

Abstract

Measurement of semantic similarity plays

an important role in many areas of natural

language processing. Several approaches

have been proposed to determine the

similarity of sentences in different

languages but many of them are not

extendable in all languages. According to

the complicated Arabic language structure

and lack of necessary resources and tools,

the Arabic semantic similarity

measurement is challenging.

In this paper, we proposed a supervised

method for Arabic semantic question

similarity measurement. Forty-one features

(lexical, syntactic and semantic) are

extracted from two question phrases, then

the best distinctive features are selected by

using SelectKBest algorithm. Finally, for

sentences classification and determining

the similarity score, SVM used.

The system participated in task8 of NSURL

2019 .The results of using this method on

the data set of NSURL 2019 have a F-

measure of 82.58 percent, which have

improved the basic method.

1 Introduction

Nowadays we encounter a massive amount of text

data. Due to the ease of changing a text, similar

data are produced abundantly. Measuring text

similarity is useful in many cases such as

information retrieval, text classification,

document clustering, topic detection, question

answering, essay scoring, short answer scoring

and machine translation. Because of the expansion

of text resources and various applications of

finding similar texts, the importance of similarity

detection can be clearly understood (Gomaa and

Fahmy, 2013). As a result, using appropriate

methods that can easily recognize similar texts is

of great importance.

The most fundamental part in sentences

similarity measurement is determining words

similarity. Words can be similar both lexically or

semantically. Two words are lexically similar if

they have a similar character sequence. However

semantically similar words used in the same cases,

same context or one is a type of another. In this

paper several string-based algorithms proposed to

determine lexical similarity. Also some corpus-

based algorithms proposed to determine semantic

similarity (Gomaa and Fahmy, 2013).

String-based algorithms operate on string

sequences while corpus-based algorithms

determine the similarity between words according

to information gained from a large corpus. One

approach to measure similarity is using deep

learning to represent words and texts as vectors.

Similar words have closer vectors and dissimilar

words have distant vectors. Therefore, words

similarities can be determined by measuring words

vector distances. In this paper in addition to words

vector representation, we also use sentences vector

representation.

In order to increase accuracy, word alignment

and syntactic overlapping used to determine

similarity. 41 features obtained for two sentences

which 38 of them chosen as effective features and

used to train the model. The system participated in

task8 of NSURL 2019 (Seelawi et al., 2019).

This paper is organized as follows: Section two

presents related works in this field, section three

introduces the proposed approach and section four

representing the results. Finally, section five

contains conclusion and suggestions.

2 Related Works

During the last decade, several methods were

established to measure sentence similarity based

AtyNegar at NSURL-2019 Task 8: Semantic

Question Similarity in Arabic

Atieh Sharifi, Hossein Hassanpoor, Najmeh Zare Maduyieh

Department of NLP, Dade Pardazi Shenakht Mehvar Atynegar (DSA) Institute

Tehran, Iran

sharifiatieh@gmail.com

{hassanpoor, zare}@atynegar.ir

on semantic, syntactic and statistic knowledge. In

this section we introduce some related works in

determining Arabic sentences and texts similarity.

Wali et al. (Wali et al., 2017) proposed a

supervised approach in which three types of

features, lexical, semantic and syntactico-

semantic, are used to determine sentences

similarity. Lexical feature computed based on

common terms between the sentences and Jaccard

coefficient. In computing semantic features, each

sentence represented with a vector and then the

cosine similarity of these two vectors are

computed. The vectors created by forming a word

set using only the distinct terms of the pair of

sentences. If the term is in the sentence, the

corresponding element in the vector, set to 1 and if

the term isn’t in the sentence, the corresponding

vector element is equal to the highest similarity

between the term and the words of the sentence.

The similarity of two words calculated using the

number of common synonyms of the two words

based on LMF standardized dictionaries. The

syntactico-semantic features also computed using

these dictionaries and common semantic

arguments between the pair of sentences. Finally

Support Vector Machine used for regression. The

F-measure of using this approach on gathered data

is 85.6%.

Elghannam (Elghannam, 2016) computing

Arabic texts similarity by their words similarity.

Each word represented as a vector. This vector is a

set of co-occurrence words extracted from a

corpus. DISCO tool is used for this purpose.

DISCO builds the second order word vectors by

first counting words co-occurrences to build the

co-occurrence matrix. Cosine similarity of two

vectors shows the similarity between two words.

The highest accuracy of this method on news data

is 97%.

Nagoudi et al. (Nagoudi and Schwab, 2017)

represents each word with a vector using word

embedding. The vector of each text is the sum of

its words vectors. The similarity of two texts

computed using cosine similarity between texts

vectors. To determine the importance of each word,

the word IDF and the part of speech (each part of

speech has a score) multiplies the word vector. Best

result obtained by using syntactic template and the

Pearson correlation is 79.69%.

Al-Smadi et al. (AL-Smadi et al., 2017)

proposed a supervised approach to compute text

similarity with lexical, semantic and alignment

features. These include word overlap, POS tag n-

grams overlap, NER overlap, Levenshtein

similarity, words alignment and topic modeling (to

recognize two texts with a same topic). Finally, a

support vector machine used for regression. The

results of this approach on news tweets has F-

measure of 87.2%.

3 Proposed Method

As mentioned before, the proposed method is

supervised approached including preprocessing,

feature extraction and classification phases. The

preprocessing phase includes removing diacritics,

excess spaces, tatweel character and correcting

punctuation spacing. In the feature extraction

phase, 41 features (lexical, syntactic and semantic)

are extracted from two question phrases, then the

best distinctive features are selected by using

SelectKBest algorithm. Then by classifying the

sentences according to the best distinctive features,

similarity of the questions is determined.

3.1 Feature Extraction

We consider a total of 41 features. These features

explained below.

Words overlap: this type of features computed

based on the number of common words in two

sentences. These features obtained through the

stems vectors of a sentence. In this step we perform

tokenizing, then we remove stop words and

punctuations. Finally, word stems compared with

each other. These features computed for n-grams

(n=1,2,3) and precision, recall and F-measure

calculated for each of them (AL-Smadi et al.,

2017; Karampatsis, 2015).

For n-grams (n=1, 2, 3), precision, recall and F-

measure computed as below. If the denominators

of the first and second relations are both zero, 1 is

considered as the value of all three features. If one

of the denominators or the numerator is zero, 0

considered as the value of all three features. These

are true for POS tag overlap and NER overlap

features too as is stated in the following sections.

 𝑙𝑒𝑥𝑖𝑐𝑎𝑙𝑃𝑛 =
𝑛𝑢𝑚 𝑜𝑓 𝑐𝑜𝑚𝑚𝑜𝑛 𝑛−𝑔𝑟𝑎𝑚𝑠

𝑛𝑢𝑚 𝑜𝑓 𝑓𝑖𝑟𝑠𝑡 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 𝑛−𝑔𝑟𝑎𝑚𝑠
 (1)

 𝑙𝑒𝑥𝑖𝑐𝑎𝑙𝑅𝑛 =
𝑛𝑢𝑚 𝑜𝑓 𝑐𝑜𝑚𝑚𝑜𝑛 𝑛−𝑔𝑟𝑎𝑚𝑠

𝑛𝑢𝑚 𝑜𝑓 𝑠𝑒𝑐𝑜𝑛𝑑 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 𝑛−𝑔𝑟𝑎𝑚𝑠
 (2)

 𝑙𝑒𝑥𝑖𝑐𝑎𝑙𝐹𝑛 =
𝑙𝑒𝑥𝑖𝑐𝑎𝑙𝑃𝑛 × 𝑙𝑒𝑥𝑖𝑐𝑎𝑙𝑅𝑛

𝑙𝑒𝑥𝑖𝑐𝑎𝑙𝑃𝑛 + 𝑙𝑒𝑥𝑖𝑐𝑎𝑙𝑅𝑛
 (3)

POS tag overlap: The syntactic similarity of the

two sentences is obtained using the number of

common syntactic patterns. POS tag vectors of

sentences is used for these features. In this step, we

removed punctuation marks. After word-

tokenizing, their POS tags is specified. Similar to

the words overlap feature, the syntactic pattern

overlap is computed for 1,2,3-grams, and for each,

the accuracy, recall and the F-measure are

calculated as follows (AL-Smadi et al., 2017).

 𝑝𝑜𝑠𝑃𝑛 =
𝑛𝑢𝑚 𝑜𝑓 𝑐𝑜𝑚𝑚𝑜𝑛 𝑃𝑂𝑆 𝑡𝑎𝑔𝑠

𝑛𝑢𝑚 𝑜𝑓 𝑓𝑖𝑟𝑠𝑡 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 𝑃𝑂𝑆 𝑡𝑎𝑔𝑠
 (4)

 𝑝𝑜𝑠𝑅𝑛 =
𝑛𝑢𝑚 𝑜𝑓 𝑐𝑜𝑚𝑚𝑜𝑛 𝑃𝑂𝑆 𝑡𝑎𝑔𝑠

𝑛𝑢𝑚 𝑜𝑓 𝑠𝑒𝑐𝑜𝑛𝑑 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 𝑃𝑂𝑆 𝑡𝑎𝑔𝑠
 (5)

 𝑝𝑜𝑠𝐹𝑛 =
𝑝𝑜𝑠𝑃𝑛 × 𝑝𝑜𝑠𝑅𝑛

𝑝𝑜𝑠𝑃𝑛 + 𝑝𝑜𝑠𝑅𝑛
 (6)

Named entity overlap: 9 features obtained in

this step. These features gathered using named

entities vectors. At first we tokenize the sentence.

Then the entities are specified. Similarity is also

based on the type of named entity (place, person,

organization) and the word itself. The number of

common named entities is calculated for 1,2,3-

grams, for which the precision, recall and F-

measure are calculated as follows (AL-Smadi et

al., 2017).

 𝑛𝑒𝑟𝑃𝑛 =
𝑛𝑢𝑚 𝑜𝑓 𝑐𝑜𝑚𝑚𝑜𝑛 𝑁𝐸𝑠

𝑛𝑢𝑚 𝑜𝑓 𝑓𝑖𝑟𝑠𝑡 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 𝑁𝐸𝑠
 (7)

 𝑛𝑒𝑟𝑅𝑛 =
𝑛𝑢𝑚 𝑜𝑓 𝑐𝑜𝑚𝑚𝑜𝑛 𝑁𝐸𝑠

𝑛𝑢𝑚 𝑜𝑓 𝑠𝑒𝑐𝑜𝑛𝑑 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 𝑁𝐸𝑠
 (8)

 𝑛𝑒𝑟𝐹𝑛 =
𝑛𝑒𝑟𝑃𝑛 × 𝑛𝑒𝑟𝑅𝑛

𝑛𝑒𝑟𝑃𝑛 + 𝑛𝑒𝑟𝑅𝑛
 (9)

Levenshtein maximum similarity: In this step,

we calculate the similarity between two sentences

based on their words similarity. These features are

obtained using stems vectors of the sentences.

First, we tokenize and remove punctuation marks.

Then the words stems are compared. The

Levenshtein method is used to determine the words

similarity. A matrix of Levenshtein values is

created for two sentences in which rows represent

the stems of the first sentence, and the columns

represent the stems of the second sentence. Then,

by using this matrix, a vector created which

contains the lowest values of each matrix row. In

fact, we consider the words in the second sentence

that are the most similar to the words in the first

sentence, and store their Levenshtein values in the

vector V. Then we sort this vector and keep only

five minimum values. Precision, recall and F-

measure are obtained in this step (AL-Smadi et al.,

2017). These features are calculated using the sum

of vector V values as follows:

 𝑙𝑒𝑣𝑃𝑛 =
𝑠𝑢𝑚 𝑜𝑓 𝑉 𝑣𝑎𝑙𝑢𝑒𝑠

𝑛𝑢𝑚 𝑜𝑓 𝑓𝑖𝑟𝑠𝑡 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 𝑤𝑜𝑟𝑑𝑠
 (10)

 𝑙𝑒𝑣𝑅𝑛 =
𝑠𝑢𝑚 𝑜𝑓 𝑉 𝑣𝑎𝑙𝑢𝑒𝑠

𝑛𝑢𝑚 𝑜𝑓 𝑠𝑒𝑐𝑜𝑛𝑑 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 𝑤𝑜𝑟𝑑𝑠
 (11)

 𝑙𝑒𝑣𝐹𝑛 =
𝑙𝑒𝑣𝑒𝑛𝑠ℎ𝑡𝑒𝑖𝑛𝑃𝑛 × 𝑙𝑒𝑣𝑒𝑛𝑠ℎ𝑡𝑒𝑖𝑛𝑅𝑛

𝑙𝑒𝑣𝑒𝑛𝑠ℎ𝑡𝑒𝑖𝑛𝑃𝑛 + 𝑙𝑒𝑣𝑒𝑛𝑠ℎ𝑡𝑒𝑖𝑛𝑅𝑛
 (12)

Alignment: This group of features computed by

the assumption that the two semantically similar

sentences can be aligned. To compute these

features, we use the V vectors which we obtained

in the previous section. If Wi in the first sentence is

the most similar word to Wj in the second sentence,

|i-j| shows the value of Wi and Wj alignment. For

each word in V, the alignment value computed and

stored in vector Y (AL-Smadi et al., 2017). Then

Precision, recall and F-measure calculated as

follows:

 𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑃 =
𝑠𝑢𝑚 𝑜𝑓 𝑌 𝑣𝑎𝑙𝑢𝑒𝑠

𝑛𝑢𝑚 𝑜𝑓 𝑓𝑖𝑟𝑠𝑡 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 𝑤𝑜𝑟𝑑𝑠
 (13)

 𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑅 =
𝑠𝑢𝑚 𝑜𝑓 𝑌 𝑣𝑎𝑙𝑢𝑒𝑠

𝑛𝑢𝑚 𝑜𝑓 𝑠𝑒𝑐𝑜𝑛𝑑 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 𝑤𝑜𝑟𝑑𝑠
 (14)

 𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝐹 =
𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑃 × 𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑅

𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑃 + 𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑅
 (15)

Character sequence: There are 4 features in

this step, each of them divided to the minimum

length of the two sentences. First we tokenize the

sentences, then remove stop words and

punctuation marks, after that we extract words

stems and rebuild the sentences (Tian et al., 2017).

 LCPrefix: The largest common prefix of

two sentences

 LCSuffix: The largest common suffix of

two sentences

 LCSubString: The largest common

substring of the two sentences

 LCSequence: The largest common

sequence of two sentences. Here we

consider the common characters in the

two sentences.

BOW similarity: In this step, a vector is

considered for each sentence. The cosine similarity

of these two vectors is considered as a feature for

the two sentences. Initially, we tokenize the

sentences. Then the punctuation marks and stop

words are removed from the tokens. The vectors of

the two sentences have a same size which is equal

to the size of the common unique words in these

sentences. If the word in the vector exists in the

sentence, the IDF of that word will replace it,

otherwise its value will be zero (Tian et al., 2017).

The IDF values are created using the Arabic

Wikipedia corpus.

Word embedding similarity: A simple

definition for word embedding is to consider a

vector of numbers for each word. The words that

are more similar to each other, have closer vector

space. This vector specifies the syntax, semantic

and other features of the word. This way, it is

possible to display each word in tens or hundreds

of dimensions. There are several algorithms for this

purpose, while FastText is used here (Grave et al.,

2018). Arabic Wikipedia used to build this model.

Using the FastText pertained model, you can get a

300-dimensional vector for each word. First,

tokenization performed, then the punctuation

marks removed. Each sentence is represented as a

vector. This vector is obtained from the sum of the

vectors of the sentence words and finally their

average. Then a feature is obtained using the cosine

similarity of these two vectors (Eyecioglu and

Keller, 2016).

Word mover’s distance (WMD) score: In this

feature, the distance between two sentences is

obtained based on the words vectors distance using

FastText model. The more similar the words of two

sentences, the less distance between sentences

vectors. Thus for same sentences this value tends

to zero. First, the sentences are tokenized, then the

punctuation marks and stop words removed.

Finally, the distance between two sentences is

calculated.

Doc2vec similarity: in the FastText model, each

word represented by a vector. Unlike FastText, the

doc2vec model gives us a numerical representation

of a document, and we use it here to construct a

vector for each sentence. Arabic Wikipedia has

been used to construct this model. First, we

tokenize the sentence and remove the punctuation

marks. By using the pre-trained model, a doc2vec

vector created for each sentence. Then a feature is

obtained using the cosine similarity of these

vectors.

3.2 Sentence Classification

We use support vector machine to classify the

sentences. After feature extraction and creating the

training data, preprocessing these data should be

done. As the first step we normalize the data. In the

process of normalization, the values of each feature

(each column) is mapped to zero-mean and unit

variance values. Finally, the best features are

selected. For this purpose, SelectKBest algorithm is

used. This algorithm gets the number of selected

features n as the input. Then the model is built using

the selected features.

4 Evaluation

In order to select appropriate features, we

examined different inputs for SelectKBest

algorithm. All the training data of NSURL task8,

was used for test and the training model is built

using SVC. Due to Table 1, SelestKBest(38)

algorithm has the best results for detecting similar

sentences. Table 2 shows the score and the effect of

each feature using this algorithm. These features

are sorted by their score. According to this table,

precision, recall and F-measure of NER 3-grams

overlap are the three deleted features that have the

least score. Because of the short sentences, there is

no NER overlap at the 3-gram level in the

sentences, so this feature is not effective.

The SVC model is built, using the 38 features

mentioned before. The model is evaluated using

the NSURL 2019 task8 test data. The F-measure of

the proposed method is 82.58%.

5 Conclusion and Suggestions

In this paper, in order to detect similar Arabic

questions, a supervised approach proposed. 38

effective feature s are extracted for each pair of

questions which contain syntactic, semantic and

lexical features. Semantic features are obtained

using word embedding and doc2vec. Lexical

features are obtained by words overlap feature.

String based algorithms and syntactic features are

also obtained using the syntactic structure of the

sentence.

 Due to Table 2, words overlap is one of the most

effective features. After that, the largest common

suffix, Word mover’s distance, Levenshtein

similarity, doc2vec similarity and bag of words

similarity have the highest priority respectively.

Algorithm F-

score

Recall

precision

SelectKBest(37) 0.798 0.767 0.832

SelectKBest(38) 0.808 0.783 0.834

SelectKBest(39) 0.807 0.782 0.834

SelectKBest(41) 0.806 0.782 0.831

Table 1: Results of testing SelectKBest

algorithms on svc model.

Lexical features are effective because there is high

word overlap between similar sentences. Also

there are some synonyms in some of similar

sentences, so Word mover’s distance feature can be

helpful in detecting such sentences. But sometimes

instead of two words, two phrases can be

equivalent in meaning. Such cases are harder to

detect. In Doc2Vec feature the whole sentence

represents as a vector so it can covers some of the

flaws. In some pairs of questions, the meaning has

changed with displacement of the words, although

in many cases this does not change the meaning, so

the alignment feature can be somewhat effective in

identifying similar sentences.

After examining the sentences which were

incorrectly identified as similar, we found that

removing stop words improved the accuracy of the

system, although in some cases deleting these

words has led to a mistaken identification. For

example, some question words like who or when

are effective in similarity detection but some of

these words are ignored by removing stop words.

Also in some cases there is excess information in

one of the sentences which doesn’t change the

meaning but leads to incorrect similarity detection.

In order to improve the results, we can also

consider the similarity of the question words in the

two sentences. For example, the question word

“which year” is equivalent to “when”. Also the

synonym words in two sentences can be

determined using the semantic networks. Then in

computing words overlap we can assume that these

words are equal. To identify the similarity between

words, instead of Levenshtein similarity, semantic

networks can be used (Pawar and Mago, 2018).

Syntactic n-grams overlap using the sentence

dependency tree is another feature that can be

effective in determining the similarity of two

sentences (Segura-Olivares et al., 2013; Kohail et

al., 2017)

References

Mohammad AL-Smadi, Zain Jaradat, Mahmoud AL-

Ayy, and Yaser Jararweh. 2017. Paraphrase

identification and semantic text similarity analysis

in Arabic news tweets using lexical, syntactic, and

semantic features. Information Processing and

Management, 53(3):640-652.

https://doi.org/10.1016/j.ipm.2017.01.002.

Fatma Elghannam. 2016. Automatic Measurement of

Semantic Similarity among Arabic Short Texts.

Communications on Applied Electronics (CAE),

6(2):16-21. https://doi.org/10.5120/cae2016652430.

Asli Eyecioglu and Bill Keller. 2016. ASOBEK at

SemEval-2016 Task 1: Sentence Representation with

Character N-gram Embeddings for Semantic Textual

Similarity. In Proceedings of the 10th International

Workshop on Semantic Evaluation (SemEval-2016),

pages 736-740.

Wael Gomaa and Aly Fahmy. 2013. A survey of text

similarity approaches. International Journal of

Computer Applications, 68(13):13-18.

https://doi.org/10.5120/11638-7118.

Edouard Grave, Piotr Bojanowski, Prakhar Gupta,

Armand Joulin, and Tomas Mikolov. 2018. Learning

Word Vectors for 157 Languages. In Proceedings of

the International Conference on Language

Resources and Evaluation. Pages 3483-3487.

Rafael Michael Karampatsis. 2015. CDTDS:

Predicting Paraphrases in Twitter via Support Vector

Regression. In Proceedings of the 9th International

Workshop on Semantic Evaluation (SemEval 2015),

pages 75–79.

Sarah Kohail, Amr Rekaby Salama, and Chris

Biemann. 2017. STS-UHH at SemEval-2017 Task 1:

Scoring Semantic Textual Similarity Using

Supervised and Unsupervised Ensemble. In

Proceedings of the 11th International Workshop on

Semantic Evaluation (SemEval-2017). Pages 175-

179.

El Moatez Billah Nagoudi and Didier Schwab. 2017.

Semantic Similarity of Arabic Sentences withWord

Feature Score Feature Score Feature Score Feature Score Feature Score

lexicalP1 4095 levF 1723 alignmentR 879 nerR1 208 nerP2 19.7

lexicalF1 3055 Doc2vec 1564 alignmentF 646 nerP1 206 LCPrefix 6

LCSuffix 2871 levP 1488 posP1 633 Word_Embedding 204 nerP3 2

lexicalP2 2624 BOW 1276 posP2 380 posF3 146 nerR3 2

lexicalP3 2624 LCSequence 1239 posF1 326 posR2 60 nerF3 2

lexicalF2 2179 lexicalR2 1231 alignmentP 314 posR3 50

lexicalF3 2179 lexicalR3 1231 posP3 229 posR1 33

WMD 1885 LCSubString 998 posF2 224 nerR2 20

levR 1822 lexicalR1 910 nerF1 210 nerF2 19.9

Table 2: Features ranking using selectkbest algorithm.

https://doi.org/10.1016/j.ipm.2017.01.002
https://doi.org/10.5120/cae2016652430
https://www.aclweb.org/anthology/S16-1114/
https://www.aclweb.org/anthology/S16-1114/
https://www.aclweb.org/anthology/S16-1114/
https://www.aclweb.org/anthology/S16-1114/
https://doi.org/10.5120/11638-7118
https://www.aclweb.org/anthology/L18-1550/
https://www.aclweb.org/anthology/L18-1550/
https://www.aclweb.org/anthology/S15-2013/
https://www.aclweb.org/anthology/S15-2013/
https://www.aclweb.org/anthology/S15-2013/
https://www.aclweb.org/anthology/S17-2025/
https://www.aclweb.org/anthology/S17-2025/
https://www.aclweb.org/anthology/S17-2025/
https://www.aclweb.org/anthology/W17-1303/

Embeddings. In proceedings of the Third Arabic

Natural Language Processing Workshop (WANLP),

pages 18-24.

Atish Pawar and Vijay Mago. 2018. Calculating the

similarity between words and sentences using a

lexical database and corpus statistics.

arXiv:1802.05667.

Haitham Seelawi, Ahmad Mustafa, Hesham Al-

Bataineh, Wael Farhan, and Hussein T.Al-Natsheh.

2019. {NSURL}-2019 Task 8: Semantic Question

Similarity in Arabic. In Proceedings of the first

International Workshop on NLP Solutions for

Under Resourced Languages. Trento, Italy.

Andrea Segura-Olivares, Alejandro Garc´ıa, and

Hiram Calvo. 2013. Feature Analysis for Paraphrase

Recognition and Textual Entailment. Research in

Computing Science, 70:144-119.

Junfeng Tian, Zhiheng Zhou, Man Lan, and Yuanbin

Wu. 2017. ECNU at SemEval-2017 Task 1:

Leverage Kernel-based Traditional NLP features and

Neural Networks to Build a Universal Model for

Multilingual and Cross-lingual Semantic Textual

Similarity. In Proceedings of the 11th International

Workshop on Semantic Evaluations (SemEval-

2017), pages 191–197.

Wafa Wali, Bilel Gargouri, and Abdelmajid Ben

Hamadou. 2017. Enhancing the sentence similarity

measure by semantic and syntactico-semantic

knowledge. Vietnam Journal of Computer Science,

4(1):51-60. https://doi.org/10.1007/s40595-016-

0080-2.

https://www.aclweb.org/anthology/W17-1303/
https://www.aclweb.org/anthology/S17-2028/
https://www.aclweb.org/anthology/S17-2028/
https://www.aclweb.org/anthology/S17-2028/
https://www.aclweb.org/anthology/S17-2028/
https://www.aclweb.org/anthology/S17-2028/
https://doi.org/10.1007/s40595-016-0080-2
https://doi.org/10.1007/s40595-016-0080-2

