
Supplementary Material of “Formalizing Word Sampling for
Vocabulary Prediction as Graph-based Active Learning”

This supplementary material supplements the proof of Theorem 3.1. We let M = Λ.

1 Lemma 1

In Lemma 1, we prove that u>i H−1k+1ui, u>i H−1k+1uj , and
(
H−1k+1ui

)>
M−1 (H−1k+1ui

)
is constant over the choice

of i and depend only on k. We prove this by induction. We let j 6= i. When k = 0, for every i, j,(
H−10 ui

)>
Λ−1

(
H−10 ui

)
= n−1

n

(
µ2
(

n
n−1

)2
+ µ

(
n

n−1

))4

q>i qi + ε 1n (1)

= n−1
n

(
µ2
(

n
n−1

)2
+ µ

(
n

n−1

))4
n−1
n + ε 1n = Cnumera

0 (2)

(
H−10 ui

)>
Λ−1

(
H−10 ui

)
= n−1

n

(
µ2
(

n
n−1

)2
+ µ

(
n

n−1

))4

q>i qj + ε 1n (3)

= n−1
n

(
µ2
(

n
n−1

)2
+ µ

(
n

n−1

))4 (
− 1

n

)
+ ε 1n = Cnutero

0 (4)

u>i H−10 ui =

(
µ2
(

n
n−1

)2
+ µ

(
n

n−1

))2

q>i qi + ε 1n =

(
µ2
(

n
n−1

)2
+ µ

(
n

n−1

))2
n−1
n + ε 1n = C

pure
0 (5)

u>i H−10 uj =

(
µ2
(

n
n−1

)2
+ µ

(
n

n−1

))2

q>i qj + ε 1n =

(
µ2
(

n
n−1

)2
+ µ

(
n

n−1

))2 (
− 1

n

)
+ ε 1n = Ccross

0 (6)

Thus, these terms are constant over i, j.
Assume that the four terms are constant at k. Then, when k + 1,

u>i H−1k+1uj

= u>i

(
H−1k −

(
H−1k uik+1

) (
H−1k uik+1

)>
1 + u>ik+1

H−1k uik+1

)
uj

= u>i H−1k uj − u>i

(
H−1k uik+1

) (
H−1k uik+1

)>
1 + u>ik+1

H−1k uik+1

uj

= Ccross
k −

(
u>i H−1k uik+1

) (
u>ik+1

H−1k uj

)
1 + u>ik+1

H−1k uik+1

= Ccross
k −

(
Ccross
k

)2
1 + C

pure
k

(7)

1

u>i H−1k+1ui = C
pure
k −

(
Ccross
k

)2
1 + C

pure
k

(8)

Cnutero
k+1 =

(
H−1k+1ui

)>
M−1 (H−1k+1uj

)
(9)

=

(
H−1k ui −

Ccross
k

1 + C
pure
k

H−1k uik+1

)>
M−1

(
H−1k uj −

Ccross
k

1 + C
pure
k

H−1k uik+1

)
(10)

=
(
H−1k ui

)>
M−1 (H−1k uj

)
−
(
H−1k ui

)
M−1

(
Ccross
k

1 + C
pure
k

H−1k uik+1

)
(11)

−
C

pure
k

1 + C
pure
k

(
H−1k uik+1

)>
M−1 (H−1k ui

)
+

(
Ccross
k

1 + C
pure
k

)2 (
H−1k uik+1

)>
M−1 (H−1k uik+1

)
(12)

= Cnutero
k −

2Ccross
k

1 + C
pure
k

Cnutero
k +

(
Ccross
k

1 + C
pure
k

)2

Cnumera
k (13)

Cnumera
k+1 =

(
H−1k+1ui

)>
M−1 (H−1k+1ui

)
(14)

=
(
H−1k ui −

Ccross
k

1+C
pure
k

H−1k uik+1

)>
M−1

(
H−1k ui −

Ccross
k

1+C
pure
k

H−1k uik+1

)
(15)

=
((

H−1k ui

)> − Ccross
k

1+C
pure
k

(
H−1k uik+1

)>)
M−1

((
H−1k ui

)
− Ccross

k

1+C
pure
k

(
H−1k uik+1

))
(16)

=
(
H−1k ui

)>
M−1 (H−1k ui

)
−
(
H−1k ui

)
M−1

(
Ccross

k

1+C
pure
k

H−1k uik+1

)
(17)

− Ccross
k

1+C
pure
k

(
H−1k uik+1

)>
M−1 (H−1k ui

)
+
(

Ccross
k

1+C
pure
k

)2 (
H−1k uik+1

)>
M−1 (H−1k uik+1

)
(18)

= Cnumera
k − 2Ccross

k

1+C
pure
k

Cnutero
k +

(
Ccross

k

1+C
pure
k

)2
Cnumera
k (19)

Thus, the four terms are constant at k + 1 if they are constant at k. Because they are constant when k = 0, we
proved they are constant for every k ∈ {0, 1, 2, . . . , }.
2 Lemma 2
Next, we will prove Lemma 2. Lemma 2 states that score(k, i)−score(k+1, i) > 0 for every k ∈ {0, 1, 2, . . . , n−
1} if the graph concerned is a complete graph. Because Lemma 1 proves that, for a complete graph, score(k, i) is
constant over i at each round k, we only need to prove that the constant for the score at the k-th round is always
greater than that for the score at the k + 1-th round.

Our proof strategy is simple: we repeat factorizing score(k, i)− score(k+ 1, i) into a factor that can be proved
to be positive and the remaining factor. Then, because we only care about the sign of score(k, i)− score(k + 1, i),
we only need to focus on the sign of the remaining factor. Finally, we can eliminate k from the remaining factor
and we can also prove the remaining factor to be positive under some conditions on µ, n, and ε that can exclude
exceptional cases.

Remember that the score can be written as follows using the constants that we defined to prove Lemma 1:

score (k, i) =
Cnumera
k

1 + C
pure
k

. (20)

2

2.1 Sign of Constants

First, we prove the sign of the four types of the constants that we introduced to prove Lemma 1. Namely, we can
prove that Cpure

k > 0, Cnumera
k > 0, Ccross

k < 0, Cnutero
k < 0 for every k.

2.1.1 Proof of Cpure
k > 0

By definition, Cpure
k

def
= u>i H−1k ui. Thus, if H−1k is positive definite, i.e., for all non-zero vector x, x>H−1k x > 0

holds, then, we can prove Cpure
k = u>i H−1k ui > 0. Obviously, ui is a non-zero vector for every i since ui is, by

definition, an orthonormal vector, which ||ui||2 = 1.
We show that H−1k is positive definite as follows. From [1], by definition,

Hk
def
= Γ−1 + U>LkULk . (21)

Then, by multiplying (21) by x> and x from the left and right side, respectively, we obtain the following form.

x>Hkx = x>Γ−1x + (ULkx)> (ULkx) (22)

In (22), Γ−1 in the first term in the right hand side is positive definite because Γ−1 is, by definition, a diagonal
matrix whose diagonal elements are all positive, and thus, all of its eigenvalues are positive as follows. Note that,
by definition, µ > 0, ε > 0, and n ≥ 2 > 0.

Γ = diag

(µ2(n

n− 1

)2

+ 2µ

(
n

n− 1

))−1
, . . . ,

(
µ2ε2 + 2µε

)−1>
 . (23)

Next, in (22), the second term in the right hand side, obviously (ULkx)> (ULkx) ≥ 0. Thus, U>LkULk is
positive semi-definite.

Thus, (22) is the sum of a positive definite matrix and a positive semi-definite matrix, which is positive definite.
Thus, Hk is positive definite. Finally, since the inverse of a positive definite matrix is also positive definite, H−1k is
positive definite.

�

2.1.2 Proof of Cnumera
k > 0

By definition,

Cnumera
k

def
= u>i H−1k Λ−1H−1k ui = u>i

(
H−1k Λ−1H−1k

)
ui. (24)

Thus, if
(
H−1k Λ−1H−1k

)
is positive definite, Cnumera

k > 0. Λ−1, a diagonal matrix, is positive definite because its
all diagonal elements are positive by definition as follows:

Λ−1 = diag

((
n

n− 1

)−1
, . . . , ε−1

)
. (25)

We proved that H−1k is positive definite in §2.1.1. For two positive matrices of the same size, A and B, ABA
and BAB are positive definite. Thus, since H−1k and Λ−1 are positive definite, H−1k Λ−1H−1k is positive definite.

�

3

2.1.3 Proof of Ccross
k < 0

We prove by induction. When k = 0, Ccross
0 < 0 from (6). Assume Ccross

k < 0 at the k-th round. Then, Ccross
k+1 can

be written as:

Ccross
k+1 = Ccross

k −
(
Ccross
k

)2
1 + C

pure
k

. (26)

In the right hand side of (26), the first term, Ccross
k < 0 by assumption, and the second term −(Ccross

k)
2

1+C
pure
k

< 0

since we proved that Cpure
k > 0 for every k. Thus, Ccross

k+1 . Thus, by induction, for every k, Ccross
k < 0.

�

2.2 Equivalent Form

Now, we go back to proving score(k, i)− score(k + 1, i) > 0. Since we proved that Cpure
k > 0 for every k,

score (k, i)− score (k + 1, i) =
Cnumera
k

1 + C
pure
k

−
Cnumera
k+1

1 + C
pure
k+1

> 0 (27)

⇔
(
1 + C

pure
k+1

)
Cnumera
k − Cnumera

k+1

(
1 + C

pure
k

)
> 0. (28)

Thus, (28) is equivalent to Lemma 2.
(28) involves both k and k + 1. Since this is intricate to handle, we transform (28) to an equivalent proposition

that involves only k as follows.

(
1 + C

pure
k+1

)
Cnumera
k −

(
1 + C

pure
k

)
Cnumera
k+1 (29)

=

(
1 +

(
C

pure
k −

(
Ccross
k

)2
1 + C

pure
k

))
Cnumera
k −

(
1 + C

pure
k

)(
Cnumera
k −

2Ccross
k

1 + C
pure
k

Cnutero
k +

(
Ccross
k

1 + C
pure
k

)2

Cnumera
k

)

=
(
1 + C

pure
k

)
Cnumera
k −

(
1 + C

pure
k

)
Cnumera
k + 2Ccross

k Cnutero
k −

2
(
Ccross
k

)2
1 + C

pure
k

Cnumera
k (30)

= 2Ccross
k Cnutero

k −
2
(
Ccross
k

)2
1 + C

pure
k

Cnumera
k (31)

=

(
−

2Ccross
k

1 + C
pure
k

)(
Ccross
k Cnumera

k − Cnutero
k

(
1 + C

pure
k

))
. (32)

In (32), since Cpure
k > 0 and Ccross

k < 0 for every k, its first factor − 2Ccross
k

1+C
pure
k

> 0. Thus, the second factor of

(32) must be positive if and only if Ccross
k Cnumera

k − Cnutero
k

(
1 + C

pure
k

)
> 0:(

1 + C
pure
k+1

)
Cnumera
k −

(
1 + C

pure
k

)
Cnumera
k+1 > 0 (33)

⇔ Ccross
k Cnumera

k − Cnutero
k

(
1 + C

pure
k

)
> 0 (34)

Thus, Lemma 2 is equivalent to (34).

4

2.3 Removing k-dependent Constants

Since we showed that Lemma 2 is equivalent to (34), we prove (34), which we restate in (35).

Ccross
k Cnumera

k − Cnutero
k

(
1 + C

pure
k

)
> 0 (35)

(35) involves four k-dependent constants: namely, Ccross
k , Cnumera

k , Cpure
k , and Cnutero

k . These constants are
indexed by k and thus depend on k. In this subsection, rewrite (35) by replacing these k-dependent constants with
k-free constants that do not depend on k.

Namely, we introduce the following k-free constants as follows:

CGpure def
= u>i Γui =

(
µ2
(

n

n− 1

)2

+ 2µ

(
n

n− 1

))(
n− 1

n

)
+
(
µ2ε2 + 2µε

) 1

n
(36)

CGcross def
= u>j Γui =

(
µ2
(

n

n− 1

)2

+ 2µ

(
n

n− 1

))(
− 1

n

)
+
(
µ2ε2 + 2µε

) 1

n
(37)

CGnutero def
= u>i ΓΛ−1Γuj

=

(
µ2
(

n

n− 1

)2

+ 2µ

(
n

n− 1

))2
n− 1

n

(
− 1

n

)
+ ε−1

(
µ2ε2 + 2µε

)2 1

n
(38)

CGnumera def
= u>i ΓΛ−1Γui

=

(
µ2
(

n

n− 1

)2

+ 2µ

(
n

n− 1

))2
n− 1

n

(
n− 1

n

)
+ ε−1

(
µ2ε2 + 2µε

)2 1

n
(39)

In the above calculation, we used

Γui =

((
µ2
(

n

n− 1

)2

+ 2µ

(
n

n− 1

))
q>i ,

(
µ2ε2 + 2µε

) −1√
n

)>
. (40)

We decompose H−1k by using the Woodbury-identity formula as follows.

H−1k =
(

Γ−1 + U>LkULk

)−1
(41)

= Γ− ΓU>Lk

(
I + ULkΓU>Lk

)−1
ULkΓ. (42)

By using (42), we want to rewrite k-dependent constants with k-free constants. To this end, we introduce two
formulae that can be used to the rewrite.

First, by using k-free constants, for every j /∈ Lk,

ULkΓuj =

 u>l1
...

u>lk

Γuj =

 u>l1Γuj
...

u>lkΓuj

 =

 CGcross

...
CGcross

 = 1kC
Gcross. (43)

In (43), 1k is a ones vector of size k, i.e., a k-sized vector whose elements are all 1. Also, in (43), we let Lk
def
=

{l1, . . . , lk}.

5

Second, we want to calculate
(
I + ULkΓU>Lk

)−1
1k. This can be easily computed since 1k is an eigenvector

of
(
I + ULkΓU>Lk

)−1
for every k. To see this, we show that 1k is an eigenvector of

(
I + ULkΓU>Lk

)
as follows:

(
I + ULkΓU>Lk

)
1k = I1k +

CGpure CGcross · · · CGcross

CGcross
...

...
. CGcross

CGcross · · · CGcross CGpure

1k (44)

= 1k + 1k

(
CGpure + (k − 1)CGcross) (45)

=
(
1 + CGpure + (k − 1)CGcross)1k. (46)

Thus, 1k is an eigenvector of
(
I + ULkΓU>Lk

)
, with the eigenvalue

(
1 + CGpure + (k − 1)CGcross

)
. The eigen-

vectors of the inverse of a matrix is identical to those of the original matrix except that their corresponding eigen-
values are inverted. Thus, the following holds.(

I + ULkΓU>Lk

)−1
1k =

1k

1 + CGpure + (k − 1)CGcross =
1k

CIdenom . (47)

Here, we defined CIdenom as follows:

CIdenom def
= 1 + CGpure + (k − 1)CGcross. (48)

By using (43) and (47), we can rewrite k-dependent constants with k-free constants as follows:

Ccross
k = u>i H−1k uj (49)

= u>i Γuj − u>i ΓU>Lk

(
I + ULkΓU>Lk

)−1
ULkΓuj (50)

= CGcross −
(
CGcross)2 1>k

(
I + ULkΓU>Lk

)−1
1k (51)

= CGcross −
(
CGcross)2 k

1 + CGpure + (k − 1)CGcross (52)

= CGcross −
(
CGcross

)2
k

CIdenom (53)

Note that ui and uj are NOT in Lk since they are candidate of the k + 1-th node. Similarly to (53), we can
decompose Cpure

k as follows:

CGpure −
(
CGcross

)2
k

CIdenom (54)

6

Then,

Cnutero
k = u>i H−1k Λ−1H−1k uj (55)

=
(

Γui − ΓU>Lk1k

(
1 + CGpure + (k − 1)CGcross)−1CGcross

)>
Λ−1

(
Γuj − ΓU>Lk1k

(
1 + CGpure + (k − 1)CGcross)−1CGcross

)
(56)

= u>i ΓΛ−1Γuj

−1>k ULkΓΛ−1Γuj

(
1 + CGpure + (k − 1)CGcross)−1CGcross

−u>i ΓΛ−1ΓU>Lk1k

(
1 + CGpure + (k − 1)CGcross)−1CGcross

+1>k ULkΓΛ−1ΓU>Lk1k

((
1 + CGpure + (k − 1)CGcross)−1CGcross

)2
(57)

= CGnutero − 2kCGnuteroCGcross

1 + CGpure + (k − 1)CGcross +

(
kCGnumera + k (k − 1)CGnutero

) (
CGcross

)2
(1 + CGpure + (k − 1)CGcross)2

(58)

= CGnutero − 2kCGnuteroCGcross

CIdenom +

(
kCGnumera + k (k − 1)CGnutero

) (
CGcross

)2
(CIdenom)2

. (59)

Likewise, Cnumera
k can be decomposed as follows:

Cnumera
k = CGnumera − 2kCGnuteroCGcross

(CIdenom)
+

(
kCGnumera + k (k − 1)CGnutero

) (
CGcross

)2
(CIdenom)2

. (60)

2.4 k-free Equivalent Form

We can rewrite (35) with k-free constants by substituting (53), (54), (59), and (60) to it. However, a simple
substitution makes the formula too intricate to write down. Instead, in this subsection, we obtain an equivalent
proposition of Lemma 2 that is totally free from k.

To this end, we show that CIdenom > 0.

CIdenom = 1 + CGpure + (k − 1)CGcross (61)

= 1 +

(
µ2
(

n

n− 1

)2

+ 2µ

(
n

n− 1

))
(n− 1)− (k − 1)

n
+ 2

(
µ2ε2 + 2µε

) 1

n
(62)

Since k ∈ {1, . . . , n}, thus, k ≤ n. With this and n ≥ 2, obviously we obtain (62) > 0.
Thus, (35) is equivalent to (64) as follows:

Ccross
k Cnumera

k − Cnutero
k

(
1 + C

pure
k

)
> 0 (63)

⇔
(
CIdenom
k

)2 (
Ccross
k Cnumera

k − Cnutero
k

(
1 + C

pure
k

))
> 0 (64)

Thus, we will prove (64), an equivalent proposition of Lemma 2. By substituting (53), (54), (59), and (60) to
(64), we obtain the following:(

CIdenom
k

)2 (
Ccross
k Cnumera

k − Cnutero
k

(
1 + C

pure
k

))
(65)

=
(
CGcross − CGpure − 1

)2 (
CGcrossCGnumera − CGnuteroCGpure − CGnutero) . (66)

7

The transformation between (65) and (66) is checked by SymPy, a Computer Algebra System (CAS) designed
for Python1. We also numerically checked the transformation by substituting random values and confirmed that the
value matched. In (66), the proposition that (35) > 0 is equivalent to the second factor of (66), CGcrossCGnumera −
CGnuteroCGpure−CGnutero > 0 since the first factor of (66) is obviously positive because it is squared. Thus, Lemma
2 is equivalent to

CGcrossCGnumera − CGnuteroCGpure − CGnutero > 0. (67)

Thus, we will prove (67). By substituting (37), (36), (38), and (39) to CGcrossCGnumera − CGnuteroCGpure −
CGnutero, we obtain:

CGcrossCGnumera − CGnuteroCGpure − CGnutero (68)

= − 1

n (n− 1)7
µ2 (εn− ε− n) (µn+ n− 1)4(

ε2µ4n2 + 2ε2µ3n (n− 1) + ε2µ2 (n− 1)2 + 2εµ3n2 + 5εµ2n (n− 1)

+4εµ (n− 1)2 + µ2n2 + 4µn (n− 1) + 4 (n− 1)2
)

(69)

We carefully examine (69). First, we focus on the denominator of (69). Since n is the number of a complete
graph, by definition, n ∈ N. However, the denominator n (n− 1)7 becomes 0 when n = 1. Thus, we have
n ∈ {2, 3, 4, . . .}.

Next, we focus on the numerator of (69). The first and third factor, µ2 and (µn+ n− 1)4, respectively, is
obviously positive. The last factor is also positive provided that n ≥ 2 since ε > 0 and µ > 0.

ε2µ4n2 + 2ε2µ3n (n− 1) + ε2µ2 (n− 1)2 + 2εµ3n2 + 5εµ2n (n− 1)

+4εµ (n− 1)2 + µ2n2 + 4µn (n− 1) + 4 (n− 1)2 > 0. (70)

Finally, the second factor in (69), εn − ε − n, is negative under the condition that ε < n
n−1 . Remember that ε

is a substitute of the 0 eigenvalue, and [1] and we set ε = 10−6. Thus, this condition is easily achieved because we
usually set 0 < ε << 1 < n

n−1 .
In summary, the conditions for (69) are:

n ∈ {2, 3, 4, . . .} (71)

0 < ε < 1 (72)

Under the conditions of (71) and (72), only the second factor in the numerator of (69) is negative, and the latter
factors is positive. Thus, overall, (69) is positive under the conditions. Thus, Lemma 2 holds true.

�

References
[1] Quanquan Gu and Jiawei Han. Towards active learning on graphs: An error bound minimization approach. In

Proceedings of the IEEE International Conference on Data Mining (ICDM) 2012, 2012.

1See http://yoehara.com/ for details.

8

