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Introduction

BlackboxNLP is the workshop on analyzing and interpreting neural networks for NLP. In the last few
years, neural networks have rapidly become a central component in NLP systems. The improvement in
accuracy and performance brought by the introduction of neural networks has typically come at the cost
of our understanding of the system: How do we assess what the representations and computations are
that the network learns? The goal of this workshop is to bring together people who are attempting to peek
inside the neural network black box, taking inspiration from machine learning, psychology, linguistics,
and neuroscience.

In this second edition of the workshop, hosted by the 2019 Annual Meeting of the Association of
Computational Linguistics in Florence, Italy, we accepted 29 archival papers and 16 extended abstracts.
We hope this workshop continues to bring together ideas and stimulating new ways of building methods
and resources for the analysis and understanding of the inner-dynamics of neural networks for NLP.

BlackboxNLP would not have been possible without the dedication of its program committee. We would
like to thank them for their invaluable effort in providing timely and high-quality reviews on a short
notice. We are also grateful to our invited speakers for contributing to our program. Finally, we are very
thankful to our sponsors, Google, Facebook and Mircrosoft for supporting the workshop.

Tal Linzen, Grzegorz Chrupata, Yonatan Belinkov and Dieuwke Hupkes
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Transcoding compositionally: using attention to find more generalizable
solutions

Kris Korrel
University of Amsterdam
kris.korrel@gmail.com

Verna Dankers
University of Amsterdam
verna.dankers@gmail.com

Abstract

While sequence-to-sequence models have
shown remarkable generalization power across
several natural language tasks, their construct
of solutions are argued to be less composi-
tional than human-like generalization. In this
paper, we present seq2attn, a new architecture
that is specifically designed to exploit atten-
tion to find compositional patterns in the input.
In seq2attn, the two standard components of
an encoder-decoder model are connected via
a transcoder, that modulates the information
flow between them. We show that seq2attn can
successfully generalize, without requiring any
additional supervision, on two tasks which are
specifically constructed to challenge the com-
positional skills of neural networks. The so-
lutions found by the model are highly inter-
pretable, allowing easy analysis of both the
types of solutions that are found and potential
causes for mistakes. We exploit this opportu-
nity to introduce a new paradigm to test com-
positionality that studies the extent to which a
model overgeneralizes when confronted with
exceptions. We show that seq2attn exhibits
such overgeneralization to a larger degree than
a standard sequence-to-sequence model.

1 Introduction

In recent years, deep artificial neural networks
have been at the root of many successes in a wide
variety of Al tasks, including sequential tasks, for
which encoder-decoder models are the de facto
standard (Cho et al., 2014; Sutskever et al., 2014).
These successes have also caused a renewed inter-
est in the types of solutions that they learn (Linzen
et al., 2018) and, in particular, have prompted the
question: to what extent can their high accuracy
be taken as evidence that they in fact understood
the task they are modeling. A number of recent
studies argues that it cannot, when ‘understand-
ing the task’ is explained as understanding the im-

1

Dieuwke Hupkes
University of Amsterdam
d.hupkes@uva.nl

Elia Bruni
Universitat Pompeu Fabra
elia.bruni@gmail.com

plicit rules by which it is governed (e.g., Johnson
et al., 2017; Lake and Baroni, 2018; Liska et al.,
2018; Feng et al., 2018; Ravfogel et al., 2018).
More specifically, they argue that rather than un-
derstanding those implicit rules and being able to
compositionally apply them, RNN models exploit
biases in the data that are unrelated to the under-
lying system. While the latter strategy is remark-
ably effective when large amounts of training data
are available, the lack of understanding of the ac-
tual task leads to sample inefficiency, inability to
transfer knowledge between tasks and difficulty to
generalize to sequences that are drawn from the
same rule space, but differ distributionally from
the training data. Furthermore, the use of such
strategies, which deviate largely from human ap-
proaches, that are typically compositional (Lake
et al., 2015), makes it difficult to understand what
a model does and when it may make a mistake.

In this work, we propose a new component
that aims to address this particular weakness of
seq2seq models. This component, which is a re-
current attention module that can be integrated in
any form of encoder-decoder model, modulates
the information flow from encoder to decoder. We
test our module, which we dub seqg2attn, in a re-
current encoder-decoder model. Using two tasks
that are designed such that their accuracy reflects
directly whether the underlying rule-based system
is learned — the lookup table task (Liska et al.,
2018) and SCAN (Lake and Baroni, 2018; Loula
et al., 2018) — we show that seq2attn strongly en-
courages rule-based behaviour, which is easily in-
terpreted by studying the attention patterns gen-
erated by the module. Additionally, we propose
a new testing paradigm based on overgeneraliza-
tion, that can be used to gain more insights in the
biases of a model which cannot be inferred from
task success alone.

Proceedings of the Second BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, pages 1-11
Florence, Italy, August 1, 2019. (©2019 Association for Computational Linguistics



2 Related Work

2.1 Compositional datasets

The ability to learn and compositionally apply
symbolic rules is considered to be an important
prerequisite for understanding and modeling nat-
ural language. While (gated) recurrent neural net-
works are in principle capable of modeling com-
positional systems (e.g., Gers and Schmidhuber,
2001; Rodriguez, 2001), whether they in fact do
so when trained on large amounts of data to per-
form natural language processing tasks remains an
open question. Some positive results in this di-
rection have been presented (e.g., Hupkes et al.,
2018b), but a number of recent papers have ar-
gued that, rather than understanding the underly-
ing compositional structure of a problem, RNNs
rely on heuristics and exploit biases in the data.
Particularly relevant to the current work are the
studies of Lake and Baroni (2018) and Liska et al.
(2018), who both present data sets specifically de-
signed to reflect compositionality in their task ac-
curacy. Using their compositional tests, they show
that vanilla seq2seq models do not readily gener-
alize to solutions that exhibit an understanding of
the underlying rule system of the tasks.

2.2 Models

Some recent approaches attack the lack of com-
positional behaviour of RNNs by designing mod-
els that have compositionality explicitly built in,
for instance by equiping architectures with a se-
ries of specialized modules and a controller that
composes them (e.g., Andreas et al., 2016; John-
son et al., 2017). In this work, instead, we focus
on inducing compositional solutions in RNN mod-
els, that are less rigid and generally require fewer
supervision.

Our method draws inspiration from the work on
compositional learning of Hupkes et al. (2018a).
The authors introduce the concept of Attentive
Guidance, a training signal given to the attention
mechanism of a seq2seq model to induce more
compositional solutions. While they convincingly
show that seq2seq models with attention can in
fact implement such solutions (see Baan et al.
(2019) for an in-depth analysis), their model re-
quires attention annotation of the training data,
which may not always be available. In this work,
we address this problem by designing a model that
still aims to be compositional through the atten-
tion mechanism, but instead learns these patterns

fully automatically, obtaining similar or even im-
proved performance without the need of extra su-
pervision.

Another line of work which exploits attention
as a regularization technique is proposed by Hud-
son and Manning (2018), who introduce the Mem-
ory, Attention and Composition (MAC) cell. The
MAC cell consists of three components, whose
communication within one cell is restricted to us-
ing attention. An important limitation of the MAC
cell is that the number of reasoning steps needs
to be specified in advance. Our model, as vanilla
seq2seq models, doesn’t suffer from this limita-
tion.

3 Model

We propose seq2attn, a novel attention-centric
module that connects the encoder and decoder of a
seq2seq model.! The core component of seq2attn
is the transcoder: a recurrent module that mod-
ulates the information flow between encoder and
decoder by generating sparse attention vectors us-
ing separate keys and values. Below, we demon-
strate and test how seq2attn can be used in combi-
nation with a vanilla encoder-decoder architecture.

3.1 Encoder

In our tests, we assume a standard recurrent en-
coder, that, given an input sequence {x1,...,ZN}
and an embedding layer £¢"¢, generates a se-
quence of outputs and hidden states:

X?TLC — genc(mt) (1)

yf’I’LC’ hgnc — Senc (X?nc’ ?Ei) (2)

S is a recurrent state transition model, such as a
vanilla RNN, LSTM or GRU.

3.2 Transcoder

The transcoder is initialized with h{®"* = h{¢
and uses the hidden states of the encoder to com-
pute context vectors c; that will be passed to the
decoder.

The input to the transcoder is the embedded out-
put of te decoder (Eq. 11):

Xirans — gtrans (gt—l) (3)

trans trans __ Qtrans/trans trans
t sy =S (x N Vi B C))

"We will make our code available upon publication.



..........
—m—

[ I

[

<sos> Qutput symbols

7 [ [

Decoder

Context vector

Encoder

dolor

Inputembedd\ngs/ Lorum // ipsum //

Transcoder

Figure 1: Schematic of the seq2attn architecture. The input sequence is processed by the encoder (E), after which
the transcoder (T) generates context vectors, which are weighted means over the input embeddings.

The transcoder state is then used to query the
hidden states of the encoder. The resulting scores
are normalized using the Softmax function:

ai(s) =v) - ReLU(W, - [b{"¢; hi"%])  (5)
exp a(s)

== 0 6

7Tt(3) Zf\il exp Ozt(i) ( )

Using the Softmax distribution often results in
distributed vectors that attend to many input sym-
bols at the same time, while an ideal composi-
tional attention vector only focuses on the rele-
vant parts of the input. To force the transcoder
to be more selective in the information it se-
lects, we use Gumbel-Softmax, which allows us
to draw from the categorical distribution com-
puted in Eq. 6, with continuous relaxation (Jang
et al., 2017; Maddison et al., 2016). The Straight-
Through estimator is then used as a biased gradi-
ent estimator of the arg max operator:

log m¢(8)+gs
- (7)

N log ¢ (i)+gs
> | oxp T

a; = a; — a; + one_hot(arg max(a;))

exp

at(s) =

(8)

The temperature 7 can be interpreted as a measure
of uncertainty. a; is a copy of a; which we do
not backpropagate through. At inference time the
stochasticity of Gumbel-Softmax is not needed,
and arg max is used as activation function.

The resulting attention weights are used to com-
pute the context vectors that will be passed to the
decoder:

N

Ct = Zat(z) _X’?nc

i=1

(€))

Crucially, the context vector represents a weighted
average of the input embeddings of the encoder,
while the weights a;(7) are depending on the hid-
den states of the encoder, thus introducing a sep-
aration between attention keys and values (similar
to, e.g., Mino et al., 2017; Vaswani et al., 2017).

3.3 Decoder

The decoder of a seq2seq model is commonly ini-
tialized with the final hidden state of the encoder.
However, as this state vector encodes the entire in-
put sequence, this type of initialization does not
urge compositional behavior of the decoder. When
seq2attn is used, the decoder should be initialized
with a fixed, learned initialization vector. In com-
bination with using input embeddings as attention
values (Eq. 9), this restricts the decoder to work
only with disentangled representations of the input
sequence, which encourages it to learn and process
the individual meaning of all input symbols.

To model outputs, the decoder uses the context
vector ¢;, its own embedded output (identical to
Eq. 3) and a vector hffcl that integrates the current
decoder hidden state with the context vector:

yglec’ fl;lec _ Sdecqct; gtranS(gt_l)L hgfcl) (10)
(11)

Where h{°¢ is computed using an element-wise
multiplication of the context vector with the previ-
ous hidden state of the decoder:

dec __
ht—l -

UJp = arg max(Softmax(yfec))

h{*S © ¢ (12)

This way of integrating the context vector with
the decoder, which we call full focus, makes the
output of the decoder at decoding step ¢ more di-

rectly dependent on the current context vector c;.



held-out held-out held-out
inputs compositions tables
Baseline | 38.25 £0.04 43.28 £0.09 7.86+0.02
Seq2attn | 100 + 0.00 100 £ 0.00 100 £ 0.00

Table 1: Average sequence accuracies and standard
deviations of the baseline and seq2attn models on all
lookup tables test sets.

4 Test Case 1: Lookup tables

Our first test-case is the lookup table task intro-
duced by Liska et al. (2018).

4.1 Task

The core of the lookup table composition domain
consists in sequentially applying simple lookup ta-
ble functions. The functions to be applied are bi-
jective mappings from the set of all n-bit bitstrings
onto itself. Following Liska et al. (2018), we focus
on 3-bit strings, resulting in 23 = 8 possible in-
puts and outputs. We create 8 random table lookup
functions, to which we refer with the names t 1,
t2, ..., t8. Given the simplicity of the functions,
the main challenge of the task resides in inferring
that the input sequences should be treated compo-
sitionally, rather than considered as a whole.

We borrow the setup presented in Hupkes et al.
(2018a), which differs slightly from the setup as
it was originally presented. In this setup, a typical
input output example couldbe 001 t1 t2 — 001
010 111. Computing the output for this example
requires the sequential application of t1 to 001,
and then t2 to the intermediate result. Since two
tables are to be applied in succession, we refer to
such an examples as a binary composition, as op-
posed to a unary composition in which only one
function has to be applied on the input. The input
bitstring and all intermediate outputs are included
in the target output sequence.

Liska et al. (2018) train models on all 8 inputs
for unary compositions and on 6 out of 8 input bit-
strings of all binary compositions. The remain-
ing 2 held-out inputs are used to test for gener-
alization. Following Hupkes et al. (2018a), we
do not include all 64 binary compositions in the
training set, but leave out some for testing. In par-
ticular, we create one test set that contains all bi-
nary compositions containing t 7 or t 8, which are
thus only seen in the training set as unary com-
positions. We call this condition held-out tables.
Of the remaining binary compositions, that con-
tain only functions in {t1, ..., t6}, 8 randomly

held-out held-out held-out

inputs compositions tables
Baseline+G 34.17 £8.25 38.54 +£12.39 8.16 +£3.57
Baseline+E 82.50 £ 12.42 85.42 +12.39 31.08 £7.85
Baseline+F 85.83 £ 16.50 91.67 £ 11.79 30.03 £ 16.12
Baseline+T 43.33 +£12.30 47.40 + 15.33 399 +2.70
Baseline+GE | 82.50 + 12.42 83.85 +7.48 30.21 +3.32
Baseline+GF | 69.17 + 21.25 76.04 +13.28 4.69 +147
Baseline+GT | 32.50 + 8.90 45.31 £10.13 1.56 +1.53
Baseline+EF 85.00 +£9.35 82.29 + 18.46 24.13 +2.99
Baseline+ET 100.00-+ 0.00 100.00-+ 0.00 41.49 +£3.30
Baseline+FT 68.33 +£21.44 71.88 £ 23.00 19.44 £ 19.06
Baseline+GEF | 74.17 + 36.53 72.40 £ 37.94 37.33 +£22.10
Baseline+GET | 97.50 + 3.54 98.44 +1.28 2431 £+ 17.87
Baseline+GFT | 90.83 +3.12 91.15 £3.21 28.30 +£7.23
Baseline+EFT | 66.67 + 47.14 66.67 +47.14 66.67 £+ 47.14
Seq2attn ‘ 100.00-+ 0.00 100.00-+ 0.00 100.00-£ 0.00

Table 2: Mean sequence accuracies and standard
deviation on the lookup tables task of a baseline
seq2seq model with additional components of seq2attn.
G=Gumbel-Softmax, E=embeddings as attention val-
ues, F=full focus, T=transcoder.

selected compositions are held out from the train
set for all inputs, which form the held-out compo-
sitions test set. Lastly, we remove 2 of the 8 in-
puts for each binary composition independently to
form the held-out inputs test set, which is similar
to the generalization condition presented by Liska
et al. (2018).

4.2 Results

We first compare the seq2attn architecture to a
standard seq2seq model with an attention mech-
anism on generalization to new test examples. We
establish the optimal parameters for both models
using a grid search over a separate validation set.
Our search includes the type of RNN cell ({GRU,
LSTM}), the embedding and RNN sizes ({32, 64,
128, 256, 512, 1024}) and the dropout rate ({0,
0.2, 0.5}). The results are summarized in Table 3.
The mini-batch size (1) and optimizer (Adam with
default parameters (Kingma and Ba, 2014)) are
fixed. We train 10 models with the optimal pa-
rameters and report mean sequence accuracy. For
simplicity we will henceforth simply refer to this
as the accuracy.

Our experiments confirm the findings previ-
ously presented by Hupkes et al. (2018a) and
Liska et al. (2018): Vanilla seq2seq models do
not find generalizing solutions for the lookup ta-
ble task (Table 1, first row). Seq2attn, on the
other hand, generalizes perfectly to data outside
the training distribution. This first test confirms
our hypothesized compositional bias of seq2attn.



4.3 Ablation Study

The difference between a traditional seq2seq and
the seq2attn model can be summarized as the use
of (i) a transcoder, (ii) the Gumbel-Softmax ac-
tivation for the attention vector, (iii) using input
embeddings as attention values and (iv) using full
focus. To assess the contributions of these com-
ponents, we take the seq2attn model with optimal
hyper-parameters as a base model, and increas-
ingly ablate components. The results of this study
(Table 2) indicate that, while some of the compo-
nents of seq2attn cause an increase in accuracy on
their own, no subset of them can match the perfor-
mance of the full seq2attn model.

4.4 Attention patterns

As the modeled output of the decoder is highly
dictated by the context vectors that it receives,
we can gain insights into the types of solutions
the models are forming by studying their attention
vectors. As illustrated in Figure 2, seq2attn learns
to generate a “correct” attention trace, attending to
the right input at the right time. Contrastingly, the
baseline fails to capture a systematic pattern and
produces a diffused attention instead or attends to
irrelevant inputs, indicating that it does not utilize
the attention mechanism to its full advantage.

4.5 Overgeneralization

The results for the lookup tables task indicate that
seq2attn performs much better than the baseline on
data containing held-out inputs, tables and compo-
sitions. The model is thus better able to infer the
compositional rules underlying the data. To fur-
ther explore seq2attn’s bias towards composition-
ality, we test its behaviour when confronted with
uncompositional examples, that do not adhere to
the previously mentioned rules. Where a model
unaware of the underlying task structure would
have little problems learning such exceptions — or
in fact, would not realise that they are exceptions
— a model with a strong compositional bias may
sometimes wrongly assume the exceptions also
adhere to the underlying system, and overgeneral-
ize an inferred rule. The extent to which a model
overgeneralizes can thus be seen as a proxy for the
strength of its compositional bias. Whether over-
generalization is actually preferentiable behavior
is depend on the task to be solved.

In the proposed setup, a small number of train-
ing instances are assigned adapted output targets.

We call these instances exceptions. The target out-
put sequences of the exceptions are changed such
that they can only be learned through memoriza-
tion. For the lookup table task, we adapt the train-
ing set such that one composition, t1 t2, is an
exception to the general rules for three out of the
eight existing input bitstrings. In the target output,
the third bitstring is replaced with a randomly se-
lected bitstring, thus changing the application of
table £2 in this context. Both the three adapted
samples and the other five unadapted samples for
t1 t2 areincluded in the training set.

While training a model, we monitor the output
sequences generated for these exceptions. The ac-
curacy on the original targets is reported to iden-
tify whether the model is processing the excep-
tions compositionally despite being exposed to the
adapted targets in the training set, i.e., whether the
model is overgeneralizing.

Figure 3 displays the accuracy on the original
targets of all eight inputs in composition t1 t2
over the first 30 training epochs. While both the
baseline and seq2attn learn to memorize the three
exceptions, only seq2attn shows a strong bias to
treat the inputs compositionally before memoriz-
ing the adapted targets. The performance goes as
high up as 8/8 between the fifth and fifteenth epoch
for differently initialized models, before dropping
to 5/s. This indicates that the rules are learned be-
fore the adapted instances are memorized as ex-
ceptions to these rules.

5 Test Case 2: SCAN

While the lookup table task provides an excellent
test case to evaluate the compositional abilities of
a neural network model, its simplicity limits the
conclusions that can be drawn about the usability
of seq2attn in more challenging domains. In this
section, we evaluate seq2attn on SCAN (Lake and
Baroni, 2018), a task involving mapping naviga-
tional commands to sequences of output actions.

5.1 Task

The input commands of the SCAN task are com-
posed of a small set of predefined atomic com-
mands (jump, walk, run and look), modifiers
(twice, thrice, around, opposite, left and right)
and conjunctions (after and and) that are com-
bined via a limited context free grammar, such
that there are no ambiguities. An example in-
put is jump after walk left twice, where the learn-
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Figure 2: Examples of modeled attention patterns on held-out input examples of the lookup tables domain.

‘ Baseline

Seq2attn

Lookup tables
SCAN

128, 512, 1, GRU, 0.5
200, 200, 2, LSTM, 0.5 512,512, 1, GRU, 0.5

256, 256, 1, GRU, 0.5

Table 3: Hyperparameters (embedding dimensions, RNN dimensions, RNN layers, RNN type, dropout rate) used
for both the seq2seq baseline and seq2attn model for both tasks.
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Figure 3: Average accuracies on original targets for
the eight inputs in composition t1 t2. As three of
these compositions are exceptions, we refer to accu-
racy higher than 5/ as overgeneralization. The 95%
confidence interval is indicated.

ing agent has to mentally perform these actions
in a 2-dimensional grid and output the sequence
of actions it takes: “I_ TURN_LEFT I[I.WALK
I_.TURN_LEFT I-WALK I_.JUMP”. For full de-
tails of the data set and experiments, we refer to
Lake and Baroni (2018).

Lake and Baroni use three different train-test
distributions of the total of 20.910 examples. They
show that vanilla seq2seq models are able to al-
most perfectly generalize when the data is ran-
domly split in a training and testing set, but that
they are unfit for generalizing to longer test se-
quences and for one-shot learning to commands
seen only in their atomic form. Later, Loula et al.
(2018) proposed a new set of experiments based
on the same task, which they argue are better

0 5 10 15 20 25 30

suited for assessing systematic compositionality.
We focus on experiments 2 and 3 of their paper.

Experiment 2 contains four different train-test
distributions as there are four primitive commands
involved. For all four conditions, the test set is
the same. This test set consists of all examples
that contain “jump around right” in their input
sequences. The first condition, which is called
0 fillers, contains no subsequences of the form
“primitive around right” in the training set, where
primitive is either of the four primitives “jump”,
“look”, “run” or “walk”. This condition should
thus test whether a model can induce a compo-
sitional understanding of “jump around right” by
showing those symbols (“jump”, “around” and
“right”) only in different contexts. The next three
conditions, 1 filler, 2 fillers and 3 fillers, are con-
sidered increasingly easier. They retain the same
test set, but increasingly add more examples to the
train set of the template “primitive around right”.
1 filler adds all examples of this template where
primitive is “look”. 2 fillers and 3 fillers add
“walk” and “run” respectively.

As Loula et al. (2018) observed a great differ-
ence in performance between the 0 fillers and 1
filler conditions, they zoom in on these condi-
tions in experiment 3. The 0 fillers condition con-
tains 0 examples with the subsequence “primitive
around right” in the training set. The 1 filler con-
dition contains 1.100 of those, namely all exam-
ples which contain the subsequence “look around
right”. In experiment 3, they test a more smooth
and dense transition from the 0 fillers condition



to the 1 filler conditions. They accomplish this by
taking the training set of the 0 fillers condition and
adding respectively 1, 2, 4, 8, 16, 32, 64, 128, 256,
512 and 1024 extra examples containing the sub-
sequence “look around right”, resulting in 11 new
training sets. The test set is again the same as in
experiment 2.

5.2 Results

We compare a baseline seq2seq to the seq2attn ar-
chitecture on these two tasks. First, we perform
a grid search using a random split of the data to
find the optimal parameters for seq2attn. The re-
sults of this are summarized in Table 3. As a base-
line, we used the model which Lake and Baroni
(2018) found to be overall best performing, which
is a seq2seq model with 2-layer LSTMs, 200 hid-
den units per layer and a dropout rate of 0.5. For
comparison to the seq2attn model, we also added
an attention mechanism, which was missing in the
original model. For all reported results we ran
these models 10 times with random weight initial-
ization. Since experiments 2 and 3 by Loula et al.
(2018) do not have validation sets for early stop-
ping, we ran all models for 50 epochs.

Firstly, we confirm the findings of Lake and Ba-
roni (2018) and Loula et al. (2018) (see Fig. 4,
left). A vanilla seq2seq with attention is able to
perform analogical generalization (95.19% accu-
racy): it requires examples of 1 filler only to gen-
eralize to other fillers of the same template. On
the other hand, it is not able to apply “right” and
“around” to a primitive verb in a productive way,
when they were never seen together (0.26% ac-
curacy, 0 fillers condition). When we look at
seq2attn, we notice how not only it is able to per-
form analogical generalization (94.32% accuracy,
1 filler) but, to a certain extent, it is also able to
generalize productively in the 0 fillers condition
(36.23% accuracy).

In Figure 4 (right) we report the results for ex-
periment 3 of Loula et al. (2018) where we con-
sider the 0 fillers condition of Experiment 2 and
progressively add extra training examples from
1 filler. As Loula et al. (2018) observed, per-
formance of a seq2seq model ramps up as more
samples are injected in the training set. Yet,
the fact that performance increases gradually and
takes long to peak (at 512 examples) suggests that
rather than systematically understanding the rule,
the model is piling up evidence for a very spe-

cific pattern. The situation is quite different for the
seq2attn model, whose performance spikes much
earlier, reaching a plateau at 16 examples already.
Interestingly, the performance peak is also at 512,
but with an improvement of just over 5 percentage
points over 16 examples vs. approximately 50 per-
centage points improvement in the case of base-
line. Seq2attn seems then to show evidence for an
opposite interpretation, namely for a network that,
to a certain extent, is able to induce the compo-
sitional rules. A property that is often linked to
sample efficiency (Lake and Baroni, 2018).

5.3 Analysis

In Figure 5, we now look at some attention pat-
terns for the 0 fillers condition. While base-
line models emit sparser and more informative
attentional patterns here than in the lookup ta-
ble task, they still are locally diffused and, more
importantly, do not maintain a systematic input-
output alignment, which suggests that the mod-
els are not understanding the rules of the task,
but use a pattern matching strategy instead. On
the contrary, seq2attn shows always fully sparse,
one-hot attention patterns. Figure 5c shows how
the model usually aligns outputs to their respec-
tive primitive commands or directions in the input
sequence, e.g., “I_ JUMP” aligns to “jump”, and
“I_.TURN_RIGHT” aligns to “right”. A modifier
like “opposite” is used as an indicator to repeat the
last modeled directional action.

Seq2attn reaches an accuracy of 36.23% on the
0 fillers condition, which still leaves room for
improvement. However, the attentional patterns
quickly show the main cause of error. Figure 5b
shows how the model outputs “I. TURN_LEFT”
instead of “I_TURN_RIGHT” whenever it attends
to the input “around”. Whenever the model does
attend to “right”, as is the expected, optimal be-
havior, the output is correct. This behavior can
be easily explained by analyzing the data that the
model was trained on. The input “around” has
only been encountered within the context “prim-
itive around left” during training. Thus, within
this context, “around” and “left” could be used
synonymically by the transcoder to communicate
to the decoder to output “I_ TURN_LEFT”. The
great majority of errors on this task by seq2attn
have the same cause. Although seq2attn still does
not perfectly solve the task, contrary to a standard
seq2seq model, it provides an immediate under-
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the attention pattern is incorrect.

standing of the root of this.

5.4 Overgeneralization

To assess seq2attn’s overgeneralization abilities
for the SCAN task, we repeated experiment 3.
In addition to gradually adding samples indicat-
ing the correct interpretation of “primitive around
right”, we also added a single exception for “jump
around right” to the training set. The target for this
sequence, originally consisting of four repetitions
of “I TURN_RIGHT I.JUMP”, was modified to
consist of only two repetitions.

For all conditions of experiment 3, we added the
exception to the training set, trained multiple ran-
domly initialized models, and monitored the out-
put sequences generated for this exception over
the course of training. In Figure 6, we visualize
the distribution over the adapted and original tar-

gets for the conditions with 4 and 512 filler sam-
ples respectively. Note that the models have im-
plicit and explicit evidence for the correct appli-
cation of the rules for “primitive around right”:
explicit evidence through training examples con-
taining “look around right* subsequences, and im-
plicit evidence through training samples including
“around” or “right” seen in different contexts.

Both models exhibit overgeneralization behav-
ior for SCAN. Generally, overgeneralization oc-
curs at the start of the training process and pre-
cedes memorization of the adapted target. How-
ever, the baseline model needs a substantially
larger amount of explicit evidence to overgener-
alize as much as the seq2attn model. The condi-
tion where 512 filler samples are included illus-
trates that the tendency to overgeneralize does not
necessarily relate to the overall task performance.
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progresses. The distribution was normalized for cases in which the output emitted was neither the original or the

adapted target.

For this condition, seq2attn and the baseline yield
similar sequence accuracies in the original setup of
experiment 3 (see Figure 6), but seq2attn overgen-
eralizes more frequently, indicating that seq2attn
has a stronger compositional bias.

6 Discussion

In search for a neural network architecture that ex-
hibits a bias towards systematic generalization, we
introduced seq2attn, a recurrent attention-centric
module that controls the information flow from
encoder to decoder. We installed this module in
a standard recurrent encoder-decoder architecture.
To quantify its capabilities in terms of system-
atic compositionality, we tested the model on the
lookup table and SCAN tasks.

On both tasks, we see significant improvements
compared to a standard recurrent seq2seq model,
providing evidence for a compositional bias in the
system. Furthermore, because the architecture re-
lies heavily on its attention mechanism, its solu-
tions can more easily be interpreted by looking
at the generated attention patterns. This provides
opportunities for analyzing what the model has
learned as well as for detecting potential biases in
the training set.

Although on the considered tasks, which are
specifically designed to evaluate compositionality,
seq2attn leads to clear improvements, its contri-
bution could not have been observed when con-
sidering a task for which the test accuracy is not
directly linked to compositionality, such as nat-

ural language modeling and translation. We ar-
gue that, for those cases, additional assessment
methods are needed to compare the compositional
skills of different models. We propose one such
method, which involves monitoring to what extent
a model overgeneralizes. We show how a model
with seq2attn, for both tasks, has a greater ten-
dency to overgeneralize than the baseline.

A possible limitation of the design of seq2attn
is that the flow of information from transcoder to
decoder is very rigid. Possible solutions could be
found in the use of less skewed activations than
the Gumbel-Softmax such as Sparsemax (Martins
and Astudillo, 2016), or allowing the transcoder to
communicate multiple embeddings using adaptive
computation time (Graves, 2016).

Importantly, seq2attn is not tied to a particular
type of seq2seq architecture. In future work, we
plan to install it into other popular seq2seq archi-
tectures such as convolutional seq2seq (Gehring
et al., 2017) and Transformer models (Vaswani
etal., 2017).
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Abstract

Neural methods for sentiment analysis have
led to quantitative improvements over previ-
ous approaches, but these advances are not al-
ways accompanied with a thorough analysis of
the qualitative differences. Therefore, it is not
clear what outstanding conceptual challenges
for sentiment analysis remain. In this work, we
attempt to discover what challenges still prove
a problem for sentiment classifiers for English
and to provide a challenging dataset. We col-
lect the subset of sentences that an (oracle) en-
semble of state-of-the-art sentiment classifiers
misclassify and then annotate them for 18 lin-
guistic and paralinguistic phenomena, such as
negation, sarcasm, modality, etc.! Finally, we
provide a case study that demonstrates the use-
fulness of the dataset to probe the performance
of a given sentiment classifier with respect to
linguistic phenomena.

1 Introduction

Over the last 15 years, approaches to sentiment
analysis which concentrated on creating and curat-
ing sentiment lexicons (Turney, 2002; Liu et al.,
2005) or used n-grams for classification (Pang et al.,
2002) have been replaced by models that are able
to exploit compositionality (Socher et al., 2013; Ir-
soy and Cardie, 2014) or implicitly learn relations
between tokens (Peters et al., 2018; Howard and
Ruder, 2018; Devlin et al., 2018). These neural
models push the state of the art to over 90% accu-
racy on binary sentence-level sentiment analysis.
Although these methods show a quantitative im-
provement over previous approaches, they are not
often accompanied with a thorough analysis of the
qualitative differences. This has led to the current
situation, where we are aware of quantitative, but
not qualitative differences between state-of-the-art

The dataset is available at https://github.com/
ltgoslo/assessing._and_probing_sentiment.
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sentiment classifiers. It also means that we are not
aware of the outstanding conceptual challenges that
we still face in sentiment analysis.

In this work, we attempt to discover what con-
ceptual challenges still prove a problem for all state-
of-the-art sentiment methods for English. To do
so, we train and test three state-of-the-art machine
learning classifiers (BERT, ELMo, and a BiLSTM)
as well as a bag-of-words classifier on six sentence-
level sentiment datasets available for English. We
then collect the subset of sentences that all models
misclassify and annotate them for 18 linguistic and
paralinguistic phenomena, such as negation, sar-
casm, modality or world knowledge. We present
this new data as a challenging dataset for future
research in sentiment analysis, which enables prob-
ing the problems that sentiment classifiers still face
in more depth.

Specifically, the contributions of this work are:

the creation of a challenging sentiment dataset
from previously available data,

the annotation of errors in this dataset for 18
linguistic and paralinguistic phenomena,

a thorough analysis of the dataset,

and finally presenting a practical use-case
demonstrating how the dataset can be used
to probe the particular types of errors made by
a new model.

The rest of the paper is organized into related
work (Section 2), a description of the experimen-
tal setup (Section 3), a brief description of the
dataset (Section 4), an in-depth analysis (Section
5), a case-study that demonstrates the usefulness
of the dataset (Section 6), and finally a conclusion
(Section 7).

Proceedings of the Second BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, pages 12-23
Florence, Italy, August 1, 2019. (©2019 Association for Computational Linguistics



2 Related work

Neural networks are now ubiquitous in NLP tasks,
often giving state-of-the-art results. However, they
are known for being “black boxes” which are not
easily interpretable. Recent interest in interpret-
ing these methods has led to new lines of research
which attempt to discover what linguistic phenom-
ena neural networks are able to learn (Linzen et al.,
2016; Gulordava et al., 2018; Conneau et al., 2018),
how robust neural networks are to perturbations in
input data (Ribeiro et al., 2018; Ebrahimi et al.,
2018; Schluter and Varab, 2018), and what biases
they propagate (Park et al., 2018; Zhao et al., 2018;
Kiritchenko and Mohammad, 2018).

Specifically within the task of sentiment anal-
ysis, certain linguistic phenomena are known to
be challenging. Negation is one of the aspects of
language that most clearly affects expressions of
sentiment and that has been studied widely within
sentiment analysis (see Wiegand et al. (2010) for an
early survey). The difficulties of resolving negation
for sentiment analysis include determining nega-
tion scope (Hogenboom et al., 2011; Lapponi et al.,
2012; Reitan et al., 2015), and semantic composi-
tion (Wilson et al., 2005; Choi and Cardie, 2008;
Kiritchenko and Mohammad, 2016).

Verbal polarity shifters have also been studied.
Schulder et al. (2018) annotate verbal shifters at
the sense-level. They conclude that, although in-
dividual negation words are more frequent in the
Amazon Product Review Data corpus, the overall
frequency of negation words and shifters is likely
similar. This suggests that there is a Zipfian tail of
shifters which are not often handled within senti-
ment analysis.

Furthermore, the linguistic phenomenon of
modality has also been shown to be problematic.
Both Narayanan et al. (2009) and Liu et al. (2014)
explore the effect of modality on sentiment classi-
fication and find that explicitly modeling certain
modalities improves classification results. They ad-
vocate for a divide-and-conquer approach, which
would address the various realizations of modal-
ity individually. Benamara et al. (2012) perform
linguistic experiments using native speakers con-
cerning the effects of both negation and modality
on opinions, and similarly find that the type of
negation and modality determines the final inter-
pretation of polarity.

The sentiment models inspected in these anal-
yses, however, were lexicon- and word- and n-
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Label MPQA  OP. Sem. SST  Ta.  Th.
++ — 379 — 1852 - -
+ 193 879 3499 3111 923 2727
0 527 — 4478 2242 1419 1,779
— 413 399 1310 3,140 1,320 1,828
— — 74 — 1510 - —
Total 1,133 1731 9287 11855 3.662 6334

Table 1: Statistics for the sentence-level annotations in
each dataset.

gram-based models. It is not clear that neural net-
works have the same weaknesses, as they have
been shown to deal with compositionality and
long-distance dependencies to some degree (Socher
et al., 2013; Linzen et al., 2016). Additionally, au-
thors did not attempt to discover from the data
what phenomena were present that could affect sen-
timent. In the current paper we aim to provide a
systematic analysis of error types found across a
range of datasets, domains and classifiers.

3 Experimental setup

In these experiments, we test three state-of-the-art
models for sentence-level sentiment classification.
We choose to focus on sentence-level classification
for three reasons: 1) sentence-level classification
is a popular and useful task, 2) there is a large
amount of high-quality annotated data available,
and 3) annotation of linguistic phenomena is easier
at sentence-level than document-level. It is also
likely that most phenomena that occur at sentence-
level, e. g., negation, comparative sentiment, or
modality, will transfer to other sentiment tasks.

3.1 Datasets

In order to discover a subset of sentences that all
state-of-the-art models are unable to correctly pre-
dict, we collect six English-language datasets previ-
ously annotated for sentence-level sentiment from
five domains (news wire, hotel reviews, movie re-
views, twitter, and micro-blogs). Table 1 shows the
statistics for each of the datasets.

MPQA The Multi-perspective Question Answer
(MPQA) Opinion Corpus (Wilson et al., 2005) pro-
vides contextual polarity annotations for English
news documents from world press. The annotations
are private state frames, which include annotations
for text anchor, source, target, and attitude type,
among others. We extract sentiment labeled sen-
tences by taking only those sentences that have



sentiment annotations. Additionally, we remove
sentences that contain both positive and negative
sentiment. This leaves a three-class (positive, neu-
tral, negative) sentence-level dataset.

OpeNER The Open Polarity Enhanced Named
Entity Recognition (OpeNER) sentiment datasets
(Agerri et al., 2013) contain hotel reviews anno-
tated for 4-class (strong positive, positive, negative,
strong negative) sentiment classification. We take
the English dataset, where self-attention networks
give state-of-the-art results (Ambartsoumian and
Popowich, 2018).

SemEval The SemEval 2013 tweet classifica-
tion dataset (Nakov et al., 2013) contains tweets
collected and annotated for three-class (positive,
neutral, negative) sentiment. The state-of-the-art
model is a Convolutional Network (Severyn and
Moschitti, 2015).

Stanford Sentiment Treebank The Stanford
Sentiment Treebank (Socher et al., 2013) con-
tains 11,855 English sentences from movie reviews
which have been annotated at each node of a con-
stituency parse tree. Contextualized word repre-
sentations combined with a bi-attentive sentiment
network currently give state-of-the-art results (Pe-
ters et al., 2018).

Tackstrom dataset The Tackstrom dataset
(Tackstrom and McDonald, 2011) contains prod-
uct reviews which have been annotated at both
document- and sentence-level for three-class senti-
ment, although the sentence-level annotations also
have a “not relevant” label. We keep the sentence-
level annotations, which gives 3,662 sentences an-
notated for three-class sentiment.

Thelwall dataset The Thelwall dataset derives
from datasets provided with SentiStrength? (Thel-
wall et al., 2010). It contains microblogs annotated
for both positive and negative sentiment on a scale
from 1 to 5. We map these to single sentiment la-
bels such that sentences which are clearly positive
(pos >= 3 and neg < 3) are given the positive label,
clearly negative sentences (pos < 3 and neg >=
3) the negative label, and clearly neutral sentences
(3 < pos > 2 and 3 < neg > 2) the neutral. We
discard all other sentences, which finally leaves
6,334 annotated sentences.

2The data are available at

sentistrength.wlv.ac.uk/

http://
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3.2 Models

In order to gain an idea of what errors most models
suffer from, we test three state-of-the-art models on
the datasets. Additionally, we use a bag-of-words
model as it is a strong baseline for text classifica-
tion. For the SINGLE setup, we train all models on
the training and development data for each dataset
and test on the corresponding test set, therefore
avoiding domain problems.

BERT The BERT model (Devlin et al., 2018) is
a bidirectional transformer that is pretrained on two
tasks: 1) a cloze-like language modeling task and
2) a binary next-sentence prediction task. It is pre-
trained on 330 million words from the BooksCor-
pus (Zhu et al., 2015) and English Wikipedia. We
fine-tune the available pretrained model® on each
sentiment dataset.

ELMo We use the bi-attentive classification net-
work* from Peters et al. (2018). The network
uses both word embeddings, as well as creating
character-based embeddings from a character-level
CNN-BiLSTM network. The word representations
are first passed through a feedforward layer, and
then through a sequence-to-sequence network with
biattention. This new representation of the text
is combined with the original representation and
passed through another sequence-to-sequence net-
work. Finally, a max, min, mean and self-attention
pool representation is created from this last se-
quence. For classification, these features are sent
to a maxout layer.

BiLSTM Bidirectional long short-term memory
(BiLSTM) networks have shown to be strong base-
lines for sentiment tasks (Tai et al., 2015; Barnes
et al., 2017). We implement a single-layered BiL-
STM which takes pretrained skipgram embeddings
as input, creates a sentence representation by con-
catenating the final hidden layer of both left and
right LSTMs, and then passes this representation
to a softmax layer for classification. Additionally,
dropout serves as a regularizer.

Bag-of-Words classifier Finally, bag-of-words
classifiers are strong baselines for sentiment and
when combined with other features can still give

Shttps://github.com/google-research/
bert

4https ://s3-us-west-2.amazonaws.com/
allennlp/models/sst-5-elmo-biattentive-
classification—-network-2018.09.04.tar.gz



state-of-the-art results for sentiment tasks (Moham-
mad et al., 2013). Therefore, we train a Linear
SVM on a bag-of-words representation of the train-
ing sentences.

3.3 Model performance

Table 2 shows the accuracy of the models on the six
tasks. Both methods that use pretrained language
model classifiers (ELMo and BERT) are the best
performing models, with an average of 11.8 differ-
ence between the language model classifiers and
standard models (BOW and BILSTM). The error
rates range between 8.3 on OpeNER and 20.5 on
SST (see Table 3), indicating that there are differ-
ences in difficulty of datasets due to domain and
annotation characteristics.

Additional experiments on a MERGED setup,
where the labels from OpeNER and SST are
mapped to the three-class setup, and a single model
is trained on the concatenation of the training sets
from all datasets, indicate that no clear performance
gain is achieved. We therefore prefer to avoid the
problem of domain differences and keep only the
original results.

4 Challenging dataset

We create a challenging dataset by collecting the
subset of test sentences that all of the sentiment
systems predicted incorrectly (statistics are shown
in Table 3). After removing sentences with incor-
rect gold labels, there are a total of 836 sentences
in the dataset, with a similar number of positive,
neutral, and negative labels and fewer strong labels.
This is expected, as only two datasets have strong
labels.

Furthermore, the main sources of examples are
the SemEval task (249), Stanford Sentiment Tree-
bank (452) and Thelwall datasets (215), while the
Téackstrom dataset (129), MPQA (39) and OpeNER
(29) contribute much less. This is a result of both
dataset size and difficulty.

5 Dataset analysis

In order to give a clearer view of the data found
in the dataset, we annotate these instances using
19 linguistic and paralinguistic labels. While most
of these come from previous attempts to qualita-
tively analyze sentiment classifiers (Hu and Liu,
2004; Das and Chen, 2007; Pang and Lee, 2008;
Socher et al., 2013; Barnes et al., 2018), others (in-
correct label, no sentiment, morphology) emerged
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during the error annotation process. We further
chose to manually annotate for the polarity of the
sentence irrespective of the gold label in order to
be able to locate possible annotation errors during
our analysis. The annotation scheme and (manu-
ally constructed) examples of each label are shown
in Table 6. Note that we did not limit the number
of labels that the annotator could assign to each
sentence and in principle they should assign all
suitable labels during annotation.
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Figure 1: Distribution of labels across error categories.

An initial analysis of the errors shown in Table 5
and Figure 1 reveals that the most common errors
come from the no-sentiment (214), mixed category



MPQA  OpeNER SemEval SST Tickstrom Thelwall
o BOW 40.9 69.7 62.3 50.9 46.0 535
= BiLSTM 48.7 71.5 58.0 37.5 45.0 52.0
-UE, ELMo 61.0 82.1 71.9 51.3 53.1 59.1
BERT 62.3 84.2 75.1 53.0 60.2 63.9

Table 2: Accuracy of models on the sentiment datasets, where a different classifier is trained for each dataset.

Label MPQA  OpeNER SemEval SST Téckstrom Thelwall Total
++ - 8 — 87 — - 95
+ 16 9 59 49 46 9 188
0 1 — 45 75 31 48 200
— 16 2 47 51 18 116 250
—— — 4 — 99 — - 103
Total 33 23 151 361 95 173 836
% of original 14.5 6.6 64 163 12.9 13.6 11.7
avg. length 25.0 134 19.0 199 23.4 17.5 197

Table 3: Statistics of dataset, including the number of sentences from each dataset and for each label, the percentage
of the original dataset kept in the dataset, and average length (in tokens) of sentences.

(185), non-standard spelling and hashtags (180), de-
sirable elements (144), and the strong label (122).

The distribution of errors across labels (strong
negative: 106, negative: 299, neutral: 303, posi-
tive: 296, strong positive: 109) compared to the
gold distribution (strong negative: 294, negative:
1742, neutral: 2249, positive: 2402, strong posi-
tive: 475) shows that the strong negative is the most
difficult and least common class, while positive is
the easiest to classify. In the following we briefly
discuss the error categories, also showing examples
for each.

Mixed Polarity The largest set of errors, with
185 sentences labeled, are what we refer to as
“mixed” polarity sentences. These are sentences
where two differing polarities are expressed, either
towards two separate entities, or towards the same
entity. While the first can be solved by a more
fine-grained approach (aspect-level or targeted sen-
timent), the second is more difficult and is often
considered a category of its own (Shamma et al.,
2009; Saif et al., 2013; Kenyon-Dean et al., 2018).

Strong Positive
Positive

It was spot on.
They’re on a roll.

Neutral It’s a bit hit-or-miss.
Negative I’m pulling my hair out.
Strong Negative Madonna can’t act a lick.

Table 4: Examples of idioms.
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An analysis of the mixed category errors reveals
that while most of the examples are in the “neu-
tral” category (45%), the other 55% are annotated
as having mostly positive or negative sentiment.
This is a confusing situation for both annotators
and sentiment classifiers, and a direct product of
performing sentence-level classification rather than
aspect-level. Nearly a third of the errors contain
“but” clauses, which could be correctly classified
by splitting them.

A more problematic situation is found among
nearly 20% of the examples (34), where the an-
notator found the original label to be completely
incorrect.’

Non-standard spelling Most errors in this cate-
gory (180 total) are labeled either negative (49%)
or positive (29%), with almost no strong positive or
strong negative, which comes mainly from the fact
that the noisier datasets do not contain the strong
labels.

Around a third of the examples contain hash-
tags that clearly express the sentiment of the whole
sentence, e. g., “#imtiredof this SNOW and COLD
weather!!!”. This indicates the need to properly
deal with hashtags in order to correctly classify
sentiment.

Idioms Table 4 presents some examples of
sentiment-bearing idioms that are taken from the
challenge data set. In this category, errors (132

SWe do not include examples where only the strength of

the polarity was considered different, i. e., positive vs. strong
positive.



label # examples
incorrect label 277
no sentiment 214
mixed 185
non-standard spelling 180
desirable element 144
idioms 132
strong 122
negation 97
world knowledge 81
amplifier 79
comparative 68
sarcasm/irony 58
shifter 50
emoji 46
modality 38
morphology 31
reducer 13

Table 5: Number of labels for each category in anno-
tation study. Bold numbers indicate the five most fre-
quent sources of errors. The total number of labels does
not sum to the number of sentences in the dataset, as
each sentence can have multiple labels.

sentences labeled) are spread relatively uniformly
across labels. Learning these correctly from
sentence-level annotations is unlikely, especially
because they are seldom found repeatedly, even in
a training corpus of decent size. Therefore, incor-
porating idiomatic information from external data
sources may be necessary to improve the classifica-
tion of sentences within this category.

Strong Labels This category (122 total) is partic-
ularly difficult for sentiment classifiers for several
reasons. First, strong negative sentiment is often
expressed in an understated or ironic manner. For
example, “Better at putting you to sleep than a
sound machine.”

For strong positive examples in the dataset, there
is often difficult vocabulary and morphologically
creative uses of language, e. g., “It is a kickass ,
dense sci-fi action thriller hybrid that delivers and
then some.”, while strong negative examples often
contain sarcasm or non-standard spelling, e. g., “All
prints of this film should be sent to and buried on
Pluto.”.

Negation Negation, which accounts for 97 errors,
directly affects the classification of polar sentence
(Wiegand et al., 2010). Therefore, we look at the
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differences between correctly and incorrectly clas-
sified sentences containing negation, by analyzing
100 correctly and incorrectly classified sentences
containing negation.

From our analysis, there is no specific negator
that is more difficult to resolve regarding its effect
on sentiment classification.

We also perform an analysis of negation scope
under the assumption that when a negator occurs
farther from its negated element, it is more difficult
for the sentiment classifier to correctly resolve the
negation. Let d be the distance between the negator
n and the relevant sentiment element se, such that
d = |ind(se) — ind(n)| where the function ind
calculates the index of a token in a sentence. We
find that the incorrectly classified examples have
an average d of 2.7, while the correctly classified
examples had 2.5. This seems to rule out a problem
of negation scope as the underlying difference.

High-level or clausal negation occurs when the
negator negates a full clause, rather than an ad-
jective or noun phrase, e. g., “I don’t think it is
a particularly interesting film”. In the dataset this
phenomenon is found more prevalently in the incor-
rectly classified examples (8%) versus the correctly
classified examples (3%), but does not occur often
in absolute terms.

The main source of difference regarding cor-
rectly classifying examples involving negation
seems to be irrelevant negation. Irrelevant negation
refers to cases where a sentence contains a nega-
tion but where the sentiment-bearing expression is
not within the scope of negation. In our data, there
is a strong difference in the distribution of irrele-
vant negation in correctly and incorrectly classified
examples (80% vs. 25%, respectively), suggest-
ing that sentiment classifiers learn to ignore most
occurrences of negation.

World Knowledge Examples from the dataset
where world knowledge is necessary to correctly
classify a sentence (81 sentences) include compar-
isons with entities commonly associated with posi-
tive or negative polarity, e. g., “Elicits more groans
from the audience than Jar Jar Binks, Scrappy Doo
and Scooby Dumb, all wrapped up into one.”, analo-
gies, e. g., “Adam Sandler is to Gary Cooper what
a gnat is to a racehorse.”, or rating scales, e. g.,
“10/10 overall”.

This category is also highly correlated with sar-
casm and irony. In fact, irony is often defined
as “violating expectations” (Hao and Veale, 2010),



“It was 2 minutes from the beach.” vs. “It was 2 hours from the beach.”

“I love it when people yell at me first thing in the morning.”

positive “It was good.”

negative “It was bad.”

negation “It was not good.”

strong “It was incredible.”

amplifier “It was really good.”

reducer “It was kind of bad.”

desirable element “It had a pool.”

comparative “It was better than the first hotel.”

shifter “They denied him the scholarship”
modality “I would have loved the room if it been bigger.”
world knowledge

morphology “It was un-fricking-believable.”
non-standard spelling ~ “It was awesoooome.”

idioms “It’s not my cup of tea.”

sarcasm/irony

emoji “)”

no sentiment “The president will hold a talk tomorrow.”
mixed “The plot was nice, but a little slow.”

incorrect label

Any clearly incorrect label.

Table 6: Categories and examples for error annotation guidelines.

which presupposes that we possess a world knowl-
edge containing expectations of a situation.

Amplified Amplifiers occur mainly in negative
and strong positive examples, such as “It’s an aw-
fully derivative story.” Most of the amplified sen-
tences found in the dataset (71/79) contain ampli-
fiers other than “very”, such as “super”, “incredi-

bly”, or “so”.

Comparative Comparative sentiment, with 68
errors, is known to be difficult (Hu and Liu, 2004,
Liu, 2012), as it is necessary to determine which
entity is on which side of the inequality. Sentences
like “Will probably stay in the shadow of its two
older, more accessible Qatsi siblings” are difficult
for sentiment classifiers that do not model this phe-
nomenon explicitly.

Sarcasm/Irony Sarcasm and irony (58 errors),
which are often treated separately from sentiment
analysis (Filatova, 2012; Barbieri et al., 2014), are
present mainly in negative and strong negative ex-
amples in the dataset. Correctly capturing sarcasm
and irony is necessary to classify some negative
and strong negative examples, e. g., “If Melville is
creatively a great whale, this film is canned tuna.”

Shifters Shifters (50 errors), such as “abandon”,
“lessen”, or “reject” are less common within the
dataset, but normally move positive polarity words
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towards a more negative sentiment. The most com-
mon shifter is the word “miss”, used as in “We miss
the quirky amazement that used to come along for
an integral part of the ride.”

Emoji While the models handle most occur-
rences of emojis well, they falter more on the neg-
ative examples (46 errors). More than half of the
examples in the dataset present positive emoji with
a negative gold label, such as “Pricess Leia is going
to be gutted! :-).”

Modality None of the state-of-the-art sentiment
systems deals explicitly with modality (38 total
errors). While in many of the examples modality
does not express a different sentiment than the same
sentence without modality, in the dataset there are
examples that do, e. g., “Still, I thought it could
have been more.”

Morphology While not the most prominent label
(31 errors), the examples in the dataset that contain
morphological features that effect sentiment are
normally strong positive or strong negative. This
most often contains creative use of English mor-
phology, e. g., “It was fan-freakin-tastic!” or “It’s
hyper-cliched”.

Reducers Reducers (13 errors), such as “kind
of”, “less”, or “all that” cooccur with both positive
and negative polar words within the dataset, and



label Sent. Phrases Rel. Imp.
overall 23.0 31.1 10.5
positive 19.0 269 9.8%
negative 23.1  35.0 15.5%
mixed 212 26.5 6.7%
no-sentiment 37.6  42.6 8.1%
non-strd spelling 40.3 43.5 3.8%
desirable 257 28.7 4.0%
idioms 13.7 231 11.0%
strong 155 23.7 9.7%
negation 239 38.6 19.3%
world know. 149 21.6 19.6%
amplified 139 319 20.9%
comparative 11.7 133 1.8%
irony 20.8 18.8 -2.5%
shifters 333 244 -11.8%
emoji 333  50.0 25.0%
modality 20 229 3.6%
morphology 18.5 18.5 0%
reduced 7.7 23.1 16.7%

Table 7: Per category accuracy and relative improve-
ment (last column) of BERT model trained on SST sen-
tences (8,544) and SST phrases (155,019).

tend to lead to positive or neutral sentiment, e. g.,
“It was a lot less hassle.”

6 Case study: Training with phrase-level
annotations

As a case study for the usage of the dataset pre-
sented here, we evaluate a model that has access
to more compositional information. Besides hav-
ing sentence-level annotations, the SST dataset
also contains annotations for each phrase in a con-
stituency tree, which gives a considerable amount
more training data, specifically 155,019 annotated
phrases vs. 8,544 annotated sentences. It has been
claimed that this data allows models to learn more
compositionality (Socher et al., 2013). Therefore,
we fine-tune the best performing model (BERT) on
this data and test on our dataset. The BERT model
trained on phrases achieves 55.1 accuracy on the
SST dataset, versus 53.0 for the model trained only
on sentence-level annotations.

Table 7 shows that the model trained on the
SST phrases performs overall much better than
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the model trained on SST sentences® on the dataset.
Using the error annotations in the challenge data
set, we find that results improve greatly on the sen-
tences which contain the labels negation, world
knowledge, amplified, emoji, and reduced, while
performing worse on irony, shifters and equally
on morphology. This analysis seems to indicate
that phrase-level annotations help primarily with
learning compositional sentiment (negation, am-
plified, reduced), while other phenomena, such
as irony or morphology do not receive improve-
ments. This confirms that training on the phrase-
level annotations improves a sentiment model’s
ability to classify compositional sentiment, while
also demonstrating the usefulness of our dataset for
introspection.

7 Conclusion and future work

In this paper, we tested three state-of-the-art sen-
timent classifiers and a baseline bag-of-words
classifier on six English sentence-level sentiment
datasets. We gathered the sentences that all meth-
ods misclassified in order to create a dataset. Addi-
tionally, we performed a fine-grained annotation of
error types in order to provide insight into the kinds
of problems sentiment classifiers have. We will re-
lease both the code and the annotated data with the
hope that future research will utilize this resource
to probe sentiment classifiers for qualitative differ-
ences, rather than rely only on quantitative scores,
which often obscure the plentiful challenges that
still exist.

Many of the phenomena found in the dataset,
e. g., negation or modality, have been discussed in
depth in (Liu, 2012). However, the dataset that
resulted from this work demonstrates that modern
neural methods still fail on many examples of these
phenomena. Additionally, our dataset enables a
quick analysis of qualitative differences between
models, probing their performance with respect
to the linguistic and paralinguistic categories of
erTors.

Additionally, many of the findings from this pa-
per are likely to vary to a degree for other lan-
guages, due to typological differences, as well as
differences in available training data. The anno-
tation method proposed in this paper, however,

81t is important to realize that the SST-sentence model has
0 accuracy on the subset of the dataset taken from the SST
dataset, but not on the sentences taken from the other datasets.



should enable the creation of similar analyses and
datasets in other languages.

We expect that this approach to creating a dataset
is also easily transferable to other tasks which are
affected by linguistic or paralinguistic phenomena,
such as hate speech detection or sarcasm detection.
It would be more useful to have some knowledge
of the phenomena that could affect the task before-
hand, but a careful error analysis can also lead to
insights which can be translated into annotation
labels.

Regarding ways of moving forward, there are
already many sources of data for the linguistic phe-
nomena we have analyzed in this work, ranging
from datasets annotated for negation (Morante and
Blanco, 2012; Liu et al., 2018), irony (Van Hee
et al., 2018), emoji (Barbieri et al., 2018), as well as
datasets for idioms (Muzny and Zettlemoyer, 2013)
and their relationship with sentiment (Jochim et al.,
2018). We believe that discovering ways to ex-
plicitly incorporate this available information into
state-of-the-art sentiment models may provide a
way to improve current approaches. Multi-task
learning (Caruana, 1993) and transfer learning (Pe-
ters et al., 2018; Devlin et al., 2018; Howard and
Ruder, 2018) have shown promise in this respect,
but have not been exploited for improving senti-
ment classification with regards to these specific
phenomena.
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Abstract

We simulate first- and second-order context
overlap and show that Skip-Gram with Neg-
ative Sampling is similar to Singular Value
Decomposition in capturing second-order co-
occurrence information, while Pointwise Mu-
tual Information is agnostic to it. We sup-
port the results with an empirical study find-
ing that the models react differently when pro-
vided with additional second-order informa-
tion. Our findings reveal a basic property of
Skip-Gram with Negative Sampling and point
towards an explanation of its success on a va-
riety of tasks.

1 Introduction

The idea of second-order co-occurrence vectors
was introduced by Schiitze (1998) for word sense
discrimination and has since then been extended
and applied to a variety of tasks (Lemaire and
Denhiere, 2006; Islam and Inkpen, 2006; Schulte
im Walde, 2010; Zhuang et al., 2018). The basic
idea is to represent a word w not by a vector of the
counts of context words it directly co-occurs with,
but instead by a count vector of the context words
of the context words, i.e., the second-order context
words of w. These second-order vectors are sup-
posed to be less sparse and more robust than first-
order vectors (Schiitze, 1998). Moreover, captur-
ing second-order co-occurrence information can
be seen as a way of generalization. To see this,
cf. examples (1) and (2) inspired by Schiitze and
Pedersen (1993).

(1) As far as the Soviet Communist Party and
the Comintern were concerned ...

(2) ...thisis precisely the approach taken by the
British Government.

The nouns Party and Government have similar
meanings in these contexts, although they have
little contextual overlap: A frequent topic in the
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British corpus used by Schiitze and Pedersen is the
Communist Party of the Soviet Union, but gov-
ernments are rarely qualified as communist in the
corpus. Hence, there is little overlap in first-order
context words of Party and Government. How-
ever, their context words Communist and British
in turn have a greater overlap, because they are
frequently used to qualify the same nouns from
the political domain, as in Communist authorities
and British authorities. Hence, although Party and
Government may have no first-order context over-
lap, they do have second-order context overlap.
According to Schiitze and Pedersen, capturing this
information corresponds to the generalization “oc-
curring with a political adjective.”

While most traditional count-based vector
learning techniques such as raw count vectors
or Point-wise Mutual Information (PPMI) do not
capture second-order co-occurrence information,
truncated Singular Value Decomposition (SVD)
has been shown to do so. Regarding the more
recently developed embeddings based on shallow
neural networks, such as Skip-Gram with Nega-
tive Sampling (SGNS), it is presently unknown
whether they capture higher-order co-occurrence
information. So far, this question has been ne-
glected as a research topic, although the answer is
crucial to explain performance differences: Levy
et al. (2015) show that SGNS performs similarly
to SVD and differently from PPMI across seman-
tic similarity data sets. If SGNS captures second-
order co-occurrence information, this provides a
possible explanation for the observed performance
differences.

We examine this question in two experiments:
(i) We create an artificial data set with target
words displaying context overlap in different or-
ders of co-occurrence and show that SGNS be-
haves similarly to SVD in capturing second-order
co-occurrence information. The experiment sup-
plies additional and striking evidence to prior

Proceedings of the Second BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, pages 24-30
Florence, Italy, August 1, 2019. (©2019 Association for Computational Linguistics



work on SVD and introduces a method to further
investigate questions more precisely than done be-
fore. (i1) We transfer second-order context infor-
mation to the first-order level in a small corpus
and test the models’ reaction on a standard eval-
uation data set when provided with the additional
information. We find that SGNS and SVD, already
capturing second-order information, do not bene-
fit, whereas PPMI benefits.

2 Related Work

An early connection between second-order con-
text information and generalization can be found
in Schiitze and Pedersen (1993). The authors
claim that SVD is able to generalize by us-
ing second-order context information as described
above. Later work supports this claim and
indicates that SVD even captures information
from higher orders of co-occurrence (Landauer
et al., 1998; Kontostathis and Pottenger, 2002;
Newo Kenmogne, 2005; Kontostathis and Pot-
tenger, 2000).

Since then, second-order co-occurrence infor-
mation has mainly been exploited for traditional
count-based vector learning techniques with dif-
ferent aims. Schiitze (1998) had used second-
order vectors for word sense clustering. Vari-
ous studies model synonymy or semantic simi-
larity (Edmonds, 1997; Islam and Inkpen, 2006;
Lemaire and Denhiere, 2006) indicating that
second-order co-occurrence plays an important
role for these tasks.

The only works we are aware of exploring
second-order information for word embeddings
are Newman-Griffis and Fosler-Lussier (2017)
learning embeddings from nearest-neighbor
graphs and Zhuang et al. (2018) indicating that
a specific type of word embeddings may benefit
from second-order information. However, no
study investigated the question whether SGNS or
other word embeddings already capture higher-
order co-occurrence information, which may
make the integration of second-order information
superfluous.

3 Semantic Vector Spaces

We compare SGNS to two traditional count-based
vector space learning techniques: PPMI and SVD,
where the former does not capture second-order
information while the latter does. All methods are
based on the concept of semantic vector spaces:
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A semantic vector space constructed from a cor-
pus C' with vocabulary V' is a matrix M, where
each row vector represents a word w in the vo-
cabulary V' reflecting its co-occurrence statistics
(Turney and Pantel, 2010).

Positive Pointwise Mutual Information (PPMI).
For PPMI representations, we first construct a
high-dimensional and sparse co-occurrence matrix
M. The value of each matrix cell M; ; represents
the number of co-occurrences of the word w; and
the context c;, #(w;, ¢j). Then, the co-occurrence
counts in each matrix cell M; ; are weighted by the
smoothed and shifted positive mutual information
of target w; and context c; reflecting their degree
of association. The values of the transformed ma-

trix are

where £ > 1 is a prior on the probability of
observing an actual occurrence of (wj,c;) and
0 < a < 1 is a smoothing parameter reducing
PPMTI’s bias towards rare words (Levy and Gold-
berg, 2014; Levy et al., 2015). To our knowledge
PPMI representations have never been claimed to
capture higher-order co-occurrence information.

#(wi, cj) Do, #(c)”
#(wi)#(c;)®

Mf}?Ml = max {log (

Singular Value Decomposition (SVD). Trun-
cated Singular Value Decomposition is an alge-
braic algorithm finding the optimal rank d fac-
torization of matrix M with respect to L2 loss
(Eckart and Young, 1936).! It is used to obtain
low-dimensional approximations of the PPMI rep-
resentations by factorizing M "M! into the product
of the three matrices UXV T . We keep only the top
d elements of ¥ and obtain

MSVD _ Udzp,

where p is an eigenvalue weighting parameter
(Levy et al., 2015). Ignoring V for MSVP re-
duces dimensionality while preserving the dot-
products between rows. While it is not clear
whether SVD generalizes better than other mod-
els in general (Gamallo and Bordag, 2011), its
sensitivity to higher orders of co-occurrence has
been shown empirically and mathematically (Kon-
tostathis and Pottenger, 2002; Newo Kenmogne,
2005; Kontostathis and Pottenger, 2006). Kon-
tostathis and Pottenger (2006) prove that the ex-

"We use ‘SVD’ to refer to the particular application of the
algebraic method described.



istence of a non-zero value in a truncated term-to-
term co-occurrence matrix follows directly from
the existence of a higher-order co-occurrence in
the full matrix. They also show that there is
an empirical correlation between the magnitude
of the value and the number of higher-order co-
occurrences found for the particular term pair.

Skip-Gram with Negative Sampling (SGNS).
SGNS differs from the above techniques in that
it directly represents each word w € V and each
context ¢ € V as a d-dimensional vector by im-
plicitly factorizing M = WC'T when solving

arg max Z log o(ve - vw) + Z log o(—ve * Vw),

(w,c)eD (w,c)eD’

where o(x) = H% D is the set of all ob-
served word-context pairs and D’ is the set of ran-
domly generated negative samples (Mikolov et al.,
2013a,b; Goldberg and Levy, 2014). The opti-
mized parameters 0 are v., = Cj, and vy, = Wix
forw,c € V,i€1,...,d. D' is obtained by draw-
ing k contexts from the empirical unigram distri-
bution P(c) = #I%C\) for each observation of (w, ¢),
cf. Levy et al. (2015). The final SGNS matrix is

given by

MSGNS —W.

Levy and Goldberg (2014) relate SGNS to SVD
by showing that under specific assumptions their
learning objectives have the same global opti-
mum. However, it is unknown whether SGNS is
also similar to SVD in capturing higher-order co-
occurrence information. The model architecture
suggests that this is possible: consider the two
context vectors ¢i, ¢3 in C' of two words having
large context overlap (e.g. the vectors for Commu-
nist and British). ¢1, ¢3 will be similar, because the
dot product with the same target vectors in W will
be maximized (as ¢i, ¢ frequently occur as con-
texts of the same target words). If ¢i, ¢5 are then
in turn each used to maximize the dot product with
two different new target vectors (e.g. the vectors
for Party and Government), these also tend to be
similar.

Model Training. For both experiments we use
the implementation of Levy et al. (2015), allowing
us to train all models on extracted word-context
pairs instead of the corpus directly. We follow pre-
vious work in setting the hyper-parameters (Levy
et al., 2015). For PPMI we set « = .75 and k = 5.
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We set the number of dimensions d for SVD and
SGNS to 300. SGNS is trained with 5 negative
samples, 5 epochs and without subsampling. For
SVD we set p = 0.

Similarity Measure. For all methods we mea-
sure similarity between word vectors with Cosine
Distance (CD), where low CD means high simi-
larity. CD is based on cosine similarity, cos(Z, ),
which measures the cosine of the angle between
two non-zero vectors ', 3 with equal magnitudes

(Salton and McGill, 1983). CD is then defined as

CD(Z,y) =1 — cos(Z, 7).

4 Experiment 1: Simulating
second-order context overlap

In order to see whether SGNS captures second-
order co-occurrence information, we artificially
simulate context overlap for first- and second-
order co-occurrence separately. This allows us
to simulate clear cases of overlap controlling for
confounding factors which are present in empiri-
cal data. We generate target-context pairs in such
a way that specific target words have either con-
text word overlap in first-order co-occurrence, or
by contrast in second order. We compare the be-
havior of PPMI, SVD and SGNS on three groups
of such target words (see Table 1):

first-order overlap (1ST): Target words 1" occur-
ring with the same context words C'1 in the
first order, while in the second order all con-
text words from C'1 have distinct context
words C2.

2nd-order overlap (2ND): Target words 7' oc-
curring with distinct context words C'1 in the
first order, while all context words from C'1
have the same context words C2.

no overlap (NONE): Target words T occurring
with distinct context words C'1 in the first or-
der and also all context words in C'1 have dis-
tinct context words C'2.

As an example, consider the column 2ND in Ta-
ble 1. The target words 7" are a and b. Each has
distinct context words: a occurs only with ¢, d €
C1, while b occurs only with e, f € C1. How-
ever, the first-order context words ¢, d, e, f € C1
do have context overlap: c¢,d, e, f occur all with
u,v € C2, i.e., they have the same second-order
context words.



For each group we generate 10 target words (7).
Per target word, each of C'1, C2 is constructed by
first generating 1000 context words C, assigning
a sampling probability from a lognormal distri-
bution to each context word in C' and then sam-
pling 1000 times from C.? For the 1ST-group, the
set of context words C' will be shared across tar-
get words, meaning that they have a context word
overlap. For the target words in the 2ND-group
this will not be the case, but instead their first-
order context words (C'1) will have context over-
lap (see Table 1). In this way, we simulate con-
text overlap in first vs. second order. For the tar-
get words in the NONE-group, C' will instead be
completely disjunct in both orders. Because co-
occurrence is symmetric (if a occurs with ¢, ¢ also
occurs with a), for each pair (a,c) generated by
the above-described process, we also add the re-
verse pair (c,a). To make sure that the pairs from
the different groups (1ST, 2ND, NONE) do not in-
terfere with each other, each string generated for
a group is unique to the group. Finally, we mix
and randomly shuffle the pairs from all groups. In
this way, we generate 10 x 1000 x 1000 x 2 target-
context pairs for each group: 10 target words oc-
curring with 1000 context words in C'1 where each
in turn occurs with 1000 context words in C'2, plus
each of these pairs reversed.’

Our main hypothesis is that SGNS and SVD
will predict target words from the 2ND-group to
be more similar on average than target words from
the NONE-group (although both groups have no
first-order context overlap), while PPMI will pre-
dict similar averages for both groups.

Results. Figure 1 shows the average cosine dis-
tance between the target words in each of the three
target word groups with context overlap in differ-
ent orders (1ST, 2ND and NONE). As expected,
PPMI predicts the target words without contex-
tual overlap in any order (NONE) to be orthogonal
to each other (1.0). Further, PPMI is sensitive to
first-order overlap, but not at all to second-order
overlap (0.51 vs. 1.0). SVD also predicts orthog-
onality for the NONE-group (1.0) and shows sensi-
tivity to first-order overlap (0.34), but is extremely

2By sampling from a lognormal distribution we aim to
approximate the empirical frequency distribution of context
words. Context words receive probabilities by randomly sam-

1 _ log(x)?
— = exp( 5 ) and

normalizing them to a probability distribution.
3Find the code generating the artificial pairs under:
https://github.com/Garrafao/SecondOrder.

pling 1000 values from f(z) =
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order | 1ST 2ND NONE
ac ac ac
ad ad ad
C1 be be be
bd bf bf
cu cu cu
cvV cVv cV
C2 dw du dw
dx dv dx

Table 1: Artificial co-occurrence pairs with context
overlap in different orders of co-occurrence (1ST, 2ND
and NONE). C'1 and C2 give co-occurrence in first and
second order respectively. For each pair (a,c) shown
above we also add the reverse pair (c,a).

sensitive to second-order overlap: it predicts the
target words in 2ND to be perfectly similar to each
other (0.0), notwithstanding the fact that they have
no first-order context word overlap. SGNS shows
a similar behavior, although its vectors are dis-
tributed more densely: target words in NONE are
predicted to be least similar (0.79), while target
words in 1ST are more similar (0.11) and in 2ND
they are predicted to be completely similar (0.0).

We further hypothesize that the fact that for
SGNS and SVD the average cosine distance in 1ST
is higher than in 2ND is related to our choice to
make the context words C'1 of the target words
in 18T dissimilar to each other by assigning com-
pletely distinct context words C2 (see Table 1).
We test this hypothesis by creating a second artifi-
cial set of target-context pairs completely parallel
to the above-described set with the only difference
that 1ST has additional context overlap in C2. On
these targets words with overlap in both orders we
find that PPMI makes similar predictions (0.56) as
before, while for SVD and SGNS predictions drop
to 0.0, confirming our hypothesis.

Discussion. SGNS and SVD capture second-
order co-occurrence information. Notably, they
are more sensitive to the similarity of context
words than to the words themselves (2ND vs.
1ST), which means that they abstract over mere
co-occurrence with specific context words and
take into account the co-occurrence structure of
these words in the second order (and potentially
higher orders). PPMI does not have this property
and only measures context overlap in first order.
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Figure 1: Results of simulation experiment. Values
give average cosine distances across target words with
different levels of context overlap. Pair-wise differ-
ences between group means (except PPMI 2ND vs.
NONE) are statistically significant according to a two-
sample bootstrap test (p < 0.001, adjusted through
Bonferroni correction for 9 tests, two-tailed).

Experiment 2: Propagating
second-order co-occurrence
information

We now propagate second-order information to
the first-order level by extracting second-order
word-context pairs and adding them to the first-
order pairs. We hypothesize that the additional
second-order information will impact PPMI rep-
resentations positively and stronger than SVD and
SGNS, because we saw that the latter already cap-
ture second-order information. We reckon that the
additional information is beneficial for PPMI in
two ways: (i) it helps to generalize as described
in (1) and (2), and (ii) it overcomes data sparsity
for low-frequency words. Note that these two as-
pects are often highly related: with only a limited
amount of data available it is more likely that sim-
ilar words do not have exactly the same, but still
similar context words. Generalization then helps
to overcome sparsity.

Corpus. We use ukWaC (Baroni et al., 2009),
a > 1B token web-crawled corpus of English.
The corpus provides part-of-speech tagging and
lemmatization. We keep only the lemmas which
are tagged as nouns, adjectives or verbs. In or-
der to assure we have low-frequency words in the
test data, we create a small corpus by randomly
choosing 1M sentences and shuffling them. The
final corpus contains roughly 10M tokens. Un-
der these sparse conditions we expect to observe
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strong effects on model performance highlighting
the differences between the models.

5.1 Pair Extraction

We first extract first-order word-context pairs by
iterating over all sentences and extracting one
word context pair (w,c) for each token w and each
context word ¢ surrounding w in a symmetric win-
dow of size 5 (BASE pairs). Then, we extract ad-
ditional second-order pairs in the following way:
For each word type ¢ in the corpus, we build a
second-order vector ¥ by summing over all of ¢’s
first-order context token count vectors (Schiitze,
1998). Then we randomly sample n second-order
context tokens from ¢ (with replacement) where
each context type ¢; has a sampling probability of

Y _ and ¥; is U”s ith entry. We then exclude all
> j=1"Yj

sampled context tokens ¢ = .4

We extract second-order pairs only for words
below a specific co-occurrence frequency thresh-
old f to test the impact on sparse words separately.
We experiment with f € {2k,20k,200k}. We set
n globally to 200% of ¢’s co-occurrence frequency
to add a substantial amount of information. For
each of the second-order pairs we add the reverse
pair (c,w). Finally, the respective second-order
pairs are combined with the base pairs and ran-
domly shuffled. In this way, we generate roughly
22/99/218M (2/20/200k) second-order pairs from
57M base pairs. Then we train each model on each
of the combined pair files separately.

5.2 Results

We evaluate the obtained vector spaces on Word-
Sim353 (Finkelstein et al., 2002), a standard hu-
man similarity judgment data set, by measuring
the Spearman correlation of the cosine similarity
for target word pairs with human judgments. The
results are shown in Figure 2. As we can see, the
models show different reactions to the additional
second-order information: PPMI is the only model
benefiting (in one case), while SVD and SGNS
never benefit from the additional information and
are always impacted negatively. The strongest
negative impact can be observed for SVD (-0.17).
PPMI shows a clear improvement with rather low-
frequency words (20k). Adding second-order in-
formation for high-frequency words (200k) has a
strong negative impact for PPMI and SVD.

“Find the code under:
Garrafao/SecondOrder.

https://github.com/
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Figure 2: Results of experiment 2. Values give correla-
tion (Spearman’s p) of model predictions with human
similarity judgments.

Discussion. The different reactions of PPMI vs.
SVD and SGNS partly confirm our hypothesis
which was based on the findings in experiment 1:
only PPMI benefits from additional second-order
information. However, we did not expect the ob-
served negative impacts, especially the strong per-
formance drop for SVD. Moreover, it is notable
that SVD on the base pairs shows a much higher
performance (0.51) than SGNS and PPMI (0.43,
0.41), which is not the case in less sparse condi-
tions (Levy et al., 2015). This indicates that SVD
makes much better use of the available informa-
tion and overcomes data sparsity in this way. It re-
mains for future research to determine how much
the exploitation of higher-order co-occurrence in-
formation contributes to this clear performance ad-
vantage.

6 Conclusion

We showed that SGNS captures second-order co-
occurrence information, a property it shares with
SVD and distinguishes it from PPMI. We further
tested the reaction of the models when provided
with additional second-order information, expect-
ing that only PPMI would benefit. We find this
confirmed, but also observe unexpectedly strong
negative impacts on SVD by the supposedly re-
dundant information. In general, SVD turns out
to have strong performance advantages over PPMI
and SGNS in the sparse experimental conditions
we created.

Our findings are relevant for a variety of al-
gorithms relying on the SGNS architecture (i.a.
Grover and Leskovec, 2016; Bamler and Mandt,
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2017). Future work will look into the relation-
ship between the second-order sensitivity of SVD
and SGNS and their high performances across
tasks. In addition, we aim to use the introduced
method of generating artificial context overlap to
see which higher orders of co-occurrence SVD,
SGNS and other embedding types (Pennington
et al., 2014; Peters et al., 2018; Athiwaratkun
et al., 2018) capture. Because the aim of the study
was only to test the second-order sensitivity of dif-
ferent models, we did not focus on finding the best
way to provide this information. Given the re-
sults for PPMI, however, developing a smoother
way to provide second-order information to mod-
els seems to be a promising starting point for fur-
ther research.
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Abstract

Monotonicity reasoning is one of the impor-
tant reasoning skills for any intelligent natural
language inference (NLI) model in that it re-
quires the ability to capture the interaction be-
tween lexical and syntactic structures. Since
no test set has been developed for monotonic-
ity reasoning with wide coverage, it is still
unclear whether neural models can perform
monotonicity reasoning in a proper way. To
investigate this issue, we introduce the Mono-
tonicity Entailment Dataset (MED). Perfor-
mance by state-of-the-art NLI models on the
new test set is substantially worse, under 55%,
especially on downward reasoning. In addi-
tion, analysis using a monotonicity-driven data
augmentation method showed that these mod-
els might be limited in their generalization
ability in upward and downward reasoning.

1 Introduction

Natural language inference (NLI), also known as
recognizing textual entailment (RTE), has been
proposed as a benchmark task for natural language
understanding. Given a premise P and a hypothe-
sis H, the task is to determine whether the premise
semantically entails the hypothesis (Dagan et al.,
2013). A number of recent works attempt to
test and analyze what type of inferences an NLI
model may be performing, focusing on various
types of lexical inferences (Glockner et al., 2018;
Naik et al., 2018; Poliak et al., 2018) and logical
inferences (Bowman et al., 2015b; Evans et al.,
2018).

Concerning logical inferences, monotonicity
reasoning (van Benthem, 1983; Icard and Moss,
2014), which is a type of reasoning based on word
replacement, requires the ability to capture the in-
teraction between lexical and syntactic structures.
Consider examples in (1) and (2).

(1) a. All [workers|] [joined for a French dinner 1]
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All workers joined for a dinner
c. All new workers joined for a French dinner
(2) a. Not all [new workers 1] joined for a dinner

b. Not all workers joined for a dinner

A context is upward entailing (shown by [... T])
that allows an inference from (1a) to (1b), where
French dinner is replaced by a more general con-
cept dinner. On the other hand, a downward
entailing context (shown by [... |]) allows an in-
ference from (la) to (lc), where workers is re-
placed by a more specific concept new workers.
Interestingly, the direction of monotonicity can be
reversed again by embedding yet another down-
ward entailing context (e.g., not in (2)), as witness
the fact that (2a) entails (2b). To properly handle
both directions of monotonicity, NLI models must
detect monotonicity operators (e.g., all, not) and
their arguments from the syntactic structure.

For previous datasets containing monotonicity
inference problems, FraCaS (Cooper et al., 1994)
and the GLUE diagnostic dataset (Wang et al.,
2019) are manually-curated datasets for testing
a wide range of linguistic phenomena. How-
ever, monotonicity problems are limited to very
small sizes (FraCaS: 37/346 examples and GLUE:
93/1650 examples). The limited syntactic patterns
and vocabularies in previous test sets are obstacles
in accurately evaluating NLI models on mono-
tonicity reasoning.

To tackle this issue, we present a new evaluation
dataset' that covers a wide range of monotonicity
reasoning that was created by crowdsourcing and
collected from linguistics publications (Section 3).
Compared with manual or automatic construction,
we can collect naturally-occurring examples by
crowdsourcing and well-designed ones from lin-
guistics publications. To enable the evaluation of

'The dataset will be made publicly available at
https://github.com/verypluming/MED.

Proceedings of the Second BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, pages 31-40
Florence, Italy, August 1, 2019. (©2019 Association for Computational Linguistics



skills required for monotonicity reasoning, we an-
notate each example in our dataset with linguistic
tags associated with monotonicity reasoning.

We measure the performance of state-of-the-art
NLI models on monotonicity reasoning and inves-
tigate their generalization ability in upward and
downward reasoning (Section 4). The results show
that all models trained with SNLI (Bowman et al.,
2015b) and MultiNLI (Williams et al., 2018) per-
form worse on downward inferences than on up-
ward inferences.

In addition, we analyzed the performance of
models trained with an automatically created
monotonicity dataset, HELP (Yanaka et al., 2019).
The analysis with monotonicity data augmentation
shows that models tend to perform better in the
same direction of monotonicity with the training
set, while they perform worse in the opposite di-
rection. This indicates that the accuracy on mono-
tonicity reasoning depends solely on the major-
ity direction in the training set, and models might
lack the ability to capture the structural relations
between monotonicity operators and their argu-
ments.

2 Monotonicity

As an example of a monotonicity inference, con-
sider the example with the determiner every in (3);
here the premise P entails the hypothesis H.

(3) P: Every [np personl] [vp bought a movie ticket 1]

H: Every young person bought a ticket

Every is downward entailing in the first argument
(NP) and upward entailing in the second argument
(VP), and thus the term person can be more spe-
cific by adding modifiers (person 1 young per-
son), replacing it with its hyponym (person
spectator), or adding conjunction (person 1 per-
son and alien). On the other hand, the term buy a
ticket can be more general by removing modifiers
(bought a movie ticket T bought a ticket), replac-
ing it with its hypernym (bought a movie ticket
C bought a show ticket), or adding disjunction
(bought a movie ticket T bought or sold a movie
ticket). Table 1 shows determiners modeled as bi-
nary operators and their polarities with respect to
the first and second arguments.

There are various types of downward operators,
not limited to determiners (see Table 2). As shown
in (4), if a propositional object is embedded in a
downward monotonic context (e.g., when), the po-
larity of words over its scope can be reversed.
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Determiners First argument  Second argument
every, each, all downward upward
some, a, a few, many,
f % upward upward
several, proper noun
any, no, few, at most X,
% f downward downward
fewer than X, less than X
the, both, most, this, that non-monotone upward

exactly non-monotone non-monotone

Table 1: Determiners and their polarities.

Category Examples

determiners  every, all, any, few, no
negation not, n’t, never

verbs deny, prohibit, avoid

nouns absence of, lack of, prohibition
adverbs scarcely, hardly, rarely, seldom
prepositions  without, except, but

conditionals  if, when, in case that, provided that, unless

Table 2: Examples of downward operators.

(4) P: When levery [np young person?] [vp bought a
ticket |1, [that shop was open]

H: When [every [np person] [ve bought a movie
ticket]], [that shop was open]

Thus, the polarity (1 and |), where the replace-
ment with more general (specific) phrases licenses
entailment, needs to be determined by the inter-
action of monotonicity properties and syntactic
structures; polarity of each constituent is calcu-
lated based on a monotonicity operator of func-
tional expressions (e.g., every, when) and their
function-term relations.

3 Dataset

3.1 Human-oriented dataset

To create monotonicity inference problems, we
should satisfy three requirements: (a) detect the
monotonicity operators and their arguments; (b)
based on the syntactic structure, induce the polar-
ity of the argument positions; and (c) replace the
phrase in the argument position with a more gen-
eral or specific phrase in natural and various ways
(e.g., by using lexical knowledge or logical con-
nectives). For (a) and (b), we first conduct polar-
ity computation on a syntactic structure for each
sentence, and then select premises involving up-
ward/downward expressions.

For (c), we use crowdsourcing to narrow or
broaden the arguments. The motivation for using
crowdsourcing is to collect naturally alike mono-
tonicity inference problems that include various
expressions. One problem here is that it is un-



1. Premise Selection
Every spectator) buys? a tickett
2. Hypothesis Creation Task
Question: Make the underlined part more specific in 3 ways.
Text: Every spectator buys a ticket
Answer: female spectator, spectator and buyer, spectator younger than me
3. Validation Task
Question:
Premise:

Is the hypothesis true under any situation described in the premise?
Every spectator buys a ticket
Hypothesis: Every female spectator buys a ticket

Answer: V| yes unknown unnatura
Resulting data
Premise Hypothesis Gold

Every spectator buys a ticket Every female spectator buys a ticket E

Every female spectator buys a ticket Every spectator buys a ticket NE

Figure 1: Overview of our human-oriented dataset cre-
ation. E: entailment, NE: non-entailment.

clear how to instruct workers to create monotonic-
ity inference problems without knowledge of natu-
ral language syntax and semantics. We must make
tasks simple for workers to comprehend and pro-
vide sound judgements. Moreover, recent stud-
ies (Gururangan et al., 2018; Poliak et al., 2018;
Tsuchiya, 2018) point out that previous crowd-
sourced datasets, such as SNLI (Bowman et al.,
2015a) and MultiNLI (Williams et al., 2018), in-
clude hidden biases. As these previous datasets
are motivated by approximated entailments, work-
ers are asked to freely write hypotheses given a
premise, which does not strictly restrict them to
creating logically complex inferences.

Taking these concerns into consideration, we
designed two-step tasks to be performed via
crowdsourcing for creating a monotonicity test set;
(i) a hypothesis creation task and (ii) a valida-
tion task. The task (i) is to create a hypothesis
by making some polarized part of an original sen-
tence more specific. Instead of writing a com-
plete sentence from scratch, workers are asked to
rewrite only a relatively short sentence. By re-
stricting workers to rewrite only a polarized part,
we can effectively collect monotonicity inference
examples. The task (ii) is to annotate an entail-
ment label for the premise-hypothesis pair gen-
erated in (i). Figure 1 summarizes the overview
of our human-oriented dataset creation. We used
the crowdsourcing platform Figure Eight for both
tasks.

3.1.1 Premise collection

As a resource, we use declarative sentences with
more than five tokens from the Parallel Mean-
ing Bank (PMB) (Abzianidze et al., 2017). The
PMB contains syntactically correct sentences an-

swap
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notated with its syntactic category in Combi-
natory Categorial Grammar (CCG; Steedman,
2000) format, which is suitable for our pur-
pose. To get a whole CCG derivation tree, we
parse each sentence by the state-of-the-art CCG
parser, depccg (Yoshikawa et al., 2017). Then,
we add a polarity to every constituent of the
CCG tree by the polarity computation system
ccg2mono (Hu and Moss, 2018) and make the po-
larized part a blank field.

We ran a trial rephrasing task on 500 exam-
ples and detected 17 expressions that were too
general and thus difficult to rephrase them in a
natural way (e.g., every one, no time). We re-
moved examples involving such expressions. To
collect more downward inference examples, we
select examples involving determiners in Table 1
and downward operators in Table 2. As a result,
we selected 1,485 examples involving expressions
having arguments with upward monotonicity and
1,982 examples involving expressions having ar-
guments with downward monotonicity.

3.1.2 Hypothesis creation

We present crowdworkers with a sentence whose
polarized part is underlined, and ask them to
replace the underlined part with more specific
phrases in three different ways. In the instruc-
tions, we showed examples rephrased in various
ways: by adding modifiers, by adding conjunc-
tion phrases, and by replacing a word with its hy-
ponyms.

Workers were paid US$0.05 for each set of sub-
stitutions, and each set was assigned to three work-
ers. To remove low-quality examples, we set the
minimum time it should take to complete each set
to 200 seconds. The entry in our task was re-
stricted to workers from native speaking English
countries. 128 workers contributed to the task, and
we created 15,339 hypotheses (7,179 upward ex-
amples and 8,160 downward examples).

3.1.3 Validation

The gold label of each premise-hypothesis pair
created in the previous task is automatically de-
termined by monotonicity calculus. That is, a
downward inference pair is labeled as entailment,
while an upward inference pair is labeled as non-
entailment.

However, workers sometimes provided some
ungrammatical or unnatural sentences such as the
case where a rephrased phrase does not satisfy the



selectional restrictions (e.g., original: Tom doesn’t
live in Boston, rephrased: Tom doesn’t live in yes),
making it difficult to judge their entailment re-
lations. Thus, we performed an annotation task
to ensure accurate labeling of gold labels. We
asked workers about the entailment relation of
each premise-hypothesis pair as well as how natu-
ral it is.

Worker comprehension of an entailment rela-
tion directly affects the quality of inference prob-
lems. To avoid worker misunderstandings, we
showed workers the following definitions of labels
and five examples for each label:

1. entailment: the case where the hypothesis is
true under any situation that the premise de-
scribes.

. non-entailment: the case where the hypoth-
esis is not always true under a situation that
the premise describes.

. unnatural: the case where either the premise
and/or the hypothesis is ungrammatical or
does not make sense.

Workers were paid US$0.04 for each question,
and each question was assigned to three workers.
To collect high-quality annotation results, we im-
posed ten test questions on each worker, and re-
moved workers who gave more than three wrong
answers. We also set the minimum time it should
take to complete each question to 200 seconds.
1,237 workers contributed to this task, and we an-
notated gold labels of 15,339 premise-hypothesis
pairs.

Table 3 shows the numbers of cases where an-
swers matched gold labels automatically deter-
mined by monotonicity calculus. This table shows
that there exist inference pairs whose labels are
difficult even for humans to determine; there are
3,354 premise-hypothesis pairs whose gold labels
as annotated by polarity computations match with
those answered by all workers. We selected these
naturalistic monotonicity inference pairs for the
candidates of the final test set.

To make the distribution of gold labels symmet-
ric, we checked these pairs to determine if we can
swap the premise and the hypothesis, reverse their
gold labels, and create another monotonicity infer-
ence pair. In some cases, shown below, the gold
label cannot be reversed if we swap the premise
and the hypothesis.
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Upward /cases(%) Downward /cases(%) Total /cases(%)

3 labels match 1,069 (7.0) 2285(149) 3,354 (21.9)
2 labels match 1,814 (11.8) 2301 (15.0) 4,115 (26.8)
1 labels match 2,295 (15.0) 1915(12.5) 4210 (27.5)
no match 1,998 (27.8) 1,652 (10.8) 3,650 (37.8)
Table 3: Numbers of cases where answers matched

automatically determined gold labels.

(a) Replacement with synonyms In (5), child
and kid are not hyponyms but synonyms, and the
premise P and the hypothesis H are paraphrases.

(5) P: Tomis no longer a child

H: Tom is no longer a kid

These cases are not strict downward inference
problems, in the sense that a phrase is not replaced
by its hyponym/hypernym.

(b) Non-constituents Consider the example (6).

(6) P: The moon has no atmosphere

H: The moon has no atmosphere, and the gravity
force is too low

The hypothesis H was created by asking workers
to make atmosphere in the premise P more spe-
cific. However, the additional phrase and the grav-
ity force is too low does not form constituents with
atmosphere. Thus, such examples are not strict
downward monotone inferences.

In such cases as (a) and (b), we do not swap
the premise and the hypothesis. In the end,
we collected 4,068 examples from crowdsourced
datasets.

3.2 Linguistics-oriented dataset

We also collect monotonicity inference problems
from previous manually curated datasets and lin-
guistics publications. The motivation is that pre-
vious linguistics publications related to mono-
tonicity reasoning are expected to contain well-
designed inference problems, which might be
challenging problems for NLI models.

We collected 1,184 examples from 11 linguis-

tics publications (Barwise and Cooper, 1981;
Hoeksema, 1986; Heim and Kratzer, 1998,;
Bonevac et al., 1999; Fyodorov etal.,, 2003;
Geurts, 2003; Geurts and van der Slik, 2005;
Zamansky et al., 2006; Szabolcsi et al., 2008;
Winter, 2016; Denic et al., 2019). Regarding

previous manually-curated datasets, we collected
93 examples for monotonicity reasoning from the
GLUE diagnostic dataset, and 37 single-premise
problems from FraCaS.



Genre  Tags Premise Hypothesis Gold
up There is a cat on the chair There is a cat sleeping on the chair NE
up: If you heard her speak English, you would take her If you heard her speak English, you would take her
cond for a native American for an American E
up:rev: Dogs and cats have all the good qualities of people Dogs have all the good qualities of people without

Crowd conj without at the same time possessing their weaknesses — at the same time possessing their weaknesses E
up:lex He approached the boy reading a magazine He approached the boy reading a book E
down:lex Tom hardly ever listens to music Tom hardly ever listens to rock ’n’ roll E
down:conj  You don’t like love stories and sad endings You don’t like love stories NE
down:cond [If it is fine tomorrow, we’ll go on a picnic If it is fine tomorrow in the field, we’ll go on a picnic E
down I never had a girlfriend before I never had a girlfriend taller than me before E
up:rev Every cook who is not a tall man ran Every cook who is not a man ran E
up:disj Every man sang Every man sang or danced E
up:lex: None of the sopranos sang with fewer than three of None of the sopranos sang with fewer than three of

Paper rev the tenors the male singers E
non Exactly one man ran quickly Exactly one man ran NE
down At most three elephants are blue At most three elephants are navy blue E

Table 4: Examples in the MED dataset. Crowd: problems collected through crowdsourcing, Paper: problems
collected from linguistics publications, up: upward monotone, down: downward monotone, non: non-monotone,
cond: condisionals, rev: reverse, conj: conjunction, disj: disjunction, lex: lexical knowledge, E: entailment, NE:

non-entailment.

Type Label Crowd Paper Total
Upnard 1820) o 893 299 1192
Dowvard 3270 NG o7 219 1198
Non-monotone 29 NGl 5 o om
Total 4,068 1,314 5,382

Table 5: Statistics for the MED dataset.

Both the GLUE diagnostic dataset and FraCaS
categorize problems by their types of monotonic-
ity reasoning, but we found that each dataset has
different classification criteria.”> Thus, following
GLUE, we reclassified problems into three types
of monotone reasoning (upward, downward, and
non-monotone) by checking if they include (i) the
target monotonicity operator in both the premise
and the hypothesis and (ii) the phrase replacement
in its argument position. In the GLUE diagnos-
tic dataset, there are several problems whose gold
labels are contradiction. We regard them as non-
entailment in that the premise does not semanti-
cally entail the hypothesis.

3.3 Statistics

We merged the human-oriented dataset created via
crowdsourcing and the linguistics-oriented dataset
created from linguistics publications to create the
current version of the monotonicity entailment
dataset (MED). Table 4 shows some examples
from the MED dataset. We can see that our dataset

?FraCasS categorizes each problem by whether its replace-

ment broadens an argument (upward monotone) or narrows it
(downward monotone).
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contains various phrase replacements (e.g., con-
junction, relative clauses, and comparatives). Ta-
ble 5 reports the statistics of the MED dataset, in-
cluding 5,382 premise-hypothesis pairs (1,820 up-
ward examples, 3,270 downward examples, and
292 non-monotone examples). Regarding non-
monotone problems, gold labels are always non-
entailment, whether a hypothesis is more spe-
cific or general than its premise, and thus almost
all non-monotone problems are labeled as non-
entailment.> The size of the word vocabulary in
the MED dataset is 4,023, and overlap ratios of
vocabulary with previous standard NLI datasets is
95% with MultiNLI and 90% with SNLI.

We assigned a set of annotation tags for lin-
guistic phenomena to each example in the test set.
These tags allow us to analyze how well models
perform on each linguistic phenomenon related to
monotonicity reasoning. We defined 6 tags (see
Table 4 for examples):

1. lexical knowledge (2,073 examples): infer-
ence problems that require lexical relations
(i.e., hypernyms, hyponyms, or synonyms)

reverse (240 examples): inference problems
where a propositional object is embedded in
a downward environment more than once

conjunction (283 examples): inference prob-
lems that include the phrase replacement by
adding conjunction (and) to the hypothesis

315 non-monotone problems which include the replace-
ment with synonyms are labeled as entailment.



4. disjunction (254 examples): inference prob-
lems that include the phrase replacement by
adding disjunction (or) to the hypothesis

conditionals (149 examples): inference prob-
lems that include conditionals (e.g., if, when,
unless) in the hypothesis #

negative polarity items (NPIs) (338 exam-
ples): inference problems that include NPIs
(e.g., any, ever, at all, anything, anyone, any-
more, anyhow, anywhere) in the hypothesis

4 Results and Discussion

4.1 Baselines

To test the difficulty of our dataset, we checked
the majority class label and the accuracies
of five state-of-the-art NLI models adopt-
ing different approaches: BiMPM (Bilateral
Multi-Perspective Matching Model; Wang et al.,
2017), ESIM (Enhanced Sequential Inference
Model; Chenetal.,, 2017), Decomposable
Attention Model (Parikhetal.,, 2016), KIM
(Knowledge-based Inference Model; Chen et al.,
2018), and BERT (Bidirectional Encoder Repre-
sentations from Transformers model; Devlin et al.,
2019). Regarding BERT, we checked the perfor-
mance of a model pretrained on Wikipedia and
BookCorpus for language modeling and trained
with SNLI and MultiNLI. For other models, we
checked the performance trained with SNLIL
In agreement with our dataset, we regarded the
prediction label contradiction as non-entailment.
Table 6 shows that the accuracies of all models
were better on upward inferences, in accordance
with the reported results of the GLUE leader-
board. The overall accuracy of each model was
low. In particular, all models underperformed the
majority baseline on downward inferences, despite
some models having rich lexical knowledge from
a knowledge base (KIM) or pretraining (BERT).
This indicates that downward inferences are diffi-
cult to perform even with the expansion of lexical
knowledge. In addition, it is interesting to see that
if a model performed better on upward inferences,
it performed worse on downward inferences. We
will investigate these results in detail below.
*When-clauses can have temporal and non-temporal inter-
pretations (Moens and Steedman, 1988). We assign the con-
ditional tag to those cases where when is interchangeable with
if, thus excluding those cases where when-clauses have tem-

poral episodic interpretation (e.g., When she came back from
the trip, she bought a gift).
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Model Train Upward Downward Non  All

Majority 65.5 633 993 504
BiMPM  SNLI 53.5 57.6 274 54.6
ESIM SNLI 71.1 452 41.8 53.8
DeComp SNLI 66.1 42.1 644 514
KIM SNLI 78.8 30.3 53.1 48.0
BERT SNLI 50.1 46.8 7.5 458
BERT MNLI 82.7 22.8 527 447

Table 6: Accuracies (%) for different models and train-
ing datasets.

Training set ‘ Upward Downward Non  All
MNLI 82.7 22.8 5277 447
MNLI-Hyp 34.3 18.3 315 244
MNLI+HELP 76.0 70.3 599 71.6
MNLI+HELP-Hyp 61.3 30.5 349 41.1

Table 7: Evaluation results on types of monotonicity
reasoning. —Hyp: Hypothesis-only model.

4.2 Data augmentation for analysis

To explore whether the performance of models on
monotonicity reasoning depends on the training
set or the model themselves, we conducted fur-
ther analysis performed by data augmentation with
the automatically generated monotonicity dataset
HELP (Yanaka et al., 2019). HELP contains 36K
monotonicity inference examples (7,784 upward
examples, 21,192 downward examples, and 1,105
non-monotone examples). The size of the HELP
word vocabulary is 15K, and the overlap ratio of
vocabulary between HELP and MED is 15.2%.
We trained BERT on MultiNLI only and on
MultiNLI augmented with HELP, and compared
their performance. Following Poliak et al. (2018),
we also checked the performance of a hypothesis-
only model trained with each training set to test
whether our test set contains undesired biases.

4.2.1 Effects of data augmentation

Table 7 shows that the performance of BERT
with the hypothesis-only training set dropped
around 10-40% as compared with the one with the
premise-hypothesis training set, even if we use the
data augmentation technique. This indicates that
the MED test set does not allow models to pre-
dict from hypotheses alone. Data augmentation
by HELP improved the overall accuracy to 71.6%,
but there is still room for improvement. In addi-
tion, while adding HELP increased the accuracy
on downward inferences, it slightly decreased ac-
curacy on upward inferences. The size of down-
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Figure 2: Accuracy throughout training BERT (i) with only upward examples and (ii) with only downward exam-
ples. We checked the accuracy at sizes [50, 100, 200, 500, 1000, 2000, 5000] for each direction. (iii) Performance
on different ratios of upward/downward training sets. The total size of the training sets was 5,000 examples.

ward examples in HELP is much larger than that Genre | “HELP +HELP A
of upward examples. This might improve accu- Up 87.1 836 35

, , 4 Down 212 703 +49.1
racy on downward inferences, but might decrease Crowd 01 1000 1000 400

accuracy on upward inferences. All 40.9 743 +334
Up 74.5 60.8 —13.7

. . . . Down 33.8 69.5 +35.7
To investigate the relationship between accu- Paper 524 597 173

racy on upward inferences and downward infer- All 56.6 633  +6.7
ences, we checked the performance throughout
training BERT with only upward and downward
inference examples in HELP (Figure 2 (i), (ii)).
These two figures show that, as the size of the up-
ward training set increased, BERT performed bet-
ter on upward inferences but worse on downward
inferences, and vice versa.

Table 8: Evaluation results by genre. Paper: problems
collected from linguistics publications, Crowd: prob-
lems via crowdsourcing.

4.2.2 Linguistics-oriented versus
human-oriented

Figure 2 (iii) shows performance on a different ~ Table 8 shows the evaluation results by genre.
ratio of upward and downward inference training ~ This result shows that inference problems col-
sets. When downward inference examples con-  lected from linguistics publications are more chal-
stitute more than half of the training set, accura-  lenging than crowdsourced inference problems,
cies on upward and downward inferences were re-  even if we add HELP to training sets. As shown
versed. As the ratio of downward inferences in-  in Figure 2, the change in performance on prob-
creased, BERT performed much worse on upward ~ lems from linguistics publications is milder than
inferences. This indicates that a training set in  that on problems from crowdsourcing. This re-
one direction (upward or downward entailing) of ~ sult also indicates the difficulty of problems from
monotonicity might be harmful to models when  linguistics publications. Regarding non-monotone

learning the opposite direction of monotonicity. problems collected via crowdsourcing, there are
very few non-monotone problems, so accuracy is
Previous work using HELP (Yanakaetal, 100%. Adding non-monotone problems to our test

2019) reported that the BERT trained with  setis left for future work.
MultiNLI and HELP containing both upward
and downward inferences improved accuracy
on both directions of monotonicity. MultiNLI ~ Table 9 shows the evaluation results by type of lin-
rarely comes from downward inferences (see Sec-  guistic phenomenon. While accuracy on problems
tion 4.3), and its size is large enough to be im-  involving NPIs and conditionals was improved on
mune to the side-effects of downward inference  both upward and downward inferences, accuracy
examples in HELP. This indicates that MultiNLI ~ on problems involving conjunction and disjunc-
might act as a buffer against side-effects of the  tion was improved on only one direction. In ad-
monotonicity-driven data augmentation technique.  dition, it is interesting to see that the change in

4.2.3 Linguistic phenomena
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Tag | -HELP +HELP A
Lexical (743) 81.0 70.8 —10.2
non-Lexical  (1,077) 84.1 796 —45
NPIs (64) 20.3 359 +15.6

Up Conditionals (29) 51.7 62.1 494
Conjunction (175) 94.3 88.0 —6.3
Disjunction (96) 42 323 428.1
Reverse (240) 74.2 28.7 —455
Lexical 477) 46.1 64.6 +18.5
non-Lexical (2,793) 18.8 712 4524
NPIs (266) 44.0 602 +16.2

Down ..

Conditionals (120) 15.8 20.0 +4.2
Conjunction (106) 24.5 40.6 +16.1
Disjunction (138) 80.4 40.6 —39.8
Lexical (182) 58.2 64.3 +6.1

Non non-Lexical (110) 43.6 527 4+9.1
NPIs 8) 0.0 0.0 0.0
Disjunction (20) 10.0 150  +5.0

Table 9: Evaluation results by linguistic phenomenon
type. (non-)Lexical: problems that (do not) require lex-
ical relations. Numbers in parentheses are numbers of
problems.

accuracy on conjunction was opposite to that on
disjunction. Downward inference examples in-
volving disjunction are similar to upward infer-
ence ones; that is, inferences from a sentence to a
shorter sentence are valid (e.g., Not many campers
have had a sunburn or caught a cold = Not many
campers have caught a cold). Thus, these results
were also caused by addition of downward infer-
ence examples. Also, accuracy on problems an-
notated with reverse tags was apparently better
without HELP because all examples are upward
inferences embedded in a downward environment
twice.

Table 9 also shows that accuracy on condition-
als was better on upward inferences than that on
downward inferences. This indicates that BERT
might fail to capture the monotonicity property
that conditionals create a downward entailing con-
text in their scope while they create an upward en-
tailing context out of their scope.

Regarding lexical knowledge, the data augmen-
tation technique improved the performance much
better on downward inferences which do not re-
quire lexical knowledge. However, among the 394
problems for which all models provided wrong
answers, 244 problems are non-lexical inference
problems. This indicates that some non-lexical in-
ference problems are more difficult than lexical in-
ference problems, though accuracy on non-lexical
inference problems was better than that on lexical
inference problems.
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4.3 Discussion

One of our findings is that there is a type of down-
ward inferences to which every model fails to pro-
vide correct answers. One such example is con-
cerned with the contrast between few and a few.
Among 394 problems for which all models pro-
vided wrong answers, 148 downward inference
problems were problems involving the downward
monotonicity operator few such as in the following
example:

(7) P: Few of the books had typical or marginal readers
H: Few of the books had some typical readers

We transformed these downward inference
problems to upward inference problems in two
ways: (i) by replacing the downward operator few
with the upward operator a few, and (ii) by re-
moving the downward operator few. We tested
BERT using these transformed test sets. The re-
sults showed that BERT predicted the same an-
swers for the transformed test sets. This suggests
that BERT does not understand the difference be-
tween the downward operator few and the upward
operator a few.

The results of crowdsourcing tasks in Sec-
tion 3.1.3 showed that some downward inferences
can naturally be performed in human reasoning.
However, we also found that the MultiNLI train-
ing set (Williams et al., 2018), which is one of
the dataset created from naturally-occurring texts,
contains only 77 downward inference problems,
including the following one.’

(8) P: No racin’ on the Range
H: No horse racing is allowed on the Range

One possible reason why there are few downward
inferences is that certain pragmatic factors can
block people to draw a downward inference. For
instance, in the case of the inference problem in
(9), unless the added disjunct in H, i.e., a small
cat with green eyes, is salient in the context, it
would be difficult to draw the conclusion H from
the premise P.

©9) P: Isawadog
H: [saw a dog or a small cat with green eyes

Such pragmatic factors would be one of the rea-
sons why it is difficult to obtain downward infer-
ences in naturally occurring texts.

>The MultiNLI training set has 1,700 inference problems
where the downward entailing operators no and never occur

in both the premise and the hypothesis, but most of them are
not an instance of downward inferences.



5 Conclusion

We introduced a large monotonicity entailment
dataset, called MED. To illustrate the usefulness
of MED, we tested state-of-the-art NLI models,
and found that performance on the new test set
was substantially worse for all state-of-the-art NLI
models. In addition, the accuracy on downward in-
ferences was inversely proportional to the one on
upward inferences.

An experiment with the data augmentation tech-
nique showed that accuracy on upward and down-
ward inferences depends on the proportion of up-
ward and downward inferences in the training set.
This indicates that current neural models might
have limitations on their generalization ability in
monotonicity reasoning. We hope that the MED
will be valuable for future research on more ad-
vanced models that are capable of monotonicity
reasoning in a proper way.
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Abstract

Self-explaining text categorization requires a
classifier to make a prediction along with sup-
porting evidence. A popular type of evidence
is sub-sequences extracted from the input text
which are sufficient for the classifier to make
the prediction. In this work, we define multi-
granular ngrams as basic units for explanation,
and organize all ngrams into a hierarchical
structure, so that shorter ngrams can be reused
while computing longer ngrams. We lever-
age a tree-structured LSTM to learn a context-
independent representation for each unit via
parameter sharing. Experiments on medical
disease classification show that our model is
more accurate, efficient and compact than BiL-
STM and CNN baselines. More importantly,
our model can extract intuitive multi-granular
evidence to support its predictions.

1 Introduction

Increasingly complex neural networks have
achieved highly competitive results for many
NLP tasks (Vaswani et al., 2017; Devlin et al.,
2018), but they prevent human experts from
understanding how and why a prediction is made.
Understanding how a prediction is made can be
very important for certain domains, such as the
medical domain. Recent research has started to
investigate models with self-explaining capability,
i.e. extracting evidence to support their final
predictions (Li et al., 2015; Lei et al., 2016;
Lin et al., 2017; Mullenbach et al., 2018). For
example, in order to make diagnoses based on
the medical report in Table 1, the highlighted
symptoms may be extracted as evidence.

Two methods have been proposed on how fo
Jjointly provide highlights along with classifica-
tion. (1) an extraction-based method (Lei et al.,
2016), which first extracts evidences from the
original text and then makes a prediction solely
based on the extracted evidences; (2) an attention-
based method (Lin et al., 2017; Mullenbach et al.,
2018), which leverages the self-attention mecha-
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Medical Report: The patient was admitted to the
Neurological Intensive Care Unit for close observa-

tion. She was begun on | heparin anticoagulated
carefully secondary to the  petechial bleed . She
started weaning from the vent the next day. She

was started on Digoxin to control her rate and her
Cardizem was held. She was started on antibiotics

for possible |aspiration pneumonia . Her chest x-
ray showed | retrocardiac effusion . She had some

bleeding after nasogastric tube insertion .

Diagnoses: Cerebral artery occlusion; Unspecified es-
sential hypertension; Atrial fibrillation; Diabetes melli-
tus.

Table 1: A medical report snippet and its diagnoses.

nism to show the importance of basic units (words
or ngrams) through their attention weights.

However, previous work has several limitations.
Lin et al. (2017), for example, take single words as
basic units, while meaningful information is usu-
ally carried by multi-word phrases. For instance,
useful symptoms in Table 1, such as “bleeding af-
ter nasogastric tube insertion”, are larger than a
single word. Another issue of Lin et al. (2017)
is that their attention model is applied on the rep-
resentation vectors produced by an LSTM. Each
LSTM output contains more than just the infor-
mation of that position, thus the real range for
the highlighted position is unclear. Mullenbach
et al. (2018) defines all 4-grams of the input text
as basic units and uses a convolutional layer to
learn their representations, which still suffers from
fixed-length highlighting. Thus the explainability
of the model is limited. Lei et al. (2016) intro-
duce a regularizer over the selected (single-word)
positions to encourage the model to extract larger
phrases. However, their method can not tell how
much a selected unit contributes to the model’s de-
cision through a weight value.

In this paper, we study what the meaningful
units to highlight are. We define multi-granular
ngrams as basic units, so that all highlighted symp-
toms in Table 1 can be directly used for explain-
ing the model. Different ngrams can have over-
lap. To improve the efficiency, we organize all
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Figure 1: A generic architecture.

ngrams into a hierarchical structure, such that the
shorter ngram representations can be reused to
construct longer ngram representations. Experi-
ments on medical disease classification show that
our model is more accurate, efficient and compact
than BiLSTM and CNN baselines. Furthermore,
our model can extract intuitive multi-granular evi-
dence to support its predictions.

2 Generic architecture and baselines

Our work leverages the attention-based self-
explaining method (Lin et al., 2017), as shown in
Figure 1. First, our text encoder (§3) formulates an
input text into a list of basic units, learning a vec-
tor representation for each, where the basic units
can be words, phrases, or arbitrary ngrams. Then,
the attention mechanism is leveraged over all basic
units, and sums up all unit representations based
on the attention weights {«1, ..., o, }. Eventually,
the attention weight «; will be used to reveal how
important a basic unit h; is. The last prediction
layer takes the fixed-length text representation t
as input, and makes the final prediction.

Baselines: We compare two types of baseline
text encoders in Figure 1. (1) Lin et al. (2017)
(BiLSTM), which formulates single word posi-
tions as basic units, and computes the vector h;
for the ¢-th word position with a BILSTM; (2) Ex-
tension of Mullenbach et al. (2018) (CNN). The
original model in (Mullenbach et al., 2018) only
utilizes 4-grams. Here we extend this model to
take all unigrams, bigrams, and up to n-grams as
the basic units.

For a fair comparison, both our approach and
the baselines share the same architecture, and the
only difference is the text encoder used.
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Figure 2: Structures for a sentence wjwowswy, Where
each node corresponds to a phrase or ngram.

3 Multi-granular text encoder

We propose the multi-granular text encoder to deal
with drawbacks (as mentioned in the third para-
graph of Section 1) of our baselines.

Structural basic units: We define basic units
for the input text as multi-granular ngrams, orga-
nizing ngrams in four different ways. Taking a
synthetic sentence wjwowsw, as the running ex-
ample, we illustrate these structures in Figure 2
(a), (b), (c) and (d), respectively. The first is a
tree structure (as shown in Figure 2(a)) that in-
cludes all phrases from a (binarized) constituent
tree over the input text, where no cross-boundary
phrases exists. The second type (as shown in Fig-
ure 2 (b,c,d)) includes all possible ngrams from the
input text, which is a superset of the tree structure.
In order to reuse representations of smaller ngrams
while encoding bigger ngrams, all ngrams are or-
ganized into hierarchical structures in three differ-
ent ways. First, inspired by Zhao et al. (2015),
a pyramid structure is created for all ngrams as
shown in Figure 2(b), where leaf nodes are uni-
grams of the input text, and higher level nodes cor-
respond to higher-order ngrams. A disadvantage
of the pyramid structure is that some lower level
nodes may be used repeatedly while encoding
higher level nodes, which may improperly aug-
ment the influence of the repeated units. For exam-
ple, when encoding the trigram node “wjwaws”,
the unigram node “ws” is used twice through two
bigram nodes “wjwsy” and “wows”. To tackle
this issue, a left-branching forest structure is con-
structed for all ngrams as shown in Figure 2(c),
where ngrams with the same prefix are grouped
together into a left-branching binary tree, and, in
this arrangement, multiple trees construct a forest.
Similarly, we construct a right-branching forest as
shown in Figure 2(d).



Encoding: We leverage a tree-structured LSTM
composition function (Tai et al., 2015; Zhu et al.,
2015; Teng and Zhang, 2016) to compute node
embeddings for all structures in Figure 2. For-
mally, the state of each node is represented as a
pair of one hidden vector h and one memory rep-
resentation ¢, which are calculated by composing
the node’s label embedding « and states of its left
child (h!,c!) and right child (h", ") with gated
functions:

i=oc(Wx+UR' +UR" +b') (1)
fl=oc(W?zx + U?h' + Uh" +b?) 2)
fr=oW3z+UPh' + Uh" + %) 3)

o=c(Wix+Ulh' + Uh" +b*) (4)

u = tanh(WPx 4+ UPh! + USh" + b%) (5)

c=i0u+flor'+f OR" (6)

h = o ® tanh(c) @)

where o is the sigmoid activation function, © is
the elementwise product, ¢ is the input gate, f'
and f" are the forget gates for the left and right
child respectively, and o is the output gate. We
set « as the pre-trained word embedding for leaf
nodes, and zero vectors for other nodes. The rep-
resentations for all units (nodes) can be obtained
by encoding each basic unit in a bottom-up order.

Comparison with baselines Our encoder is
more efficient than CNN while encoding big-
ger ngrams, because it reuses representations of
smaller ngrams. Furthermore, the same parame-
ters are shared across all ngrams, which makes our
encoder more compact, whereas the CNN base-
line has to define different filters for different or-
der of ngrams, so it requires much more parame-
ters. Experiments show that using basic units up
to 7-grams to construct the forest structure is good
enough, which makes our encoder more efficient
than BiLSTM. Since in our encoder, all ngrams
with the same order can be computed in parallel,
and the model needs at most 7 iterative steps along
the depth dimension for representing a given text
of arbitrary length.

4 Experiments

Dataset: We experiment on a public medical text
classification dataset.! Each instance consists of
a medical abstract with an average length of 207

"https://github.com/SnehaVM/Medical-Text-
Classification

43

4 —— Forest
---- BiLSTM
| —— CNN

(=)}
o

(o)}
v

Accuracy

o
a
f

(<)}
w

6 7
n-gram order

Figure 3: Influence of n-gram order.

Model Train Time Eval Time ACC #Param.
CNN 57.0 2.6 64.8 848,228
BiLSTM 92.1 4.6 64.5 147,928
LeftForest 30.3 1.4 66.2 168,228

Table 2: Efficiency evaluation.

tokens, and one label out of five categories in-
dicating which disease this document is about.
We randomly split the dataset into train/dev/test
sets by 8:1:1 for each category, and end up with
11,216/1,442/1,444 instances for each set.
Hyperparameters We use the 300-dimensional
GloVe word vectors pre-trained from the 840B
Common Crawl corpus (Pennington et al., 2014),
and set the hidden size as 100 for node embed-
dings. We apply dropout to every layer with a
dropout ratio 0.2, and set the batch size as 50. We
minimize the cross-entropy of the training set with
the ADAM optimizer (Kingma and Ba, 2014), and
set the learning rate is to 0.001. During training,
the pre-trained word embeddings are not updated.

4.1 Properties of the multi-granular encoder

Influence of the n-gram order: For CNN and our
LeftForest encoder, we vary the order of ngrams
from 1 to 9, and plot results in Figure 3. For
BiLSTM, we draw a horizontal line according
to its performance, since the ngram order does
not apply. When ngram order is less than 3,
both CNN and LeftForest underperform BiLSTM.
When ngram order is over 3, LeftForest outper-
forms both baselines. Therefore, in terms of accu-
racy, our multi-granular text encoder is more pow-
erful than baselines.

Efficiency: We set ngram order as 7 for both
CNN and our encoder. Table 2 shows the time
cost (seconds) of one iteration over the training set
and evaluation on the development set. BiLSTM
is the slowest model, because it has to scan over
the entire text sequentially. LeftForest is almost
2x faster than CNN, because LeftForest reuses
lower-order ngrams while computing higher-order



Model Accuracy
BiLSTM 62.7
CNN 62.5
Tree 63.8
Pyramid 63.7
LeftForest 64.6
RightForest 64.5
BiForest 65.2

Table 3: Test set results.
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Figure 4: Effectiveness of the extracted evidence.

ngrams. This result reveals that our encoder is
more efficient than baselines.

Model size: In Table 2, the last two columns
show the accuracy and number of parameters for
each model. LeftForest contains much less param-
eters than CNN, and it gives a better accuracy than
BiLSTM with only a small amount of extra param-
eters. Therefore, our encoder is more compact.

4.2 Model performance

Table 3 lists the accuracy on the test set, where
BiForest represents each ngram by concatenat-
ing representations of this ngram from both the
LeftForest and the RightForest encoders. We get
several interesting observations: (1) Our multi-
granular text encoder outperforms both the CNN
and BiLSTM baselines regardless of the structure
used; (2) The LeftForest and RightForest encoders
work better than the Tree encoder, which shows
that representing texts with more ngrams is helpful
than just using the non-overlapping phrases from
a parse tree; (3) The LeftForest and RightForest
encoders give better performance than the Pyra-
mid encoder, which verifies the advantages of or-
ganizing ngrams with forest structures; (4) There
is no significant difference between the LeftFor-
est encoder and the RightForest encoder. How-
ever, by combining them, the BiForest encoder
gets the best performance among all models, in-
dicating that the LeftForest encoder and the Right-
Forest encoder complement each other for better
accuracy.
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4.3 Analysis of explainability

Qualitative analysis The following text is a
snippet of an example from the dev set. We lever-
age our BiForest model to extract ngrams whose
attention scores are higher than 0.05, and use the
bold font to highlight them. We extracted three
ngrams as supporting evidence for its predicted
category “nervous system diseases”. Both the
spontaneous extradural spinal hematoma and the
spinal arteriovenous malformation are diseases re-
lated to the spinal cord, therefore they are good
evidence to indicate the text is about “nervous sys-
tem diseases”.

Snippet: Value of magnetic resonance imaging in spon-
taneous extradural spinal hematoma due to vascular mal-
formation : case report . A case of spinal cord compression
due to spontaneous extradural spinal hematoma is reported
. A spinal arteriovenous malformation was suspected on the
basis of magnetic resonance imaging. Early surgical explo-

ration allowed a complete neurological recovery .

Quantitative analysis For each instance in the
training set and the dev set, we utilize the atten-
tion scores from BiForest to sort all ngrams, and
create different copies of the training set and de-
velopment set by only keeping the first n impor-
tant words. We then train and evaluate a BILSTM
model with the newly created dataset. We vary the
number of words n among {1, 2, 3,4, 5,6, 7, 8,
9, 10, 20, 30, 40, 50}, and show the corresponding
accuracy with the green triangles in Figure 4. We
define a Random baseline by randomly selecting a
sub-sequence containing n words, and plot its ac-
curacy with blue squares in Figure 4. We also take
a BiLSTM model trained with the entire texts as
the upper bound (the horizontal line in Figure 4).
When using only a single word for representing
instances, single words extracted from our BiFor-
est model are significantly more effective than ran-
domly picked single words. When utilizing up to
five extracted words from our BiForest model for
representing each instance, we can obtain an accu-
racy very close to the upper bound. Therefore, the
extracted evidence from our BiForest model are
truly effective for representing the instance and its
corresponding category.

5 Conclusion

We proposed a multi-granular text encoder for
self-explaining text categorization. Comparing
with the existing BiLSTM and CNN baselines, our



model is more accurate, efficient and compact. In
addition, our model can extract effective and intu-
itive evidence to support its predictions.
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The meaning of ‘“most” for visual question answering models
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Abstract

The correct interpretation of quantifier state-
ments in the context of a visual scene requires
non-trivial inference mechanisms. For the ex-
ample of “most”, we discuss two strategies
which rely on fundamentally different cogni-
tive concepts. Our aim is to identify what strat-
egy deep learning models for visual question
answering learn when trained on such ques-
tions. To this end, we carefully design data
to replicate experiments from psycholinguis-
tics where the same question was investigated
for humans. Focusing on the FiLM visual
question answering model, our experiments
indicate that a form of approximate number
system emerges whose performance declines
with more difficult scenes as predicted by We-
ber’s law. Moreover, we identify confounding
factors, like spatial arrangement of the scene,
which impede the effectiveness of this system.

1 Introduction

Deep learning methods have been very successful
in many natural language processing tasks, rang-
ing from syntactic parsing to machine translation
to image captioning. However, despite signifi-
cantly raised performance scores on benchmark
datasets, researchers increasingly worry about in-
terpretability and indeed quality of model deci-
sions. We see two distinct research endeavors
here, one being more pragmatic, forward-oriented,
and guided by the question “Can a system solve
this task?”, the other being more analytic, reflec-
tive, and motivated by the question “How does
a system solve this task?”. In other words, the
former aspires to improve performance, while the
latter aims to increase our understanding of deep
learning models.

By ‘understanding’ here we mean observing
a reasoning mechanism that, if not human-like,
at least is cognitively plausible. This is by no
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random partitioned

“More than half the shapes are red shapes?”

Figure 1: Three types of spatial arrangement of ob-
jects which may or may not affect the performance of
a mechanism for verifying “most” statements. Going
from left to right, a strategy based on pairing entities of
each set and identifying the remainder presumably gets
more difficult, while a strategy based on comparing set
cardinalities does not.

means necessary for practically solving a task,
however, we highlight two reasons why being able
to explain model behavior is nonetheless impor-
tant: On the one hand, cognitive plausibility in-
creases confidence in the abilities of a system —
one is generally more willing to rely on a reason-
able than an incomprehensible mechanism. On the
other hand, pointing out systematic shortcomings
inspires systematic improvements and hence can
guide progress. Moreover, particularly in the case
of a human-centered domain like natural language,
ultimately, some degree of comparability to hu-
man performance is indispensable.

In this paper we are inspired by experimen-
tal practice in psycholinguistics to shed light on
the question how deep learning models for visual
question answering (VQA) learn to interpret state-
ments involving the quantifier “most”. We follow
Pietroski et al. (2009) in designing abstract visual
scenes where we control the ratio of the objects
quantified over and their spatial arrangement, to
identify whether VQA models exhibit a preferred
strategy of verifying whether “most” applies. Fig-
ure 1 illustrates how visual scenes can be config-
ured to favor one over another mechanism.
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We want to emphasize the experimental ap-
proach and its difference to mainstream ma-
chine learning practice. For different verification
strategies, conditions are identified that should or
should not affect their performance, and test in-
stances are designed accordingly. By comparing
the accuracy of subjects on various instance pat-
terns, predictions about a subject’s performance
for these mechanisms can be verified and the most
likely explanation identified. Note that our advo-
cated evaluation methodology is entirely extrin-
sic and does not constrain the system in any way
(like requiring attention maps) or require a specific
framework (like being probabilistic).

Psychology as a discipline has focused entirely
on questions around how humans process situa-
tions and arrive at decisions, and consequently has
the potential to inspire a lot of experiments (like
ours) for investigating the same questions in the
context of machine learning. Similar to psychol-
ogy, we advocate the preference of an artificial
experimentation environment which can be con-
trolled in detail, over the importance of data orig-
inating from the real world, to arrive at more con-
vincing and thus meaningful results.

It is less common recently to evaluate deep
learning models on artificial data tailored to a
specific problem, as opposed to big real-world
datasets. However, artificial data has a history
in deep learning of establishing new techniques
— most prominently, LSTMs were introduced by
showing their ability to handle various formal
grammars (Gers and Schmidhuber, 2001) — and
our higher-level goal with this paper is to demon-
strate the potential for more informative evalua-
tion of machine learning models in general. This is
motivated by our belief that, in the long term, true
progress can only be made if we do not just rely
on the narrative of neural networks “learning to
understand/solve” a task, but can actually confirm
our theories experimentally. Taking inspiration
from psychology seems particularly appropriate
in the context of powerful deep learning models,
which recently are not infrequently described by
anthropomorphizing words like “understanding”,
and compared to “human-level” performance.

2 The meaning of “most”

In this section we will discuss two mechanisms of
interpreting “most” and introduce relevant cogni-
tive concepts.
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2.1 Generalized quantifiers and “most”

“Most” has a special status in linguistics due to
the fact that it is the most prominent example of
a quantifier whose semantics cannot be expressed
in first-order logic, while other simple natural lan-
guage quantifiers like “some”, “every” or “no”
directly correspond to the quantifier primitives 3
and V (plus logical operators A, V and —). This
situation is not just a matter of introducing further
appropriate primitives, but requires a fundamental
extension of the logic system and its expressivity.

In the following, by = we denote an entity, A
and B denote predicates (“square”, “red”), A(x)
is true if and only if z satisfies A, and S4 = {z :
A(x)} is the corresponding set of entities satisfy-
ing this predicate ( “squares”). Thus we can define
the semantics of “some” and “every”:

some(A, B) < 3z : A(x) A B(x)
every(A, B) & Vo : A(x) = B(x)

Importantly, these definitions do not involve the
concept of set cardinality and indeed can be for-
mulated without involving sets. This is not possi-
ble for “most”, which is commonly defined in one
of the following ways:

most(A, B) < |Sanp| > 1/2 - |A]
< |Sans| > |San-sl

ey

This makes “most” an example of a generalized
quantifier, and in fact all generalized quantifiers
can be defined in terms of cardinalities, indicating
the apparent importance of a cardinality concept
to human cognition.

2.2 Alternative characterization

There is another way to define “most” which uses
the fact that whether two sets are equinumerous
can be determined without a concept of cardinal-
ity, but based on the idea of a bijection:

A<+ B:eVr: Ax) & B(x)
& [Sal = |5B|
The definition of equinumerosity can be general-

ized to “more than” (and, correspondingly, “less
than”), which lets us define “most” as follows:

most(A, B) < 35 C Sapp : S <> San- (2)

Although, at a first glance, this definition looks
similar to the one above, it can be seen as suggest-
ing a different algorithmic approach to verifying
“most”, as we will discuss below.



2.3 Two interpretation strategies

These two characterizations are of course truth-
conditionally equivalent, that is, every situation
in which one of them holds, the other holds, and
vice versa. In particular, if we are just interested
in solving a task involving “most” statements, we
can be agnostic about which definition our system
prefers. Nevertheless, the subtle differences be-
tween these two characterizations suggest differ-
ent algorithmic mechanisms of verifying or falsi-
fying such statements, meaning that a system pro-
cesses a visual scene differently to come to the
(same) conclusion about a statement’s truth.

Characterization (1) represents the cardinality-
based strategy of interpreting “most”:

1. Estimate the number of entities satisfying
both predicates (“red squares”’) and the num-
ber satisfying one predicate but not the other
(“non-red squares”).

2. Compare these number estimates and check
whether the former is greater than the latter.

We want to add that, actually, the two defini-
tions in (1) already suggest a minor variation of
this mechanism — see Hackl (2009) for a discus-
sion on “most” versus “more than half”. How-
ever, we do not focus on this detail here, and as-
sume the second variant in (1) to be ‘strictly’ sim-
pler in the sense that both involve estimating and
comparing cardinalities, but the first variant addi-
tionally involves the rather complex operation of
halving one number estimates.

Characterization (2) utilizes the concept of a bi-
jection, which is a comparatively simple pairing
mechanism and as such could be imagined to be
a primitive cognitive operation. This gives us the
pairing-based strategy of verifying “most”:

1. Successively match entities satisfying both
predicates (“red squares”) uniquely with en-
tities satisfying one predicate but not the
other (“non-red squares”).

. The remaining entities are all of one type, so
pick one and check whether it is of the first
type (“red square”).

2.4 Cognitive implications

Finding evidence for one strategy over the other
has substantial implications with respect to the
‘cognitive abilities’ of a neural network model. In
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particular, evidence for a cardinality-based pro-
cessing of “most” suggests the existence of an
approximate number system (ANS), which is
able to simultaneously estimate the number of ob-
jects in two sets, and perform higher-level op-
erations on the resulting number representations
themselves, like the comparison operation here.
Explicit counting would be an even more accurate
mechanism here, but neither available to the sub-
jects in the experiments of Pietroski et al. (2009)
due to very short scene display time, nor likely to
be learned by the ‘one-glance’ feed-forward-style
neural network we evaluate in this work'.

The ANS (see appendix in Lidz et al. (2011)
for a summary) is an evolutionary comparatively
old mechanism which is shared between many dif-
ferent species throughout the animal world. It
emerges without explicit training and produces ap-
proximate representations of the number of ob-
jects of some type. They are approximate in the
sense that their number judgment is not ‘sharp’,
but resulting behavior exhibits variance — like in-
terpreting “most” statements with a cardinality-
based strategy, as described above. This vari-
ance follows Weber’s law which states that the
discriminability of two quantities is a function of
their ratio®. The precision of the ANS is thus usu-
ally indicated by a characteristic value called We-
ber fraction which relates quantity and variance.
The ANS of a typical adult human is often re-
ported to have a Weber fraction of 1.14 or, more
tangibly, it can distinguish a ratio of 7:8 with 75%
accuracy. Finding evidence for the emergence of
a similar system in deep neural networks indicates
that these models can indeed learn more abstract
concepts (approximate numbers) than mere super-
ficial pattern matching (“red squares” etc).

'By “one-glance feed-forward-style networks” we refer
to the predominant type of network architecture which, by de-
sign, consists of a fixed sequence of computation steps before
arriving at a decision. In particular, such models do not have
the ability to interact with their input dynamically depending
on the complexity of an instance, or perform more general
recursive computations beyond the fixed recurrent modules
built into their design. Important for the discussion here is
the fact that precise — in contrast to approximate or subitizing-
style — counting is by definition a recursive ability, thus im-
possible to learn for such models.

2We want to emphasize that there is evidence for Weber’s
Law in a range of other approximate systems, some of them
non-discrete and thus rendering a pairing-based strategy im-
possible. While this does not rule out such a strategy when
observing performance decline as predicted by Weber’s Law
(which is probably not possible based on extrinsic evaluation
alone), it strongly suggests that similar and thus non-pairing-
based mechanisms are at work in all of these situations.



Both mechanisms to interpret “most” suggest
conditions in which they should perform well or
badly. For the cardinality-based one, the dif-
ference in numbers of the two sets in question
is expected to be essential: smaller differences,
or greater numbers for the same absolute differ-
ence, require more accurate number estimations
and hence make this comparison harder, accord-
ing to Weber’s law. The pairing-based mecha-
nism, on the other hand, is likely affected by the
spatial arrangement of the objects in question: if
the objects are more clustered within one set, pair-
ing them with objects from the other set becomes
harder. Importantly, these conditions are orthogo-
nal, so each mechanism should not substantially
be affected by the other condition, respectively.
By constructing (artificial) scenes where one of the
conditions dominates the configuration, and mea-
suring the accuracy of being able to correctly inter-
pret propositions involving “most”, the expected
difficulties can be confirmed (or refuted) and thus
indicate which mechanism is actually at work.

Using this methodology, Pietroski et al. (2009)
show that humans exhibit a default strategy of in-
terpreting “most”, at least when only given 200ms
to look at the scene and hence having to rely on an
immediate subconscious judgment. This strategy
is based on the approximate number system and
the cardinality-based mechanism. Moreover, the
behavior is shown to be sub-optimal in some situa-
tions where humans would, in principle, be able to
perform better if deviating from their default strat-
egy. Since machine learning models are trained
by optimizing parameters for the task at hand, it
is far from obvious whether they learn a similarly
stable default mechanism, or instead follow a po-
tentially superior adaptive strategy depending on
the situation. While the latter is likely more effi-
cient in solving at least a narrowly defined task,
the former would instead suggest that the system
is able to acquire and utilize core concepts like an
approximate number system.

We may speculate about the innate preference
of modern network architectures for either of the
strategies: Most of the visual processing is based
on convolutions which, being an inherently local
computation, we assume would favor the pairing-
based strategy via locally matching and ‘can-
celling out’ entities of the two predicates. On the
other hand, the tensors resulting from the sequence
of convolution operations are globally fused into
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a final embedding vector, which in turn would
support the more globally aggregating cardinality-
based strategy. However, the type of computa-
tions and representations learned by deep neu-
ral networks are poorly understood, making such
speculations fallacious. We thus emphasize again
that the higher-level motivation for this paper is to
demonstrate how we need not rely on such specu-
lative ‘narratives’, but can experimentally substan-
tiate our claims.

3 Experimental setup

The setup in this paper closely resembles the
psychological experiments conducted by Pietroski
et al. (2009), but aimed at a state-of-the-art VQA
model and its interpretation of “most”.

3.1 Training and evaluation data

We use the ShapeWorld framework (Kuhnle and
Copestake, 2017) as starting point to generate ap-
propriate data. ShapeWorld is a configurable gen-
eration system for abstract, visually grounded lan-
guage data. A data point consists of an image, an
accompanying caption, and an agreement value in-
dicating whether the caption is true given the im-
age. The underlying task, image caption agree-
ment, essentially corresponds to yes/no questions
and as such is a type of visual question answering.
Internally, the system samples an abstract world
description from which a semantic caption repre-
sentation is extracted. Both are then turned into
‘natural’ (but still abstract) representations as im-
age and natural language statement, respectively.
The latter transformation is based on a semantic
grammar formalism (see the paper for details).
We use the pre-implemented quantifier cap-
tioner component, both in its unrestricted ver-
sion and one with available quantifiers restricted
to “more than half” and “less than half”>.
The former contains various additional (gener-
alized) quantifiers (“no”, “a/three quarter(s)”,
“a/two third(s)”, “all”) and numbers (ranging
from “zero” to “five”), each in combination with a
comparing modifier (“less than”, “at most”, *
actly”, “at least”, “more than”, “not”). We refer
to the unrestricted version as Q-full, the other one

ex-

*We use these two instead of “most” since ShapeWorld
generates them by default. The VQA model is trained from
scratch on this data, so we do not expect any of the differ-
ences between “most” and “more than half” one observes
with humans (Hackl, 2009) to matter.



e Exactly two squares are yellow.

e Exactly no square is red.

e More than half the red shapes are
squares.

More than a third of the shapes are cyan.

Less than half the shapes are green.

Exactly all magenta shapes are squares.

At most five shapes are magenta.

At least one triangle is gray.

Figure 2: Two example images with in-/correct captions, taken from the Q-full dataset (all quantifiers/numbers).

as Q-half. Figure 2 shows two images together
with potential Q-full captions.

We also use the default world generator to pro-
duce training data (up to 15 randomly positioned
objects, as seen in figure 2). However, all of
the pre-implemented generator modules are too
generic for our evaluation purposes, since they
do not allow to control attributes and positioning
of objects to the desired degree. We thus imple-
mented our own custom generator module with the
following functionality to produce test data.

Attribute contrast: For each instance, either the
attribute ‘shape’ or ‘color’ is picked*, and
subsequently two values for this attribute and
one value for the other is randomly chosen.
This means that the only relevant difference
between objects in every image is either one
of two shape or color values (for instance, red
vs blue squares, or red squares vs circles).

Contrast ratios: A list of valid ratios between the
contrasted attributes can be specified, from
which one will randomly be chosen per in-
stance. For instance, a ratio of 2:3 means
that there are 50% more objects with the sec-
ond than the first attribute. We look at values
close to 1:1, that is, 1:2, 2:3, 3:4, 4:5, etc.
The increasing difficulty (for humans) result-
ing from closer ratios is illustrated in figure
3. Multiples of the smaller-valued ratios are
also generated (e.g., 2:4 or 6:9), within the
limit of up to 15 objects overall.

Area-controlled (vs size-controlled): If this op-
tion is set, object sizes are not chosen uni-
formly across the entire valid range, but size
ranges for the two contrasting object types
are adapted to the given contrast ratio and
size of the chosen shape(s), so that both at-
tributes cover the same image area on av-
erage. This means that the more numer-
ous attribute will generally be represented by

“Note that we chose the examples in figures to always
vary in color only, for clarity.
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smaller objects, and the difference in covered
area between, for instance, squares and trian-
gles is taken into account.

While objects are still positioned randomly in
the basic version of this new generator module,
we define two modes which control this aspect as
well. Figure 1 in the introduction illustrates the
different modes.

Partitioned positioning: An angle is randomly
chosen for each image, and objects of the
contrasting attributes are consistently placed
either on one side or the other.

Paired positioning: If there are objects of the
contrasted attribute which are not yet paired,
one of them is randomly chosen and the new
object is placed next to it.

The captions of these evaluation instances are
always of the form “More/less than half the
shapes are X”. with “X” being the attribute in
question, for instance, “squares” or “red shapes”.
Note that this is an even more constrained cap-
tioner than the one used for Q-half. We also em-
phasize that, in contrast to this new evaluation
generator module, the default generator configu-
ration of the ‘quantification’ dataset pre-specified
in ShapeWorld is used to generate the training in-
stances in Q-half and Q-full. So these images gen-
erally contain many more than just two contrasted
attributes, and ratios between attributes tend to be
accordingly smaller. The examples in figure 2 are
chosen to illustrate this fact: the second example
contains a “half” statement with ratio 7:8, and the
first contains one about a 0:4 ratio, while the im-
age would also allow for a more ‘interesting’ 3:4
ratio (color of semicircles).

While we generally try to stay close to the ex-
perimental setup of Pietroski et al. (2009), in the
following we point out some differences. Most
importantly, instead of just using yellow and blue
dots, we use all eight shapes and seven colors that
ShapeWorld provides. This increases the visual
variety of the instances and thus encourages the
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Figure 3: From left to right, the ratio between the two attributes is increasingly balanced.

system to actually learn the fact that shape and
color are attributes that can be combined in any
way, instead of just straightforward binary pattern
matching. Note that the humans in the psycho-
logical experiments have learned language in even
more complex situations, which we cannot hope
to approximate here. Moreover, our data does not
contain yes/no questions but true/false captions,
and “most”-equivalent variations “more/less than
half”. Since the model is trained from scratch on
such data, this should not affect results.

We do not implement the ‘column pairs
mixed/sorted” modes since they would require
comparatively big and mostly empty images,
hence require bigger networks and might cause
practical learning problems due to sparseness,
which we do not want to address here. In con-
trast, our ‘partitioned’ mode is more difficult than
the ones investigated by Pietroski et al. (2009), at
least for a pairing-based mechanism.

3.2 Model

We focus on the FILM model (Perez et al., 2018)
here since it showed close-to-perfect accuracy on
the CLEVR dataset (Johnson et al., 2017a). We
interpret the ShapeWorld captions and agreement
values as questions and answer, respectively. The
image is processed using either a pre-trained CNN
or a four-layer CNN trained from scratch on the
task. The question is processed by a GRU. In a
sequence of four residual blocks, the image infor-
mation is processed with its features linearly mod-
ulated (scale, offset) conditioned on the processed
question embedding. Finally, the classifier module
produces the answer, true or false. We use the code
made available by the authors of the FILM model,
without changing any parameters. The only aspect
we adapt is the trainable four-layer CNN, which
uses a kernel size of 3, batch normalization and a
stride of 2 in the second and fourth layer.

We considered investigating other models as
well: The PG+EE model (Johnson et al., 2017b)
is openly available and achieved very good per-
formance on CLEVR, however, it relies on the
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‘program tree’ provided by CLEVR, and while
there exists a basic conversion of ShapeWorld cap-
tion models to CLEVR program trees, first, the
CLEVR-specific modules do not cover quantifiers
like “most” and, second, these program trees en-
code the interpretation strategy, which would de-
feat the purpose of our investigation to analyze
precisely this mechanism as learned from data.
The RelationNet architecture (Santoro et al., 2017)
explicitly implements a pairing-based mechanism
and hence we considered its evaluation less inter-
esting than FiLM. For similar reasons, we did not
focus on the VQA model of Zhang et al. (2018),
whose architecture includes an explicit counting
component. While our aim is to investigate the
strategy for understanding “most” learned from
data, it would be interesting to examine in both
cases whether their architectural prior does in-
deed have the expected effect. Finally, we only
learned about the MAC model (Hudson and Man-
ning, 2018) after we started this project and so de-
cided to leave it for future work, but we definitely
consider it one of the most interesting candidate
models to evaluate, since its architecture does not
suggest an obvious preference for either strategy.

3.3 Training details

The training set for both Q-full and Q-half consists
of around 100k (25x 4096) images with 5 captions
per image, so overall around 500k instances. The
model is trained for 100k iterations with a batch
size of 64. Training performance is measured
on an additional validation set of 20k instances.
Moreover, we produced 1024 instances for each
of the overall 48 evaluation configurations, to in-
vestigate the trained model in more detail.

4 Results

Training. We train two versions of the FiLM
model, with CNN trained from scratch on the task:
one on the Q-full dataset which contains all avail-
able quantifier and number caption types, the other
on the Q-half dataset which is restricted to cap-
tions involving the quantifier “half” only. Perfor-



mance of the system over the course of the 100k
training iterations is shown in figure 4. The two
models, referred to by Q-full and Q-half below,
learn to solve the task quasi-perfectly, with a final
accuracy of 98.9% and 99.4% respectively. Not
surprisingly, the system trained on the more di-
verse Q-full training set takes longer to reach this
level of performance, but nevertheless plateaus af-
ter around 70k iterations.

For the sake of completeness, we also include
the performance of other models in this figure,
which failed to show clear improvement over the
first 50k iterations. This includes the FiLM model
with pre-trained instead of trainable CNN module
(Q-full-pre, Q-half-pre), and an earlier trial on Q-
half (Q-half-coll) where we did not constrain the
data generation to not produce object collisions
(the default in ShapeWorld is to allow up to 25%
area overlap). We note, however, that we have not
done any hyperparameter search which might al-
leviate these learning problems.

Evaluation. Table 5 presents a detailed break-
down of system performance on the evaluation set-
tings. Before discussing the results in detail, we
want to reiterate three key differences between the
evaluation data and the training data:

e The visual scenes here do all exhibit close-to-
balanced contrast ratios, while this is not the
case for the training instances.

The evaluation scenes only contain objects
of two different attribute pairs, and conse-
quently the numbers to compare are generally
greater than in the training instances, where
more attributes are likely present in a scene.

Q-full contains not just statements involving
“half” — in fact, a random sample of 100 im-
ages / 500 captions suggests that they consti-
tute only around 8% of the dataset (and this
includes combinations with modifiers beyond
“more/less than”).

Considering that, the relatively high accuracy on
test instances throughout indicates a remarkable
degree of generalization.

More balanced ratios. The most consistent ef-
fect is that more balanced ratios of contrasted at-
tributes cause performance to decrease. This is
certainly affected by the tendency of the training
data to not include many examples of almost bal-
anced ratios. However, if this were the only rea-
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Figure 4: Training performance (iterations in 1000). Q-
full: unconstrained dataset; Q-half: dataset restricted
to “less/more than half”; -pre: using pre-trained CNN
module; -coll: allowing object overlap.

son, one would expect a much more sudden and
less uniformly linear decrease. More importantly,
since Q-full generally contains fewer “half” state-
ments, the decline should be more pronounced
here. We do not observe either of these effects, and
thus conclude that both models may actually have
developed an approximate number system. This is
further discussed at the end of this section.

Random vs paired vs partitioned. There is a
clear negative effect of the partitioned configura-
tion on performance for the model trained on Q-
full, which suggests that the learned mechanism is
not robust to a high degree of per-attribute cluster-
ing. This indicates at most a weak preference to-
wards a pairing-based strategy for Q-full, though,
since otherwise the model would not be expected
to perform best on the random configuration. In-
terestingly, the results for Q-half even suggest
slightly better performance on the area-controlled
partitioned configuration. Overall, no clear prefer-
ence for either the perfectly clustered partitioned
or the perfectly mixed paired arrangement is ap-
parent. We note, however, that the random mode
instances are most similar to the random place-
ment of objects in the training data, which might
cause this effect.

Size- vs area-controlled. The performance in
both cases is comparable, showing that the mod-
els do not (solely) learn to rely on comparing the
overall covered area, which would only work well
in the size-controlled mode. Nevertheless, we
note a tendency for area-controlled instances to
be somewhat more difficult in random and paired
mode, more so for Q-half, which suggests that the



train mode size-controlled area-controlled

all ] 1:2 ‘ 2:3 ‘ 3:4 ‘ 4:5 ] 5:6 ‘ 6:7 ‘ 7:8 || all ‘ 1:2 ‘ 2:3 ] 3:4 ‘ 4:5 ‘ 5:6 ‘ 6:7 ‘ 7:8
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random || 92 | 100 | 100 | 98 | 93 | 88 | 88 | 87 || 93 | 100 | 100 | 97 | 92 | 86 | 85 | 82

Q-half | paired || 92 | 100 | 100 | 96 | 90 | 86 | 84 | 79 || 92 [ 100 | 99 | 96 | 87 | 84 | 79 | 76

part. 91 [ 100 | 99 | 96 | 86 | 83 | 83 | 80 || 91 | 100 | 99 | 94 | 89 | 83 | 83 | 80

Figure 5: Accuracy in percent of the models trained on Q-full and Q-half for the various evaluation configurations.

model(s) learn to use covered area as a feature to
inform a correct decision in some cases.

Q-full vs Q-half. There seems to be a ten-
dency of the system trained on Q-full to perform
marginally better, except for the partitioned mode
discussed before. The fact that this model per-
forms at least on a par with the one trained on
Q-half, while only seeing a fraction of directly rel-
evant training captions, indicates that the learning
process is not ‘distracted’ by the variety of cap-
tions, and indeed might profit from it.

Ratios and Weber fraction. We generated eval-
uation sets of even more balanced ratios (8:9, 9:10,
10:11, increasing the overall number of objects
accordingly to 17/19/21), and in figure 6 plotted
the accuracy of the Q-full model on increasingly
balanced sets for all three spatial configuration
modes, not controlling for area (which for greater
numbers only has a negligible effect anyway). The
figure also contains a diagram with accuracy plot-
ted against ratio fraction, which is more common
in the context of Weber’s law. The characteristic
Weber fraction can be read off directly as the ratio
at which a subject is able to distinguish two val-
ues with 75% accuracy. We observe around 1.11
for random/paired and 1.16 for partitioned, which
corresponds to 9:10 and 6:7 as closest integer ra-
tios. These values are in the same region as the
average human Weber fraction, which is often re-
ported as being 1.14, or 7:8.

We emphasize that these curves align well with
the trend predicted by Weber’s law, even for the
ratios with more than 15 objects overall, where
such situations have never been encountered dur-
ing training. All this strongly suggests that the
model learns a mechanism similar to an ANS,
which is able to produce representations that can
(at least) be utilized for identifying the more nu-
merous set. It can in particular be concluded that
the system does not actually learn to explicitly
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count, since we would then not expect to observe
such fuzziness characteristic to an ANS.

Moreover, since performance is affected some-
what by the partitioned and the area-controlled
modes, the interpretation of “most” seems to be
informed by other features as well. As we noted
earlier, since the model is trained to optimize this
task, an adaptive strategy is not unexpected. On
the contrary, more surprising is the fact that an
ANS-like system emerges as a dominating ‘back-
bone’ mechanism, with additional factors acting
as less influential ‘secondary’ features.

5 Related work

Visual question answering (VQA) is the general
task of answering questions about visual scenes.
Since the introduction of the VQA Dataset (Antol
etal., 2015), this dataset was widely used as evalu-
ation benchmark for multimodal deep learning. It
provides a shallow categorization of questions, in-
cluding basic count questions, however, these cat-
egories are far too coarse for our purposes.

Motivated by various problems with the VQA
Dataset (Goyal et al., 2017; Agrawal et al., 2016),
a range of artificial abstract datasets have been in-
troduced recently. CLEVR (Johnson et al., 2017a)
consists of rendered images of geometric objects
and questions generated based on templates, cov-
ering some abilities like number or attribute com-
parison in more detail, but still in a fixed catego-
rization. NLVR (Suhr et al., 2017) contains crowd-
sourced statements about abstract images, but does
not sort them according to some criteria. Recently,
the COG dataset (Yang et al., 2018) was intro-
duced, which most explicitly focuses on replicat-
ing psychological experiments for deep learning
models, hence most related to our work. However,
their dataset does not contain any number or quan-
tifier statements.

There is some work on investigating deep neural
networks which look at numerosity from a more
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Figure 6: Left: Q-full model performance for increasingly balanced ratios (x-axis indicates ratio via n:n+1).
Right: Performance as a function of the actual ratio fraction (n+1)/n, with Weber fraction (75%) highlighted.

psychologically inspired viewpoint. Stoianov and
Zorzi (2012) find that visual numerosity emerges
from unsupervised learning on abstract image
data. Zhang et al. (2015) look at salient object
subitizing in real-world images, formulated as a
classification task over five classes ranging from
“0” to “4 or more”. In a more general number-
per-category classification setup, Chattopadhyay
et al. (2017) investigate different methods of ob-
taining counts per object category, including one
which is inspired by subitizing. Moving beyond
explicit number classification, (Zhang et al., 2018)
recently introduced a dedicated counting module
for visual question answering.

Other work looks at a similar classification task,
but for proper quantifiers like “no”, “few”, “most”,
“all”, first on abstract images of circles (Sorodoc
et al.,, 2016), then on natural scenes (Sorodoc
et al., 2018). Recently, Pezzelle et al. (2018) in-
vestigated a hierarchy of quantifier-related clas-
sification abilities, from comparatives via quan-
tifiers like the ones above to fine-grained pro-
portions. Wu et al. (2018), besides investigat-
ing precise numerosity via number classification
as above, also look at approximate numerosity as
binary greater/smaller decision, which closely cor-
responds to our experiments. However, on the one
hand, their focus is on the subitizing ability, not the
approximate number system. On the other hand,
their experiments follow a different methodology
in that they already train models on specifically
designed datasets, while we deliberately leverage
such targeted data only for evaluation.

On a methodological level, our proposal of in-
spiring experimental setup and evaluation practice
for deep learning by cognitive psychology is in
line with that of Ritter et al. (2017) and their shape
bias investigation for modern vision architectures.
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6 Conclusion

We identify two strategies of algorithmically in-
terpreting “most” in a visual context, with dif-
ferent implications on cognitive concepts. Fol-
lowing experimental practice of similar investiga-
tions with humans in psycholinguistics, we de-
sign experiments and data to shed light on the
question whether the state-of-the-art FiLM VQA
model shows preference for one strategy over the
other. Performance on various specifically de-
signed instances does indeed indicate that a form
of approximate number system is learned, which
generalizes to more difficult scenes as predicted by
Weber’s law. The results further suggest that ad-
ditional features influence the interpretation pro-
cess, which are affected by the spatial arrange-
ment and relative size of objects in a scene. There
are many opportunities for future work from here,
from strengthening the finding of an approximate
number system and further analyzing confound-
ing factors to investigating the relation to more ex-
plicit counting tasks.
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Abstract

Work on “learning with rationales” shows that
humans providing explanations to a machine
learning system can improve the system’s pre-
dictive accuracy. However, this work has not
been connected to work in “explainable AI”
which concerns machines explaining their rea-
soning to humans. In this work, we show
that learning with rationales can also improve
the quality of the machine’s explanations as
evaluated by human judges. Specifically, we
present experiments showing that, for CNN-
based text classification, explanations gener-
ated using “supervised attention” are judged
superior to explanations generated using nor-
mal unsupervised attention.

1 Introduction

Recently, the need for explainable artificial intel-
ligence (XAI) has become a major concern due
to the increased use of machine learning in au-
tomated decision making (Gunning, 2017; Aha,
2018). On the other hand, work on “learning
with rationales” (Zaidan et al., 2007; Zhang et al.,
2016) has shown that humans providing explana-
tory information supporting their supervised clas-
sification labels can improve the accuracy of ma-
chine learning. These human annotations that can
explain classification labels are called rationales.
In particular, for text categorization, humans select
phrases or sentences from a document that most
support their decision as rationales.

However, there is no work connecting “learning
from rationales” with improving XAI, although
they are clearly complementary problems.

Contribution We explore whether learning
from human explanations actually improves a sys-
tem’s ability to explain its decisions to human
users. Specifically, we show that for explanations
for text classification in the form of selected pas-
sages that best support a decision, training on hu-
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man rationales improves the quality of a system’s
explanations as judged by human evaluators.

Attention mechanisms (Bahdanau et al., 2015)
have become standard practice in computer vision
and text classification (Vaswani et al., 2017; Yang
et al., 2016). In both computer vision and text-
based tasks, learned attention weights have been
shown through human evaluation to be useful ex-
planations for a model’s decisions (Park et al.,
2018; Rocktischel et al., 2015; Hermann et al.,
2015; Xu et al., 2015); however, attention’s ex-
planatory power has come into question in recent
work (Jain and Wallace, 2019), which we discuss
in Section 2.

Traditional attention mechanisms are unsuper-
vised; however, recent work has shown that su-
pervising attention with human annotated ratio-
nales can improve learning for text classification
based on Convolutional Neural Networks (CNN’s)
(Zhang et al., 2016). While this work alludes
to improved explainability using supervised atten-
tion, it does not explicitly evaluate this claim. We
extend this work by evaluating whether supervised
attention using human rationales, rather than unsu-
pervised attention, actually improves explanation.
Explanations from both models are full sentences
that the model has weighted as being most impor-
tant to the document’s final classification.

While automated evaluations of explanations
(e.g. comparing them to human gold-standard ex-
planations (Lei et al., 2016)) can be somewhat use-
ful, we argue that because the goal of machine ex-
planations is to help users, they should be directly
evaluated by human judges. Machine explanations
can be different from human ones, but still provide
good justification for a decision (Das et al., 2017).
This opinion is shared by other researchers in the
area (Doshi-Velez, 2017), but human evaluation is
often avoided due to the time required and diffi-
culty of conducting human trials. We believe itis a
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necessary element of explainability research, and
in this work, we compare the explanations from
the two models through human evaluation on Me-
chanical Turk and find that the model trained with
human rationales is judged to generate explana-
tions that better support its decisions.

2 Related Work

There is a growing body of research on explain-
able AI (Koh and Liang, 2017; Ribeiro et al.,
2016; Liet al., 2016; Hendricks et al., 2018), but it
is not connected to work on learning with human
rationales, which we review below.

As discussed above, Zhang et al. (2016) demon-
strate increased predictive accuracy of CNN mod-
els augmented with human rationales. Here, we
first reproduce their predictive results, and then fo-
cus on extracting and evaluating explanations from
the models. Lei et al. (2016) present a model that
extracts rationales for predictions without train-
ing on rationales. They compare their extracted
rationales to human gold-standard ones through
automated evaluations, i.e., precision and recall.
Bao et al. (2018) extend this work by learning a
mapping from the human rationales to continuous
attention. They transfer this mapping to low re-
source target domains as an auxiliary training sig-
nal to improve classification accuracy in the tar-
get domain. They compare their learned attention
with human rationales by calculating their cosine
distance to the ‘oracle’ attention.

None of the above related work asks human
users to evaluate the generated explanations. How-
ever, Nguyen (2018) does compare human and au-
tomatic evaluations of explanations. That work
finds that human evaluation is moderately, but sta-
tistically significantly, correlated with the auto-
matic metrics. However, it does not evaluate any
explanations based on attention, nor do the expla-
nations make use of any extra human supervision.

As mentioned above, there has also been some
recent criticism of using attention as explanation
(Jain and Wallace, 2019), due to a lack of corre-
lation between the attention weights and gradient
based methods which are more “faithful” to the
model’s reasoning. However, attention weights of-
fer some insight into at least one point of inter-
nal representation in the model, and they also im-
pact the training of the later features. Our con-
tribution is to measure how useful these attention
based explanations are to humans in understand-
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ing a model’s decision as compared to a different
model architecture that explicitly learns to predict
which sentences make good explanations.

In this work, we have human judges evalu-
ate both attention based machine explanations and
machine explanations trained from human ratio-
nales, thus connecting learning from human expla-
nations and machine explanations to humans.

3 Models and Dataset

3.1 Models

We replicate the work of Zhang et al. (2016) and
use a CNN as our underlying baseline model for
document classification. To model a document,
each sentence is encoded as a sentence vector
using a CNN, and then the document vector is
formed by summing over the sentence vectors.
We use two variations of this baseline model, a
rationale-augmented CNN (RA-CNN) and an at-
tention based CNN (AT-CNN) (Yang et al., 2016).
RA-CNN is trained on both the document label
and the rationale labels. In this model, the doc-
ument vector is a weighted sum of the composite
sentence vectors, where the weight is the probabil-
ity of the sentence being a rationale. In AT-CNN,
the document vector is still a weighted sum of sen-
tence CNN vectors, but the weight is not learned
from rationales. Rather, a trainable context vec-
tor is introduced from scratch. We calculate the
interaction between this context vector and each
sentence vector to induce attention weights over
the sentences. The only difference between RA-
CNN and AT-CNN is that RA-CNN relies on the
human annotated rationales to learn the sentence
weight at training time, while AT-CNN learns the
sentence weight without utilizing any human ra-
tionales. For the details of these two models and
training see Zhang et al. (2016).

3.2 [Explanations

At test time, each model can provide explanations
for its classification decision by either choosing
the sentences with the largest probability of being
a rationale in RA-CNN or the sentences with the
largest attention weights in AT-CNN. By compar-
ing the quality of explanations output by the two
models at test time, we can judge whether capital-
izing on human explanations at training time can
improve the machine explanations at test time.



3.3 Dataset

We evaluate the explanations for both models on
the movie review dataset from Zaidan et al.
(2007). It contains 1,000 positive reviews and
1,000 negative reviews where 900 of each are an-
notated with human rationales. Each review is a
document consisting of 32 sentences on average,
and each annotated document contains about 8 ra-
tionale sentences. We use the 1,800 annotated
documents as the training set, and the remaining
200 documents without extra annotation as test.
The human rationales are used as supervision in
RA-CNN but not in AT-CNN.

3.4 Classification Accuracy

The classification accuracy of each model on the
test set is summarized in Table 1. Since there is
variance across multiple trials, we pick the best
performing model across several trials for human
evaluation of the explanations.

Table 1 reproduces Zhang et al. (2016)’s finding
that providing human explanations to machines at
training time (RA-CNN) improves predictive ac-
curacy compared to learning explanations without
human annotations (AT-CNN). Our results differ
slightly from theirs in that our AT-CNN also out-
performs the baseline Doc-CNN. We attribute this
difference to possible slight variations in our im-
plementation of AT-CNN.

Note there are other works on learning attention
that could potentially increase the prediction ac-
curacy (Lin et al., 2017; Devlin et al., 2018), but
none of them are directly comparable to RA-CNN.
We introduced the smallest difference (whether
the sentence vector is trained using the rationale
label) between AT-CNN and RA-CNN to make a
fair comparison between their generated explana-
tions.

The focus of this work is on evaluating ex-
planations rather than predictive accuracy, so we
turn our attention to the question: Does humans
explaining themselves to machines improve ma-
chines explaining themselves to humans? We will
explore this in the next section.

4 Explanation Evaluation Methods

We use Amazon Mechanical Turk (AMT) to eval-
uate the explanations from both AT-CNN and RA-
CNN.
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Doc-CNN AT-CNN RA-CNN
86.00% 88.50%  90.00%

Table 1: Classification accuracy for movie reviews.

4.1 HIT Design

Our Human Intelligence Task (HIT) shows a
worker two copies of a test document along with
the document’s classification. Each copy of the
document has a subset of sentences highlighted as
explanations for the final classification. This sub-
set is chosen as the 3 sentences with the largest
weights from either AT-CNN’s attention weights
or RA-CNN’s supervised weighting. We also eval-
uvated a baseline model that selects 3 sentences
at random. Given two randomly ordered docu-
ments, a worker must choose which document’s
highlighted sentences best support the overall clas-
sification. If the worker determines that both are
equally supportive (or not supportive), then they
can select ‘equal’. We only show workers docu-
ments that were correctly classified by both mod-
els. This resulted in 166 documents from the 200
in the test set. An example from one HIT is in
Appendix A.

4.2 Quality Control

In an effort to receive quality results from the
crowd, we employ two strategies from crowd-
sourcing research: gold standard questions and
majority voting (Hsueh et al., 2009; Eickhoft and
de Vries, 2013). Gold standard questions are de-
signed to weed out unreliable workers who either
do not understand the goal of the task or are poor
workers. If a worker gets the gold standard ques-
tion wrong, then we assume that their other re-
sponses are untrustworthy and do not use them.

We also employ majority voting, which requires
that at least two workers who pass the gold stan-
dard question agree on an answer. For greater
than 90% of the test documents, a majority vote
was found after having three workers perform the
task. Less than 10% of the test documents required
a fourth worker who passed the gold question to
break a tie. We also chose to require the ‘Master’
qualification that AMT uses to designate the best
workers on the platform.

5 Explanation Evaluation Results

Table 3 contains the results for comparing the top
3 explanations from AT-CNN to the top 3 expla-
nations from RA-CNN for the 166 test documents



Label | Rank| AT-CNN RA-CNN

archer is also bound by the limits of new york soci- | the performances are absolutely breathtaking.
1 ety , which is as intrusive as any other in the world.

the marriage is one which will unite two very pres- | there are a few deft touches of filmmaking that are

Pos 2 tigious families , in a society where nothing is more | simply outstanding , and joanne woodward’ narra-

important than the opinions of others . tion is exquisite.

the supporting cast is also wonderful , with several | the supporting cast is also wonderful , with several
3 characters so singular that they are indelible in one’s | characters so singular that they are indelible in one’s

memory . memory .

soon the three guys are dealing dope to raise funds | it’s just that the comic setups are obvious and the
1 , while avoiding the cops and rival dealer sampson | payoffs nearly all fall flat .

simpson (clarence williams iii) .

only williams stands out (while still performing on | watching the film clean and sober , you are bound

Neg 2 the level of his humor-free comedy rocket man) , | to recognize how truly awful it is .

but that is because he’s imprisoned throughout most

of the film , giving a much needed change of pace

(but mostly swapping one set of obvious gags for

another) .

watching the film clean and sober , you are bound | the film would have been better off by sticking with
3 to recognize how truly awful it is . the “ rebel” tone it so eagerly tries to claim.

Table 2: Top 3 explanations from both models for both a positive and negative correctly classified test document.

RA-CNN | AT-CNN | Equal
43.47% | 20.48% | 36.14%

Table 3: AMT results comparing explanations from
RA-CNN to AT-CNN. Workers were asked to choose
which document’s highlighted sentences were a better
explanation for the final classification.

AT-CNN | Random | Equal
57.23% | 15.66% | 27.12%

Table 4: AMT results comparing AT-CNN to the ran-
dom baseline.

where the models each correctly classified the doc-
ument. The statistics presented are the percentage
of times reliable workers agreed that one model’s
explanations better supported the document’s clas-
sification or were equal.

Overall, it is clear that RA-CNN is providing
better explanations for the plurality of test doc-
uments (43.47%). The explanations are consid-
ered equal 36.14% of the time, and the remaining
20.48% of the documents were better explained by
AT-CNN.

After seeing these results, we decided to run
another baseline test to ensure that AT-CNN ex-
planations are reasonable and can at least beat a
weak baseline. The results from comparing AT-
CNN explanations to randomly sampled sentences
from the test document are in Table 4. From these
results we can see that AT-CNN is beating the ran-
dom baseline the majority of the time, demon-
strating that attention, even without human su-
pervision, can provide helpful explanations for a

model’s decision.

To further understand the differences between
the explanations from AT-CNN and RA-CNN, we
calculated statistics to find the amount of overlap
in the top three explanatory sentences from each
model. In 33.5% of the test documents, the mod-
els share no explanation sentences, in 43.1% they
share one explanation sentence, in 22.2% they
share two explanation sentences, and they share
all three in 1.2%. When considering just the most
highly weighted sentence, or top explanation, the
models agree 18.6 % of the time. So while it is rel-
atively rare for the models to produce the same top
explanatory sentence, we chose to show humans
three explanatory sentences per test document to
provide insight even in those matching cases.

Table 2 contains the top 3 explanations from
each model for two test documents. In both ex-
amples, AT-CNN extracts sentences that are more
plot related and give less insight into the re-
viewer’s opinion as compared to RA-CNN. These
sentences are generally less helpful for under-
standing the classification of the movie review.
In the second example, both models have identi-
fied a good explanatory sentence: “watching the
film clean and sober, you are bound to recognize
how truly awful it is.” However, AT-CNN ranks it
as less important than two sentences that primar-
ily describe the plot of the film while RA-CNN
only ranks another, equally explanatory sentence
as more important.

An interesting future avenue for evaluation is
to compare explanations from when the models



make incorrect predictions. We found a trend
in the explanations for test documents that both
models misclassified where RA-CNN produced
explanations that supported the misclassification
while AT-CNN produced more explanations that
supported the correct classification, despite the
model’s decision. While this analysis is too small
scale to be conclusive, this raises the question for
future work: Do we want our explanation systems
to offer the best support for the chosen decision
or would it be more beneficial if they provide an
explanation that brings the decision into question?

6 Conclusion

This paper has demonstrated that training with
human rationales improves explanations for a
model’s classification decisions as evaluated by
human judges. We show that while an unsuper-
vised attention based model does provide some
valuable explanations, as proven in the experi-
ments comparing to a random baseline, a super-
vised attention model that trains on human ratio-
nales outperforms those results.
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A Sample HIT

Choose the document where the highlighted text best supports the document's classification.

that the reviewer did not.

Documents A and B are the same movie review, but with different highlighted sentences.
You should choose the document where the highlighted text best explains the movie's classification.
A positive review indicates that the author of the review considered it to be a high quality movie, while a negative review indicates

If the different documents' highlights seem equally informative you should select 'Equal'.
Include a brief explanation for why you chose your answer.

Classification: Positive

Document A

Document B

Robert redford's a river runs through it is not a film
i watch often. It is a masterpiece -- one of the
better films of recent years. Until 1994, it was my
second favorite film of all time. The acting and
direction is top-notch -- never sappy, always
touching. A friend of mine once reported that he
avoided it because "i was afraid it would just be
really politically correct, and tick me off. All i could
do was tell him to go in unbiased, and enjoy. It is
one of the few movies that has completely reduced
me to tears. But certain memories should not often
be rereleased -- in the last few shots, you have to
cry. Upon my first viewing i left bawling. It is not
flawless -- but it is so very good, that you can't
help but be effected. The opening is dangerously
nolstalgic and sentimental -- watching these shots
of people who have been dead so long, gives you a
feeling of perspective and history observation that
you will find in very few other films. Martin
scorsese once described the movies as a dream
state -- like taking dope, and immersing yourself in
an alternative world. That is what a river runs
through it does. It exploits the unique power of
cinema to engross you and help to forget your real
self. Both times i've seen it, its been hard ( again
to quote scorsese) waking up. But the dream is
lovely.

Robert redford's a river runs through it is not a film
i watch often. It is a masterpiece -- one of the
better films of recent years. Until 1994, it was my
second favorite film of all time. The acting and
direction is top-notch -- never sappy, always
touching. A friend of mine once reported that he
avoided it because "i was afraid it would just be
really politically correct, and tick me off. All i could
do was tell him to go in unbiased, and enjoy. It is
one of the few movies that has completely reduced
me to tears. But certain memories should not often
be rereleased -- in the last few shots, you have to
cry. Upon my first viewing i left bawling. It is not
flawless -- but it is so very good, that you can't
help but be effected. The opening is dangerously
nolstalgic and sentimental -- watching these shots
of people who have been dead so long, gives you a
feeling of perspective and history observation that
you will find in very few other films. Martin
scorsese once described the movies as a dream
state -- like taking dope, and immersing yourself in
an alternative world. That is what a river runs
through it does. It exploits the unique power of
cinema to engross you and help to forget your real
self. Both times i've seen it, its been hard ( again
to quote scorsese) waking up. But the dream is
lovely.

Which document's hi

better

t the classification?

Document A

Document B

Explain your choice:

Figure 1: A sample HIT asking workers to compare two explanations for the same movie review.
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Abstract

The Transformer is a fully attention-based
alternative to recurrent networks that has
achieved state-of-the-art results across a range
of NLP tasks. In this paper, we analyze
the structure of attention in a Transformer
language model, the GPT-2 small pretrained
model. We visualize attention for individ-
ual instances and analyze the interaction be-
tween attention and syntax over a large cor-
pus. We find that attention targets different
parts of speech at different layer depths within
the model, and that attention aligns with de-
pendency relations most strongly in the mid-
dle layers. We also find that the deepest layers
of the model capture the most distant relation-
ships. Finally, we extract exemplar sentences
that reveal highly specific patterns targeted by
particular attention heads.

1 Introduction

Contextual word representations have recently
been used to achieve state-of-the-art perfor-
mance across a range of language understanding
tasks (Peters et al., 2018; Radford et al., 2018;
Devlin et al., 2018). These representations are
obtained by optimizing a language modeling (or
similar) objective on large amounts of text. The
underlying architecture may be recurrent, as in
ELMo (Peters et al., 2018), or based on multi-head
self-attention, as in OpenAl’s GPT (Radford et al.,
2018) and BERT (Devlin et al., 2018), which are
based on the Transformer (Vaswani et al., 2017).
Recently, the GPT-2 model (Radford et al., 2019)
outperformed other language models in a zero-
shot setting, again based on self-attention.

An advantage of using attention is that it can
help interpret the model by showing how the
model attends to different parts of the input (Bah-
danau et al., 2015; Belinkov and Glass, 2019).
Various tools have been developed to visualize
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attention in NLP models, ranging from attention
matrix heatmaps (Bahdanau et al., 2015; Rush
et al., 2015; Rocktéschel et al., 2016) to bipartite
graph representations (Liu et al., 2018; Lee et al.,
2017; Strobelt et al., 2018). A visualization tool
designed specifically for multi-head self-attention
in the Transformer (Jones, 2017; Vaswani et al.,
2018) was introduced in Vaswani et al. (2017).

We extend the work of Jones (2017), by visu-
alizing attention in the Transformer at three lev-
els of granularity: the attention-head level, the
model level, and the neuron level. We also adapt
the original encoder-decoder implementation to
the decoder-only GPT-2 model, as well as the
encoder-only BERT model.

In addition to visualizing attention for individ-
ual inputs to the model, we also analyze attention
in aggregate over a large corpus to answer the fol-
lowing research questions:

e Does attention align with syntactic depen-
dency relations?

e Which attention heads attend to which part-
of-speech tags?

e How does attention capture long-distance re-
lationships versus short-distance ones?

We apply our analysis to the GPT-2 small pre-
trained model. We find that attention follows de-
pendency relations most strongly in the middle
layers of the model, and that attention heads tar-
get particular parts of speech depending on layer
depth. We also find that attention spans the great-
est distance in the deepest layers, but varies signif-
icantly between heads. Finally, our method for ex-
tracting exemplar sentences yields many intuitive
patterns.
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2 Related Work

Recent work suggests that the Transformer im-
plicitly encodes syntactic information such as de-
pendency parse trees (Hewitt and Manning, 2019;
Raganato and Tiedemann, 2018), anaphora (Voita
et al., 2018), and subject-verb pairings (Goldberg,
2019; Wolf, 2019). Other work has shown that
RNNS also capture syntax, and that deeper layers
in the model capture increasingly high-level con-
structs (Blevins et al., 2018).

In contrast to past work that measure a model’s
syntactic knowledge through linguistic probing
tasks, we directly compare the model’s atten-
tion patterns to syntactic constructs such as de-
pendency relations and part-of-speech tags. Ra-
ganato and Tiedemann (2018) also evaluated de-
pendency trees induced from attention weights in a
Transformer, but in the context of encoder-decoder
translation models.

3 Transformer Architecture

Stacked Decoder: GPT-2 is a stacked decoder
Transformer, which inputs a sequence of tokens
and applies position and token embeddings fol-
lowed by several decoder layers. Each layer ap-
plies multi-head self-attention (see below) in com-
bination with a feedforward network, layer nor-
malization, and residual connections. The GPT-2
small model has 12 layers and 12 heads.

Self-Attention: Given an input x, the self-
attention mechanism assigns to each token x; a set
of attention weights over the tokens in the input:

Attn(z;) = (041(x), a2(2), ..., ai(z)) (1)

where «; j(z) is the attention that x; pays to x;.
The weights are positive and sum to one. Attention
in GPT-2 is right-to-left, so «; ; is defined only for
7 < i. In the multi-layer, multi-head setting, « is
specific to a layer and head.

The attention weights «; j(z) are computed
from the scaled dot-product of the guery vector of
x; and the key vector of x;, followed by a softmax
operation. The attention weights are then used to
produce a weighted sum of value vectors:

T

QK
vy,

using query matrix (), key matrix K, and value
matrix V', where d;. is the dimension of K. In a

Attention(Q, K, V') = softmax(

oo
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multi-head setting, the queries, keys, and values
are linearly projected h times, and the attention
operation is performed in parallel for each repre-
sentation, with the results concatenated.

4 Visualizing Individual Inputs

In this section, we present three visualizations of
attention in the Transformer model: the attention-
head view, the model view, and the neuron view.
Source code and Jupyter notebooks are avail-
able at https://github.com/jessevig/
bertviz, and a video demonstration can be
found at https://vimeo.com/339574955.
A more detailed discussion of the tool is provided
in Vig (2019).

4.1 Attention-head View

The attention-head view (Figure 1) visualizes at-
tention for one or more heads in a model layer.
Self-attention is depicted as lines connecting the
attending tokens (left) with the tokens being at-
tended to (right). Colors identify the head(s), and
line weight reflects the attention weight. This view
closely follows the design of Jones (2017), but has
been adapted to the GPT-2 model (shown in the
figure) and BERT model (not shown).

Layer: 4 %
The The
quick quick
brown brown
fox fox
jumps jumps
over over
the the
lazy lazy

Figure 1: Attention-head view of GPT-2 for layer 4,
head 11, which focuses attention on previous token.

This view helps focus on the role of specific at-
tention heads. For instance, in the shown example,
the chosen attention head attends primarily to the
previous token position.



Layers

Figure 2: Model view of GPT-2, for same input as in
Figure 1 (excludes layers 611 and heads 6-11).

4.2 Model View

The model view (Figure 2) visualizes attention
across all of the model’s layers and heads for a
particular input. Attention heads are presented in
tabular form, with rows representing layers and
columns representing heads. Each head is shown
in a thumbnail form that conveys the coarse shape
of the attention pattern, following the small multi-
ples design pattern (Tufte, 1990). Users may also
click on any head to enlarge it and see the tokens.
This view facilitates the detection of coarse-
grained differences between heads. For example,
several heads in layer O share a horizontal-stripe
pattern, indicating that tokens attend to the current
position. Other heads have a triangular pattern,
showing that they attend to the first token. In the
deeper layers, some heads display a small number
of highly defined lines, indicating that they are tar-
geting specific relationships between tokens.

4.3 Neuron View

The neuron view (Figure 3) visualizes how indi-
vidual neurons interact to produce attention. This
view displays the queries and keys for each to-
ken, and demonstrates how attention is computed
from the scaled dot product of these vectors. The
element-wise product shows how specific neurons
influence the dot product and hence attention.

Whereas the attention-head view and the model
view show what attention patterns the model
learns, the neuron view shows how the model
forms these patterns. For example, it can help
identify neurons responsible for specific attention
patterns, as illustrated in Figure 3.
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5 Analyzing Attention in Aggregate

In this section we explore the aggregate proper-
ties of attention across an entire corpus. We ex-
amine how attention interacts with syntax, and we
compare long-distance versus short-distance rela-
tionships. We also extract exemplar sentences that
reveal patterns targeted by each attention head.

5.1 Methods

5.1.1 Part-of-Speech Tags

Past work suggests that attention heads in the
Transformer may specialize in particular linguis-
tic phenomena (Vaswani et al., 2017; Raganato
and Tiedemann, 2018; Vig, 2019). We explore
whether individual attention heads in GPT-2 target
particular parts of speech. Specifically, we mea-
sure the proportion of total attention from a given
head that focuses on tokens with a given part-of-
speech tag, aggregated over a corpus:

lz| 4

DI O‘i,j(x)']lp%(xj)=ta9

r€X i=1j=1

P,(tag) = 3)

lz| 4

> 2 D ()

T€X i=1j=1

where tag is a part-of-speech tag, e.g., NOUN, x is
a sentence from the corpus X, «; ; is the attention
from z; to x; for the given head (see Section 3),
and pos(z;) is the part-of-speech tag of z;. We
also compute the share of attention directed from
each part of speech in a similar fashion.

5.1.2 Dependency Relations

Recent work shows that Transformers and recur-
rent models encode dependency relations (Hewitt
and Manning, 2019; Raganato and Tiedemann,
2018; Liu et al., 2019). However, different mod-
els capture dependency relations at different layer
depths. In a Transformer model, the middle layers
were most predictive of dependencies (Liu et al.,
2019; Tenney et al., 2019). Recurrent models were
found to encode dependencies in lower layers for
language models (Liu et al., 2019) and in deeper
layers for translation models (Belinkov, 2018).

We analyze how attention aligns with depen-
dency relations in GPT-2 by computing the pro-
portion of attention that connects tokens that are
also in a dependency relation with one another. We
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Figure 3: Neuron view for layer 8, head 6, which targets items in lists. Positive and negative values are colored blue
and orange, respectively, and color saturation indicates magnitude. This view traces the computation of attention
(Section 3) from the selected token on the left to each of the tokens on the right. Connecting lines are weighted
based on attention between the respective tokens. The arrows (not in visualization) identify the neurons that most
noticeably contribute to this attention pattern: the lower arrows point to neurons that contribute to attention towards
list items, while the upper arrow identifies a neuron that helps focus attention on the first token in the sequence.

refer to this metric as dependency alignment:

lz| 4
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where dep(z;, z;) is an indicator function that re-
turns 1 if z; and x; are in a dependency relation
and O otherwise. We run this analysis under three
alternate formulations of dependency: (1) the at-
tending token (z;) is the parent in the dependency
relation, (2) the token receiving attention (x;) is
the parent, and (3) either token is the parent.

We hypothesized that heads that focus attention
based on position—for example, the head in Fig-
ure 1 that focuses on the previous token—would
not align well with dependency relations, since
they do not consider the content of the text. To dis-
tinguish between content-dependent and content-
independent (position-based) heads, we define at-
tention variability, which measures how attention
varies over different inputs; high variability would
suggest a content-dependent head, while low vari-
ability would indicate a content-independent head:

lz| 4
Z;( ; Zl |vij(z) — Qg
Variability, = === J’m : (5)
T
2- 3 > > aij()
zEX i=1j=1

where @; ; is the mean of «; j(x) overall z € X.
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Variability , represents the mean absolute de-
viation! of o over X, scaled to the [0,1] inter-
val.>3 Variability scores for three example atten-
tion heads are shown in Figure 4.

5.1.3 Attention Distance

Past work suggests that deeper layers in NLP
models capture longer-distance relationships than
lower layers (Belinkov, 2018; Raganato and
Tiedemann, 2018). We test this hypothesis on
GPT-2 by measuring the mean distance (in num-
ber of tokens) spanned by attention for each head.
Specifically, we compute the average distance be-
tween token pairs in all sentences in the corpus,
weighted by the attention between the tokens:

lz| 4
Z;{ 21 ; i j(x) - (i — j)
Do = =22 ]Tﬂ - (6)
> 2. 2 aig(x)
zeX i=1j=1

We also explore whether heads with more dis-

"We considered using variance to measure attention vari-
ability; however, attention is sparse for many attention heads
after filtering first-token attention (see Section 5.2.3), result-
ing in a very low variance (due to cy; ;j(x) =~ 0 and &; ; ~ 0)
for many content-sensitive attention heads. We did not use a
probability distance measure, as attention values do not sum
to one due to filtering first-token attention.

>The upper bound is 1 because the denominator is an
upper bound on the numerator.

3When computing variability, we only include the first N'
tokens (N=10) of each x € X to ensure a sufficient amount
of data at each position 7. The positional patterns appeared to
be consistent across the entire sequence.



Layer: 0 Head: 3

Alice Alice Alice
scored scored scored
four four four
goals goals goals
on on on
Saturday Saturday Saturday
and and and
she she she
scored scored scored
four four four
goals goals goals

on

on on

Variability: 0.16 (content-independent)
Mean Distance: 0.29 (short-distance)
Mean Entropy: 0.40 (concentrated)

Layer: 0 Head: 9

Variability: 0.13 (content-independent)
Mean Distance: 8.79 (medium-distance)
Mean Entropy: 2.49 (dispersed)

Layer: 5 Head: 1

Alice Alice —— Alice
scored scored 7 scored
four four four
goals goals goals
on on on
Saturday Saturday Saturday
and and and
she she she
scored scored scored
four four four
goals goals goals

on on on

Variability: 0.74 (content-dependent)
Mean Distance: 14.2 (long-distance)
Mean Entropy: 0.41 (concentrated)

Figure 4: Attention heads in GPT-2 visualized for an example input sentence, along with aggregate metrics com-
puted from all sentences in the corpus. Note that the average sentence length in the corpus is 27.7 tokens. Left:
Focuses attention primarily on current token position. Center: Disperses attention roughly evenly across all pre-
vious tokens. Right: Focuses on words in repeated phrases.
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Figure 5: Proportion of attention focused on first token,
broken out by layer and head.

persed attention patterns (Figure 4, center) tend to
capture more distant relationships. We measure
attention dispersion based on the entropy* of the
attention distribution (Ghader and Monz, 2017):

Entropy,, (2;) = Zaw x)log(ai j(z)) (1)

Figure 4 shows the mean distance and entropy
values for three example attention heads.

5.2 Experimental Setup

5.2.1 Dataset

We focused our analysis on text from English
Wikipedia, which was not included in the training

“When computing entropy, we exclude attention to the
first (null) token (see Section 5.2.3) and renormalize the re-
maining weights. We exclude tokens that focus over 90% of
attention to the first token, to avoid a disproportionate influ-
ence from the remaining attention from these tokens.
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set for GPT-2. We first extracted 10,000 articles,
and then sampled 100,000 sentences from these ar-
ticles. For the qualitative analysis described later,
we used the full dataset; for the quantitative anal-
ysis, we used a subset of 10,000 sentences.

5.2.2 Tools

We computed attention weights
pytorch-pretrained-BERT®  implemen-
tation of the GPT-2 small model. We extracted
syntactic features using spaCy (Honnibal and
Montani, 2017) and mapped the features from
the spaCy-generated tokens to the corresponding
tokens from the GPT-2 tokenizer.°

using the

5.2.3 Filtering Null Attention

We excluded attention focused on the first token
of each sentence from the analysis because it was
not informative; other tokens appeared to focus
on this token by default when no relevant tokens
were found elsewhere in the sequence. On aver-
age, 57% of attention was directed to the first to-
ken. Some heads focused over 97% of attention
to this token on average (Figure 5), which is con-
sistent with recent work showing that individual
attention heads may have little impact on over-
all performance (Voita et al., 2019; Michel et al.,
2019). We refer to the attention directed to the first
token as null attention.

Shttps://github.com/huggingface/
pytorch-pretrained-BERT

®In cases where the GPT-2 tokenizer split a word into
multiple pieces, we assigned the features to all word pieces.
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Figure 6: Each heatmap shows the proportion of total attention directed fo the given part of speech, broken out by
layer (vertical axis) and head (horizontal axis). Scales vary by tag. Results for all tags available in appendix.
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Figure 7: Each heatmap shows the proportion of total attention that originates from the given part of speech, broken
out by layer (vertical axis) and head (horizontal axis). Scales vary by tag. Results for all tags available in appendix.

5.3 Results null) attention weights sum to a value close to
one. Thus, the net weight for each token in the
weighted sum (Section 5.1.1) is close to one, and
Figure 6 shows the share of attention directed to  the proportion reduces to the frequency of the part
various part-of-speech tags (Eq. 3) broken out by  of speech in the corpus.
layer and head. Most tags are disproportionately Beyond the initial layers, attention heads spe-
targeted by one or more attention heads. For ex-  cialize in focusing attention from particular part-
ample, nouns receive 43% of attention in layer 9,  of-speech tags. However, the effect is less pro-
head 0, compared to a mean of 21% over all heads.  nounced compared to the tags receiving attention;
For 13 of 16 tags, a head exists with an attention  for 7 out of 16 tags, there is a head that focuses
share more than double the mean for the tag. attention from that tag with a frequency more than
The attention heads that focus on a particular double the tag average. Many of these specialized
tag tend to cluster by layer depth. For example, heads also cluster by layer. For example, the top
the top five heads targeting proper nouns are all in ten heads for focusing attention from punctuation
the last three layers of the model. This may be due  are all in the last six layers.
to several attention heads in the deeper layers fo-
cusing on named entities (see Section 5.4), which
may require the broader context available in the  Figure 8 shows the dependency alignment scores
deeper layers. In contrast, the top five heads tar-  (Eq. 4) broken out by layer. Attention aligns with
geting determiners—a lower-level construct—are  dependency relations most strongly in the mid-
all in the first four layers of the model. Thisis con-  dle layers, consistent with recent syntactic probing
sistent with previous findings showing that deeper  analyses (Liu et al., 2019; Tenney et al., 2019).
layers focus on higher-level properties (Blevins One possible explanation for the low alignment
et al., 2018; Belinkov, 2018). in the initial layers is that many heads in these lay-
Figure 7 shows the proportion of attention di-  ers focus attention based on position rather than
rected from various parts of speech. The values  content, according to the attention variability (Eq.
appear to be roughly uniform in the initial lay-  5) results in Figure 10. Figure 4 (left and center)
ers of the model. The reason is that the heads in ~ shows two examples of position-focused heads
these layers pay little attention to the first (null) to-  from layer O that have relatively low dependency
ken (Figure 5), and therefore the remaining (non-  alignment’ (0.04 and 0.10, respectively); the first

5.3.1 Part-of-Speech Tags

5.3.2 Dependency Relations
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Figure 8: Proportion of attention that is aligned with dependency relations, aggregated by layer. The orange line
shows the baseline proportion of token pairs that share a dependency relationship, independent of attention.
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Figure 9: Proportion of attention directed to various dependency types, broken out by layer.
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Figure 10: Attention variability by layer / head.
High-values indicate content-dependent heads, and low
values indicate content-independent (position-based)
heads.

head focuses attention primarily on the current to-
ken position (which cannot be in a dependency re-
lation with itself) and the second disperses atten-
tion roughly evenly, without regard to content.

An interesting counterexample is layer 4, head
11 (Figure 1), which has the highest depen-
dency alignment out of all the heads (DepAl, =
0.42)7 but is also the most position-focused
(Variability, = 0.004). This head focuses atten-
tion on the previous token, which in our corpus
has a 42% chance of being in a dependency rela-

7 Assuming relation may be in either direction.
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tion with the adjacent token. As we’ll discuss in
the next section, token distance is highly predic-
tive of dependency relations.

One hypothesis for why attention diverges from
dependency relations in the deeper layers is that
several attention heads in these layers target very
specific constructs (Tables 1 and 2) as opposed to
more general dependency relations. The deepest
layers also target longer-range relationships (see
next section), whereas dependency relations span
relatively short distances (3.89 tokens on average).

We also analyzed the specific dependency types
of tokens receiving attention (Figure 9). Sub-
jects (csubj, csubjpass, nsubj, nsubjpass) were
targeted more in deeper layers, while auxiliaries
(aux), conjunctions (cc), determiners (det), ex-
pletives (expl), and negations (neg) were targeted
more in lower layers, consistent with previous
findings (Belinkov, 2018). For some other depen-
dency types, the interpretations were less clear.

5.3.3 Attention Distance

We found that attention distance (Eq. 6) is greatest
in the deepest layers (Figure 11, right), confirm-
ing that these layers capture longer-distance rela-
tionships. Attention distance varies greatly across
heads (SD = 3.6), even when the heads are in the
same layer, due to the wide variation in attention
structures (e.g., Figure 4 left and center).



Layer
1110 9 8 7 65 4 3 210

o

Mean Attention Distance
sy

~

0

0 1 2 3 4 5 6 7 8 9 10 1

Layer

Figure 11: Mean attention distance by layer / head (left), and by layer (right).
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Figure 12: Mean attention entropy by layer / head.
Higher values indicate more diffuse attention.

We also explored the relationship between at-
tention distance and attention entropy (Eq. 7),
which measures how diffuse an attention pattern
is. Overall, we found a moderate correlation (r =
0.61, p < 0.001) between the two. As Figure 12
shows, many heads in layers 0 and 1 have high en-
tropy (e.g., Figure 4, center), which may explain
why these layers have a higher attention distance
compared to layers 2—4.

One counterexample is layer 5, head 1 (Fig-
ure 4, right), which has the highest mean attention
distance of any head (14.2), and one of the low-
est mean entropy scores (0.41). This head con-
centrates attention on individual words in repeated
phrases, which often occur far apart from one an-
other.

We also explored how attention distance re-
lates to dependency alignment. Across all heads,
we found a negative correlation between the two
quantities (r = —0.73,p < 0.001). This is con-
sistent with the fact that the probability of two to-
kens sharing a dependency relation decreases as
the distance between them increases®; for exam-

8This is true up to a distance of 18 tokens; 99.8% of de-
pendency relations occur within this distance.
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ple, the probability of being in a dependency rela-
tion is 0.42 for adjacent tokens, 0.07 for tokens at
a distance of 5, and 0.02 for tokens at a distance of
10. The layers (2—4) in which attention spanned
the shortest distance also had the highest depen-
dency alignment.

5.4 Qualitative Analysis

To get a sense of the lexical patterns targeted by
each attention head, we extracted exemplar sen-
tences that most strongly induced attention in that
head. Specifically, we ranked sentences by the
maximum token-to-token attention weight within
each sentence. Results for three attention heads
are shown in Tables 1-3. We found other attention
heads that detected entities (people, places, dates),
passive verbs, acronyms, nicknames, paired punc-
tuation, and other syntactic and semantic proper-
ties. Most heads captured multiple types of pat-
terns.

6 Conclusion

In this paper, we analyzed the structure of atten-
tion in the GPT-2 Transformer language model.
We found that many attention heads specialize
in particular part-of-speech tags and that different
tags are targeted at different layer depths. We also
found that the deepest layers capture the most dis-
tant relationships, and that attention aligns most
strongly with dependency relations in the middle
layers where attention distance is lowest.

Our qualitative analysis revealed that the struc-
ture of attention is closely tied to the training ob-
jective; for GPT-2, which was trained using left-
to-right language modeling, attention often fo-
cused on words most relevant to predicting the
next token in the sequence. For future work, we
would like to extend the analysis to other Trans-
former models such as BERT, which has a bidi-



Rank | Sentence

1 The Australian search and rescue service is provided by Aus S AR , which is part of the
Australian Maritime Safety Authority (AM SA).

2 In 1925 , Bapt ists worldwide formed the Baptist World Alliance (B WA ).

3 The Oak dale D ump is listed as an Environmental Protection Agency Super fund site due
to the contamination of residential drinking water wells with volatile organic compounds (
V OC s ) and heavy metals .

Table 1: Exemplar sentences for layer 10, head 10, which focuses attention from acronyms to the associated phrase.
The tokens with maximum attention are underlined; the attending token is bolded and the token receiving attention
is italicized. It appears that attention is directed to the part of the phrase that would help the model choose the next
word piece in the acronym (after the token paying attention), reflecting the language modeling objective.

Rank | Sentence

1 After the two prototypes were completed , production began in Mar iet ta , Georgia , ...

3 The fictional character Sam Fisher of the Spl inter Cell video game series by Ubisoft was
born in Tow son , as well as residing in a town house , as stated in the novel izations ...

4 Suicide bombers attack three hotels in Am man , Jordan , Killing at least 60 people .

Table 2: Exemplar sentences for layer 11, head 2, which focuses attention from commas to the preceding place
name (or the last word piece thereof). The likely purpose of this attention head is to help the model choose the
related place name that would follow the comma, e.g. the country or state in which the city is located.

Rank
1 With the United States isolation ist and Britain stout ly refusing to make the ” continental
commitment ” to defend France on the same scale as in World War I, the prospects of Anglo
- American assistance in another war with Germany appeared to be doubtful ...

Sentence

The show did receive a somewhat favorable review from noted critic Gilbert Se 1d es in the
December 15 , 1962 TV Guide : ” The whole notion on which The Beverly Hill bill ies is
founded is an encouragement to ignorance ...

he Arch im edes won significant market share in the education markets of the UK , Ireland
, Australia and New Zealand ; the success of the Arch im edes in British schools was due
partly to its predecessor the BBC Micro and later to the Comput ers for Schools scheme ...

Table 3: Exemplar sentences for layer 11, head 10 which focuses attention from the end of a noun phrase to the
head noun. In the first sentence, for example, the head noun is prospects and the remainder of the noun phrase is
of Anglo - American assistance in another war with Germany. The purpose of this attention pattern is likely to
predict the word (typically a verb) that follows the noun phrase, as the head noun is a strong predictor of this.

rectional architecture and is trained on both token-

level and sentence-level tasks.

Although the Wikipedia sentences used in our
analysis cover a diverse range of topics, they all
follow a similar encyclopedic format and style.
Further study is needed to determine how attention
patterns manifest in other types of content, such as
dialog scripts or song lyrics. We would also like
to analyze attention patterns in text much longer
than a single sentence, especially for new Trans-
former variants such as the Transformer-XL (Dai
et al., 2019) and Sparse Transformer (Child et al.,
2019), which can handle very long contexts.

We believe that interpreting a model based on
attention is complementary to linguistic probing
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approaches (Section 2). While linguistic prob-
ing precisely quantifies the amount of information
encoded in various components of the model, it
requires training and evaluating a probing clas-
sifier. Analyzing attention is a simpler process
that also produces human-interpretable descrip-
tions of model behavior, though recent work casts
doubt on its role in explaining individual predic-
tions (Jain and Wallace, 2019). The results of
our analyses were often consistent with those from
probing approaches.
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A Appendix

Figures A.1 and A.2 shows the results from Fig-
ures 6 and 7 for the full set of part-of-speech tags.
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Figure A.1: Each heatmap shows the proportion of total attention directed fo the given part of speech, broken out
by layer (vertical axis) and head (horizontal axis).
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Abstract

Language is a powerful tool which can be used
to state the facts as well as express our views
and perceptions. Most of the times, we find
a subtle bias towards or against someone or
something. When it comes to politics, me-
dia houses and journalists are known to cre-
ate bias by shrewd means such as misinterpret-
ing reality and distorting viewpoints towards
some parties. This misinterpretation on a large
scale can lead to the production of biased news
and conspiracy theories. Automating bias de-
tection in newspaper articles could be a good
challenge for research in NLP.

We proposed a headline attention network for
this bias detection. Our model has two distinc-
tive characteristics: (i) it has a structure that
mirrors a person’s way of reading a news arti-
cle (ii) it has attention mechanism applied on
the article based on its headline, enabling it to
attend to more critical content to predict bias.
As the required datasets were not available, we
created a dataset comprising of 1329 news arti-
cles collected from various Telugu newspapers
and marked them for bias towards a particu-
lar political party. The experiments conducted
on it demonstrated that our model outperforms
various baseline methods by a substantial mar-
gin.

1 Introduction

News bias is a ubiquitous phenomenon, poten-
tially present in most of the newspapers. The first
step in challenging biased news is documenting
bias. So detection of the inclination of a news ar-
ticle towards a political party has gained attention
today. Such news articles are mostly selected and
analyzed manually using a process called coding
or theoretical frameworks like discourse analysis
and content analysis. This analysis requires a lot
of effort, concentration, attention to detail and is
also time taking. Thus automating this bias de-
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tection in a news article could be very helpful and
necessary for media verification.

Media bias can be observed and defined through
various factors. In political domain, it ranges
from selectively publishing articles to specifically
choosing to highlight some events, parties and
leaders. We also come across articles where bias
can be detected by observing the unclear assump-
tions, loaded language, or lack of proper context.
Especially during the election campaigning due to
several unjust factors, media houses often align
themselves either for or against some specific par-
ties and instead of reporting just the content, they
subtly add their stand towards it. This is usually
reflected in the headline, and making the headline
biased has an effect on the reader who reads the ar-
ticle after registering the headline subconsciously.
As there was no dataset marked for political bias
available in Telugu, we created a dataset compris-
ing of 1329 news articles collected from various
Telugu newspapers and annotated them for bias
towards a political party. The bias is marked as
None if the article is unbiased.

Telugu is an agglutinative Dravidian language
spoken widely in two states of India namely Telan-
gana and Andhra Pradesh. According to Ethno-
logue' list of most spoken languages worldwide,
Telugu ranks fifteenth in the list, and a total of
85 million Telugu native speakers exist across the
world. There are only 5 major political parties
present in the two Telugu speaking states. We
treat the problem of political bias detection as a
classification problem. The political parties can
be treated as labels and the goal will be to as-
sign labels to each news article. Any news arti-
cle deviating its reader from the original news to-
wards a political party is considered biased. Tra-
ditional approaches of text classification represent

"https://www.ethnologue.com/statistics/size

Proceedings of the Second BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, pages 77-84
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documents with sparse lexical features, such as n-
grams, and then use a linear model or kernel meth-
ods on this representation (Wang and Manning,
2012; Joachims, 1998). More recent approaches
used deep learning, such as convolutional neural
networks (Kalchbrenner et al., 2014) and recurrent
neural networks based on long short-term memory
(LSTM) (Hochreiter and Schmidhuber, 1997) to
learn text representations.

Although neural-network based approaches
have been quite effective, classification based only
on articles or only on headlines may not give bet-
ter results as articles may contain unnecessary ex-
tra information and headlines being short may not
capture required information. So a combination of
article and headline is required for better classifi-
cation. In this paper, we test our hypothesis that
classification can be improved by focusing on es-
sential parts of news articles based on their head-
lines. Since headlines are designed to be short and
catchy, journalists tend to exploit them to express
their ideological view of the news stories and de-
pending on these headlines the interpretation of
the stories can change. So the intuition underly-
ing our model is that bias in an article can be ef-
fectively found by focusing on essential parts of
articles based on their headlines.

Our contributions in this paper are (i) The cre-
ation and annotation of a newspaper dataset for po-
litical bias detection, (ii) The proposal of a neu-
ral network architecture, the Headline Attention
Network that is designed to capture the important
parts of news article causing political bias by pay-
ing headline attention.Generally, readers first read
the headlines and then go through the news article
with those headlines in their mind. Thus attention
is paid on news article with its headline in reader’s
mind. Headline Attention Networks are designed
to do the same thing and find important parts that
reflect bias in news articles. To illustrate, consider
the example in Figure 1. In the figure, importance
of each highlighted word in causing bias is directly
proportional to the intensity of the blue colour in
highlighting®. So focusing more on these words
according to their importance would give better re-
sults rather than focusing on all words.The key dif-
ference to other neural networks is that our system
focuses on the importance of headline for politi-
cal bias detection in an article and discover which

’Translation, explanation and visualizations of Headline
attention are given in Supplement Material

78

sequence of tokens are relevant rather than sim-
ply filtering out. Our model outperforms various
common classification architectures by a signifi-
cant margin.

Headline:  sogerani: Sioboas srgasrhy, @5y

Article: BB 5o BRERENRS =) 2onie oogros [BEEION deos08. hofiah 2rsto

B &r0s0m st50p Sogatedgen BRI eotmmth. 55)8 duor Spierabo Jher Feom
[ aE Sxus s 26° wiS 3566 0,07 BTy @?\D&% B 5200,
R ﬁ 550 Sdohozol.

BaraSomrSeE sydareird
Figure 1: News article from the dataset. Bias towards
“TDP”

2 Related Work

Identification and analysis of bias in news articles
has led to extensive research in the fields of an-
thropology, discourse analysis, and media studies.
(Sivandi and Dowlatabadi, 2015) used the head-
lines and leads of newspaper articles to detect bias
in their complete linguistic approach to the prob-
lem.

(Iyyer et al., 2014) used recursive neural net-
works to detect political ideology.

(Rashkin et al., 2017) introduced a propagan-
dists dataset focused propaganda news and pre-
sented a study on the language of news media in
context of political fact checking.

(Recasens et al., 2013) conducted a study re-
lated to bias in the Wikipedia articles using logisitc
regression.

Many industrial organizations are working in
this space worldwide to fight disinformation. First
Draft News is a project "to fight mis- and dis-
information online” founded by 9 organizations
brought together by the Google News Lab. Full
Fact is a charity based in London to check and
correct facts reported in the news. CrossCheck is
a new initiative from Google Labs and First Draft
to support truth and verification in Media.

In Telugu, a small amount of work is done on
news data. (Mukku et al., 2016) apply ML tech-
niques for Sentiment Analysis of Telugu news ar-
ticles. (Gangula and Mamidi, 2018) performed
multidomain sentiment analysis in Telugu.

3 Dataset

Our aim is to detect the bias of a newspaper ar-
ticle towards a particular political party. An arti-
cle is said to be biased if it is inclined or preju-
diced for or against a political party. We created a



dataset® containing headline of the article, article
and the political party towards which it is biased.
We marked it with label ”None” if it was unbiased.
The statistics of the dataset is shown in Table 1.

Four annotators annotated each article in the
dataset with one of the 5 parties namely BJP, TDP,
Congress, TRS, YCP or as None if the article is
unbiased. The annotators are native Telugu speak-
ers with good proficiency in the language. While
choosing annotators care was taken that they do
not have any bias towards any party and have suf-
ficient political knowledge. The following annota-
tion guidelines were followed: Each article along
with the headline was presented to the annotators.
They were asked to read them just as they read
newspapers. After reading, they were asked to an-
notate whether the article was subjectively biased
towards or against a party or is unbiased. A Kappa
score of 0.9 was achieved through multiple discus-
sions.

Figure 6 presented in supplemental Material
shows some of the examples from our dataset. We
can see in the examples below that there is some
inherent bias towards a party in the way a partic-
ular newspaper has reported. This could be due
to several factors like the ownership of the me-
dia house, the present power of a party (ruling or
opposition), and the ideology of the target group
of readers that particular newspaper is catering to.
Many a times, political parties themselves estab-
lish media houses and newspaper agencies to in-
crease their outreach and glorify their party. This
greatly contributes to bias in the published articles.

Words
24863
11410
21685
40495
22370
19245
140068

Sentences
2244
1031
1860
3484
1958
1546
12123

Documents
182
82
151
361
335
218
1329

Parties
BIP
Congress
TRS
TDP
YCP
Unbiased
Total

avg #w in headline
4.13
4.06
4.09
3.86
3.79
4.09
3.95

avg #w in article
132.48
135.08
139.52
108.3
62.98
65.14
98.3

Table 1: Data statistics: #w denotes the number of
words per document

4 Headline Attention Networks

The overall architecture of the Headline Attention
Network is shown in Figure 2. It consists of sev-
eral parts: a headline encoder, an article encoder
and a headline attention layer. We describe the de-
tails of these components below.

*0ur dataset is freely available at
https://drive.google.com/open?id=

1IyaKYeDkl7ubuabTI65G0nSBfxQONdeTr
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Figure 2: Headline Attention Network

4.1 Model

We focus on classifying a given article as biased
towards one of the political parties in this work.
Assume that the article has T words, w; with i €
[1, T represents the i*" word in article and head-
line has H words, ¢; with i € [1, H| represents
ith word in headline of the article. The proposed
model projects the raw articles into a vector repre-
sentation which can be used for classification. In
the following, we will present this method of pro-
jection.

4.1.1 Headline Encoder

Given the headline of an article with words ¢;, 1
€ [1, H], we first embed the words into vectors
through an embedding matrix W, x;=W,q;. We
use a bidirectional LSTM to get contextual en-
coding of headline from both the directions. The
bidirectional LSTM contains a forward LSTM ?
which reads headhne from ¢; to gy and a back-
ward LSTM f which reads headline from ¢y to

q1-

x; = Wegi,i € (1, H] (D
R, = LSTM ()i € [1, H] )
By = LSTM (x1)i € [H,1] 3)

We encode the headline of the article by con-
. . —
catenating the forward representation Ay and the
backward representation h1, i.e, Q=[h1, hy] is the

representation of the article headline.

4.1.2 Article Encoder

An article is nothing but a sequence of words. We
embed these words into vectors and use bidirec-
tional LSTM to get annotations of the words by
summarizing information from both direction for
words and therefore incorporating contextual in-
formation in the annotation. We encode article as:

x; = Wew;,i € [1,T] )



hi

3

ST [1,T] )

h; = LSTM (),i € Tl] (6)
ﬁ

We concatenate h; and E to get annotation of
word w; i.e h;=[h;,h;]. h; summarizes the neigh-
boring words around word w; but still focuses on
word w;.

4.1.3 Headline Attention Layer

Headline of a news article is very important to
report news biased towards a political party as a
reader generally reads headline first and then goes
through the article with that headline in his mind
i.e paying attention to article based on the head-
line. We introduce attention mechanism to extract
words that contribute to political bias and form a
vector representation v. Specifically,

u; = tanh(Wyh; + by) (7
(V)

L > exp(uiT.U) ®

v = Z a;h; )

We measure the importance of the word as the sim-
ilarity of w; with U, the hidden representation of
encoded headline representation Q and get a nor-
malized importance «; through a softmax func-
tion. After that we compute the representation of
the news article as a weighted sum of the word an-
notations based on the weights. All of the above
are learned during the training process.

4.1.4 Bias detection

The vector v is used to detect towards which polit-
ical party the article is biased to as:

p = Softmax(W.v + b.) (10)

Training loss is the negative log likelihood of the
correct labels:

(11)

— Y Log(pas)
d

where 1 is the label of document d.

5 Experiments

All the experiments are carried out in a 5-fold
cross validation scenario. As headlines express
the ideological view of the news stories, in some
cases only the headline would be sufficient to de-
tect bias. So except for Headline Attention Net-
works, for all other baselines we divided dataset
into three parts:

1. Only headline.
2. Only news article.

3. Concatenation of both headline and news ar-
ticle.

We compared how each of them differs in bias de-
tection.

5.1 Baselines

We compare Headline Attention Networks with
several baseline methods, including traditional ap-
proaches such as Naive Bayes, SVMs, CNNs,
Branched CNNs, LSTMs and GRUs. Word em-
beddings are available for Telugu®.

5.1.1 Naive Bayes

Naive Bayes classifier is used to classify docu-
ments using the following features.

TFIDF The TFIDF values of each word is used
as features.

Bag-of-means The average word2vec (Mikolov
et al., 2013) embedding is used as feature set.

5.1.2 SVMs

SVM-based classifier is used including following
different features.

TFIDF+Unigrams The TFIDF values of bag of
Unigrams is used as features.

TFIDF+Bigrams The TFIDF values of bag of
Bigrams is used as features.

AverageSG The average word embeddings of
each document is used as feature set.

5.1.3 Neural Network methods

We experimented with multiple neural network ar-
chitectures like:

CNNs Word based neural network model like in
(Kim, 2014) are used.

Branched CNNs Figure 3 shows the branched
CNN architecture.

nnnnnn

Figure 3: Branched CNN architecture

LSTMs and GRU based models like in (Wang
et al., 2018) are used.

*https://bit.ly/2J0ONYrw



Methods

Only Headline Only article

Concatenation of headline and article Maximum

Naive Bayes+TFIDF+Unigrams 39 58 59 59
Naive Bayes+TFIDF+Bigrams 29 32 33 33
Naive Bayes+Bag-of-means 49 63 63 63
SVM+TFIDF+Unigrams 41 69 69 69
SVM+TFIDF+Bigrams 55 76 71 76
SVM+AverageSG 57 69 66 69

CNNs 80 80.5 81.7 81.7

Branched CNNs 83.33 84.52 84.6 84.6

LSTM 84 85.25 85.32 85.32

GRU 81 82.7 82.7 82.7

Headline Attention Network without attention layer - - 85.25

Headline Attention Network 89.54

Table 2: Bias Detection Accuracy in percentage. Maximum is the best value among the three divisions of our

dataset for baselines.

5.2 Results and analysis

The experimental results are shown in table 2. The
results show that our model gives the best per-
formance. Our model outperforms previous best
baseline methods by 4.22%. From table 2 we
can see that there is a significant improvement in
neural network based methods compared to tradi-
tional methods. But involving the headline atten-
tion can significantly improve over them. As men-
tioned earlier, headlines are designed to be short
and catchy so the journalists tend to exploit them
to influence readers. Therefore, considering only
the headlines also predicts bias with only a small
difference in accuracy when compared to consid-
ering whole article. This can be clearly observed
in table 2 in neural network methods. We can also
observe that simply concatenating headline does
not help much in bias prediction, instead attending
to article with headline representation increases
accuracy by a significant margin. Our Headline
Attention Network outperforms all other models
because it effectively finds out important words
causing bias in a document.

6 Conclusion

In this paper, we proposed a headline attention
mechanism for automatic detection of bias in news
articles along with a manually annotated dataset to
enable further research. Our model builds a vector
for news article by aggregating important words
obtained by paying attention based on headline
representation. The experimental results demon-
strate that our model significantly outperforms all
the previous baseline models. Visualization of at-
tention shows how headline attention effectively
picks out words causing bias.

This model can also be extended to other sen-

81

timent based classification of texts such as blogs
or online trending articles, which contains a ti-
tle/headline and a body.
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A Supplemental Material

A.1 Visualization of Headline Attention

Figure 4 and 5 show the visualization of our head-
line attention networks. Intensity of blue color de-
notes word weight.

Figures 4 and 5 shows that our model selects
words with strong emphasis on a person or a po-
litical party. The darker the blue colour, it implies



higher is its importance in predicting bias towards
a party. Words with the darkest blue highlighting,
such as YSRCP,Chandra Babu, People’s leader are
the most important ones as they refer to who/what
the article is intending to inform about. So they
are given more weight. The English translation
of words in blue are "Chandra Babu”, “’progress”,
“inspiration”, strongest person on earth”, “’spe-
cial”, “encourage” etc. Our headline attention fo-
cuses most on “Chandra Babu” who is the chair
person of the TDP political party and the other
words are attended according to the intensity of
praising.

Headline:  ssogermoi Frobond argairs), S5y
Article:
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Figure 4: News article from the dataset. Bias towards
’7TDP7?
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Figure 5: News article from the dataset. Bias towards
“YCP”

Approximate translation of Figure 4:

Headline : Path of welfare

Article : On Friday, YSR Congress chief Jagan-
mohan Reddy carried out the fulfillment of peo-
ple’s desires successfully. The main goal of the
walk is the welfare and betterment of the people
of the state and people participated with a lot of
excitement and offered immense support to the
leader. The leader of the masses was given a warm
welcome by the people, who have waited for hours
just to see him. The people were very eager and
enthusiastic to see him, meet him, greet him and
to be addressed by him in the public talk that the
leader addresses. The leader of masses, with a
constant smile on his face, also greeted the people
affectionately, spoke with them to find out about
the current problems that they are facing and gave
offered them to support and ensured that he is al-
ways with the people in any kind of need.

Approximate translation of Figure 5:

Headline : Chandra Babu Naidu praised by New
York Times
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Article : The step taken by Chandra Babu is
now an inspiration for all other states. The mea-
sures taken by Chandra Babu regarding organic
farming are exceptionally great and are getting
great applauses from various environmentalists.
New scheme called Zero Budget Natural Farm-
ing introduced by Chandra Babu mainly encour-
ages the farmers to implement organic farming and
techniques and are the main reason for the farmer
to have hope on their life. The same has been
even published in the New York Times. The ef-
fort put by Chandra Babu for encouraging farmers
in chemical-free farming is truly appreciation wor-
thy.
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Headline | Translated | Article Approximate Meaning Political
Headline Bias

soghess | BIP cheats | 585557 o aaioed” Seoll Swet graar 38 Arde Sdorghor adriadod soegbod ::gmmdbs 1t is now evident for the whole nation to see | BIP

Eresar Andhra Sedomt. 2014 ISEF e It Jer0EE” 53005 Dt HBeSArs Ao &6 366" 052588 | how BIP has deceived all the Telugu people.

Are pradesh e For B0 SEB00H 2BAITY Mg 6, 2died Seod'D 58 Fhod SN o JEBaD Back in 2014, Narendra Maodi himself

promised that 10 year long special status to
the state of Andhra Pradesh was on his
agenda. And after assuring that all promises
which were a part of the State Reformation
Bill would be fulfilled, the party is showing
its hypocrisy by not addressing even the
smallest concerns of the nascent state of
Andhra Pradesh. Chief Minister
Siddaramaiah addressed the Telugu natives
living in Kamataka in his open letter in
which he empathised with them and urged
them to teach the treacherous party a lesson

tl was the
Chief Minister to this date, TDP has always
been a party which strives to succesfully
implement various welfare schemes for the
devel of people, ially those
belonging to the backward communities.
When he was the Chief Minister, he
introduced the Adarana scheme to
financially aid the procurement of tools for
every profession, Such meticulous planning
and foresight on his part and determination
of TDP will best serve the needs of people
inspite of any crunch in the budget. Officials
of the BC corporation further explained the
details of the Adarana scheme, and
expressed that this will definitely benefit
handicraft workers and small scale
industries the most.
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B8 firomred” Dodatons § o, sddEE" rade eddh ediRic e2sar Pamdlp #BRS od sotis
RSSO0 D S DArBESo I3yl azgi:;:-ww oligntD. HETY0 ST 65 Sorgedhod’
285t Far 3o’ 1 oAb wolort. Tretdh SathFdod” edlB s Bl oraible, sUgiden Sy
gstio T o arodin Tt Seo-? B HoagSiod dodaraTding eiee g5t ST eyl Sod)
dodamyth. gres o DErtio STE RdgHre Srgrdir raldh e Seraigdindors BEES Seen,
FAZom RS Bito Sud TodiEnes oo Seafbdndamth. e2udari ed@m 581dod STosam
Sosilisaa Sio Jawod e SebEeD doid, wodks Hgar B33 SHEGeD) Sob vERD
@B Bt SIED gradr g B SEgsE) mie T5oETE, Bh 2 €28 . PraE” ST, Ha B
esoioarind e G Snolumd 8dar des GEdoting) il 2dtoes B5s So5e SpLto TnHR

St

TDP is full of hooligans, and the recent
attack on BJP National Leader Amit Shah's
convoy is an evidence for that. People from
several parties slammed TDI® for this attack.
During a press meet, it was discussed that
the other parties should come together and
protest against this breach of democracy,
TDP being the ruling party should ensure
the safety of National leaders when they
visit Andhra Pradesh and not itself raise
attacks on them. Many leaders who attended
the press meet expressed their concern that
the police department hasn't taken any
special measures eventhough the TDP
leaders clearly threatened W oppose Amit
Shah's visit,

TDP

Figure 6: Examples of biased articles from our dataset.
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Abstract

Neural network models have been very suc-
cessful in natural language inference, with the
best models reaching 90% accuracy in some
benchmarks. However, the success of these
models turns out to be largely benchmark spe-
cific. We show that models trained on a natu-
ral language inference dataset drawn from one
benchmark fail to perform well in others, even
if the notion of inference assumed in these
benchmarks is the same or similar. We train
six high performing neural network models on
different datasets and show that each one of
these has problems of generalizing when we
replace the original test set with a test set taken
from another corpus designed for the same
task. In light of these results, we argue that
most of the current neural network models are
not able to generalize well in the task of nat-
ural language inference. We find that using
large pre-trained language models helps with
transfer learning when the datasets are simi-
lar enough. Our results also highlight that the
current NLI datasets do not cover the different
nuances of inference extensively enough.

1 Introduction

Natural Language Inference (NLI) has attracted
considerable interest in the NLP community and,
recently, a large number of neural network-based
systems have been proposed to deal with the task.
One can attempt a rough categorization of these
systems into: a) sentence encoding systems, and
b) other neural network systems. Both of them
have been very successful, with the state of the art
on the SNLI and MultiNLI datasets being 90.4%,
which is our baseline with BERT (Devlin et al.,
2019), and 86.7% (Devlin et al., 2019) respec-
tively. However, a big question with respect to
these systems is their ability to generalize outside
the specific datasets they are trained and tested
on. Recently, Glockner et al. (2018) have shown

Stergios Chatzikyriakidis

Department of Philosophy, Linguistics and
Theory of Science, University of Gothenburg

Basement Al

stergios.chatzikyriakidis@gu.se

85

that state-of-the-art NLI systems break consider-
ably easily when, instead of tested on the original
SNLI test set, they are tested on a test set which
is constructed by taking premises from the train-
ing set and creating several hypotheses from them
by changing at most one word within the premise.
The results show a very significant drop in accu-
racy for three of the four systems. The system
that was more difficult to break and had the least
loss in accuracy was the system by Chen et al.
(2018) which utilizes external knowledge taken
from WordNet (Miller, 1995).

In this paper we show that NLI systems that
have been very successful in specific NLI bench-
marks, fail to generalize when trained on a spe-
cific NLI dataset and then these trained models
are tested across test sets taken from different NLI
benchmarks. The results we get are in line with
Glockner et al. (2018), showing that the general-
ization capability of the individual NLI systems is
very limited, but, what is more, they further show
the only system that was less prone to breaking in
Glockner et al. (2018), breaks too in the experi-
ments we have conducted.

We train six different state-of-the-art models on
three different NLI datasets and test these trained
models on an NLI test set taken from another
dataset designed for the same NLI task, namely for
the task to identify for sentence pairs in the dataset
if one sentence entails the other one, if they are in
contradiction with each other or if they are neutral
with respect to inferential relationship.

One would expect that if a model learns to
correctly identify inferential relationships in one
dataset, then it would also be able to do so in an-
other dataset designed for the same task. Further-
more, two of the datasets, SNLI (Bowman et al.,
2015) and MultiNLI (Williams et al., 2018), have
been constructed using the same crowdsourcing
approach and annotation instructions (Williams

Proceedings of the Second BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, pages 85-94
Florence, Italy, August 1, 2019. (©2019 Association for Computational Linguistics



et al., 2018), leading to datasets with the same or
at least very similar definition of entailment. It is
therefore reasonable to expect that transfer learn-
ing between these datasets is possible. As SICK
(Marelli et al., 2014) dataset has been machine-
constructed, a bigger difference in performance is
expected.

In this paper we show that, contrary to our ex-
pectations, most models fail to generalize across
the different datasets. However, our experiments
also show that BERT (Devlin et al., 2019) per-
forms much better than the other models in experi-
ments between SNLI and MultiNLI. Nevertheless,
even BERT fails when testing on SICK. In addi-
tion to the negative results, our experiments fur-
ther highlight the power of pre-trained language
models, like BERT, in NLI.

The negative results of this paper are significant
for the NLP research community as well as to NLP
practice as we would like our best models to not
only to be able to perform well in a specific bench-
mark dataset, but rather capture the more general
phenomenon this dataset is designed for. The main
contribution of this paper is that it shows that most
of the best performing neural network models for
NLI fail in this regard. The second, and equally
important, contribution is that our results highlight
that the current NLI datasets do not capture the nu-
ances of NLI extensively enough.

2 Related Work

The ability of NLI systems to generalize and re-
lated skepticism has been raised in a number of
recent papers. Glockner et al. (2018) show that
the generalization capabilities of state-of-the-art
NLI systems, in cases where some kind of exter-
nal lexical knowledge is needed, drops dramati-
cally when the SNLI test set is replaced by a test
set where the premise and the hypothesis are oth-
erwise identical except for at most one word. The
results show a very significant drop in accuracy.
Kang et al. (2018) recognize the generalization
problem that comes with training on datasets like
SNLI, which tend to be homogeneous and with lit-
tle linguistic variation. In this context, they pro-
pose to better train NLI models by making use of
adversarial examples.

Multiple papers have reported hidden bias and
annotation artifacts in the popular NLI datasets
SNLI and MultiNLI allowing classification based
on the hypothesis sentences alone (Tsuchiya,
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2018; Gururangan et al., 2018; Poliak et al., 2018).

Wang et al. (2018) evaluate the robustness of
NLI models using datasets where label preserving
swapping operations have been applied, reporting
significant performance drops compared to the re-
sults with the original dataset. In these experi-
ments, like in the BreakingNLI experiment, the
systems that seem to be performing the better, i.e.
less prone to breaking, are the ones where some
kind of external knowledge is used by the model
(KIM by Chen et al., 2018 is one of those sys-
tems).

On a theoretical and methodological level, there
is discussion on the nature of various NLI datasets,
as well as the definition of what counts as NLI
and what does not. For example, Chatzikyri-
akidis et al. (2017); Bernardy and Chatzikyriakidis
(2019) present an overview of the most standard
datasets for NLI and show that the definitions of
inference in each of them are actually quite differ-
ent, capturing only fragments of what seems to be
a more general phenomenon.

Bowman et al. (2015) show that a simple LSTM
model trained on the SNLI data fails when tested
on SICK. However, their experiment is limited to
this single architecture and dataset pair. Williams
et al. (2018) show that different models that
perform well on SNLI have lower accuracy on
MultiNLI. However in their experiments they did
not systematically test transfer learning between
the two datasets, but instead used separate systems
where the training and test data were drawn from
the same corpora.'

3 Experimental Setup

In this section we describe the datasets and model
architectures included in the experiments.

3.1 Data

We chose three different datasets for the experi-
ments: SNLI, MultiNLI and SICK. All of them
have been designed for NLI involving three-way
classification with the labels entailment, neutral
and contradiction. We did not include any datasets
with two-way classification, e.g. SciTail (Khot
etal., 2018). As SICK is a relatively small dataset
with approximately only 10k sentence pairs, we
did not use it as training data in any experiment.

'To be more precise, Williams et al. (2018) tested some
transfer across datasets, but only between MultiNLI and
SNLL



Train data Test data | Size of the training set Size of the test set
SNLI SNLI 550,152 10,000
SNLI MultiNLI 550,152 20,000
SNLI SICK 550,152 9,840
MultiNLI ~ MultiNLI 392,702 20,000
MultiNLI SNLI 392,702 10,000
MultiNLI SICK 392,702 9,840
SNLI + MultiNLI SNLI 942854 10,000
SNLI + MultiNLI ~ SICK 942,854 9,840

Table 1: Dataset combinations used in the experiments. The rows in bold are baseline experiments, where the test
data comes from the same benchmark as the training and development data.

We also trained the models with a combined SNLI
+ MultiNLI training set.

For all the datasets we report the baseline per-
formance where the training and test data are
drawn from the same corpus. We then take these
trained models and test them on a test set taken
from another NLI corpus. For the case where the
models are trained with SNLI + MultiNLI we re-
port the baseline using the SNLI test data.” All
the experimental combinations are listed in Table
1. Examples from the selected datasets are pro-
vided in Table 2. To be more precise, we vary
three things: training dataset, model and testing
dataset. We should qualify this though, since the
three datasets we look at, can also be grouped by
text domain/genre and type of data collection, with
MultiNLI and SNLI using the same data collection
style, and SNLI and SICK using roughly the same
domain/genre. Hopefully, our set up will let us de-
termine which of these factors matters the most.

We describe the source datasets in more detail
below.

SNLI

The Stanford Natural Language Inference (SNLI)
corpus (Bowman et al., 2015) is a dataset of 570k
human-written sentence pairs manually labeled
with the labels entailment, contradiction, and neu-
tral. The source for the premise sentences in SNLI
were image captions taken from the Flickr30k cor-
pus (Young et al., 2014).

MultiNLI

The Multi-Genre Natural Language Inference
(MultiNLI) corpus (Williams et al., 2018) con-
sisting of 433k human-written sentence pairs la-
beled with entailment, contradiction and neutral.

Here we could as well have selected MultiNLI test data.
However the selection does not impact our findings.
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MultiNLI contains sentence pairs from ten dis-
tinct genres of both written and spoken English.
Only five genres are included in the training set.
The development and test sets have been divided
into matched and mismatched, where the former
includes only sentences from the same genres as
the training data, and the latter includes sentences
from the remaining genres not present in the train-

ing data.
We used the matched development set
(MultiNLI-m) for the experiments.’ The

MultiNLI dataset was annotated using very
similar instructions as for the SNLI dataset.*
Therefore we can assume that the definitions of
entailment, contradiction and neutral is the same
in these two datasets.

SICK

SICK (Marelli et al., 2014) is a dataset that was
originally constructed to test compositional distri-
butional semantics (DS) models. The dataset con-
tains 9,840 examples pertaining to logical infer-
ence (negation, conjunction, disjunction, apposi-
tion, relative clauses, etc.). The dataset was au-
tomatically constructed taking pairs of sentences
from a random subset of the 8K ImageFlickr data
set (Young et al., 2014) and the SemEval 2012
STS MSRVideo Description dataset (Agirre et al.,
2012).

3.2 Model and Training Details

We perform experiments with six high-performing
models covering the sentence encoding models,

3Here the choice between MultiNLI matched and mis-
matched does not make a difference to our experimental
setup.

“The reason we are not saying “exactly the same” is be-
cause in some cases, as the authors report, “the prompts that
surround each premise sentence during hypothesis collection
are slightly tailored to fit the genre of that premise sentence”.



entailment

SICK A person, who is riding a bike, is wearing gear which is black
A biker is wearing gear which is black

SNLI A young family enjoys feeling ocean waves lap at their feet.
A family is at the beach.

MultiNLI  Kal tangled both of Adrin’s arms, keeping the blades far away.
Adrin’s arms were tangled, keeping his blades away from Kal.
contradiction

SICK There is no man wearing a black helmet and pushing a bicycle
One man is wearing a black helmet and pushing a bicycle

SNLI A man with a tattoo on his arm staring to the side with vehicles and buildings behind him.
A man with no tattoos is getting a massage.

MultiNLI  Also in Eustace Street is an information office and a cultural center for children, The Ark .
The Ark, a cultural center for kids, is located in Joyce Street.
neutral

SICK A little girl in a green coat and a boy holding a red sled are walking in the snow
A child is wearing a coat and is carrying a red sled near a child in a green and black coat

SNLI An old man with a package poses in front of an advertisement.
A man poses in front of an ad for beer.

MultiNLI  Enthusiasm for Disney’s Broadway production of The Lion King dwindles.

The broadway production of The Lion King was amazing, but audiences are getting bored.

Table 2: Example sentence pairs from the three datasets.

cross-sentence attention models as well as fine-
tuned pre-trained language models.

For sentence encoding models, we chose a sim-
ple one-layer bidirectional LSTM with max pool-
ing (BiLSTM-max) with the hidden size of 600D
per direction, used e.g. in InferSent (Conneau
et al., 2017), and HBMP (Talman et al., 2018).
For the other models, we have chosen ESIM
(Chen et al., 2017), which includes cross-sentence
attention, and KIM (Chen et al., 2018), which
has cross-sentence attention and utilizes external
knowledge. We also selected two model involv-
ing a pre-trained language model, namely ESIM
+ ELMo (Peters et al., 2018) and BERT (Devlin
etal., 2019). KIM is particularly interesting in this
context as it performed significantly better than
other models in the Breaking NLI experiment con-
ducted by Glockner et al. (2018). The success
of pre-trained language models in multiple NLP
tasks make ESIM + ELMo and BERT interesting
additions to this experiment. Table 3 lists the dif-
ferent models used in the experiments.

For BiLSTM-max we used the Adam optimizer
(Kingma and Ba, 2015), a learning rate of 5e-4 and
batch size of 64. The learning rate was decreased
by the factor of 0.2 after each epoch if the model
did not improve. Dropout of 0.1 was used between
the layers of the multi-layer perceptron classi-
fier, except before the last layer. The BiLSTM-max
models were initialized with pre-trained GloVe
840B word embeddings of size 300 dimensions
(Pennington et al., 2014), which were fine-tuned
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during training. Our BiLSMT-max model was im-
plemented in PyTorch.

For HBMP, ESIM, KIM and BERT we used
the original implementations with the default set-
tings and hyperparameter values as described in
Talman et al. (2018), Chen et al. (2017), Chen
et al. (2018) and Devlin et al. (2019) respectively.
For BERT we used the uncased 768-dimensional
model (BERT-base). For ESIM + ELMo we used
the AllenNLP (Gardner et al., 2018) PyTorch im-
plementation with the default settings and hyper-
parameter values.

4 Experimental Results

Table 4 contains all the experimental results.

Our experiments show that, while all of the six
models perform well when the test set is drawn
from the same corpus as the training and develop-
ment set, accuracy is significantly lower when we
test these trained models on a test set drawn from
a separate NLI corpus, the average difference in
accuracy being 24.9 points across all experiments.

Accuracy drops the most when a model is tested
on SICK. The difference in this case is between
19.0-29.0 points when trained on MultiNLI, be-
tween 31.6-33.7 points when trained on SNLI
and between 31.1-33.0 when trained on SNLI +
MultiNLI. This was expected, as the method of
constructing the sentence pairs was different, and
hence there is too much difference in the kind of
sentence pairs included in the training and test sets
for transfer learning to work. However, the drop



Model

Model type

BiLSTM-max (Conneau et al., 2017)
HBMP (Talman et al., 2018)

ESIM (Chen et al., 2017)
KIM (Chen etal., 2018)

ESIM + ELMo (Peters et al., 2018)
BERT-base (Devlin et al., 2019)

Sentence encoding
Sentence encoding

Cross-sentence attention
Cross-sentence attention

Pre-trained language model
Cross-sentence attention + pre-trained language model

Table 3: Model architectures used in the experiments.

was more dramatic than expected.

The most surprising result was that the accu-
racy of all models drops significantly even when
the models were trained on MultiNLI and tested
on SNLI (3.6-11.1 points). This is surprising as
both of these datasets have been constructed with
a similar data collection method using the same
definition of entailment, contradiction and neutral.
The sentences included in SNLI are also much
simpler compared to those in MultiNLI, as they
are taken from the Flickr image captions. This
might also explain why the difference in accu-
racy for all of the six models is lowest when the
models are trained on MultiNLI and tested on
SNLI. It is also very surprising that the model
with the biggest difference in accuracy was ESIM
+ ELMo which includes a pre-trained ELMo lan-
guage model. BERT performed significantly bet-
ter than the other models in this experiment having
an accuracy of 80.4% and only 3.6 point difference
in accuracy.

The poor performance of most of the models
with the MultiNLI-SNLI dataset pair is also very
surprising given that neural network models do not
seem to suffer a lot from introduction of new gen-
res to the test set which were not included in the
training set, as can be seen from the small differ-
ence in test accuracies for the matched and mis-
matched test sets (see e.g Williams et al., 2018).
In a sense SNLI could be seen as a separate genre
not included in MultiNLI. This raises the ques-
tion if the SNLI and MultiNLI have e.g. different
kinds of annotation artifacts, which makes transfer
learning between these datasets more difficult.

All the models, except BERT, perform almost
equally poorly across all the experiments. Both
BiLSTM-max and HBMP have an average drop in
accuracy of 24.4 points, while the average for KIM
is 25.5 and for ESIM + ELMo 25.6. ESIM has
the highest average difference of 27.0 points. In
contrast to the findings of Glockner et al. (2018),
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utilizing external knowledge did not improve the
model’s generalization capability, as KIM per-
formed equally poorly across all dataset combina-
tions.

Also including a pretrained ELMo language
model did not improve the results significantly.
The overall performance of BERT was signifi-
cantly better than the other models, having the
lowest average difference in accuracy of 22.5
points. Our baselines for SNLI (90.4%) and
SNLI + MultiNLI (90.6%) outperform the previ-
ous state-of-the-art accuracy for SNLI (90.1%) by
Kim et al. (2018).

To understand better the types of errors made by
neural network models in NLI we looked at some
example failure-pairs for selected models.> Tables
5 and 6 contain some randomly selected failure-
pairs for two models: BERT and HBMP, and
for three set-ups: SNLI—SICK, SNLI—MultiNLI
and MultiNLI—SICK. We chose BERT as the cur-
rent the state of the art NLI model. HBMP was
selected as a high performing model in the sen-
tence encoding model type. Although the listed
sentence pairs represent just a small sample of the
errors made by these models, they do include some
interesting examples. First, it seems that SICK
has a more narrow notion of contradiction — cor-
responding more to logical contradiction — com-
pared to the contradiction in SNLI and MultiNLI,
where especially in SNLI the sentences are con-
tradictory if they describe a different state of af-
fairs. This is evident in the sentence pair: A young
child is running outside over the fallen leaves and
A young child is lying down on a gravel road that
is covered with dead leaves, which is predicted by
BERT to be contradiction although the gold label
is neutral. Another interesting example is the sen-
tence pair: A boat pear with people boarding and

SMore thorough error analysis of each of the models and
set-up is out of scope of this work but we intend to address
these in our future research.



Train data Test data Test accuracy A Model
SNLI SNLI 86.1 BiLSTM-max (our baseline)
SNLI SNLI 86.6 HBMP (Talman et al., 2018)
SNLI SNLI 88.0 ESIM (Chen et al., 2017)
SNLI SNLI 88.6 KIM (Chen et al., 2018)
SNLI SNLI 88.6 ESIM + ELMo (Peters et al., 2018)
SNLI SNLI 90.4 BERT-base (Devlin et al., 2019)
SNLI MultiNLI-m 55.7" -30.4 BiLSTM-max
SNLI MultiNLI-m 56.3 -30.3 HBMP
SNLI MultiNLI-m 59.2° -28.8 ESIM
SNLI MultiNLI-m 61.7" -26.9 KIM
SNLI MultiNLI-m 64.2" -24.4 ESIM + ELMo
SNLI MultiNLI-m 75.5° -14.9 BERT-base
SNLI SICK | 545 31.6 BiLSTM-max
SNLI SICK 53.1 -33.5 HBMP
SNLI SICK 54.3 -33.7 ESIM
SNLI SICK 55.8 -32.8 KIM
SNLI SICK 56.7 -31.9 ESIM + ELMo
SNLI SICK 56.9 -33.5 BERT-base
MultiNLI MultiNLI-m 7317 BiLSTM-max
MultiNLI MultiNLI-m 73.2" HBMP
MultiNLI MultiNLI-m 76.8" ESIM
MultiNLI MultiNLI-m 713" KIM
MultiNLI MultiNLI-m 80.2" ESIM + ELMo
MultiNLI MultiNLI-m 84.0° BERT-base
CMultiNLIT SNLI | 638 93 BiLSTM-max
MultiNLI SNLI 65.3 -7.9 HBMP
MultiNLI SNLI 66.4 -10.4 ESIM
MultiNLI SNLI 68.5 -8.8 KIM
MultiNLI SNLI 69.1 -11.1 ESIM + ELMo
MultiNLI SNLI 80.4 -3.6 BERT-base
CMultNLIT SICK | 541 -19.0 BiLSTM-max
MultiNLI SICK 54.1 -19.1 HBMP
MultiNLI SICK 479 -28.9 ESIM
MultiNLI SICK 50.9 -26.4 KIM
MultiNLI SICK 514 -28.8 ESIM + ELMo
MultiNLI SICK 55.0 -29.0 BERT-base
SNLI + MultiNLI SNLI 86.1 BiLSTM-max
SNLI + MultiNLI SNLI 86.1 HBMP
SNLI + MultiNLI SNLI 87.5 ESIM
SNLI + MultiNLI SNLI 86.2 KIM
SNLI + MultiNLI SNLI 88.8 ESIM + ELMo
SNLI + MultiNLI SNLI 90.6 BERT-base
CSNLI+MultiNLI Sick | 545 316 BiLSTM-max
SNLI + MultiNLI SICK 55.0 -31.1 HBMP
SNLI + MultiNLI SICK 54.5 -33.0 ESIM
SNLI + MultiNLI SICK 54.6 -31.6 KIM
SNLI + MultiNLI SICK 57.1 -31.7 ESIM + ELMo
SNLI + MultiNLI SICK 59.1 -31.5 BERT-base

Table 4: Test accuracies (%). For the baseline results (highlighted in bold) the training data and test data have been
drawn from the same benchmark corpus. A is the difference between the test accuracy and the baseline accuracy
for the same training set. Results marked with * are for the development set, as no annotated test set is openly
available. Best scores with respect to accuracy and difference in accuracy are underlined.

disembarking some boats. and people are board-
ing and disembarking some boats, which is incor-
rectly predicted by BERT to be contradiction al-
though it has been labeled as entailment. Here the
two sentences describe the same event from dif-
ferent points of view: the first one describing a
boat pear with some people on it and the second
one describing the people directly. Interestingly
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the added information about the boat pear seems
to confuse the model.

5 Discussion and Conclusion

In this paper we have shown that neural net-
work models for NLI fail to generalize across dif-
ferent NLI benchmarks. We experimented with
six state-of-the-art models covering sentence en-



coding approaches, cross-sentence attention mod-
els and pre-trained and fine-tuned language mod-
els. For all the systems, the accuracy drops be-
tween 3.6-33.7 points (the average drop being 24.9
points), when testing with a test set drawn from a
separate corpus from that of the training data, as
compared to when the test and training data are
splits from the same corpus. Our findings, together
with the previous negative findings, indicate that
the state-of-the-art models fail to capture the se-
mantics of NLI in a way that will enable them to
generalize across different NLI situations.

The results highlight two issues to be taken
into consideration: a) using datasets involving a
fraction of what NLI is, will fail when tested in
datasets that are testing for a slightly different def-
inition of inference. This is evident when we move
from the SNLI to the SICK dataset. b) NLI is to
some extent genre/context dependent. Training on
SNLI and testing on MultiNLI gives worse results
than vice versa. This is particularly evident in the
case of BERT. These results highlight that train-
ing on multiple genres helps. However, this help
is still not enough given that, even in the case of
training on MultiNLI (multi genre) and training on
SNLI (single genre and same definition of infer-
ence with MultiNLI), accuracy drops significantly.

We also found that involving a large pre-trained
language model helps with transfer learning when
the datasets are similar enough, as is the case with
SNLI and MultiNLI. Our results further corrobo-
rate the power of pre-trained and fine-tuned lan-
guage models like BERT in NLI. However, not
even BERT is able to generalize from SNLI and
MultiNLI to SICK, possibly due to the difference
between what kind of inference relations are con-
tained in these datasets.

Our findings motivate us to look for novel neu-
ral network architectures and approaches that bet-
ter capture the semantics on natural language in-
ference beyond individual datasets. However,
there seems to be a need to start with better con-
structed datasets, i.e. datasets that will not only
capture fractions of what NLI is in reality. Better
NLI systems need to be able to be more versatile
on the types of inference they can recognize. Oth-
erwise, we would be stuck with systems that can
cover only some aspects of NLI. On a theoretical
level, and in connection to the previous point, we
need a better understanding of the range of phe-
nomena NLI must be able to cover and focus our
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future endeavours for dataset construction towards
this direction. In order to do this a more systematic
study is needed on the different kinds of entail-
ment relations NLI datasets need to include. Our
future work will include a more systematic and
broad-coverage analysis of the types of errors the
models make and in what kinds of sentence-pairs
they make successful predictions.
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BERT: SNLI — SICK

A young child is running outside over the fallen leaves
A young child is lying down on a gravel road that is covered with dead leaves

Label: neutral Prediction: contradiction

The man is being knocked off of a horse
Someone is falling off a horse

Label: entailment Prediction: contradiction

There is no one typing
Someone is typing on a keyboard

Label: contradiction Prediction: neutral

The man in the purple hat is operating a camera that makes videos
There is no man with a camera studying the subject

Label: neutral Prediction: contradiction

A woman is taking off a cloak, which is very large, and revealing an extravagant dress
A woman is putting on a cloak, which is very large, and concealing an extravagant dress

Label: contradiction Prediction: neutral

BERT: MultiNLI — SICK

A cowboy is riding a horse and cornering a barrel
A cowgirl is riding a horse and corners a barrel

Label: neutral Prediction: contradiction

A tan dog is jumping up and catching a tennis ball
A dog with a tan coat is jumping up and catching a tennis ball

Label: entailment Prediction: neutral

The bunch of men are playing rugby on a muddy field
Some men are idling

Label: neutral Prediction: contradiction

A blond child is going down a slide and throwing up his arms
A child with dark hair is going down a slide and throwing up his arms

Label: contradiction Prediction: entailment

There is no person in bike gear standing steadily in front of the mountains
A group of people is equipped with protective gear

Label: neutral Prediction: contradiction

BERT: MultiNLI — SNLI

A woman in a white wedding dress is being dressed and fitted by two other women.
A woman is being fitted for the first time.

Label: neutral Prediction: contradiction

A boat pear with people boarding and disembarking some boats.
people are boarding and disembarking some boats

Label: entailment Prediction: contradiction

Several men at a bar watch a sports game on the television.
The men are at a baseball game.

Label: contradiction Prediction: entailment

A singer wearing a leather jacket performs on stage with dramatic lighting behind him.
a singer is on american idol

Label: neutral Prediction: contradiction

A person rolls down a hill riding a wagon as another watches.
A person stares at an empty hill.

Label: contradiction Prediction: neutral

Table 5: Example failure-pairs for BERT.
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HBMP: SNLI — SICK

a boy is sitting in a room and playing a piano by lamp light
aboy is playing akeyboard

Label: entailment Prediction: contradiction

a woman is wearing ear protection and is firing a gun at an outdoor shooting range
a woman is shooting at target practices

Label: entailment Prediction: neutral

a man in a purple hat isn’t climbing a rocky wall with bare hands
a man in a purple hat is climbing a rocky wall with bare hands

Label: contradiction Prediction: entailment

a cat is swinging on a fan
a cat is stuck on a moving ceiling fan

Label: neutral Prediction: contradiction

a young boy is jumping and covering nearby wooden fence with grass
a young boy covered in grass is jumping near a wooden fence

Label: neutral Prediction: entailment

HBMP: MultiNLI — SICK

two dogs are walking slowly through a park
two dogs are running quickly through a park

Label: neutral Prediction: entailment

the woman is playing a guitar which is electric
the woman is playing an electric guitar

Label: entailment Prediction: neutral

there is no man squatting in brush and taking a photograph
a man is crouching and holding a camera

Label: neutral Prediction: contradiction

the snowboarder is jumping off a snowy hill
a snowboarder is jumping off the snow

Label: neutral Prediction: entailment

the boy is sitting near the blue ocean
the boy is wading through the blue ocean

Label: contradiction Prediction: neutral

HBMP: MultiNLI — SNLI

a man is holding a book standing in front of a chalkboard.
a person is in a classroom teaching.

Label: entailment Prediction: contradiction

a woman with a pink purse walks down a crowded sidewalk.
a woman escapes a from a hostile enviroment

Label: neutral Prediction: contradiction

a woman with a pink purse walks down a crowded sidewalk.
a woman escapes a from a hostile enviroment

Label: neutral Prediction: contradiction

a person waterskiing in a river with a large wall in the background.
a dog waterskiing in a river with a large wall in the background.

Label: contradiction Prediction: neutral

a man wearing a blue shirt and headphones around his neck raises his arm.
a man is raising his arm to get someones attention.

Label: neutral Prediction: entailment

Table 6: Example failure-pairs for HBMP.
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Abstract

Character-level models have been used exten-
sively in recent years in NLP tasks as both
supplements and replacements for closed-
vocabulary token-level word representations.
In one popular architecture, character-level
LSTMs are used to feed token representations
into a sequence tagger predicting token-level
annotations such as part-of-speech (POS) tags.

In this work, we examine the behavior of POS
taggers across languages from the perspective
of individual hidden units within the charac-
ter LSTM. We aggregate the behavior of these
units into language-level metrics which quan-
tify the challenges that taggers face on lan-
guages with different morphological proper-
ties, and identify links between synthesis and
affixation preference and emergent behavior of
the hidden tagger layer. In a comparative ex-
periment, we show how modifying the balance
between forward and backward hidden units
affects model arrangement and performance in
these types of languages.

1 Introduction

Subword vector representations are now a stan-
dard part of neural architectures for natural lan-
guage processing (e.g., Bojanowski et al., 2017;
Peters et al.,, 2018). In particular, charac-
ter representations have been shown to handle
out-of-vocabulary words in supervised tagging
tasks (Ling et al., 2015; Lample et al., 2016).
These advantages generalize across multiple lan-
guages, where morphological formation may dif-
fer greatly but the character composition of words
remains a relatively reliable primitive (Plank et al.,
2016).

While the advantages of character-level models
are readily apparent, existing evaluation methods
fail to explain the mechanism by which these mod-
els encode linguistic knowledge about morphol-
ogy and orthography. Different languages exhibit
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character-word correspondence in very different
patterns, and yet the bi-directional LSTM appears
to be, or is assumed to be, capable of capturing
them all. In large multilingual settings, it is not
uncommon to tune hyperparameters on a handful
of languages, and apply them to the rest (e.g., Pin-
ter et al., 2017).

In this work, we challenge this implicit gener-
alization. We train character-based sequence tag-
gers on a large selection of languages exhibiting
various strategies for word formation, and sub-
ject the resulting models to a novel analysis of
the behavior of individual units in the character-
level Bi-LSTM hidden layer. This reveals dif-
ferences in the ability of the Bi-LSTM architec-
ture to identify parts-of-speech, based on typolog-
ical properties: hidden layers trained on agglutina-
tive languages find more regularities on the char-
acter level than in fusional languages; languages
that are suffix-heavy give a stronger signal to the
backward-facing hidden units, and vice versa for
prefix-heavy languages. In short, character-level
recurrent networks function differently depending
on how each language expresses morphosyntactic
properties in characters.

These empirical results motivate a novel Bi-
LSTM architecture, in which the number of hid-
den units is unbalanced across the forward and
backward directions. We find empirical corre-
spondence between the analytical findings above
and performance of such unbalanced Bi-LSTM
models, allowing us to translate the typological
properties of a language into concrete recommen-
dations for model selection. !

2 Related Work

Several recent papers attempt to explain neural
network performance by investigating hidden state
activation patterns on auxiliary or downstream

'nttps://github.com/ruyimarone/
character-eyes
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tasks. On the word level, Linzen et al. (2016)
trained LSTM language models, evaluated their
performance on grammatical agreement detection,
and analyzed activation patterns within specific
hidden units. We build on this analysis strategy as
we aggregate (character-) sequence activation pat-
terns across all hidden units in a model into quan-
titative measures.

Substantial prior work exists on the character
level as well (Karpathy et al., 2015; Vania and
Lopez, 2017; Kementchedjhieva and Lopez, 2018;
Gerz et al., 2018). Smith et al. (2018) examined
the character component in multilingual parsing
models empirically, comparing it to the contribu-
tion of POS embeddings and pre-trained embed-
dings. Chaudhary et al. (2018) leveraged cross-
lingual character-level correspondence to train
NER models for low-resource languages. Godin
et al. (2018), compared CNN and LSTM charac-
ter models on a type-level prediction task on three
languages, using the post-network softmax values
to see which models identify useful character se-
quences. Unlike their analysis, we examine a more
applied token-level task (POS tagging), and focus
on the hidden states within the LSTM model in or-
der to analyze its raw view of word composition.

Our analysis assumes a characterization of unit
roles, where each hidden unit is observed to have
some specific function. Findings from Linzen
et al. (2016) and others suggest that a single hid-
den unit can learn to track complex syntactic rules.
Radford et al. (2017) found that a character-level
language model can implicitly assign a single unit
to track sentiment, without being directly super-
vised. Kementchedjhieva and Lopez (2018) also
examined individual units in a character model
and found complex behavior by inspecting acti-
vation patterns by hand. Most recently, Dalvi
et al. (2019) performed post-hoc tuning of neu-
rons trained in language model and machine trans-
lation components, and examined their ability to
predict grammatical functions. Like them, we per-
form an aggregative analysis of individual units to
reach measurable quantities of models at a whole,
but apply our method to taggers trained directly on
supervised grammatical tasks, and focus on cross-
lingual variation as the main object of investiga-
tion.
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Language Affix!  Morph  POS Accuracy %
synth? Dev Test
Arabic S int 96.11 95.93
Bulgarian S fus 97.91 97.80
Coptic p agg 92.54 92.51
Danish S fus 95.59 95.46
Greek S fus 96.13 96.46
English S fus 93.65 93.30
Spanish S fus 95.75 95.00
Basque = agg 92.99 92.43
Persian S fus 96.07 96.10
Irish = fus 89.35
Hebrew S int 95.71 94.60
Hindi S fus 95.03 94.91
Hungarian S agg 94.14 92.00
Indonesian S is0 92.55 92.68
Italian S fus 96.82 96.95
Latvian S fus 94.70 93.09
Russian S fus 95.29 95.25
Swedish S fus 95.80 95.73
Tamil S agg 86.46 87.58
Thai 0 fus 91.37
Turkish S agg 92.08 92.48
Ukrainian S fus 95.68 95.26
Vietnamese 1] iso 88.51 86.58
Chinese S is0 93.05 93.11
Table 1: Attributes and tagging accuracy by lan-

guage (Irish and Thai do not have both dev and test
sets). TAffixation: S/s is strongly/weakly suffixing;
P/p is strongly/weakly prefixing; = is equally prefix-
ing/suffixing; 0 is little affixation. *Morphological syn-
thesis: agglutinative, fusional, introflexive, isolating.

3 Tagging Task

We train a set of LSTM tagging models, follow-
ing the setup of Ling et al. (2015). A word rep-
resentation trained from a character-level LSTM
submodule is fed into a word-level bidirectional
LSTM, with each word’s hidden state subse-
quently fed into a two-layer perceptron producing
tag scores, which are then softmaxed to produce
a tagging distribution. For languages with addi-
tional morphosyntactic attribute tagging, we fol-
low the architecture in Pinter et al. (2017) where
the same word-level Bi-LSTM states are used to
predict each attribute’s value using its own per-
ceptron+softmax scaffolding. In order to pro-
duce character models which would be as infor-
mative as possible to our subsequent analysis, we
do not include word-level embeddings, pre-trained
or otherwise, in our setup.

3.1 Language Selection

As our goal is to examine the relationship between
character-level modeling and linguistic properties,
we drove language selection based on two mor-
phological properties deemed relevant to the archi-



tectural effects examined. All 24 datasets were ob-
tained from Universal Dependencies (UD) version
2.3 (Nivre et al., 2018), and linguistic properties
were found in the World Atlas of Language Struc-
tures (Bickel and Nichols, 2013; Dryer, 2013).
The selected languages and their properties are
presented in Table 1. We note that eleven of the
24 languages selected are not Indo-European.

Affixation. To evaluate the role of forward and
backward units in a bidirectional model, we se-
lected all languages available in UD which are
not classified as either weakly or strongly suffix-
ing in inflectional morphology (the vast majority
of UD languages). This includes a single prefix-
ing language (Coptic), two equally suffixing and
prefixing languages (Basque and Irish), and two
languages with little affixation (Thai and Viet-
namese).

Morphological Synthesis. Linguistically func-
tional features vary between being expressed as
distinct tokens (isolating languages), detectable
unique character substrings (agglutinative), fused
together but still distinguishable from the stem
(fusional), and non-linearly represented within
the word form (introflexive). This property has
previously been found to affect performance in
character-level models (Pinter et al., 2017; Gerz
et al., 2018; Chaudhary et al., 2018), and thus
we select representatives of each group, including
most available non-fusional languages.

3.2 Technical Setup

Most of our selected languages have only a sin-
gle UD 2.3 treebank. For languages with mul-
tiple treebanks we selected the largest, except in
the cases of Spanish and Indonesian, where we
selected the GSD treebanks. The Irish IDT tree-
bank has only a train and test split, so we used the
test set for early stopping. The Thai PUD treebank
only provided a single dataset with 1000 instances,
which we shuffled and partitioned into a 850/150
split. Tokens were normalized to remove noisy
data: tokens containing ‘http’ were replaced with
‘URL’ and tokens containing ‘@’ were replaced
with ‘EMAIL’. This was most relevant (293 re-
placements) for the English treebank, which con-
tained many long URLs.

Hyperparameters. For the initial bidirectional
character-level LSTM, we used a total hidden state
size of 128 (64 units in each direction). The char-
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acter embedding size is set to 256, initialized us-
ing the method of Glorot and Bengio (2010). The
word-level bidirectional LSTM has two layers and
a hidden state size of 128, with 50% dropout ap-
plied in the style of Gal and Ghahramani (2016).
Each attribute-prediction MLP has a single hidden
layer that is the same size as the tagset size for that
attribute, and includes a tanh nonlinearity. Mod-
els were trained for up to 80 epochs, and we select
the model with the highest POS tagging accuracy
on the dev set. Training used SGD with 0.9 mo-
mentum, and all models were implemented using
DyNet 2.0 (Neubig et al., 2017).

3.3 Results

In our initial setup, we represent words using a
concatenation of the final states from a bidirec-
tional character-level LSTM with 64 forward and
backward hidden units each. The results for POS
tagging, presented in Table 1, are on par with simi-
lar models (Plank et al., 2016, for example) despite
not including a word-level type embedding com-
ponent. We attribute this success to our large char-
acter embedding size of 256, corroborating find-
ings reported by Smith et al. (2018).

4 Analysis

We next analyze the models trained on the tagging
task in an attempt to see how their character-level
hidden states encode different manifestations of
linguistic information. We suggest that individual
hidden units in the character-level sequence model
attune to track patterns in the words which would
indicate their linguistic roles (POS and morpho-
logical properties), and so patterns in character-
role regularity across typologically different lan-
guages would manifest themselves in an observ-
able form at the individual unit activation level.
This motivates us to devise metrics which would
characterize languages through aggregation of in-
dividual unit behaviour.

4.1 Metrics

For each language, we run the character-level
BiLSTM from the trained tagger on POS-
unambiguous word types occurring frequently
in the training set, grouped into their parts of
speech.? This filtering was done in order to focus

>We used 8 as our frequency threshold, and define unam-
biguous forms as ones tagged at least 60% of the time with a
single POS.



1.0

0.5

activation

characterizing

Figure 1: Activations of the English model’s unit 42
(forward) on the word characterizing. bayg.| is 0.42,
and bp,q is 0.96 (the drop from the second i to n).

on the more consistent generalizations found by
the taggers during training, as our goal is to qual-
ify properties of languages.® On each word w, we
observe each hidden unit h;’s activation level (out-
put) on each character h{. We obtain a base mea-
sure b(w, i) based on the activation pattern. For
example, an average absolute base measure is de-
fined as the average of absolute value activations:

|wl

o
bavg\-|(wvl) = mcz:;‘hz’

The max absolute diff base measure is defined as:

braa (w0, 7) = i[5+ — B,

Figure 1 demonstrates these two metrics for a
sample (word, unit) pair, showing how the former
captures the general level of activation the word
caused on the unit, while the latter captures the lo-
cal character pattern deemed most important by it.
We intentionally did not consider metrics based on
the final activation values, the direct signals used
by the later layers in the model, as these bear no
insight into the effect of a word’s composition on
the learned model.

Next, we derive a language-level metric for each
hidden unit, based on the principle of Mutual In-
formation (MI). The base metric’s range ([0, 1) for
bavg|[> [0,2) for bmaa) is divided into B bins of
equal size, and base activations from each word
are summed across each of the 7' POS tag cate-
gories*, then normalized to produce a joint proba-
bility distribution. The mutual information is com-

3This consideration also motivated our choice of UD data,
which is tokenized to separate syntactic fusion such as He-
brew and Arabic function words, or Spanish del.

“We omit the following ‘character-simple’ part-of-speech
tags: INTJ, NUM, PROPN, PUNCT, SYM, X.
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puted as:

T B
>N P(t,b)[In P(t,b) — In P(t) — In P(b)],

t=1 b=1

and we call the resulting number the POS-
Discrimination Index, or PDI. Intuitively, a higher
PDI implies that the unit activates differently on
words of different parts of speech, i.e. it is a better
discriminator for the task.

At this point a language produces a set of dp,
PDI scores, one for each unit. We sort them from
high to low, and define two language-level metrics:
The mass is the sum of PDI values for all units,
M(L) = Z?L PDI(L, ), intuitively meant to
quantify the degree of success the model has in
assigning hidden units to discriminate POS in this
language. The head forwardness is the propor-
tion of forward-directional units (under the sorted
ordering) before the point at which half of the
mass accumulates (in a random setup, this num-
ber would tend to 0.5):

Hk S PDI(L, i) < % A hy is forward}’

Hk‘ : Y i PDI(L,4) < %H

This metric aims to quantify the relative impor-
tance of forward and backward units in discrimi-
nating POS for £. We use only the top units for
the metric as a de-noising heuristic, under the as-
sumption that all units end up with some minimal
amount of mass even without performing a func-
tion.

4.2 PDI Patterns

The PDI patterns on the b,y,|.| base measure with
B = 16 bins on all 24 languages are presented
in Table 2. We see that agglutinative languages,
where we can expect a better discrimination sig-
nal to emerge from the consistently-formed mor-
phemes, cluster mostly at the top of the PDI mass
scale, suggesting more individual character-level
units extract these signals successfully. Introflex-
ive languages, where character sequences seldom
correspond to useful indications of POS or mor-
phosyntactic attributes, cluster towards the bot-
tom.

We present the full unit-level PDI value distri-
butions for Coptic, a prefixing agglutinative lan-
guage, and English, a suffixing fusional language,
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Figure 2: Distribution of PDI values (b,yg.|) across hidden units in Coptic and English, shown in ordered PDI values
from largest to smallest, with blue (orange) bars indicating forward (backward) units. The black line demarcates

the median point of mass accumulation.

Language Mass  Mass % of forward
median units until
index median
Tamil 71.0 55 49.1
Irish 62.0 56 429
Coptic 58.1 56 71.4
Hungarian 479 55 50.9
Greek 31.2 55 45.5
Turkish 30.1 54 57.4
Russian 25.9 54 40.7
Thai 25.9 55 473
Ukrainian 25.0 54 37.0
Vietnamese  24.2 55 36.4
Chinese 23.8 47 42.6
Danish 21.7 54 44 .4
Swedish 20.8 53 34.0
Basque 20.6 51 64.7
Indonesian 20.3 45 71.1
Latvian 17.0 52 423
Spanish 16.1 45 333
English 16.0 50 20.0
Bulgarian 15.6 52 46.2
Italian 14.1 48 56.2
Arabic 12.6 46 58.7
Hebrew 114 51 74.5
Persian 10.3 50 46.0
Hindi 8.4 51 41.2

Table 2: PDI statistics for UD 2.3 models, b,yg|.| metric,
sorted by the mass metric (sum of PDIs). Agglutinative
languages in bold, introflexive in italics.
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in Figure 2 (trends for by,g are similar). Con-
sistent with other agglutinative languages, Cop-
tic’s cumulative mass is very large (M (cop)
58.1), suggesting the predictive qualities of the
sequence-based LSTM allows good discrimina-
tion from the character signal, as one might ex-
pect from an agglutinative language. Conversely,
M(eng) = 16, demonstrating the difficulty pre-
sented by fusional languages. The accumulation
of 71% forward (80% backward) units in the head
of the Coptic (English) value ranking suggests
an interesting relationship between affixation and
LSTM direction: LSTM units are likely to hone
in on POS-indicative signals, which often occur as
affixes, in the beginning of their run, causing acti-
vation values to rise (in absolute value) and stay
large throughout the subsequent traversal of the
stem. Unfortunately, since no other prefixing lan-
guages are available in UD, we were not able to
pursue this hypothesis further.

4.3 Asymmetric Directionality

Based on these observations, we conduct a direc-
tionality balance study, where we vary the num-
ber of hidden units in the forward and backwards
dimensions. In addition to the models analyzed
above, which use 64 forward and 64 backward
units (denoted hereafter 64/64), we trained mod-
els with imbalanced directionality (128/0, 96/32,
32/96, 0/128). We test the hypothesis that imbal-
anced models affect languages differently based
on their linguistic properties and statistical met-
rics. We note that these settings do not maintain
parameter set size: intra-direction transition oper-
ations are quadratic in that direction’s hidden layer
size, and so this adds a possible advantage in favor
of direction-imbalanced models.



Language 128/0  96/32  64/64 32/96 0/128
Type (base)
Inflectional Affixation Categories
S. suffix +0.22 +0.07 9450 -0.06 -0.02
W. suffix +0.26 +0.12 9546 -0.07 -0.01
Equal p/s +0.61 +0.32 9099 -0.07 +0.06
Little aff. -0.06 -0.21 89.59 -0.16 -0.22
W. prefix +0.52 +0.22 9291 +0.40 +0.33
Morphological Synthesis Categories

Introflex. +0.17 +0.05 9587 -0.06 +0.01
Fusional +0.22 +0.07 9495 +0.01 +0.06
Agglutina.  +0.59 +0.27 9158 -0.16 -0.15
Isolating -0.14 -0.13 91.15 -0.15 -0.13
Overall +0.25 +0.08 9385 -0.05 -0.01

Table 3: Imbalanced models’ mean POS accuracy on
UD development data (differences between three aver-
aged random runs in all models; boldfaced when sig-
nificant at p < 0.05 using a paired two-tailed z-test).

The results for this study are presented in Ta-
ble 3 as averages for the language categories listed
in Table 1 (the full, raw results are available in Ta-
ble 4).

One trend which emerges is the preference of
agglutinative languages for imbalanced models,
whereas the other languages are little affected by
this change. This could be explained by the in-
crease in inter-unit interaction in the larger direc-
tion of an imbalanced model — contiguous char-
acter sequences consistently code reliable linguis-
tic features in these languages. A second find-
ing is the slight bias of suffixing languages to-
wards more forward units and of the prefixing lan-
guage to more backward units, indicating that hid-
den LSTM units are better in detecting formations
close to their final state. Coupled with the find-
ings regarding PDI mass distribution in the dif-
ferent directional units in § 4.2, we suggest that
a subtle relation exists between morphological in-
formation and model directionality: units which
end their run on the affix are more important for
detecting the POS signal, so having more of them
helps the model. We also note the stability of iso-
lating and little-affixing languages to directional-
ity balance, possibly owing to the relatively small
significance of contiguous character sequences in
detecting word role. Lastly, we point out that the
compromise sesquidirectional models 96/32 and
32/96 did not tend to stand out significantly on our
tested language categories, suggesting there is no
substantial middle-ground between the two popu-
lar techniques of unidirectional and bidirectional
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Language 128/0  96/32 64/64 32/96 0/128
Arabic 96.29 96.08 96.06 96.09 96.16
Bulgarian 9795 97.86 97.84 97.74 97.71
Coptic 93.10 92.80 92.58 9298 9291
Danish 9593 95.68 9561 95.60 95.70
Greek 96.19 96.07 96.01 96.00 95.93
English 93.86 93.74 93.65 93.80 93.87
Spanish 9574 95.63 95.64 95.64 9577
Basque 93.52 93.13 92.89 9259 92.90
Persian 96.31 96.20 96.11 96.02 96.20
Irish 89.54 89.35 88.95 89.11 89.07
Hebrew 9576 9572 95.60 95.50 95.57
Hindi 9535 9522 95.12 95.11 95.25
Hungarian 9425 9429 9420 9397 94.00
Indonesian 9242 92.34 9249 9253 92.55
Italian 97.00 96.78 96.87 96.88 97.01
Latvian 95.10 9484 94.69 9458 94.61
Russian 95.51 9539 9532 9531 95.36
Swedish 9593 95.69 95.64 9552 95.85
Tamil 87.54 87.28 86.88 86.28 85.99
Thai 91.52 91.27 9138 9147 9132
Turkish 93.14 9245 92.06 92.03 92.09
Ukrainian 9572 9576 95.63 95.68 95.66
Vietnamese 87.98 87.92 8823 87.83 87.85
Chinese 93.01 93.17 93.12 93.03 93.04

Table 4: Full scores for the directionality balance ex-
periment, each point averaged over three random seed
runs.

LSTMs.

5 Conclusion

While character-level Bi-LSTM models compute
meaningful word representations across many lan-
guages, the way they do it depends on each lan-
guage’s typological properties. These observa-
tions can guide model selection: for example,
in agglutinative languages we observe a strong
preference for a single direction of analysis, mo-
tivating the use of unidirectional character-level
LSTMs for at least this type of language. In future
work, we plan to introduce further control into our
metrics by incorporating dataset attributes such as
tag distribution and number of instances, as well as
learning-related properties like convergence rate
and effect of initialization.
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Abstract

Al systems’ ability to explain their reasoning
is critical to their utility and trustworthiness.
Deep neural networks have enabled significant
progress on many challenging problems such
as visual question answering (VQA). How-
ever, most of them are opaque black boxes
with limited explanatory capability. This pa-
per presents a novel approach to developing a
high-performing VQA system that can eluci-
date its answers with integrated textual and vi-
sual explanations that faithfully reflect impor-
tant aspects of its underlying reasoning pro-
cess while capturing the style of comprehen-
sible human explanations. Extensive exper-
imental evaluation demonstrates the advan-
tages of this approach compared to competing
methods using both automated metrics and hu-
man evaluation.

1 Introduction

Deep neural networks have made significant
progress on visual question answering (VQA),
the challenging Al problem of answering natural-
language questions about an image (Antol et al.,
2015). However successful systems (Fukui et al.,
2016; Anderson et al., 2018; Yang et al., 2016; Wu
et al., 2018a; Jiang et al., 2018) based on deep neu-
ral networks are difficult to comprehend because
of many layers of abstraction and a large number
of parameters. This makes it hard to develop user
trust. Partly due to the opacity of current deep
models, there has been a recent resurgence of in-
terest in explainable Al, systems that can explain
their reasoning to human users. In particular, there
has been some recent development of explainable
VQA systems (Selvaraju et al., 2017; Park et al.,
2018; Hendricks et al., 2016, 2018).

One approach to explainable VQA is to gen-
erate visual explanations, which highlight image
regions that most contributed to the system’s an-
swer, as determined by attention mechanisms (Lu

Raymond J. Mooney
Department of Computer Science
University of Texas at Austin
mooney@cs.utexas.edu

Question: What sport is pictured? Answer: Surfing
Explanation: Because the [l is riding a wave on a surfboard.

Figure 1: Example of our multimodal explanation. It
highlights relevant image regions together with a tex-
tual explanation with corresponding words in the same
color.

et al., 2016) or gradient analysis (Selvaraju et al.,
2017). However, such simple visualizations do not
explain how these regions support the answer. An
alternate approach is to generate a textual expla-
nation, a natural-language sentence that provides
reasons for the answer. Some recent work has gen-
erated textual explanations for VQA by training a
recurrent neural network (RNN) to directly mimic
examples of human explanations (Hendricks et al.,
2016; Park et al., 2018). A multimodal approach
that integrates both a visual and textual explana-
tion provides the advantages of both. Words and
phrases in the text can point to relevant regions in
the image. An illustrative explanation generated
by our system is shown in Figure. 1.

Recent research on such multimodal VQA ex-
planation is presented in (Park et al., 2018) that
employs a form of “post hoc justification” that
does not truly follow and reflect the system’s ac-
tual processing. We believe that explanations
should more faithfully reflect the actual process-
ing of the underlying system in order to provide
users with a deeper understanding of the system,
increasing trust for the right reasons, rather than

Proceedings of the Second BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, pages 103—112
Florence, Italy, August 1, 2019. (©2019 Association for Computational Linguistics



trying to simply convince them of the system’s
reliability (Bilgic and Mooney, 2005). In order
to be faithful, the textual explanation generator
should focus on the set of objects that contribute
to the predicted answers, and receive proper super-
vision from only the gold standard explanations
that are consistent with the actual VQA reasoning
process. Towards this end, our explanation mod-
ule directly uses the VQA-attended features and is
trained to only generate human explanations that
can be traced back to the relevant object set using
a gradient-based method called GradCAM (Sel-
varaju et al., 2017). To enforce local faithfulness,
we also align the gradient-based visual explana-
tions generated by the textual explanation module
and the VQA module during training.

In addition, our explanations provide direct
links between terms in the textual explanation and
segmented items in the image, as shown in Fig-
ure 1. The result is a nice synthesis of a faith-
ful explanation that highlights concepts actually
used to compute the answer and a comprehensible,
human-like, linguistic explanation. Below we de-
scribe the details of our approach and present ex-
tensive experimental results on the VQA-X (Park
et al., 2018) dataset that demonstrates the advan-
tages of our approach compared to prior work us-
ing this data (Park et al., 2018) in terms of both
automated metrics and human evaluation. Further,
in order to evaluate the faithfulness, we design two
metrics: (1) We first measure the degree of similar-
ity between the highlighted image segments in our
textual explanations and the influential segments
determined by the LIME explainer (Ribeiro et al.,
2016); (2) we also measure the consistency be-
tween the gradient-based visual explanation (Sel-
varaju et al., 2017) of the predicted answer and the
generated textual explanation.

2 Related Work

In this section, we review related work includ-
ing visual and textual explanation generation and
VQA.

21 VQA

Answering visual questions (Antol et al., 2015)
has been widely investigated in both the NLP and
computer vision communities. Most VQA mod-
els (Fukui et al., 2016; Lu et al., 2016) embed im-
ages using a CNN and questions using an RNN
and then use these embeddings to train an answer
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classifier to predict answers from a pre-extracted
set. Attention mechanisms are frequently applied
to recognize important visual features and filter
out irrelevant parts. A recent advance is the use
of the Bottom-Up-Top-Down (Up-Down) atten-
tion mechanism (Anderson et al., 2018) that at-
tends over high-level objects instead of convolu-
tional features to avoid emphasis on irrelevant por-
tions of the image. We adopt this mechanism, but
replace object detection (Ren et al., 2015) with
segmentation (Hu et al., 2018) to obtain more pre-
cise object boundaries.

2.2 Visual Explanation

A number of approaches have been proposed to
visually explain decisions made by vision systems
by highlighting relevant image regions. Grad-
CAM (Selvaraju et al., 2017) analyzes the gradient
space to find visual regions that most affect the de-
cision. Attention mechanisms in VQA models can
also be directly used to determine highly-attended
regions and generate visual explanations. Unlike
conventional visual explanations, ours highlight
segmented objects that are linked to words in an
accompanying textual explanation, thereby focus-
ing on more precise regions and filtering out noisy
attention weights.

2.3 Textual and Multimodal Explanation

Visual explanations highlight key image regions
behind the decision, however, they do not explain
the reasoning process and crucial relationships be-
tween the highlighted regions. Therefore, there
has been some work on generating textual expla-
nations for decisions made by visual classifiers
(Hendricks et al., 2016). As mentioned in the in-
troduction, there has also been some work on mul-
timodal explanations that link textual and visual
explanations (Park et al., 2018). A recent exten-
sion of this work (Hendricks et al., 2018) first gen-
erates multiple textual explanations and then filters
out those that could not be grounded in the image.
We argue that a good explanation should focus on
referencing visual objects that actually influenced
the system’s decision, therefore generating more
faithful explanations.

3 Approach

Our goal is to generate more faithful multimodal
explanations that specifically include the seg-
mented objects in the image that are the focus of
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Figure 2: Model overview: We first segment the image and then predict the answer for the visual question with
a pretrained VQA module. Then, we learn to embed the question, answer, and the VQA-attended features to
generate textual explanations. During training, we only use the faithful human explanation whose gradient-based
visual explanation is consistent with that of the predicted answer. In the example, our explanation module is
only trained to generate “Explanation 1” and further enforces the consistency between this explanation and the
predicted answer. “Explanation 2” is filtered out since its visual explanation is mainly focused on the waves and is
not consistent with VQA module’s focus on the surfer. Dashed arrows denote gradients, gray and yellow arrows
denote fixed and trainable parameters, respectively. The three smaller images denote the visual explanations for

the predicted answer and the two textual explanations.

the VQA module. Figure 2 illustrates our model’s
pipeline in the training phase, consisting of the
VQA module (Section 3.2), and textual explana-
tion module (Section 3.4). We first segment the
objects in the image and predict the answer using
the VQA module, which has an attention mech-
anism over those objects. Next, the explanation
module is trained to generate textual explanations
conditioned on the question, answer, and VQA-
attended features. To faithfully train the explana-
tion module, we filter out human textual explana-
tions whose gradient-based visual explanation is
not consistent with that of the predicted answer.
For example, in Figure 2 “Explanation 1” is ac-
cepted as the textual explanation since it is mainly
focused on the surfer and “Explanation 2” is re-
jected. For the consistent textual explanations, we
also train the explanation module to align its visual
explanation with the predicted answer’s to enforce
local faithfulness.

3.1 Notation

We use f to denote the fully-connected fc layers
of the neural network, and these fc¢ layers do not
share parameters. We notate the sigmoid functions
as 0. The subscript ¢ indexes the elements of the
segmented object sets from images. Bold letters
denote vectors, overlining - denotes averaging, and
[+, -] denotes concatenation.
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3.2 VQA Module

We base our VQA module on Up-Down (Ander-
son et al., 2018) with some modifications. First,
we replace the two-branch gated ranh answer clas-
sifier with single fc layers with Leaky ReLU ac-
tivation (Maas et al., 2013). In order to ground
the explanations in more precise visual regions,
we use instance segmentation (Hu et al., 2018) to
segment objects in over 3,000 categories. Specif-
ically, we extract at most the top V' < 80 ob-
jects in terms of segmentation scores and concate-
nate each object’s fc6 representation in the bound-
ing box classification branch and mask _fen[1-4]
features in the mask generation branch to form a
2048-d vector. This results in an image feature
set V containing V' 2048-d vectors v; for each im-
age. We encode each question as the last hidden
state q of a gated recurrent unit (GRU) with 512
hidden units. We learn visual attention over all
the segments a¥9® € RV, and use the attended
visual features v! together with the question em-
bedding to produce a joint representation h. Then
the model predicts the logits s"9* for each answer
candidate using a 2-layer fc networks, which is
passed through a sigmoid function to compute the
final probabilities. For the detailed network ar-
chitecture, please refer to (Anderson et al., 2018).
The parameters in the VQA module are fixed dur-
ing the training of the explanation module.



3.3 Question and Answer Embedding for
Explanation Generation

As suggested in (Park et al., 2018), we also encode
questions and answers as input features to the ex-
planation module. In particular, we regard the nor-
malized answer prediction output as a multinomial
distribution, and sample one answer from this dis-
tribution at each time step. We re-embed it as a
one-hot vector a; = one-hot(multinomial(s)).

u; =v; O f(as) © f(q) (1)
Next, we element-wise multiply the embedding of
q and a, with v! to compute the joint representa-
tion u;. Note that u faithfully represents the focus
of the VQA process, in that it is directly derived
from the VQA-attended features.

3.4 Explanation Generation

In this section, we describe the Explanation Mod-
ule depicted by the yellow box in Figure. 2. The
explanation module has a two-layer-LSTM archi-
tecture whose first layer produces an attention over
the u;, and whose second layer learns a represen-
tation for predicting the next word using the first
layer’s features.

1 hi
h? — Language LSTM —
QTD «—20 51 ®
ﬁT S|
Attention Source
U — module identifier
ht
ht_,— Attention LSTM >

xt = [U; hi_;; we]

Figure 3: Overview of the explanation module.

In particular, the first visual attention LSTM
takes the concatenation x; of the second language
LSTM’s previous output h?_,, the average pooling
of u;, and the previous words’ embedding as input
and produces the hidden presentation h}. Then, an
attention mechanism re-weights the image feature
u; using the generated h; as input shown in Eq. 2.
For the detailed structure, please refer to (Ander-
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son et al., 2018).

= f(tanh(f(w;) + f(h;)))

softmax (o)

2)
3)

it

(877

For the purpose of faithfully grounding the gen-
erated explanation in the image, we argue that the
generator should be able to determine if the next
word should be based on image content attended
to by the VQA system or on learned linguistic con-
tent. To achieve this, we introduce a “source iden-
tifier” to balance the total amount of attention paid
to the visual features u; and the recurrent hidden
representation h% at each time step. In particular,
given the output h} from the attention LSTM and
the average pooling u; over u;, we train a fc layer
to produce a 2-d output s = o(f([h}, W])) =
(so,s1) that identifies which source the current
generated word should be based on (i.e. sg for the
output of the attention LSTM! and s; for the at-
tended image features).

s =o(f([h, W)

We use the following approach to obtain train-
ing labels s for the source identifier. For each
visual features u;, we assign label 1 (indicating
the use of attended visual information) when there
exists a segmentation u; whose cosine similarity
between its category name’s GloVe representation
and the current generated word’s GloVe represen-
tation is above 0.6. Given the labeled data, we
train the source identifier using cross entropy loss
L as shown in Eq. 5:

“4)

1
Ls= —(Z 55logsj + (1 —5;5)log(1 — s5))
=0
&)

where the 5g, §1 are the aforementioned labels.

Next, we concatenate the re-weighted h} and u;
with the output of the source identifier as the in-
put x? = [h}sg, W;s1] for the language LSTM.
For more detail on the language LSTM structure,
please refer to (Anderson et al., 2018).

With the hidden states hf in the Language
LSTM, the output word’s probability is computed

"We tried to directly use the source weights s in the lan-
guage LSTM'’s hidden representation h?_; and found that us-
ing h; works better. The reason is that directly constraining
h?_, makes the language LSTM forget the previously en-
coded content and prevents it from learning long term de-
pendencies.



using Eq. 6:

p(yelyre-1) = softmaz(f(hi))  (6)

where y; denotes the ¢-th word in the explanation
y and y;.;—1 denotes the first ¢ — 1 words.

Faithful Explanation Supervision. Directly col-
lecting faithful textual explanations is infeasible
because it would require an annotation process
where workers provide explanations based on the
attended VQA features. Instead, we design an on-
line algorithm that automatically filters unfaithful
explanations from the human ones in the VQA-
X data (Park et al., 2018) based on the idea that a
proper explanation should focus on the same set of
objects as the VQA module and be locally faith-
ful. As recent research suggested that gradient-
based methods more faithfully present the mod-
els’ decision making process (Zhang et al., 2018;
Wu et al., 2018b; Wu and Mooney, 2019; Jain and
Wallace, 2019), we define a faithfulness score Sy
as the cosine similarity between the Grad-CAM
(Selvaraju et al., 2017) visual explanation vectors
of the textual explanation and the predicted answer
as shown in Eq. 7:

vqa
pred’

(7)

where g denotes the Grad-CAM operation and the
result is a vector of length |V/| indicating the con-
tribution of each segmented object. s %0 is the
logit for the predicted answer.

Then, we filter out the explanations in the train-
ing set whose faithfulness scores are less than
&max(0.02 4t, 1), where £ is a threshold and the
max(0.02 it, 1) term is used to jump-start the ran-
domly initialized explanation module. For exam-
ple, during training, we only accept “Explanation
1” in Figure 2 because the visual explanations of
the predicted answer and the textual explanation
are consistent and reject “Explanation 2”.

Since the VQA-X dataset only has explanations
for the correct answers, we also discard the ex-
planations when the predicted answers are wrong.
With the remaining human explanations, we mini-
mize the cross-entropy loss £x g in Eq. 8:

Sy(y) = cos(g(s,reqs V7), g(log p(y), v7))

pre

T
Lxg =Y log(p(yilyri1))

t=1

®)

To enforce local faithfulness, we further align
these two gradient vectors using cosine distance
Li=1-8;.
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Figure 4: The distribution of explanations’ faithfulness
scores in the last epoch during training.

In Figure 4, we report the distribution of the ex-
planations’ faithfulness scores Sy in the last epoch
during training (£ is set to 0.3). We observe that
about 30% of the human explanations in the train-
ing set cannot be traced back to similar image seg-
ments that highly contribute to the predicted an-
swer using our trained explanation module. These
textual explanations cannot be seen as faithful ei-
ther because the explanations themselves are not
faithful or because the explanation module fails
to develop the correct mappings between the tex-
tual explanations and the VQA-attended features.
There are only a small fraction of the explanations
whose faithfulness scores are in the interval of
[0.1, 0.6] indicating that there is a clear boundary
between whether or not an explanation is deemed
faithful according to our metric.

3.5 Training

We pre-train the VQA module on the entire VQA
v2 training set for 15 epochs using the Adam opti-
mizer (Kingma and Ba, 2014) with a learning rate
of 0.001. After that, the parameters in the VQA
module are frozen. Our VQA module is capa-
ble of achieving 82.9% and 80.3% in the VQA-
X train and test split respectively. and 63.5% in
the VQA v2 validation set which is comparable
to the baseline Up-Down model (63.2%) (Ander-
son et al., 2018). Note that VQA performance is
not the focus of this work, and our experimental
evaluation focuses on the generated explanations.
Finally, we train the explanation module using the
human explanations in the VQA-X dataset (Park
et al., 2018) filtered for faithfulness. VQA-X con-
tains 29,459 question answer pairs and each pair is
associated with a human explanation. We train to
minimize the joint loss £ (Eq. 9), and £ is empiri-
cally set to 0.3. We ran the Adam optimizer for 25
epochs with a batch size of 128. The learning rate
for training the explanation module is initialized
to 5e-4 and decays by a factor of 0.8 every three
epochs.

EZEXE—‘rﬁS—i-ﬁf 9)



Textual Visual

Ls F Ly | #Expl. | B-4 M RL C S EMD

PJ-X (Park et al., 2018) 29K 19.5 182 437 713 151 | 2.64
Ours (Justification) 29K 235 19.0 462 812 172 | 246
Ours (Justification) v 29K 244 195 474 888 17.9| 241
Ours (Justification) v 15K 241 18.6 462 834 162 | 2.59
Ours (Explanation) v v 15K 247 192 470 851 16.6| 2.56
Ours (Explanation) v v Y 15K 251 19.7 482 86.7 17.2 | 2.52

Table 1: Explanation evaluation results, the top half shows results using the entire train set and the bottom half
shows results using about 15K explanations. F denotes whether to filter out the unfaithful training explanations.
With F, the 15K explanations are the remaining explanation and without F, the 15K explanations are randomly
sampled from train set. £,, £ denote the losses of the source identifier and the faithful gradient alignment, respec-
tively. B-4, M, R-L, C and S are short hand for BLEU-4, METEOR, ROUGE-L, CIDEr and SPICE, respectively.

3.6 Multimodal Explanation Generation

As a last step, we link words in the generated
textual explanation to image segments in order to
generate the final multimodal explanation. To de-
termine which words to link, we extract all com-
mon nouns whose source identifier weight s; in
Eq. 4 exceeds 0.5. We then link them to the seg-
mented object with the highest attention weight o
in Eq. 2 when that corresponding output word y;
was generated, but only if this weight is greater
than 0.2.2

4 Experimental Evaluation

This section experimentally evaluates both the tex-
tual and visual aspects of our multimodal explana-
tions, including comparisons to competing meth-
ods and ablations that study the impact of the vari-
ous components of our overall system. Finally, we
present metrics and evaluation for the faithfulness
of our explanations.

4.1 Textual Explanation Evaluation

Similar to (Park et al., 2018), we first evaluate
our textual explanations using automated metrics
by comparing them to the gold-standard human
explanations in the VQA-X test data using
standard sentence-comparison metrics: BLEU-4
(Papineni et al., 2002), METEOR (Banerjee and
Lavie, 2005), ROUGE-L (Lin, 2004), CIDEr
(Vedantam et al., 2015) and SPICE (Anderson
et al., 2016). Table 1 reports our performance,
including ablations. In particular, “Justification”
denotes training on the entire or randomly sam-
pled VQA-X dataset and “Explanation” denotes

"Due to duplicated segments, we use a lower threshold.

108

training only on the remaining faithful explana-
tions. We outperform the current state-of-the-art
PJ-X model (Park et al., 2018) on all automated
metrics by a clear margin with only about half
the explanation training data. This indicates that
constructing explanations that faithfully reflect the
VQA process can actually generate explanations
that match human explanations better than just
training to directly match human explanations,
possibly by avoiding over-fitting and focusing
more on important aspects of the test images.

4.2 Multimodal Explanation Evaluation

In this section, we present the evaluations of our
model on both visual and multimodal aspects.

Automated Evaluation: As in previous work
(Selvaraju et al., 2017; Park et al., 2018), we first
used Earth Mover Distance (EMD) (Pele and Wer-
man, 2008) to compare the image regions high-
lighted in our explanation to image regions high-
lighted by human judges. In order to fairly com-
pare to prior results, we resize all the images in the
entire test split to 14 x 14 and adjust the segmenta-
tion in the images accordingly using bi-linear in-
terpolation. Next, we sum up the multiplication
of attention values and source identifiers’ values
in Eq, 2 over time () and assign the accumulated
attention weight to each corresponding segmenta-
tion region. We then normalize attention weights
over the 14 x 14 resized images to sum to 1, and
finally compute the EMD between the normalized
attentions and the ground truth.

As shown in the Visual results in Table 1, our
approach matches human attention maps more
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Explanation: The [iilf is
catching a frisbee.
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Answer: Snowboarding
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Explanation: He is eating a
yellow [l with a peel.

Figure 5: Sample positively-rated explanations.

closely than PJ-X (Park et al., 2018). We at-
tribute this improvement to the following reasons.
First, our approach uses detailed image segmenta-
tion which avoids focusing on background and is
much more precise than bounding-box detection.
Second, our visual explanation is focused by tex-
tual explanation where the segmented visual ob-
jects must be linked to specific words in the textual
explanation. Therefore, the risk of attending to un-
necessary objects in the images is significantly re-
duced. As a result, we filter out most of the noisy
attention in a purely visual explanation like that in
PJ-X.

Human Evaluation: We also asked AMT work-
ers to evaluate our final multimodal explanations
that link words in the textual explanation directly
to segments in the image. Specifically, we ran-
domly selected 1,000 correctly answered ques-
tion and asked workers “ How well do the high-
lighted image regions support the answer to the
question?” and provided them a Likert-scale set
of possible answers: “Very supportive”, “Support-
ive”, “Neutral”, ‘Unsupportive” and “Completely
unsupportive”. The second task was to evaluate
the quality of the links between words and im-
age regions in the explanations. We asked workers
“How well do the colored image segments high-
light the appropriate regions for the correspond-
ing colored words in the explanation?” with the
Like-scale choices: “Very Well”, “Well”, “Neu-
tral”, “Not Well”, “Poorly”. We assign five ques-
tions in each AMT HIT with one “validation” item
to control the HIT’s qualities.

Relevance of the highlighted segments

. I
0% 10% 20% 30% 40% 50% 60% 70% 80% 90%  100%
= Very suportative = Supportive ~ Neural = Unsupportive m Completely unsupportative
Quality of the textual-visual links
I L

0% 10% 20% 30%

= Very well

40% 50% 60% 70% 80%

well ~ Neutral = Not well mPoor

90%  100%

Figure 6: Human evaluation results.
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As shown in Figure 6, in both cases, about 70%
of the evaluations are positive and about 45% of
them are strongly positive. This indicates that
our multimodal explanations provide good con-
nections among visual explanations, textual expla-
nations, and the VQA process. Figure 5 presents
some sample positively-rated multimodal explana-
tions.

4.3 Faithfulness Evaluation

In this section, we measure the faithfulness of
our explanations, i.e. how well they reflect the
underlying VQA system’s reasoning. First, we
measured how many words in a generated expla-
nation are actually linked to a visual segmentation
in the image. We analyzed the explanations from
1,000 correctly answered questions from the test
data. On average, our model is able to link 1.6
words in an explanation to an image segment,
indicating that the textual explanation is actually
grounded in objects detected by our VQA system.

Faithfulness Evaluation using LIME. We use
the model-agnostic explainer LIME (Ribeiro et al.,
2016) to determine the segmented objects that
most influenced a particular answer, and measure
how well the objects referenced in our explanation
match these influential segments. We regard all
the detected visual segments as the “interpretable”
units used by LIME to explain decisions. Using
these interpretable units, LIME applies LASSO
with the regularization path (Efron et al., 2004) to
learn a linear model of the local decision bound-
ary around the example to be explained. In partic-
ular, we collect 256 points around the example by
randomly blinding each segment’s features with a
probability of 0.4. The highly weighted features
in this model are claimed to provide a faithful ex-
planation of the decision on this example (Ribeiro
et al., 2016). The complexity of the explanation is
controlled by the number of units, K, that can be
used in this linear model. Using the coefficients
w of LIME’s weighted linear model, we compare
the object segments selected by LIME to the set of
objects that are actually linked to words in our ex-
planations. Specifically, we define our faithfulness
metric as:

Vi . —
> ey |wi| maxje g cos(vi, vj)
S il
=1 )
where v; denotes the visual feature of the i-th
segmented object and the £ denotes the set of

(10)

score =



explanation-linked objects. For each object in the
LIME explanation, it finds the closest object in our
explanation and multiplies its LIME weight by this
similarity. The normalized sum of these matches
is used to measure the similarity of the two expla-
nations.

We collect all correctly answered questions in
the VQA-X test set, and Table 2 reports the av-
erage score for their explanations using models
trained on 15K training explanations with differ-
ent numbers of interpretable units K. The influ-
ential objects recognized by LIME match objects
that are linked to words in our explanations with
an average cosine similarity around 0.7. This in-
dicates that the explanations are faithfully making
reference to visual segmentations that actually in-
fluenced the decision of the underlying VQA sys-
tem. Also, we observe that training with faith-
ful human explanation outperforms purely mim-
icking human explanations in terms of our faithful
metric, and further enforcing the local faithfulness
achieves a better result.

| K=1|K=2[K=3

Ours (Random) 0.588 | 0.601 | 0.574
Ours (Filtered) 0.636 | 0.651 | 0.643
Ours (Filtered+Ly) | 0.686 | 0.705 | 0.678

Table 2: Evaluation of LIME-based faithfulness scores
for different numbers of interpretable units K using
15K training explanations. “Random” means the train-
ing explanations are randomly sampled from the train
set, and “Filtered” means the models are trained using
the remaining faithful explanations.

Faithfulness Evaluation using Grad-CAM. We
also evaluated the consistency between the Grad-
CAM visual explanation vectors from the textual
explanation and the predicted answer using the
faithful score Sy defined in Eq. 7. Table 3 re-
ports the results from using filtered verses ran-
domly sampled explanations for training. We ob-
serve that with faithful human explanations, the
average faithfulness evaluation score increases 7%
over training with randomly sampled explana-
tions. Moreover, with the faithfulness loss L, the
model can better align the visual explanation for
the textual explanation with that for the predicted
answer, leading to a further 11% increase.

We also report the distribution of the generated
explanations’ cosine similarity between their vi-
sual explanation and the visual explanation of the
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‘ # Expl. | Average Sy

Ours (Random) 15K 0.38
Ours (Filtered) 15K 0.45
Ours (Filtered+L y) 15K 0.56

Table 3: Average faithfulness evaluation score using
different explanations models. “Random” means the
training explanations are randomly sampled from the
train set, and “Filtered” means the models are trained
using the remaining faithful explanations.

answers in Figure 7. The fraction of the faithful-
ness scores between the interval [0.0, 0.1] is sig-
nificantly decreased by over 17% when using the
faithful human explanations for supervision and
further enforcing the local faithfulness with the
faithfulness loss, L.

2001

138
19 74101
523558 4335 4353 392839 424843 454658 5863

[00,0.1]  [0.,02]  [02,03] [03,04] [04,05] [05,06] [06,07 [07,08 [08 09 [09, 10]

Random, without Faithful Loss Filtered, without Faithful Loss Filtered, with Faithful Loss

Figure 7: The distribution of explanations’ cosine sim-
ilarity between the visual explanation of the textual ex-
planation and the predicted answer.

5 Conclusion and Future Work

This paper has presented a new approach to gen-
erating multimodal explanations for visual ques-
tion answering systems that aims to more faith-
fully represent the reasoning of the underlying
VQA system while maintaining the style of hu-
man explanations. The approach generates tex-
tual explanations with words linked to relevant im-
age regions actually attended to by the underlying
VQA system. Experimental evaluations of both
the textual and visual aspects of the explanations
using both automated metrics and crowdsourced
human judgments were presented that demonstrate
the advantages of this approach compared to a
previously-published competing method. In the
future, we would like to incorporate more infor-
mation from the VQA networks into the explana-
tions. In particular, we would like to integrate net-
work dissection (Bau et al., 2017) to allow recog-
nizable concepts in the learned hidden-layer rep-
resentations to be included in explanations.
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Abstract

Recently, several methods have been proposed
to explain the predictions of recurrent neu-
ral networks (RNNs), in particular of LSTMs.
The goal of these methods is to understand the
network’s decisions by assigning to each in-
put variable, e.g., a word, a relevance indicat-
ing to which extent it contributed to a partic-
ular prediction. In previous works, some of
these methods were not yet compared to one
another, or were evaluated only qualitatively.
We close this gap by systematically and quan-
titatively comparing these methods in differ-
ent settings, namely (1) a toy arithmetic task
which we use as a sanity check, (2) a five-class
sentiment prediction of movie reviews, and be-
sides (3) we explore the usefulness of word
relevances to build sentence-level representa-
tions. Lastly, using the method that performed
best in our experiments, we show how specific
linguistic phenomena such as the negation in
sentiment analysis reflect in terms of relevance
patterns, and how the relevance visualization
can help to understand the misclassification of
individual samples.

1 Introduction

Recurrent neural networks such as LSTMs
(Hochreiter and Schmidhuber, 1997) are a stan-
dard building block for understanding and gener-
ating text data in NLP. They find usage in pure
NLP applications, such as abstractive summa-
rization (Chopra et al., 2016), machine transla-
tion (Bahdanau et al., 2015), textual entailment
(Rocktéschel et al., 2016); as well as in multi-
modal tasks involving NLP, such as image cap-
tioning (Karpathy and Fei-Fei, 2015), visual ques-
tion answering (Xu and Saenko, 2016) or lip read-
ing (Chung et al., 2017).

As these models become more and more
widespread due to their predictive performance,
there is also a need to understand why they took

a particular decision, i.e., when the input is a se-
quence of words: which words are determinant
for the final decision? This information is crucial
to unmask “Clever Hans” predictors (Lapuschkin
et al., 2019), and to allow for transparency of the
decision-making process (EU-GDPR, 2016).
Early works on explaining neural network pre-
dictions include Baehrens et al. (2010); Zeiler and
Fergus (2014); Simonyan et al. (2014); Springen-
berg et al. (2015); Bach et al. (2015); Alain and
Bengio (2017), with several works focusing on ex-
plaining the decisions of convolutional neural net-
works (CNNs) for image recognition. More re-
cently, this topic found a growing interest within
NLP, amongst others to explain the decisions of
general CNN classifiers (Arras et al., 2017a; Ja-
covi et al., 2018), and more particularly to explain
the predictions of recurrent neural networks (Li
et al., 2016, 2017; Arras et al., 2017b; Ding et al.,
2017; Murdoch et al., 2018; Poerner et al., 2018).
In this work, we focus on RNN explanation
methods that are solely based on a trained neu-
ral network model and a single test data point'.
Thus, methods that use additional information,
such as training data statistics, sampling, or are
optimization-based (Ribeiro et al., 2016; Lund-
berg and Lee, 2017; Chen et al., 2018) are out
of our scope. Among the methods we consider,
we note that the method of Murdoch et al. (2018)
was not yet compared against Arras et al. (2017b);
Ding et al. (2017); and that the method of Ding
et al. (2017) was validated only visually. More-
over, to the best of our knowledge, no recurrent
neural network explanation method was tested so
far on a toy problem where the ground truth rele-

These methods are deterministic, and are essentially
based on a decomposition of the model’s current prediction.
Thereby they intend to reflect the sole model’s “point of
view” on the test data point, and hence are not meant to pro-
vide an averaged, smoothed or denoised explanation of the
prediction by additionally exploiting the data’s distribution.

Proceedings of the Second BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, pages 113-126
Florence, Italy, August 1, 2019. (©2019 Association for Computational Linguistics



vance value is known.

Therefore our contributions are the follow-
ing: we evaluate and compare the aforementioned
methods, using two different experimental setups,
thereby we assess basic properties and differences
between the explanation methods. Along-the-way
we purposely adapted a simple toy task, to serve
as a testbed for recurrent neural networks explana-
tions. Lastly, we explore how word relevances can
be used to build sentence-level representations,
and demonstrate how the relevance visualization
can help to understand the (mis-)classification of
selected samples w.r.t. semantic composition.

2 Explaining Recurrent Neural Network
Predictions

First, let us settle some notations. We suppose
given a trained recurrent neural network based
model, which has learned some scalar-valued pre-
diction function f.(-), for each class ¢ of a clas-
sification problem. Further, we denote by x
(z1,x2, ..., x7) an unseen input data point, where
x; represents the ¢-th input vector of dimension D,
within the input sequence x of length 7T'. In NLP,
the vectors a; are typically word embeddings, and
x may be a sentence.

Now, we are interested in methods that can ex-
plain the network’s prediction f.(x) for the in-
put x, and for a chosen farget class c, by assign-
ing a scalar relevance value to each input variable
or word. This relevance is meant to quantify the
variable’s or word’s importance for or against a
model’s prediction towards the class c. We denote
by R, (index ¢) the relevance of a single vari-
able. This means x; stands for any arbitrary in-
put variable x; 4 representing the d-th dimension,
d € {1,..., D}, of an input vector x;. Further, we
refer to R, (index t) to designate the relevance
value of an entire input vector or word x;. Note
that, for most methods, one can obtain a word-
level relevance value by simply summing up the
relevances over the word embedding dimensions,

i.e. Rmt = Zde{l,...,D} R:Jct,d :

2.1 Gradient-based explanation

One standard approach to obtain relevances is
based on partial derivatives of the prediction func-
tion: Ry, = ‘g—:ﬁ(x) |, or Ry, = (g—ii(x)f (Di-
mopoulos et al., 1995; Gevrey et al., 2003; Si-
monyan et al., 2014; Li et al., 2016).

In NLP this technique was employed to visual-
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ize the relevance of single input variables in RNNs
for sentiment classification (Li et al., 2016). We
use the latter formulation of relevance and denote
it as Gradient. With this definition the relevance
of an entire word is simply the squared Lo-norm
of the prediction function’s gradient w.r.t. the word
embedding, i.e. Rz, = ||V, fo(X)|3.

A slight variation of this approach uses partial
derivatives multiplied by the variable’s value, i.e.
R, = gic . (x) - x;. Hence, the word relevance is a
dot product between prediction function gradient
and word embedding: Ry, = (Va, fo(x)T x4
(Denil et al., 2015). We refer to this variant as
Gradientx Input.

Both variants are general and can be applied to
any neural network. They are computationally ef-
ficient and require one forward and backward pass
through the net.

2.2 Occlusion-based explanation

Another method to assign relevances to single
variables, or entire words, is by occluding them
in the input, and tracking the difference in the net-
work’s prediction w.r.t. a prediction on the orig-
inal unmodified input (Zeiler and Fergus, 2014;
Li et al., 2017). In computer vision the occlusion
is performed by replacing an image region with
a grey or zero-valued square (Zeiler and Fergus,
2014). In NLP word vectors, or single of its com-
ponents, are replaced by zero; in the case of re-
current neural networks, the technique was applied
to identify important words for sentiment analysis
(Lietal., 2017).

Practically, the relevance can be computed in
two ways: in terms of prediction function dif-
ferences, or in the case of a classification prob-
lem, using a difference of probabilities, i.e. R, =
fc(x) - fc(x\xizo)’ or Ry, = Pc(x) - Pc(x\m:o),
where P,.(+) %. We refer to the
former as Occlusionsqi;, and to the latter as
Occlusionp_giir. Both variants can also be used to
estimate the relevance of an entire word, in this
case the corresponding word embedding is set to
zero in the input. This type of explanation is
computationally expensive and requires 7' forward
passes through the network to determine one rele-
vance value per word in the input sequence x.

A slight variation of the above approach uses
word omission (similarly to K4dar et al., 2017) in-
stead of occlusion. On a morphosyntactic agree-
ment experiment (see Poerner et al., 2018), omis-



sion was shown to deliver inferior results, there-
fore we consider only occlusion-based relevance.

2.3 Layer-wise relevance propagation

A general method to determine input space rele-
vances based on a backward decomposition of the
neural network prediction function is layer-wise
relevance propagation (LRP) (Bach et al., 2015).
It was originally proposed to explain feed-forward
neural networks such as convolutional neural net-
works (Bach et al., 2015; Lapuschkin et al., 2016),
and was recently extended to recurrent neural net-
works (Arras et al., 2017b; Ding et al., 2017;
Arjona-Medina et al., 2018).

LRP consists in a standard forward pass, fol-
lowed by a specific backward pass which is de-
fined for each type of layer of a neural network
by dedicated propagation rules. Via this backward
pass, each neuron in the network gets assigned a
relevance, starting with the output neuron whose
relevance is set to the prediction function’s value,
i.e. to f.(x). Each LRP propagation rule redis-
tributes iteratively, layer-by-layer, the relevance
from higher-layer neurons to lower-layer neurons,
and verifies a relevance conservation property?.
These rules were initially proposed in Bach et al.
(2015) and were subsequently justified by Deep
Taylor decomposition (Montavon et al., 2017) for
deep ReLU nets.

In practice, for a linear layer of the form z; =
> ; 2ziwi;+b; , and given the relevances of the out-
put neurons R;, the input neurons’ relevances I?;
are computed through the following summation:
Ry =3, Hngiz:zim) -R; , where € is a stabilizer
(small positive number); this rule is commonly re-
ferred as e-LRP or e-rule. With this redistribution
the relevance is conserved, up to the relevance as-
signed to the bias and “absorbed” by the stabilizer.

Further, for an element-wise nonlinear activa-
tion layer, the output neurons’ relevances are re-
distributed identically onto the input neurons.

In addition to the above rules, in the case of
a multiplicative layer of the form z; = z, - z,
Arras et al. (2017b) proposed to redistribute zero
relevance to the gate (the neuron that is sigmoid

*Methods based on a similar conservation principle in-
clude contribution propagation (Landecker et al., 2013),
Deep Taylor decomposition (Montavon et al., 2017), and
DeepLIFT (Shrikumar et al., 2017).

3Such a rule was employed by previous works with recur-
rent neural networks (Arras et al., 2017b; Ding et al., 2017;
Arjona-Medina et al., 2018), although there exist also other
LRP rules for linear layers (see e.g. Montavon et al., 2018)
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activated) i.e. Ry = 0, and assign all the rele-
vance to the remaining signal neuron (which is
usually tanh activated) i.e. Ry = R;. We call this
LRP variant LRP-all, which stands for “signal-
take-all” redistribution. An alternative rule was
proposed in Ding et al. (2017); Arjona-Medina
et al. (2018), where the output neuron’s relevance
R; is redistributed onto the input neurons via:

R, = —“-R; and R;
fg proportional’

fer to thiz \iazrlant as LRP-prop, fo

redistribution. We also consider two other vari-
ants. The first one uses absolute values instead:
Ry = R and Ry = R, we
call it LRP abs. The second uses equal redistri-
bution: R, = R, = 0.5 - R; (Arjona-Medina
et al., 2018), we denote it as LRP-half. We further
add a stabilizing term to the denominator of the
LRP-prop and LRP-abs formulas, it has the form
€ - sign(z4 + zs) in the first case, and simply € in
the latter.

Since the relevance can be computed in one for-
ward and backward pass, the LRP method is ef-
ficient. Besides, it is general as it can be ap-
plied to any neural network made of the above lay-
ers: it was applied successfully to CNNs, LSTMs,
GRUs, and QRNNs (Poerner et al., 2018; Yang
etal., 2018)*.

2.4 Contextual Decomposition

Another method, specific to LSTMs, is contextual
decomposition (CD) (Murdoch et al., 2018). It
is based on a linearization of the activation func-
tions that enables to decompose the LSTM for-
ward pass by distinguishing between two contri-
butions: those made by a chosen contiguous sub-
sequence (a word or a phrase) within the input se-
quence x, and those made by the remaining part
of the input. This decomposition results in a fi-
nal hidden state vector hr (see the Appendix for
a full specification of the LSTM architecture) that
can be rewritten as a sum of two vectors: S and
~1, where the former corresponds to the contribu-
tion from the “relevant” part of interest, and the
latter stems from the “irrelevant” part. When the
LSTM is followed by a linear output layer of the
form wcThT + b, for class ¢, then the relevance of
a given word (or phrase) and for the target class c,
is given by the dot product: w! Br.

“Note that in the present work we apply LRP to stan-
dard LSTMs, though Arjona-Medina et al. (2018) showed
that some LRP rules for product layers can benefit from si-
multaneously adapting the LSTM architecture.



Method Relevance Formulation Redistributed Quantity (3, R;,) Complexity
Gradient R, = (git (X))2 Vs fe(x)I3 e@2-T)
Gradient x Input Ry, = 3le(x) - @i (Vx fe(x)Tx 0(2-T)
Occlusion Ry, = fo(x) — fe(Xjz,—0) - o(T?)
LRP backward decomposition of the neurons’ relevance fe(x) 02-T)
CD linearization of the activation functions fe(x) o(1?)

Table 1: Overview of the considered explanation methods. The last column indicates the computational complexity
to obtain one relevance value per input vector, or word, where T’ is the length of the input sequence.

The method is computationally expensive as it
requires 7' forward passes through the LSTM to
compute one relevance value per word. Although
it was recently extended to CNNs (Singh et al.,
2019; Godin et al., 2018), it is yet not clear how to
compute the CD relevance in other recurrent archi-
tectures, or in networks with multi-modal inputs.

See Table 1 for an overview of the explanation
methods considered in the present work.

2.5 Methods not considered

Other methods to compute relevances include In-
tegrated Gradients (Sundararajan et al., 2017). It
was previously compared against CD in Murdoch
et al. (2018), and against the LRP variant of Ar-
ras et al. (2017b) in Poerner et al. (2018), where
in both cases it was shown to deliver inferior
results. Another method is DeepLIFT (Shriku-
mar et al., 2017), however, according to its au-
thors, DeepLIFT was not designed for multiplica-
tive connections, and its extension to recurrent net-
works remains an open question’. For a compar-
ative study of explanation methods with a main
focus on feed-forward nets, see Ancona et al.
(2018)°. For a broad evaluation of explanations,
including several recurrent architectures, we refer
to Poerner et al. (2018). Note that the latter didn’t
include the CD method of Murdoch et al. (2018),
and the LRP variant of Ding et al. (2017), which
we compare here.

>Though Poerner et al. (2018) showed that, when using
only the Rescale rule of DeepLIFT, and combining it with
the product rule proposed in Arras et al. (2017b), then the
resulting explanations perform on-par with the LRP method
of Arras et al. (2017b)

SNote that in order to redistribute the relevance through
product layers, Ancona et al. (2018) simply relied on standard
gradient backpropagation. Such a redistribution scheme is
not appropriate for methods such as LRP, since it violates
the relevance conservation property, hence their results for
recurrent nets are not conclusive.
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3 Evaluating Explanations

3.1 Previous work

How to generally and objectively evaluate expla-
nations, without resorting to ad-hoc evaluation
procedures that are domain and task specific, is
still active research (Alishahi et al., 2019; Be-
linkov and Glass, 2019).

In computer vision, it has become common
practice to conduct a perturbation analysis (Bach
et al., 2015; Samek et al., 2017; Shrikumar et al.,
2017; Lundberg and Lee, 2017; Ancona et al.,
2018; Chen et al., 2018; Morcos et al., 2018):
hereby a few pixels in an image are perturbated
(e.g. set to zero or blurred) according to their rel-
evance (most relevant or least relevant pixels are
perturbated first), and then the impact on the net-
work’s prediction is measured. The higher the im-
pact, the more accurate is the relevance.

Other studies explored in which way relevances
are consistent or helpful w.r.t. human judgment
(Ribeiro et al., 2016; Lundberg and Lee, 2017;
Nguyen, 2018). Some other works relied solely
on the visual inspection of a few selected rel-
evance heatmaps (Li et al., 2016; Sundararajan
et al., 2017; Ding et al., 2017).

In NLP, Murdoch et al. (2018) proposed to
measure the correlation between word relevances
obtained on an LSTM, and the word impor-
tance scores obtained from a linear Bag-of-Words.
However, the latter model ignores the word order-
ing and context, which the LSTM can take into
account, hence this type of evaluation is not ad-
equate’. Other evaluations in NLP are task spe-
cific. For example Poerner et al. (2018) use the
subject-verb agreement task proposed by Linzen
et al. (2016), where the goal is to predict a verb’s

"The same way Murdoch et al. (2018) try to “match”
phrase-level relevances with n-gram linear classifier scores
or human annotated phrases, but again this might be mislead-
ing, since the latter scores or annotations ignore the whole
sentence context.



number, and use the relevances to verify that the
most relevant word is indeed the correct subject
(or a noun with the predicted number).

Other studies include an evaluation on a syn-
thetic task: Yang et al. (2018) generated random
sequences of MNIST digits and train an LSTM to
predict if a sequence contains zero digits or not,
and verify that the explanation indeed assigns a
high relevance to the zero digits’ positions.

A further approach uses randomization of the
model weights and data as sanity checks (Adebayo
et al., 2018) to verify that the explanations are in-
deed dependent on the model and data. Lastly,
some evaluations are “indirect” and use relevances
to solve a broader task, e.g. to build document-
level representations (Arras et al., 2017a), or to
redistribute predicted rewards in reinforcement
learning (Arjona-Medina et al., 2018).

3.2 Toy Arithmetic Task

As a first evaluation, we ask the following ques-
tion: if we add two numbers within an input se-
quence, can we recover from the relevance the
true input values? This amounts to consider
the adding problem (Hochreiter and Schmidhuber,
1996), which is typically used to test the long-
range capabilities of recurrent models (Martens
and Sutskever, 2011; Le et al., 2015). We use it
here to test the faithfulness of explanations. To
that end, we define a setup similar to Hochre-
iter and Schmidhuber (1996), but without explicit
markers to identify the sequence start and end, and
the two numbers to be added. Our idea is that, in
general, it is not clear what the ground truth rele-
vance for a marker should be, and we want only
the relevant numbers in the input sequence to get a
non-zero relevance. Hence, we represent the input
sequence X = (x1, X2, ..., xr) of length T, with
two-dimensional input vectors as:

( )

where the non-zero entries n; are random real
numbers, and the two relevant positions a and b are
sampled uniformly among {1, ...,7} with a < b.
More specifically, we consider two tasks that
can be solved by an LSTM model with a hidden
layer of size one (followed by a linear output layer
with no bias®): the addition of signed numbers (n;

00
ni ...

0 ng 0 O
Ng—1 0 ngg1 ...

0 ny, 0 00
np—1 0 npy1 ... nT

8We omit the output layer bias since all considered expla-
nation methods ignore it in the relevance computation, and
we want to explain the “full” prediction function’s value.
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is sampled uniformly from [—1, —0.5]U[0.5, 1.0])
and the subtraction of positive numbers (14 is sam-
pled uniformly from [0.5,1.0]°). In the former
case the target output y is n, + 7y, in the latter
it is n, — np. During training we minimize Mean
Squared Error (MSE). To ensure that train/val/test
sets do not overlap we use 10000 sequences with
lengths 7' € {4,...,10} for training, 2500 se-
quences with 7' € {11,12} for validation, and
2500 sequences with 7' € {13,14} as test set.
For each task we train 50 LSTMs with a validation
MSE < 1074, the resulting test MSE is < 1074,

Then, given the model’s predicted output ypred,
we compute one relevance value R, per input
vector ¢ (for the occlusion method we compute
only Occlusions. gigs since the task is a regression;
we also don’t report Gradient results since it per-
forms poorly). Finally, we track the correlation
between the relevances and the two input numbers
ng and ny. We also track the portion of relevance
assigned to the relevant time steps, compared to
the relevance for all time steps. Lastly, we cal-
culate the “MSE” between the relevances for the
relevant positions a and b and the model’s output.
Our results are compiled in Table 2.

Interestingly, we note that on the addition task
several methods perform well and produce a rele-
vance that correlates perfectly with the input num-
bers: GradientxInput, Occlusion, LRP-all and
CD (they are highlighted in bold in the Table).
They further assign all the relevance to the time
steps a and b and almost no relevance to the rest
of the input; and present a relevance that sum up
to the predicted output. However, on subtraction,
only Gradientx Input and LRP-all present a corre-
lation of near one with n,, and of near minus one
with ny. Likewise these methods assign only rele-
vance to the relevant positions, and redistribute the
predicted output entirely onto these positions.

The main difference between our addition and
subtraction tasks, is that the former requires only
summing up the first dimension of the input vec-
tors and can be solved by a Bag-of-Words ap-
proach (i.e. by ignoring the ordering of the in-
puts), while our subtraction task is truly sequen-
tial and requires the LSTM model to remember
which number arrived first, and which number ar-
rived second, via exploiting the gating mechanism.

Since in NLP several applications require the

"We avoid small numbers by using 0.5 as a minimum

magnitude only to simplify learning, since otherwise this
would encourage the model weights to grow rapidly.



|Rag |+ Ray |

p(Raq s Ma) p(Razy , np) Bl The, 1) Ell(Raq + Ray) — Ypred)?]

(in %) (in %) (in %) (“MSE”)
Toy Task Addition
Gradient x Input 99.960 (0.017)  99.954 (0.019) 99.68 (0.53) 241074 (8.107%)
Occlusion 99.990 (0.004)  99.990 (0.004) 99.82 (0.27) 20.1075 (8.107°%)
LRP-prop 0.785 (3.619)  10.111 (12.362) 18.14 (4.23) 1.3 (1.0)
LRP-abs 7.002 (6.224)  12.410 (17.440) 18.01 (4.48) 1.3 (1.0)
LRP-half 29.035 (9.478)  51.460 (19.939) 54.09 (17.53) 1.1(0.3)
LRP-all 99.995 (0.002)  99.995 (0.002) 99.95 (0.05) 2.107% 4.1079)
CD 99.997 (0.002)  99.997 (0.002) 99.92 (0.06) 41075 (12.107%)
Toy Task Subtraction
Gradient x Input 97.9 (1.6) -98.8 (0.6) 98.3 (0.6) 6.107% (4.107%)
Occlusion 99.0 (2.0) -69.0 (19.1) 25.4 (16.8) 0.05 (0.08)
LRP-prop 3.1 (4.8) -8.4 (18.9) 15.0 (2.4) 0.04 (0.02)
LRP-abs 1.2 (7.6) 23.0(11.1) 15.1 (1.6) 0.04 (0.002)
LRP-half 7.7 (15.3) -28.9 (6.4) 42.3 (8.3) 0.05 (0.06)
LRP-all 98.5 (3.5) -99.3 (1.3) 99.3 (0.6) 8.10% (25.10™%)
CD -25.9(39.1) -50.0 (29.2) 49.4 (26.1) 0.05 (0.05)

Table 2: Statistics of the relevance w.r.t. the input numbers n, and n; and the predicted output ypeq, On toy
arithmetic tasks. p denotes the correlation and E' the mean. Each statistic is computed over 2500 test data points.
Reported are the mean (and standard deviation in parenthesis) over 50 trained LSTM models.

word ordering to be taken into account to accu-
rately capture a sentence’s meaning (e.g. in senti-
ment analysis or in machine translation), our ex-
periment, albeit being an abstract numerical task,
is pertinent and can serve as a first sanity check to
check whether the relevance can reflect the order-
ing and the value of the input vectors.

Hence we view our toy task as a minimal and
unambiguous test (which besides being sequen-
tial, also exhibits a linear input-output relation-
ship) that acts as a necessary (though not suffi-
cient) requirement for a recurrent neural network
explanation method to be trustworthy in a more
complex setup, where the ground truth relevance
is less clear.

For the Occlusion method, the unreliability is
probably due to the fact that the neural network
has always seen two “relevant” input numbers in
the input sequence during training, and therefore
gets confused when one of these inputs is missing
at the time of the relevance computation (“out-of-
sample” effect). For CD, the weakness may come
from the saturation of the activations, in particu-
lar of the gates, which makes their linearization
induced by the CD decomposition inaccurate.

3.3 5-Class Sentiment Prediction

As a sentiment analysis dataset, we use the Stan-
ford Sentiment Treebank (Socher et al., 2013)
which contains labels (very negative ——, nega-
tive —, neutral 0, positive +, very positive ++)
for resp. 8544/1101/2210 train/val/test sentences
and their constituent phrases. As a classifier we
employ the bidirectional LSTM from Li et al.
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(2016)'°, which achieves 82.9% binary, resp.
46.3% five-class, accuracy on full sentences.

Perturbation Experiment. In order to evalu-
ate the selectivity of word relevances, we perform
a perturbation experiment aka “pixel-flipping® in
computer vision (Bach et al., 2015; Samek et al.,
2017), i.e. we remove words from the input sen-
tences according to their relevance, and track the
impact on the classification performance. A sim-
ilar experiment has been conducted in previous
NLP studies (Arras et al., 2016; Nguyen, 2018;
Chen et al., 2018); and besides, such type of ex-
periment can be seen as the input space pendant
of ablation, which is commonly used to identify
“relevant” intermediate neurons, e.g. in Lakretz
et al. (2019). For our experiment we retain test
sentences with a length > 10 words (i.e. 1849 sen-
tences), and remove 1, 2, and 3 words per sen-
tence'!, according to their relevance obtained on
the original sentence with the true class as the tar-
get class. Our results are reported in Table 3. Note
that we distinguish between sentences that are ini-
tially correctly classified, and those that are ini-
tially falsely classified by the LSTM model. Fur-
ther, in order to condense the “ablation” results in
a single number per method, we compute the ac-
curacy decrease (resp. increase) proportionally to
two cases: 1) random removal, and ii) removal ac-

Yhttps://github.com/jiweil/Visualizing-
and-Understanding—-Neural-Models—in-NLP

"In order to remove a word we simply discard it from the
input sentence and concatenate the remaining parts. We also
tried setting the word embeddings to zero, which gave us sim-
ilar results.



Accuracy Change (in %) ‘random Grad. Grad.xInput LRP-prop LRP-abs LRP-half LRP-all

CD Occlusionggiff  Occlusionp._gifr

0
0

35
-18

66
31

15
11

decreasing order (std<16)
increasing order (std<5)

-1
-1

-3
3

97
49

92 96
36 50

100
100

Table 3: Average change in accuracy when removing up to 3 words per sentence, either in decreasing order of
their relevance (starting with correctly classified sentences), or in increasing order of their relevance (starting
with falsely classified sentences). In both cases, the relevance is computed with the frue class as the rarget class.
Results are reported proportionally to the changes for i) random removal (0% change) and ii) removal based on
Occlusionp_girr (100% change). For all methods, the higher the reported value the better. We boldface those methods
that perform on-par with the occlusion-based relevances.

cording to Occlusionp_gifr. Our idea is that random
removal is the least informative approach, while
Occlusionp_gifr is the most informative one, since
the relevance for the latter is computed in a sim-
ilar way to the perturbation experiment itself, i.e.
by deleting words from the input and tracking the
change in the classifier’s prediction. Thus, with
this normalization, we expect the accuracy change
(in %) to be mainly rescaled to the range [0, 100].

When removing words in decreasing order of
their relevance, we observe that LRP-all and CD
perform on-par with the occlusion-based rele-
vance, with near 100% accuracy change, followed
by Gradient x Input which performs only 66%.

When removing words in increasing or-
der of their relevance (which mainly corre-
sponds to remove words with a negative rele-
vance), Occlusionp._qgige performs best, followed by
Occlusionsgiss and LRP-all (both around 50%),
then CD (36%). Unsurprisingly, Gradient per-
forms worse than random, since its relevance is
positive and thus low relevance is more likely to
identify unimportant words for the classification
(such as stop words), rather than identify words
that contradict a decision, as noticed in Arras et al.
(2017b). Lastly Occlusions. gis is less informative
than Occlusionp._gir, since the former is not nor-
malized by the classification scores for all classes.

This analysis revealed that methods such as
LRP-all and CD can detect influential words sup-
porting (resp. contradicting) a specific classifica-
tion decision, although they were not tuned to-
wards the perturbation criterion, as opposed to Oc-
clusion (which can be seen as the brute force ap-
proach to determine the inputs the model is the
most sensitive to), whereas gradient-based meth-
ods are less accurate in this respect. Remarkably
LRP-all only require one forward and backward
pass to provide this information.

Sentence-Level Representations. In addition
to testing selectivity, we explore if the word rel-
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evance can be leveraged to build sentence-level
representations that present some regularities akin
word2vec vectors. For this purpose we lin-
early combine word embeddings using their re-
spective relevance as weighting!?2. For methods
such as LRP and Gradientx Input that deliver also
relevances for single variables, we perform an
element-wise weighting, i.e. we construct the sen-
tence representation as: » , Ry, © x4 For ev-
ery method we report the best performing vari-
ant from previous experiments, i.e. Occlusionp_gjs,
GradientxInput, CD and LRP-all. Additionally
we report simple averaging of word embeddings
(we call it Avg). Further, for LRP, we consider an
element-wise reweighting of the last time step hid-
den layer hr by its relevance, since LRP delivers
also a relevance for each intermediate neuron (we
call it LRP Ag). We also tried using hp directly:
this gave us a visualization similar to Avg. The re-
sulting 2D whitened PCA projections of the test
set sentences are shown in Fig. 1.

Qualitatively LRP delivers the most structured
representations, although for all methods the first
two PCA components explain most of the data
variance. Intuitively it makes also sense that the
neutral sentiment is located between the positive
and negative sentiments, and that the very nega-
tive and very positive sentiments depart from their
lower counterparts in the same vertical direction.

The advantage of having such regularities
emerging via PCA projection, is that the sen-
tence/phrase semantics might be investigated visu-
ally, without requiring any nonlinear dimensional-
ity reduction like t-SNE (typically used to explore
the representations learned by recurrent models,
e.g. in Cho et al., 2014; Li et al., 2016). Such rep-
resentations might also be useful in information
retrieval settings, where one could retrieve simi-

2W.1.0.g. we use here the true class as the target class,
since the classifier’s 5-class performance is very low. In a
practical use-case one would use the predicted class instead.



Occlusion (82% - 4%)

Avg (82% - 4%)

GradientxInput (75% - 4%)

Figure 1: PCA projection of sentence-level representations built on top of word embeddings that were linearly
combined using their respective relevance. Avg corresponds to simple averaging of word embeddings. For LRP
hr the last time step hidden layer was reweighted by its relevance. In parenthesis we indicate the percentage of
variance explained by the first two PCA components (those that are plotted) and by the third PCA component. The
resulting representations were roughly ordered (row-wise) from less structured to more structured.

lar sentences/phrases by employing standard eu-
clidean distance.

4 Interpreting Single Predictions

Next, we analyze single predictions using the
same task and model as in Section 3.3, and illus-
trate the usefulness of relevance visualization with
LRP-all, which is the method that performed well
in both our previous quantitative experiments.
Semantic Composition. When dealing with
real data, one typically has no ground truth rel-
evance available. And the visual inspection of
single relevance heatmaps can be counter-intuitive
for two reasons: the relevance is not accurately
reflecting the reasons for the classifier’s decision
(the explanation method is bad), or the classi-
fier made an error (the classifier doesn’t work as
expected). In order to avoid the latter as much
as possible, we automatically constructed bigram
and trigram samples, which are built solely upon
the classifier’s predicted class, and visualize the
resulting average relevance heatmaps for differ-
ent types of semantic compositions in Table 4.
For more details on how these samples were con-
structed we refer to the Appendix, note though that
in our heatmaps the negation <not>, the intensi-
fier <very> and the sentiment words act as place-
holders for words with similar meanings, since the
representative heatmaps were averaged over sev-
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eral samples. In these heatmaps one can see that,
to transform a positive sentiment into a negative
one, the negation is predominantly colored as red,
while the sentiment word is highlighted in blue,
which intuitively makes sense since the explana-
tion is computed fowards the negative sentiment,
and in this context the negation is responsible for
the sentiment prediction. For sentiment intensifi-
cation, we note that the amplifier gets a relevance
of the same sign as the amplified word, indicat-
ing the amplifier is supporting the prediction for
the considered target class, but still has less im-
portance for the decision than the sentiment word
itself (deep red colored). Both previous identified
patterns also reflect consistently in the case of a
negated amplified positive sentiment.

Understanding Misclassifications. Lastly, we
inspect heatmaps of misclassified sentences in Ta-
ble 5. In sentence 1, according to the heatmap, the
classifier didn’t take the negation never into ac-
count, although it identified it correctly in sentence
1b. We postulate this is because of the strong sen-
timent assigned to fails that overshadowed the
effect of never. In sentence 2, the classifier obvi-
ously couldn’t grasp the meaning of the words pre-
ceding must-see. If we use a negation instead,
we note that it’s taken into account in the case
of neither (2b), but not in the case of never
(2c), which illustrates the complex dynamics in-



Composition Predicted ‘ Heatmap Relevance # samples
1. “negated positive sentiment” — EfoES <good> 2.503 1405 213
2. “amplified positive sentiment” ++ <very> EO0ES 1.193 4507 347
3. “amplified negative sentiment” — <very> (S0 0.802 4306 173
4. “negated amplified positive sentiment” - ERGEE <very> BOOOEE 274,., -034017 -2.000.40 1745

Table 4: Typical heatmaps for various types of semantic compositions (indicated in first column), computed with
the LRP-all method. The LSTM’s predicted class (second column) is used as the target class. The remaining
columns contain the average heatmap (positive relevance is mapped to red, negative to blue, and the color intensity
is normalized to the maximum absolute relevance), the corresponding word relevance mean (and std as subscript),
and the number of bigrams (resp. trigrams) considered for each type of composition.

Ne ‘ Predicted ‘ Heatmap

1 __ it never [l to Engage us .

| 4| G us

b — [i8V8E engages us .

lc __ @S to engage us .

2 T+t ecks this one off your [illSHESEE list .
2a 4+ a [SEESes film .

2b __ AEEEH8E 2 must-see film .

2 +4 | [EVER o FUSEESEE film .

Table 5: Misclassified test sentences (1 and 2), and
manually constructed sentences (la-c, 2a-c). The
LSTM’s predicted class (second column) is used as the
target class for the LRP-all heatmaps.

volved in semantic composition, and that the clas-
sifier might also exhibit a bias towards the types of
constructions it was trained on, which might then
feel more “probable” or “understandable” to him.
Besides, during our experimentations, we em-
pirically found that the LRP-all explanations are
more helpful when using the classifier’s predicted
class as the target class (rather than the sample’s
true class), which intuitively makes sense since it’s
the class the model is the most confident about.
Therefore, to understand the classification of sin-
gle samples, we generally recommend this setup.

5 Conclusion

In our experiments with standard LSTMs, we find
that the LRP rule for multiplicative connections
introduced in Arras et al. (2017b) performs con-
sistently better than other recently proposed rules,
such as the one from Ding et al. (2017). Further,
our comparison using a 5-class sentiment predic-
tion task highlighted that LRP is not equivalent to
Gradient x Input (as sometimes inaccurately stated
in the literature, e.g. in Shrikumar et al., 2017)
and is more selective than the latter, which is
consistent with findings of Poerner et al. (2018).
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Indeed, the equivalence between Gradientx Input
and LRP holds only if using the e-rule with no
stabilizer (e 0), and if the network contains
only ReLU activations and max pooling as non-
linearities (Kindermans et al., 2016; Shrikumar
etal., 2016). When using other LRP rules, or if the
network contains other activations or product non-
linearities (such as this is the case for LSTMs),
then the equivalence does not hold (see Montavon
et al. (2018) for a broader discussion).

Besides, we discovered that a few methods such
as Occlusion (Li et al., 2017) and CD (Murdoch
et al., 2018) are not reliable and get inconsistent
results on a simple toy task using an LSTM with
only one hidden unit.

In the future, we expect decomposition-based
methods such as LRP to be further useful to an-
alyze character-level models, to explore the role
of single word embedding dimensions, and to dis-
cover important hidden layer neurons. Compared
to attention weights (such as Bahdanau et al.,
2015; Xu et al., 2015; Osman and Samek, 2019),
decomposition-based explanations take into ac-
count all intermediate layers of the neural network
model, and can be related to a specific class.
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A Appendix
A.1 Long-Short Term Memory (LSTM)
model

All LSTMs used in the present work have the fol-
lowing recurrence form (Hochreiter and Schmid-
huber, 1997; Gers et al., 1999), which is also the
most commonly used in the literature (Greff et al.,
2017):

iy = sigm (Wz hi—1 + U; xp + bi)

fi

Ot

sigm (Wy hi-y + Uy @y + by )

sigm (WO hi—1+U, s + bo)
g+ = tanh (Wg hi—1+Ug x4 + bg>

ct=ftOc—1 + it Og
ht = oy ® tanh(c¢)

where x = (x1,x2, ..., x7) is the input sequence,
sigmand tanh are element-wise activations, and
©® is an element-wise multiplication. The matrices
W’s, U’s, and vectors b’s are connection weights
and biases, and the initial states hq and ¢ are set to
zero. The resulting last time step hidden vector hp
is ultimately fed to a fully-connected linear output
layer yielding a prediction vector f(x), with one
entry f.(x) per class.

The bidirectional LSTM (Schuster and Paliwal,
1997) we use for the sentiment prediction task,
is a concatenation of two separate LSTM mod-
els as described above, each of them taking a dif-
ferent sequence of word embedding vectors as in-
put. One LSTM takes as input the words in their
original order, as they appear in the input sen-
tence/phrase. The other LSTM takes as input the
same word sequence but in reversed order. Each of
these LSTMs yields a final hidden vector, say h7’
and hf. The concatenation of these two vectors
is then fed to a fully-connected linear output layer,
retrieving one prediction score f.(x) per class.

A.2 Layer-wise Relevance Propagation
(LRP) implementation

We employ the code released by the authors
(Arras et al., 2017b) (https://github.com/
ArrasL/LRP_for_LSTM), and adapt it to work
with different LRP product rule variants.

In the toy task experiments, we didn’t find it
necessary to add any stabilizing term for numer-
ical stability (therefore we use ¢ = 0 for all LRP
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rules). In the sentiment analysis experiments, we
use € 0.001 (except for the LRP-prop variant
where we use € = (0.2, we tried the following val-
ues: [0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 1.0] and took
the lowest one to achieve numerical stability).

A.3 Contextual Decomposition (CD)
implementation

We employ the code released by the au-
thors (Murdoch et al, 2018) (https:
//github.com/jamie-murdoch/
ContextualDecomposition), and adapt
it to work with a bidirectional LSTM. We also
made a slight modification w.r.t. the author’s latest
available version (commit e6575aa from March
30, 2018). In particular in file sent_util.py
we changed line 125 to: if i>=start and
i<stop, to exclude the stop index, and call
the function CD with the arguments start=k
and stop=k+1 to compute the relevance of the
k-th input vector, or word, in the input sequence.
This consistently led to better results for the CD
method in all our experiments.

A4 Toy task setup

As an LSTM model we consider a unidirectional
LSTM with a hidden layer of size one (i.e. with
one memory cell ¢;), followed by a linear out-
put layer with no bias. Since the input is two-
dimensional, this results in an LSTM model with
17 learnable parameters. The weights are ran-
domly initialized with the uniform distribution
U(—1.0,1.0), and biases are initialized to zero.
We train the model with Pytorch’s LBFGS opti-
mizer, with an initial learning rate of 0.002, for
1000 optimizer steps, and reduce the learning rate
by a factor of 0.95 if the error doesn’t decrease
within 10 steps. We also clip the gradient norm
to 5.0. With this setting around 1/2 of the trained
models on addition and 1/3 of the models for sub-
traction converged to a good solution with a vali-
dation MSE < 1074

A.5 Semantic composition: generation of
representative samples

In a first step, we build a list of words with a posi-
tive sentiment (4), resp. a negative sentiment (—),
as identified by the bidirectional LSTM model. To
that end, we predict the class of each word con-
tained in the model’s vocabulary, and select for
each sentiment a list of 50 words with the highest
prediction scores. This way we try to ensure that



the considered sentiment words are clearly identi-
fied by the model as being from the positive senti-
ment (4), resp. the negative sentiment (—) class.

In a second step, we build a list of negations and
amplifiers. To that end, we start by considering the
same lists of 39 negations and 69 amplifiers as in
Strohm and Klinger (2018), from which we retain
only those that are classified as neutral (class 0)
by the LSTM model, which leaves us with a list of
8 negations and 29 amplifiers. This way we dis-
card modifiers that are biased towards a specific
sentiment, since our goal is to analyze the compo-
sitional effect of modifiers.

Then, for each type of considered semantic
composition (see Table 4), we generate bigrams
resp. trigrams by using the previously defined lists
of modifiers and sentiment words.

For compositions of type 1 (“negation of pos-
itive sentiment”), we note that among the con-
structed bigrams 60% are classified as nega-
tive (—) by the LSTM model, 26% are predicted as
neutral (0), and for the remaining 14% of bigrams
the negation is not identified correctly and the cor-
responding bigram is classified as positive (4). In
order to remove negations that are ambiguous to
the classifier, we retain only those negations which
in at least 40% of the cases predict the bigram as
negative. These negations are: ['neither’, 'never’,
‘nobody’, ‘none’, 'nor’]. Then we average the re-
sults over all bigrams classified as negative (—).

For compositions of type 2 and 3 we proceed
similarly. For type 2 compositions (“amplifica-
tion of positive sentiment”), we note that 29% of
the constructed bigrams are classified as very pos-
itive (++), and for type 3 compositions (“amplifi-
cation of negative sentiment”), 24% are predicted
as very negative (——), while the remaining bi-
grams are of the same class as the original sen-
timent word (thus the amplification is not identi-
fied by the classifier). Here again we retain only
unambiguous modifiers, which in at least 40%
of the cases amplified the corresponding senti-
ment. The resulting amplifiers are: [’completely’,
"deeply’, ’entirely’, ’extremely’, ’‘highly’,
sanely’, ’purely’, ’really’, ’so’, ’thoroughly’, "ut-
terly’, ’very’] for type 2 compositions; and [’com-
pletely’, ’entirely’, ’extremely’, "highly’, ’really’,
"thoroughly’, ’utterly’] for type 3 compositions.
Then we average the results over the correspond-
ing bigrams which are predicted as very posi-
tive (4-), resp. very negative (——).

’in-

126

For type 4 compositions (“negation of ampli-
fied positive sentiment”), we construct all possi-
ble trigrams with the initial lists of negations, am-
plifiers and positive sentiment words. We keep
for the final averaging of the results only those
trigrams where both the effect of the amplifier,
and of the negation are correctly identified by the
LSTM model. To this end we classify the corre-
sponding bigram formed by combining the ampli-
fier with the positive sentiment word, and keep the
corresponding sample if this bigram is predicted
as very positive (+4). Then we average the re-
sults over trigrams predicted as negative (—) (this
amounts to finally retain 1745 trigrams).

We also tried to investigate the following com-
position: ‘“negation of negative sentiment”, sim-
ilarly to compositions of type 1. However, we
found that only 1% of the constructed bigrams
are classified as neutral (0), and that the remain-
ing bigrams are classified as negative (—) (81%)
or even very negative (——) (18%). This means, in
most cases, negating a negative sentiment doesn’t
change the classifier’s prediction, i.e. the negation
is not detected by the LSTM model. Therefore
we did not retain this type of composition for con-
structing representative heatmaps. That the im-
pact of negation is not symmetric across different
sentiments was also observed in previous works
(Socher et al., 2013; Li et al., 2016), and is prob-
ably due to the fact that some type of semantic
compositions are more frequent than others in the
training data (and more generally, in natural lan-
guage) (Fraenkel and Schul, 2008).
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Abstract

We present a detailed comparison of two types
of sequence to sequence models trained to con-
duct a compositional task. The models are
architecturally identical at inference time, but
differ in the way that they are trained: our
baseline model is trained with a task-success
signal only, while the other model receives
additional supervision on its attention mecha-
nism (Attentive Guidance), which has shown
to be an effective method for encouraging
more compositional solutions (Hupkes et al.,
2019). We first confirm that the models with
attentive guidance indeed infer more compo-
sitional solutions than the baseline, by train-
ing them on the lookup table task presented by
Liska et al. (2019). We then do an in-depth
analysis of the structural differences between
the two model types, focusing in particular on
the organisation of the parameter space and
the hidden layer activations and find noticeable
differences in both these aspects. Guided net-
works focus more on the components of the in-
put rather than the sequence as a whole and de-
velop small functional groups of neurons with
specific purposes that use their gates more se-
lectively. Results from parameter heat maps,
component swapping and graph analysis also
indicate that guided networks exhibit a more
modular structure with a small number of spe-
cialized, strongly connected neurons.

1 Introduction

Sequence to sequence models (seq2seqs), a sub-
set of neural networks that use sequences as input
and output, have enjoyed great success in many
NLP tasks such as machine translation (Bahdanau
et al., 2015) and speech recognition (Graves et al.,

* Shared senior authorship

2013). Even though these feats indicate excel-
lent generalization capabilities, the way seq2seqs
generalize has found to be different from how hu-
mans do. In particular, seq2seqs lack of composi-
tional understanding: the ability to construct new
representations by combining familiar primitive
components (e.g. Szabd, 2012). Humans, instead,
heavily rely on compositionality to learn com-
plex functional structure efficiently (Schulz et al.,
2016). Once the primitive components are under-
stood, a possibly infinite amount of novel combi-
nations can be made, which allows for large scale
generalization from a limited amount of examples
(Fodor, 1975). For instance, sentences consist of
words, which in turn consist of characters con-
structed from strokes.

Recently, Liska et al. (2019) have shown how
seq2seqs can produce many different fits on the
training data using stochastic gradient descent, but
rarely, if ever, find a compositional solution. The
authors introduce a new data set called the lookup
table task, which tests for out of distribution gen-
eralization. This data set will be discussed in more
detail in Section 2.1.

As aremedy, Hupkes et al. (2019) proposed At-
tentive Guidance (AG), a training technique which
encourages seq2seqs to encode a more composi-
tional solution without changing their internal ar-
chitecture. AG provides additional information
about the structure of the input sequence by su-
pervising the attention mechanism of a model. As
a result, the model is able to find what are the ba-
sic components of the lookup table task and how
to combine them in a compositional manner.

Thanks to this work, we are now in the unique
position of having a compositional (from now on
AG) and non-compositional (from now on base-
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line) model that have identical architectures, but
implement very different approaches to the same
task. In this paper, we compare those two mod-
els and aim to find structural differences between
the way they organise their weights and form their
representations, that could be indicative of compo-
sitional solutions. In particular:

e We show, through inspection of the parameter
space and activations, that individual neurons
in the AG model show a degree of special-
ization with respect to specific inputs that is
unseen in baseline models.

e We demonstrate, by substituting parts of both
models with the corresponding component of
its counterpart, which model sections con-
tribute most to the observed compositional
behavior in AG models.

These differences confirm the findings of Hup-
kes et al. (2019) that seq2seqs do not necessar-
ily require big architectural adjustments to han-
dle compositionality, since a network with iden-
tical architecture is capable of finding such a so-
lution. Furthermore, these findings could be ex-
ploited to inform architectural changes in models,
such that their priors to infer compositional so-
lutions increase even when they are not provided
explicit additional feedback on the compositional
structure of the data.

2 Setup

In our experiments, we compare vanilla seq2seq
with models that are trained with AG. Below, we
briefly discuss both setups and the data we use for
our experiments.

2.1 Task

For our experiments, we use the lookup table
composition task proposed by Liska et al. (2019),
which was created to test the compositional abil-
ties of neural networks. In this task, atomic lookup
tables are created as to define a unique mapping
from one binary string to another binary string of
the same length. These atomic tables are then
applied sequentially to a binary input string and
yield a binary string. To give an example: if
t1(001) = 110 and t2(110) = 001, then the func-
tion (t1 o ¢2)(001) = 001 can be computed as a
composition of ¢1 and ¢2. See Table 1 for a more
comprehensive example.
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Following Hupkes et al. (2019), we generate
eight atomic lookup tables with strings of length 3
and use them to produce all 64 possible length two
compositions. This forms the basis of the dataset
that all experiments were performed on. To test the
model’s ability of generalization on a more gran-
ular level, we compose four test sets with an in-
creasing level of difficulty. For the first test set,
we remove 2 out of 8 inputs for every composition
(heldout inputs). For the second and third testset,
we remove 8 random table compositions from the
training set (heldout compositions), as well as all
compositions that either contain ¢7 or t8 (heldout
tables). Finally, we create a test set by removing
all compositions that contain a combination of ta-
bles ¢7 and ¢8 from the training set (new composi-
tions). The nature of the tasks requires the models
to make use of the underlying compositionality. If
this structure is not exploited, it is impossible to
reliably find the correct solutions for the test data.
For more details, we refer to Liska et al. (2019)
and Hupkes et al. (2019).

Atomic Atomic Composed
t1 2 tlot2
000 — 111 000 — 100 000 — 011
001 - 010 001 — 101 001 — 110
010 —+ 101 010 — 110 010 — 100

Table 1: Example for atomic lookup tables (¢1 and ¢2)
of length 3 and a composition of length 2 (t1 o £2).

2.2 Baseline

The baseline model consists of an encoder-
decoder architecture with an attention mechanism
(Bahdanau et al., 2015) and Gated Recurrent Units
(GRU)! (Cho et al., 2014).

GRUs compute the hidden activations h; based
on the previous hidden state h;_; and the repre-
sentation of the current input x; in the following
way (biases were omitted for clarity):

2z = o(Wizay + Whzhi—1)
ri = o(Wirxs + Wiphe—1)

h: = tanh(Wihxt + Whh("t o ht—l))
he = (1 —2) hy—1 + 2 - by,

"We also trained models with Long-Short Term Memory
units (Hochreiter and Schmidhuber, 1997) but found the re-
sults to be very similar and therefore decided to omit the latter
from this work.



where we call z; and r; the activations of the
update gate and reset gate, respectively.

2.3 Attentive Guidance

The AG model used in this work is identical to
the baseline model in terms of architecture. The
only difference occurs during the training proce-
dure, where an additional loss term is enforced on
the weights of the attention mechanism at decod-
ing time step ¢ for input token 7, a; 4

L, TN
Lac =17 ( > > —airlog di,t) ;

t=1 =1

where a; ; denotes the target attention weights.
The attention loss is computed with an additional
set of labels, that express how the input should be
segmented and in which order it should be pro-
cessed. Hupkes et al. (2019) show that providing
this additional supervision consistently improves
the solutions found for the lookup table task: the
guided models were found to have perfect gener-
alization capabilities on the heldout compositions
and heldout inputs and also perform well on held-
out tables and new compositions. As inputs are
supposed to be processed sequentially in our case,
the target attention pattern is strictly monotonic,
i.e. the target attention weights over the sequence
are realized in a diagonal matrix.

2.4 Experiments

We train five baseline and AG models with the
same hyperparameters and the Adam optimizer
(Kingma and Ba, 2015). Given the small vocab-
ulary, we use an embedding size of 16 and a hid-
den size to 512. All models were trained for a
maximum of 100 epochs with an attention mech-
anism, determining attention weights by using a
multi-layer perceptron. Models were selected by
their best accuracy on a held-out set. A com-
prehensive list of model performances on the dif-
ferent sets can be found in the Appendix. The
model implementations themselves stem from the
i-machine-think codebase.?

In the following, we perform three different
suits of experiments. Firstly, we examine the pa-
rameter space of both models (Section 3). Sec-
ondly, we take a closer look at the activations of
single neurons and the GRU gates (Section 4).

2 Available under https://github.com/
i-machine—-think/machine.
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Lastly, in Section 5, we perform two different ab-
lation studies: we make components of one model
interacting with the components of the other and
we distill the network via strongly connected neu-
rons.

3 Inspecting the Parameter Space

In this section, we look at the parameter space
of the baseline and AG models. All discoveries
regarding the parameter space were validated by
comparing 5 runs of the same model class to make
sure that observed differences can be ascribed to
the differences in models and not different weight
initializations.

3.1 Weight Inspection

To gain a better understanding of the organization
of the weights, we generated weight heat maps
with the y-axis representing the weights going
from all neurons to one neuron of the next layer
(incoming weights) and the x-axis the weights go-
ing from one neuron to all neurons of the next
layer (outgoing weights). Neural networks are
known to be good at distributing their weights
rather than have strong spatial organization, which
makes it interesting to see whether such heat maps
would reveal any differences in the organization of
weights between AG and baseline models .

The most striking difference between AG and
baseline arises for the decoder embedding, as can
be seen in Figure 1. The baseline model exhibits
small weights whereas the AG model shows big-
ger weights in rows 2-10. Row number two is an
exception, since it is equally strong for both net-
works. This might be explained by the fact that
this row represents the start-of-sequence (SOS) to-
ken, which could be sending a stronger error signal
for both models.

3.2 Neural Connectivity

Since the heat maps of the weight matrices for
larger layers were hard to interpret, we explored
a more intuitive visualization of the network’s pa-
rameter space. We took neurons as nodes, and
weights between neurons as edges. The thick-
ness and color of an edge represents the magni-

*Note that we do not normalize reported weights or ac-
tivations by the activity of the ’pre-synaptic’ neurons con-
nected to it. This would be interesting to explore in future
research, since a neuron’s activation and the importance of
its weight is in part dependant on the mean activation of its
predecessors.
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Figure 1: Heatmap of the decoder embedding weight
values. Outgoing weights correspond to weights going
from the embedding to one decoder output neuron, and
incoming weights to all weights going from the em-
bedding to all decoder output neurons. (Best viewed in
color)

tude of the weight. To prevent clutter, we applied
thresholding to remove edges that corresponded to
weak weights. For the encoder and decoder, we
used a threshold of £0.2 and +0.17 respectively,
which corresponds on average (between AG and
vanilla models) to the strongest one percent of the
weights.

The goal is to understand how the parameter
space is structured and to see whether any dif-
ferences between AG and baseline models can be
found, for example, because of a stronger modu-
larity, grouping or specialization of neurons in AG
models.

Figure 2 depicts the update gate weights 1}, of
the encoder on the top and the weights W, of the
decoder at the bottom. The weights of the previ-
ous layer to the next are represented by edges go-
ing from bottom to top. The most striking differ-
ence is that the baseline weights seem much more
cluttered, whereas the AG model exhibits a few
distinct, strongly polar neurons - neurons whose
weights are on average negative or positive. Neu-
rons that have many strong connections occur in
the top layer of the encoder of the AG model in

130

Left: baseline. Right: AG. Encoder update gates Wj,...

Left: baseline. Right: AG. Decoder update gates ;.

Figure 2: Visualization of weight matrices W), of the
encoder and W;, of the decoder. Weights going from
the previous to the next layer are represented by lines
going from bottom to the top. The color reflects the
weight value, where blue denotes negative, red positive
and white zero. (Best viewed in color)
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Figure 3: Distributions of activation values for 50 ran-
domly sampled neurons for baseline (blue) and AG (or-
ange) for both encoders (top) and decoders (bottom).
Whiskers show the full range of the distribution. (Best
viewed in color)



Wh, and Wy,.. Similarly, strong connected neu-
rons can be found at the bottom layer of the AG’s
decoder in W;, and W;,. The finding of highly
connected neurons seems to further reinforce the
hypothesis that AG models learn to specialize us-
ing fewer but more strongly connected neurons,
which could help to learn a more modular solu-
tion.

Another interesting phenomenon that holds for
both models can be observed by looking at the dif-
ference between update and reset gates of the same
network (not shown here for the sake of space):
The polarity of the neurons that are on average
strongly positive or negative are inversely related.
A possible explanation for this is that, when infor-
mation from the current hidden state is to be re-
tained, that same part is being reset in the previous
hidden state.

4 Analyzing Activations

While analyzing the model weights gives us in-
sight into the general trained structure of the
model, analyzing activations lets us examine how
the different model types respond to certain inputs.
We thus try to identify groups of neurons that spe-
cialize to respond to certain inputs and provide fur-
ther inside into the GRU’s gating behavior.

4.1 Functional Groups

We hypothesize that solving the task composition-
ally is done by distinct groups of neurons in the
network. Each group addresses different func-
tionalities. For example, a group of units in the
encoder could be responsible for representing the
presence of the current table in the input sequence,
as proposed in the previous section.

An indicator for this behavior can be seen in
Figure 3, where we sampled 50 random neurons
from the encoder and decoder of both models and
tracked their activation values emitted over the
samples in the test set. We can see that in con-
trast to the baseline, some neurons of the AG only
produce activations in specific value ranges, which
could be a hint for a potential specialization. The
same can be found inside the AG’s decoder, al-
though most of the neurons sampled seem to cover
the whole value range during processing.

To test this hypothesis, we analyze which hid-
den activations are crucial for correctly predicting
the current table at a time step. The baseline model
is expected to not be able to predict the presence
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of single tables because it fails to see the tables as
parts of a compositional task and instead memo-
rizes the combinations it has encountered during
training.

In a first experiment, we use diagnostic classifi-
cation (DC, Hupkes et al., 2018), which consists in
training linear classifiers on the hidden activations
to predict a certain feature. In this case, we use the
encoder’s activations to predict the table in the in-
put sequence of the corresponding time step. For
example, if the input was ‘000 tl t2’, we trained
the classifier to predict ‘t1” for the encoder activa-
tions of the second time step and to predict ‘t2’ for
the activations of the third time step. Similarly to
the methodology of Dalvi et al. (2019), we subse-
quently added units to a set, depending on the ab-
solute weight they were assigned in the diagnostic
classifier.* After each addition, we re-calculated
the accuracy for the prediction. This process was
repeated until 95 % of the overall accuracy (with
all units) is reached, the resulting subset of units
forms the functional group.

The results are shown in the first row of Table
2. All numbers are averaged over the five trained
models. Some differences arise in the functional
group size of the models: While for the baseline
models on average 35 units are required to make a
good prediction, the information is stored in only
2 units in the guided models.

To verify whether the units in the functional
group are actually important units in the model,
we further analyzed the strengths of the weights
connected to each of the units. On average, 93%
of the units in the functional group of the AG mod-
els can be found in the top 5% of the units with
the strongest absolute weight values. We conclude
that the units of the functional group are highly
connected and thus very likely to play an essential
role in the functionality of the model.

Assuming that the information of the current ta-
ble being stored in the encoder activations is used
by the decoder to perform according calculations,
we expect that by using the gate activations of the

“However, unlike Dalvi et al. (2019), we do not use any
regularization on the DC to contrast the different degrees to
which information is distributed across neurons in the two
model types.

5 Applying the methods development by Lundberg and
Lee (2017) seems to confirm the responsible neurons we
found, but selects more neurons and gives less consistent re-
sults, which we trace back to the extensive approximations
required and some model assumptions (e.g. feature indepen-
dence) being violated.



In Model Accuracy #Units
we BL 93(98) 35
t AG 98 (1.) 2
g BL 51(53) 52
L AG 96 (1) 22.2
. BL 50(52) 44
" AG 96(1) 208

Table 2: Performance of diagnostic classifiers for pre-
dicting the current input table with the hidden acti-
vations (h{") of the encoder, the input gate activa-
tions (zfe“) or the reset gate activations (7'7‘“) of the
decoder of the baseline (BL) and Attentive Guidance
(AG) model. The third column shows the accuracy
when predicting using the functional group of units
and in brackets the accuracy when using all units. The
fourth column displays the average number of units in
the functional group across different runs (which can
be either hidden units or gate activations).

decoder it is also possible to predict the current in-
put table. We use the same methodology as in the
previous experiment, with the only difference that
the inputs for the diagnostic classifier are the ac-
tivations of the decoder gates. Results are shown
in the second and third rows of Table 2. Using
all gate activations of the update or the reset gate
of GRUs, we are able to perfectly predict the cur-
rent table in the guided models. With the base-
line model, an accuracy of only around50 % is
reached.® The size of the functional groups in the
guided models is remarkably larger than with the
encoder hidden activations, showing that the in-
formation is more distributed over the gates. This
difference can be explained by the fact that the
gates are not mainly representing information, but
using represented information to perform calcula-
tions. Further, distribution of information across
the gates is more likely because a gate activation
affects only one hidden unit while a hidden layer
activation can possibly affect all gates in the up-
coming time step (Hupkes and Zuidema, 2017).
In another experiment, we aim to predict the
current time step with the activations of the en-
coder.” We assume that counting is an essential
part of solving the task in a compositional man-
ner. The methodology is the same as in the pre-
viously described experiments. The result pattern

8 Accuracy with a majority classifier for the task is 12.5 %.

"For example, if the input was ‘000 t1 t2, we trained the
classifier to predict ‘0’ for the encoder activations of the first
time step, ‘1’ for the encoder activations of the second time
step and ‘2’ for the activations of the third time step.
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(cf. Table 3) can be compared to the first experi-
ment: Using all units, it is possible to predict the
time step with all mod