
Findings of the Association for Computational Linguistics: ACL 2024, pages 4958–4976
August 11-16, 2024 ©2024 Association for Computational Linguistics

Anchor-based Large Language Models

Jianhui Pang1* Fanghua Ye2* Derek Fai Wong1† Xin He3
Wanshun Chen3 Longyue Wang3†

1University of Macau 2University College London 3Tencent AI Lab
nlp2ct.pangjh3@gmail.com, fanghua.ye.19@ucl.ac.uk, derekfw@um.edu.mo

{shaynechen, kleinhe, vinnylywang}@tencent.com

Abstract

Large language models (LLMs) predominantly
employ decoder-only transformer architectures,
necessitating the retention of keys/values infor-
mation for historical tokens to provide contex-
tual information and avoid redundant computa-
tion. However, the substantial size and parame-
ter volume of these LLMs require massive GPU
memory. This memory demand increases with
the length of the input text, leading to an urgent
need for more efficient methods of information
storage and processing. This study introduces
Anchor-based LLMs (AnLLMs), which utilize
an innovative anchor-based self-attention net-
work (AnSAN) and also an anchor-based infer-
ence strategy. This approach enables LLMs to
compress sequence information into an anchor
token, reducing the keys/values cache and en-
hancing inference efficiency. Experiments on
question-answering benchmarks reveal that An-
LLMs maintain similar accuracy levels while
achieving up to 99% keys/values cache reduc-
tion and up to 3.5 times faster inference. De-
spite a minor compromise in accuracy, the sub-
stantial enhancements of AnLLMs employing
the AnSAN technique in resource utilization
and computational efficiency underscore their
potential for practical LLM applications.1

1 Introduction

Large language models (LLMs) primarily utilize
decoder-only transformer architectures, which ne-
cessitate caching keys/values information for his-
torical tokens during the auto-regressive inference
to supply contextual information and avoid redun-
dant computation (Wei et al., 2022; Touvron et al.,
2023a; OpenAI, 2023; Touvron et al., 2023b). How-
ever, due to their immense size and high parameter
count, a considerable amount of GPU memory is

*Work was done when Jianhui Pang and Fanghua Ye were
interning at Tencent AI Lab.

†Corresponding Authors.
1Our code and models are publicly available at: https:

//github.com/pangjh3/AnLLM.

OBQA PIQA BoolQ

0

200

400

600

800

89

262

804

5 5 5K
ey

s/
Va

lu
es

C
ac

he
s

Text lengths
Our caches

OBQA PIQA BoolQ

×1.0

×1.5

×3.5

A
cc

el
er

at
io

n
R

at
io

Figure 1: Keys/Values Caches and Inference Accel-
eration Ratio of Ours in OBQA, PIQA, and BoolQ
Tasks with Five-Shot Demonstrations. The bars indi-
cate Keys/Values cache and text length, while the curve
shows the Inference Acceleration Ratio. As text length
increases, our method achieves up to 99% reduction in
Keys/Values Caches compared to traditional approaches.
Moreover, caching prefix texts enhances inference effi-
ciency by 3.5 times over non-caching methods.

required for loading. Furthermore, as the length
of input text grows, storing keys/values caches re-
quires more and more GPU memory, as evidenced
in in-context learning, complex instructions, and
extended conversations (Dong et al., 2022; Jiang
et al., 2023; Wang et al., 2023a), which is not con-
ducive to scenarios with limited computational re-
sources. An alternative approach entails recalculat-
ing these extensive inputs, which, however, results
in increased time overhead. Therefore, this study
aims to reduce the storage demand for keys/values
caches during the inference phase of LLMs, im-
proving the memory efficiency and, consequently,
accelerating the inference speed as well.

In a recent study, Wang et al. (2023a) demon-
strate that label words in prefix demonstrations can
act as anchors during inference, providing an effec-
tive context compression approach for improving
inference efficiency in in-context learning. How-
ever, in practical applications, not all prefix inputs
or demonstrations contain label words suitable for

4958

https://github.com/pangjh3/AnLLM
https://github.com/pangjh3/AnLLM

compressing information, making the reliance on
label words a less universal approach for text in-
formation compression. Additionally, Pang et al.
(2024b) observe that LLMs tend to attend to only a
few, yet consistent, prefix tokens during inference.
However, the specific tokens utilized are often un-
predictable and uncontrollable. These observations
raise an intriguing question: do natural language
texts contain anchor points that compress the over-
all semantic information of sequences? In this
context, previous studies on sequence embeddings
have shown that the hidden state of a special token
in neural network models can encapsulate seman-
tic information (Baudiš et al., 2016; Devlin et al.,
2018). Furthermore, contemporary LLMs typically
utilize the causal self-attention mechanism during
both training and inference phases (Touvron et al.,
2023a,b), attending on each prior token. This sug-
gests that the final token in a sequence may be
better suited to serve as a natural information com-
pression point compared to other tokens, as they
cannot observe future tokens. Therefore, a method-
ical approach that identifies and exploits sequence
anchor tokens in a dependable and controllable
manner is essential for compressing sequence in-
formation, effectively reducing keys/values caches,
and improving inference efficiency for LLMs.

To this end, we propose novel Anchor-based
Large Language Models (AnLLMs), equipped
with an innovative anchor-based self-attention net-
work (AnSAN) and an anchor-based inference strat-
egy. The AnSAN is designed to compel the models
to compress sequence information into the anchor
token (the last token in our implementation) during
the training process, with the aid of anchor-based at-
tention masks. During inference, the anchor-based
inference strategy retains the keys/values caches of
anchor tokens, which have aggregated the entire
sequence information, and discards those of non-
anchor tokens, thereby reducing memory demands.
Specifically, the anchor-based attention masks for
AnSAN serve two objectives: 1) to ensure anchor
tokens attend exclusively to tokens within the same
sequence, preventing attention to other sequences,
and 2) to direct non-anchor tokens’ attention to
previous sequence anchors, blocking the other non-
anchor tokens from previous sequences. It is note-
worthy that the technique of anchor-based atten-
tion bears similarities to the principles underlying
sparse attention (Child et al., 2019). However, un-
like the existing research that employs sparse atten-
tion to extend the context length of LLMs (Chen

et al., 2023; Ratner et al., 2023), our method fo-
cuses on continually pre-training the model to com-
press sequence information into the anchor token.

In our implementation, we utilize the publicly
available RedPajama datasets (Computer, 2023)
to continuously pre-train the open-source Llama2
models (Touvron et al., 2023b), resulting in An-
LLMs that incorporate our proposed anchor-based
attention mechanism. Experimental results on ques-
tion answering benchmarks, as depicted in Fig-
ure 1, reveal that our method achieves up to a
99% reduction in keys/values caches and up to a
3.5-fold increase in inference acceleration ratios,
while maintaining comparable accuracy to the orig-
inal model. Despite a minor decrease in accuracy
(within 1.5%), these findings underscore the sig-
nificant improvements in computational efficiency
and memory utilization offered by our method.

2 Related Work

Our research is inspired by the recent investigation
into the understanding of in-context learning (ICL)
within LLMs by Wang et al. (2023a). In their study,
the authors delve into the underlying mechanisms
of ICL, emphasizing the influence of label words
in demonstration examples on information flow.
They reveal that these label words serve as anchors,
wherein semantic information converges into these
anchors during inference, subsequently directing
the LLMs’ final predictions. Motivated by their
findings, our objective is to extend this feature to
natural language modeling by guiding sequence
information compression into manually designed
anchor tokens, rather than solely relying on label
words. This is crucial because natural language
texts may not always contain an explicit label.

The most relevant method to our approach in
the existing literature is the learning to compress
prompts with gist tokens (Mu et al., 2023). Their
approach centers around compressing task-specific
prompts by fine-tuning the model using the pro-
posed gist masking, thereby enforcing prompt com-
pression. However, there are several crucial diver-
gences between our study and theirs. Unlike their
focus on compressing a task prompt, our objective
lies in training the LLM to condense sequence infor-
mation into the anchor tokens. Consequently, our
approach can be universally applied to a range of
tasks without requiring task-specific training, a fea-
ture not shared by gist tokens, as the anchor tokens
are seamlessly incorporated into the model’s lan-

4959

guage modeling. Furthermore, our anchor-based at-
tention masks account for information compression
within a sequence and information interaction be-
tween sequences, thus extending beyond the mere
compression of task prompts.

On the other hand, FlashAttention (Dao et al.,
2022) and PagedAttention (Kwon et al., 2023) both
present memory-efficient attention mechanisms for
LLMs. While they focus on optimizing attention
computation and subdividing attention processing,
our proposed method offers a distinct approach that
specifically targets the compression of sequence in-
formation into anchor tokens, making it orthogonal
to these existing works.

3 Anchor-based Large Language Models

3.1 Background
Transformers. LLMs are primarily realized as
decoder-only transformers (Vaswani et al., 2017;
Touvron et al., 2023a,b), incorporating an input em-
bedding layer and multiple decoder layers. Each
layer contains a self-attention network and a feed-
forward network with normalization modules. Cru-
cially, causal attention masks are employed, allow-
ing tokens to attend only to preceding ones.

Self-Attention Networks. Typically for decoder-
only LLMs like Llama2 (Touvron et al., 2023b),
self-attention networks (SANs) map queries Q,
keys K, and values V into an output, as delineated
in the following equations,

SAN(Q,K, V) = Softmax(Q,K)V, (1)

Softmax(Q,K)i,j =
Mi,jexp(QiK

T
j)

ΣkMi,kexp(QiKT
k)

, (2)

Mi,j =

{
1, if i ≥ j

0, else
, (3)

where M denotes an L × L masking matrix, fa-
cilitating the current i-th token to attend to only
preceding tokens whilst disregarding subsequent
tokens during the training and inference phases.

Keys/Values Caches. In the application of LLMs,
the keys/values caches increase with lengthy pre-
fix texts and continuously generated tokens during
the inference phase, such as in question-answering
(Saad-Falcon et al., 2023), text summarization
(Basyal and Sanghvi, 2023), and machine trans-
lation (Pang et al., 2024b). The key and value
matrices associated with tokens of prefix inputs
are cached to avoid recomputation and expedite

subsequent token prediction (Radford et al., 2019).
Additionally, the model generates the output token-
by-token in the real-time inference process, which
requires more cache memory to store the newly
generated sequence. Therefore, addressing the chal-
lenges arising from the ever-expanding texts is cru-
cial for enhancing the efficiency of LLM inference.

3.2 Anchor-based Self-Attention Networks
Given an input text with n consecutive sequences,
P = {S1, S2, ..., Sn}, their associated anchor to-
kens are the last tokens that represented as A =
{a1, a2, ..., an}. The primary objective of AnSAN
is to encapsulate the information of a sequence
into its anchor token, with the anchor hidden states
representing the comprehensive semantic informa-
tion. In this manner, an AnLLM equipped with
AnSAN generates subsequent tokens based on the
keys/values caches of preceding tokens within the
current sequence and the keys/values caches of an-
chor tokens from previous sequences.

Anchor-based Attention Masks. To accomplish
this, we devise anchor-based attention masks, as
illustrated in Figure 2. Assuming that the current
token in the sequence is a non-anchor token, we al-
low attention towards previous non-anchor tokens
within the same sequence and anchor tokens from
preceding sequences, while blocking attention to-
wards non-anchor tokens from previous sequences.
This approach ensures that non-anchor tokens can
only access information from anchor tokens in pre-
vious sequences and the current sequence’s infor-
mation. Conversely, when the current token is an
anchor token, which is the last token in the se-
quence, we exclusively permit its attention towards
previous non-anchor tokens within the same se-
quence, blocking all other attention. This constraint
forces the anchor token to aggregate information
solely from its current sequence. Consequently, we
replace Eq. (3) with anchor-based attention masks
in Eq. (4) to determine the mask of the i-th token in
the input text concerning the j-th token (assuming
that the i-th token belongs to the k-th sequence).

Mi,j =

0, if ((wi, wj) /∈ A) ∧ (wj ∈ S≤k−1)

0, else if (wi ∈ A) ∧ (wj ∈ S≤k−1)

1, else if i ≥ j

0, else

,

(4)

where S≤k−1 represents previous k−1 sequences.
The number 0 denotes blocking attention, whereas
the number 1 indicates the opposite.

4960

w0 w1 w2 w4 w5 w7a0 a1

w7

w5

w4

w2

w1

w0

a1

a0

S0 S1

Anchor-based Attention Masks Keys/Values Caching

w0 w1 w2 a0 w4 w5 a1 w7

Anchor-based LLMs
(+AnSAN)

Masking

w0 w1 w2 a0 w4 w5 a1 w7 p

a0 a1 w7 ✓

Figure 2: Anchor-based Attention Masking and Efficient Caching in Anchor-based LLMs. On the left, the gray and
green squares represent the masking and unmasking operations respectively, with the circled “a” symbols denoting
the anchor tokens. On the right, the shaded circles depict keys/values caches. By employing anchor-based attention
masking during training, we compel the model to compress sequence information into the anchor tokens. On the
right, during inference, with the AnSAN technique, AnLLMs compress information into the anchor tokens and
discard the previous remaining keys/values caches, thereby facilitating an efficient caching mechanism.

Anchor Token Selection. By implementing the
AnSAN mechanism for training LLMs, we can
compel the model to compress sequence informa-
tion into the anchor token and generate new tokens
based on the anchor token information from previ-
ous sequences and non-anchor token information
from the current sequence.

The challenge now lies in selecting an appropri-
ate anchor token. In our experiments, we propose
two implementation methods: one using the end-
point as the anchor token, and the other appending
a new token specifically as the anchor token.

3.3 Anchor-based Inference
By training the model to compress information
into the anchor token of a natural language se-
quence, we can optimize the inference process
by modifying the keys/values caching mechanism.
Specifically, during inference, upon encountering
an anchor token that condenses the comprehen-
sive semantic information of preceding tokens in
the current sequence, the model can reduce the
keys/values caches by deleting the caches of non-
anchor tokens within that sequence.

We introduce the inference method in Algo-
rithm 1. The function “REDUCTION” in Line 1
is utilized to remove keys/values caches when the
model processes prefix texts in Line 10 or generates
an anchor token during the prediction of the next

Algorithm 1 Anchor-based Inference
Require: Anchor-based LLM Θ, prefix text P with anchor

tokens, keys/values cache list C, predicted token wnew;
Output: Generated text T ;
1: function REDUCTION(C)
2: j ← last anchor index in C;
3: C ← {c ∈ C | index(c) ≥ j or c is anchor};
4: return C.
5: end function
6: Initialize T , C as empty lists;
7: M← GetMasks(P, C) using Eq. (4);
8: Update wnew, C using Forward(P ;M, C,Θ);
9: Append wnew to T ;

10: C ← Reduction(C);
11: while wnew is not [eos] do
12: M← GetMasks(wnew, C) using Eq. (4);
13: Update wnew, C using Forward(wnew;M, C,Θ);
14: Append wnew to T ;
15: if wnew is the anchor token then
16: C ← Reduction(C);
17: end if
18: end while
19: return T .

token in Line 16. This approach aims to reduce
the keys/values caches for both prefix tokens and
generated outputs during real-time inference.

4 Experimental Setups

In this section, we first detail AnLLM’s imple-
mentation, then outline the training procedure and
model perplexity. Finally, we introduce the evalua-
tion datasets and metrics.

4961

0 0.25 0.5 0.75 1
1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

Tokens (B)

Tr
ai

ni
ng

L
os

s
AnLLM-EP-7B
AnLLM-AC-7B

512 1024 2048 4096

3

3.5

4

4.5 4.3

3.6

3.2

2.9

4.4

3.7

3.3

3

4.5

3.8

3.4

3.1

Evaluation Context Length

Pe
rp

le
xi

ty

Llama2-7B
AnLLM-EP-7B
AnLLM-AC-7B

Figure 3: Training Process and Perplexity Evaluation of the Anchor-based Large Language Model.

4.1 Our Implementation

Llama2-7b (Touvron et al., 2023b) is adopted as
the base model in our experiments, which is an
open-source and English-centric LLM. In accor-
dance with the principles outlined in Section 3, we
present our implementations here. The crux is to
identify which tokens in a sequence can be consid-
ered anchor tokens. In light of this, we describe
two implementation strategies: one employs the
endpoints directly, and the other involves append-
ing a new token at the end of a sequence to serve
as the anchor token. The details are as follows:

• AnLLM-EP. This approach uses punctuation
marks within the sequence as anchor tokens.
Punctuation marks, such as commas, periods, and
question marks, are viewed as semantic bound-
aries within a sequence. As such, they can serve
as anchor tokens in AnLLM. In our experiments
of AnLLM-EP, we use the endpoint in English
as the anchor tokens.

• AnLLM-AC. This strategy entails the introduc-
tion of a new token to act as the sequence anchor.
In our implementation, we designate <AC> as
the new token and initialize its embedding using
the mean value of the embedding matrix. For
training data, we use the sentence tokenizer from
the NLTK package to split texts into sentences,
appending <AC> at the end of each sentence as
the anchor token.2 During inference, <AC> to-
kens can be flexibly added to the text based on
user requirements, such as adding one anchor
for each demonstration, allowing for flexible and
controllable sequence compression.

2https://www.nltk.org/api/nltk.tokenize.punkt.
html

4.2 Data and Training Procedure
Considering that AnLLMs are expected to predict
subsequent tokens within the context of keys/values
hidden states of anchor tokens, this presents a sig-
nificant challenge for existing open-source LLMs.
To this end, by substituting the self-attention net-
works with anchor-based self-attention networks as
detailed in Section 3.2, we continually pre-train the
Llama2 model using a publicly available corpus.

Data. We employ the RedPajama-Data-1T-
Sample dataset (Computer, 2023) for the continu-
ous pre-training purpose.3 This dataset comprises
850, 000 samples with approximately 1 billion to-
kens, which have been subjected to right truncation
to fit the model context of 4, 096.

Training Procedure. We train each model via
the next token prediction objective on the dataset
for one epoch, with a batch size of 512. The learn-
ing rate is set to 0.00002 and constant after a lin-
ear warmup with 20 update steps. The AdamW
(Loshchilov and Hutter, 2019) with β1 = 0.9 and
β2 = 0.95 is adopted as the gradient backtrack
propagation optimizer. All the training procedures
are conducted with four 8× A100 GPU machines
with 40GB GPU Memory.

Training Loss and Perplexity. The left-hand
side of Figure 3 depicts the training loss associated
with our models. The loss curves for AnLLM-EP
and AnLLM-AC consistently decline to approxi-
mately 1.9, with AnLLM-AC achieving a lower
loss. This observation suggests that continually
pre-training an LLM using anchor-based attention

3https://huggingface.co/datasets/
togethercomputer/RedPajama-Data-1T-Sample

4962

https://www.nltk.org/api/nltk.tokenize.punkt.html
https://www.nltk.org/api/nltk.tokenize.punkt.html
https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T-Sample
https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T-Sample

masks is indeed viable, enabling the LLM to effec-
tively learn the process of compressing sequence
information into anchor tokens.

The right-hand side of Figure 3 displays the per-
plexity evaluation of the models with varying con-
text lengths. Full attention is utilized to assess
the language modeling capabilities of all models.
Following the settings of Chen et al. (2023), the
perplexity is evaluated on the test samples of the
Proof-Pile datasets (Rae et al., 2020). The results
demonstrate that both AnLLM-EP and AnLLM-
AC models maintain a promising performance, ex-
hibiting language modeling capacity comparable to
the base model, Llama2-7B. Moreover, this finding
suggests that AnLLMs are compatible with full at-
tention, as indicated by minimal perplexity decline.

4.3 Evaluation

In our investigation, we employ a diverse collection
of benchmarks with varying text lengths to evaluate
our outcomes, including OpenBookQA (OBQA)
(Mihaylov et al., 2018), WinoGrande (WG) (Sak-
aguchi et al., 2021), ARC-easy (ARC-e) and ARC-
challenge (ARC-c) (Clark et al., 2018), PIQA (Bisk
et al., 2020), HellaSwag (HS) (Zellers et al., 2019),
SCIQ (Welbl et al., 2017), and BoolQ (Clark et al.,
2019). These benchmarks provide a comprehen-
sive evaluation of various aspects, including reason-
ing, comprehension, understanding of the physical
world, and predicting future events. Importantly,
they cover texts of varying lengths, facilitating a
thorough assessment of our model’s performance
across diverse tasks and text complexities, rang-
ing from shorter input contexts in OBQA to longer
texts in BoolQ. To measure the precision and ef-
ficiency of our models, we evaluate them across
three dimensions using three distinct metrics for
both zero-shot and five-shot settings. For AnLLM-
AC in the five-shot setting, we incorporate the an-
chor token <AC> at the end of each demonstration.

• Accuracy (Acc). This conventional metric is uti-
lized to gauge the prediction accuracy of models.
In accordance with previous studies (Gao et al.,
2023), we choose the options with the highest
probabilities as predictions and calculate accu-
racy using the gold-standard labels.

• Keys/Values Caches Reduction (C⇓). In the con-
text of the five-shot evaluation, the demonstra-
tions can be cached in GPU memory for subse-
quent reuse. Nevertheless, extended demonstra-
tions may require increased memory consump-

tion. This metric is designed to assess the mem-
ory efficiency of the AnSAN technique.

• Inference Acceleration Ratio (T⇑). Similar to
Wang et al. (2023a), capitalizing on the cached
keys/values, we present the inference accelera-
tion ratio, which serves as an indicator of the
inference efficiency of the AnSAN technique.

Note that we first report full attention inference
results for all models, then present results with the
AnSAN method (+AnSAN) applied, compressing
sequence information into anchor tokens.

5 Experimental Results

As evident from the results presented in Table 1,
both the AnLLM-AC and AnLLM-EP models
demonstrate promising accuracy, comparable to
that of the base model, while simultaneously im-
proving memory and inference efficiency.

Accuracy (Acc). The proposed AnLLM-EP and
AnLLM-AC models exhibit commendable accu-
racy across various benchmarks.

In the zero-shot setting, with full attention,
AnLLM-EP and AnLLM-AC achieve average accu-
racies of 64.6% and 65.1%, respectively, compara-
ble to Llama2-7B’s 65.8% accuracy. This suggests
that training with integrated anchor tokens barely
affects the model capacity, emphasizing the robust-
ness of LLMs. Furthermore, our models excel in
OBQA, PIQA, and SCIQ tasks.

In the five-shot setting, with five prior examples,
AnLLM-EP and AnLLM-AC maintain dependable
performance using full attention. When implement-
ing the AnSAN technique, a slight accuracy decline
across all models is observed. This is expected, as
AnSAN, designed for memory efficiency, necessi-
tates token removal, potentially leading to informa-
tion loss. The degradation in BoolQ is most pro-
nounced, which contains the longest demonstration
tasks, indicating that the longer the text, the greater
the information loss after compression. However,
the average accuracy reduction is minimal, approx-
imately 1.5%, suggesting that AnSAN effectively
balances memory-saving and model performance.

Keys/Values Cache Reduction (C⇓). The size
of the keys/values cache is a critical factor in the
practical implementation of LLMs, particularly
concerning memory efficiency and computational
resources. In this respect, the AnLLM-EP and
AnLLM-AC models offer significant advantages.

4963

OBQA WG ARC-e ARC-c PIQA HS SCIQ BoolQ AVG.

Llama2-7B 31.4 69.1 76.3 43.4 78.1 57.1 93.7 77.7 65.8
AnLLM-EP 33.2 68.0 73.4 40.8 77.8 55.0 94.4 74.4 64.6
AnLLM-AC 31.6 68.5 74.4 42.5 78.3 54.7 93.8 77.0 65.1

(a) The Zero-Shot Performance.

OBQA WG ARC-e ARC-c PIQA HS SCIQ BoolQ AVG.

Ld 89 133 145 209 262 426 603 804 334
Lx 18 26 36 42 42 90 130 169 69

Llama2-7B Acc 37.2 73.7 79.8 50.0 78.7 58.3 96.8 78.4 69.1
+AnSAN Acc 34.6 68.6 62.6 35.8 68.3 30.8 65.7 50.8 52.1

AnLLM-EP Acc 36.8 71.0 79.4 49.4 78.1 55.3 96.6 75.6 67.8
+AnSAN Acc 36.2 68.0 76.7 45.6 78.2 52.6 93.1 74.0 65.6

Lkv 89 8 5 30 9 25 50 43 32
C⇓ −0% −94% −97% −86% −97% −94% −92% −95% −90%
T⇑ ×1.0 ×1.0 ×1.0 ×1.2 ×1.4 ×2.1 ×2.6 ×3.5 ×1.7

AnLLM-AC Acc 37.2 72.3 79.8 49.0 78.6 56.9 96.8 77.5 68.5
+AnSAN Acc 35.6 70.6 79.2 47.9 78.7 55.6 95.7 76.6 67.5

Lkv 5 5 5 5 5 5 5 5 5
C⇓ −94% −96% −97% −98% −98% −99% −99% −99% −99%
T⇑ ×1.0 ×1.0 ×1.1 ×1.2 ×1.5 ×2.0 ×2.6 ×3.5 ×1.7

(b) The Five-Shot Performance.

Table 1: Accuracy and Efficiency of LLMs on Question Answering Benchmarks. C⇓ represents the reduction in
keys/values cache size, while T⇑ denotes the inference acceleration ratio during testing. Acc stands for Accuracy. Lkv

represents the length of the keys/values cache. Ld and Lx denote the lengths of in-context learning demonstrations
and input queries, respectively. Our methods effectively reduce cache sizes and boost inference efficiency.

By adopting the AnSAN, these models are de-
signed to dramatically reduce the keys/values cache
size during inference. As shown in Table 1, these
models achieve remarkable reductions in cache size.
Specifically, the average reduction percentages are
around 90% for AnLLM-EP and an impressive
99% for AnLLM-AC. This is a substantial im-
provement compared to conventional approaches,
which typically necessitate large cache sizes to
store keys/values. These reductions in cache size
translate to considerable savings in memory and
computational resources, rendering these models
highly efficient for practical applications.

Inference Acceleration Ratio (T⇑). The infer-
ence acceleration ratio serves as a crucial metric
reflecting the model’s efficiency during the testing
phase. By incorporating anchor tokens into nat-
ural language texts, we can repurpose the hidden
states of anchor tokens as keys/values caches in the
demonstrations, and then adopt an inference strat-
egy as suggested by Wang et al. (2023a). In this

scenario, both the AnLLM-EP and AnLLM-AC
models demonstrate significant improvements.

Specifically, in the five-shot testing, both
AnLLM-EP and AnLLM-AC models attain an av-
erage inference acceleration ratio of approximately
1.7 times. This represents a considerable advance-
ment over the conventional non-caching method,
which typically necessitates prolonged processing
times due to the large number of tokens involved.
As Ld increases, reaching up to 3.5 times in the
BoolQ task, the acceleration ratios also escalate,
corroborating the findings of Wang et al. (2023a).
This enhancement in processing speed leads to in-
creased efficiency, making these models particu-
larly apt for scenarios with limited resources.

The AnLLM-EP and AnLLM-AC models ex-
hibit remarkable performance in natural lan-
guage understanding benchmarks, effectively
balancing accuracy, memory efficiency, and
time acceleration. The incorporation of anchor
tokens into AnLLMs, along with the utilization

4964

of the AnSAN technique for reducing keys/values
cache size, allows these models to maintain perfor-
mance on par while significantly improving mem-
ory efficiency and inference speed. The equilibrium
achieved between model performance and compu-
tational efficiency is noteworthy and opens up new
possibilities for the advancement of LLMs.

6 Analysis

To further elucidate our method’s insights, we con-
duct a natural language generation experiment with
the German-to-English (De2En) translation task.
We evaluate the models using COMET-DA (Rei
et al., 2022), indicating translation quality, and the
Keys/Values Cache Reduction C⇓ metric, denoting
memory efficiency as previously described. In line
with previous findings, AnLLMs accept a minor
accuracy trade-off (about 3 COMET-DA points) for
enhanced memory efficiency. All LLMs are fine-
tuned on the Alpaca dataset, combined with the
newstest2017-2020 datasets, following Jiao et al.
(2023). Results are presented in Table 2.

6.1 Compatibility and Flexibility of Full
Attention and Anchor-based Attention

The results offer significant insight into the inter-
play between anchor-based attention and full at-
tention mechanisms in the De2En translation task.
Since source sentences are vital in translation tasks,
applying full attention to them is crucial for main-
taining model performance. Thus, retaining the
source sentence keys/values caches is expected to
enhance AnLLM performance when implement-
ing the AnSAN technique. Specifically, when
combining full attention with the AnSAN method,
both AnLLM-EP and AnLLM-AC achieve approx-
imately 80.0 COMET-DAE scores, comparable to
other models using full attention exclusively. This
indicates that the AnSAN technique is compatible
with the full attention mechanism. Consequently,
our proposed models allow users to choose between
full attention and anchor-based attention for input
texts based on their needs, emphasizing the com-
patibility and flexibility of our models.

6.2 Effective Cache Reduction for Real-Time
Inference with the AnSAN Technique

The results in Table 2 show that our reduction strat-
egy effectively minimizes keys/values caches dur-
ing real-time inference. Specifically, as indicated
in Line 15 of Algorithm 1, when generating an
anchor token (i.e., the endpoint or <AC> tokens),

Model Src Cache De2En MaxKV C⇓
Llama2-7b ✓ 83.1 220 0%

AnLLM-EP ✓ 81.6 220 0%

+AnSAN
✗ 78.5 50 77%
✓ 80.3 124 44%

AnLLM-AC ✓ 82.4 220 0%

+AnSAN
✗ 78.0 35 84%
✓ 80.0 125 43%

Table 2: COMET-DA Scores and Keys/Values Cahces
for the WMT23 German-to-English (De2En) Transla-
tion Task. The term “Src Cach” denotes retaining source
sentence hidden states in Keys/Values Caches, while
“MaxKV” refers to the average maximum keys/values
length during inference.

our AnSAN-equipped models execute the reduc-
tion function to minimize the current keys/values
caches. When discarding source sentence caches,
we achieve approximately 77% and 84% reduc-
tion for the AnLLM-EP and AnLLM-AC mod-
els, respectively, albeit with a low COMET-DA
score. However, when retaining source sentence
caches, we still reduce around 44% of caches for
both models, achieving a COMET-DA score of
approximately 80.0. These results confirm the ef-
fectiveness of our anchor-based inference strategy
for practical real-time inference applications.

7 Ablation Studies

7.1 Impact of Anchor Positions

An intriguing question arises regarding the impact
of anchor positions on model performance. In this
section, we investigate the effects of varying an-
chor positions using the AnLLM-AC model, which
enables us to modify the anchor position. Specifi-
cally, we employ the data settings from Section 3.2
and examine three position settings: the first com-
presses every 10 tokens, the second applies random
compression, and the third compresses each demon-
stration, consistent with the setting in Table 1. For
the second setting, an anchor token is randomly
inserted after each token with a probability of 0.1.
The experimental results are presented in Table 3.

Accordingly, we observe that the choice of an-
chor positions significantly affects the model’s per-
formance across various question-answering bench-
marks. The "every-demonstration" setting consis-
tently outperforms the other two settings, achiev-
ing the highest average accuracy of 67.5%. This
suggests that strategically placing anchors at se-

4965

Settings OBQA WG ARC-e ARC-c PIQA HS SCIQ BoolQ AVG.

every-10-tokens 21.4 69.2 63.6 33.3 75.0 48.1 81.9 65.4 57.6
random-prob-0.1 21.6 69.9 64.8 34.8 75.5 48.1 80.0 67.4 57.8
every-demonstration 35.6 70.6 79.2 47.9 78.7 55.6 95.7 76.6 67.5

Table 3: Accuracy on Question Answering Benchmarks with Different Anchor Positions. All the experiments are
conducted with the AnLLM-AC model in Table 1.

mantically meaningful positions, such as after each
demonstration, can effectively enhance the model’s
ability to capture and utilize the information con-
tained in the input texts.

In comparison, the “every-10-tokens” and
“random-prob-0.1” settings yield lower average ac-
curacies of 57.6% and 57.8%, respectively. These
results indicate that compressing input texts at fixed
intervals or randomly inserting anchor tokens may
not be as effective in facilitating the model’s under-
standing and reasoning processes. The suboptimal
performance of these settings could be attributed
to the potential loss of semantic coherence and
structural information as a result of arbitrary com-
pression or random anchor placement.

Overall, our ablation study highlights the impor-
tance of carefully selecting anchor positions in the
AnLLM-AC model to maximize its performance
on question-answering tasks. The superior perfor-
mance of the "every-demonstration" setting demon-
strates the benefit of aligning anchor positions with
semantically meaningful boundaries in the input
texts. Future research could explore more sophisti-
cated strategies for anchor placement, taking into
account the linguistic and contextual properties of
the input data to further improve the model’s per-
formance on complex reasoning tasks.

7.2 Training from Scratch
To evaluate the language modeling capabilities of
our anchor-based language model (AnLLM-EP),
we perform a comparison with the standard Trans-
former model. This comparison involves the train-
ing of compact models from scratch, using the
Wikitext-103 dataset.4 Each model is configured
with 18 layers, 4096 hidden states, and 16 heads.
As shown in Figure 4, the AnLLM-EP model no-
tably outperforms the standard Transformer model,
achieving a lower perplexity of 32.81, compared
to 36.57. This notable outcome suggests that the
anchor-based training approach may enhance the

4https://huggingface.co/datasets/iohadrubin/
wikitext-103-raw-v1

0 5 10 15 20 25 30
20

40

60

80

100

36.57

32.81

Epoch

Pe
rp

le
xi

ty

Transformer
AnLLM-EP

Figure 4: Perplexity Comparison Across Epochs for
Small Standard Transformer and AnLLM-EP Models.

effectiveness of language modeling tasks. In future
research, it would be intriguing to further investi-
gate the potential advantages of the anchor-based
training strategy for training LLMs from scratch.

8 Conclusion

LLMs have emerged as a significant research area
in the field of artificial intelligence. However, de-
spite their exceptional performance across various
natural language tasks, the practical application of
these models is limited by their significant mem-
ory overhead and time efficiency. Implementing
LLMs on resource-constrained devices, such as
smartphones, poses a unique challenge. To address
this issue, we propose anchor-based LLMs with the
AnSAN technique. Our experiments demonstrate
that by sacrificing a marginal 1.5% in precision, our
approach saves 99% of keys/values cache memory
while simultaneously improving inference speed
by up to 3.5 times. Our methods’ application in
machine translation showcases their compatibility
and flexibility, effectively enhancing memory ef-
ficiency for practical use. Our novel approach is
practical, straightforward, flexible, and compatible
with existing methods, paving the way for further
adoption of LLMs in real-world applications.

4966

https://huggingface.co/datasets/iohadrubin/wikitext-103-raw-v1
https://huggingface.co/datasets/iohadrubin/wikitext-103-raw-v1

Limitations

While our proposed AnLLMs demonstrate signif-
icant improvements in memory efficiency and in-
ference acceleration, there are several limitations
to consider:

1. Accuracy Trade-off: As observed in the ex-
perimental results, our method incurs a minor
decrease in accuracy (within 1.5%) compared
to the original model. This limitation stems
from the information compression process,
which may lead to information loss. Despite
its minimal impact, this trade-off should be
considered in practical applications. In future
works, additional evaluation methods could
further enrich our assessment (Ye et al., 2024;
Wang et al., 2023c).

2. Applicability to Various Tasks: Our experi-
ments primarily focus on question-answering
benchmarks and machine translation tasks.
The effectiveness of our method in other NLP
tasks and domains remains to be thoroughly
investigated. Future work will explore the
applicability and performance of our method
across a broader range of tasks and domains
(Zhao et al., 2023; Wang et al., 2023b; Fang
et al., 2023; Pang et al., 2024a; Wang et al.,
2024; Lan et al., 2024; Zhan et al., 2024).

3. Optimal Anchor Token Selection: In our
implementation, we chose the last token in
a sequence as the anchor token. However,
the optimal anchor token selection may vary
across different tasks and domains. We en-
courage further analytical studies to explore
the selection of anchor tokens.

4. Scalability to Other LLMs: We have applied
our method to the open-source Llama2 mod-
els. It remains to be seen how our approach
would perform when applied to other open-
source LLMs, such as Falcon and Qwen (Al-
mazrouei et al., 2023; Bai et al., 2023). Evalu-
ating the effectiveness and scalability of our
method on more extensive language models
is an essential direction for future research.

Despite these limitations, our work presents a
novel approach to enhancing memory efficiency
and inference acceleration in LLMs. Future re-
search efforts should address these limitations, re-
fining our method and extending its applicability
to a wider range of tasks and model architectures.

Ethics Statement

We place great importance on ethical considera-
tions and rigorously adhere to the ACL Ethics Pol-
icy. In this paper, we propose an anchor-based
large language model that reduces the Keys/Values
cache size and enhances inference speed during
the inference stage. The resources and methods
employed in this paper are publicly accessible and
have been extensively adopted by researchers in
the field of large language models. We ensure that
the findings and conclusions presented in this paper
are reported accurately and objectively.

Acknowledgments

This work was supported in part by the Science
and Technology Development Fund, Macau SAR
(Grant No. FDCT/0070/2022/AMJ, the main-
land China collaboration project, China Strate-
gic Scientific and Technological Innovation Co-
operation Project Grant No. 2022YFE0204900),
the Science and Technology Development Fund,
Macau SAR (Grant No. FDCT/060/2022/AFJ, the
mainland China collaboration project, National
Natural Science Foundation of China Grant No.
62261160648), the Multi-year Research Grant
from the University of Macau (Grant No. MYRG-
GRG2023-00006-FST-UMDF), and the Tencent
AI Lab Rhino-Bird Gift Fund (Grant No. EF2023-
00151-FST). This work was performed in part at
SICC which is supported by SKL-IOTSC, and
HPCC supported by ICTO of the University of
Macau. We would like to thank the anonymous
reviewers for their insightful comments.

References

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Al-
shamsi, Alessandro Cappelli, Ruxandra Cojocaru,
Mérouane Debbah, Étienne Goffinet, Daniel Hess-
low, Julien Launay, Quentin Malartic, et al. 2023.
The falcon series of open language models. arXiv
preprint arXiv:2311.16867.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023. Qwen technical report. arXiv
preprint arXiv:2309.16609.

Lochan Basyal and Mihir Sanghvi. 2023. Text
summarization using large language models: A
comparative study of mpt-7b-instruct, falcon-7b-
instruct, and openai chat-gpt models. arXiv preprint
arXiv:2310.10449.

4967

Petr Baudiš, Silvestr Stanko, and Jan Šedivý. 2016.
Joint learning of sentence embeddings for relevance
and entailment. In Proceedings of the 1st Workshop
on Representation Learning for NLP, pages 8–17,
Berlin, Germany. Association for Computational Lin-
guistics.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,
et al. 2020. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the
AAAI conference on artificial intelligence, volume 34,
pages 7432–7439.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai,
Zhijian Liu, Song Han, and Jiaya Jia. 2023. Longlora:
Efficient fine-tuning of long-context large language
models. arXiv:2309.12307.

Rewon Child, Scott Gray, Alec Radford, and
Ilya Sutskever. 2019. Generating long se-
quences with sparse transformers. arXiv preprint
arXiv:1904.10509.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. BoolQ: Exploring the surprising
difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 2924–2936, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Together Computer. 2023. Redpajama: an open dataset
for training large language models.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra,
and Christopher Ré. 2022. FlashAttention: Fast and
memory-efficient exact attention with IO-awareness.
In Advances in Neural Information Processing Sys-
tems.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiy-
ong Wu, Baobao Chang, Xu Sun, Jingjing Xu, and
Zhifang Sui. 2022. A survey for in-context learning.
arXiv preprint arXiv:2301.00234.

Tao Fang, Shu Yang, Kaixin Lan, Derek F. Wong, Jin-
peng Hu, Lidia S. Chao, and Yue Zhang. 2023. Is
chatgpt a highly fluent grammatical error correction
system? a comprehensive evaluation. arXiv preprint
arXiv:2304.01746.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2023. A framework for few-shot language model
evaluation.

Huiqiang Jiang, Qianhui Wu, Xufang Luo, Dongsheng
Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. 2023.
Longllmlingua: Accelerating and enhancing llms
in long context scenarios via prompt compression.
arXiv preprint arXiv:2310.06839.

Wenxiang Jiao, Jen-tse Huang, Wenxuan Wang, Zhi-
wei He, Tian Liang, Xing Wang, Shuming Shi, and
Zhaopeng Tu. 2023. ParroT: Translating during chat
using large language models tuned with human trans-
lation and feedback. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
15009–15020, Singapore. Association for Computa-
tional Linguistics.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Kaixin Lan, Tao Fang, Derek F. Wong, Yabo Xu, Lidia S.
Chao, and Cecilia G. Zhao. 2024. Focus: Forging
originality through contrastive use in self-plagiarism
for language models. In Findings of ACL 2024.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answer-
ing. arXiv preprint arXiv:1809.02789.

Jesse Mu, Xiang Lisa Li, and Noah Goodman. 2023.
Learning to compress prompts with gist tokens.
arXiv preprint arXiv:2304.08467.

OpenAI. 2023. Gpt-4 technical report.

Jianhui Pang, Baosong Yang, Derek F. Wong, Dayiheng
Liu, Xiangpeng Wei, Jun Xie, and Lidia S. Chao.
2024a. MoNMT: Modularly leveraging monolingual
and bilingual knowledge for neural machine transla-
tion. In Proceedings of the 2024 Joint International
Conference on Computational Linguistics, Language
Resources and Evaluation (LREC-COLING 2024),
pages 11560–11573, Torino, Italia. ELRA and ICCL.

Jianhui Pang, Fanghua Ye, Longyue Wang, Dian Yu,
Derek F Wong, Shuming Shi, and Zhaopeng Tu.
2024b. Salute the classic: Revisiting challenges of
machine translation in the age of large language mod-
els. arXiv preprint arXiv:2401.08350.

4968

https://doi.org/10.18653/v1/W16-1602
https://doi.org/10.18653/v1/W16-1602
https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.18653/v1/N19-1300
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://arxiv.org/abs/2304.01746
https://arxiv.org/abs/2304.01746
https://arxiv.org/abs/2304.01746
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.18653/v1/2023.findings-emnlp.1001
https://doi.org/10.18653/v1/2023.findings-emnlp.1001
https://doi.org/10.18653/v1/2023.findings-emnlp.1001
https://arxiv.org/abs/2406.00839
https://arxiv.org/abs/2406.00839
https://arxiv.org/abs/2406.00839
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
http://arxiv.org/abs/2303.08774
https://aclanthology.org/2024.lrec-main.1010
https://aclanthology.org/2024.lrec-main.1010
https://aclanthology.org/2024.lrec-main.1010

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Jack W. Rae, Anna Potapenko, Siddhant M. Jayaku-
mar, Chloe Hillier, and Timothy P. Lillicrap. 2020.
Compressive transformers for long-range sequence
modelling. In International Conference on Learning
Representations.

Nir Ratner, Yoav Levine, Yonatan Belinkov, Ori Ram,
Inbal Magar, Omri Abend, Ehud Karpas, Amnon
Shashua, Kevin Leyton-Brown, and Yoav Shoham.
2023. Parallel context windows for large language
models. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 6383–6402, Toronto,
Canada. Association for Computational Linguistics.

Ricardo Rei, José G. C. de Souza, Duarte Alves,
Chrysoula Zerva, Ana C Farinha, Taisiya Glushkova,
Alon Lavie, Luisa Coheur, and André F. T. Martins.
2022. COMET-22: Unbabel-IST 2022 submission
for the metrics shared task. In Proceedings of the
Seventh Conference on Machine Translation (WMT),
pages 578–585, Abu Dhabi, United Arab Emirates
(Hybrid). Association for Computational Linguistics.

Jon Saad-Falcon, Joe Barrow, Alexa Siu, Ani Nenkova,
Ryan A Rossi, and Franck Dernoncourt. 2023. Pdf-
triage: Question answering over long, structured doc-
uments. arXiv preprint arXiv:2309.08872.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: An adver-
sarial winograd schema challenge at scale. Commu-
nications of the ACM, 64(9):99–106.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Lean Wang, Lei Li, Damai Dai, Deli Chen, Hao Zhou,
Fandong Meng, Jie Zhou, and Xu Sun. 2023a. Label
words are anchors: An information flow perspective
for understanding in-context learning. In Proceed-
ings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pages 9840–9855,
Singapore. Association for Computational Linguis-
tics.

Longyue Wang, Zefeng Du, Wenxiang Jiao, Chenyang
Lyu, Jianhui Pang, Leyang Cui, Kaiqiang Song,
Derek F Wong, Shuming Shi, and Zhaopeng Tu. 2024.
Benchmarking and improving long-text translation
with large language models. In Findings of the Asso-
ciation for Computational Linguistics: ACL 2024.

Longyue Wang, Chenyang Lyu, Tianbo Ji, Zhirui Zhang,
Dian Yu, Shuming Shi, and Zhaopeng Tu. 2023b.
Document-level machine translation with large lan-
guage models. In Proceedings of the 2023 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 16646–16661, Singapore. Association
for Computational Linguistics.

Longyue Wang, Zhaopeng Tu, Yan Gu, Siyou Liu, Dian
Yu, Qingsong Ma, Chenyang Lyu, Liting Zhou, Chao-
Hong Liu, Yufeng Ma, Weiyu Chen, Yvette Graham,
Bonnie Webber, Philipp Koehn, Andy Way, Yulin
Yuan, and Shuming Shi. 2023c. Findings of the
WMT 2023 shared task on discourse-level literary
translation: A fresh orb in the cosmos of LLMs. In
Proceedings of the Eighth Conference on Machine
Translation, pages 55–67, Singapore. Association for
Computational Linguistics.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al.
2022. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682.

Johannes Welbl, Nelson F. Liu, and Matt Gardner. 2017.
Crowdsourcing multiple choice science questions.
In Proceedings of the 3rd Workshop on Noisy User-
generated Text, pages 94–106, Copenhagen, Den-
mark. Association for Computational Linguistics.

Fanghua Ye, Mingming Yang, Jianhui Pang, Longyue
Wang, Derek F Wong, Emine Yilmaz, Shuming
Shi, and Zhaopeng Tu. 2024. Benchmarking
llms via uncertainty quantification. arXiv preprint
arXiv:2401.12794.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? arXiv preprint
arXiv:1905.07830.

Runzhe Zhan, Xinyi Yang, Derek F Wong, Lidia S Chao,
and Yue Zhang. 2024. Prefix text as a yarn: Eliciting
non-english alignment in foundation language model.
In Findings of ACL 2024.

Libo Zhao, Kai Fan, Wei Luo, Wu Jing, Shushu Wang,
Ziqian Zeng, and Zhongqiang Huang. 2023. Adap-
tive policy with wait-k model for simultaneous trans-
lation. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 4816–4832, Singapore. Association for Com-
putational Linguistics.

4969

https://openreview.net/forum?id=SylKikSYDH
https://openreview.net/forum?id=SylKikSYDH
https://doi.org/10.18653/v1/2023.acl-long.352
https://doi.org/10.18653/v1/2023.acl-long.352
https://aclanthology.org/2022.wmt-1.52
https://aclanthology.org/2022.wmt-1.52
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://aclanthology.org/2023.emnlp-main.609
https://aclanthology.org/2023.emnlp-main.609
https://aclanthology.org/2023.emnlp-main.609
https://doi.org/10.18653/v1/2023.emnlp-main.1036
https://doi.org/10.18653/v1/2023.emnlp-main.1036
https://doi.org/10.18653/v1/2023.wmt-1.3
https://doi.org/10.18653/v1/2023.wmt-1.3
https://doi.org/10.18653/v1/2023.wmt-1.3
https://doi.org/10.18653/v1/W17-4413
https://arxiv.org/abs/2404.16766
https://arxiv.org/abs/2404.16766
https://doi.org/10.18653/v1/2023.emnlp-main.293
https://doi.org/10.18653/v1/2023.emnlp-main.293
https://doi.org/10.18653/v1/2023.emnlp-main.293

A More Experimental Results

A.1 Detailed Perpelixity Evaluation

In this section, we present a comprehensive anal-
ysis of the perplexity evaluation results, as illus-
trated in Table 4. The perplexity scores were calcu-
lated for various evaluation context lengths, rang-
ing from 256 to 4096 tokens, utilizing the Proof-
Pile datasets (Rae et al., 2020). The table com-
pares the performance of Llama2-7B, AnLLM-AC,
AnLLM-EP, and their corresponding variants incor-
porating the AnSAN technique. Our findings reveal
that the AnSAN technique, on average, leads to a
one-point increase in perplexity, which negatively
impacts the modeling capabilities of the models
to some extent. These outcomes resonate with the
trade-off between accuracy and efficiency observed
in Table 1.

A.2 Testing Acceleration Ratio to
Full-Caching Method

In Section 5, we report the testing acceleration ra-
tio following the setting of Wang et al. (2023a),
comparing the time difference between caching
and non-caching inference. Although our method
reduces the keys/values caches, enabling smaller
space for prefix information storage and improving
testing time up to ×3.5, we are still curious about
whether it would enhance inference efficiency if
conventional methods use full caches that save all
keys/values of prefix tokens. As a supplement to
Table 1, we present the testing acceleration ratio
between anchor-caching and full-caching inference
in Table 5. The acceleration ratios for AnLLM-
EP-AnSAN and AnLLM-AC-AnSAN achieve the
highest improvements observed in tasks such as
HS, SCIQ, and BoolQ. The average acceleration
ratios for AnLLM-EP-AnSAN and AnLLM-AC-
AnSAN are 1.03. These results demonstrate that
our anchor-based caching method can enhance in-
ference efficiency even when compared to conven-
tional methods that save all keys/values of prefix
tokens. These results suggest that our anchor-based
caching approach, which saves only the keys/values
caches of anchor tokens, can effectively accelerate
the inference process for the lengthy prefix texts.

A.3 Model Scalability Assessment

To examine the scalability of our approach, we ex-
tend the AnLLM-AC model to 13B and assess its
performance on eight question-answering bench-
marks using the same evaluation strategy as previ-

ously mentioned. In comparison to the 7B AnLLM
models in Table 1, Results in Table 6 indicate that
as the model size expands, the AnLLM-AC model
achieves accuracies of 67.5% and 70.0% for 0-shot
and 5-shot testing, respectively, resulting in up to
a 2.4% improvement. Moreover, by incorporating
anchor-based attention, the AnLLM-AC-AnSAN
model achieves an average accuracy of 69.5%, sig-
nifying a 2.0% increase. The performance enhance-
ment underscores the effectiveness of our methods
in accommodating larger model capacities. The
consistent improvements observed in the AnLLM-
AC model across various scenarios highlight its
robustness and adaptability. Furthermore, the in-
creased performance of the AnLLM-AC-AnSAN
model, facilitated by anchor-based attention, em-
phasizes the potential of our approaches in opti-
mizing LLMs. Collectively, these findings point
to promising avenues for future research aimed at
maximizing the utility and efficiency of AnLLM.

A.4 Case Study in Real-Time Inference

To elaborate on the optimization of keys/values
caches by AnLLM-EP and AnLLM-AC during
real-time inference, we reference examples from
the translation task in Section 6.2. As per Ta-
ble 7, AnLLM-EP and AnLLM-AC use "end-
points" (".") and "<AC>" tokens as anchor tokens,
respectively. During inference, both models em-
ploy auto-regressive generation, creating outputs
token-by-token. Upon generating an anchor token
(as per Line 16, Algorithm 1), the Reduction func-
tion (defined in Line 1) is activated, preserving
relevant caches and eliminating others. As a re-
sult, the Keys/Values Cache lengths are reduced to
roughly the sequence length, averaging around 50
for AnLLM-EP and 35 for AnLLM-AC, as shown
in Table 2.

A.5 Attention Pattern in AnLLMs

Regarding the attention pattern, we have conducted
a case study using the AnLLM-EP model. As
shown in Figure 5, given the sentence “Apple is
delicious. He goes to the market. He buys an ap-
ple.”, we detokenize and split it into two segments:
“_Apple _is _del icious . _He _go _to _the _market
. _He _b” and “ys _an _apple .”. By employing a
heatmap to visualize the attention pattern between
the latter segment and the former, we observe that
the token “ys” attends more to the second endpoint,
which compresses the information of “He goes to
the market.”. This is a reasonable and interesting

4970

finding, as “ys” is part of the word “buys”. Ad-
ditionally, the token “_apple” attends more to the
first endpoint, which compresses the information
of “Apple is delicious.”. These attention patterns
offer some interpretability for our method.

B Data Settings

To provide a thorough insight into how we continu-
ally pre-train the model into AnLLM and carry out
evaluations, we showcase some data examples in
this section for both training and testing data.

B.1 Training Data Examples
In this section, we provide examples to illustrate the
specific data format used in training the AnLLM
models. For the AnLLM-EP model, the endpoints
act as anchor tokens, allowing us to directly utilize
natural language texts. For the AnLLM-AC model,
we append a new token <AC> at the end of each
sequence in the input texts, which are initially split
into sentences using the NLTK toolkits.5 Some
examples are presented in Table 8. All the trainig
data are downloaded from HuggingFace6, an open-
source community.

B.2 Testing Data Examples
For the testing outlined in the results section (Sec-
tion 5), we employ the same evaluation method as
in previous work (Gao et al., 2023), which treats
each choice as text generation and computes the
corresponding probabilities, respectively. Table 9
presents some evaluation examples.

5https://www.nltk.org/api/nltk.tokenize.punkt.
html

6https://huggingface.co/datasets/
togethercomputer/RedPajama-Data-1T-Sample

4971

https://www.nltk.org/api/nltk.tokenize.punkt.html
https://www.nltk.org/api/nltk.tokenize.punkt.html
https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T-Sample
https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T-Sample

Method Evaluation Context Length

256 512 1024 2048 4096 AVG.

Llama2-7B 5.42 4.32 3.64 3.2 2.91 3.90

AnLLM-AC 5.70 4.53 3.81 3.36 3.07 4.09
+AnSAN 6.61 5.61 5.01 4.62 4.40 5.25

AnLLM-EP 5.62 4.44 3.73 3.32 3.04 4.04
+AnSAN 6.18 5.17 4.62 4.31 4.14 4.88

Table 4: Perplixity Evaluation without or with the AnSAN Technique. The test samples are from the Proof-Pile
dataset.

OBQA WG ARC-e ARC-c PIQA HS SCIQ BoolQ AVG.

AnLLM-EP-AnSAN ×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.06 ×1.14 ×1.13 ×1.03
AnLLM-AC-AnSAN ×1.00 ×1.02 ×1.00 ×1.00 ×1.00 ×1.01 ×1.10 ×1.13 ×1.03

Table 5: Testing Acceleration Ratio on Question-Answering Tasks between Anchor-Caching and Full-Caching
Inference with Five-Shot Demonstrations. Anchor-caching refers to saving only the keys/values caches of anchor
tokens with the AnSAN technique, while full-caching denotes saving caches for all prefix tokens. The tasks are
arranged according to the demonstration lengths. The experiments are the same as those of Table 1. These results
suggest that inference speed differences for short texts are minimal but become more pronounced for longer texts.
However, full-caching inference demands more GPU memory to store the complete keys/values caches, which is
not ideal for environments with limited computational resources.

Model OBQA WG ARC-e ARC-c PIQA HS SCIQ BoolQ AVG.

Zero-Shot Performance
Llama2-7B 31.4 69.1 76.3 43.4 78.1 57.1 93.7 77.7 65.8
Llama2-13b 35.2 72.1 79.4 48.5 79.1 60.0 94.5 80.6 68.7
AnLLM-AC-7B 31.6 68.5 74.4 42.5 78.3 54.7 93.8 77.0 65.1
AnLLM-AC-13B 35.2 70.7 77.9 46.9 78.6 58.1 94.7 78.1 67.5

Five-Shot Performance
Llama2-7B 37.2 73.7 79.8 50.0 78.7 58.3 96.8 78.4 69.1
Llama2-13b 38.2 76.3 82.2 52.6 80.0 61.4 97.5 83.5 71.5
AnLLM-AC-7B 37.2 72.3 79.8 49.0 78.6 56.9 96.8 77.5 68.5

+AnSAN 35.6 70.6 79.2 47.9 78.7 55.6 95.7 76.6 67.5
AnLLM-AC-13B 36.6 72.5 81.6 53.7 79.2 59.6 97.5 79.6 70.0

+AnSAN 36.0 74.0 81.6 52.0 79.1 58.4 96.3 78.8 69.5

Table 6: Accuracy of 13B LLMs on Question Answering Benchmarks. Compared to 7B AnLLMs, the 13B AnLLMs
exhibit superior performance, with up to 2.0 accuracy enhancements, suggesting that AnLLMs possess excellent
scalability to larger model architectures.

4972

Input Below is an instruction that describes a task, paired with an input that provides further
context. Write a response that appropriately completes the request.
Instruction: Translate the following sentences from German to English.
Input: Nachdem Werte in einen anderen Teil des Speichers eingeschrieben wurden, wird
das CMOS RAM in der gleichen Weise wie das Communications RAM geprüft. Wurde der
Test bestanden, werden alle Speicherstellen auf ihren früheren Wert eingestellt. LED-Wert:
00 0011 Wenn das Gerät mit dem o.a. Display hält, liegt ein Fehler vor. Prüfen Sie in diesem
Falle U 85 und U 86 und die damit verbundenen Stromkreise bzw. die Dekodierung.
Response:

Output After values have been written to another part of the CMOS RAM, the CMOS RAM is
tested in the same way as the communications RAM. If the test is successful, all storage
locations will be reset to their former value. LED value: 00 0011 If the device is displaying
this value, there is a fault to be found. In this case, check U85 and U86 and the associated
power circuits, as well as decoding.

COMET-DA 82.2
Length 293
MaxKV 170

C⇓ 42%

(a) An Example of the AnLLM-EP Model in De2En Translation Task.

Input Below is an instruction that describes a task, paired with an input that provides further
context. Write a response that appropriately completes the request. <AC>
Instruction: Translate the following sentences from German to English. <AC>
Input: Der Spielablauf wird ausgelöst, wenn der Druckschalter START betätigt wird.
<AC> Der LED-Schalter bleibt erleuchtet und die Spielgeräusche werden hörbar. <AC>
Wird der letzte Spieler-Panzer vom feindlichen Angreifer eliminiert, ist ein Spiel beendet.
<AC> Das Spiel beginnt mit langsam fahrenden Panzern, die auf dem Bildschirm sichtbar
werden. <AC> Die Position der jeweiligen feindlichen Panzer oder Raketen kann der Spieler
dadurch bestimmen, dass er den eingeblendeten Text im oberen linken Hinweisdisplay-
Winkel seines Cockpits beachtet. <AC> Ein Hinweis kann z.B. <AC> lauten: GEGNER
VON RECHTS. <AC> Zusätzlich wird auf dem weitreichenden Radarschirm, begleitet von
einem Sonar-BLIP-Ton, ein Punkt sichtbar, der die feindliche Stellung darstellt. <AC>
Response:

Output The game is triggered when the start switch is pressed. <AC> The LED switch remains
illuminated and the game sounds can be heard. <AC> When the last enemy player’s tank
is destroyed, the game is over. <AC> The game begins with tanks moving slowly move
across the screen. <AC> The player’s tank’s position can be determined by the player by
paying attention to the respective enemy tank or missile icon in the upper left corner of his
cockpit’s display screen. <AC> An example of an instruction can be: ENEMY ON THE
RIGHT. <AC> In addition, on the wide-range radar screen, accompanied by a sonar BLIP
sound, a point is visible, which indicates the enemy position.

COMET-DA 81.8
Length 431
MaxKV 272

C⇓ 37%

(b) An Example of the AnLLM-AC Model in De2En Translatio Task.

Table 7: Case Study of Real-time Inference. During the inference process, AnLLM-EP generates "endpoint" as the
anchor token, whereas AnLLM-AC produces "<AC>" as the anchor token. Once upon an anchor token, we execute
the REDUCTION as shown in Line 16 to reduce the keys/values caches.

4973

App
le is de

l
icio

us . He go to the
mark

et . He bu

ys

an

ap
ple

.

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Figure 5: Case Study on Attention Pattern. With the AnLLM-EP model, the heatmap presents the average correlation
between tokens across layers of output hidden states.

4974

Gender diversity, or more often its lack thereof, among participants to software development
activities has been thoroughly studied in recent years. In particular, the presence of, effects of,
and countermeasures for gender bias in Free/Open Source Software (FOSS) have received a lot
of attention over the past decade. Geographic diversity is on the other hand the kind of diversity
that stems from participants in some global activity coming from different world regions and
cultures. Geographic diversity in FOSS has received relatively little attention in scholarly works. In
particular, while seminal survey-based and point-in-time medium-scale studies of the geographic
origins of FOSS contributors exist, large-scale longitudinal studies of the geographic origin of FOSS
contributors are still lacking. Such a quantitative characterization would be useful to inform decisions
related to global development teams and hiring strategies in the information technology (IT) market,
as well as contribute factual information to the debates on the economic impact and sociology of
FOSS around the world. ...

(a) A Training Data Example for the AnLLM-EP Model. The endpoints in the text serve as the anchor tokens.

Gender diversity, or more often its lack thereof, among participants to software development activities
has been thoroughly studied in recent years. <AC> In particular, the presence of, effects of, and
countermeasures for gender bias in Free/Open Source Software (FOSS) have received a lot of
attention over the past decade. <AC> Geographic diversity is on the other hand the kind of diversity
that stems from participants in some global activity coming from different world regions and cultures.
<AC> Geographic diversity in FOSS has received relatively little attention in scholarly works. <AC>
In particular, while seminal survey-based and point-in-time medium-scale studies of the geographic
origins of FOSS contributors exist, large-scale longitudinal studies of the geographic origin of FOSS
contributors are still lacking. <AC> Such a quantitative characterization would be useful to inform
decisions related to global development teams and hiring strategies in the information technology
(IT) market, as well as contribute factual information to the debates on the economic impact and
sociology of FOSS around the world. <AC> ...

(b) A Training Data Example for the AnLLM-AC Model. The newly added tokens <AC> in the text serve as the anchor tokens.

Table 8: Training Data Examples for the AnLLM-EP and AnLLM-AC models. For the AnLLM-EP model, the
endpoints are the natural anchor tokens. For the AnLLM-AC model, we manually append <AC> tokens to sequences
as the anchor tokens.

4975

Choice 1: Slacklining: A group of people have stretched a tightrope across a gym. They take turns
trying to balance and walk on the rope.
Choice 2: Slacklining: A group of people have stretched a tightrope across a gym. They slide down
with it, jumping and spinning in the air.
Choice 3: Slacklining: A group of people have stretched a tightrope across a gym. They cross it
together, swinging back and fourth in anticipation.
Choice 4: Slacklining: A group of people have stretched a tightrope across a gym. They drop an
orange rope at the end.

(a) A Zero-Shot Testing Data Example of the HellaSwag Task. The log-likelihood of the red texts is computed as the choice
probabilities.

Choice 1: Ballet: We see a pregnant lady doing ballet in a studio. The lady spins and does a pliea.
Demonstration 2 Demonstration 3 Demonstration 4 Demonstration 5 Slacklining: A group of people
have stretched a tightrope across a gym. They take turns trying to balance and walk on the rope.
Choice 2: Ballet: We see a pregnant lady doing ballet in a studio. The lady spins and does a pliea.
Demonstration 2 Demonstration 3 Demonstration 4 Demonstration 5 Slacklining: A group of people
have stretched a tightrope across a gym. They slide down with it, jumping and spinning in the air.
Choice 3: Ballet: We see a pregnant lady doing ballet in a studio. The lady spins and does a
pliea. Demonstration 2 Demonstration 3 Demonstration 4 Demonstration 5 Slacklining: A group of
people have stretched a tightrope across a gym. They cross it together, swinging back and fourth in
anticipation.
Choice 4: Ballet: We see a pregnant lady doing ballet in a studio. The lady spins and does a pliea.
Demonstration 2 Demonstration 3 Demonstration 4 Demonstration 5 Slacklining: A group of people
have stretched a tightrope across a gym. They drop an orange rope at the end.

(b) A Five-Shot Testing Data Example of the HellaSwag Task for the ALLM-EP Inference.

Choice 1: Ballet: We see a pregnant lady doing ballet in a studio. The lady spins and does a pliea.
<AC> Demonstration 2 <AC> Demonstration 3 <AC> Demonstration 4 <AC> Demonstration 5
<AC> Slacklining: A group of people have stretched a tightrope across a gym. They take turns trying
to balance and walk on the rope.
Choice 2: Ballet: We see a pregnant lady doing ballet in a studio. The lady spins and does a pliea.
<AC> Demonstration 2 <AC> Demonstration 3 <AC> Demonstration 4 <AC> Demonstration 5
<AC> Slacklining: A group of people have stretched a tightrope across a gym. They slide down with
it, jumping and spinning in the air.
Choice 3: Ballet: We see a pregnant lady doing ballet in a studio. The lady spins and does a pliea.
<AC> Demonstration 2 <AC> Demonstration 3 <AC> Demonstration 4 <AC> Demonstration 5
<AC> Slacklining: A group of people have stretched a tightrope across a gym. They cross it together,
swinging back and fourth in anticipation.
Choice 4: Ballet: We see a pregnant lady doing ballet in a studio. The lady spins and does a pliea.
<AC> Demonstration 2 <AC> Demonstration 3 <AC> Demonstration 4 <AC> Demonstration 5
<AC> Slacklining: A group of people have stretched a tightrope across a gym. They drop an orange
rope at the end.

(c) A Five-Shot Testing Data Example of the HellaSwag Task for the ALLM-AC Inference.

Table 9: Testing Data Examples for the AnLLM-EP and AnLLM-AC models. The log-likelihood of the red italicized
texts is calculated as the choice probabilities.

4976

