
11

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

Confidential Review Copy. DO NOT DISTRIBUTE.

Supplementary materials for ‘Posing Fair
Generalization Tasks for Natural
Language Inference’

A Some Unfair Idealized Test Scenarios

In Section 4.4, we explained that a fair NLI dataset
must expose every joint projectivity signature to
each semantic relation. We will now demon-
strate that the difficult generalization tasks posed
by Bowman (2013) and Veldhoen and Zuidema
(2018) are unfair in our sense. Both use the dataset
provided in Bowman (2013), which contains ex-
amples with premises and hypotheses that contain
a single quantifier.

Bowman (2013) propose the generalization
tasks SUBCLASS-OUT and PAIR-OUT. For a
particular joint projectivity signature and semantic
relation input, the SUBCLASS-OUT generaliza-
tion task holds out all examples that expose that
joint projectivity signature to that semantic rela-
tion for testing. For a particular joint projectiv-
ity signature, the PAIR-OUT generalization task
holds out all examples containing that joint pro-
jectivity signature for testing. Both of these tasks
directly violate our standard of fairness by not ex-
posing all joint projectivity signatures to all se-
mantic relation inputs.

There is a certain class of examples where
the premise and hypothesis are equivalent due to
De Morgan’s laws for quantifiers. Veldhoen and
Zuidema (2018) propose a generalization task that
holds out this class of examples for testing. How-
ever, these are the only examples in which the joint
projectivity signature for all and no and the joint
projectivity signature for not all and some are ex-
posed to the semantic relations ≡ and ∧. This
directly violates our standard of fairness by not
exposing all joint projectivity signatures to all se-
mantic relation inputs.

B Joint Projectivity

The projectivity signature of a semantic function
f is Pf : B → B where, if the relation between A
and B is R, the relation between f(A) and f(B)
is Pf (R). The natural logic of MacCartney and
Manning (2009) only makes use of projectivity
signatures, and is unable to derive De Morgan’s
laws for quantifiers. For example, it would label
the relation between some dog eats and every dog
does not eat as independence # when the true se-
mantic relation between these expressions is con-

tradiction, ∧. This demonstrates the need for a
joint projectivity signature that directly captures
such relations.

We provide a small extension to the natural
logic theory of MacCartney and Manning (2009)
by introducing joint projectivity signatures, which
allow for new inferences involving quantifiers.
The joint projectivity signature of a pair of seman-
tic functions f and g is Pf/g : B → B where, if
the relation betweenA andB isR, the relation be-
tween f(A) and g(B) is Pf/g(R). It follows that
the joint projectivity between a semantic function
and itself is equivalent to the projectivity of that
semantic function.

The joint projectivity signatures between every
and some are provided in Figure 5 along with the
joint projectivity signatures between ε and not. We
mark where the natural logic of MacCartney and
Manning (2009) is extended. The remaining joint
projectivity signatures between the quantifiers ev-
ery, some, no, and not every can be determined by
composing the joint projectivity signatures of ev-
ery and some with the joint projectivity signatures
between not and ε, where we parse no as not some.

C Fair Data Generation Algorithm

We now present Algorithm 3, which generates fair
training data of varying difficulties by restricting
the way an intermediate output is realized during
training based on the outputs realized by sibling
nodes. The ratio parameter determines the
difficulty of the generalization task; the higher
the ratio, the more permissive the training set and
the easier the task. This algorithm uses a handful
of helper functions. The function children(a)
returns the left-to-right ordered children of node
a and the function cartesian product(L)
returns the Cartesian product of a tuple of sets
L. The function sibling space(a, ck) re-
turns the set Dom(c1) × · · · × Dom(ck−1) ×
Dom(ck+1) × Dom(cm) where c1, . . . , cm
are the children of a. The function
random even split(S,D, ratio) parti-
tions a set S into P1 and P2 where |P1|

|S| = ratio
and returns a function F : D → ℘(S) (℘ is
the powerset function) that satisfies the follow
properties: the elements in the range of F are
non-empty, P1 is a subset of every element in
the range of F , the union of every element in
the range of F is S, and the elements of P2

are randomly and evenly distributed among the

12

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

Confidential Review Copy. DO NOT DISTRIBUTE.

Projectivity for first argument Projectivity for second argument

≡ @ A ˆ | ^ # ≡ @ A ˆ | ^ #

some/every A A A # # # # A # A ∧ | ^ #

every/some @ @ @ # # # # @ @ # ∧ | ^ #

every/every ≡ A @ | # | # ≡ @ A | | # #

some/some ≡ @ A ^ # ^ # ≡ @ A ^ # ^ #

not/ε ˆ ^ | ≡ A @ # - - - - - - -

ε/not ˆ ^ | ≡ @ A # - - - - - - -

not/not ≡ A @ ˆ ^ | # - - - - - - -

ε/ε ≡ @ A ˆ | ^ # - - - - - - -

Figure 5: The four joint projectivity signatures between quantifiers every and some and the four joint projectivity
signatures between ε and not. Boxed relations would not be computed in the natural logic of MacCartney and
Manning (2009).

elements in the range of F .
By our definition, a dataset is fair if it ex-

poses every function to all possible local inputs.
This algorithm recursively constructs a fair train-
ing dataset. When ratio is set to 0 the dataset con-
structed is minimal and when ratio is set to 1 the
dataset is the entire space of examples. When this
algorithm is called on the root node, it returns a
function mapping outputs to sets of inputs and the
training dataset is the union of these sets.

When this algorithm is called on an interme-
diate node it constructs sets of partial inputs that
expose this node’s function to all possible local
inputs. Then these partial inputs are recursively
passed to the parent node, where the process is
repeated. This ensures that the function of every
node is exposed to every local input by the gener-
ated training data. According to the value of ratio,
we constrain how local inputs are realized based
on the values of their siblings. For example, the
fair training dataset in Table 1 restricts how the
truth value of the right argument to⇒ is realized
base on the truth value of the left argument.

We experimentally verify that our training
dataset is fair, though it is clearly guaranteed to
be from the data generation algorithm.

13

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

Confidential Review Copy. DO NOT DISTRIBUTE.

Data: A composition tree (T,Dom, Func) and ratio a number between 0 and 1 inclusive.
Result: A training dataset D that is fair with respect to our baseline model

function generate inputs (T,Dom, Func, a, ratio)
if a ∈ NT

leaf then
equivalence classes← Dict()
for i ∈ Dom(a) do

equivalence classes[i]← {i}
end
return equivalence classes

else
c1, . . . cm ← children(a)
equivalence classes← Dict()
C ← Dom(c1)× Dom(c2) · · · × Dom(cm)
for (i1, i2, . . . , im) ∈ C do

new class← List()
for k ← 1 . . .m do

partial inputs← generate inputs (T,Dom,Func, ck)
split← random even split (partial inputs[ik], sibling space (a,k), ratio)
new class.append(split[i1, . . . , ik−1, ik+1, . . . , im])

end
equivalence classes[Func(a)(i1, . . . , im)]←

equivalence classes[Func(a)(i1, . . . , im)] ∪ cartesian product (new class)
end
return equivalence classes

end

Algorithm 3: This model generates a training dataset that is fair with respect to our baseline model.
The output of generate inputs(T, Dom, Func, a, ratio) is a function mapping elements of Dom(a)
to sets of partial inputs that realize the element.

