
ACL 2019

The BlackboxNLP Workshop on Analyzing and Interpreting
Neural Networks for NLP at ACL 2019

Proceedings of the Second Workshop

August 1, 2019
Florence, Italy



Sponsored by:

c©2019 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

978-1-950737-30-7

ii



Introduction

BlackboxNLP is the workshop on analyzing and interpreting neural networks for NLP. In the last few
years, neural networks have rapidly become a central component in NLP systems. The improvement in
accuracy and performance brought by the introduction of neural networks has typically come at the cost
of our understanding of the system: How do we assess what the representations and computations are
that the network learns? The goal of this workshop is to bring together people who are attempting to peek
inside the neural network black box, taking inspiration from machine learning, psychology, linguistics,
and neuroscience.

In this second edition of the workshop, hosted by the 2019 Annual Meeting of the Association of
Computational Linguistics in Florence, Italy, we accepted 29 archival papers and 16 extended abstracts.
We hope this workshop continues to bring together ideas and stimulating new ways of building methods
and resources for the analysis and understanding of the inner-dynamics of neural networks for NLP.

BlackboxNLP would not have been possible without the dedication of its program committee. We would
like to thank them for their invaluable effort in providing timely and high-quality reviews on a short
notice. We are also grateful to our invited speakers for contributing to our program. Finally, we are very
thankful to our sponsors, Google, Facebook and Mircrosoft for supporting the workshop.

Tal Linzen, Grzegorz Chrupała, Yonatan Belinkov and Dieuwke Hupkes
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Abstract

While sequence-to-sequence models have
shown remarkable generalization power across
several natural language tasks, their construct
of solutions are argued to be less composi-
tional than human-like generalization. In this
paper, we present seq2attn, a new architecture
that is specifically designed to exploit atten-
tion to find compositional patterns in the input.
In seq2attn, the two standard components of
an encoder-decoder model are connected via
a transcoder, that modulates the information
flow between them. We show that seq2attn can
successfully generalize, without requiring any
additional supervision, on two tasks which are
specifically constructed to challenge the com-
positional skills of neural networks. The so-
lutions found by the model are highly inter-
pretable, allowing easy analysis of both the
types of solutions that are found and potential
causes for mistakes. We exploit this opportu-
nity to introduce a new paradigm to test com-
positionality that studies the extent to which a
model overgeneralizes when confronted with
exceptions. We show that seq2attn exhibits
such overgeneralization to a larger degree than
a standard sequence-to-sequence model.

1 Introduction

In recent years, deep artificial neural networks
have been at the root of many successes in a wide
variety of AI tasks, including sequential tasks, for
which encoder-decoder models are the de facto
standard (Cho et al., 2014; Sutskever et al., 2014).
These successes have also caused a renewed inter-
est in the types of solutions that they learn (Linzen
et al., 2018) and, in particular, have prompted the
question: to what extent can their high accuracy
be taken as evidence that they in fact understood
the task they are modeling. A number of recent
studies argues that it cannot, when ‘understand-
ing the task’ is explained as understanding the im-

plicit rules by which it is governed (e.g., Johnson
et al., 2017; Lake and Baroni, 2018; Liška et al.,
2018; Feng et al., 2018; Ravfogel et al., 2018).
More specifically, they argue that rather than un-
derstanding those implicit rules and being able to
compositionally apply them, RNN models exploit
biases in the data that are unrelated to the under-
lying system. While the latter strategy is remark-
ably effective when large amounts of training data
are available, the lack of understanding of the ac-
tual task leads to sample inefficiency, inability to
transfer knowledge between tasks and difficulty to
generalize to sequences that are drawn from the
same rule space, but differ distributionally from
the training data. Furthermore, the use of such
strategies, which deviate largely from human ap-
proaches, that are typically compositional (Lake
et al., 2015), makes it difficult to understand what
a model does and when it may make a mistake.

In this work, we propose a new component
that aims to address this particular weakness of
seq2seq models. This component, which is a re-
current attention module that can be integrated in
any form of encoder-decoder model, modulates
the information flow from encoder to decoder. We
test our module, which we dub seq2attn, in a re-
current encoder-decoder model. Using two tasks
that are designed such that their accuracy reflects
directly whether the underlying rule-based system
is learned – the lookup table task (Liška et al.,
2018) and SCAN (Lake and Baroni, 2018; Loula
et al., 2018) – we show that seq2attn strongly en-
courages rule-based behaviour, which is easily in-
terpreted by studying the attention patterns gen-
erated by the module. Additionally, we propose
a new testing paradigm based on overgeneraliza-
tion, that can be used to gain more insights in the
biases of a model which cannot be inferred from
task success alone.
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2 Related Work

2.1 Compositional datasets
The ability to learn and compositionally apply
symbolic rules is considered to be an important
prerequisite for understanding and modeling nat-
ural language. While (gated) recurrent neural net-
works are in principle capable of modeling com-
positional systems (e.g., Gers and Schmidhuber,
2001; Rodriguez, 2001), whether they in fact do
so when trained on large amounts of data to per-
form natural language processing tasks remains an
open question. Some positive results in this di-
rection have been presented (e.g., Hupkes et al.,
2018b), but a number of recent papers have ar-
gued that, rather than understanding the underly-
ing compositional structure of a problem, RNNs
rely on heuristics and exploit biases in the data.
Particularly relevant to the current work are the
studies of Lake and Baroni (2018) and Liška et al.
(2018), who both present data sets specifically de-
signed to reflect compositionality in their task ac-
curacy. Using their compositional tests, they show
that vanilla seq2seq models do not readily gener-
alize to solutions that exhibit an understanding of
the underlying rule system of the tasks.

2.2 Models
Some recent approaches attack the lack of com-
positional behaviour of RNNs by designing mod-
els that have compositionality explicitly built in,
for instance by equiping architectures with a se-
ries of specialized modules and a controller that
composes them (e.g., Andreas et al., 2016; John-
son et al., 2017). In this work, instead, we focus
on inducing compositional solutions in RNN mod-
els, that are less rigid and generally require fewer
supervision.

Our method draws inspiration from the work on
compositional learning of Hupkes et al. (2018a).
The authors introduce the concept of Attentive
Guidance, a training signal given to the attention
mechanism of a seq2seq model to induce more
compositional solutions. While they convincingly
show that seq2seq models with attention can in
fact implement such solutions (see Baan et al.
(2019) for an in-depth analysis), their model re-
quires attention annotation of the training data,
which may not always be available. In this work,
we address this problem by designing a model that
still aims to be compositional through the atten-
tion mechanism, but instead learns these patterns

fully automatically, obtaining similar or even im-
proved performance without the need of extra su-
pervision.

Another line of work which exploits attention
as a regularization technique is proposed by Hud-
son and Manning (2018), who introduce the Mem-
ory, Attention and Composition (MAC) cell. The
MAC cell consists of three components, whose
communication within one cell is restricted to us-
ing attention. An important limitation of the MAC
cell is that the number of reasoning steps needs
to be specified in advance. Our model, as vanilla
seq2seq models, doesn’t suffer from this limita-
tion.

3 Model

We propose seq2attn, a novel attention-centric
module that connects the encoder and decoder of a
seq2seq model.1 The core component of seq2attn
is the transcoder: a recurrent module that mod-
ulates the information flow between encoder and
decoder by generating sparse attention vectors us-
ing separate keys and values. Below, we demon-
strate and test how seq2attn can be used in combi-
nation with a vanilla encoder-decoder architecture.

3.1 Encoder

In our tests, we assume a standard recurrent en-
coder, that, given an input sequence {x1, . . . , xN}
and an embedding layer Eenc, generates a se-
quence of outputs and hidden states:

xenct = Eenc(xt) (1)

yenct ,henct = Senc(xenct ,henct−1) (2)

S is a recurrent state transition model, such as a
vanilla RNN, LSTM or GRU.

3.2 Transcoder

The transcoder is initialized with htrans0 = hencN

and uses the hidden states of the encoder to com-
pute context vectors ct that will be passed to the
decoder.

The input to the transcoder is the embedded out-
put of te decoder (Eq. 11):

xtranst = E trans(ŷt−1) (3)

ytranst ,htranst = Strans(xtranst ,htranst−1 ) (4)

1We will make our code available upon publication.
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Figure 1: Schematic of the seq2attn architecture. The input sequence is processed by the encoder (E), after which
the transcoder (T) generates context vectors, which are weighted means over the input embeddings.

The transcoder state is then used to query the
hidden states of the encoder. The resulting scores
are normalized using the Softmax function:

αt(s) = v>a ·ReLU(Wa · [henct ;htranst−1 ]) (5)

πt(s) =
expαt(s)∑N
i=1 expαt(i)

(6)

Using the Softmax distribution often results in
distributed vectors that attend to many input sym-
bols at the same time, while an ideal composi-
tional attention vector only focuses on the rele-
vant parts of the input. To force the transcoder
to be more selective in the information it se-
lects, we use Gumbel-Softmax, which allows us
to draw from the categorical distribution com-
puted in Eq. 6, with continuous relaxation (Jang
et al., 2017; Maddison et al., 2016). The Straight-
Through estimator is then used as a biased gradi-
ent estimator of the argmax operator:

ãt(s) =
exp log πt(s)+gs

τ∑N
i=1 exp

log πt(i)+gi
τ

(7)

at = ãt − ât + one hot(argmax(ãt)) (8)

The temperature τ can be interpreted as a measure
of uncertainty. ât is a copy of ãt which we do
not backpropagate through. At inference time the
stochasticity of Gumbel-Softmax is not needed,
and argmax is used as activation function.

The resulting attention weights are used to com-
pute the context vectors that will be passed to the
decoder:

ct =

N∑

i=1

at(i) · xenci (9)

Crucially, the context vector represents a weighted
average of the input embeddings of the encoder,
while the weights at(i) are depending on the hid-
den states of the encoder, thus introducing a sep-
aration between attention keys and values (similar
to, e.g., Mino et al., 2017; Vaswani et al., 2017).

3.3 Decoder
The decoder of a seq2seq model is commonly ini-
tialized with the final hidden state of the encoder.
However, as this state vector encodes the entire in-
put sequence, this type of initialization does not
urge compositional behavior of the decoder. When
seq2attn is used, the decoder should be initialized
with a fixed, learned initialization vector. In com-
bination with using input embeddings as attention
values (Eq. 9), this restricts the decoder to work
only with disentangled representations of the input
sequence, which encourages it to learn and process
the individual meaning of all input symbols.

To model outputs, the decoder uses the context
vector ct, its own embedded output (identical to
Eq. 3) and a vector hdect−1 that integrates the current
decoder hidden state with the context vector:

ydect , h̃dect = Sdec([ct; E trans(ŷt−1)],hdect−1) (10)

ŷt = argmax(Softmax(ydect )) (11)

Where hdect−1 is computed using an element-wise
multiplication of the context vector with the previ-
ous hidden state of the decoder:

hdect−1 = h̃dect−1 � ct (12)

This way of integrating the context vector with
the decoder, which we call full focus, makes the
output of the decoder at decoding step t more di-
rectly dependent on the current context vector ct.

3



held-out
inputs

held-out
compositions

held-out
tables

Baseline 38.25 ± 0.04 43.28 ± 0.09 7.86 ± 0.02
Seq2attn 100 ± 0.00 100 ± 0.00 100 ± 0.00

Table 1: Average sequence accuracies and standard
deviations of the baseline and seq2attn models on all
lookup tables test sets.

4 Test Case 1: Lookup tables

Our first test-case is the lookup table task intro-
duced by Liška et al. (2018).

4.1 Task
The core of the lookup table composition domain
consists in sequentially applying simple lookup ta-
ble functions. The functions to be applied are bi-
jective mappings from the set of all n-bit bitstrings
onto itself. Following Liška et al. (2018), we focus
on 3-bit strings, resulting in 23 = 8 possible in-
puts and outputs. We create 8 random table lookup
functions, to which we refer with the names t1,
t2, . . . , t8. Given the simplicity of the functions,
the main challenge of the task resides in inferring
that the input sequences should be treated compo-
sitionally, rather than considered as a whole.

We borrow the setup presented in Hupkes et al.
(2018a), which differs slightly from the setup as
it was originally presented. In this setup, a typical
input output example could be 001 t1 t2→ 001
010 111. Computing the output for this example
requires the sequential application of t1 to 001,
and then t2 to the intermediate result. Since two
tables are to be applied in succession, we refer to
such an examples as a binary composition, as op-
posed to a unary composition in which only one
function has to be applied on the input. The input
bitstring and all intermediate outputs are included
in the target output sequence.

Liška et al. (2018) train models on all 8 inputs
for unary compositions and on 6 out of 8 input bit-
strings of all binary compositions. The remain-
ing 2 held-out inputs are used to test for gener-
alization. Following Hupkes et al. (2018a), we
do not include all 64 binary compositions in the
training set, but leave out some for testing. In par-
ticular, we create one test set that contains all bi-
nary compositions containing t7 or t8, which are
thus only seen in the training set as unary com-
positions. We call this condition held-out tables.
Of the remaining binary compositions, that con-
tain only functions in {t1, . . . , t6}, 8 randomly

held-out
inputs

held-out
compositions

held-out
tables

Baseline+G 34.17 ± 8.25 38.54 ± 12.39 8.16 ± 3.57
Baseline+E 82.50 ± 12.42 85.42 ± 12.39 31.08 ± 7.85
Baseline+F 85.83 ± 16.50 91.67 ± 11.79 30.03 ± 16.12
Baseline+T 43.33 ± 12.30 47.40 ± 15.33 3.99 ± 2.70

Baseline+GE 82.50 ± 12.42 83.85 ± 7.48 30.21 ± 3.32
Baseline+GF 69.17 ± 21.25 76.04 ± 13.28 4.69 ± 1.47
Baseline+GT 32.50 ± 8.90 45.31 ± 10.13 1.56 ± 1.53
Baseline+EF 85.00 ± 9.35 82.29 ± 18.46 24.13 ± 2.99
Baseline+ET 100.00± 0.00 100.00± 0.00 41.49 ± 3.30
Baseline+FT 68.33 ± 21.44 71.88 ± 23.00 19.44 ± 19.06

Baseline+GEF 74.17 ± 36.53 72.40 ± 37.94 37.33 ± 22.10
Baseline+GET 97.50 ± 3.54 98.44 ± 1.28 24.31 ± 17.87
Baseline+GFT 90.83 ± 3.12 91.15 ± 3.21 28.30 ± 7.23
Baseline+EFT 66.67 ± 47.14 66.67 ± 47.14 66.67 ± 47.14

Seq2attn 100.00± 0.00 100.00± 0.00 100.00± 0.00

Table 2: Mean sequence accuracies and standard
deviation on the lookup tables task of a baseline
seq2seq model with additional components of seq2attn.
G=Gumbel-Softmax, E=embeddings as attention val-
ues, F=full focus, T=transcoder.

selected compositions are held out from the train
set for all inputs, which form the held-out compo-
sitions test set. Lastly, we remove 2 of the 8 in-
puts for each binary composition independently to
form the held-out inputs test set, which is similar
to the generalization condition presented by Liška
et al. (2018).

4.2 Results

We first compare the seq2attn architecture to a
standard seq2seq model with an attention mech-
anism on generalization to new test examples. We
establish the optimal parameters for both models
using a grid search over a separate validation set.
Our search includes the type of RNN cell ({GRU,
LSTM}), the embedding and RNN sizes ({32, 64,
128, 256, 512, 1024}) and the dropout rate ({0,
0.2, 0.5}). The results are summarized in Table 3.
The mini-batch size (1) and optimizer (Adam with
default parameters (Kingma and Ba, 2014)) are
fixed. We train 10 models with the optimal pa-
rameters and report mean sequence accuracy. For
simplicity we will henceforth simply refer to this
as the accuracy.

Our experiments confirm the findings previ-
ously presented by Hupkes et al. (2018a) and
Liška et al. (2018): Vanilla seq2seq models do
not find generalizing solutions for the lookup ta-
ble task (Table 1, first row). Seq2attn, on the
other hand, generalizes perfectly to data outside
the training distribution. This first test confirms
our hypothesized compositional bias of seq2attn.
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4.3 Ablation Study

The difference between a traditional seq2seq and
the seq2attn model can be summarized as the use
of (i) a transcoder, (ii) the Gumbel-Softmax ac-
tivation for the attention vector, (iii) using input
embeddings as attention values and (iv) using full
focus. To assess the contributions of these com-
ponents, we take the seq2attn model with optimal
hyper-parameters as a base model, and increas-
ingly ablate components. The results of this study
(Table 2) indicate that, while some of the compo-
nents of seq2attn cause an increase in accuracy on
their own, no subset of them can match the perfor-
mance of the full seq2attn model.

4.4 Attention patterns

As the modeled output of the decoder is highly
dictated by the context vectors that it receives,
we can gain insights into the types of solutions
the models are forming by studying their attention
vectors. As illustrated in Figure 2, seq2attn learns
to generate a “correct” attention trace, attending to
the right input at the right time. Contrastingly, the
baseline fails to capture a systematic pattern and
produces a diffused attention instead or attends to
irrelevant inputs, indicating that it does not utilize
the attention mechanism to its full advantage.

4.5 Overgeneralization

The results for the lookup tables task indicate that
seq2attn performs much better than the baseline on
data containing held-out inputs, tables and compo-
sitions. The model is thus better able to infer the
compositional rules underlying the data. To fur-
ther explore seq2attn’s bias towards composition-
ality, we test its behaviour when confronted with
uncompositional examples, that do not adhere to
the previously mentioned rules. Where a model
unaware of the underlying task structure would
have little problems learning such exceptions – or
in fact, would not realise that they are exceptions
– a model with a strong compositional bias may
sometimes wrongly assume the exceptions also
adhere to the underlying system, and overgeneral-
ize an inferred rule. The extent to which a model
overgeneralizes can thus be seen as a proxy for the
strength of its compositional bias. Whether over-
generalization is actually preferentiable behavior
is depend on the task to be solved.

In the proposed setup, a small number of train-
ing instances are assigned adapted output targets.

We call these instances exceptions. The target out-
put sequences of the exceptions are changed such
that they can only be learned through memoriza-
tion. For the lookup table task, we adapt the train-
ing set such that one composition, t1 t2, is an
exception to the general rules for three out of the
eight existing input bitstrings. In the target output,
the third bitstring is replaced with a randomly se-
lected bitstring, thus changing the application of
table t2 in this context. Both the three adapted
samples and the other five unadapted samples for
t1 t2 are included in the training set.

While training a model, we monitor the output
sequences generated for these exceptions. The ac-
curacy on the original targets is reported to iden-
tify whether the model is processing the excep-
tions compositionally despite being exposed to the
adapted targets in the training set, i.e., whether the
model is overgeneralizing.

Figure 3 displays the accuracy on the original
targets of all eight inputs in composition t1 t2
over the first 30 training epochs. While both the
baseline and seq2attn learn to memorize the three
exceptions, only seq2attn shows a strong bias to
treat the inputs compositionally before memoriz-
ing the adapted targets. The performance goes as
high up as 8/8 between the fifth and fifteenth epoch
for differently initialized models, before dropping
to 5/8. This indicates that the rules are learned be-
fore the adapted instances are memorized as ex-
ceptions to these rules.

5 Test Case 2: SCAN

While the lookup table task provides an excellent
test case to evaluate the compositional abilities of
a neural network model, its simplicity limits the
conclusions that can be drawn about the usability
of seq2attn in more challenging domains. In this
section, we evaluate seq2attn on SCAN (Lake and
Baroni, 2018), a task involving mapping naviga-
tional commands to sequences of output actions.

5.1 Task

The input commands of the SCAN task are com-
posed of a small set of predefined atomic com-
mands (jump, walk, run and look), modifiers
(twice, thrice, around, opposite, left and right)
and conjunctions (after and and) that are com-
bined via a limited context free grammar, such
that there are no ambiguities. An example in-
put is jump after walk left twice, where the learn-
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(a) seq2seq (b) seq2seq (c) seq2attn

Figure 2: Examples of modeled attention patterns on held-out input examples of the lookup tables domain.

Baseline Seq2attn
Lookup tables 128, 512, 1, GRU, 0.5 256, 256, 1, GRU, 0.5
SCAN 200, 200, 2, LSTM, 0.5 512, 512, 1, GRU, 0.5

Table 3: Hyperparameters (embedding dimensions, RNN dimensions, RNN layers, RNN type, dropout rate) used
for both the seq2seq baseline and seq2attn model for both tasks.
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Figure 3: Average accuracies on original targets for
the eight inputs in composition t1 t2. As three of
these compositions are exceptions, we refer to accu-
racy higher than 5/8 as overgeneralization. The 95%
confidence interval is indicated.

ing agent has to mentally perform these actions
in a 2-dimensional grid and output the sequence
of actions it takes: “I TURN LEFT I WALK
I TURN LEFT I WALK I JUMP”. For full de-
tails of the data set and experiments, we refer to
Lake and Baroni (2018).

Lake and Baroni use three different train-test
distributions of the total of 20.910 examples. They
show that vanilla seq2seq models are able to al-
most perfectly generalize when the data is ran-
domly split in a training and testing set, but that
they are unfit for generalizing to longer test se-
quences and for one-shot learning to commands
seen only in their atomic form. Later, Loula et al.
(2018) proposed a new set of experiments based
on the same task, which they argue are better

suited for assessing systematic compositionality.
We focus on experiments 2 and 3 of their paper.

Experiment 2 contains four different train-test
distributions as there are four primitive commands
involved. For all four conditions, the test set is
the same. This test set consists of all examples
that contain “jump around right” in their input
sequences. The first condition, which is called
0 fillers, contains no subsequences of the form
“primitive around right” in the training set, where
primitive is either of the four primitives “jump”,
“look”, “run” or “walk”. This condition should
thus test whether a model can induce a compo-
sitional understanding of “jump around right” by
showing those symbols (“jump”, “around” and
“right”) only in different contexts. The next three
conditions, 1 filler, 2 fillers and 3 fillers, are con-
sidered increasingly easier. They retain the same
test set, but increasingly add more examples to the
train set of the template “primitive around right”.
1 filler adds all examples of this template where
primitive is “look”. 2 fillers and 3 fillers add
“walk” and “run” respectively.

As Loula et al. (2018) observed a great differ-
ence in performance between the 0 fillers and 1
filler conditions, they zoom in on these condi-
tions in experiment 3. The 0 fillers condition con-
tains 0 examples with the subsequence “primitive
around right” in the training set. The 1 filler con-
dition contains 1.100 of those, namely all exam-
ples which contain the subsequence “look around
right”. In experiment 3, they test a more smooth
and dense transition from the 0 fillers condition
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to the 1 filler conditions. They accomplish this by
taking the training set of the 0 fillers condition and
adding respectively 1, 2, 4, 8, 16, 32, 64, 128, 256,
512 and 1024 extra examples containing the sub-
sequence “look around right”, resulting in 11 new
training sets. The test set is again the same as in
experiment 2.

5.2 Results

We compare a baseline seq2seq to the seq2attn ar-
chitecture on these two tasks. First, we perform
a grid search using a random split of the data to
find the optimal parameters for seq2attn. The re-
sults of this are summarized in Table 3. As a base-
line, we used the model which Lake and Baroni
(2018) found to be overall best performing, which
is a seq2seq model with 2-layer LSTMs, 200 hid-
den units per layer and a dropout rate of 0.5. For
comparison to the seq2attn model, we also added
an attention mechanism, which was missing in the
original model. For all reported results we ran
these models 10 times with random weight initial-
ization. Since experiments 2 and 3 by Loula et al.
(2018) do not have validation sets for early stop-
ping, we ran all models for 50 epochs.

Firstly, we confirm the findings of Lake and Ba-
roni (2018) and Loula et al. (2018) (see Fig. 4,
left). A vanilla seq2seq with attention is able to
perform analogical generalization (95.19% accu-
racy): it requires examples of 1 filler only to gen-
eralize to other fillers of the same template. On
the other hand, it is not able to apply “right” and
“around” to a primitive verb in a productive way,
when they were never seen together (0.26% ac-
curacy, 0 fillers condition). When we look at
seq2attn, we notice how not only it is able to per-
form analogical generalization (94.32% accuracy,
1 filler) but, to a certain extent, it is also able to
generalize productively in the 0 fillers condition
(36.23% accuracy).

In Figure 4 (right) we report the results for ex-
periment 3 of Loula et al. (2018) where we con-
sider the 0 fillers condition of Experiment 2 and
progressively add extra training examples from
1 filler. As Loula et al. (2018) observed, per-
formance of a seq2seq model ramps up as more
samples are injected in the training set. Yet,
the fact that performance increases gradually and
takes long to peak (at 512 examples) suggests that
rather than systematically understanding the rule,
the model is piling up evidence for a very spe-

cific pattern. The situation is quite different for the
seq2attn model, whose performance spikes much
earlier, reaching a plateau at 16 examples already.
Interestingly, the performance peak is also at 512,
but with an improvement of just over 5 percentage
points over 16 examples vs. approximately 50 per-
centage points improvement in the case of base-
line. Seq2attn seems then to show evidence for an
opposite interpretation, namely for a network that,
to a certain extent, is able to induce the compo-
sitional rules. A property that is often linked to
sample efficiency (Lake and Baroni, 2018).

5.3 Analysis

In Figure 5, we now look at some attention pat-
terns for the 0 fillers condition. While base-
line models emit sparser and more informative
attentional patterns here than in the lookup ta-
ble task, they still are locally diffused and, more
importantly, do not maintain a systematic input-
output alignment, which suggests that the mod-
els are not understanding the rules of the task,
but use a pattern matching strategy instead. On
the contrary, seq2attn shows always fully sparse,
one-hot attention patterns. Figure 5c shows how
the model usually aligns outputs to their respec-
tive primitive commands or directions in the input
sequence, e.g., “I JUMP” aligns to “jump”, and
“I TURN RIGHT” aligns to “right”. A modifier
like “opposite” is used as an indicator to repeat the
last modeled directional action.

Seq2attn reaches an accuracy of 36.23% on the
0 fillers condition, which still leaves room for
improvement. However, the attentional patterns
quickly show the main cause of error. Figure 5b
shows how the model outputs “I TURN LEFT”
instead of “I TURN RIGHT” whenever it attends
to the input “around”. Whenever the model does
attend to “right”, as is the expected, optimal be-
havior, the output is correct. This behavior can
be easily explained by analyzing the data that the
model was trained on. The input “around” has
only been encountered within the context “prim-
itive around left” during training. Thus, within
this context, “around” and “left” could be used
synonymically by the transcoder to communicate
to the decoder to output “I TURN LEFT”. The
great majority of errors on this task by seq2attn
have the same cause. Although seq2attn still does
not perfectly solve the task, contrary to a standard
seq2seq model, it provides an immediate under-
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Figure 4: Mean sequence accuracies on experiment 2 (left) and 3 (right) of Loula et al. (2018). The bootstrapped
95% confidence intervals are indicated with error bars.

(a) seq2seq (b) seq2attn (c) seq2attn

Figure 5: Examples of attention patterns on the 0 fillers condition. Seq2attn models the output incorrectly when
the attention pattern is incorrect.

standing of the root of this.

5.4 Overgeneralization

To assess seq2attn’s overgeneralization abilities
for the SCAN task, we repeated experiment 3.
In addition to gradually adding samples indicat-
ing the correct interpretation of “primitive around
right”, we also added a single exception for “jump
around right” to the training set. The target for this
sequence, originally consisting of four repetitions
of “I TURN RIGHT I JUMP”, was modified to
consist of only two repetitions.

For all conditions of experiment 3, we added the
exception to the training set, trained multiple ran-
domly initialized models, and monitored the out-
put sequences generated for this exception over
the course of training. In Figure 6, we visualize
the distribution over the adapted and original tar-

gets for the conditions with 4 and 512 filler sam-
ples respectively. Note that the models have im-
plicit and explicit evidence for the correct appli-
cation of the rules for “primitive around right”:
explicit evidence through training examples con-
taining “look around right“ subsequences, and im-
plicit evidence through training samples including
“around” or “right” seen in different contexts.

Both models exhibit overgeneralization behav-
ior for SCAN. Generally, overgeneralization oc-
curs at the start of the training process and pre-
cedes memorization of the adapted target. How-
ever, the baseline model needs a substantially
larger amount of explicit evidence to overgener-
alize as much as the seq2attn model. The condi-
tion where 512 filler samples are included illus-
trates that the tendency to overgeneralize does not
necessarily relate to the overall task performance.
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Figure 6: Mean sequence accuracy on the original target of “jump around right” of multiple models as training
progresses. The distribution was normalized for cases in which the output emitted was neither the original or the
adapted target.

For this condition, seq2attn and the baseline yield
similar sequence accuracies in the original setup of
experiment 3 (see Figure 6), but seq2attn overgen-
eralizes more frequently, indicating that seq2attn
has a stronger compositional bias.

6 Discussion

In search for a neural network architecture that ex-
hibits a bias towards systematic generalization, we
introduced seq2attn, a recurrent attention-centric
module that controls the information flow from
encoder to decoder. We installed this module in
a standard recurrent encoder-decoder architecture.
To quantify its capabilities in terms of system-
atic compositionality, we tested the model on the
lookup table and SCAN tasks.

On both tasks, we see significant improvements
compared to a standard recurrent seq2seq model,
providing evidence for a compositional bias in the
system. Furthermore, because the architecture re-
lies heavily on its attention mechanism, its solu-
tions can more easily be interpreted by looking
at the generated attention patterns. This provides
opportunities for analyzing what the model has
learned as well as for detecting potential biases in
the training set.

Although on the considered tasks, which are
specifically designed to evaluate compositionality,
seq2attn leads to clear improvements, its contri-
bution could not have been observed when con-
sidering a task for which the test accuracy is not
directly linked to compositionality, such as nat-

ural language modeling and translation. We ar-
gue that, for those cases, additional assessment
methods are needed to compare the compositional
skills of different models. We propose one such
method, which involves monitoring to what extent
a model overgeneralizes. We show how a model
with seq2attn, for both tasks, has a greater ten-
dency to overgeneralize than the baseline.

A possible limitation of the design of seq2attn
is that the flow of information from transcoder to
decoder is very rigid. Possible solutions could be
found in the use of less skewed activations than
the Gumbel-Softmax such as Sparsemax (Martins
and Astudillo, 2016), or allowing the transcoder to
communicate multiple embeddings using adaptive
computation time (Graves, 2016).

Importantly, seq2attn is not tied to a particular
type of seq2seq architecture. In future work, we
plan to install it into other popular seq2seq archi-
tectures such as convolutional seq2seq (Gehring
et al., 2017) and Transformer models (Vaswani
et al., 2017).
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Abstract

Neural methods for sentiment analysis have
led to quantitative improvements over previ-
ous approaches, but these advances are not al-
ways accompanied with a thorough analysis of
the qualitative differences. Therefore, it is not
clear what outstanding conceptual challenges
for sentiment analysis remain. In this work, we
attempt to discover what challenges still prove
a problem for sentiment classifiers for English
and to provide a challenging dataset. We col-
lect the subset of sentences that an (oracle) en-
semble of state-of-the-art sentiment classifiers
misclassify and then annotate them for 18 lin-
guistic and paralinguistic phenomena, such as
negation, sarcasm, modality, etc.1 Finally, we
provide a case study that demonstrates the use-
fulness of the dataset to probe the performance
of a given sentiment classifier with respect to
linguistic phenomena.

1 Introduction

Over the last 15 years, approaches to sentiment
analysis which concentrated on creating and curat-
ing sentiment lexicons (Turney, 2002; Liu et al.,
2005) or used n-grams for classification (Pang et al.,
2002) have been replaced by models that are able
to exploit compositionality (Socher et al., 2013; Ir-
soy and Cardie, 2014) or implicitly learn relations
between tokens (Peters et al., 2018; Howard and
Ruder, 2018; Devlin et al., 2018). These neural
models push the state of the art to over 90% accu-
racy on binary sentence-level sentiment analysis.

Although these methods show a quantitative im-
provement over previous approaches, they are not
often accompanied with a thorough analysis of the
qualitative differences. This has led to the current
situation, where we are aware of quantitative, but
not qualitative differences between state-of-the-art

1The dataset is available at https://github.com/
ltgoslo/assessing and probing sentiment.

sentiment classifiers. It also means that we are not
aware of the outstanding conceptual challenges that
we still face in sentiment analysis.

In this work, we attempt to discover what con-
ceptual challenges still prove a problem for all state-
of-the-art sentiment methods for English. To do
so, we train and test three state-of-the-art machine
learning classifiers (BERT, ELMo, and a BiLSTM)
as well as a bag-of-words classifier on six sentence-
level sentiment datasets available for English. We
then collect the subset of sentences that all models
misclassify and annotate them for 18 linguistic and
paralinguistic phenomena, such as negation, sar-
casm, modality or world knowledge. We present
this new data as a challenging dataset for future
research in sentiment analysis, which enables prob-
ing the problems that sentiment classifiers still face
in more depth.

Specifically, the contributions of this work are:

• the creation of a challenging sentiment dataset
from previously available data,

• the annotation of errors in this dataset for 18
linguistic and paralinguistic phenomena,

• a thorough analysis of the dataset,

• and finally presenting a practical use-case
demonstrating how the dataset can be used
to probe the particular types of errors made by
a new model.

The rest of the paper is organized into related
work (Section 2), a description of the experimen-
tal setup (Section 3), a brief description of the
dataset (Section 4), an in-depth analysis (Section
5), a case-study that demonstrates the usefulness
of the dataset (Section 6), and finally a conclusion
(Section 7).
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2 Related work

Neural networks are now ubiquitous in NLP tasks,
often giving state-of-the-art results. However, they
are known for being “black boxes” which are not
easily interpretable. Recent interest in interpret-
ing these methods has led to new lines of research
which attempt to discover what linguistic phenom-
ena neural networks are able to learn (Linzen et al.,
2016; Gulordava et al., 2018; Conneau et al., 2018),
how robust neural networks are to perturbations in
input data (Ribeiro et al., 2018; Ebrahimi et al.,
2018; Schluter and Varab, 2018), and what biases
they propagate (Park et al., 2018; Zhao et al., 2018;
Kiritchenko and Mohammad, 2018).

Specifically within the task of sentiment anal-
ysis, certain linguistic phenomena are known to
be challenging. Negation is one of the aspects of
language that most clearly affects expressions of
sentiment and that has been studied widely within
sentiment analysis (see Wiegand et al. (2010) for an
early survey). The difficulties of resolving negation
for sentiment analysis include determining nega-
tion scope (Hogenboom et al., 2011; Lapponi et al.,
2012; Reitan et al., 2015), and semantic composi-
tion (Wilson et al., 2005; Choi and Cardie, 2008;
Kiritchenko and Mohammad, 2016).

Verbal polarity shifters have also been studied.
Schulder et al. (2018) annotate verbal shifters at
the sense-level. They conclude that, although in-
dividual negation words are more frequent in the
Amazon Product Review Data corpus, the overall
frequency of negation words and shifters is likely
similar. This suggests that there is a Zipfian tail of
shifters which are not often handled within senti-
ment analysis.

Furthermore, the linguistic phenomenon of
modality has also been shown to be problematic.
Both Narayanan et al. (2009) and Liu et al. (2014)
explore the effect of modality on sentiment classi-
fication and find that explicitly modeling certain
modalities improves classification results. They ad-
vocate for a divide-and-conquer approach, which
would address the various realizations of modal-
ity individually. Benamara et al. (2012) perform
linguistic experiments using native speakers con-
cerning the effects of both negation and modality
on opinions, and similarly find that the type of
negation and modality determines the final inter-
pretation of polarity.

The sentiment models inspected in these anal-
yses, however, were lexicon- and word- and n-

Label MPQA OP. Sem. SST Ta. Th.

++ − 379 − 1,852 − −
+ 193 879 3,499 3,111 923 2,727
0 527 − 4,478 2,242 1,419 1,779
− 413 399 1,310 3,140 1,320 1,828
−− − 74 − 1,510 − −
Total 1,133 1,731 9,287 11,855 3,662 6,334

Table 1: Statistics for the sentence-level annotations in
each dataset.

gram-based models. It is not clear that neural net-
works have the same weaknesses, as they have
been shown to deal with compositionality and
long-distance dependencies to some degree (Socher
et al., 2013; Linzen et al., 2016). Additionally, au-
thors did not attempt to discover from the data
what phenomena were present that could affect sen-
timent. In the current paper we aim to provide a
systematic analysis of error types found across a
range of datasets, domains and classifiers.

3 Experimental setup

In these experiments, we test three state-of-the-art
models for sentence-level sentiment classification.
We choose to focus on sentence-level classification
for three reasons: 1) sentence-level classification
is a popular and useful task, 2) there is a large
amount of high-quality annotated data available,
and 3) annotation of linguistic phenomena is easier
at sentence-level than document-level. It is also
likely that most phenomena that occur at sentence-
level, e. g., negation, comparative sentiment, or
modality, will transfer to other sentiment tasks.

3.1 Datasets

In order to discover a subset of sentences that all
state-of-the-art models are unable to correctly pre-
dict, we collect six English-language datasets previ-
ously annotated for sentence-level sentiment from
five domains (news wire, hotel reviews, movie re-
views, twitter, and micro-blogs). Table 1 shows the
statistics for each of the datasets.

MPQA The Multi-perspective Question Answer
(MPQA) Opinion Corpus (Wilson et al., 2005) pro-
vides contextual polarity annotations for English
news documents from world press. The annotations
are private state frames, which include annotations
for text anchor, source, target, and attitude type,
among others. We extract sentiment labeled sen-
tences by taking only those sentences that have
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sentiment annotations. Additionally, we remove
sentences that contain both positive and negative
sentiment. This leaves a three-class (positive, neu-
tral, negative) sentence-level dataset.

OpeNER The Open Polarity Enhanced Named
Entity Recognition (OpeNER) sentiment datasets
(Agerri et al., 2013) contain hotel reviews anno-
tated for 4-class (strong positive, positive, negative,
strong negative) sentiment classification. We take
the English dataset, where self-attention networks
give state-of-the-art results (Ambartsoumian and
Popowich, 2018).

SemEval The SemEval 2013 tweet classifica-
tion dataset (Nakov et al., 2013) contains tweets
collected and annotated for three-class (positive,
neutral, negative) sentiment. The state-of-the-art
model is a Convolutional Network (Severyn and
Moschitti, 2015).

Stanford Sentiment Treebank The Stanford
Sentiment Treebank (Socher et al., 2013) con-
tains 11,855 English sentences from movie reviews
which have been annotated at each node of a con-
stituency parse tree. Contextualized word repre-
sentations combined with a bi-attentive sentiment
network currently give state-of-the-art results (Pe-
ters et al., 2018).

Täckström dataset The Täckström dataset
(Täckström and McDonald, 2011) contains prod-
uct reviews which have been annotated at both
document- and sentence-level for three-class senti-
ment, although the sentence-level annotations also
have a “not relevant” label. We keep the sentence-
level annotations, which gives 3,662 sentences an-
notated for three-class sentiment.

Thelwall dataset The Thelwall dataset derives
from datasets provided with SentiStrength2 (Thel-
wall et al., 2010). It contains microblogs annotated
for both positive and negative sentiment on a scale
from 1 to 5. We map these to single sentiment la-
bels such that sentences which are clearly positive
(pos >= 3 and neg < 3) are given the positive label,
clearly negative sentences (pos < 3 and neg >=
3) the negative label, and clearly neutral sentences
( 3 < pos > 2 and 3 < neg > 2) the neutral. We
discard all other sentences, which finally leaves
6,334 annotated sentences.

2The data are available at http://
sentistrength.wlv.ac.uk/

3.2 Models

In order to gain an idea of what errors most models
suffer from, we test three state-of-the-art models on
the datasets. Additionally, we use a bag-of-words
model as it is a strong baseline for text classifica-
tion. For the SINGLE setup, we train all models on
the training and development data for each dataset
and test on the corresponding test set, therefore
avoiding domain problems.

BERT The BERT model (Devlin et al., 2018) is
a bidirectional transformer that is pretrained on two
tasks: 1) a cloze-like language modeling task and
2) a binary next-sentence prediction task. It is pre-
trained on 330 million words from the BooksCor-
pus (Zhu et al., 2015) and English Wikipedia. We
fine-tune the available pretrained model3 on each
sentiment dataset.

ELMo We use the bi-attentive classification net-
work4 from Peters et al. (2018). The network
uses both word embeddings, as well as creating
character-based embeddings from a character-level
CNN-BiLSTM network. The word representations
are first passed through a feedforward layer, and
then through a sequence-to-sequence network with
biattention. This new representation of the text
is combined with the original representation and
passed through another sequence-to-sequence net-
work. Finally, a max, min, mean and self-attention
pool representation is created from this last se-
quence. For classification, these features are sent
to a maxout layer.

BiLSTM Bidirectional long short-term memory
(BiLSTM) networks have shown to be strong base-
lines for sentiment tasks (Tai et al., 2015; Barnes
et al., 2017). We implement a single-layered BiL-
STM which takes pretrained skipgram embeddings
as input, creates a sentence representation by con-
catenating the final hidden layer of both left and
right LSTMs, and then passes this representation
to a softmax layer for classification. Additionally,
dropout serves as a regularizer.

Bag-of-Words classifier Finally, bag-of-words
classifiers are strong baselines for sentiment and
when combined with other features can still give

3https://github.com/google-research/
bert

4https://s3-us-west-2.amazonaws.com/
allennlp/models/sst-5-elmo-biattentive-
classification-network-2018.09.04.tar.gz
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state-of-the-art results for sentiment tasks (Moham-
mad et al., 2013). Therefore, we train a Linear
SVM on a bag-of-words representation of the train-
ing sentences.

3.3 Model performance

Table 2 shows the accuracy of the models on the six
tasks. Both methods that use pretrained language
model classifiers (ELMo and BERT) are the best
performing models, with an average of 11.8 differ-
ence between the language model classifiers and
standard models (BOW and BILSTM). The error
rates range between 8.3 on OpeNER and 20.5 on
SST (see Table 3), indicating that there are differ-
ences in difficulty of datasets due to domain and
annotation characteristics.

Additional experiments on a MERGED setup,
where the labels from OpeNER and SST are
mapped to the three-class setup, and a single model
is trained on the concatenation of the training sets
from all datasets, indicate that no clear performance
gain is achieved. We therefore prefer to avoid the
problem of domain differences and keep only the
original results.

4 Challenging dataset

We create a challenging dataset by collecting the
subset of test sentences that all of the sentiment
systems predicted incorrectly (statistics are shown
in Table 3). After removing sentences with incor-
rect gold labels, there are a total of 836 sentences
in the dataset, with a similar number of positive,
neutral, and negative labels and fewer strong labels.
This is expected, as only two datasets have strong
labels.

Furthermore, the main sources of examples are
the SemEval task (249), Stanford Sentiment Tree-
bank (452) and Thelwall datasets (215), while the
Täckström dataset (129), MPQA (39) and OpeNER
(29) contribute much less. This is a result of both
dataset size and difficulty.

5 Dataset analysis

In order to give a clearer view of the data found
in the dataset, we annotate these instances using
19 linguistic and paralinguistic labels. While most
of these come from previous attempts to qualita-
tively analyze sentiment classifiers (Hu and Liu,
2004; Das and Chen, 2007; Pang and Lee, 2008;
Socher et al., 2013; Barnes et al., 2018), others (in-
correct label, no sentiment, morphology) emerged

during the error annotation process. We further
chose to manually annotate for the polarity of the
sentence irrespective of the gold label in order to
be able to locate possible annotation errors during
our analysis. The annotation scheme and (manu-
ally constructed) examples of each label are shown
in Table 6. Note that we did not limit the number
of labels that the annotator could assign to each
sentence and in principle they should assign all
suitable labels during annotation.
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0.06 0.14 0.21 0.34 0.26

0.21 0.47 0.19 0.09 0.03

0.01 0.18 0.37 0.39 0.05

0.00 0.15 0.47 0.38 0.00

0.05 0.15 0.45 0.23 0.13

0.01 0.53 0.16 0.28 0.02

0.11 0.45 0.06 0.27 0.11

0.21 0.19 0.03 0.32 0.25

0.28 0.21 0.04 0.16 0.31

0.19 0.31 0.14 0.25 0.11

0.24 0.32 0.03 0.34 0.07

0.15 0.33 0.06 0.14 0.32

0.25 0.33 0.07 0.12 0.23

0.42 0.46 0.06 0.06 0.00

0.09 0.62 0.11 0.11 0.07

0.00 0.72 0.25 0.03 0.00

0.11 0.46 0.14 0.17 0.11

0.48 0.07 0.07 0.11 0.26

0.00 0.14 0.21 0.43 0.21

Figure 1: Distribution of labels across error categories.

An initial analysis of the errors shown in Table 5
and Figure 1 reveals that the most common errors
come from the no-sentiment (214), mixed category
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MPQA OpeNER SemEval SST Täckström Thelwall

Si
ng

le

BOW 40.9 69.7 62.3 50.9 46.0 53.5
BiLSTM 48.7 71.5 58.0 37.5 45.0 52.0
ELMo 61.0 82.1 71.9 51.3 53.1 59.1
BERT 62.3 84.2 75.1 53.0 60.2 63.9

Table 2: Accuracy of models on the sentiment datasets, where a different classifier is trained for each dataset.

Label MPQA OpeNER SemEval SST Täckström Thelwall Total

++ − 8 − 87 − − 95
+ 16 9 59 49 46 9 188
0 1 − 45 75 31 48 200
− 16 2 47 51 18 116 250
−− − 4 − 99 − − 103

Total 33 23 151 361 95 173 836
% of original 14.5 6.6 6.4 16.3 12.9 13.6 11.7
avg. length 25.0 13.4 19.0 19.9 23.4 17.5 19.7

Table 3: Statistics of dataset, including the number of sentences from each dataset and for each label, the percentage
of the original dataset kept in the dataset, and average length (in tokens) of sentences.

(185), non-standard spelling and hashtags (180), de-
sirable elements (144), and the strong label (122).

The distribution of errors across labels (strong
negative: 106, negative: 299, neutral: 303, posi-
tive: 296, strong positive: 109) compared to the
gold distribution (strong negative: 294, negative:
1742, neutral: 2249, positive: 2402, strong posi-
tive: 475) shows that the strong negative is the most
difficult and least common class, while positive is
the easiest to classify. In the following we briefly
discuss the error categories, also showing examples
for each.

Mixed Polarity The largest set of errors, with
185 sentences labeled, are what we refer to as
“mixed” polarity sentences. These are sentences
where two differing polarities are expressed, either
towards two separate entities, or towards the same
entity. While the first can be solved by a more
fine-grained approach (aspect-level or targeted sen-
timent), the second is more difficult and is often
considered a category of its own (Shamma et al.,
2009; Saif et al., 2013; Kenyon-Dean et al., 2018).

Strong Positive It was spot on.
Positive They’re on a roll.
Neutral It’s a bit hit-or-miss.
Negative I’m pulling my hair out.
Strong Negative Madonna can’t act a lick.

Table 4: Examples of idioms.

An analysis of the mixed category errors reveals
that while most of the examples are in the “neu-
tral” category (45%), the other 55% are annotated
as having mostly positive or negative sentiment.
This is a confusing situation for both annotators
and sentiment classifiers, and a direct product of
performing sentence-level classification rather than
aspect-level. Nearly a third of the errors contain
“but” clauses, which could be correctly classified
by splitting them.

A more problematic situation is found among
nearly 20% of the examples (34), where the an-
notator found the original label to be completely
incorrect.5

Non-standard spelling Most errors in this cate-
gory (180 total) are labeled either negative (49%)
or positive (29%), with almost no strong positive or
strong negative, which comes mainly from the fact
that the noisier datasets do not contain the strong
labels.

Around a third of the examples contain hash-
tags that clearly express the sentiment of the whole
sentence, e. g., “#imtiredof this SNOW and COLD
weather!!!”. This indicates the need to properly
deal with hashtags in order to correctly classify
sentiment.

Idioms Table 4 presents some examples of
sentiment-bearing idioms that are taken from the
challenge data set. In this category, errors (132

5We do not include examples where only the strength of
the polarity was considered different, i. e., positive vs. strong
positive.
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label # examples

incorrect label 277
no sentiment 214
mixed 185
non-standard spelling 180
desirable element 144
idioms 132
strong 122
negation 97
world knowledge 81
amplifier 79
comparative 68
sarcasm/irony 58
shifter 50
emoji 46
modality 38
morphology 31
reducer 13

Table 5: Number of labels for each category in anno-
tation study. Bold numbers indicate the five most fre-
quent sources of errors. The total number of labels does
not sum to the number of sentences in the dataset, as
each sentence can have multiple labels.

sentences labeled) are spread relatively uniformly
across labels. Learning these correctly from
sentence-level annotations is unlikely, especially
because they are seldom found repeatedly, even in
a training corpus of decent size. Therefore, incor-
porating idiomatic information from external data
sources may be necessary to improve the classifica-
tion of sentences within this category.

Strong Labels This category (122 total) is partic-
ularly difficult for sentiment classifiers for several
reasons. First, strong negative sentiment is often
expressed in an understated or ironic manner. For
example, “Better at putting you to sleep than a
sound machine.”

For strong positive examples in the dataset, there
is often difficult vocabulary and morphologically
creative uses of language, e. g., “It is a kickass ,
dense sci-fi action thriller hybrid that delivers and
then some.”, while strong negative examples often
contain sarcasm or non-standard spelling, e. g., “All
prints of this film should be sent to and buried on
Pluto.”.

Negation Negation, which accounts for 97 errors,
directly affects the classification of polar sentence
(Wiegand et al., 2010). Therefore, we look at the

differences between correctly and incorrectly clas-
sified sentences containing negation, by analyzing
100 correctly and incorrectly classified sentences
containing negation.

From our analysis, there is no specific negator
that is more difficult to resolve regarding its effect
on sentiment classification.

We also perform an analysis of negation scope
under the assumption that when a negator occurs
farther from its negated element, it is more difficult
for the sentiment classifier to correctly resolve the
negation. Let d be the distance between the negator
n and the relevant sentiment element se, such that
d = |ind(se) − ind(n)| where the function ind
calculates the index of a token in a sentence. We
find that the incorrectly classified examples have
an average d of 2.7, while the correctly classified
examples had 2.5. This seems to rule out a problem
of negation scope as the underlying difference.

High-level or clausal negation occurs when the
negator negates a full clause, rather than an ad-
jective or noun phrase, e. g., “I don’t think it is
a particularly interesting film”. In the dataset this
phenomenon is found more prevalently in the incor-
rectly classified examples (8%) versus the correctly
classified examples (3%), but does not occur often
in absolute terms.

The main source of difference regarding cor-
rectly classifying examples involving negation
seems to be irrelevant negation. Irrelevant negation
refers to cases where a sentence contains a nega-
tion but where the sentiment-bearing expression is
not within the scope of negation. In our data, there
is a strong difference in the distribution of irrele-
vant negation in correctly and incorrectly classified
examples (80% vs. 25%, respectively), suggest-
ing that sentiment classifiers learn to ignore most
occurrences of negation.

World Knowledge Examples from the dataset
where world knowledge is necessary to correctly
classify a sentence (81 sentences) include compar-
isons with entities commonly associated with posi-
tive or negative polarity, e. g., “Elicits more groans
from the audience than Jar Jar Binks, Scrappy Doo
and Scooby Dumb, all wrapped up into one.”, analo-
gies, e. g., “Adam Sandler is to Gary Cooper what
a gnat is to a racehorse.”, or rating scales, e. g.,
“10/10 overall”.

This category is also highly correlated with sar-
casm and irony. In fact, irony is often defined
as “violating expectations” (Hao and Veale, 2010),
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positive “It was good.”
negative “It was bad.”
negation “It was not good.”
strong “It was incredible.”
amplifier “It was really good.”
reducer “It was kind of bad.”
desirable element “It had a pool.”
comparative “It was better than the first hotel.”
shifter “They denied him the scholarship”
modality “I would have loved the room if it been bigger.”
world knowledge “It was 2 minutes from the beach.” vs. “It was 2 hours from the beach.”
morphology “It was un-fricking-believable.”
non-standard spelling “It was awesoooome.”
idioms “It’s not my cup of tea.”
sarcasm/irony “I love it when people yell at me first thing in the morning.”
emoji “:)”
no sentiment “The president will hold a talk tomorrow.”
mixed “The plot was nice, but a little slow.”
incorrect label Any clearly incorrect label.

Table 6: Categories and examples for error annotation guidelines.

which presupposes that we possess a world knowl-
edge containing expectations of a situation.

Amplified Amplifiers occur mainly in negative
and strong positive examples, such as “It’s an aw-
fully derivative story.” Most of the amplified sen-
tences found in the dataset (71/79) contain ampli-
fiers other than “very”, such as “super”, “incredi-
bly”, or “so”.

Comparative Comparative sentiment, with 68
errors, is known to be difficult (Hu and Liu, 2004;
Liu, 2012), as it is necessary to determine which
entity is on which side of the inequality. Sentences
like “Will probably stay in the shadow of its two
older, more accessible Qatsi siblings” are difficult
for sentiment classifiers that do not model this phe-
nomenon explicitly.

Sarcasm/Irony Sarcasm and irony (58 errors),
which are often treated separately from sentiment
analysis (Filatova, 2012; Barbieri et al., 2014), are
present mainly in negative and strong negative ex-
amples in the dataset. Correctly capturing sarcasm
and irony is necessary to classify some negative
and strong negative examples, e. g., “If Melville is
creatively a great whale, this film is canned tuna.”

Shifters Shifters (50 errors), such as “abandon”,
“lessen”, or “reject” are less common within the
dataset, but normally move positive polarity words

towards a more negative sentiment. The most com-
mon shifter is the word “miss”, used as in “We miss
the quirky amazement that used to come along for
an integral part of the ride.”

Emoji While the models handle most occur-
rences of emojis well, they falter more on the neg-
ative examples (46 errors). More than half of the
examples in the dataset present positive emoji with
a negative gold label, such as “Pricess Leia is going
to be gutted! :-).”

Modality None of the state-of-the-art sentiment
systems deals explicitly with modality (38 total
errors). While in many of the examples modality
does not express a different sentiment than the same
sentence without modality, in the dataset there are
examples that do, e. g., “Still, I thought it could
have been more.”

Morphology While not the most prominent label
(31 errors), the examples in the dataset that contain
morphological features that effect sentiment are
normally strong positive or strong negative. This
most often contains creative use of English mor-
phology, e. g., “It was fan-freakin-tastic!” or “It’s
hyper-cliched”.

Reducers Reducers (13 errors), such as “kind
of”, “less”, or “all that” cooccur with both positive
and negative polar words within the dataset, and
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label Sent. Phrases Rel. Imp.

overall 23.0 31.1 10.5

positive 19.0 26.9 9.8%
negative 23.1 35.0 15.5%
mixed 21.2 26.5 6.7%
no-sentiment 37.6 42.6 8.1%
non-strd spelling 40.3 43.5 3.8%
desirable 25.7 28.7 4.0%
idioms 13.7 23.1 11.0%
strong 15.5 23.7 9.7%
negation 23.9 38.6 19.3%
world know. 14.9 21.6 19.6%
amplified 13.9 31.9 20.9%
comparative 11.7 13.3 1.8%
irony 20.8 18.8 -2.5%
shifters 33.3 24.4 -11.8%
emoji 33.3 50.0 25.0%
modality 20 22.9 3.6%
morphology 18.5 18.5 0%
reduced 7.7 23.1 16.7%

Table 7: Per category accuracy and relative improve-
ment (last column) of BERT model trained on SST sen-
tences (8,544) and SST phrases (155,019).

tend to lead to positive or neutral sentiment, e. g.,
“It was a lot less hassle.”

6 Case study: Training with phrase-level
annotations

As a case study for the usage of the dataset pre-
sented here, we evaluate a model that has access
to more compositional information. Besides hav-
ing sentence-level annotations, the SST dataset
also contains annotations for each phrase in a con-
stituency tree, which gives a considerable amount
more training data, specifically 155,019 annotated
phrases vs. 8,544 annotated sentences. It has been
claimed that this data allows models to learn more
compositionality (Socher et al., 2013). Therefore,
we fine-tune the best performing model (BERT) on
this data and test on our dataset. The BERT model
trained on phrases achieves 55.1 accuracy on the
SST dataset, versus 53.0 for the model trained only
on sentence-level annotations.

Table 7 shows that the model trained on the
SST phrases performs overall much better than

the model trained on SST sentences6 on the dataset.
Using the error annotations in the challenge data
set, we find that results improve greatly on the sen-
tences which contain the labels negation, world
knowledge, amplified, emoji, and reduced, while
performing worse on irony, shifters and equally
on morphology. This analysis seems to indicate
that phrase-level annotations help primarily with
learning compositional sentiment (negation, am-
plified, reduced), while other phenomena, such
as irony or morphology do not receive improve-
ments. This confirms that training on the phrase-
level annotations improves a sentiment model’s
ability to classify compositional sentiment, while
also demonstrating the usefulness of our dataset for
introspection.

7 Conclusion and future work

In this paper, we tested three state-of-the-art sen-
timent classifiers and a baseline bag-of-words
classifier on six English sentence-level sentiment
datasets. We gathered the sentences that all meth-
ods misclassified in order to create a dataset. Addi-
tionally, we performed a fine-grained annotation of
error types in order to provide insight into the kinds
of problems sentiment classifiers have. We will re-
lease both the code and the annotated data with the
hope that future research will utilize this resource
to probe sentiment classifiers for qualitative differ-
ences, rather than rely only on quantitative scores,
which often obscure the plentiful challenges that
still exist.

Many of the phenomena found in the dataset,
e. g., negation or modality, have been discussed in
depth in (Liu, 2012). However, the dataset that
resulted from this work demonstrates that modern
neural methods still fail on many examples of these
phenomena. Additionally, our dataset enables a
quick analysis of qualitative differences between
models, probing their performance with respect
to the linguistic and paralinguistic categories of
errors.

Additionally, many of the findings from this pa-
per are likely to vary to a degree for other lan-
guages, due to typological differences, as well as
differences in available training data. The anno-
tation method proposed in this paper, however,

6It is important to realize that the SST-sentence model has
0 accuracy on the subset of the dataset taken from the SST
dataset, but not on the sentences taken from the other datasets.
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should enable the creation of similar analyses and
datasets in other languages.

We expect that this approach to creating a dataset
is also easily transferable to other tasks which are
affected by linguistic or paralinguistic phenomena,
such as hate speech detection or sarcasm detection.
It would be more useful to have some knowledge
of the phenomena that could affect the task before-
hand, but a careful error analysis can also lead to
insights which can be translated into annotation
labels.

Regarding ways of moving forward, there are
already many sources of data for the linguistic phe-
nomena we have analyzed in this work, ranging
from datasets annotated for negation (Morante and
Blanco, 2012; Liu et al., 2018), irony (Van Hee
et al., 2018), emoji (Barbieri et al., 2018), as well as
datasets for idioms (Muzny and Zettlemoyer, 2013)
and their relationship with sentiment (Jochim et al.,
2018). We believe that discovering ways to ex-
plicitly incorporate this available information into
state-of-the-art sentiment models may provide a
way to improve current approaches. Multi-task
learning (Caruana, 1993) and transfer learning (Pe-
ters et al., 2018; Devlin et al., 2018; Howard and
Ruder, 2018) have shown promise in this respect,
but have not been exploited for improving senti-
ment classification with regards to these specific
phenomena.
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Abstract

We simulate first- and second-order context
overlap and show that Skip-Gram with Neg-
ative Sampling is similar to Singular Value
Decomposition in capturing second-order co-
occurrence information, while Pointwise Mu-
tual Information is agnostic to it. We sup-
port the results with an empirical study find-
ing that the models react differently when pro-
vided with additional second-order informa-
tion. Our findings reveal a basic property of
Skip-Gram with Negative Sampling and point
towards an explanation of its success on a va-
riety of tasks.

1 Introduction

The idea of second-order co-occurrence vectors
was introduced by Schütze (1998) for word sense
discrimination and has since then been extended
and applied to a variety of tasks (Lemaire and
Denhiere, 2006; Islam and Inkpen, 2006; Schulte
im Walde, 2010; Zhuang et al., 2018). The basic
idea is to represent a word w not by a vector of the
counts of context words it directly co-occurs with,
but instead by a count vector of the context words
of the context words, i.e., the second-order context
words of w. These second-order vectors are sup-
posed to be less sparse and more robust than first-
order vectors (Schütze, 1998). Moreover, captur-
ing second-order co-occurrence information can
be seen as a way of generalization. To see this,
cf. examples (1) and (2) inspired by Schütze and
Pedersen (1993).

(1) As far as the Soviet Communist Party and
the Comintern were concerned . . .

(2) . . . this is precisely the approach taken by the
British Government.

The nouns Party and Government have similar
meanings in these contexts, although they have
little contextual overlap: A frequent topic in the

British corpus used by Schütze and Pedersen is the
Communist Party of the Soviet Union, but gov-
ernments are rarely qualified as communist in the
corpus. Hence, there is little overlap in first-order
context words of Party and Government. How-
ever, their context words Communist and British
in turn have a greater overlap, because they are
frequently used to qualify the same nouns from
the political domain, as in Communist authorities
and British authorities. Hence, although Party and
Government may have no first-order context over-
lap, they do have second-order context overlap.
According to Schütze and Pedersen, capturing this
information corresponds to the generalization “oc-
curring with a political adjective.”

While most traditional count-based vector
learning techniques such as raw count vectors
or Point-wise Mutual Information (PPMI) do not
capture second-order co-occurrence information,
truncated Singular Value Decomposition (SVD)
has been shown to do so. Regarding the more
recently developed embeddings based on shallow
neural networks, such as Skip-Gram with Nega-
tive Sampling (SGNS), it is presently unknown
whether they capture higher-order co-occurrence
information. So far, this question has been ne-
glected as a research topic, although the answer is
crucial to explain performance differences: Levy
et al. (2015) show that SGNS performs similarly
to SVD and differently from PPMI across seman-
tic similarity data sets. If SGNS captures second-
order co-occurrence information, this provides a
possible explanation for the observed performance
differences.

We examine this question in two experiments:
(i) We create an artificial data set with target
words displaying context overlap in different or-
ders of co-occurrence and show that SGNS be-
haves similarly to SVD in capturing second-order
co-occurrence information. The experiment sup-
plies additional and striking evidence to prior
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work on SVD and introduces a method to further
investigate questions more precisely than done be-
fore. (ii) We transfer second-order context infor-
mation to the first-order level in a small corpus
and test the models’ reaction on a standard eval-
uation data set when provided with the additional
information. We find that SGNS and SVD, already
capturing second-order information, do not bene-
fit, whereas PPMI benefits.

2 Related Work

An early connection between second-order con-
text information and generalization can be found
in Schütze and Pedersen (1993). The authors
claim that SVD is able to generalize by us-
ing second-order context information as described
above. Later work supports this claim and
indicates that SVD even captures information
from higher orders of co-occurrence (Landauer
et al., 1998; Kontostathis and Pottenger, 2002;
Newo Kenmogne, 2005; Kontostathis and Pot-
tenger, 2006).

Since then, second-order co-occurrence infor-
mation has mainly been exploited for traditional
count-based vector learning techniques with dif-
ferent aims. Schütze (1998) had used second-
order vectors for word sense clustering. Vari-
ous studies model synonymy or semantic simi-
larity (Edmonds, 1997; Islam and Inkpen, 2006;
Lemaire and Denhiere, 2006) indicating that
second-order co-occurrence plays an important
role for these tasks.

The only works we are aware of exploring
second-order information for word embeddings
are Newman-Griffis and Fosler-Lussier (2017)
learning embeddings from nearest-neighbor
graphs and Zhuang et al. (2018) indicating that
a specific type of word embeddings may benefit
from second-order information. However, no
study investigated the question whether SGNS or
other word embeddings already capture higher-
order co-occurrence information, which may
make the integration of second-order information
superfluous.

3 Semantic Vector Spaces

We compare SGNS to two traditional count-based
vector space learning techniques: PPMI and SVD,
where the former does not capture second-order
information while the latter does. All methods are
based on the concept of semantic vector spaces:

A semantic vector space constructed from a cor-
pus C with vocabulary V is a matrix M , where
each row vector represents a word w in the vo-
cabulary V reflecting its co-occurrence statistics
(Turney and Pantel, 2010).

Positive Pointwise Mutual Information (PPMI).
For PPMI representations, we first construct a
high-dimensional and sparse co-occurrence matrix
M . The value of each matrix cell Mi,j represents
the number of co-occurrences of the word wi and
the context cj , #(wi, cj). Then, the co-occurrence
counts in each matrix cellMi,j are weighted by the
smoothed and shifted positive mutual information
of target wi and context cj reflecting their degree
of association. The values of the transformed ma-
trix are

MPPMI
i,j = max

{
log

(
#(wi, cj)

∑
c#(c)α

#(wi)#(cj)α

)
− log(k), 0

}
,

where k > 1 is a prior on the probability of
observing an actual occurrence of (wi, cj) and
0 < α < 1 is a smoothing parameter reducing
PPMI’s bias towards rare words (Levy and Gold-
berg, 2014; Levy et al., 2015). To our knowledge
PPMI representations have never been claimed to
capture higher-order co-occurrence information.

Singular Value Decomposition (SVD). Trun-
cated Singular Value Decomposition is an alge-
braic algorithm finding the optimal rank d fac-
torization of matrix M with respect to L2 loss
(Eckart and Young, 1936).1 It is used to obtain
low-dimensional approximations of the PPMI rep-
resentations by factorizingMPPMI into the product
of the three matricesUΣV >. We keep only the top
d elements of Σ and obtain

MSVD = UdΣp
d,

where p is an eigenvalue weighting parameter
(Levy et al., 2015). Ignoring V for MSVD re-
duces dimensionality while preserving the dot-
products between rows. While it is not clear
whether SVD generalizes better than other mod-
els in general (Gamallo and Bordag, 2011), its
sensitivity to higher orders of co-occurrence has
been shown empirically and mathematically (Kon-
tostathis and Pottenger, 2002; Newo Kenmogne,
2005; Kontostathis and Pottenger, 2006). Kon-
tostathis and Pottenger (2006) prove that the ex-

1We use ‘SVD’ to refer to the particular application of the
algebraic method described.
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istence of a non-zero value in a truncated term-to-
term co-occurrence matrix follows directly from
the existence of a higher-order co-occurrence in
the full matrix. They also show that there is
an empirical correlation between the magnitude
of the value and the number of higher-order co-
occurrences found for the particular term pair.

Skip-Gram with Negative Sampling (SGNS).
SGNS differs from the above techniques in that
it directly represents each word w ∈ V and each
context c ∈ V as a d-dimensional vector by im-
plicitly factorizing M = WC> when solving

argmax
θ

∑

(w,c)∈D
log σ(vc · vw) +

∑

(w,c)∈D′
log σ(−vc · vw),

where σ(x) = 1
1+e−x , D is the set of all ob-

served word-context pairs and D′ is the set of ran-
domly generated negative samples (Mikolov et al.,
2013a,b; Goldberg and Levy, 2014). The opti-
mized parameters θ are vci = Ci∗ and vwi = Wi∗
for w, c ∈ V , i ∈ 1, ..., d. D′ is obtained by draw-
ing k contexts from the empirical unigram distri-
bution P (c) = #(c)

|D| for each observation of (w, c),
cf. Levy et al. (2015). The final SGNS matrix is
given by

MSGNS = W.

Levy and Goldberg (2014) relate SGNS to SVD
by showing that under specific assumptions their
learning objectives have the same global opti-
mum. However, it is unknown whether SGNS is
also similar to SVD in capturing higher-order co-
occurrence information. The model architecture
suggests that this is possible: consider the two
context vectors ~c1, ~c2 in C of two words having
large context overlap (e.g. the vectors for Commu-
nist and British). ~c1, ~c2 will be similar, because the
dot product with the same target vectors in W will
be maximized (as ~c1, ~c2 frequently occur as con-
texts of the same target words). If ~c1, ~c2 are then
in turn each used to maximize the dot product with
two different new target vectors (e.g. the vectors
for Party and Government), these also tend to be
similar.

Model Training. For both experiments we use
the implementation of Levy et al. (2015), allowing
us to train all models on extracted word-context
pairs instead of the corpus directly. We follow pre-
vious work in setting the hyper-parameters (Levy
et al., 2015). For PPMI we set α = .75 and k = 5.

We set the number of dimensions d for SVD and
SGNS to 300. SGNS is trained with 5 negative
samples, 5 epochs and without subsampling. For
SVD we set p = 0.

Similarity Measure. For all methods we mea-
sure similarity between word vectors with Cosine
Distance (CD), where low CD means high simi-
larity. CD is based on cosine similarity, cos(~x, ~y),
which measures the cosine of the angle between
two non-zero vectors ~x, ~y with equal magnitudes
(Salton and McGill, 1983). CD is then defined as

CD(~x, ~y) = 1− cos(~x, ~y).

4 Experiment 1: Simulating
second-order context overlap

In order to see whether SGNS captures second-
order co-occurrence information, we artificially
simulate context overlap for first- and second-
order co-occurrence separately. This allows us
to simulate clear cases of overlap controlling for
confounding factors which are present in empiri-
cal data. We generate target-context pairs in such
a way that specific target words have either con-
text word overlap in first-order co-occurrence, or
by contrast in second order. We compare the be-
havior of PPMI, SVD and SGNS on three groups
of such target words (see Table 1):

first-order overlap (1ST): Target words T occur-
ring with the same context words C1 in the
first order, while in the second order all con-
text words from C1 have distinct context
words C2.

2nd-order overlap (2ND): Target words T oc-
curring with distinct context words C1 in the
first order, while all context words from C1
have the same context words C2.

no overlap (NONE): Target words T occurring
with distinct context words C1 in the first or-
der and also all context words inC1 have dis-
tinct context words C2.

As an example, consider the column 2ND in Ta-
ble 1. The target words T are a and b. Each has
distinct context words: a occurs only with c, d ∈
C1, while b occurs only with e, f ∈ C1. How-
ever, the first-order context words c, d, e, f ∈ C1
do have context overlap: c, d, e, f occur all with
u, v ∈ C2, i.e., they have the same second-order
context words.
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For each group we generate 10 target words (T ).
Per target word, each of C1, C2 is constructed by
first generating 1000 context words C, assigning
a sampling probability from a lognormal distri-
bution to each context word in C and then sam-
pling 1000 times from C.2 For the 1ST-group, the
set of context words C will be shared across tar-
get words, meaning that they have a context word
overlap. For the target words in the 2ND-group
this will not be the case, but instead their first-
order context words (C1) will have context over-
lap (see Table 1). In this way, we simulate con-
text overlap in first vs. second order. For the tar-
get words in the NONE-group, C will instead be
completely disjunct in both orders. Because co-
occurrence is symmetric (if a occurs with c, c also
occurs with a), for each pair (a,c) generated by
the above-described process, we also add the re-
verse pair (c,a). To make sure that the pairs from
the different groups (1ST, 2ND, NONE) do not in-
terfere with each other, each string generated for
a group is unique to the group. Finally, we mix
and randomly shuffle the pairs from all groups. In
this way, we generate 10 x 1000 x 1000 x 2 target-
context pairs for each group: 10 target words oc-
curring with 1000 context words inC1 where each
in turn occurs with 1000 context words inC2, plus
each of these pairs reversed.3

Our main hypothesis is that SGNS and SVD
will predict target words from the 2ND-group to
be more similar on average than target words from
the NONE-group (although both groups have no
first-order context overlap), while PPMI will pre-
dict similar averages for both groups.

Results. Figure 1 shows the average cosine dis-
tance between the target words in each of the three
target word groups with context overlap in differ-
ent orders (1ST, 2ND and NONE). As expected,
PPMI predicts the target words without contex-
tual overlap in any order (NONE) to be orthogonal
to each other (1.0). Further, PPMI is sensitive to
first-order overlap, but not at all to second-order
overlap (0.51 vs. 1.0). SVD also predicts orthog-
onality for the NONE-group (1.0) and shows sensi-
tivity to first-order overlap (0.34), but is extremely

2By sampling from a lognormal distribution we aim to
approximate the empirical frequency distribution of context
words. Context words receive probabilities by randomly sam-
pling 1000 values from f(x) = 1

x
√
2π

exp
(
− log(x)2

2

)
and

normalizing them to a probability distribution.
3Find the code generating the artificial pairs under:

https://github.com/Garrafao/SecondOrder.

order 1ST 2ND NONE

C1

a c
a d
b c
b d

a c
a d
b e
b f

a c
a d
b e
b f

C2

c u
c v
d w
d x

c u
c v
d u
d v

c u
c v
d w
d x

Table 1: Artificial co-occurrence pairs with context
overlap in different orders of co-occurrence (1ST, 2ND
and NONE). C1 and C2 give co-occurrence in first and
second order respectively. For each pair (a,c) shown
above we also add the reverse pair (c,a).

sensitive to second-order overlap: it predicts the
target words in 2ND to be perfectly similar to each
other (0.0), notwithstanding the fact that they have
no first-order context word overlap. SGNS shows
a similar behavior, although its vectors are dis-
tributed more densely: target words in NONE are
predicted to be least similar (0.79), while target
words in 1ST are more similar (0.11) and in 2ND

they are predicted to be completely similar (0.0).
We further hypothesize that the fact that for

SGNS and SVD the average cosine distance in 1ST

is higher than in 2ND is related to our choice to
make the context words C1 of the target words
in 1ST dissimilar to each other by assigning com-
pletely distinct context words C2 (see Table 1).
We test this hypothesis by creating a second artifi-
cial set of target-context pairs completely parallel
to the above-described set with the only difference
that 1ST has additional context overlap in C2. On
these targets words with overlap in both orders we
find that PPMI makes similar predictions (0.56) as
before, while for SVD and SGNS predictions drop
to 0.0, confirming our hypothesis.

Discussion. SGNS and SVD capture second-
order co-occurrence information. Notably, they
are more sensitive to the similarity of context
words than to the words themselves (2ND vs.
1ST), which means that they abstract over mere
co-occurrence with specific context words and
take into account the co-occurrence structure of
these words in the second order (and potentially
higher orders). PPMI does not have this property
and only measures context overlap in first order.
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Figure 1: Results of simulation experiment. Values
give average cosine distances across target words with
different levels of context overlap. Pair-wise differ-
ences between group means (except PPMI 2ND vs.
NONE) are statistically significant according to a two-
sample bootstrap test (p < 0.001, adjusted through
Bonferroni correction for 9 tests, two-tailed).

5 Experiment 2: Propagating
second-order co-occurrence
information

We now propagate second-order information to
the first-order level by extracting second-order
word-context pairs and adding them to the first-
order pairs. We hypothesize that the additional
second-order information will impact PPMI rep-
resentations positively and stronger than SVD and
SGNS, because we saw that the latter already cap-
ture second-order information. We reckon that the
additional information is beneficial for PPMI in
two ways: (i) it helps to generalize as described
in (1) and (2), and (ii) it overcomes data sparsity
for low-frequency words. Note that these two as-
pects are often highly related: with only a limited
amount of data available it is more likely that sim-
ilar words do not have exactly the same, but still
similar context words. Generalization then helps
to overcome sparsity.

Corpus. We use ukWaC (Baroni et al., 2009),
a > 1B token web-crawled corpus of English.
The corpus provides part-of-speech tagging and
lemmatization. We keep only the lemmas which
are tagged as nouns, adjectives or verbs. In or-
der to assure we have low-frequency words in the
test data, we create a small corpus by randomly
choosing 1M sentences and shuffling them. The
final corpus contains roughly 10M tokens. Un-
der these sparse conditions we expect to observe

strong effects on model performance highlighting
the differences between the models.

5.1 Pair Extraction
We first extract first-order word-context pairs by
iterating over all sentences and extracting one
word context pair (w,c) for each token w and each
context word c surrounding w in a symmetric win-
dow of size 5 (BASE pairs). Then, we extract ad-
ditional second-order pairs in the following way:
For each word type t in the corpus, we build a
second-order vector ~v by summing over all of t’s
first-order context token count vectors (Schütze,
1998). Then we randomly sample n second-order
context tokens from ~v (with replacement) where
each context type ci has a sampling probability of

~vi∑
j=1 ~vj

and ~vi is ~v’s ith entry. We then exclude all

sampled context tokens c = t.4

We extract second-order pairs only for words
below a specific co-occurrence frequency thresh-
old f to test the impact on sparse words separately.
We experiment with f ∈ {2k,20k,200k}. We set
n globally to 200% of t’s co-occurrence frequency
to add a substantial amount of information. For
each of the second-order pairs we add the reverse
pair (c,w). Finally, the respective second-order
pairs are combined with the base pairs and ran-
domly shuffled. In this way, we generate roughly
22/99/218M (2/20/200k) second-order pairs from
57M base pairs. Then we train each model on each
of the combined pair files separately.

5.2 Results
We evaluate the obtained vector spaces on Word-
Sim353 (Finkelstein et al., 2002), a standard hu-
man similarity judgment data set, by measuring
the Spearman correlation of the cosine similarity
for target word pairs with human judgments. The
results are shown in Figure 2. As we can see, the
models show different reactions to the additional
second-order information: PPMI is the only model
benefiting (in one case), while SVD and SGNS
never benefit from the additional information and
are always impacted negatively. The strongest
negative impact can be observed for SVD (-0.17).
PPMI shows a clear improvement with rather low-
frequency words (20k). Adding second-order in-
formation for high-frequency words (200k) has a
strong negative impact for PPMI and SVD.

4Find the code under: https://github.com/
Garrafao/SecondOrder.
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Figure 2: Results of experiment 2. Values give correla-
tion (Spearman’s ρ) of model predictions with human
similarity judgments.

Discussion. The different reactions of PPMI vs.
SVD and SGNS partly confirm our hypothesis
which was based on the findings in experiment 1:
only PPMI benefits from additional second-order
information. However, we did not expect the ob-
served negative impacts, especially the strong per-
formance drop for SVD. Moreover, it is notable
that SVD on the base pairs shows a much higher
performance (0.51) than SGNS and PPMI (0.43,
0.41), which is not the case in less sparse condi-
tions (Levy et al., 2015). This indicates that SVD
makes much better use of the available informa-
tion and overcomes data sparsity in this way. It re-
mains for future research to determine how much
the exploitation of higher-order co-occurrence in-
formation contributes to this clear performance ad-
vantage.

6 Conclusion

We showed that SGNS captures second-order co-
occurrence information, a property it shares with
SVD and distinguishes it from PPMI. We further
tested the reaction of the models when provided
with additional second-order information, expect-
ing that only PPMI would benefit. We find this
confirmed, but also observe unexpectedly strong
negative impacts on SVD by the supposedly re-
dundant information. In general, SVD turns out
to have strong performance advantages over PPMI
and SGNS in the sparse experimental conditions
we created.

Our findings are relevant for a variety of al-
gorithms relying on the SGNS architecture (i.a.
Grover and Leskovec, 2016; Bamler and Mandt,

2017). Future work will look into the relation-
ship between the second-order sensitivity of SVD
and SGNS and their high performances across
tasks. In addition, we aim to use the introduced
method of generating artificial context overlap to
see which higher orders of co-occurrence SVD,
SGNS and other embedding types (Pennington
et al., 2014; Peters et al., 2018; Athiwaratkun
et al., 2018) capture. Because the aim of the study
was only to test the second-order sensitivity of dif-
ferent models, we did not focus on finding the best
way to provide this information. Given the re-
sults for PPMI, however, developing a smoother
way to provide second-order information to mod-
els seems to be a promising starting point for fur-
ther research.
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Abstract

Monotonicity reasoning is one of the impor-
tant reasoning skills for any intelligent natural
language inference (NLI) model in that it re-
quires the ability to capture the interaction be-
tween lexical and syntactic structures. Since
no test set has been developed for monotonic-
ity reasoning with wide coverage, it is still
unclear whether neural models can perform
monotonicity reasoning in a proper way. To
investigate this issue, we introduce the Mono-
tonicity Entailment Dataset (MED). Perfor-
mance by state-of-the-art NLI models on the
new test set is substantially worse, under 55%,
especially on downward reasoning. In addi-
tion, analysis using a monotonicity-driven data
augmentation method showed that these mod-
els might be limited in their generalization
ability in upward and downward reasoning.

1 Introduction

Natural language inference (NLI), also known as
recognizing textual entailment (RTE), has been
proposed as a benchmark task for natural language
understanding. Given a premise P and a hypothe-
sis H , the task is to determine whether the premise
semantically entails the hypothesis (Dagan et al.,
2013). A number of recent works attempt to
test and analyze what type of inferences an NLI
model may be performing, focusing on various
types of lexical inferences (Glockner et al., 2018;
Naik et al., 2018; Poliak et al., 2018) and logical
inferences (Bowman et al., 2015b; Evans et al.,
2018).

Concerning logical inferences, monotonicity
reasoning (van Benthem, 1983; Icard and Moss,
2014), which is a type of reasoning based on word
replacement, requires the ability to capture the in-
teraction between lexical and syntactic structures.
Consider examples in (1) and (2).

(1) a. All [ workers ↓] [joined for a French dinner ↑]

b. All workers joined for a dinner
c. All new workers joined for a French dinner

(2) a. Not all [new workers ↑] joined for a dinner
b. Not all workers joined for a dinner

A context is upward entailing (shown by [... ↑])
that allows an inference from (1a) to (1b), where
French dinner is replaced by a more general con-
cept dinner. On the other hand, a downward
entailing context (shown by [... ↓]) allows an in-
ference from (1a) to (1c), where workers is re-
placed by a more specific concept new workers.
Interestingly, the direction of monotonicity can be
reversed again by embedding yet another down-
ward entailing context (e.g., not in (2)), as witness
the fact that (2a) entails (2b). To properly handle
both directions of monotonicity, NLI models must
detect monotonicity operators (e.g., all, not) and
their arguments from the syntactic structure.

For previous datasets containing monotonicity
inference problems, FraCaS (Cooper et al., 1994)
and the GLUE diagnostic dataset (Wang et al.,
2019) are manually-curated datasets for testing
a wide range of linguistic phenomena. How-
ever, monotonicity problems are limited to very
small sizes (FraCaS: 37/346 examples and GLUE:
93/1650 examples). The limited syntactic patterns
and vocabularies in previous test sets are obstacles
in accurately evaluating NLI models on mono-
tonicity reasoning.

To tackle this issue, we present a new evaluation
dataset1 that covers a wide range of monotonicity
reasoning that was created by crowdsourcing and
collected from linguistics publications (Section 3).
Compared with manual or automatic construction,
we can collect naturally-occurring examples by
crowdsourcing and well-designed ones from lin-
guistics publications. To enable the evaluation of

1The dataset will be made publicly available at
https://github.com/verypluming/MED.
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skills required for monotonicity reasoning, we an-
notate each example in our dataset with linguistic
tags associated with monotonicity reasoning.

We measure the performance of state-of-the-art
NLI models on monotonicity reasoning and inves-
tigate their generalization ability in upward and
downward reasoning (Section 4). The results show
that all models trained with SNLI (Bowman et al.,
2015b) and MultiNLI (Williams et al., 2018) per-
form worse on downward inferences than on up-
ward inferences.

In addition, we analyzed the performance of
models trained with an automatically created
monotonicity dataset, HELP (Yanaka et al., 2019).
The analysis with monotonicity data augmentation
shows that models tend to perform better in the
same direction of monotonicity with the training
set, while they perform worse in the opposite di-
rection. This indicates that the accuracy on mono-
tonicity reasoning depends solely on the major-
ity direction in the training set, and models might
lack the ability to capture the structural relations
between monotonicity operators and their argu-
ments.

2 Monotonicity

As an example of a monotonicity inference, con-
sider the example with the determiner every in (3);
here the premise P entails the hypothesis H .

(3) P : Every [NP person ↓] [VP bought a movie ticket ↑]
H: Every young person bought a ticket

Every is downward entailing in the first argument
(NP) and upward entailing in the second argument
(VP), and thus the term person can be more spe-
cific by adding modifiers (person ⊒ young per-
son), replacing it with its hyponym (person ⊒
spectator), or adding conjunction (person ⊒ per-
son and alien). On the other hand, the term buy a
ticket can be more general by removing modifiers
(bought a movie ticket ⊑ bought a ticket), replac-
ing it with its hypernym (bought a movie ticket
⊑ bought a show ticket), or adding disjunction
(bought a movie ticket ⊑ bought or sold a movie
ticket). Table 1 shows determiners modeled as bi-
nary operators and their polarities with respect to
the first and second arguments.

There are various types of downward operators,
not limited to determiners (see Table 2). As shown
in (4), if a propositional object is embedded in a
downward monotonic context (e.g., when), the po-
larity of words over its scope can be reversed.

Determiners First argument Second argument
every, each, all downward upward
some, a, a few, many,

upward upward
several, proper noun
any, no, few, at most X,

downward downward
fewer than X, less than X
the, both, most, this, that non-monotone upward
exactly non-monotone non-monotone

Table 1: Determiners and their polarities.

Category Examples
determiners every, all, any, few, no
negation not, n’t, never
verbs deny, prohibit, avoid
nouns absence of, lack of, prohibition
adverbs scarcely, hardly, rarely, seldom
prepositions without, except, but
conditionals if, when, in case that, provided that, unless

Table 2: Examples of downward operators.

(4) P : When [every [NP young person ↑] [VP bought a
ticket ↓]], [that shop was open]

H: When [every [NP person] [VP bought a movie
ticket]], [that shop was open]

Thus, the polarity (↑ and ↓), where the replace-
ment with more general (specific) phrases licenses
entailment, needs to be determined by the inter-
action of monotonicity properties and syntactic
structures; polarity of each constituent is calcu-
lated based on a monotonicity operator of func-
tional expressions (e.g., every, when) and their
function-term relations.

3 Dataset

3.1 Human-oriented dataset

To create monotonicity inference problems, we
should satisfy three requirements: (a) detect the
monotonicity operators and their arguments; (b)
based on the syntactic structure, induce the polar-
ity of the argument positions; and (c) replace the
phrase in the argument position with a more gen-
eral or specific phrase in natural and various ways
(e.g., by using lexical knowledge or logical con-
nectives). For (a) and (b), we first conduct polar-
ity computation on a syntactic structure for each
sentence, and then select premises involving up-
ward/downward expressions.

For (c), we use crowdsourcing to narrow or
broaden the arguments. The motivation for using
crowdsourcing is to collect naturally alike mono-
tonicity inference problems that include various
expressions. One problem here is that it is un-
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Figure 1: Overview of our human-oriented dataset cre-
ation. E: entailment, NE: non-entailment.

clear how to instruct workers to create monotonic-
ity inference problems without knowledge of natu-
ral language syntax and semantics. We must make
tasks simple for workers to comprehend and pro-
vide sound judgements. Moreover, recent stud-
ies (Gururangan et al., 2018; Poliak et al., 2018;
Tsuchiya, 2018) point out that previous crowd-
sourced datasets, such as SNLI (Bowman et al.,
2015a) and MultiNLI (Williams et al., 2018), in-
clude hidden biases. As these previous datasets
are motivated by approximated entailments, work-
ers are asked to freely write hypotheses given a
premise, which does not strictly restrict them to
creating logically complex inferences.

Taking these concerns into consideration, we
designed two-step tasks to be performed via
crowdsourcing for creating a monotonicity test set;
(i) a hypothesis creation task and (ii) a valida-
tion task. The task (i) is to create a hypothesis
by making some polarized part of an original sen-
tence more specific. Instead of writing a com-
plete sentence from scratch, workers are asked to
rewrite only a relatively short sentence. By re-
stricting workers to rewrite only a polarized part,
we can effectively collect monotonicity inference
examples. The task (ii) is to annotate an entail-
ment label for the premise-hypothesis pair gen-
erated in (i). Figure 1 summarizes the overview
of our human-oriented dataset creation. We used
the crowdsourcing platform Figure Eight for both
tasks.

3.1.1 Premise collection
As a resource, we use declarative sentences with
more than five tokens from the Parallel Mean-
ing Bank (PMB) (Abzianidze et al., 2017). The
PMB contains syntactically correct sentences an-

notated with its syntactic category in Combi-
natory Categorial Grammar (CCG; Steedman,
2000) format, which is suitable for our pur-
pose. To get a whole CCG derivation tree, we
parse each sentence by the state-of-the-art CCG
parser, depccg (Yoshikawa et al., 2017). Then,
we add a polarity to every constituent of the
CCG tree by the polarity computation system
ccg2mono (Hu and Moss, 2018) and make the po-
larized part a blank field.

We ran a trial rephrasing task on 500 exam-
ples and detected 17 expressions that were too
general and thus difficult to rephrase them in a
natural way (e.g., every one, no time). We re-
moved examples involving such expressions. To
collect more downward inference examples, we
select examples involving determiners in Table 1
and downward operators in Table 2. As a result,
we selected 1,485 examples involving expressions
having arguments with upward monotonicity and
1,982 examples involving expressions having ar-
guments with downward monotonicity.

3.1.2 Hypothesis creation
We present crowdworkers with a sentence whose
polarized part is underlined, and ask them to
replace the underlined part with more specific
phrases in three different ways. In the instruc-
tions, we showed examples rephrased in various
ways: by adding modifiers, by adding conjunc-
tion phrases, and by replacing a word with its hy-
ponyms.

Workers were paid US$0.05 for each set of sub-
stitutions, and each set was assigned to three work-
ers. To remove low-quality examples, we set the
minimum time it should take to complete each set
to 200 seconds. The entry in our task was re-
stricted to workers from native speaking English
countries. 128 workers contributed to the task, and
we created 15,339 hypotheses (7,179 upward ex-
amples and 8,160 downward examples).

3.1.3 Validation
The gold label of each premise-hypothesis pair
created in the previous task is automatically de-
termined by monotonicity calculus. That is, a
downward inference pair is labeled as entailment,
while an upward inference pair is labeled as non-
entailment.

However, workers sometimes provided some
ungrammatical or unnatural sentences such as the
case where a rephrased phrase does not satisfy the
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selectional restrictions (e.g., original: Tom doesn’t
live in Boston, rephrased: Tom doesn’t live in yes),
making it difficult to judge their entailment re-
lations. Thus, we performed an annotation task
to ensure accurate labeling of gold labels. We
asked workers about the entailment relation of
each premise-hypothesis pair as well as how natu-
ral it is.

Worker comprehension of an entailment rela-
tion directly affects the quality of inference prob-
lems. To avoid worker misunderstandings, we
showed workers the following definitions of labels
and five examples for each label:

1. entailment: the case where the hypothesis is
true under any situation that the premise de-
scribes.

2. non-entailment: the case where the hypoth-
esis is not always true under a situation that
the premise describes.

3. unnatural: the case where either the premise
and/or the hypothesis is ungrammatical or
does not make sense.

Workers were paid US$0.04 for each question,
and each question was assigned to three workers.
To collect high-quality annotation results, we im-
posed ten test questions on each worker, and re-
moved workers who gave more than three wrong
answers. We also set the minimum time it should
take to complete each question to 200 seconds.
1,237 workers contributed to this task, and we an-
notated gold labels of 15,339 premise-hypothesis
pairs.

Table 3 shows the numbers of cases where an-
swers matched gold labels automatically deter-
mined by monotonicity calculus. This table shows
that there exist inference pairs whose labels are
difficult even for humans to determine; there are
3,354 premise-hypothesis pairs whose gold labels
as annotated by polarity computations match with
those answered by all workers. We selected these
naturalistic monotonicity inference pairs for the
candidates of the final test set.

To make the distribution of gold labels symmet-
ric, we checked these pairs to determine if we can
swap the premise and the hypothesis, reverse their
gold labels, and create another monotonicity infer-
ence pair. In some cases, shown below, the gold
label cannot be reversed if we swap the premise
and the hypothesis.

Upward /cases(%) Downward /cases(%) Total /cases(%)
3 labels match 1,069 (7.0) 2,285 (14.9) 3,354 (21.9)
2 labels match 1,814 (11.8) 2,301 (15.0) 4,115 (26.8)
1 labels match 2,295 (15.0) 1,915 (12.5) 4,210 (27.5)
no match 1,998 (27.8) 1,652 (10.8) 3,650 (37.8)

Table 3: Numbers of cases where answers matched
automatically determined gold labels.

(a) Replacement with synonyms In (5), child
and kid are not hyponyms but synonyms, and the
premise P and the hypothesis H are paraphrases.

(5) P : Tom is no longer a child

H: Tom is no longer a kid

These cases are not strict downward inference
problems, in the sense that a phrase is not replaced
by its hyponym/hypernym.

(b) Non-constituents Consider the example (6).

(6) P : The moon has no atmosphere

H: The moon has no atmosphere, and the gravity
force is too low

The hypothesis H was created by asking workers
to make atmosphere in the premise P more spe-
cific. However, the additional phrase and the grav-
ity force is too low does not form constituents with
atmosphere. Thus, such examples are not strict
downward monotone inferences.

In such cases as (a) and (b), we do not swap
the premise and the hypothesis. In the end,
we collected 4,068 examples from crowdsourced
datasets.

3.2 Linguistics-oriented dataset

We also collect monotonicity inference problems
from previous manually curated datasets and lin-
guistics publications. The motivation is that pre-
vious linguistics publications related to mono-
tonicity reasoning are expected to contain well-
designed inference problems, which might be
challenging problems for NLI models.

We collected 1,184 examples from 11 linguis-
tics publications (Barwise and Cooper, 1981;
Hoeksema, 1986; Heim and Kratzer, 1998;
Bonevac et al., 1999; Fyodorov et al., 2003;
Geurts, 2003; Geurts and van der Slik, 2005;
Zamansky et al., 2006; Szabolcsi et al., 2008;
Winter, 2016; Denic et al., 2019). Regarding
previous manually-curated datasets, we collected
93 examples for monotonicity reasoning from the
GLUE diagnostic dataset, and 37 single-premise
problems from FraCaS.
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Genre Tags Premise Hypothesis Gold

Crowd

up There is a cat on the chair There is a cat sleeping on the chair NE
up: If you heard her speak English, you would take her If you heard her speak English, you would take her
cond for a native American for an American E
up:rev: Dogs and cats have all the good qualities of people Dogs have all the good qualities of people without
conj without at the same time possessing their weaknesses at the same time possessing their weaknesses E
up:lex He approached the boy reading a magazine He approached the boy reading a book E
down:lex Tom hardly ever listens to music Tom hardly ever listens to rock ’n’ roll E
down:conj You don’t like love stories and sad endings You don’t like love stories NE
down:cond If it is fine tomorrow, we’ll go on a picnic If it is fine tomorrow in the field, we’ll go on a picnic E
down I never had a girlfriend before I never had a girlfriend taller than me before E

Paper

up:rev Every cook who is not a tall man ran Every cook who is not a man ran E
up:disj Every man sang Every man sang or danced E
up:lex: None of the sopranos sang with fewer than three of None of the sopranos sang with fewer than three of
rev the tenors the male singers E
non Exactly one man ran quickly Exactly one man ran NE
down At most three elephants are blue At most three elephants are navy blue E

Table 4: Examples in the MED dataset. Crowd: problems collected through crowdsourcing, Paper: problems
collected from linguistics publications, up: upward monotone, down: downward monotone, non: non-monotone,
cond: condisionals, rev: reverse, conj: conjunction, disj: disjunction, lex: lexical knowledge, E: entailment, NE:
non-entailment.

Type Label Crowd Paper Total

Upward (1,820)
Entailment 323 305 628
Non-entailment 893 299 1,192

Downward (3,270)
Entailment 1,871 201 2,072
Non-entailment 979 219 1,198

Non-monotone (292)
Entailment 0 15 15
Non-entailment 2 275 277

Total 4,068 1,314 5,382

Table 5: Statistics for the MED dataset.

Both the GLUE diagnostic dataset and FraCaS
categorize problems by their types of monotonic-
ity reasoning, but we found that each dataset has
different classification criteria.2 Thus, following
GLUE, we reclassified problems into three types
of monotone reasoning (upward, downward, and
non-monotone) by checking if they include (i) the
target monotonicity operator in both the premise
and the hypothesis and (ii) the phrase replacement
in its argument position. In the GLUE diagnos-
tic dataset, there are several problems whose gold
labels are contradiction. We regard them as non-
entailment in that the premise does not semanti-
cally entail the hypothesis.

3.3 Statistics

We merged the human-oriented dataset created via
crowdsourcing and the linguistics-oriented dataset
created from linguistics publications to create the
current version of the monotonicity entailment
dataset (MED). Table 4 shows some examples
from the MED dataset. We can see that our dataset

2FraCaS categorizes each problem by whether its replace-
ment broadens an argument (upward monotone) or narrows it
(downward monotone).

contains various phrase replacements (e.g., con-
junction, relative clauses, and comparatives). Ta-
ble 5 reports the statistics of the MED dataset, in-
cluding 5,382 premise-hypothesis pairs (1,820 up-
ward examples, 3,270 downward examples, and
292 non-monotone examples). Regarding non-
monotone problems, gold labels are always non-
entailment, whether a hypothesis is more spe-
cific or general than its premise, and thus almost
all non-monotone problems are labeled as non-
entailment.3 The size of the word vocabulary in
the MED dataset is 4,023, and overlap ratios of
vocabulary with previous standard NLI datasets is
95% with MultiNLI and 90% with SNLI.

We assigned a set of annotation tags for lin-
guistic phenomena to each example in the test set.
These tags allow us to analyze how well models
perform on each linguistic phenomenon related to
monotonicity reasoning. We defined 6 tags (see
Table 4 for examples):

1. lexical knowledge (2,073 examples): infer-
ence problems that require lexical relations
(i.e., hypernyms, hyponyms, or synonyms)

2. reverse (240 examples): inference problems
where a propositional object is embedded in
a downward environment more than once

3. conjunction (283 examples): inference prob-
lems that include the phrase replacement by
adding conjunction (and) to the hypothesis

315 non-monotone problems which include the replace-
ment with synonyms are labeled as entailment.
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4. disjunction (254 examples): inference prob-
lems that include the phrase replacement by
adding disjunction (or) to the hypothesis

5. conditionals (149 examples): inference prob-
lems that include conditionals (e.g., if, when,
unless) in the hypothesis 4

6. negative polarity items (NPIs) (338 exam-
ples): inference problems that include NPIs
(e.g., any, ever, at all, anything, anyone, any-
more, anyhow, anywhere) in the hypothesis

4 Results and Discussion

4.1 Baselines
To test the difficulty of our dataset, we checked
the majority class label and the accuracies
of five state-of-the-art NLI models adopt-
ing different approaches: BiMPM (Bilateral
Multi-Perspective Matching Model; Wang et al.,
2017), ESIM (Enhanced Sequential Inference
Model; Chen et al., 2017), Decomposable
Attention Model (Parikh et al., 2016), KIM
(Knowledge-based Inference Model; Chen et al.,
2018), and BERT (Bidirectional Encoder Repre-
sentations from Transformers model; Devlin et al.,
2019). Regarding BERT, we checked the perfor-
mance of a model pretrained on Wikipedia and
BookCorpus for language modeling and trained
with SNLI and MultiNLI. For other models, we
checked the performance trained with SNLI.
In agreement with our dataset, we regarded the
prediction label contradiction as non-entailment.

Table 6 shows that the accuracies of all models
were better on upward inferences, in accordance
with the reported results of the GLUE leader-
board. The overall accuracy of each model was
low. In particular, all models underperformed the
majority baseline on downward inferences, despite
some models having rich lexical knowledge from
a knowledge base (KIM) or pretraining (BERT).
This indicates that downward inferences are diffi-
cult to perform even with the expansion of lexical
knowledge. In addition, it is interesting to see that
if a model performed better on upward inferences,
it performed worse on downward inferences. We
will investigate these results in detail below.

4When-clauses can have temporal and non-temporal inter-
pretations (Moens and Steedman, 1988). We assign the con-
ditional tag to those cases where when is interchangeable with
if, thus excluding those cases where when-clauses have tem-
poral episodic interpretation (e.g., When she came back from
the trip, she bought a gift).

Model Train Upward Downward Non All
Majority 65.5 63.3 99.3 50.4

BiMPM SNLI 53.5 57.6 27.4 54.6
ESIM SNLI 71.1 45.2 41.8 53.8
DeComp SNLI 66.1 42.1 64.4 51.4
KIM SNLI 78.8 30.3 53.1 48.0
BERT SNLI 50.1 46.8 7.5 45.8
BERT MNLI 82.7 22.8 52.7 44.7

Table 6: Accuracies (%) for different models and train-
ing datasets.

Training set Upward Downward Non All
MNLI 82.7 22.8 52.7 44.7
MNLI–Hyp 34.3 18.3 31.5 24.4
MNLI+HELP 76.0 70.3 59.9 71.6
MNLI+HELP–Hyp 61.3 30.5 34.9 41.1

Table 7: Evaluation results on types of monotonicity
reasoning. –Hyp: Hypothesis-only model.

4.2 Data augmentation for analysis

To explore whether the performance of models on
monotonicity reasoning depends on the training
set or the model themselves, we conducted fur-
ther analysis performed by data augmentation with
the automatically generated monotonicity dataset
HELP (Yanaka et al., 2019). HELP contains 36K
monotonicity inference examples (7,784 upward
examples, 21,192 downward examples, and 1,105
non-monotone examples). The size of the HELP
word vocabulary is 15K, and the overlap ratio of
vocabulary between HELP and MED is 15.2%.

We trained BERT on MultiNLI only and on
MultiNLI augmented with HELP, and compared
their performance. Following Poliak et al. (2018),
we also checked the performance of a hypothesis-
only model trained with each training set to test
whether our test set contains undesired biases.

4.2.1 Effects of data augmentation
Table 7 shows that the performance of BERT
with the hypothesis-only training set dropped
around 10-40% as compared with the one with the
premise-hypothesis training set, even if we use the
data augmentation technique. This indicates that
the MED test set does not allow models to pre-
dict from hypotheses alone. Data augmentation
by HELP improved the overall accuracy to 71.6%,
but there is still room for improvement. In addi-
tion, while adding HELP increased the accuracy
on downward inferences, it slightly decreased ac-
curacy on upward inferences. The size of down-
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Figure 2: Accuracy throughout training BERT (i) with only upward examples and (ii) with only downward exam-
ples. We checked the accuracy at sizes [50, 100, 200, 500, 1000, 2000, 5000] for each direction. (iii) Performance
on different ratios of upward/downward training sets. The total size of the training sets was 5,000 examples.

ward examples in HELP is much larger than that
of upward examples. This might improve accu-
racy on downward inferences, but might decrease
accuracy on upward inferences.

To investigate the relationship between accu-
racy on upward inferences and downward infer-
ences, we checked the performance throughout
training BERT with only upward and downward
inference examples in HELP (Figure 2 (i), (ii)).
These two figures show that, as the size of the up-
ward training set increased, BERT performed bet-
ter on upward inferences but worse on downward
inferences, and vice versa.

Figure 2 (iii) shows performance on a different
ratio of upward and downward inference training
sets. When downward inference examples con-
stitute more than half of the training set, accura-
cies on upward and downward inferences were re-
versed. As the ratio of downward inferences in-
creased, BERT performed much worse on upward
inferences. This indicates that a training set in
one direction (upward or downward entailing) of
monotonicity might be harmful to models when
learning the opposite direction of monotonicity.

Previous work using HELP (Yanaka et al.,
2019) reported that the BERT trained with
MultiNLI and HELP containing both upward
and downward inferences improved accuracy
on both directions of monotonicity. MultiNLI
rarely comes from downward inferences (see Sec-
tion 4.3), and its size is large enough to be im-
mune to the side-effects of downward inference
examples in HELP. This indicates that MultiNLI
might act as a buffer against side-effects of the
monotonicity-driven data augmentation technique.

Genre −HELP +HELP △

Crowd

Up 87.1 83.6 −3.5
Down 21.2 70.3 +49.1

Non 100.0 100.0 ±0.0
All 40.9 74.3 +33.4

Paper

Up 74.5 60.8 −13.7
Down 33.8 69.5 +35.7

Non 52.4 59.7 +7.3
All 56.6 63.3 +6.7

Table 8: Evaluation results by genre. Paper: problems
collected from linguistics publications, Crowd: prob-
lems via crowdsourcing.

4.2.2 Linguistics-oriented versus
human-oriented

Table 8 shows the evaluation results by genre.
This result shows that inference problems col-
lected from linguistics publications are more chal-
lenging than crowdsourced inference problems,
even if we add HELP to training sets. As shown
in Figure 2, the change in performance on prob-
lems from linguistics publications is milder than
that on problems from crowdsourcing. This re-
sult also indicates the difficulty of problems from
linguistics publications. Regarding non-monotone
problems collected via crowdsourcing, there are
very few non-monotone problems, so accuracy is
100%. Adding non-monotone problems to our test
set is left for future work.

4.2.3 Linguistic phenomena
Table 9 shows the evaluation results by type of lin-
guistic phenomenon. While accuracy on problems
involving NPIs and conditionals was improved on
both upward and downward inferences, accuracy
on problems involving conjunction and disjunc-
tion was improved on only one direction. In ad-
dition, it is interesting to see that the change in
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Tag −HELP +HELP △

Up

Lexical (743) 81.0 70.8 −10.2
non-Lexical (1,077) 84.1 79.6 −4.5
NPIs (64) 20.3 35.9 +15.6
Conditionals (29) 51.7 62.1 +9.4
Conjunction (175) 94.3 88.0 −6.3
Disjunction (96) 4.2 32.3 +28.1
Reverse (240) 74.2 28.7 −45.5

Down

Lexical (477) 46.1 64.6 +18.5
non-Lexical (2,793) 18.8 71.2 +52.4
NPIs (266) 44.0 60.2 +16.2
Conditionals (120) 15.8 20.0 +4.2
Conjunction (106) 24.5 40.6 +16.1
Disjunction (138) 80.4 40.6 −39.8

Non

Lexical (182) 58.2 64.3 +6.1
non-Lexical (110) 43.6 52.7 +9.1
NPIs (8) 0.0 0.0 ±0.0
Disjunction (20) 10.0 15.0 +5.0

Table 9: Evaluation results by linguistic phenomenon
type. (non-)Lexical: problems that (do not) require lex-
ical relations. Numbers in parentheses are numbers of
problems.

accuracy on conjunction was opposite to that on
disjunction. Downward inference examples in-
volving disjunction are similar to upward infer-
ence ones; that is, inferences from a sentence to a
shorter sentence are valid (e.g., Not many campers
have had a sunburn or caught a cold ⇒ Not many
campers have caught a cold). Thus, these results
were also caused by addition of downward infer-
ence examples. Also, accuracy on problems an-
notated with reverse tags was apparently better
without HELP because all examples are upward
inferences embedded in a downward environment
twice.

Table 9 also shows that accuracy on condition-
als was better on upward inferences than that on
downward inferences. This indicates that BERT
might fail to capture the monotonicity property
that conditionals create a downward entailing con-
text in their scope while they create an upward en-
tailing context out of their scope.

Regarding lexical knowledge, the data augmen-
tation technique improved the performance much
better on downward inferences which do not re-
quire lexical knowledge. However, among the 394
problems for which all models provided wrong
answers, 244 problems are non-lexical inference
problems. This indicates that some non-lexical in-
ference problems are more difficult than lexical in-
ference problems, though accuracy on non-lexical
inference problems was better than that on lexical
inference problems.

4.3 Discussion
One of our findings is that there is a type of down-
ward inferences to which every model fails to pro-
vide correct answers. One such example is con-
cerned with the contrast between few and a few.
Among 394 problems for which all models pro-
vided wrong answers, 148 downward inference
problems were problems involving the downward
monotonicity operator few such as in the following
example:

(7) P : Few of the books had typical or marginal readers
H: Few of the books had some typical readers

We transformed these downward inference
problems to upward inference problems in two
ways: (i) by replacing the downward operator few
with the upward operator a few, and (ii) by re-
moving the downward operator few. We tested
BERT using these transformed test sets. The re-
sults showed that BERT predicted the same an-
swers for the transformed test sets. This suggests
that BERT does not understand the difference be-
tween the downward operator few and the upward
operator a few.

The results of crowdsourcing tasks in Sec-
tion 3.1.3 showed that some downward inferences
can naturally be performed in human reasoning.
However, we also found that the MultiNLI train-
ing set (Williams et al., 2018), which is one of
the dataset created from naturally-occurring texts,
contains only 77 downward inference problems,
including the following one.5

(8) P : No racin’ on the Range
H: No horse racing is allowed on the Range

One possible reason why there are few downward
inferences is that certain pragmatic factors can
block people to draw a downward inference. For
instance, in the case of the inference problem in
(9), unless the added disjunct in H , i.e., a small
cat with green eyes, is salient in the context, it
would be difficult to draw the conclusion H from
the premise P .

(9) P : I saw a dog
H: I saw a dog or a small cat with green eyes

Such pragmatic factors would be one of the rea-
sons why it is difficult to obtain downward infer-
ences in naturally occurring texts.

5The MultiNLI training set has 1,700 inference problems
where the downward entailing operators no and never occur
in both the premise and the hypothesis, but most of them are
not an instance of downward inferences.
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5 Conclusion

We introduced a large monotonicity entailment
dataset, called MED. To illustrate the usefulness
of MED, we tested state-of-the-art NLI models,
and found that performance on the new test set
was substantially worse for all state-of-the-art NLI
models. In addition, the accuracy on downward in-
ferences was inversely proportional to the one on
upward inferences.

An experiment with the data augmentation tech-
nique showed that accuracy on upward and down-
ward inferences depends on the proportion of up-
ward and downward inferences in the training set.
This indicates that current neural models might
have limitations on their generalization ability in
monotonicity reasoning. We hope that the MED
will be valuable for future research on more ad-
vanced models that are capable of monotonicity
reasoning in a proper way.
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Abstract

Self-explaining text categorization requires a
classifier to make a prediction along with sup-
porting evidence. A popular type of evidence
is sub-sequences extracted from the input text
which are sufficient for the classifier to make
the prediction. In this work, we define multi-
granular ngrams as basic units for explanation,
and organize all ngrams into a hierarchical
structure, so that shorter ngrams can be reused
while computing longer ngrams. We lever-
age a tree-structured LSTM to learn a context-
independent representation for each unit via
parameter sharing. Experiments on medical
disease classification show that our model is
more accurate, efficient and compact than BiL-
STM and CNN baselines. More importantly,
our model can extract intuitive multi-granular
evidence to support its predictions.

1 Introduction

Increasingly complex neural networks have
achieved highly competitive results for many
NLP tasks (Vaswani et al., 2017; Devlin et al.,
2018), but they prevent human experts from
understanding how and why a prediction is made.
Understanding how a prediction is made can be
very important for certain domains, such as the
medical domain. Recent research has started to
investigate models with self-explaining capability,
i.e. extracting evidence to support their final
predictions (Li et al., 2015; Lei et al., 2016;
Lin et al., 2017; Mullenbach et al., 2018). For
example, in order to make diagnoses based on
the medical report in Table 1, the highlighted
symptoms may be extracted as evidence.

Two methods have been proposed on how to
jointly provide highlights along with classifica-
tion. (1) an extraction-based method (Lei et al.,
2016), which first extracts evidences from the
original text and then makes a prediction solely
based on the extracted evidences; (2) an attention-
based method (Lin et al., 2017; Mullenbach et al.,
2018), which leverages the self-attention mecha-

Medical Report: The patient was admitted to the
Neurological Intensive Care Unit for close observa-
tion. She was begun on heparin anticoagulated

carefully secondary to the petechial bleed . She
started weaning from the vent the next day. She
was started on Digoxin to control her rate and her
Cardizem was held. She was started on antibiotics
for possible aspiration pneumonia . Her chest x-

ray showed retrocardiac effusion . She had some
bleeding after nasogastric tube insertion .

Diagnoses: Cerebral artery occlusion; Unspecified es-
sential hypertension; Atrial fibrillation; Diabetes melli-
tus.

Table 1: A medical report snippet and its diagnoses.

nism to show the importance of basic units (words
or ngrams) through their attention weights.

However, previous work has several limitations.
Lin et al. (2017), for example, take single words as
basic units, while meaningful information is usu-
ally carried by multi-word phrases. For instance,
useful symptoms in Table 1, such as “bleeding af-
ter nasogastric tube insertion”, are larger than a
single word. Another issue of Lin et al. (2017)
is that their attention model is applied on the rep-
resentation vectors produced by an LSTM. Each
LSTM output contains more than just the infor-
mation of that position, thus the real range for
the highlighted position is unclear. Mullenbach
et al. (2018) defines all 4-grams of the input text
as basic units and uses a convolutional layer to
learn their representations, which still suffers from
fixed-length highlighting. Thus the explainability
of the model is limited. Lei et al. (2016) intro-
duce a regularizer over the selected (single-word)
positions to encourage the model to extract larger
phrases. However, their method can not tell how
much a selected unit contributes to the model’s de-
cision through a weight value.

In this paper, we study what the meaningful
units to highlight are. We define multi-granular
ngrams as basic units, so that all highlighted symp-
toms in Table 1 can be directly used for explain-
ing the model. Different ngrams can have over-
lap. To improve the efficiency, we organize all
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Figure 1: A generic architecture.

ngrams into a hierarchical structure, such that the
shorter ngram representations can be reused to
construct longer ngram representations. Experi-
ments on medical disease classification show that
our model is more accurate, efficient and compact
than BiLSTM and CNN baselines. Furthermore,
our model can extract intuitive multi-granular evi-
dence to support its predictions.

2 Generic architecture and baselines

Our work leverages the attention-based self-
explaining method (Lin et al., 2017), as shown in
Figure 1. First, our text encoder (§3) formulates an
input text into a list of basic units, learning a vec-
tor representation for each, where the basic units
can be words, phrases, or arbitrary ngrams. Then,
the attention mechanism is leveraged over all basic
units, and sums up all unit representations based
on the attention weights {α1, ..., αn}. Eventually,
the attention weight αi will be used to reveal how
important a basic unit hi is. The last prediction
layer takes the fixed-length text representation t
as input, and makes the final prediction.

Baselines: We compare two types of baseline
text encoders in Figure 1. (1) Lin et al. (2017)
(BiLSTM), which formulates single word posi-
tions as basic units, and computes the vector hi

for the i-th word position with a BiLSTM; (2) Ex-
tension of Mullenbach et al. (2018) (CNN). The
original model in (Mullenbach et al., 2018) only
utilizes 4-grams. Here we extend this model to
take all unigrams, bigrams, and up to n-grams as
the basic units.

For a fair comparison, both our approach and
the baselines share the same architecture, and the
only difference is the text encoder used.

(a) tree (b) pyramid

(c) left-branching forest
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Disease type: cardiovascular diseases
Document: Seven-pathogen tricuspid endocarditis in an intravenous drug abuser . Pitfalls in labo-

ratory diagnosis . Polymicrobial endocarditis is being reported with increasing frequency in drug
abusers . However , the full extent of infection may be unrecognized with routine blood culture
techniques because of the overgrowth of more fastidious organisms by other pathogens . This report
documents an intravenous drug abuser with the first reported case of tricuspid valve endocarditis in-
volving seven pathogens , discusses pitfalls of routine blood cultures and examines the role of the
laboratory in microbiologic diagnosis .

Table 1: Highlighted ngrams by our model, where darker colors means higher weights.
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Figure 11: Left-branch forest.
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Figure 12: Pyramid Structure.
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Figure 2: Structures for a sentence w1w2w3w4, where
each node corresponds to a phrase or ngram.

3 Multi-granular text encoder

We propose the multi-granular text encoder to deal
with drawbacks (as mentioned in the third para-
graph of Section 1) of our baselines.

Structural basic units: We define basic units
for the input text as multi-granular ngrams, orga-
nizing ngrams in four different ways. Taking a
synthetic sentence w1w2w3w4 as the running ex-
ample, we illustrate these structures in Figure 2
(a), (b), (c) and (d), respectively. The first is a
tree structure (as shown in Figure 2(a)) that in-
cludes all phrases from a (binarized) constituent
tree over the input text, where no cross-boundary
phrases exists. The second type (as shown in Fig-
ure 2 (b,c,d)) includes all possible ngrams from the
input text, which is a superset of the tree structure.
In order to reuse representations of smaller ngrams
while encoding bigger ngrams, all ngrams are or-
ganized into hierarchical structures in three differ-
ent ways. First, inspired by Zhao et al. (2015),
a pyramid structure is created for all ngrams as
shown in Figure 2(b), where leaf nodes are uni-
grams of the input text, and higher level nodes cor-
respond to higher-order ngrams. A disadvantage
of the pyramid structure is that some lower level
nodes may be used repeatedly while encoding
higher level nodes, which may improperly aug-
ment the influence of the repeated units. For exam-
ple, when encoding the trigram node “w1w2w3”,
the unigram node “w2” is used twice through two
bigram nodes “w1w2” and “w2w3”. To tackle
this issue, a left-branching forest structure is con-
structed for all ngrams as shown in Figure 2(c),
where ngrams with the same prefix are grouped
together into a left-branching binary tree, and, in
this arrangement, multiple trees construct a forest.
Similarly, we construct a right-branching forest as
shown in Figure 2(d).
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Encoding: We leverage a tree-structured LSTM
composition function (Tai et al., 2015; Zhu et al.,
2015; Teng and Zhang, 2016) to compute node
embeddings for all structures in Figure 2. For-
mally, the state of each node is represented as a
pair of one hidden vector h and one memory rep-
resentation c, which are calculated by composing
the node’s label embedding x and states of its left
child 〈h l, c l〉 and right child 〈h r, c r〉 with gated
functions:

i = σ(W 1x+ U1
l h

l + U1
rh

r + b1) (1)

f l = σ(W 2x+ U2
l h

l + U2
rh

r + b2) (2)

f r = σ(W 3x+ U3
l h

l + U3
rh

r + b3) (3)

o = σ(W 4x+ U4
l h

l + U4
rh

r + b4) (4)

u = tanh(W 5x+ U5
l h

l + U5
rh

r + b5) (5)

c = i� u+ f l � h l + f r � h r (6)

h = o� tanh(c) (7)

where σ is the sigmoid activation function, � is
the elementwise product, i is the input gate, f l

and f r are the forget gates for the left and right
child respectively, and o is the output gate. We
set x as the pre-trained word embedding for leaf
nodes, and zero vectors for other nodes. The rep-
resentations for all units (nodes) can be obtained
by encoding each basic unit in a bottom-up order.

Comparison with baselines Our encoder is
more efficient than CNN while encoding big-
ger ngrams, because it reuses representations of
smaller ngrams. Furthermore, the same parame-
ters are shared across all ngrams, which makes our
encoder more compact, whereas the CNN base-
line has to define different filters for different or-
der of ngrams, so it requires much more parame-
ters. Experiments show that using basic units up
to 7-grams to construct the forest structure is good
enough, which makes our encoder more efficient
than BiLSTM. Since in our encoder, all ngrams
with the same order can be computed in parallel,
and the model needs at most 7 iterative steps along
the depth dimension for representing a given text
of arbitrary length.

4 Experiments

Dataset: We experiment on a public medical text
classification dataset.1 Each instance consists of
a medical abstract with an average length of 207

1https://github.com/SnehaVM/Medical-Text-
Classification

Figure 3: Influence of n-gram order.

Model Train Time Eval Time ACC #Param.

CNN 57.0 2.6 64.8 848,228
BiLSTM 92.1 4.6 64.5 147,928
LeftForest 30.3 1.4 66.2 168,228

Table 2: Efficiency evaluation.

tokens, and one label out of five categories in-
dicating which disease this document is about.
We randomly split the dataset into train/dev/test
sets by 8:1:1 for each category, and end up with
11,216/1,442/1,444 instances for each set.

Hyperparameters We use the 300-dimensional
GloVe word vectors pre-trained from the 840B
Common Crawl corpus (Pennington et al., 2014),
and set the hidden size as 100 for node embed-
dings. We apply dropout to every layer with a
dropout ratio 0.2, and set the batch size as 50. We
minimize the cross-entropy of the training set with
the ADAM optimizer (Kingma and Ba, 2014), and
set the learning rate is to 0.001. During training,
the pre-trained word embeddings are not updated.

4.1 Properties of the multi-granular encoder

Influence of the n-gram order: For CNN and our
LeftForest encoder, we vary the order of ngrams
from 1 to 9, and plot results in Figure 3. For
BiLSTM, we draw a horizontal line according
to its performance, since the ngram order does
not apply. When ngram order is less than 3,
both CNN and LeftForest underperform BiLSTM.
When ngram order is over 3, LeftForest outper-
forms both baselines. Therefore, in terms of accu-
racy, our multi-granular text encoder is more pow-
erful than baselines.

Efficiency: We set ngram order as 7 for both
CNN and our encoder. Table 2 shows the time
cost (seconds) of one iteration over the training set
and evaluation on the development set. BiLSTM
is the slowest model, because it has to scan over
the entire text sequentially. LeftForest is almost
2x faster than CNN, because LeftForest reuses
lower-order ngrams while computing higher-order
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Model Accuracy

BiLSTM 62.7
CNN 62.5

Tree 63.8
Pyramid 63.7
LeftForest 64.6
RightForest 64.5
BiForest 65.2

Table 3: Test set results.

Figure 4: Effectiveness of the extracted evidence.

ngrams. This result reveals that our encoder is
more efficient than baselines.

Model size: In Table 2, the last two columns
show the accuracy and number of parameters for
each model. LeftForest contains much less param-
eters than CNN, and it gives a better accuracy than
BiLSTM with only a small amount of extra param-
eters. Therefore, our encoder is more compact.

4.2 Model performance

Table 3 lists the accuracy on the test set, where
BiForest represents each ngram by concatenat-
ing representations of this ngram from both the
LeftForest and the RightForest encoders. We get
several interesting observations: (1) Our multi-
granular text encoder outperforms both the CNN
and BiLSTM baselines regardless of the structure
used; (2) The LeftForest and RightForest encoders
work better than the Tree encoder, which shows
that representing texts with more ngrams is helpful
than just using the non-overlapping phrases from
a parse tree; (3) The LeftForest and RightForest
encoders give better performance than the Pyra-
mid encoder, which verifies the advantages of or-
ganizing ngrams with forest structures; (4) There
is no significant difference between the LeftFor-
est encoder and the RightForest encoder. How-
ever, by combining them, the BiForest encoder
gets the best performance among all models, in-
dicating that the LeftForest encoder and the Right-
Forest encoder complement each other for better
accuracy.

4.3 Analysis of explainability

Qualitative analysis The following text is a
snippet of an example from the dev set. We lever-
age our BiForest model to extract ngrams whose
attention scores are higher than 0.05, and use the
bold font to highlight them. We extracted three
ngrams as supporting evidence for its predicted
category “nervous system diseases”. Both the
spontaneous extradural spinal hematoma and the
spinal arteriovenous malformation are diseases re-
lated to the spinal cord, therefore they are good
evidence to indicate the text is about “nervous sys-
tem diseases”.

Snippet: Value of magnetic resonance imaging in spon-
taneous extradural spinal hematoma due to vascular mal-

formation : case report . A case of spinal cord compression

due to spontaneous extradural spinal hematoma is reported

. A spinal arteriovenous malformation was suspected on the

basis of magnetic resonance imaging. Early surgical explo-

ration allowed a complete neurological recovery .

Quantitative analysis For each instance in the
training set and the dev set, we utilize the atten-
tion scores from BiForest to sort all ngrams, and
create different copies of the training set and de-
velopment set by only keeping the first n impor-
tant words. We then train and evaluate a BiLSTM
model with the newly created dataset. We vary the
number of words n among {1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 20, 30, 40, 50}, and show the corresponding
accuracy with the green triangles in Figure 4. We
define a Random baseline by randomly selecting a
sub-sequence containing n words, and plot its ac-
curacy with blue squares in Figure 4. We also take
a BiLSTM model trained with the entire texts as
the upper bound (the horizontal line in Figure 4).
When using only a single word for representing
instances, single words extracted from our BiFor-
est model are significantly more effective than ran-
domly picked single words. When utilizing up to
five extracted words from our BiForest model for
representing each instance, we can obtain an accu-
racy very close to the upper bound. Therefore, the
extracted evidence from our BiForest model are
truly effective for representing the instance and its
corresponding category.

5 Conclusion

We proposed a multi-granular text encoder for
self-explaining text categorization. Comparing
with the existing BiLSTM and CNN baselines, our
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model is more accurate, efficient and compact. In
addition, our model can extract effective and intu-
itive evidence to support its predictions.

References
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2016.
Rationalizing neural predictions. arXiv preprint
arXiv:1606.04155.

Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky.
2015. Visualizing and understanding neural models
in nlp. arXiv preprint arXiv:1506.01066.

Zhouhan Lin, Minwei Feng, Cicero Nogueira dos San-
tos, Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua
Bengio. 2017. A structured self-attentive sentence
embedding. arXiv preprint arXiv:1703.03130.

James Mullenbach, Sarah Wiegreffe, Jon Duke, Jimeng
Sun, and Jacob Eisenstein. 2018. Explainable pre-
diction of medical codes from clinical text. arXiv
preprint arXiv:1802.05695.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP.

Kai Sheng Tai, Richard Socher, and Christopher D
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. arXiv preprint arXiv:1503.00075.

Zhiyang Teng and Yue Zhang. 2016. Bidirectional
tree-structured lstm with head lexicalization. arXiv
preprint arXiv:1611.06788.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 6000–6010.

Han Zhao, Zhengdong Lu, and Pascal Poupart. 2015.
Self-adaptive hierarchical sentence model. In IJCAI,
pages 4069–4076.

Xiaodan Zhu, Parinaz Sobihani, and Hongyu Guo.
2015. Long short-term memory over recursive
structures. In International Conference on Machine
Learning, pages 1604–1612.

45



Proceedings of the Second BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, pages 46–55
Florence, Italy, August 1, 2019. c©2019 Association for Computational Linguistics

The meaning of “most” for visual question answering models

Alexander Kuhnle
Department of Computer Science

and Technology
University of Cambridge

Cambridge, United Kingdom
aok25@cam.ac.uk

Ann Copestake
Department of Computer Science

and Technology
University of Cambridge

Cambridge, United Kingdom
aac10@cam.ac.uk

Abstract

The correct interpretation of quantifier state-
ments in the context of a visual scene requires
non-trivial inference mechanisms. For the ex-
ample of “most”, we discuss two strategies
which rely on fundamentally different cogni-
tive concepts. Our aim is to identify what strat-
egy deep learning models for visual question
answering learn when trained on such ques-
tions. To this end, we carefully design data
to replicate experiments from psycholinguis-
tics where the same question was investigated
for humans. Focusing on the FiLM visual
question answering model, our experiments
indicate that a form of approximate number
system emerges whose performance declines
with more difficult scenes as predicted by We-
ber’s law. Moreover, we identify confounding
factors, like spatial arrangement of the scene,
which impede the effectiveness of this system.

1 Introduction

Deep learning methods have been very successful
in many natural language processing tasks, rang-
ing from syntactic parsing to machine translation
to image captioning. However, despite signifi-
cantly raised performance scores on benchmark
datasets, researchers increasingly worry about in-
terpretability and indeed quality of model deci-
sions. We see two distinct research endeavors
here, one being more pragmatic, forward-oriented,
and guided by the question “Can a system solve
this task?”, the other being more analytic, reflec-
tive, and motivated by the question “How does
a system solve this task?”. In other words, the
former aspires to improve performance, while the
latter aims to increase our understanding of deep
learning models.

By ‘understanding’ here we mean observing
a reasoning mechanism that, if not human-like,
at least is cognitively plausible. This is by no

paired random partitioned

“More than half the shapes are red shapes?”

Figure 1: Three types of spatial arrangement of ob-
jects which may or may not affect the performance of
a mechanism for verifying “most” statements. Going
from left to right, a strategy based on pairing entities of
each set and identifying the remainder presumably gets
more difficult, while a strategy based on comparing set
cardinalities does not.

means necessary for practically solving a task,
however, we highlight two reasons why being able
to explain model behavior is nonetheless impor-
tant: On the one hand, cognitive plausibility in-
creases confidence in the abilities of a system –
one is generally more willing to rely on a reason-
able than an incomprehensible mechanism. On the
other hand, pointing out systematic shortcomings
inspires systematic improvements and hence can
guide progress. Moreover, particularly in the case
of a human-centered domain like natural language,
ultimately, some degree of comparability to hu-
man performance is indispensable.

In this paper we are inspired by experimen-
tal practice in psycholinguistics to shed light on
the question how deep learning models for visual
question answering (VQA) learn to interpret state-
ments involving the quantifier “most”. We follow
Pietroski et al. (2009) in designing abstract visual
scenes where we control the ratio of the objects
quantified over and their spatial arrangement, to
identify whether VQA models exhibit a preferred
strategy of verifying whether “most” applies. Fig-
ure 1 illustrates how visual scenes can be config-
ured to favor one over another mechanism.
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We want to emphasize the experimental ap-
proach and its difference to mainstream ma-
chine learning practice. For different verification
strategies, conditions are identified that should or
should not affect their performance, and test in-
stances are designed accordingly. By comparing
the accuracy of subjects on various instance pat-
terns, predictions about a subject’s performance
for these mechanisms can be verified and the most
likely explanation identified. Note that our advo-
cated evaluation methodology is entirely extrin-
sic and does not constrain the system in any way
(like requiring attention maps) or require a specific
framework (like being probabilistic).

Psychology as a discipline has focused entirely
on questions around how humans process situa-
tions and arrive at decisions, and consequently has
the potential to inspire a lot of experiments (like
ours) for investigating the same questions in the
context of machine learning. Similar to psychol-
ogy, we advocate the preference of an artificial
experimentation environment which can be con-
trolled in detail, over the importance of data orig-
inating from the real world, to arrive at more con-
vincing and thus meaningful results.

It is less common recently to evaluate deep
learning models on artificial data tailored to a
specific problem, as opposed to big real-world
datasets. However, artificial data has a history
in deep learning of establishing new techniques
– most prominently, LSTMs were introduced by
showing their ability to handle various formal
grammars (Gers and Schmidhuber, 2001) – and
our higher-level goal with this paper is to demon-
strate the potential for more informative evalua-
tion of machine learning models in general. This is
motivated by our belief that, in the long term, true
progress can only be made if we do not just rely
on the narrative of neural networks “learning to
understand/solve” a task, but can actually confirm
our theories experimentally. Taking inspiration
from psychology seems particularly appropriate
in the context of powerful deep learning models,
which recently are not infrequently described by
anthropomorphizing words like “understanding”,
and compared to “human-level” performance.

2 The meaning of “most”

In this section we will discuss two mechanisms of
interpreting “most” and introduce relevant cogni-
tive concepts.

2.1 Generalized quantifiers and “most”
“Most” has a special status in linguistics due to
the fact that it is the most prominent example of
a quantifier whose semantics cannot be expressed
in first-order logic, while other simple natural lan-
guage quantifiers like “some”, “every” or “no”
directly correspond to the quantifier primitives ∃
and ∀ (plus logical operators ∧, ∨ and ¬). This
situation is not just a matter of introducing further
appropriate primitives, but requires a fundamental
extension of the logic system and its expressivity.

In the following, by x we denote an entity, A
and B denote predicates (“square”, “red”), A(x)
is true if and only if x satisfies A, and SA = {x :
A(x)} is the corresponding set of entities satisfy-
ing this predicate (“squares”). Thus we can define
the semantics of “some” and “every”:

some(A,B)⇔ ∃x : A(x) ∧B(x)

every(A,B)⇔ ∀x : A(x)⇒ B(x)

Importantly, these definitions do not involve the
concept of set cardinality and indeed can be for-
mulated without involving sets. This is not possi-
ble for “most”, which is commonly defined in one
of the following ways:

most(A,B)⇔ |SA∧B| > 1/2 · |A|
⇔ |SA∧B| > |SA∧¬B| (1)

This makes “most” an example of a generalized
quantifier, and in fact all generalized quantifiers
can be defined in terms of cardinalities, indicating
the apparent importance of a cardinality concept
to human cognition.

2.2 Alternative characterization
There is another way to define “most” which uses
the fact that whether two sets are equinumerous
can be determined without a concept of cardinal-
ity, but based on the idea of a bijection:

A↔ B :⇔ ∀x : A(x)⇔ B(x)

⇔ |SA| = |SB|
The definition of equinumerosity can be general-
ized to “more than” (and, correspondingly, “less
than”), which lets us define “most” as follows:

most(A,B)⇔ ∃S ( SA∧B : S ↔ SA∧¬B (2)

Although, at a first glance, this definition looks
similar to the one above, it can be seen as suggest-
ing a different algorithmic approach to verifying
“most”, as we will discuss below.
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2.3 Two interpretation strategies

These two characterizations are of course truth-
conditionally equivalent, that is, every situation
in which one of them holds, the other holds, and
vice versa. In particular, if we are just interested
in solving a task involving “most” statements, we
can be agnostic about which definition our system
prefers. Nevertheless, the subtle differences be-
tween these two characterizations suggest differ-
ent algorithmic mechanisms of verifying or falsi-
fying such statements, meaning that a system pro-
cesses a visual scene differently to come to the
(same) conclusion about a statement’s truth.

Characterization (1) represents the cardinality-
based strategy of interpreting “most”:

1. Estimate the number of entities satisfying
both predicates (“red squares”) and the num-
ber satisfying one predicate but not the other
(“non-red squares”).

2. Compare these number estimates and check
whether the former is greater than the latter.

We want to add that, actually, the two defini-
tions in (1) already suggest a minor variation of
this mechanism – see Hackl (2009) for a discus-
sion on “most” versus “more than half”. How-
ever, we do not focus on this detail here, and as-
sume the second variant in (1) to be ‘strictly’ sim-
pler in the sense that both involve estimating and
comparing cardinalities, but the first variant addi-
tionally involves the rather complex operation of
halving one number estimates.

Characterization (2) utilizes the concept of a bi-
jection, which is a comparatively simple pairing
mechanism and as such could be imagined to be
a primitive cognitive operation. This gives us the
pairing-based strategy of verifying “most”:

1. Successively match entities satisfying both
predicates (“red squares”) uniquely with en-
tities satisfying one predicate but not the
other (“non-red squares”).

2. The remaining entities are all of one type, so
pick one and check whether it is of the first
type (“red square”).

2.4 Cognitive implications

Finding evidence for one strategy over the other
has substantial implications with respect to the
‘cognitive abilities’ of a neural network model. In

particular, evidence for a cardinality-based pro-
cessing of “most” suggests the existence of an
approximate number system (ANS), which is
able to simultaneously estimate the number of ob-
jects in two sets, and perform higher-level op-
erations on the resulting number representations
themselves, like the comparison operation here.
Explicit counting would be an even more accurate
mechanism here, but neither available to the sub-
jects in the experiments of Pietroski et al. (2009)
due to very short scene display time, nor likely to
be learned by the ‘one-glance’ feed-forward-style
neural network we evaluate in this work1.

The ANS (see appendix in Lidz et al. (2011)
for a summary) is an evolutionary comparatively
old mechanism which is shared between many dif-
ferent species throughout the animal world. It
emerges without explicit training and produces ap-
proximate representations of the number of ob-
jects of some type. They are approximate in the
sense that their number judgment is not ‘sharp’,
but resulting behavior exhibits variance – like in-
terpreting “most” statements with a cardinality-
based strategy, as described above. This vari-
ance follows Weber’s law which states that the
discriminability of two quantities is a function of
their ratio2. The precision of the ANS is thus usu-
ally indicated by a characteristic value called We-
ber fraction which relates quantity and variance.
The ANS of a typical adult human is often re-
ported to have a Weber fraction of 1.14 or, more
tangibly, it can distinguish a ratio of 7:8 with 75%
accuracy. Finding evidence for the emergence of
a similar system in deep neural networks indicates
that these models can indeed learn more abstract
concepts (approximate numbers) than mere super-
ficial pattern matching (“red squares” etc).

1By “one-glance feed-forward-style networks” we refer
to the predominant type of network architecture which, by de-
sign, consists of a fixed sequence of computation steps before
arriving at a decision. In particular, such models do not have
the ability to interact with their input dynamically depending
on the complexity of an instance, or perform more general
recursive computations beyond the fixed recurrent modules
built into their design. Important for the discussion here is
the fact that precise – in contrast to approximate or subitizing-
style – counting is by definition a recursive ability, thus im-
possible to learn for such models.

2We want to emphasize that there is evidence for Weber’s
Law in a range of other approximate systems, some of them
non-discrete and thus rendering a pairing-based strategy im-
possible. While this does not rule out such a strategy when
observing performance decline as predicted by Weber’s Law
(which is probably not possible based on extrinsic evaluation
alone), it strongly suggests that similar and thus non-pairing-
based mechanisms are at work in all of these situations.

48



Both mechanisms to interpret “most” suggest
conditions in which they should perform well or
badly. For the cardinality-based one, the dif-
ference in numbers of the two sets in question
is expected to be essential: smaller differences,
or greater numbers for the same absolute differ-
ence, require more accurate number estimations
and hence make this comparison harder, accord-
ing to Weber’s law. The pairing-based mecha-
nism, on the other hand, is likely affected by the
spatial arrangement of the objects in question: if
the objects are more clustered within one set, pair-
ing them with objects from the other set becomes
harder. Importantly, these conditions are orthogo-
nal, so each mechanism should not substantially
be affected by the other condition, respectively.
By constructing (artificial) scenes where one of the
conditions dominates the configuration, and mea-
suring the accuracy of being able to correctly inter-
pret propositions involving “most”, the expected
difficulties can be confirmed (or refuted) and thus
indicate which mechanism is actually at work.

Using this methodology, Pietroski et al. (2009)
show that humans exhibit a default strategy of in-
terpreting “most”, at least when only given 200ms
to look at the scene and hence having to rely on an
immediate subconscious judgment. This strategy
is based on the approximate number system and
the cardinality-based mechanism. Moreover, the
behavior is shown to be sub-optimal in some situa-
tions where humans would, in principle, be able to
perform better if deviating from their default strat-
egy. Since machine learning models are trained
by optimizing parameters for the task at hand, it
is far from obvious whether they learn a similarly
stable default mechanism, or instead follow a po-
tentially superior adaptive strategy depending on
the situation. While the latter is likely more effi-
cient in solving at least a narrowly defined task,
the former would instead suggest that the system
is able to acquire and utilize core concepts like an
approximate number system.

We may speculate about the innate preference
of modern network architectures for either of the
strategies: Most of the visual processing is based
on convolutions which, being an inherently local
computation, we assume would favor the pairing-
based strategy via locally matching and ‘can-
celling out’ entities of the two predicates. On the
other hand, the tensors resulting from the sequence
of convolution operations are globally fused into

a final embedding vector, which in turn would
support the more globally aggregating cardinality-
based strategy. However, the type of computa-
tions and representations learned by deep neu-
ral networks are poorly understood, making such
speculations fallacious. We thus emphasize again
that the higher-level motivation for this paper is to
demonstrate how we need not rely on such specu-
lative ‘narratives’, but can experimentally substan-
tiate our claims.

3 Experimental setup

The setup in this paper closely resembles the
psychological experiments conducted by Pietroski
et al. (2009), but aimed at a state-of-the-art VQA
model and its interpretation of “most”.

3.1 Training and evaluation data

We use the ShapeWorld framework (Kuhnle and
Copestake, 2017) as starting point to generate ap-
propriate data. ShapeWorld is a configurable gen-
eration system for abstract, visually grounded lan-
guage data. A data point consists of an image, an
accompanying caption, and an agreement value in-
dicating whether the caption is true given the im-
age. The underlying task, image caption agree-
ment, essentially corresponds to yes/no questions
and as such is a type of visual question answering.
Internally, the system samples an abstract world
description from which a semantic caption repre-
sentation is extracted. Both are then turned into
‘natural’ (but still abstract) representations as im-
age and natural language statement, respectively.
The latter transformation is based on a semantic
grammar formalism (see the paper for details).

We use the pre-implemented quantifier cap-
tioner component, both in its unrestricted ver-
sion and one with available quantifiers restricted
to “more than half” and “less than half”3.
The former contains various additional (gener-
alized) quantifiers (“no”, “a/three quarter(s)”,
“a/two third(s)”, “all”) and numbers (ranging
from “zero” to “five”), each in combination with a
comparing modifier (“less than”, “at most”, “ex-
actly”, “at least”, “more than”, “not”). We refer
to the unrestricted version as Q-full, the other one

3We use these two instead of “most” since ShapeWorld
generates them by default. The VQA model is trained from
scratch on this data, so we do not expect any of the differ-
ences between “most” and “more than half” one observes
with humans (Hackl, 2009) to matter.
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• Exactly two squares are yellow.
• Exactly no square is red.
• More than half the red shapes are

squares.
• More than a third of the shapes are cyan.

• Less than half the shapes are green.

• Exactly all magenta shapes are squares.

• At most five shapes are magenta.

• At least one triangle is gray.

Figure 2: Two example images with in-/correct captions, taken from the Q-full dataset (all quantifiers/numbers).

as Q-half. Figure 2 shows two images together
with potential Q-full captions.

We also use the default world generator to pro-
duce training data (up to 15 randomly positioned
objects, as seen in figure 2). However, all of
the pre-implemented generator modules are too
generic for our evaluation purposes, since they
do not allow to control attributes and positioning
of objects to the desired degree. We thus imple-
mented our own custom generator module with the
following functionality to produce test data.

Attribute contrast: For each instance, either the
attribute ‘shape’ or ‘color’ is picked4, and
subsequently two values for this attribute and
one value for the other is randomly chosen.
This means that the only relevant difference
between objects in every image is either one
of two shape or color values (for instance, red
vs blue squares, or red squares vs circles).

Contrast ratios: A list of valid ratios between the
contrasted attributes can be specified, from
which one will randomly be chosen per in-
stance. For instance, a ratio of 2:3 means
that there are 50% more objects with the sec-
ond than the first attribute. We look at values
close to 1:1, that is, 1:2, 2:3, 3:4, 4:5, etc.
The increasing difficulty (for humans) result-
ing from closer ratios is illustrated in figure
3. Multiples of the smaller-valued ratios are
also generated (e.g., 2:4 or 6:9), within the
limit of up to 15 objects overall.

Area-controlled (vs size-controlled): If this op-
tion is set, object sizes are not chosen uni-
formly across the entire valid range, but size
ranges for the two contrasting object types
are adapted to the given contrast ratio and
size of the chosen shape(s), so that both at-
tributes cover the same image area on av-
erage. This means that the more numer-
ous attribute will generally be represented by

4Note that we chose the examples in figures to always
vary in color only, for clarity.

smaller objects, and the difference in covered
area between, for instance, squares and trian-
gles is taken into account.

While objects are still positioned randomly in
the basic version of this new generator module,
we define two modes which control this aspect as
well. Figure 1 in the introduction illustrates the
different modes.

Partitioned positioning: An angle is randomly
chosen for each image, and objects of the
contrasting attributes are consistently placed
either on one side or the other.

Paired positioning: If there are objects of the
contrasted attribute which are not yet paired,
one of them is randomly chosen and the new
object is placed next to it.

The captions of these evaluation instances are
always of the form “More/less than half the
shapes are X”. with “X” being the attribute in
question, for instance, “squares” or “red shapes”.
Note that this is an even more constrained cap-
tioner than the one used for Q-half. We also em-
phasize that, in contrast to this new evaluation
generator module, the default generator configu-
ration of the ‘quantification’ dataset pre-specified
in ShapeWorld is used to generate the training in-
stances in Q-half and Q-full. So these images gen-
erally contain many more than just two contrasted
attributes, and ratios between attributes tend to be
accordingly smaller. The examples in figure 2 are
chosen to illustrate this fact: the second example
contains a “half” statement with ratio 7:8, and the
first contains one about a 0:4 ratio, while the im-
age would also allow for a more ‘interesting’ 3:4
ratio (color of semicircles).

While we generally try to stay close to the ex-
perimental setup of Pietroski et al. (2009), in the
following we point out some differences. Most
importantly, instead of just using yellow and blue
dots, we use all eight shapes and seven colors that
ShapeWorld provides. This increases the visual
variety of the instances and thus encourages the
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Figure 3: From left to right, the ratio between the two attributes is increasingly balanced.

system to actually learn the fact that shape and
color are attributes that can be combined in any
way, instead of just straightforward binary pattern
matching. Note that the humans in the psycho-
logical experiments have learned language in even
more complex situations, which we cannot hope
to approximate here. Moreover, our data does not
contain yes/no questions but true/false captions,
and “most”-equivalent variations “more/less than
half”. Since the model is trained from scratch on
such data, this should not affect results.

We do not implement the ‘column pairs
mixed/sorted’ modes since they would require
comparatively big and mostly empty images,
hence require bigger networks and might cause
practical learning problems due to sparseness,
which we do not want to address here. In con-
trast, our ‘partitioned’ mode is more difficult than
the ones investigated by Pietroski et al. (2009), at
least for a pairing-based mechanism.

3.2 Model

We focus on the FiLM model (Perez et al., 2018)
here since it showed close-to-perfect accuracy on
the CLEVR dataset (Johnson et al., 2017a). We
interpret the ShapeWorld captions and agreement
values as questions and answer, respectively. The
image is processed using either a pre-trained CNN
or a four-layer CNN trained from scratch on the
task. The question is processed by a GRU. In a
sequence of four residual blocks, the image infor-
mation is processed with its features linearly mod-
ulated (scale, offset) conditioned on the processed
question embedding. Finally, the classifier module
produces the answer, true or false. We use the code
made available by the authors of the FiLM model,
without changing any parameters. The only aspect
we adapt is the trainable four-layer CNN, which
uses a kernel size of 3, batch normalization and a
stride of 2 in the second and fourth layer.

We considered investigating other models as
well: The PG+EE model (Johnson et al., 2017b)
is openly available and achieved very good per-
formance on CLEVR, however, it relies on the

‘program tree’ provided by CLEVR, and while
there exists a basic conversion of ShapeWorld cap-
tion models to CLEVR program trees, first, the
CLEVR-specific modules do not cover quantifiers
like “most” and, second, these program trees en-
code the interpretation strategy, which would de-
feat the purpose of our investigation to analyze
precisely this mechanism as learned from data.
The RelationNet architecture (Santoro et al., 2017)
explicitly implements a pairing-based mechanism
and hence we considered its evaluation less inter-
esting than FiLM. For similar reasons, we did not
focus on the VQA model of Zhang et al. (2018),
whose architecture includes an explicit counting
component. While our aim is to investigate the
strategy for understanding “most” learned from
data, it would be interesting to examine in both
cases whether their architectural prior does in-
deed have the expected effect. Finally, we only
learned about the MAC model (Hudson and Man-
ning, 2018) after we started this project and so de-
cided to leave it for future work, but we definitely
consider it one of the most interesting candidate
models to evaluate, since its architecture does not
suggest an obvious preference for either strategy.

3.3 Training details

The training set for both Q-full and Q-half consists
of around 100k (25x 4096) images with 5 captions
per image, so overall around 500k instances. The
model is trained for 100k iterations with a batch
size of 64. Training performance is measured
on an additional validation set of 20k instances.
Moreover, we produced 1024 instances for each
of the overall 48 evaluation configurations, to in-
vestigate the trained model in more detail.

4 Results

Training. We train two versions of the FiLM
model, with CNN trained from scratch on the task:
one on the Q-full dataset which contains all avail-
able quantifier and number caption types, the other
on the Q-half dataset which is restricted to cap-
tions involving the quantifier “half” only. Perfor-
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mance of the system over the course of the 100k
training iterations is shown in figure 4. The two
models, referred to by Q-full and Q-half below,
learn to solve the task quasi-perfectly, with a final
accuracy of 98.9% and 99.4% respectively. Not
surprisingly, the system trained on the more di-
verse Q-full training set takes longer to reach this
level of performance, but nevertheless plateaus af-
ter around 70k iterations.

For the sake of completeness, we also include
the performance of other models in this figure,
which failed to show clear improvement over the
first 50k iterations. This includes the FiLM model
with pre-trained instead of trainable CNN module
(Q-full-pre, Q-half-pre), and an earlier trial on Q-
half (Q-half-coll) where we did not constrain the
data generation to not produce object collisions
(the default in ShapeWorld is to allow up to 25%
area overlap). We note, however, that we have not
done any hyperparameter search which might al-
leviate these learning problems.

Evaluation. Table 5 presents a detailed break-
down of system performance on the evaluation set-
tings. Before discussing the results in detail, we
want to reiterate three key differences between the
evaluation data and the training data:

• The visual scenes here do all exhibit close-to-
balanced contrast ratios, while this is not the
case for the training instances.

• The evaluation scenes only contain objects
of two different attribute pairs, and conse-
quently the numbers to compare are generally
greater than in the training instances, where
more attributes are likely present in a scene.

• Q-full contains not just statements involving
“half” – in fact, a random sample of 100 im-
ages / 500 captions suggests that they consti-
tute only around 8% of the dataset (and this
includes combinations with modifiers beyond
“more/less than”).

Considering that, the relatively high accuracy on
test instances throughout indicates a remarkable
degree of generalization.

More balanced ratios. The most consistent ef-
fect is that more balanced ratios of contrasted at-
tributes cause performance to decrease. This is
certainly affected by the tendency of the training
data to not include many examples of almost bal-
anced ratios. However, if this were the only rea-
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Figure 4: Training performance (iterations in 1000). Q-
full: unconstrained dataset; Q-half : dataset restricted
to “less/more than half”; -pre: using pre-trained CNN
module; -coll: allowing object overlap.

son, one would expect a much more sudden and
less uniformly linear decrease. More importantly,
since Q-full generally contains fewer “half” state-
ments, the decline should be more pronounced
here. We do not observe either of these effects, and
thus conclude that both models may actually have
developed an approximate number system. This is
further discussed at the end of this section.

Random vs paired vs partitioned. There is a
clear negative effect of the partitioned configura-
tion on performance for the model trained on Q-
full, which suggests that the learned mechanism is
not robust to a high degree of per-attribute cluster-
ing. This indicates at most a weak preference to-
wards a pairing-based strategy for Q-full, though,
since otherwise the model would not be expected
to perform best on the random configuration. In-
terestingly, the results for Q-half even suggest
slightly better performance on the area-controlled
partitioned configuration. Overall, no clear prefer-
ence for either the perfectly clustered partitioned
or the perfectly mixed paired arrangement is ap-
parent. We note, however, that the random mode
instances are most similar to the random place-
ment of objects in the training data, which might
cause this effect.

Size- vs area-controlled. The performance in
both cases is comparable, showing that the mod-
els do not (solely) learn to rely on comparing the
overall covered area, which would only work well
in the size-controlled mode. Nevertheless, we
note a tendency for area-controlled instances to
be somewhat more difficult in random and paired
mode, more so for Q-half, which suggests that the
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train mode
size-controlled area-controlled

all 1:2 2:3 3:4 4:5 5:6 6:7 7:8 all 1:2 2:3 3:4 4:5 5:6 6:7 7:8

Q-full
random 92 100 99 97 94 91 88 85 93 100 99 97 93 91 86 82
paired 93 99 99 96 93 90 88 82 93 99 99 96 91 87 84 80
part. 89 100 99 92 90 81 77 72 89 99 98 92 88 82 78 72

Q-half
random 92 100 100 98 93 88 88 87 93 100 100 97 92 86 85 82
paired 92 100 100 96 90 86 84 79 92 100 99 96 87 84 79 76
part. 91 100 99 96 86 83 83 80 91 100 99 94 89 83 83 80

Figure 5: Accuracy in percent of the models trained on Q-full and Q-half for the various evaluation configurations.

model(s) learn to use covered area as a feature to
inform a correct decision in some cases.

Q-full vs Q-half. There seems to be a ten-
dency of the system trained on Q-full to perform
marginally better, except for the partitioned mode
discussed before. The fact that this model per-
forms at least on a par with the one trained on
Q-half, while only seeing a fraction of directly rel-
evant training captions, indicates that the learning
process is not ‘distracted’ by the variety of cap-
tions, and indeed might profit from it.

Ratios and Weber fraction. We generated eval-
uation sets of even more balanced ratios (8:9, 9:10,
10:11, increasing the overall number of objects
accordingly to 17/19/21), and in figure 6 plotted
the accuracy of the Q-full model on increasingly
balanced sets for all three spatial configuration
modes, not controlling for area (which for greater
numbers only has a negligible effect anyway). The
figure also contains a diagram with accuracy plot-
ted against ratio fraction, which is more common
in the context of Weber’s law. The characteristic
Weber fraction can be read off directly as the ratio
at which a subject is able to distinguish two val-
ues with 75% accuracy. We observe around 1.11
for random/paired and 1.16 for partitioned, which
corresponds to 9:10 and 6:7 as closest integer ra-
tios. These values are in the same region as the
average human Weber fraction, which is often re-
ported as being 1.14, or 7:8.

We emphasize that these curves align well with
the trend predicted by Weber’s law, even for the
ratios with more than 15 objects overall, where
such situations have never been encountered dur-
ing training. All this strongly suggests that the
model learns a mechanism similar to an ANS,
which is able to produce representations that can
(at least) be utilized for identifying the more nu-
merous set. It can in particular be concluded that
the system does not actually learn to explicitly

count, since we would then not expect to observe
such fuzziness characteristic to an ANS.

Moreover, since performance is affected some-
what by the partitioned and the area-controlled
modes, the interpretation of “most” seems to be
informed by other features as well. As we noted
earlier, since the model is trained to optimize this
task, an adaptive strategy is not unexpected. On
the contrary, more surprising is the fact that an
ANS-like system emerges as a dominating ‘back-
bone’ mechanism, with additional factors acting
as less influential ‘secondary’ features.

5 Related work

Visual question answering (VQA) is the general
task of answering questions about visual scenes.
Since the introduction of the VQA Dataset (Antol
et al., 2015), this dataset was widely used as evalu-
ation benchmark for multimodal deep learning. It
provides a shallow categorization of questions, in-
cluding basic count questions, however, these cat-
egories are far too coarse for our purposes.

Motivated by various problems with the VQA
Dataset (Goyal et al., 2017; Agrawal et al., 2016),
a range of artificial abstract datasets have been in-
troduced recently. CLEVR (Johnson et al., 2017a)
consists of rendered images of geometric objects
and questions generated based on templates, cov-
ering some abilities like number or attribute com-
parison in more detail, but still in a fixed catego-
rization. NLVR (Suhr et al., 2017) contains crowd-
sourced statements about abstract images, but does
not sort them according to some criteria. Recently,
the COG dataset (Yang et al., 2018) was intro-
duced, which most explicitly focuses on replicat-
ing psychological experiments for deep learning
models, hence most related to our work. However,
their dataset does not contain any number or quan-
tifier statements.

There is some work on investigating deep neural
networks which look at numerosity from a more
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Figure 6: Left: Q-full model performance for increasingly balanced ratios (x-axis indicates ratio via n:n+1).
Right: Performance as a function of the actual ratio fraction (n+1)/n, with Weber fraction (75%) highlighted.

psychologically inspired viewpoint. Stoianov and
Zorzi (2012) find that visual numerosity emerges
from unsupervised learning on abstract image
data. Zhang et al. (2015) look at salient object
subitizing in real-world images, formulated as a
classification task over five classes ranging from
“0” to “4 or more”. In a more general number-
per-category classification setup, Chattopadhyay
et al. (2017) investigate different methods of ob-
taining counts per object category, including one
which is inspired by subitizing. Moving beyond
explicit number classification, (Zhang et al., 2018)
recently introduced a dedicated counting module
for visual question answering.

Other work looks at a similar classification task,
but for proper quantifiers like “no”, “few”, “most”,
“all”, first on abstract images of circles (Sorodoc
et al., 2016), then on natural scenes (Sorodoc
et al., 2018). Recently, Pezzelle et al. (2018) in-
vestigated a hierarchy of quantifier-related clas-
sification abilities, from comparatives via quan-
tifiers like the ones above to fine-grained pro-
portions. Wu et al. (2018), besides investigat-
ing precise numerosity via number classification
as above, also look at approximate numerosity as
binary greater/smaller decision, which closely cor-
responds to our experiments. However, on the one
hand, their focus is on the subitizing ability, not the
approximate number system. On the other hand,
their experiments follow a different methodology
in that they already train models on specifically
designed datasets, while we deliberately leverage
such targeted data only for evaluation.

On a methodological level, our proposal of in-
spiring experimental setup and evaluation practice
for deep learning by cognitive psychology is in
line with that of Ritter et al. (2017) and their shape
bias investigation for modern vision architectures.

6 Conclusion

We identify two strategies of algorithmically in-
terpreting “most” in a visual context, with dif-
ferent implications on cognitive concepts. Fol-
lowing experimental practice of similar investiga-
tions with humans in psycholinguistics, we de-
sign experiments and data to shed light on the
question whether the state-of-the-art FiLM VQA
model shows preference for one strategy over the
other. Performance on various specifically de-
signed instances does indeed indicate that a form
of approximate number system is learned, which
generalizes to more difficult scenes as predicted by
Weber’s law. The results further suggest that ad-
ditional features influence the interpretation pro-
cess, which are affected by the spatial arrange-
ment and relative size of objects in a scene. There
are many opportunities for future work from here,
from strengthening the finding of an approximate
number system and further analyzing confound-
ing factors to investigating the relation to more ex-
plicit counting tasks.
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Abstract

Work on “learning with rationales” shows that
humans providing explanations to a machine
learning system can improve the system’s pre-
dictive accuracy. However, this work has not
been connected to work in “explainable AI”
which concerns machines explaining their rea-
soning to humans. In this work, we show
that learning with rationales can also improve
the quality of the machine’s explanations as
evaluated by human judges. Specifically, we
present experiments showing that, for CNN-
based text classification, explanations gener-
ated using “supervised attention” are judged
superior to explanations generated using nor-
mal unsupervised attention.

1 Introduction

Recently, the need for explainable artificial intel-
ligence (XAI) has become a major concern due
to the increased use of machine learning in au-
tomated decision making (Gunning, 2017; Aha,
2018). On the other hand, work on “learning
with rationales” (Zaidan et al., 2007; Zhang et al.,
2016) has shown that humans providing explana-
tory information supporting their supervised clas-
sification labels can improve the accuracy of ma-
chine learning. These human annotations that can
explain classification labels are called rationales.
In particular, for text categorization, humans select
phrases or sentences from a document that most
support their decision as rationales.

However, there is no work connecting “learning
from rationales” with improving XAI, although
they are clearly complementary problems.

Contribution We explore whether learning
from human explanations actually improves a sys-
tem’s ability to explain its decisions to human
users. Specifically, we show that for explanations
for text classification in the form of selected pas-
sages that best support a decision, training on hu-

man rationales improves the quality of a system’s
explanations as judged by human evaluators.

Attention mechanisms (Bahdanau et al., 2015)
have become standard practice in computer vision
and text classification (Vaswani et al., 2017; Yang
et al., 2016). In both computer vision and text-
based tasks, learned attention weights have been
shown through human evaluation to be useful ex-
planations for a model’s decisions (Park et al.,
2018; Rocktäschel et al., 2015; Hermann et al.,
2015; Xu et al., 2015); however, attention’s ex-
planatory power has come into question in recent
work (Jain and Wallace, 2019), which we discuss
in Section 2.

Traditional attention mechanisms are unsuper-
vised; however, recent work has shown that su-
pervising attention with human annotated ratio-
nales can improve learning for text classification
based on Convolutional Neural Networks (CNNs)
(Zhang et al., 2016). While this work alludes
to improved explainability using supervised atten-
tion, it does not explicitly evaluate this claim. We
extend this work by evaluating whether supervised
attention using human rationales, rather than unsu-
pervised attention, actually improves explanation.
Explanations from both models are full sentences
that the model has weighted as being most impor-
tant to the document’s final classification.

While automated evaluations of explanations
(e.g. comparing them to human gold-standard ex-
planations (Lei et al., 2016)) can be somewhat use-
ful, we argue that because the goal of machine ex-
planations is to help users, they should be directly
evaluated by human judges. Machine explanations
can be different from human ones, but still provide
good justification for a decision (Das et al., 2017).
This opinion is shared by other researchers in the
area (Doshi-Velez, 2017), but human evaluation is
often avoided due to the time required and diffi-
culty of conducting human trials. We believe it is a
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necessary element of explainability research, and
in this work, we compare the explanations from
the two models through human evaluation on Me-
chanical Turk and find that the model trained with
human rationales is judged to generate explana-
tions that better support its decisions.

2 Related Work

There is a growing body of research on explain-
able AI (Koh and Liang, 2017; Ribeiro et al.,
2016; Li et al., 2016; Hendricks et al., 2018), but it
is not connected to work on learning with human
rationales, which we review below.

As discussed above, Zhang et al. (2016) demon-
strate increased predictive accuracy of CNN mod-
els augmented with human rationales. Here, we
first reproduce their predictive results, and then fo-
cus on extracting and evaluating explanations from
the models. Lei et al. (2016) present a model that
extracts rationales for predictions without train-
ing on rationales. They compare their extracted
rationales to human gold-standard ones through
automated evaluations, i.e., precision and recall.
Bao et al. (2018) extend this work by learning a
mapping from the human rationales to continuous
attention. They transfer this mapping to low re-
source target domains as an auxiliary training sig-
nal to improve classification accuracy in the tar-
get domain. They compare their learned attention
with human rationales by calculating their cosine
distance to the ‘oracle’ attention.

None of the above related work asks human
users to evaluate the generated explanations. How-
ever, Nguyen (2018) does compare human and au-
tomatic evaluations of explanations. That work
finds that human evaluation is moderately, but sta-
tistically significantly, correlated with the auto-
matic metrics. However, it does not evaluate any
explanations based on attention, nor do the expla-
nations make use of any extra human supervision.

As mentioned above, there has also been some
recent criticism of using attention as explanation
(Jain and Wallace, 2019), due to a lack of corre-
lation between the attention weights and gradient
based methods which are more “faithful” to the
model’s reasoning. However, attention weights of-
fer some insight into at least one point of inter-
nal representation in the model, and they also im-
pact the training of the later features. Our con-
tribution is to measure how useful these attention
based explanations are to humans in understand-

ing a model’s decision as compared to a different
model architecture that explicitly learns to predict
which sentences make good explanations.

In this work, we have human judges evalu-
ate both attention based machine explanations and
machine explanations trained from human ratio-
nales, thus connecting learning from human expla-
nations and machine explanations to humans.

3 Models and Dataset

3.1 Models

We replicate the work of Zhang et al. (2016) and
use a CNN as our underlying baseline model for
document classification. To model a document,
each sentence is encoded as a sentence vector
using a CNN, and then the document vector is
formed by summing over the sentence vectors.
We use two variations of this baseline model, a
rationale-augmented CNN (RA-CNN) and an at-
tention based CNN (AT-CNN) (Yang et al., 2016).
RA-CNN is trained on both the document label
and the rationale labels. In this model, the doc-
ument vector is a weighted sum of the composite
sentence vectors, where the weight is the probabil-
ity of the sentence being a rationale. In AT-CNN,
the document vector is still a weighted sum of sen-
tence CNN vectors, but the weight is not learned
from rationales. Rather, a trainable context vec-
tor is introduced from scratch. We calculate the
interaction between this context vector and each
sentence vector to induce attention weights over
the sentences. The only difference between RA-
CNN and AT-CNN is that RA-CNN relies on the
human annotated rationales to learn the sentence
weight at training time, while AT-CNN learns the
sentence weight without utilizing any human ra-
tionales. For the details of these two models and
training see Zhang et al. (2016).

3.2 Explanations

At test time, each model can provide explanations
for its classification decision by either choosing
the sentences with the largest probability of being
a rationale in RA-CNN or the sentences with the
largest attention weights in AT-CNN. By compar-
ing the quality of explanations output by the two
models at test time, we can judge whether capital-
izing on human explanations at training time can
improve the machine explanations at test time.
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3.3 Dataset

We evaluate the explanations for both models on
the movie review dataset from Zaidan et al.
(2007). It contains 1,000 positive reviews and
1,000 negative reviews where 900 of each are an-
notated with human rationales. Each review is a
document consisting of 32 sentences on average,
and each annotated document contains about 8 ra-
tionale sentences. We use the 1,800 annotated
documents as the training set, and the remaining
200 documents without extra annotation as test.
The human rationales are used as supervision in
RA-CNN but not in AT-CNN.

3.4 Classification Accuracy

The classification accuracy of each model on the
test set is summarized in Table 1. Since there is
variance across multiple trials, we pick the best
performing model across several trials for human
evaluation of the explanations.

Table 1 reproduces Zhang et al. (2016)’s finding
that providing human explanations to machines at
training time (RA-CNN) improves predictive ac-
curacy compared to learning explanations without
human annotations (AT-CNN). Our results differ
slightly from theirs in that our AT-CNN also out-
performs the baseline Doc-CNN. We attribute this
difference to possible slight variations in our im-
plementation of AT-CNN.

Note there are other works on learning attention
that could potentially increase the prediction ac-
curacy (Lin et al., 2017; Devlin et al., 2018), but
none of them are directly comparable to RA-CNN.
We introduced the smallest difference (whether
the sentence vector is trained using the rationale
label) between AT-CNN and RA-CNN to make a
fair comparison between their generated explana-
tions.

The focus of this work is on evaluating ex-
planations rather than predictive accuracy, so we
turn our attention to the question: Does humans
explaining themselves to machines improve ma-
chines explaining themselves to humans? We will
explore this in the next section.

4 Explanation Evaluation Methods

We use Amazon Mechanical Turk (AMT) to eval-
uate the explanations from both AT-CNN and RA-
CNN.

Doc-CNN AT-CNN RA-CNN
86.00% 88.50% 90.00%

Table 1: Classification accuracy for movie reviews.

4.1 HIT Design
Our Human Intelligence Task (HIT) shows a
worker two copies of a test document along with
the document’s classification. Each copy of the
document has a subset of sentences highlighted as
explanations for the final classification. This sub-
set is chosen as the 3 sentences with the largest
weights from either AT-CNN’s attention weights
or RA-CNN’s supervised weighting. We also eval-
uated a baseline model that selects 3 sentences
at random. Given two randomly ordered docu-
ments, a worker must choose which document’s
highlighted sentences best support the overall clas-
sification. If the worker determines that both are
equally supportive (or not supportive), then they
can select ‘equal’. We only show workers docu-
ments that were correctly classified by both mod-
els. This resulted in 166 documents from the 200
in the test set. An example from one HIT is in
Appendix A.

4.2 Quality Control
In an effort to receive quality results from the
crowd, we employ two strategies from crowd-
sourcing research: gold standard questions and
majority voting (Hsueh et al., 2009; Eickhoff and
de Vries, 2013). Gold standard questions are de-
signed to weed out unreliable workers who either
do not understand the goal of the task or are poor
workers. If a worker gets the gold standard ques-
tion wrong, then we assume that their other re-
sponses are untrustworthy and do not use them.

We also employ majority voting, which requires
that at least two workers who pass the gold stan-
dard question agree on an answer. For greater
than 90% of the test documents, a majority vote
was found after having three workers perform the
task. Less than 10% of the test documents required
a fourth worker who passed the gold question to
break a tie. We also chose to require the ‘Master’
qualification that AMT uses to designate the best
workers on the platform.

5 Explanation Evaluation Results

Table 3 contains the results for comparing the top
3 explanations from AT-CNN to the top 3 expla-
nations from RA-CNN for the 166 test documents
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Label Rank AT-CNN RA-CNN

1
archer is also bound by the limits of new york soci-
ety , which is as intrusive as any other in the world.

the performances are absolutely breathtaking.

Pos 2
the marriage is one which will unite two very pres-
tigious families , in a society where nothing is more
important than the opinions of others .

there are a few deft touches of filmmaking that are
simply outstanding , and joanne woodward’ narra-
tion is exquisite.

3
the supporting cast is also wonderful , with several
characters so singular that they are indelible in one’s
memory .

the supporting cast is also wonderful , with several
characters so singular that they are indelible in one’s
memory .

1
soon the three guys are dealing dope to raise funds
, while avoiding the cops and rival dealer sampson
simpson (clarence williams iii) .

it’s just that the comic setups are obvious and the
payoffs nearly all fall flat .

Neg 2
only williams stands out (while still performing on
the level of his humor-free comedy rocket man) ,
but that is because he’s imprisoned throughout most
of the film , giving a much needed change of pace
(but mostly swapping one set of obvious gags for
another) .

watching the film clean and sober , you are bound
to recognize how truly awful it is .

3
watching the film clean and sober , you are bound
to recognize how truly awful it is .

the film would have been better off by sticking with
the “ rebel” tone it so eagerly tries to claim.

Table 2: Top 3 explanations from both models for both a positive and negative correctly classified test document.

RA-CNN AT-CNN Equal
43.47% 20.48% 36.14%

Table 3: AMT results comparing explanations from
RA-CNN to AT-CNN. Workers were asked to choose
which document’s highlighted sentences were a better
explanation for the final classification.

AT-CNN Random Equal
57.23% 15.66% 27.12%

Table 4: AMT results comparing AT-CNN to the ran-
dom baseline.

where the models each correctly classified the doc-
ument. The statistics presented are the percentage
of times reliable workers agreed that one model’s
explanations better supported the document’s clas-
sification or were equal.

Overall, it is clear that RA-CNN is providing
better explanations for the plurality of test doc-
uments (43.47%). The explanations are consid-
ered equal 36.14% of the time, and the remaining
20.48% of the documents were better explained by
AT-CNN.

After seeing these results, we decided to run
another baseline test to ensure that AT-CNN ex-
planations are reasonable and can at least beat a
weak baseline. The results from comparing AT-
CNN explanations to randomly sampled sentences
from the test document are in Table 4. From these
results we can see that AT-CNN is beating the ran-
dom baseline the majority of the time, demon-
strating that attention, even without human su-
pervision, can provide helpful explanations for a

model’s decision.

To further understand the differences between
the explanations from AT-CNN and RA-CNN, we
calculated statistics to find the amount of overlap
in the top three explanatory sentences from each
model. In 33.5% of the test documents, the mod-
els share no explanation sentences, in 43.1% they
share one explanation sentence, in 22.2% they
share two explanation sentences, and they share
all three in 1.2%. When considering just the most
highly weighted sentence, or top explanation, the
models agree 18.6 % of the time. So while it is rel-
atively rare for the models to produce the same top
explanatory sentence, we chose to show humans
three explanatory sentences per test document to
provide insight even in those matching cases.

Table 2 contains the top 3 explanations from
each model for two test documents. In both ex-
amples, AT-CNN extracts sentences that are more
plot related and give less insight into the re-
viewer’s opinion as compared to RA-CNN. These
sentences are generally less helpful for under-
standing the classification of the movie review.
In the second example, both models have identi-
fied a good explanatory sentence: “watching the
film clean and sober, you are bound to recognize
how truly awful it is.” However, AT-CNN ranks it
as less important than two sentences that primar-
ily describe the plot of the film while RA-CNN
only ranks another, equally explanatory sentence
as more important.

An interesting future avenue for evaluation is
to compare explanations from when the models
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make incorrect predictions. We found a trend
in the explanations for test documents that both
models misclassified where RA-CNN produced
explanations that supported the misclassification
while AT-CNN produced more explanations that
supported the correct classification, despite the
model’s decision. While this analysis is too small
scale to be conclusive, this raises the question for
future work: Do we want our explanation systems
to offer the best support for the chosen decision
or would it be more beneficial if they provide an
explanation that brings the decision into question?

6 Conclusion

This paper has demonstrated that training with
human rationales improves explanations for a
model’s classification decisions as evaluated by
human judges. We show that while an unsuper-
vised attention based model does provide some
valuable explanations, as proven in the experi-
ments comparing to a random baseline, a super-
vised attention model that trains on human ratio-
nales outperforms those results.
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A Sample HIT

Figure 1: A sample HIT asking workers to compare two explanations for the same movie review.
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Abstract

The Transformer is a fully attention-based
alternative to recurrent networks that has
achieved state-of-the-art results across a range
of NLP tasks. In this paper, we analyze
the structure of attention in a Transformer
language model, the GPT-2 small pretrained
model. We visualize attention for individ-
ual instances and analyze the interaction be-
tween attention and syntax over a large cor-
pus. We find that attention targets different
parts of speech at different layer depths within
the model, and that attention aligns with de-
pendency relations most strongly in the mid-
dle layers. We also find that the deepest layers
of the model capture the most distant relation-
ships. Finally, we extract exemplar sentences
that reveal highly specific patterns targeted by
particular attention heads.

1 Introduction

Contextual word representations have recently
been used to achieve state-of-the-art perfor-
mance across a range of language understanding
tasks (Peters et al., 2018; Radford et al., 2018;
Devlin et al., 2018). These representations are
obtained by optimizing a language modeling (or
similar) objective on large amounts of text. The
underlying architecture may be recurrent, as in
ELMo (Peters et al., 2018), or based on multi-head
self-attention, as in OpenAI’s GPT (Radford et al.,
2018) and BERT (Devlin et al., 2018), which are
based on the Transformer (Vaswani et al., 2017).
Recently, the GPT-2 model (Radford et al., 2019)
outperformed other language models in a zero-
shot setting, again based on self-attention.

An advantage of using attention is that it can
help interpret the model by showing how the
model attends to different parts of the input (Bah-
danau et al., 2015; Belinkov and Glass, 2019).
Various tools have been developed to visualize

attention in NLP models, ranging from attention
matrix heatmaps (Bahdanau et al., 2015; Rush
et al., 2015; Rocktäschel et al., 2016) to bipartite
graph representations (Liu et al., 2018; Lee et al.,
2017; Strobelt et al., 2018). A visualization tool
designed specifically for multi-head self-attention
in the Transformer (Jones, 2017; Vaswani et al.,
2018) was introduced in Vaswani et al. (2017).

We extend the work of Jones (2017), by visu-
alizing attention in the Transformer at three lev-
els of granularity: the attention-head level, the
model level, and the neuron level. We also adapt
the original encoder-decoder implementation to
the decoder-only GPT-2 model, as well as the
encoder-only BERT model.

In addition to visualizing attention for individ-
ual inputs to the model, we also analyze attention
in aggregate over a large corpus to answer the fol-
lowing research questions:

• Does attention align with syntactic depen-
dency relations?

• Which attention heads attend to which part-
of-speech tags?

• How does attention capture long-distance re-
lationships versus short-distance ones?

We apply our analysis to the GPT-2 small pre-
trained model. We find that attention follows de-
pendency relations most strongly in the middle
layers of the model, and that attention heads tar-
get particular parts of speech depending on layer
depth. We also find that attention spans the great-
est distance in the deepest layers, but varies signif-
icantly between heads. Finally, our method for ex-
tracting exemplar sentences yields many intuitive
patterns.
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2 Related Work

Recent work suggests that the Transformer im-
plicitly encodes syntactic information such as de-
pendency parse trees (Hewitt and Manning, 2019;
Raganato and Tiedemann, 2018), anaphora (Voita
et al., 2018), and subject-verb pairings (Goldberg,
2019; Wolf, 2019). Other work has shown that
RNNs also capture syntax, and that deeper layers
in the model capture increasingly high-level con-
structs (Blevins et al., 2018).

In contrast to past work that measure a model’s
syntactic knowledge through linguistic probing
tasks, we directly compare the model’s atten-
tion patterns to syntactic constructs such as de-
pendency relations and part-of-speech tags. Ra-
ganato and Tiedemann (2018) also evaluated de-
pendency trees induced from attention weights in a
Transformer, but in the context of encoder-decoder
translation models.

3 Transformer Architecture

Stacked Decoder: GPT-2 is a stacked decoder
Transformer, which inputs a sequence of tokens
and applies position and token embeddings fol-
lowed by several decoder layers. Each layer ap-
plies multi-head self-attention (see below) in com-
bination with a feedforward network, layer nor-
malization, and residual connections. The GPT-2
small model has 12 layers and 12 heads.

Self-Attention: Given an input x, the self-
attention mechanism assigns to each token xi a set
of attention weights over the tokens in the input:

Attn(xi) = (αi,1(x), αi,2(x), ..., αi,i(x)) (1)

where αi,j(x) is the attention that xi pays to xj .
The weights are positive and sum to one. Attention
in GPT-2 is right-to-left, so αi,j is defined only for
j ≤ i. In the multi-layer, multi-head setting, α is
specific to a layer and head.

The attention weights αi,j(x) are computed
from the scaled dot-product of the query vector of
xi and the key vector of xj , followed by a softmax
operation. The attention weights are then used to
produce a weighted sum of value vectors:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2)

using query matrix Q, key matrix K, and value
matrix V , where dk is the dimension of K. In a

multi-head setting, the queries, keys, and values
are linearly projected h times, and the attention
operation is performed in parallel for each repre-
sentation, with the results concatenated.

4 Visualizing Individual Inputs

In this section, we present three visualizations of
attention in the Transformer model: the attention-
head view, the model view, and the neuron view.
Source code and Jupyter notebooks are avail-
able at https://github.com/jessevig/
bertviz, and a video demonstration can be
found at https://vimeo.com/339574955.
A more detailed discussion of the tool is provided
in Vig (2019).

4.1 Attention-head View

The attention-head view (Figure 1) visualizes at-
tention for one or more heads in a model layer.
Self-attention is depicted as lines connecting the
attending tokens (left) with the tokens being at-
tended to (right). Colors identify the head(s), and
line weight reflects the attention weight. This view
closely follows the design of Jones (2017), but has
been adapted to the GPT-2 model (shown in the
figure) and BERT model (not shown).

Figure 1: Attention-head view of GPT-2 for layer 4,
head 11, which focuses attention on previous token.

This view helps focus on the role of specific at-
tention heads. For instance, in the shown example,
the chosen attention head attends primarily to the
previous token position.
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Figure 2: Model view of GPT-2, for same input as in
Figure 1 (excludes layers 6–11 and heads 6–11).

4.2 Model View
The model view (Figure 2) visualizes attention
across all of the model’s layers and heads for a
particular input. Attention heads are presented in
tabular form, with rows representing layers and
columns representing heads. Each head is shown
in a thumbnail form that conveys the coarse shape
of the attention pattern, following the small multi-
ples design pattern (Tufte, 1990). Users may also
click on any head to enlarge it and see the tokens.

This view facilitates the detection of coarse-
grained differences between heads. For example,
several heads in layer 0 share a horizontal-stripe
pattern, indicating that tokens attend to the current
position. Other heads have a triangular pattern,
showing that they attend to the first token. In the
deeper layers, some heads display a small number
of highly defined lines, indicating that they are tar-
geting specific relationships between tokens.

4.3 Neuron View
The neuron view (Figure 3) visualizes how indi-
vidual neurons interact to produce attention. This
view displays the queries and keys for each to-
ken, and demonstrates how attention is computed
from the scaled dot product of these vectors. The
element-wise product shows how specific neurons
influence the dot product and hence attention.

Whereas the attention-head view and the model
view show what attention patterns the model
learns, the neuron view shows how the model
forms these patterns. For example, it can help
identify neurons responsible for specific attention
patterns, as illustrated in Figure 3.

5 Analyzing Attention in Aggregate

In this section we explore the aggregate proper-
ties of attention across an entire corpus. We ex-
amine how attention interacts with syntax, and we
compare long-distance versus short-distance rela-
tionships. We also extract exemplar sentences that
reveal patterns targeted by each attention head.

5.1 Methods

5.1.1 Part-of-Speech Tags

Past work suggests that attention heads in the
Transformer may specialize in particular linguis-
tic phenomena (Vaswani et al., 2017; Raganato
and Tiedemann, 2018; Vig, 2019). We explore
whether individual attention heads in GPT-2 target
particular parts of speech. Specifically, we mea-
sure the proportion of total attention from a given
head that focuses on tokens with a given part-of-
speech tag, aggregated over a corpus:

Pα(tag) =

∑
x∈X

|x|∑
i=1

i∑
j=1

αi,j(x)·1pos(xj)=tag

∑
x∈X

|x|∑
i=1

i∑
j=1

αi,j(x)

(3)

where tag is a part-of-speech tag, e.g., NOUN, x is
a sentence from the corpus X , αi,j is the attention
from xi to xj for the given head (see Section 3),
and pos(xj) is the part-of-speech tag of xj . We
also compute the share of attention directed from
each part of speech in a similar fashion.

5.1.2 Dependency Relations

Recent work shows that Transformers and recur-
rent models encode dependency relations (Hewitt
and Manning, 2019; Raganato and Tiedemann,
2018; Liu et al., 2019). However, different mod-
els capture dependency relations at different layer
depths. In a Transformer model, the middle layers
were most predictive of dependencies (Liu et al.,
2019; Tenney et al., 2019). Recurrent models were
found to encode dependencies in lower layers for
language models (Liu et al., 2019) and in deeper
layers for translation models (Belinkov, 2018).

We analyze how attention aligns with depen-
dency relations in GPT-2 by computing the pro-
portion of attention that connects tokens that are
also in a dependency relation with one another. We
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Figure 3: Neuron view for layer 8, head 6, which targets items in lists. Positive and negative values are colored blue
and orange, respectively, and color saturation indicates magnitude. This view traces the computation of attention
(Section 3) from the selected token on the left to each of the tokens on the right. Connecting lines are weighted
based on attention between the respective tokens. The arrows (not in visualization) identify the neurons that most
noticeably contribute to this attention pattern: the lower arrows point to neurons that contribute to attention towards
list items, while the upper arrow identifies a neuron that helps focus attention on the first token in the sequence.

refer to this metric as dependency alignment:

DepAlα =

∑
x∈X

|x|∑
i=1

i∑
j=1

αi,j(x)dep(xi, xj)

∑
x∈X

|x|∑
i=1

i∑
j=1

αi,j(x)

(4)

where dep(xi, xj) is an indicator function that re-
turns 1 if xi and xj are in a dependency relation
and 0 otherwise. We run this analysis under three
alternate formulations of dependency: (1) the at-
tending token (xi) is the parent in the dependency
relation, (2) the token receiving attention (xj) is
the parent, and (3) either token is the parent.

We hypothesized that heads that focus attention
based on position—for example, the head in Fig-
ure 1 that focuses on the previous token—would
not align well with dependency relations, since
they do not consider the content of the text. To dis-
tinguish between content-dependent and content-
independent (position-based) heads, we define at-
tention variability, which measures how attention
varies over different inputs; high variability would
suggest a content-dependent head, while low vari-
ability would indicate a content-independent head:

Variabilityα =

∑
x∈X

|x|∑
i=1

i∑
j=1
|αi,j(x)− ᾱi,j |

2 · ∑
x∈X

|x|∑
i=1

i∑
j=1

αi,j(x)

(5)

where ᾱi,j is the mean of αi,j(x) over all x ∈ X .

Variabilityα represents the mean absolute de-
viation1 of α over X , scaled to the [0, 1] inter-
val.2,3 Variability scores for three example atten-
tion heads are shown in Figure 4.

5.1.3 Attention Distance
Past work suggests that deeper layers in NLP
models capture longer-distance relationships than
lower layers (Belinkov, 2018; Raganato and
Tiedemann, 2018). We test this hypothesis on
GPT-2 by measuring the mean distance (in num-
ber of tokens) spanned by attention for each head.
Specifically, we compute the average distance be-
tween token pairs in all sentences in the corpus,
weighted by the attention between the tokens:

D̄α =

∑
x∈X

|x|∑
i=1

i∑
j=1

αi,j(x) · (i− j)

∑
x∈X

|x|∑
i=1

i∑
j=1

αi,j(x)

(6)

We also explore whether heads with more dis-
1We considered using variance to measure attention vari-

ability; however, attention is sparse for many attention heads
after filtering first-token attention (see Section 5.2.3), result-
ing in a very low variance (due to αi,j(x) ≈ 0 and ᾱi,j ≈ 0)
for many content-sensitive attention heads. We did not use a
probability distance measure, as attention values do not sum
to one due to filtering first-token attention.

2The upper bound is 1 because the denominator is an
upper bound on the numerator.

3When computing variability, we only include the firstN
tokens (N=10) of each x ∈ X to ensure a sufficient amount
of data at each position i. The positional patterns appeared to
be consistent across the entire sequence.
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Figure 4: Attention heads in GPT-2 visualized for an example input sentence, along with aggregate metrics com-
puted from all sentences in the corpus. Note that the average sentence length in the corpus is 27.7 tokens. Left:
Focuses attention primarily on current token position. Center: Disperses attention roughly evenly across all pre-
vious tokens. Right: Focuses on words in repeated phrases.

Figure 5: Proportion of attention focused on first token,
broken out by layer and head.

persed attention patterns (Figure 4, center) tend to
capture more distant relationships. We measure
attention dispersion based on the entropy4 of the
attention distribution (Ghader and Monz, 2017):

Entropyα(xi) = −
i∑

j=1

αi,j(x)log(αi,j(x)) (7)

Figure 4 shows the mean distance and entropy
values for three example attention heads.

5.2 Experimental Setup
5.2.1 Dataset
We focused our analysis on text from English
Wikipedia, which was not included in the training

4When computing entropy, we exclude attention to the
first (null) token (see Section 5.2.3) and renormalize the re-
maining weights. We exclude tokens that focus over 90% of
attention to the first token, to avoid a disproportionate influ-
ence from the remaining attention from these tokens.

set for GPT-2. We first extracted 10,000 articles,
and then sampled 100,000 sentences from these ar-
ticles. For the qualitative analysis described later,
we used the full dataset; for the quantitative anal-
ysis, we used a subset of 10,000 sentences.

5.2.2 Tools

We computed attention weights using the
pytorch-pretrained-BERT5 implemen-
tation of the GPT-2 small model. We extracted
syntactic features using spaCy (Honnibal and
Montani, 2017) and mapped the features from
the spaCy-generated tokens to the corresponding
tokens from the GPT-2 tokenizer.6

5.2.3 Filtering Null Attention

We excluded attention focused on the first token
of each sentence from the analysis because it was
not informative; other tokens appeared to focus
on this token by default when no relevant tokens
were found elsewhere in the sequence. On aver-
age, 57% of attention was directed to the first to-
ken. Some heads focused over 97% of attention
to this token on average (Figure 5), which is con-
sistent with recent work showing that individual
attention heads may have little impact on over-
all performance (Voita et al., 2019; Michel et al.,
2019). We refer to the attention directed to the first
token as null attention.

5https://github.com/huggingface/
pytorch-pretrained-BERT

6In cases where the GPT-2 tokenizer split a word into
multiple pieces, we assigned the features to all word pieces.
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Figure 6: Each heatmap shows the proportion of total attention directed to the given part of speech, broken out by
layer (vertical axis) and head (horizontal axis). Scales vary by tag. Results for all tags available in appendix.

Figure 7: Each heatmap shows the proportion of total attention that originates from the given part of speech, broken
out by layer (vertical axis) and head (horizontal axis). Scales vary by tag. Results for all tags available in appendix.

5.3 Results

5.3.1 Part-of-Speech Tags

Figure 6 shows the share of attention directed to
various part-of-speech tags (Eq. 3) broken out by
layer and head. Most tags are disproportionately
targeted by one or more attention heads. For ex-
ample, nouns receive 43% of attention in layer 9,
head 0, compared to a mean of 21% over all heads.
For 13 of 16 tags, a head exists with an attention
share more than double the mean for the tag.

The attention heads that focus on a particular
tag tend to cluster by layer depth. For example,
the top five heads targeting proper nouns are all in
the last three layers of the model. This may be due
to several attention heads in the deeper layers fo-
cusing on named entities (see Section 5.4), which
may require the broader context available in the
deeper layers. In contrast, the top five heads tar-
geting determiners—a lower-level construct—are
all in the first four layers of the model. This is con-
sistent with previous findings showing that deeper
layers focus on higher-level properties (Blevins
et al., 2018; Belinkov, 2018).

Figure 7 shows the proportion of attention di-
rected from various parts of speech. The values
appear to be roughly uniform in the initial lay-
ers of the model. The reason is that the heads in
these layers pay little attention to the first (null) to-
ken (Figure 5), and therefore the remaining (non-

null) attention weights sum to a value close to
one. Thus, the net weight for each token in the
weighted sum (Section 5.1.1) is close to one, and
the proportion reduces to the frequency of the part
of speech in the corpus.

Beyond the initial layers, attention heads spe-
cialize in focusing attention from particular part-
of-speech tags. However, the effect is less pro-
nounced compared to the tags receiving attention;
for 7 out of 16 tags, there is a head that focuses
attention from that tag with a frequency more than
double the tag average. Many of these specialized
heads also cluster by layer. For example, the top
ten heads for focusing attention from punctuation
are all in the last six layers.

5.3.2 Dependency Relations

Figure 8 shows the dependency alignment scores
(Eq. 4) broken out by layer. Attention aligns with
dependency relations most strongly in the mid-
dle layers, consistent with recent syntactic probing
analyses (Liu et al., 2019; Tenney et al., 2019).

One possible explanation for the low alignment
in the initial layers is that many heads in these lay-
ers focus attention based on position rather than
content, according to the attention variability (Eq.
5) results in Figure 10. Figure 4 (left and center)
shows two examples of position-focused heads
from layer 0 that have relatively low dependency
alignment7 (0.04 and 0.10, respectively); the first
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Figure 8: Proportion of attention that is aligned with dependency relations, aggregated by layer. The orange line
shows the baseline proportion of token pairs that share a dependency relationship, independent of attention.

Figure 9: Proportion of attention directed to various dependency types, broken out by layer.

Figure 10: Attention variability by layer / head.
High-values indicate content-dependent heads, and low
values indicate content-independent (position-based)
heads.

head focuses attention primarily on the current to-
ken position (which cannot be in a dependency re-
lation with itself) and the second disperses atten-
tion roughly evenly, without regard to content.

An interesting counterexample is layer 4, head
11 (Figure 1), which has the highest depen-
dency alignment out of all the heads (DepAlα =
0.42)7 but is also the most position-focused
(Variabilityα = 0.004). This head focuses atten-
tion on the previous token, which in our corpus
has a 42% chance of being in a dependency rela-

7Assuming relation may be in either direction.

tion with the adjacent token. As we’ll discuss in
the next section, token distance is highly predic-
tive of dependency relations.

One hypothesis for why attention diverges from
dependency relations in the deeper layers is that
several attention heads in these layers target very
specific constructs (Tables 1 and 2) as opposed to
more general dependency relations. The deepest
layers also target longer-range relationships (see
next section), whereas dependency relations span
relatively short distances (3.89 tokens on average).

We also analyzed the specific dependency types
of tokens receiving attention (Figure 9). Sub-
jects (csubj, csubjpass, nsubj, nsubjpass) were
targeted more in deeper layers, while auxiliaries
(aux), conjunctions (cc), determiners (det), ex-
pletives (expl), and negations (neg) were targeted
more in lower layers, consistent with previous
findings (Belinkov, 2018). For some other depen-
dency types, the interpretations were less clear.

5.3.3 Attention Distance
We found that attention distance (Eq. 6) is greatest
in the deepest layers (Figure 11, right), confirm-
ing that these layers capture longer-distance rela-
tionships. Attention distance varies greatly across
heads (SD = 3.6), even when the heads are in the
same layer, due to the wide variation in attention
structures (e.g., Figure 4 left and center).
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Figure 11: Mean attention distance by layer / head (left), and by layer (right).

Figure 12: Mean attention entropy by layer / head.
Higher values indicate more diffuse attention.

We also explored the relationship between at-
tention distance and attention entropy (Eq. 7),
which measures how diffuse an attention pattern
is. Overall, we found a moderate correlation (r =
0.61, p < 0.001) between the two. As Figure 12
shows, many heads in layers 0 and 1 have high en-
tropy (e.g., Figure 4, center), which may explain
why these layers have a higher attention distance
compared to layers 2–4.

One counterexample is layer 5, head 1 (Fig-
ure 4, right), which has the highest mean attention
distance of any head (14.2), and one of the low-
est mean entropy scores (0.41). This head con-
centrates attention on individual words in repeated
phrases, which often occur far apart from one an-
other.

We also explored how attention distance re-
lates to dependency alignment. Across all heads,
we found a negative correlation between the two
quantities (r = −0.73, p < 0.001). This is con-
sistent with the fact that the probability of two to-
kens sharing a dependency relation decreases as
the distance between them increases8; for exam-

8This is true up to a distance of 18 tokens; 99.8% of de-
pendency relations occur within this distance.

ple, the probability of being in a dependency rela-
tion is 0.42 for adjacent tokens, 0.07 for tokens at
a distance of 5, and 0.02 for tokens at a distance of
10. The layers (2–4) in which attention spanned
the shortest distance also had the highest depen-
dency alignment.

5.4 Qualitative Analysis
To get a sense of the lexical patterns targeted by
each attention head, we extracted exemplar sen-
tences that most strongly induced attention in that
head. Specifically, we ranked sentences by the
maximum token-to-token attention weight within
each sentence. Results for three attention heads
are shown in Tables 1–3. We found other attention
heads that detected entities (people, places, dates),
passive verbs, acronyms, nicknames, paired punc-
tuation, and other syntactic and semantic proper-
ties. Most heads captured multiple types of pat-
terns.

6 Conclusion

In this paper, we analyzed the structure of atten-
tion in the GPT-2 Transformer language model.
We found that many attention heads specialize
in particular part-of-speech tags and that different
tags are targeted at different layer depths. We also
found that the deepest layers capture the most dis-
tant relationships, and that attention aligns most
strongly with dependency relations in the middle
layers where attention distance is lowest.

Our qualitative analysis revealed that the struc-
ture of attention is closely tied to the training ob-
jective; for GPT-2, which was trained using left-
to-right language modeling, attention often fo-
cused on words most relevant to predicting the
next token in the sequence. For future work, we
would like to extend the analysis to other Trans-
former models such as BERT, which has a bidi-

70



Rank Sentence
1 The Australian search and rescue service is provided by Aus S AR , which is part of the

Australian Maritime Safety Authority ( AM SA ).
2 In 1925 , Bapt ists worldwide formed the Baptist World Alliance ( B WA ).
3 The Oak dale D ump is listed as an Environmental Protection Agency Super fund site due

to the contamination of residential drinking water wells with volatile organic compounds (
V OC s ) and heavy metals .

Table 1: Exemplar sentences for layer 10, head 10, which focuses attention from acronyms to the associated phrase.
The tokens with maximum attention are underlined; the attending token is bolded and the token receiving attention
is italicized. It appears that attention is directed to the part of the phrase that would help the model choose the next
word piece in the acronym (after the token paying attention), reflecting the language modeling objective.

Rank Sentence
1 After the two prototypes were completed , production began in Mar iet ta , Georgia , ...
3 The fictional character Sam Fisher of the Spl inter Cell video game series by Ubisoft was

born in Tow son , as well as residing in a town house , as stated in the novel izations ...
4 Suicide bombers attack three hotels in Am man , Jordan , killing at least 60 people .

Table 2: Exemplar sentences for layer 11, head 2, which focuses attention from commas to the preceding place
name (or the last word piece thereof). The likely purpose of this attention head is to help the model choose the
related place name that would follow the comma, e.g. the country or state in which the city is located.

Rank Sentence
1 With the United States isolation ist and Britain stout ly refusing to make the ” continental

commitment ” to defend France on the same scale as in World War I , the prospects of Anglo
- American assistance in another war with Germany appeared to be doubtful ...

2 The show did receive a somewhat favorable review from noted critic Gilbert Se ld es in the
December 15 , 1962 TV Guide : ” The whole notion on which The Beverly Hill bill ies is
founded is an encouragement to ignorance ...

3 he Arch im edes won significant market share in the education markets of the UK , Ireland
, Australia and New Zealand ; the success of the Arch im edes in British schools was due
partly to its predecessor the BBC Micro and later to the Comput ers for Schools scheme ...

Table 3: Exemplar sentences for layer 11, head 10 which focuses attention from the end of a noun phrase to the
head noun. In the first sentence, for example, the head noun is prospects and the remainder of the noun phrase is
of Anglo - American assistance in another war with Germany. The purpose of this attention pattern is likely to
predict the word (typically a verb) that follows the noun phrase, as the head noun is a strong predictor of this.

rectional architecture and is trained on both token-
level and sentence-level tasks.

Although the Wikipedia sentences used in our
analysis cover a diverse range of topics, they all
follow a similar encyclopedic format and style.
Further study is needed to determine how attention
patterns manifest in other types of content, such as
dialog scripts or song lyrics. We would also like
to analyze attention patterns in text much longer
than a single sentence, especially for new Trans-
former variants such as the Transformer-XL (Dai
et al., 2019) and Sparse Transformer (Child et al.,
2019), which can handle very long contexts.

We believe that interpreting a model based on
attention is complementary to linguistic probing

approaches (Section 2). While linguistic prob-
ing precisely quantifies the amount of information
encoded in various components of the model, it
requires training and evaluating a probing clas-
sifier. Analyzing attention is a simpler process
that also produces human-interpretable descrip-
tions of model behavior, though recent work casts
doubt on its role in explaining individual predic-
tions (Jain and Wallace, 2019). The results of
our analyses were often consistent with those from
probing approaches.
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A Appendix

Figures A.1 and A.2 shows the results from Fig-
ures 6 and 7 for the full set of part-of-speech tags.
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Figure A.1: Each heatmap shows the proportion of total attention directed to the given part of speech, broken out
by layer (vertical axis) and head (horizontal axis).
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Figure A.2: Each heatmap shows the proportion of attention originating from the given part of speech, broken out
by layer (vertical axis) and head (horizontal axis).
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Abstract

Language is a powerful tool which can be used
to state the facts as well as express our views
and perceptions. Most of the times, we find
a subtle bias towards or against someone or
something. When it comes to politics, me-
dia houses and journalists are known to cre-
ate bias by shrewd means such as misinterpret-
ing reality and distorting viewpoints towards
some parties. This misinterpretation on a large
scale can lead to the production of biased news
and conspiracy theories. Automating bias de-
tection in newspaper articles could be a good
challenge for research in NLP.

We proposed a headline attention network for
this bias detection. Our model has two distinc-
tive characteristics: (i) it has a structure that
mirrors a person’s way of reading a news arti-
cle (ii) it has attention mechanism applied on
the article based on its headline, enabling it to
attend to more critical content to predict bias.
As the required datasets were not available, we
created a dataset comprising of 1329 news arti-
cles collected from various Telugu newspapers
and marked them for bias towards a particu-
lar political party. The experiments conducted
on it demonstrated that our model outperforms
various baseline methods by a substantial mar-
gin.

1 Introduction

News bias is a ubiquitous phenomenon, poten-
tially present in most of the newspapers. The first
step in challenging biased news is documenting
bias. So detection of the inclination of a news ar-
ticle towards a political party has gained attention
today. Such news articles are mostly selected and
analyzed manually using a process called coding
or theoretical frameworks like discourse analysis
and content analysis. This analysis requires a lot
of effort, concentration, attention to detail and is
also time taking. Thus automating this bias de-

tection in a news article could be very helpful and
necessary for media verification.

Media bias can be observed and defined through
various factors. In political domain, it ranges
from selectively publishing articles to specifically
choosing to highlight some events, parties and
leaders. We also come across articles where bias
can be detected by observing the unclear assump-
tions, loaded language, or lack of proper context.
Especially during the election campaigning due to
several unjust factors, media houses often align
themselves either for or against some specific par-
ties and instead of reporting just the content, they
subtly add their stand towards it. This is usually
reflected in the headline, and making the headline
biased has an effect on the reader who reads the ar-
ticle after registering the headline subconsciously.
As there was no dataset marked for political bias
available in Telugu, we created a dataset compris-
ing of 1329 news articles collected from various
Telugu newspapers and annotated them for bias
towards a political party. The bias is marked as
None if the article is unbiased.

Telugu is an agglutinative Dravidian language
spoken widely in two states of India namely Telan-
gana and Andhra Pradesh. According to Ethno-
logue1 list of most spoken languages worldwide,
Telugu ranks fifteenth in the list, and a total of
85 million Telugu native speakers exist across the
world. There are only 5 major political parties
present in the two Telugu speaking states. We
treat the problem of political bias detection as a
classification problem. The political parties can
be treated as labels and the goal will be to as-
sign labels to each news article. Any news arti-
cle deviating its reader from the original news to-
wards a political party is considered biased. Tra-
ditional approaches of text classification represent

1https://www.ethnologue.com/statistics/size

77



documents with sparse lexical features, such as n-
grams, and then use a linear model or kernel meth-
ods on this representation (Wang and Manning,
2012; Joachims, 1998). More recent approaches
used deep learning, such as convolutional neural
networks (Kalchbrenner et al., 2014) and recurrent
neural networks based on long short-term memory
(LSTM) (Hochreiter and Schmidhuber, 1997) to
learn text representations.

Although neural-network based approaches
have been quite effective, classification based only
on articles or only on headlines may not give bet-
ter results as articles may contain unnecessary ex-
tra information and headlines being short may not
capture required information. So a combination of
article and headline is required for better classifi-
cation. In this paper, we test our hypothesis that
classification can be improved by focusing on es-
sential parts of news articles based on their head-
lines. Since headlines are designed to be short and
catchy, journalists tend to exploit them to express
their ideological view of the news stories and de-
pending on these headlines the interpretation of
the stories can change. So the intuition underly-
ing our model is that bias in an article can be ef-
fectively found by focusing on essential parts of
articles based on their headlines.

Our contributions in this paper are (i) The cre-
ation and annotation of a newspaper dataset for po-
litical bias detection, (ii) The proposal of a neu-
ral network architecture, the Headline Attention
Network that is designed to capture the important
parts of news article causing political bias by pay-
ing headline attention.Generally, readers first read
the headlines and then go through the news article
with those headlines in their mind. Thus attention
is paid on news article with its headline in reader’s
mind. Headline Attention Networks are designed
to do the same thing and find important parts that
reflect bias in news articles. To illustrate, consider
the example in Figure 1. In the figure, importance
of each highlighted word in causing bias is directly
proportional to the intensity of the blue colour in
highlighting2. So focusing more on these words
according to their importance would give better re-
sults rather than focusing on all words.The key dif-
ference to other neural networks is that our system
focuses on the importance of headline for politi-
cal bias detection in an article and discover which

2Translation, explanation and visualizations of Headline
attention are given in Supplement Material

sequence of tokens are relevant rather than sim-
ply filtering out. Our model outperforms various
common classification architectures by a signifi-
cant margin.

Figure 1: News article from the dataset. Bias towards
”TDP”

2 Related Work

Identification and analysis of bias in news articles
has led to extensive research in the fields of an-
thropology, discourse analysis, and media studies.
(Sivandi and Dowlatabadi, 2015) used the head-
lines and leads of newspaper articles to detect bias
in their complete linguistic approach to the prob-
lem.

(Iyyer et al., 2014) used recursive neural net-
works to detect political ideology.

(Rashkin et al., 2017) introduced a propagan-
dists dataset focused propaganda news and pre-
sented a study on the language of news media in
context of political fact checking.

(Recasens et al., 2013) conducted a study re-
lated to bias in the Wikipedia articles using logisitc
regression.

Many industrial organizations are working in
this space worldwide to fight disinformation. First
Draft News is a project ”to fight mis- and dis-
information online” founded by 9 organizations
brought together by the Google News Lab. Full
Fact is a charity based in London to check and
correct facts reported in the news. CrossCheck is
a new initiative from Google Labs and First Draft
to support truth and verification in Media.

In Telugu, a small amount of work is done on
news data. (Mukku et al., 2016) apply ML tech-
niques for Sentiment Analysis of Telugu news ar-
ticles. (Gangula and Mamidi, 2018) performed
multidomain sentiment analysis in Telugu.

3 Dataset

Our aim is to detect the bias of a newspaper ar-
ticle towards a particular political party. An arti-
cle is said to be biased if it is inclined or preju-
diced for or against a political party. We created a
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dataset3 containing headline of the article, article
and the political party towards which it is biased.
We marked it with label ”None” if it was unbiased.
The statistics of the dataset is shown in Table 1.

Four annotators annotated each article in the
dataset with one of the 5 parties namely BJP, TDP,
Congress, TRS, YCP or as None if the article is
unbiased. The annotators are native Telugu speak-
ers with good proficiency in the language. While
choosing annotators care was taken that they do
not have any bias towards any party and have suf-
ficient political knowledge. The following annota-
tion guidelines were followed: Each article along
with the headline was presented to the annotators.
They were asked to read them just as they read
newspapers. After reading, they were asked to an-
notate whether the article was subjectively biased
towards or against a party or is unbiased. A Kappa
score of 0.9 was achieved through multiple discus-
sions.

Figure 6 presented in supplemental Material
shows some of the examples from our dataset. We
can see in the examples below that there is some
inherent bias towards a party in the way a partic-
ular newspaper has reported. This could be due
to several factors like the ownership of the me-
dia house, the present power of a party (ruling or
opposition), and the ideology of the target group
of readers that particular newspaper is catering to.
Many a times, political parties themselves estab-
lish media houses and newspaper agencies to in-
crease their outreach and glorify their party. This
greatly contributes to bias in the published articles.

Parties Documents Sentences Words avg #w in headline avg #w in article
BJP 182 2244 24863 4.13 132.48

Congress 82 1031 11410 4.06 135.08
TRS 151 1860 21685 4.09 139.52
TDP 361 3484 40495 3.86 108.3
YCP 335 1958 22370 3.79 62.98

Unbiased 218 1546 19245 4.09 65.14
Total 1329 12123 140068 3.95 98.3

Table 1: Data statistics: #w denotes the number of
words per document

4 Headline Attention Networks

The overall architecture of the Headline Attention
Network is shown in Figure 2. It consists of sev-
eral parts: a headline encoder, an article encoder
and a headline attention layer. We describe the de-
tails of these components below.

3Our dataset is freely available at
https://drive.google.com/open?id=
1IyaKYeDkl7ubuabTI65G0nSBfxQNdeTr

Figure 2: Headline Attention Network

4.1 Model

We focus on classifying a given article as biased
towards one of the political parties in this work.
Assume that the article has T words, wi with i ∈
[1, T ] represents the ith word in article and head-
line has H words, qi with i ∈ [1, H] represents
ith word in headline of the article. The proposed
model projects the raw articles into a vector repre-
sentation which can be used for classification. In
the following, we will present this method of pro-
jection.

4.1.1 Headline Encoder
Given the headline of an article with words qi, i
∈ [1, H], we first embed the words into vectors
through an embedding matrix We, xi=Weqi. We
use a bidirectional LSTM to get contextual en-
coding of headline from both the directions. The
bidirectional LSTM contains a forward LSTM

−→
f

which reads headline from q1 to qH and a back-
ward LSTM

←−
f which reads headline from qH to

q1:
xi =Weqi, i ∈ [1, H] (1)

−→
hi =

−−−−→
LSTM(xi)i ∈ [1, H] (2)

←−
hi =

←−−−−
LSTM(xi)i ∈ [H, 1] (3)

We encode the headline of the article by con-
catenating the forward representation

−→
hH and the

backward representation
←−
h1, i.e, Q=[

←−
h1,
−→
hH ] is the

representation of the article headline.

4.1.2 Article Encoder
An article is nothing but a sequence of words. We
embed these words into vectors and use bidirec-
tional LSTM to get annotations of the words by
summarizing information from both direction for
words and therefore incorporating contextual in-
formation in the annotation. We encode article as:

xi =Wewi, i ∈ [1, T ] (4)
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−→
hi =

−−−−→
LSTM(xi), i ∈ [1, T ] (5)

←−
hi =

←−−−−
LSTM(xi), i ∈ [T, 1] (6)

We concatenate
−→
hi and

←−
hi to get annotation of

word wi i.e hi=[
−→
hi ,
←−
hi ]. hi summarizes the neigh-

boring words around word wi but still focuses on
word wi.

4.1.3 Headline Attention Layer
Headline of a news article is very important to
report news biased towards a political party as a
reader generally reads headline first and then goes
through the article with that headline in his mind
i.e paying attention to article based on the head-
line. We introduce attention mechanism to extract
words that contribute to political bias and form a
vector representation v. Specifically,

ui = tanh(Wwhi + bw) (7)

αi =
exp(uTi .U)∑
i exp(u

T
i .U)

(8)

v =
∑

i

αihi (9)

We measure the importance of the word as the sim-
ilarity of ui with U, the hidden representation of
encoded headline representation Q and get a nor-
malized importance αi through a softmax func-
tion. After that we compute the representation of
the news article as a weighted sum of the word an-
notations based on the weights. All of the above
are learned during the training process.

4.1.4 Bias detection
The vector v is used to detect towards which polit-
ical party the article is biased to as:

p = Softmax(Wcv + bc) (10)

Training loss is the negative log likelihood of the
correct labels:

L = −
∑

d

Log(pdi) (11)

where i is the label of document d.

5 Experiments

All the experiments are carried out in a 5-fold
cross validation scenario. As headlines express
the ideological view of the news stories, in some
cases only the headline would be sufficient to de-
tect bias. So except for Headline Attention Net-
works, for all other baselines we divided dataset
into three parts:

1. Only headline.

2. Only news article.

3. Concatenation of both headline and news ar-
ticle.

We compared how each of them differs in bias de-
tection.

5.1 Baselines
We compare Headline Attention Networks with
several baseline methods, including traditional ap-
proaches such as Naive Bayes, SVMs, CNNs,
Branched CNNs, LSTMs and GRUs. Word em-
beddings are available for Telugu4.

5.1.1 Naive Bayes
Naive Bayes classifier is used to classify docu-
ments using the following features.

TFIDF The TFIDF values of each word is used
as features.

Bag-of-means The average word2vec (Mikolov
et al., 2013) embedding is used as feature set.

5.1.2 SVMs
SVM-based classifier is used including following
different features.

TFIDF+Unigrams The TFIDF values of bag of
Unigrams is used as features.

TFIDF+Bigrams The TFIDF values of bag of
Bigrams is used as features.

AverageSG The average word embeddings of
each document is used as feature set.

5.1.3 Neural Network methods
We experimented with multiple neural network ar-
chitectures like:

CNNs Word based neural network model like in
(Kim, 2014) are used.

Branched CNNs Figure 3 shows the branched
CNN architecture.

Figure 3: Branched CNN architecture

LSTMs and GRU based models like in (Wang
et al., 2018) are used.

4https://bit.ly/2JQNYrw
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Methods Only Headline Only article Concatenation of headline and article Maximum
Naive Bayes+TFIDF+Unigrams 39 58 59 59
Naive Bayes+TFIDF+Bigrams 29 32 33 33

Naive Bayes+Bag-of-means 49 63 63 63
SVM+TFIDF+Unigrams 41 69 69 69
SVM+TFIDF+Bigrams 55 76 71 76

SVM+AverageSG 57 69 66 69
CNNs 80 80.5 81.7 81.7

Branched CNNs 83.33 84.52 84.6 84.6
LSTM 84 85.25 85.32 85.32
GRU 81 82.7 82.7 82.7

Headline Attention Network without attention layer - - - 85.25
Headline Attention Network - - - 89.54

Table 2: Bias Detection Accuracy in percentage. Maximum is the best value among the three divisions of our
dataset for baselines.

5.2 Results and analysis

The experimental results are shown in table 2. The
results show that our model gives the best per-
formance. Our model outperforms previous best
baseline methods by 4.22%. From table 2 we
can see that there is a significant improvement in
neural network based methods compared to tradi-
tional methods. But involving the headline atten-
tion can significantly improve over them. As men-
tioned earlier, headlines are designed to be short
and catchy so the journalists tend to exploit them
to influence readers. Therefore, considering only
the headlines also predicts bias with only a small
difference in accuracy when compared to consid-
ering whole article. This can be clearly observed
in table 2 in neural network methods. We can also
observe that simply concatenating headline does
not help much in bias prediction, instead attending
to article with headline representation increases
accuracy by a significant margin. Our Headline
Attention Network outperforms all other models
because it effectively finds out important words
causing bias in a document.

6 Conclusion

In this paper, we proposed a headline attention
mechanism for automatic detection of bias in news
articles along with a manually annotated dataset to
enable further research. Our model builds a vector
for news article by aggregating important words
obtained by paying attention based on headline
representation. The experimental results demon-
strate that our model significantly outperforms all
the previous baseline models. Visualization of at-
tention shows how headline attention effectively
picks out words causing bias.

This model can also be extended to other sen-

timent based classification of texts such as blogs
or online trending articles, which contains a ti-
tle/headline and a body.
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A Supplemental Material

A.1 Visualization of Headline Attention
Figure 4 and 5 show the visualization of our head-
line attention networks. Intensity of blue color de-
notes word weight.

Figures 4 and 5 shows that our model selects
words with strong emphasis on a person or a po-
litical party. The darker the blue colour, it implies
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higher is its importance in predicting bias towards
a party. Words with the darkest blue highlighting,
such as YSRCP,Chandra Babu, People’s leader are
the most important ones as they refer to who/what
the article is intending to inform about. So they
are given more weight. The English translation
of words in blue are ”Chandra Babu”, ”progress”,
”inspiration”, ”strongest person on earth”, ”spe-
cial”, ”encourage” etc. Our headline attention fo-
cuses most on ”Chandra Babu” who is the chair
person of the TDP political party and the other
words are attended according to the intensity of
praising.

Figure 4: News article from the dataset. Bias towards
”TDP”

Figure 5: News article from the dataset. Bias towards
”YCP”

Approximate translation of Figure 4:
Headline : Path of welfare
Article : On Friday, YSR Congress chief Jagan-

mohan Reddy carried out the fulfillment of peo-
ple’s desires successfully. The main goal of the
walk is the welfare and betterment of the people
of the state and people participated with a lot of
excitement and offered immense support to the
leader. The leader of the masses was given a warm
welcome by the people, who have waited for hours
just to see him. The people were very eager and
enthusiastic to see him, meet him, greet him and
to be addressed by him in the public talk that the
leader addresses. The leader of masses, with a
constant smile on his face, also greeted the people
affectionately, spoke with them to find out about
the current problems that they are facing and gave
offered them to support and ensured that he is al-
ways with the people in any kind of need.

Approximate translation of Figure 5:
Headline : Chandra Babu Naidu praised by New

York Times

Article : The step taken by Chandra Babu is
now an inspiration for all other states. The mea-
sures taken by Chandra Babu regarding organic
farming are exceptionally great and are getting
great applauses from various environmentalists.
New scheme called Zero Budget Natural Farm-
ing introduced by Chandra Babu mainly encour-
ages the farmers to implement organic farming and
techniques and are the main reason for the farmer
to have hope on their life. The same has been
even published in the New York Times. The ef-
fort put by Chandra Babu for encouraging farmers
in chemical-free farming is truly appreciation wor-
thy.
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Figure 6: Examples of biased articles from our dataset.
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Abstract

Neural network models have been very suc-
cessful in natural language inference, with the
best models reaching 90% accuracy in some
benchmarks. However, the success of these
models turns out to be largely benchmark spe-
cific. We show that models trained on a natu-
ral language inference dataset drawn from one
benchmark fail to perform well in others, even
if the notion of inference assumed in these
benchmarks is the same or similar. We train
six high performing neural network models on
different datasets and show that each one of
these has problems of generalizing when we
replace the original test set with a test set taken
from another corpus designed for the same
task. In light of these results, we argue that
most of the current neural network models are
not able to generalize well in the task of nat-
ural language inference. We find that using
large pre-trained language models helps with
transfer learning when the datasets are simi-
lar enough. Our results also highlight that the
current NLI datasets do not cover the different
nuances of inference extensively enough.

1 Introduction

Natural Language Inference (NLI) has attracted
considerable interest in the NLP community and,
recently, a large number of neural network-based
systems have been proposed to deal with the task.
One can attempt a rough categorization of these
systems into: a) sentence encoding systems, and
b) other neural network systems. Both of them
have been very successful, with the state of the art
on the SNLI and MultiNLI datasets being 90.4%,
which is our baseline with BERT (Devlin et al.,
2019), and 86.7% (Devlin et al., 2019) respec-
tively. However, a big question with respect to
these systems is their ability to generalize outside
the specific datasets they are trained and tested
on. Recently, Glockner et al. (2018) have shown

that state-of-the-art NLI systems break consider-
ably easily when, instead of tested on the original
SNLI test set, they are tested on a test set which
is constructed by taking premises from the train-
ing set and creating several hypotheses from them
by changing at most one word within the premise.
The results show a very significant drop in accu-
racy for three of the four systems. The system
that was more difficult to break and had the least
loss in accuracy was the system by Chen et al.
(2018) which utilizes external knowledge taken
from WordNet (Miller, 1995).

In this paper we show that NLI systems that
have been very successful in specific NLI bench-
marks, fail to generalize when trained on a spe-
cific NLI dataset and then these trained models
are tested across test sets taken from different NLI
benchmarks. The results we get are in line with
Glockner et al. (2018), showing that the general-
ization capability of the individual NLI systems is
very limited, but, what is more, they further show
the only system that was less prone to breaking in
Glockner et al. (2018), breaks too in the experi-
ments we have conducted.

We train six different state-of-the-art models on
three different NLI datasets and test these trained
models on an NLI test set taken from another
dataset designed for the same NLI task, namely for
the task to identify for sentence pairs in the dataset
if one sentence entails the other one, if they are in
contradiction with each other or if they are neutral
with respect to inferential relationship.

One would expect that if a model learns to
correctly identify inferential relationships in one
dataset, then it would also be able to do so in an-
other dataset designed for the same task. Further-
more, two of the datasets, SNLI (Bowman et al.,
2015) and MultiNLI (Williams et al., 2018), have
been constructed using the same crowdsourcing
approach and annotation instructions (Williams
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et al., 2018), leading to datasets with the same or
at least very similar definition of entailment. It is
therefore reasonable to expect that transfer learn-
ing between these datasets is possible. As SICK
(Marelli et al., 2014) dataset has been machine-
constructed, a bigger difference in performance is
expected.

In this paper we show that, contrary to our ex-
pectations, most models fail to generalize across
the different datasets. However, our experiments
also show that BERT (Devlin et al., 2019) per-
forms much better than the other models in experi-
ments between SNLI and MultiNLI. Nevertheless,
even BERT fails when testing on SICK. In addi-
tion to the negative results, our experiments fur-
ther highlight the power of pre-trained language
models, like BERT, in NLI.

The negative results of this paper are significant
for the NLP research community as well as to NLP
practice as we would like our best models to not
only to be able to perform well in a specific bench-
mark dataset, but rather capture the more general
phenomenon this dataset is designed for. The main
contribution of this paper is that it shows that most
of the best performing neural network models for
NLI fail in this regard. The second, and equally
important, contribution is that our results highlight
that the current NLI datasets do not capture the nu-
ances of NLI extensively enough.

2 Related Work

The ability of NLI systems to generalize and re-
lated skepticism has been raised in a number of
recent papers. Glockner et al. (2018) show that
the generalization capabilities of state-of-the-art
NLI systems, in cases where some kind of exter-
nal lexical knowledge is needed, drops dramati-
cally when the SNLI test set is replaced by a test
set where the premise and the hypothesis are oth-
erwise identical except for at most one word. The
results show a very significant drop in accuracy.
Kang et al. (2018) recognize the generalization
problem that comes with training on datasets like
SNLI, which tend to be homogeneous and with lit-
tle linguistic variation. In this context, they pro-
pose to better train NLI models by making use of
adversarial examples.

Multiple papers have reported hidden bias and
annotation artifacts in the popular NLI datasets
SNLI and MultiNLI allowing classification based
on the hypothesis sentences alone (Tsuchiya,

2018; Gururangan et al., 2018; Poliak et al., 2018).
Wang et al. (2018) evaluate the robustness of

NLI models using datasets where label preserving
swapping operations have been applied, reporting
significant performance drops compared to the re-
sults with the original dataset. In these experi-
ments, like in the BreakingNLI experiment, the
systems that seem to be performing the better, i.e.
less prone to breaking, are the ones where some
kind of external knowledge is used by the model
(KIM by Chen et al., 2018 is one of those sys-
tems).

On a theoretical and methodological level, there
is discussion on the nature of various NLI datasets,
as well as the definition of what counts as NLI
and what does not. For example, Chatzikyri-
akidis et al. (2017); Bernardy and Chatzikyriakidis
(2019) present an overview of the most standard
datasets for NLI and show that the definitions of
inference in each of them are actually quite differ-
ent, capturing only fragments of what seems to be
a more general phenomenon.

Bowman et al. (2015) show that a simple LSTM
model trained on the SNLI data fails when tested
on SICK. However, their experiment is limited to
this single architecture and dataset pair. Williams
et al. (2018) show that different models that
perform well on SNLI have lower accuracy on
MultiNLI. However in their experiments they did
not systematically test transfer learning between
the two datasets, but instead used separate systems
where the training and test data were drawn from
the same corpora.1

3 Experimental Setup

In this section we describe the datasets and model
architectures included in the experiments.

3.1 Data

We chose three different datasets for the experi-
ments: SNLI, MultiNLI and SICK. All of them
have been designed for NLI involving three-way
classification with the labels entailment, neutral
and contradiction. We did not include any datasets
with two-way classification, e.g. SciTail (Khot
et al., 2018). As SICK is a relatively small dataset
with approximately only 10k sentence pairs, we
did not use it as training data in any experiment.

1To be more precise, Williams et al. (2018) tested some
transfer across datasets, but only between MultiNLI and
SNLI.
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Train data Test data Size of the training set Size of the test set
SNLI SNLI 550,152 10,000
SNLI MultiNLI 550,152 20,000
SNLI SICK 550,152 9,840
MultiNLI MultiNLI 392,702 20,000
MultiNLI SNLI 392,702 10,000
MultiNLI SICK 392,702 9,840
SNLI + MultiNLI SNLI 942,854 10,000
SNLI + MultiNLI SICK 942,854 9,840

Table 1: Dataset combinations used in the experiments. The rows in bold are baseline experiments, where the test
data comes from the same benchmark as the training and development data.

We also trained the models with a combined SNLI
+ MultiNLI training set.

For all the datasets we report the baseline per-
formance where the training and test data are
drawn from the same corpus. We then take these
trained models and test them on a test set taken
from another NLI corpus. For the case where the
models are trained with SNLI + MultiNLI we re-
port the baseline using the SNLI test data.2 All
the experimental combinations are listed in Table
1. Examples from the selected datasets are pro-
vided in Table 2. To be more precise, we vary
three things: training dataset, model and testing
dataset. We should qualify this though, since the
three datasets we look at, can also be grouped by
text domain/genre and type of data collection, with
MultiNLI and SNLI using the same data collection
style, and SNLI and SICK using roughly the same
domain/genre. Hopefully, our set up will let us de-
termine which of these factors matters the most.

We describe the source datasets in more detail
below.

SNLI
The Stanford Natural Language Inference (SNLI)
corpus (Bowman et al., 2015) is a dataset of 570k
human-written sentence pairs manually labeled
with the labels entailment, contradiction, and neu-
tral. The source for the premise sentences in SNLI
were image captions taken from the Flickr30k cor-
pus (Young et al., 2014).

MultiNLI
The Multi-Genre Natural Language Inference
(MultiNLI) corpus (Williams et al., 2018) con-
sisting of 433k human-written sentence pairs la-
beled with entailment, contradiction and neutral.

2Here we could as well have selected MultiNLI test data.
However the selection does not impact our findings.

MultiNLI contains sentence pairs from ten dis-
tinct genres of both written and spoken English.
Only five genres are included in the training set.
The development and test sets have been divided
into matched and mismatched, where the former
includes only sentences from the same genres as
the training data, and the latter includes sentences
from the remaining genres not present in the train-
ing data.

We used the matched development set
(MultiNLI-m) for the experiments.3 The
MultiNLI dataset was annotated using very
similar instructions as for the SNLI dataset.4

Therefore we can assume that the definitions of
entailment, contradiction and neutral is the same
in these two datasets.

SICK
SICK (Marelli et al., 2014) is a dataset that was
originally constructed to test compositional distri-
butional semantics (DS) models. The dataset con-
tains 9,840 examples pertaining to logical infer-
ence (negation, conjunction, disjunction, apposi-
tion, relative clauses, etc.). The dataset was au-
tomatically constructed taking pairs of sentences
from a random subset of the 8K ImageFlickr data
set (Young et al., 2014) and the SemEval 2012
STS MSRVideo Description dataset (Agirre et al.,
2012).

3.2 Model and Training Details

We perform experiments with six high-performing
models covering the sentence encoding models,

3Here the choice between MultiNLI matched and mis-
matched does not make a difference to our experimental
setup.

4The reason we are not saying “exactly the same” is be-
cause in some cases, as the authors report, “the prompts that
surround each premise sentence during hypothesis collection
are slightly tailored to fit the genre of that premise sentence”.
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entailment
SICK A person, who is riding a bike, is wearing gear which is black

A biker is wearing gear which is black
SNLI A young family enjoys feeling ocean waves lap at their feet.

A family is at the beach.
MultiNLI Kal tangled both of Adrin’s arms, keeping the blades far away.

Adrin’s arms were tangled, keeping his blades away from Kal.
contradiction

SICK There is no man wearing a black helmet and pushing a bicycle
One man is wearing a black helmet and pushing a bicycle

SNLI A man with a tattoo on his arm staring to the side with vehicles and buildings behind him.
A man with no tattoos is getting a massage.

MultiNLI Also in Eustace Street is an information office and a cultural center for children, The Ark .
The Ark, a cultural center for kids, is located in Joyce Street.
neutral

SICK A little girl in a green coat and a boy holding a red sled are walking in the snow
A child is wearing a coat and is carrying a red sled near a child in a green and black coat

SNLI An old man with a package poses in front of an advertisement.
A man poses in front of an ad for beer.

MultiNLI Enthusiasm for Disney’s Broadway production of The Lion King dwindles.
The broadway production of The Lion King was amazing, but audiences are getting bored.

Table 2: Example sentence pairs from the three datasets.

cross-sentence attention models as well as fine-
tuned pre-trained language models.

For sentence encoding models, we chose a sim-
ple one-layer bidirectional LSTM with max pool-
ing (BiLSTM-max) with the hidden size of 600D
per direction, used e.g. in InferSent (Conneau
et al., 2017), and HBMP (Talman et al., 2018).
For the other models, we have chosen ESIM
(Chen et al., 2017), which includes cross-sentence
attention, and KIM (Chen et al., 2018), which
has cross-sentence attention and utilizes external
knowledge. We also selected two model involv-
ing a pre-trained language model, namely ESIM
+ ELMo (Peters et al., 2018) and BERT (Devlin
et al., 2019). KIM is particularly interesting in this
context as it performed significantly better than
other models in the Breaking NLI experiment con-
ducted by Glockner et al. (2018). The success
of pre-trained language models in multiple NLP
tasks make ESIM + ELMo and BERT interesting
additions to this experiment. Table 3 lists the dif-
ferent models used in the experiments.

For BiLSTM-max we used the Adam optimizer
(Kingma and Ba, 2015), a learning rate of 5e-4 and
batch size of 64. The learning rate was decreased
by the factor of 0.2 after each epoch if the model
did not improve. Dropout of 0.1 was used between
the layers of the multi-layer perceptron classi-
fier, except before the last layer.The BiLSTM-max
models were initialized with pre-trained GloVe
840B word embeddings of size 300 dimensions
(Pennington et al., 2014), which were fine-tuned

during training. Our BiLSMT-max model was im-
plemented in PyTorch.

For HBMP, ESIM, KIM and BERT we used
the original implementations with the default set-
tings and hyperparameter values as described in
Talman et al. (2018), Chen et al. (2017), Chen
et al. (2018) and Devlin et al. (2019) respectively.
For BERT we used the uncased 768-dimensional
model (BERT-base). For ESIM + ELMo we used
the AllenNLP (Gardner et al., 2018) PyTorch im-
plementation with the default settings and hyper-
parameter values.

4 Experimental Results

Table 4 contains all the experimental results.
Our experiments show that, while all of the six

models perform well when the test set is drawn
from the same corpus as the training and develop-
ment set, accuracy is significantly lower when we
test these trained models on a test set drawn from
a separate NLI corpus, the average difference in
accuracy being 24.9 points across all experiments.

Accuracy drops the most when a model is tested
on SICK. The difference in this case is between
19.0-29.0 points when trained on MultiNLI, be-
tween 31.6-33.7 points when trained on SNLI
and between 31.1-33.0 when trained on SNLI +
MultiNLI. This was expected, as the method of
constructing the sentence pairs was different, and
hence there is too much difference in the kind of
sentence pairs included in the training and test sets
for transfer learning to work. However, the drop
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Model Model type
BiLSTM-max (Conneau et al., 2017) Sentence encoding
HBMP (Talman et al., 2018) Sentence encoding
ESIM (Chen et al., 2017) Cross-sentence attention
KIM (Chen et al., 2018) Cross-sentence attention
ESIM + ELMo (Peters et al., 2018) Pre-trained language model
BERT-base (Devlin et al., 2019) Cross-sentence attention + pre-trained language model

Table 3: Model architectures used in the experiments.

was more dramatic than expected.
The most surprising result was that the accu-

racy of all models drops significantly even when
the models were trained on MultiNLI and tested
on SNLI (3.6-11.1 points). This is surprising as
both of these datasets have been constructed with
a similar data collection method using the same
definition of entailment, contradiction and neutral.
The sentences included in SNLI are also much
simpler compared to those in MultiNLI, as they
are taken from the Flickr image captions. This
might also explain why the difference in accu-
racy for all of the six models is lowest when the
models are trained on MultiNLI and tested on
SNLI. It is also very surprising that the model
with the biggest difference in accuracy was ESIM
+ ELMo which includes a pre-trained ELMo lan-
guage model. BERT performed significantly bet-
ter than the other models in this experiment having
an accuracy of 80.4% and only 3.6 point difference
in accuracy.

The poor performance of most of the models
with the MultiNLI-SNLI dataset pair is also very
surprising given that neural network models do not
seem to suffer a lot from introduction of new gen-
res to the test set which were not included in the
training set, as can be seen from the small differ-
ence in test accuracies for the matched and mis-
matched test sets (see e.g Williams et al., 2018).
In a sense SNLI could be seen as a separate genre
not included in MultiNLI. This raises the ques-
tion if the SNLI and MultiNLI have e.g. different
kinds of annotation artifacts, which makes transfer
learning between these datasets more difficult.

All the models, except BERT, perform almost
equally poorly across all the experiments. Both
BiLSTM-max and HBMP have an average drop in
accuracy of 24.4 points, while the average for KIM
is 25.5 and for ESIM + ELMo 25.6. ESIM has
the highest average difference of 27.0 points. In
contrast to the findings of Glockner et al. (2018),

utilizing external knowledge did not improve the
model’s generalization capability, as KIM per-
formed equally poorly across all dataset combina-
tions.

Also including a pretrained ELMo language
model did not improve the results significantly.
The overall performance of BERT was signifi-
cantly better than the other models, having the
lowest average difference in accuracy of 22.5
points. Our baselines for SNLI (90.4%) and
SNLI + MultiNLI (90.6%) outperform the previ-
ous state-of-the-art accuracy for SNLI (90.1%) by
Kim et al. (2018).

To understand better the types of errors made by
neural network models in NLI we looked at some
example failure-pairs for selected models.5 Tables
5 and 6 contain some randomly selected failure-
pairs for two models: BERT and HBMP, and
for three set-ups: SNLI→SICK, SNLI→MultiNLI
and MultiNLI→SICK. We chose BERT as the cur-
rent the state of the art NLI model. HBMP was
selected as a high performing model in the sen-
tence encoding model type. Although the listed
sentence pairs represent just a small sample of the
errors made by these models, they do include some
interesting examples. First, it seems that SICK
has a more narrow notion of contradiction – cor-
responding more to logical contradiction – com-
pared to the contradiction in SNLI and MultiNLI,
where especially in SNLI the sentences are con-
tradictory if they describe a different state of af-
fairs. This is evident in the sentence pair: A young
child is running outside over the fallen leaves and
A young child is lying down on a gravel road that
is covered with dead leaves, which is predicted by
BERT to be contradiction although the gold label
is neutral. Another interesting example is the sen-
tence pair: A boat pear with people boarding and

5More thorough error analysis of each of the models and
set-up is out of scope of this work but we intend to address
these in our future research.
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Train data Test data Test accuracy ∆ Model
SNLI SNLI 86.1 BiLSTM-max (our baseline)
SNLI SNLI 86.6 HBMP (Talman et al., 2018)
SNLI SNLI 88.0 ESIM (Chen et al., 2017)
SNLI SNLI 88.6 KIM (Chen et al., 2018)
SNLI SNLI 88.6 ESIM + ELMo (Peters et al., 2018)
SNLI SNLI 90.4 BERT-base (Devlin et al., 2019)
SNLI MultiNLI-m 55.7* -30.4 BiLSTM-max
SNLI MultiNLI-m 56.3* -30.3 HBMP
SNLI MultiNLI-m 59.2* -28.8 ESIM
SNLI MultiNLI-m 61.7* -26.9 KIM
SNLI MultiNLI-m 64.2* -24.4 ESIM + ELMo
SNLI MultiNLI-m 75.5* -14.9 BERT-base
SNLI SICK 54.5 -31.6 BiLSTM-max
SNLI SICK 53.1 -33.5 HBMP
SNLI SICK 54.3 -33.7 ESIM
SNLI SICK 55.8 -32.8 KIM
SNLI SICK 56.7 -31.9 ESIM + ELMo
SNLI SICK 56.9 -33.5 BERT-base
MultiNLI MultiNLI-m 73.1* BiLSTM-max
MultiNLI MultiNLI-m 73.2* HBMP
MultiNLI MultiNLI-m 76.8* ESIM
MultiNLI MultiNLI-m 77.3* KIM
MultiNLI MultiNLI-m 80.2* ESIM + ELMo
MultiNLI MultiNLI-m 84.0* BERT-base
MultiNLI SNLI 63.8 -9.3 BiLSTM-max
MultiNLI SNLI 65.3 -7.9 HBMP
MultiNLI SNLI 66.4 -10.4 ESIM
MultiNLI SNLI 68.5 -8.8 KIM
MultiNLI SNLI 69.1 -11.1 ESIM + ELMo
MultiNLI SNLI 80.4 -3.6 BERT-base
MultiNLI SICK 54.1 -19.0 BiLSTM-max
MultiNLI SICK 54.1 -19.1 HBMP
MultiNLI SICK 47.9 -28.9 ESIM
MultiNLI SICK 50.9 -26.4 KIM
MultiNLI SICK 51.4 -28.8 ESIM + ELMo
MultiNLI SICK 55.0 -29.0 BERT-base
SNLI + MultiNLI SNLI 86.1 BiLSTM-max
SNLI + MultiNLI SNLI 86.1 HBMP
SNLI + MultiNLI SNLI 87.5 ESIM
SNLI + MultiNLI SNLI 86.2 KIM
SNLI + MultiNLI SNLI 88.8 ESIM + ELMo
SNLI + MultiNLI SNLI 90.6 BERT-base
SNLI + MultiNLI SICK 54.5 -31.6 BiLSTM-max
SNLI + MultiNLI SICK 55.0 -31.1 HBMP
SNLI + MultiNLI SICK 54.5 -33.0 ESIM
SNLI + MultiNLI SICK 54.6 -31.6 KIM
SNLI + MultiNLI SICK 57.1 -31.7 ESIM + ELMo
SNLI + MultiNLI SICK 59.1 -31.5 BERT-base

Table 4: Test accuracies (%). For the baseline results (highlighted in bold) the training data and test data have been
drawn from the same benchmark corpus. ∆ is the difference between the test accuracy and the baseline accuracy
for the same training set. Results marked with * are for the development set, as no annotated test set is openly
available. Best scores with respect to accuracy and difference in accuracy are underlined.

disembarking some boats. and people are board-
ing and disembarking some boats, which is incor-
rectly predicted by BERT to be contradiction al-
though it has been labeled as entailment. Here the
two sentences describe the same event from dif-
ferent points of view: the first one describing a
boat pear with some people on it and the second
one describing the people directly. Interestingly

the added information about the boat pear seems
to confuse the model.

5 Discussion and Conclusion

In this paper we have shown that neural net-
work models for NLI fail to generalize across dif-
ferent NLI benchmarks. We experimented with
six state-of-the-art models covering sentence en-
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coding approaches, cross-sentence attention mod-
els and pre-trained and fine-tuned language mod-
els. For all the systems, the accuracy drops be-
tween 3.6-33.7 points (the average drop being 24.9
points), when testing with a test set drawn from a
separate corpus from that of the training data, as
compared to when the test and training data are
splits from the same corpus. Our findings, together
with the previous negative findings, indicate that
the state-of-the-art models fail to capture the se-
mantics of NLI in a way that will enable them to
generalize across different NLI situations.

The results highlight two issues to be taken
into consideration: a) using datasets involving a
fraction of what NLI is, will fail when tested in
datasets that are testing for a slightly different def-
inition of inference. This is evident when we move
from the SNLI to the SICK dataset. b) NLI is to
some extent genre/context dependent. Training on
SNLI and testing on MultiNLI gives worse results
than vice versa. This is particularly evident in the
case of BERT. These results highlight that train-
ing on multiple genres helps. However, this help
is still not enough given that, even in the case of
training on MultiNLI (multi genre) and training on
SNLI (single genre and same definition of infer-
ence with MultiNLI), accuracy drops significantly.

We also found that involving a large pre-trained
language model helps with transfer learning when
the datasets are similar enough, as is the case with
SNLI and MultiNLI. Our results further corrobo-
rate the power of pre-trained and fine-tuned lan-
guage models like BERT in NLI. However, not
even BERT is able to generalize from SNLI and
MultiNLI to SICK, possibly due to the difference
between what kind of inference relations are con-
tained in these datasets.

Our findings motivate us to look for novel neu-
ral network architectures and approaches that bet-
ter capture the semantics on natural language in-
ference beyond individual datasets. However,
there seems to be a need to start with better con-
structed datasets, i.e. datasets that will not only
capture fractions of what NLI is in reality. Better
NLI systems need to be able to be more versatile
on the types of inference they can recognize. Oth-
erwise, we would be stuck with systems that can
cover only some aspects of NLI. On a theoretical
level, and in connection to the previous point, we
need a better understanding of the range of phe-
nomena NLI must be able to cover and focus our

future endeavours for dataset construction towards
this direction. In order to do this a more systematic
study is needed on the different kinds of entail-
ment relations NLI datasets need to include. Our
future work will include a more systematic and
broad-coverage analysis of the types of errors the
models make and in what kinds of sentence-pairs
they make successful predictions.
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BERT: SNLI→ SICK
A young child is running outside over the fallen leaves
A young child is lying down on a gravel road that is covered with dead leaves
Label: neutral Prediction: contradiction
The man is being knocked off of a horse
Someone is falling off a horse
Label: entailment Prediction: contradiction
There is no one typing
Someone is typing on a keyboard
Label: contradiction Prediction: neutral
The man in the purple hat is operating a camera that makes videos
There is no man with a camera studying the subject
Label: neutral Prediction: contradiction
A woman is taking off a cloak, which is very large, and revealing an extravagant dress
A woman is putting on a cloak, which is very large, and concealing an extravagant dress
Label: contradiction Prediction: neutral

BERT: MultiNLI→ SICK
A cowboy is riding a horse and cornering a barrel
A cowgirl is riding a horse and corners a barrel
Label: neutral Prediction: contradiction
A tan dog is jumping up and catching a tennis ball
A dog with a tan coat is jumping up and catching a tennis ball
Label: entailment Prediction: neutral
The bunch of men are playing rugby on a muddy field
Some men are idling
Label: neutral Prediction: contradiction
A blond child is going down a slide and throwing up his arms
A child with dark hair is going down a slide and throwing up his arms
Label: contradiction Prediction: entailment
There is no person in bike gear standing steadily in front of the mountains
A group of people is equipped with protective gear
Label: neutral Prediction: contradiction

BERT: MultiNLI→ SNLI
A woman in a white wedding dress is being dressed and fitted by two other women.
A woman is being fitted for the first time.
Label: neutral Prediction: contradiction
A boat pear with people boarding and disembarking some boats.
people are boarding and disembarking some boats
Label: entailment Prediction: contradiction
Several men at a bar watch a sports game on the television.
The men are at a baseball game.
Label: contradiction Prediction: entailment
A singer wearing a leather jacket performs on stage with dramatic lighting behind him.
a singer is on american idol
Label: neutral Prediction: contradiction
A person rolls down a hill riding a wagon as another watches.
A person stares at an empty hill.
Label: contradiction Prediction: neutral

Table 5: Example failure-pairs for BERT.
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HBMP: SNLI→ SICK
a boy is sitting in a room and playing a piano by lamp light
a boy is playing a keyboard
Label: entailment Prediction: contradiction
a woman is wearing ear protection and is firing a gun at an outdoor shooting range
a woman is shooting at target practices
Label: entailment Prediction: neutral
a man in a purple hat isn’t climbing a rocky wall with bare hands
a man in a purple hat is climbing a rocky wall with bare hands
Label: contradiction Prediction: entailment
a cat is swinging on a fan
a cat is stuck on a moving ceiling fan
Label: neutral Prediction: contradiction
a young boy is jumping and covering nearby wooden fence with grass
a young boy covered in grass is jumping near a wooden fence
Label: neutral Prediction: entailment

HBMP: MultiNLI→ SICK
two dogs are walking slowly through a park
two dogs are running quickly through a park
Label: neutral Prediction: entailment
the woman is playing a guitar which is electric
the woman is playing an electric guitar
Label: entailment Prediction: neutral
there is no man squatting in brush and taking a photograph
a man is crouching and holding a camera
Label: neutral Prediction: contradiction
the snowboarder is jumping off a snowy hill
a snowboarder is jumping off the snow
Label: neutral Prediction: entailment
the boy is sitting near the blue ocean
the boy is wading through the blue ocean
Label: contradiction Prediction: neutral

HBMP: MultiNLI→ SNLI
a man is holding a book standing in front of a chalkboard.
a person is in a classroom teaching.
Label: entailment Prediction: contradiction
a woman with a pink purse walks down a crowded sidewalk.
a woman escapes a from a hostile enviroment
Label: neutral Prediction: contradiction
a woman with a pink purse walks down a crowded sidewalk.
a woman escapes a from a hostile enviroment
Label: neutral Prediction: contradiction
a person waterskiing in a river with a large wall in the background.
a dog waterskiing in a river with a large wall in the background.
Label: contradiction Prediction: neutral
a man wearing a blue shirt and headphones around his neck raises his arm.
a man is raising his arm to get someones attention.
Label: neutral Prediction: entailment

Table 6: Example failure-pairs for HBMP.
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Abstract
Character-level models have been used exten-
sively in recent years in NLP tasks as both
supplements and replacements for closed-
vocabulary token-level word representations.
In one popular architecture, character-level
LSTMs are used to feed token representations
into a sequence tagger predicting token-level
annotations such as part-of-speech (POS) tags.

In this work, we examine the behavior of POS
taggers across languages from the perspective
of individual hidden units within the charac-
ter LSTM. We aggregate the behavior of these
units into language-level metrics which quan-
tify the challenges that taggers face on lan-
guages with different morphological proper-
ties, and identify links between synthesis and
affixation preference and emergent behavior of
the hidden tagger layer. In a comparative ex-
periment, we show how modifying the balance
between forward and backward hidden units
affects model arrangement and performance in
these types of languages.

1 Introduction

Subword vector representations are now a stan-
dard part of neural architectures for natural lan-
guage processing (e.g., Bojanowski et al., 2017;
Peters et al., 2018). In particular, charac-
ter representations have been shown to handle
out-of-vocabulary words in supervised tagging
tasks (Ling et al., 2015; Lample et al., 2016).
These advantages generalize across multiple lan-
guages, where morphological formation may dif-
fer greatly but the character composition of words
remains a relatively reliable primitive (Plank et al.,
2016).

While the advantages of character-level models
are readily apparent, existing evaluation methods
fail to explain the mechanism by which these mod-
els encode linguistic knowledge about morphol-
ogy and orthography. Different languages exhibit

∗Work done while at Georgia Institute of Technology.

character-word correspondence in very different
patterns, and yet the bi-directional LSTM appears
to be, or is assumed to be, capable of capturing
them all. In large multilingual settings, it is not
uncommon to tune hyperparameters on a handful
of languages, and apply them to the rest (e.g., Pin-
ter et al., 2017).

In this work, we challenge this implicit gener-
alization. We train character-based sequence tag-
gers on a large selection of languages exhibiting
various strategies for word formation, and sub-
ject the resulting models to a novel analysis of
the behavior of individual units in the character-
level Bi-LSTM hidden layer. This reveals dif-
ferences in the ability of the Bi-LSTM architec-
ture to identify parts-of-speech, based on typolog-
ical properties: hidden layers trained on agglutina-
tive languages find more regularities on the char-
acter level than in fusional languages; languages
that are suffix-heavy give a stronger signal to the
backward-facing hidden units, and vice versa for
prefix-heavy languages. In short, character-level
recurrent networks function differently depending
on how each language expresses morphosyntactic
properties in characters.

These empirical results motivate a novel Bi-
LSTM architecture, in which the number of hid-
den units is unbalanced across the forward and
backward directions. We find empirical corre-
spondence between the analytical findings above
and performance of such unbalanced Bi-LSTM
models, allowing us to translate the typological
properties of a language into concrete recommen-
dations for model selection. 1

2 Related Work

Several recent papers attempt to explain neural
network performance by investigating hidden state
activation patterns on auxiliary or downstream

1https://github.com/ruyimarone/
character-eyes
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tasks. On the word level, Linzen et al. (2016)
trained LSTM language models, evaluated their
performance on grammatical agreement detection,
and analyzed activation patterns within specific
hidden units. We build on this analysis strategy as
we aggregate (character-) sequence activation pat-
terns across all hidden units in a model into quan-
titative measures.

Substantial prior work exists on the character
level as well (Karpathy et al., 2015; Vania and
Lopez, 2017; Kementchedjhieva and Lopez, 2018;
Gerz et al., 2018). Smith et al. (2018) examined
the character component in multilingual parsing
models empirically, comparing it to the contribu-
tion of POS embeddings and pre-trained embed-
dings. Chaudhary et al. (2018) leveraged cross-
lingual character-level correspondence to train
NER models for low-resource languages. Godin
et al. (2018), compared CNN and LSTM charac-
ter models on a type-level prediction task on three
languages, using the post-network softmax values
to see which models identify useful character se-
quences. Unlike their analysis, we examine a more
applied token-level task (POS tagging), and focus
on the hidden states within the LSTM model in or-
der to analyze its raw view of word composition.

Our analysis assumes a characterization of unit
roles, where each hidden unit is observed to have
some specific function. Findings from Linzen
et al. (2016) and others suggest that a single hid-
den unit can learn to track complex syntactic rules.
Radford et al. (2017) found that a character-level
language model can implicitly assign a single unit
to track sentiment, without being directly super-
vised. Kementchedjhieva and Lopez (2018) also
examined individual units in a character model
and found complex behavior by inspecting acti-
vation patterns by hand. Most recently, Dalvi
et al. (2019) performed post-hoc tuning of neu-
rons trained in language model and machine trans-
lation components, and examined their ability to
predict grammatical functions. Like them, we per-
form an aggregative analysis of individual units to
reach measurable quantities of models at a whole,
but apply our method to taggers trained directly on
supervised grammatical tasks, and focus on cross-
lingual variation as the main object of investiga-
tion.

Language Affix† Morph POS Accuracy %
synth‡ Dev Test

Arabic S int 96.11 95.93
Bulgarian S fus 97.91 97.80
Coptic p agg 92.54 92.51
Danish S fus 95.59 95.46
Greek S fus 96.13 96.46
English S fus 93.65 93.30
Spanish S fus 95.75 95.00
Basque = agg 92.99 92.43
Persian s fus 96.07 96.10
Irish = fus 89.35
Hebrew s int 95.71 94.60
Hindi S fus 95.03 94.91
Hungarian S agg 94.14 92.00
Indonesian S iso 92.55 92.68
Italian S fus 96.82 96.95
Latvian s fus 94.70 93.09
Russian S fus 95.29 95.25
Swedish S fus 95.80 95.73
Tamil S agg 86.46 87.58
Thai ∅ fus 91.37
Turkish S agg 92.08 92.48
Ukrainian S fus 95.68 95.26
Vietnamese ∅ iso 88.51 86.58
Chinese S iso 93.05 93.11

Table 1: Attributes and tagging accuracy by lan-
guage (Irish and Thai do not have both dev and test
sets). †Affixation: S/s is strongly/weakly suffixing;
P/p is strongly/weakly prefixing; = is equally prefix-
ing/suffixing; ∅ is little affixation. ‡Morphological syn-
thesis: agglutinative, fusional, introflexive, isolating.

3 Tagging Task

We train a set of LSTM tagging models, follow-
ing the setup of Ling et al. (2015). A word rep-
resentation trained from a character-level LSTM
submodule is fed into a word-level bidirectional
LSTM, with each word’s hidden state subse-
quently fed into a two-layer perceptron producing
tag scores, which are then softmaxed to produce
a tagging distribution. For languages with addi-
tional morphosyntactic attribute tagging, we fol-
low the architecture in Pinter et al. (2017) where
the same word-level Bi-LSTM states are used to
predict each attribute’s value using its own per-
ceptron+softmax scaffolding. In order to pro-
duce character models which would be as infor-
mative as possible to our subsequent analysis, we
do not include word-level embeddings, pre-trained
or otherwise, in our setup.

3.1 Language Selection

As our goal is to examine the relationship between
character-level modeling and linguistic properties,
we drove language selection based on two mor-
phological properties deemed relevant to the archi-
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tectural effects examined. All 24 datasets were ob-
tained from Universal Dependencies (UD) version
2.3 (Nivre et al., 2018), and linguistic properties
were found in the World Atlas of Language Struc-
tures (Bickel and Nichols, 2013; Dryer, 2013).
The selected languages and their properties are
presented in Table 1. We note that eleven of the
24 languages selected are not Indo-European.

Affixation. To evaluate the role of forward and
backward units in a bidirectional model, we se-
lected all languages available in UD which are
not classified as either weakly or strongly suffix-
ing in inflectional morphology (the vast majority
of UD languages). This includes a single prefix-
ing language (Coptic), two equally suffixing and
prefixing languages (Basque and Irish), and two
languages with little affixation (Thai and Viet-
namese).

Morphological Synthesis. Linguistically func-
tional features vary between being expressed as
distinct tokens (isolating languages), detectable
unique character substrings (agglutinative), fused
together but still distinguishable from the stem
(fusional), and non-linearly represented within
the word form (introflexive). This property has
previously been found to affect performance in
character-level models (Pinter et al., 2017; Gerz
et al., 2018; Chaudhary et al., 2018), and thus
we select representatives of each group, including
most available non-fusional languages.

3.2 Technical Setup

Most of our selected languages have only a sin-
gle UD 2.3 treebank. For languages with mul-
tiple treebanks we selected the largest, except in
the cases of Spanish and Indonesian, where we
selected the GSD treebanks. The Irish IDT tree-
bank has only a train and test split, so we used the
test set for early stopping. The Thai PUD treebank
only provided a single dataset with 1000 instances,
which we shuffled and partitioned into a 850/150
split. Tokens were normalized to remove noisy
data: tokens containing ‘http’ were replaced with
‘URL’ and tokens containing ‘@’ were replaced
with ‘EMAIL’. This was most relevant (293 re-
placements) for the English treebank, which con-
tained many long URLs.

Hyperparameters. For the initial bidirectional
character-level LSTM, we used a total hidden state
size of 128 (64 units in each direction). The char-

acter embedding size is set to 256, initialized us-
ing the method of Glorot and Bengio (2010). The
word-level bidirectional LSTM has two layers and
a hidden state size of 128, with 50% dropout ap-
plied in the style of Gal and Ghahramani (2016).
Each attribute-prediction MLP has a single hidden
layer that is the same size as the tagset size for that
attribute, and includes a tanh nonlinearity. Mod-
els were trained for up to 80 epochs, and we select
the model with the highest POS tagging accuracy
on the dev set. Training used SGD with 0.9 mo-
mentum, and all models were implemented using
DyNet 2.0 (Neubig et al., 2017).

3.3 Results

In our initial setup, we represent words using a
concatenation of the final states from a bidirec-
tional character-level LSTM with 64 forward and
backward hidden units each. The results for POS
tagging, presented in Table 1, are on par with simi-
lar models (Plank et al., 2016, for example) despite
not including a word-level type embedding com-
ponent. We attribute this success to our large char-
acter embedding size of 256, corroborating find-
ings reported by Smith et al. (2018).

4 Analysis

We next analyze the models trained on the tagging
task in an attempt to see how their character-level
hidden states encode different manifestations of
linguistic information. We suggest that individual
hidden units in the character-level sequence model
attune to track patterns in the words which would
indicate their linguistic roles (POS and morpho-
logical properties), and so patterns in character-
role regularity across typologically different lan-
guages would manifest themselves in an observ-
able form at the individual unit activation level.
This motivates us to devise metrics which would
characterize languages through aggregation of in-
dividual unit behaviour.

4.1 Metrics

For each language, we run the character-level
BiLSTM from the trained tagger on POS-
unambiguous word types occurring frequently
in the training set, grouped into their parts of
speech.2 This filtering was done in order to focus

2We used 8 as our frequency threshold, and define unam-
biguous forms as ones tagged at least 60% of the time with a
single POS.
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Figure 1: Activations of the English model’s unit 42
(forward) on the word characterizing. bavg|·| is 0.42,
and bmad is 0.96 (the drop from the second i to n).

on the more consistent generalizations found by
the taggers during training, as our goal is to qual-
ify properties of languages.3 On each word w, we
observe each hidden unit hi’s activation level (out-
put) on each character hci . We obtain a base mea-
sure b(w, i) based on the activation pattern. For
example, an average absolute base measure is de-
fined as the average of absolute value activations:

bavg|·|(w, i) =
1

|w|

|w|∑

c=1

|hci |.

The max absolute diff base measure is defined as:

bmad(w, i) =
|w|−1
max
c=1
|hc+1

i − hci |.

Figure 1 demonstrates these two metrics for a
sample (word, unit) pair, showing how the former
captures the general level of activation the word
caused on the unit, while the latter captures the lo-
cal character pattern deemed most important by it.
We intentionally did not consider metrics based on
the final activation values, the direct signals used
by the later layers in the model, as these bear no
insight into the effect of a word’s composition on
the learned model.

Next, we derive a language-level metric for each
hidden unit, based on the principle of Mutual In-
formation (MI). The base metric’s range ([0, 1) for
bavg|·|, [0, 2) for bmad) is divided into B bins of
equal size, and base activations from each word
are summed across each of the T POS tag cate-
gories4, then normalized to produce a joint proba-
bility distribution. The mutual information is com-

3This consideration also motivated our choice of UD data,
which is tokenized to separate syntactic fusion such as He-
brew and Arabic function words, or Spanish del.

4We omit the following ‘character-simple’ part-of-speech
tags: INTJ, NUM, PROPN, PUNCT, SYM, X.

puted as:

T∑

t=1

B∑

b=1

P (t, b)[ lnP (t, b)− lnP (t)− lnP (b)],

and we call the resulting number the POS-
Discrimination Index, or PDI. Intuitively, a higher
PDI implies that the unit activates differently on
words of different parts of speech, i.e. it is a better
discriminator for the task.

At this point a language produces a set of dh
PDI scores, one for each unit. We sort them from
high to low, and define two language-level metrics:
The mass is the sum of PDI values for all units,
M(L) :=

∑dh
i=1 PDI(L, i), intuitively meant to

quantify the degree of success the model has in
assigning hidden units to discriminate POS in this
language. The head forwardness is the propor-
tion of forward-directional units (under the sorted
ordering) before the point at which half of the
mass accumulates (in a random setup, this num-
ber would tend to 0.5):

∣∣∣
{
k :
∑k

i=1 PDI(L, i) ≤ M(L)
2 ∧ hk is forward

}∣∣∣
∣∣∣
{
k :
∑k

i=1 PDI(L, i) ≤ M(L)
2

}∣∣∣

This metric aims to quantify the relative impor-
tance of forward and backward units in discrimi-
nating POS for L. We use only the top units for
the metric as a de-noising heuristic, under the as-
sumption that all units end up with some minimal
amount of mass even without performing a func-
tion.

4.2 PDI Patterns

The PDI patterns on the bavg|·| base measure with
B = 16 bins on all 24 languages are presented
in Table 2. We see that agglutinative languages,
where we can expect a better discrimination sig-
nal to emerge from the consistently-formed mor-
phemes, cluster mostly at the top of the PDI mass
scale, suggesting more individual character-level
units extract these signals successfully. Introflex-
ive languages, where character sequences seldom
correspond to useful indications of POS or mor-
phosyntactic attributes, cluster towards the bot-
tom.

We present the full unit-level PDI value distri-
butions for Coptic, a prefixing agglutinative lan-
guage, and English, a suffixing fusional language,
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Figure 2: Distribution of PDI values (bavg|·|) across hidden units in Coptic and English, shown in ordered PDI values
from largest to smallest, with blue (orange) bars indicating forward (backward) units. The black line demarcates
the median point of mass accumulation.

Language Mass Mass % of forward
median units until
index median

Tamil 71.0 55 49.1
Irish 62.0 56 42.9
Coptic 58.1 56 71.4
Hungarian 47.9 55 50.9
Greek 31.2 55 45.5
Turkish 30.1 54 57.4
Russian 25.9 54 40.7
Thai 25.9 55 47.3
Ukrainian 25.0 54 37.0
Vietnamese 24.2 55 36.4
Chinese 23.8 47 42.6
Danish 21.7 54 44.4
Swedish 20.8 53 34.0
Basque 20.6 51 64.7
Indonesian 20.3 45 71.1
Latvian 17.0 52 42.3
Spanish 16.1 45 33.3
English 16.0 50 20.0
Bulgarian 15.6 52 46.2
Italian 14.1 48 56.2
Arabic 12.6 46 58.7
Hebrew 11.4 51 74.5
Persian 10.3 50 46.0
Hindi 8.4 51 41.2

Table 2: PDI statistics for UD 2.3 models, bavg|·| metric,
sorted by the mass metric (sum of PDIs). Agglutinative
languages in bold, introflexive in italics.

in Figure 2 (trends for bmad are similar). Con-
sistent with other agglutinative languages, Cop-
tic’s cumulative mass is very large (M(cop) =
58.1), suggesting the predictive qualities of the
sequence-based LSTM allows good discrimina-
tion from the character signal, as one might ex-
pect from an agglutinative language. Conversely,
M(eng) = 16, demonstrating the difficulty pre-
sented by fusional languages. The accumulation
of 71% forward (80% backward) units in the head
of the Coptic (English) value ranking suggests
an interesting relationship between affixation and
LSTM direction: LSTM units are likely to hone
in on POS-indicative signals, which often occur as
affixes, in the beginning of their run, causing acti-
vation values to rise (in absolute value) and stay
large throughout the subsequent traversal of the
stem. Unfortunately, since no other prefixing lan-
guages are available in UD, we were not able to
pursue this hypothesis further.

4.3 Asymmetric Directionality

Based on these observations, we conduct a direc-
tionality balance study, where we vary the num-
ber of hidden units in the forward and backwards
dimensions. In addition to the models analyzed
above, which use 64 forward and 64 backward
units (denoted hereafter 64/64), we trained mod-
els with imbalanced directionality (128/0, 96/32,
32/96, 0/128). We test the hypothesis that imbal-
anced models affect languages differently based
on their linguistic properties and statistical met-
rics. We note that these settings do not maintain
parameter set size: intra-direction transition oper-
ations are quadratic in that direction’s hidden layer
size, and so this adds a possible advantage in favor
of direction-imbalanced models.
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Language 128/0 96/32 64/64 32/96 0/128
Type (base)

Inflectional Affixation Categories

S. suffix +0.22 +0.07 94.50 -0.06 -0.02
W. suffix +0.26 +0.12 95.46 -0.07 -0.01
Equal p/s +0.61 +0.32 90.99 -0.07 +0.06
Little aff. -0.06 -0.21 89.59 -0.16 -0.22
W. prefix +0.52 +0.22 92.91 +0.40 +0.33

Morphological Synthesis Categories

Introflex. +0.17 +0.05 95.87 -0.06 +0.01
Fusional +0.22 +0.07 94.95 +0.01 +0.06
Agglutina. +0.59 +0.27 91.58 -0.16 -0.15
Isolating -0.14 -0.13 91.15 -0.15 -0.13

Overall +0.25 +0.08 93.85 -0.05 -0.01

Table 3: Imbalanced models’ mean POS accuracy on
UD development data (differences between three aver-
aged random runs in all models; boldfaced when sig-
nificant at p < 0.05 using a paired two-tailed t-test).

The results for this study are presented in Ta-
ble 3 as averages for the language categories listed
in Table 1 (the full, raw results are available in Ta-
ble 4).

One trend which emerges is the preference of
agglutinative languages for imbalanced models,
whereas the other languages are little affected by
this change. This could be explained by the in-
crease in inter-unit interaction in the larger direc-
tion of an imbalanced model – contiguous char-
acter sequences consistently code reliable linguis-
tic features in these languages. A second find-
ing is the slight bias of suffixing languages to-
wards more forward units and of the prefixing lan-
guage to more backward units, indicating that hid-
den LSTM units are better in detecting formations
close to their final state. Coupled with the find-
ings regarding PDI mass distribution in the dif-
ferent directional units in § 4.2, we suggest that
a subtle relation exists between morphological in-
formation and model directionality: units which
end their run on the affix are more important for
detecting the POS signal, so having more of them
helps the model. We also note the stability of iso-
lating and little-affixing languages to directional-
ity balance, possibly owing to the relatively small
significance of contiguous character sequences in
detecting word role. Lastly, we point out that the
compromise sesquidirectional models 96/32 and
32/96 did not tend to stand out significantly on our
tested language categories, suggesting there is no
substantial middle-ground between the two popu-
lar techniques of unidirectional and bidirectional

Language 128/0 96/32 64/64 32/96 0/128

Arabic 96.29 96.08 96.06 96.09 96.16
Bulgarian 97.95 97.86 97.84 97.74 97.71
Coptic 93.10 92.80 92.58 92.98 92.91
Danish 95.93 95.68 95.61 95.60 95.70
Greek 96.19 96.07 96.01 96.00 95.93
English 93.86 93.74 93.65 93.80 93.87
Spanish 95.74 95.63 95.64 95.64 95.77
Basque 93.52 93.13 92.89 92.59 92.90
Persian 96.31 96.20 96.11 96.02 96.20
Irish 89.54 89.35 88.95 89.11 89.07
Hebrew 95.76 95.72 95.60 95.50 95.57
Hindi 95.35 95.22 95.12 95.11 95.25
Hungarian 94.25 94.29 94.20 93.97 94.00
Indonesian 92.42 92.34 92.49 92.53 92.55
Italian 97.00 96.78 96.87 96.88 97.01
Latvian 95.10 94.84 94.69 94.58 94.61
Russian 95.51 95.39 95.32 95.31 95.36
Swedish 95.93 95.69 95.64 95.52 95.85
Tamil 87.54 87.28 86.88 86.28 85.99
Thai 91.52 91.27 91.38 91.47 91.32
Turkish 93.14 92.45 92.06 92.03 92.09
Ukrainian 95.72 95.76 95.63 95.68 95.66
Vietnamese 87.98 87.92 88.23 87.83 87.85
Chinese 93.01 93.17 93.12 93.03 93.04

Table 4: Full scores for the directionality balance ex-
periment, each point averaged over three random seed
runs.

LSTMs.

5 Conclusion

While character-level Bi-LSTM models compute
meaningful word representations across many lan-
guages, the way they do it depends on each lan-
guage’s typological properties. These observa-
tions can guide model selection: for example,
in agglutinative languages we observe a strong
preference for a single direction of analysis, mo-
tivating the use of unidirectional character-level
LSTMs for at least this type of language. In future
work, we plan to introduce further control into our
metrics by incorporating dataset attributes such as
tag distribution and number of instances, as well as
learning-related properties like convergence rate
and effect of initialization.
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Abstract
AI systems’ ability to explain their reasoning
is critical to their utility and trustworthiness.
Deep neural networks have enabled significant
progress on many challenging problems such
as visual question answering (VQA). How-
ever, most of them are opaque black boxes
with limited explanatory capability. This pa-
per presents a novel approach to developing a
high-performing VQA system that can eluci-
date its answers with integrated textual and vi-
sual explanations that faithfully reflect impor-
tant aspects of its underlying reasoning pro-
cess while capturing the style of comprehen-
sible human explanations. Extensive exper-
imental evaluation demonstrates the advan-
tages of this approach compared to competing
methods using both automated metrics and hu-
man evaluation.

1 Introduction

Deep neural networks have made significant
progress on visual question answering (VQA),
the challenging AI problem of answering natural-
language questions about an image (Antol et al.,
2015). However successful systems (Fukui et al.,
2016; Anderson et al., 2018; Yang et al., 2016; Wu
et al., 2018a; Jiang et al., 2018) based on deep neu-
ral networks are difficult to comprehend because
of many layers of abstraction and a large number
of parameters. This makes it hard to develop user
trust. Partly due to the opacity of current deep
models, there has been a recent resurgence of in-
terest in explainable AI, systems that can explain
their reasoning to human users. In particular, there
has been some recent development of explainable
VQA systems (Selvaraju et al., 2017; Park et al.,
2018; Hendricks et al., 2016, 2018).

One approach to explainable VQA is to gen-
erate visual explanations, which highlight image
regions that most contributed to the system’s an-
swer, as determined by attention mechanisms (Lu

Question: What sport is pictured?
Explanation: Because the man is riding a wave on a surfboard.

Answer: Surfing

Figure 1: Example of our multimodal explanation. It
highlights relevant image regions together with a tex-
tual explanation with corresponding words in the same
color.

et al., 2016) or gradient analysis (Selvaraju et al.,
2017). However, such simple visualizations do not
explain how these regions support the answer. An
alternate approach is to generate a textual expla-
nation, a natural-language sentence that provides
reasons for the answer. Some recent work has gen-
erated textual explanations for VQA by training a
recurrent neural network (RNN) to directly mimic
examples of human explanations (Hendricks et al.,
2016; Park et al., 2018). A multimodal approach
that integrates both a visual and textual explana-
tion provides the advantages of both. Words and
phrases in the text can point to relevant regions in
the image. An illustrative explanation generated
by our system is shown in Figure. 1.

Recent research on such multimodal VQA ex-
planation is presented in (Park et al., 2018) that
employs a form of “post hoc justification” that
does not truly follow and reflect the system’s ac-
tual processing. We believe that explanations
should more faithfully reflect the actual process-
ing of the underlying system in order to provide
users with a deeper understanding of the system,
increasing trust for the right reasons, rather than
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trying to simply convince them of the system’s
reliability (Bilgic and Mooney, 2005). In order
to be faithful, the textual explanation generator
should focus on the set of objects that contribute
to the predicted answers, and receive proper super-
vision from only the gold standard explanations
that are consistent with the actual VQA reasoning
process. Towards this end, our explanation mod-
ule directly uses the VQA-attended features and is
trained to only generate human explanations that
can be traced back to the relevant object set using
a gradient-based method called GradCAM (Sel-
varaju et al., 2017). To enforce local faithfulness,
we also align the gradient-based visual explana-
tions generated by the textual explanation module
and the VQA module during training.

In addition, our explanations provide direct
links between terms in the textual explanation and
segmented items in the image, as shown in Fig-
ure 1. The result is a nice synthesis of a faith-
ful explanation that highlights concepts actually
used to compute the answer and a comprehensible,
human-like, linguistic explanation. Below we de-
scribe the details of our approach and present ex-
tensive experimental results on the VQA-X (Park
et al., 2018) dataset that demonstrates the advan-
tages of our approach compared to prior work us-
ing this data (Park et al., 2018) in terms of both
automated metrics and human evaluation. Further,
in order to evaluate the faithfulness, we design two
metrics: (1) We first measure the degree of similar-
ity between the highlighted image segments in our
textual explanations and the influential segments
determined by the LIME explainer (Ribeiro et al.,
2016); (2) we also measure the consistency be-
tween the gradient-based visual explanation (Sel-
varaju et al., 2017) of the predicted answer and the
generated textual explanation.

2 Related Work

In this section, we review related work includ-
ing visual and textual explanation generation and
VQA.

2.1 VQA

Answering visual questions (Antol et al., 2015)
has been widely investigated in both the NLP and
computer vision communities. Most VQA mod-
els (Fukui et al., 2016; Lu et al., 2016) embed im-
ages using a CNN and questions using an RNN
and then use these embeddings to train an answer

classifier to predict answers from a pre-extracted
set. Attention mechanisms are frequently applied
to recognize important visual features and filter
out irrelevant parts. A recent advance is the use
of the Bottom-Up-Top-Down (Up-Down) atten-
tion mechanism (Anderson et al., 2018) that at-
tends over high-level objects instead of convolu-
tional features to avoid emphasis on irrelevant por-
tions of the image. We adopt this mechanism, but
replace object detection (Ren et al., 2015) with
segmentation (Hu et al., 2018) to obtain more pre-
cise object boundaries.

2.2 Visual Explanation

A number of approaches have been proposed to
visually explain decisions made by vision systems
by highlighting relevant image regions. Grad-
CAM (Selvaraju et al., 2017) analyzes the gradient
space to find visual regions that most affect the de-
cision. Attention mechanisms in VQA models can
also be directly used to determine highly-attended
regions and generate visual explanations. Unlike
conventional visual explanations, ours highlight
segmented objects that are linked to words in an
accompanying textual explanation, thereby focus-
ing on more precise regions and filtering out noisy
attention weights.

2.3 Textual and Multimodal Explanation

Visual explanations highlight key image regions
behind the decision, however, they do not explain
the reasoning process and crucial relationships be-
tween the highlighted regions. Therefore, there
has been some work on generating textual expla-
nations for decisions made by visual classifiers
(Hendricks et al., 2016). As mentioned in the in-
troduction, there has also been some work on mul-
timodal explanations that link textual and visual
explanations (Park et al., 2018). A recent exten-
sion of this work (Hendricks et al., 2018) first gen-
erates multiple textual explanations and then filters
out those that could not be grounded in the image.
We argue that a good explanation should focus on
referencing visual objects that actually influenced
the system’s decision, therefore generating more
faithful explanations.

3 Approach

Our goal is to generate more faithful multimodal
explanations that specifically include the seg-
mented objects in the image that are the focus of
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Answer:  Yes

Question: Is the man getting wet?
Explanation 1:
He is surfing in 
the ocean.

Answer
Embedding

Explanation 2:
There are waves 
around the surfer.

Visual
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Figure 2: Model overview: We first segment the image and then predict the answer for the visual question with
a pretrained VQA module. Then, we learn to embed the question, answer, and the VQA-attended features to
generate textual explanations. During training, we only use the faithful human explanation whose gradient-based
visual explanation is consistent with that of the predicted answer. In the example, our explanation module is
only trained to generate “Explanation 1” and further enforces the consistency between this explanation and the
predicted answer. “Explanation 2” is filtered out since its visual explanation is mainly focused on the waves and is
not consistent with VQA module’s focus on the surfer. Dashed arrows denote gradients, gray and yellow arrows
denote fixed and trainable parameters, respectively. The three smaller images denote the visual explanations for
the predicted answer and the two textual explanations.

the VQA module. Figure 2 illustrates our model’s
pipeline in the training phase, consisting of the
VQA module (Section 3.2), and textual explana-
tion module (Section 3.4). We first segment the
objects in the image and predict the answer using
the VQA module, which has an attention mech-
anism over those objects. Next, the explanation
module is trained to generate textual explanations
conditioned on the question, answer, and VQA-
attended features. To faithfully train the explana-
tion module, we filter out human textual explana-
tions whose gradient-based visual explanation is
not consistent with that of the predicted answer.
For example, in Figure 2 “Explanation 1” is ac-
cepted as the textual explanation since it is mainly
focused on the surfer and “Explanation 2” is re-
jected. For the consistent textual explanations, we
also train the explanation module to align its visual
explanation with the predicted answer’s to enforce
local faithfulness.

3.1 Notation

We use f to denote the fully-connected fc layers
of the neural network, and these fc layers do not
share parameters. We notate the sigmoid functions
as �. The subscript i indexes the elements of the
segmented object sets from images. Bold letters
denote vectors, overlining · denotes averaging, and
[·, ·] denotes concatenation.

3.2 VQA Module

We base our VQA module on Up-Down (Ander-
son et al., 2018) with some modifications. First,
we replace the two-branch gated tanh answer clas-
sifier with single fc layers with Leaky ReLU ac-
tivation (Maas et al., 2013). In order to ground
the explanations in more precise visual regions,
we use instance segmentation (Hu et al., 2018) to
segment objects in over 3,000 categories. Specif-
ically, we extract at most the top V < 80 ob-
jects in terms of segmentation scores and concate-
nate each object’s fc6 representation in the bound-
ing box classification branch and mask fcn[1-4]
features in the mask generation branch to form a
2048-d vector. This results in an image feature
set V containing V 2048-d vectors vi for each im-
age. We encode each question as the last hidden
state q of a gated recurrent unit (GRU) with 512
hidden units. We learn visual attention over all
the segments ↵vqa 2 RV , and use the attended
visual features vq

i together with the question em-
bedding to produce a joint representation h. Then
the model predicts the logits svqa for each answer
candidate using a 2-layer fc networks, which is
passed through a sigmoid function to compute the
final probabilities. For the detailed network ar-
chitecture, please refer to (Anderson et al., 2018).
The parameters in the VQA module are fixed dur-
ing the training of the explanation module.

105



3.3 Question and Answer Embedding for
Explanation Generation

As suggested in (Park et al., 2018), we also encode
questions and answers as input features to the ex-
planation module. In particular, we regard the nor-
malized answer prediction output as a multinomial
distribution, and sample one answer from this dis-
tribution at each time step. We re-embed it as a
one-hot vector as = one-hot(multinomial(s)).

ui = vq
i � f(as)� f(q) (1)

Next, we element-wise multiply the embedding of
q and as with vq

i to compute the joint representa-
tion ui. Note that u faithfully represents the focus
of the VQA process, in that it is directly derived
from the VQA-attended features.

3.4 Explanation Generation

In this section, we describe the Explanation Mod-
ule depicted by the yellow box in Figure. 2. The
explanation module has a two-layer-LSTM archi-
tecture whose first layer produces an attention over
the ui, and whose second layer learns a represen-
tation for predicting the next word using the first
layer’s features.

!"# = [&' ; )"*#+ ; ,"]
)"*## Attention LSTM

)"#

Attention
module

Source
identifier

Language LSTM

'.

/0 /#

)"+
)"*#+

1' 2

Figure 3: Overview of the explanation module.

In particular, the first visual attention LSTM
takes the concatenation x1

t of the second language
LSTM’s previous output h2

t�1, the average pooling
of ui, and the previous words’ embedding as input
and produces the hidden presentation h1

t . Then, an
attention mechanism re-weights the image feature
ui using the generated h1

t as input shown in Eq. 2.
For the detailed structure, please refer to (Ander-

son et al., 2018).

ai,t = f(tanh(f(ui) + f(h1
t ))) (2)

↵t = softmax(↵t) (3)

For the purpose of faithfully grounding the gen-
erated explanation in the image, we argue that the
generator should be able to determine if the next
word should be based on image content attended
to by the VQA system or on learned linguistic con-
tent. To achieve this, we introduce a “source iden-
tifier” to balance the total amount of attention paid
to the visual features ui and the recurrent hidden
representation h1

t at each time step. In particular,
given the output h1

t from the attention LSTM and
the average pooling ui over ui, we train a fc layer
to produce a 2-d output s = �(f([h1

t , ui])) =
(s0, s1) that identifies which source the current
generated word should be based on (i.e. s0 for the
output of the attention LSTM1 and s1 for the at-
tended image features).

s = �(f([h1
t , ui])) (4)

We use the following approach to obtain train-
ing labels ŝ for the source identifier. For each
visual features ui, we assign label 1 (indicating
the use of attended visual information) when there
exists a segmentation ui whose cosine similarity
between its category name’s GloVe representation
and the current generated word’s GloVe represen-
tation is above 0.6. Given the labeled data, we
train the source identifier using cross entropy loss
Ls as shown in Eq. 5:

Ls = �(

1X

j=0

ŝj log sj + (1� ŝj) log(1� sj))

(5)

where the ŝ0, ŝ1 are the aforementioned labels.
Next, we concatenate the re-weighted h1

t and ui

with the output of the source identifier as the in-
put x2

t = [h1
t s0, uis1] for the language LSTM.

For more detail on the language LSTM structure,
please refer to (Anderson et al., 2018).

With the hidden states h2
t in the Language

LSTM, the output word’s probability is computed
1We tried to directly use the source weights s0 in the lan-

guage LSTM’s hidden representation h2
t�1 and found that us-

ing h1
t works better. The reason is that directly constraining

h2
t�1 makes the language LSTM forget the previously en-

coded content and prevents it from learning long term de-
pendencies.
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using Eq. 6:

p(yt|y1:t�1) = softmax(f(h2
t )) (6)

where yt denotes the t-th word in the explanation
y and y1:t�1 denotes the first t� 1 words.

Faithful Explanation Supervision. Directly col-
lecting faithful textual explanations is infeasible
because it would require an annotation process
where workers provide explanations based on the
attended VQA features. Instead, we design an on-
line algorithm that automatically filters unfaithful
explanations from the human ones in the VQA-
X data (Park et al., 2018) based on the idea that a
proper explanation should focus on the same set of
objects as the VQA module and be locally faith-
ful. As recent research suggested that gradient-
based methods more faithfully present the mod-
els’ decision making process (Zhang et al., 2018;
Wu et al., 2018b; Wu and Mooney, 2019; Jain and
Wallace, 2019), we define a faithfulness score Sf

as the cosine similarity between the Grad-CAM
(Selvaraju et al., 2017) visual explanation vectors
of the textual explanation and the predicted answer
as shown in Eq. 7:

Sf (y) = cos(g(svqa
pred, vq), g(log p(y), vq)) (7)

where g denotes the Grad-CAM operation and the
result is a vector of length |V | indicating the con-
tribution of each segmented object. svqa

pred is the
logit for the predicted answer.

Then, we filter out the explanations in the train-
ing set whose faithfulness scores are less than
⇠ max(0.02 it, 1), where ⇠ is a threshold and the
max(0.02 it, 1) term is used to jump-start the ran-
domly initialized explanation module. For exam-
ple, during training, we only accept “Explanation
1” in Figure 2 because the visual explanations of
the predicted answer and the textual explanation
are consistent and reject “Explanation 2”.

Since the VQA-X dataset only has explanations
for the correct answers, we also discard the ex-
planations when the predicted answers are wrong.
With the remaining human explanations, we mini-
mize the cross-entropy loss LXE in Eq. 8:

LXE =

TX

t=1

log(p(yt|y1:t�1)) (8)

To enforce local faithfulness, we further align
these two gradient vectors using cosine distance
Lf = 1� Sf .
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Figure 4: The distribution of explanations’ faithfulness
scores in the last epoch during training.

In Figure 4, we report the distribution of the ex-
planations’ faithfulness scores Sf in the last epoch
during training (⇠ is set to 0.3). We observe that
about 30% of the human explanations in the train-
ing set cannot be traced back to similar image seg-
ments that highly contribute to the predicted an-
swer using our trained explanation module. These
textual explanations cannot be seen as faithful ei-
ther because the explanations themselves are not
faithful or because the explanation module fails
to develop the correct mappings between the tex-
tual explanations and the VQA-attended features.
There are only a small fraction of the explanations
whose faithfulness scores are in the interval of
[0.1, 0.6] indicating that there is a clear boundary
between whether or not an explanation is deemed
faithful according to our metric.

3.5 Training

We pre-train the VQA module on the entire VQA
v2 training set for 15 epochs using the Adam opti-
mizer (Kingma and Ba, 2014) with a learning rate
of 0.001. After that, the parameters in the VQA
module are frozen. Our VQA module is capa-
ble of achieving 82.9% and 80.3% in the VQA-
X train and test split respectively. and 63.5% in
the VQA v2 validation set which is comparable
to the baseline Up-Down model (63.2%) (Ander-
son et al., 2018). Note that VQA performance is
not the focus of this work, and our experimental
evaluation focuses on the generated explanations.
Finally, we train the explanation module using the
human explanations in the VQA-X dataset (Park
et al., 2018) filtered for faithfulness. VQA-X con-
tains 29,459 question answer pairs and each pair is
associated with a human explanation. We train to
minimize the joint loss L (Eq. 9), and ⇠ is empiri-
cally set to 0.3. We ran the Adam optimizer for 25
epochs with a batch size of 128. The learning rate
for training the explanation module is initialized
to 5e-4 and decays by a factor of 0.8 every three
epochs.

L = LXE + Ls + Lf (9)
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Textual Visual
Ls F Lf # Expl. B-4 M R-L C S EMD

PJ-X (Park et al., 2018) 29K 19.5 18.2 43.7 71.3 15.1 2.64
Ours (Justification) 29K 23.5 19.0 46.2 81.2 17.2 2.46
Ours (Justification) X 29K 24.4 19.5 47.4 88.8 17.9 2.41
Ours (Justification) X 15K 24.1 18.6 46.2 83.4 16.2 2.59
Ours (Explanation) X X 15K 24.7 19.2 47.0 85.1 16.6 2.56
Ours (Explanation) X X X 15K 25.1 19.7 48.2 86.7 17.2 2.52

Table 1: Explanation evaluation results, the top half shows results using the entire train set and the bottom half
shows results using about 15K explanations. F denotes whether to filter out the unfaithful training explanations.
With F , the 15K explanations are the remaining explanation and without F , the 15K explanations are randomly
sampled from train set. Ls, Lf denote the losses of the source identifier and the faithful gradient alignment, respec-
tively. B-4, M, R-L, C and S are short hand for BLEU-4, METEOR, ROUGE-L, CIDEr and SPICE, respectively.

3.6 Multimodal Explanation Generation

As a last step, we link words in the generated
textual explanation to image segments in order to
generate the final multimodal explanation. To de-
termine which words to link, we extract all com-
mon nouns whose source identifier weight s1 in
Eq. 4 exceeds 0.5. We then link them to the seg-
mented object with the highest attention weight ↵t

in Eq. 2 when that corresponding output word yt

was generated, but only if this weight is greater
than 0.2.2

4 Experimental Evaluation

This section experimentally evaluates both the tex-
tual and visual aspects of our multimodal explana-
tions, including comparisons to competing meth-
ods and ablations that study the impact of the vari-
ous components of our overall system. Finally, we
present metrics and evaluation for the faithfulness
of our explanations.

4.1 Textual Explanation Evaluation

Similar to (Park et al., 2018), we first evaluate
our textual explanations using automated metrics
by comparing them to the gold-standard human
explanations in the VQA-X test data using
standard sentence-comparison metrics: BLEU-4
(Papineni et al., 2002), METEOR (Banerjee and
Lavie, 2005), ROUGE-L (Lin, 2004), CIDEr
(Vedantam et al., 2015) and SPICE (Anderson
et al., 2016). Table 1 reports our performance,
including ablations. In particular, “Justification”
denotes training on the entire or randomly sam-
pled VQA-X dataset and “Explanation” denotes

2Due to duplicated segments, we use a lower threshold.

training only on the remaining faithful explana-
tions. We outperform the current state-of-the-art
PJ-X model (Park et al., 2018) on all automated
metrics by a clear margin with only about half
the explanation training data. This indicates that
constructing explanations that faithfully reflect the
VQA process can actually generate explanations
that match human explanations better than just
training to directly match human explanations,
possibly by avoiding over-fitting and focusing
more on important aspects of the test images.

4.2 Multimodal Explanation Evaluation

In this section, we present the evaluations of our
model on both visual and multimodal aspects.

Automated Evaluation: As in previous work
(Selvaraju et al., 2017; Park et al., 2018), we first
used Earth Mover Distance (EMD) (Pele and Wer-
man, 2008) to compare the image regions high-
lighted in our explanation to image regions high-
lighted by human judges. In order to fairly com-
pare to prior results, we resize all the images in the
entire test split to 14⇥14 and adjust the segmenta-
tion in the images accordingly using bi-linear in-
terpolation. Next, we sum up the multiplication
of attention values and source identifiers’ values
in Eq, 2 over time (t) and assign the accumulated
attention weight to each corresponding segmenta-
tion region. We then normalize attention weights
over the 14 ⇥ 14 resized images to sum to 1, and
finally compute the EMD between the normalized
attentions and the ground truth.

As shown in the Visual results in Table 1, our
approach matches human attention maps more
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Question: What sport is shown?
Answer: Frisbee
Explanation: The man is
catching a frisbee.

Question: What is he eating?
Answer: Banana
Explanation: He is eating a 
yellow fruit with a peel.

Question: What sport is this?
Answer: Snowboarding
Explanation: The man is going 
down a snowy hill on single board.

Figure 5: Sample positively-rated explanations.

closely than PJ-X (Park et al., 2018). We at-
tribute this improvement to the following reasons.
First, our approach uses detailed image segmenta-
tion which avoids focusing on background and is
much more precise than bounding-box detection.
Second, our visual explanation is focused by tex-
tual explanation where the segmented visual ob-
jects must be linked to specific words in the textual
explanation. Therefore, the risk of attending to un-
necessary objects in the images is significantly re-
duced. As a result, we filter out most of the noisy
attention in a purely visual explanation like that in
PJ-X.
Human Evaluation: We also asked AMT work-
ers to evaluate our final multimodal explanations
that link words in the textual explanation directly
to segments in the image. Specifically, we ran-
domly selected 1,000 correctly answered ques-
tion and asked workers “ How well do the high-
lighted image regions support the answer to the
question?” and provided them a Likert-scale set
of possible answers: “Very supportive”, “Support-
ive”, “Neutral”, ‘Unsupportive” and “Completely
unsupportive”. The second task was to evaluate
the quality of the links between words and im-
age regions in the explanations. We asked workers
“How well do the colored image segments high-
light the appropriate regions for the correspond-
ing colored words in the explanation?” with the
Like-scale choices: “Very Well”, “Well”, “Neu-
tral”, “Not Well”, “Poorly”. We assign five ques-
tions in each AMT HIT with one “validation” item
to control the HIT’s qualities.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Very suportative Supportive Neural Unsupportive Completely unsupportative

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Very well well Neutral Not well Poor

Relevance of the highlighted segments

Quality of the textual-visual links

Figure 6: Human evaluation results.

As shown in Figure 6, in both cases, about 70%
of the evaluations are positive and about 45% of
them are strongly positive. This indicates that
our multimodal explanations provide good con-
nections among visual explanations, textual expla-
nations, and the VQA process. Figure 5 presents
some sample positively-rated multimodal explana-
tions.

4.3 Faithfulness Evaluation
In this section, we measure the faithfulness of
our explanations, i.e. how well they reflect the
underlying VQA system’s reasoning. First, we
measured how many words in a generated expla-
nation are actually linked to a visual segmentation
in the image. We analyzed the explanations from
1,000 correctly answered questions from the test
data. On average, our model is able to link 1.6
words in an explanation to an image segment,
indicating that the textual explanation is actually
grounded in objects detected by our VQA system.

Faithfulness Evaluation using LIME. We use
the model-agnostic explainer LIME (Ribeiro et al.,
2016) to determine the segmented objects that
most influenced a particular answer, and measure
how well the objects referenced in our explanation
match these influential segments. We regard all
the detected visual segments as the “interpretable”
units used by LIME to explain decisions. Using
these interpretable units, LIME applies LASSO
with the regularization path (Efron et al., 2004) to
learn a linear model of the local decision bound-
ary around the example to be explained. In partic-
ular, we collect 256 points around the example by
randomly blinding each segment’s features with a
probability of 0.4. The highly weighted features
in this model are claimed to provide a faithful ex-
planation of the decision on this example (Ribeiro
et al., 2016). The complexity of the explanation is
controlled by the number of units, K, that can be
used in this linear model. Using the coefficients
w of LIME’s weighted linear model, we compare
the object segments selected by LIME to the set of
objects that are actually linked to words in our ex-
planations. Specifically, we define our faithfulness
metric as:

score =

P|V |
i=1 |wi| maxj2L cos(vi, vj)P|V |

i=1 |wi|
(10)

where vi denotes the visual feature of the i-th
segmented object and the L denotes the set of
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explanation-linked objects. For each object in the
LIME explanation, it finds the closest object in our
explanation and multiplies its LIME weight by this
similarity. The normalized sum of these matches
is used to measure the similarity of the two expla-
nations.

We collect all correctly answered questions in
the VQA-X test set, and Table 2 reports the av-
erage score for their explanations using models
trained on 15K training explanations with differ-
ent numbers of interpretable units K. The influ-
ential objects recognized by LIME match objects
that are linked to words in our explanations with
an average cosine similarity around 0.7. This in-
dicates that the explanations are faithfully making
reference to visual segmentations that actually in-
fluenced the decision of the underlying VQA sys-
tem. Also, we observe that training with faith-
ful human explanation outperforms purely mim-
icking human explanations in terms of our faithful
metric, and further enforcing the local faithfulness
achieves a better result.

K = 1 K = 2 K = 3
Ours (Random) 0.588 0.601 0.574
Ours (Filtered) 0.636 0.651 0.643
Ours (Filtered+Lf ) 0.686 0.705 0.678

Table 2: Evaluation of LIME-based faithfulness scores
for different numbers of interpretable units K using
15K training explanations. “Random” means the train-
ing explanations are randomly sampled from the train
set, and “Filtered” means the models are trained using
the remaining faithful explanations.

Faithfulness Evaluation using Grad-CAM. We
also evaluated the consistency between the Grad-
CAM visual explanation vectors from the textual
explanation and the predicted answer using the
faithful score Sf defined in Eq. 7. Table 3 re-
ports the results from using filtered verses ran-
domly sampled explanations for training. We ob-
serve that with faithful human explanations, the
average faithfulness evaluation score increases 7%
over training with randomly sampled explana-
tions. Moreover, with the faithfulness loss Lf , the
model can better align the visual explanation for
the textual explanation with that for the predicted
answer, leading to a further 11% increase.

We also report the distribution of the generated
explanations’ cosine similarity between their vi-
sual explanation and the visual explanation of the

# Expl. Average Sf

Ours (Random) 15K 0.38
Ours (Filtered) 15K 0.45
Ours (Filtered+Lf ) 15K 0.56

Table 3: Average faithfulness evaluation score using
different explanations models. “Random” means the
training explanations are randomly sampled from the
train set, and “Filtered” means the models are trained
using the remaining faithful explanations.

answers in Figure 7. The fraction of the faithful-
ness scores between the interval [0.0, 0.1] is sig-
nificantly decreased by over 17% when using the
faithful human explanations for supervision and
further enforcing the local faithfulness with the
faithfulness loss, Lf .
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Figure 7: The distribution of explanations’ cosine sim-
ilarity between the visual explanation of the textual ex-
planation and the predicted answer.

5 Conclusion and Future Work

This paper has presented a new approach to gen-
erating multimodal explanations for visual ques-
tion answering systems that aims to more faith-
fully represent the reasoning of the underlying
VQA system while maintaining the style of hu-
man explanations. The approach generates tex-
tual explanations with words linked to relevant im-
age regions actually attended to by the underlying
VQA system. Experimental evaluations of both
the textual and visual aspects of the explanations
using both automated metrics and crowdsourced
human judgments were presented that demonstrate
the advantages of this approach compared to a
previously-published competing method. In the
future, we would like to incorporate more infor-
mation from the VQA networks into the explana-
tions. In particular, we would like to integrate net-
work dissection (Bau et al., 2017) to allow recog-
nizable concepts in the learned hidden-layer rep-
resentations to be included in explanations.
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Abstract

Recently, several methods have been proposed
to explain the predictions of recurrent neu-
ral networks (RNNs), in particular of LSTMs.
The goal of these methods is to understand the
network’s decisions by assigning to each in-
put variable, e.g., a word, a relevance indicat-
ing to which extent it contributed to a partic-
ular prediction. In previous works, some of
these methods were not yet compared to one
another, or were evaluated only qualitatively.
We close this gap by systematically and quan-
titatively comparing these methods in differ-
ent settings, namely (1) a toy arithmetic task
which we use as a sanity check, (2) a five-class
sentiment prediction of movie reviews, and be-
sides (3) we explore the usefulness of word
relevances to build sentence-level representa-
tions. Lastly, using the method that performed
best in our experiments, we show how specific
linguistic phenomena such as the negation in
sentiment analysis reflect in terms of relevance
patterns, and how the relevance visualization
can help to understand the misclassification of
individual samples.

1 Introduction

Recurrent neural networks such as LSTMs
(Hochreiter and Schmidhuber, 1997) are a stan-
dard building block for understanding and gener-
ating text data in NLP. They find usage in pure
NLP applications, such as abstractive summa-
rization (Chopra et al., 2016), machine transla-
tion (Bahdanau et al., 2015), textual entailment
(Rocktäschel et al., 2016); as well as in multi-
modal tasks involving NLP, such as image cap-
tioning (Karpathy and Fei-Fei, 2015), visual ques-
tion answering (Xu and Saenko, 2016) or lip read-
ing (Chung et al., 2017).

As these models become more and more
widespread due to their predictive performance,
there is also a need to understand why they took

a particular decision, i.e., when the input is a se-
quence of words: which words are determinant
for the final decision? This information is crucial
to unmask “Clever Hans” predictors (Lapuschkin
et al., 2019), and to allow for transparency of the
decision-making process (EU-GDPR, 2016).

Early works on explaining neural network pre-
dictions include Baehrens et al. (2010); Zeiler and
Fergus (2014); Simonyan et al. (2014); Springen-
berg et al. (2015); Bach et al. (2015); Alain and
Bengio (2017), with several works focusing on ex-
plaining the decisions of convolutional neural net-
works (CNNs) for image recognition. More re-
cently, this topic found a growing interest within
NLP, amongst others to explain the decisions of
general CNN classifiers (Arras et al., 2017a; Ja-
covi et al., 2018), and more particularly to explain
the predictions of recurrent neural networks (Li
et al., 2016, 2017; Arras et al., 2017b; Ding et al.,
2017; Murdoch et al., 2018; Poerner et al., 2018).

In this work, we focus on RNN explanation
methods that are solely based on a trained neu-
ral network model and a single test data point1.
Thus, methods that use additional information,
such as training data statistics, sampling, or are
optimization-based (Ribeiro et al., 2016; Lund-
berg and Lee, 2017; Chen et al., 2018) are out
of our scope. Among the methods we consider,
we note that the method of Murdoch et al. (2018)
was not yet compared against Arras et al. (2017b);
Ding et al. (2017); and that the method of Ding
et al. (2017) was validated only visually. More-
over, to the best of our knowledge, no recurrent
neural network explanation method was tested so
far on a toy problem where the ground truth rele-

1These methods are deterministic, and are essentially
based on a decomposition of the model’s current prediction.
Thereby they intend to reflect the sole model’s “point of
view” on the test data point, and hence are not meant to pro-
vide an averaged, smoothed or denoised explanation of the
prediction by additionally exploiting the data’s distribution.
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vance value is known.
Therefore our contributions are the follow-

ing: we evaluate and compare the aforementioned
methods, using two different experimental setups,
thereby we assess basic properties and differences
between the explanation methods. Along-the-way
we purposely adapted a simple toy task, to serve
as a testbed for recurrent neural networks explana-
tions. Lastly, we explore how word relevances can
be used to build sentence-level representations,
and demonstrate how the relevance visualization
can help to understand the (mis-)classification of
selected samples w.r.t. semantic composition.

2 Explaining Recurrent Neural Network
Predictions

First, let us settle some notations. We suppose
given a trained recurrent neural network based
model, which has learned some scalar-valued pre-
diction function fc(·), for each class c of a clas-
sification problem. Further, we denote by x =
(x1,x2, ...,xT ) an unseen input data point, where
xt represents the t-th input vector of dimensionD,
within the input sequence x of length T . In NLP,
the vectors xt are typically word embeddings, and
x may be a sentence.

Now, we are interested in methods that can ex-
plain the network’s prediction fc(x) for the in-
put x, and for a chosen target class c, by assign-
ing a scalar relevance value to each input variable
or word. This relevance is meant to quantify the
variable’s or word’s importance for or against a
model’s prediction towards the class c. We denote
by Rxi (index i) the relevance of a single vari-
able. This means xi stands for any arbitrary in-
put variable xt,d representing the d-th dimension,
d ∈ {1, ..., D}, of an input vector xt. Further, we
refer to Rxt (index t) to designate the relevance
value of an entire input vector or word xt. Note
that, for most methods, one can obtain a word-
level relevance value by simply summing up the
relevances over the word embedding dimensions,
i.e. Rxt =

∑
d∈{1,...,D}Rxt,d .

2.1 Gradient-based explanation

One standard approach to obtain relevances is
based on partial derivatives of the prediction func-
tion: Rxi =

∣∣∂fc
∂xi

(x)
∣∣, or Rxi =

(∂fc
∂xi

(x)
)2 (Di-

mopoulos et al., 1995; Gevrey et al., 2003; Si-
monyan et al., 2014; Li et al., 2016).

In NLP this technique was employed to visual-

ize the relevance of single input variables in RNNs
for sentiment classification (Li et al., 2016). We
use the latter formulation of relevance and denote
it as Gradient. With this definition the relevance
of an entire word is simply the squared L2-norm
of the prediction function’s gradient w.r.t. the word
embedding, i.e. Rxt = ‖∇xt fc(x)‖22 .

A slight variation of this approach uses partial
derivatives multiplied by the variable’s value, i.e.
Rxi = ∂fc

∂xi
(x) · xi. Hence, the word relevance is a

dot product between prediction function gradient
and word embedding: Rxt = (∇xt fc(x))T xt

(Denil et al., 2015). We refer to this variant as
Gradient×Input.

Both variants are general and can be applied to
any neural network. They are computationally ef-
ficient and require one forward and backward pass
through the net.

2.2 Occlusion-based explanation

Another method to assign relevances to single
variables, or entire words, is by occluding them
in the input, and tracking the difference in the net-
work’s prediction w.r.t. a prediction on the orig-
inal unmodified input (Zeiler and Fergus, 2014;
Li et al., 2017). In computer vision the occlusion
is performed by replacing an image region with
a grey or zero-valued square (Zeiler and Fergus,
2014). In NLP word vectors, or single of its com-
ponents, are replaced by zero; in the case of re-
current neural networks, the technique was applied
to identify important words for sentiment analysis
(Li et al., 2017).

Practically, the relevance can be computed in
two ways: in terms of prediction function dif-
ferences, or in the case of a classification prob-
lem, using a difference of probabilities, i.e. Rxi =
fc(x)−fc(x|xi=0), orRxi = Pc(x)−Pc(x|xi=0),

where Pc(·) = exp fc(·)∑
k exp fk(·) . We refer to the

former as Occlusionf-diff, and to the latter as
OcclusionP-diff. Both variants can also be used to
estimate the relevance of an entire word, in this
case the corresponding word embedding is set to
zero in the input. This type of explanation is
computationally expensive and requires T forward
passes through the network to determine one rele-
vance value per word in the input sequence x.

A slight variation of the above approach uses
word omission (similarly to Kádár et al., 2017) in-
stead of occlusion. On a morphosyntactic agree-
ment experiment (see Poerner et al., 2018), omis-
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sion was shown to deliver inferior results, there-
fore we consider only occlusion-based relevance.

2.3 Layer-wise relevance propagation

A general method to determine input space rele-
vances based on a backward decomposition of the
neural network prediction function is layer-wise
relevance propagation (LRP) (Bach et al., 2015).
It was originally proposed to explain feed-forward
neural networks such as convolutional neural net-
works (Bach et al., 2015; Lapuschkin et al., 2016),
and was recently extended to recurrent neural net-
works (Arras et al., 2017b; Ding et al., 2017;
Arjona-Medina et al., 2018).

LRP consists in a standard forward pass, fol-
lowed by a specific backward pass which is de-
fined for each type of layer of a neural network
by dedicated propagation rules. Via this backward
pass, each neuron in the network gets assigned a
relevance, starting with the output neuron whose
relevance is set to the prediction function’s value,
i.e. to fc(x). Each LRP propagation rule redis-
tributes iteratively, layer-by-layer, the relevance
from higher-layer neurons to lower-layer neurons,
and verifies a relevance conservation property2.
These rules were initially proposed in Bach et al.
(2015) and were subsequently justified by Deep
Taylor decomposition (Montavon et al., 2017) for
deep ReLU nets.

In practice, for a linear layer of the form zj =∑
i ziwij+bj , and given the relevances of the out-

put neurons Rj , the input neurons’ relevances Ri
are computed through the following summation:
Ri =

∑
j

zi·wij

zj + ε·sign(zj) ·Rj , where ε is a stabilizer
(small positive number); this rule is commonly re-
ferred as ε-LRP or ε-rule3. With this redistribution
the relevance is conserved, up to the relevance as-
signed to the bias and “absorbed” by the stabilizer.

Further, for an element-wise nonlinear activa-
tion layer, the output neurons’ relevances are re-
distributed identically onto the input neurons.

In addition to the above rules, in the case of
a multiplicative layer of the form zj = zg · zs,
Arras et al. (2017b) proposed to redistribute zero
relevance to the gate (the neuron that is sigmoid

2Methods based on a similar conservation principle in-
clude contribution propagation (Landecker et al., 2013),
Deep Taylor decomposition (Montavon et al., 2017), and
DeepLIFT (Shrikumar et al., 2017).

3Such a rule was employed by previous works with recur-
rent neural networks (Arras et al., 2017b; Ding et al., 2017;
Arjona-Medina et al., 2018), although there exist also other
LRP rules for linear layers (see e.g. Montavon et al., 2018)

activated) i.e. Rg = 0, and assign all the rele-
vance to the remaining signal neuron (which is
usually tanh activated) i.e. Rs = Rj . We call this
LRP variant LRP-all, which stands for “signal-
take-all” redistribution. An alternative rule was
proposed in Ding et al. (2017); Arjona-Medina
et al. (2018), where the output neuron’s relevance
Rj is redistributed onto the input neurons via:
Rg =

zg
zg+zs

Rj and Rs = zs
zg+zs

Rj . We re-
fer to this variant as LRP-prop, for “proportional”
redistribution. We also consider two other vari-
ants. The first one uses absolute values instead:
Rg =

|zg |
|zg |+|zs|Rj and Rs = |zs|

|zg |+|zs|Rj , we
call it LRP-abs. The second uses equal redistri-
bution: Rg = Rs = 0.5 · Rj (Arjona-Medina
et al., 2018), we denote it as LRP-half. We further
add a stabilizing term to the denominator of the
LRP-prop and LRP-abs formulas, it has the form
ε · sign(zg + zs) in the first case, and simply ε in
the latter.

Since the relevance can be computed in one for-
ward and backward pass, the LRP method is ef-
ficient. Besides, it is general as it can be ap-
plied to any neural network made of the above lay-
ers: it was applied successfully to CNNs, LSTMs,
GRUs, and QRNNs (Poerner et al., 2018; Yang
et al., 2018)4.

2.4 Contextual Decomposition

Another method, specific to LSTMs, is contextual
decomposition (CD) (Murdoch et al., 2018). It
is based on a linearization of the activation func-
tions that enables to decompose the LSTM for-
ward pass by distinguishing between two contri-
butions: those made by a chosen contiguous sub-
sequence (a word or a phrase) within the input se-
quence x, and those made by the remaining part
of the input. This decomposition results in a fi-
nal hidden state vector hT (see the Appendix for
a full specification of the LSTM architecture) that
can be rewritten as a sum of two vectors: βT and
γT , where the former corresponds to the contribu-
tion from the “relevant” part of interest, and the
latter stems from the “irrelevant” part. When the
LSTM is followed by a linear output layer of the
form wTc hT + bc for class c, then the relevance of
a given word (or phrase) and for the target class c,
is given by the dot product: wTc βT .

4Note that in the present work we apply LRP to stan-
dard LSTMs, though Arjona-Medina et al. (2018) showed
that some LRP rules for product layers can benefit from si-
multaneously adapting the LSTM architecture.
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Method Relevance Formulation Redistributed Quantity (
∑

iRxi) Complexity

Gradient Rxi =
(∂fc
∂xi

(x)
)2 ‖∇x fc(x)‖22 Θ(2 · T )

Gradient×Input Rxi = ∂fc
∂xi

(x) · xi (∇x fc(x))T x Θ(2 · T )

Occlusion Rxi = fc(x)− fc(x|xi=0) - Θ(T 2)

LRP backward decomposition of the neurons’ relevance fc(x) Θ(2 · T )
CD linearization of the activation functions fc(x) Θ(T 2)

Table 1: Overview of the considered explanation methods. The last column indicates the computational complexity
to obtain one relevance value per input vector, or word, where T is the length of the input sequence.

The method is computationally expensive as it
requires T forward passes through the LSTM to
compute one relevance value per word. Although
it was recently extended to CNNs (Singh et al.,
2019; Godin et al., 2018), it is yet not clear how to
compute the CD relevance in other recurrent archi-
tectures, or in networks with multi-modal inputs.

See Table 1 for an overview of the explanation
methods considered in the present work.

2.5 Methods not considered

Other methods to compute relevances include In-
tegrated Gradients (Sundararajan et al., 2017). It
was previously compared against CD in Murdoch
et al. (2018), and against the LRP variant of Ar-
ras et al. (2017b) in Poerner et al. (2018), where
in both cases it was shown to deliver inferior
results. Another method is DeepLIFT (Shriku-
mar et al., 2017), however, according to its au-
thors, DeepLIFT was not designed for multiplica-
tive connections, and its extension to recurrent net-
works remains an open question5. For a compar-
ative study of explanation methods with a main
focus on feed-forward nets, see Ancona et al.
(2018)6. For a broad evaluation of explanations,
including several recurrent architectures, we refer
to Poerner et al. (2018). Note that the latter didn’t
include the CD method of Murdoch et al. (2018),
and the LRP variant of Ding et al. (2017), which
we compare here.

5Though Poerner et al. (2018) showed that, when using
only the Rescale rule of DeepLIFT, and combining it with
the product rule proposed in Arras et al. (2017b), then the
resulting explanations perform on-par with the LRP method
of Arras et al. (2017b)

6Note that in order to redistribute the relevance through
product layers, Ancona et al. (2018) simply relied on standard
gradient backpropagation. Such a redistribution scheme is
not appropriate for methods such as LRP, since it violates
the relevance conservation property, hence their results for
recurrent nets are not conclusive.

3 Evaluating Explanations

3.1 Previous work

How to generally and objectively evaluate expla-
nations, without resorting to ad-hoc evaluation
procedures that are domain and task specific, is
still active research (Alishahi et al., 2019; Be-
linkov and Glass, 2019).

In computer vision, it has become common
practice to conduct a perturbation analysis (Bach
et al., 2015; Samek et al., 2017; Shrikumar et al.,
2017; Lundberg and Lee, 2017; Ancona et al.,
2018; Chen et al., 2018; Morcos et al., 2018):
hereby a few pixels in an image are perturbated
(e.g. set to zero or blurred) according to their rel-
evance (most relevant or least relevant pixels are
perturbated first), and then the impact on the net-
work’s prediction is measured. The higher the im-
pact, the more accurate is the relevance.

Other studies explored in which way relevances
are consistent or helpful w.r.t. human judgment
(Ribeiro et al., 2016; Lundberg and Lee, 2017;
Nguyen, 2018). Some other works relied solely
on the visual inspection of a few selected rel-
evance heatmaps (Li et al., 2016; Sundararajan
et al., 2017; Ding et al., 2017).

In NLP, Murdoch et al. (2018) proposed to
measure the correlation between word relevances
obtained on an LSTM, and the word impor-
tance scores obtained from a linear Bag-of-Words.
However, the latter model ignores the word order-
ing and context, which the LSTM can take into
account, hence this type of evaluation is not ad-
equate7. Other evaluations in NLP are task spe-
cific. For example Poerner et al. (2018) use the
subject-verb agreement task proposed by Linzen
et al. (2016), where the goal is to predict a verb’s

7The same way Murdoch et al. (2018) try to “match”
phrase-level relevances with n-gram linear classifier scores
or human annotated phrases, but again this might be mislead-
ing, since the latter scores or annotations ignore the whole
sentence context.
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number, and use the relevances to verify that the
most relevant word is indeed the correct subject
(or a noun with the predicted number).

Other studies include an evaluation on a syn-
thetic task: Yang et al. (2018) generated random
sequences of MNIST digits and train an LSTM to
predict if a sequence contains zero digits or not,
and verify that the explanation indeed assigns a
high relevance to the zero digits’ positions.

A further approach uses randomization of the
model weights and data as sanity checks (Adebayo
et al., 2018) to verify that the explanations are in-
deed dependent on the model and data. Lastly,
some evaluations are “indirect” and use relevances
to solve a broader task, e.g. to build document-
level representations (Arras et al., 2017a), or to
redistribute predicted rewards in reinforcement
learning (Arjona-Medina et al., 2018).

3.2 Toy Arithmetic Task

As a first evaluation, we ask the following ques-
tion: if we add two numbers within an input se-
quence, can we recover from the relevance the
true input values? This amounts to consider
the adding problem (Hochreiter and Schmidhuber,
1996), which is typically used to test the long-
range capabilities of recurrent models (Martens
and Sutskever, 2011; Le et al., 2015). We use it
here to test the faithfulness of explanations. To
that end, we define a setup similar to Hochre-
iter and Schmidhuber (1996), but without explicit
markers to identify the sequence start and end, and
the two numbers to be added. Our idea is that, in
general, it is not clear what the ground truth rele-
vance for a marker should be, and we want only
the relevant numbers in the input sequence to get a
non-zero relevance. Hence, we represent the input
sequence x = (x1,x2, ...,xT ) of length T , with
two-dimensional input vectors as:

( 0 0 0 na 0 0 0 nb 0 0 0
n1 ... na−1 0 na+1 ... nb−1 0 nb+1 ... nT

)

where the non-zero entries nt are random real
numbers, and the two relevant positions a and b are
sampled uniformly among {1, ..., T} with a < b.

More specifically, we consider two tasks that
can be solved by an LSTM model with a hidden
layer of size one (followed by a linear output layer
with no bias8): the addition of signed numbers (nt

8We omit the output layer bias since all considered expla-
nation methods ignore it in the relevance computation, and
we want to explain the “full” prediction function’s value.

is sampled uniformly from [−1,−0.5]∪ [0.5, 1.0])
and the subtraction of positive numbers (nt is sam-
pled uniformly from [0.5, 1.0]9). In the former
case the target output y is na + nb, in the latter
it is na − nb. During training we minimize Mean
Squared Error (MSE). To ensure that train/val/test
sets do not overlap we use 10000 sequences with
lengths T ∈ {4, ..., 10} for training, 2500 se-
quences with T ∈ {11, 12} for validation, and
2500 sequences with T ∈ {13, 14} as test set.
For each task we train 50 LSTMs with a validation
MSE < 10−4, the resulting test MSE is < 10−4.

Then, given the model’s predicted output ypred,
we compute one relevance value Rxt per input
vector xt (for the occlusion method we compute
only Occlusionf-diff since the task is a regression;
we also don’t report Gradient results since it per-
forms poorly). Finally, we track the correlation
between the relevances and the two input numbers
na and nb. We also track the portion of relevance
assigned to the relevant time steps, compared to
the relevance for all time steps. Lastly, we cal-
culate the “MSE” between the relevances for the
relevant positions a and b and the model’s output.
Our results are compiled in Table 2.

Interestingly, we note that on the addition task
several methods perform well and produce a rele-
vance that correlates perfectly with the input num-
bers: Gradient×Input, Occlusion, LRP-all and
CD (they are highlighted in bold in the Table).
They further assign all the relevance to the time
steps a and b and almost no relevance to the rest
of the input; and present a relevance that sum up
to the predicted output. However, on subtraction,
only Gradient×Input and LRP-all present a corre-
lation of near one with na, and of near minus one
with nb. Likewise these methods assign only rele-
vance to the relevant positions, and redistribute the
predicted output entirely onto these positions.

The main difference between our addition and
subtraction tasks, is that the former requires only
summing up the first dimension of the input vec-
tors and can be solved by a Bag-of-Words ap-
proach (i.e. by ignoring the ordering of the in-
puts), while our subtraction task is truly sequen-
tial and requires the LSTM model to remember
which number arrived first, and which number ar-
rived second, via exploiting the gating mechanism.

Since in NLP several applications require the
9We avoid small numbers by using 0.5 as a minimum

magnitude only to simplify learning, since otherwise this
would encourage the model weights to grow rapidly.
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ρ(Rxa , na) ρ(Rxb
, nb) E[

|Rxa |+|Rxb
|∑

t |Rxt |
] E[((Rxa + Rxb

) − ypred)
2]

(in %) (in %) (in %) (“MSE”)
Toy Task Addition

Gradient×Input 99.960 (0.017) 99.954 (0.019) 99.68 (0.53) 24.10−4 (8.10−4)
Occlusion 99.990 (0.004) 99.990 (0.004) 99.82 (0.27) 20.10−5 (8.10−5)
LRP-prop 0.785 (3.619) 10.111 (12.362) 18.14 (4.23) 1.3 (1.0)
LRP-abs 7.002 (6.224) 12.410 (17.440) 18.01 (4.48) 1.3 (1.0)
LRP-half 29.035 (9.478) 51.460 (19.939) 54.09 (17.53) 1.1 (0.3)
LRP-all 99.995 (0.002) 99.995 (0.002) 99.95 (0.05) 2.10−6 (4.10−6)
CD 99.997 (0.002) 99.997 (0.002) 99.92 (0.06) 4.10−5 (12.10−5)

Toy Task Subtraction

Gradient×Input 97.9 (1.6) -98.8 (0.6) 98.3 (0.6) 6.10−4 (4.10−4)
Occlusion 99.0 (2.0) -69.0 (19.1) 25.4 (16.8) 0.05 (0.08)
LRP-prop 3.1 (4.8) -8.4 (18.9) 15.0 (2.4) 0.04 (0.02)
LRP-abs 1.2 (7.6) -23.0 (11.1) 15.1 (1.6) 0.04 (0.002)
LRP-half 7.7 (15.3) -28.9 (6.4) 42.3 (8.3) 0.05 (0.06)
LRP-all 98.5 (3.5) -99.3 (1.3) 99.3 (0.6) 8.10−4 (25.10−4)
CD -25.9 (39.1) -50.0 (29.2) 49.4 (26.1) 0.05 (0.05)

Table 2: Statistics of the relevance w.r.t. the input numbers na and nb and the predicted output ypred, on toy
arithmetic tasks. ρ denotes the correlation and E the mean. Each statistic is computed over 2500 test data points.
Reported are the mean (and standard deviation in parenthesis) over 50 trained LSTM models.

word ordering to be taken into account to accu-
rately capture a sentence’s meaning (e.g. in senti-
ment analysis or in machine translation), our ex-
periment, albeit being an abstract numerical task,
is pertinent and can serve as a first sanity check to
check whether the relevance can reflect the order-
ing and the value of the input vectors.

Hence we view our toy task as a minimal and
unambiguous test (which besides being sequen-
tial, also exhibits a linear input-output relation-
ship) that acts as a necessary (though not suffi-
cient) requirement for a recurrent neural network
explanation method to be trustworthy in a more
complex setup, where the ground truth relevance
is less clear.

For the Occlusion method, the unreliability is
probably due to the fact that the neural network
has always seen two “relevant” input numbers in
the input sequence during training, and therefore
gets confused when one of these inputs is missing
at the time of the relevance computation (“out-of-
sample” effect). For CD, the weakness may come
from the saturation of the activations, in particu-
lar of the gates, which makes their linearization
induced by the CD decomposition inaccurate.

3.3 5-Class Sentiment Prediction
As a sentiment analysis dataset, we use the Stan-
ford Sentiment Treebank (Socher et al., 2013)
which contains labels (very negative −−, nega-
tive −, neutral 0, positive +, very positive ++)
for resp. 8544/1101/2210 train/val/test sentences
and their constituent phrases. As a classifier we
employ the bidirectional LSTM from Li et al.

(2016)10, which achieves 82.9% binary, resp.
46.3% five-class, accuracy on full sentences.

Perturbation Experiment. In order to evalu-
ate the selectivity of word relevances, we perform
a perturbation experiment aka “pixel-flipping“ in
computer vision (Bach et al., 2015; Samek et al.,
2017), i.e. we remove words from the input sen-
tences according to their relevance, and track the
impact on the classification performance. A sim-
ilar experiment has been conducted in previous
NLP studies (Arras et al., 2016; Nguyen, 2018;
Chen et al., 2018); and besides, such type of ex-
periment can be seen as the input space pendant
of ablation, which is commonly used to identify
“relevant” intermediate neurons, e.g. in Lakretz
et al. (2019). For our experiment we retain test
sentences with a length≥ 10 words (i.e. 1849 sen-
tences), and remove 1, 2, and 3 words per sen-
tence11, according to their relevance obtained on
the original sentence with the true class as the tar-
get class. Our results are reported in Table 3. Note
that we distinguish between sentences that are ini-
tially correctly classified, and those that are ini-
tially falsely classified by the LSTM model. Fur-
ther, in order to condense the “ablation” results in
a single number per method, we compute the ac-
curacy decrease (resp. increase) proportionally to
two cases: i) random removal, and ii) removal ac-

10https://github.com/jiweil/Visualizing-
and-Understanding-Neural-Models-in-NLP

11In order to remove a word we simply discard it from the
input sentence and concatenate the remaining parts. We also
tried setting the word embeddings to zero, which gave us sim-
ilar results.
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Accuracy Change (in %) random Grad. Grad.×Input LRP-prop LRP-abs LRP-half LRP-all CD Occlusionf-diff OcclusionP-diff

decreasing order (std<16) 0 35 66 15 -1 -3 97 92 96 100
increasing order (std<5) 0 -18 31 11 -1 3 49 36 50 100

Table 3: Average change in accuracy when removing up to 3 words per sentence, either in decreasing order of
their relevance (starting with correctly classified sentences), or in increasing order of their relevance (starting
with falsely classified sentences). In both cases, the relevance is computed with the true class as the target class.
Results are reported proportionally to the changes for i) random removal (0% change) and ii) removal based on
OcclusionP-diff (100% change). For all methods, the higher the reported value the better. We boldface those methods
that perform on-par with the occlusion-based relevances.

cording to OcclusionP-diff. Our idea is that random
removal is the least informative approach, while
OcclusionP-diff is the most informative one, since
the relevance for the latter is computed in a sim-
ilar way to the perturbation experiment itself, i.e.
by deleting words from the input and tracking the
change in the classifier’s prediction. Thus, with
this normalization, we expect the accuracy change
(in %) to be mainly rescaled to the range [0, 100].

When removing words in decreasing order of
their relevance, we observe that LRP-all and CD
perform on-par with the occlusion-based rele-
vance, with near 100% accuracy change, followed
by Gradient×Input which performs only 66%.

When removing words in increasing or-
der of their relevance (which mainly corre-
sponds to remove words with a negative rele-
vance), OcclusionP-diff performs best, followed by
Occlusionf-diff and LRP-all (both around 50%),
then CD (36%). Unsurprisingly, Gradient per-
forms worse than random, since its relevance is
positive and thus low relevance is more likely to
identify unimportant words for the classification
(such as stop words), rather than identify words
that contradict a decision, as noticed in Arras et al.
(2017b). Lastly Occlusionf-diff is less informative
than OcclusionP-diff, since the former is not nor-
malized by the classification scores for all classes.

This analysis revealed that methods such as
LRP-all and CD can detect influential words sup-
porting (resp. contradicting) a specific classifica-
tion decision, although they were not tuned to-
wards the perturbation criterion, as opposed to Oc-
clusion (which can be seen as the brute force ap-
proach to determine the inputs the model is the
most sensitive to), whereas gradient-based meth-
ods are less accurate in this respect. Remarkably
LRP-all only require one forward and backward
pass to provide this information.

Sentence-Level Representations. In addition
to testing selectivity, we explore if the word rel-

evance can be leveraged to build sentence-level
representations that present some regularities akin
word2vec vectors. For this purpose we lin-
early combine word embeddings using their re-
spective relevance as weighting12. For methods
such as LRP and Gradient×Input that deliver also
relevances for single variables, we perform an
element-wise weighting, i.e. we construct the sen-
tence representation as:

∑
tRxt � xt. For ev-

ery method we report the best performing vari-
ant from previous experiments, i.e. OcclusionP-diff,
Gradient×Input, CD and LRP-all. Additionally
we report simple averaging of word embeddings
(we call it Avg). Further, for LRP, we consider an
element-wise reweighting of the last time step hid-
den layer hT by its relevance, since LRP delivers
also a relevance for each intermediate neuron (we
call it LRP hT ). We also tried using hT directly:
this gave us a visualization similar to Avg. The re-
sulting 2D whitened PCA projections of the test
set sentences are shown in Fig. 1.

Qualitatively LRP delivers the most structured
representations, although for all methods the first
two PCA components explain most of the data
variance. Intuitively it makes also sense that the
neutral sentiment is located between the positive
and negative sentiments, and that the very nega-
tive and very positive sentiments depart from their
lower counterparts in the same vertical direction.

The advantage of having such regularities
emerging via PCA projection, is that the sen-
tence/phrase semantics might be investigated visu-
ally, without requiring any nonlinear dimensional-
ity reduction like t-SNE (typically used to explore
the representations learned by recurrent models,
e.g. in Cho et al., 2014; Li et al., 2016). Such rep-
resentations might also be useful in information
retrieval settings, where one could retrieve simi-

12W.l.o.g. we use here the true class as the target class,
since the classifier’s 5-class performance is very low. In a
practical use-case one would use the predicted class instead.
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Avg (82% - 4%) Occlusion (82% - 4%) Gradient×Input (75% - 4%)

CD (76% - 4%) LRP (84% - 3%) LRP hT (68% - 7%)

0
+
++

Figure 1: PCA projection of sentence-level representations built on top of word embeddings that were linearly
combined using their respective relevance. Avg corresponds to simple averaging of word embeddings. For LRP
hT the last time step hidden layer was reweighted by its relevance. In parenthesis we indicate the percentage of
variance explained by the first two PCA components (those that are plotted) and by the third PCA component. The
resulting representations were roughly ordered (row-wise) from less structured to more structured.

lar sentences/phrases by employing standard eu-
clidean distance.

4 Interpreting Single Predictions

Next, we analyze single predictions using the
same task and model as in Section 3.3, and illus-
trate the usefulness of relevance visualization with
LRP-all, which is the method that performed well
in both our previous quantitative experiments.

Semantic Composition. When dealing with
real data, one typically has no ground truth rel-
evance available. And the visual inspection of
single relevance heatmaps can be counter-intuitive
for two reasons: the relevance is not accurately
reflecting the reasons for the classifier’s decision
(the explanation method is bad), or the classi-
fier made an error (the classifier doesn’t work as
expected). In order to avoid the latter as much
as possible, we automatically constructed bigram
and trigram samples, which are built solely upon
the classifier’s predicted class, and visualize the
resulting average relevance heatmaps for differ-
ent types of semantic compositions in Table 4.
For more details on how these samples were con-
structed we refer to the Appendix, note though that
in our heatmaps the negation <not>, the intensi-
fier <very> and the sentiment words act as place-
holders for words with similar meanings, since the
representative heatmaps were averaged over sev-

eral samples. In these heatmaps one can see that,
to transform a positive sentiment into a negative
one, the negation is predominantly colored as red,
while the sentiment word is highlighted in blue,
which intuitively makes sense since the explana-
tion is computed towards the negative sentiment,
and in this context the negation is responsible for
the sentiment prediction. For sentiment intensifi-
cation, we note that the amplifier gets a relevance
of the same sign as the amplified word, indicat-
ing the amplifier is supporting the prediction for
the considered target class, but still has less im-
portance for the decision than the sentiment word
itself (deep red colored). Both previous identified
patterns also reflect consistently in the case of a
negated amplified positive sentiment.

Understanding Misclassifications. Lastly, we
inspect heatmaps of misclassified sentences in Ta-
ble 5. In sentence 1, according to the heatmap, the
classifier didn’t take the negation never into ac-
count, although it identified it correctly in sentence
1b. We postulate this is because of the strong sen-
timent assigned to fails that overshadowed the
effect of never. In sentence 2, the classifier obvi-
ously couldn’t grasp the meaning of the words pre-
ceding must-see. If we use a negation instead,
we note that it’s taken into account in the case
of neither (2b), but not in the case of never
(2c), which illustrates the complex dynamics in-
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Composition Predicted Heatmap Relevance # samples

1. “negated positive sentiment” − <not> <good> 2.5 0.3 -1.4 0.5 213

2. “amplified positive sentiment” ++ <very> <good> 1.1 0.3 4.5 0.7 347

3. “amplified negative sentiment” −− <very> <bad> 0.8 0.2 4.3 0.6 173

4. “negated amplified positive sentiment” − <not> <very> <good> 2.74 0.54 -0.34 0.17 -2.00 0.40 1745

Table 4: Typical heatmaps for various types of semantic compositions (indicated in first column), computed with
the LRP-all method. The LSTM’s predicted class (second column) is used as the target class. The remaining
columns contain the average heatmap (positive relevance is mapped to red, negative to blue, and the color intensity
is normalized to the maximum absolute relevance), the corresponding word relevance mean (and std as subscript),
and the number of bigrams (resp. trigrams) considered for each type of composition.

No Predicted Heatmap

1 −− it never fails to engage us . 

1a + engages us .

1b − never engages us . 

1c −− fails to engage us . 

2 ++ ecks this one off your must-see list . 

2a ++ a must-see film . 

2b −− neither a must-see film . 

2c ++ never a must-see film . 

Table 5: Misclassified test sentences (1 and 2), and
manually constructed sentences (1a-c, 2a-c). The
LSTM’s predicted class (second column) is used as the
target class for the LRP-all heatmaps.

volved in semantic composition, and that the clas-
sifier might also exhibit a bias towards the types of
constructions it was trained on, which might then
feel more “probable” or “understandable” to him.

Besides, during our experimentations, we em-
pirically found that the LRP-all explanations are
more helpful when using the classifier’s predicted
class as the target class (rather than the sample’s
true class), which intuitively makes sense since it’s
the class the model is the most confident about.
Therefore, to understand the classification of sin-
gle samples, we generally recommend this setup.

5 Conclusion

In our experiments with standard LSTMs, we find
that the LRP rule for multiplicative connections
introduced in Arras et al. (2017b) performs con-
sistently better than other recently proposed rules,
such as the one from Ding et al. (2017). Further,
our comparison using a 5-class sentiment predic-
tion task highlighted that LRP is not equivalent to
Gradient×Input (as sometimes inaccurately stated
in the literature, e.g. in Shrikumar et al., 2017)
and is more selective than the latter, which is
consistent with findings of Poerner et al. (2018).

Indeed, the equivalence between Gradient×Input
and LRP holds only if using the ε-rule with no
stabilizer (ε = 0), and if the network contains
only ReLU activations and max pooling as non-
linearities (Kindermans et al., 2016; Shrikumar
et al., 2016). When using other LRP rules, or if the
network contains other activations or product non-
linearities (such as this is the case for LSTMs),
then the equivalence does not hold (see Montavon
et al. (2018) for a broader discussion).

Besides, we discovered that a few methods such
as Occlusion (Li et al., 2017) and CD (Murdoch
et al., 2018) are not reliable and get inconsistent
results on a simple toy task using an LSTM with
only one hidden unit.

In the future, we expect decomposition-based
methods such as LRP to be further useful to an-
alyze character-level models, to explore the role
of single word embedding dimensions, and to dis-
cover important hidden layer neurons. Compared
to attention weights (such as Bahdanau et al.,
2015; Xu et al., 2015; Osman and Samek, 2019),
decomposition-based explanations take into ac-
count all intermediate layers of the neural network
model, and can be related to a specific class.
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A Appendix

A.1 Long-Short Term Memory (LSTM)
model

All LSTMs used in the present work have the fol-
lowing recurrence form (Hochreiter and Schmid-
huber, 1997; Gers et al., 1999), which is also the
most commonly used in the literature (Greff et al.,
2017):

it = sigm
(
Wi ht−1 + Ui xt + bi

)

ft = sigm
(
Wf ht−1 + Uf xt + bf

)

ot = sigm
(
Wo ht−1 + Uo xt + bo

)

gt = tanh
(
Wg ht−1 + Ug xt + bg

)

ct = ft � ct−1 + it � gt
ht = ot � tanh(ct)

where x = (x1, x2, ..., xT ) is the input sequence,
sigm and tanh are element-wise activations, and
� is an element-wise multiplication. The matrices
W ’s, U ’s, and vectors b’s are connection weights
and biases, and the initial states h0 and c0 are set to
zero. The resulting last time step hidden vector hT
is ultimately fed to a fully-connected linear output
layer yielding a prediction vector f(x), with one
entry fc(x) per class.

The bidirectional LSTM (Schuster and Paliwal,
1997) we use for the sentiment prediction task,
is a concatenation of two separate LSTM mod-
els as described above, each of them taking a dif-
ferent sequence of word embedding vectors as in-
put. One LSTM takes as input the words in their
original order, as they appear in the input sen-
tence/phrase. The other LSTM takes as input the
same word sequence but in reversed order. Each of
these LSTMs yields a final hidden vector, say h→T
and h←T . The concatenation of these two vectors
is then fed to a fully-connected linear output layer,
retrieving one prediction score fc(x) per class.

A.2 Layer-wise Relevance Propagation
(LRP) implementation

We employ the code released by the authors
(Arras et al., 2017b) (https://github.com/
ArrasL/LRP for LSTM), and adapt it to work
with different LRP product rule variants.

In the toy task experiments, we didn’t find it
necessary to add any stabilizing term for numer-
ical stability (therefore we use ε = 0 for all LRP

rules). In the sentiment analysis experiments, we
use ε = 0.001 (except for the LRP-prop variant
where we use ε = 0.2, we tried the following val-
ues: [0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 1.0] and took
the lowest one to achieve numerical stability).

A.3 Contextual Decomposition (CD)
implementation

We employ the code released by the au-
thors (Murdoch et al., 2018) (https:
//github.com/jamie-murdoch/
ContextualDecomposition), and adapt
it to work with a bidirectional LSTM. We also
made a slight modification w.r.t. the author’s latest
available version (commit e6575aa from March
30, 2018). In particular in file sent util.py
we changed line 125 to: if i>=start and
i<stop, to exclude the stop index, and call
the function CD with the arguments start=k
and stop=k+1 to compute the relevance of the
k-th input vector, or word, in the input sequence.
This consistently led to better results for the CD
method in all our experiments.

A.4 Toy task setup
As an LSTM model we consider a unidirectional
LSTM with a hidden layer of size one (i.e. with
one memory cell ct), followed by a linear out-
put layer with no bias. Since the input is two-
dimensional, this results in an LSTM model with
17 learnable parameters. The weights are ran-
domly initialized with the uniform distribution
U(−1.0, 1.0), and biases are initialized to zero.
We train the model with Pytorch’s LBFGS opti-
mizer, with an initial learning rate of 0.002, for
1000 optimizer steps, and reduce the learning rate
by a factor of 0.95 if the error doesn’t decrease
within 10 steps. We also clip the gradient norm
to 5.0. With this setting around 1/2 of the trained
models on addition and 1/3 of the models for sub-
traction converged to a good solution with a vali-
dation MSE < 10−4.

A.5 Semantic composition: generation of
representative samples

In a first step, we build a list of words with a posi-
tive sentiment (+), resp. a negative sentiment (−),
as identified by the bidirectional LSTM model. To
that end, we predict the class of each word con-
tained in the model’s vocabulary, and select for
each sentiment a list of 50 words with the highest
prediction scores. This way we try to ensure that
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the considered sentiment words are clearly identi-
fied by the model as being from the positive senti-
ment (+), resp. the negative sentiment (−) class.

In a second step, we build a list of negations and
amplifiers. To that end, we start by considering the
same lists of 39 negations and 69 amplifiers as in
Strohm and Klinger (2018), from which we retain
only those that are classified as neutral (class 0)
by the LSTM model, which leaves us with a list of
8 negations and 29 amplifiers. This way we dis-
card modifiers that are biased towards a specific
sentiment, since our goal is to analyze the compo-
sitional effect of modifiers.

Then, for each type of considered semantic
composition (see Table 4), we generate bigrams
resp. trigrams by using the previously defined lists
of modifiers and sentiment words.

For compositions of type 1 (“negation of pos-
itive sentiment”), we note that among the con-
structed bigrams 60% are classified as nega-
tive (−) by the LSTM model, 26% are predicted as
neutral (0), and for the remaining 14% of bigrams
the negation is not identified correctly and the cor-
responding bigram is classified as positive (+). In
order to remove negations that are ambiguous to
the classifier, we retain only those negations which
in at least 40% of the cases predict the bigram as
negative. These negations are: [’neither’, ’never’,
’nobody’, ’none’, ’nor’]. Then we average the re-
sults over all bigrams classified as negative (−).

For compositions of type 2 and 3 we proceed
similarly. For type 2 compositions (“amplifica-
tion of positive sentiment”), we note that 29% of
the constructed bigrams are classified as very pos-
itive (++), and for type 3 compositions (“amplifi-
cation of negative sentiment”), 24% are predicted
as very negative (−−), while the remaining bi-
grams are of the same class as the original sen-
timent word (thus the amplification is not identi-
fied by the classifier). Here again we retain only
unambiguous modifiers, which in at least 40%
of the cases amplified the corresponding senti-
ment. The resulting amplifiers are: [’completely’,
’deeply’, ’entirely’, ’extremely’, ’highly’, ’in-
sanely’, ’purely’, ’really’, ’so’, ’thoroughly’, ’ut-
terly’, ’very’] for type 2 compositions; and [’com-
pletely’, ’entirely’, ’extremely’, ’highly’, ’really’,
’thoroughly’, ’utterly’] for type 3 compositions.
Then we average the results over the correspond-
ing bigrams which are predicted as very posi-
tive (++), resp. very negative (−−).

For type 4 compositions (“negation of ampli-
fied positive sentiment”), we construct all possi-
ble trigrams with the initial lists of negations, am-
plifiers and positive sentiment words. We keep
for the final averaging of the results only those
trigrams where both the effect of the amplifier,
and of the negation are correctly identified by the
LSTM model. To this end we classify the corre-
sponding bigram formed by combining the ampli-
fier with the positive sentiment word, and keep the
corresponding sample if this bigram is predicted
as very positive (++). Then we average the re-
sults over trigrams predicted as negative (−) (this
amounts to finally retain 1745 trigrams).

We also tried to investigate the following com-
position: “negation of negative sentiment”, sim-
ilarly to compositions of type 1. However, we
found that only 1% of the constructed bigrams
are classified as neutral (0), and that the remain-
ing bigrams are classified as negative (−) (81%)
or even very negative (−−) (18%). This means, in
most cases, negating a negative sentiment doesn’t
change the classifier’s prediction, i.e. the negation
is not detected by the LSTM model. Therefore
we did not retain this type of composition for con-
structing representative heatmaps. That the im-
pact of negation is not symmetric across different
sentiments was also observed in previous works
(Socher et al., 2013; Li et al., 2016), and is prob-
ably due to the fact that some type of semantic
compositions are more frequent than others in the
training data (and more generally, in natural lan-
guage) (Fraenkel and Schul, 2008).
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Abstract

We present a detailed comparison of two types
of sequence to sequence models trained to con-
duct a compositional task. The models are
architecturally identical at inference time, but
differ in the way that they are trained: our
baseline model is trained with a task-success
signal only, while the other model receives
additional supervision on its attention mecha-
nism (Attentive Guidance), which has shown
to be an effective method for encouraging
more compositional solutions (Hupkes et al.,
2019). We first confirm that the models with
attentive guidance indeed infer more compo-
sitional solutions than the baseline, by train-
ing them on the lookup table task presented by
Liška et al. (2019). We then do an in-depth
analysis of the structural differences between
the two model types, focusing in particular on
the organisation of the parameter space and
the hidden layer activations and find noticeable
differences in both these aspects. Guided net-
works focus more on the components of the in-
put rather than the sequence as a whole and de-
velop small functional groups of neurons with
specific purposes that use their gates more se-
lectively. Results from parameter heat maps,
component swapping and graph analysis also
indicate that guided networks exhibit a more
modular structure with a small number of spe-
cialized, strongly connected neurons.

1 Introduction

Sequence to sequence models (seq2seqs), a sub-
set of neural networks that use sequences as input
and output, have enjoyed great success in many
NLP tasks such as machine translation (Bahdanau
et al., 2015) and speech recognition (Graves et al.,

∗Shared senior authorship

2013). Even though these feats indicate excel-
lent generalization capabilities, the way seq2seqs
generalize has found to be different from how hu-
mans do. In particular, seq2seqs lack of composi-
tional understanding: the ability to construct new
representations by combining familiar primitive
components (e.g. Szabó, 2012). Humans, instead,
heavily rely on compositionality to learn com-
plex functional structure efficiently (Schulz et al.,
2016). Once the primitive components are under-
stood, a possibly infinite amount of novel combi-
nations can be made, which allows for large scale
generalization from a limited amount of examples
(Fodor, 1975). For instance, sentences consist of
words, which in turn consist of characters con-
structed from strokes.

Recently, Liška et al. (2019) have shown how
seq2seqs can produce many different fits on the
training data using stochastic gradient descent, but
rarely, if ever, find a compositional solution. The
authors introduce a new data set called the lookup
table task, which tests for out of distribution gen-
eralization. This data set will be discussed in more
detail in Section 2.1.

As a remedy, Hupkes et al. (2019) proposed At-
tentive Guidance (AG), a training technique which
encourages seq2seqs to encode a more composi-
tional solution without changing their internal ar-
chitecture. AG provides additional information
about the structure of the input sequence by su-
pervising the attention mechanism of a model. As
a result, the model is able to find what are the ba-
sic components of the lookup table task and how
to combine them in a compositional manner.

Thanks to this work, we are now in the unique
position of having a compositional (from now on
AG) and non-compositional (from now on base-
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line) model that have identical architectures, but
implement very different approaches to the same
task. In this paper, we compare those two mod-
els and aim to find structural differences between
the way they organise their weights and form their
representations, that could be indicative of compo-
sitional solutions. In particular:

• We show, through inspection of the parameter
space and activations, that individual neurons
in the AG model show a degree of special-
ization with respect to specific inputs that is
unseen in baseline models.

• We demonstrate, by substituting parts of both
models with the corresponding component of
its counterpart, which model sections con-
tribute most to the observed compositional
behavior in AG models.

These differences confirm the findings of Hup-
kes et al. (2019) that seq2seqs do not necessar-
ily require big architectural adjustments to han-
dle compositionality, since a network with iden-
tical architecture is capable of finding such a so-
lution. Furthermore, these findings could be ex-
ploited to inform architectural changes in models,
such that their priors to infer compositional so-
lutions increase even when they are not provided
explicit additional feedback on the compositional
structure of the data.

2 Setup

In our experiments, we compare vanilla seq2seq
with models that are trained with AG. Below, we
briefly discuss both setups and the data we use for
our experiments.

2.1 Task

For our experiments, we use the lookup table
composition task proposed by Liška et al. (2019),
which was created to test the compositional abil-
ties of neural networks. In this task, atomic lookup
tables are created as to define a unique mapping
from one binary string to another binary string of
the same length. These atomic tables are then
applied sequentially to a binary input string and
yield a binary string. To give an example: if
t1(001) = 110 and t2(110) = 001, then the func-
tion (t1 ◦ t2)(001) = 001 can be computed as a
composition of t1 and t2. See Table 1 for a more
comprehensive example.

Following Hupkes et al. (2019), we generate
eight atomic lookup tables with strings of length 3
and use them to produce all 64 possible length two
compositions. This forms the basis of the dataset
that all experiments were performed on. To test the
model’s ability of generalization on a more gran-
ular level, we compose four test sets with an in-
creasing level of difficulty. For the first test set,
we remove 2 out of 8 inputs for every composition
(heldout inputs). For the second and third testset,
we remove 8 random table compositions from the
training set (heldout compositions), as well as all
compositions that either contain t7 or t8 (heldout
tables). Finally, we create a test set by removing
all compositions that contain a combination of ta-
bles t7 and t8 from the training set (new composi-
tions). The nature of the tasks requires the models
to make use of the underlying compositionality. If
this structure is not exploited, it is impossible to
reliably find the correct solutions for the test data.
For more details, we refer to Liška et al. (2019)
and Hupkes et al. (2019).

Atomic Atomic Composed
t1 t2 t1 ◦ t2

000→ 111 000→ 100 000→ 011
001→ 010 001→ 101 001→ 110
010→ 101 010→ 110 010→ 100

. . . . . . . . .

Table 1: Example for atomic lookup tables (t1 and t2)
of length 3 and a composition of length 2 (t1 ◦ t2).

2.2 Baseline

The baseline model consists of an encoder-
decoder architecture with an attention mechanism
(Bahdanau et al., 2015) and Gated Recurrent Units
(GRU)1 (Cho et al., 2014).

GRUs compute the hidden activations ht based
on the previous hidden state ht−1 and the repre-
sentation of the current input xt in the following
way (biases were omitted for clarity):

zt = σ(Wizxt +Whzht−1)

rt = σ(Wirxt +Whrht−1)

h̃t = tanh(Wihxt +Whh(rt ◦ ht−1))
ht = (1− zt) · ht−1 + zt · h̃t,

1We also trained models with Long-Short Term Memory
units (Hochreiter and Schmidhuber, 1997) but found the re-
sults to be very similar and therefore decided to omit the latter
from this work.
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where we call zt and rt the activations of the
update gate and reset gate, respectively.

2.3 Attentive Guidance

The AG model used in this work is identical to
the baseline model in terms of architecture. The
only difference occurs during the training proce-
dure, where an additional loss term is enforced on
the weights of the attention mechanism at decod-
ing time step t for input token i, âi,t:

LAG =
1

T

( T∑

t=1

N∑

i=1

−ai,t log âi,t
)
,

where âi,t denotes the target attention weights.
The attention loss is computed with an additional
set of labels, that express how the input should be
segmented and in which order it should be pro-
cessed. Hupkes et al. (2019) show that providing
this additional supervision consistently improves
the solutions found for the lookup table task: the
guided models were found to have perfect gener-
alization capabilities on the heldout compositions
and heldout inputs and also perform well on held-
out tables and new compositions. As inputs are
supposed to be processed sequentially in our case,
the target attention pattern is strictly monotonic,
i.e. the target attention weights over the sequence
are realized in a diagonal matrix.

2.4 Experiments

We train five baseline and AG models with the
same hyperparameters and the Adam optimizer
(Kingma and Ba, 2015). Given the small vocab-
ulary, we use an embedding size of 16 and a hid-
den size to 512. All models were trained for a
maximum of 100 epochs with an attention mech-
anism, determining attention weights by using a
multi-layer perceptron. Models were selected by
their best accuracy on a held-out set. A com-
prehensive list of model performances on the dif-
ferent sets can be found in the Appendix. The
model implementations themselves stem from the
i-machine-think codebase.2

In the following, we perform three different
suits of experiments. Firstly, we examine the pa-
rameter space of both models (Section 3). Sec-
ondly, we take a closer look at the activations of
single neurons and the GRU gates (Section 4).

2Available under https://github.com/
i-machine-think/machine.

Lastly, in Section 5, we perform two different ab-
lation studies: we make components of one model
interacting with the components of the other and
we distill the network via strongly connected neu-
rons.

3 Inspecting the Parameter Space

In this section, we look at the parameter space
of the baseline and AG models. All discoveries
regarding the parameter space were validated by
comparing 5 runs of the same model class to make
sure that observed differences can be ascribed to
the differences in models and not different weight
initializations.

3.1 Weight Inspection

To gain a better understanding of the organization
of the weights, we generated weight heat maps
with the y-axis representing the weights going
from all neurons to one neuron of the next layer
(incoming weights) and the x-axis the weights go-
ing from one neuron to all neurons of the next
layer (outgoing weights). Neural networks are
known to be good at distributing their weights
rather than have strong spatial organization, which
makes it interesting to see whether such heat maps
would reveal any differences in the organization of
weights between AG and baseline models 3.

The most striking difference between AG and
baseline arises for the decoder embedding, as can
be seen in Figure 1. The baseline model exhibits
small weights whereas the AG model shows big-
ger weights in rows 2-10. Row number two is an
exception, since it is equally strong for both net-
works. This might be explained by the fact that
this row represents the start-of-sequence (SOS) to-
ken, which could be sending a stronger error signal
for both models.

3.2 Neural Connectivity

Since the heat maps of the weight matrices for
larger layers were hard to interpret, we explored
a more intuitive visualization of the network’s pa-
rameter space. We took neurons as nodes, and
weights between neurons as edges. The thick-
ness and color of an edge represents the magni-

3Note that we do not normalize reported weights or ac-
tivations by the activity of the ’pre-synaptic’ neurons con-
nected to it. This would be interesting to explore in future
research, since a neuron’s activation and the importance of
its weight is in part dependant on the mean activation of its
predecessors.
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Figure 1: Heatmap of the decoder embedding weight
values. Outgoing weights correspond to weights going
from the embedding to one decoder output neuron, and
incoming weights to all weights going from the em-
bedding to all decoder output neurons. (Best viewed in
color)

tude of the weight. To prevent clutter, we applied
thresholding to remove edges that corresponded to
weak weights. For the encoder and decoder, we
used a threshold of ±0.2 and ±0.17 respectively,
which corresponds on average (between AG and
vanilla models) to the strongest one percent of the
weights.

The goal is to understand how the parameter
space is structured and to see whether any dif-
ferences between AG and baseline models can be
found, for example, because of a stronger modu-
larity, grouping or specialization of neurons in AG
models.

Figure 2 depicts the update gate weightsWhz of
the encoder on the top and the weights Wiz of the
decoder at the bottom. The weights of the previ-
ous layer to the next are represented by edges go-
ing from bottom to top. The most striking differ-
ence is that the baseline weights seem much more
cluttered, whereas the AG model exhibits a few
distinct, strongly polar neurons - neurons whose
weights are on average negative or positive. Neu-
rons that have many strong connections occur in
the top layer of the encoder of the AG model in

Left: baseline. Right: AG. Encoder update gates Whz .

Left: baseline. Right: AG. Decoder update gates Wiz .

Figure 2: Visualization of weight matrices Whz of the
encoder and Wiz of the decoder. Weights going from
the previous to the next layer are represented by lines
going from bottom to the top. The color reflects the
weight value, where blue denotes negative, red positive
and white zero. (Best viewed in color)

(a) Encoder: Baseline

(b) Decoder: Baseline

(c) Encoder: AG

(d) Decoder: AG

Figure 3: Distributions of activation values for 50 ran-
domly sampled neurons for baseline (blue) and AG (or-
ange) for both encoders (top) and decoders (bottom).
Whiskers show the full range of the distribution. (Best
viewed in color)
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Whz and Whr. Similarly, strong connected neu-
rons can be found at the bottom layer of the AG’s
decoder in Wiz and Wir. The finding of highly
connected neurons seems to further reinforce the
hypothesis that AG models learn to specialize us-
ing fewer but more strongly connected neurons,
which could help to learn a more modular solu-
tion.

Another interesting phenomenon that holds for
both models can be observed by looking at the dif-
ference between update and reset gates of the same
network (not shown here for the sake of space):
The polarity of the neurons that are on average
strongly positive or negative are inversely related.
A possible explanation for this is that, when infor-
mation from the current hidden state is to be re-
tained, that same part is being reset in the previous
hidden state.

4 Analyzing Activations

While analyzing the model weights gives us in-
sight into the general trained structure of the
model, analyzing activations lets us examine how
the different model types respond to certain inputs.
We thus try to identify groups of neurons that spe-
cialize to respond to certain inputs and provide fur-
ther inside into the GRU’s gating behavior.

4.1 Functional Groups

We hypothesize that solving the task composition-
ally is done by distinct groups of neurons in the
network. Each group addresses different func-
tionalities. For example, a group of units in the
encoder could be responsible for representing the
presence of the current table in the input sequence,
as proposed in the previous section.

An indicator for this behavior can be seen in
Figure 3, where we sampled 50 random neurons
from the encoder and decoder of both models and
tracked their activation values emitted over the
samples in the test set. We can see that in con-
trast to the baseline, some neurons of the AG only
produce activations in specific value ranges, which
could be a hint for a potential specialization. The
same can be found inside the AG’s decoder, al-
though most of the neurons sampled seem to cover
the whole value range during processing.

To test this hypothesis, we analyze which hid-
den activations are crucial for correctly predicting
the current table at a time step. The baseline model
is expected to not be able to predict the presence

of single tables because it fails to see the tables as
parts of a compositional task and instead memo-
rizes the combinations it has encountered during
training.

In a first experiment, we use diagnostic classifi-
cation (DC, Hupkes et al., 2018), which consists in
training linear classifiers on the hidden activations
to predict a certain feature. In this case, we use the
encoder’s activations to predict the table in the in-
put sequence of the corresponding time step. For
example, if the input was ‘000 t1 t2’, we trained
the classifier to predict ‘t1’ for the encoder activa-
tions of the second time step and to predict ‘t2’ for
the activations of the third time step. Similarly to
the methodology of Dalvi et al. (2019), we subse-
quently added units to a set, depending on the ab-
solute weight they were assigned in the diagnostic
classifier.4 After each addition, we re-calculated
the accuracy for the prediction. This process was
repeated until 95 % of the overall accuracy (with
all units) is reached, the resulting subset of units
forms the functional group.5

The results are shown in the first row of Table
2. All numbers are averaged over the five trained
models. Some differences arise in the functional
group size of the models: While for the baseline
models on average 35 units are required to make a
good prediction, the information is stored in only
2 units in the guided models.

To verify whether the units in the functional
group are actually important units in the model,
we further analyzed the strengths of the weights
connected to each of the units. On average, 93%
of the units in the functional group of the AG mod-
els can be found in the top 5% of the units with
the strongest absolute weight values. We conclude
that the units of the functional group are highly
connected and thus very likely to play an essential
role in the functionality of the model.

Assuming that the information of the current ta-
ble being stored in the encoder activations is used
by the decoder to perform according calculations,
we expect that by using the gate activations of the

4However, unlike Dalvi et al. (2019), we do not use any
regularization on the DC to contrast the different degrees to
which information is distributed across neurons in the two
model types.

5Applying the methods development by Lundberg and
Lee (2017) seems to confirm the responsible neurons we
found, but selects more neurons and gives less consistent re-
sults, which we trace back to the extensive approximations
required and some model assumptions (e.g. feature indepen-
dence) being violated.
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In Model Accuracy #Units

henc
t

BL .93 (.98) 35
AG .98 (1.) 2

zdec
t

BL .51 (.53) 52
AG .96 (1.) 22.2

rdec
t

BL .50 (.52) 44
AG .96 (1.) 20.8

Table 2: Performance of diagnostic classifiers for pre-
dicting the current input table with the hidden acti-
vations (henc

t ) of the encoder, the input gate activa-
tions (zdec

t ) or the reset gate activations (rdec
t ) of the

decoder of the baseline (BL) and Attentive Guidance
(AG) model. The third column shows the accuracy
when predicting using the functional group of units
and in brackets the accuracy when using all units. The
fourth column displays the average number of units in
the functional group across different runs (which can
be either hidden units or gate activations).

decoder it is also possible to predict the current in-
put table. We use the same methodology as in the
previous experiment, with the only difference that
the inputs for the diagnostic classifier are the ac-
tivations of the decoder gates. Results are shown
in the second and third rows of Table 2. Using
all gate activations of the update or the reset gate
of GRUs, we are able to perfectly predict the cur-
rent table in the guided models. With the base-
line model, an accuracy of only around50 % is
reached.6 The size of the functional groups in the
guided models is remarkably larger than with the
encoder hidden activations, showing that the in-
formation is more distributed over the gates. This
difference can be explained by the fact that the
gates are not mainly representing information, but
using represented information to perform calcula-
tions. Further, distribution of information across
the gates is more likely because a gate activation
affects only one hidden unit while a hidden layer
activation can possibly affect all gates in the up-
coming time step (Hupkes and Zuidema, 2017).

In another experiment, we aim to predict the
current time step with the activations of the en-
coder.7 We assume that counting is an essential
part of solving the task in a compositional man-
ner. The methodology is the same as in the pre-
viously described experiments. The result pattern

6Accuracy with a majority classifier for the task is 12.5 %.
7For example, if the input was ‘000 t1 t2’, we trained the

classifier to predict ‘0’ for the encoder activations of the first
time step, ‘1’ for the encoder activations of the second time
step and ‘2’ for the activations of the third time step.

(cf. Table 3) can be compared to the first experi-
ment: Using all units, it is possible to predict the
time step with all models, but, in the guided atten-
tion models, the information is more concentrated
in functional groups than units.

In Model Accuracy #Units

henc
t

BL .95 (.98) 40
AG 1.0 (1.0) 2

Table 3: Performance of diagnostic classifiers for pre-
dicting the current time step with the hidden activations
(ht) of the encoder. The second column shows the ac-
curacy when predicting using the functional group of
units and in brackets the accuracy when using all units.
The third column displays the number of units in the
functional group.

These results, implying that some neurons spe-
cialize in tracking the current time step and re-
acting to distinct inputs, demonstrate that the AG
model uses information about the current table in
the decoder to perform operations in a composi-
tional way (treating the tables as distinct parts).
The baseline model does not show distinct acti-
vation patterns in the gates for specific tables.

4.2 Gating behavior
Based on the findings in previous section, we also
expect the usage of reset and update gate to be
significantly different for the two models under
scrutiny. To study this, we use a technique intro-
duced by Karpathy et al. (2015), that considers, for
each gate in the network, the fraction of samples
for which it is left-saturated (activation smaller
than 0.1) or right-saturated (activation greater than
0.9), where being left-saturated corresponds to be-
ing closed and right-saturated to being open.

We show the results in Figure 4. The plots re-
veal a clear difference between the usage of gates
in the baseline and the guided models. The guided
models seem to be more distinct in their gate acti-
vation: Activations tend to stick to the axes. Val-
ues close to the diagonal mean that the respective
gate is mostly saturated, values close to the axes
reveal gates that are either saturated to one side or
not saturated. Values in between, mostly seen in
the baseline models, indicate gates that are rarely
saturated.

The activation pattern of the update gates shows
clear differences between the baseline and the AG
models. In the baseline, they are mostly left satu-
rated, which means that new information is rarely
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(a) Encoder: Baseline

fraction left saturated

(b) Decoder: Baseline

(c) Encoder: AG

(d) Decoder: AG

Figure 4: Gate activation plots for reset gate rt and update gate zt. (Best viewed in color)

incorporated in the calculations, in both the en-
coder and decoder. In the encoder of the AG
model, most gates are also only left-saturated, but
there is a considerable amount of outliers which
could be some units that are highly specialized to
specific inputs. In the AG decoder, some gates are
also often right-saturated, allowing for the intake
of new information. One possible interpretation is
that the gates in the AG decoder model selectively
allow the relevant input for the current time step to
be included in the calculations.

5 Ablation studies

In this section, we first swap components of both
models and measure the effects on the models’
performances to identify crucial model parts. We
then check performance of the AG model when
only its strongly connected neurons are used.

5.1 Component substitution

To understand to what extent specific compo-
nents of a seq2seqs contribute to compositionality,
we take components from one trained model and
place them into the other model. We freeze the
weights of the replaced component to prevent any
re-learning, and retrain the resulting model using
its original training procedure. We extract a to-
tal of eight different components. The entire en-
coder and decoder as well as embeddings, internal

GRU weights for input to hidden (Wih), and re-
current hidden to hidden (Whh) for both encoder
and decoder. The experiment is twofold: com-
ponents taken from a model trained with AG are
placed into a baseline model and retrained with-
out AG to examine whether a baseline can still
learn a compositional solution. Additionally, com-
ponents from a baseline model are placed into an
AG model which is retrained with AG to exam-
ine whether the model can still learn a compo-
sitional solution without being able to adjust the
parameters of the baseline component. We tune
16 models for each new component by retraining
the remaining original parts for a maximum of 100
epochs, with a learning rate of 0.001 to allow for
limited adjustment.

When retraining an AG model with a frozen
baseline component, we expect the performance to
drop when that component is important for a com-
positional solution, as the network is apparently
unable to recover itself. Conversely, if a baseline
model with a frozen component extracted from an
AG model is retrained without AG and performs
better, that component might contain weights or-
ganized in such a way that it forces the baseline
model to retrain itself in a more compositional
manner. Table 4 shows the results of substitut-
ing components on new compositions, which is
considered the hardest compositional task. None
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of the baseline models given a frozen component
from an AG model are able to retrain themselves
such that they significantly increase performance.
Thus, we left those results out of Table 4 for the
sake of brevity.

For the AG models with frozen baseline com-
ponents, the encoder embeddings seem irrelevant
for a compositional solution: using baseline em-
beddings result in a similar score. The decoder
embeddings, however, do seem to play a role, as
indicated by a much lower score than the original
AG model. This seems to be in line with the dif-
ferences in heat maps shown earlier in Figure 1.
Replacing the entire encoder results in a 80% drop
in accuracy to 0.167. Interestingly, the encoder
hidden to hidden (Whh) weight can be replaced
without as big a drop, and using the baseline in-
put to hidden (Wih) weights actually improves the
accuracy. Finally, replacing the decoder’s Wih

weights drops the accuracy to around 0.6, but do-
ing the same for the decoder’s Whh weights again
results in an unexpected increase to almost 0.9.
This seems to indicate that the Wih weights of
the decoder play an important role in a compo-
sitional fit, as the model is unable to recover it-
self when using baseline decoder Wih weights.
The increase in performance after replacing either
the encoder’s Wih or the decoder’s Whh implies
that training with AG actually produces subopti-
mal weights for these components. Perhaps the
use of a frozen baseline component in a model
retrained with AG acts as some kind of regular-
ization and incentivizes the remaining components
of the model to become more compositional. An-
other explanation could be that the AG loss does
not provide an appropriate signal for all compo-
nents, and should thus not be backpropagated to
all of them.

5.2 Neuron pruning

After showing in Section 4.1 that a few strongly
connected neurons organized in functional groups
carry out specific functions, we want to exhaust
this observation and see if the model can still suc-
cessfully solve the task by using only strongly
connected neurons. We remove all weakly con-
nected neurons, keeping only 5% of neurons with
the biggest weights of the encoder and decoder of
the trained AG models respectively. Distilling the
network in this way results in a performance drop
to 12.4% sequence accuracy on the new composi-

Model Component Accuracy (NC)
AG - .82 ± .12
AG Encoder .17 ± .11
AG Encoder Emb .75 ± .09
AG Encoder Wih .89 ± .05
AG Encoder Whh .79 ± .12
AG Decoder .12 ± .05
AG Decoder Emb .31 ± .07
AG Decoder Wih .60 ± .08
AG Decoder Whh .91 ± .03
BL - .01 ± .02
BL Encoder .02 ± .02
BL Decoder .02 ± .02

Table 4: Sequence accuracy on new compositions
(NC). Accuracy is averaged over three models and de-
picted with its standard deviation. The model being
retrained is specified the first column, the component
taken from the opposite model and frozen specified in
the second column.

tions task, averaged over all models. Re-training
the network for 20 epochs fully restores the func-
tionality and even yields better performance of
92.5% on average compared to the full network
with 82.3%. We retrained the model using the
same parameters as in the main training procedure
(see Section 2.4).

The loss in performance that occurs when neu-
rons are removed indicates that some functional-
ity is distributed among weakly connected neu-
rons. However, the fact that their functionality can
be taken over by other neurons shows that weakly
connected neurons do not play a crucial role.

We conclude that most of the neurons do not
contribute to a compositional solution at all and
therefore only an extremely small subset of all
neurons of the AG model suffices to solve the
task after retraining. Those neurons exhibit strong
weights and are specialized in functional groups.
Networks that find a compositional solution seem
to rather form a small number of highly special-
ized neurons than distributing functionality over
the whole network.

6 Conclusion

Thanks to Attentive Guidance, seq2seqs are able
to generalize compositionally on the lookup ta-
ble task when, without it, they cannot (Hupkes
et al., 2019; Liška et al., 2019). In this paper, we
presented an in-depth analysis of the differences
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between an attention-based sequence to sequence
model trained with and without Attentive Guid-
ance. Any identified differences can contribute to
our understanding of what makes seq2seq better
compositional learners and help with the design of
a new generation of compositional learning archi-
tectures.

Our main finding is that guided networks have
a more modular structure: small subsets of well-
connected neurons are responsible for specific
functions. Having specialized neurons could be
crucial to a compositional solution. We have also
shown via component substitutions how these neu-
rons seem to play a more crucial part in spe-
cific model components like the encoder / decoder
gates and decoder embeddings, while playing a
negligible role in others.

Future research could focus on exploiting the
findings about modularity and specialization of
neurons to investigate whether similar composi-
tional solutions can be achieved without the ex-
plicit use of Attentive Guidance, such as recently
shown by Korrel et al. (2019) Additionally, it
would be interesting to find out why models with
fewer parameters cannot learn to solve the lookup
table task (Hupkes et al., 2019), while we know
from our distillation experiments that only 26 neu-
rons in the encoder and decoder are needed to im-
plement a perfect solution.
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A Model performances

Sequence accuracy for the increasingly difficult
tasks heldout compositions (HC), heldout inputs
(HI), heldout tables (HT) and new compositions
(NC) of the baseline (Tab. 5) and the AG (Tab. 6)
models.

Run HC HI HT NC
1 .25 .20 .04 .00
2 .16 .20 .06 .00
3 .25 .23 .04 .03
4 .22 .23 .03 .03
5 .23 .20 .07 .06

Table 5: Baseline GRU models

Run HC HI HT NC
1 1.0 1.0 0.85 0.69
2 1.0 1.0 0.98 0.97
3 1.0 1.0 0.88 0.81
4 1.0 1.0 0.98 0.97
5 1.0 1.0 0.94 0.91

Table 6: Guided Attention GRU models
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Abstract

The generalized Dyck language has been used
to analyze the ability of Recurrent Neural Net-
works (RNNs) to learn context-free grammars
(CFGs). Recent studies draw conflicting con-
clusions on their performance, especially re-
garding the generalizability of the models with
respect to the depth of recursion. In this paper,
we revisit several common models and experi-
mental settings, discuss the potential problems
of the tasks and analyses. Furthermore, we ex-
plore the use of attention mechanisms within
the seq2seq framework to learn the Dyck lan-
guage, which could compensate for the limited
encoding ability of RNNs. Our findings reveal
that attention mechanisms still cannot truly
generalize over the recursion depth, although
they perform much better than other models
on the closing bracket tagging task. Moreover,
this also suggests that this commonly used task
is not sufficient to test a model’s understanding
of CFGs.

1 Introduction

The generalized Dyck language has been a testbed
for several research on the ability of Recurrent
Neural Networks (RNNs), in particular the Long
Short-term Memory model (LSTM) (Hochre-
iter and Schmidhuber, 1997), to learn context-
free grammars. It consists of strings with bal-
anced pairs of brackets of different types, e.g.,
“[ < > ] [ ] < [ ] >”. Recognizing the
generalized Dyck language is considered to be
more difficult than anbn as tested in Gers and
Schmidhuber (2001), since it cannot be simply
solved by counting. Rather, the model has to
remember the sequence of different (unclosed)
brackets.

Among the recent studies, Sennhauser and
Berwick (2018) analyze the generalizability of
LSTMs to learn the generalized Dyck language

with two pairs of brackets, and conclude that the
model cannot learn the underlying grammar rules.
In contrast, Skachkova et al. (2018) concludes that
the LSTM can model the language quite well.
Bernardy (2018) experiment with several variants
of RNNs, and find that the LSTM works reason-
ably well on the given task, but fails to generalize
to cases with deeper recursion.

All the aforementioned work explores the abil-
ity to “understand” context-free languages with
some tagging task similar to language model-
ing. In these tasks, the RNN encodes a sequence,
which is the prefix of a valid sequence in the lan-
guage, and predicts the next possible token either
for the last token or for every token. These prob-
ing tasks have one thing in common, namely they
predict only one token, which does not necessarily
close the whole sequence, and thus are not suffi-
cient to prove that the model learns the whole se-
quence.

In this work, we show that a seq2seq model with
attention mechanism not only solves the tagging
task, but also generalizes well over unseen depths.
While it appears to have “understood” the Dyck
language, under closer inspection, it fails to com-
plete deeper sequences and only closes the first
several brackets correctly, which happens to be the
evaluation metric of the tagging task.

2 Related Work

Modeling context-free grammars with RNNs is
of great interest for natural language processing,
since recursion is considered an essential char-
acteristic of natural languages if not universal
(Hauser et al., 2002). Several recent studies focus
on the RNNs’ ability to model deeper structural in-
formation against surface-level attractors (Linzen
et al., 2016; Gulordava et al., 2018; Wilcox et al.,
2018).
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Instead of natural language data, where
the correlation between structural and contex-
tual/semantic information is difficult to avoid,
many analyses with synthetic data have been
conducted on RNNs since their invention, e.g.,
handling the XOR problem (Elman, 1990), the
context-free language anbn and context-sensitive
language anbncn (Gers and Schmidhuber, 2001;
Weiss et al., 2018b), and extracting finite-state au-
tomata (Weiss et al., 2018a).

Among the context-free languages, the general-
ized Dyck language is a popular choice since it is
simple enough in concept while expressive enough
to represent all context-free languages (Chomsky
and Schützenberger, 1963).

Skachkova et al. (2018) probes the recognition
of the generalized Dyck language in two tasks.
The first one is a language modeling task which
predicts the next bracket in the actual generated
data and measures the perplexity, which compli-
cates the evaluation by introducing unnecessary
non-determinism. The second task predicts the
last closing bracket of a balanced Dyck word,
which could be solved with a short-cut. One
simply needs to keep a counter for the depth of
the sequence, and record the most recent opening
bracket each time the counter hits zero. The task
is over-simplified by the fact that all the instances
are balanced, thus there is no need to memorize
anything deeper than the outmost bracket.

Bernardy (2018) and Sennhauser and Berwick
(2018) both frame the task as predicting the next
valid closing bracket at any position in a Dyck
word, which is arguably more difficult to by-
pass. Both works also put much emphasis on
the generalization over the depth. Comparing to
Sennhauser and Berwick (2018), our tagger mod-
els, while not perfectly generalizable, perform
well above chance level, and the discrepancy be-
tween training and testing performance is much
smaller. But the general conclusion holds, the
RNN-based taggers do not generalize well for the
task. Bernardy (2018) reports better results, but
they use much shorter sequences (less than 20)
where the model has a chance to memorize instead
of generalize.

With a different architecture, Deleu and Dureau
(2016) uses a Neural Turing Machine (Graves
et al., 2014) to recognize the Dyck language. They
use the model as an acceptor for the original Dyck
language with only one type of bracket pair, which

is much simpler both as a task and as a language.
To solve this task, the model only needs to approx-
imate a counter, and increment or decrement upon
an opening or closing bracket. The LSTM’s abil-
ity to approximate a counter machine is discussed
in Weiss et al. (2018b).

While all these studies test the RNNs as ac-
ceptor (classifier) or transducer (tagger), we also
test their ability to decode sequences, which is ar-
guably a harder task.

3 Task and Models

The Dyck language consists of strings (a Dyck
word) of equal number of opening and closing
brackets, and the number of closing brackets is
never more than the opening brackets in any pre-
fix of the string (a Dyck prefix). The general-
ized Dyck language has more than one type of
bracket pairs, where all pairs have to be balanced
and no crossing of different pairs is allowed. For-
mally, the generalized Dyck language is defined
as DP with (oi,ci) ∈ P, where (oi,ci) are different
bracket pairs. The language can be described by
the following grammar:

S→ S S
S→ oi S ci

S→ oi ci

We adopt the commonly used tagging task, in
which the model has to predict the next valid clos-
ing bracket given any Dyck prefix shorter than
100. Note that this differs from the language mod-
eling task, since the target is not from the ac-
tual, stochastic dataset, but an unambiguous clos-
ing bracket. If the prefix is already a balanced
Dyck word, then the target is a special symbol ‘$’,
which also makes it a recognition task for balanced
Dyck words.

We compare four models with different archi-
tectures and different training objectives, but the
main target is the same. All models have the
same encoder architecture, a one-layer bidirec-
tional LSTM with 50 hidden units, and only differ
in the decoder.

The first model tagger-last predicts the tar-
get with a simple linear transformation from the
LSTM state of the last token.

The second model tagger-all has exactly the
same architecture, but it is trained to predict a clos-
ing bracket after every token in the sequence. The
last predicted bracket is the main target for evalua-
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tion and comparison, while the rest can be viewed
as an auxiliary task.

The third model generator-simple follows the
common seq2seq architecture (Sutskever et al.,
2014). It generates a sequence of closing brack-
ets to eagerly complete the Dyck prefix into a bal-
anced Dyck word, and the generation stops when
the ‘$’ symbol is predicted. For this model, the
first generated bracket is the main target and the
rest is the auxiliary task.

The fourth model generator-attention aug-
ments the decoder with the attention mechanism
(Bahdanau et al., 2014). It uses the general vari-
ant of attention (Luong et al., 2015):

score
(
ht ,hs

)
= h>t W ahs

where ht denotes the decoder state, hs denotes all
encoder states, and W a is the model parameter.

All the models are trained with the Adam opti-
mizer (Kingma and Ba, 2014) with the default pa-
rameters in the Dynet library (Neubig et al., 2017).
The generator models are trained with the stan-
dard teacher forcing method, since there is only
one correct target sequence and the model is eval-
uated on exact match.

No special tuning of hyperparameters is per-
formed, and we do not use mini-batch or dropout,
since the training is fast and stable enough.1

4 Experiments

4.1 Data

We largely adopt the experimental settings and ter-
minologies in Sennhauser and Berwick (2018) for
comparison.

The dataset we use in the experiment consists
of 1 million instances, each one is a Dyck pre-
fix of length up to 100 with two different types of
brackets(‘[’, ‘]’ and ‘<’, ‘>’). The instances are
sampled proportional to their lengths, i.e., there
are twice as many instances of length 20 as in-
stances of length 10. We have a preference for
longer sequences, since they represent the more
difficult cases.

The instances are generated in the following
procedure: Until the desired length is reached,
generate a random opening bracket with a branch-
ing probability p or a valid closing bracket with

1The code as well as the dataset are available at the first
author’s homepage.
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Figure 1: A visual representation of a Dyck prefix and
the property values of the target token (the last ‘]’).

probability 1− p. If the current sequence is bal-
anced (no unclosed brackets), then generating a
random opening bracket is the only option.

This generation procedure is similar to
Skachkova et al. (2018), except that we do not
stop generation once the sequence is balanced,
instead we generate a new opening bracket and
continue until the desired length is reached. Also,
the generated sequence is not necessarily a Dyck
word, but a prefix of it.

We adopt the following properties from
Sennhauser and Berwick (2018) to describe the
Dyck prefixes:

• depth is the number of unclosed brackets;

• embedded depth is the maximum depth be-
tween the target closing bracket and the cor-
responding opening bracket, which is also
called the relevant clause;

• distance is the number of tokens in the rele-
vant clause.

Intuitively, embedded depth correlates with dis-
tance, since the deeper the relevant clause, the
longer the distance between the outermost brack-
ets. Figure 1 illustrates an example of a Dyck pre-
fix and the properties of the final target token.

The branching probability p controls the distri-
bution of the these properties in the samples, the
higher its value, the deeper the string is likely to
be. Figure 2 visualizes the distribution of each
property value when selecting different p in the
generation. We choose p = 0.5 since it generates
enough samples of reasonably high values of both
depth and embedded depth/distance.

We ensure that all the instances are unique,
mainly to avoid replicating shorter sequences.
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Figure 2: Distribution of depth, embedded depth, and
distance of the dataset with different p values. The
plots are on logarithmic scales.

Generating identical longer sequences is practi-
cally impossible, since the number of generalized
Dyck prefixes of length 100 is orders of magni-
tudes larger than the dataset2.

The main target of an instance is the matching
closing bracket given the prefix, and if the prefix
is balanced, a special symbol ‘$’ is the target. To
avoid inflated results in the evaluation, we ignore
the easy cases where the last token is an opening
bracket, since the target is simply the correspond-
ing closing bracket, and does not require further
memory to make the correct prediction. However,
we do not remove these cases from training, since
it is still a correct behavior to learn, albeit very
simple.

We split the dataset into training set and test set
in different ways. In the in-domain setting, the
dataset is equally split into training set and test set,
and both sets have roughly the same distribution of

2The exact number is beyond the scope of this work, but
a simple lower-bound would be the 50-th Catalan number
(greater than 1027), which is the number of Dyck words of
length 100 with only one pair of brackets.

the property values. In the out-of-domain setting,
where we test the generalization of the models, we
sort the dataset by the respective maximum prop-
erty values of the whole sequence, and train on the
instances where the value is smaller than 1

3 of the
maximum in the dataset, i.e., we test the general-
ization on up to three times the training depth.

Note that the selection criteria is the maximum
value over the whole sequence, not just of the final
target. This is a much stricter condition than in
Sennhauser and Berwick (2018), since the encoder
would never see a training instance that is too deep
at any step. For example in Figure 1, the target
depth is 2, while the maximum depth is 5.

We test the models on the development set (a
held-out portion of the training set) after every
10000 training steps, and stop training if the per-
formance do not improve 5 times in a row. Most
of the time, the training terminates before even it-
erating through the training data once.

Due to the stochastic nature of neural networks,
we report the results of each model/condition from
the average of 10 runs with different random
seeds.

4.2 In-Domain Results

target all-tags completion

tagger-last 96.4% 98.8% -
tagger-all 98.7% 99.8% -
gen-simple 96.3% - 82.1%
gen-attn 99.9% - 97.8%

Table 1: Average accuracy of the models in differ-
ent evaluations in the in-domain setting. In the three
columns, target measures the accuracy of the main tar-
get, all-tag measures the average accuracy of predict-
ing the next bracket for all tokens, completion mea-
sures the exact match of closing all the brackets. All
results are averaged from 10 runs.

The average results of the in-domain experi-
ments are shown in Table 1. All the models are
evaluated on the main target of the same test set
(the first column), and the tagger models are addi-
tionally evaluated on predicting the target for ev-
ery token in the sequence (the second column).

Overall, all models perform reasonably well,
while tagger-all performs better than tagger-last
both for the main target and all targets. Although
the training data is sufficient for all models, judged
by the fact that they all stop training in one itera-
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Figure 3: Errors of each model in the in-domain vs. out-of-domain setting for the depth property.
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Figure 4: Errors of each model in the in-domain vs. out-of-domain setting for the embedded depth property.

tion, training on multiple targets in one sequence
is still beneficial. We hypothesize that it is because
predicting for all tokens in one sequence requires
the model to encode the information more consis-
tently. However, more experiments are needed to
confirm the hypothesis. Both models have higher
accuracies on all tags than the last tag, presum-
ably because the average prefix depth and embed-
ded depth on all tags are lower than that of the last

tag, which are easier to predict.
The two generator models are evaluated on the

accuracy of the main target as well as the exact
match rate of the completion task (the third col-
umn), where the main target is the first predic-
tion in the completion sequence. The generator-
simple model performs on par with tagger-last.
However, they tend to have different errors, as an-
alyzed in in Section 4.3.
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Figure 5: Errors of each model in the in-domain vs. out-of-domain setting for the distance property.

Finally, when the generator model is equipped
with attention, it achieves almost perfect perfor-
mance even for the exact completion.

4.3 Generalization

The detailed results of the four models in the in-
domain vs. out-of-domain settings according to
different properties (depth, embedded depth, and
distance) are shown in Figure 3, 4, and 5, respec-
tively. We remove the noisy points from the plot
when there are less than 10 cases. The chance
level of the error rate lies slightly over 0.5, since
the two closing brackets are equiprobable and in
about 10% of the case the target is ‘$’ (a balanced
Dyck word). In each group of plots, the ones on
the left show the in-domain setting, on the right
the out-of-domain setting. The four rows are the
four models: tagger-last, tagger-all, generator-
simple, and generator-attention. In each figure,
the blue triangles are the training error rates, and
the red dots the test error rates.

It is evident from the in-domain experiments on
the left side of the plots that all the models gen-
eralize well in the in-domain setting (but not nec-
essarily performing well), since the training errors
(blue triangles) and test errors (red dots) align very
closely. This means that all the models are not
simply memorizing the training data.

The more interesting case is the out-of-domain
condition, where we test the models on sequences

up to three times as deep as the training data.
Among the two weaker models, generator-simple
is very sensitive to the depth, while tagger-last
is more sensitive to the embedded depth and dis-
tance. This means that the two models are prone
to different problems, although having comparable
performance.

Note that in the out-of-domain setting for depth,
the first three models have higher test error rate
even for smaller depth. Recall that we split the
dataset by the maximum depth of the sequence,
while reporting the error by the depth of the cur-
rent target, which means that they are tested on se-
quences that have deeper recursion at some point,
and the encoder can not recover from it. The only
exception is generator-attention, which is not af-
fected by this situation. Furthermore, this model
generalize well in all conditions.

4.4 Tasks Revisited

The different tasks of “understanding” the Dyck
language also give rise to the question of what is
exactly meant when stating that RNNs learn the
language, and whether the task can sufficiently
tests the claim. As mentioned before, some tasks
are clearly flawed, since they can be reduced to
the counting problem. For example, recogniz-
ing a Dyck word with only one type of brackets
(Deleu and Dureau, 2016) only requires counting
the depth. Similarly, completing the final bracket
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Figure 6: Error rates of the tagging and completion
tasks of the generator-attention model in the out-of-
domain setting.

of a Dyck word (Skachkova et al., 2018) also only
requires counting the depth and keeping track of
the most recent opening bracket of depth 0.

In our tagging task, the generator-simple
model performs very poorly when the depth is
high. This is because the model has to memo-
rize all the opening brackets, in order to generate
the full closing sequences. Apparently, the RNN
encoder alone is not capable of memorizing the
whole sequence (even in the in-domain condition),
and the noise in the memory causes the decoder
unable to correctly predict even the first bracket,
which is the main evaluation target.

The generator-attention model consistently
performs better, since it avoids compressing the
whole sequence into a fixed sized vector. Instead,
it keeps all the input tokens as individual (contex-
tualized) vectors, and use the attention mechanism
to find out the corresponding opening bracket, and
the decoder only needs to map the attended open-
ing bracket into the corresponding closing one.

Figure 6 shows the tagging error rate and the
completion (exact match) error rate of the same
generator-attention model in the out-of-domain
setting. The completion performance deteriorate
very rapidly beyond the depth that the model is
trained on, while the tagging performance seems
quite stable. This contrast clearly demonstrates
that the tagging task is inadequate to test the
RNN’s ability of modeling CFGs.

4.5 Attention

We have seen that even the best performing
generator-attention model cannot generalize in

(a) depth = 10. (b) depth = 20.

Figure 7: Attention matrices of a model trained on data
with maximum depth of 10 and tested on sequences
with depths of 10 and 20.

the out-of-domain condition to complete the full
closing bracket sequence, although it is able to
predict the first bracket correctly.

To identify the problem, Figure 7 visualizes the
attention matrices in the out-of-domain setting,
in which we take a generator-attention model
trained on the dataset with maximum depth of 10,
and test on the sequences with depth of 10 and
20. While the attention alignment seems perfect
for the sequence of depth 10, it gets blurry on a
deeper sequence. The first 9 output brackets are
still correctly aligned and predicted, the attention
then jumps over to the beginning of the source and
finishes the generation. This explains the sudden
deterioration of completion performance in Fig-
ure 6b, since almost all instances that are too deep
are closed prematurely.

This problem, however, is not manifested in the
tagging task as in Figure 6a, since it only mea-
sures whether the first generated bracket is correct,
while the generator only starts to make mistakes
after a certain number of steps.

4.6 Equivalence Test

As human, while performing the tagging and
completion tasks (as well as many other tasks
mentioned before) on the generalized Dyck lan-
guage, one can utilize an important property
to simplify the task, namely the equivalence of
different prefixes. For example, two prefixes
“[ < < [ < < [ ] > >” and “[ < < [”
are equivalent with respect to predicting the next
closing bracket, since the closed clause is already
irrelevant. An ideal composition model should
also realize this fact and have the same or very
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Figure 8: Equivalence test of four models.

similar representation for the two prefixes.

We thus design an experiment to test whether
our different models are capable of realize such
equivalence, and how well it holds under different
conditions, namely the depth and embedded depth
of the prefix. We construct the dataset by concate-
nating an open prefix ([ < < [) to a balanced
clause (< < [ ] > >) of different lengths, and
measure the L2-norm of the distance of the en-
coder LSTM states after reading the open prefix
and the balanced clause. Ideally the two states
should be very similar, thus the L2-distance close
to 0. We randomly generate open prefixes up to
length 40, and balanced clauses also up to 40,
which correspond to the maximum depth of 40
and embedded depth of 20. We take the in-domain
models which have been trained on instances up
to these maximum values, but not necessarily the
combination of both maximums. For each model,
we plot the average L2-distance of 100 samples

for each combination.
Figure 8 shows the results, where lighter cells

means two equivalent prefixes have more similar
representations. Similar to the main task result,
the tagger-last model shows the worst ability to
capture the equivalence. Both tagger models are
insensitive to the depth and sensitive to the em-
bedded depth, which also agrees with the results
in Figure 4.

The generator models clearly capture the equiv-
alence better. However, we observe that the L2-
distance at higher depth is slightly smaller, while
Figure 3 has shown that recurrent-simple per-
forms worse at higher depth. This suggests that
the representation at deeper recursion may be sim-
ilar but contains only noisy information, which re-
quires further investigation in the future work.

5 Conclusion

In this work, we revisit the tasks based on the
Dyck language to probe the ability and limitation
of RNNs to encode context-free grammars.

We argue that the bracket tagging task is insuf-
ficient to prove the ability or expose the limitation
of a model, while the bracket completion task has
higher requirement as a test. Seq2seq models out-
perform the tagger models in the tagging task, but
still fail to generalize in the completion task. The
failure is especially apparent when visualizing the
model’s attention. We also conduct analysis on the
RNN’s representation of equivalent prefixes of dif-
ferent prefix depth and embedded depth.

Our results suggest that the RNNs can not truly
model CFGs, even when powered by the attention
mechanism. However, the seq2seq model with at-
tention is still a good approximation and fully ca-
pable of dealing with recursions as deep as it is
trained on.

As future work, we plan to further investigate
the open questions in our experiments, especially
regarding the attention alignment and equivalence
test. Furthermore, the equivalence property could
be used not only as a test for the representation, but
also as an auxiliary task to enforce better encoding
of the RNN.
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Institut für Maschinelle Sprachverarbeitung

University of Stuttgart, Germany
{josua.stadelmaier,sebastian.pado}@ims.uni-stuttgart.de

Abstract
A common approach in knowledge base com-
pletion (KBC) is to learn representations for
entities and relations in order to infer missing
facts by generalizing existing ones. A short-
coming of standard models is that they do not
explain their predictions to make them verifi-
able easily to human inspection.

In this paper, we propose the context path
model (CPM) which generates explanations
for new facts in KBC by providing sets of
context paths as supporting evidence for these
triples. For example, a new triple (Theresa
May, nationality, Britain) may be explained by
the path (Theresa May, born in, Eastbourne,
contained in, Britain). The CPM is formu-
lated as a wrapper that can be applied on top of
various existing KBC models. We evaluate it
for the well-established TransE model. We ob-
serve that its performance remains very close
despite the added complexity, and that most
of the paths proposed as explanations provide
meaningful evidence to assess the correctness.

1 Introduction

Knowledge bases (KBs), such as Freebase (Bol-
lacker et al., 2008), Wikidata (Vrandečić and
Krötzsch, 2014) or Yago (Suchanek et al., 2007),
are structured representations of knowledge in form
of entities and their respective relationships. For
example, KBs can comprise facts about persons
like their family relations and their occupation or
facts about places like the region or country they
are located in. A common application of knowl-
edge bases is question answering systems (Bordes
et al., 2014; Berant et al., 2013). KBs are also used
by Google to better understand search queries, to
present fact boxes and to provide explorative search
suggestions (Steiner et al., 2012).

The major contemporary construction mode for
KBs is collaborative, which is both a major advan-
tage (as long as community interest persists, KBs

grow over time) and a major shortcoming, since
development is not directed. As a result, collabora-
tive KBs tend to be incomplete. Min et al. (2013)
show that in Freebase 93.8% of persons have no
place of birth assigned and for 78.5% of persons,
the nationality is missing. This motivates the task
of knowledge base completion (KBC), i.e., the ad-
dition of correct but missing facts to existing KBs.

A common approach for KBC is to learn dis-
tributed representations for entities and relations
that enable the generalization of existing connec-
tions in the KB to predict missing facts (Nickel
et al., 2011; Bordes et al., 2013; Yang et al., 2015).
A connection could be that the country of birth
is highly correlated to the nationality of a given
person. A fact about the country of birth could
therefore be used as evidence when predicting a
missing fact about the nationality. Such represen-
tation learning methods typically perform rather
well and are simple to train. However, they cru-
cially lack in the explainability that often comes
with more symbolic systems: they do not justify the
facts that they propose in a way that is transparent
to human reviewers of the system output. Explain-
ability of system outputs is increasingly recognized
as an important component in the practical use of
NLP, and more generally, AI systems (Holzinger
et al., 2017; Ras et al., 2018; Ribeiro et al., 2018).

In this paper, we propose a new KBC model,
the Context Path Model (CPM), which pro-
vides a path-based explanation for newly pro-
posed facts. For example, the path (e1,
city of birth, contained by, e2) states the country
the person e1 was born in. This path is in-
formative to assess the correctness of the triple
(e1, nationality, e2). To establish a relationship
between facts and paths, the CPM explicitly in-
cludes the paths from the context of a fact t into
the estimation of t’s correctness. As part of this
process, the CPM also estimates the paths’ rele-
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vance to identify those paths that provide the most
convincing evidence for or against the correctness
of the fact. The CPM is formulated as a wrapper
that can be applied on top of various KBC models
that learn a scoring function for individual facts.

We evaluate the CPM instantiated with the estab-
lished TransE model as fact scorer on the FB15K
dataset. We find that CPM, despite the added com-
plexity, performs almost as well as vanilla TransE
on scoring facts. The majority of paths assigned a
high relevance for a given fact are either equivalent
to the fact or provide strong evidence regarding its
correctness.1

2 Background and Related Work

2.1 Knowledge Base Completion (KBC)

Knowledge bases are often formalized as a directed
graph with labeled edges, here called knowledge
graph. A knowledge graph G is a set of n facts, or
edges, where each edge is defined as a triple t of the
form (e1, r, e2) with entities e1 and e2 and relation
r, G = {ti}ni=1. We denote the set of entities as
E and the set of relations as R. The task of KBC
can then be formalized as assessing the correctness
of a triple t /∈ G. As usual in studies of KBC, we
concentrate on the case where e1 and e2 are known,
i.e., we add edges, but not nodes, to the graph.

2.2 Representation Learning for KBC

An important current approach to KBC is to learn
distributed representations (vectors, matrices, ten-
sors) for entities and relations and define algebraic
combination operations to score the correctness of
novel triples t = (e1, r, e2). This includes models
like NTM (Socher et al., 2013), TransE (Bordes
et al., 2013), Bilinear (Nickel et al., 2011) and
Bilinear-diag (Yang et al., 2015).

For instance, TransE represents relations in the
same vector space as entities and models relations
as translation from e1 to e2. Given respective vector
representations e1, e2, r ∈ Rd, TransE predicts the
entity that stands in relation r to e1 as e1 + r. The
representations are learned using a max-margin
objective which minimizes the distance between
e2’s predicted and actual positions, ‖e1 + r− e2‖,
for correct facts, and maximizes it otherwise.

Research on novel neural architectures for KBC
is ongoing. Schlichtkrull et al. (2018) replace sim-

1The model and its annotated predictions for
FB15K are available at https://github.com/
JosuaStadelmaier/CPM

ple embedding lookups by Relational Graph Con-
volutional Networks which are used as an encoder
to learn globally optimized knowledge graph repre-
sentations. Shen et al. (2017) propose a dynamic
memory architecture that learns to perform infer-
ence and represents the current state of the art.

2.3 Modeling Paths for KBC

Several previous studies considered paths as infor-
mation sources. Lao and Cohen (2010) use random
walk probabilities for paths that connect e1 and
e2 as features for scoring the correctness of facts
(e1, r, e2). Gardner et al. (2014) generalize the ran-
dom walk approach with a relevance-based com-
ponent. Unlike the “full” KBC models discussed
above, however, these models do not represent enti-
ties as vectors, which prevents them from capturing
entity specific information and from letting entities
directly interact with relations.

Guu et al. (2015) show how vector space models
like TransE (Bordes et al., 2013), Bilinear (Nickel
et al., 2011) and Bilinear-diag (Yang et al., 2015)
can be generalized to not only scoring the correct-
ness of edges t = (e1, r, e2) but also the correct-
ness of paths p = (e1, r1, ..., rk, e2). They pro-
pose a training objective that incorporates paths
and demonstrate that it improves the performance
of KBC models on predicting paths and on predict-
ing single edges as well. In the case of TransE, the
relations r1, ..., rk of a path p can be represented
by their composition rp = r1 + ... + rk. The
distance computed by TransE can then be gener-
alized to paths as ‖e1 + rp − e2‖. The objective
proposed by Guu et al. encourages that e1 + rp
is learned to be close to the set of entities that are
reached when traversing the knowledge graph over
the edges r1, ..., rk, starting from e1.

PTransE, proposed by Lin et al. (2015), assesses
the correctness of t by considering paths that con-
nect e1 and e2 and assigns them scores that aim to
indicate how reliable these paths are for estimating
the correctness of t. They compute the reliability
scores by using a heuristic called path-constraint
resource allocation, which is based on the sizes of
entity sets that can be reached by following the re-
lations in a path step by step. They report improve-
ments in the KBC task over the standard TransE
model. This supports the idea of modeling paths
explicitly to capture the context of a triple. A simi-
lar approach by Toutanova et al. (2016) is based on
Bilinear-diag instead of TransE and comprises an
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efficient algorithm to incorporate paths.

2.4 Providing Explanations for KBC

One possibility to provide explanations for KBC
predictions is to generate logical rules. In the lit-
erature, these rules are often formalized as Horn
rules (Gusmão et al., 2018) such as (e1, r1, e2) ∧
(e2, r2, e3) → (e1, r3, e3). This rule claims that
the path with the relation sequence r1, r2 between
e1 and e2 implies the presence of the relation r3
between the two entities.

Galárraga et al. (2013) propose the system AMIE
which mines such rules. Their approach is to adapt
association rule mining to incomplete knowledge
bases. Rules are assigned confidence values that
state how likely the conclusion of the rule is a cor-
rect triple. While this can be used to predict and
explain new facts based on a single rule, there is
no clear way of combining several rules that all
have the same triple as conclusion. Furthermore,
these rules only make a statement about triples that
actually occur in the conclusion of a rule. The
rules found by Galárraga et al. always have a pos-
itive conclusion and therefore cannot provide ev-
idence for refuting triples. In contrast, represen-
tation learning can capture the characteristics of
individual entities and can take arbitrary triples as
input, provided that the involved entities and rela-
tions occur in the training set.

There are several studies that analyze learned
representations of neural KBC models like TransE
or Bilinear-diag to find Horn rules (Yang et al.,
2015) or paths in the knowledge graph (Zhang et al.,
2019). While similar in motivation to our model,
these approaches share the disadvantage of using a
pipeline approach: The rules or paths are extracted
post hoc and cannot be used by the representation
learning step to improve the consistency of its pre-
dictions, as would be desirable.

Xie et al. (2017) propose a neural KBC model
that provides an alternative kind of explainability:
it learns sparse attention vectors which capture ab-
stract concepts shared by multiple relations. Due
to the sparsity of attention vectors, the connections
can be visualized and interpreted.

3 Context Path Model

As stated in the introduction, the main idea of our
Context Path Model (CPM) is to capture the context
of a triple t = (e1, r, e2) in the shape of the paths
surrounding t. The role of the paths is as a data

source for estimating the correctness of t as well as
providing explanations for the estimate.

3.1 Motivation

Formally, we define a path of length k as a sequence
of the form (e1, r1, ..., rk, e2). Our fundamental in-
tuition is that the correctness of triples and paths in
their context can show different degrees of correla-
tion, as the following examples illustrate.

Example 1: The triple t1 = (e1, country
of birth, e2) and the path p1 = (e1, city of birth,
contained by, e2) are logically equivalent. Thus,
any KBC model of correctness should assign the
same score to p1 and t1: If a KB contains p1, it
should also contain t1. Conversely, the absence of
p1 can be taken as evidence against t1.

Example 2: The path p2 = (e1,
lived in country, neighboring country, e2) has a
weak connection with t1: it is not unlikely to have
lived in a country that adjoins the country of birth.
However, as countries very often have several
neighboring countries, p2 cannot provide strong
evidence either for or against the correctness of t1.

We currently concentrate on cases of positive
correlation, like Ex. 1, where either the presence
of p is evidence in favor of t, or the absence of p is
evidence against t. 2 Even though negative corre-
lation (e.g., the presence of p providing evidence
against t) is in principle also informative, it is more
difficult to capture empirically, since it requires
learning exclusion relationships among paths.

3.2 Definition of the Context Path Model

To capture those connections, a KBC model needs
to score the correctness of paths as well as deter-
mine their relevance as indicator for the correctness
of triples t, that is, the strength of the correlation
of the correctness scores of p and t.

We denote the set of paths that are used to model
the context of a triple t, its context paths as Pt (see
Section 3.4 for details). Based on Pt, the CPM
estimates the correctness of t, c(t, Pt), as follows:

c(t, Pt) =
∑

p∈Pt

ρ(t, p)

Z(t, Pt)
· c(p), (1)

Z(t, Pt) =
∑

p∈Pt

ρ(t, p). (2)

2Absence of paths from a KB is a weaker indicator than
presence, since paths can be missing either because they are
actually incorrect, or because at least one of its constituent
edges are erroneously missing.
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Thus, the correctness of a triple t is a weighted
average of the correctness scores c(p) of its context
paths, with the weights given by the normalized
relevance scores ρ(t, p) of paths p for t, that is, the
correlation between the correctness of t and p.

Since we want c(p) to be interpretable as the
probability of p being correct, we restrict the range
of c(p) to [0, 1]. We only require ρ(t, p) to be
non-negative, since the division by Z(t, Pt) di-
rectly yields normalized relevance scores. The
property of c(p) being normalized carries over to
c(t, Pt) which also has a range of [0, 1]. Appropri-
ate choices for c(p) and ρ(t, p) are discussed in the
following subsubsections.

Applied to Ex. 1 from above, the path p1 =
(e1, city of birth, contained by, e2) should be as-
signed a high relevance score ρ(t1, p1). If p1 is
correct, c(p1) should be close to 1. A high rel-
evance score combined with a high correctness
scores pushes c(t1, Pt1) towards 1. If p1 is not cor-
rect, c(p1) should be close to 0. In this case a high
relevance score is combined with a low correctness
score, which pushes c(t1, Pt1) towards 0. Both ef-
fects match the intended meaning of c(t1, Pt1) to
represent the correctness of t1. In Ex. 2, the path p2
has a low relevance for t1 and should be assigned
a low relevance score ρ(t1, p2). Since correctness
scores are restricted to [0, 1], the effect of c(p2) on
c(t1, Pt1) is small, whether c(p2) is high or low.
This properly models that the correctness of p2 has
little effect on the correctness of t1.

The CPM can serve as a source of explanations
for its predictions by considering the context paths
that have the highest relevance scores for a triple
t. By normalizing relevance scores by Z(t, Pt)
(Equation 2), we obtain the normalized weight with
which the correctness of a context path contributes
to the correctness score of the triple. Furthermore,
if c(p) ≈ 1, p represents evidence in favor of the
correctness of t, and if c(p) ≈ 0, p is evidence
against the correctness of t.

3.2.1 Estimating Context Paths Correctness
The first major parameter of the CPM is the context
path correctness score c(p), which is required to
have two properties: It needs to be able to model
paths and its output has to lie in [0, 1]. The first
property is fulfilled by all composable KBC models
like TransE (Bordes et al., 2013), Bilinear (Nickel
et al., 2011) and Bilinear-diag (Yang et al., 2015),
that is, models which can produce a functional
representation rp for a path p as a function of the

representation of its edges. Regarding the second
property, models that are distance-based and do
not directly fulfill it, can be adapted as follows.
Since they are composable, we can compute the
distance between the end of the path, e2, and the
path representation applied to the start of the path,
as dist(e2, f(e1, rp)), and map it to [0, 1] via a
logistic transformation σ of the negated distance.

For the example of the TransE model (Bordes
et al., 2014), the path representation is simply a
translation defined by the addition of the relation
vectors, rp =

∑
ri∈p ri and f = λx, y . x + y.

The correctness score for a path is then defined as
a transformation of the distance:

c(p) = σ(−‖e1 + rp − e2‖22 + bᵀ1rp) (3)

where b1 ∈ Rd is a path-specific bias parameter.
This model has d · (|R|+ |E|+ 1) parameters.

3.2.2 Estimating Context Path Relevance
The second major parameter of the CPM is the con-
text path relevance score ρ(t, p). To our knowledge,
no such models have been proposed in the litera-
ture, so we propose a simple model which is again
inspired by the translation-based TransE model. To
estimate ρ for a path p = (e1, r1, ..., rk, e2) and a
triple t, we represent the path as sequence of rela-
tions r1, ..., rk in order to abstract away from the
entities e1 and e2 and learn general regularities.3

We represent each relation r by one vector ar ∈ Rd

in order to recognize patterns in the compositional
path representation rp that indicate how relevant
the path p is for the relation r. The exponential
function is applied to obtain non-negative scores:

ρ(t, p) = exp(aᵀ
rrp + bᵀ2r) (4)

where b2 ∈ Rd is a bias parameter to enable re-
lation specific scaling of aᵀ

rrp. This model has
d · (|R|+ 1) parameters.

3.3 Training the Context Path Model
We split the training process into two steps to first
learn the parameters of c(p) and then the param-
eters of ρ(t, p). Learning ρ(t, p) and c(p) jointly
could lead to c(p) being influenced by the relevance
of p for t, which is undesirable since we want to
guarantee that c(p) is interpretable in terms of the
correctness of p.

3We define ρ as a generic function of t and p to indicate
that extensions of the CPM could also make use of the entity
representations.

150



Training c(p). Following the training regimen of
Guu et al. (2015), we first train c(p) on the edges of
the knowledge graph G before training it on longer
paths. This gives the model the opportunity to build
up paths from meaningful edges.

We train c(p) on a standard contrastive cross-
entropy loss that provides a good fit for the proba-
bilistic interpretation of c(p) that we aim for:

−
∑

p∈P

log c(p)

|P | −
∑

p′∈P ′

log(1− c(p′))
|P ′| (5)

where P is the set of correct paths and P ′ a set of
corrupted paths. For single edge training, we use
P = G. In the subsequent path training, we sample
a set of positive informative paths P as described
below in Section 3.4.

We also need to generate a set of negative sam-
ples P ′, which we generate in the same way as
Guu et al. (2015) by type-matched corruption–
see Section 4.2 for a discussion. Given a path
p = (e1, r1, . . . , rk, e2), let F(p) be the set of final
entities of p that can be reached when traversing G
via the relations r1, . . . , rk starting from e1. We are
guaranteed to corrupt p if we replace e2 with any
entity e′2 /∈ F(p) but matches the type of rk, i.e.,
e′2 ∈ D2(rk), with the right domain D2(r) defined
as:

D2(r) = {e2 | ∃e1 : (e1, r, e2) ∈ G} (6)

Analogously, we define I(p) as the set of initial
entities of p. We corrupt e1 by replacing it with
an entity in D1(r1) \ I(p), where D1(r) is the
analogous left domain of r. In the case of TransE,
the parameters to be updated are all ei, rj as well
as b1 (cf. Equation (3)).

Training ρ(t, p). The relevance scores ρ(t, p)
use a similar cross-entropy loss based on c(t, Pt):

−
∑

t∈G

log c(t, Pt)

|G| −
∑

t′∈G′

log(1− c(t′, Pt′))

|G′| (7)

where G, the KB, is the set of correct triples and
G′ is a set of triples with either e1 or e2 corrupted
as above. The objective aims to assign correct
triples a score of 1 and incorrect triples a score
of 0, which, together with the fixed semantics of
c(p), encourages ρ(t, p) to estimate the relevance
of paths p for t. Only the parameters of ρ, namely
ar and b2 (compare Equation (4)) are updated.

3.4 Selecting Context Paths

The final part of the Context Path Model (CPM) is
the selection of informative context paths. Since
the number of paths grows exponentially in the
path length, it is infeasible to include all paths in
the CPM. We now propose several criteria to limit
the set of informative context paths Pt for a given
triple t = (e1, r, e2) to keep the model tractable.

Closed paths. Paths that connect the two entities
of a triple express a semantic relation between them.
We therefore restrict paths to start with e1 and end
with e2, i.e., to be closed paths.

Limited length. We limit path lengths to k ≤ 3.
This effectively reduces the number of potential
paths and keeps the paths between e1 and e2 rela-
tively easy to understand.

Filtering redundant paths. To be able to tra-
verse edges of the knowledge graph in both direc-
tions, we need to add the inverse edge (e2, r−1, e1)
for each edge (e1, r, e2) ∈ G to the knowledge
graph G. This has the unwanted consequence
that we obtain redundant paths which comprise
two successive, mutually inverse relations like (e1,
country of birth, contains, contains−1, e2) which
is judged to be highly relevant for country of birth
but for trivial reasons.

We consider the domains D1(ri) and D2(ri)
(compare Equation (6)) to filter out trivial paths
effectively. A path (e1, r1, ..., rk, e2) is defined as
trivial if e1 occurs in any domain of r1, ..., rk ex-
cept D1(r1) or e2 in any domain except D2(rk).

This general definition has the benefit of cap-
turing cases of redundant paths caused by rela-
tions in the KB that are semantically, but not for-
mally, inverses – such as the relations contains and
contained by. It can also be too strict: E.g., the
context path p = (e1, mother of , mother of , e2)
for the triple t = (e1, grandmother of , e2) is ex-
cluded if the mother of e2 participates in the rela-
tion grandmother of . This does however not pose
a major problem in practice.

Negative context paths. The paths described so
far can only be used by the CPM as positive evi-
dence for the correctness of a triple. However, the
CPM can also use incorrect (i.e., correctly absent)
paths as negative evidence (i.e., as evidence that
triples are incorrect). We now describe how such
paths can be found.
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Entities 14,951
Relations 1,345

Triples
Train 483,142

Validation 50,000
Test 59,071

Paths of length 2
Train 3,110,893
Test 81,124

Paths of length 3
Train 3,711,317
Test 101,717

Table 1: Statistics on the FB15K dataset

Assuming the first three criteria described above,
let Pr be the set of correct context paths correspond-
ing to all triples (e1, r, e2) for a fixed relation r. Let
furthermore Sr be the set of relation sequences oc-
curring in paths p = (e1, r1, ..., rk, e2) ∈ Pr. We
can then define the set of context paths Pt:

Pt = {p | (r1, ..., rk) ∈ Sr∧I(p)∪F(p) 6= ∅} (8)

In addition to the positive informative paths de-
scribed so far, Pt contains incorrect paths that con-
nect e1 and e2 by corrupted relation sequences that
conform to the criteria described above. The use
of relation sequences that occur in context paths of
other facts about the same relation makes it more
likely that incorrect paths are relevant for t.

4 Experimental Evaluation

4.1 Dataset
We evaluate our approach on the FB15K dataset
extracted by Bordes et al. (2013) from the FreeBase
knowledge base. Table 1 shows the statistics of
this dataset, including the number of context paths
according to the definition in Section 3.4.

4.2 Experimental Setup
We instantiate the edge scoring model of CPM with
the TransE model (Bordes et al., 2013), as shown in
Eq. (3). We follow the two-step training regimen as
described in Section 3.3. We train 100-dimensional
vectors for all representations learned by the model
(cf. Section 3.2). Optimization proceeds by apply-
ing the gradient-based optimizer Adam (Kingma
and Ba, 2015) to minibatches of size 300. We use
the learning rate of 0.001 for all parts of the model
with the exception of c(p) during path training,
where we use 0.0001 based on performance on the
validation set.

Choice of negative samples. Since KBs ideally
contain only correct information, KBC methods
generally need to generate incorrect samples syn-
thetically. This is generally done by corrupting
either the first entity e1 or the last entity e2 in a
path p to obtain negative samples N (p). Negative
samples are used as parts of the ranking problems
both at train time (cf. Section 3.3) and at test time.
The generation of negative samples is therefore a
crucial part of the experimental setup. Unfortu-
nately, there is little consensus on the details of the
process in the literature. We discuss the two major
approaches below.

The first approach, random corruption, corrupts
paths by replacing e1 or e2 by random entities from
the KB (Bordes et al., 2013; Yang et al., 2015). The
advantage of this approach is that a large number
of negative samples can be generated easily – at
the same time, most corrupted paths are arguably
not particularly plausible confounders, as when a
person is replaced by a country or a record. An al-
ternative approach, type-matched corruption (Guu
et al., 2015), employs only confounders seen with
the same sequence of relations as the original entity
(cf. Section 3.3 for a formal definition). This gen-
erally ensures that the confounders are plausible.
On the downside, there are typically fewer such
confounders.

For our study, we adopt the type-matching cor-
ruption setup, which we find more appropriate in
the context of explainable KBC. For negative sam-
ples with incorrect types, the most natural reason
for rejection is simply the domain mismatch, while
the type-matching setting requires the models to
capture fine-grained semantics within domains.

As a result, the evaluation numbers that we re-
port are not directly comparable to numbers ob-
tained with the random corruption approach, and
tend to be higher. This is because the smaller num-
bers of negative samples lead to simpler ranking
problems. The average size ofN (t) for FB15k test
triples t is 1,738 in the type-matching setting and
29,543 in the setting without type-matching. As
negative samples from the training can end up in
N (t) for test triples t, the average number of un-
seen negative samples in N (t) is 765 in our setup.

We exclude negative samples that result in cor-
rect paths from the training or validation set. Simi-
larly, context paths sampled for training or valida-
tion are excluded from the test set.
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Model Training H@10 MQ

TransE Edges 90.2 97.5
TransE Paths 84.2 (-6.7%) 97.1 (-0.4%)
CPM Paths 83.1 (-7.9%) 96.7 (-0.8%)
CPM\t Paths 80.0 (-11.3%) 96.2 (-1.3%)

Table 2: Results for Evaluation 1 (fact correctness).
Numbers in brackets give relative deterioration com-
pared to TransE (edge). CPM\t is the CPM ignoring
all information about the target triple itself.

4.3 Evaluation 1: Fact Correctness
We carry out three evaluations. We start with
the traditional task of predicting individual facts
(edges). We directly define the evaluation metrics
for paths rather than facts for re-use in Evaluation 2
at the path level. The metrics apply to edges be-
cause they are paths of length 1.

Evaluation metric. We apply the commonly
used ranking metric hits at 10 (H@10), which is
defined as the percentage of correct paths that are
ranked within the top 10 of their respective neg-
ative samples. Additionally, we use the metric
mean quantile (MQ), proposed by Guu et al. (2015),
which computes the share of incorrect paths ranked
lower than the correct path:

MQ =
1

|P |
∑

p∈P

|{p′ ∈ N (p) | c(p′) < c(p)}|
|N (p)| (9)

In contrast to H@10, MQ accounts for the size of
N (p). For 1 ≤ |N (p)| ≤ 9, H@10 always outputs
1. In the fact correctness evaluation, this is the case
for 1.5% of used test facts. We exclude 1143 facts
with |N (p)| = 0 from the test set because both
H@10 and MQ always output 1 in these cases.

Results. Table 2 presents the results of the rank-
ing evaluation for fact prediction. We compare the
full CPM model against TransE, the edge scorer
“inside” our CPM (cf. Section 4.2), in both its edge-
trained and path-trained versions4 (cf. Section 3.3).
We also consider CPM\t, a variant of the CPM
that excludes t from Pt, that is, does not use any
information about the predicted triple. This model
examines to which degree the correctness of triples
t can be predicted purely on the basis of its KB
context. This gives us four models to compare.

4TransE can be seen as a special case of the CPM when all
paths except for the triple itself are assigned a relevance of 0.
The reported TransE scores are measured on the instantiation
of c(·) with TransE.

Edge training Path training

Length H@10 MQ H@10 MQ

1 90.2 97.5 84.2 97.1
2 73.4 94.1 82.7 97.5
3 54.0 89.0 64.4 93.3

Table 3: Results for Evaluation 2 (path correctness),
varying path length and training regimen. Best results
for each length shown in boldface.

We find that the CPM performs somewhat worse
than the best model overall, the edge-trained
TransE, for both metrics: the drop is noticeable
for H@10, and mild for MQ. We believe that the
drop is primarily due to two factors: First, path
training gives rise to a different optimization prob-
lem from edge training, which appears to be more
difficult on the FB15K dataset.5 In fact, as the
second row shows, training the original TransE on
paths leads to a comparable drop in H@10. Second,
the bad results for CPM\t, which are still substan-
tially worse than for the plain CPM, indicate that,
unsurprisingly, the most important source of infor-
mation for the prediction of a single triple is the
semantics of the triple itself. In other words, the
contextual component that CPM adds does not pro-
vide additional support to single edge prediction
at the technical level (we consider the produced
justifications in the third evaluation).

In sum, CPM introduces a mild loss of quality
in the prediction of individual facts. Given that the
CPM has a more complex objective – modeling the
correctness of facts/paths as well as modeling justi-
fications – we see this nevertheless as a promising
first evaluation result.

4.4 Evaluation 2: Path Correctness

The second evaluation concentrates on the CPM
and its performance on the task it is designed for,
namely predicting the correctness of longer paths.
Table 3 shows results separated by path length
(1 through 3). The results for path length 1 are, by
definition, identical to the corresponding conditions
in Evaluation 1, with an advantage for single-edge
training. This effect reverses for the longer paths:
while the edge-trained model loses substantially
in quality because it fails to capture dependencies
among edges, the path-trained model holds up well

5Path training appears to be beneficial on other datasets,
as reported by Guu et al. (2015).
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for longer paths. We see these results as valida-
tion of our choice of a path-based training regimen
(Section 3.3).

4.5 Evaluation 3: Path Relevance
Our third evaluation focuses on relevance, that is,
the relation between paths and the triples that they
are supposed to provide evidence for or against.
Since our goal is to use these paths as human-
interpretable justifications for the triples, we per-
form a small annotation study of the CPM output.

Dataset. We manually select 24 relations for an-
notation whose relevance can arguably be judged
without in-depth expertise of specific domains. The
selected relations account for 13.2% of the facts in
the test set. For each relation, we randomly sam-
ple two correct facts from the test set and obtain
incorrect facts by corrupting either e1 or e2. This
results in 48 positive and 48 negative facts. We
furthermore exclude 17 triples for which no path
(other than the trivial t itself) was found with a
normalized relevance score of at least 10%. For the
remaining 79 triples, we annotate all paths with a
normalized relevance score of at least 5% – again,
with the exception of t itself. We also do not con-
sider paths with relations from the FB15K domains
dataworld and commons because they encode only
KB-specific meta information. This results in on
average 2.45 context paths annotated per triple, ac-
counting for 80% of the assigned relevance scores.

Annotation. As motivated in Section 3.1, the rel-
evance of context paths Pt describes how strongly
their correctness is correlated with the correctness
of t. In the annotation we distinguish between three
levels (categories) of relevance:

1. Equivalent: The correctness of p is logically
equivalent to the correctness of t.

2. Probable: The path p being correct makes
the correctness of t significantly more likely,
or p being incorrect makes the correctness of t
significantly less likely. However, p provides
no guarantee for the (in-)correctness of t.

3. Unrelated: The correctness of p and t are not
strongly correlated. This class comprises all
cases that are not in category 1 or 2.

Qualitative Analysis. Table 4 shows examples
of the three annotated categories, both for positive
cases (presence of p supports t) and negative cases

(absence of p casts doubt in t). Negative cases are
marked with asterisks (∗), and since all absent paths
are corrupted versions of paths in the KB, the point
of corruption is marked as well.

The ’equivalent’ category shows two cases
of equivalence between two Freebase relations
– one positive (profession is supported by peo-
ple with profession−1) and one negative (is-
lands in group is implausible if not accompanied
by island group−1) – as well as one case of mu-
tual entailment (the CAF has a football league iff
there is a team that is a football team and plays in
the CAF). The ’probable’ category contains cases
of defeasible inferences – e.g., Hindi is the most
widely spoken language in India, but only by just
over half of the population. The ’unrelated’ cat-
egory, finally, shows some paths that are largely
irrelevant for their facts (e.g., someone is born in
a place vs. someone often eats at a restaurant that
uses the same currency as the birth place). The
examples demonstrate that CPM is indeed capable
of capturing meaningful relations between triples
and the paths in its context.

Quantitative Analysis. Table 5 shows that just
over half of all pairs we consider falls into the
’equivalent’ category. These pairs are assigned a
mean relevance of 0.47, and their share of the total
sum of relevance scores is 72%. Another quarter
of the annotated pairs falls into the ’probable’ cate-
gory, with a considerably lower mean relevance of
0.15, and a share of 15% of the relevance scores.
The final quarter of pairs makes up the ’unrelated’
category, with similar mean relevance and share of
relevance scores.

We see this outcome as rather positive: about
half of the paths identified by the CPM are equiva-
lent to the triple in question, with another quarter
providing probable evidence. Furthermore, the rel-
evance scores manage very well to separate the
’equivalent’ and ’probable’ categories. The sepa-
ration between ’probable’ and ’unrelated’ is weak,
but may be due to our exclusion of the lowest-
relevance paths from annotation (see above): these
would arguably mostly be mostly ’unrelated’ and
thus decrease the mean relevance for this category.

5 Conclusion

This paper has considered the generation of expla-
nations for predictions of facts in knowledge base
completion (KBC). Our contribution is the Context
Path Model (CPM), which provides explanations
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Triple Context path
eq

ui
va

le
nt

(Jon Favreau, profession, Film director) (Jon Favreau, people with profession−1, Film director)
(Football, leagues,
Confed. of African Football)

(Football, teams, Zimbabwe national football team,
league participation/team−1, Confed. of African Football)

∗(Hawaiian Islands, islands in group,
Ireland)

∗(Hawaiian Islands [corrupted from: British Isles], island group−1,
Ireland)

pr
ob

ab
le (Feroz Khan, languages, Hindi) (Feroz Khan, nationality, India, countries spoken in−1, Hindi)

(Naval Postgraduate School, containedby,
USA)

(Naval Postgraduate School, headquarters/state, California,
representatives, Richard Nixon, nationality, USA)

un
re

la
te

d (Nashua, people born here, Mandy Moore) (Nashua, currency, US Dollar, liabilities in currency−1, Starbucks,
eats at−1, Mandy Moore)

∗(Jared Harris, parents, Aaron Spelling) ∗(Jared Harris, award nominee−1, Mad Men [corrupted from
Beverly Hills, 90210], tv program creator, Aaron Spelling)

Table 4: Examples of triple–path pairs, with entities in boldface, and simplified freebase relations. Incorrect
triples/paths marked with ∗, and point of corruption marked.

Annotation category equiv. prob. unrel.

Number of pairs 98 49 47
Share of pairs 51% 25% 24%

Mean Relevance ρ 0.47 0.15 0.12
Share of total

∑
ρ 72% 15% 13%

Table 5: Statistics for annotated triple–path pairs

by identifying context paths which are highly corre-
lated with the fact: if the path is in the KB, then the
triple should be as well; conversely, if the path is
not in the KB, then the triple should not be either.

We demonstrate the usefulness of our model by
instantiating its fact scorer with a simple but ef-
fective KBC model, TransE (Bordes et al., 2013).
We find that the performance of the CPM is close
to TransE, and manual evaluation confirms that
most of the paths the model uses as explanation are
meaningful and provide evidence for assessing the
correctness of facts. This shows the potential of
using paths as explanations for KBC predictions.

Beyond the KBC setting, the output of the CPM
can also arguably be useful for a structural analysis
of knowledge bases, for example the systematic
identification of equivalences among relations or
between relations and paths, to improve the consis-
tency of the KB, e.g., by replacing equivalent paths
by a canonical version.

The current study has three main limitations.
First, we only apply the CPM to TransE. Future
work should investigate the practical usefulness of
the CPM for other composable KBC models like
Bilinear-diag. Second, we use strong heuristics
to limit the set of paths under consideration; fu-

ture work should attempt to relax these. Third, the
current CPM can only capture paths that are sym-
metrically (cor-)related with the fact in question,
corresponding to strict or probabilistic entailment.
A promising avenue for future work is to general-
ize the model to asymmetrical relations, i.e., find
paths that represent (just) necessary or sufficient
conditions for a fact, in order to enable a more com-
prehensive analysis of the inferential structures in
KBs (Hitzler et al., 2009).
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Joaquim Gabarro, and Rik Van De Walle. 2012.
Adding realtime coverage to the google knowledge
graph. In Proceedings of the International Semantic
Web Conference, pages 65–68.

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. Yago: A core of semantic knowl-
edge. In Proceedings of the 16th International Con-
ference on World Wide Web, pages 697–706, New
York, NY.

Kristina Toutanova, Victoria Lin, Wen-tau Yih, Hoi-
fung Poon, and Chris Quirk. 2016. Compositional
learning of embeddings for relation paths in knowl-
edge base and text. In Proceedings of the Annual
Meeting of the Association for Computational Lin-
guistics, pages 1434–1444, Berlin, Germany.
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Abstract

The recent wide-spread and strong interest in
RNNs has spurred detailed investigations of
the distributed representations they generate
and specifically if they exhibit properties sim-
ilar to those characterising human languages.
Results are at present inconclusive. In this pa-
per, we extend previous work on long-distance
dependencies in three ways. We manipulate
word embeddings to translate them in a space
that is attuned to the linguistic properties under
study. We extend the work to sentence embed-
dings and to new languages. We confirm pre-
vious negative results: word embeddings and
sentence embeddings do not unequivocally en-
code fine-grained linguistic properties of long-
distance dependencies.

1 Introduction

The recent wide-spread and strong interest in
RNNs has spurred detailed investigations of the
distributed representations they use, learn and gen-
erate and specifically if they exhibit properties
similar to those characterising human languages.
For a survey see Belinkov and Glass (2019).

Results are at present rather inconclusive on
whether RNNs and the representations they learn
have human-like properties. While many pieces
of work seems to indicate that they do, some other
pieces of work have mixed results, and a few ap-
pear to show that the representations of RNNs
do not match those predicted by linguistic the-
ory or human experiments. For example, one line
of work aims to correlate RNN-induced represen-
tations to linguistic properties, namely the fact
that subject-verb number agreement is structure-
dependent. Initial work had shown RNNs do not
really learn the structure-dependency of this con-
struction (Linzen et al., 2016), but follow up work
has shown that stronger techniques can yield more
positive results (Gulordava et al., 2018), only to

be very promptly rebutted by work suggesting that
the apparently positive results could be the artifact
of a much simpler strategy, which takes advantage
of the unnaturally simple structure of the exam-
ples and simply learns properties of the first word
in the sentence (Kuncoro et al., 2018). Recent
work by Lakretz et al. (2019), however, studies
RNNs in more detail, looking at single neurons,
and finds that individual neurons encode linguisti-
cally meaningful features very saliently and with
behaviour over time that corresponds to the ex-
pected propagation of subject-verb number agree-
ment information.

Similarly, probing different aspects of long-
distance dependencies, so far divergent results
have been reported on these constructions. While
some experiments have shown that RNNs can
learn the main descriptive properties of long-
distance dependencies in English, for example the
fact that they obey a uniqueness constraint (only
one gap per filler) and also that they obey island
constraints (Wilcox et al., 2018), work attempt-
ing to replicate finer-grained human judgments
for French have failed to show a correlation with
human behaviour (Merlo and Ackermann, 2018),
while other work on English has found mixed re-
sults (Chowdhury and Zamparelli, 2018).

In this paper, we extend previous work on long-
distance dependencies to tease apart the poten-
tial grounds for the different outcomes by mak-
ing previous work more comparable. There are
several differences between the pieces of work
on long-distance dependencies mentioned above.
First, the work that does not find a correspon-
dence between the two sources of information be-
ing compared (Merlo and Ackermann, 2018) im-
poses a much stricter test of correspondence —
total correlation— than the general effect reported
in Wilcox et al. (2018). Secondly, the pieces of
work vary in task: it is possible that word embed-
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dings need to be used holistically in a prediction
task similar to what humans solve to show a pos-
itive correlation. Finally, these pieces of work are
on different languages.

Beside these differences in experimental setup,
it is also possible that holistic representations such
as word embeddings need to be transformed and
translated into the right space to show correlations
with human judgments. Specifically, word embed-
dings are a merger of the many levels of repre-
sentation that we find in human languages: lex-
ical, morphological, syntactic, semantic. It has
been argued that post-processing transformations
can tease apart syntactic aspects of distributed rep-
resentations from semantic aspects (Artetxe et al.,
2018).

Based on all these observation, we extend the
work of Merlo and Ackermann (2018), which
had found no correlation, along these lines. To
preview, while we are able to get slightly bet-
ter correlations to human judgments than those
reported by Merlo and Ackermann (2018), the
mixed results are confirmed: word embeddings
and sentence embeddings, the representations pro-
duced by RNNs, do not unequivocally encode
fine-grained linguistic properties of long-distance
dependencies.

2 Intervention effects in human sentence
processing

A core distinguishing property of human lan-
guages is the ability to interpret discontinuous el-
ements as if they were a single element. These are
called long-distance dependencies.

For example, sentence (1a) is an object-oriented
restrictive relative clause, where the object of the
verb phrase annoying is also the semantic recipient
of the verb smile, connecting two distant elements.
Long-distance dependencies are not all equally ac-
ceptable or even grammatical (for example, sen-
tences (3a,b) and (4a,b) are not fully grammatical).
A prominent explanation says that a long-distance
dependency between two elements in a sentence is
difficult, and often impossible, in the presence of
an intervener (for example speaker in (1a)). An
intervener is an element that is similar to the two
elements that are in a long-distance relation, and
structurally intervenes between the two, block-
ing the relation (Rizzi, 2004). Detailed investi-
gations have shown that long-distance dependen-
cies exhibit gradations of acceptability depend-

Object Relatives

(1a) Julie smiles to the student that the speaker
has been seriously annoying from the begin-
ning.

(1b) Julie smiles to the students that the speaker
has been seriously annoying from the begin-
ning.

(2a) Julie points out to the student that the
speaker has been yawning frequently from
the beginning.

(2b) Julie points out to the students that the
speaker has been yawning frequently from
the beginning.

Weak islands

(3a) Which class do you wonder which student
liked?

(3b) Which professor do you wonder which stu-
dent liked?

(4a) What do you wonder who liked?
(4b) Who do you wonder who liked?

Figure 1: The linguistic constructions and experimen-
tal materials, English version. (1) object relatives; (2)
completives (experimental control, no long distance de-
pendency), (a) number match, (b) number mismatch.
(3) Lexically specified; (4) lexically bare; (a) animacy
mismatch; (b) animacy match.

ing on properties of the intervener (Rizzi, 2004;
Grillo, 2008; Friedmann et al., 2009). Franck et al.
(2015); Villata and Franck (2016) concentrate on
those features that are properties of words: lexi-
cal restriction, number and animacy. This is in-
teresting for us as these are lexical features and
therefore they can potentially be captured by word
embeddings.

All else being equal, in complex question en-
vironments (weak islands, such as those shown
in (3) and (4)), long-distance dependency involv-
ing a lexically restricted wh-phrase (which class or
which student) is more acceptable than extraction
of a bare wh-element (who or what), which is not
very good.

Experiments on relative clauses also show that
the morpho-syntactic feature number triggers in-
tervention effects (Belletti et al., 2012; Bentea,
2016). So, for example, the sentence in (1b) is
reported to be easier than the sentence in (1a), be-
cause the words students and speaker do not match
in number. Completive sentences like those in
(2), on the other hand, do not show any difference
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between (2a), where number matches, and (2b),
where number does not match, as no long-distance
dependency is at stake.

The status of a lexical-semantic feature such as
animacy remains more controversial, but some re-
cent studies show a clear effect of animacy as an
intervention feature in wh-islands (Franck et al.,
2015; Villata and Franck, 2016). So for example,
(3a) is easier than (3b) and (4a) is easier than (4b)
because the two wh-phrases do not match in ani-
macy.

3 The human experiments

The psycholinguistic experiments that collected
the experimental measures reflecting the accept-
ability or reading times of a sentence are described
in Franck et al. (2015) and Villata and Franck
(2016) and they are the same as those discussed in
Merlo and Ackermann (2018). The initial experi-
ments were done in French.1 Figure 1 shows the
English version of the kind of sentences that are
used as stimuli in the experiments. The object rel-
ative clause experiment collected on-line reading
times, manipulating the number (singular or plu-
ral) of the object of the relative clause as the inter-
vening feature and the construction, with or with-
out long-distance dependency. A speed-up effect
in number mismatch configurations (plural object)
was found in object relative clauses. The weak
islands experiment collected off-line acceptability
judgments, manipulating animacy and lexical re-
striction of the intervener. A clear effect of ani-
macy match for lexically restricted phrases (less
acceptable) and less so for bare wh-phrases was
found.

Recall that, in Merlo and Ackermann (2018),
it was found that similarity scores calculated on
these experimental items using word embeddings
do not correlate with experimental results. This
lead to the conclusion that word embeddings do
not encode relevant information related to the im-
portant notion of intervener. In the next two sec-
tions, we present our extensions to these results.

4 Divergent vectors for French

Artetxe et al. (2018) propose a post-processing
vector transformation technique based on eigende-
composition that corresponds to calculating first,

1We are very grateful to Sandra Villata and Julie Franck
for sharing their stimuli and experimental results with us.

second, nth-order similarities. The basic intu-
ition is that, for example, a second-order similar-
ity is a similarity matrix of similarities. Instead
of changing the similarity matrix, the word em-
beddings themselves are transformed, calculating
first, second, nth-order similarities directly. These
similarities are based on the tuning of a single pa-
rameter α, the power of the matrix, to increase or
decrease the similarity order. For example α= 0
is first-order similarity, the similarity of two given
words, α= 0.5 is second-order similarity, the sim-
ilarity of the context of two given words. Val-
ues of α can vary both positively and negatively.
Intuitively, negative values are similarities of two
given words as first, second, n-order contexts of
other words. Artexte and colleagues argue that
different-order similarities are related to different
levels of linguistic representations, and certain val-
ues of the parameter move the vectors in a space
where similarities are more syntactic (as in sing,
singing), while other values of the parameter move
the vectors in a space that is more semantic (as
in sing, chant). They also distinguish a notion of
similarity as analogy, such as the one exhibited by
words like car and automobile, and relatedness,
such as in car and road. Specifically, they claim
that their results show that the notion of similar-
ity represented in vectorial space can be decom-
posed into a more ‘syntactic’ notion of similarity
and the notion of ‘relatedness’ of a more seman-
tic flavour. They confirm these claims by better
performance of the transformed vectors in differ-
ent tasks of analogy and relatedness that tap into
different notions of similarity.

We apply this eigendecomposition technique to
our data, serching for the appropriate values of
α, to see if moving the vectors in a region of the
space that corresponds better to syntactic similar-
ity yields better correlations between word embed-
dings similarity scores and experimental results
than found in Merlo and Ackermann (2018).

Materials and Method The language we use in
this experiment is French. Recall that we want to
calculate a correlation at the lexical level, as the
notion of intervention is based on lexical proper-
ties. So we modify the word embeddings of the
lexical items.
List of words We use all the words in the stim-
uli of the human experiments described above, in-
cluding the fillers, to create an exact replication of
the linguistic environment of the experiments. In
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total, we have 388 unique words. We use only the
words in the actual experimental stimuli for test-
ing (96 words for object relatives and 128 words
for weak islands). These are words shown in bold
in Figure 1. For this experiment, in the case of
lexically restricted weak islands, we only look at
the head word; for example, for the phrase which
professor we use professor.
Vectors For all these words, we extract vectors
from preexisting trained vectors. We use Fast-
text in its new version (Grave et al., 2018), as it
is shown in Artetxe et al. (2018) that these vec-
tors yield best results for their eigendecomposi-
tion technique. These publicly available vectors
have been obtained on a 5-word window, for 300
resulting dimensions, on Wikipedia data using the
skip-gram model described in Bojanowski et al.
(2016).2 In this model, every word is represented
as an n-grams of characters, for n between 3 and
6. Each n-gram is represented by a vector and the
sum of these vectors forms the vector representing
the given word.
Transformation We apply Artetxe et al. (2018)’s
transformation to the word embeddings of the ex-
perimental items, for several values of α, in the
range −1 to 1.
Calculation of results We calculate correlations
with experimental results. Specifically, we first
calculate the cosine similarity between the trans-
formed word embeddings of the head of the long-
distance dependency and the intervening element
(the words in bold in Figure 1). Then, we calcu-
late a correlation between the obtained similarity
scores and the experimental measures (mean ac-
ceptability judgments for weak islands and reac-
tion times at the position of the verb for relative
clauses).

Results and discussion Results for direct cor-
relations are shown in Figure 2. The two pan-
els show how the values of the Pearson correla-
tions between the similarity scores of the trans-
formed word embeddings and the experimental re-
sults vary with different values of α. For example,
the panel 2a indicates that the maximum correla-
tion between the similarity scores of the word em-
beddings of the experimental items and the experi-
mental scores are reached at−0.50 > α > −0.25.

Overall, for values of α close to 0, the value of α
indicating a direct correlation between the words

2The French vectors are to be found here https://
fasttext.cc/docs/en/crawl-vectors.html.

(a) Object relatives, number.

(b) Weak islands, animacy.
Figure 2: Pearson correlation (range of value of α for
transformation: -1 to 1).

of interest, the correlation is very weak, positively
for object relatives and the number feature and
negatively for weak islands and the animacy fea-
ture.

The panel (a) shows how the correlations with
the intervention effect of number vary with differ-
ent values of α. It shows a weak correlation reach-
ing 0.4 for values of α between −0.5 and −0.25.
This only weakly confirms Merlo and Ackermann
(2018)’s results, showing there is some syntactic
signal, although not sufficient to explain the ex-
perimental results. The panel (b) shows the corre-
lations with the experiment testing the interven-
tion effects of animacy. Here the correlation is
even weaker, despite the transformation, as pos-
itive Pearson values never exceed 0.10 (and the
strongest correlation is a negative −0.25), con-
firming Merlo and Ackermann (2018)’s results,
even in this more propitious set up.

An interesting linguistic observation that is
quite clear from the patterns of α, is that both
the feature number, more intuitively syntactic, and
the feature animacy, whose status is ambiguous

161



between syntax and semantics, find best correla-
tions with human judgments in similar values of
α (very small negatives). This indicates that ani-
macy plays the role of a syntactic feature, in this
context, analogously to what has been found in the
human experiments.

Another striking feature of the results is the
steep curve, in both panels, showing big changes
as we move from the words of interest to words
in the context. Finally, in both cases the best, but
still weak, correlations are in a window of nega-
tive values. That is, we find the best correlation
when the words in question are treated as context
for other (unknown) words. In other words, hu-
man experimental results have the best correlation
with (unknown) words whose paradigmatic con-
text (the second-order context) is defined by the
word embeddings. We can conjecture that this in-
dicates that the words in the stimuli sentence (the
words in bold in Figure 1), taken as a second-order
context, define a lexical semantic field to which
the experimental measures are sensitive.3

5 Prediction in weak islands and object
relatives in French and English

While the previous experiments show that even
transformed word embeddings do not encode fine-
grained quantitative psycholinguistic measures, it
is still possible that sentence embeddings can pre-
dict the coarser distinctions of qualitative accept-
ability judgments. Moving away from seeking di-
rect correlations with experimental results to a pre-
diction task that simply models acceptability judg-
ments presents the added advantage that it is eas-
ily extended to new languages. The acceptability
judgments in these constructions are easily estab-
lished; in fact, in our case, they match exactly the
judgments in French.

5.1 Materials and Method

Sentences All French weak islands experimen-
tal stimuli used in the previous experiments were
translated into English. The translations were lit-
eral. They were performed by a bilingual near-
native speaker of English. They correspond to sen-
tences established in the literature on weak islands
in English.4

3In future work, this conjecture could be verified by re-
trieving these unknown words and seeing if a direct correla-
tion is confirmed.

4See supplementary materials for all the English datasets
discussed in the paper.

Sentence embeddings We calculate sentence
embeddings for all the sentences. Here, we fol-
low the logic of probing tasks (Conneau et al.,
2018). In this set up, single sentence embed-
dings are classified according to a single gram-
matical phenomenon. This technique allows the
researchers to reach clear and conclusive insights
into what information is encoded in the embed-
dings in a set-up that is agnostic of the architec-
ture that has produced them. Our problem also
meets other criteria that have been advocated for
probing tasks, some formal and some more subjec-
tive. Namely, the domain of linguistic locality of
the phenomenon we want to study is a single sen-
tence (as opposed to multi-sentence tasks), and all
the sentences are carefully controlled and matched
to eliminate sentence length effects, for example.5

Finally, we agree that probing tasks should ad-
dress a set of linguistically interesting phenom-
ena. From this standpoint, intervention effects in
long-distance dependencies meet the requirement,
as one of the core data paradigms definitional of
human languages.

We use bag of vectors sentence embeddings
for several reasons. First, our testing sentences
are carefully constructed minimal pairs where the
difference in grammaticality hinges on one lexi-
cal difference, which then has in turn syntactic
repercussions. By using bag of vectors, we re-
main as close as possible to the lexical setting of
the theoretical definition of intervention, We also
differ only minimally from the previous experi-
ment. Second, from a more practical standpoint,
bag of vectors have been shown in general, and in
probing tasks in particular, to have good perfor-
mance. Notice also that the choice of not using
more context-aware vector representations is vol-
untary. We want to test the predictive ability of
a direct encoding of the linguistic notion of inter-
vener, which is a lexical, non-contextualised no-
tion.

We use BoVfastText,6 which derives sentence
representations by averaging the fastText embed-
dings of the words they contain.

Classifiers We use a multi-layer perceptron,
with four outputs, and two hidden layers of 50 and

5 Differently from other probing tasks, we work here on a
relatively small dataset, but in principle the sentences follow
a specific structure that could be easily automated if more
data needed to be tested. But the small amount of testing data
already gives us an effect.

6https://fasttext.cc/docs/en/english-vectors.html
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Label French English
BareA 0.151 0.485
BareI 0.909 0.156
LexA 0.788 0.273
LexI 0.303 0.091

(a) Weak islands (Bare= bare wh, Lex= lexically specified,
A= animate, I= inanimate).

Label French English
ORCsing 0.250 0.417
ORCplur 0.125 0.375
CMPsing 0.291 0.291
CMPplur 0.500 0.292

(b) Object Relatives (CMP= completive).

Table 1: Percent accuracy predictions.

30 dimensions.7 We run the training and testing
in an n-fold cross-validation regime (n = 33 for
weak islands and 24 for object relatives), where
each quadruple of examples is used for testing.

Dependent variable We use accuracy as a mea-
sure of how much the information in the input em-
beddings supports the discrimination of the four
sentence types in a categorical classifier. This
measure is relevant under the assumption that
the more acceptable sentences are more easily
identified (discriminated from other classes) than
less acceptable ones, because acceptable sentences
better fit to the grammar. Less acceptable sen-
tences do not fit or even do not belong to the
grammar, and as such their classes are more eas-
ily confusable, given that the complement of a
grammar does not necessarily have distinguish-
ing structured characteristics. So we expect to see
higher classification accuracy as the acceptability
of the sentence increases.

5.2 Predictions and results

The accuracy prediction task corresponds to the
structure of the human experiment.

In the materials on weak islands, we have four
sentence types (BareA, BareI, LexA, LexI), short-
hand for the four cases in which the stimuli had an
animate (A) or inanimate (I) intervener and where
the long-distance dependency was lexically speci-
fied (Lex) or bare (Bare).

Let Acc() be the accuracy of the prediction.
Recall that animacy is the property that leads

7Two larger hidden layers of 200 and 100 dimensions also
gave similar results

to intervention, and expected degraded perfor-
mance, so we expect Acc(LexA) < Acc(LexI) and
Acc(BareA) < Acc(BareI). Since we know that
lexical specification improves acceptability, we
expect Acc(LexA) > Acc(BareA) and Acc(LexI)
> Acc(BareI).

We can see the results in Table 1, subtable 1a.
For French, the prediction on the effect of ani-
macy in the lexically specified case is confirmed,
but the others are not. Furthermore, if we calcu-
late the total interaction, we see that lexical spec-
ification makes these sentences easier to a greater
extent than animacy makes them hard.8 This re-
sult corroborates effects found in human experi-
ments, which found a stronger effect of animacy
than lexical specification (Franck et al., 2015; Vil-
lata and Franck, 2016). For English, we find that,
given the same predictions as above, the prediction
for the effect of animacy is confirmed both in bare
wh-phrases and in lexicalised wh-phrases, but the
others are not. A total interaction does not confirm
the dominant effect of animacy, unlike French. 9

For object relative clauses, it is a match in
number of the relative head and the subject
of the relative clause (both singular) that is
expected to cause difficulty, compared to a
mismatch. Object relative clauses are also
compared to completives, where no differences
should be found between the two items. So
we expect, Acc(ORCsing) < Acc(ORCplur)
and Acc(CMPsing) = Acc(CMPplur).
Also, Acc(ORCsing) < Acc(CMPsing) and
Acc(ORCplur) = Acc(CMPplur). We can see the
results in Table 1, subtable 1b. For French, none
of the predictions is confirmed, while for English
the only confirmed prediction says that number,
whether singular or plural should be roughly
similar in completives, the control case.

More results of this same nature and reach-
ing similar conclusions can be found in the Ap-
pendix, for both weak islands and object relative
clauses in both English and French. The appendix
shows results obtained with a Naive Bayes classi-
fier, thereby also demonstrating that the negative
effect is not due to the choice of classifier.

8(Acc(BareA) − Acc(BareI)) − (Acc(LexA) −
Acc(LexI)), we find (0.909 − 0.788) − (0.151 − 0.303) =
0.121 + 0.152 > 0.

9(Acc(BareA) − Acc(BareI)) − (Acc(LexA) −
Acc(LexI)), we find (0.156− 0.273)− (0.485− 0.091) ==
−0.117− 0.394 < 0.
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6 Discussion and conclusions

These results prompt both scientific and method-
ological considerations. Scientifically, our results
lead us to conclude that while current word em-
beddings encode some notion of similarity, as
shown by many experiments on analogical tasks
and textual and lexical similarity, they do not,
however, encode the notion of similarity that has
been shown to be at work in many human exper-
iments and to be definitional in long-distance de-
pendencies.

If our conclusions above are correct, our lack
of replication of some of the theoretical predic-
tions and human experiments adds one more dis-
cordant element to the complex debate of whether
a narrow or broad definition of intervention best
explains human judgments and linguistic facts, as
discussed by Villata and Franck. The narrow no-
tion of intervention is grammar-based, explains
ungrammaticality, for example weak islands, and
claims that only morpho-syntactic features are rel-
evant to define intervention (Rizzi, 2004). So, the
fact that word embeddings —usage-based repre-
sentations of the lexical semantics of words— do
not correlate with a grammar-based notion of sim-
ilarity is to be expected, but the fact that object
relative clauses where found to exhibit animacy ef-
fects in human experiments is not expected.

A broader notion of intervention is defined by
cue-based memory based models: these are hu-
man sentence processing models that explain dif-
ficulty of otherwise grammatical sentences, such
as object relatives (Van Dyke and McElree, 2006).
In this framework, similarity can take any feature
type into account and intervention is a kind of in-
terference at retrieval in memory. This broader
approach explains the experimental findings, but
would have expected a correlation of word embed-
dings, which are fundamentally a semantic encod-
ing of the word, with the experimental effects.

Methodologically, we might wonder about the
sources of the fluctuation of results, both for long-
distance dependence as reported here, and subject
verb agreement as reported in other works men-
tioned in the introduction. Two explanations are
possible: the methods are not sound, the fluctu-
ations are to be expected. I very briefly explore
both.

Consider the transformations we have applied in
section 4. Word embeddings are a merger of many
kinds of information and applying post-processing

transformations has been argued to tease apart
syntactic aspects of the encoding of the notion of
similarity from semantic aspects. The notion of
‘syntactic’ and ‘semantic’ similarity used in pre-
vious work is itself vague and does not refer to
any linguistic phenomenon that current linguistic
theory (syntactic or semantic) would identify as
belonging exclusively to one or other of these lev-
els of representation. Trying to investigate RNN
by claiming that certain constructions reflect syn-
tax while other reflect semantics is therefore an
ill-defined endeavour (Artetxe et al., 2018). All
constructions have a syntax and a semantics and
the investigation of what RNN learn can only be
done by correlating the predictions of the syntac-
tic or semantic theory involved in the construc-
tion. To prove this point further, consider the plots
in Figure 3. Here, as an abstract exercise, the
αs have been varied on a much larger range of
values than the more limited range of values re-
ported in section 4. The interval of values in sec-
tion 4 was chosen because it corresponds to pre-
vious proposals and because it is more easily in-
terpretable. As it can be seen here, instead, the
curves have a dramatic range of correlation val-
ues that do not seem to have any correspondence
to anything we know about language. We would
conclude here that Blackbox investigations must
be driven by theory, or at least by precise expecta-
tions grounded in well-established linguistic facts,
to become interpretable.

On the other hand, we are also at the begin-
ning of this trend of Blackbox investigations. We
submit here that these fluctuations are an effect
known as the Proteus effect, fluctuations due to the
fact that we are in the early stages of this promis-
ing avenue of research, due to the fast publish-
ing rate and to the small size of the studies. The
Proteus phenomenon—a term coined by Ioanni-
dis and Trikalinos (2005)—describes the effect of
rapidly alternating opposite research claims and
extremely opposite refutations, particularly dur-
ing the early accumulation of data. Meta-research
and simulations show that first publication of re-
sults have a considerably higher chance of be-
ing inflated (Ioannidis, 2008), and that small stud-
ies have a higher chance of being false positives
(Bertamini and Munafò, 2012). We submit, then,
that the contradictory results are inevitable incon-
gruities that will be resolved as more studies, large
and small, accumulate on these same topics.
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(a) Weak islands (b) Object relatives

Figure 3: Pairwise correlation (range of value of alpha for transformation: -9 to 9).

7 Conclusions

In this work, we have extended previous work on
long-distance dependencies applying new vector
transformation techniques, extending the investi-
gation to sentence embeddings and to new lan-
guages. We confirm previous negative results:
word embeddings and sentence embeddings, the
representations produced by RNNs, do not un-
equivocally encode fine-grained linguistic proper-
ties of long-distance dependencies. Future work,
among many other avenues for extension, will in-
vestigate in more detail the limits of vector trans-
formation techniques and extend the work to dif-
ferent vectorial encodings, to more constructions
and to new languages.
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Label Precision Recall F-ratio
BareA 0.707 0.854 0.773
BareI 0.410 0.854 0.555
LexA 0.181 0.054 0.084
LexI 0.340 0.205 0.256

(b) Weak Island, French

Table 2: Results for weak islands (Bare= bare wh, Lex=
lexically specified, A= animate, I= inanimate).
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Appendix A: Comparing results across
classifiers

As further demonstration of the fluctuating nature
of the current results, we report here the same clas-
sification experiment reported above, but with a
Naive Bayes classifier, and applied to both weak
islands and object relative clauses. The classifica-
tion results averaged over ten trials (same cross-
validation settings as above) are shown in Table 2
and Table 3.

Recall that animacy is the property that leads
to intervention in weak islands, and expected de-
graded performance, so we expect that Acc(LexA)
< Acc(LexI) and Acc(BareA) < Acc(BareI).
Furthermore, Acc(LexA) > Acc(BareA) and
Acc(LexI) > Acc(BareI).

For object relative clauses, it is a match in
number of the relative head and the subject of
the relative clause (both singular) that is ex-
pected to cause difficulty, compared to a mis-
match. Object relative clauses are also compared
to completives, where no differences should be
found between the two items. So we expect,
Acc(ORCsg) < Acc(ORCpl) and Acc(CMPsg) =
Acc(CMPpl). Also, Acc(ORCsg) < Acc(CMPsg)
and Acc(ORCpl) = Acc(CMPpl).

Weak islands do not conform to expecta-
tions: For English, we can see that neither
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Label Precision Recall F-ratio
CMPsg 0.02 0.08 0.032
CMPpl 0.17 0.125 0.14
ORCsg 0.35 0.2 0.25
ORCpl 0.16 0.18 0.17

(a) Object relatives, English
Label Precision Recall F-ratio
CMPsg 0.18 0.25 0.209
CMPpl 0.23 0.29 0.256
ORCsg 0.105 0.10 0.102
ORCpl 0.21 0.08 0.116

(b) Object relatives, French

Table 3: Results for object relatives.

Acc(LexA) < Acc(LexI) nor Acc(BareA) <
Acc(BareI) are confirmed. Moreover, Acc(LexA)
> Acc(BareA) is not confirmed and neither is
Acc(LexI) > Acc(BareI). For French, we can
see that Acc(LexA) < Acc(LexI) is confirmed,
but Acc(BareA) < Acc(BareI) is not. Moreover,
Acc(LexA) > Acc(BareA) is not confirmed and
neither is Acc(LexI) > Acc(BareI).

For English Acc(ORCsg) < Acc(ORCpl) is not
confirmed and Acc(CMPsg) = Acc(CMPpl) is
also not confirmed as the difference is quite sig-
nificant. Also, Acc(ORCsg)< Acc(CMPsg) is not
confirmed but Acc(ORCpl) could be considered
not very different from Acc(CMPpl) .

For French, Acc(ORCsg) < Acc(ORCpl) is
not confirmed, but Acc(CMPsg) and Acc(CMPpl)
are not very different Also, Acc(ORCsg) <
Acc(CMPsg) is confirmed but Acc(ORCpl) is
smaller than Acc(CMPpl).

Appendix B: English sentences

Weak Islands

1. What model do you wonder what man
painted?

2. Who do you wonder who painted?

3. What do you wonder who painted?

4. What landscape do you wonder what man
painted?

5. What book do you wonder what student has
forgotten?

6. What do you wonder who has forgotten?

7. What friend do you wonder what student has
forgotten?

8. Who do you wonder who has forgotten?

9. Who do you wonder who has eaten?

10. What rooster do you wonder what fox has
eaten?

11. What do you wonder who has eaten?

12. What cheese do you wonder what fox has
eaten?

13. What trousers do you wonder what tailor has
looked for?

14. What do wonder who has looked for?

15. Who do you wonder who has looked for?

16. What customer do you wonder what tailor
has looked for?

17. Who do you wonder who was looking at?

18. What producer do you wonder what actor
was looking at?

19. What do you wonder who was looking at?

20. What do you wonder what actor was looking
at?

21. What do you wonder who has brought?

22. What bag do you wonder what traveller has
brought?

23. What friend do you wonder what traveler has
brought?

24. Who don ou wonder who has brought?

25. What professor do you wonder what student
has appreciated?

26. Who do you wonder who has appreciated?

27. What do you wonder who has appreciated?

28. What course do you wonder what student has
appreciated?

29. What exam do you wonder what intern has
feared?

30. What do you wonder who has feared?
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31. What doctor do you wonder what intern has
feared?

32. Who do you wonder who has feared?

33. Who do you wonder who has heard?

34. What keeper do you wonder what animal has
heard?

35. What noise do you wonder what animal has
heard?

36. What do you wonder who has heard?

37. What number do you wonder what baby-
sitter has kept?

38. What do you wonder who has kept?

39. Who do you wonder who has kept?

40. What baby do you wonder what baby-sitter
has kept?

41. Who do you wonder who has regretted?

42. What colleague do you wonder what director
has regretted?

43. What advice do you wonder what counsellor
has regretted?

44. What do you wonder who has regretted?

45. What speech do you wonder what guest has
listened to?

46. What do you wonder who has listened to?

47. What speaker do you wonder what guest has
listened to?

48. Who do you wonder who has listened to?

49. Who do you wonder who has taken pictures
of?

50. What model do you wonder what artist has
taken pictures of?

51. What painting do you wonder what artist has
taken pictures of?

52. What do you wonder who has taken pictures
of?

53. What hat do you wonder what designer has
chosen?

54. What do you wonder who has chosen?

55. What model do you wonder what designer
has chosen?

56. Who do you wonder who has chosen?

57. What customer do you wonder what em-
ployee has been waiting for?

58. Who do you wonder who has been waiting
for?

59. What do you wonder who has been waiting
for?

60. What salary do you wonder what employee
has been waiting for?

61. What do you wonder who has appreciated?

62. What gift do you wonder what winner has ap-
preciated?

63. What athlete do you wonder what winner has
appreciated?

64. Who don ou wonder who has appreciated?

65. What athlete do you wonder what winner has
appreciated?

66. Who do you wonder who has appreciated?

67. What do you wonder who has appreciated?

68. What gift do you wonder what winner has ap-
preciated?

69. What hero do you know what veteran had
met?

70. Who do you know who has met?

71. What day ou know who has met?

72. What challenge do you know what veteran
has met?

73. What necklace do you know what student has
lost?

74. What do you know who has lost?

75. What friend do you know what student has
lost?

76. Who do you know who has lost?

77. What actor do you know what viewer loved?
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78. Who do you know who loved?

79. What movie do you know what viewer loved?

80. What do you know who loved?

81. What do you know who carried?

82. What suit do you know what singer carried?

83. What fan do you know what singer carried?

84. Who do you know who carried?

85. What bore do you know what pedestrian has
found?

86. Who do you know who has found?

87. What do you know who has found?

88. What wallet do you know what pedestrian
has found?

89. What do you know who has found?

90. Who do you know who has found?

91. What treasure do you know what child has
found?

92. What friend do you know what child has
found?

93. Who do you know who has abandoned?

94. What child do you know what man has aban-
doned?

95. What do you know who has abandoned?

96. What apartment do you know what man has
abandoned?

97. What do you know who has filmed?

98. What documentary do you know what cam-
eraman has filmed?

99. Who do you know who has filmed?

100. What actor do you know what cameraman
has filmed?

101. What attacker dont you know what man has
defeated?

102. Who dont you know who has defeated?

103. What cancer dont you know what man has
defeated?

104. What dont you know who has defeated?

105. What dont you know who has kidnapped?

106. What evidence dont you know what kidnap-
per has concealed?

107. Who dont you know who has kidnapped?

108. What orphan dont you know what kidnapper
has concealed?

109. Who dont you know who has left?

110. What friend dont you know what researcher
has left?

111. What country dont you know what researcher
has left?

112. What dont you know who has left?

113. What dont you know who has followed?

114. What studies dont you know what doctoral
student has followed?

115. What intern dont you know what doctoral
student has followed?

116. Who dont you know who has followed?

117. Who dont you know who has run over?

118. What pedestrian dont you know what driver
has run over?

119. What bicycle dont you know what driver has
run over?

120. What dont you know who has run over?

121. What difficulties dont you know what ap-
prentice has met?

122. What dont you know who has met?

123. Who dont you know who has met?

124. What instructor dont you know what appren-
tice has met?

125. What criminal dont you know what lawyer
denounced?

126. Who dont you know who denounced?

127. What dont you know who denounced?
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128. What abuse dont you know what lawyer de-
nounced?

129. What dont you know who decorated?

130. What banner dont you know what general
decorated?

131. Who dont you know who decorated?

132. What lieutenant dont you know what general
decorated?

Object Relative Clauses
1. Julia points out to the student that the speaker

has been yawning frequently from the begin-
ning.

2. Paul explains to the voter that the politician
has been clearly lying since the elections.

3. Sebastian reveals to the patient that the tran-
quilliser has been acting progressively for a
year.

4. Jerome points out to the prisoner that the war-
den sometimes comes into the courtyard.

5. Charles explains to the victim that the treat-
ment is starting slowly but surely.

6. Benjamin reminds the teen-ager that the edu-
cator has been drinking frequently for a few
years.

7. Bernard reminds the gamblers that the casino
is closing unfortunately very soon.

8. Laura says to the shepherds that the sheep is
bleeting stupidly after the shearing.

9. Peter announces to the candidates that the
jury will deliberate firmly after the audition.

10. Mark repeats to the people that the unhappi-
ness continues inevitably after the tragedy.

11. Claire reminds the workers that the fireplace
has been smoking a lot since the works.

12. Patricia says to the customers that the hat is
very pleasing because of the feathers.

13. Fred smiles to the child that the priest has
been blessing happily after each service.

14. Lise speaks to the woman whose weight the
diet is reducing surprisingly easily.

15. Giles speaks to the worker that the effort has
been tiring inevitably with time.

16. Jack thinks of the owner that the stress
has been aging prematurely despite the anti-
anxiety medications.

17. Patrick thinks of the family that the holidays
have been reuniting every year for ten days.

18. Louise smiles to the girl that the witch fright-
ens on purpose for Halloween.

19. Aude is liked by the athletes that the massage
relaxes always after the training.

20. Luke thinks of the girls that the seducer has
been adressing assiduously for an hour.

21. Anne speaks to the actors that the audience
has been applauding frantically after each
show.

22. Joan speaks to the neighbours that the excur-
sion has rarely enthused at the end of the year.

23. Joan calls the lawyers that the disappoint-
ment embitters inevitably after the trial.

24. Roland smiles to the offenders that the po-
liceman has been investigating secretly for a
month.

25. Julia smiles to the students that the speaker
has been putting to sleep seriously from the
beginning.

26. Paul thinks of the voters that the politician
has been frankly disappointing since the elec-
tions.

27. Sebastian smiles to the patients that the tran-
quilliser has been weakening progressively
for a year.

28. Jerome talks to the prisoners that the warden
sometimes lets out into the courtyard.

29. Charles smiles to the victims that the treat-
ment is curing slowly but surely.

30. Benjamin thinks of the teen-agers that the ed-
ucator has been beating often for a few years.

31. Bernard reminds the gambler that the casino
ruins unfortunately very fast.
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32. Laura smiles to the shepherd that the sheep is
following stupidly after the shearing.

33. Peter calls the candidate that the jury will
firmly wait for after the audition.

34. Mark thinks of the people that the unhappi-
ness unites inevitably after the tragedy.

35. Claire attracts the worker that the fireplace
has blackened a lot since the works.

36. Patricia talks to the customer that the hat
makes tall because of the feathers.

37. Fred tells the children that the priest has been
leaving happily after each service.

38. Lise promises the women that the diet can be
managed surprisingly easily.

39. Giles reminds the workers that the effort will
double inevitably with time.

40. Jack explains the owners that stress arrives
prematurely despite the anti-anxiety medica-
tions.

41. Patrick repeats to the families that the holi-
days last every year for ten days.

42. Louise repeats to the girls that the witch
makes grimaces on purpose for Halloween.

43. Aude repeats to the athlete that the massage
always begins after the training.

44. Luke tells the girl that the seducer has been
chatting untiringly for an hour.

45. Anne reminds the actor that the audience has
been laughing frantically after each show.

46. Joan reminds the neighbour that the excur-
sion has rarely failed at the end of the year.

47. Joan reminds the lawyer that the disappoint-
ment remains inevitably after the trial.

48. Roland points out to the offender that the po-
liceman has been intervening secretly for a
month.

49. Julia points out to the students that the
speaker has been yawning frequently from
the beginning.

50. Paul explains to the voters that the politician
has been clearly lying since the elections.

51. Sebastian reveals to the patients that the tran-
quilliser has been acting progressively for a
year.

52. Jerome points out to the prisoners that the
warden sometimes comes into the courtyard.

53. Charles explains to the victims that the treat-
ment is starting slowly but surely.

54. Benjamin reminds the teen-agers that the ed-
ucator has been drinking frequently for a few
years.

55. Bernard reminds the gambler that the casino
is closing unfortunately very soon.

56. Laura says to the shepherd that the sheep is
bleeting stupidly after the shearing.

57. Peter announces to the candidate that the jury
will deliberate firmly after the audition.

58. Mark repeats to the population that the
unhappiness continues inevitably after the
tragedy.

59. Claire reminds the worker that the fireplace
has been smoking a lot since the works.

60. Patricia says to the customer that the hat is
very pleasing because of the feathers.

61. Fred smiles to the children that the priest has
been blessing happily after each service.

62. Lise speaks to the women whose weight the
diet is reducing surprisingly easily.

63. Giles speaks to the workers that the effort has
been tiring inevitably with time.

64. Jack thinks of the owners that the stress
has been aging prematurely despite the anti-
anxiety medications.

65. Patrick thinks of the families that the holidays
have been reuniting every year for ten days.

66. Louise smiles to the girls that the witch
frightens on purpose for Halloween.

67. Aude is liked by the athlete that the massage
relaxes always after the training.
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68. Luke thinks of the girl that the seducer has
been adressing assiduously for an hour.

69. Anne speaks to the actor that the audience has
been applauding frantically after each show.

70. Joan speaks to the neighbour that the excur-
sion has rarely enthused at the end of the year.

71. Joan calls the lawyer that the disappointment
embitters inevitably after the trial.

72. Roland smiles to the offender that the po-
liceman has been investigating secretly for a
month.

73. Julia smiles to the student that the speaker has
been putting to sleep seriously from the be-
ginning.

74. Paul thinks of the voter that the politician
has been frankly disappointing since the elec-
tions.

75. Sebastian smiles to the patient that the tran-
quilliser has been weakening progressively
for a year.

76. Jerome talks to the prisoner that the warden
sometimes lets out into the courtyard.

77. Charles smiles to the victim that the treatment
is curing slowly but surely.

78. Benjamin thinks of the teen-ager that the ed-
ucator has been beating often for a few years.

79. Bernard reminds the gamblers that the casino
ruins unfortunately very fast.

80. Laura smiles to the shepherds that the sheep
is following stupidly after the shearing.

81. Peter calls the candidates that the jury will
firmly wait for after the audition.

82. Mark thinks of the people that the unhappi-
ness unites inevitably after the tragedy.

83. Claire attracts the workers that the fireplace
has blackened a lot since the works.

84. Patricia talks to the customers that the hat
makes tall because of the feathers.

85. Fred tells the child that the priest has been
leaving happily after each service.

86. Lise promises the woman that the diet can be
managed surprisingly easily.

87. Giles reminds the worker that the effort will
double inevitably with time.

88. Jack explains the owner that stress arrives
prematurely despite the anti-anxiety medica-
tions.

89. Patrick repeats to the family that the holidays
last every year for ten days.

90. Louise repeats to the girl that the witch makes
grimaces on purpose for Halloween.

91. Aude repeats to the athletes that the massage
always begins after the training.

92. Luke tells the girls that the seducer has been
chatting untiringly for an hour.

93. Anne reminds the actors that the audience has
been laughing frantically after each show.

94. Joan reminds the neighbours that the excur-
sion has rarely failed at the end of the year.

95. Joan reminds the lawyers that the disappoint-
ment remainsinevitably after the trial.

96. Roland points out to the offenders that the po-
liceman has been intervening secretly for a
month.
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Abstract

Derivation is a type of a word-formation pro-
cess which creates new words from exist-
ing ones by adding, changing or deleting af-
fixes. In this paper, we explore the potential
of word embeddings to identify properties of
word derivations in the morphologically rich
Czech language. We extract derivational re-
lations between pairs of words from DeriNet,
a Czech lexical network, which organizes al-
most one million Czech lemmata into deriva-
tional trees. For each such pair, we compute
the difference of the embeddings of the two
words, and perform unsupervised clustering of
the resulting vectors. Our results show that
these clusters largely match manually anno-
tated semantic categories of the derivational
relations (e.g. the relation ‘bake–baker’ be-
longs to category ‘actor’, and a correct clus-
tering puts it into the same cluster as ‘govern–
governor’).

1 Introduction

Word embeddings are a way of representing dis-
crete words in a continuous space. Embeddings
are used in neural networks trained for various
tasks, e.g. in neural machine translation (NMT),
or can be pre-trained in various versions of lan-
guage models to be used as continuous represen-
tations of words for other tasks. One of the most
popular frameworks for training word embeddings
is word2vec (Mikolov et al., 2013).

In this paper, we examine whether the word em-
beddings (trained on the whole words, not using
any subword units or individual characters) cap-
ture derivational relations. We do this to better
understand what different neural networks repre-
sent about words and to provide a base for further
development of derivational networks.

Derivation is a type of word-formation process
which creates new words from existing ones by

živitVerb “to nourish”
živenýAdj “nourished”
oživitVerb “to revive”

oživenýAdj “revived”
oživovatVerb “to be reviving”

živnýAdj “nutrient” (e.g. substrate)
živnostNoun “craft”

živnostnı́kNoun “craftsman”

Figure 1: An excerpt from a derivational family rooted
in the word “živit” (to nourish, to feed). Note that
the word “oživený” (revived, rejuvenated), which can
be derived from either “oživit” (to revive) or “živený”
(nourished, fed), is arbitrarily connected only to the for-
mer, in order to simplify the derivational family to a
rooted tree.

adding, changing or deleting affixes. For example,
the word “collide” can be used as a base for deriv-
ing e.g. the words “collider” or “collision”. The
derived word “collision” can be, in turn, used as a
base for “collisional”.

Words derived from a single root create deriva-
tional families, which can be approximated by di-
rected acyclic graphs or (with some loss of infor-
mation) trees; see Figure 1 for an example.

Derivational relations have two sides: form-
based and semantic. For a pair of words to be
considered derivationally related, the two words
must be related both by their phonological or or-
thographical forms and by their meaning.

2 Related work

We have not found any prior work aimed specifi-
cally at derivational relations in word embeddings.

Cotterell and Schütze (2018) present a model of
the semantics and structure of derivationally com-
plex words. Our work differs in that we are exam-
ining how are derivational relations represented in
preexisting applications.
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Gladkova et al. (2016) detect morphological and
semantic relations (including some derivational re-
lations) with word embeddings. Their approach is
analogy-based and they conclude that their “exper-
iments show that derivational and lexicographic
relations remain a major challenge”.

Gábor et al. (2017) explore vector spaces for
semantic relations, using unsupervised clustering.
They evaluate the clustering on 9 semantic relation
classes. Our approach is similar, but we focus on
derivational relations.

Soricut and Och (2015) use word embeddings
to induce morphological segmentation in an un-
supervised manner. Some of the relations between
words that this approach implicitly uses are deriva-
tional.

3 Data

In this section, we describe the network of deriva-
tional relations and the corpora used in our exper-
iments.

3.1 DeriNet

There are several large networks of deriva-
tional relations available for use in research, e.g.
CELEX for Dutch, English and German (Baayen
et al., 1995), Démonette for French (Hathout
and Namer, 2014), DeriNet for Czech (Ševčı́ková
and Žabokrtský, 2014) or DErivBase for German
(Zeller et al., 2014). A more complete listing was
published by Kyjánek (2018).

For our research, we chose to use the DeriNet-
1.6 network mainly due to its large size – with
over a million lemmata (citation forms), it is over
three times larger than the second largest resource
listed by Kyjánek (2018), DErivBase with 280,336
lemmata. Also, the authors are native speakers of
Czech, which was necessary for the annotation of
derivation classes (see Section 4 below). Large
corpora are available for Czech (Bojar et al., 2016;
Hnátková et al., 2014), which we need for training
the word embeddings.

DeriNet is a network which approximates
derivational families using trees – the lemmata it
contains are annotated with a single derivational
parent or nothing in case the word is either not de-
rived or a parent has not been assigned yet. It con-
tains 1,025,095 lemmata connected by 803,404 re-
lations.

There is a fine line between derivation and in-
flection and in general, these processes are hard

to separate from each other (see e.g. ten Hacken,
2014). Both change base words using affixes, but
they differ in the type of the outcome: derivation
creates new words, inflection only creates forms
of the base word. DeriNet differentiates derivation
from inflection the same way the Czech morpho-
logical tool MorphoDiTa (Straková et al., 2014)
does – it considers the processes handled by the
MorphoDiTa tool to be inflectional and other affix-
ations derivational. This is in line with the Czech
linguistic tradition (Dokulil et al., 1986), except
perhaps for the handling of the two main border-
line cases, whose categorization varies: negation
(considered inflectional by us) and verbal aspect
changes (considered derivational).

3.2 Word Embeddings
In our experiments, we compare the word em-
beddings obtained by the standard word2vec
skip-gram model (Mikolov et al., 2013) with
word embeddings learned when training three dif-
ferent neural machine translation (NMT) mod-
els (Sutskever et al., 2014; Bahdanau et al., 2015;
Vaswani et al., 2017). The size of word embed-
dings is 512 for all the models.

NMT models are trained between English and
Czech in both directions. We use the CzEng 1.6
parallel corpus (Bojar et al., 2016), section c-
fiction (78 million tokens) and the Neural Monkey
toolkit (Helcl et al., 2018)1 for training the models.
We experiment with three architectures:

• RNN: a simple recurrent neural (RNN) archi-
tecture (Sutskever et al., 2014) without atten-
tion mechanism, LSTM size 1,024

• RNN+a: RNN architecture with attention
mechanism (Bahdanau et al., 2015), and

• Transf.: the Transformer (big) architecture
(Vaswani et al., 2017) with 6 layers, hidden
size 4,096 and 16 attention heads.

Unlike the standard setting in which embeddings
of the source and the target words are shared
in a common vector space, we use two sepa-
rated dictionaries (each containing 25,000 word
forms). We also do not use any kind of sub-word
units. By this setting, we assure that the word
vectors are not influenced by any other words
that do not belong to the examined language.
We extract the encoder word-embeddings from

1https://github.com/ufal/neuralmonkey

174



Czech-English NMT model and the decoder word-
embeddings from the English-Czech model.

The word2vec system is trained on the Czech
National Corpus (Hnátková et al., 2014), version
syn 4, which has 4.6 billion tokens. It is a common
practice (Mikolov et al., 2013) to normalize the re-
sulting vectors, so that the length of each vector is
equal to 1. We report results for both normalized
and non-normalized vectors. In order to compare
word2vec model with NMT models, we also train
word2vec on the Czech part of the data used for
training the NMT models.

All the word embeddings are trained on the
word forms. To assign an embedding to the
lemma from DeriNet, we simply select the embed-
ding of the word form which is the same as the
given lemma.

4 Annotation of Derivational Relations

The derivational relations in DeriNet are not la-
belled in any way. In this section, we describe
a simple method of automatic division of rela-
tions into derivation types according to changes in
prefixes and suffixes and then manual merging of
these types into derivation classes.

When assigning a derivation type to a relation,
we first identify the longest common substring of
the two related words. For instance, for the rela-
tion “padat→ padnout”, the longest common sub-
string is “pad”. Then, we identify prefixes and suf-
fixes using the ‘+’ sign for addition and ‘-’ sign for
deletion. A sign after the string indicates a pre-
fix and a sign before the string indicates a suffix.
Our example “padat→ padnout” would therefore
belong to the derivation type “-at +nout”, which
means deleting the suffix “at” and adding the suf-
fix “nout”. Derivation type “na+” means to add
the prefix “na”, etc.

When applied on the DeriNet relations, we
identified 5,371 derivation types in total. We se-
lected only 71 most frequent types (only those
that have at least 250 instances in DeriNet).2 Af-
ter that, two annotators3 manually merged the 71
derivation types into 21 classes. The classes of
derivations are listed in Table 1. The class super+
contains derivations from nouns to nouns and from
adjectives to adjectives. Except for insignificant

2We count only such relations, for which both the lem-
mata occur at least 5 times in the Czech National Corpus.

3The annotators are both native speakers of Czech and
they worked together in one shared document.

noise in the data, each of the rest of the classes
contain only derivations for one POS pair.

The classes were designed in a way to separate
different meanings of derivations where possible,
and keep different types with the same meaning
together (e.g. ‘+ová’ and ‘-a +ová’, which derive
feminine surnames).

5 Unsupervised Clustering

We want to know whether and how the deriva-
tional relations are captured in the embedding
space. We hypothetize that in that case the dif-
ferences between embedding vectors for the words
in a derivational relation would cluster according
to the classes we defined.

We perform unsupervised clustering of such dif-
ferences using three algorithms:
• kmeans: K-means algorithm (MacQueen,

1967),4

• agg: Hierarchical agglomerative clustering
using Euclidean distance and Ward’s linkage
criterion (Joe H. Ward, 1963),5

• agg (cos): The same hierarchical agglomera-
tive clustering, but using cosine distance in-
stead of Euclidean.

For each word pair W1 and W2, where W1 is the
derivational parent of W2 and their embeddings v1
and v2, the clustering algorithm only gets the diffe-
rience vector d = v2 − v1. The information about
the word forms and their derivation type is only
used in evaluation.

We evaluate the clustering quality by homo-
geneity (H), completeness (C) and V-measure (V)
(Rosenberg and Hirschberg, 2007). These are
entropy based methods, which can be compared
across any number of clusters. Homogeneity is a
measure of the ratio of instances of a single class
pertaining to a single cluster. Completeness mea-
sures the ratio of the member of a given class that
is assigned to the same cluster. V-measure is com-
puted as the harmonic mean of homogeneity and
completeness scores.

Following Gábor et al. (2017), we also report
the accuracy (A) that would be achieved by the
clustering if we assigned every cluster to the class
that is most frequent in this cluster and then used
the clustering as a classifier. The number of

4We used standard Euclidean distance. The cosine dis-
tance does not work at all.

5We experiment also with other linking criteria, however,
they performed much worse compared to the Ward’s crite-
rion.
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POS class syntactic change
A→D adjective→adverb -ý +y, -ı́ +ě, -ý +ě, -ý +e
A→N designation -ý +ec, -ý +ka
A→N feature -ı́ +ost, -ý +ost
A→N subject -ký +tvı́
N→A pertaining to +ový, -a +ový, +nı́, -a +nı́, -ce +čnı́,

+ný, +ský, -e +cký, -ka +cký
N→A possessive +ův, -a +in, -o +ův, -ek +kův, -a +ův
N→N diminutization +ek, -k +ček
N→N instrument / scientist -ie
N→N man→woman -a +ová, +ka, +ová, +vá, -ý +á,

-ı́k +ice
N→N man→woman / diminutization -a +ka

N→N/A→A super super+
N→V noun→verb +ovat
V→A ability +elný
V→A acting -it +ı́cı́, -ovat +ujı́cı́, -t +jı́cı́
V→A general property -t +vý
V→A patient -t +ný, -it +ený, -it +ěný, -nout +lý,

-t +lý, -out +utý
V→A purpose -t +cı́
V→N actor +el, -t +č
V→N nominalization -t +nı́, -at +ánı́, -it +enı́, -it +ěnı́, -out

+utı́, -ovat +ace
V→V imperfectivization -at +ávat, -it +ovat
V→V perfectivization -at +nout, do+, na+, o+, od+, po+,

pro+, pře+, při+, roz+, u+, vy+, z+,
za+

Table 1: Classes of Czech derivations.
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Method cls H C V A
normalized:
kmeans 9 67.77 56.44 61.59 77.00
agg 10 62.30 52.88 57.20 72.81
agg (cos) 8 38.90 63.06 48.12 47.48
not normalized:
agg (cos) 8 37.93 64.97 47.90 46.38
agg 9 41.19 39.92 40.54 50.09
kmeans 7 39.92 37.38 38.61 46.92

Table 2: Comparison of different clustering methods on
differences of normalized and non-normalized word-
vectors trained on Czech National Corpus and cluster-
ing into 21 clusters. The results are ordered according
to V-measure.

model clust. H C V A
baseline 15 3.79 2.70 3.15 30.82
word2vec 15 75.98 57.82 65.66 83.06
baseline 20 5.12 3.30 4.01 31.32
word2vec 20 77.00 54.04 63.50 84.26
baseline 21 5.31 3.37 4.12 30.87
word2vec 21 77.50 53.17 63.07 84.12
baseline 22 5.49 3.43 4.22 30.98
word2vec 22 77.07 52.15 62.20 83.97
baseline 25 6.13 3.68 4.60 31.41
word2vec 25 80.20 53.11 63.89 87.37

Table 3: Effect of number of clusters with K-means
(averaged over 10 runs).

classes (cls) shows how many classes were as-
signed to at least one of the clusters.

6 Results

The results on the vectors trained on Czech Na-
tional Corpus and comparison of normalized and
non-normalized versions are summarized in Ta-
ble 2. We can see that the normalization helps both
clustering methods significantly. The best method,
i.e. the K-means used on the normalized word vec-
tors is used in the next experiments.

In Table 3, we examine the effect of the number
of clusters on the clustering quality. We compare
our models to the baseline, in which each deriva-
tion pair is assigned to a random cluster. The table
shows that regardless of the number of clusters,
the clustering on the word2vec embeddings per-
forms better than the random baseline. It shows
that as we allow the K-means algorithm to form
more clusters, the homogeneity increases and the
completeness decreases. The V-measure is highest

model cls H C V A
word2vec 7.9 77.53 53.70 63.45 84.18
RNN dec. 6.8 73.09 52.20 60.89 83.70
RNN+a enc. 6.4 59.44 44.92 51.14 76.10
Transf. enc. 6.4 60.30 44.24 51.02 78.29
RNN+a dec. 6.8 60.94 40.25 48.48 76.40
RNN enc. 6.4 51.90 45.13 48.25 70.49
Transf. dec. 5.5 44.21 30.56 36.14 63.41
baseline 2.8 5.37 3.41 4.17 31.15
POS baseline 8 52.63100.00 68.97 45.83

Table 4: Results on vectors learned by the NMT models
compared to word2vec. K-means clustering with 21
clusters. The results are averaged over 10 independent
runs.

with the lowest number of clusters. This may be
because the clusters are of uneven size. The accu-
racy on the word2vec model embeddings is high-
est around the number of clusters that corresponds
to the number of classes in the data.

Table 4 presents the results of clustering the dif-
ferences of embedding vectors from NMT models.
The cls columns shows how many different classes
are assigned. Because some classes are more fre-
quent than others, they may form the majority in
multiple clusters. This is why random baseline
assignes less than 3 different classes on average.
We see that word2vec (trained on the Czech side
of the parallel corpus) captures more information
about derivations than NMT models. RNN mod-
els store more information in the embeddings if
they do not utilize the attention mechanism. Even
less information is stored in the embeddings by
the Transformer architecture. This is probably be-
cause while in attention-less model the embedding
is the only set of parameters directly associated
with the given word, in the attention model the
information can be split between embeddings and
the attention weights. The transformer architec-
ture with residual connections has even more pa-
rameters associated with a given word. Decoder
in general stores more information about relation
between words in the embeddings than encoder,
presumably because it partially supplies the role
of a language model.

We also evaluated clustering by POS tags (POS
baseline in Table 4), where we created 8 clusters
based on the POS tags of the parent and child
words in the derivational relation. This cluster-
ing has a high V-measure, because its complete-
ness is 100 % (the super+ class is not present in
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the NMT data and for all the other classes it holds
that each member of a class has the same parent-
child POS tags pair). But it has lower accuracy
than all the other models (except for the random
baseline), showing that the unsupervised cluster-
ing does more than just clustering by POS.

The data naturally contains classes with signif-
icant differences in size. To prevent the small
classes from being underrepresented, we also eval-
uated the clustering on a dataset, where the same
number of derivation pairs was sampled from each
class. Results for the experiment with classes
of the same size are listed in Table 5. The re-
sults show that the classification does not rely only
on changes of part-of-speech. Both imperfecti-
zation and perfectivization classses are classified
well (97 % precision, 83 % recall and 93 % preci-
sion, 66 % recall respectively), even though they
are both derivation from verbs to verbs. The only
classes that have both precision and recall under
50 % are those being confused with diminutiza-
tion: man → woman shares one common deriva-
tion type with diminutization, and the class su-
per, which contains only the prefix “super” and
is therefore opposite to diminutization, sharing the
same semantic axis.

7 Conclusion

Our results show that word-level word embed-
dings capture information about semantic classes
of derivational relations between words, despite
not having any information about the orthogra-
phy or morphological makeup of the words, and
therefore not knowing about the formal relation
between the words.

It is possible to cluster differences between
embeddings in derivational relations, and the as-
signed clusters correspond to the semantic classes
of the relations. The word2vec embeddings gener-
ally result in a better clustering than embeddings
from the NMT models, and embeddings from the
decoder of a plain RNN model perform better than
those from NMT models with attention. All these
methods outperform a random-assignment cluster-
ing baseline and POS clustering baseline.
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Abstract
Deep learning sequence models have led to a
marked increase in performance for a range of
Natural Language Processing tasks, but it re-
mains an open question whether they are able
to induce proper hierarchical generalizations
for representing natural language from linear
input alone. Work using artificial languages as
training input has shown that LSTMs are ca-
pable of inducing the stack-like data structures
required to represent context-free and cer-
tain mildly context-sensitive languages (Weiss
et al., 2018)—formal language classes which
correspond in theory to the hierarchical struc-
tures of natural language. Here we present
a suite of experiments probing whether neu-
ral language models trained on linguistic data
induce these stack-like data structures and
deploy them while incrementally predicting
words. We study two natural language phe-
nomena: center embedding sentences and syn-
tactic island constraints on the filler–gap de-
pendency. In order to properly predict words
in these structures, a model must be able to
temporarily suppress certain expectations and
then recover those expectations later, essen-
tially pushing and popping these expectations
on a stack. Our results provide evidence that
models can successfully suppress and recover
expectations in many cases, but do not fully
recover their previous grammatical state.

1 Introduction

Deep learning sequence models such as RNNs (El-
man, 1990; Hochreiter and Schmidhuber, 1997)
have led to a marked increase in performance for a
range of Natural Language Processing tasks (Joze-
fowicz et al., 2016; Dai et al., 2019), but it re-
mains an open question whether they are able
to induce hierarchical generalizations from lin-
ear input alone. Answering this question is im-
portant both for technical outcomes—models with
explicit hierarchical structure show performance

gains, at least when training on relatively small
datasets (Choe and Charniak, 2016; Dyer et al.,
2016; Kuncoro et al., 2016)—and for the sci-
entific aim of understanding what biases, learn-
ing objectives and training regimes led to human-
like linguistic knowledge. Previous work has ap-
proached this question by either examining mod-
els’ internal state (Weiss et al., 2018; Mareček and
Rosa, 2018) or by studying model behavior (El-
man, 1991; Linzen et al., 2016; Futrell et al., 2019;
McCoy et al., 2018).

For this latter approach, much work has as-
sessed sensitivity to hierarchy by examining
whether the expectations associated with long-
distance dependencies can be maintained even in
the presence of intervening distractor words (Gu-
lordava et al., 2018; Marvin and Linzen, 2018).
For example, Linzen et al. (2016) fed RNNs with
the prefix The keys to the cabinet. . . . If models as-
signed higher probability to the grammatical con-
tinuation are over the ungrammatical continuation
is, they can be said to have learned the correct
structural relationship between the subject and the
verb, ignoring the syntactically-irrelevant singular
distractor, the cabinet. Work in this paradigm has
uncovered a complex pattern in terms of what spe-
cific hierarchical structures are and are not repre-
sented by neural language models.

At the same time, work using artificial lan-
guages as input has demonstrated that LSTMs are
capable of inducing the data structures required to
produce hierarchically-structured sequences. For
example, Weiss et al. (2018) showed that LSTMs
can learn to produce strings of the form anbn,
corresponding to context-free languages (Chom-
sky, 1956), and anbncn, corresponding to mildly
context-sensitive languages. Producing these
strings requires a stack-like data structure where
some number of as are pushed onto the stack so
that the same number of bs can be popped from

181



S

VP1

glittered

NP1

CP

S

VP2

stole

NP2

CP

...

the thief

that

The diamond

The diamond that thief . . . stole glittered.
↑ PUSH ↑ PUSH ↑POP ↑POP

Figure 1: Anatomy of a center embedding sentence. At
each point marked PUSH, comprehenders need to push
the expectations generated by the subject noun onto a
stack-like data structure, and suppress those expecta-
tions going forward. At the points marked POP, they
must recover those expectations.

it. The hierarchical structures of natural language
are widely believed to be mildly context-sensitive
(Shieber, 1985; Weir, 1988; Seki et al., 1991; Joshi
and Schabes, 1997; Kuhlmann, 2013), so this re-
sult shows that LSTMs are practically capable of
inducing the proper data structures to handle the
hierarchical structure of natural language.

What remains to be seen in a general way is
that LSTMs induce and use these structures when
trained on natural language input, rather than ar-
tificial language input. In this work, we present
two suites of experiments that probe for evidence
of hierarchical generalizations using two linguis-
tic structures: center embedding sentences and
syntactic island constraints on the filler–gap de-
pendency. These structures exemplify context-free
hierarchical structure in natural language. In or-
der to correctly predict words in these structures,
a model must use something like a stack data
structure: certain expectations must be temporar-
ily suppressed (pushed onto a stack), then recov-
ered later at the right time and in the right order
(popped from the stack in last-in-first-out order),
as shown in Figure 1.

For both of these contexts we assess how well
RNNs can suppress local expectations within in-
tervening blocking-structures and recover expec-
tations on the far side. Success at these tasks
would provide evidence that models not only ig-
nore intervening material, but modulate and re-
cover local expectations based on relative location

within a syntactic structure.
Center embeddings are sentences in which a

clause is embedded within the center of another
clause, such that the expectations based on the ex-
ternal clause must be temporarily suppressed dur-
ing the internal clause, and then recovered once
the internal clause is complete. Such sentences
were used as the original argument that natural
language is not a regular language, but rather at
least context-free (Chomsky, 1956). We find that
neural language models can successfully suppress
and recover expectations in sentences with two-
layer embedding depth, but their accuracy depends
on the particular lexical items used.

Syntactic Islands are structural configurations
that block the filler–gap dependency, which is the
dependency between a wh-word, such as who or
what, and a gap, which is an empty syntactic posi-
tion. Using controlled experimental material, we
find that models are able to suppress expectations
for gaps inside two island constructions and par-
tially recover them on the far side. However, the
recovered expectation is far weaker than in non-
island sentences and only robust in one of the
models tested. Together, both experiments provide
new evidence that RNN language models can ap-
proximate a soft notion of hierarchy to drive pre-
dictions, suppressing local expectations in some
contexts and reactivating them based on relative
syntactic position.

Overall our results show that the LSTMs tested
have learned an approximate stack-like data struc-
ture to predict natural language, but the deploy-
ment of this structure depends on the particular
lexical items used, and the recovery of expecta-
tions is often imperfect, especially for structures
requiring deep stacks.

2 Experimental Methodology

In this work, we adapt psycholinguistic experi-
mental techniques for neural model assessment.
In this paradigm, neural models are fed hand-
crafted sentences designed to belie underlying net-
work knowledge. Following standard practice
in psycholinguistics, statistical significance is de-
rived from linear mixed-effects models (Baayen
et al., 2008), with sum-coded fixed-effect predic-
tors and maximal random slope structure (Barr
et al., 2013). This method permits us to factor
out by-item variation and focus on differences in
model behavior on materials differing only in the
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linguistic features of critical interest. 1

2.1 Neural Models Tested

We study the behavior of two LSTM Language
Models, one Transformer model and one base-
line N-gram model, all trained on English text.
The first LSTM is the “BIG LSTM+CNN Inputs”
from (Jozefowicz et al., 2016), which we will re-
fer to as the Google Model. It was trained on
the One Billion Word benchmark (Chelba et al.,
2013), with two hidden layers of 8196 per layer
and uses Convolutional Neural Net (CNN) charac-
ter embeddings as input. The second LSTM model
is the best-performing LSTM presented in the sup-
plementary materials of Gulordava et al. (2018),
which we will refer to as the Gulordava Model. It
is much smaller, with 650 hidden units per layer,
and was trained on 90-million words of Wikipedia.
The Google model is current state-of-the art for an
LSTM model unenriched with structural supervi-
sion, and the Gulordava model has been assessed
extensively (e.g. Gulordava et al. 2018; Futrell
et al. 2018; Wilcox et al. 2018; Giulianelli et al.
2018). The transformer model used here is the
one presented in Dai et al. (2019). It was trained
on the Billion Word Benchmark and has 0.8 Bil-
lion parameters. The baseline is a 5-gram lan-
guage model with Kneser-Ney smoothing, trained
on the British National Corpus (Leech, 1992) us-
ing SLIRM V1.5.7 (Stolcke, 2002).

2.2 Dependent Measure: Surprisal

We assess model behavior by measuring the sur-
prisal values RNN language models assign to
each word in a given sentence. Surprisal is the
inverse log probability of a word given its context:

S(xi) =− log2 p(xi|hi−1),

In this case, xi is the current word and hi−1 is
the RNN’s hidden state before processing xi. The
probability is calculated from the RNN’s softmax
layer, and the logarithm is taken in base 2 so that
the surprisal is measured in bits. The surprisal at a
certain word tells us the extent to which that word
is expected under the language model’s probabil-
ity distribution. There is a strong tradition linking
surprisal values derived from language models to
psycholinguistic metrics, such as reading times in

1Our studies were preregistered on aspredicted.org:
To see the preregistrations go to http://aspredicted.
org/blind.php?x=X where X ∈ {uw873w,95gj46}.

humans (Hale, 2001; Levy, 2008; Smith and Levy,
2013; Goodkind and Bicknell, 2018).

3 Center Embeddings

In a center embedding sentence, the subject of a
matrix (or main) clause is modified by an object-
extracted relative clause. Because any Noun
Phrase can serve as the host of a relative clause,
the subject of the embedded relative clause can
recursively serve as the start of a second center-
embedding sentence, and so on ad infinitum, pro-
vided that there are an equal number of subjects
and verbs, as in Example (1).
(1) The water [that the customer [that the waiterx

disliked]y drank]z was cold.
Center embedding sentences exemplify the pattern
anbn, characteristic of context-free grammars, for
natural language. However, the structure requires
more than just counting: it is not sufficient that
the number of verbs match the number of subjects,
rather the verbs must semantically and syntacti-
cally match their appropriate subjects and objects.
The verb drank is to be expected at the position
marked y in Example (1), but not at x or z, be-
cause it corresponds to the subject customer and
the object water. An incremental predictor must
suppress an expectation for the word drink during
the region containing x, and then recover this ex-
pectation at y.

To assess whether the RNN LMs tested could
suppress expectations for verbs set up by subjects
and activate them in the correct order, we created
40 test items following the template in (2).
(2) a. The diamond that the thief stoleV P1

glitteredV P2. [match, embedding]
b. The diamond that the thief glitteredV P1

stoleV P2. [mismatch, embedding]
c. The diamond that the thief in the black

mask stoleV P1 glitteredV P2. [match,
embedding-long]

d. The diamond that the thief in the black
mask glitteredV P1 stoleV P2. [mismatch,
embedding-long]

e. The thief stoleV P1 / The diamond
glitteredV P2 [match, sentence]

f. The thief glitteredV P1 / The diamond
stoleV P2 [mismatch, sentence]

We use plausibility match of ordering effect to as-
sess whether the model was linking the right sub-
ject with the right verb. For example, it is plau-
sible that a diamond glitters and a thief steals, as

183



Figure 2: Model results for center embedding sentences. Higher values indicate stronger divergence between
the ordering effect match and mismatch conditions, indicating that models have learned the proper subject-verb
pairings for the center embedding construction.

in (2-a), but implausible that a thief glitters and a
diamond steals as in (2-b). In our test sentences
the matrix clause subject tended to be an inani-
mate entity that took an intransitive verb, and the
relative clause subject tended to be an animate en-
tity that took a transitive verb. For each item, we
measure the strength of the models’ expectation
in terms of what we call the ordering effect at
each verb: the surprisal in the [mismatch] condi-
tion minus the surprisal in the [match] condition.
Our prediction is that if a model has learned the
ordering restrictions imposed by the grammatical
rules that govern English center embedding and
uses these restrictions to appropriately guide pre-
dictions about upcoming words, the ordering ef-
fect should be at least as great in the two [embed-
ding] conditions as in the [sentence] conditions.
We report the summed ordering effect across the
two VPs, which indicates the difference in sur-
prisal between the two conditions due to specific
order of the two verbs. As control sentences, we
converted each item into a pair of simple subject-
verb sentences with no embedding, as in (2-e)–
(2-f). If the ordering effect for the control sentence
conditions is not positive, it would call into ques-
tion our selection of subject–verb pairs.

The results from this experiment can be seen
in Figure 2, with the N-Gram model at left, the
Transformer model center left and the two LSTM
models at right. Error bars indicate 95% confi-
dence intervals of across item means, with within-
item means subtracted, as advocated in Masson
and Loftus (2003). The baseline N-Gram model
shows a positive ordering effect in the control Sen-

tence conditions, however the ordering effect is
not significantly different from zero in the two Em-
bedding conditions. For the Transformer and two
LSTM models, the ordering effect is positive in
the control Sentence conditions, as well as in the
two critical Embedding conditions. Examining the
contributions of the individual items themselves,
we find that the surprisal difference at the second
(matrix) verb is responsible for the majority of the
effect. That is, given the context The diamond that
the thief ... the continuations stole and glittered
are equally likely. However, given the partially-
saturated contexts in (3), the continuation glittered
is much more likely in (3-a) than the continuation
stole is in (3-b).

(3) a. The diamond that the thief stole...
b. The diamond that the thief glittered...

It is this difference that drives the majority of the
Ordering Effect for the LSTM and Transformer
models. Crucially, this behavior is inconsistent
with a linear approach to subject/verb plausibility
match. If the models had learned only that a se-
mantically plausible verb needed to follow a sub-
ject, then the order of the verbs should have no
effect on surprisal. The positive ordering effect
we see in the two Embedding conditions indicates
the neural models have learned that the outer verb
needs to be associated with the first subject: all
three models exhibit a first-in-last-out approach to
licensing consistent with stack-like representation.

Turning to differences between the three neural
models: For the Gulordava and Transformer mod-
els the ordering effect is higher in the control Sen-
tence and Embedding Short conditions than in the
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Embedding Long conditions, although neither of
the differences are significant. But for the Google
model, the ordering effect is larger in the embed-
ding conditions than in the control sentence con-
dition. Although this increased effect size may
at first glance be surprising, recall that in the em-
bedding conditions, there is more preceding con-
text than in the control-sentence condition that is
available to predict both verbs—including both ar-
guments of the transitive verb. This larger overall
ordering effect in the embedding conditions sug-
gests that the Google model, which is trained on
an order of magnitude more data, may be more ef-
ficiently leveraging this additional preceding con-
text. It remains an open question why the Trans-
former Model, which is trained on the same large
dataset, is unable to leverage similar contextual
cues and maintain equally strong verbal expecta-
tions across the relative clause modifier.

4 Filler–Gap Dependency Licensing

4.1 Measuring the Filler–Gap Dependency

In English, a range of linguistic structures—such
as questions and relative clauses—are formed by
inserting a wh-word and eliding (or gapping) sub-
sequent material. For example, to turn the tran-
sitive sentence in (4-a) into a question, a filler (
who) is inserted at the beginning of the clause, and
the material being questioned (the direct object) is
gapped, which we represent using the underscores
(these are for presentational purposes only and are
not included in test items).

(4) a. The count insulted the hostess yesterday.
b. Who did the count insult yesterday?

Crucially, the filler and the gap depend on each
other, insofar as a filler word is illicit without a
subsequent gap, and a gap is unlicensed without
an upstream filler. Wilcox et al. (2018) established
that the two LSTM language models tested here
learn the filler–gap dependency insofar as they
learn the 2 × 2 contingency between fillers and
gaps. To assess this, for each of their test sentences
they create four items following the four possible
combinations of fillers and gaps, as in (5) (note
that in these and subsequent examples the * indi-
cates ungrammatically).

(5) a. I know that the count insulted the hostess
yesterday. [–FILLER, -GAP]

b.*I know who the count insulted the hostess
yesterday. [+FILLER, -GAP]

c.*I know that the count insulted yesterday.
[–FILLER, +GAP]

d. I know who the count insulted yesterday.
[+FILLER, +GAP]

Their logic is as follows: If the models are learn-
ing that gaps require fillers to be licensed, then the
transition from an object-taking verb to a preposi-
tional phrase that indicates a syntactic gap should
be less surprising in the presence of an upstream,
licensing filler. That is S([–FILLER, +GAP])
should be greater than S([+FILLER, +GAP]) in
the post gap material “yesterday”. We refer to
this difference as the +GAP wh-effect, a large ef-
fect here indicates that the model has learned that
gaps require fillers to be licensed. We measure
the +GAP wh-effect in temporal adjuncts follow-
ing the gap site, as in yesterday in (5).

Additionally, if the models are learning that
fillers set up expectations for gaps, then a filled
argument structure position such as a direct object
should be less surprising in the absence of an up-
stream filler, a phenomena which is known in the
psyhcolinguistics literature as the filled gap effect.
That is, S([+FILLER, –GAP]) should be greater
than S([–FILLER, –GAP]). We refer to this differ-
ence as a -GAP wh-effect, a large effect here in-
dicates that models have learned that fillers set up
expectations for gaps. We measure the -GAP wh-
effect in the embedded verb direct object, e.g. at
“the hostess” in (5).

Wilcox et al. (2018) sum differences into a sin-
gle metric, the wh-licensing interaction, which
they measure in a post-gap temporal adjunct. In
this work, we eschew the wh-licensing and look
instead at the two wh-effects in the +GAP and
-GAP conditions. We do this for two reasons:
First, collapsing all four surprisal values obfus-
cates which part of the contingency the models
learn. It may be the case that the vast majority
of the licensing interaction comes from surprisal
differences in just one of the two conditions, a
fact which would be hard to observe by studying
the full interaction. Second, if upstream fillers set
up expectations for empty argument structure po-
sitions, then the filled gap effect should be most
noticeable on the object itself, not in a subsequent
adjunct. Measuring the wh-effect separately for
each condition allows us to take our measurement
at the precise location where we would expect the
effect to be the largest.
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Figure 3: Island constraints and filling gaps across is-
lands. If node X is an island, then a filler outside X
cannot associate with a gap inside X, but it can asso-
ciate with a filler on the far side of X. For our analyses,
successful learning of an island constraint implies that
we should not see wh-effects at the first part of the ma-
terial δ immediately following the potential gap site,
but we should see wh-effects in ν, following a licit gap
site.

4.2 Licensing Over Syntactic Islands

In addition to basic filler–gap dependency licens-
ing, Wilcox et al. (2018) and Wilcox et al. (2019a)
argue that the RNNs tested show sensitivity to nu-
merous island effects (although see Chowdhury
and Zamparelli (2018) for a contrasting view). Is-
lands are syntactic positions that locally block the
filler–gap dependency (Ross, 1967). For example,
fillers can associate with gaps located in object po-
sition of a matrix clause, as in (6-a), but not when
the gap occurs within a relative clause, as in (6-b).
(6) a. Who did the hostess insult yesterday?

b.*Who did the hostess insult [RC the count
that knows ] yesterday?

Crucially, although islands block the fillers from
associating with gaps within the island, they do
not prohibit association between fillers and gaps
that occur structurally to the right of the island, as
shown in Figure 3.

Wilcox et al. (2019b) found that while large
scale models are able to thread the 2 × 2 contin-
gency between fillers and gaps into syntactically
complex material–such as through numerous sen-
tential embeddings—they do not thread the depen-
dency into some island configurations. Inside of
relative clauses and temporal adjuncts, for exam-
ple, the presence or absence of an upstream filler
has no effect on the relative surprisal of a gap, and
the wh-licensing interaction drops to near zero.

However, model inability to thread the filler–
gap dependency into island configurations pro-
vides only half of the evidence necessary to estab-

lish that neural models are “learning” islands in a
way meaningfully similar to humans. Island con-
figurations act as blockers, but only for the dura-
tion of the island—the length of the relative clause
or the temporal adjunct, for the two islands tested
here. If RNNs learn islands as local contexts into
which an outside filler cannot license a gap, they
should recover their expectations for gaps follow-
ing the island.

To assess whether models recover expectations
for licit gaps following island configurations, we
generated test sentences following the template in
(7), featuring two well-studied islands: adjunct
islands (7-b) and complex noun phrase islands
(7-d). In these examples, the island portions of the
sentences, in which gaps are not allowed, appear
in boldface.

(7) a. I know who the count from the southern
province talked very loudly with on the
balcony. [object]

b.*I know who , after the count insulted
on the balcony , the hostess talked with the
countess. [adjunct]

c. I know who , after insulting the hostess
, the count talked with on the balcony.
[over-adjunct]

d.*I know who the count that insulted on
the balcony talked with the hostess. [cnp]

e. I know who the count that insulted the
hostess talked loudly with on the bal-
cony. [over-cnp]

For each condition, we created a sentence template
and seeded each region in the template with be-
tween three and seven examples. Permuting the
examples, we generated thousands of candidate
sentences, from which we sampled 100 at random
and measured the wh-effect for the +GAP and –
GAP conditions. If the models are sensitive to
the island constraints, then we expect strong wh-
effects in the grammatical [object] condition, but
not in the ungrammatical [adjunct] and [complex
noun phrase] ([cnp]) conditions. Furthermore, if
models are able to recover expectations from gaps
following the end of an island, we would ex-
pect strong wh-effects in the grammatical [over-
adjunct] and [over-cnp] conditions.

The results from this experiment can be seen in
Figure 4, with the wh-effect in the +GAP condi-
tion at left and the –GAP condition at right. The
baseline N-Gram model showed wh-effects that
were not significantly different from zero for all
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Figure 4: Model results for maintaining the filler–gap dependency over island constructions. Strong wh-effects are
expected in the grammatical conditions (orange and blue), with reduced wh-effects in the island conditions (green).

conditions, and is not included in the graphs. Fo-
cusing on the +GAP condition at left, we see a
strong wh-effect in the control object condition but
a significant reduction of wh-effect in the adjunct
and cnp conditions for all models (p < 0.001).
In the grammatical over-adjunct and over-cnp we
still see a significant reduction in wh-effect com-
pared to the object condition (p < 0.001), but a
significant increase in wh-effect relative to the cor-
responding island conditions in many cases. This
recovery of expectations is significant for CNP
Islands for all models (p < 0.001) and for the
Adjunct Islands in the case of the Google model
(p < 0.001). The results are especially striking for
the Google Model: While the absence of an up-
stream filler induces only one more bit of surprisal
at the gap site within an island, it induces between
2-5 more bits of surprisal when a gap occurs licitly
downstream of an island.

Turning to the -GAP conditions at right, the re-
sults are more mixed. All three models show sig-
nificantly more licensing interaction in the con-
trol object condition compared to the island con-
ditions, except for the Transformer model in the
case of CNP Islands. However, only the Google
Model shows a significant recuperation of empty
argument structure expectation in the cnp vs. over-
cnp condition (p < 0.001). These results indi-
cate that the three language models tested are able
to bracket their expectations for gaps and regain
them on the other side in the case of relative
clauses. However, neither model does a good job
of recovering the filled gap effect following an is-
land, modulo complex noun phrase islands for the
Google model.

4.3 Wh-Discharge Effects

The filler–gap dependency is constrained, insofar
as fillers can license only one gap. Wilcox et al.
(2018) found that RNN models were sensitive to
this constraint, displaying a reduction in licensing
interaction following a gap, if another gap existed
upstream in the sentence as in (8-a). The presence
of a filler sets up an expectation for a gap, which is
discharged at the first gap site, and cannot partic-
ipate in downstream licensing effects. However,
if models are sensitive to the fact that gaps can-
not licitly occur within islands (unless they are li-
censed within the island itself), the presence of a
gap inside a relative clause or a temporal adjunct
should not result in the discharge of gap expecta-
tion.

To assess whether gap discharge effects are mit-
igated when the first gap occurs inside of an island,
we generated 100 examples following the process
described in Section 4.2 and the template in (8).
Following the results in Wilcox et al. (2018), sec-
tion 3.3, we expect a slightly negative wh-effects
in the subject condition. However, if gaps inside of
islands do not discharge the wh-effect set up by a
filler, we expect positive wh-effects in the adjunct-
discharge and cnp-discharge conditions.

(8) a. I know who talked very loudly with on
the balcony. [subject]

b. I know who , after insulting , the
count talked loudly with on the balcony.
[adjunct-discharge]

c. I know who the old man that insulted
talked loudly with on the balcony. [cnp-
discharge]

The results from this experiment can be seen in 5.
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Figure 5: Discharge effects for gaps in Subject and Is-
land positions. Strong Wh-Effects are expected in the
Adjunct and ComplexNP conditions, with negative wh-
effects in the Subject condition.

For the RNN models, In the –GAP cases, for both
models there is no significant difference between
the conditions. However, in the +GAP cases, there
is a significant increase in wh-effect between the
subject and adjunct-discharge and cnp-discharge
conditions (p < 0.001 for both models). For the
Transformer model, the Adjunct and Subject con-
ditions pattern together, and there is a significant
increase in Wh-Effect for the Complex NP condi-
tion, in both the +Gap and -Gap cases (p < 0.001).

These results conform to those found in 4.2: all
models have a difficult time threading expectations
for filled argument structure positions through
syntactically-complex material. However, expec-
tations surrounding gaps are clear, at least for the
two LSTM models: When gaps occur inside of is-
lands, they do not trigger the the same discharge
effects as gaps in subject positions. Interestingly,
this generalization seems to be less robust for the
Transformer model, which demonstrates the cor-
rect behavior only for Complex NP islands. Over
all, these results provide further evidence that the
models are able to process the edge of a syntactic
island, and recover expectations for gaps on the far
side.

5 General Discussion and Conclusion

In this paper, we have provided new evidence that
neural models can learn hierarchical generaliza-

tions from linear input alone. By adopting the
psycholinguistic paradigm for RNN assessment,
we have shown that two large-scale LSTM models
and one Transformer modal can suppress and re-
cover expectations set up by subject Noun Phrases
and fillers within intervening blocking structures
and recover those expectations on the far side of
those syntactic blockers. This behavior corre-
sponds to the idea of pushing and popping ex-
pectations in a stack-like data structure, which
is required for proper incremental prediction of
context-free languages.

However, the suppression and recovery of ex-
pectations is imperfect. For example, in the filler–
gap dependency, we found that models only par-
tially recover expectations for gaps on the far side
of island structures, especially in the -GAP condi-
tions, where no model was able to robustly recover
filled gap expectations. Interestingly, the LSTM
models tended to perform better than Transformer
model, even when trained on orders of magnitude
less data. These results indicate that the large
number of parameters in the Transformer architec-
ture may result in lower test-time perplexity, but
may not necessarily result in more grammatical
behavior, at least for the tightly-controlled syntac-
tic test suites presented here. It may be that the
smaller number of parameters in the LSTMs force
the models to make more robust, and ultimately
humanlike generalizations.

This work only assesses two model architec-
tures. It is likely that neural models with a stronger
structural bias, such as RNNGs (Dyer et al., 2016)
or LSTMs enhanced with a structural bias as in
Shen et al. (2018) would perform better on the
tests presented here; testing these, and other mod-
els, will be the basis for future work.
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Abstract

In this paper, we define and apply represen-
tational stability analysis (ReStA), an intu-
itive way of analyzing neural language mod-
els. ReStA is a variant of the popular repre-
sentational similarity analysis (RSA) in cog-
nitive neuroscience. While RSA can be used
to compare representations in models, model
components, and human brains, ReStA com-
pares instances of the same model, while sys-
tematically varying single model parameter.
Using ReStA, we study four recent and suc-
cessful neural language models, and evaluate
how sensitive their internal representations are
to the amount of prior context. Using RSA,
we perform a systematic study of how similar
the representational spaces in the first and sec-
ond (or higher) layers of these models are to
each other and to patterns of activation in the
human brain. Our results reveal surprisingly
strong differences between language models,
and give insights into where the deep linguis-
tic processing, that integrates information over
multiple sentences, is happening in these mod-
els. The combination of ReStA and RSA on
models and brains allows us to start address-
ing the important question of what kind of lin-
guistic processes we can hope to observe in
fMRI brain imaging data. In particular, our
results suggest that the data on story reading
from Wehbe et al. (2014) contains a signal of
shallow linguistic processing, but show no ev-
idence on the more interesting deep linguistic
processing.

1 Representational Similarity

Representational similarity analysis (RSA) is a
technique which allows us to compare heteroge-
neous representational spaces (Laakso and Cot-
trell, 2000). It is very common in cognitive neuro-
science because it allows researchers to study the
relation between patterns of activation in the brain
and representations of stimuli in a computational
model (Kriegeskorte et al., 2008). The key idea

is simple: instead of directly trying to map mod-
els to brains, we first construct two similarity ma-
trices that record how similar brain responses are
to each other for different stimuli, and how simi-
lar the computational model’s representations for
each stimulus are to each other. The representa-
tional similarity score is then defined as the simi-
larity (typically: Pearson’s correlation) of the two
similarity matrices (or equivalently: the similarity
of two distance matrices).

RSA can also be applied to deep learning mod-
els (Laakso and Cottrell, 2000; Dharmaretnam and
Fyshe, 2018; Alvarez-Melis and Jaakkola, 2018;
Wang et al., 2018; Chrupała and Alishahi, 2019).
In this paper, we present a large-scale study and
comparison of both neural language models and
fMRI data from brain imaging experiments with
human subjects, using RSA. However, we extend
standard RSA using an approach we call Repre-
sentational Stability Analysis (ReStA). The idea is
again simple: we apply RSA to compare instances
of the same model, while systematically varying a
model parameter.

We focus on a single parameter: the length of
the prior context presented to the model. Vary-
ing the amount of context allows us to quantify
the degree of context-dependence of different neu-
ral language models, and different components
of those models. If internal representations are
similarly organized regardless of how much addi-
tional context is presented to the model, context-
dependence is low. If, on the other hand, repre-
sentations change with each additional amount of
context included, context-dependence is high. Us-
ing this approach, we find intriguing differences
between some recent, successful neural language
models (GoogleLM, ELMO, BERT and the Uni-
versal Sentence Encoder; Table 1), and between
the first and deeper layers of those models.

Context-dependence, in turn, gives us a handle
on an important question in the research that tries
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Model Objective Corpus Rep.Dim. Architecture

GloVe (Pennington et al., 2014)
Predicting

co-occurrence probabilities
Wikipedia 300 Bag of words

ELMO (Peters et al., 2018)
Bidirectional

Language Modelling
1B benchmark 1,024 BiLSTM

GoogleLM (Jozefowicz et al., 2016) Language Modelling 1B benchmark 1,024 LSTM

UniSentEnc. (Cer et al., 2018) Skip-Thought/Classification
Variety of web sources

/ SNLI
512 Transformer Encoder

BERT (base) (Devlin et al., 2019)
Masked Language Modelling

/ Next Sent. Pred.
BooksCorpus

/ English Wikipedia
768 Transformer Encoder

Table 1: Details of the third party computational models used in this paper, including a brief characterization of
the optimization objective, the training corpus, and the dimensionality of representations we extract from them.

to link neural language models to brain activation:
which aspects of language processing in the brain
can we hope to observe in fMRI data using NLP
and machine learning tools?

2 Bridging NLP Models and
Neurolinguistics

An important motivation behind our work is to
contribute to answering a big question in computa-
tional linguistics: how do we establish a relation-
ship between NLP models and data on the human
brain activation while they process language? Pio-
neering work of Mitchell et al. (2008) showed that
techniques from distributional semantics could be
used to predict and decode brain activation. In the
decade since that paper, many efforts have been re-
ported using brain data to evaluate computational
models, or using NLP models to build predic-
tive models of the human brain, or both (Murphy
et al., 2012; Wehbe et al., 2014a; Ruan et al., 2016;
Søgaard, 2016; Xu et al., 2016; Fyshe et al., 2014;
Bingel et al., 2016; Bulat et al., 2017; Abnar et al.,
2018; Pereira et al., 2018; Huth et al., 2016).

Most of that work is focused on lexical rep-
resentations, reporting promising results for con-
crete nouns, presented in isolation. More recently
researchers have tried to adapt the methodology
to address words in context, in sentence and story
processing tasks. Pereira et al. (2018), for in-
stance, used a bag of words model of sentence
meaning to decode sentences from brain activa-
tion. Wehbe et al. (2014b); Qian et al. (2016) use
the internal states of LSTMs trained for language
modelling for encoding. Jain and Huth (2018) re-
port that the higher layers of the LSTM are better
at predicting the activation of brain regions that are
known for higher level language functions (a find-

ing seemingly at odds with results from section5).

In this effort, however, we run into a number
of major conceptual, methodological and techni-
cal challenges. Most importantly: how do we
determine what we are really observing in the
brain data? Are we really seeing signatures of lin-
guistic processes, or just neural correlates of gen-
eral cognitive processes evoked by a correct un-
derstanding of the linguistic input? How do we
adequately control for alternative explanations of
the observed correlations? And how do we deal
with the intricate temporal dynamics and the over-
whelmingly high dimensionality of the brain, and
the very indirect, delayed and/or coarse measure-
ments that neuroimaging gives us of the processes
in the brain? Merely demonstrating a correlation
between two black boxes is clearly not sufficient.

We argue that experiments to find the model
best correlated with brain activations should be
accompanied by efforts for interpreting the inter-
nal representations and operations of the models.
Applying ReStA for the prior context parameter
gives us a way to roughly characterize the depth
of linguistic processing in different language mod-
els and different components of these models. If
a model component only tracks the lexical se-
mantics of the current word, the representations
it forms should not be sensitive to the amount of
prior context. On the other hand, If a model com-
ponent tracks long-distance syntactic dependen-

Block Words Unique words Sentences Sent Length Scans

1 1583 553 115 11 326
2 1711 560 163 8 338
3 1411 461 134 8 265
4 1853 583 177 8 366

Table 2: Statistics of the Harry Potter dataset.
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Figure 1: Alignment of the words in the story and the brain vectors. Each fMRI scan lasts for 2 seconds during
which the subject is reading four words sequentially. Delay is the amount of time in seconds between the time the
first of the four word is shown to the subject and when the fMRI scan is started to be taken.

cies, semantic polarity, named entities, topics or
story arcs, resolves anaphora or builds up situa-
tion models, its representations will be different
whenever different amounts of prior context are
available. Hence, in this paper, we will interpret
context-dependence as an imperfect but useful sig-
nature of deep linguistic processing.

3 Models and Data

In this section, we explain the language encod-
ing models we study in our experiments and the
dataset from which we get the language stimuli
and their corresponding brain data.

3.1 Neural Language Models

We study language models with different archi-
tectures trained with different objective functions
(see Table 1). As a word level embedding model,
we use GloVe (Pennington et al., 2014). We con-
sider a sentence as a bag of words and take the
average of the GloVe embeddings.

We employ two high performing LSTM based
language models: ELMO (Peters et al., 2018)
and GoogleLM (Jozefowicz et al., 2016). Both
of these models have two LSTM layers; how-
ever, ELMO uses bidirectional LSTM layers,
whereas in the GoogleLM the LSTM layers are
uni-directional. From these models, we take the
internal states of each of the LSTM layers as two
different representation spaces.

In our comparisons, we also use BERT and
the Universal Sentence Encoder (UniSentEnc), as
Transformer based models. BERT is trained on
masked language modelling and next sentence
prediction tasks (Devlin et al., 2019) while the
Universal Sentence Encoder is trained on a differ-
ent objective than language modelling. The pa-
rameters of this model are optimized with respect

to different language tasks such that it can better
encode the meaning of complete sentences. These
two models do not have the recurrent inductive
bias of LSTMs, and hence the representations they
learn can be completely different.

To study how and where the models integrate
information over time, we modify the amount of
context provided to the models to obtain the con-
textualized word representations. We do this at the
sentence level. Thus, for the context length of 0,
we only feed the target words to the models; For
context length 1 we feed all the previous words
in the current sentence to the models. For context
length i where i > 1, in addition to the current
sentence we feed all the words in the last i sen-
tences. We operate on the sentence level to feed
the model with independently meaningful pieces
of text.

From prior work, we expect a relation between
the depth of the layers and the level of abstraction
of their representations. We study this intuition
here empirically by analyzing the different layers
of the models, and we focus on the first and last
layers. Note that the last layer corresponds to the
second layer for the LSTM architectures, but to the
12th layer for Bert.

3.2 Brain Data

We compare the representations of our model to
human brain activations captured while reading a
story. We use the dataset by (Wehbe et al., 2014a)
which consists of the fMRI scans of 8 participants
reading chapter 9 of Harry Potter and the Sor-
cerer’s stone (Rowling, 1998).1

The story was presented to the participants word

1The data is available at http://www.cs.cmu.edu/
˜fmri/plosone/. Further information on the pre-
processing steps is described in the supplementary material.
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(a) GoogleLM

(b) ELMO

(c) BERT

Figure 2: RSA between different layers of each model
given different context length in terms of number of
previous sentences over the story words. In these plots,
for example L1 c3 means representation from layer 1,
when the context length is 3 sentences including the
current sentence. When c = 0, the model only sees
the current words and when c = 1 the model sees cur-
rent sentence up to the target word. Here darker means
more similar. The values are averaged over the four
story blocks and the standard deviation of all the val-
ues across the four blocks are below 0.002.

by word on a screen in four continuous blocks.2

Each word was displayed for 0.5 seconds and an
fMRI scan was taken every 2 seconds. Figure 1 vi-
sualizes an example for the beginning of the chap-
ter. More detailed statistical information about the
stimuli can be found in Table 2.

Brain Regions The fMRI data contains acti-
vation values for approximately 40,000 voxels
per scan, each reflecting the oxygen usage (the
“BOLD response”) in approximately 3mm3 of
brain tissue. To obtain the brain representa-
tions, we flatten the 3D fMRI images into vectors
thereby ignoring the spatial relationships between
the voxels. We do this either for the whole brain,
or for specific regions separately. Not all of the
scanned voxels are related to language process-
ing, but the changes in activity might be associated
with other cognitive processes like, for example,
the noise perception in the scanner. A common
reduction method is to restrict the brain response
to voxels that fall within a pre-selected set of re-
gions. In our analysis, we only include the vox-
els from the top k regions that are most similar
across different subjects given the same stimuli.
We heuristically set the value of k to 16 based on
the distribution of the similarity scores.3

Delay An important point to consider when
dealing with fMRI data is the hemodynamic re-
sponse delay: from the time neurons start firing,
it takes 4 to 6 seconds until the Bold response
reaches its peak (Buckner, 1998). This means that
from the time a stimulus is presented to a subject,
it takes approximately 5 seconds before we can ob-
serve its response in the fMRI scan of the brain.
We account for this delay by varying the alignment
between stimuli and scans. If we apply a delay of
0 seconds, scan 3 in the example would be applied
to the sequence boy he hated more, Figure 1. With
a delay of 2 seconds, it is aligned to the previous
stimulus he would meet a and a delay of 4 would
result in alignment with Harry had never believed.

2The story chapter is split into four almost equal length
blocks, each reflecting approximately 12 minutes of measure-
ments. Each block is presented to the participant in one con-
tinuous trial, and experimental blocks are separated by pauses
for the subjects.

3We sort the brain regions based on their cross-subject
similarities for different stimuli and pick a threshold value
based when there is a relatively big jump in the similarity
scores.
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Figure 3: RSA across models

4 Analyzing Neural Language Models

In this section, we present the results of ap-
plying ReStA, Representational Stability Analy-
sis, to three different language encoding mod-
els, GoogleLM, ELMO and BERT. We investigate
what type of information is captured in the learned
representations without making any explicit as-
sumptions. Next, we apply standard RSA to, first,
investigate the relations between different compo-
nents of the language encoding models, and sec-
ond to study the alignment of these components
with the activity patterns in the human brain.4

4.1 Representational Stability Analysis

We define the Representational Stability as the
similarity between the representations obtained
from a model, when a single condition is changed,
i.e. increase in context length. We use RSA
to measure the similarity between the representa-
tional spaces. And to compute RSA we use cosine
similarity to measure the intra-space similarities
and use Pearson correlation to quantify the sim-
ilarities across representational spaces.

In Figure 2 the representations of the differ-
ent layers given different context lengths are com-
pared for GoogleLM, ELMO and BERT. The val-
ues under the diagonal of these plots indicate
the ReStA when the varying condition is context
length. This is measured as RSA(Lk−ci , Lk−cj ),
where k is the layer id and ci and cj are differ-

4We made the code that reproduces all the experi-
ments publicly available at {https://github.com/
samiraabnar/Bridge}

ent conditions which in this case indicate differ-
ent context lengths. We have depicted the trends
of how the ReStA changes for different context
length in Figures 4a and 4b.

Effect of depth As we can see in Figure 2 and
more clearly in Figure 5, for the LSTM based
models, we observe a higher degree of similarity
between the two layers (∼ 0.75 and ∼ 0.80) com-
pared to BERT (∼ 0.35). This can be partly ex-
plained by the higher number of layers in BERT,
i.e the first and last layer are further apart. More-
over, the relation between the first and last layers is
almost the same for all context lengths and for all
these three models the two layers are most similar
when provided with the same amount of context.

Context sensitivity Next, we analyse the sensi-
tivity of different layers of each model to context
length. In Figures 4a and 2, we see that for both
LSTM based models, GoogleLM and ELMO, the
first layer, L0, is less sensitive to the changes in
the context length compared to the last layer, L1,
i.e. the representations are not affected anymore
by increasing the context length to more than 3
sentences. A hierarchical encoding mechanism,
where the first layer is responsible for encoding
the local context and the second(last) layer is en-
coding more global information, can justify these
results.

We can see in Figure 4a, that the sensitivity to
the context length is more significant in the Trans-
former based models compared to LSTM based
models. In these models, the difference in the rep-
resentations at different context lengths does not
fade away as the context length increases but the
rate of the changes becomes constant. As illus-
trated in Figures 4a and 2c we observe that in
BERT, regardless of the current context length,
adding more context leads to different represen-
tations. In addition, in this model, the represen-
tations from the first layer, L0 are more context-
dependent than those from the last layer, L11.
Since in self-attention layers, there is a direct con-
nection between the representations at different
positions, the higher degree of sensitivity to con-
text length is not surprising. This is evidence that,
for computing the representations of each position
in the input, the representations from all positions,
no matter how far they are, are in fact taken into
account. We speculate that the last layer of BERT
is less sensitive to context could be that in higher
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Figure 4: Changes in RSA by increasing context length. (a) Shows how the amount of difference in the repre-
sentational spaces changes by increasing the context length. (b) Shows for all models that we study, regardless
of whether and how much their representations change by increasing context length, the amount of difference be-
comes almost constant after context length of 3 sentences. Note that in (b), we have scaled the plot and removed
some of the models to increase the readability.
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Figure 5: Layer similarities (RSA(Lk ci, Lk+1 ci).
Here we show how increasing context length affects the
similarity between different layers of the models.)

layers, the representations correspond to more ab-
stract meanings, and the representational space be-
comes denser than the lower layers.

4.2 RSA across Models

In the second step, we study whether the compu-
tational models have learned inherently different
representational spaces. According to representa-
tional similarity scores, among the models that we
study, shown in Figure 3, UniSentEnc seems to
learn very different representations from ELMO,
GoogleLM and BERT. While BERT and UniSen-
tEnc are both Transformer based models, the rep-
resentational space of BERT is more similar to
the representations from ELMO and GoogleLM
that are LSTM based models. This can be due
to the fact that ELMO, GoogleLM and BERT are
trained with language modelling objectives, while
UniSentEnc is trained on skip-thought and clas-
sification tasks and this could indicate the effect
of the training objective on the representational
spaces.

5 The Relation between the Models and
the Activity Patterns in Human Brains

Figure 7 shows the similarity of different computa-
tional representation spaces with brain representa-
tions, with respect to different amounts of context
provided to the models, averaged over all human
subjects. Due to the hemodynamic response delay,
we expect to see the peak in similarities after about
4s delay. As we can see in Figure 6, the highest
RSA for all models is at Delay = 4s, the rank-
ing of the models based on their similarities with
brain representations is the same for all amounts
of delay. Interestingly, the performances of these
models on the NLP tasks are not correlated with
their similarity with the brain representations (but
note the overall low correlations). The represen-
tations learned by LSTM based models are most
similar to the brain data, and for both ELMO and
GoogleLM the representations from lower layers,
L0, have higher similarity scores compared to the
higher layers, L1. Interestingly, for UniSentEnc,
BERT(L11) and also GoogleLM(L1), increasing
the context length, which usually boosts the per-
formance of language encoding models in lan-
guage understanding tasks (Wang and Cho, 2016),
leads to lower similarity with brain representa-
tions. It seems that the way these models integrate
the context information, pushes the representation
further away from the brain representations. This
could mean: (1) These models are doing fairly
well at encoding the local context, but not at a
more global level. Alternatively, (2) The informa-
tion about the more global aspects of the meaning
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Figure 6: Representational similarity of the models and brains averaged over all subjects and the four blocks at
different time delays after the human subjects have read the target words, when the context provided to the models
is three sentences. Here the delay is increasing from left to right and the error bars indicate the standard deviation
across different blocks.
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Figure 7: Similarity of the representations from differ-
ent layers of different models, given different amount
of context with brain representations, averaged over all
subjects. Note that the average RSA of brains of differ-
ent human subjects is about 0.55

is not encoded in the brain representations.

Different Segments of the Story If during train-
ing the models are only trained on full sentences, it
might be the case that the quality of their represen-
tations, when given complete sentences, is signifi-
cantly better than when provided with incomplete
sentences. On the other hand, the representation
of sentences in the brain might also be more reli-
able when the full sentence is read. To take this
into account, we look at the similarities of each of
the models with brain representations, only at the
steps in the story where an end of a sentence token
is reached. Figure 8a presents the results. We see
that in this case, the similarity of all the models
with brain representations increases slightly, but
this could be because of the reduced dimension-
ality of the similarity matrix, and we see that the
general patterns stay similar.

In Figure 8b we observe that at the story seg-
ments where a name of a character is mentioned,
the patterns of similarities change a bit, e.g. the

last layer of BERT is less similar to the brain repre-
sentations compared the first layer of BERT, when
an intermediate amount of context is provided to
the model. This finding is difficult to interpret, but
warrants further research.

Different Regions of the Brain We looked at
the similarity scores of the computational repre-
sentations with the representations at different re-
gions of the brain. This is illustrated in Figure 9
for subject 4 as an example. We observe that the
patterns of RSA of different models are very sim-
ilar across different brain regions, i.e. the scores
scale for all regions almost similarly across dif-
ferent models. Despite the low correlations be-
tween the models and the brain activation, we find
that all the models are consistently best aligned
with the regions in the Left Anterior Temporal
Lobe (LATL). This region is known for seman-
tic and sometimes syntactic processing of lan-
guage (Westerlund and Pylkkänen, 2014; Bemis
and Pylkkänen, 2011; Leffel et al., 2014). We also
find some correlation with the Left Parietal Lobe,
which is not known to be responsible for language
processing. We also computed the average RSA
between different brain regions for the eight sub-
jects, both within and across subjects, and find that
the different regions of a single brain are more
similar (RSA = 0.4) than the same regions of dif-
ferent brains (RSA = 0.12). These are counter-
intuitive findings that warrant further investiga-
tion. If brain functions involved in story compre-
hension are spatially localized and brains are or-
ganized similarly across individuals, we would ex-
pect the same regions from different subjects to be
more similar than different regions from the same
subject.
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Figure 8: Similarity of the computational representations with brain representations at different segments of the
story.

Predictive Approach Besides, RSA, we can use
a predictive approach to see which regions of the
brain are more predictable, given the representa-
tions from a computational model. In the predic-
tive approach, we train a linear regression model
to predict the brain activity patterns at different
steps of the story. This way, we can obtain more
fine-grained insights into which parts of the model
contribute more to which regions in the brain.

In Figure 10, we show the results of using rep-
resentations obtained from GoogleLM(L0) to pre-
dict brain activity patterns of different subjects.
Similar to the results we obtained from RSA, the
effect of hemodynamic response delay is clearly
visible here. One of the difficulties of employ-
ing a predictive approach is to train a regression
model for such high dimensions and with so little
data. Hence, if the performance of the prediction
is low, it is hard to tell if it is because we are not
able to train a good regression model or because
there is no correlation between the two models.
To overcome this challenge, one solution could be
to first use RSA to reduce the search space and
then employ predictive modelling to gain more
fine-grained insights. We postpone further anal-
ysis with the predictive approach to future studies.

6 Discussion and Conclusion

In this paper, we employ a representational simi-
larity metric to compare the representations from
the language encoding models with the brain ac-
tivity patterns, i.e. measure the alignment between
the brain activation patterns and activations of the
internal state of the models. The main advantage
of RSA is that it treats both the brain and the model
as a blackbox; it does not need to know how brains
or models represent objects, words or sentences,
but only how similar representations are to each

other. For N stimuli considered, the analysis only
compares 1

2N(N − 1) pairs of pairwise similari-
ties (assuming similarities are symmetric), regard-
less of the dimensionality of two representational
spaces. This bottleneck brings many advantages
including computational efficiency, reuse of the
similarity matrices in multiple comparisons, and
not having to worry about how to map representa-
tions of very different nature to each other. It also
brings important limitations and inevitable infor-
mation loss, e.g. standard RSA, assumes all fea-
tures of the representational spaces to have equal
contributions.

One of our contributions in this paper is the in-
troduction of ReStA, which uses RSA to measure
the stability of the representations from the mod-
els when an input condition such as context length
is changed. Comparing the representational sim-
ilarity of different layers of different models, we
find that both architectural differences and differ-
ent training objectives have a noticeable impact on
the representations learned by the models and the
way they change under different conditions. We
see a clear difference in the sensitivity to context
size between L0 and L1 in the LSTM based mod-
els. This means, in line with results from previ-
ous work using different methods (e.g., Giulianelli
et al., 2018), that the L1 component integrates in-
formation over time steps while L0 does not.

Using brain data to evaluate the representations
learned at different layers of each of the lan-
guage encoding models, we find that layers of
the LSTM based models achieve higher similar-
ity score with brain data compared to single word
representation models like GloVe and the Trans-
former based models. This observation could
show that the learning biases of the LSTM based
language models are closer to what happens in the
human brain. Zooming into the results, we see that
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(a) GoogleLM (L0)

(b) GoogleLM (L1)

(c) ELMO (L0)

(d) ELMO (L1)

(e) UniSentEnc

(f) BERT (L0)

(g) BERT (L11)

(h) GloVe

Figure 9: RSA of representations learned at different
layers of different models with representations at dif-
ferent regions of Subject4’s brain which is chosen ran-
domly (the code accompanying this paper can be used
to generate the plots for the other subjects). In order
to emphasize the difference of the similarity of each
model with different brain regions, the color bar is
scaled independently for each model. The darkest re-
gion for all models is the Left Anterior Temporal Lobe.
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Figure 10: Predictive power of representations learned
by Google LM (L0 Cinf) for brain representations in
terms of explained variance (each subject in a different
color).

while changing the conditions of the inputs to the
models has a significant impact on the representa-
tions they compute and their performance on NLP
tasks (Khandelwal et al., 2018), these changes do
not get reflected in their alignment with the brain
representations.

Finally, evaluating computational models of
language processing with brain imaging data for
a task such as “story reading” is hard, because
of the inherent issues in the brain data and also
the complexity of the task (Beinborn et al., 2019).
Both the RSA framework and the predictive mod-
elling approach make it possible to make a bridge
between these black boxes, neural network mod-
els for language processing on the one hand and
the human brain on the other. And while each of
these approaches has its benefits and limitations,
they might provide us with complementary infor-
mation. Hence, it is invaluable to look at both.

In our experiments, we observe more similari-
ties between representations learned by some ar-
chitectures and brain representations. However,
caution is required when interpreting these results,
as the representational similarity between all mod-
els and the brain images remains very low. We
plan to perform further analysis on various (big-
ger) datasets to get a better interpretation of what
is happening in both the brain and these computa-
tional models.
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Gaël Varoquaux. 2014. Machine learning for neu-
roimaging with scikit-learn. Frontiers in neuroin-
formatics, 8:14.

David Alvarez-Melis and Tommi Jaakkola. 2018.
Gromov-Wasserstein alignment of word embedding
spaces. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Process-
ing, pages 1881–1890, Brussels, Belgium. Associ-
ation for Computational Linguistics.

Lisa Beinborn, Samira Abnar, and Rochelle Choenni.
2019. Robust evaluation of language-brain encod-
ing experiments. International Journal of Computa-
tional Linguistics and Applications, to appear.

Douglas K Bemis and Liina Pylkkänen. 2011. Sim-
ple composition: A magnetoencephalography inves-
tigation into the comprehension of minimal linguis-
tic phrases. Journal of Neuroscience, 31(8):2801–
2814.

Joachim Bingel, Maria Barrett, and Anders Søgaard.
2016. Extracting token-level signals of syntactic
processing from fMRI - with an application to PoS
induction. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 747–755. Associa-
tion for Computational Linguistics.

Randy L Buckner. 1998. Event-related fMRI and the
hemodynamic response. Human brain mapping,
6(5-6):373–377.

Luana Bulat, Stephen Clark, and Ekaterina Shutova.
2017. Speaking, seeing, understanding: Correlating
semantic models with conceptual representation in
the brain. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 1081–1091. Association for Com-
putational Linguistics.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St. John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
Brian Strope, and Ray Kurzweil. 2018. Univer-
sal sentence encoder for english. In Proceedings
of the 2018 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2018: Sys-
tem Demonstrations, Brussels, Belgium, October 31
- November 4, 2018, pages 169–174.

Grzegorz Chrupała and Afra Alishahi. 2019. Correlat-
ing neural and symbolic representations of language.
In Proceedings of the Annual Meeting of the Associ-
ation for Computational Linguistics (ACL 2019).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of Conference of the North
American Chapter of the Association for Computa-
tional Linguistics - Human Language Technologies
(NAACL HLT 2019).

Dhanush Dharmaretnam and Alona Fyshe. 2018. The
emergence of semantics in neural network represen-
tations of visual information. In Proceedings of
Conference of the North American Chapter of the
Association for Computational Linguistics - Human
Language Technologies (NAACL HLT 2018).

Alona Fyshe, Partha P Talukdar, Brian Murphy, and
Tom M Mitchell. 2014. Interpretable semantic vec-
tors from a joint model of brain-and text-based
meaning. In Proceedings of the conference. Associ-
ation for Computational Linguistics. Meeting (ACL
2014), volume 2014, page 489. NIH Public Access.

Mario Giulianelli, Jack Harding, Florian Mohnert,
Dieuwke Hupkes, and Willem Zuidema. 2018. Un-
der the hood: Using diagnostic classifiers to investi-
gate and improve how language models track agree-
ment information. In 1st BlackBoxNLP workshop at
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP 2019).

Alexander G Huth, Wendy A de Heer, Thomas L Grif-
fiths, Frédéric E Theunissen, and Jack L Gallant.
2016. Natural speech reveals the semantic maps that
tile human cerebral cortex. Nature, 532(7600):453.

Shailee Jain and Alexander G. Huth. 2018. Incorpo-
rating context into language encoding models for
fMRI. In Proceedings of the 32Nd International
Conference on Neural Information Processing Sys-
tems, NIPS’18, pages 6629–6638, USA. Curran As-
sociates Inc.

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam
Shazeer, and Yonghui Wu. 2016. Exploring the lim-
its of language modeling. CoRR.

Urvashi Khandelwal, He He, Peng Qi, and Dan Juraf-
sky. 2018. Sharp nearby, fuzzy far away: How neu-
ral language models use context. In Proceedings of
the 56th Annual Meeting of the Association for Com-
putational Linguistics, ACL 2018, Melbourne, Aus-
tralia, July 15-20, 2018, Volume 1: Long Papers,
pages 284–294.

Nikolaus Kriegeskorte, Marieke Mur, and Peter A Ban-
dettini. 2008. Representational similarity analysis-
connecting the branches of systems neuroscience.
Frontiers in systems neuroscience, 2:4.

200



Aarre Laakso and Garrison Cottrell. 2000. Content
and cluster analysis: assessing representational sim-
ilarity in neural systems. Philosophical psychology,
13(1):47–76.

Timothy Leffel, Miriam Lauter, Masha Westerlund,
and Liina Pylkkänen. 2014. Restrictive vs. non-
restrictive composition: a magnetoencephalogra-
phy study. Language, cognition and neuroscience,
29(10):1191–1204.

Tom M Mitchell, Svetlana V Shinkareva, Andrew Carl-
son, Kai-Min Chang, Vicente L Malave, Robert A
Mason, and Marcel Adam Just. 2008. Predicting
human brain activity associated with the meanings
of nouns. science, 320(5880):1191–1195.

Brian Murphy, Partha Talukdar, and Tom Mitchell.
2012. Selecting corpus-semantic models for neu-
rolinguistic decoding. In Proceedings of the First
Joint Conference on Lexical and Computational Se-
mantics, SemEval ’12, pages 114–123, Stroudsburg,
PA, USA. Association for Computational Linguis-
tics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the conference on
empirical methods in natural language processing
(EMNLP 2014), pages 1532–1543.

Francisco Pereira, Bin Lou, Brianna Pritchett, Samuel
Ritter, Samuel J Gershman, Nancy Kanwisher,
Matthew Botvinick, and Evelina Fedorenko. 2018.
Toward a universal decoder of linguistic meaning
from brain activation. Nature communications,
9(1):963.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL HLT 2018, pages 2227–2237.

Peng Qian, Xipeng Qiu, and Xuanjing Huang. 2016.
Bridging lstm architecture and the neural dynam-
ics during reading. In Proceedings of International
Joint Conferences on Artificial Intelligence Organi-
zation (IJCAI 2016).

J. K. Rowling. 1998. Harry Potter And the Sorcerer’s
Stone. Arthur A. Levine Books.

Yu-Ping Ruan, Zhen-Hua Ling, and Yu Hu. 2016. Ex-
ploring semantic representation in brain activity us-
ing word embeddings. In Proceedings of the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP 2016), pages 669–679.

Anders Søgaard. 2016. Evaluating word embeddings
with fMRI and eye-tracking. In Proceedings of the
1st Workshop on Evaluating Vector-Space Repre-
sentations for NLP, pages 116–121. Association for
Computational Linguistics.

Liwei Wang, Lunjia Hu, Jiayuan Gu, Zhiqiang Hu, Yue
Wu, Kun He, and John Hopcroft. 2018. Towards un-
derstanding learning representations: To what extent
do different neural networks learn the same repre-
sentation. In Advances in Neural Information Pro-
cessing Systems, pages 9606–9615.

Tian Wang and Kyunghyun Cho. 2016. Larger-context
language modelling with recurrent neural network.
In Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2016.

Leila Wehbe, Brian Murphy, Partha Talukdar, Alona
Fyshe, Aaditya Ramdas, and Tom Mitchell. 2014a.
Simultaneously uncovering the patterns of brain re-
gions involved in different story reading subpro-
cesses. in press.

Leila Wehbe, Ashish Vaswani, Kevin Knight, and
Tom M. Mitchell. 2014b. Aligning context-based
statistical models of language with brain activity
during reading. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP 2014).

Masha Westerlund and Liina Pylkkänen. 2014. The
role of the left anterior temporal lobe in semantic
composition vs. semantic memory. Neuropsycholo-
gia, 57:59–70.

Haoyan Xu, Brian Murphy, and Alona Fyshe. 2016.
Brainbench: A brain-image test suite for distri-
butional semantic models. In Proceedings of the
2016 Conference on Empirical Methods in Natural
Language Processing (EMNLP 2016), pages 2017–
2021.

201



A Appendices

A.1 Representational Similarity Across
Different Layers of Different Models

Figure 11 shows the representational similarity
across different layers of the models given differ-
ent amount of context.

A.2 Preprocessing Brain Images
Besides the cognitive process of interest, other fac-
tors like the physiological processes in the bodies
of the human subjects or technical features of the
MRI-machine and scanning environment may in-
fluence the fMRI measurements. An important is-
sue is therefore how to preprocess the data to filter
out those irrelevant effects adequately.

Detrending. We normalise the brain activa-
tions in two steps: we scale the activation val-
ues by subtracting the per-voxel mean activa-
tion. We also experiment with a more elabo-
rate preprocessing procedure, implemented in the
nilearn.signal.clean Python library. De-
trending is a popular strategy in cognitive neu-
roscience (Abraham et al., 2014), that removes

the linear trend, applies a high pass filtering with
0.005 Hz, and standardises the vectors.

Voxel selection. To reduce the noise and remove
the voxels which their activation is not related to
the story reading task, we apply two steps for se-
lecting the voxels. In the first step, we remove all
the constant voxels. These are the brain regions
in which the activation does not change at all dur-
ing the scanning experiment. Next, we compare
the similarity of different regions of the brain for
all eight subjects and select those regions that their
activations over the different segments of the story
are most similar among the different subjects. To
do this, we rank the regions based on the average
of the similarity scores and then selected the top 16
regions. After applying this voxel selection strat-
egy, we have approximately 10000 voxels for each
subject.

In our experiments, we do not model the spa-
tial dependency of the voxels. Thus, after the pre-
processing steps, we flatten the 3D fMRI images
into vectors with the size of the total number of
the voxels.
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Figure 11: RSA of different layers of different models for different context length. In this plot, for example
ELMO 1 c1 means representation from layer 1 of ELMO, when the context length is 1 sentences.
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Abstract

We propose a novel approach to the study
of how artificial neural network perceive the
distinction between grammatical and ungram-
matical sentences, a crucial task in the grow-
ing field of synthetic linguistics. The method
is based on performance measures of lan-
guage models trained on corpora and fine-
tuned with either grammatical or ungram-
matical sentences, then applied to (different
types of) grammatical or ungrammatical sen-
tences. The results show that both in the dif-
ficult and highly symmetrical task of detect-
ing subject islands and in the more open CoLA
dataset, grammatical sentences give rise to bet-
ter scores than ungrammatical ones, possibly
because they can be better integrated within
the body of linguistic structural knowledge
that the language model has accumulated.

1 Introduction

As the language modeling abilities of Artificial
Neural Network (ANN) expand, a growing num-
ber of studies have started to address a network’s
ability to distinguish sentences contain various
types of syntactic errors from minimally differ-
ent correct sentences, thus providing the equiva-
lent of human grammaticality judgments, one of
the cornerstones of theoretical linguistics since
Chomsky (1957). These studies are important
for at least two reasons: they can shed light on
the type and amount of information which can be
learned from pure linguistic data without any spe-
cialized language-learning device (thus contribut-
ing to the debate on human Universal Grammar,

This work was funded by the Italian 2015 PRIN Grant
“TREiL”, and is licensed under a Creative Commons Attri-
bution 4.0 International License. License details: http:
//creativecommons.org/licenses/by/4.0/

Chomsky 1986; Lasnik and Lidz. 2015; Chowd-
hury and Zamparelli 2018), and they can be used
as probes on the ANNs themselves, investigating
whether models which are apparently proficient
at language modeling are actually sensitive to the
same syntactic and semantic cues humans use.

The ANNs used in this area of research (often
LSTMs, Hochreiter and Schmidhuber 1997, but
recently also transformer-based ANN, Vaswani
et al. 2017, all trained on large datasets of nor-
mal text) are tested on a mix of grammatical or
ungrammatical sentences. The latter are obtained
either by altering naturally occurring sentences
(semi-randomly, as in Lau et al. 2017, or systemat-
ically, Linzen et al. 2016; Gulordava et al. 2018),
by collecting examples from the published linguis-
tic literature (Warstadt et al., 2018) or by creating
minimal pairs by hand (individually, Wilcox et al.
2018, or with sentence-schemata, as in Chowd-
hury and Zamparelli 2018).1

Once test data have been acquired, the liter-
ature has threaded between two very different
approaches: treating grammaticality as a clas-
sification problem (i.e. feeding grammatical/-
ungrammatical sentences to a classifier and asking
it to discriminate, cf. the first experiment in Linzen
et al. 2016), or feeding the test sentences to a Lan-
guage Model (LM) pretrained on normal language
and measuring the perplexity accumulated by the
LM as it traverses the sentence.2

The classification approach works somewhat
better, and can tell us if the possibility to spot un-

1Most studies except Lau et al. (2017) take the simplify-
ing assumption that judgments can be treated as binary (e.g.
acceptable/non-acceptable). This position is not entirely sat-
isfactory, theoretically, but we believe that it won’t do much
harm at this early stage of research.

2Intermediate methods are possible: Warstadt et al.
(2018) and Warstadt and Bowman (2019) train a classifier
on sentence vectors produced by various types of language
models.
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grammaticality can in principle be learned from
the data, but is not directly comparable with the
human ability to detect ungrammaticality, since
explicit syntactic judgments play a negligible role
in language acquisition.

The approach which reads (un)grammaticality
from the performance of a LM starts from a more
naturalistic task—predicting what’s coming (van
Berkum, 2010)—and can thus be more directly
compared to human performances, but the proba-
bility assigned by a LM to the words reflects many
factors (sentence complexity, level of embedding,
semantic coherence, etc.), making it difficult to
tease apart ‘grammaticality’ from a more general
notion of ‘acceptability’ or ‘processing load’.

In this paper we propose a third approach to
measuring grammaticality, derived from the LM
method. In this approach, we utilized our in-
house pre-trained LSTM LM and adapt the model
via fine-tuning (Pan and Yang, 2010; Li, 2012) on
variations of the test sentences.

Grammaticality is then treated as a compara-
tive measure of coherence: to what extent the new
(un)grammatical input can be integrated with what
the ANN has learned so far, and to what extent it
can improve similar grammatical or ungrammati-
cal constructions. We test this method with a large
number of artificially generated examples, focus-
ing on a particularly difficult contrast, the case of
subject vs. object subextraction3. We then apply
the method to a more general scenario, the CoLA
dataset, tuning a LM with either grammatical or
ungrammatical CoLA sentences and measuring its
performance in various testing scenarios.4

In the following sections, we first present a de-
tailed task description, in Section 2, followed by
a brief overview of the methodology and datasets
used for the study (Section 3). In Section 4, we
formalize our hypothesis of how the model should
behave and report the results and observation of
the network behavior in Section 5; we then dis-
cuss our observation and conclude the study with
future directions in Section 6.

3The expanded test sets for each task can be found in
https://github.com/LiCo-TREiL/
Computational-Ungrammaticality/tree/
master/blackboxnlp2019.

4See Warstadt et al. (2018). Every sen-
tence in the corpus, which can be found at
https://nyu-mll.github.io/CoLA/, is marked as
grammatical or ungrammatical. The values are drawn from
the published literature, see Warstadt et al. (2018, Tab.2) for
details.

2 Task Description

It has been noted since Ross (1967) that while
Wh-questions and relatives clauses (RC) can give
raise to gaps at unbounded distance (as in Who
did Mary say that John saw and The boy that
Mary thinks that John adopted ), gaps in certain
positions (e.g. inside relative clauses, individual
conjuncts, or certain adjuncts) are perceived as de-
graded. Ross coined the term syntactic islands for
these environments, which have been the focus of
a huge amount of research in theoretical linguistics
(see e.g. Szabolcsi and den Dikken 1999). Studies
on ANNs’ sensitivity to grammaticality have tried
to model certain types of islands, with varying de-
gree of success (Lau et al., 2017; Wilcox et al.,
2018, 2019; Jumelet and Hupkes, 2018). In this
paper, we address subject islands, i.e. the differ-
ence between (1a) and (b) for Wh-interrogatives,
and between (2a) and (b) for RCs.

(1) a. Which people did activists love [fighting
for ]?

b. *Which people did [fighting for ] appeal
to activists?

(2) a. the causes that Mary feared [fighting
against ]

b. *the causes that [fighting against ]
scared Mary

Subject islands are an interesting domain for var-
ious reasons: (i) extractions from subjects and
object can contain nearly the same words (like
above), and there are no lexical cues which signal
one or the other type (e.g. both cases in (1) re-
quire do-support); (ii) while (1) and (2) share the
extraction phenomenon, they have completely dif-
ferent discourse functions and distributions: is not
obvious that a model that learns relative clauses
should boost its processing of Wh-questions, or
vice-versa; (iii) extractions out of PPs inside nom-
inals are rare in naturally occurring data, so they
stand as a challenging test of the ANN’s general-
ization abilities.

Embedded Wh extractions out of PPs (*I know
who the painting by fetched a high price at
auction.) were one of the violations studied in
Wilcox et al. (2018), using Google’s LM and the
model from Gulordava et al. (2018). Neither LMs
managed to model extractions out of PPs, treat-
ing the PP either as a possible extraction domain
(Google’s LM) or an island in both subject and
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Figure 1: Experimental Pipeline.

object position (Gulorodova’s). The study didn’t
address RCs like (2). This case thus presents an
interesting challenge for our technique: combined
with the sentence schemata method described in
Section 3, it gives a highly controlled environ-
ment; however, this comes at the cost of a high lex-
ical overlap (after fine-tuning, the ANN is tested
on structures which contain many words it has al-
ready practiced with). To try a different and more
open testing environment we applied the same
method to the 5 test sets of the CoLA dataset (see
Section 3 for details) . In this case, we fine-tuned
the ANN on grammatical or ungrammatical sen-
tences from the CoLA training set, and tested it on
different CoLA test-phenomena sentences, check-
ing the interactions. Since this part of CoLA is
categorized by topic this gives a sense of which
types of phenomena improve with this method.

3 Methodology

In this section, we describe our pipeline, includ-
ing details of the datasets used in each steps. In
addition, we present the evaluation measure used
to validate the effects (if any) of the fine-tuning
method on our tasks.

Figure 1 shows the pipeline we propose
for exploring the effect of rehearsing new
(un)grammatical input on a trained LSTM lan-
guage model.

LM Architecture: The first step (Step 1 in Fig.
1) is to train a language model (LMO) using
a large text corpus. For the study, we used
a left-to-right long-short term memory (LSTM)
language model (Hochreiter and Schmidhuber,
1997), trained with 500 hidden units in each layer
(layers = 2) and an embedding dimension of
256. The model was trained using a PyTorch RNN
implementation with dropout regularization tech-
nique applied in different layers of the architec-
ture, along with SGD optimizer using a fixed batch

Corpus Style %
Wiki-103 Encyclopedic data 12.15

Gutenberg6

Dataset

Narrative style:
includes collection of
English books

36.58

UKWaC
Mixed, crawled
from .uk domain

51.27

Table 1: Composition of the training set and style of
training data.

size of 80. We have not tuned the models for dif-
ferent dropouts or learning rate parameters, among
other parameters.

Datasets for Training LM: To train the LSTM
model, we used different English corpora — for
stylistic variety — extracted from Wikipedia, the
Gutenberg Dataset (Lahiri, 2014) and UKWaC
(Ferraresi et al., 2008), as shown in Table 1.
We then tokenized the input sentences, removing
URLs, email addresses, emoticons and text en-
closed in any form of brackets ({.},(.), [.]). We re-
placed rare words (tokens with frequency < 20)5

with <UNK> token along with its signatures (e.g.
-ed, -ing, -ly etc.) to represent every possible out-
of-vocabulary (OOV) words. We also replaced
numbers (exponential, comma separated etc) with
a <NUM> tag. We removed the sentences from
UKWaC with OOV tags. Therefore, to train LM
we used a training set consisted of ≈ 0.7B words
in ≈ 31M sentences, with a vocabulary of size
|V | = 0.1M .

Adaptation via fine-tuning: The trained LM0

was used to initialize the weights of the new
LSTM LMX , so as to transfer the knowledge

5For preparing the vocabulary set V , we only considered
tokens presents in WikiText and Gutenberg dataset.

6We intentionally removed the stories that overlapped
with the test and dev set of Childrens Book Test (CBT) (Hill
et al., 2015), for training purpose.
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LM0 has acquired so far (Step 2 Fig. 1). To adapt
the models LMX to new (un)grammatical struc-
tures, we fine-tuned the models by feeding the sen-
tences from our small training data sets, with batch
size of 20 and epoch e (e = {3, 10}). All other pa-
rameters remained unchanged with respect to the
original LM0. In this paper, for brevity, we only
report the results after 3 epochs.

Datasets for Adaptation: LMs can be quite
sensitive to the specific content words used.
To minimize this effect and focus on structure,
we used the ‘sentence schemata’ method from
Chowdhury and Zamparelli (2018): starting from
a schema such as (3), a script automatically
generates sentences containing all the possible
combinations of the bracketed expressions. The
schema in (3) (tagged Aff(irmatives with com-
plex) Obj(ects)) gives 160 affirmative sentences
(e.g. Activists hated fighting for these laws); we
also constructed schemata for affirmatives with the
gerund in subject position (AffSubj, e.g. fight-
ing for these causes scares politicians), as well as
for the corresponding root Wh-clauses (WhSubj,
WhObj, as in (1a)/(1b), and relatives (RelSubj,
RelObj, as in (2a)/(2b)).7 In total, we have 6
train/test sets, see Table 2 for details.

(3) [ John Mary politicians activists governments
] [ feared loved hated thought about ] fighting
[ for against ] these [ causes movements peo-
ple laws ] .

Apart from exploring adaptation of subject is-
lands, we also explored the effect of adaptation
in an open testing environment (as mentioned in
Section 2). For this setting, our training and test-
ing data is less likely to have a substantial lexi-
cal overlap. For the adaptation part, we split the
CoLA training set in two parts—one consisting of
grammatical sentences (CoLAG), the other one of
ungrammatical sentences (CoLAUG), both cover-
ing different linguistic phenomena such as islands,
passives, coordination, negative polarity, etc. As
test sets, we used different CoLA-test phenom-
ena.8 They are:

• Subject-Verb-Object (SVO): The test set con-
sists of utterances, generated using different
permutation of subject (S), verb (V) and ob-

7For training, we merged AffObj and AffSubj to create a
general set of affirmatives, Aff.

8Please check Warstadt et al. (2018, Tab. 2) for details.

ject (O). The set containes 10 subjects, 2
verbs and 5 objects.

• Wh-Extraction (WhExt): This set tests the
ability to note that a Wh- must correspond to
a gap, with pairs such as What did John fry?
/ *What did John fry the potato? (cf. Wilcox
et al. 2018, Sec.2.3, Chowdhury and Zampar-
elli 2018, Task B).

• Causative-Inchoative Alternation (CausAlt):
Based on verbs that do or do not undergo
the alternation (Kelly popped/blew the bub-
ble. vs. The bubble popped/*blew.).

• Subject-Verb Agreement (SVAgr): A set
based on number agreement mismatch, such
as the child (that was accompanied by his
parents) has/*have left. This is the task
used in Linzen et al. (2016); Gulordava et al.
(2018).

• Reflexive-Antecedent Agreement (ReflAgr):
A test on whether reflexive pronouns have ap-
propriate local antecedents (cf. I amused my-
self / *yourself / *herself / *him- self / *our-
selves / *themselves).

Evaluation Measure: To track the performance
of our LSTM on the test sets, we adopted the popu-
lar acceptability measure Syntactic log-odds ratio
(SLOR), introduced in this domain by Lau et al.
(2017) and shown in Equation 1.

SLOR(ε) =
log(pm(ε))− log(pu(ε))

|ε| (1)

where ε represents the sentence; pm(.) is the prob-
ability of the ε given by the model, calculated
by multiplying probabilities of each target words,
present in the sentence; pu(.) is the unigram prob-
ability of the ε and |ε| represent the length of the
sentence.

The measure considers the structure and po-
sition of the words, subtracting out the unigram
log-probability so that sentences that use rare
words are not penalized, and is normalized by
sentence length, thus removing (positive or neg-
ative) biases due to long sentences. Higher SLOR
values correspond to ‘better’ (i.e. more pre-
dictable/acceptable) sentences.
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Sets # inst. Used for Sets # inst. Used for
Close Environment Testing Open Environment Testing

AffObj: X likes [ fighting for Y ] 160 test CoLAG 6029 train
AffSubj: [ fighting for Y ] pleases X 160 test CoLAUG 2532 train
Aff: AffSubj∪AffObj 320 train SVO 500 test
RelObj: the Y that X likes [ fighting for ] 160 train/test WhExt 520 test
RelSubj: the Y that [ fighting for ] pleases X 120 train/test CausAlt 182 test
WhObj: What did X like [ fighting for ]? 200 train/test SVAgr 676 test
WhSubj: What did [ fighting for ] please X ? 150 train/test RiflAgr 144 test

Table 2: Detailed information of the training/testing set for the adaptation experiments. inst. represent instances

4 Our Hypothesis

We expect the adapted LM to improve in pro-
portion to the similarity between the tasks, but
also in proportion to how well the material pre-
sented in the fine-tuning learning phase is consis-
tent with what the ANN already knows about lan-
guage structures.

Our expectations are that retraining with un-
grammatical sentences should be harder to incor-
porate into previous knowledge, thus leading to
worse performances in terms of generalization.
Note that improvements when the ANN is trained
on Wh and tested on RC or vice-versa can be at-
tributed in part to lexical familiarity (the training
contained most of the words seen in the testing),
in part to the model’s ability to note the common
element in the two constructions, i.e. the extrac-
tion. We can mitigate the lexical overlap prob-
lem by subtracting the scores of a LM fine-tuned
on the affirmative cases (i.e. the sentences gener-
ated from (3)) from those obtained from the cor-
responding extraction cases (RC and Wh), since
our affirmative cases already contain most of the
lexicon found in the RC/Wh sentences.

In the second experiment, where we tested on
CoLA, there is no reason to expect a very high
lexical overlap, so any effect found there can be
attributed purely to the structures.

5 Results

Subject/Object Extraction Figure 2 gives an
overview of the SLOR values of our LSTM tuned
for 3 epochs just on the affirmative sentences
(LMX , left), compared to the original (LMO,
right). Unsurprisingly, the LMX shows a large im-
provement in the AffSubj/AffObj cases, but also
an improvement in Wh case and especially in rel-
ative clauses. Note that after fine-tuning, all con-
ditions (Aff,Rel and Wh) show a significant pref-

erence for the object case (present in Aff/Wh even
in the original run). This effect emerged also in
Chowdhury and Zamparelli (2018) (and in work
of ours, under review, which specifically addresses
this phenomenon). Since it is also present in affir-
matives, it cannot obviously be attributed to a sen-
sitivity to islands, but can probably be put down
to a general preference of LSTM LMs for hav-
ing complex structures in object position. This ef-
fect seems to overcome an effect found in Chowd-
hury and Zamparelli (2018) (Task A, which how-
ever uses different measures), where subject rela-
tives scored better than object relatives (while both
being grammatical), in line with human parsing
preferences widely discussed in the psycholinguis-
tic literature (Gibson, 1998; Gordon et al., 2001;
Friedmann et al., 2009). The general lower score
for RCs, compared to Wh cases, could also be at-
tributed to the fact that in the testing phase the LM
receives an End-of-Input signal before the sen-
tence is over (i.e. RC are sentence fragments).

Figure 3 shows the effect of fine-tuning the orig-
inal LM on different parts of the test set and test-
ing it on the others. At a global level, if we com-
pare the scores with the affirmative baseline (the
performance of the model fine-tuned with affir-
matives only, as in Figure 2, left), we see that
on average adding Wh-clauses significantly boosts
RCs (+0.64) and vice-versa, though not as strongly
(+0.39). Next, tuning with grammatical material
gives a larger overall boost than tuning on ungram-
matical material. This can be seen from the Total
in Table 3 (using the notation ARelObj(RelObj-
Aff(RelObj)) to mean “SLOR of LMO fine-tuned
with Aff+RelObj (ARelObj) and applied to Rela-
tives with OBJect subextraction minus the SLOR
of the test set using model adapted by Aff)”).
Within construction, tuning with Aff plus Obj ex-
tractions boosts other object cases (green cells)
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Figure 2: Variation of SLOR measure for different test groups using the model adapted on affirmative sentences
(Aff, both AffSubj and AffObj) and the original LM0 (Ori) model. Higher is better. The blue arrows with the ∆
values represents the difference in SLOR between grammatical and ungrammatical sentences. ∗ warns that the
same testset is used to adapt the respective model. ns indicates that the results are not significantly different from
each other.

Figure 3: Variation of SLOR measure for different test groups using models adapted on: relative clause-object
(ARelObj); relative clause-subject (ARelSubj); wh-object (AWhObj); wh-subject (AWhSubj). All the models
are initially adapted on affirmative sentences, hence the presence of A in ARelObj and all other models. The
blue arrows with the ∆ values represents the difference between the SLOR of grammatical correct sentences with
ungrammatical sentences. The ∗ warns when the same testset was used to adapt the corresponding model.

more than tuning on Aff plus Subj extractions
boosts other Subj cases (pink cells); across con-
struction, Aff+WhObj tuning boosts RelObj and
even RelSub and, to a lesser extent, Aff+RelObj
tuning boosts WhObj more than Aff+RelSubj
boosts WhSubj.

CoLA results Figure 4 shows the results on
the 5 test sets for the original model (LMO) and
the LM fine-tuned with the CoLA grammatical
and ungrammatical sentences, respectively. The
first thing to note is that LMO is already able
to significantly distinguish, on average, the two
classes, with the worst performances coming from
the Causative-Inchoative Alternation, a construc-
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Fine-tuned with
Testing scores ARelObj ARelSubj AWhObj AWhSubj

a. RelSubj–Aff(RelSubj) 1.35 2.19 0.52 0.65
b. RelObj–Aff(RelObj) 2.49 1.31 0.96 0.46
c. WhSubj–Aff(WhSubj) 0.28 0.42 1.19 2.03
d. WhObj–Aff(WhObj) 0.54 0.34 2.28 1.14
e. Total: 4.66 4.26 4.95 4.28

Table 3: Effect of fine-tuning. AX represent the models tuned with affirmatives followed by X. Y-Aff(Y) represent
the test scores (SLOR) using the particular model minus the SLOR of the model adapted on affirmatives (Aff) for
the Y test set. X,Y ∈ {RelObj,RelSubj,WhObj,WhSubj}.

tion linked to the lexical semantics of a class of
verbs which are not likely to be encountered in
many other examples. As in the previous experi-
ment, fine-tuning improves the SLOR scores of all
cases, ungrammatical ones included. In keeping
with the previous experiment, we verify whether
the switch from CoLAG to CoLAUG has a sig-
nificant effect on the improvements (esp. CoLA-
G(G) vs. CoLA-UG(UG), keeping in mind that
here, unlike in the previous experiment, the train-
ing can contain at most a small dose of the lexi-
con and the phenomena in the testing set). Given
the results in the Subj/Obj island task, our expec-
tations are that tuning on CoLAG should work
better than tuning on CoLAUG. The difference
turns out not to be significant with Subject-Verb
Agreement cases (SVArg, Figure 4a), significant
but with ungrammatical cases coming out best for
the Subject-Verb-Object permutation cases (SVO,
Figure 4b), significantly bigger with grammatical
tuning in the remaining cases (see 4f for the over-
all picture). The case of SVArg might be due to
the fact that the contrastive examples found in the
syntactic literature might not cover something as
basic as wrong subject-verb agreement. The be-
havior of SVO remains unclear.

6 Discussions and Conclusions

The results of ours first experiment suggest that,
even though the contrast between subject and ob-
ject subextraction is one of the hardest for ANNs
to detect (see Wilcox et al. 2018), fine-tuning a
language model with one of the two conditions
does not give the same effect: above and beyond
the effect of assertions (see Figure 3), tuning with
grammatical extractions (i.e. object cases) yields
a larger boost for the construction used for tun-
ing than tuning with the ungrammatical cases. In
small measure, the boost extends to the related
construction (Wh to RC, and partially vice-versa).

The same effect is found with the much less con-
trolled CoLA dataset, at least for some of the con-
structions we tested.

The results are consistent with the hypothesis
that grammatical cases are somehow easier to in-
tegrate into what the ANN has already discovered
about linguistic structures. Of course, positive
examples of grammatical extractions like WhObj
and RelOBj also boost the ungrammatical cases,
but possibly this is because they apply to parts of
the sentence different from the extraction site (in-
deed, ungrammatical cases boost grammatical and
ungrammatical cases almost to the same degree).
This suggests that the methodology we are propos-
ing could be a useful addition to the toolbox of this
research area.

An obvious question, at this point, is whether
the fine-tuning approach could be turned into
a classification method. One could for in-
stance imagine classifying a sentence as gram-
matical or ungrammatical on the basis of its
SLOR difference across LMs tuned with gram-
matical/ungrammatical sets (e.g. CoLAG and
CoLAUG conditions). Recall however that SLOR
is sensitive to a variety of factors which have noth-
ing to do with grammaticality (e.g. collocations,
pragmatic plausibility), and that it has been used
to study grammaticality only with carefully con-
structed minimal pairs. While not impossible,
we suspect that a classification experiment could
not be done with relatively open data like CoLA,
though it is possible that with more balanced ma-
terials such an experiment might become possible.
Probably a better use for the technique proposed
here would be to study similarity across construc-
tions as seen by the network. Using the more fine-
grained classification of the CoLA data given in
Warstadt and Bowman (2019), it might be possi-
ble to selectively fine-tune a model with one con-
struction, test it with all the others and discover
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Figure 4: Variation of global SLOR measure for: Figure 4a - Subject-Verb Agreement (SVAgr); In Figure 4b -
Subject-Verb-Object (SVO); In Figure 4c - Wh-Extraction (WhExt); In Figure 4d - Reflexive-Antecedent Agree-
ment (RiflAgr); Figure 4e - Causative-Inchoative Alternation (CausAlt). For all Figure 4 a-e, Original model
is un-adapted LM model, where as Adapted Cola-G(UG) represent the results from the model which is adapted
on CoLA train grammatical (ungrammatical) instances. Figure 4f represents the difference in the measure of
SLOR value, for grammatical (G) and ungrammatical (UG) examples, between Cola-G and Cola-UG model, i.e.
AG(SLOR) − AUG(SLOR) for all the above test cases (a-e), where AG represents result from Cola-G model
and similarly AUG represents result from Cola-UG. The blue arrows with the ∆ values represents the difference
between the SLOR of grammatical correct sentences with ungrammatical sentences. ns indicates that the results
are not significantly different from each other.

from the variations in a performance measure like
SLOR how the ANN ‘sees’ the relation between
different linguistic cases.
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Abstract

The quality of Neural Machine Translation
(NMT) has been shown to significantly de-
grade when confronted with source-side noise.
We present the first large-scale study of state-
of-the-art English-to-German NMT on real
grammatical noise, by evaluating on sev-
eral Grammar Correction corpora. We present
methods for evaluating NMT robustness with-
out true references, and we use them for ex-
tensive analysis of the effects that different
grammatical errors have on the NMT output.
We also introduce a technique for visualizing
the divergence distribution caused by a source-
side error, which allows for additional insights.

1 Introduction

Neural Machine Translation (NMT) has become
the de facto option for industrial systems in
high-resource settings (Wu et al., 2016; Has-
san Awadalla et al., 2018; Crego et al., 2016)
while dominating public benchmarks (Bojar et al.,
2018). However, as several works have shown,
it has a notable shortcoming (among others, see
Koehn and Knowles (2017) for relevant discus-
sion) in dealing with source-side noise, during
both training and inference.

Heigold et al. (2018) as well as Belinkov and
Bisk (2018) pointed out the degraded performance
of character- and subword-level NMT models
when confronted with synthetic character-level
noise –like swaps and scrambling– on French,
German, and Czech to English MT. Belinkov and
Bisk (2018) and Cheng et al. (2018) also studied
synthetic errors from word swaps extracted from
Wikipedia edits. Anastasopoulos et al. (2019) fo-
cused on a small subset of grammatical errors (ar-
ticle, preposition, noun number, and subject-verb
agreement) and evaluated on English-to-Spanish
synthetic and natural data.

However, no previous work has extensively
studied the behavior of a state-of-the-art (SOTA)
model on natural occurring data. Belinkov and
Bisk (2018) only trained their systems on
about 200K parallel instances, while Heigold
et al. (2018) and Anastasopoulos et al. (2019)
trained on about 2M parallel sentences from the
WMT’16 data. Importantly, though, none of them
utilized vast monolingual resources through back-
translation, a technique that has been consistently
shown to lead to impressively better results (Sen-
nrich et al., 2016a).

In this work, we perform an extensive analysis
of the performance of a state-of-the-art English-
German NMT system, with regards to its robust-
ness against real grammatical noise. We propose
a method for robustness evaluation without gold-
standard translation references, and perform ex-
periments and extensive analysis on all available
English Grammar Error Correction (GEC) cor-
pora. Finally, we introduce a visualization tech-
nique for performing further analysis.

2 Data and Experimental Settings

To our knowledge, there are six publicly available
corpora of non-native or erroneous English that are
annotated with corrections and which have been
widely used for research in GEC.

The NUS Corpus of Learner English (NUCLE)
contains essays written by students at the National
University of Singapore (Dahlmeier et al., 2013).
It has become the main benchmark for GEC, as it
was used in the CoNLL GEC Shared Tasks (Ng
et al., 2013, 2014). The Cambridge Learner Cor-
pus First Certificate in English FCE corpus1 (Yan-
nakoudakis et al., 2011) consists of essays col-
lected from learners taking the Cambridge Assess-
ment’s English as a Second or Other Language

1We use the publicly available portion.
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(ESOL) exams.2 The Lang-8 corpus (Tajiri et al.,
2012) was harvested from user-provided correc-
tions in an online learner forum. Both have also
been widely used for the GEC Shared Tasks. An-
other small corpus developed for evaluation pur-
poses is the JHU FLuency-Extended GUG corpus
(JFLEG) (Napoles et al., 2017) with correction an-
notations that include extended fluency edits rather
than just minimal grammatical ones. The Cam-
bridge English Write & Improve (W&I) corpus
(Andersen et al., 2013) is collected from an online
platform where English learners submit text and
professional annotators correct them, also assign-
ing a CEFR level of proficiency (of Europe. Coun-
cil for Cultural Co-operation. Education Commit-
tee. Modern Languages Division, 2001). Lastly,
we use a portion of the LOCNESS corpus,3 a col-
lection of essays written by native English speak-
ers. 50 essays from LOCNESS were annotated by
W&I annotators for grammatical errors, so we will
jointly refer to these two corpora as WI+loc.

All datasets were consistently annotated for er-
rors with ERRANT (Bryant et al., 2017), an auto-
matic tool that categorizes correction edits.3 This
allows us to consistently aggregate results and
analysis across all datasets.

2.1 Notation and Experimental Settings
Throughout this work, we use the following nota-
tions:

• x: the original, noisy, potentially ungrammat-
ical English sentence. Its tokens will be de-
noted as xi.
• x̃: the English sentence with the correction

annotations applied to the original sentence
x, which is deemed fluent and grammatical.
Again, its tokens will be denoted as x̃i.
• y: the output of the NMT system when x is

provided as input (tokens: y j).
• ỹ: the output of the NMT system when x̃ is

provided as input (tokens: ỹ j).

For the sake of readability, we use the terms
grammatical errors, noise, or edits interchange-
ably. In the context of this work, they will all
denote the annotated grammatical errors in the
source sentences (x). We also define the number
of errors, or the amount of noise in the source, to

2https://www.cambridgeenglish.org/
3nucle, Lang8, fce, and WI+loc are pre-annotated with

ERRANT for the BEA 2019 GEC Shared Task. We also an-
notated jfleg.

be equivalent to the number of annotated neces-
sary edits that the source x requires to be deemed
grammatical (x̃), as per standard GEC literature.

The main focus of our work is the performance
analysis of the NMT system, so our experimental
design is fairly simple. We use the SOTA NMT
system of Edunov et al. (2018) for translating both
the original and the corrected English sentences
for all our GEC corpora.4 The system achieved
the best performance in the WMT 2018 evalua-
tion campaign, using an ensemble of 6 deep trans-
former models trained with slightly different back-
translated data.5

3 Evaluating NMT Robustness without
References

When not using human judgments on output flu-
ency and adequacy, Machine Translation is typ-
ically evaluated against gold-standard reference
translations with automated metrics like BLEU
(Papineni et al., 2002) or METEOR (Banerjee and
Lavie, 2005). However, in the case of GEC cor-
pora, we do not have access to translations – only
monolingual data (potentially with ungrammati-
calities) and correction annotations.6 Quality Es-
timation for MT also operates in a reference-less
setting (see Specia et al. (2018) for definitions and
an overview of the field) and is hence very related
to our work, but is more aimed towards towards
predicting the quality of the translation. Our goal
instead, is to analyze the behavior of the MT sys-
tem when confronted with ungrammatical input.
Reference-less evaluation has also been proposed
for text simplification (Martin et al., 2018) and
GEC (Napoles et al., 2016), while the grammat-
icality of MT systems’ outputs has been evaluated
with target-side contrastive pairs (Sennrich, 2017).

In this work, the core of our evaluation of a sys-
tem’s robustness lies in the following observation:
a perfectly robust-to-noise MT system would
produce the exact same output for the clean and
erroneous versions of the same input sentence.

4We use all data, concatenating train, dev, and test splits.
We sample 150K sentences from Lang8.

5Refer to (Edunov et al., 2018) for further system details.
6The ideal way to potentially obtain such references of

noisy text is debatable, and the extent to which humans are
able to translate ungrammatical text is unknown. A well-
crafted investigation could ideally elicit translations of both
original and (the multiple versions of) corrected texts from
multiple translators in order to study this issue. Although we
highly encourage such a study, we could not conduct one due
to budgetary constraints.
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Denoting a perfect MT system as a func-
tion MTper f ect(·) over input sentences to the cor-
rect output sentences ŷ, then both input sen-
tences x and x̃ would yield the same output:

ŷ = MTper f ect(x) = MTper f ect(x̃).

In our case, ŷ is unknown and we only have
access to a very good (but still imperfect) sys-
tem MTactual(·). We propose, therefore, to treat the
system’s output of the cleaned input (ỹ) as refer-
ence. Our assumption is that ỹ is a good approxi-
mation of the correct translation ŷ:

ŷ ≈ MTactual(x̃) = ỹ.

Under this assumption, we can now evaluate our
system’s robustness by comparing y and ỹ using
automated metrics at the corpus or sentence level.
Here we list the metrics that we use and briefly
discuss their potential shortcomings.

Robustness Percentage (RB): Given a GEC
corpus {X, X̃}, this corpus-level metric evaluates
the percentage at which the system outputs agree
at the sentence level:

RB =

∑
x,x̃∈{X,X̃} cagree(MT(x),MT(x̃))

|X| ,

cagree(y, ỹ) =


1 if y = ỹ,
0 otherwise.

f-BLEU: BLEU is the most standard MT evalu-
ation metric, combining n-gram overlap accuracy
with a brevity penalty. We calculate sentence- and
corpus-level BLEU-4 scores for every y with ỹ as
the reference. Note that the BLEU scores that we
obtain in our experiments are not comparable with
any previous work (as we do not use real refer-
ences) so we denote our metric as faux BLEU (f-
BLEU) to avoid confusion.7

f-METEOR: Same as above, we define faux-
METEOR using the METEOR MT metric
(Denkowski and Lavie, 2014) which is more se-
mantically nuanced than BLEU.

7In absolute numbers, we obtain higher scores than the
scores of a MT system compared against actual references:
the best English-German system from the WMT 2018 evalu-
ation (Edunov et al., 2018) obtained a BLEU score of 46.5;
our f-BLEU scores are in the [37-65] range, but we consider
them informative only when viewed relative to other f-BLEU
scores.

Target-Source Noise Ratio (NR): A notable
drawback of all the previously discussed metrics is
that they do not take into account the source sen-
tences x and x̃ or their distance. However, it is ex-
pected that minimal perturbations of the input (e.g.
some missing punctuation) will also be minimally
reflected in the difference of the outputs, while
more distant inputs (which means higher levels
of noise in the uncorrected source) would lead to
more divergent outputs. To account for this ob-
servation, we propose Target-Source Noise Ratio
(NR) which factors the distance of the two source
sentences into a metric. The distance of two sen-
tences can be measured by any metric like BLEU,
METEOR, etc. We simply use BLEU:

NR(x, x̃, y, ỹ) =
d(y, ỹ)
d(x, x̃)

=
100 − BLEU(y, ỹ)
100 − BLEU(x, x̃)

.

If the average (corpus-level) Noise Ratio score is
smaller than 1 (NR(X, X̃,Y, Ỹ) < 1) then we can in-
fer that the MT system reduces the relative amount
of noise, as there is higher relative n-gram overlap
between the outputs than the inputs. On the other
hand, if it is larger than 1, then the MT system
must have introduced even more noise.8

Recently, Michel et al. (2019) proposed a crite-
rion for evaluating adversarial attacks, which re-
quires also having access to the correct translation
ŷ. Using a similarity function s(·), they declare an
adversarial attack to be successful when:

s(x, x̃) +
s(y, ŷ) − s(ỹ, ŷ)

s(y, ŷ)
> 1

In our reference-less setting, assuming ŷ ≈ ỹ leads
to s(ỹ, ŷ) = 1. Finally, representing the similarity
function with a distance function s(·) = 1 − d(·)
and simple equation manipulation, the criterion
becomes exactly our Target-Source Noise Ratio.
We have, hence, arrived at a reference-less cri-
terion for evaluating any kind of adversarial at-
tacks.9

4 Analysis

We first review the aggregate results across all
datasets (§4.1) and with all metrics. We also

8As presented, the NR metric assumes that the length of
the input and target sentences are comparable. In the English-
German case, this is more or less correct. A more general
implementation could include a discount term based on the
average sentence length ratio of the two languages.

9Indeed, grammatical noise is nothing more than natural
occurring adversarial noise.
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dataset
number of average

RB
over non-robust sent

NR
sentences #corr/sent. f-BLEU f-METEOR

WI+loc

A 9K 3.4 17.77 46.75 65.29 2.12
B 10K 2.6 21.17 54.72 70.80 2.39
C 5.9K 1.8 29.07 63.46 76.63 2.73
N 500 1.8 28.80 64.79 77.35 3.23

nucle 21.3K 2.0 20.69 59.97 74.6 2.92
fce 20.7K 2.4 20.48 50.45 67.49 2.43
jfleg 1.3K 3.8 12.42 42.05 61.99 2.18

Lang8 149.5K 2.4 16.06 37.15 58.89 2.20

ALL\Lang8 69K 2.4 20.94 54.65 70.64 2.55
ALL 218.5K 2.4 17.60 42.65 62.59 2.55

Table 1: Aggregate results across all datasets. As expected, the NMT system’s performance deteriorates as input
noise increases. For all metrics except NR, higher scores are better.

present findings based on sentence-level analysis
(§4.2). We investigate the specific types of errors
that contribute to robustness as well as those that
increase undesired behavior in §4.3. Finally, in
Section §4.4 we introduce the more fine-grained
notion of divergence that allows us to perform
interesting analysis and visualizations over the
datasets.

4.1 Aggregate Results

Table 1 presents the general picture of our ex-
periments, summarizing the translation robustness
across all datasets with all the metrics that we ex-
amined, and also providing basic dataset statistics.
Note that the aggregate f-BLEU and f-METEOR
scores in Table 1 are calculated excluding sen-
tences where the system exhibits robustness. We
made this choice in order to tease apart the dif-
ferences across the datasets by focusing on the
problematic instances; having between 17% and
29% of the scores be perfect 100 f-BLEU points
would obscure the analysis. We also report aver-
age scores across all datasets (last row) as well as
scores without including Lang8, since the Lang8
dataset is significantly larger than the others.

Takeaway 1: Increased amounts of noise in
the source degrade translation performance.
The first takeaway confirms the previous results
in the literature (Belinkov and Bisk, 2018; Anas-
tasopoulos et al., 2019). The average number of
corrections per sentence and the robustness per-
centage (RB) column have a Pearson’s correlation
coefficient ρ = −0.82, while both f-BLEU and f-
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Figure 1: Effect of the number of errors on robustness.
Robustness Percentage more than halves for each addi-
tional input sentence error, while f-BLEU on the non-
robust sentences reduces linearly.

METEOR have lower ρ = −0.71.
This is further outlined by the results on the

WI+loc datasets. The English proficiency of the
students increases from the A to B to C sub-
sets, and the N subset is written by native English
speakers. An increase in English proficiency man-
ifests as a lower number of errors, higher robust-
ness percentage, and larger f-BLEU scores.

Takeaway 2: The MT system generally mag-
nifies the input noise. This is denoted by the NR
column which is larger than 1 across the board.
This means that the MT system exacerbated the
input noise by a factor of about 2.5. This effect is
more visible when the source noise levels are low,
as in the WI+loc C and N or the nucle datasets.

4.2 Sentence-level Findings
We continue our analysis focusing on instance or
sentence-level factors, presenting results combin-
ing all datasets.
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Figure 2: Robustness Percentage broken down by sen-
tence length and number of source errors. The radius
of each circle is proportional to the number of sen-
tences and the opacity corresponds to RB score (dark-
est: RB=33%, lowest: RB≈2%). The model is more ro-
bust with few errors regardless of sentence length.

Effect of the input number of errors: Figure 1
clearly shows the compounding effect of source
side errors. Each additional error reduces overall
robustness by more than 50%: from robust be-
havior in about 32% of the 1-error instances, to
13% for the 2-errors instances, to 6% on instances
with 3 errors; and so forth, to the point that the
model is robust in less than 1% of instances with
more than 5 source-side errors. The robustness
drop when computed with f-BLEU is practically
linear, starting from about 59 f-BLEU points when
a single error is present, falling to about 28 when
the source has more than 9 errors.

Effect of input length: One factor related to
the number of input errors is the effect of the
source sentence length. We find that there is a neg-
ative correlation between the input length and the
model’s robustness. This is to be expected, as in-
put length and the number of errors are also cor-
related: longer sentences are more likely to more
errors, and inversely, short sentences cannot have
a large number of errors.

Figure 2 presents the RB score across these two
factors. We bin the input sentences based on their
sentence lengths and based on the number of er-
rors in the source. We only plot bins that have a
RB score of more than 1% (reflected in the opacity
of the plot). It is clear that more errors in a source
sentence lead to reduced robustness, while the sen-
tence length is not as significant a factor.

A closer look at sentences with a single error

Recoverable Non-recoverable
Error RB Error EB

VERB-INFL 22% CONJ 3%
VERB-SVA 22% OTHER 5%

ORTH 19% NOUN 6%
VERB-FORM 17% ADV 7%

WO 17% VERB 7%

Table 2: Some errors are easier to translate correctly
than others. The average error has an RB score of 11%.
We present the errors that fall out of the [µ±2σ] range.

reveals that the system is robust about 30% of the
time regardless of their length, with a slight in-
crease in accuracy as the length increases. Longer
sentences provide more context, which presum-
ably aids in dealing with the source noise. This
pattern is similar across all rows in Figure 2.

4.3 Error-level Analysis
In this section we aim to study and identify the
error types from which the NMT system is able
to recover, or not. To avoid the compounding ef-
fects of multiple source-side errors, we restrict this
analysis to sentences that have a single error.

We have already discussed in Section 4.1 how
the NMT system is robust on about 20% of the
instances across all corpora. By selecting those
instances and computing basic error statistics on
them, we find that the average error is recoverable
about 11% of the time (µ = 0.11). Table 2 presents
the errors that are harder or easier to translate cor-
rectly. We choose to present the errors that are at
the bottom and top, respectively, of the ranking of
the errors, based on the average RB score that their
corresponding test instances receive.

The non-recoverable errors on the right side of
Table 2 are mostly semantic in nature: all five
of them correspond to instances where a seman-
tically wrong word was used.10 Correcting and
even identifying these types of errors is difficult
even in a monolingual setting as world knowl-
edge and/or larger (document/discourse) context is
needed. One could argue, in fact, that such errors
are not grammatical, i.e. the source sentence is flu-
ent. Furthermore, one could form a solid argument
for not wanting/expecting an MT system to alter
the semantics of the source. The MT system’s job
is exactly to accurately convey the semantics of the

10We refer the reader to Bryant et al. (2017) for a complete
list of the error type abbreviations.
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I want to play with children and see their simle all day.

Ich will mit den Kindern spielen und sie den ganzen Tag sehen.

Ich möchte mit Kindern spielen und ihr Lächeln den ganzen Tag sehen.

I want to play with children and see their smiles all day.

counts:

relative pos:

x

MT(x)

x̃

MT(x̃)

+0 +1 +0 +0 +0 +0 +1 +1 +0 +0 +0 +0

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4

Figure 3: The procedure of computing divergence over a quadruple (x, y, x̃, ỹ). Each token in output y not in the
desired output ỹ is considered a divergent token (underlined=matching). The x-axis is centered around the token ỹk

that aligns to the edit xi*→ x̃ j. The counts describe the caused divergence relative to the expected error’s position.

source sentence in the target language.
However, there are errors where the intended

meaning is clear but ungrammatically executed, as
in Table 2’s left-side errors. There are three plausi-
ble (likely orthogonal, but we leave such analysis
for future work) reasons why these errors are eas-
ier than average to correctly translate:

1. Self-attention. The encoder’s final repre-
sentations are computed through multiple self-
attention layers, resulting in a representation heav-
ily informed by the whole source context. The
VERB-INFL, VERB-SVA, and VERB-FORM er-
ror categories (all related to morphology and syn-
tactic constraints) apply to edits that subword
modeling combined with self-attention would al-
leviate. Consider the example of the verb inflec-
tion (VERB-INFL) error danceing*/dancing. The
segmentation in the erroneous and the corrected
version is dance|ing and danc|ing respectively. In
both cases, the morpheme that denotes the inflec-
tion is the same. Verb form (VERB-FORM) errors,
on the other hand, typically involve infinitive, to-
infinitive, gerund, or participle forms. It seems that
in those cases the self-attention component is able
to use the context to recover, especially because, as
in the VERB-INFL example, the stem of the verb
will most likely be the same.

Also, apart from the positional embeddings, no
other explicit word order information is encoded
by the architecture (unlike recurrent architectures
focused on by all previous work, which by con-
struction keep track of word order). We suggest
that the self-attention architecture makes word or-
der errors (WO errors are strictly defined as ex-
act match tokens wrongly ordered, e.g. know al-
ready*/already know) easier to recover from.

2. The extensive use of back-translation. The
SOTA model that we use has been trained on mas-

sive amounts of back-translated data, where Ger-
man monolingual data have been translated into
English. The integral part is that English sources
were sampled from the De-En model, instead of
using beam-search to generate the most likely
output. This means that the model was already
trained on a fair amount of source-side noise,
which would make it more robust to such pertur-
bations (Belinkov and Bisk, 2018; Anastasopoulos
et al., 2019; Singh et al., 2019).

Although we do not have access to the back-
translated parallel data that Edunov et al. (2018)
used, we suspect that translation errors are fairly
common and therefore more prevalent in the fi-
nal training bitext, making the model more robust
to such noise. Current English-to-German SOTA
systems might not have issues with translating
noun phrases, coordinated verbs, or pronoun num-
ber, but they still struggle with compound genera-
tion, coreference, and verb-future generation (Bo-
jar et al., 2018).

3. Data preprocessing and subword-level mod-
eling. It is worth noting that ERRANT limits
the orthography (ORTH) error category to re-
fer to edits involving casing (lower↔upper) and
whitespace changes. Our model, as most of the
SOTA NMT models, is trained and operates at
the subword level, using heuristic segmentation
algorithms like Byte Pair Encoding (BPE) (Sen-
nrich et al., 2016b), that are learned on clean
truecased data. Truecasing is also a standard pre-
processing step at inference time, hence dealing
with casing errors. The BPE segmentation also
has the capacity to deal with whitespace errors.
For example, the incorrect token “weatherrelated”
gets segmented to we|a|ther|related. Although im-
perfect (the segment’s segmentation with proper
whitespacing is we|a|ther related), the two seg-
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mentations agree for 3/4 tokens. Most previous
work e.g. (Belinkov and Bisk, 2018) has focused
on character-level modeling using compositional
functions across characters to represent tokens,
which are by construction more vulnerable to such
errors.

4.4 Divergence

We introduce a method for computing a di-
vergence distribution. Computing divergence re-
quires a quadruple of (x, x̃, y, ỹ). We will focus on
instances where x and x̃ differ only with a single
edit, as a simple working example.

Process: Given a source side sentence pair x and
x̃ with a single grammatical error, it is trivial to
identify the position i∗ of the correction in x̃, since
we work on corpora pre-annotated with grammat-
ical edits at the token level. Also, using traditional
methods like the IBM Models (Brown et al., 1993)
and the GIZA++ tool, makes it easy to obtain an
alignment between x and y, as well as between x̃
and ỹ. We use the alignment variable α j = i to
denote that the target word y j is aligned to source
position i, and equivalently the variables α̃ for the
corrected source pair. We denote as k∗ the target
position that aligns to the source-side correction,
such that α̃k∗ = i∗.

We define the set of divergent tokens Y∗ as the
set of tokens of y that do not appear in ỹ:

Y∗ = {y j | y j < ỹ}.

Now, we use all the previous definitions to define
the setP of target divergent positions for a quadru-
ple (x, x̃, y, ỹ) as the set of target-side positions of
the tokens that are different between y and ỹ, but
relative to the position of the target-side token that
aligns to the source-side correction:

P(x, x̃, y, ỹ) = { j − k∗,∀y j ∈ Y∗}.
We provide an illustration of this process for a

single-error example in Figure 3. The correction
simle*/smiles is aligned to the word y7 (Lächeln)
in the reference target, so the center of the dis-
tribution is moved to k∗ = 7. For the rest of the
positions in the target reference ỹ, we simply up-
date the counts based on whether the word ỹ j is
present in y. The final step is collecting counts
across all instances for all the relative divergent
positions and analyzing the effect of a source-side
error on the target sentence.

Essentially, we expect some source-side errors
to have a very local effect on the translation output,
which would translate in divergence distributions
with low variance (since we center the distribution
around k∗). Other source-side errors might cause
larger divergence as they might affect the whole
structure of the target sentence.

In the Figure 3 example, the only difference be-
tween x and x̃ is a single word towards the end of
the sentence, but the outputs y and ỹ diverge on
three words. One of them is 6 words away (be-
fore) from where we would have expected the di-
vergence to happen (in relative position 0).

After collecting divergence counts for each in-
stance, we can visualize their distribution and
compute their descriptive statistics. We focus on
the mean µ, standard deviation σ, and the skew-
ness of the distribution as measured by Pearson’s
definition, using the third standardised moment,
defined as:

γ1 = E

[(X − µ
σ

)3]
.

Across all datasets and errors, the distribu-
tion of the divergence caused by single errors in
the source has a mean µall=0.7, standard devia-
tion σall=5.1, and a slight positive skewness with
γ1all=0.8. This means that the average error affects
its general right context, in a ±5 word neighbor-
hood.

In Figure 4 we present several of the errors with
the most interesting divergence statistics. Some
errors heavily affect their left (e.g. R:ORTH) or
right context (U:CONJ). Also, some errors affect a
small translation neighborhood as denoted by the
low variance of their divergence distribution (e.g.
U:CONTR). On the other hand, verb form errors
(M:VERB:FORM) have the potential to affect a
larger neighborhood: this is expected because En-
glish auxiliary verb constructions (e.g. ”have eaten
X”) often get translated to German V2 construc-
tions with an auxiliary verb separated from a final,
non-finite main verb (e.g. “habe X gegessen”).

In Figure 5 we present the divergence distribu-
tions across the sentence quartiles where the error
appears. We find that errors in the sentence begin-
ning (1st quartile) severely affect their right con-
text. Errors towards the end of the sentence (4th

quartile) affect their left context. Interestingly, we
observe that mid-sentence errors (2nd, 3rd quar-
tiles) exhibit much lower divergence variance than
errors towards the sentence’s edges.
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R:ORTH M:VERB:FORM U:ADJ
µ: -1.9 σ: 5.9 γ1: -2.1 µ: -1.4 σ: 7.6 γ1: -1.2 µ: -1.1 σ: 6.1 γ1: -1.1

lowest mean, large variance, low mean, largest variance, low mean, large variance,
most negative skewness negative skewness negative skewness

U:CONTR R:WO U:CONJ
µ: 1.6 σ: 3.8 γ1: 0.1 µ: 1.8 σ: 4.9 γ1: 1.0 µ: 2.3 σ: 5.6 γ1: -0.2

large mean, smallest variance, large mean, small variance, largest mean, large variance,
no skewness positive skewness no skewness

U:PART R:SPELL R:CONTR
µ: 0.6 σ: 5.7 γ1: -1.9 µ: 0.5 σ: 5.6 γ1: 5.9 µ: 1.1 σ: 5.6 γ1: 2.1

close-to-zero mean, large variance, almost-zero mean, large variance, large variance,
large negative skewness largest positive skewness large positive skewness

Figure 4: Some interesting errors with statistics on their divergence distribution. Some errors (negative mean and
skewness: R:ORTH, M:VERB:FORM, U:ADJ) affect the left context of their translation more, while others affect their right
translation context (positive mean and skewness R:WO, U:CONJ). Errors might affect a small neighborhood (low variance:
U:CONTR, R:WO) or a larger part of the translation (high variance: M:VERB:FORM, U:ADJ, R:CONTR).

first quartile
(i∗ < 0.25|x|)

second quartile
(0.25|x| ≤ i∗ < 0.50|x|)

third quartile
(0.50|x| ≤ i∗ < 0.70|x|)

fourth quartile
(0.75|x| ≤ i∗ < |x|)

µ: 3.8 σ: 5.6 γ1: 3.3 µ: 1.6 σ: 4.1 γ1: 1.2 µ: -0.2 σ: 3.6 γ1: -1.1 µ: -2.9 σ: 4.8 γ1: -2.5

Figure 5: Divergence Distributions for single source error instances per the error’s location quartile.
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5 Limitations and Extensions

A major limitation of our analysis is the narrow
scope of our experiments. We solely focused on
a single language pair using a single MT system.
Whether different neural architectures over other
languages would lead to different conclusions re-
mains an open question. The necessary resources
for answering these questions at scale, however,
are not yet available. We were limited to English
as our source side language, as the majority of the
datasets and research works in GEC are entirely
English-centric. Perhaps small-scale GEC datasets
in Estonian (Rummo and Praakli, 2017) and Lat-
vian (Deksne and Skadina, 2014) could provide
a non-English testbed. One would then need er-
ror labels for the grammatical edits, so if such an-
notations are not available, an extension of a tool
like ERRANT to these languages would also be
required. One should also be careful in the de-
cision of what (N)MT system to test, as using a
low-quality translation system would not produce
meaningful insights.

Another limitation is that our metrics do not
capture whether the changes in the output are ac-
tually grammatical errors or not. In the example in
Figure 3: the German words “möchte” and “will”
that we identified as divergent are practically in-
terchangeable. Therefore, the NMT model is tech-
nically not wrong outputting either of them and
it is indeed generally possible that differences be-
tween y and ỹ are just surface-level ones. The
inclusion of f-METEOR as a robustness metric
could partially deal with this issue, as it would not
penalize such differences. We do believe it is still
interesting, though, that a single source error can
cause large perturbations in the output, as in the
case of errors with large variance in their diver-
gence distribution. Nevertheless, an extension of
our study focusing on the grammatical qualities of
the MT output would be exciting and automated
tools for such analysis would be invaluable (i.e.
MT error labeling and analysis tools extending the
works of Zeman et al. (2011), Logacheva et al.
(2016), Popović (2018), or Neubig et al. (2019)).

A natural next research direction is investigat-
ing how to use our reference-less evaluation met-
rics in order to create a more robust MT system.
For instance, one could optimize for f-BLEU or
any of the other reference-less measures that we
proposed, in the same way that an MT system is
optimized for BLEU (either by explicitly using

their scores through reinforcement learning or by
simply using the metric as an early stopping crite-
rion over a development set). Cheng et al. (2018)
recently proposed an approach for training more
robust MT systems, albeit in a supervised setting
where noise is injected on parallel data, and the
proposed solutions of Belinkov and Bisk (2018)
and Anastasopoulos et al. (2019) fall within the
same category. However, no approach has, to our
knowledge, used GEC corpora for training MT
systems robust to grammatical errors. In any case,
special care should be taken so that any improve-
ments on translating ungrammatical data do not
worsen performance on clean ones.

6 Conclusion

In this work, we studied the effects of grammatical
errors in NMT. We expanded on findings from pre-
vious work, performing analysis on real data with
grammatical errors using a SOTA system. With
our analysis we were able to identify classes of
grammatical errors that are recoverable or irrecov-
erable. Additionally, we presented ways to evalu-
ate a MT system’s robustness to noise without ac-
cess to gold references, as well as a method for
visualizing the effect of source-side errors to the
output translation. Finally, we discussed the limi-
tations of our study and outlined avenues for fur-
ther investigations towards building more robust
NMT systems.
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Abstract

Neural network architectures have been aug-
mented with differentiable stacks in order to
introduce a bias toward learning hierarchy-
sensitive regularities. It has, however, proven
difficult to assess the degree to which such a
bias is effective, as the operation of the differ-
entiable stack is not always interpretable. In
this paper, we attempt to detect the presence
of latent representations of hierarchical struc-
ture through an exploration of the unsuper-
vised learning of constituency structure. Using
a technique due to Shen et al. (2018a,b), we
extract syntactic trees from the pushing behav-
ior of stack RNNs trained on language model-
ing and classification objectives. We find that
our models produce parses that reflect natural
language syntactic constituencies, demonstrat-
ing that stack RNNs do indeed infer linguisti-
cally relevant hierarchical structure.

1 Introduction

Sequential models such as long short-term mem-
ory networks (LSTMs; Hochreiter and Schmidhu-
ber, 1997) have been proven capable of exhibit-
ing qualitative behavior that reflects a sensitivity to
regularities that are structurally conditioned, such
as subject–verb agreement (Linzen et al., 2016;
Gulordava et al., 2018). However, detailed anal-
ysis of such models has shown that this apparent
sensitivity to structure does not always generalize
to inputs with a high degree of syntactic complex-
ity (Marvin and Linzen, 2018). These observa-
tions suggest that sequential models may not in
fact be representing sentences in the kind of hier-
archically organized representations that we might
expect.

Stack-structured recurrent memory units (Joulin
and Mikolov, 2015; Grefenstette et al., 2015; Yo-

∗ Work completed while the author was at Yale Univer-
sity.

gatama et al., 2018; and others) offer a possi-
ble method for explicitly biasing neural networks
to construct hierarchical representations and make
use of them in their computation. Since syntactic
structures can often be modeled in a context-free
manner (Chomsky, 1956, 1957), the correspon-
dence between pushdown automata and context-
free grammars (Chomsky, 1962) makes stacks a
natural data structure for the computation of hi-
erarchical relations. Recently, Hao et al. (2018)
have shown that stack-augmented RNNs (hence-
forth stack RNNs) have the ability to learn classi-
cal stack-based algorithms for computing context-
free transductions such as string reversal. How-
ever, they also find that such algorithms can be dif-
ficult for stack RNNs to learn. For many context-
free tasks such as parenthesis matching, the stack
RNN models they consider instead learn heuris-
tic “push-only” strategies that essentially reduce
the stack to unstructured recurrent memory. Thus,
even if stacks allow hierarchical regularities to
be expressed, the bias that stack RNNs introduce
does not guarantee that the networks will detect
them.

The current paper aims to move beyond the
work of Hao et al. (2018) in two ways. While that
work was based on artificially generated formal
languages, this paper considers the ability of stack
RNNs to succeed on tasks over natural language
data. Specifically, we train such networks on two
objectives: language modeling and the number
prediction task, a classification task proposed by
Linzen et al. (2016) to determine whether or not a
model can capture structure-sensitive grammatical
dependencies. Further, in addition to using visual-
izations of the pushing and popping actions of the
stack RNN to assess its hierarchical sensitivity, we
use a technique proposed by Shen et al. (2018a,b)
to assess the presence of implicitly-represented
hierarchically-organized structure through the task
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of unsupervised parsing. We extract syntactic con-
stituency trees from our models and find that they
produce parses that broadly reflect phrasal group-
ings of words in the input sentences, suggesting
that our models utilize the stack in a way that re-
flects the syntactic structures of input sentences.

This paper is organized as follows. Section 2
introduces the architecture of our stack models,
which extends the architecture of Grefenstette
et al. (2015) by allowing multiple items to be
pushed to, popped from, or read from the stack
at each computational step. Section 3 then de-
scribes our training procedure and reports results
on language modeling and agreement classifica-
tion. Section 4 investigates the behavior of the
stack RNNs trained on these tasks by visualiz-
ing their pushing behavior. Building on this, Sec-
tion 5 describes how we adapt Shen et al.’s (2018a;
2018b) unsupervised parsing algorithm to stack
RNNs and evaluates the degree to which the re-
sulting parses reveal structural representations in
stack RNNs. Section 6 discusses our observations,
and Section 7 concludes.

2 Network Architecture

In a stack RNN (Grefenstette et al., 2015; Hao
et al., 2018), a neural network adhering to a stan-
dard recurrent architecture, known as a controller,
is enhanced with a non-parameterized stack. At
each time step, the controller network receives an
input vector xt and a recurrent state vector ht−1
provided by the controller architecture, along with
a read vector rt−1 summarizing the top elements
on the stack. The controller interfaces with the
stack by computing continuous values that serve
as instructions for how the stack should be modi-
fied. These instructions consist of vt, a vector that
is pushed to the top of the stack; dt, a number rep-
resenting the strength of the newly pushed vector
vt; ut, the number of items to pop from the stack;
and rt, the number of items to read from the top of
the stack. The instructions 〈vt, ut, dt, rt〉 are pro-
duced by the controller as output and presented to
the stack. The stack then computes the next read
vector rt, which is given to the controller at the
next time step. This general architecture is por-
trayed in Figure 1. In the next two subsections,
we describe how the stack computes rt using the
instructions 〈vt, ut, dt, rt〉 and how the controller
computes the stack instructions.

Controller Stack

Vt−1, st−1xt,ht−1, rt−1

yt,ht rt,Vt, st

vt, ut, dt, rt

Figure 1: The neural stack architecture.

2.1 Stack Actions
A stack at time t consists of a sequence of vectors
〈Vt[1],Vt[2], . . . ,Vt[t]〉, organized into a matrix
Vt whose ith row is Vt[i]. By convention, Vt[t]
is the “top” element of the stack, while Vt[1] is
the “bottom” element. Each element Vt[i] of the
stack is associated with a strength st[i] ≥ 0. The
strength of a vector Vt[i] represents the degree to
which the vector is on the stack: a strength of 1
means that the vector is “fully” on the stack, while
a strength of 0 means that the vector has been
popped from the stack. The strengths are orga-
nized into a vector st = 〈st[1], st[2], . . . , st[t]〉.
At time t, the stack receives a set of instructions
〈vt, ut, dt, rt〉 and performs three operations: pop-
ping, pushing, and reading, in that order.

The popping operation is implemented by re-
ducing the strength of each item on the stack by
a number ut[i], ensuring that the strength of each
item can never fall below 0.

st[i] = ReLU (st−1[i]− ut[i])

The ut[i]s are computed as follows. The to-
tal amount of strength to be reduced is the pop
strength ut. Popping begins by attempting to re-
duce the strength st[t − 1] of the top item on
the stack by the full pop strength ut. Thus, as
shown below, ut[t − 1] = ut. For each i, if
st−1[i] < ut[i], then the ith item has been fully
popped from the stack, “consuming” a portion
of the pop strength of magnitude st−1[i]. The
strength of the next item is then reduced by an
amount ut[i − 1] given by the “remaining” pop
strength ut[i]− st−1[i].

ut[i] ={
ut, i = t− 1

ReLU(ut[i+ 1]− st−1[i+ 1]), i < t− 1

The pushing operation simply places the vector
vt at the top of the stack with strength dt. Thus,
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Vt and st[t] are updated as follows.

st[t] = dt Vt[i] =

{
vt, i = t

Vt−1[i], i < t

Note that st[1], st[2], . . . , st[t − 1] have already
been updated during the popping step.

Finally, the reading operation produces a “sum-
mary” of the top of the stack by computing a
weighted sum of all the vectors on the stack.

rt =
t∑

i=1

min (st[i], ρt[i]) ·Vt[i]

The weights ρt[i] are computed in a manner sim-
ilar to the ut[i]s. The sum should include the
top elements of the stack whose strengths add
up to the read strength rt. The weight ρt[t] as-
signed to the top item is initialized to the full
read strength rt, while the weights ρt[i] assigned
to lower items are based on the “remaining” read
strength ρt[i+1]−st[i+1] after strength has been
assigned to higher items.

ρt[i] =

{
rt, i = t

ReLU (ρt[i+ 1]− st[i+ 1]) i < t

2.2 Stack Interface
The architecture of Grefenstette et al. (2015) as-
sumes that the controller is a neural network of the
form

〈ot,ht〉 = C(xt,ht−1, rt−1)

where ht is its state at time t, xt is its input, rt
is the vector read from the stack at the previous
step, and ot is an output vector used to produce
the network output yt and the stack instructions
〈vt, ut, dt, rt〉.

The stack instructions 〈vt, ut, dt, rt〉 are com-
puted as follows. The read strength rt is fixed to
1. The other values are determined by passing ot
to specialized layers. The vectors yt and vt are
computed using a tanh layer, while the scalar val-
ues ut and dt are obtained from a sigmoid layer.
Thus, the push and pop strengths are constrained
to values between 0 and 1.

yt = softmax (Wyot + by)

vt = tanh (Wvot + bv)

ut = σ (Wuot + bu)

dt = σ
(
Wdot + bd

)
(1)

rt = 1

This paper departs from Grefenstette et al.’s ar-
chitecture by allowing for push, pop, and read
operations to be executed with variable strength
greater than 1. We achieve this by using an en-
hanced control interface inspired by Yogatama
et al.’s (2018) Multipop Adaptive Computation
Stack architecture. In that model, the controller
determines how much weight to pop from the
stack at each time step by computing a distribution
P[u] describing the probability of popping u units
from the stack. The next stack state V is computed
as a superposition of the possible stack states Vu

resulting from popping u units from the stack,
weighted by P[u]. Our model follows Yogatama
et al. in computing probability distributions over
possible values of ut, dt, and rt. However, instead
of superimposing stack states, which may hinder
interpretability, we simply set the value of each in-
struction to be the expected value of its associated
distribution. For a distribution vector p, define the
operator E[p] as follows:

E[p] =
k∑

i=0

ip[i+ 1]

E[p] denotes the expected value of p if we treat it
as a distribution over {0, 1, . . . , k}. The maximum
value k is fixed in advance as a hyperparameter of
our model. The output yt and instructions vt, ut,
dt, and rt are then computed as follows:

yt = softmax (Wyot + by)

vt = tanh (Wvot + bv)

ut = E [softmax (Wuot + bu)]

dt = E
[
softmax

(
Wdot + bu

)]

rt = E [softmax (Wrot + br)]

The full architecture that we used for language
modeling and agreement classification is a con-
troller network which, at time t, reads the word xt

as well as the previous stack summary rt−1. These
vectors are passed through an LSTM layer to pro-
duce the vector ot. Then, instructions for the stack
are computed from ot according to the equations
above. Finally, these instructions are executed to
modify the stack state and produce the next stack
summary vector rt. In our experiments, the size
of the LSTM layer was 100, and the size of each
stack vector was 16.
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3 Model Training

This paper considers models trained on a language
modeling objective and a classification objective.
On each objective, we train several neural stack
models along with an LSTM baseline.1 This sec-
tion describes the procedure used to train our mod-
els and presents the perplexity and classification
values they attain on their training objectives.

3.1 Data and Training

Our models are trained using the Wikipedia cor-
pus, a subset of the English Wikipedia used by
Linzen et al. (2016) for their experiments. The
classification task we consider is the number pre-
diction task, proposed by Linzen et al. (2016) as
a diagnostic for assessing whether or not LSTMs
can infer grammatical dependencies sensitive to
syntactic structure. In this task, the network is
shown a sequence of words forming the beginning
of a sentence from the Wikipedia corpus. The
next word in the sentence is always a verb, and
the network must predict whether the verb is sin-
gular (SG) or plural (PL). For example, on input
The cats on the boat, the network must predict PL

to match cats. We train and evaluate our models
on the number prediction task using Linzen et al.’s
(2016) simple dependency dataset, which contains
141,948 training examples, 15,772 validation ex-
amples, and 1,419,491 testing examples.

We used a model with very few parameters and
basic setting of hyperparameters. The LSTM hid-
den state was fixed to a size of 100, while the
vectors placed on the stack had size 16. Includ-
ing the embedding layer, the Wikipedia model had
1,584,255 parameters. We used the Adam opti-
mizer (Kingma and Ba, 2015) with a learning rate
of 0.001. The language models were trained for
five epochs, while the agreement classifiers used
an early stopping criterion. In addition to the
LSTM baseline, for each task, we trained a stack
RNN in which ut is fixed to 1 and dt ranges from 0
to k = 4, as well as a stack RNN in which dt fixed
to 1 and ut ranges from 0 to k = 4. Addition-
ally, for the classification task we trained a stack
RNN in which ut ranges from 0 to k = 4 and dt is
computed as in Equation 1.

1Our code is available at https://github.com/
viking-sudo-rm/industrial-stacknns.

Stack Stack LSTM
(ut = 1) (dt = 1)

Perp 92.81 128.28 91.69
Agree 93.59 92.28 93.95

Table 1: Results for language models trained on the
Wikipedia dataset.

3.2 Evaluation

Our language models are evaluated according to
two metrics. Firstly, we reserve 10% of the
Wikipedia corpus for evaluating test perplexity of
the trained language models. Secondly, as a sim-
ple diagnostic of sensitivity to syntactic structure,
we evaluate the performance of our Wikipedia-
trained language models on number agreement
prediction (Linzen et al., 2016). Under this evalu-
ation regime, we use our language model to simu-
late the number prediction task and compute the
resulting classification accuracy. We do this by
presenting the model with an input for the number
prediction task and comparing the probabilities as-
signed to the verb that follows the input in the
Wikipedia corpus. For example, if The cats on the
boat purr appears in the Wikipedia corpus, then
we present The cats on the boat to the language
model and compare the probabilities assigned to
the singular and plural forms purrs and purr, re-
spectively. We consider the language model to
make a correct prediction if the form of the next
lexical item with the correct grammatical number
(SG or PL) is predicted with greater probability
than the alternative.

The number prediction classifiers we trained are
evaluated according to classification accuracy. For
each input sentence, we define the attractors of the
input to be the nouns intervening between the sub-
ject and the verb whose number is being classified.
For example, in the input The cat on the boat, cat
is the subject of the following verb, while boat is
an attractor. We compute the accuracy of our clas-
sifiers on the full testing set of the simple depen-
dency data set as well as subsets of the testing set
consisting of sentences with a fixed number of at-
tractors.

3.3 Training Results

Table 1 shows the quantitative results for our lan-
guage models. The stack RNN is comparable to
our LSTM baseline in terms of language mod-
eling perplexity and agreement prediction accu-
racy when ut is fixed to 1, though the latter per-
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Number of Stack Stack Stack LSTM
Attractors (ut = 1) (dt = 1)

Overall 98.89 98.88 98.88 98.89
0 99.29 99.23 99.24 99.26
1 94.75 95.43 95.18 95.27
2 89.85 91.70 91.86 90.15
3 83.42 86.59 87.47 84.30
4 79.50 84.14 85.56 78.61
5 71.07 71.70 77.99 74.21

Table 2: Number prediction accuracies attained by the
three stack RNN classifiers and the LSTM baseline.

Figure 2: Push and read strengths computed by the
ut = 1 language model. Values underneath each word
show the total strength remaining on the stack at that
step.

forms slightly better according to both metrics.
The stack RNN attains a significantly worse per-
plexity when dt is fixed to 1, and its agreement
prediction accuracy is worse than both the LSTM
baseline and the stack RNN with ut = 1.

Table 2 shows test accuracies attained by classi-
fiers trained on the number prediction task. While
the stack classifier with ut fixed to 1 and the
LSTM baseline achieve the best overall accuracy,
the stack with unrestricted ut and sigmoid dt and
the stack with dt fixed to 1 exceed the baseline
on sentences with at least 2 attractors. We take
this to suggest that the hierarchical bias provided
by the stack can improve performance on syntac-
tically complex cases.

4 Interpreting Stack Usage

The results presented in Subsection 3.3 show that
the ut = 1 stack RNNs perform comparably to
LSTMs in terms of quantitative evaluation met-
rics. The goal of this section is to assess whether
or not stack RNNs achieve this level of perfor-

mance in an interpretable manner. We do this by
visualizing the push and read strengths computed
by the ut = 1 language model when process-
ing two example sentences. These visualizations
are shown in Figure 2 and Figure 3. Notice that
the push strength tends to spike following words
with subcategorization requirements. For exam-
ple, the preposition in and the transitive verbs eat
and is both require NP objects, and accordingly the
model assigns a high push strength to these words.
This suggests that the model is using the stack
to capture hierarchical dependencies by keeping
track of words that predictably introduce various
kinds of phrases.

Figure 4 shows push strengths computed by the
ut = 1 language model, aggregated across the en-
tire Wikipedia corpus. We see that push strengths
differ systematically based on part of speech. The
distribution of push strengths computed by the net-
work upon seeing a noun is tightly concentrated
around 0.5, whereas the push strength upon see-
ing a verb tends to be greater—usually more than
2.5. This phenomenon reflects the fact that verbs
typically take objects while nouns do not.

We also find that push strengths assigned to
verbs depend on their transitivity. The right panel
of Figure 4 shows push strength distributions for
a collection of common transitive and intransitive
verbs. The model distinguishes between these two
types of verbs by assigning high push strengths to
transitive verbs and low push strengths to intran-
sitive verbs. We make similar observations for
other parts of speech: prepositions, which take
objects, typically receive higher push strengths,
while determiners and adjectives, which do not
take phrasal complements, receive lower push
strengths.

5 Inference of Syntactic Structure

Section 4 has shown that the push strengths dt
computed by the ut = 1 language model reflect
the subcategorization requirements of the words
encountered by the network. Based on this phe-
nomenon, we may interpret the stack to be keeping
track of phrases that are “in progress.” A high push
strength induced by a transitive verb, for example,
may be thought to indicate that a verb phrase has
begun, and that this phrase ends when the object of
the verb is seen. We thus hypothesize that for each
time step t, dt represents the size of the phrase that
begins with the word read by the network at time
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Figure 3: Distributions for push and read strengths at each step of processing example sentences. For example, the
push strength chosen after processing the (0.46) is the expected value of the blue distribution in the far left plot.

All Words Nouns and Verbs Transitive vs. Intransitive Verbs

Figure 4: Distributions of dt for the ut = 1 language model over all test sentences. The center panel shows
the distributions of dt for nouns and verbs, and the right panel shows the distributions for selected transitive and
intransitive verbs.

t. If dt is low, then this phrase consists of a single
word; if it is high, then this is a complex phrase
consisting of multiple words.

A similar intuition underlies the unsupervised
parsing framework of Shen et al. (2018a,b). Under
this framework, constituency structure is induced
from a sequence of words by computing a syntac-
tic distance between every two adjacent words. In-
tuitively, the syntactic distance between two words
measures the distance from the lowest common
parent node of the two words to the bottom of the
tree. If two words have a low syntactic distance,
then they are likely siblings in a small constituent;
if they have a high syntactic distance, then they
probably belong to different phrases. Whereas
Figure 2 and Figure 3 allow us identify specific
time steps at which the stack recognizes the begin-
ning of a phrase, the unsupervised parsing frame-
work allows us to explicitly visualize the phrasal

organization of input sequences induced by our in-
terpretation of the push strengths.

Given an input sequence x1,x2, . . . ,xn, we de-
fine the syntactic distance between each xt and
xt−1 for our ut = 1 model to be the push strength
dt computed by the controller during time t. If the
current word does not open any new constituents,
then it belongs to the same constituent as the pre-
vious word, and therefore should be assigned a
low syntactic distance. On the other hand, if the
current word opens a complex constituent, then it
is lower in the parse tree than the previous word,
and therefore should be assigned a high syntac-
tic distance. Similarly, for our dt = 1 model,
we let ut be the syntactic distance between xt and
xt+1. Under this interpretation, the pop strength
estimates the complexity of the constituents that
the current word closes. If the current word closes
many complex constituents, then the next word
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appears at a higher level in the parse tree, and
is therefore syntactically distant from the current
word.

Algorithm 1 (Shen et al., 2018a,b)
1: procedure MAKETREE(X,d)
2: if X has at most one word then
3: return X
4: else
5: i← argmaxj dj

6: l← MAKETREE(X[: i−1],d[: i−1])
7: r ← MAKETREE(X[i+1 :],d[i+1 :])
8: if l and r are not empty then
9: return Tree[l,Tree[X[i], r]]

10: else if l is empty then
11: return Tree[X[i], r]
12: else
13: return Tree[l,X[i]]

Algorithm 1 shows our procedure for construct-
ing trees. The algorithm takes as input a sequence
of words arranged into a matrix X and a vector
d containing the syntactic distance between each
word and the previous word. Following Shen et al.
(2018a,b), we recursively split X into binary con-
stituents. At each recursion level, we greedily
choose the word with the highest syntactic dis-
tance as the split point. The final output is a binary
tree spanning the full sentence.

5.1 Evaluation

We compute F1 scores for the parses obtained
from our Wikipedia language models by compar-
ing against parses from Section 23 of the Penn
Treebank’s Wall Street Journal corpus (WSJ23,
Marcus et al., 1994). Since Algorithm 1 pro-
duces unlabeled binary trees, our evaluation uses
the gold standard of Htut et al. (2018), which
consists of unlabeled, binarized versions of the
WSJ23 trees. We also decapitalize the first word
of every sentence for compatibility with our train-
ing data.

As a baseline, we the F1 scores attained by our
models to those computed for purely right- and
left-branching trees. A right-branching parse is
equivalent to the output of Algorithm 1 on a se-
quence of equal syntactic distances. Thus, the dif-
ference between the right-branching F1 score and
our models’ scores is a measure of the amount
of syntactic information encoded by the push and
pop strength sequences. We also compare our

Model Parsing F1
Stack (ut = 1) 31.2
Stack (dt = 1) 16.0
Right Branching 13.1
Left Branching 7.3
Best PRPN-UP (Htut et al., 2018) 26.3
Best PRPN-LM (Htut et al., 2018) 37.4

Table 3: Unsupervised parsing performance evaluated
on the WSJ23 dataset, attained by our stack models
(top), the right- and left-branching baselines (middle),
and the PRPN models (bottom).

F1 scores to the results of Htut et al.’s (2018)
replication study for the parsing–reading–predict
network models (PRPN-LM and PRPN-UP), the
two syntactic-distance-based unsupervised parsers
originally proposed by Shen et al. (2018a).

5.2 Results

The F1 evaluation (see Table 3) shows that our
Wikipedia model with ut = 1 significantly out-
performs the baseline on the Penn Treebank, while
our model with dt = 1 performs slightly better
than the baseline. This is evidence that the types
of hierarchical structures produced by Algorithm 1
resemble expert-annotated constituency parses.

Our results do not exceed those of Htut et al.’s
(2018) replication study. It is worth noting that
our right- and left-branching baseline scores are
somewhat lower than theirs. This suggests that
differences in data processing or implementation
might make our evaluation more difficult. Regard-
less, we consider our results to still be somewhat
competitive, given that our language models were
trained on out-of-domain data with few parameters
and minimal hyperparameter tuning.

We provide example parses extracted from the
stack RNN language models with ut = 1 in Fig-
ure 5. Overall, our unsupervised parses tend to re-
semble the gold-standard parses with some differ-
ences. Periods in our parses systematically attach
lower in the structure in our extracted parses than
in the gold-standard trees. High attachment would
require a high syntactic distance (i.e., high push
strength) between the period and the remainder of
the sentence. However, the period inherently does
not have any subcategorization requirements, so it
induces a low push strength. In contrast, preposi-
tional phrases attach higher in our structures than
in the gold parses. This may be the result of
fixed subcategorization-associated push strengths
for prepositions that give rise to fairly high esti-
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Figure 5: Sample parses obtained from our stack RNN language model with ut = 1 (left), compared to Htut et al.’s
(2018) gold-standard parses (right).

mates of syntactic distance.

6 Discussion

Overall, our stack language models show no im-
provement over the LSTM baseline in terms of
perplexity and classification accuracy. Although
the ut = 1 language model is comparable to
the LSTM on these metrics, it ultimately achieves
worse scores than the baseline. However, we
have now seen that the pushing behavior of the
model reflects subcategorization properties of lex-
ical items that play an important role in determin-
ing their syntactic behavior, and that these proper-
ties allow reasonable parses to be extracted from
this model. These observations show that the ut =
1 model has learned to encode structural represen-
tations using the stack. Quantitatively, the impor-
tance of this structural information for the train-
ing objectives can be seen in Table 2, where the
stack at least partially alleviates the difficulty ex-
perienced by the LSTM classifier in handling syn-
tactically complex inputs.

While our stack language models do not ex-
ceed the LSTM baseline in terms of perplexity
and agreement accuracy, Yogatama et al. (2018)
find that their Multipop Adaptive Computation
Stack architecture substantially outperforms a bare
LSTM on these metrics. Compared to their mod-
els, we use fewer parameters and minimal hyper-
parameter tuning. Thus, it is possible that increas-
ing the number of parameters in our controller
may lead to similar increases in performance in
addition to the structural interpretability that we
have observed.

7 Conclusion

The results reported here point to the conclusion
that stack RNNs trained on corpora of natural lan-
guage text do in fact learn to encode sentences in
a hierarchically organized fashion. We show that
the sequence of stack operations used in the pro-
cessing of a sentence lets us uncover a syntactic
structure that matches standardly assigned struc-
ture reasonably well, even if the addition of the
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stack does not improve the stack RNN’s perfor-
mance over the LSTM baseline in terms of the lan-
guage modeling objective. We also find that using
the stack RNN to predict the grammatical num-
ber of a verb results in better hierarchical gener-
alizations in syntactically complex cases than is
possible with stackless models. Taken together,
these results suggest that the stack RNN model
yields comparable performance to other architec-
tures, while producing structural representations
that are easier to interpret and that show signs of
being linguistically natural.
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Abstract

In this paper, we propose a white-box
attack algorithm called “Global Search”
method and compare it with a simple mis-
spelling noise and a more sophisticated
and common white-box attack approach
called “Greedy Search”. The attack meth-
ods are evaluated on the Convolutional
Neural Network (CNN) sentiment classi-
fier trained on the IMDB movie review
dataset. The attack success rate is used
to evaluate the effectiveness of the attack
methods and the perplexity of the sen-
tences is used to measure the degree of dis-
tortion of the generated adversarial exam-
ples. The experiment results show that the
proposed “Global Search” method gener-
ates more powerful adversarial examples
with less distortion or less modification to
the source text.

1 Introduction

In the past few decades, machine learning and
deep learning techniques have been successful in
several applications. However, these techniques
developed so far are proven to be vulnerable given
some manipulated inputs, which are called ad-
versarial examples, that human can easily distin-
guish but algorithms can not (Szegedy et al., 2014;
Goodfellow et al., 2015).

Current research have shown successful results
in producing adversarial images that cause the al-
gorithms to completely fail in computer vision
(Kurakin et al., 2016). Studies of adversarial ex-
amples in the applications of natural language pro-
cessing such as sentiment analysis, fake news de-
tection and machine translation remain relatively
low. Nonetheless, it is an emerging field that is
worth exploring and has increased attention re-

cently due to the success of adversarial learning in
images. When generating an adversarial example,
if the adversary does not have knowledge of the
classifier or the training data, we call this a black-
box setting. On the other hand, if the adversary
has full knowledge of the classifier and the train-
ing data, we call this a white-box setting.

In a black-box setting, Belinkov and Bisk intro-
duces a simple attack method by randomly replac-
ing characters with their nearby key on the key-
board, which is similar to keyboard typos, to at-
tack a machine translation system (Belinkov and
Bisk, 2017). Similar idea can be found in the
work of Hosseini et al., the authors generate ad-
versaries that deceive Google Perspective API by
misspelling the abusive words or adding punctua-
tion to the letters (Hosseini et al., 2017). Another
work from Alzantot et al. attempts to generate
semantically and syntactically similar adversarial
examples by word replacement (Alzantot et al.,
2018). They develop an genetic algorithm that
uses population-based gradient-free optimization,
inspired by the process of natural selection. In the
black-box setting, the adversary tries different per-
turbations and evaluates the quality of perturba-
tions by querying the model to get the classifica-
tion result or the output score. The adversary con-
tinues to altered the sentence until the model fails
or until score reduces significantly.

In the white-box setting, the adversary has ac-
cess to the model and thus is capable of gen-
erating more sophisticated adversarial examples.
Ebrahimi et al. show that adversarial examples
generated in a white-box setting achieve a higher
success rate than examples generated in a black-
box setting. The authors introduce a white-box ad-
versary against differentiable classifiers that sub-
stitutes characters (”flips”) in a sentence. When
operating in a white-box setting, the adversary has
full access to the gradients of the classifier, giv-
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ing the adversary important information to find the
classifier’s weak points. Because white-box adver-
sary has access to the gradients of the model, the
adversary does not have to query the output score
from the classifier every time. Using the gradients
as a surrogate loss, the white-box adversary can
efficiently find the best changes that maximize the
surrogate loss simply by backpropagation.

Other white-box adversary includes word-level
substitution. Kuleshov et al. try to replace 10-30%
of words in the source text by solving an optimiza-
tion problem that maximizes a surrogate loss sub-
ject using a greedy approach, which is similar to
the “Greedy Search” baseline used in the exper-
iment. A similar idea can be found in Samanta
and Mehta where the authors apply different rules
(insertion, replacement and deletion of words) to
generate adversarial examples. Liang et al. later
combine the strategies above and try to avoid in-
troducing excessive modification or insertion to
the original source text.

In this paper, we consider the task of white-box
attack where the adversary has full knowledge of
the model under attack. We propose a ”Global
Search” attack method that mitigates some of the
problems faced in the commonly used greedy ap-
proach. A very simple misspelling noise baseline
is also reported to show the effectiveness of the 2
white-box attack methods in the experiment.

2 Attack Method

2.1 Misspelling Noise

We first consider a very simple case by swap-
ping two characters in a word (eg. perfect →
pefrect), which is similar to keyboard typos or
misspelling. To maintain the readability of source
text, the noise is only applied to word of length
longer than 3 and 50% of the words in the source
text are randomly swapped.

2.2 Greedy Search Approach

We follow a similar greedy optimization strategy
in (Kuleshov et al., 2018) for constructing adver-
sarial examples for sentiment classification. At
each iteration, the algorithm considers k nearest
neighbors of each word in the word embedding
space. It then picks the one among the k neighbors
that has the greatest impact on the prediction re-
sult. Consider a sentiment classifier f , the greedy
approach forms the adversarial example by replac-
ing the original word w with the candidates w′. If

the label is positive, then the final sigmoid layer
of the model should output a value σ greater than
0.5. The algorithm then replaces the original word
w with each candidate w′ among the k neighbors
and see if the sigmoid value of the adversary x′

is less than σ, indicating that replacing w with w′

can contribute to flipping the prediction result to
negative. The candidate w′ that results in the max-
imum difference is then chosen to be the final re-
placement, i.e. smallest σ′ for positive class (1)
and the largest σ′ for the negative class (0).

arg min
w′

fsigmoid(x′)

s.t. fsigmoid(x′) < fsigmoid(x) if positive class

arg max
w′

fsigmoid(x′)

s.t. fsigmoid(x′) > fsigmoid(x) if negative class

Algorithm 1 summarizes the “Greedy Search”
approach. Although the objective of the algorithm
is to fool the sentiment classifier, the grammar, se-
mantic and sentiment should not be altered. Thus,
some constraints are imposed in order to maintain
the similarity between the original source text and
the adversarial example.

Algorithm 1 Generate adversarial example via
greedy search

1: σ ← fsigmoid(x)
2: Initialize x′ ← x, count ← 0
3: for w in x′ do
4: candidates ← k nearest neighbors of w

within distance d and have the same POS tag
as w

5: Σ← ∅
6: for w′ in candidates do
7: x̄← replace w with w′

8: σ′ ← fsigmoid(x̄)
9: Σ← Σ append σ′

10: if positive and min Σ < σ then
11: x′ ← argminx̄ Σ
12: count ← count +1
13: else if negative and max Σ > σ then
14: x′ ← argmaxx̄ Σ
15: count ← count +1

16: σ ← fsigmoid(x′)
17: if positive and σ < 0.5 then return x′

18: if negative and σ > 0.5 then return x′

19: if count/len(x) > r then return None
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Word Choice. When picking the word can-
didates in each iteration, we consider the top k
nearest neighbors in the word embedding space.
The nearest neighbors in GloVE word embedding
space usually appear in the same context as the
original word. Thus, by picking nearest neighbors
in GloVE vectors, we can ensure semantic simi-
larity after word replacement. Although word em-
bedding helps to find words that are used in sim-
ilar context, it does not guarantee that the part of
speech (POS) will remain the same after replace-
ment. Therefore, we examine the part of speech
of the original word and ensure the selected candi-
dates have the same part of speech as the original
word.

Hyper-parameters. There are 3 hyper-
parameters, k, d, and r, used in Algorithm 1 to
maintain the semantic similarity of the sentences.
The first parameter k is used to decide how many
nearest neighbors should be considered in the first
place. When k is too small, there might not be
enough candidates to successfully form an adver-
sarial example. d represents the maximum dis-
tance allowed between the candidate words and
the original word in the word embedding space.
When d is large, the meaning of the altered sen-
tence is generally farther from the original one.
When d gets too small, the chance of generat-
ing a successful attack decreases. The last hyper-
parameter, r, stands for the percentage of replace-
ment allowed in the sentence. When the threshold
r is too low, the chance of generating a successful
adversarial example decreases. Similarly, when r
is too large, too many words will be replaced and
thus the generated sentence will be very dissimilar
to the original one.

2.3 Global Search Approach

The greedy approach proposed above does not
guarantee to produce the optimal results and is
sometimes time consuming because the algorithm
needs to search the candidate words for every it-
eration. To mitigate the problem, we propose to
search for the candidates globally by computing a
small perturbation, δ.

To learn the perturbation, δ, we define an ob-
jective function J(δ). The objective function tries
to maximize the difference between the sigmoid
value of the original input x and that of perturbed
input x + δ. Furthermore, we add two regular-
ization terms in the objective function. The first

regularization penalizes large perturbations and is
controlled via the hyperparameters λ1. The second
regularization penalizes large distance between
original word embedding and perturbed word em-
bedding and is controlled by the hyperparameters
λ2. The two regularization terms are added to help
keep the semantic of chosen words.

J (δ) =(fsigmoid(Ex)− fsigmoid(Ex + δ))2

+ λ1 · ‖δ‖2
+ λ2 · ‖(Ex − (Ex + δ))‖2

The attack algorithm is described in Algorithm
2. We first initialize the perturbation δ to be 0.
Here, the original input embedding is denoated
as Ex and the perturbed embedding is denoted as
E′x = Ex + δ. For each iteration, the algorithm
computes the gradient, ∇δ, of the objective func-
tion J(δ) with respect to the perturbation δ, and
update the perturbation δ via backpropagation. We
then form a perturbed embedding E′x. The per-
turbed embedding E′x is a matrix and each row
of E′x is the perturbed word embedding for each
word, denoted as e, in the source text. The per-
turbed embedding e usually does not have a actual
word that can be mapped back to. Thus, we find
the candidate words w′ in the embedding space
that is the closest to the perturbed word embed-
ding e and record the w′ in the candidate list ke.
The candidate words for replacement are recorded
in another list W ′. After computing the perturbed
embedding, and record the candidate words, the
algorithm checks if the current perturbed embed-
ding E′x flips the prediction result. The algorithm
continues to compute new E′x and record the can-
didate words if the previous E′x fails to fool the
model, otherwise, the algorithm returns the candi-
date words and the perturbation.

Next, we can use the generated candidate words
list and the perturbation to generate the adversar-
ial example. The algorithm is described in algo-
rithm 3. The algorithm sorts the magnitude of the
perturbation and replaces words in the positions
that have higher perturbation magnitude. A higher
perturbation magnitude indicates that the classifier
is more sensitive to changes of the original word.
Here, we have a hyperparameter d that controls the
threshold for word distance. If the last candidate
w′n in the candidate words list is too far away from
the original word, then the algorithm rejects the
candidate w′n and move to the previous candidate
w′n−1 in the list. The hyperparameter r controls
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Algorithm 2 Global Search Attack Function
1: y ← Round(fsigmoid(x))
2: Initialize δ ← 0, success = False
3: Ex ← input embedding
4: W ′ ← Ø
5: for e in E′x do
6: ke ← Ø . Empty candidate list
7: W ′ ←W ′ append ke
8: while not success do
9: ∇δ ← via back-propagation

10: δ ← δ − ε · ∇δ
11: E′x ← Ex + δ . perturbed embedding
12: for e in E′x do
13: ke ← ke append argminw′ ‖e−Ew′‖2
14: ŷ ← Round(fsigmoid(E′x))
15: W ′ ←W ′ ∪ {ke}
16: if ŷ 6= y then
17: return W ′, δ

the percentage of changes allowed as the described
earlier.

Algorithm 3 Global Search Generate Adversary
Function

1: y ← Round(fsigmoid(x))
2: positions ← reversed (argsort ‖δ‖2)
3: Initialize success = False
4: for i in positions do
5: w ← i-th word in the source text x
6: candidates ←W ′i
7: candidates ← reversed(candidates)
8: for w′ in candidates do
9: if ‖ew − ew′‖2 < d then

10: E′i ← ew′ . replace embedding
11: break
12: x′i ← w′ . replace word
13: ŷ ← Round(fsigmoid(E′x))
14: if ŷ 6= y then
15: success = True
16: return x′
17: if i

len(x) > r then
18: return None

3 Experiment

3.1 Dataset

We use a dataset of 25,000 informal movie re-
views from the Internet Movie Database (IMDB)
(Maas et al., 2011) and randomly select 80% of
the dataset to include in the training set, and 20%

in the testing set 1.

3.1.1 CNN Sentiment Classifier
In this experiment, we used the convolutional neu-
ral network classifier (Kim, 2014) as the target
model to be attacked. We replicated the archi-
tecture of the CNN model from Kim work. In
the CNN model, an embedding of a fixed dictio-
nary and size serves as the very first layer. Con-
volutional layers with filter widths of 3, 4, 5 and
100 are added with a max-over-time pooling layer
and a fully connected layer with dropout rate of
0.5. We trained the model with 20,000 reviews and
tested it with another 5,000 reviews with batch size
of 64, reaching testing accuracy of 0.9. The result
is summarized in Table 1.

3.2 Evaluation
3.2.1 Success Rate
The end goal of the attack algorithms is to trick
the model to make wrong prediction by manip-
ulating the input. To access the effectiveness of
the attack models, we select 500 examples that
are correctly classified from the test set, so that
the accuracy of the classifiers does not affect the
evaluation. We then input these source text into
the attack algorithms to generate adversarial ex-
amples. The adversarial examples are then fed into
the CNN classifier to get the final prediction. The
success rate of the attack algorithm is defined as
the percentage of wrong prediction by the CNN
classifier. Higher success rate means that the at-
tack algorithm can generate more powerful adver-
saries that can cause the CNN classifier to mis-
behave. The experiment result in Table 2 shows
that Global Search approach has 72% success rate
while Greedy Search approach has 65%. Com-
pared with the Global Search method, it gener-
ally requires higher percentage of words replace-
ment for Greedy Search to successfully generate
an adversary. Because of the greedy nature, the
algorithm replaces words as long as changing the
words can help confuse the classifier; hence, the
algorithm can replace sub-optimal words in a ear-
lier position that do not contribute the most to the
end goal. Another limitation of the Greedy Search
approach is that word replacements tend to locate
in a close area of the sentence, especially in an ear-
lier position. This greatly reduce the readability of

1https://pytorchnlp.readthedocs.io/en/
latest/_modules/torchnlp/datasets/imdb.
html
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Accuracy Training Testing
CNN 0.99 0.90

Table 1: Sentiment Classifier Result

the sentences and can destroy the semantic mean-
ing of the source text.

3.2.2 Hyper-parameters Choice
As mentioned above, there are 3 hyper-parameters
in the greedy approach, which are k, the number of
candidates to be considered; d, the maximum dis-
tance allowed between the original word and the
candidate; r, the ratio of word changes allowed
with respect to the length of the sentence. The
global search algorithm also includes the hyper-
parameters d and r. In our experiment of the
greedy approach, k is set to 20. This parameter
does not affect much since the maximum word dis-
tance allowed and the limitation of picking words
with the same part-of-speech tag help to main-
tain similarity. The parameter is used to reduce
the run-time complexity of the algorithm by lim-
iting the number of candidates. As for d, we run
the algorithm for a few different values, we de-
cide to set d to 20 to reach a high success rate
while not picking words too far from the origi-
nal one. There exists a trade-off between simi-
larity and success rate in choosing the value for
d. While allowing words farther from the original
word, the success rate increases but similarity de-
creases as a penalty. The threshold r controls how
many words are allowed to change in a sentence;
it is also shared by the two approaches. In greedy
approach, r should be at least set to 0.2 to achieve
a good result. When r is set to 0.1, the success
rate is merely 0.18; when r is 0.2, the success rate
increases to 0.65. So we decide to set the thresh-
old r to 0.2 for greedy approach in the following
experiment. On the other hand, the global search
algorithm can reach a pretty good result when r
is set to 0.1. In our experiment, we found that
global search algorithm is more effective than the
greedy approach since the global search algorithm
looks for the word that contributes most to classi-
fication result while greedy algorithm swap words
with any degree of contribution.

3.2.3 Perplexity
In order to evaluate the adversarial examples gen-
erated from our models, we decide to measure
the perplexity, which is widely used in assessing

Figure 1: Success Rate vs Replacement Ratio

Figure 2: Success Rate vs Word Distance
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Misspelling Noise Greedy Search Global Search
6% 65% 72%

Table 2: Success rate of attacking methods

Figure 3: Average Perplexity vs Word Distance

language models, of 20 examples with different
hyper-parameters. As Figure 3 shows, the per-
plexity increases as the word distance increases
in the greedy approach, meaning that the gener-
ated examples are less likely to occur in the cor-
pus. However, in the global search approach, it
is the opposite. It might be that the number of
change decreases while allowing larger word dis-
tance. We also calculate the perplexity with differ-
ent values of proportion of changes. The perplex-
ity increases as the proportion of changes allowed
in both attacking models. See result in Figure 4.
When comparing the perplexity of the two attack-
ing models, the global search approach generally
does better than the greedy one. Since the greedy
algorithm usually requires more changes than the
global search approach even though we have set
the threshold for the replacement rate.

3.2.4 Human Evaluation

We conduct a survey and propose two criteria to
measure the performance of the adversarial exam-
ples from three attack methods. The first criteria is
the sentiment classification accuracy of the adver-
sarial examples which is predicted by human, and
the second is the similarity between the adversar-
ial examples and the original sentence.

Human Prediction Accuracy. Unlike adver-
sarial examples in the context of image classifi-
cation, natural language perturbation is generally
perceptible since words are deleted, added, or re-

Figure 4: Average Perplexity vs Replacement Ra-
tio

placed. Thus, we need to redefine imperceptibility
in the context of natural language. Since we are
crafting adversarial example to fool the sentiment
classifier, we define it as imperceptible if human
can still correctly classify without being fooled by
the perturbation. Therefore, we ask some volun-
teers to evaluate adversarial examples and look at
the percentage of responses that match the original
classification.

Sentence Similarity. In addition to classifica-
tion accuracy, we also care about how similar the
generated adversaries examples are to the original
unaltered sentences. we ask volunteers to rate the
similarity, from 1 to 5, which means less similar to
very similar between the adversarial sentence and
original sentence.

We choose two sentences which originally clas-
sified as positive comment and negative comment,
and then flipped to opposite sentiment result af-
ter applying three attack methods. After asking
15 volunteers and analyzing the survey data, we
found that the adversarial example from Global
Search is most similar to the original sentence,
with an average similarity of 4.4, while the exam-
ple from Greedy Search is less similar, with the
score of 2.9.

Refer to human prediction accuracy, Global
Search method also reaches the highest accuracy,
which is 0.83. It means that although sentiment
classifier make the wrong prediction on the Global
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Search adversarial examples, human could still
classify sentiment correctly. However, greedy
search only has 0.30 accuracy because it alter too
many words to fool the sentiment classifier. In this
survey, some of the volunteers feel that the adver-
sarial sentences from Greedy Search are hard to
read and can not tell the sentiment of the sene-
tence.

Examples of adversarial text generated

Original reviews: as long as you go into this
movie knowing that it ’s terrible : bad acting ,
bad ” effects , ” bad story , bad ... everything ,
then you ’ll love it . this is one of my favorite
” goof on ” movies ; watch it as a comedy and
have a dozen good laughs !

Global Search: as long as you go into this
movie knowing that it ’s terrible : worse act-
ing , bad ” effects , ” bad story , bad ... ev-
erything , then you ’ll love it . this is one of
my favorite ” goof on ” movies ; watch it as a
comedy and have a dozen good laughs yes

Greedy Search: as long as you leave into this
blockbuster telling whether it ’s horrendous :
bad acting , bad ” effects , ” bad story , bad ...
everything , then you ’ll love it . this is one of
my favorite ” goof on ” movies ; watch it as ...

Misspelling Noise: as lnog as you go into this
mvoie knowing that it’s terirble : bad atcing ,
bad ” effects , ” bad sotry , bad ... everything ,
then you ’ll lvoe it . this is one of my favorite
” goof on ” movies ; watch it as a comedy and
hvae a dzoen good laguhs !

4 Conclusion and Future Work

In this experiment, we generalize the concept of
adversarial examples to the context of sentiment
classification in natural language. We prove that
some machine learning algorithms are vulnerable
to adversarial examples. Some works have been
done using the greedy approach and have proved
the method to be effective; however, the global
search algorithm is proved to be much more pow-
erful than the greedy approach. The global search

method requires less change to the original sen-
tence and maintain a higher level of similarity in
terms of both human evaluation and perplexity
measure.

Both of the greedy and global search algorithms
are operating in a white-box scenario; they are
not as powerful as the black-box algorithms. The
black-box character swapping algorithm could be
further applied to CNN model with character-level
embedding. Other word-level attacking models
operating in black-box scenarios can be a way to
improve the limitation of white-box models.

By far, we developed some successful strategies
to attack the sentiment classifiers. Further stud-
ies can be done to strengthen the classifiers. By
training the classifiers with generated adversarial
examples, we hope to help defend the classifier
against adversarial attack and improve the model
accuracy.
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Abstract

How and to what extent does BERT en-
code syntactically-sensitive hierarchical infor-
mation or positionally-sensitive linear infor-
mation? Recent work has shown that contex-
tual representations like BERT perform well
on tasks that require sensitivity to linguis-
tic structure. We present here two studies
which aim to provide a better understanding
of the nature of BERT’s representations. The
first of these focuses on the identification of
structurally-defined elements using diagnostic
classifiers, while the second explores BERT’s
representation of subject-verb agreement and
anaphor-antecedent dependencies through a
quantitative assessment of self-attention vec-
tors. In both cases, we find that BERT en-
codes positional information about word to-
kens well on its lower layers, but switches to
a hierarchically-oriented encoding on higher
layers. We conclude then that BERT’s repre-
sentations do indeed model linguistically rel-
evant aspects of hierarchical structure, though
they do not appear to show the sharp sensitiv-
ity to hierarchical structure that is found in hu-
man processing of reflexive anaphora.1

1 Introduction

Word embeddings have become an important cor-
nerstone in any NLP pipeline. Although such
embeddings traditionally involve context-free dis-
tributed representations of words (Mikolov et al.,
2013; Pennington et al., 2014), recent successes
with contextualized representations (Howard and
Ruder, 2018; Peters et al., 2018; Radford et al.,
2019) have led to a paradigm shift. One promi-
nent architecture is BERT (Devlin et al., 2018), a
Transformer-based model that learns bidirectional
encoder representations for words, on the basis of

∗Equal contribution.
1The code is available at https://github.com/

yongjie-lin/bert-opensesame.

a masked language model and sentence adjacency
training objective. Simply using BERT’s represen-
tations in place of traditional embeddings has re-
sulted in state-of-the-art performance on a range of
downstream tasks including summarization (Liu,
2019), question answering and textual entailment
(Devlin et al., 2018). It is still, however, unclear
why BERT representations perform well.

A flurry of recent work (Linzen et al., 2016;
Gulordava et al., 2018; Marvin and Linzen, 2018;
Lakretz et al., 2019) has explored how recurrent
neural language models perform in cases that re-
quire sensitivity to hierarchical syntactic structure,
and study how they do so, particularly in the do-
main of agreement. In these studies, a pre-trained
language model is asked to predict the next word
in a sentence (a verb in the target sentence) follow-
ing a sequence that may include other intervening
nouns with different grammatical features (e.g.,
“the bear by the trees eats...”). The predicted verb
should agree with the subject noun (bear) and not
the attractors (trees), in spite of the latter’s recency.
Such analyses have revealed that LSTMs exhibit
state tracking and explicit notions of word order
for modeling long term dependencies, although
this effect is diluted when sequential and structural
information in a sentence conflict. Further work
by Gulordava et al. (2018) and others (Linzen
and Leonard, 2018; Giulianelli et al., 2018) ar-
gues that RNNs acquire grammatical competence
in agreement that is more abstract than word col-
locations, although language model performance
that requires sensitivity to the phenomena such as
reflexive anaphora, non-local agreement and neg-
ative polarity remains low (Marvin and Linzen,
2018). Meanwhile, studies evaluating which lin-
guistic phenomena are encoded by contextualized
representations (Goldberg, 2019; Wolf, 2019; Ten-
ney et al., 2019) successfully demonstrate that
purely self-attentive architectures like BERT can
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capture hierarchy-sensitive, syntactic dependen-
cies, and even support the extraction of depen-
dency parses (Hewitt and Manning, 2019). How-
ever, the way in which BERT does this has been
less studied. In this paper, we investigate how and
where the representations produced by pre-trained
BERT models (Devlin et al., 2018) express the hi-
erarchical organization of a sentence.

We proceed in two ways. The first involves the
use of diagnostic classifiers (Hupkes et al., 2018)
to probe the presence of hierarchical and linear
properties in the representations of words. How-
ever, unlike past work, we train these classifiers
using a “poverty of the stimulus” paradigm, where
the training data admit both linear and hierarchi-
cal solutions that can be distinguished by an en-
riched generalization set. This method allows us to
identify what kinds of information are represented
most robustly and transparently in the BERT em-
beddings. We find that as we use embeddings from
higher layers, the prevalence of linear/sequential
information decreases, while the availability of on
hierarchical information increases, suggesting that
with each layer, BERT phases out positional infor-
mation in favor of hierarchical features of increas-
ing complexity.

In the second set of experiments, we explore
a novel approach to the study of BERT’s self-
attention vectors. Past explorations of attention
mechanisms, whether in the domain of vision
(Olah et al., 2018; Carter et al., 2019) or NLP
(Bahdanau et al., 2015; Karpathy et al., 2015;
Young et al., 2018; Voita et al., 2018), have largely
involved a range of visualization techniques or the
study of the general distribution of attention. Our
work takes a quantitative approach to the study
of attention and its encoding of syntactic depen-
dencies. Specifically, we consider the relation-
ships between verbs and the subjects with which
they agree, and reflexive anaphors and their an-
tecedents. Building on past work in psycholin-
guistics, we consider the influence of distractor
noun phrases on the identification of these de-
pendencies. We propose a simple attention-based
metric called the confusion score that captures
BERT’s response to syntactic distortions in an in-
put sentence. This score provides a novel quan-
titative method of evaluating BERT’s syntactic
knowledge as encoded in its attention vectors. We
find that BERT does indeed leverage syntactic re-
lationships between words to preferentially attend

to the “correct” noun phrase for the purposes of
agreement and anaphora, though syntactic struc-
ture does not show the strong categorical effects
we sometimes find in natural language. This result
again points to a representation of syntactically-
relevant hierarchical information in BERT, this
time through attention weightings.

Our analysis thus provides evidence that
BERT’s self-attention layers compose increas-
ingly abstract representations of linguistic struc-
ture without explicit word order information,
and that structural information is expressly fa-
vored over linear information. This explains why
BERT can perform well on downstream NLP
tasks, which typically require complex modeling
of structural relationships.

2 Diagnostic Classification

For our first exploration of the kind of linguistic
information captured in BERT’s embeddings, we
apply diagnostic classifiers to 3 tasks: identify-
ing whether a given word is the sentence’s main
auxiliary, the sentence’s subject noun, and the
sentence’s nth-token. In each task, we assess
how well BERT’s embeddings encode information
about a given linguistic property via the ability of
a simple diagnostic classifier to correctly recover
the presence of that property from the embeddings
of a single word. The three tasks focus on dif-
ferent sorts of information: identifying the main
auxiliary and the subject noun requires sensitivity
to hierarchical or syntactic information, while the
nth-token requires linear information.

For each token in a given sentence, its input rep-
resentation to BERT is a sum of its token, segment
and positional embeddings (Devlin et al., 2018).
We refer to these inputs as pre-embeddings. Note
that by construction, a) the pre-embeddings con-
tain linear but not hierarchical information, and b)
BERT cannot generate new linear information that
is not already in the input. Thus, any linear infor-
mation in BERT’s embeddings ultimately stems
from the pre-embeddings, while any hierarchical
information must be constructed by BERT itself.

2.1 Poverty of the stimulus

To classify an embedding as a sentence’s main
auxiliary or subject noun, the network needs to
have represented structural information about a
word’s role in the sentence. In many cases, such
structural information can be approximated lin-
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Main auxiliary task Subject noun task

Training, Development
the cat will sleep the bee can sting

the cat will eat the fish that can swim the bee can sting the boy

Generalization
the cat that can meow will sleep (compound noun) the queen bee can sting

the cat that can meow will eat the fish that can swim (possessive) the queen’s bee can sting

Table 1: Representative sentences from the main auxiliary and subject noun tasks. For the latter, the generalization
set contains two types of sentences, compound nouns and possessives, which are evaluated on separately. In each
example, the correct token is underlined, while the distractor (consistent with the incorrect linear rule) is italicized.

early: the main auxiliary or subject noun could be
identified as the first auxiliary or noun in a sen-
tence. Though such a linear generalization may be
falsified if given certain complex examples, it will
succeed over a large range of simple sentences.
Chomsky (1980) argues that the relevant distin-
guishing examples may be very rare for the case
of identifying the main auxiliary (a property that
is necessary in order to form questions), and hence
this is an instance of the “poverty of the stimu-
lus” that motivates the hypothesis of innate bias
toward hierarchical generalizations. However, it
seems clear that distinguishing examples are plen-
tiful for the subject noun case. The question we
are interested in, then, is whether and how BERT’s
embeddings, which result from training on a mas-
sive dataset, encode hierarchical information.

Pursuing the idea of poverty of the stimulus
training (McCoy et al., 2018), we train diagnos-
tic classifiers only on sentences in which the rel-
evant property (main auxiliary or subject noun) is
stateable in either hierarchical or sequential terms,
i.e., the linearly first auxiliary or noun (cf. Section
2.2). The classifiers are then tested on sentences of
greater complexity in which the hierarchical and
linear generalizations can be distinguished. Since
our classifier is a simple perceptron that can access
only one embedding at a time, it cannot compute
complex contingencies among the representations
of multiple words, and cannot succeed unless such
information is already encoded in the individual
embeddings. Thus, success on these tasks would
indicate that BERT robustly represents the words
of a sentence using a feature space where the iden-
tification of hierarchical generalizations is easy.

2.2 Dataset

The main auxiliary and subject noun tasks use syn-
thetic datasets generated from context-free gram-
mars (cf. Appendix A.1) that were designed to iso-
late the relevant syntactic property for a poverty

of the stimulus setup. Typical sentences are high-
lighted in Table 1. In both tasks, the training,
development and generalization sets contained
40000, 10000, and 10000 examples respectively.

Main auxiliary In the training and development
sets, the main auxiliary (will in Table 1) is al-
ways the first auxiliary in the sentence. A classi-
fier that learns the naive linear rule of identifying
the first linearly occurring auxiliary instead of the
correct hierarchical (syntactic) rule still performs
well during training. However, in the generaliza-
tion set, the subject of each sentence is modified
by a relative clause that contains an intervening
auxiliary (that can meow). Since the main auxil-
iary is never the first auxiliary in this case, learning
the hierarchical rule becomes imperative.

Subject noun In the training and development
sets, the subject noun (bee in Table 1) is always the
first noun in the sentence. A classifier that learns
the linear rule of identifying the first linearly oc-
curring noun does well during training, but only
the hierarchical rule gives the right answer at test
time. In the generalization set (both compound
nouns & possessives cases), the subject noun is
the head of the construction (bee) and not the de-
pendent (queen). In the possessives case, we note
that subword tokenization always produces ’s as
a standalone token, e.g. queen’s is tokenized into
[queen] [’s]. Also, we allow sentences to chain an
arbitrary number of possessives via nesting.

nth-token For this experiment, we use sentences
from the Penn Treebank WSJ corpus. Following
the setup of Collins (2002) and filtering for sen-
tences between 10 to 30 tokens BERT tokeniza-
tion, we obtained training, development and gen-
eralization sets of sentences of sizes 21142, 3017
and 2999. We only consider 2 ≤ n ≤ 9. In par-
ticular, we ignore n = 1 since the first token pro-
duced by BERT is always trivially [CLS].
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2.3 Methods
BERT models In our experiments, we consider
two of Google AI’s pre-trained BERT models
bert-base-uncased (bbu) and bert-large-uncased
(blu) from a PyTorch implementation.2 bbu has
12 layers, 12 attention heads and embedding width
768, while blu has 24 layers, 16 attention heads
and embedding width 1024.

Training For each task, we train a simple per-
ceptron with a sigmoid output to perform binary
classification on individual token embeddings of a
sentence, based on whether the underlying token
possesses the property relevant to the task. This is
similar to the concept of diagnostic classification
by Hupkes et al. (2018); Giulianelli et al. (2018).

the cat will sleep
(BERT) ↓ ↓ ↓ ↓

e1 e2 e3 e4
(Classifier) ↓ ↓ ↓ ↓

ŷ1 ŷ2 ŷ3 ŷ4

Each input sentence is tokenized and processed
by BERT, and the resulting embeddings {ei} are
individually passed to the classifier fθ to produce
a sequence of logits {ŷi}. Supervision is provided
via a one-hot vector of indicators {yi} for the spec-
ified property. For example, in the main auxiliary
task, the above example would have y1 = y2 =
y4 = 0 and y3 = 1, since the third word is the
main auxiliary. The contribution of each example
to the total cross-entropy loss is:

Lθ = −
∑

i

(yi log ŷi+(1− yi) log(1− ŷi)) (1)

Each classifier is trained for a single epoch us-
ing the Adam optimizer (Kingma and Ba, 2014)
with hyperparameters lr = 0.001, β1 = 0.9, β2 =
0.999. We freeze BERT’s weights throughout
training, which allows us to take good classifica-
tion performance as evidence that the information
relevant to the task is being encoded in BERT’s
embeddings in a salient, easily retrievable manner.

Evaluation For each example at test time, after
computing the logits we obtain the index of the
classifier’s most confident guess within the sen-
tence:

i∗ = argmax
i

ŷi (2)

The average yi∗ across the test set is reported as
the classification accuracy.

2https://github.com/huggingface/
pytorch-pretrained-BERT

Figure 1: Layerwise accuracy of diagnostic classifiers
on the generalization set of the main auxiliary task.

Layerwise diagnosis One key aspect of our ex-
periments is the training of layer-specific classi-
fiers for all layers. This yields a layerwise diag-
nosis of the information content in BERT’s em-
beddings, providing a glimpse into how BERT
internally manipulates and composes linguistic
information. We also train classifiers on the
pre-embeddings, which can be considered as the
“zero-th” layer of BERT and hence act as useful
baselines for content present in the input.

2.4 Results

Main auxiliary Classifiers for both models
achieved near-perfect accuracy across all layers on
the development set. In Figure 1, we observe that
on the generalization set, the classifiers for both
models can identify the main auxiliary with over
85% accuracy past layer 5, and bbu in particular
obtains near-perfect accuracy from layers 4 to 11.

As discussed in Section 2.2, the classifiers were
only given training examples where the main aux-
iliary was also the first auxiliary in the sentence.
Although the linear rule “pick the first auxiliary”
is compatible with the training data, the classifier
nonetheless learns the more complex but correct
hierarchical rule “pick the auxiliary of the main
clause”. By our argument from Section 2.1, this
suggests that BERT embeddings encode syntactic
information relevant to whether a token is the main
auxiliary, as a feature salient enough to be recov-
erable by our simple diagnostic classifier.

We found that almost all instances of classifi-
cation errors involved the misidentification of the
linearly first auxiliary (within the relative clause)
as the main auxiliary, e.g. can instead of will in
Table 1. We believe that this stems from the signif-
icance of part-of-speech information for language
modeling. As a result, any word of a different POS
will not be chosen by the classifier.
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Figure 2: Layerwise accuracy of diagnostic classifiers
on the compound noun generalization set of the subject
noun task.

Figure 3: Layerwise accuracy of diagnostic classifiers
on the possessive generalization set of the subject noun
task.

Subject noun As with the previous task, clas-
sifiers for both models achieved near-perfect ac-
curacy across all layers on the development set.
On the compound noun generalization set (Fig-
ure 2), while bbu achieved near-perfect accuracy
in later layers, blu consistently performed poorly.
bbu’s performance suggests that in the classifier
successfully learns a generalization that excludes
the first noun of a compound, as opposed to the
naive linear rule “pick the first noun”. As before,
this suggests that BERT encodes syntactic infor-
mation in its embeddings. However, blu’s perfor-
mance is unexpected: it consistently predicts the
object noun when it makes errors. In contrast, on
the possessive generalization set (Figure 3), both
models perform poorly. We offer an explanation
for this distinctive performance in Section 2.5.

nth token Since this property is entirely deter-
mined by the linear position of a word in a sen-
tence, it directly measures the amount of posi-
tional information encoded in the embeddings.
Here we have two baselines characterizing both
extremes: the normal pre-embeddings (denoted
pE) and a variant (pE – pos) where we exclude the

Figure 4: Layerwise accuracy of diagnostic classifiers
on the generalization set of the nth token task, for the
bbu model only. Note that each line corresponds to a
particular layer’s embeddings as we vary 2 ≤ n ≤ 9.
pE denotes pre-embeddings and pE – pos denotes pre-
embeddings without the positional component.

positional component from its construction. Since
BERT cannot introduce any new positional infor-
mation, we expect these two to represent upper
and lower bounds on the amount of positional in-
formation present in BERT’s embeddings.

In Figure 4, we see a dramatic difference in per-
formance on pE (one of the topmost lines) com-
pared to pE – pos (bottommost line). We note
that performances across all 12 layers fall between
these two extremes, confirming our intuitions from
earlier. Specifically, the classifiers for layers 1 – 3
have near-perfect accuracy on identifying an ar-
bitrary nth token (2 ≤ n ≤ 9). However, from
layer 4 onwards, the accuracy drops sharply as n
increases. This suggests that the positional com-
ponent of pre-embeddings is the primary source of
positional information in BERT, and BERT (bbu)
discards a significant amount of positional infor-
mation between layers 3 and 4, possibly in favor
of hierarchical information.

2.5 Further Analysis

Main auxiliary In Figure 1, we observe that
classification accuracy increases sharply in the
first 4 layers, then plateaus before slowly decreas-
ing. This mirrors a similar layerwise trend ob-
served by Hewitt and Manning (2019). We pos-
tulate that the embeddings reach their “optimal
level of abstraction” with respect to their ability to
predict the main auxiliary halfway through BERT
(about layer 6 for bbu, 12 for blu). At layer 1,
the embedding for each token is a highly localized
representation that contains insufficient sentential
context to determine whether it is the main aux-
iliary of the sentence. As layer depth increases,
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BERT composes increasingly abstract representa-
tions via self-attention, which allows it to extract
information from other tokens in the sentence. At
some point, the representation becomes abstract
enough to represent the hierarchical concept of a
“main auxiliary”, causing an early increase in clas-
sification accuracy. However, as depth increases
further, the representations become so abstract that
finer linguistic features are increasingly difficult to
recover, e.g., a token embedding at the sentence-
vector level of abstraction may longer be capable
of identifying itself as the main auxiliary, account-
ing for the slowly deteriorating performance to-
wards later layers.

Subject noun Given the similarity of the main
auxiliary and the subject noun classification tasks,
we might expect them to exhibit similar trends
in performance. In Figure 2, we observe a sim-
ilar early increase in diagnostic classification ac-
curacy for the bbu embeddings. The lack of sig-
nificant performance decay on higher layers pos-
sibly reflects the salience of the subject noun fea-
ture even at the sentence-vector level of abstrac-
tion. Strangely, blu performed poorly, even worse
than chance (50%). We are unable to explain why
this happens and leave this for future research.

On the possessive generalization set, the poor
performance of both models seems to contra-
dict the hypothesis that BERT has learned an ab-
stract hierarchical generalization to classify sub-
ject nouns. We conjecture that BERT’s issues in
the possessive case stem from the ambiguity of
the ’s token, which can function either as a pos-
sessive marker or as a contracted auxiliary verb
(e.g.“She’s sleeping”). If BERT takes a possessive
occurrence of ’s as the auxiliary verb, the immedi-
ately preceding noun can be (incorrectly) analyzed
as the subject. If so, this would suggest that BERT
does not represent the syntactic structure of the en-
tire sentence in a unified fashion, but instead uses
local cues to constituency. In Figure 3, the gradu-
ally increasing but still poor performance towards
later layers in both models suggests that the em-
beddings might be trending toward a more abstract
representation, but do not ultimately achieve it.

nth token For each layer k ≥ 3, Figure 4 shows
an asymmetry where the classifier for layer k per-
forms worse at identifying the nth token as n in-
creases. We believe that this may be an artifact of
the distributional properties of natural language:

the distribution of words that occur at the start of a
sentence tends to be concentrated on a small class
of parts of speech that can occur near the begin-
ning of constituents that can begin a sentence. As
n increases, the class of possible parts is no longer
a function of the beginning of the sentence, and
as a result becomes more uniform. As a result, it
is easier for a classifier to predict whether a given
word is the nth token when n is small, since it can
make use of easily accessible part-of-speech infor-
mation in the embeddings to limit its options to
only the tokens likely to occur in a given position.

3 Diagnostic Attention

Our second exploration of BERT’s syntactic
knowledge focuses on the encoding of grammat-
ical relationships instead of the identification of
elements with specific structural properties. We
consider two phenomena: reflexive anaphora and
subject-verb agreement. For each, we deter-
mine the extent to which BERT attends to lin-
guistically relevant elements via the self-attention
mechanism. This gives us further information
about how hierarchy-sensitive syntactic informa-
tion is encoded.

3.1 Quantifying intrusion effects via
attention

Subject-verb and antecedent-anaphor dependen-
cies both involve a dependent element, which we
call the target (the verb or the anaphor) and the el-
ement on which it depends, which we call the trig-
ger (the subject or the antecedent that provides the
interpretation). A considerable body of work in
psycholinguistics has explored how humans pro-
cess such dependencies in the presence of ele-
ments that are not in relevant structural positions
but which linearly intervene between the trigger
and target. Dillon et al. (2013) aim to quantify
this intrusion effect in human reading for the two
dependencies we explore here. Under the assump-
tion that higher reading time and eye movement
regressions indicate an intrusion effect, they con-
clude that intruding noun-phrases have a substan-
tial effect on the processing of subject-verb agree-
ment, but not antecedent-anaphor relations.

We adapt this idea in measuring intrusion ef-
fects in BERT. We propose a simple and novel
metric we term the “confusion score” for quantify-
ing intrusion effects using attention. This quantita-
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Subject-Verb Agreement

Condition Relative
Clause

DN
Number Match Example Sentence Mean

Confusion Score

A1 7 X the cat near the dog does sleep 0.97
A2 7 7 the cat near the dogs does sleep 0.93
A3 X X the cat that can comfort the dog does sleep 0.85
A4 X 7 the cat that can comfort the dogs does sleep 0.81

Reflexive Anaphora

Condition Relative
Clause

DNo
Gender Match

DNr
Gender Match Example Sentence Mean

Confusion Score

R1 7 X NA the lord could comfort the wizard by himself 1.01
R2 7 7 NA the lord could comfort the witch by himself 0.92
R3 X NA X the lord that can hurt the prince could comfort himself 0.99
R4 X NA 7 the lord that can hurt the princess could comfort himself 0.89
R5 X X X the lord that can hurt the prince could comfort the wizard by himself 1.57
R6 X X 7 the lord that can hurt the princess could comfort the wizard by himself 1.52
R7 X 7 X the lord that can hurt the prince could comfort the witch by himself 1.49
R8 X 7 7 the lord that can hurt the princess could comfort the witch by himself 1.39

Table 2: Representative sentences from the subject-verb agreement and reflexive anaphora datasets for each con-
dition, and corresponding mean confusion scores. DNo: distractor noun as object. DNr: distractor noun in relative
clause.

tive metric allows us to measure the preferable at-
tention of transformer-based self-attention on one
entity as opposed to another. Formally, suppose
X = {xi}ni=1 are linguistic units of interest, i.e.
candidate triggers for the dependency, and Y is the
dependency target. For each layer l and attention
head a, we sum the self-attention weights from the
indices of xi (since each xi may consist of multi-
ple words) on attention head a of layer l − 1 to
Y on layer l, and take the mean over A attention
heads:

attnl(xi, Y ) =
1

A

A∑

a=1

∑

xij∈xi
attnla(xij , Y ) (3)

We finally define the confusion score on layer l as
the binary cross entropy of the normalized atten-
tion distribution between {xi} given Y as follows:

confl(X,Y ) = − log
attnl(x1, Y )∑n
i=1 attnl(xi, Y )

(4)

Note that this equation assumes that each depen-
dency has a unique trigger x1: verbs agree with
a single subject, and anaphors take a single noun
phrase as their antecedent.

Our study focuses on the examples of the forms
shown in Table 2. For subject-verb agreement,
there are two types of examples: with the distrac-
tor within a PP (A1 and A2) and with the distrac-
tor within a RC (A3 and A4). Past psycholinguis-
tic work has shown that distractor noun phrases

within PPs give rise to greater processing diffi-
culty than distractors within RCs (Bock and Cut-
ting, 1992). For each type, we compare confusion
in the case of distractors that share features with
the subject, the true trigger of agreement, (A1 and
A3) with those that do not (A2 and A4). Our ex-
pectation is that distractors that do not share fea-
tures with the target of agreement will yield less
confusion.

For reflexive anaphora, because of the possibil-
ity of ambiguity, we also consider sentences that
include a noun phrase that is a structurally pos-
sible antecedent. For example, condition R1 has
the subject the lord as its antecedent, but the ob-
ject noun phrase the wizard is also grammatically
possible. In contrast, for R2, the mismatch in gen-
der features prevents the object from serving as
an antecedent, which should lead to lower confu-
sion. Sentences R3 and R4 include a distractor
noun phrase within a RC. Since this noun phrase
does not c-command the anaphor, it is grammati-
cally inaccessible and should therefore contribute
less, if at all, to confusion. Sentence types R5
through R8 include both the relative modifier and
the object noun phrase, and systematically vary the
agreement properties of the two distractors.

We hypothesize that attention weights on each
linguistic unit indicate the relative importance of
that entity as a trigger of a linguistic dependency.
As a result, the ideal attention distribution should
put all of the probability mass on the antecedent
noun phrase for reflexive anaphora or on the sub-
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ject noun phrase for agreement, and zero on the
distractor noun phrases. As a baseline, a uniform
distribution over two noun phrases, one the actual
target and the other a distractor, would lead to a
confusion score of − log 1

2 = 1; with two dis-
tractors, the uniform probability baseline would be
− log 1

3 = 1.6.

3.2 Dataset
We construct synthetic datasets using context-
free grammars (shown in Appendix A.1) for both
subject-verb agreement and reflexive anaphora
and compute mean confusion scores across mul-
tiple sentences. This allows us to control for se-
mantic effects on the confusion score. All datasets
for each condition contain 10000 examples.

In the subject-verb agreement datasets, we vary
1) the type of subordinate clause (prepositional
phrase, PP; or relative clause, RC), and 2) the
number on the distractor noun phrase. All condi-
tions should be unambiguous, since only the head
noun phrase can agree with the auxiliary.

In the reflexive anaphora datasets, we vary 1)
the presence of a RC, 2) the gender match be-
tween the RC’s noun phrase and the reflexive 3)
the presence of an object noun phrase, and 4) the
gender match between the object noun and the re-
flexive. All nouns are singular. Conditions R1,
R5, R6 are ambiguous conditions, as they include
an object noun phrase that matches the reflexive
in gender. In other conditions, only the head noun
phrase is the possible antecedent: the object mis-
matches in features and the noun phrase within the
RC is grammatically inaccessible.

3.3 Methods
We use Equation 4 to compute the confusion score
on each layer for the target in each sentence in our
dataset. As in Section 2.3, this yields a layerwise
diagnosis of confusion in BERT’s self-attention
mechanism. We also compute the mean confusion
score across all layers.3 In our experiments, we
compute confusion scores using bbu only.

Note that in conditions R1, R5 and R6, there
are two possible antecedents of the reflexive. We
nonetheless use Equation 4 to calculate confusion
scores relative to a single antecedent (the subject).

To compute the significance of the presence of
different types of distractors and of feature mis-

3We built on Vig (2019)’s BERT attention visualization li-
brary https://github.com/jessevig/bertviz to
implement the attention-based confusion score.

Figure 5: Layerwise confusion scores for each reflexive
anaphora condition listed in Table 2. Conditions R1 to
R4 have one distractor noun phrase, but conditions R5
to R8 have two distractor noun phrases.

Coefficient Estimate p-value

Subject-Verb Agreement

Intercept 1.33± 1.32e−3 < 2e−16
Relative Clause −0.12± 1.03e−3 < 2e−16
DNr Number Match 0.03± 1.03e−3 < 2e−16
Layer −0.06± 1.50e−4 < 2e−16

Reflexive Anaphora

Intercept 0.63± 1.24e−3 < 2e−16
DNo Gender Match 0.60± 9.09e−4 < 2e−16
DNo Gender Mismatch 0.50± 9.09e−4 < 2e−16
DNr Gender Match 0.57± 9.09e−4 < 2e−16
DNr Gender Mismatch 0.49± 9.09e−4 < 2e−16
Layer −0.03± 9.72e−5 < 2e−16

Table 3: Regression estimates and p-values for the co-
efficient effects under reflexive anaphora and subject-
verb agreement. All effects are statistically significant.

match of the distractors, we run a linear regression
to predict confusion score. For subject-verb agree-
ment, the baseline value is the confusion at layer 1
of a sentence with a PP and a mismatch in number
on the distractor noun (condition A2 in Table 2).
For reflexive anaphora, the baseline is the confu-
sion at layer 1 of a sentence with no RC and no
object noun (e.g. “the lord comforts himself”).

3.4 Results

Subject-verb agreement Since sentence types
A1 to A4 are all unambiguous, ideal confusion
scores should be zero. However, Table 2 indi-
cates that the mean confusion scores are instead
closer to the uniform probability baseline con-
fusion score of 1, suggesting that BERT’s self-
attention mechanism is far from able to perfectly
model syntactically-sensitive hierarchical infor-
mation. Nonetheless, from Table 3, we see that
BERT’s attention mechanism is in fact sensitive
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to subtleties of linguistic structure: a distractor
within a PP causes more confusion than one within
a relative clause (i.e., the presence of the relative
has a negative coefficient in the linear model), in
agreement with past psycholinguistic work (Bock
and Cutting, 1992). Moreover, the presence of
matching distractors has a significant positive ef-
fect on confusion scores. These findings there-
fore suggest that BERT representations are sensi-
tive to different types of syntactic embedding as
well as the values of number features in comput-
ing subject-verb agreement dependencies.

Reflexive anaphora From Table 2, we see the
major effect of the number of distractor noun
phrases: mean confusion scores for conditions
with one distractor (R1-R4) are lower than those
with two distractors (R5-R8). If BERT were per-
fectly exploiting grammatical structure, we should
expect the presence of a grammatically inacces-
sible distractor noun within a relative clause not
to add to confusion. Thus, we might expect R5
and R6 to have mean confusion scores compara-
ble to R1, as both include single grammatically
viable distractor. However, they both have higher
mean confusion scores than R1 (the same is true
for R7/R8 vs. R2). Moreover, conditions R2 to
R4 and R7 to R8 should have confusion scores of
zero, since the head noun phrase is the only gram-
matically possible antecedent. This, however, is
not so. Taken together, we might conclude that
BERT attends unnecessarily to grammatically in-
accessible or grammatically mismatched distrac-
tor noun phrases, suggesting that it does not accu-
rately model reflexive dependencies.

Nonetheless, if we look more closely at the ef-
fects of the different factors through the linear
model reported in Table 3, we once again find ev-
idence for a sensitivity to both syntactic structure
and grammatical features: the presence of gram-
matically accessible distractors has a (slightly)
larger effect on confusion than grammatically in-
accessible distractors (i.e., DNo vs. DNr), particu-
larly when the distractor matches in features with
the actual antecedent.

3.5 Further Analysis

Layerwise diagnosis Figure 5 and Table 3 show
that confusion is negatively correlated with layer
depth for reflexive anaphora. Confusion scores
for subject-verb agreement exhibit a similar trend.
This provides additional evidence for our con-

jecture that BERT composes increasingly abstract
representations containing hierarchical informa-
tion, with an optimal level of abstraction. Notably,
the observed sensitivity of BERT’s self-attention
values to grammatical distortions suggests that
BERT’s syntactic knowledge is in fact encoded in
its attention matrices. Finally, it is worth noting
that confusion for both reflexives and subject-verb
agreement showed an increase at layer 4. Strik-
ingly, this was the level at which linear informa-
tion was found, through diagnostic classifiers, to
be degraded. We leave for the future an under-
standing of the connection between these.

4 Conclusion

In this paper, we investigated how and to what ex-
tent BERT representations encode syntactically-
sensitive hierarchical information, as opposed to
linear information. Through diagnostic classifi-
cation, we find that positional information is en-
coded in BERT from the pre-embedding level up
through lower layers of the model. At higher
layers, information becomes less positional and
more hierarchical, and BERT encodes increas-
ingly complex representations of sentence units.

We propose a simple and novel method of ob-
serving, for a given syntactic phenomenon, the
intrusion effects of distractors on BERT’s self-
attention mechanism. Through such diagnostic
attention, we find that BERT does encode as-
pects of syntactic structure that are relevant for
subject-verb agreement and reflexive dependen-
cies through attention weights, and that this infor-
mation is represented more accurately on higher
layers. We also find evidence that BERT is re-
sponsive to matching of grammatical features such
as gender and number. However, BERT’s atten-
tion is only incompletely modulated by structural
and featural properties, and attention is sometimes
spread across grammatically irrelevant elements.

We conclude that BERT composes increasingly
abstract hierarchical representations of linguistic
structure using its self-attention mechanism. To
further understand BERT’s syntactic knowledge,
further work can be done to (1) investigate or vi-
sualize layer-on-layer changes in BERT’s struc-
tural and positional information, particularly be-
tween layers 3 and 4 when positional information
is largely phased out, and (2) retrieve the increas-
ingly hierarchical representations of BERT across
layers via the self-attention mechanism.
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A Appendix

A.1 Context-free grammars for dataset
generation

S → NPM VPM

NPM → Det N | Det N Prep Det Nom | Det N RC

NPO → Det Nom | Det Nom Prep Det Nom | Det Nom RC

VPM → Aux VI | Aux VT NPO

RC → Rel Aux VI | Rel Det Nom Aux VT | Rel Aux VT Det Nom

Nom → N | JJ Nom

Det → the | some | my | your | our | her

N → bird | bee | ant | duck | lion | dog | tiger | worm | horse | cat | fish | bear | wolf | birds | bees | ants |
ducks | lions | dogs | tigers | worms | horses | cats | fish | bears | wolves

VI → cry | smile | sleep | swim | wait | move | change | read | eat

VT → dress | kick | hit | hurt | clean | love | accept | remember | comfort

Aux → can | will | would | could

Prep → around | near | with | upon | by | behind | above | below

Rel → who | that

JJ → small | little | big | hot | cold | good | bad | new | old | young

Figure 6: Context-free grammar for the main auxiliary dataset.

S → NPM VP

NPM → Det MNom | Det MNom Prep Det Nom | Det MNom RC

NPO → Det Nom | Det Nom Prep Det Nom | Det Nom RC

VP → Aux VI | Aux VT NPO

RC → Rel Aux VI | Rel Det Nom Aux VT | Rel Aux VT Det Nom

Nom → N | JJ Nom

MNom → MNom1 | MNom2

MNom1 → N | JJ MNom1

MNom2 → N | JJ MNom2 | NS Poss MNom2 | Nadj+MN

Det → the | some | my | your | our | her

Poss → ’s

NS → bird | bee | ant | duck | lion | dog | tiger | worm | horse | cat | fish | bear | wolf

N → bird | bee | ant | duck | lion | dog | tiger | worm | horse | cat | fish | bear | wolf | birds | bees | ants |
ducks | lions | dogs | tigers | worms | horses | cats | fish | bears | wolves

Nadj+MN → worker bee | worker ant | race horse | queen bee | german dog | house cat

VI → cry | smile | sleep | swim | wait | move | change | read | eat

VT → dress | kick | hit | hurt | clean | love | accept | remember | comfort

Aux → can | will | would | could

Prep → around | near | with | upon | by | behind | above | below

Rel → who | that

JJ → small | little | big | hot | cold | good | bad | new | old | young

Figure 7: Context-free grammar for the subject noun dataset.
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S → NPsg Agr Auxsg VI | NPpl Agr Auxpl VI

NPsg Agr → Det Nsg | Det Nsg Prep Det N | Det Nsg Prep RCsg

NPpl Agr → Det Npl | Det Npl Prep Det N | Det Npl Prep RCpl

RCsg → Rel Auxsg VI | Rel Auxsg VT Det N | Rel Det Nsg Auxsg VT | Rel Det Npl Auxpl VT

N → Nsg | Npl

RCpl → Rel Auxpl VI | Rel Auxpl VT Det N | Rel Det Nsg Auxsg VT | Rel Det Npl Auxpl VT

Auxsg → does | Modal

Auxpl → do | Modal

Det → the | some | my | your | our | her

Nsg → bird | bee | ant | duck | lion | dog | tiger | worm | horse | cat | fish | bear | wolf

Npl → birds | bees | ants | ducks | lions | dogs | tigers | worms | horses | cats | fish | bears | wolves

VI → cry | smile | sleep | swim | wait | move | change | read | eat

VT → dress | kick | hit | hurt | clean | love | accept | remember | comfort

VS → think | say | hope | know

VD → tell | convince | persuade | inform

Modal → can | will | would | could

Prep → around | near | with | upon | by | behind | above | below

Rel → who | that

Figure 8: Context-free grammar for the subject-verb agreement dataset.

S →
NPM Ant Aux VT ReflM | NPF Ant Aux VT ReflF |
NPM Ant Aux VT Det NF by ReflM | NPF Ant Aux VT Det NM by ReflF |
NPM Ant Aux VT Det NM by ReflM | NPF Ant Aux VT Det NF by ReflF

NPM Ant → Det NM | Det NM RC

NPF Ant → Det NF | Det NF RC

N → NM | NF

RC → Rel Aux VI | Rel Det N Aux VT | Rel Aux VT Det N

ReflM → himself

ReflF → herself

Det → the | some | my | your | our | her

NF → girl | woman | queen | actress | sister | wife | mother | princess | aunt | lady | witch | niece |
nun

NM → boy | man | king | actor | brother | husband | father | prince | uncle | lord | wizard | nephew |
monk

VI → cry | smile | sleep | swim | wait | move | change | read | eat

VT → dress | kick | hit | hurt | clean | love | accept | remember | comfort

VS → think | say | hope | know

VD → tell | convince | persuade | inform

Aux → can | will | would | could

Prep → around | near | with | upon | by | behind | above | below

Rel → who | that

Figure 9: Context-free grammar for the reflexive anaphora dataset.
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Abstract

This paper presents a simple but general and
effective method to debug the output of ma-
chine learning (ML) supervised models, in-
cluding neural networks. The algorithm looks
for features that lower the evaluation metric
in such a way that it cannot be ascribed to
chance (as measured by their p-values). Us-
ing this method – implemented as GEval tool –
you can find: (1) anomalies in test sets, (2) is-
sues in preprocessing, (3) problems in the ML
model itself. It can give you an insight into
what can be improved in the datasets and/or
the model. The same method can be used to
compare ML models or different versions of
the same model. We present the tool, the the-
ory behind it and use cases for text-based mod-
els of various types.

1 Introduction

Currently, given the burden of big data and pos-
sibilities to build a wide variety of deep learning
models, the need to understand datasets, intrinsic
parameters and model behavior is growing. These
problems are part of the interpretability trend in the
state-of-the-art research, the good example being
publications at NeurIPS 2018 conference and its
Interpretability and Robustness in Audio, Speech,
and Language Workshop.1

The problem of interpretability is also crucial in
terms of using ML models in business cases and
applications. Every day, data scientists analyze
large amounts of data, build models and sometimes
they just do not understand: why the models work
in a certain way. Thus, we need fast and efficient
tools to look into models in their various aspects,
e.g. by analyzing train and test data, the way in
which models influence their results, and how their
internal features interact with each other. Conse-
quently, the aim of our research and paper is to

1https://irasl.gitlab.io/

present a tool to help data scientists understand the
model and find issues in order to improve the pro-
cess. The tool will be show-cased on a number of
NLP challenges.

There are a few extended reviews on inter-
pretability techniques and their types available at
(Guidotti et al., 2018; Adadi and Berrada, 2018; Du
et al., 2018). The authors also introduce purposes
of interpretability research: justify models, control
them and their changes in time (model debugging),
improve their robustness and efficiency (model val-
idation), discover weak features (new knowledge
discovery). The explanations can be given as: (1)
other models easier to understand (e.g. linear re-
gression), (2) sets of rules, (3) lists of strong and
weak input features or even (4) textual summaries
accessible for humans.

The interpretability techniques are categorized
into global or local methods. “Global” stands for
techniques that can explain/interpret a model as
a whole, whereas “local” stands for methods and
models that can be interpreted around any chosen
neighborhood. Another dimensions of the inter-
pretability categorization are: (1) intrinsic inter-
pretable methods, i.e. models that approximate the
more difficult ones and are also easy to understand
for humans or (2) post-hoc explanations that are
derived after training models. Hence, explanations
can be model-specific or model-agnostic, i.e. need-
ing (or not) the knowledge about the model itself.

As far as model-agnostic (black-box) methods
are concerned, one of the breakthroughs in the do-
main was the LIME method (Local Interpretable
Model-Agnostic Explanations) (Tulio Ribeiro et al.,
2016). LIME requires access to a model and it
changes the analyzed dataset many times (doing
perturbations) by removing some features from in-
put samples and measuring changes in the model
output. The idea has two main drawbacks. The
first is that it requires access to the model to know
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the model output for perturbed samples. The other
disadvantage is that it takes a very long time to
process big datasets, which makes the method un-
feasible in case of really large datasets, e.g. several
millions of text documents.

Other interpretability methods concern the in-
ternal model structure in a white-box manner,
e.g. L2X (Chen et al., 2018), which instruments
a deep learning model with an extra unit (layer)
and the analyzed model is trained with this unit
jointly.

We introduce an automatic, easy to use and a
model-agnostic method that does not require ac-
cess to models. The only requirement is access to
the dataset, i.e. input sample data points, model
results and gold standard labels. The method (and
a command-line tool), called GEval,2 is based on
statistical hypothesis testing and measuring the sig-
nificance of each feature. GEval finds global fea-
tures that “influence” the model evaluation score in
a bad way and worsen its results.

Moreover, we present the work of GEval us-
ing examples from various text-based model types,
i.e. named entity recognition, classification and
translation.

In the following sections we introduce the idea
to use p-value and hypotheses testing to debug ML
models (Section 2), describe the algorithm behind
GEval (Section 3), and then show some use cases
for state-of-the-art ML models (Section 4).

2 Using p-values for debugging ML
Models – general idea

Creating an ML model is not a one-off act, but a
whole continuous process, in which data scientist or
ML engineer should analyze what are the weakest
points of a model and try to improve the results by
fixing the pre- or post-processing modules or by
changing the model hyperparameters or the model
type itself. Moreover, regression checks are needed
for new releases of a model and its companion
software, because, even if the overall result is better,
some specific regressions might creep in (some of
them for trivial reasons) and be left unnoticed in the
face of the general improvement otherwise. Thus,
one may look for features, in a broad sense, in the
test data and, during the ML engineering process,
focus on the ones for which the evaluation metric

2https://gonito.net/gitlist/geval.git/;
see also (Graliński et al., 2016) for a discussion of a
companion Web application

significantly goes down below the general average
(in absolute terms or when compared with another
model) as they might reveal a bug somewhere in
the ML pipeline.

Which features are suspicious? We should look
for either the ones for which evaluation metric de-
creases abruptly (even if they are infrequent) or the
ones which are very frequent and which influence
the evaluation metric in a negative manner, even
if just slightly (or the ones which are somewhere
in between these two extremes). We will show (in
Section 4) that natural language processing (NLP)
tasks are particularly amenable to this, as words
and their combinations can be treated as features.
Consider, for example, a binary text classification
task. If you have an ML model for this task, you
could run it on a test set, sort all words (or bigrams,
trigrams, or other types of features) using a chi-
squared statistical test to confront the feature (or its
lack) against the failure or success (using a 2× 2
contingency table) of the classification model and
look at the top of the list, i.e. at words with the
highest value of χ2 statistics, or, equivalently, the
lowest p-value. P-value might be easier to interpret
for humans and they are comparable across statis-
tical tests. As we are not interested in p-values as
such (in contrast to hypothesis testing), but rather in
comparing them to rank features, there is no need to
use procedures for correcting p-values for multiple
experiments, such as Bonferroni correction.

See, for instance, Table 1, where we presented
the results of such an experiment for a specific
classifier in the Twitter sentiment classification task.
The average accuracy for the tweets with the word
“know” is higher than for the ones containing the
word “reading”; still, the accuracy for “know” is
more significant (as it was more frequent). Thus,
when debugging this ML model, more focus should
be given to “know”, and even more to “though”,
for which lower average accuracy and p-value was
found (this is, of course, related to the fact that this
conjunct connects contrastive clauses, which are
hard to handle in sentiment analysis).

WORD COUNT + − ACC χ2 P-VALUE

THOUGH 343 254 89 0.7405 35.2501 0.00000
KNOW 767 619 148 0.8070 13.4284 0.00025
READING 72 57 15 0.7917 2.226 0.1357

Table 1: Example of words from Twitter classification
(see Section 4) task with their statistical properties
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This kind of analysis is clearly not white-box
debugging (it does not depend on the internals of
the models), but even calling it black-box is not
accurate, as the model is not re-run. What is needed
is just the input and the actual and expected output
of the system. Hence, the most appropriate name
for this technique should be ”no-box” debugging.

2.1 Evaluating ML models for NLP

Counting successes and failures (accuracy) is
just the simplest evaluation metrics used in NLP
and there are actually many more: for the classi-
fication itself, a soft metric such as cross-entropy
could be used, for other tasks we have metrics such
as F1 (sequence labeling tasks), BLEU (machine
translation), WER (ASR) or even more specialized
metrics, e.g. GLEU for grammatical error correc-
tion (Napoles et al., 2015). For such non-binary
evaluation schemes using chi-square test is not
enough, a more general statistical test is needed.

Let us introduce some notation first. A test
set T = (X,Y ) is given, where X =
(X1, . . . , Xp), X1, . . . , Xp ∈ X are inputs and
Y = (Y1, . . . , Yp), Y1, . . . , Yp ∈ Y — corre-
sponding expected outputs (i.e. T consists of p
items or data points and their expected labels).
There are no assumptions as to what Xi and Yi
are, they could be numbers, strings, vectors of
numbers/strings, etc. Also, actual outputs Ŷ =
(Ŷ1, . . . , Ŷp), Ŷ1, . . . , Ŷp ∈ Ŷ from the analyzed
ML system are given. An evaluation metric

Z : Xp ×Yp × Ŷp → R,

is assumed and defined for any p.
No assumption is made for Z here, it does need

to be differentiable, its values does not have to be
interpretable on an interval or ratio scale. All that
is assumed is that higher values of Z represent
a “better” outcome. Z is a the-higher-the-better
metric, a loss function L would need to be turned
into Z as: Z = −L(X,Y, Ŷ ).

The evaluation metric Z is usually run for the
whole test set to get one number, the overall value
summing up the quality of the system.

For the purposes of “no-box” debugging, how-
ever, we are going to use it in a non-standard man-
ner: the evaluation scoreZ is going to be calculated
for each item separately to learn which items are
“hard” and which items are “easy” for an ML model
in question. For a classification tasks, it means sim-
ply partitioning the items, e.g. sentences, into suc-

cesses and failures, but in the case of more “gradual”
evaluation schemes, the items will be ranked more
“smoothly” – from items for which the system out-
put was perfect, through nearly perfect, partially
wrong to completely incorrect. Building on this,
we will be able to compare the distribution of evalu-
ation scores (or rather their ranks) within the subset
of items with a given feature against the subset of
items without it (see Section 2.3).

In other words, a vector ζ = (ζ1, . . . , ζp) of
evaluation scores, one score for each data point
will be calculated:

ζi = Z((Xi), (Yi), (Ŷi)).

This approach is natural for some evaluation
schemes, especially the ones for which the eval-
uation metric for the whole test set is calculated as
a simple aggregate, e.g. as the mean:

Z(X,Y, Ŷ ) =
1

p

p∑

i=1

Z((Xi), (Yi), (Ŷi))

=
1

p

p∑

i=1

ζi.

The examples of metrics having the above property
are accuracy and cross-entropy. There exist, how-
ever, evaluation metrics for which the equality like
this would not hold. For instance, BLEU evalua-
tion metric, widely used in machine translation, is
based on precision of n-grams calculated for the
whole dataset (Papineni et al., 2002). BLEU is not
recommended to be used for single utterances, as
many translations will be scored at 0 in isolation,
even when their quality is not that low (if no 4-gram
from the gold standard is retrieved, BLEU scores
to zero, which is a problem for isolated sentences,
but not when the whole corpus is considered). In
other words, it is not a good idea to use BLEU to
compare sentences (to know which one was hardest
to translate), as many bad and not-so-bad transla-
tions are indistinguishable if BLEU ζi values were
considered. Still, when looking for words which
are “troublesome” for a specific machine transla-
tion system, BLEU ζi value might have enough
signal to be useful. Alternatively, one could switch
to a similar metric, which has better properties for
per sentence evaluation, e.g. to Google GLEU for
machine translation (Wu et al., 2016).

In exploratory data analysis, only sets of X and
Y are usually considered. What we are going to
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do is to treat the output of an ML model (Ŷ ) and
evaluation results (ζ) as additional columns in a
data frame and explore such extended dataset to
find anomalies. It could be viewed as a blend of
machine learning and data science.

2.2 Feature extraction

We are interested in “features”, i.e. factors that
might or might not occur in a data point (features
or “metafeatures” as these are taken not only from
the inputs, but also from the actual and expected
outputs). In the case of textual data, it is words
that could be treated as features to be ranked with
p-value with our approach, so for NLP tasks, after
tokenization (and possibly some normalization),
one could obtain features such as: “input contains
the word ‘der”’, “expected output contains the word
‘but”’, “actual output contains the word ‘though”’.

In general, we need a set of possible features
F and a function φ to extract features from a data
point:

φ : X×Y× Ŷ→ 2F.

Note that in this general form, a feature might be a
combination of simpler features, e.g.: “input con-
tains the word ‘ein’ and expected output contains
the word ‘an”’.

2.3 Using the Mann-Whitney test

The main idea for “no-box” debugging is taken
from hypotheses testing, just as assessing different
methods for medical treatments or in A/B testing
schedule: we assume that we have two datasets –
the results of working procedures (Biau et al., 2010;
Kohavi and Longbotham, 2017). The datasets are
treated as distinct results of different procedures
and compared. In our case, one “dataset” is the
subset (X,Y, Ŷ )+f of items with a chosen particu-
lar feature f ∈ F and the other one – (X,Y, Ŷ )−f

– the data points without the feature f .
We rank the whole dataset (X,Y, Ŷ ) and

then check if the distributions of data points
from the two subdatasets ((X,Y, Ŷ )+f against
(X,Y, Ŷ )−f ) are similar or not. Checking is car-
ried out using the Mann-Whitney rank U test. If
the p-value is very low, we may suspect that the
difference in metric is not accidental. Thus, we
can draw the conclusion that the feature reduces
the evaluation score of our model and should be
looked at.

The (Wilcoxon-)Mann-Whitney signed-ranks
(Wilcoxon, 1945) test is a non-parametric equiva-
lent of the paired t-test when the population might
not be assumed to be normally distributed. It is
most commonly used to test for a difference in the
mean (or median) of paired observations.

The Mann-Whitney test makes important as-
sumptions: (1) the two samples need to be depen-
dent observations of the cases, (2) the paired ob-
servations are randomly and independently drawn,
(3) data are measured on at least an ordinal scale.
The assumptions are fulfilled in our non-standard
(from the point of view of hypothesis testing) case.
One-tailed test will be used, as we want to separate
the “hardest” features from the “easiest” ones.

2.4 Aren’t p-values an abomination?

The p-value is the probability for a given statis-
tical model that, when the null hypothesis is true,
the statistical summary would be greater than or
equal to the observed value. The use of p-values
in hypothesis testing is common in many fields of
science. Criticisms of p-values are as old as the
measures themselves. There is a widespread think-
ing that p-values are often misused and misinter-
preted. There are many critical articles concerning
these problems (Briggs, 2019). In particular, fixed
significance level (α) is often criticized. The sig-
nificance level for a study is chosen before data
collection, and typically set to 5%. One practice
that has been particularly criticized is rejecting the
null hypothesis for any p-value less than 5% with-
out other supporting evidence. The p-value does
not, in itself, support reasoning about the probabili-
ties of hypotheses but is only an additional tool for
deciding whether to reject the null hypothesis or
not. Based on this concept we use p-values only to
select the most promising features. We do not use
significance level but only raw p-values, so that we
could generate a ranked list of features.

Instead of p-value, the “expected improvement”
(how the evaluation score would improve if we
fixed the problem, i.e. the average score were the
same as for the items without it?) could be calcu-
lated for a feature f :

Z((X,Y, Ŷ )−f )− Z(X,Y, Ŷ ).

P-values have, however, some advantages. They
can be calculated for numerical features, not just
binary factors (such as words), using Kendall’s τ .
For instance, in the context of NLP we might be
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interested in questions like: are longer sentences
harder to translate? are shorter utterances harder to
classify? are named entities harder to find in older
texts?

Kendall’s τ coefficient (Kendall, 1938), is a
statistic used to measure the ordinal association
between two measured quantities. It evaluates the
degree of similarity between two sets of ranks given
to a same set of objects. This coefficient depends
upon the number of inversions of pairs of objects
which would be needed to transform one rank or-
der into the other. It is known that when one of the
variables is binary and the other is ordered, with
or without tied values, the Mann-Whitney test is
equivalent to Kendall’s τ test (Burr, 1960). This
means that it is sound to rank numerical features
against 0/1 features such as words. All p-values
reported in the following sections are according to
the Mann–Whitney/Kendall test.

2.5 Most worsening features

Instead of calculating feature p-values for a sin-
gle model, one could compare the results of two
models by looking at the difference in their evalu-
ation scores rather than at the absolute value. Let
us assume that two models M and M ′ are to be
compared and their outputs, respectively Ŷ and
Ŷ ′, are known, hence evaluation scores ζ and ζ ′

can be calculated. Now, we could apply the Mann-
Whitney test for δi = ζi − ζ ′i rather than for ζi
or ζ ′i. This way, features that worsen the results
(when switching from M to M ′) can be tracked,
e.g. whenever a new version of a model or a pro-
cessing pipeline is released. This could be viewed
as a form of regression testing for ML models.

Note that for some evaluation metrics, other
methods for comparing scores (e.g. ζi/ζ ′i rather
than ζi − ζ ′i) may be more sound. Still, simple dif-
ference should give you at least a general direction
for each feature.

3 Implementation

GEval was implemented in Haskell as a
command-line tool. First of all, it is a general
evaluator for a wide variety of tasks, i.e. it simply
calculates the total score for a number of evaluation
metrics. On top of this basic functionality, more
advanced modes are available in GEval, e.g. one
can evaluate the test set item by item (basically
calculate ζi) and sort the items starting from the
ones with the worst score. Calculating p-values

for features is a step even further. Fortunately, this
can be done in an effective manner even for a very
large number of features simply by accumulating
feature ranks, as the sum of the ranks could be
easily turned into Mann-Whitney U and, then, the
final p-value.

As the item-by-item (or “line-by-line”) mode or
calculating p-values can be done for any evalua-
tion metric in GEval, whenever a new metric, even
an exotic or complicated one, is implemented in
GEval, such advanced options for data analysis are
available and ready to use.

This stands in contrast to specialized eval-
uation tools, e.g. SacreBLEU for Machine
Translation (Post, 2018). Moreover, GEval pro-
cessed very large datasets in minutes in contrast
to popular model-agnostic interpretability tool
LIME (Tulio Ribeiro et al., 2016) that works about
14 s per one data point (tests made at GPU DGX
machine). Thus, LIME method is not efficient for
very large datasets.

3.1 Features
First of all, we need to understand the output of

GEval analysis and what is meant as a feature.
Features are combined from the inputs, model

outputs and expected results (i.e. gold standard),
identified respectively as “in:”, “out:”, “exp:”.
There might be an additional index, mainly for
the input data, e.g. ”in<number>” indicates the
index of a column in the file.

A feature generated in GEval listing is of the
following form:

• a token from the input/output/expected output,
e.g. in<1>:though,

• a bigram from the input/output/expected out-
put, e.g. out:even ++ better,

• a word shape based on regular expressions,
e.g. in<1>:SHAPE:99 for two-digit numbers,
in<1>:SHAPE:A+ for acronyms,

• a Cartesian feature – two features occurring
together in one item, but not needing to
stand side by side to each other, e.g. exp:1
˜˜in<1>:sad being a combination of class 1
in the expected output and “sad” occurring in
the input text.

4 Case studies

We analyzed 3 different types of text-based mod-
els – for classification, machine translation and
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named entities recognition. We tested models on
common open-source datasets. Finally, we ob-
served if our tool can help us understand model
problems and their causes. In the following we
show a few tips how the tool can help to find solu-
tions to improve models, get some important find-
ings or post-process model results to improve final
predictions.

4.1 The GEval workflow

At the very beginning we should know the over-
all metric for our validation or development set,
GEval should be run for this as:

g e v a l −−m e t r i c M u l t i l a b e l −F1 − i i n . t s v −
o o u t . t s v −e e x p e c t e d . t s v

Then we analyze GEval listing obtained with
the --worst-features option (even more
features can be derived using extra options
such as --bigrams, --word-shapes,
--cartesians) and look for interesting features,
i.e. features with very low p-value and the metric
value much smaller than the metric value for
overall test set. These features should have
considerably high coverage in the dataset.

When we get the interesting feature listing,
we may specific analyze data points from input
dataset (GEval options: --line-by-line and
--filter) to understand why there is a problem
with those features.

4.2 Sentiment analysis

We tested text classification tasks on the “Twitter”
data set (Go et al., 2009). The models are fitted
using ULMFiT library (Howard and Ruder, 2018).

Results of Twitter sentiment analysis with ULM-
FiT are shown in Table 2. What is worth to note
that the model has a problem with positive tweets
that contain words of negation or words express-
ing sadness or anger by their own (not in a longer
context), e.g. “can’t”, “doesn’t”. Examples of such
hard cases are: “Don’t hate physics. it is lovely.”,
“It doesn’t mean I am angry with him.”.

We performed an additional test with the ULM-
FiT model: We trained the model using half of
the training set (774,998 text samples) and then
found interesting/suspicious features. We added
a set of samples (of size 18,009) with “though”
word, then trained a new model (though-model).
Additionally, we combine preliminary set with
the same additional number (18,009) of random

FEATURE COUNT ACC P-VALUE

in<1>:though 343 0.74 0.00004
in<1>:no++idea 21 0.48 0.001
in<1>:yeah 227 0.76 0.003
in<1>:know 767 0.81 0.004
in<1>:which 98 0.71 0.006
in<1>:wouldn’t 38 0.68 0.029

exp:1 ˜˜in<1>:sad 13 0.38 0.001
exp:1 ˜˜in<1>:though 72 0.67 0.002
exp:1 ˜˜in<1>:can’t 160 0.73 0.002
exp:1 ˜˜in<1>:never 81 0.67 0.001
exp:1 ˜˜in<1>:but 549 0.73 0.0000
exp:1 ˜˜in<1>:not 395 0.71 0.0000
exp:0 ˜˜in<1>:you 958 0.77 0.0000
exp:0 ˜˜in<1>:haha 73 0.63 0.0002

Table 2: GEval feature listing for classification for sen-
timent analysis on Twitter dataset. We used output
from model ULMFiT with 0.86 total accuracy on the
chosen validation set. “Acc” stands for the average ac-
curacy for tweets with a given feature. Labels for pos-
itive sentiment are “1”, i.e. in feature names “exp:1” ,
and for negative sentiment – “0”.

samples (random-model). The “though”-model
achieved better accuracy of 85.704% than random
and preliminary ones (respectively: 85.383% and
85.558%).

In Figure 1, we show the result of LIME method
for one data point (sentence) which contains hard
features gotten from GEval.

Figure 1: LIME visualisation of influence of tokens
on final results. The sentence is marked as positive
in gold annotations. GEval hard feature are ”FAIL”
and ”which” that generate drop in F1 for the whole test
dataset (down to 59% and 71% respectively). They also
contributes negatively into this sample.

4.3 Machine translation

We tested machine translation tasks on a
German-to-English challenge WMT-2017 (WMT).
We compared two models: LIUM (Garcı́a-
Martı́nez et al., 2017) (BLEU score of 30.10) and
the best UEDin (Sennrich et al., 2016) (BLEU
35.12). We checked cases when UEDin is worse
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than LIUM, using the method described in Sec-
tion 2.5. In other words, we were looking the spe-
cific features for which the best model behaves
badly when compared with an inferior model. The
interesting features worsening UEDin in compari-
son with LIUM are shown in Table 3. Inspecting
specific sentences we can see a problem that euro
currency is translated to pounds, which can be a
critical bug in an industry translation system. Obvi-
ously, it is very easy to repair with post-processing.
However the point is not to overlook the source of
model problems, that can be easily and efficiently
achieved with GEval.

Other examples of translation problems are “be”
which is a very difficult word to translate in various
contexts or words like “people” and “Menschen”
that meanings varies in different contexts.

FEATURE COUNT DROP IN BLEU P-VAL

exp:euros 31 -0.0647 0.0000
in<1>:Euro 31 -0.0534 0.0000
exp:be 296 0.0206 0.0004
exp:Federal 12 -0.0529 0.0004
exp:small 21 -0.0288 0.0008
out:$ 36 -0.0193 0.0012

Table 3: Comparison of machine translation models:
LIUM and UEDin – features worsening UEDin (WMT-
17 new task test data).

4.4 Named entity recognition

We tested known NER (named entities recogni-
tion) models with GEval. Here we report results
with FLAIR (Akbik et al., 2018) on CoNLL 2003
dataset (Tjong Kim Sang and De Meulder, 2003).
We achieved 93.06% F1 score3.

Our test procedure is as follows. We generated
GEval listing. Below we explain the findings –
GEval features and we show results in Table 4.
A few input samples and outputs for the chosen
features are presented in Table 5. To understand
the results we need to bear in mind that output
results and annotations (gold standard) are encoded
in CoNLL 2003 files as upper-cased named entity
class (i.e. LOC, PER, ORG, MISC) and the index
in the input sentence, e.g. “LOC:0 PER:7,8”.

3Results reported in authors publication for NER models
on original CoNLL 2003 test set is 93.07%. This result was
not achieved with the current version of the library. See the
discussion at (Flair, 2018).

A few of our finding are presented here (in the
Table 4, the relevant rows are listed in the same
order):
• upper-cased texts are difficult for the

model, e.g. features: in<1>:SHAPE:A+
˜˜in<1>:SHAPE:. (word written in upper case
combined with a punctuation mark, i.e. not a
header);
• there is a problem when named entity is ex-

pected at the beginning of sentence, e.g. exp:0
˜˜out:0,1 or exp:1,2++PER. It means that a named
entity was expected just for the first word, but was
wrongly marked by the ML model for the first two
words);
• there is a problem with MISC class,

especially in upper-cased texts and at the
beginning of texts, e.g. features: out:MISC
˜˜in<1>:SHAPE:A+; out:MISC++0,1;
out:MISC++0,1 ˜˜in<1>:SHAPE:A+;
• localization and organization classes are quite

often mixed, e.g. exp:LOC++: ˜˜out:ORG++:;
• a role of a person is sometimes mixed with the

person name and in such cases there is a problem
with annotation consistency between train and test
dataset, e.g. in<1>:Pope;
• also part of organization names that also are

common words are sometimes misannotated or
not recognized by the model, e.g. in<1>:League;
in<1>:National; in<1>:DIVISION;
• numbers are hard for the model – numbers

for dates, e.g. in<1>:/ ˜˜in<1>:SHAPE:9.999;
exp:ORG ˜˜in<1>:SHAPE:99.99.
• and there are many particular cases that are

worth looking into, e.g. country names that are
might be adjectives as well: in<1>:German;
in<1>:Czech.

5 Conclusions

Interpretability of machine learning models is a
very active field of research. We presented GEval
tool to analyze datasets and ML models. GEval is
a post-hoc model agnostic technique that do not
require any access to the model. The tool is very
efficient so it can be particularly useful for very
big text datasets that are difficult to process us-
ing perturbation-based interpretability methods, e.g.
LIME. We also showed use cases to explain what
kind of conclusions we can drive from the GEval
analysis.
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FEATURE COUNT F1 P-VAL

in<1>:SHAPE:. ˜˜in<1>:SHAPE:A+ 399 0.828 0.000

exp:0 ˜˜out:0,1 17 0.484 0.000
exp:1,2++PER 10 0.767 0.002

exp:MISC 563 0.849 0.000
out:MISC ˜˜in<1>:SHAPE:A+ 176 0.639 0.000
out:MISC++0,1 45 0.289 0.000
out:MISC++0,1 ˜˜in<1>:SHAPE:A+ 35 0.100 0.000

exp:LOC++: ˜˜out:ORG++: 29 0.704 0.000

in<1>:Pope 4 0.748 0.003

in<1>:DIVISION 35 0.495 0.000
in<1>:League 17 0.548 0.000
in<1>:National 25 0.615 0.000

in<1>:/ ˜˜in<1>:SHAPE:9.999 15 0.800 0.000
exp:ORG ˜˜in<1>:SHAPE:99.99 13 0.752 0.000

in<1>:German 15 0.709 0.001
in<1>:Czech 14 0.693 0.000
in<1>:Santa 19 0.727 0.001

Table 4: Named entity recognition on CoNLL 2003 test dataset with FLAIR model (92.36% for the whole test set).

FEATURE & EXAMPLES GOLD STANDARD ANNOTATIONS & MODEL OUTPUTS

in<1>:National
Peters left a meeting between NZ First and National negotia-
tors...

GOLD: ORG:NZ First, ORG:National; OUTPUT: ORG:NZ
First and National

in<1>:SHAPE:(
1. United States III ( Brian Shimer , ... ) one; GOLD: ORG:United States III; OUTPUT: LOC:United States

in<1>:Santa
German Santa in bank nearly gets arrested . GOLD: MISC:German PER:Santa; OUTPUT:

MISC:German Santa

Table 5: Named entity recognition on CoNLL 2003 – items from the dataset for features extracted and shown in
Table 4.
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Abstract

We inspect the multi-head self-attention in
Transformer NMT encoders for three source
languages, looking for patterns that could have
a syntactic interpretation. In many of the at-
tention heads, we frequently find sequences of
consecutive states attending to the same po-
sition, which resemble syntactic phrases. We
propose a transparent deterministic method of
quantifying the amount of syntactic informa-
tion present in the self-attentions, based on
automatically building and evaluating phrase-
structure trees from the phrase-like sequences.
We compare the resulting trees to existing
constituency treebanks, both manually and by
computing precision and recall.

1 Introduction

The classical approach to Natural Language Pro-
cessing used to be complex pipelines, e.g. (Popel
and Žabokrtský, 2010; Manning et al., 2014; For-
cada et al., 2011), consisting of multiple steps
of linguistically motivated analyses, such as part-
of-speech tagging or syntactic parsing, using ex-
plicit intermediate representations (e.g. depen-
dency trees) to abstract over the underlying texts.

In recent years, this has changed with the intro-
duction of deep neural end-to-end models, which
take raw text as input and produce the desired out-
put directly. Any intermediate representations of
the text may emerge during the training of the neu-
ral network, and are hidden to us.

We focus on the encoder part of the Transformer
architecture (Vaswani et al., 2017), applied to neu-
ral machine translation (NMT), as visualizations
presented by the authors suggest that its attention
heads capture various phenomena such as syntax,
semantic roles or anaphora links.

In this work, we analyze the syntactic proper-
ties of the self-attention heads both qualitatively

and quantitatively. For the quantitative evalua-
tion, we devise a new technique that quantifies
the amount of syntactic information by explicitly
building constituency trees from the attentions and
comparing them with the standard syntactic trees.

Section 3 briefly describes the Transformer en-
coder architecture and the way we visualize the
self-attention matrices using heatmaps. In Sec-
tion 4, we present our findings from an extensive
manual inspection of the heatmaps, identifying
several common patterns, including the baluster-
like structures which seem to resemble syntactic
phrases. To avoid confirmation bias, we proceed
by devising a linguistically uninformed tree ex-
traction algorithm (Section 5), which builds a con-
stituency tree based solely on the assumption that
the balusters correspond to syntactic phrases. We
analyze the resulting parse trees and compare them
with standard syntactic trees, both manually and
via automatic evaluation. In Section 6, we fol-
low the hypothesis that only some of the attention
heads are “syntactic”, and try to identify them.

2 Related Work

Initial analyses of syntax captured by neural net-
works focused on RNNs. Shi et al. (2016) exam-
ine how much syntax is learned by RNN encoder
by freezing its weights and using a decoder to pre-
dict syntactic trees. Adi et al. (2016) examine sen-
tence vector representations by training auxiliary
classifiers to take sentence encodings and predict
attributes like word order. Linzen et al. (2016) as-
sess the ability of LSTMs to learn syntax by pre-
dicting verbal numbers. Blevins et al. (2018) mea-
sure the amount of syntax in RNNs by predicting
part-of-speech tags and constituent labels.

In the last year, related studies appeared also for
the Transformer architecture. Tang et al. (2018)
show the Transformer networks perform better
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than RNNs on word sense disambiguation. Zhang
and Bowman (2018) show that language models
use more syntactic and morphological information
than translation models.

Recently, Hewitt and Manning (2019) tried to
find syntactic structures in contextual word rep-
resentations by training simple models on anno-
tated parse trees, concluding that syntactic trees
are embedded both in BERT (Devlin et al., 2018)
and ELMo (Peters et al., 2018) models. This
is also supported by Liu et al. (2019), who suc-
cessfully trained probes to extract linguistic struc-
tures, including syntactic dependencies, from var-
ious trained neural networks.

Most existing works train probing models on
annotated data (e.g. treebanks). However, such a
model may learn to predict the linguistic structure
not because it is captured by the network, but be-
cause it can be predicted from features preserved
from the input, as has been already noted e.g. by
Belinkov and Glass (2018). In our work, we try
to avoid that risk by not using annotated data for
the predictions, but rather looking for structures
explicitly present in the network representations.

In a study closely related to ours, Raganato and
Tiedemann (2018) also observe syntax-like pat-
terns in Transformer encoder self-attentions, and
try to extract syntactic trees without using anno-
tated data (except for taking the root node from the
gold annotation). However, they construct depen-
dency trees, while we observe phrase-like rather
than dependency-like structures. Moreover, their
findings are somewhat inconclusive, as the accu-
racy of the resulting trees is close to the baseline,
while our results are clearly positive. A similar ap-
proach was already suggested (but not evaluated)
in (Mareček and Rosa, 2018).

3 Transformer NMT Encoder

In the Transformer architecture, Vaswani et al.
(2017) came up with several important improve-
ments over the classical attention, including multi-
headed attention. It features a set of independent
attention heads, each deciding on its own to which
states to attend. This allows each of the heads
to specialize to provide a different type of infor-
mation or feature (similarly e.g. to CNN filters).
The encoder typically uses six multi-head self-
attention sub-layers. Each state on a given layer
(output state) is computed from a concatenation
of the result of applying a set of attention heads

to the states on the previous layer (input states),
passed through a feed-forward layer. This may al-
low the encoder to do more advanced multi-step
processing, such as aggregating the information
about several subwords into one position and then
attending to this position on the higher layers.

Another notable feature of the Transformer en-
coder is the use of residual connections, which
transport the source subword embeddings for-
ward, bypassing the self-attention mechanism, and
get averaged with the outputs of the self-attention.
This ensures that the output state at each position
retains a significant amount of the corresponding
source subword embedding, supporting the usual
shortcut of assuming that the hidden states can
be thought of as representations of the underlying
subwords (in the context of the sentence).

3.1 Encoder Self-Attention Visualization
We focus on exploring multi-head self-attentions
of the encoder. We use a natural visualization of
self-attention heads using square matrix heatmaps
(Figure 1), going from black (attention weight = 0)
to white (attention weight = 1). The subwords that
correspond to the rows and columns are printed
alongside the matrix. The rows correspond to out-
put states, and the columns to input states; as the
output states attend to input states, the softmaxed
attention weights on each row sum to 1.

Note that the visualizations may be deceiving
in several aspects. It is important to understand
that the fact that a given head at a given position
on a given layer attends to a position of a specific
subword does not mean that the resulting hidden
state will simply contain the representation of that
subword, for several reasons:
• The input to the self attention is the output of

the previous layer, i.e. a hidden state, presum-
ably but not necessarily representing the sub-
word at this position to some extent, and usu-
ally mixing in information about other sub-
words in the sentence.
• The hidden states emitted from each layer

are the outputs of a feed forward network
that takes a concatenation of outputs from all
of the heads on that layer as input, and can
thus mix them, ignore them, only use parts of
them, etc.

3.2 Experiment Setup
We analyze the Transformer NMT encoders for
the following three languages: English (en),
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en-de 33.5 en-fr 45.2 fr-de 24.3
de-en 39.8 fr-en 42.1 de-fr 32.9

Table 1: BLEU scores measured on the test data.

French (fr), and German (de). We selected those
particular languages because they are available in
the Europarl corpus1 (Koehn, 2005) comprising
large high-quality multiparallel data, and because
constituency syntax parse trees can be obtained for
them by the Stanford parser (Klein and Manning,
2003) out-of-the-box.2

As we want to explore a state-of-the-art setup,
we use the Transformer model (Vaswani et al.,
2017) as reimplemented by Helcl et al. (2018) in
the Neural Monkey framework3 in standard set-
ting: 6 encoder and decoder layers, 16 attention
heads, embedding size of 512, hidden-layers’ size
of 4096, dropout 0.9, and batch size 30.

We train the translator for all 6 source-target
language pairs (en-fr, en-de, fr-en, fr-de, de-en,
de-fr).4 From the Europarl corpus, we take first
1,000 sentences as development data, last 1,000
sentences as evaluation data, and the remaining
486,272 sentences for training. Table 1 lists the
BLEU scores of the systems. All inspections
and evaluations, both manual and automatic, have
been performed on the evaluation data.

The data are tokenized by the Stanford Tok-
enizer5 to make the tokens consistent with the con-
stituency trees with which we will compare our re-
sults. We then build a shared dictionary of 100,000
BPE subword units (Sennrich et al., 2016) on the
concatenated training data of all three languages,
append an EOS symbol to each sentence, and train
the translation model.

4 Manual Analysis of Attention Matrices

On a small sample of 10 sentences and for each
language pair, we created the heatmaps for all
16 attention heads of all 6 encoder layers. Six
heatmaps for one sentence from the en→de en-
coder are shown in Figure 1; all 96 of them are

1http://data.statmt.org/
wmt18/translation-task/
training-parallel-ep-v8.tgz

2https://nlp.stanford.edu/software/
lex-parser.html

3https://github.com/ufal/neuralmonkey
4We intersect the English-German and English-French

parallel corpora using English as pivoting language.
5https://nlp.stanford.edu/software/

tokenizer.shtml

enclosed in the Appendix.
A general observation is that the attentions are

nearly always very peaked. Even though the atten-
tion mechanism was designed as soft, most atten-
tion heads concentrate nearly all of the attention at
each output state onto just one input state.

In the following subsections, we list all of the
distinctive patterns that we have identified.6 An
important thing to note is that typically, a head
behaves consistently across all sentences, i.e., for
a given head on a given layer of a given trained
Transformer encoder, we typically see the same
attention patterns across all sentences.

4.1 Diagonals

Especially at the first encoder layer, there often ap-
pear various simple diagonal heads.

Typically, each output state attends to the input
state at the same position. This may serve to pass
the subword information to the higher layers.

In some cases, most of the output states at-
tend to the corresponding input states, but some of
them attend elsewhere. The role of such partial di-
agonal may be looking for a specific phenomenon
that only occurs for some of the output states.

Often, individual output states attend to preced-
ing or following input states, forming a parallel
diagonal (Figure 1b). Sometimes the heads attend
further, e.g. to the “pre-previous” input state.

4.2 Balustrades

The most frequent pattern, appearing in about 2/3
of the attention heads, are balustrades – a series
of vertical bars, typically placed at the diagonal,
which resemble the balusters of a staircase railing.
Examples of such balustrades are shown in Fig-
ure 1c,d,e. The balustrades are often placed up-
wards or downwards from the main diagonal.

We observe that different heads contain balus-
ters of different lengths. For longer balusters, the
input state that they attend to often corresponds to
a punctuation or a conjunction; often there are also
heads that attend exclusively or almost exclusively
to the sentence-final punctuation.

We have noticed that in many cases, the se-
quence of subwords spanned by a baluster may
be understood as a syntactic phrase (e.g. a noun
and its determiner, or a syntactic clause between

6We observe all patterns which Raganato and Tiedemann
(2018) identified, i.e. diagonals and attending to the end of the
sentence, but also other patterns which they did not observe.
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Figure 1: Heatmaps of selected attention heads showing different patterns. There are diagonal patterns in (a) and
(b), balustrades in (c) and (d), a combination in (e), and rather scattered attention in (f).
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two commas). Furthermore, by looking at multi-
ple attention heads at once, we can interpret the
balusters of various lengths spanning the same
subwords as shorter phrases nested within longer
phrases. This leads us to the idea of constructing
a constituency tree from the nested phrases, and
comparing it with classical syntactic constituency
trees (see Section 5).

4.3 Equal or Similar Subwords

There is typically one or two heads where each
output state attends to all instances of the same
subword, usually with a more or less uniform
distribution (see the subwords “of”, “have” and
“that” in Figure 1a). We have also seen these
heads to sometimes attend to very similar but not
identical subwords (e.g. singular and plural).

4.4 The Rest

Admittedly, for about 1/5 of the attention heads,
we have not identified any clear pattern, and thus
have no hypothesis as for the function of such
heads. Sometimes, the head shows some of the be-
haviours only for some of the output states; some-
times we do not see even such partial patterns (Fig-
ure 1f).

5 Extracting Constituency Trees

Our aim is to analyze whether syntactic struc-
tures seem to be captured by Transformer self-
attentions, to what extent, and of what kind. As
explained in the previous section, we often ob-
serve balusters of various lengths in the attention
heatmaps, which can be interpreted as nested syn-
tactic phrases. In this section, we try to measure to
which extent this interpretation seems to be valid.

For this purpose, we devise a linguistically un-
informed transparent deterministic algorithm to
extract binary constituency trees from the balus-
ters (Section 5.1). We automatically evaluate the
results by comparing them with classical syntac-
tic trees, generated by a standard syntactic parser
(Section 5.2), to see whether the observed struc-
tures seem to capture syntax as we know it. We
discuss the results in Section 5.3.

5.1 Tree Extraction Algorithm

We now explain how we construct constituency
trees from the balusters in the attention matrices.

Our goal is not to optimize our algorithm to-
wards producing good syntactic trees. Rather,

we try to keep our algorithm linguistically unin-
formed, to reveal only what really is captured by
the self-attentions. Therefore, we:
• build binary constituency trees, as this is

quite a basic way to represent nested phrases,
• use information from all attention heads, not

only those which seem to capture syntax,
• keep the number of other hyperparameters

minimal and set them to the most uninformed
values, rather than tuning them,
• do not train or tune the tree extraction in any

way (unlike most related work).
The first step is to identify the balusters. We

have previously described a baluster as a sequence
of output states attending to a single input state.
The attentions are typically very peaked, with
nearly all of the attention mass concentrated onto
one input state. However, as the attentions are soft,
each of the output states in fact attends to all of the
input states to some extent. We thus “harden” the
soft attention matrix A′ by only keeping the max-
imal attention weight on each row of the attention
matrix, setting all the other weights to 0:

Ao,i =

{
A′o,i if A′o,i = maxj∈[1,N ]A

′
o,j

0 otherwise
(1)

where i is the input state index, o is the output
state index, and N is the sentence length.

Next, we extract candidate phrases from the
balusters and weight them. From each baluster, we
extract only the candidate phrase corresponding to
the full length of the baluster. The weight of the
phrase corresponds to the average attention that
output states in the phrase give to the common in-
put state they attend to (i.e. the average brightness
of the points in the baluster). If the same phrase
appears in multiple attention matrices, their scores
are summed together. The weight of the phrase
spanning the a-th to b-th subwords thus is:

w′a,b =
∑

h∈Ha,b

∑
o∈[a,b]A

h
o,ih

b− a+ 1
(2)

where Ha,b is the set of attention heads containing
a baluster spanning the output states a to b, Ah is
the hardened attention matrix for head h, and ih is
the input state attended by the baluster in head h.

The weights defined in this way are unbalanced,
giving more importance to shorter phrases, as
they are more frequent in the attention matrices.
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We thus equalize the weights so that the average
weight of all phrases of the same length equals 1:

wa,b =
w′a,b · |P b−a+1|

∑
(c,d)∈P b−a+1 w′c,d

(3)

where P k is the index pair set of all extracted
phrases of length k.

To construct the constituency tree from the
phrases, we use the CKY dynamic programming
algorithm (Ney, 1991), which searches for the
highest scoring constituency tree in O(n3).

For each tree spanning the a-th to b-th subword,
we define its score sa,b recursively by finding a
separator k, a ≤ k < b, that maximizes the aver-
age of scores and weights of the two subtrees with
spans (a, k) and (k + 1, b):

sa,b = max
k

sa,k + sk+1,b + wa,k + wk+1,b

4
. (4)

The initial scores for single-subword subtrees are
set to 1. The averaging then keeps the scores
equalized – subtrees then have the same power re-
gardless of the size of their spans.

The CKY algorithm works bottom up, start-
ing with the trivial single-subword trees, and then
iteratively computing the values of larger sub-
trees based on the values precomputed in previous
steps. Together with the score of each tree, the al-
gorithm also stores the k from Equation 4, which
defines the highest scoring pair of subtrees cover-
ing the same span. Once the algorithm reaches the
tree covering the whole sentence, it recursively re-
turns the highest scoring tree based on the stored
values of the highest scoring subtrees.

5.2 Automatic Evaluation
To evaluate the syntacticity of the Transformer
self-attentive encoder, we extract the constituency
trees using our tree extraction algorithm for the
1,000 sentences of our evaluation set; we will re-
fer to these as extracted trees.

We then induce syntactic trees for these sen-
tences with the Stanford Parser. We use the fac-
tored lexicalized parsing models distributed to-
gether with the parser, which had been trained on
standard constituency treebanks of the languages –
English Penn Treebank (Marcus et al., 1993), Ger-
man Negra Corpus (Skut et al., 1999), and French
Treebank (Abeillé et al., 2003). We post-process
the trees in the following way:

1. remove phrase labels

X

Xdamaged

X

X
been
have

X
plants
Their

X

X

X
damaged

been

X
have

plants
Their

Figure 2: Left (lbal) and right (rbal) balanced binary
tree baselines.

2. wrap each word into a single-word phrase
3. split words into subwords
4. flatten phrases containing only one immedi-

ate subphrase or only one subword
We show an example of applying this procedure:

0. (S (VP vinegrowers suffer) )
1. ( (vinegrowers suffer) )
2. ( ( (vinegrowers) (suffer) ) )
3. ( ( (vin- e- growers) (suffer) ) )
4. ( (vin- e- growers) suffer)

We will refer to the resulting trees as parse trees.
We compare the extracted trees with the parse

trees, assuming that the more similar they are, the
more syntactic the Transformer encoder is.

We calculate the precision of the extracted tree
as the proportion of its phrases that are “correct”
in the sense that they are consistent with the parse
tree, not crossing any of its phrases. (For the sake
of this analysis, we only consider one possible way
of capturing syntax, as defined in the respective
treebanks; we discuss that in Section 5.3.)

Let P be the parse tree, an extracted phrase e is
correct if and only if:

∀p ∈ P : (p ∩ e = ∅) ∨ (p ⊆ e) ∨ (e ⊆ p). (5)

Recall is computed inversely, as the proportion
of phrases in the parse tree that are consistent with
the extracted tree. We compute the total preci-
sion and recall as an average over all extracted
phrases in all the trees, and also report their har-
monic mean (F1).

The results of the evaluations for all three
source languages are shown in Table 2. To put
them into perspective, we also report scores for
several uninformed parsing baselines:

1. rbal: balanced binary tree aligned right
2. lbal: balanced binary tree aligned left
3. rand.init: our proposed algorithm using ran-

domly initialized Transformer weights
Examples of the lbal and rbal baselines are shown
in Figure 2.
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English
system precision recall F1 score
rbal 30.1% 24.3% 26.8%
lbal 27.8% 20.8% 23.8%
rand.init 25.1% 20.0% 22.3%
en→ de 35.4% 30.6% 32.8%
en→ fr 35.4% 30.2% 32.6%

German
system precision recall F1 score
rbal 39.1% 31.3% 34.8%
lbal 38.1% 27.6% 32.0%
rand.init 33.7% 25.9% 29.3%
de→ en 46.1% 39.6% 42.6%
de→ fr 46.7% 40.9% 43.6%

French
system precision recall F1 score
rbal 34.3% 28.7% 31.3%
lbal 32.5% 25.4% 28.5%
rand.init 26.1% 24.4% 25.3%
fr→ en 44.4% 39.7% 41.9%
fr→ de 46.9% 41.7% 44.2%

Table 2: Scores of baseline trees and our extracted trees
using all attention heads, evaluated against standard
syntactic parse trees.

5.3 Discussion of Results

The F1 scores of the trees extracted from the atten-
tion matrices are 6 to 13 percentage points higher
than the best baselines, showing that some syntax
is indeed captured by the Transformer encoder.

For English, the scores are notably lower than
for the other languages. Manual inspection has
shown that this is mostly due to the English parse
trees being strongly right-branching, while the
other treebanks use flatter, more balanced trees,
mainly due to different annotation styles of the
treebanks. The trees extracted from the attention
matrices are similar for all of the languages, and
resemble the German or French parse trees more
than the English ones. However, a part of the score
differences may also be due to a differing syntac-
ticity of the individual encoders, as can be seen
from the differing scores for fr→en and fr→de.

Figure 3 shows an example of a tree extracted
from the en→de encoder (the sentence is the same
as in Figure 1). We can see that many of the
subtrees seem to make sense syntactically, both
smaller ones, such as “[have been] damaged”, as
well as larger ones, such as the tree spanning
“huge. . . vineyards”. Some are questionable, but
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Figure 3: A constituency tree generated by our tree ex-
traction algorithm from the attention matrices of the en-
de encoder for the 4th sentence of the evaluation set.

not necessarily wrong, e.g. “[the vine-] growers”.
A clear limitation of our automatic evaluation

method is that it only evaluates whether the struc-
tures match those of the syntactic formalism of the
standard treebank, but it cannot appreciate alterna-
tive structures that also make sense syntactically.
However, this issue is hard to solve without a sig-
nificant amount of manual work.

Nevertheless, some structures clearly do not
correspond to the syntactic structure of the sen-
tence, regardless of the syntactic formalism that
we adhere to. E.g. the phrases “their plants” and
“have been damaged” belong together, but they are
separated in the extracted tree all the way to the
root. The reason we find these incorrect structures
in the extracted trees may be that we are using all
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the encoder attention matrices in the extraction al-
gorithm, even though not all of the attention heads
seem to behave syntactically; we investigate this to
some extent in the next section. However, it is also
quite likely that the encoder only captures some
parts of the syntactic structure of the sentence, not
a full syntactic tree – especially given the fact that
the model is trained to do machine translation, and
may thus have no reason to capture structures ir-
relevant for this task. Moreover, classical syntac-
tic trees are by far not the only possible way of
capturing syntax, and it is quite likely that the syn-
tax captured by the self-attentive encoder should
be understood differently.7

6 Selecting Syntactic Heads

As we have discussed in Section 4, there is a
range of different types of attention heads. In
our interpretation, some of them, especially the
balustrades, seem to capture syntactic structures,
while others seem not to do so. A logical step thus
is to try to identify the syntactic heads, and only
use those for the tree extraction.8

We propose to use the automatic evaluation as
the criterion for selecting the “syntactic” heads.
We suggest two greedy approaches: head addi-
tion, and head ablation.

In the head addition approach, we start with an
empty set of heads and then iteratively add the
heads one by one, maximizing the precision of the
extracted trees in each step, until we have the set
of all heads. We then identify the highest scoring
head combination that we encountered.

The head ablation approach is the logical in-
verse; we start with all the heads and iteratively
remove them until we end up with only one head.

We ran the selection algorithms using only the
first 100 sentences. The setups selected as best by
the algorithm were then evaluated on the full eval-
uation set. As the head addition consistently out-
performed head ablation by approximately 2 per-
centage points, we only report the evaluation of

7For example, the syntactic structure could be quite flat,
with shorter phrases or treelets joined into a linked list, rather
than a complex tree structure with long-distance relations.
Also, we have noted that connectors, such as punctuation and
conjunctions, often seem to be part of both of their neighbour-
ing phrases, which could lead to a formalism using partially
overlapping phrases. We intend to investigate this in future.

8 However, once we start subselecting only some of the
heads, we are clearly introducing our expectations about the
syntactic structures to be found into the process – we are now
contaminating the so far linguistically uninformed approach
with our notion of “good” or “syntactic” phrases.

improvement in
system precision recall F1 score
en→ de +9.48% +7.01% +8.10%
en→ fr +8.43% +6.23% +7.19%
de→ en +4.60% +2.06% +3.13%
de→ fr +5.96% +1.76% +3.52%
fr→ en +11.58% +8.54% +9.91%
fr→ de +12.16% +8.63% +10.20%

Table 3: Evaluation of syntactic heads subselection.
Score gains over the base tree extraction as reported
in Table 2, in percentage points.

L 1 2 3 4 5 6
P 36% 3% 10% 10% 19% 21%

Table 4: Average proportion of attention head layers in
the best subselection setups for all language pairs. L
is the number of the layer, P is the proportion of the
selected heads that come from the given layer.

the head addition in Table 3.
We can see improvements in F1 ranging from 3

to 10 percentage points, showing that better syn-
tactic trees can be extracted by subselecting the
heads. However, we are perhaps overtuning the
setup, and the reported numbers are thus probably
somewhat inflated. Therefore, we are reluctant to
draw any strong conclusions from the results.

Nevertheless, the meta-analysis of the heads se-
lected as syntactic is of interest. For each of the
language pairs, between 18 and 32 heads of the
total 96 were selected. However, these are not
evenly distributed across the layers. As we show in
Table 4, on average, one third of the selected heads
come from the first layer, which mostly contains
diagonals and short balusters; the last two layers,
which contain a lot of balusters of varied lengths,
each contributes one fifth of the heads.

7 Conclusion

We analyzed the Transformer encoder self-
attention, identifying baluster structures resem-
bling syntactic phrases. We devised a transparent
linguistically uninformed algorithm for extracting
constituency trees from the balusters, compared
the resulting trees with standard syntactic parse
trees, and showed that syntax is indeed captured.
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Appendix: Visualization of all attention
heads

We provide visualisations of encoder’s self-
attention heads for English source sentence “Huge
areas covering thousands of hectares of vineyards
have been burned; this means that the vin@@
e-@@ growers have suffered loss and that their
plants have been damaged.”, when translating into
German.

Figure 4: Layer 1 Figure 5: Layer 2
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Figure 6: Layer 3 Figure 7: Layer 4
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Figure 8: Layer 5 Figure 9: Layer 6
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Abstract

Large pre-trained neural networks such as
BERT have had great recent success in NLP,
motivating a growing body of research investi-
gating what aspects of language they are able
to learn from unlabeled data. Most recent anal-
ysis has focused on model outputs (e.g., lan-
guage model surprisal) or internal vector rep-
resentations (e.g., probing classifiers). Com-
plementary to these works, we propose meth-
ods for analyzing the attention mechanisms of
pre-trained models and apply them to BERT.
BERT’s attention heads exhibit patterns such
as attending to delimiter tokens, specific po-
sitional offsets, or broadly attending over the
whole sentence, with heads in the same layer
often exhibiting similar behaviors. We further
show that certain attention heads correspond
well to linguistic notions of syntax and coref-
erence. For example, we find heads that at-
tend to the direct objects of verbs, determiners
of nouns, objects of prepositions, and corefer-
ent mentions with remarkably high accuracy.
Lastly, we propose an attention-based probing
classifier and use it to further demonstrate that
substantial syntactic information is captured in
BERT’s attention.

1 Introduction

Large pre-trained language models achieve very
high accuracy when fine-tuned on supervised tasks
(Dai and Le, 2015; Peters et al., 2018; Radford
et al., 2018), but it is not fully understood why.
The strong results suggest pre-training teaches the
models about the structure of language, but what
specific linguistic features do they learn?

Recent work has investigated this question by
examining the outputs of language models on
carefully chosen input sentences (Linzen et al.,
2016) or examining the internal vector representa-
tions of the model through methods such as prob-
ing classifiers (Adi et al., 2017; Belinkov et al.,
2017). Complementary to these approaches, we

study1 the attention maps of a pre-trained model.
Attention (Bahdanau et al., 2015) has been a
highly successful neural network component. It is
naturally interpretable because an attention weight
has a clear meaning: how much a particular word
will be weighted when computing the next repre-
sentation for the current word. Our analysis fo-
cuses on the 144 attention heads in BERT (De-
vlin et al., 2019), a large pre-trained Transformer
(Vaswani et al., 2017) network that has demon-
strated excellent performance on many tasks.

We first explore generally how the attention
heads behave. We find that there are common pat-
terns in their behavior, such as attending to fixed
positional offsets or attending broadly over the
whole sentence. A surprisingly large amount of
BERT’s attention focuses on the deliminator to-
ken [SEP], which we argue is used by the model
as a sort of no-op. Generally we find that attention
heads in the same layer tend to behave similarly.

We next probe each attention head for linguis-
tic phenomena. In particular, we treat each atten-
tion head as a simple no-training-required classi-
fier that, given a word as input, outputs the most-
attended-to other word. We then evaluate the abil-
ity of the heads to classify various syntactic rela-
tions. While no single head performs well at many
relations, we find that particular heads correspond
remarkably well to particular relations. For exam-
ple, we find heads that find direct objects of verbs,
determiners of nouns, objects of prepositions, and
objects of possesive pronouns with >75% accu-
racy. We perform a similar analysis for corefer-
ence resolution, also finding a BERT head that per-
forms quite well. These results are intriguing be-
cause the behavior of the attention heads emerges
purely from self-supervised training on unlabeled
data, without explicit supervision for syntax or
coreference.

1Code will be released at https://github.com/
clarkkev/attention-analysis.
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Figure 1: Examples of heads exhibiting the patterns discussed in Section 3. The darkness of a line indicates the
strength of the attention weight (some attention weights are so low they are invisible).

Our findings show that particular heads special-
ize to specific aspects of syntax. To get a more
overall measure of the attention heads’ syntac-
tic ability, we propose an attention-based probing
classifier that takes attention maps as input. The
classifier achieves 77 UAS at dependency pars-
ing, showing BERT’s attention captures a substan-
tial amount about syntax. Several recent works
have proposed incorporating syntactic information
to improve attention (Eriguchi et al., 2016; Chen
et al., 2018; Strubell et al., 2018). Our work sug-
gests that to an extent this kind of syntax-aware
attention already exists in BERT, which may be
one of the reason for its success.

2 Background: Transformers and BERT

Although our analysis methods are applicable
to any model that uses an attention mechanism,
in this paper we analyze BERT (Devlin et al.,
2019), a large Transformer (Vaswani et al., 2017)
network. Transformers consist of multiple lay-
ers where each layer contains multiple attention
heads. An attention head takes as input a sequence
of vectors h = [h1, ..., hn] corresponding to the
n tokens of the input sentence. Each vector hi
is transformed into query, key, and value vectors
qi, ki, vi through separate linear transformations.
The head computes attention weights α between
all pairs of words as softmax-normalized dot prod-
ucts between the query and key vectors. The out-
put o of the attention head is a weighted sum of the
value vectors.

αij =
exp (qTi kj)∑n
l=1 exp (q

T
i kl)

oi =

n∑

j=1

αijvj

Attention weights can be viewed as governing how
“important” every other token is when producing
the next representation for the current token.

BERT is pre-trained on 3.3 billion tokens of un-
labeled text to perform two tasks. In the “masked
language modeling” task, the model predicts the
identities of words that have been masked-out of
the input text. In the “next sentence prediction”
task, the model predicts whether the second half
of the input follows the first half of the input in
the corpus, or is a completely separate random text
segment. Further training the model on supervised
data results in impressive performance across a va-
riety of tasks ranging from sentiment analysis to
question answering. An important detail of BERT
is the preprocessing used for the input text. A spe-
cial token [CLS] is added to the beginning of the
text and another token [SEP] is added to the end. If
the input consists of multiple separate texts (e.g., a
reading comprehension example consists of a sep-
arate question and context), [SEP] tokens are also
used to separate them. As we show in the next sec-
tion, these special tokens play an important role in
BERT’s attention. We use the “base” sized BERT
model, which has 12 layers containing 12 attention
heads each. We use <layer>-<head number> to
denote a particular attention head.

3 Surface-Level Patterns in Attention

Before looking at specific linguistic phenomena,
we first perform an analysis of surface-level pat-
terns in how BERT’s attention heads behave. Ex-
amples of heads exhibiting these patterns are
shown in Figure 1.
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Figure 2: Each point corresponds to the average atten-
tion a particular BERT attention head puts toward a to-
ken type. Above: heads often attend to “special” to-
kens. Early heads attend to [CLS], middle heads attend
to [SEP], and deep heads attend to periods and com-
mas. Often more than half of a head’s total attention is
to these tokens. Below: heads attend to [SEP] tokens
even more when the current token is [SEP] itself.

Setup. We extract the attention maps from
BERT-base over 1000 Wikipedia segments. We
follow the setup used for pre-training BERT
where each segment consists of at most 128
tokens corresponding to two consecutive para-
graphs of Wikipedia. The input presented to the
model is [CLS]<paragraph-1>[SEP]<paragraph-
2>[SEP].

3.1 Relative Position

First, we compute how often BERT attention
heads attend to the current token, the previous to-
ken, or the next token. We find that most heads
put little attention on the current token. However,
there are heads that specialize to attending heavily
on the next or previous token, especially in ear-
lier layers of the network. In particular four atten-
tion heads (in layers 2, 4, 7, and 8) on average put
>50% of their attention on the previous token and
five attention heads (in layers 1, 2, 2, 3, and 6) put
>50% of their attention on the next token.
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[SEP]
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Figure 3: Gradient-based feature importance estimates
for attention to [SEP], periods/commas, and other to-
kens.
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Figure 4: Entropies of attention distributions. In the
first layer there are particularly high-entropy heads that
produce bag-of-vector-like representations.

3.2 Attending to Separator Tokens

Interestingly, we found that a substantial amount
of BERT’s attention focuses on a few tokens (see
Figure 2). For example, over half of BERT’s at-
tention in layers 6-10 focuses on [SEP]. To put
this in context, since most of our segments are 128
tokens long, the average attention for a token oc-
curring twice in a segments like [SEP] would nor-
mally be 1/64. [SEP] and [CLS] are guaranteed
to be present and are never masked out, while pe-
riods and commas are the most common tokens
in the data excluding “the,” which might be why
the model treats these tokens differently. A sim-
ilar pattern occurs for the uncased BERT model,
suggesting there is a systematic reason for the at-
tention to special tokens rather than it being an ar-
tifact of stochastic training.

One possible explanation is that [SEP] is used
to aggregate segment-level information which can
then be read by other heads. However, further
analysis makes us doubtful this is the case. If this
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hypothesis were true, we would expect attention
heads processing [SEP] to attend broadly over the
whole segment to build up these representations.
However, they instead almost entirely (more than
90%; see bottom of Figure 2) attend to themselves
and the other [SEP] token. Furthermore, qualita-
tive analysis (see Figure 5) shows that heads with
specific functions attend to [SEP] when the func-
tion is not called for. For example, in head 8-10
direct objects attend to their verbs. For this head,
non-nouns mostly attend to [SEP]. Therefore, we
speculate that attention over these special tokens
might be used as a sort of “no-op” when the atten-
tion head’s function is not applicable.

To further investigate this hypothesis, we ap-
ply gradient-based measures of feature importance
(Sundararajan et al., 2017). In particular, we com-
pute the magnitude of the gradient of the loss from
BERT’s masked language modeling task with re-
spect to each attention weight. Intuitively, this
value measures how much changing the attention
to a token will change BERT’s outputs. Results are
shown in Figure 3. We find that starting in layer 5
– the same layer where attention to [SEP] becomes
high – the gradients for attention to [SEP] become
small. This indicates that attending more or less to
[SEP] does not substantially change BERT’s out-
puts, supporting the theory that attention to [SEP]
is used as a no-op for attention heads.

3.3 Focused vs Broad Attention

Lastly, we measure whether attention heads fo-
cus on a few words or attend broadly over many
words. To do this, we compute the average en-
tropy of each head’s attention distribution (see
Figure 4). We find that some attention heads, es-
pecially in lower layers, have very broad atten-
tion. These high-entropy attention heads typically
spend at most 10% of their attention mass on any
single word. The output of these heads is roughly
a bag-of-vectors representation of the sentence.

We also measured entropies for all attention
heads from only the [CLS] token. While the av-
erage entropies from [CLS] for most layers are
very close to the ones shown in Figure 4, the
last layer has a high entropy from [CLS] of 3.89
nats, indicating very broad attention. This find-
ing makes sense given that the representation for
the [CLS] token is used as input for the “next sen-
tence prediction” task during pre-training, so it at-
tends broadly to aggregate a representation for the

whole input in the last layer.

4 Probing Individual Attention Heads

Next, we investigate individual attention heads to
probe what aspects of language they have learned.
In particular, we evaluate attention heads on la-
beled datasets for tasks like dependency parsing.
An overview of our results is shown in Figure 5.

4.1 Method
We wish to evaluate attention heads at word-level
tasks, but BERT uses byte-pair tokenization (Sen-
nrich et al., 2016), which means some words
(∼8% in our data) are split up into multiple to-
kens. We therefore convert token-token attention
maps to word-word attention maps. For attention
to a split-up word, we sum up the attention weights
over its tokens. For attention from a split-up word,
we take the mean of the attention weights over its
tokens. These transformations preserve the prop-
erty that the attention from each word sums to
1. For a given attention head and word, we take
whichever other word receives the most attention
weight as that model’s prediction2

4.2 Dependency Syntax
Setup. We extract attention maps from BERT on
the Wall Street Journal portion of the Penn Tree-
bank (Marcus et al., 1993) annotated with Stanford
Dependencies. We evaluate both “directions” of
prediction for each attention head: the head word
attending to the dependent and the dependent at-
tending to the head word. Some dependency rela-
tions are simpler to predict than others: for exam-
ple a noun’s determiner is often the immediately
preceding word. Therefore as a point of compar-
ison, we show predictions from a simple fixed-
offset baseline. For example, a fixed offset of -2
means the word two positions to the left of the de-
pendent is always considered to be the head.

Results. Table 1 shows that there is no single at-
tention head that does well at syntax “overall”; the
best head gets 34.5 UAS, which is not much better
than the right-branching baseline, which gets 26.3
UAS. This finding is similar to the one reported by
Raganato and Tiedemann (2018), who also evalu-
ate individual attention heads for syntax.

However, we do find that certain attention heads
specialize to specific dependency relations, some-

2We ignore [SEP] and [CLS], although in practice this
does not significantly change the accuracies for most heads.
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Head 9-6 
 

- Prepositions attend to their objects 
 

- 76.3% accuracy at the pobj relation 

Head 8-11 
 

- Noun modifiers (e.g., determiners) attend 
  to their noun 
 

- 94.3% accuracy at the det relation 

Head 8-10 
 

- Direct objects attend to their verbs 
 

- 86.8% accuracy at the dobj relation 

Head 7-6 
 

- Possessive pronouns and apostrophes 
  attend to the head of the corresponding NP 
 

- 80.5% accuracy at the poss relation 

Head 4-10 
 

- Passive auxiliary verbs attend to the 
  verb they modify 
 

- 82.5% accuracy at the auxpass relation 

Head 5-4 
 

- Coreferent mentions attend to their antecedents 
 

- 65.1% accuracy at linking the head of a  
  coreferent mention to the head of an antecedent 

Figure 5: BERT attention heads that correspond to linguistic phenomena. In the example attention maps, the
darkness of a line indicates the strength of the attention weight. All attention to/from red words is colored red;
these colors are there to highlight certain parts of the attention heads’ behaviors. For Head 9-6, we don’t show
attention to [SEP] for clarity. Despite not being explicitly trained on these tasks, BERT’s attention heads perform
remarkably well, illustrating how syntax-sensitive behavior can emerge from self-supervised training alone.
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Relation Head Accuracy Baseline

All 7-6 34.5 26.3 (1)
prep 7-4 66.7 61.8 (-1)
pobj 9-6 76.3 34.6 (-2)
det 8-11 94.3 51.7 (1)
nn 4-10 70.4 70.2 (1)
nsubj 8-2 58.5 45.5 (1)
amod 4-10 75.6 68.3 (1)
dobj 8-10 86.8 40.0 (-2)
advmod 7-6 48.8 40.2 (1)
aux 4-10 81.1 71.5 (1)

poss 7-6 80.5 47.7 (1)
auxpass 4-10 82.5 40.5 (1)
ccomp 8-1 48.8 12.4 (-2)
mark 8-2 50.7 14.5 (2)
prt 6-7 99.1 91.4 (-1)

Table 1: The best performing attentions heads of
BERT on WSJ dependency parsing by dependency
type. Numbers after baseline accuracies show the best
offset found (e.g., (1) means the word to the right is
predicted as the head). We show the 10 most common
relations as well as 5 other ones attention heads did well
on. Bold highlights particularly effective heads.

times achieving high accuracy and substantially
outperforming the fixed-offset baseline. We find
that for all relations in Table 1 except pobj, the
dependent attends to the head word rather than the
other way around, likely because each dependent
has exactly one head but heads have multiple de-
pendents. We also note heads can disagree with
standard annotation conventions while still per-
forming syntactic behavior. For example, head 7-
6 marks ’s as the dependent for the poss relation,
while gold-standard labels mark the complement
of an ’s as the dependent (the accuracy in Table 1
counts ’s as correct). Such disagreements high-
light how these syntactic behaviors in BERT are
learned as a by-product of self-supervised train-
ing, not by copying a human design.

Figure 5 shows some examples of the attention
behavior. While the similarity between learned at-
tention weights and human-defined syntactic re-
lations are striking, we note these are relations
for which attention heads do particularly well on.
There are many relations for which BERT only
slightly improves over the simple baseline, so we
would not say individual attention heads capture
dependency structure as a whole.

4.3 Coreference Resolution

Having shown BERT attention heads reflect cer-
tain aspects of syntax, we now explore using at-
tention heads for the more challenging semantic
task of coreference resolution. Coreference links
are usually longer than syntactic dependencies and
state-of-the-art systems generally perform much
worse at coreference compared to parsing.

Setup. We evaluate the attention heads on coref-
erence resolution using the CoNLL-2012 dataset3

(Pradhan et al., 2012). In particular, we compute
antecedent selection accuracy: what percent of the
time does the head word of a coreferent mention
most attend to the head of one of that mention’s
antecedents. We compare against three baselines
for selecting an antecedent:

• Picking the nearest other mention.

• Picking the nearest other mention with the
same head word as the current mention.

• A simple rule-based system inspired by Lee
et al. (2011). It proceeds through 4 sieves: (1)
full string match, (2) head word match, (3)
number/gender/person match, (4) all other
mentions. The nearest mention satisfying the
earliest sieve is returned.

We also show the performance of a recent neural
coreference system from (Wiseman et al., 2015).

Results. Results are shown in Table 2. We find
that one of BERT’s attention heads achieves de-
cent coreference resolution performance, improv-
ing by over 10 accuracy points on the string-
matching baseline and performing close to the
rule-based system. It is particularly good with
nominal mentions, perhaps because it is capable
of fuzzy matching between synonyms as seen in
the bottom right of Figure 5.

5 Probing Attention Head Combinations

Since individual attention heads specialize to par-
ticular aspects of syntax, the model’s overall
“knowledge” about syntax is distributed across
multiple attention heads. We now measure this
overall ability by proposing a novel family of
attention-based probing classifiers and applying
them to dependency parsing. For these classifiers
we treat the BERT attention outputs as fixed, i.e.,

3We truncate documents to 128 tokens long to keep mem-
ory usage manageable.
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Model All Pronoun Proper Nominal

Nearest 27 29 29 19
Head-word
match

52 47 67 40

Rule-based 69 70 77 60
Neural coref 83* – – –

Head 5-4 65 64 73 58

*Only roughly comparable because on non-truncated docu-
ments and with different mention detection.

Table 2: Accuracies (%) for different mention types of
systems selecting a correct antecedent given a corefer-
ent mention in the CoNLL-2012 data. One of BERT’s
attention heads performs fairly well at coreference.

we do not back-propagate into BERT and only
train a small number of parameters.

The probing classifiers are basically graph-
based dependency parsers. Given an input word,
the classifier produces a probability distribution
over other words in the sentence indicating how
likely each other word is to be the syntactic head
of the current one.

Attention-Only Probe. Our first probe learns a
simple linear combination of attention weights.

p(i|j) ∝ exp

( n∑

k=1

wkα
k
ij + ukα

k
ji

)

where p(i|j) is the probability of word i being
word j’s syntactic head, αk

ij is the attention weight
from word i to word j produced by head k, and n
is the number of attention heads. We include both
directions of attention: candidate head to depen-
dent as well as dependent to candidate head. The
weight vectors w and u are trained using standard
supervised learning on the train set.

Attention-and-Words Probe. Given our finding
that heads specialize to particular syntactic rela-
tions, we believe probing classifiers should benefit
from having information about the input words. In
particular, we build a model that sets the weights
of the attention heads based on the GloVe (Pen-
nington et al., 2014) embeddings for the input
words. Intuitively, if the dependent and candi-
date head are “the” and “cat,” the probing classi-
fier should learn to assign most of the weight to
the head 8-11, which achieves excellent perfor-
mance at the determiner relation. The attention-
and-words probing classifier assigns the probabil-

ity of word i being word j’s head as

p(i|j) ∝ exp

( n∑

k=1

Wk,:(vi ⊕ vj)αk
ij+

Uk,:(vi ⊕ vj)αk
ji

)

Where v denotes GloVe embeddings and ⊕ de-
notes concatenation. The GloVe embeddings are
held fixed in training, so only the two weight ma-
trices W and U are learned. The dot product
Wk,:(vi⊕vj) produces a word-sensitive weight for
the particular attention head.

Results. We evaluate our methods on the Penn
Treebank dev set annotated with Stanford depen-
dencies. We compare against three baselines:

• A right-branching baseline that always pre-
dicts the head is to the dependent’s right.

• A simple one-hidden-layer network that takes
as input the GloVe embeddings for the depen-
dent and candidate head as well as a set of
features indicating the distances between the
two words.4

• Our attention-and-words probe, but with at-
tention maps from a BERT network with pre-
trained word/positional embeddings but ran-
domly initialized other weights. This kind of
baseline is surprisingly strong at other prob-
ing tasks (Conneau et al., 2018).

Results are shown in Table 3. We find the Attn
+ GloVe probing classifier substantially outper-
forms our baselines and achieves a decent UAS
of 77, suggesting BERT’s attention maps have a
fairly thorough representation of English syntax.
As a rough comparison, we also report results
from the structural probe from Hewitt and Man-
ning (2019), which builds a probing classifier on
top of BERT’s vector representations rather than
attention. The scores are not directly compara-
ble because the structural probe only uses a sin-
gle layer of BERT, produces undirected rather than
directed parse trees, and is trained to produce the
syntactic distance between words rather than di-
rectly predicting the tree structure. Nevertheless,
the similarity in score to our Attn + Glove probing
classifier suggests there is not much more syntac-
tic information in BERT’s vector representations
compared to its attention maps.

4indicator features for short distances as well as continu-
ous distance features, with distance ahead/behind treated sep-
arately to capture word order
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Model UAS

Right-branching 26
Distances + GloVe 58
Random Init Attn + GloVe 30
Attn 61
Attn + GloVe 77
Structural probe (Hewitt and
Manning, 2019)

80 UUAS*

Table 3: Results of attention-based probing tasks on
dependency parsing. A simple model taking BERT at-
tention maps and GloVe word embeddings as input per-
forms quite well at dependency parsing. *Not directly
comparable to our numbers; see text.

Overall, our results from probing both individ-
ual and combinations of attention heads suggest
that BERT learns some aspects syntax purely as a
by-product of self-supervised training. Other work
has drawn a similar conclusions from examin-
ing BERT’s predictions on agreement tasks (Gold-
berg, 2019) or internal vector representations (He-
witt and Manning, 2019; Liu et al., 2019). Tra-
ditionally, syntax-aware models have been devel-
oped through architecture design (e.g., recursive
neural networks) or from direct supervision from
human-curated treebanks. Our findings are part of
a growing body of work indicating that indirect
supervision from rich pre-training tasks like lan-
guage modeling can also produce models sensitive
to language’s hierarchical structure.

6 Clustering Attention Heads

Are attention heads in the same layer similar to
each other or different? In general, can attention
heads be clearly grouped by behavior? We inves-
tigate these questions by computing the distances
between all pairs of attention heads. Formally, we
measure the distance between two heads Hi and
Hj as:

∑

token∈data

JS(Hi(token),Hj(token))

Where JS is the Jensen-Shannon Divergence be-
tween attention distributions. Using these dis-
tances, we visualize the attention heads by apply-
ing multidimensional scaling (Kruskal, 1964) to
embed each head in two dimensions such that the
euclidean distance between embeddings reflects
the Jensen-Shannon distance between the corre-
sponding heads as closely as possible.

Figure 6: BERT attention heads embedded in two-
dimensional space. Distance between points approx-
imately matches the average Jensen-Shannon diver-
gences between the outputs of the corresponding heads.
Heads in the same layer tend to be close together. At-
tention head “behavior” was found through the analysis
methods discussed throughout this paper.

Results are shown in Figure 6. We find that
there are several clear clusters of heads that be-
have similarly, often corresponding to behaviors
we have already discussed in this paper. Heads
within the same layer are often fairly close to each
other, meaning that heads within the layer have
similar attention distributions. This finding is a bit
surprising given that Tu et al. (2018) show that en-
couraging attention heads to have different behav-
iors can improve Transformer performance at ma-
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chine translation. One possibility for the apparent
redundancy in BERT’s attention heads is the use
of attention dropout, which causes some attention
weights to be zeroed-out during training.

7 Related Work

There has been substantial recent work perform-
ing analysis to better understand what neural net-
works learn, especially from language model pre-
training. One line of research examines the out-
puts of language models on carefully chosen in-
put sentences (Linzen et al., 2016; Khandelwal
et al., 2018; Gulordava et al., 2018; Marvin and
Linzen, 2018). For example, the model’s perfor-
mance at subject-verb agreement (generating the
correct number of a verb far away from its sub-
ject) provides a measure of the model’s syntactic
ability, although it does not reveal how that ability
is captured by the network.

Another line of work investigates the internal
vector representations of the model (Adi et al.,
2017; Giulianelli et al., 2018; Zhang and Bow-
man, 2018), often using probing classifiers. Prob-
ing classifiers are simple neural networks that take
the internal vector representations of a pre-trained
model as input. They are trained to do a supervised
task (e.g., part-of-speech tagging). If a probing
classifier achieves high accuracy, it suggests that
the vector representations reflect the correspond-
ing aspect of language (e.g., low-level syntax).
Like our work, some of these studies have also
demonstrated neural networks capturing aspects of
syntactic structures (Shi et al., 2016; Blevins et al.,
2018) or coreference (Tenney et al., 2018, 2019)
without explicitly being trained for the tasks.

With regards to analyzing attention, Vig (2019)
builds a visualization tool for the BERT’s attention
and reports observations about some of the heads’
behaviors, but does not perform any quantitative
analysis. Burns et al. (2018) analyze the attention
of memory networks to understand model perfor-
mance on a question answering dataset; we instead
aim to understand linguistic information captured
in pre-trained models. There has also been some
initial work in correlating attention with syntax.
Raganato and Tiedemann (2018) evaluate the at-
tention heads of a machine translation model on
dependency parsing, but only report overall UAS
scores instead of investigating heads for specific
syntactic relations or using probing classifiers.
Marecek and Rosa (2018) propose heuristic ways

of converting attention scores to syntactic trees,
but do not quantitatively evaluate their approach.

Concurrently with our work Voita et al. (2019)
identify syntactic, positional, and rare-word-
sensitive attention heads in machine translation
models. They also demonstrate that many atten-
tion heads can be pruned away without substan-
tially hurting model performance. Interestingly,
the important attention heads that remain after
pruning tend to be ones with identified behaviors.
Michel et al. (2019) similarly show that many of
BERT’s attention heads can be pruned. Although
our analysis in this paper only found interpretable
behaviors in a subset of BERT’s attention heads,
these recent works suggest that there might not be
much to explain for some attention heads because
they have little effect on model perfomance.

Jain and Wallace (2019) argue that attention of-
ten does not “explain” model predictions. They
show that attention weights frequently do not cor-
relate with other measures of feature importance.
Furthermore, attention weights can often be sub-
stantially changed without altering model predic-
tions. However, our motivation for looking at at-
tention is different: rather than explaining model
predictions, we are seeking to understand infor-
mation learned by the models. For example, if
a particular attention head learns a syntactic rela-
tion, we consider that an important finding from
an analysis perspective even if that head is not
always used when making predictions for some
downstream task.

8 Conclusion

We have proposed a series of analysis methods for
understanding the attention mechanisms of mod-
els and applied them to BERT. While most recent
work on model analysis for NLP has focused on
probing vector representations or model outputs,
we have shown that a substantial amount of lin-
guistic knowledge can be found not only in the
hidden states, but also in the attention maps. We
think probing attention maps complements these
other model analysis techniques, and should be
part of the toolkit used by researchers to under-
stand what neural networks learn about language.
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