9 Supplementary Material

9.1 Implementation Details

All code for EDA and the experiments in this
paper can be downloaded for any use or purpose:
http://github.com/jasonwei20/eda_
nlp. The following implementation details were
omitted from the main text:

Synonym thesaurus. All synonyms for syn-
onym replacements and random insertions were
generated using WordNet (Miller, 1995).

Word embeddings. We use 300 dimensional
word embeddings trained using GloVe (Penning-
ton et al., 2014).

CNN. We use the following architecture: in-
put layer, 1D convolutional layer of 128 filters of
size 5, global 1D max pool layer, dense layer of
20 hidden units with ReLU activation function,
softmax output layer. We initialize this network
with random normal weights and train against the
categorical cross-entropy loss function with the
adam optimizer. We use early stopping with a
patience of 3 epochs.

RNN. The architecture used in this paper is
as follows: input layer, bi-directional hidden layer
with 64 LSTM cells, dropout layer with p=0.5,
bi-directional layer of 32 LSTM cells, dropout
layer with p=0.5, dense layer of 20 hidden units
with ReLU activation, softmax output layer.
We initialize this network with random normal
weights and train against the categorical cross-
entropy loss function with the adam optimizer. We
use early stopping with a patience of 3 epochs.

9.2 Benchmark Datasets

Summary statistics for the five datasets used are
shown in Table 5.

Dataset | ¢ | Nirain Niest V]

SST-2 2 17 7447 1,752 15,708
CR 2 18 4,082 452 6,386
SUBJ 2 21 9,000 1,000 22,329
TREC 6 9 5,452 500 8,263
PC 2 7 39418 4,508 11,518

Table 5: Summary statistics for five text classification
datasets. c¢: number of classes. [l: average sentence
length (number of words). Ni,qipn: number of training
samples. Nyes:: number of testing samples. |V|: size
of vocabulary.

10 Frequently Asked Questions

FAQ on implementation, usage, and theory.

10.1 Implementation

Where can I find code? http://github.
com/jasonwei20/eda_nlp

How do you find synonyms for synonym
replacement? We use WordNet (Miller, 1995) as
a synonym dictionary. It is easy to download.

Is there an EDA implementation for Chi-
nese or other languages? Not yet, but the
implementation is simple and we encourage you
to write your own and share it.

10.2 Usage

Should I use EDA for large datasets? Similar
to how in vision, adding color jittering might not
help when you’re training a classifier with a large
number of images, EDA might not help much if
you’re using a large enough dataset.

Should I use EDA if I’m using a pre-trained
model such as BERT or ELMo? Models
that have been pre-trained on massive datasets
probably don’t need EDA.

Why should I use EDA instead of other
techniques such as contextual augmentation,
noising, GAN, or back-translation? All of the
above are valid techniques for data augmentation,
and we encourage you to try them, as they may
actually work better than EDA, depending on the
dataset. But because these techniques require the
use of a deep learning model in itself to generate
augmented sentences, there is often a high cost
of implementing these techniques relative to the
expected performance gain. With EDA, we aim
to provide a set of simple techniques that are
generalizable to a range of NLP tasks.

Is there a chance that using EDA will ac-
tually hurt my performance? Considering our
results across five classification tasks, it’s unlikely
but there’s always a chance. It’s possible that one
of the EDA operations can change the class of
some augmented sentences and create mislabeled
data. But even so, “deep learning is robust to
massive label noise” (Rolnick et al., 2017).

http://github.com/jasonwei20/eda_nlp
http://github.com/jasonwei20/eda_nlp
http://github.com/jasonwei20/eda_nlp
http://github.com/jasonwei20/eda_nlp

10.3 Theory

How does using EDA improve text classification
performance? Although it is hard to identify
exactly how EDA improves the performance of
classifiers, we believe there are two main reasons.
The first is that generating augmented data similar
to original data introduces some degree of noise
that helps prevent overfitting. The second is that
using EDA can introduce new vocabulary through
the synonym replacement and random insertion
operations, allowing models to generalize to
words in the test set that were not in the training
set. Both these effects are more pronounced for
smaller datasets.

It doesn’t intuitively make sense to make
random swaps, insertions, or deletions. How
can this possibly make sense? Swapping two
words in a sentence will probably generate an
augmented sentence that doesn’t make sense to
humans, but it will retain most of its original
words and their positions with some added noise,
which can be useful for preventing overfitting.

For random insertions, why do you only
insert words that are synonyms, as opposed to
inserting any random words? Data augmenta-
tion operations should not change the true label of
a sentence, as that would introduce unnecessary
noise into the data. Inserting a synonym of a word
in a sentence, opposed to a random word, is more
likely to be relevant to the context and retain the
original label of the sentence.

