 0.98 (0.98) 1.00 (1.00) 1.00 (1.00) 0.99 (0.97) 1.00 (1.00) 1.00 (1.00)
BILSTM 0.97 (0.98) 0.99 (0.99) 1.00 (1.00) 0.97 (0.98) 0.99 (0.99) 1.00 (1.00)
BILSTM+CRF 0.97 (0.98) 0.99 (0.99) 1.00 (1.00) 0.95 (0.98) 0.99 (0.99) 1.00 (1.00)
BERT 0.56 (0.97) 0.65 (0.99) 0.71 (0.99) 0.93 (0.97) 0.99 (0.99) 1.00 (0.99)

Slot Filling (SNIPS)
LSTM 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
LSTM+CRF 0.93 (0.96) 0.98 (0.99) 0.99 (1.00) 0.90 (0.93) 0.97 (0.99) 0.99 (1.00)
BILSTM 0.84 (0.90) 0.91 (0.93) 0.94 (0.96) 0.81 (0.85) 0.88 (0.91) 0.92 (0.94)
BILSTM+CRF 0.88 (0.91) 0.94 (0.95) 0.96 (0.96) 0.82 (0.86) 0.90 (0.93) 0.93 (0.95)
BERT 0.41 (0.91) 0.50 (0.95) 0.60 (0.97) 0.86 (0.90) 0.94 (0.95) 0.97 (0.97)

SEQUENCE CLASSIFICATION

Intent (ATIS)
LSTM 0.77 (0.91) 0.84 (0.95) 0.89 (0.96) 0.52 (0.54) 0.58 (0.59) 0.64 (0.66)
LSTM+CRF - - - - - -
BILSTM 0.85 (0.90) 0.88 (0.94) 0.91 (0.95) 0.70 (0.50) 0.77 (0.55) 0.85 (0.61)
BILSTM+CRF - - - - - -
BERT 0.84 (0.91) 0.93 (0.94) 0.95 (0.96) 0.88 (0.90) 0.92 (0.93) 0.95 (0.96)

Intent (SNIPS)
LSTM 0.85 (0.90) 0.89 (0.93) 0.92 (0.95) 0.71 (0.77) 0.75 (0.80) 0.80 (0.84)
LSTM+CRF - - - - - -
BILSTM 0.86 (0.91) 0.89 (0.93) 0.91 (0.95) 0.71 (0.76) 0.75 (0.80) 0.80 (0.84)
BILSTM+CRF - - - - - -
BERT 0.83 (0.91) 0.86 (0.94) 0.91 (0.96) 0.83 (0.86) 0.87 (0.90) 0.90 (0.94)

Positive/Negative
LSTM 0.78 (0.79) 0.81 (0.82) 0.84 (0.85) 0.74 (0.72) 0.76 (0.75) 0.79 (0.77)
LSTM+CRF - - - - - -
BILSTM 0.82 (0.83) 0.84 (0.85) 0.86 (0.87) 0.76 (0.77) 0.79 (0.79) 0.82 (0.81)
BILSTM+CRF - - - - - -
BERT 0.64 (0.80) 0.66 (0.84) 0.68 (0.86) 0.79 (0.79) 0.82 (0.82) 0.84 (0.84)

Pros/Cons
LSTM 0.93 (0.94) 0.95 (0.96) 0.96 (0.97) 0.88 (0.90) 0.90 (0.92) 0.93 (0.94)
LSTM+CRF - - - - - -
BILSTM 0.94 (0.94) 0.96 (0.96) 0.97 (0.97) 0.85 (0.88) 0.87 (0.91) 0.90 (0.93)
BILSTM+CRF - - - - - -
BERT 0.91 (0.94) 0.94 (0.96) 0.95 (0.97) 0.91 (0.92) 0.94 (0.94) 0.95 (0.96)

Table 11: Mean Relative Correctness and Delay of one or two time steps. Values in parentheses refer to using
truncated samples during training.
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