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Abstract

Interactive fictions, or text-adventures, are
games in which a player interacts with a world
entirely through textual descriptions and text
actions. Text-adventure games are typically
structured as puzzles or quests wherein the
player must execute certain actions in a cer-
tain order to succeed. In this paper, we con-
sider the problem of procedurally generating a
quest, defined as a series of actions required
to progress towards a goal, in a text-adventure
game. Quest generation in text environments
is challenging because they must be semanti-
cally coherent. We present and evaluate two
quest generation techniques: (1) a Markov
chains, and (2) a neural generative model. We
specifically look at generating quests about
cooking and train our models on recipe data.
We evaluate our techniques with human par-
ticipant studies looking at perceived creativity
and coherence.

1 Introduction

Natural language can be used to express creativity
in the form of narrative. Prior research has shown
that narrative is used in everything from environ-
mental understanding (Bruner, 1991) to develop-
ing language (Johnston, 2008). Given this wide
ranging impact, using narrative in language to help
us understand human perceptions of creativity and
what it takes to replicate this through computa-
tional models is natural. Text-adventure games or
interactive fiction, in which a player interacts with
a world entirely through text, provide us with a
platform on which to explore these ideas on cre-
ativity in language. These games are usually struc-
tured as puzzles or quests in which a player must
complete a sequence of actions in order to suc-
ceed. Text games allow us to factorize the prob-
lem of creative language generation and focus on
developing more fine-grained, data-driven models.

Automated generation of text-adventure games
can broadly be split into two considerations:
(1) the structure of the world, including the layout
of rooms, textual description of rooms, objects,
and non-player characters; and (2) the quest, con-
sisting of the partial ordering of activities that the
player must engage in to make progress toward the
end of the game. In this work, we focus on meth-
ods of automatically generating such a quest and
how it can be used to better understand narrative
intelligence, specifically looking at perceived cre-
ativity and coherence. Quest generation requires
narrative intelligence as a quest must maintain co-
herence throughout and progress towards a goal.
Maintaining quest coherence also means follow-
ing the constraints of the given game world. The
quest has to fit within the confines of the world
in terms of both genre and given affordances—
e.g. using magic in a fantasy world. This is fur-
ther complicated in the case of a text-adventure as
a consequence of all interactions being in natural
language—the potential output space is combina-
torial in size. Because the player “sees” and “acts”
entirely through text, any quest generation system
must also take into account the lack of visual infor-
mation and generate sufficiently descriptive text
accordingly.

There are multiple variables that could poten-
tially affect a player’s perception of creativity in a
text-adventure game such as the vocabulary used,
the structure of the world, stylistic variations in
writing, etc. We use the TextWorld framework
(Côté et al., 2018) which lets us generate text-
adventure game worlds based on a grammar. It
lets us fix variables concerned with game world
and logic generation and focus only on the gen-
eration of quests within this world. We use this
framework’s ”home” theme—providing us with
a textual simulation of a house—and restrict the
types of quests that can be generated to those in-



volving the completion of a cooking recipe. We
then attempt to learn how to generate a quest to
complete a recipe—as well as how to create the
recipe itself—using a large scale knowledge base
of recipes. In these quests, players are provided
with a list of ingredients and their locations, and
they have to navigate the environment to find and
prepare those ingredients to complete the given
recipe. For example, given a recipe to make peanut
butter cookies the quest would first tell the player
to find eggs, peanut butter, flour, and baking soda.
The player would then have to figure out that the
first ingredient is in the fridge while the others are
in the pantry and prepare each item accordingly.
Generating this sort of quest requires knowledge
of the ingredients, how they fit together, and how
those ingredients interact with the environment.

The contribution of this work is thus twofold.
We first detail a framework, and variations thereof,
that can learn to generate creative quests in a text-
adventure game. This framework includes two
quest generation models using Markov chains as
well as a neural language model. It also uses a se-
mantically grounded knowledge graph to improve
overall quest coherence. Our second contribution
provides human subject evaluations that give us
insight into how each variation of this framework
affects human perception of creativity and coher-
ence in such games.

2 Related Work

Although there has been much work recently on
text-adventure gameplay (Bordes et al., 2010; He
et al., 2016; Narasimhan et al., 2015; Fulda et al.,
2017; Yang et al., 2018; Haroush et al., 2018;
Côté et al., 2018; Tao et al., 2018; Ammanabrolu
and Riedl, 2019a; Hausknecht et al., 2019a; Am-
manabrolu and Riedl, 2019b; Hausknecht et al.,
2019b), these works focus on creating agents that
can play a given game as opposed to being able to
automatically generate content for them.

Outside of this, there has been some work on
learning to create content in the context of interac-
tive narrative. These systems mainly work to over-
come a significant bottleneck in the form of the
human authoring required to create such works.
Permar and Magerko (2013) present a method of
generating cognitive scripts required for freeform
activities in the form of pretend play. Specif-
ically, they use interactive narrative—a form of
pretend play that requires a high level of impro-

visation and creativity and uses cognitive scripts
acquired from multiple experience sources. They
take existing cognitive scripts and blend them in
the vein of more traditional conceptual blending
(Veale et al., 2000; Zook et al., 2011) to create
new blended scripts. Closely related is Magerko
et al. (2014) who present a Co-Creative Cognitive
Architecture (CoCoA), detailing the set of compo-
nents that support the design of co-creative agents
in the context of interactive narrative. These meth-
ods all follow singular cognitive models that do
not learn to generate content automatically.

Li et al. (2012) present Scheherazade, a system
which learns a plot graph based on stories written
by crowd sourcing the task of writing short sto-
ries through Amazon Mechanical Turk. This plot
graph contains details relevant for the coherence
of the story and includes: plot events, temporal
precedence, and mutual exclusion relations. The
generated narrative contains events that can be ex-
ecuted from this plot graph by both players and
non-player characters. Guzdial et al. (2015) in-
troduce Scheherazade-IF, a system that learns to
generate choose-your-own-adventure style inter-
active fictions in which the player chooses from
prescribed options. More recently, Martin et al.
(2017) introduce a pipeline systems for improvi-
sational storytelling agents capable of collabora-
tively creating stories. These agents first focus
on creating a plot for the story and then expand
that plot into natural language sentences. Urbanek
et al. (2019) introduce Light, a dataset of crowd-
sourced text-adventure game dialogs focusing on
giving collaborative agents the ability to generate
contextually relevant dialog and emotes.

Giannatos et al. (2011) use genetic algorithms
to create new story plot points for an existing game
of interactive fiction using an encoding known as
a precedence-constraint graph. This graph gives
the system information regarding the ordering of
events that must happen in the game in order to
advance. They demonstrate the workings of their
system by generating additional content for the
popular interactive fiction game Anchorhead, and
show that this can be integrated into the original
game. This work, however, is offline and relies
on existing interactive fiction games and having
knowledge of the precedence-constraint graph for
this existing game.

The Game Forge system (Hartsook et al., 2011)
also uses genetic algorithms to generate a game



Figure 1: Example of ingredient connections.

world and plot line for related type of game, a
computer role playing game (CRPG). This work
focuses on generating layouts and plot structures
to create novel game worlds through with a fit-
ness function based on a transition graph that en-
codes pre-built game requirements. Tamari et al.
(2019) focus on extracting action graphs for se-
quential decision making problems such as mate-
rial science experiments and turn them into text-
adventure games. Although these works use graph
structures in order to constrain the generation of
the game, we use these graph structures only to
maintain coherence and focus on content creation.

Although there are works that attempt to auto-
matically evaluate the creativity of the output of
a generative process by computationally modeling
potential human responses — such as with story
telling (Purdy et al., 2018), etc. — we choose to
rely on a human subject study based on the defi-
nition of creativity as presented in Boden (2007).
Specifically we focus on the concepts of novelty
and value, despite collecting data for other defined
metrics as well. We use the definition of novelty
stemming from the idea of p-creativity, i.e. a con-
cept that is entirely new to a single agent – in this
case a subject in our evaluation study. Value, as a
component of computational creativity, however,
is not defined concretely in Boden’s work for a
general domain. Our definition of value in the con-
text of text-adventure games relies on accomplish-
ment or achievement.

3 Content Generation

In this section, we present Markov chain and neu-
ral language model based models to generate con-
tent, i.e. recipes, for our quests. Content gen-
eration for a quest in a text-adventure game, in
this case a recipe, can be thought of as being
equivalent to generating a sequence of events in

which prior elements affect the probability of sub-
sequent events. Markov chains present a simpli-
fied and well studied method to generate such con-
tent. Neural language models, designed to pre-
dict an element of a sequence conditioned on a
given number of prior elements, let us generate se-
quences of events with more prior context—i.e. in
the absence of the Markov assumption.

3.1 Markov Chains

Our first quest generation model is based on the
use of Markov chains. This generation process
consists of two steps. We first learn a weighted
ingredient graph, a Markov chain, from a large
scale knowledge base of recipes and then proba-
bilistically walk along this graph to generate the
instructions for the recipe.

3.1.1 Ingredient Graph

Generating the recipe requires domain knowledge.
For example, creating a recipe for peanut butter
cookies requires an understanding that an ingre-
dient like peanut butter fits well with eggs, flour,
and sugar while something like fish does not. We
represent this knowledge with an undirected graph
of ingredients. Our ingredient graph is based off
of recipes scraped from allrecipes.com. 1

The raw, uncleaned dataset included over 20,000
recipes with over 4000 unique ingredients. A list
of ingredients was extracted from each recipe, and
each of these lists was converted into a set of in-
gredient pairs (Fig. 2). In total, there were 118,116
unique ingredient pairings, and 73,088 of those
pairings (62%) only occurred once. We reduced
the number of distinct ingredients from 4460 to
1703 by merging items with the same base ingre-
dient and by replacing name-brand items with a
generic equivalent.

Each of the nodes within the graph represents a
possible ingredient, and weighted connections be-
tween these nodes represent how well the ingre-
dients go together. The weight of each edge is
the total number of occurrences of that ingredient
pair within the recipe corpus. The edge connect-
ing eggs and white sugar would have a weight of
3774 while the edge between hot milk and orange
juice would have a weight of 1. Ingredient pairings
that do not occur within the recipe corpus did not
have an edge within this network, and this helped

1https://github.com/kbrohkahn/
recipe-parser

allrecipes.com
https://github.com/kbrohkahn/recipe-parser
https://github.com/kbrohkahn/recipe-parser


Figure 2: Ingredient extraction process.

prevent our model from generating completely in-
coherent recipe pairings (e.g. hot sauce and baby
food). Take the graph in Fig. 1 as an example. In
this complete graph, all of the ingredients go well
with each other except for fish and sugar, which is
indicated by the low weight connection between
them. The weak connection between sugar and
fish suggest that they would likely not go well to-
gether in a recipe.

3.1.2 Instruction Generation

With the ingredient graph created, we begin the
process of instruction generation based on sub-
graph mining and prior generative methods based
on probabilistic graph walks (Fleishman, 1978).
We start by selecting an initial random ingredient
‘x’ weighted by its distribution in the graph.

p(x1) =

∑k
i=1w(vi, x1)∑k

i=1

∑k
j=1w(vi, vj)

(1)

We probabilistically select one of its neighbors
based on the conditional frequency of the pair.
Each iteration further computes conditional prob-
abilities and selects them. We exclude all ingredi-
ents in which any bag of words token is contained
by any other, ensuring that a variety of different
ingredients are selected.

α =

{
0 Bxi ⊆ Bxn+1 ∨Bxn+1 ⊆ Bxi

1 else
(2)

In Eq. 2, Bxi refers to the 1-gram bag of words
model.

However, just computing complete conditional
probabilities would remove the chance for entirely
new combinations to emerge. Therefore, we cal-
culate just the partial probability of having shared
ingredients with a bias designed to favor such

combinations.

β = (
n∑

i=1

Shared(xi, xn+1))
2

(3)

Shared(x1, x2) =

{
1 w(x1, x2) > 0

0 else
(4)

This process repeated recursively to generate a
recipe with the desired number of ingredients.

p(xn+1) =
n∑

i=1

αβ
w(xn+1, vj)∑k
j=1w(xi, vj)

(5)

Finally, resultant combinations are referenced
back against the original corpus to guarantee nov-
elty in the result.

3.2 Neural Language Model
Here we use a neural language model to generate
both the ingredients for a recipe and the steps of
the ingredients as well. We use the same knowl-
edge base as described in Sec. 3.1.1 and train two
separate language models: one to generate the
ingredients, and the other to generate the recipe
given a set of ingredients.

The first language model uses a simple 4-layer
LSTM to generate a sequence of ingredients, treat-
ing all the words in a single ingredient as a single
token. For example, “peanut butter” would be con-
sidered a single token in this model. We train this
model using the sets of ingredients found in each
recipe for the entire recipe dataset, with each set
ending with an <EOI> or End of Ingredients tag.
Once trained, the model then generates a sequence
of ingredients until the <EOI> is reached using
the top-k sampling technique (Holtzman et al.,
2019).

To generate the actual recipe, we use GPT-
2 (Radford et al., 2019) and fine-tune their pre-
trained 345m parameter model on the recipe data.
The data to fine-tune this model is designed to con-
tain the recipe title, ingredients, and instructions
in an unstructured text-form. Once this model has
been fine-tuned, we use it to generate the title and
instructions for the recipe conditioned on the in-
gredients generated by the first language model.
The entire generated recipe consists of the ingre-
dients, title, and instructions.

4 Quest Assembly

We now use the generated content, i.e. the recipe,
to assemble a quest—grounding the generated in-



Figure 3: Object graph in the one room map.

gredients and instructions in the game world. This
requires us to first determine the structure of the
game world and the locations of objects within
this world in addition to transforming the set of
generated instructions into executable actions. We
use two types of semantically grounded knowl-
edge graphs to represent this information: the ob-
ject and action graphs.

The object graph is used to determine the struc-
ture of the world and the most likely locations of
objects within this world. For example, we could
have information that says that vegetables must be
stored in a refrigerator. If a recipe requires carrots,
then the carrots would automatically be placed in
a refrigerator at the start of the game. This graph is
constructed by hand and is built to make the game
world and resulting quest as coherent as possible.

We construct object graphs for two different
room layouts. The first, the one room (1R) map,
consists of a kitchen as well as the objects and ac-
tions that exist within it. The second map, the five
room (5R) map, is an extension of the first map
and contains four additional rooms.

The object graph for the 1R map as shown
in Fig. 3 is largely inspired by the simple, pre-
built game provided within TextWorld (Côté et al.,
2018). This object graph determines how and
where objects are placed within the environment
during game generation, and the action graph
(Fig.6) dictates how generated instructions are
transformed into executable actions in the game.
The object graph was constructed logically: tools
and utensils go in the drawer, meat and dairy be-
long in the refrigerator, and so on. Food item
placements are deterministic and coherent. Veg-
etables always go in the refrigerator, and fruit al-
ways goes on the kitchen island. The action graph
was also designed to prevent the player from con-
ducting illogical actions.

Figure 4: Room layout in the five room map.

Figure 5: Object graph in the five room map.

The 5R map included a dining room, garage,
backyard, and garden in addition to the kitchen
(Fig. 4). The map (Fig. 5) is designed to main-
tain the same levels of coherency as the 1R map
while allowing for more diverse gameplay, which
could in turn lead to higher levels of perceived cre-
ativity. The additional rooms are selected based
on their possible relationships to the domain of
food and cooking, and each new room has its own
unique objects that players can interact with. For
example, the garage has an old refrigerator that
can be used to store meat. These new rooms and
objects also allow for dynamic food placement.
Meat can be placed in one of two refrigerators, and
fruits and vegetables can possibly be found in the
garden. The existence of these new locations is
not immediately clear to the player. The garage
and backyard are additionally obscured by closed
doors, adding to quest complexity. While the ad-
ditional rooms and dynamic food placement allow
for more diverse gameplay, they do not sacrifice
coherency.

The action graph contains information regard-
ing the affordances of the objects in the world and
what kinds of objects are required to complete a
given generated instruction. For example, if a gen-
erated instruction tells us to prepare vegetables,
i.e. cut them, then this graph tells us that there
must be a knife somewhere in this world. This
graph is partially extracted from static cooking
guides online using a mixture of OpenIE (Angeli



Figure 6: Example action graph for both maps.

et al., 2015) and hand-authored rules to account
for the irregularities of cooking guides. An exam-
ple of an action graph is given in Fig. 6. A player
can peel fruit and vegetables, for example, but can-
not peel a steak. There are also strict rules on what
tools are required for certain actions. A player can
only cut something if they have a knife and can
only peel something with a peeler. While this re-
stricts how players can interact with the environ-
ment, it ultimately reinforces game coherency.

We also note that when generating the quests,
both the Markov chain and the neural language
model based generation systems use the object
graph to determine object placement but only the
Markov chain based model uses the action graph.
This is because the instructions generated by the
Markov chain model is in the form of a sequence
of ingredients which then requires the action graph
to determine the actions and additional objects re-
quired to turn this list of ingredients into a playable
quest. The action graph would thus take an ingre-
dient such as a carrot and determine first that it
needs to be cut and that a knife is required for this
task. The neural language model on the other hand
already generates the full action, including poten-
tially required objects, that can be executed and so
does not make use of this graph.

5 Experiments

Our experiments were designed to compare per-
ceived creativity and coherence, specifically test-
ing our models in addition to factors such as com-
plexity. We tested five types of designs: Hu-
man Designed (HD), Random Assignment (RA),
Markov Chains Simple (MCS), Markov Chains
Complex (MCC), and Language Model (LM). HD
is simply what it sounds like, a game that was
created by a person. In this game, a human cre-

ates both the ingredients and the instructions for a
recipe and is additionally responsible for quest as-
sembly, i.e. grounding the generated content in a
given game world. We do not consider experience
in designing text-adventure games when picking
a human to create this game as this task can be
performed even by novices given the easily under-
standable “home” theme of the game world. The
game is manually crafted in terms of decided what
ingredients to put where and what the final recipe
would come together to be. RA is on the oppo-
site end of the spectrum where, as the name sug-
gests, everything is placed in a random location,
and the recipe could be totally random with ingre-
dients and instructions that might not normally be
seen. MCS and MCC use our Markov chains ap-
proach to generate quest content. The difference
between MCS and MCC are that the former has
four ingredients involved in its recipe while the
latter has eight. This was to vary the complex-
ity to see how that affected perceived creativity.
LM refers to the games generated using the recipes
generated by the language model. We additionally
had one-room and five-room variants for each of
the models to test how the structure and length of
the game would affect the players.

Evaluating the creativity of the output of any
computational generation process is a difficult task
which requires concrete definitions of the metrics
being used. We thus setup the experiment by hav-
ing our game designs deployed on Amazon Me-
chanical Turk for people to play and provide feed-
back. Specifically, they would play one randomly
selected game from the 1 room layout and then
fill out a survey for that game, and then play one
randomly selected game from the 5 room layout
and fill out an identical survey. Subjects were
provided with a simple practice game that they
could play beforehand to familiarize themselves
with TextWorld and its interface. We had 75 to-
tal participants for the entire study and had an av-
erage of 15 people play each game. The only re-
strictions that we had for participants was that they
had to be fluent in English—this was determined
by means of prebuilt restrictions on Amazon Me-
chanical Turk and game completion verification.

The users were asked questions pertaining to
two metrics: coherence and creativity. We looked
at creativity as a metric in the survey using the
components of creativity as defined by Boden:
novelty, surprise, and value. The survey detailed



Figure 7: Coherence scores for each game. Error bars
indicate one standard deviation.

questions that measured our defined metrics, us-
ing Likert Scale values along a scale of 1-7. For
example, it posed questions such as ”How origi-
nal was the quest you played? 1: not at all novel,
7: exceptionally novel” when measuring novelty.
The other factors were also measured using simi-
larly phrased questions. A one-way ANOVA test
was then conducted followed by Tukey HSD post-
hoc analysis to determine significance. The results
of the raw scores for each group as well as the sig-
nificant results between pairs of different models
are presented below.

6 Results and Discussion

We present results for four metrics: coherence, un-
predictability (or surprise), novelty (or original-
ity), and value (or accomplishment) for each of
the games. Additionally, we also show the p-value
result of a one way ANOVA test for the distribu-
tions in each of the categories to determine sta-
tistical significance. This test tells us if the dif-
ferences in the means across the different games
are significant for each of the categories sepa-
rately. The Tukey HSD post-hoc analysis further
tells us which specific pairs of results are signif-
icant. We hypothesized that semantic grounding
using the knowledge graph would enable our mod-
els to maintain coherence on par with the human
designed games. Further, given the stochastic na-
ture of our generative models, we further predicted
that our models would also rate as being compara-
ble in terms of creativity to the human designed
games—with all models relatively outperforming
the randomly generated games. We see below that
these predictions hold.

Figure 8: Unpredictability (surprise) scores for each
game. Error bars indicate one standard deviation.

We find that the results for each individual cat-
egory are significant—p < 0.05 in all the cases.
Additionally, all the specific pairwise comparisons
we make are significant with p < 0.1—a full set of
these pairwise results can be found in Appendix A.
The rest of this section will discuss each of these
metrics in more detail.

Fig. 7 displays trends in the players’ perception
of coherence for each of the games. We first see
that the one-room games were consistently rated to
be more coherent than the five-room games, indi-
cating that overall quest coherence—and thus the
coherence of our generative system—degrades the
longer and more complex the quest. Across the
games, we see that the RA models were the con-
sidered to be the least coherent. The MCS model
slightly outperforms the MCC model, showing
that the Markov chain based models are more
coherent the less complex the output. The LM
achieves a higher score than both of the Markov
chain models and maintains coherence more easily
than either. Most importantly, all of these meth-
ods are comparable in coherence to the human-
authored games, i.e. our semantically grounded
knowledge graph ensures that coherence is not lost
when generating content.

Similarly, Fig. 8 describes how surprising the
game was to the players. The difference be-
tween the one-room and five-room games here is
much more pronounced. The players find the five-
room, the longer and more complex game, much
more surprising than their one-room counterparts,
showing that complexity is an important factor in
determining surprise. Another indication of this
is that the MCC model is rated as more surpris-



Figure 9: Originality (novelty) scores for each game.
Error bars indicate one standard deviation.

ing than the less complex MCS model. The LM
achieves comparable performance to MCC and
once again they all perform as well as the HD
games.

Originality (Fig. 9), which we use as a proxy
to measure novelty, exhibits similar trends as sur-
prise. The more longer, more complex games are
deemed more original. Despite being random, the
RA games are seen to be less original than the the
rest of the games perhaps indicating that there is
a link between perceptions of coherence and orig-
inality. The gaps in performance here are much
less pronounced, however, and the Markov chain
models slightly edge out the LM — with all three
being comparable to the HD games.

To measure value, or utility, in a text-adventure
game, we asked the players if they felt a sense of
accomplishment after finishing the game (Fig. 10).
We see players reported a higher sense of accom-
plishment after finishing more complex games in
general with the exception of the RA games, both
of which performed poorly—likely due to them
being relatively incoherent. We also note that the
LM showed the highest values here, surpassing the
HD games. We hypothesize that this might be due
to the player having to perform a wider range of
actions, some relatively unintuitive, that are not
constrained by our action graph.

7 Conclusions

We have demonstrated a framework to automati-
cally generate cooking quests in a “home” themed
text-adventure game, although our framework can
be generalized to other themes as well. Quest
generation in a given game world is a subset

Figure 10: Accomplishment (value) scores for each
game. Error bars indicate one standard deviation.

of the overall problem of generating entire text-
adventure games. Content generated by both the
Markov chains and the neural language models
can be grounded into a given game world using do-
main knowledge encoded in the form of a knowl-
edge graph. The models each excel on different
metrics: the Markov chains model produces quests
that are more surprising and novel while the neu-
ral language model offers greater value and coher-
ence. We also note, however, that the neural lan-
guage model requires less domain knowledge than
the Markov chains and is thus potentially more
generalizable to other themes and types of quests.

Our human subject study shows us that there is
an inverse relationship between creativity and co-
herence but only when a certain threshold of co-
herence is passed. In other words, the less co-
herent a game the more creative it is, but inco-
herent games—such as those generated by the RA
model—are perceived to be less creative. Further-
more, our automatically generated games consis-
tently perform at least as well as human designed
games in this setting, both in terms of coherence
and creativity—implying that the generative pro-
cess can be automated without a loss in perceived
game quality.
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A Results

Figure 11: Coherence scores for each game. Error bars indicate one
standard deviation.

Group 1 Group 2 Meandiff
HD-1 RA-5 -1.3958
LM-1 RA-5 -1.5
MCC-5 RA-5 -0.5333
MCS-1 RA-5 -1.1667
RA-1 RA-5 -1.2157
LM-5 MCS-1 0.1275
LM-5 MCS-5 -0.4392
LM-5 RA-5 -1.0392
LM-1 RA-1 -0.2843

Table 1: Coherence results for the post-hoc
Tukey HSD test with p = 0.1, only signifi-
cant results are shown.

Figure 12: Originality (novelty) scores for each game. Error bars
indicate one standard deviation.

Group 1 Group 2 Meandiff
HD-1 HD-5 1.8125
HD-1 LM-1 1.2292
HD-1 LM-5 1.4007
HD-1 MCC-5 1.6125
HD-1 MCS-1 0.5347
HD-1 MCS-5 1.5458
HD-1 RA-1 1.5772
HD-1 RA-5 0.9458
MCC-1 MCC-5 1.05
MCC-1 RA-1 1.0147

Table 2: Originality results for the post-hoc
Tukey HSD test with p = 0.1, only signifi-
cant results are shown.



Figure 13: Unpredictability (surprise) scores for each game. Error
bars indicate one standard deviation.

Group 1 Group 2 Meandiff
HD-1 HD-5 2.6106
HD-1 LM-5 2.7463
HD-1 MCC-5 2.6875
HD-1 MCS-5 1.8875
HD-1 MCC-1 0.9375
HD-1 RA-1 0.9228
HD-1 RA-5 1.4208
HD-5 LM-1 -2.3397
HD-5 MCC-1 -1.6731
HD-5 MCS-1 -2.5342
LM-1 LM-5 2.4755
LM-1 MCC-1 0.6667
LM-1 MCC-5 2.4167
LM-1 MCS-5 1.6167
LM-5 MCC-1 -1.8088
LM-5 MCS-1 -2.6699
LM-5 RA-1 -1.8235
LM-5 RA-5 -1.3255
MCC-1 MCC-5 1.75
MCC-1 MCS-1 -0.8611
MCC-5 RA-1 -1.7647
MCC-5 RA-5 -1.2667
MCS-1 MCS-5 1.8111
MCS-1 RA-1 0.8464
MCS-1 RA-5 1.3444

Table 3: Surprise results for the post-hoc
Tukey HSD test with p = 0.1, only signif-
icant results are shown.

Figure 14: Accomplishment (value) scores for each game. Error
bars indicate one standard deviation.

Group 1 Group 2 Meandiff
HD-1 HD-5 1.899
HD-1 LM-1 2.1042
HD-1 LM-5 2.7904
HD-1 MCC-5 2.0375
HD-1 MCS-1 1.6042
HD-1 MCS-5 1.7708
HD-1 RA-1 1.6728
HD-5 LM-5 0.8914
HD-5 RA-5 -1.3282
LM-1 MCC-1 -1.25
LM-1 MCS-1 -0.5
LM-1 RA-5 -1.5333
LM-5 MCC-1 -1.9363
LM-5 MCS-1 -1.1863
LM-5 MCS-5 -1.0196
LM-5 RA-1 -1.1176
LM-5 RA-5 -2.2196
MCC-1 MCC-5 1.1833
MCC-5 RA-5 -1.4667
MCS-5 RA-5 -1.2

Table 4: Value results for the post-hoc Tukey
HSD test with p = 0.1, only significant re-
sults are shown.


