
Proceedings of the 13th Conference on Language Resources and Evaluation (LREC 2022), pages 6450–6460
Marseille, 20-25 June 2022

© European Language Resources Association (ELRA), licensed under CC-BY-NC-4.0

6450

Extensions to Brahmic script processing within the Nisaba library:
new scripts, languages and utilities

Alexander Gutkin†, Cibu Johny†, Raiomond Doctor‡∗, Lawrence Wolf-Sonkin◦, Brian Roark◦
Google Research

†United Kingdom ‡India ◦United States
{agutkin,cibu,raiomond,wolfsonkin,roark}@google.com

Abstract
The Brahmic family of scripts is used to record some of the most spoken languages in the world and is arguably the most
diverse family of writing systems. In this work, we present several substantial extensions to Brahmic script functionality
within the open-source Nisaba library of finite-state script normalization and processing utilities (Johny et al., 2021). First, we
extend coverage from the original ten scripts to an additional ten scripts of South Asia and beyond, including some used to
record endangered languages such as Dogri. Second, we augment the language layer so that scripts used by multiple languages
in distinct ways can be processed correctly for more languages, such as the Bengali script when used for the low-resource
language Santali. We document key changes to the finite-state engine required to support these new languages and scripts.
Finally, we add new script processing utilities, including lightweight script-level reading normalization that (unlike existing
visual normalization) does not preserve visual invariance, and a fixed-input transliteration mechanism specifically tailored to
Brahmic text entry with ASCII characters.

Keywords: finite-state, Brahmic writing systems, low resource, transliteration, normalization

1. Introduction
Nisaba is an open-source library1 for processing the
Brāhmī-derived scripts of South Asia (Johny et al.,
2021). Nisaba uses finite-state algorithms that lever-
age the fundamental organizing principle of such scripts
— an orthographic syllable, or aksạra (Coulmas, 1999;
Bright, 1999) — to provide a range of script-specific
utilities. The design was inspired by the formal alge-
braic approach to Brahmic scripts advocated by Datta
(1984) and substantially advanced by Sproat (2003),
and employs finite-state automata (FSAs) and transduc-
ers (FSTs) to efficiently and compactly represent sev-
eral types of finite-state grammars for script normaliza-
tion, transliteration and validation (Mohri et al., 2000;
Gorman, 2016). In this paper, we present several re-
cent important extensions to the library: the addition of
many new scripts, some of which were sufficiently dis-
tinct to require changes to aksạra modeling; expansion
of language (in addition to script) layer functionality,
to permit language-specific processing when required;
and new normalization and transliteration utilities.
Nisaba originally covered ten major Brahmic scripts

of South Asia: Bengali, Devanagari, Gujarati, Gur-
mukhi, Kannada, Malayalam, Oriya (Odia), Sinhala,
Tamil, and Telugu (Johny et al., 2021). In this work,
we extend this set by an additional ten Brahmic scripts
of South and Maritime South-East Asia: Baybayin
(Tagalog), Lepcha, Limbu, Lontara (Bugis), Maithili
(Tirhuta), Meetei Mayek, Prachalit (Newa), Sylheti Na-
gri, Takri and Thaana. These scripts were selected be-
cause they are either actively used to record the offi-

∗On contract from Optimum Solutions, Inc.
1https://github.com/google-research/nisaba/

cial regional languages (Vikash and Shubha, 2018; Mo-
hamed, 2019) or are undergoing an active process of
revival (Chettri, 2013; Gundayao and Taripe, 2019), of-
ten because of their precarious status (Hall et al., 2014).
Extending script coverage to the above set required

multiple modifications to aksạra modeling in Nisaba,
due to structural features, such as subjoining (depen-
dent) consonants or absence of the vowel suppression
sign (virama), which were not found in the original ten
scripts. Further, Thaana possesses features of both an
alphabet and a Brahmic alphasyllabary. The scripts and
their respective models are described in Section 3.
Additional mechanisms were also required in Nisaba

to support language-specific functions. In Section 4, we
will focus on four languages that use the Bengali script:
Assamese, Bangla, Kok Borok and Santali.
The original script normalization operations previ-

ously provided by Nisaba include both standard Uni-
code normalization (NFC) and our own visual normal-
ization (Johny et al., 2021). Both of these transforma-
tions result in strings that are visually identical to the
original. However, in practice one encounters multi-
ple cases when aksạra-level normalization that modifies
the visual form is required. Such scenarios include nor-
malization of archaic letters and resolving the ambigui-
ties due to ambiguous or conflicting orthographies. We
introduce this type of transformation (denoted reading
normalization) and discuss it in detail in Section 5.
A final key extension is fixed-input transliteration,

described in Section 6. The reversible transliteration
included in the original library release is based on ISO
15919 standard (ISO, 2001). This scheme is problem-
atic when used for input methods due to difficulties in

https://github.com/google-research/nisaba/


6451

text entry of sequences involving uncommon diacritics
such as “l̥̄”. Fixed-input transliteration fills this gap
by providing a mapping from the basic ASCII symbol
set to the 8-bit Latin set used by ISO 15919 reversible
transliteration, which in turn allows us to unambigu-
ously and economically represent Brahmic scripts in
text entry scenarios.

2. Background
Research into natural language processing for South
Asian languages has been of increasing interest in
recent years, given the evolution of modeling ap-
proaches (Jain et al., 2020; Kumar et al., 2020) as
well as the improved availability of resources (Roark et
al., 2020; Kakwani et al., 2020; Ramesh et al., 2021).
Appropriate normalization of these scripts for down-
stream processing goes beyond what is provided by
well-known standards such as NFC. This section offers
a brief overview of the core functionality provided by
the Nisaba library in relation to Brahmic scripts, de-
scribed in substantial detail by Johny et al. (2021).

2.1. Structure of Brahmic Scripts
The main unit of linear graphemic representation in
Brahmic scripts is known by its traditional Sanskrit-
derived name aksạra. It is often translated as “sylla-
ble” although it does not bear direct correspondence to
a syllable of speech, but rather to an orthographic sylla-
ble (Bright, 1999). Informally, the structure, or “gram-
mar” of an aksạra is based on the following common
principles: an aksạra often consists of a consonant sym-
bol, either bearing, by default, an unmarked inherent
vowel or, if marked, an attached diacritic (dependent)
vowel sign; but it may also be an independent vowel
symbol, or a consonant symbol with its inherent vowel
“muted” by a special virama diacritic.2 In any of these
preceding scenarios, the base consonant can be replaced
by a consonant cluster where all but the last consonant
lose their inherent vowel. When the individual compo-
nent consonants of the cluster combine to form a com-
posite form, precluding the use of an overt virama di-
acritic, this is known as a “consonant conjunct” (Coul-
mas, 1999; Fedorova, 2013; Share and Daniels, 2016).

2.2. Core Operations
Unicode defines several normalization formswhich are
used for checking whether the two Unicode strings
are equivalent to each other (Unicode Consortium,
2021). Nisaba supports Normalization Form C (NFC)
which is well suited for comparing visually identical
strings (Whistler, 2021). This normalization generally
converts strings to the equivalent form that uses com-
posite characters. For example, the legacy sequence
qa (U+0958) representing Devanagari क़ is canonically

2This crude characterization can be complicated by phono-
logical processes, such as schwa deletion (Choudhury et al.,
2004).

equivalent to its NFC form { ka (U+0915), nukta
(U+093C) }.3

There aremanyUnicode character sequences that fall
outside the scope of Unicode normalization. Some of
these legacy sequences are documented by the Unicode
standard or appear in the data mined from the web. To
cope with such sequences Nisaba provides visual nor-
malization that, in addition to providing the NFC func-
tionality, also supports transforming such legacy se-
quences. Similar to NFC, this transformation produces
visually invariant sequences. Examples of visual nor-
malization include the removal of Devanagari combin-
ing vowel sign e (U+0947) when it does not affect the
compound glyph’s visual appearance.4 Another such
example not covered by NFC are the legacy vowel se-
quences in Gujarati found in the wild, where the letter
au followed by the vowel sign ai is visually equivalent
to a single letter au.
Nisaba offerswell-formedness validation that checks

whether the given text is readable in a particular script
or not. Given the alphasyllabic nature of Brahmic
scripts, it would be hard for the non-native reader to vi-
sually parse the text if the script rules are not followed.
For example, the syllable-final consonants, such as let-
ter na lonsum (ꯟ, U+ABDF) in Meetei Mayek, cannot
appear word-initially. Well-formedness validation ver-
ifies that the text is a sequence of well-formed aksạra
using the grammar described above.
The ISO 15919 standard represents a unified 8-bit

Latin transliteration scheme for major South Asian
Brahmic scripts (ISO, 2001). The Nisaba implemen-
tation extended the scheme to accommodate charac-
ters not originally covered, e.g., characters added to
Unicode after the standard was created, along with ad-
justments required to provide reversible transliteration.
Reversibility allows data processing pipelines to use ro-
manized text as an internal representation, then convert
it back to the original native script for rendering.

2.3. Finite-state Representation
The Brahmic script structure and manipulation oper-
ations described above have a natural interpretation
grounded in formal language theory (Sproat, 2000;
Sproat, 2003). The aksạra grammar and the corre-
sponding well-formedness validator in Nisaba are rep-
resented as finite state automata (FSAs) that corre-
spond to regular languages over Brahmic script char-
acter sequences (Yu, 1997). Both the normaliza-
tion and transliteration operations are represented as
weighted finite state transducers (WFSTs) that cor-
respond to regular string-to-string relations (Mohri,

3For ease of reading, when referring to specific symbols,
such as DEVANAGARI LETTER KA (क), we will omit the Uni-
code group when it is clear from context, and present both the
letter name in lowercase (here ka) and its code (U+0915).

4One such example is { ऐ (U+0910), ◌े (U+0947) } → ऐ
(U+0910).



6452

2009). The automata and transducers are compiled of-
fline using Pynini, a Python library for constructing
finite-state grammars and for performing operations on
WFSTs (Gorman, 2016; Gorman and Sproat, 2021).

3. Script Extensions
The core set of Brahmic scripts supported in the initial
release of Nisaba includes ten scripts used for writing
the most widely spoken South Asian languages of India,
Bangladesh, Nepal and Sri Lanka (Johny et al., 2021).
In this work we extend this set by a further ten scripts
of South and Maritime South-East Asia. Table 1 shows
the entire list of currently supported scripts (additions
highlighted in gray) sorted by their ISO 15924 script
code (ISO, 2004) along with corresponding script sam-
ples. Some of the new additions, such asMeeteiMayek,
are in active use, while others, such as Takri, are ac-
tively being revived by governments in the region.
We require the minimal set of finite-state operations

implemented for a new script to consist of reversible
transliteration and well-formedness validation gram-
mars introduced in Section 2. In addition, this set may
or may not include further operations such as NFC,
visual and reading normalization (introduced in 5 be-
low). The criteria for inclusion of additional opera-
tions depends on the script. For example, the reason-
ably uncomplicated scripts, such as Baybayin and Lon-
tara, may not require any normalization operations at
all, while the scripts which are more complex or visu-
ally more confusable with the others, such as Tirhuta,
require specialized normalization.

3.1. South Asian Brahmic Scripts
Prachalit The Prachalit, or Newa, script is primarily
used to write Newar (also called Nepal Bhasa), a Sino-
Tibetan language from the Himalayish group spoken in
Nepal and the Indian state of Sikkim (Kansakar, 1981;
Genetti, 2009). Structurally and visually this script is
most similar to Devanagari and also has similarities to
the Bengali script, but additionally incorporates neces-
sary Newari language-specific features such as letters
for representing resonant breathy consonants (Pandey,
2012).
Sylheti Nagri The Sylheti Nagri script is used to
write Sylheti, an Eastern Indo-Aryan language closely
related to Bangla. It is spoken in parts of Bangladesh as
well as the Assam and Tripura regions of India (Baker
et al., 2000; Das, 2017; Simard et al., 2020). Lloyd-
Williams et al. (2002) note that while this script has
clear Brahmic origins, some features of the script sug-
gest the influence of Perso-Arabic, such as initial lack
of a virama (hasanta) sign, which was only introduced
relatively recently. In the present day, its use is not
considered obligatory and pronunciations of ambiguous
spellings are determined from context.
Takri The Takri script is primarily used to write Do-
gri, a Northern Indo-Aryan language of Jammu and

Kashmir, and neighboring regions in India (Brightbill
and Turner, 2007; Kaur and Dwivedi, 2018). The script
is considered to be endangered due to the prevalence of
Devanagari and the regional governments invest in im-
proving literacy in Takri, for Dogri as well as numerous
other threatened languages of the region, such as Jaun-
sari, that historically it used to record (Pandey, 2009).

Lepcha The Lepcha script is used to write Lepcha,
a Sino-Tibetan language from the Himalayish group
spoken in parts of Sikkim region of India, Bhutan and
Nepal (Plaisier, 2005; Plaisier, 2006), which, according
to Campbell and Belew (2018), is severely endangered.
Lepcha derives from the Tibetan script and has several
interesting features. The script lacks virama, which is
compensated for by explicit aksạra final consonants that
bear no inherent vowel and use of the Tibetan subjoined
consonant model. In addition, there is a special sign ran
(U+1C36) that marks vowel length and accent and can
only combine with inherent or dependent vowels and
final consonants (Everson, 2005).

Limbu The Limbu script is used to write Limbu, a
Himalayish Sino-Tibetan language spoken in eastern
Nepal, and the Sikkim and Darjeeling regions of In-
dia (van Driem, 1987; Gaenszle, 2021). This language
is mentioned as threatened by Campbell and Belew
(2018). Similar to Lepcha, this script provides sub-
joined consonants. In Limbu these are used to indi-
cate “medials” in consonant cluster onsets. A special
class of small consonant signs marks syllable-final con-
sonantal positions (bearing no inherent vowel) of native
Limbu words, where the other Brahmic scripts would
use full consonant letters or virama. The additional spe-
cial feature of Limbu is the dual function of the sa-i
sign (U+193B) that may indicate vowel lengthening in
addition to acting as virama (Michailovsky and Ever-
son, 2002).

Meetei Mayek The Meetei Mayek script is used to
write Meitei, one of the scheduled languages of In-
dia. It is a tonal Sino-Tibetan language from the Kuki-
Chin-Naga family and a lingua franca of the Manipur
state (Chelliah, 1997; Singh, 2011). Somewhat simi-
lar to Limbu, this script uses a special class of explicit
silent final consonants in closed syllable codas, but
these consonants are represented as full letters rather
than combining signs. In modern orthography, the
falling tone is sometimes marked with full stop punctu-
ation, whereas in the traditional literature a special lum
iyek (U+ABEC) sign was used (Everson, 2007).

Maithili The Maithili, or Tirhuta, script is used to
write Maithili, an Indo-Aryan language from the Bi-
hari group spoken in the Bihar state of eastern India,
where it is one of the scheduled languages, as well as
in Nepal (Yadav, 2011; Choudhary, 2013). Visually,
Tirhuta bears some superficial similarities with the Ben-
gali script, with seven letters being visually confusable
between the two. The major differences concern the
formation of the consonant conjuncts and the presence



6453

Name Id Sample Name Id Sample

Bengali Beng বাংলা Prachalit Newa äö𑐔𑐶𑐮𑐟
Lontara Bugi ᨒᨚᨈᨑ Oriya Orya ଓଡ଼ିଆ

Devanagari Deva देवनागरी Sinhala Sinh සිංහල
Gujarati Gujr Ǒુજરાતી Sylheti Nagri Sylo ꠍꠤꠟꠐꠤ
Gurmukhi Guru ਗੁਰਮੁਖੀ Takri Takr 𑚔𑚭 𑚫𑚊𑚤𑚯

Kannada Knda ಕನನ್ಡ Tamil Taml தமிழ்

Lepcha Lepc ᰵᰩᰛᰵᰧᰛᰶ Telugu Telu తెలుగు
Limbu Limb ᤕᤰᤌᤢᤱ Baybayin Tglg ᜊᜌ᜔ᜊᜌᜒᜈ᜔

Malayalam Mlym മലയാളം Thaana Thaa ތާނަ
Meetei Mayek Mtei ꯃꯤꯇꯩ ꯃꯌꯦꯛ Tirhuta Tirh 𑒱𑒞𑒩𑒯𑒳𑒞𑒰

Table 1: Supported scripts sorted by the ISO 15924 script code. The additions are highlighted in gray.

in Tirhuta of vowel signs for short vowels that have
no full form equivalents since they cannot occur word-
initially (Pandey, 2011).

3.2. Maritime South-East Asian Brahmic
Scripts

Baybayin The Baybayin script is used to write Taga-
log, a language from Malayo-Polynesian family, which
is the official language of the Philippines (Schachter
and Reid, 2009; Miller, 2014). Compared to other Brah-
mic scripts, Baybayin is relatively uncomplicated. No
conjunct consonants are formed in this script. The rela-
tively distinct feature of Baybayin is the availability of
two vowel muting symbols, virama and pamudpod (Ev-
erson, 1998).
Lontara The Lontara script is used for writing Bug-
inese, Makassarese and Mandar, which are Malayo-
Polynesian languages spoken in South Sulawesi
province of Indonesia (Grimes and Grimes, 1987;
Macknight, 2014). Similar to Baybayin script, Lon-
tara does not record final consonants and does not form
consonant conjuncts. In addition, it lacks the tradi-
tional virama, which complicates the transcription of
non-Buginese words that endwith a consonant. Various
ad hoc modifier marks have been proposed to remedy
this (Everson, 2003).

3.3. The Special Case of Thaana
The Thaana script is used in the Maldives to write
Dhivehi, an Indo-Aryan language, closely related to
Sinhala (Gnanadesikan, 2016). Of all the scripts in-
cluded so far in the Nisaba library, Thaana is the most
distinctive. On the one hand it borrows heavily from
the Perso-Arabic abjad. The writing direction is right-
to-left. The glyph shapes are similar and several let-
ters such as sukun (U+07B0), the zero-vowel diacritic,
are borrowed directly from Perso-Arabic. However,
while the vowels are represented as combining charac-
ters, similar to Perso-Arabic, they are always recorded,
which makes this system alphabetic. At the same time,
since the vowels are diacritics they are clearly subordi-
nate to the consonants in terms of their encoding, which
makes this script similar to other alphasyllabaries in
the Brahmic family despite the absence of the inherent

vowel (De Voogt, 2009). Mohamed (2008) mentions
Dhives Akuru, an earlier Brahmic writing system used
to record Dhivehi, as a possible influence.
In order to represent Thaana in the Brahmic frame-

work of Nisaba we made a single modification to the
finite-state logic which consists of removing all the de-
fault transitions dealing with the inherent vowel during
construction of the respective FSAs and FSTs. With
this modification in place Thaana can be viewed as any
other Brahmic system. For example, the sukun sign acts
as traditional virama, while also performing Thaana-
specific functions such as marking gemination when
preceded by the noonu (U+0782) letter.

4. Language Extensions
Johny et al. (2021) briefly touched on the language-
specific layer of Nisaba, which provides language-
specific finite-state operations in addition to script-
specific ones. In this section, we detail its use to cover
multiple languages using the Bengali script.
According to ScriptSource (Raymond, 2012), the

Bengali script is used to write 41 living languages.5
The initial use of the language layer was to support the
two most widely spoken languages that use this script:
Assamese and Bangla. Assamese has two extra con-
sonant letters not found in Bangla, the Assamese ra
(U+09F0) and wa (U+09F1). While the Assamese wa is
unique, the ra letter should not be output by the nor-
malizer together with its Bengali ra (U+09B0) counter-
part. To deal with this we employ N language l spe-
cific transducers T l

i representing a sequence of context-
dependent rewrite rules (Kaplan and Kay, 1994; Mohri
and Sproat, 1996) transforming Bengali ra into As-
samese ra (and vice versa) in various contexts. Given
a Bengali script-specific normalization transducer B, a
language-specific transducer (where l corresponds to ei-
ther Assamese or Bangla) is obtained from it by a se-
quence of FST composition operations: B ◦ T l

1 ◦ T l
2 ◦

. . . ◦ T l
N .

In this work we further extend the set of languages
using the Bengali script by two languages. The Ben-
gali script (along with Ol Chiki) is used to write Santali,

5https://www.scriptsource.org

https://www.scriptsource.org


6454

an Austroasiatic language from the Mundaic group. It
is one of the official regional languages of India spo-
ken in several states such as Assam, West Bengal and
Tripura (Ghosh, 2008; Choksi, 2018). Most of the
Santali adjustments concern the romanization of San-
tali written in Bengali script, as these should ideally
match the corresponding romanization standards of Ol
Chiki, which is the official script for Santali. The Ben-
gali script is also used to write Kok Borok, a threat-
ened (Moseley, 2010) Sino-Tibetan language from the
Bodo-Garo group spoken in the Indian Tripura state
and Bangladesh (Subbarao et al., 2010; Dattamajum-
dar, 2019). Kok Borok has two additional diphthongs
(vowel letter aw and vowel letter ua) represented as
pairs of code-points rather than atomic letters in Uni-
code (Unicode Consortium, 2021).
For both of these languages, unlike Assamese and

Bangla, since letter rewrites are not required, we em-
ploy a simpler model, whereby the relevant aksạra
component transducers for the Bengali script are ex-
panded (using the FST union operation) with language-
specific paths and compiled into a single language-
specific transducer. We also follow the same model for
providing Hindi-specific operations for the Devanagari
script.6

5. Reading Normalization
As mentioned in Section 2, the core script normaliza-
tion utilities in Nisaba are provided in a single finite-
state framework consisting of canonical Unicode nor-
malization (NFC) and visual normalization. Visual nor-
malization handles sequences requiring normalization
to canonical forms which, although well documented,
fall outside the scope of standard Unicode normaliza-
tion (Johny et al., 2021). The adjective “visual” al-
ludes to the important property of these transformations
that in the majority of cases, similar to NFC normal-
ization (Whistler, 2021), they result in canonical forms
that render visually identically to the source forms.
As it turns out, visual normalization is not enough

to cover all possible script normalization use cases and
this is especially true for the Brahmic scripts, for which
multiple and/or conflicting orthographic conventions
sometimes exist (Iyengar, 2018; Joshi and McBride,
2019). This orthographic variation can result in letter
sequences that, although visually distinct, should never-
theless be normalized in some scenarios to a common
form. To deal with such cases, in this work we intro-
duce reading normalization.

5.1. Implementation
In Nisaba, reading normalization, denoted R, is im-
plemented similarly to visual normalization, denoted

6Similar to the situation with Bengali, many languages
are recorded in Devanagari script, each presenting its ortho-
graphic challenges, e.g., Sindhi and Kashmiri (Bhatt, 2015;
Iyengar, 2018).

0 1 2

3

4 5

ρ

ka : ϵ
nukta : ϵ

ϕ : ka
σ

ra : tta

ϕ : ka
ϵ : nukta

σ

Figure 1: Simplified depiction of an FST correspond-
ing to context-less rewrite of Lepcha retroflex conso-
nant cluster “ᰀ᰷ᰥ” → “ᱍ” using failure (ϕ, ρ) and exact
match (ϵ, σ) transitions. The symbol setΣ in this exam-
ple consists of Unicode code-points rather than UTF-8
bytes. For x ∈ Σ∗, where x ≠ ᰀ᰷ᰥ, this transducer pro-
vides an identity mapping. See Section 5.2 on Lepcha,
where the need for this transformation is explained.

V , in terms of FSTs compiled from context-dependent
rewrite rules (Kaplan and Kay, 1994; Mohri and Sproat,
1996). A simplified schematic representation of such
a transducer R that handles just one transformation is
shown in Figure 1. It implements a simple three-letter
context-less rewrite rule for Lepcha retroflex conso-
nants (discussed in detail in Section 5.2 below) using
four types of special transitions. Transition labels are
in the form (x : y), where x denotes the symbol on the
input tape and y on the output tape, respectively. The
label x is a shorthand for (x : x).

The ϵ-transitions match anything (including an
empty symbol) without consuming the symbol being
matched if used on the input tape and produce no out-
put if used on the output tape (Karttunen, 1994). The ϕ-
transitions, also known as failure transitions, that leave
states 1 and 2 in Figure 1 are traversed only when try-
ing to match with a symbol that does not label any arc
leaving that state, an “otherwise” arc (Allauzen et al.,
2003). Similar to ϵ-transitions they do not consume any
symbols. The σ-transitions that leave states 3 and 4 are
similar to ϵ-transitions but consume the input symbol;
similarly, the ρ-transitions (a loop-back at state 0) is a
symbol-consuming variant of ϕ-transitions (Hall et al.,
2015).

The FST architecture allows us to construct low-level
script- and language-specific normalization cascades
as pictured in Figure 2, which shows a normalization
transducer N ◦ V ◦ R constructed by FST composi-
tion from the Unicode NFC, visual and reading nor-
malization FSTs. The resulting three-element pipeline
thus constructed is a possible configuration for script
normalization that would likely benefit many text pro-
cessing/modeling scenarios making use of raw native
Brahmic script text. There are however certain scenar-
ios where the application of the reading normalization
FST R may not be desirable, such as optical charac-
ter recognition of historical documents, where visual



6455

x ∈ Σ∗

“इन्दौर”
“െമൗനം”
“ᰵᰧᰛᰶᰝ᰷ᰥᰤ ᰪᰮ ”

Unicode (N )

Visual (V)

Reading (R)

x′ ∈ Σ∗

“इंदौर”
“മൗനം”
“ᰵᰧᰛᰶᱎ ᰤᰪᰮ ”

◦

◦

◦

Figure 2: Normalization flow transforming strings x
into x′ over a particular scriptΣ using FST composition
(◦). Examples for Devanagari, Malayalam, and Lepcha
are shown. Components are the Unicode NFC, visual
and reading normalization FSTs.

fidelity to the source document would ideally be pre-
served (Neudecker et al., 2019; Narang et al., 2020;
Martínek et al., 2020).

5.2. Examples
Reading normalization examples are plentiful in many
languages and scripts in Nisaba, and here we highlight
several.

Malayalam The virama is known in the Malayalam
script as the candrakkala sign (U+0D4D), and has a dual
function. Similar to other Brahmic scripts, it suppresses
the inherent vowel on the preceding consonant, but it is
also used to replace the inherent vowel with a neutral
vowel sound called samvruthokaram (Asher and Ku-
mari, 2012; Johny et al., 2015). In traditional orthog-
raphy, this is displayed with a vowel sign u (U+0D41)
followed by candrakkala, and in modern orthography
(since the 1970s) it is displayed with a candrakkala
alone, or pseudo-samvruthokaram (Chitrajakumar et
al., 2005). We bring this orthographic variation into
a common form by rewriting { U+0D41, U+0D4D } (◌ു)്
sequence as U+0D4D (◌്).
Lepcha There are three retroflex consonants in Lep-
cha occurring syllable-initially: the voiceless retroflex
stop /ʈ/, its apirated version /ʈʰ/ and an unaspirated
voiced version /ɖ/. In the traditional script these
phonemes do not have corresponding single letters but
are recorded using the consonants clusters kr (ᰀ᰷ᰥ), hr
(ᰝ᰷ᰥ) and gr (ᰃ᰷ᰥ,) that include the Lepcha nukta sign
(U+1C37), represented as a small dot below the clus-
ter, to distinguish them from the genuine non-retroflex
clusters (Plaisier, 2006). In the modern orthography
three new individual letters tta (U+1C4D), ttha (U+1C4E),
and dda (U+1C4F), were introduced to replace these
retroflex clusters (Everson, 2005). In Nisaba, the re-
sulting ambiguity is resolved by rewriting the tradi-
tional retroflex encoding to its corresponding single-
letter modern form, e.g., mapping { ga, nukta, sub-
joined ra } (ᰃ᰷ᰥ) to dda (ᱏ), or, as the example in Fig-

ure 1 shows, transform { ka, nukta, subjoined ra } (ᰀ᰷ᰥ)
into tta (ᱍ) (see Figure 1 for a simplified example of
FST representation for this operation).
Hindi Two Devanagari diacritics mark nasalisation
processes in Standard Hindi. The Devanagari anusvāra
(U+0902) is traditionally defined as representing a nasal
consonant homorganic (i.e., articulated in the same
place of articulation) to a following plosive (Ohala
and Ohala, 1991), in contrast to the Devanagari can-
drabindu (or anunāsika, U+0901), which marks vowel
nasalization and follows a vowel sign, especially at the
end of the word (e.g., “मा”ँ). In practice, however, the
two are often used interchangeably in modern writing
leading to pronunciation ambiguities (Pandey, 2007).
While anusvāra/anunāsika ambiguity cannot be fully
resolved purely at the script level without access to
the lexical knowledge, we provide a satisfactory nor-
malization of the consonant clusters where the nasal
consonants homorganic to the following plosives are
recorded explicitly without using anusvāra. This is de-
fined for lettersn ∈ N and s ∈ S as a set of rewrites {n,
virama, s} → { anusvara, s}, where N records Hindi
nasal consonants and S represents Hindi plosive series.
For example, one such rewrite for a bilabial plosive is
{ ma (U+092E), virama, bha (U+092D) } (Ȩ)→ { anus-
vara, bha (U+092D) } (◌ंफ).
Sylheti The Syloti Nagri script used to record Syl-
heti has, in addition to the usual dependent vowel di-
acritics, a special dependent vowel symbol called the
dvisvara sign (U+A802). This symbol is special be-
cause it is used to represent diphthongs with /i/ as a
second element when either combiningwith consonants
(forming the diphthong /oi/ with an inherent vowel) or
other diphthongs with vowels, both dependent or in-
dependent (Das, 2017). Lloyd-Williams et al. (2002)
mention an alternative common way to represent these
diphthongs in Sylheti by using an independent letter i
(U+A801) resulting in a spelling ambiguity requiring res-
olution between dvisvara and independent letter iwhen
following a consonant.

6. Fixed-input Transliteration
Various input method editors provide transliteration
keyboards to help users input language scripts other
than Latin. This is useful for regions of the world where
there is no prevalent keyboard entry standard for their
native language script. Such keyboards often employ
statistical models to provide multiple best-fitting can-
didates for the input the user has entered (Hellsten et
al., 2017). This can be excellent for providing accu-
rate native text even when the input is just an approxi-
mate phonetic representation of that text. For example,
typing “India” would provide the output of the correct
Hindi word “इंɟडया” in the Devanagari script as the top
candidate. However, the word user intended is not al-
ways clear because one sequence of Latin text could
correspond to multiple intended words in the target lan-
guage script. For example, the input text “padam” could



6456

Devanagari Reversible ITrans

उ u u
ऊ ū U
अं aṁ aM
द da da
ड ḍa Da
ढ ḍʰa Dha
श śa sha
ष ṣa Sha
स sa sa

Table 2: Examples comparing ISO 15919 and fixed-
input (ITrans) romanization schemes for the Devana-
gari script.

correspond to many words in the Malayalam script,
e.g., “പടം”, “പാടം’”, “പാടാം”, “പാഠം”, “പദം”, “പാദം”,
“പതം” or “പഥം”. Users may need to select a candidate
different from the default.
In order to avoid delays due to candidate selection,

some input method editors employ unique phonetic key
combinations for all characters in the native script by
utilizing case distinctions in the Latin script. For ex-
ample, to unambiguously represent “इंɟडया” users would
type “iMDiya”. Here the uppercase and lowercase
letters are understood as different characters: while
“D” represents “ड” (retroflex), lowercase “d” represents
“द” (dental). Table 2 shows a list of Devanagari ex-
amples highlighting the differences between the ISO
15919-based and fixed-input romanization schemes im-
plemented in Nisaba. Since every Devanagari character
is unambiguously represented in this fashion, there is
no candidate selection involved and users can type fast
as long as they know the rules and follow the correct
casing. Because of this, there is a decent user base for
such keyboards especially among media professionals.
Examples for such schemes are ITrans7 for Devanagari
and Mozhi8 for Malayalam. Since fixed-input meth-
ods do not require training data, they can provide ini-
tial transliteration-based input access to scripts in low-
resource scenarios.
It is important to note that unlike Nisaba ISO 15919-

based transliteration, our implementation of fixed-input
transliteration is not reversible because its primary
goal is to simplify the text-entry process. Hence, in
fixed-input scheme many-to-one mappings are possi-
ble, where multiple ASCII input sequences may map
to the same representation in native script. Similarly,
one-to-many mappings are possible as well. For exam-
ple, the “kha” fixed-input ASCII sequence maps to a
single Devanagari letter kha (“ख”) or a consonant clus-
ter ka-virama-ha (“क्ह”).
Implementation: Recall from Section 2.2 that the
main (reversible) transliteration scheme implemented

7https://www.aczoom.com/itrans/
8https://sites.google.com/site/cibu/mozhi/

mozhi2

“dRDham”
“chhaaya” Fixed (TF )

Reversible (TR)
“ദൃഢം”
“ഛായ”

◦

◦“dr̥ḍʰaṁ”
“chāya”

Figure 3: Two-stage transliteration FST pipeline con-
sisting of fixed-input transliteration (TF ) composed
with reversible transliteration (TR). The example
strings are in Malayalam.

in Nisaba is an extension of ISO 15919 that in the for-
ward direction provides conversion from 8-bit Latin
character set to native script. To implement an alter-
native fixed-input transliteration scheme, we provide
the additional FST that acts as a lightweight adapter be-
tween the fixed-input basic ASCII symbol set and the
8-bit Latin character set required by ISO 15919 translit-
eration. This adapter is lightweight because the number
of required rules is significantly smaller than the num-
ber of rules required for a full and reversible ASCII-to-
native or 8-bit Latin-to-native script transducer.

Therefore our implementation requires two FSTs for
conversion from a fixed-input ASCII character set to
native script, as shown in Figure 3 that demonstrates
our transliteration pipeline T = TF ◦ TR consisting
of the fixed-input transliterator TF composed with the
ISO 15919-based transliterator TR. Given an ASCII se-
quence x, transliteration into the corresponding Brah-
mic script is obtained by the sequence of FST composi-
tions (x ◦ TF ) ◦ TR.

7. Conclusion and Future Work
In this paper we provided an overview of substantial
extensions to the finite-state Brahmic script processing
library, both in terms of improved script and language
coverage, as well as additional finite-state utilities. The
expansion into lesser-used Brahmic scripts poses its
technical challenges and we described our approach to
these using an aksạra-centered finite-state design. We
presented a new type of reading script normalization,
which, in addition to the visual fidelity-preserving nor-
malizations, provides a script-level utility for reducing
orthographic ambiguities. Finally, we introduced fixed-
input transliteration that simplifies text entry in Brah-
mic scripts when used in conjunction with reversible
transliteration.

It is worth noting that while the new set of scripts
and languages covered in this paper required somemod-
ifications to our finite-state framework, such as relax-
ing the inherent vowel requirement to accommodate
Thaana or introducing the support for subjoined con-
sonants for scripts from Tibetan family, these modifi-
cations were relatively minor and the current frame-

https://www.aczoom.com/itrans/
https://sites.google.com/site/cibu/mozhi/mozhi2
https://sites.google.com/site/cibu/mozhi/mozhi2


6457

work is flexible enough to accommodate for other Brah-
mic scripts of similar structural complexity, such as
Kaithi. There are, however, a significant number of
Brāhmī-derived scripts that we leave for future work,
such as Burmese and Thai, which are structurally dif-
ferent enough from the ones we dealt with so far in Nis-
aba to require more substantial design changes of our
algorithms.

At the time of writing, the amount of Unicode-
encoded text available on the web in many of the
scripts for low-resource languages we described (such
as Limbu and Takri) is rather limited. This is mostly
due to their recent introduction into the Unicode stan-
dard compared to the major Brahmic scripts, but also
due to other confounding factors such as script illiteracy
or lack of standard orthographies. Furthermore, some
data available in these scripts was generated via simple
automatic rule-based transliteration from a dominant
script (such as Devanagari), a process that often disre-
gards target script peculiarities. We expect to continue
improving library support for such scripts and related
low-resource and endangered languages in Nisaba as
online data availability grows through community- and
regional government-based data digitization and script
revival efforts.

8. Acknowledgments
The authors would like to thank Anna Katanova for her
help with this project and the anonymous reviewers for
useful feedback on the earlier draft of this paper.

9. Bibliographical References
Allauzen, C., Mohri, M., and Roark, B. (2003). Gen-
eralized algorithms for constructing statistical lan-
guage models. In Proceedings of the 41st Annual
Meeting of the Association for Computational Lin-
guistics, pages 40–47, Sapporo, Japan, July. Associ-
ation for Computational Linguistics.

Asher, R. E. and Kumari, T. C. (2012). Malayalam.
Descriptive Grammars. Routledge, London & New
York.

Baker, J., Lie, M., McEnery, A., and Sebba, M. (2000).
Building a corpus of spoken Sylheti. Literary and
Linguistic Computing, 15(4):421–432.

Bhatt, R. M. (2015). Script choice, language loss and
the politics of anamnesis: Kashmiri in diaspora. In
Christopher Stroud et al., editors, Language, Liter-
acy and Diversity, Routledge Critical Studies in Mul-
tilingualism, pages 130–147. Routledge.

Bright, W. (1999). A matter of typology: Alphasyl-
labaries and abugidas. Written Language & Literacy,
2(1):45–55.

Brightbill, J. D. and Turner, S. D. (2007). A sociolin-
guistic survey of the Dogri language, Jammu and
Kashmir. SIL Electronic Survey Report 2007-017,
Journal of Language Survey Reports, SIL Interna-
tional, July.

Campbell, L. and Belew, A. (2018). Cataloguing the
World’s Endangered Languages. Routledge, London
& New York.

Chelliah, S. L. (1997). A Grammar of Meithei, vol-
ume 17 of Mouton Grammar Library [MGL]. Mou-
ton de Gruyter, Berlin, Germany.

Chettri, M. (2013). Ethnic politics in the Nepali pub-
lic sphere: Three cases from the Eastern Himalaya.
Ph.D. thesis, School of Oriental and African Stud-
ies (SOAS), University of London. Department of
South Asia, Faculty of Languages and Cultures.

Chitrajakumar, R., Gangadharan, N., and Vedi, R. A.
(2005). Problems of Malayalam encoding in the In-
dic context. Technical Report L2/05-308, Unicode
Consortium.

Choksi, N. (2018). Script as constellation among
Munda speakers: the case of Santali. South Asian
History and Culture, 9(1):92–115.

Choudhary, P. (2013). Causes and effects of
super-stratum language influence, with reference
to Maithili. Journal of Indo-European studies,
41(3/4):378–391.

Choudhury, M., Basu, A., and Sarkar, S. (2004).
A diachronic approach for schwa deletion in Indo
Aryan languages. In Proceedings of the 7th Meet-
ing of the ACL Special Interest Group in Compu-
tational Phonology: Current Themes in Computa-
tional Phonology and Morphology, pages 20–26,
Barcelona, Spain, July. Association for Computa-
tional Linguistics.

Coulmas, F. (1999). The Blackwell Encyclopedia of
Writing Systems. John Wiley & Sons, Oxford.

Das, A. R. (2017). A Comparative Study of Bangla
and Sylheti Grammar. Ph.D. thesis, Universita degli
Studi di Napoli “Federico II”, Naples, Italy, October.
Dipartimento di Studi Umanistici.

Datta, A. K. (1984). A generalized formal approach
for description and analysis of major Indian scripts.
IETE Journal of Research, 30(6):155–161.

Dattamajumdar, S. (2019). A brief history of linguis-
tic science with special reference to the Bodo, Garo
and Kokborok languages of North-East India. Indian
Journal of History of Science, 54:69–89.

De Voogt, A. (2009). Languages and scripts in the
Maldive Islands: Coding and encoding. In Alex
De Voogt et al., editors, The Idea of Writing: Play
and Complexity, volume 1 of The Idea of Writing,
pages 197–205. Brill.

Everson, M. (1998). Revised proposal for encod-
ing the Philippine scripts in the UCS. ISO/IEC
JTC1/SC2/WG2 N1933, Unicode Consortium,
November.

Everson, M. (2003). Revised final proposal for en-
coding the Lontara (Buginese) script in the UCS.
ISO/IEC JTC1/SC2/WG2N2633R, Unicode Consor-
tium, October.

Everson, M. (2005). Proposal for encoding the
Lepcha script in the BMP of the UCS. ISO/IEC



6458

JTC1/SC2/WG2 N2947R, Unicode Consortium,
July.

Everson, M. (2007). Proposal for encoding the Meitei
Mayek script in the BMP of the UCS. ISO/IEC
JTC1/SC2/WG2 N3206R2, Unicode Consortium,
August.

Fedorova, L. L. (2013). The development of graphic
representation in abugida writing: The akshara’s
grammar. Lingua Posnaniensis, 55(2):49–66.

Gaenszle, M. (2021). The Limbu script and the pro-
duction of religious books in Nepal. Philological En-
counters, 6(1-2):43–69.

Genetti, C. (2009). A grammar of Dolakha Newar, vol-
ume 40 of Mouton Grammar Library [MGL]. Mou-
ton de Gruyter, Berlin, Germany.

Ghosh, A. (2008). Santali. In Gregory D. S. Anderson,
editor, The Munda Languages, volume 3 of Rout-
ledge Language Family Series, pages 11–98. Rout-
ledge, London & New York.

Gnanadesikan, A. E. H. (2016). Dhivehi: The Lan-
guage of the Maldives, volume 3 of Mouton-CASL
Grammar Series. Mouton de Gruyter, Berlin, Ger-
many.

Gorman, K. and Sproat, R. (2021). Finite-State Text
Processing, volume 14 of Synthesis Lectures on Hu-
man Language Technologies. Morgan & Claypool
Publishers.

Gorman, K. (2016). Pynini: A Python library for
weighted finite-state grammar compilation. In Pro-
ceedings of the SIGFSM Workshop on Statistical
NLP and Weighted Automata, pages 75–80, Berlin,
Germany, August. Association for Computational
Linguistics.

Grimes, C. E. and Grimes, B. D. (1987). Languages
of South Sulawesi, volume 38 of Materials in Lan-
guages of Indonesia. Dept. of Linguistics, Research
School of Pacific Studies, The Australian National
University.

Gundayao, B. C. and Taripe, R. B. (2019). Bay-
bayin and the proposal for a national writing system:
Knowledge and attitude among university students
in Quezon City, Philippines. In Michael Kho Lim
et al., editors, BILANGAN 2: Selected Papers from
the 2019 International Conference on Cultural Statis-
tics and Creative Economy, pages 62–72. National
Commission for Culture and the Arts, Manila, Philip-
pines.

Hall, P., Bal, B. K., Dhakhwa, S., and Regmi, B. N.
(2014). Issues in encoding the writing of Nepal’s lan-
guages. In 15th International Conference on Intelli-
gent Text Processing and Computational Linguistics
(CICLing), pages 52–67, Kathmandu, Nepal, April.
Springer.

Hall, K., Cho, E., Allauzen, C., Beaufays, F., Coccaro,
N., Nakajima, K., Riley, M., Roark, B., Rybach, D.,
and Zhang, L. (2015). Composition-based on-the-
fly rescoring for salient n-gram biasing. In Proceed-
ings of the 16th Annual Conference of the Interna-

tional Speech Communication Association (INTER-
SPEECH), pages 1418–1422, Dresden, Germany,
September. International Speech Communication As-
sociation.

Hellsten, L., Roark, B., Goyal, P., Allauzen, C., Bea-
ufays, F., Ouyang, T., Riley, M., and Rybach,
D. (2017). Transliterated mobile keyboard input
via weighted finite-state transducers. In Proceed-
ings of the 13th International Conference on Fi-
nite State Methods and Natural Language Process-
ing (FSMNLP 2017), pages 10–19, Umeå, Sweden,
September. Association for Computational Linguis-
tics.

ISO. (2001). ISO 15919: Transliteration of Devana-
gari and related Indic scripts into Latin characters.
https://www.iso.org/standard/28333.html.
International Organization for Standardization,
Geneva, Switzerland.

ISO. (2004). ISO 15924: Codes for the representa-
tion of names of scripts. https://www.iso.org/
obp/ui/#iso:std:iso:15924:ed-1:v1:en. Inter-
national Organization for Standardization, Geneva,
Switzerland.

Iyengar, A. (2018). Variation in Perso-Arabic and De-
vanāgarī Sindhī orthographies: An overview. Writ-
ten Language & Literacy, 21(2):169–197.

Jain, K., Deshpande, A., Shridhar, K., Laumann, F., and
Dash, A. (2020). Indic-Transformers: An analysis
of transformer language models for Indian languages.
arXiv preprint arXiv:2011.02323.

Johny, C., Alex, S., and S., S. V. (2015). Proposal to
encode Malayalam Sign Circular Virama. ISO/IEC
JTC1/SC2/WG2 L2/14-014R, Unicode Consortium,
January.

Johny, C., Wolf-Sonkin, L., Gutkin, A., and Roark, B.
(2021). Finite-state script normalization and process-
ing utilities: The Nisaba Brahmic library. In Pro-
ceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: System Demonstrations, pages 14–23, On-
line, April. Association for Computational Linguis-
tics.

Joshi, R. M. and McBride, C. (2019). Handbook of Lit-
eracy in Akshara Orthography, volume 17 of Liter-
acy Studies. Springer, Switzerland.

Kakwani, D., Kunchukuttan, A., Golla, S., N.C., G.,
Bhattacharyya, A., Khapra, M. M., and Kumar, P.
(2020). IndicNLPSuite: Monolingual corpora, eval-
uation benchmarks and pre-trained multilingual lan-
guage models for Indian languages. In Findings
of the Association for Computational Linguistics:
EMNLP 2020, pages 4948–4961, Online, November.
Association for Computational Linguistics.

Kansakar, T. R. (1981). Newari language and linguis-
tics: Conspectus. Contributions to Nepalese Studies,
8(2):1–18.

Kaplan, R. M. and Kay, M. (1994). Regular models of

https://www.iso.org/standard/28333.html
https://www.iso.org/obp/ui/#iso:std:iso:15924:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:15924:ed-1:v1:en


6459

phonological rule systems. Computational Linguis-
tics, 20(3):331–378.

Karttunen, L. (1994). Constructing lexical transducers.
In Proceedings of the 15th International Conference
on Computational Linguistics (COLING), volume 1,
pages 406–411, Kyoto, Japan, August.

Kaur, K. and Dwivedi, A. V. (2018). Dogri and its Di-
alects: A Comparative Study of Kandi and Pahari
Dogri, volume 115 of Linguistics Edition. Lincom
Europa Academic Publications, Munich, Germany.

Kumar, S., Kumar, S., Kanojia, D., and Bhattacharyya,
P. (2020). “A passage to India”: Pre-trained word
embeddings for Indian languages. In Proc. of the 1st
Joint Workshop on Spoken Language Technologies
for Under-resourced languages (SLTU) and Collab-
oration and Computing for Under-Resourced Lan-
guages (CCURL), pages 352–357, Marseille, France,
May. European Language Resources association.

Lloyd-Williams, J., Lloyd-Williams, S., and Constable,
P. (2002). Documentation in support of proposal
for encoding Syloti Nagri in the BMP. ISO/IEC
JTC1/SC2/WG2 L2/02-388, Unicode Consortium,
November.

Macknight, C. (2014). The triumph of Lontara’. In
Proceedings of International Workshop on Endan-
gered Scripts of Island Southeast Asia, pages 1–22,
Research Institute for Languages and Cultures of
Asia and Africa, Tokyo University of Foreign Stud-
ies, February.

Martínek, J., Lenc, L., and Král, P. (2020). Building an
efficient OCR system for historical documents with
little training data. Neural Computing and Applica-
tions, 32(23):17209–17227.

Michailovsky, B. and Everson, M. (2002). Revised
proposal to encode the Limbu script in the UCS.
ISO/IEC JTC1/SC2/WG2 N2410, Unicode Consor-
tium, February.

Miller, C. (2014). A survey of indigenous scripts of In-
donesia and the Philippines. In Proceedings of Inter-
national Workshop on Endangered Scripts of Island
Southeast Asia, pages 1–49, Research Institute for
Languages and Cultures of Asia and Africa, Tokyo
University of Foreign Studies, February.

Mohamed, N. (2008). Scripts of Maldives: Eveyla
Akuru, Dhives Akuru and Thaana. In Essays on
Early Maldives. National Centre of Linguistic and
Historical Research (NCLHR),Male’, Maldives, 2nd
edition.

Mohamed, N. (2019). From a monolingual to a mul-
tilingual nation: Analysing the language education
policy in the Maldives. In The Routledge Interna-
tional Handbook of Language Education Policy in
Asia, pages 414–426. Routledge.

Mohri, M. and Sproat, R. (1996). An efficient com-
piler for weighted rewrite rules. In 34th AnnualMeet-
ing of the Association for Computational Linguistics,
pages 231–238, Santa Cruz, California, USA, June.
Association for Computational Linguistics.

Mohri, M., Pereira, F., and Riley, M. (2000). The de-
sign principles of a weighted finite-state transducer li-
brary. Theoretical Computer Science, 231(1):17–32.

Mohri, M. (2009). Weighted automata algorithms.
In Manfred Droste, et al., editors, Handbook of
Weighted Automata, Monographs in Theoretical
Computer Science, pages 213–254. Springer.

Moseley, C. (2010). Atlas of the World’s Languages
in Danger. UNESCO Publications Office, Paris,
France, 3rd edition.

Narang, S. R., Jindal, M. K., and Kumar, M. (2020).
Ancient text recognition: a review. Artificial Intelli-
gence Review, 53(8):5517–5558.

Neudecker, C., Baierer, K., Federbusch, M., Boenig,
M., Würzner, K.-M., Hartmann, V., and Herrmann,
E. (2019). OCR-D: An end-to-end open source OCR
framework for historical printed documents. In Pro-
ceedings of the 3rd International Conference onDigi-
tal Access to Textual Cultural Heritage, pages 53–58,
Brussels, Belgium, May.

Ohala, M. and Ohala, J. J. (1991). Nasal epenthesis in
Hindi. Phonetica, 48(2-4):207–220.

Pandey, P. (2007). Phonology–orthography interface
in Devanāgarī for Hindi. Written Language & Liter-
acy, 10(2):139–156.

Pandey, A. (2009). Proposal to encode the Takri
script in ISO/IEC 10646. ISO/IEC JTC1/SC2/WG2
N3758, Unicode Consortium, December.

Pandey, A. (2011). Proposal to encode the Tirhuta
script in ISO/IEC 10646. ISO/IEC JTC1/SC2/WG2
N4035, Unicode Consortium, May.

Pandey, A. (2012). Proposal to encode the Newar
script in ISO/IEC 10646. ISO/IEC JTC1/SC2/WG2
N4184, Unicode Consortium, February.

Plaisier, H. (2005). A brief introduction to Lepcha
orthography and literature. Bulletin of Tibetology,
41(1):7–24.

Plaisier, H. (2006). A Grammar of Lepcha. Ph.D. the-
sis, University of Leiden, the Netherlands, February.

Ramesh, G., Doddapaneni, S., Bheemaraj, A., Jobanpu-
tra, M., AK, R., Sharma, A., Sahoo, S., Diddee, H.,
J, M., Kakwani, D., Kumar, N., Pradeep, A., Deepak,
K., Raghavan, V., Kunchukuttan, A., Kumar, P., and
Khapra, M. S. (2021). Samanantar: The largest pub-
licly available parallel corpora collection for 11 Indic
languages. arXiv preprint arXiv:2104.05596.

Raymond, M. (2012). ScriptSource: Making informa-
tion on the world’s scripts and languages accessible.
InCharting Vanishing Voices: A CollaborativeWork-
shop to Map Endangered Oral Cultures, Cambridge,
UK, June. Presentation.

Roark, B., Wolf-Sonkin, L., Kirov, C., Mielke, S. J.,
Johny, C., Demirsahin, I., and Hall, K. (2020). Pro-
cessing South Asian languages written in the Latin
script: the Dakshina dataset. In Proceedings of the
12th Language Resources and Evaluation Confer-
ence, pages 2413–2423.

Schachter, P. and Reid, L. A. (2009). Tagalog. In



6460

Bernard Comrie, editor, The World’s Major Lan-
guages, pages 844–866. Routledge, 2nd edition.

Share, D. L. and Daniels, P. T. (2016). Aksharas, al-
phasyllabaries, abugidas, alphabets and orthographic
depth: Reflections on Rimzhim, Katz and Fowler
(2014). Writing Systems Research, 8(1):17–31.

Simard, C., Dopierala, S. M., and Thaut, E. M. (2020).
Introducing the Sylheti language and its speakers,
and the SOAS Sylheti project. Language Documen-
tation and Description, 18:1–22.

Singh, H. T. (2011). The evolution and recent develop-
ment of the Meitei Mayek script. In North East In-
dian Linguistics, volume 3, pages 24–32. Cambridge
University Press India, New Delhi, India.

Sproat, R. (2000). A Computational Theory of Writ-
ing Systems. Studies in Natural Language Process-
ing. Cambridge University Press, Cambridge, UK.

Sproat, R. (2003). A formal computational analysis of
Indic scripts. In In International Symposium on Indic
Scripts: Past and Future, Tokyo, Japan, December.

Subbarao, K. V., Malhotra, S., and Barua, S. (2010).
The structure of the Kokborok language. Interdici-
plinary Journal of Linguistics (Kashmir), III:1–43.

Unicode Consortium. (2021). The Unicode Standard.
Online: http://www.unicode.org/versions/
Unicode14.0.0. Version 14.0.0, Mountain View,
CA.

van Driem, G. (1987). A grammar of Limbu, volume 4
of Mouton Grammar Library [MGL]. Mouton de
Gruyter, Berlin, Germany.

Vikash, B. and Shubha, H. (2018). Effect of shifting
orthographic practices of Manipuri Script on millen-
nials. Global Media Journal: Indian Edition, 10(2).

Whistler, K. (2021). Unicode normalization forms.
Technical Report TR15-51, Unicode Consortium,
August. Version 14.0.0.

Yadav, R. (2011). A reference grammar of Maithili,
volume 11 of Trends in Linguistics. Documentation
[TiLDOC]. Mouton de Gruyter, Berlin, Germany.

Yu, S. (1997). Regular languages. In Grzegorz Rozen-
berg et al., editors, Handbook of Formal Languages,
volume 1: Word, Language, Grammar, pages 41–
110. Springer, Berlin.

http://www.unicode.org/versions/Unicode14.0.0
http://www.unicode.org/versions/Unicode14.0.0

	Introduction
	Background
	Structure of Brahmic Scripts
	Core Operations
	Finite-state Representation

	Script Extensions
	South Asian Brahmic Scripts
	Maritime South-East Asian Brahmic Scripts
	The Special Case of Thaana

	Language Extensions
	Reading Normalization
	Implementation
	Examples

	Fixed-input Transliteration
	Conclusion and Future Work
	Acknowledgments
	Bibliographical References

