Zhouxing Shi
2022
On the Sensitivity and Stability of Model Interpretations in NLP
Fan Yin
|
Zhouxing Shi
|
Cho-Jui Hsieh
|
Kai-Wei Chang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Recent years have witnessed the emergence of a variety of post-hoc interpretations that aim to uncover how natural language processing (NLP) models make predictions. Despite the surge of new interpretation methods, it remains an open problem how to define and quantitatively measure the faithfulness of interpretations, i.e., to what extent interpretations reflect the reasoning process by a model. We propose two new criteria, sensitivity and stability, that provide complementary notions of faithfulness to the existed removal-based criteria. Our results show that the conclusion for how faithful interpretations are could vary substantially based on different notions. Motivated by the desiderata of sensitivity and stability, we introduce a new class of interpretation methods that adopt techniques from adversarial robustness. Empirical results show that our proposed methods are effective under the new criteria and overcome limitations of gradient-based methods on removal-based criteria. Besides text classification, we also apply interpretation methods and metrics to dependency parsing. Our results shed light on understanding the diverse set of interpretations.
2020
Robustness to Modification with Shared Words in Paraphrase Identification
Zhouxing Shi
|
Minlie Huang
Findings of the Association for Computational Linguistics: EMNLP 2020
Revealing the robustness issues of natural language processing models and improving their robustness is important to their performance under difficult situations. In this paper, we study the robustness of paraphrase identification models from a new perspective – via modification with shared words, and we show that the models have significant robustness issues when facing such modifications. To modify an example consisting of a sentence pair, we either replace some words shared by both sentences or introduce new shared words. We aim to construct a valid new example such that a target model makes a wrong prediction. To find a modification solution, we use beam search constrained by heuristic rules, and we leverage a BERT masked language model for generating substitution words compatible with the context. Experiments show that the performance of the target models has a dramatic drop on the modified examples, thereby revealing the robustness issue. We also show that adversarial training can mitigate this issue.
Search