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Introduction

Welcome to the 1st Workshop on Representation Learning for NLP (RepL4NLP), held on August 11,
2016 and hosted by the 54th Annual Meeting of the Association for Computational Linguistics (ACL)
in Berlin, Germany. The workshop is sponsored by DeepMind, Facebook AI Research, and Microsoft
Research.

Representation Learning for NLP aims to continue the spirit of previously successful workshops at
ACL/NAACL/EACL, namely VSM at NAACL'15 and CVSC at ACL’13/EACL’ 14/ACL’15, which
focussed on vector space models of meaning, compositionality, and the application of deep neural
networks and spectral methods to NLP. It provides a forum for discussing recent advances on these
topics, as well as future research directions in linguistically motivated vector-based models in NLP.
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Abstract

Layer-wise relevance propagation (LRP)
is a recently proposed technique for ex-
plaining predictions of complex non-linear
classifiers in terms of input variables. In
this paper, we apply LRP for the first time
to natural language processing (NLP).
More precisely, we use it to explain the
predictions of a convolutional neural net-
work (CNN) trained on a topic categoriza-
tion task. Our analysis highlights which
words are relevant for a specific prediction
of the CNN. We compare our technique
to standard sensitivity analysis, both qual-
itatively and quantitatively, using a “word
deleting” perturbation experiment, a PCA
analysis, and various visualizations. All
experiments validate the suitability of LRP
for explaining the CNN predictions, which
is also in line with results reported in re-
cent image classification studies.

1 Introduction

Following seminal work by Bengio et al. (2003)
and Collobert et al. (2011), the use of deep learn-
ing models for natural language processing (NLP)
applications received an increasing attention in re-
cent years. In parallel, initiated by the computer
vision domain, there is also a trend toward under-
standing deep learning models through visualiza-
tion techniques (Erhan et al., 2010; Landecker et
al., 2013; Zeiler and Fergus, 2014; Simonyan et
al., 2014; Bach et al., 2015; Lapuschkin et al.,
2016a) or through decision tree extraction (Krish-
nan et al., 1999). Most work dedicated to under-
standing neural network classifiers for NLP tasks
(Denil et al., 2014; Li et al., 2015) use gradient-
based approaches. Recently, a technique called
layer-wise relevance propagation (LRP) (Bach et

1

al., 2015) has been shown to produce more mean-
ingful explanations in the context of image classi-
fications (Samek et al., 2015). In this paper, we ap-
ply the same LRP technique to a NLP task, where
a neural network maps a sequence of word2vec
vectors representing a text document to its cat-
egory, and evaluate whether similar benefits in
terms of explanation quality are observed.

In the present work we contribute by (1) ap-
plying the LRP method to the NLP domain, (2)
proposing a technique for quantitative evaluation
of explanation methods for NLP classifiers, and
(3) qualitatively and quantitatively comparing two
different explanation methods, namely LRP and a
gradient-based approach, on a topic categorization
task using the 20Newsgroups dataset.

2 Explaining Predictions of Classifiers

We consider the problem of explaining a predic-
tion f(x) associated to an input & by assigning to
each input variable 4 a score R4 determining how
relevant the input variable is for explaining the
prediction. The scores can be pooled into groups
of input variables (e.g. all word2vec dimensions of
a word, or all components of a RGB pixel), such
that they can be visualized as heatmaps of high-
lighted texts, or as images.

2.1 Layer-Wise Relevance Propagation

Layer-wise relevance propagation (Bach et al.,
2015) is a newly introduced technique for obtain-
ing these explanations. It can be applied to various
machine learning classifiers such as deep convolu-
tional neural networks. The LRP technique pro-
duces a decomposition of the function value f(x)
on its input variables, that satisfies the conserva-
tion property:

flx) = Zde- (D

Proceedings of the 1st Workshop on Representation Learning for NLP, pages 1-7,
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The decomposition is obtained by performing a
backward pass on the network, where for each
neuron, the relevance associated with it is redis-
tributed to its predecessors. Considering neurons
mapping a set of n inputs (z;);e[1,,] to the neuron
activation x; through the sequence of functions:

b
Zij = TiWij + #
2j = D%

r; = g(zj)

where for convenience, the neuron bias b; has
been distributed equally to each input neuron, and
where g(-) is a monotonously increasing activation
function. Denoting by I; and R; the relevance
associated with z; and x;, the relevance is redis-
tributed from one layer to the other by defining
messages R;; indicating how much relevance
must be propagated from neuron z; to its input
neuron z; in the lower layer. These messages are
defined as:

2 + 5(25)

n

> zi +s(z) 7

where s(2;) = € (1,50 — 1;<0) is a stabilizing
term that handles near-zero denominators, with e
set to 0.01. The intuition behind this local rele-
vance redistribution formula is that each input x;
should be assigned relevance proportionally to its
contribution in the forward pass, in a way that the
relevance is preserved (3, Ri—; = R)).

Each neuron in the lower layer receives rele-
vance from all upper-level neurons to which it con-
tributes

Ri%j =

Ri =Y ;Rij.

This pooling ensures layer-wise conservation:
>.iRi = > ;R;. Finally, in a max-pooling
layer, all relevance at the output of the layer
is redistributed to the pooled neuron with max-
imum activation (i.e. winner-take-all). An im-
plementation of LRP can be found in (La-
puschkin et al., 2016b) and downloaded from
www.heatmapping.orgl.

2.2 Sensitivity Analysis

An alternative procedure called sensitivity analy-
sis (SA) produces explanations by scoring input
variables based on how they affect the decision
output locally (Dimopoulos et al., 1995; Gevrey

! Currently the available code is targeted on image data.

et al., 2003). The sensitivity of an input variable is
given by its squared partial derivative:

of \2
Ry=(32)"
d 0xq
Here, we note that unlike LRP, sensitivity analysis

does not preserve the function value f(x), but the
squared lo-norm of the function gradient:

IVaf(@)l5 =3 4Ra- )

This quantity is however not directly related to
the amount of evidence for the category to de-
tect. Similar gradient-based analyses (Denil et al.,
2014; Li et al., 2015) have been recently applied in
the NLP domain, and were also used by Simonyan
et al. (2014) in the context of image classification.
While recent work uses different relevance defini-
tions for a group of input variables (e.g. gradient
magnitude in Denil et al. (2014) or max-norm of
absolute value of simple derivatives in Simonyan
et al. (2014)), in the present work (unless other-
wise stated) we employ the squared lo-norm of
gradients allowing for decomposition of Eq. 2 as
a sum over relevances of input variables.

3 Experiments

For the following experiments we use the 20news-
bydate version of the 20Newsgroups® dataset con-
sisting of 11314/7532 train/test documents evenly
distributed among twenty fine-grained categories.

3.1 CNN Model

As a document classifier we employ a word-based
CNN similar to Kim (2014) consisting of the fol-
lowing sequence of layers:

Conv — RelLU — 1-Max-Pool — FC

By 1-Max-Pool we denote a max-pooling
layer where the pooling regions span the whole
text length, as introduced in (Collobert et al.,
2011). Conv, ReLU and FC denote the con-
volutional layer, rectified linear units activation
and fully-connected linear layer. For building
the CNN numerical input we concatenate horizon-
tally 300-dimensional pre-trained word2vec® vec-
tors (Mikolov et al., 2013), in the same order the
corresponding words appear in the pre-processed

http://qwone.com/%$7Ejason/20Newsgroups/
2’GoogleNews—vectors—negative3OO,
https://code.google.com/p/word2vec/



document, and further keep this input representa-
tion fixed during training. The convolutional oper-
ation we apply in the first neural network layer is
one-dimensional and along the text sequence di-
rection (i.e. along the horizontal direction). The
receptive field of the convolutional layer neurons
spans the entire word embedding space in verti-
cal direction, and covers two consecutive words in
horizontal direction. The convolutional layer filter
bank contains 800 filters.

3.2 Experimental Setup

As pre-processing we remove the document head-
ers, tokenize the text with NLTK?, filter out punc-
tuation and numbers>, and finally truncate each
document to the first 400 tokens. We train
the CNN by stochastic mini-batch gradient de-
scent with momentum (with /3-norm penalty and
dropout). Our trained classifier achieves a classifi-
cation accuracy of 80.19%5.

Due to our input representation, applying LRP
or SA to our neural classifier yields one relevance
value per word-embedding dimension. From these
single input variable relevances to obtain word-
level relevances, we sum up the relevances over
the word embedding space in case of LRP, and
(unless otherwise stated) take the squared l2-norm
of the corresponding word gradient in case of
SA. More precisely, given an input document d
consisting of a sequence (wi,ws,...,wy) of N
words, each word being represented by a D-
dimensional word embedding, we compute the rel-
evance R(w;) of the ™ word in the input docu-
ment, through the summation:

D
R(w) =Y Riy 3)
=1

where R; ; denotes the relevance of the input vari-
able corresponding to the i'" dimension of the ¢*»
word embedding, obtained by LRP or SA as spec-
ified in Sections 2.1 & 2.2.

*We employ NLTK’s version 3.1 recommended tok-
enizers sent_tokenize and word_-tokenize, module
nltk.tokenize.

SWe retain only tokens composed of the following char-
acters: alphabetic-character, apostrophe, hyphen and dot, and
containing at least one alphabetic-character.

%To the best of our knowledge, the best published
20Newsgroups accuracy is 83.0% (Paskov et al., 2013). How-
ever we notice that for simplification we use a fixed-length
document representation, and our main focus is on explain-
ing classifier decisions, not on improving the classification
state-of-the-art.

In particular, in case of SA, the above word rel-
evance can equivalently be expressed as:

Rsa(wr) = ||V, f(d)]13 )

where f(d) represents the classifier’s prediction
for document d.

Note that the resulting LRP word relevance is
signed, while the SA word relevance is positive.

In all experiments, we use the term farget class
to identify the function f(x) to analyze in the rel-
evance decomposition. This function maps the
neural network input to the neural network output
variable corresponding to the target class.

3.3 Evaluating Word-Level Relevances

In order to evaluate different relevance models, we
perform a sequence of “word deletions” (hereby
for deleting a word we simply set the word-vector
to zero in the input document representation), and
track the impact of these deletions on the classifi-
cation performance. We carry out two deletion ex-
periments, starting either with the set of test docu-
ments that are initially classified correctly, or with
those that are initially classified wrongly’. We es-
timate the LRP/SA word relevances using as target
class the true document class. Subsequently we
delete words in decreasing resp. increasing order
of the obtained word relevances.

Fig. 1 summarizes our results. We find that
LRP yields the best results in both deletion exper-
iments. Thereby we provide evidence that LRP
positive relevance is targeted to words that sup-
port a classification decision, while LRP negative
relevance is tuned upon words that inhibit this de-
cision. In the first experiment the SA classifica-
tion accuracy curve decreases significantly faster
than the random curve representing the perfor-
mance change when randomly deleting words, in-
dicating that SA is able to identify relevant words.
However, the SA curve is clearly above the LRP
curve indicating that LRP provides better expla-
nations for the CNN predictions. Similar results
have been reported for image classification tasks
(Samek et al., 2015). The second experiment indi-
cates that the classification performance increases
when deleting words with the lowest LRP rele-
vance, while small SA values points to words that
have less influence on the classification perfor-
mance than random word selection. This result

"For the deletion experiments we consider only the test

documents whose pre-processed length is greater or equal to
100 tokens, this amounts to a total of 4963 documents.
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Figure 1: Word deletion on initially correct (left)
and false (right) classified test documents, using
either LRP or SA. The target class is the true
document class, words are deleted in decreasing
(left) and increasing (right) order of their rele-
vance. Random deletion is averaged over 10 runs
(std < 0.0141). A steep decline (left) and incline
(right) indicate informative word relevances.

can partly be explained by the fact that in contrast
to SA, LRP provides signed explanations. More
generally the different quality of the explanations
provided by SA and LRP can be attributed to their
different objectives: while LRP aims at decompos-
ing the global amount of evidence for a class f(z),
SA is build solely upon derivatives and as such
describes the effect of local variations of the in-
put variables on the classifier decision. For a more
detailed view of SA, as well as an interpretation
of the LRP propagation rules as a deep Taylor de-
composition see Montavon et al. (2015).

3.4 Document Highlighting

Word-level relevances can be used for highlighting
purposes. In Fig. 2 we provide such visualizations
on one test document for different relevance target
classes, using either LRP or SA relevance mod-
els. We can observe that while the word ride
is highly negative-relevant for LRP when the tar-
get class is not rec.motorcycles, it is pos-
itively highlighted (even though not heavily) by
SA. This suggests that SA does not clearly dis-
criminate between words speaking for or against
a specific classifier decision, while LRP is more
discerning in this respect.

3.5 Document Visualization

Word2vec embeddings are known to exhibit lin-
ear regularities representing semantic relation-

ships between words (Mikolov et al., 2013). We
explore if these regularities can be transferred to
a document representation, when using as a docu-
ment vector a linear combination of word2vec em-
beddings. As a weighting scheme we employ LRP
or SA scores, with the classifier’s predicted class
as the target class for the relevance estimation. For
comparison we perform uniform weighting, where
we simply sum up the word embeddings of the
document words (SUM).

For SA we use either the [o-norm or squared [o-
norm for pooling word gradient values along the
word2vec dimensions, i.e. in addition to the stan-
dard SA word relevance defined in Eq. 4, we use
as an alternative Rgp (1,)(wi) = ||V, f(d)||2 and
denote this relevance model by SA(l).

For both LRP and SA, we employ different
variations of the weighting scheme. More pre-
cisely, given an input document d composed of
the sequence (wq,wsy, ..., wy) of D-dimensional
word2vec embeddings, we build new document
representations d’ and d’, , 8 by either using word-
level relevances R(w;) (as in Eq. 3), or through
element-wise multiplication of word embeddings
with single input variable relevances (R; )ie[1,p)
(we recall that R;; is the relevance of the input
variable corresponding to the i*" dimension of the
" word in the input document d). More formally
we use:

M) =

d/ = R(wt) s Wt
t=1
or

N Ry,

Roy
dow, = Y | . |Ow

t=1 :

Rpy

where ® is an element-wise multiplication. Fi-
nally we normalize the document vectors d’ resp.
d., ., to unit [y-norm and perform a PCA projec-
tion. In Fig. 3 we label the resulting 2D-projected
test documents using five top-level document cat-
egories.

For word-based models d’, we observe that
while standard SA and LRP both provide simi-
lar visualization quality, the SA variant with sim-
ple ls-norm yields partly overlapping and dense
clusters, still all schemes are better than uniform?

8The subscript e.w. stands for element-wise.

"We also performed a TFIDF weighting of word embed-
dings, the resulting 2D-visualization was very similar to uni-
form weighting (SUM).
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Figure 2: Heatmaps for the test document sci . space 61393 (correctly classified), using either layer-
wise relevance propagation (LRP) or sensitivity analysis (SA) for highlighting words. Positive relevance
is mapped to red, negative to blue. The target class for the LRP/SA explanation is indicated on the left.
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Figure 3: PCA projection of the 20Newsgroups test documents formed by linearly combining word2vec
embeddings. The weighting scheme is based on word-level relevances, or on single input variable rel-
evances (e.w.), or uniform (SUM). The target class for relevance estimation is the predicted document
class. SA(l3) corresponds to a variant of SA with simple /3-norm pooling of word gradient values. All
visualizations are provided on the same equal axis scale.



weighting. In case of SA note that, even though
the power to which word gradient norms are raised
(I5 or l%) affects the present visualization experi-
ment, it has no influence on the earlier described
“word deletion” analysis.

For element-wise models d.,,, we observe
slightly better separated clusters for SA, and a

clear-cut cluster structure for LRP.

4 Conclusion

Through word deleting we quantitatively evalu-
ated and compared two classifier explanation mod-
els, and pinpointed LRP to be more effective than
SA. We investigated the application of word-level
relevance information for document highlighting
and visualization. We derive from our empirical
analysis that the superiority of LRP stems from the
fact that it reliably not only links to determinant
words that support a specific classification deci-
sion, but further distinguishes, within the preemi-
nent words, those that are opposed to that decision.

Future work would include applying LRP to
other neural network architectures (e.g. character-
based or recurrent models) on further NLP tasks,
as well as exploring how relevance information
could be taken into account to improve the clas-
sifier’s training procedure or prediction perfor-
mance.
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Abstract

We consider the problem of Recognizing
Textual Entailment within an Information
Retrieval context, where we must simulta-
neously determine the relevancy as well as
degree of entailment for individual pieces
of evidence to determine a yes/no answer
to a binary natural language question.

We compare several variants of neural net-
works for sentence embeddings in a set-
ting of decision-making based on evidence
of varying relevance. We propose a basic
model to integrate evidence for entailment,
show that joint training of the sentence
embeddings to model relevance and entail-
ment is feasible even with no explicit per-
evidence supervision, and show the impor-
tance of evaluating strong baselines. We
also demonstrate the benefit of carrying
over text comprehension model trained on
an unrelated task for our small datasets.

Our research is motivated primarily by a
new open dataset we introduce, consist-
ing of binary questions and news-based
evidence snippets. We also apply the
proposed relevance-entailment model on
a similar task of ranking multiple-choice
test answers, evaluating it on a preliminary
dataset of school test questions as well as
the standard MCTest dataset, where we
improve the neural model state-of-art.

1 Introduction

Let us consider the goal of building machine rea-
soning systems based on knowledge from fulltext
data like encyclopedic articles, scientific papers
or news articles. Such machine reasoning sys-
tems, like humans researching a problem, must
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be able to recover evidence from large amounts
of retrieved but mostly irrelevant information and
judge the evidence to decide the answer to the
question at hand.

A typical approach, used implicitly in informa-
tion retrieval (and its extensions, like IR-based
Question Answering systems (Baudis, 2015)), is
to determine evidence relevancy by a keyword
overlap feature (like tf-idf or BM-25 (Robertson
et al., 1995)) and prune the evidence by the rele-
vancy score. On the other hand, textual entailment
systems that seek to confirm hypotheses based
on evidence (Dagan et al., 2006) (Marelli et al.,
2014) (Bowman et al., 2015) are typically pro-
vided with only a single piece of evidence or only
evidence pre-determined as relevant, and are of-
ten restricted to short and simple sentences with-
out open-domain named entity occurences. In this
work, we seek to fuse information retrieval and
textual entaiment recognition by defining the Hy-
pothesis Evaluation task as deciding the truth
value of a hypothesis by integrating numerous
pieces of evidence, not all of it equally relevant.

As a specific instance, we introduce the Ar-
gus Yes/No Question Answering task. The prob-
lem is, given a real-world event binary question
like Did Donald Trump announce he is running
for president? and numerous retrieved news arti-
cle fragments as evidence, to determine the an-
swer for the question. Our research is motivated
by the Argus automatic reporting system for the
Augur prediction market platform. (Baudis et al.,
2016b) Therefore, we consider the question an-
swering task within the constraints of a practical
scenario that has limited available dataset and only
minimum supervision. Hence, authentic news sen-
tences are the evidence (with noise like segmenta-
tion errors, irrelevant participial phrases, etc.), and
whereas we have gold standard for the correct an-
swers, the model must do without explicit super-

Proceedings of the 1st Workshop on Representation Learning for NLP, pages 817,
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vision on which individual evidence snippets are
relevant and what do they entail.

To this end, we introduce an open dataset of
questions and newspaper evidence, and a neural
model within the Sentence Pair Scoring frame-
work (BaudisS et al., 2016a) that (A) learns sen-
tence embeddings for the question and evidence,
(B) the embeddings represent both relevance and
entailment characteristics as linear classifier in-
puts, and (C) the model aggregates all available
evidence to produce a binary signal as the answer,
which is the only training supervision.

We also evaluate our model on a related task
that concerns ranking answers of multiple-choice
questions given a set of evidencing sentences.
We consider the MCTest dataset and the AI2-
8grade/CK12 dataset that we introduce below.

The paper is structured as follows. In Sec. 2,
we formally outline the Argus question answer-
ing task, describe the question-evidence dataset,
and describe the multiple-choice questions task
and datasets. In Sec. 3, we briefly survey the re-
lated work on similar problems, whereas in Sec. 4
we propose our neural models for joint learning
of sentence relevance and entailment. We present
the results in Sec. 5 and conclude with a sum-
mary, model usage recommendations and future
work directions in Sec. 6.

2 The Hypothesis Evaluation Task

Formally, the Hypothesis Evaluation task is to
build a function y; = f,(H;), where y; € [0, 1] is
a binary label (no towards yes) and H; = (¢;, E;)
is a hypothesis instance in the form of question
text ¢; and a set of F; = {e;;} evidence texts e;;
as extracted from an evidence-carrying corpus.

2.1 Argus Dataset

Our main aim is to propose a solution to the Ar-
gus Task, where the Argus system (Baudis, 2015)
(Baudis et al., 2016b) is to automatically ana-
lyze and answer questions in the context of the
Augur prediction market platform.! In a pre-
diction market, users pose questions about future
events whereas others bet on the yes or no answer,
with the assumption that the bet price reflects the
real probability of the event. At a specified mo-
ment (e.g. after the date of a to-be-predicted sports
match), the correct answer is retroactively deter-
mined and the bets are paid off. At a larger vol-

'https://augur.net/

ume of questions, determining the bet results may
present a significant overhead for running of the
market. This motivates the Argus system, which
should partially automate this determination —
deciding questions related to recent events based
on open News sources.

To train a machine learning model for the f;
function, we have created a dataset of questions
with gold labels, and produced sets of evidence
texts from a variety of news paper using a pre-
existing IR (information retrieval) component of
the Argus system. We release this dataset openly.”

To pose a reproducible task for the IR com-
ponent, the time domain of questions was re-
stricted from September 1, 2014 to September 1,
2015, and topic domain was focused to politics,
sports and the stock market. To build the question
dataset, we have used several sources:

e We asked Amazon Mechanical Turk users to
pose questions, together with a golden label
and a news article reference. This seeded the
dataset with initial, somewhat redundant 250
questions.

e We manually extended this dataset by derived
questions with reversed polarity (to obtain an
opposite answer).

e We extended the data with questions auto-
generated from 26 templates, pertaining top
sporting event winners and US senate or gu-
bernatorial elections.

To build the evidence dataset, we used the
Syphon preprocessing component (Baudis et al.,
2016b) of the Argus implementation® to identify
semantic roles of all question tokens and produce
the search keywords if a role was assigned to each
token. We then used the IR component to query a
corpus of newspaper articles, and kept sentences
that contained at least 2/3 of all the keywords.
Our corpus of articles contained articles from The
Guardian (all articles) and from the New York
Times (Sports, Politics and Business sections).
Furthermore, we scraped partial archive.org his-
torical data out of 35 RSS feeds from CNN,
Reuters, BBC International, CBS News, ABC
News, c—net, Financial Times, Skynews and the
Washington Post.

https://github.com/brmson/dataset-sts
directory data/hypev/argus
*https://github.com/AugurProject/arqus



Train  Val Test
Original #q 1829 303 295
Post-search #¢q 1081 167 158
Average #m perq. | 19.04 13.99 16.66

Figure 1: Characteristics of the Argus QA dataset.

For the final dataset, we kept only questions
where at least a single evidence was found (i.e. we
successfuly assigned a role to each token, found
some news stories and found at least one sentence
with 2/3 of question keywords within). The final
size of the dataset is outlined in Fig. 1 and some
examples are shown in Fig. 2.

2.2 Al2-8grade/CK12 Dataset

The AI2 Elementary School Science Questions
(no-diagrams variant)* released by the Allen In-
stitute cover 855 basic four-choice questions re-
garding high school science and follows up to the
Allen Al Science Kaggle challenge.> The vocabu-
lary includes scientific jargon and named entities,
and many questions are not factoid, requiring real-
world reasoning or thought experiments.

We have combined each answer with the respec-
tive question (by substituting the wh-word in the
question by each answer) and retrieved evidence
sentences for each hypothesis using Solr search in
a collection of CK-12 “Concepts B” textbooks.®
525 questions attained any supporting evidence,
examples are shown in Fig. 3.

We consider this dataset as preliminary since it
was not reviewed by a human and many hypothe-
ses are apparently unprovable by the evidence we
have gathered (i.e. the theoretical top accuracy is
much lower than 1.0). However, we released it to
the public’ and still included it in the comparison
as these qualities reflect many realistic datasets
of unknown qualities, so we find relative perfor-
mances of models on such datasets instructive.

2.3 MCTest Dataset

The Machine Comprehension Test (Richardson
et al., 2013) dataset has been introduced to provide
a challenge for researchers to come up with mod-
els that approach human-level reading comprehen-

*http://allenai.org/data.html

Shttps://www.kaggle.com/c/
the-allen-ai-science-challenge

®We have also tried English Wikipedia, but the dataset is
much harder.

"https://github.com/brmson/dataset-sts
directory data/hypev/ai2—-8grade
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sion, and serve as a higher-level alternative to se-
mantic parsing tasks that enforce a specific knowl-
edge representation. The dataset consists of a set
of 660 stories spanning multiple sentences, writ-
ten in simple and clean language (but with less re-
stricted vocabulary than e.g. the bAbI dataset (We-
ston et al., 2015)). Each story is accompanied by
four questions and each of these lists four possible
answers; the questions are tagged as based on just
one in-story sentence, or requiring multiple sen-
tence inference. We use an official extension of
the dataset for RTE evaluation that again textually
merges questions and answers.

The dataset is split in two parts, MC-160 and
MC-500, based on provenance but similar in qual-
ity. We train all models on a joined training set.

The practical setting differs from the Argus task
as the MCTest dataset contains relatively restricted
vocabulary and well-formed sentences. Further-
more, the goal is to find the single key point in the
story to focus on, while in the Argus setting we
may have many pieces of evidence supporting an
answer; another specific characteristics of MCTest
is that it consists of stories where the ordering and
proximity of evidence sentences matters.

3 Related Work

Our primary concern when integrating natural
language query with textual evidence is to find
sentence-level representations suitable both for
relevance weighing and answer prediction.

Sentence-level representations in the retrieval +
inference context have been popularly proposed
within the Memory Network framework (Weston
et al., 2014), but explored just in the form of av-
eraged word embeddings; the task includes only
very simple sentences and a small vocabulary.
Much more realistic setting is introduced in the
Answer Sentence Selection context (Wang et al.,
2007) (Baudi$ et al., 2016a), with state-of-art
models using complex deep neural architectures
with attention (dos Santos et al., 2016), but the
selection task consists of only retrieval and no in-
ference (answer prediction). A more indirect re-
trieval task regarding news summarization was in-
vestigated by (Cao et al., 2016).

In the entailment context, (Bowman et al., 2015)
introduced a large dataset with single-evidence
sentence pairs (Stanford Natural Language Infer-
ence, SNLI), but a larger vocabulary and slightly
more complicated (but still conservatively formed)



Will Andre Iguodala win NBA Finals MVP in 2015?
Should Andre Iguodala have won the NBA Finals MVP award over LeBron James?
12.12am ET Andre Iguodala was named NBA Finals MVP, not LeBron.

Will Donald Trump run for President in 2016?
Donald Trump released Immigration Reform that will make America Great Again last weekend —
... his first, detailed position paper since announcing his campaign for the Republican nomination

... for president.

The Fix: A brief history of Donald Trump blaming everything on President Obama
DONALD TRUMP FOR PRESIDENT OF PLUTO!

Figure 2: Example pairs in the Argus dataset.

pedigree chart model is used to show the pattern of traits that are passed from one generation

to the next in a family?

A pedigree is a chart which shows the inheritance of a trait over several generations.
Figure 51.14 In a pedigree, squares symbolize males, and circles represent females.

energy pyramid model is used to show the pattern of traits that are passed from one generation

to the next in a family?

Energy is passed up a food chain or web from lower to higher trophic levels.
Each step of the food chain in the energy pyramid is called a trophic level.

Figure 3: Example pairs in the AI2-8grade/CK12 dataset. Answer texts substituted to a question are shown in italics.

sentences. They also proposed baseline recurrent
neural model for modeling sentence representa-
tions, while word-level attention based models are
being studied more recently (Rocktischel et al.,
2015) (Cheng et al., 2016).

In the MCTest text comprehension challenge
(Richardson et al., 2013), the leading models use
complex engineered features ensembling multiple
traditional semantic NLP approaches (Wang and
McAllester, 2015). The best deep model so far
(Yin et al., 2016) uses convolutional neural net-
works for sentence representations, and attention
on multiple levels to pick evidencing sentences.

4 Neural Model

Our approach is to use a sequence of word embed-
dings to build sentence embeddings for each hy-
pothesis and respective evidence, then use the sen-
tence embeddings to estimate relevance and entail-
ment of each evidence with regard to the respec-
tive hypothesis, and finally integrate the evidence
to a single answer.

4.1 Sentence Embeddings

To produce sentence embeddings, we investi-
gated the neural models proposed in the data—
set-sts framework for deep learning of sen-
tence pair scoring functions. (Baudis et al., 2016a)

We refer the reader to (Baudi$ et al., 2016a)
and its references for detailed model descriptions.
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We evaluate an RNN model which uses bidirec-
tionally summed GRU memory cells (Cho et al.,
2014) and uses the final states as embeddings;
a CNN model which uses sentence-max-pooled
convolutional filters as embeddings (Kim, 2014);
an RNN-CNN model which puts the CNN on top
of per-token GRU outputs rather than the word
embeddings (Tan et al., 2015); and an attn1511
model inspired by (Tan et al., 2015) that inte-
grates the RNN-CNN model with per-word atten-
tion to build hypothesis-specific evidence embed-
dings. We also report the baseline results of avg
mean of word embeddings in the sentence with
projection matrix and DAN Deep Averaging Net-
work model that employs word-level dropout and
adds multiple nonlinear transformations on top of
the averaged embeddings (Iyyer et al., 2015).

The original attn1511 model (Baudi$ et al.,
2016a) (as tuned for the Answer Sentence Se-
lection task) used a softmax attention mechanism
that would effectively select only a few key words
of the evidence to focus on — for a hypothesis-
evidence token ¢ scalar attention score ay, .(t), the
focus sp, () is:

she(t) = explane(t))/ Y explan.e(t))

A different focus mechanism exhibited better per-
formance in the Hypothesis Evaluation task, mod-



elling per-token attention more independently:
she(t) = o(ane(t))/ maxo(an(t'))

We also use relu instead of tanh in the CNNs.

As model input, we use the standard GloVe
embeddings (Pennington et al., 2014) extended
with binary inputs denoting token type and over-
lap with token or bigram in the paired sentence,
as described in (Baudis et al., 2016a). However,
we introduce two changes to the word embedding
model — we use 50-dimensional embeddings in-
stead of 300-dimensional, and rather than build-
ing an adaptable embedding matrix from the train-
ing set words preinitialized by GloVe, we use only
the top 100 most frequent tokens in the adaptable
embedding matrix and use fixed GloVe vectors for
all other tokens (including tokens not found in the
training set). In preliminary experiments, this im-
proved generalization for highly vocabulary-rich
tasks like Argus, while still allowing the high-
frequency tokens (like interpunction or conjunc-
tions) to learn semantic operator representations.

As an additional method for producing sentence
embeddings, we consider the Ubu. RNN trans-
fer learning method proposed by (Baudis§ et al.,
2016a) where an RNN model (as described above)
is trained on the Ubuntu Dialogue task (Lowe et
al., 2015).3 The pretrained model weights are
used to initialize an RNN model which is then
fine-tuned on the Hypothesis Evaluation task. We
use the same model as originally proposed (except
the aforementioned vocabulary handling modifi-
cation), with the dot-product scoring used for
Ubuntu Dialogue training replaced by MLP point-
scores described below.

4.2 Evidence Integration

Our main proposed schema for evidence integra-
tion is Evidence Weighing. From each pair of
hypothesis and evidence embeddings,’ we pro-
duce two [0, 1] predictions using a pair of MLP
point-scorers of dataset-sts (Baudi§ et al,

8The Ubuntu Dialogue dataset consists of one million chat
dialog contexts, learning to rank candidates for the next utter-
ance in the dialog; the sentences are based on IRC chat logs of
the Ubuntu community technical support channels and con-
tain casually typed interactions regarding computer-related
problems, resembling tweet data, but longer and with heavily
technical jargon.

"We employ Siamese training, sharing the weights be-
tween hypothesis and evidence embedding models.
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2016a)'" with sigmoid activation function. The
predictions are interpreted as C; € [0, 1] entail-
ment (0 to 1 as no to yes) and relevance R; € [0, 1].
To integrate the predictions across multiple pieces
of evidence, we propose a weighed average model:

- 2GRy
> R

We do not have access to any explicit labels for
the evidence, but we train the model end-to-end
with just y labels and the formula for y is differ-
entiable, carrying over the gradient to the sentence
embedding model. This can be thought of as a
simple passage-wide attention model.

As a baseline strategy, we also consider Evi-
dence Averaging, where we simply produce a sin-
gle scalar prediction per hypothesis-evidence pair
(using the same strategy as above) and decide the
hypothesis simply based on the mean prediction
across available evidence.

Finally, following success reported in the An-
swer Sentence Selection task (Baudi$ et al.,
2016a), we consider a BM25 Feature combined
with Evidence Averaging, where the MLP scorer
that produces the pair scalar prediction as above
takes an additional BM25 word overlap score in-
put (Robertson et al., 1995) besides the element-
wise embedding comparisons.

5 Results

5.1 Experimental Setup

We implement the differentiable model in the
Keras framework (Chollet, 2015) and train the
whole network from word embeddings to output
evidence-integrated hypothesis label using the bi-
nary cross-entropy loss as an objective!! and the
Adam optimization algorithm (Kingma and Ba,
2014). We apply Ly = 10~ regularization and
ap = 1/3 dropout.

Following the recommendation of (Baudi§ et
al., 2016a), we report expected test set question
accuracy!? as determined by average accuracy in
16 independent trainings and with 95% confidence
intervals based on the Student’s t-distribution.

From the elementwise product and sum of the embed-
dings, a linear classifier directly produces a prediction; con-
trary to the typical setup, we use no hidden layer.

"Unlike (Yin et al., 2016), we have found ranking-based
loss functions ineffective for this task.

In the MCTest and Al2-8grade/CK12 datasets, we test

and rank four hypotheses per question, whereas in the Argus
dataset, each hypothesis is a single question.



Model train val test

avg 0.872 0.816 0.744
+0.009| +0.008| +0.020

DAN 0.884 0.822 0.754
+0.012|  40.011 +0.025

RNN 0.906 0.875 0.823
+0.013| +0.005| +0.008

CNN 0.896 0.857 0.822
+0.018| +0.006 | +0.007

RNN-CNN| 0.885 0.860 0.816
+0.010| +0.007| +0.009

attn1511 0.935 0.877 0.816
+0.021 +0.008 |  +0.008

Ubu. RNN | 0.951 0.912 0.852
+0.017| +0.004| +0.008

Figure 4: Model accuracy on the Argus task, using the evi-
dence weighing scheme.

Model |Mean Ev. | BM25 Feat. | Weighed

avg 0.746 0.770 0.744
40.051 40.011 40.020

RNN 0.822 0.828 0.823
+0.015 40.015 +0.008

attn1511 | 0.819 0.811 0.816
+0.013 40.012 +0.008

Ubu. RNN| 0.847 0.831 0.852
+0.009 40.018 +0.008

Figure 5: Comparing the influence of the evidence integra-
tion schemes on the Argus test accuracy.

5.2 Evaluation

In Fig. 4, we report the model performance on
the Argus task, showing that the Ubuntu Dialogue
transfer RNN outperforms other proposed models
by a large margin. However, a comparison of evi-
dence integration approaches in Fig. 5 shows that
evidence integration is not the major deciding fac-
tor and there are no staticially meaningful differ-
ences between the evaluated approaches. We mea-
sured high correlation between classification and
relevance scores with Pearson’s r = 0.803, show-
ing that our model does not learn a separate evi-
dence weighing function on this task.

In Fig. 6, we look at the model performance on
the AI2-8grade/CK12 task, repeating the story of
Ubuntu Dialogue transfer RNN dominating other
models. However, on this task our proposed evi-
dence weighing scheme improves over simpler ap-
proaches — but just on the best model, as shown in
Fig. 7. On the other hand, the simplest averaging
model benefits from at least BM25 information to
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Model train val test

avg 0.505 0.442 0.401
+0.024 | +0.022 +0.016

DAN 0.556 0.491 0.391
+0.038 +0.015 +0.008

RNN 0.712 0.381 0.361
+0.053 +0.016 +0.012

CNN 0.676 0.442 0.384
+0.056 +0.012 +0.011

RNN-CNN| 0.582 0.439 0.376
+0.057 | +0.024| +0.014

attn1511 0.725 0.384 0.358
+0.069 +0.012 +0.015

Ubu. RNN | 0.570 0.494 0.441
+0.059 +0.012 +0.011

Figure 6: Model (question-level) accuracy on the AI2-
8grade/CK12 task, using the evidence weighing scheme.

Model |Mean Ev.| BM25 Feat. | Weighed

avg 0.366 0.415 0.401
£0.010 +0.008 +0.016

CNN 0.385 0.384
+0.020 +0.011

Ubu. RNN| 0.416 0.418 0.441
+0.011 +0.009 +0.011

Figure 7: Comparing the influence of the evidence integra-
tion schemes on the AI2-8grade/CK12 test accuracy.

select relevant evidence, apparently.

For the MCTest dataset, Fig. 8 compares our
proposed models with the current state-of-art
ensemble of hand-crafted syntactic and frame-
semantic features (Wang and McAllester, 2015),
as well as past neural models from the literature,
all using attention mechanisms — the Attentive
Reader of (Hermann et al., 2015), Neural Rea-
soner of (Peng et al., 2015) and the HABCNN
model family of (Yin et al.,, 2016).1> We see
that averaging-based models are surprisingly ef-
fective on this task, and in particular on the MC-
500 dataset it can beat even the best so far reported
model of HABCNN-TE. Our proposed transfer
model is statistically equivalent to the best model
on both datasets (furthermore, previous work did
not include confidence intervals, even though their
models should also be stochastically initialized).

As expected, our models did badly on the
multiple-evidence class of questions — we made
no attempt to model information flow across ad-

B(Yin et al., 2016) also reports the results on the former
models.



joint  [MC-160 MC-500

Model all (train)| one multi all one multi all
hand-crafted | | 0.842  0.678 0.753 | 0.721  0.679  0.699
Attn. Reader 0481 0447 0463 | 0.444 0395  0.419
Neur. Reasoner 0484  0.468 0476 | 0.457  0.456  0.456
HABCNN-TE 0.633  0.629  0.631 | 0.542  0.517  0.529
avg 0577 | 0.653 0471  0.556 | 0.587  0.506  0.542
+0.009 +0.027 +0.020 +0.012 +0.018 +0.010 +0.011

DAN 0.590 | 0.681  0.486  0.577 | 0.636  0.496  0.560
+0.009 +0.017 +0.010 +0.010 +0.013 +0.007 +0.007

RNN 0.608 | 0.583 0.490 0.533 | 0.539  0.456  0.494
+0.030 +0.033 +0.018 +0.020 +0.016 +0.013 +0.012

CNN 0.658 | 0.655 0.511  0.578 | 0.571  0.483  0.522
+0.021 +0.020 +0.012 +0.014 +0.013 +0.012 +0.009

RNN-CNN | 0597 | 0.617 0493  0.551 | 0.554  0.470  0.508
+0.039 £0.041 +0.021 +0.020 +0.023 +0.016 +0.014

attn1511 0.687 | 0.611 0485 0.544 | 0.571  0.454  0.507
+0.061 +0.052 +0.025 +0.033 +0.036 £0.011 +0.021

Ubu. RNN | 0.678 | 0736 0503  0.612 | 0.641 0.452  0.538
+0.035 +0.033 +0.016 +0.023 +0.017 +0.017 +0.015

* Ubu. RNN 0.786  0.547  0.658 | 0.676  0.494  0.577

Figure 8: Model (question-level) accuracy on the test split of the MCTest task, using the evidence weighing scheme. The first
column shows accuracy on a train split joined across both datasets.

* The model with top MC-500 test set result (across 16 runs) that convincingly dominates HABCNN-TE in the one and all
classes and illustrates that the issue of reporting evaluation spread is not just theoretical. 5/16 of the models have MC-160 all

accuracy > 0.631.

Model |Mean Ev. | BM25 Feat. | Weighed

avg 0.423 0.506 0.542
+0.014 +0.012 +0.011

CNN 0.373 0.509 0.522
+0.036 +0.027 +0.009

Ubu. RNN| 0.507 0.509 0.538
+0.014 +0.012 +0.015

Figure 9: Comparing the influence of the evidence integra-
tion schemes on the MC-500 (all-type) test accuracy.

jacent sentences in our models as this aspect is
unique to MCTest in the context of our work.
Interestingly, evidence weighing does play an
important role on the MCTest task as shown in
Fig. 9, significantly boosting model accuracy. This
confirms that a mechanism to allocate attention to
different sentences is indeed crucial for this task.

5.3 Analysis

While we can universally proclaim Ubu. RNN as
the best model, we observe many aspects of the
Hypothesis Evaluation problem that are shared by
the AI2-8grade/CK12 and MCTest tasks, but not
by the Argus task.
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Our largest surprise lies in the ineffectivity of
evidence weighing on the Argus task, since ob-
servations of irrelevant passages initially led us to
investigate this model. We may also see that non-
pretrained RNN does very well on the Argus task
while CNN is a better model otherwise.

An aspect that could explain this rift is that
the latter two tasks are primarily retrieval based,
where we seek to judge each evidence as irrele-
vant or essentially a paraphrase of the hypothesis.
On the other hand, the Argus task is highly se-
mantic and compositional, with the questions of-
ten differing just by a presence of negation — re-
current model that can capture long-term depen-
dencies and alter sentence representations based
on the presence of negation may represent an es-
sential improvement over an n-gram-like convolu-
tional scheme. We might also attribute the lack of
success of evidence weighing in the Argus task to
a more conservative scheme of passage retrieval
employed in the IR pipeline that produced the
dataset. Given the large vocabulary and noise lev-
els in the data, we may also simply require more
data to train the evidence weighing properly.



We see from the training vs. test accuracies that
RNN-based models (including the word-level at-
tention model) have a strong tendency to overfit
on our small datasets, while CNN is much more
resilient. While word-level attention seems ap-
pealing for such a task, we speculate that we sim-
ply might not have enough training data to prop-
erly train it.'"* Investigating attention transfer is
a point for future work — by our preliminary ex-
periments on multiple datasets, attention models
appear more task specific than the basic text com-
prehension models of memory based RNNs.

One concrete limitation of our models in case
of the Argus task is a problem of reconciling par-
ticular named entity instances. The more obvious
form of this issue is Had Roger Federer beat Mar-
tin Cilic in US OPEN 2014? versus an opposite
Had Martin Cilic beat Roger Federer in US OPEN
2014 ? — another form of this problem is reconcil-
ing a hypothesis like Will the Royals win the World
Series? with evidence Giants Win World Series
With Game 7 Victory Over Royals. An abstract
embedding of the sentence will not carry over the
required information — it is important to explic-
itly pass and reconcile the roles of multiple named
entities which cannot be meaningfully embedded
in a GloVe-like semantic vector space.

6 Conclusion

We have established a general Hypothesis Eval-
uation task with three datasets of various prop-
erties, and shown that neural models can exhibit
strong performance (with less hand-crafting ef-
fort than non-neural classifiers). We propose an
evidence weighing model that is never harmful
and improves performance on some tasks. We
also demonstrate that simple models can outper-
form or closely match performance of complex ar-
chitectures; all the models we consider are task-
independent and were successfully used in differ-
ent contexts than Hypothesis Evaluation (Baudis
et al., 2016a). Our results empirically show that a
basic RNN text comprehension model well trained
on a large dataset (even if the task is unrelated and
vocabulary characteristics are very different) out-
performs or matches more complex architectures
trained only on the dataset of the task at hand.'>

4Just reducing the dimensionality of hidden representa-
tions did not yield an improvement.

SEven if these use multi-task learning, which was em-
ployed in case of the HABCNN models that were trained to
also predict question classes.
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Finally, on the MCTest dataset, our best pro-
posed model is better or statistically indistinguish-
able from the best neural model reported so far
(Yin et al., 2016), even though it has a simpler ar-
chitecture and only a naive attention mechanism.

We would like to draw several recommenda-
tions for future research from our findings: (A)
encourage usage of basic neural architectures as
evaluation baselines; (B) suggest that future re-
search includes models pretrained on large data
as baselines; (C) validate complex architectures
on tasks with large datasets if they cannot beat
baselines on small datasets; and (D) for random-
ized machine comprehension models (e.g. neural
networks with random weight initialization, batch
shuffling or probabilistic dropout), report expected
test set performance based on multiple indepen-
dent training runs.

As a general advice for solving complex tasks
with small datasets, besides the point (B) above
our analysis suggests convolutional networks as
the best models regarding the tendency to over-
fit, unless semantic composionality plays a crucial
role in the task; in this scenario, simple averaging-
based models are a great start as well. Preinitializ-
ing a model also helps against overfitting.

We release our implementation of the Argus
task, evidence integration models and processing
of all the evaluated datasets as open source. '

We believe the next step towards machine com-
prehension NLP models (based on deep learn-
ing but capable of dealing with real-world, large-
vocabulary data) will involve research into a bet-
ter way to deal with entities without available em-
beddings. When distinguishing specific entities,
simple word-level attention mechanisms will not
do. A promising approach could extend the flex-
ibility of the final sentence representation, mov-
ing from attention mechanism to a memory mech-
anism!’ by allowing the network to remember a
set of “facts” derived from each sentence; related
work has been done for example on end-to-end
differentiable shift-reduce parsers with LSTM as
stack cells (Dyer et al., 2015).
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Abstract

This paper presents a joint model for
performing unsupervised morphologi-
cal analysis on words, and learning a
character-level composition function
from morphemes to word embeddings.
Our model splits individual words into
segments, and weights each segment
according to its ability to predict context
words. Our morphological analysis is
comparable to dedicated morphological
analyzers at the task of morpheme bound-
ary recovery, and also performs better
than word-based embedding models at
the task of syntactic analogy answering.
Finally, we show that incorporating
morphology explicitly into character-level
models helps them produce embeddings
for unseen words which correlate better
with human judgments.

1 Introduction

Word embedding models associate each word in a
corpus with a vector in a semantic space. These
vectors can either be learnt to optimize perfor-
mance in a downstream task (Bengio et al., 2003;
Collobert et al., 2011) or learnt via the distri-
butional hypothesis: words with similar contexts
have similar meanings (Harris, 1954; Mikolov et
al., 2013a). Current word embedding models treat
words as atomic. However, words follow a power
law distribution (Zipf, 1935), and word embed-
ding models suffer from the problem of sparsity:
a word like ‘unbelievableness’ does not appear at
all in the first 17 million words of Wikipedia, even
though it is derived from common morphemes.
This leads to three problems:

1. word representations decline in quality for
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rarely observed words (Bullinaria and Levy,
2007).

. word embedding models handle out-of-
vocabulary words badly, typically as a single
‘O0V’ token.

. the word distribution has a long tail, and
many parameters are needed to capture all of
the words in a corpus (for an embedding size
of 300 with a vocabulary of 10k words, 3 mil-
lion parameters are needed)

One approach to smooth word distributions is
to operate on the smallest meaningful semantic
unit, the morpheme (Lazaridou et al., 2013; Botha
and Blunsom, 2014). However, previous work on
the morpheme level has all used external morpho-
logical analyzers. These require a separate pre-
processing step, and cannot be adapted to suit the
problem at hand.

Another is to operate on the smallest ortho-
graphic unit, the character (Ling et al., 2015; Kim
et al., 2016). However, the link between shape
and meaning is often complicated (de Saussure,
1916), as alphabetic characters carry no inherent
semantic meaning. To account for this, the model
has to learn complicated dependencies between
strings of characters to accurately capture word
meaning. We hypothesize that explicitly introduc-
ing morphology into character-level models can
help them learn morphological features, and hence
word meaning.

In this paper, we introduce a word embedding
model that jointly learns word morphology and
word embeddings. To the best of our knowledge,
this is the first word embedding model that learns
morphology as part of the model. Our guiding in-
tuition is that the words with the same stem have
similar contexts. Thus, when considering word
segments in terms of context-predictive power, the

Proceedings of the 1st Workshop on Representation Learning for NLP, pages 18-26,
Berlin, Germany, August 11th, 2016. (©2016 Association for Computational Linguistics



segment corresponding to the stem will have the
most weight.

Our model ‘reads’ the word and outputs a se-
quence of word segments. We weight each seg-
ment, and then combine the segments to obtain
the final word representation. These represen-
tations are trained to predict context words, as
this has been shown to give word representations
which capture word semantics well (Mikolov et
al., 2013b). As the root morpheme has the most
context-predictive power, we expect our model to
assign high weight to this segment, thereby learn-
ing to separate root+affix structures.

One exciting feature of character-level models
is their ability to represent open-vocabulary words.
After training, they can predict a vector for any
word, not just words that they have seen before.
Our model has an advantage in that it can split
unknown words into known and unknown compo-
nents. Hence, it can potentially generalise better
over seen morphemes and words and apply exist-
ing knowledge to new cases.

To evaluate our model, we evaluate its use as
a morphological analyzer (§4.1), test how well it
learns word semantics, including for unseen words
(§4.2), and examine the structure of the embedding
space (§4.3).

2 Related Work

While words are often treated as the fundamental
unit of language, they are in fact themselves com-
positional. The smallest unit of semantics is the
morpheme, while the smallest unit of orthography
is the grapheme, or character. Both have been used
as a method to go beyond word-level models.

2.1 Morphemic analysis and semantics

As word semantics is compositional, one might
ask whether it is possible to learn morpheme
representations, and compose them to obtain
good word representations. Lazaridou et al.
(2013) demonstrated precisely this: one can de-
rive good representations of morphemes distribu-
tionally, and apply tools from compositional dis-
tributional semantics to obtain good word repre-
sentations. Luong et al. (2013) also trained a
morphological composition model based on recur-
sive neural networks. Botha and Blunsom (2014)
built a language model incorporating morphemes,
and demonstrated improvements in language mod-
elling and in machine translation. All of these
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approaches incorporated external morphological
knowledge, either in the form of gold standard
morphological analyses such as CELEX (Baayen
etal., 1995) or an external morphological analyzer
such as Morfessor (Creutz and Lagus, 2007).

Unsupervised morphology induction aims to
decide whether two words are morphologically re-
lated or to generate a morphological analysis for a
word (Goldwater et al., 2005; Goldsmith, 2001).
While they may use semantic insights to perform
the morphological analysis (Soricut and Ochs,
2015), they typically are not concerned with ob-
taining a semantic representation for morphemes,
nor of the resulting word.

2.2 Character-level models

Another approach to go beyond words is based on
on character-level neural network models. Both
recurrent and convolutional architectures for de-
riving word representations from characters have
been used, and results in downstream tasks such
as language modelling and POS tagging have been
promising, with reductions in word perplexity for
language modelling and state-of-the-art English
POS tagging accuracy (Ling et al., 2015; Kim
et al., 2016). Ballesteros et al. (2015) train a
character-level model for parsing. Zhang et al.
(2015) do away with words completely, and train
a convolutional neural network to do text classifi-
cation directly from characters.

Excitingly, character-level models seem to cap-
ture morphological effects. Examining nearest
neighbours of morphologically complex words in
character-aware models often shows other words
with the same morphology (Ling et al., 2015; Kim
et al., 2016). Furthermore, morphosyntactic fea-
tures such as capitalization and suffix information
have long been used in tasks such as POS tagging
(Xu et al., 2015; Toutanova et al., 2003). By ex-
plicitly modelling these features, one might expect
good performance gains in many NLP tasks.

What is less clear is how well these models
learn word semantics. Classical word embedding
models seem to capture word semantics, and the
nearest neighbours of a given word are typically
semantically related words (Mikolov et al., 2013a;
Mnih and Kavukcuoglu, 2013). In addition, the
correlation between model word similarity scores
and human similarity judgments is typically high
(Levy etal., 2015). However, no previous work (to
our knowledge) evaluates the similarity judgments
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Figure 1: A graphical illustration of SGNS. The
target vector for ‘dog’ is learned to have high inner
product with the context vectors for words seen
in the context of ‘dog’ (no shading), while having

low inner product with random negatively sampled
words (shaded)

of character-level models against human annota-
tors.

3 The Char2Vec model

We hypothesize that by incorporating morpho-
logical knowledge directly into a character-level
model, one can improve the ability of character-
level models to learn compositional word seman-
tics. In addition, we hypothesize that incorporat-
ing morphological knowledge helps structure the
embedding space in such a way that affixation cor-
responds to a regular shift in the embedding space.
We test both hypotheses directly in §4.2 and §4.3
respectively.

The starting point for our model is the skip-
gram with negative sampling (SGNS) objective of
Mikolov et al. (2013b). For a vocabulary V' of
size |V'| and embedding size N, SGNS learns two
embedding tables W, C' € RN*IVI the target and
context vectors. Every time a word w is seen in
the corpus with a context word c, the tables are
updated to maximize

k
logo(w - c) + ZEéin(w) [logo(—w-¢&)] (1)
i=1

where P(w) is a noise distribution from which we
draw k negative samples. In the end, the target
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vector for a word w should have high inner prod-
uct with context vectors for words with which it
is typically seen, and low inner products with con-
text vectors for words it is not typically seen with.
Figure 1 illustrates this for a particular example.
In Mikolov et al. (2013b), the noise distribution
P(w) is proportional to the unigram probability of
a word raised to the 3/4th power (Mikolov et al.,
2013b).

Our innovation is to replace W with a trainable
function f that accepts a sequence of characters
and returns a vector of length N (ie. f: A<Y —
RY, where A is the alphabet we are considering
and A<“ denotes the finite length strings over the
alphabet A). We still keep the table of context
embeddings C, and our model objective is still to
minimize

k
log o (f(w)-c)+ Y Eenp(u)llogo(—f(w) - &)]
=1
)

where we now treat w as a sequence of characters.
After training, f can be used to produce an em-
bedding for any sequence of characters, even if it
was not previously seen in training.

The process of calculating f on a word is il-
lustrated in Figure 2. We first pad the word with
beginning and end of word tokens, and then pass
the characters of the word into a character lookup
table. As the link between characters and mor-
phemes is non-compositional and requires essen-
tially memorizing a sequence of characters, we
use LSTMs (Hochreiter and Schmidhuber, 1997)
to encode the letters in the word, as they have
been shown to capture non-local and non-linear
dependencies. We run a forward and a backward
LSTM over the character embeddings. The for-
ward LSTM reads the beginning of word symbol,
but not the end of word symbol, and the backward
LSTM reads the end of word symbol but not the
beginning of word symbol. This is necessary to
align the resulting embeddings, so that the LSTM
hidden states taken together correspond to a parti-
tion of the word into two without overlap.

The LSTMs output two sequences of vectors
hg e hfL and hfl, . ,hg. We then concatenate
the resulir ofting vectors, and pass them through
a shared feed-forward layer to obtain a final se-
quence of vectors h;. Each vector corresponds
to two half-words: one half read by the forward
LSTM, and the other by the backward LSTM.

We then learn an attention model over these hid-



cute )

fluffy )
barked )
loudly )

_ Episcopal )

_bicyde )

Figure 2: An illustration of Char2Vec. A bidirec-
tional LSTM reads the word (start and end of word
symbols represented by ~ and $ respectively), out-
putting a sequence of hidden states. These are then
passed through a feed-forward layer (not shown),
weighted by an attention model (the square box in
the diagram) and summed to obtain the final word
representation.

den states: given a hidden state h;, we calculate
a weight «; = a(h;) such that > «; = 1, and
then calculate the resulting vector for the word w
as f(w) = > a;h;. Following Bahdanau et al.
(2014), we calculate a as

exp(v! tanh(Wh;))

alha) = > exp(vT tanh(Wh)) ©)

1.e. a softmax over the hidden states.

3.1 Capturing morphology via attention

Previous work on bidirectional LSTM character-
level models used both LSTMs to read the entire
word (Ling et al., 2015; Ballesteros et al., 2015).
This can lead to redundancy, as both LSTMs are
used to capture the full word. In contrast, our
model is capable of splitting the words and op-
timizing the two LSTMs for modelling different
halves. This means one of the LSTMs can spe-
cialize on word prefixes and roots, while the other
memorizes possible suffixes. In addition, when
dealing with an unknown word, it can be split into

> &

C
C

OEOOEOOLO

Figure 3: An illustration of the attention model
(start and end of word symbols omitted). The root
morpheme contributes the most to predicting the
context, and is upweighted. In contrast, another
potential split is inaccurate, and predicts the wrong
context words. This is downweighted.

known and unknown components. The model can
then use the semantic knowledge it has learnt for
a known component to predict a representation for
the unknown word as a whole.

We hypothesize that the natural place to split
words is on morpheme boundaries, as morphemes
are the smallest unit of language which carry se-
mantic meaning. We test the splitting capabilities
of our model in §4.1.

4 Experiments

We evaluate our model on three tasks: morpho-
logical analysis (§4.1), semantic similarity (§4.2),
and analogy retrieval (§4.3). We trained all of the
models once, and then use the same trained model
for all three tasks — we do not perform hyperpa-
rameter tuning to optimize performance on each
task.

We trained our Char2Vec model on the Text8
corpus, consisting of the first 100MB of a 2006



cleaned-up dump of Wikipedia!. We only trained
on words which appeared more than 5 times in our
corpus. We used a context window size of 3 words
either side of the target word, and took 11 nega-
tive samples per positive sample, using the same
smoothed unigram distribution as word2vec.
The model was trained for 3 epochs using the
Adam optimizer (Kingma and Ba, 2015). All ex-
periments were carried out using Keras (Chollet,
2015) and Theano (Bergstra et al., 2010; Bastien
et al.,, 2012). We initialized the context lookup
table using word2vec?, and kept it fixed during
training. * In all character-level models, the char-
acter embeddings have dimension dgo = 64, while
the forward and backward LSTMs have dimension
drstym = 256. The concatenation of both there-
fore has dimensionality d = 512. The concate-
nated LSTM hidden states are then compressed
down to dy,0rqg = 256 by a feed-forward layer.

As baselines, we trained a SGNS model on the
same dataset with the same parameters. To test
how much the attention model helps the character-
level model to generalize, we also trained the
Char2Vec model without the attention layer, but
with the same parameters. In this model, the word
embeddings are just the concatenation of the fi-
nal forward and backward states, passed through a
feedforward layer. We refer to this model as C2V-
NO-ATT. We also constructed count-based vec-
tors using SVD on PPMI-weighted co-occurence
counts, with a window size of 3. We kept the top
256 principal components in the SVD decomposi-
tion, to obtain embeddings with the same size as
our other models.

4.1 Morphological awareness

The main innovation of our Char2Vec model com-
pared to existing recurrent character-level models
is the capability to split words and model each half
independently. Here we test whether our model
segmentations correspond to gold-standard mor-
phological analyses.

We obtained morphological analyses for all the
words in our training vocabulary which were in the
English Lexicon Project (Balota et al., 2007). We
then converted these into surface-level segmenta-

lavailable at mat tmahoney.net/dc/text8

2We use the Gensim implementation:
https://radimrehurek.com/gensim/

3We experimented with updating the initialized context
lookup tables, and with randomly initialized context lookups,
but found they were influenced too much by orthographic
similarity from the character encoder.
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tions using heuristic affix-matching, and used this
as a gold-standard morphemic analysis. We ended
up with 14682 words, of which 7867 have at least
two morphemes and 1138 have at least three.

Evaluating morphological segmentation is a
long-debated issue (Cotterell et al., 2016). Tra-
ditional hard morphological analyzers are nor-
mally evaluated on border F — that is, how many
morpheme borders are recovered. However, our
model does not actually posit any hard morpheme
borders. Instead, it just associates each charac-
ter boundary with a weight. Therefore, we treat
the problem of recovering intra-word morpheme
boundaries as a ranking problem. We rank each
inter-character boundary of a word according to
our model weights, and then evaluate whether our
model ranks morpheme boundaries above non-
morpheme boundaries.

We use mean average precision (MAP) as our
evaluation metric. We first calculate precision at
N for each word, until all the gold standard mor-
pheme boundaries have been recovered. Then, we
average over [N to obtain the average precision
(AP) for that word. We then calculate the mean
of the APs across all words to obtain the MAP for
the model.

We report results of a random baseline as a point
of comparison, which randomly places morpheme
boundaries inside the word. We also report the
results of the Porter stemmer®, where we place a
morpheme boundary at the end of the stem, then
randomly thereafter.

Finally, we trained Morfessor 2.0° (Creutz and
Lagus, 2007) on our corpus, using an initial ran-
dom split value of 0.9, and stopping training when
the difference in loss between successive epochs is
less than 0.1% of the total loss. While Morfessor
is no longer state-of-the-art in morpheme recovery
(see, e.g. Narasimhan et al. (2015) for more re-
cent work), it has previously been as a component
in pipelines to build compositional word represen-
tations (Luong et al., 2013; Botha and Blunsom,
2014). We then used our trained Morfessor model
to predict morpheme boundaries®, and randomly
permuted the predicted morpheme boundaries and
ranked them ahead of randomly permuted non-
morpheme boundaries to calculate MAP.

“We used the NLTK implementation

>We used the Python implementation

®We found Morfessor to be quite conservative by default
in its segmentations. The 2nd ranked segmentation gave bet-
ter MAPs, which are the results we describe.



Model All word MAP  Rich-morphology MAP

Random 0.233 0.261
Porter Stemmer 0.705 0.446
Morfessor 0.631 0.500
Char2Vec 0.593 0.586
Table 1: Results at retrieving intra-word mor-

pheme boundaries.

Model WordSim353 MEN Test RW
PPMI-SVD 0.607 0.601 0.293
SGNS 0.667 0.557 0.388
C2V-NO-ATT 0.361 0.298 0.317
CHAR2VEC 0.345 0.322 0.282

Table 3: Similarity correlations of in-vocabulary
word pairs between the models and human anno-
tators.

Word ‘ Model analysis  Gold-standard analysis
carrying carry |ing carry |ing Model | WordSim353 MENTest RW RW OOV
leninism lenin |ism lenin [ism C2V-NO-ATT 0.358 0292 0273 0233
lesbianism lesbia |nism lesbian |ism CHAR2VEC 0.340 0.318 0264  0.243
buses buse |s bus |es
government | gove |rnment govern |ment Table 4: Similarity correlations of all word pairs
unrepentant | un |repent |ant un [repent [ant between the character-level models and human an-
weaknesses | weak |nes [ses weak |ness |es notators. RW OOV indicates results specifically

Table 2: Morphological analyses for sample words
from the corpus. We take the top /N model predic-
tions as the split points, where NNV is the number of
gold-standard morphemes in the word.

As the test set is dominated by words with sim-
ple morphology, we also extracted all the morpho-
logically rich words with 3 or more morphemes,
and created a separate evaluation on this subsec-
tion. We report the results in Table 1.

As the results show, our model performs the
best out of all the methods at analysing morpho-
logically rich words with multiple morphemes. On
these words, our model even outperforms Morfes-
sor, which is explicitly designed as a morpholog-
ical analyzer. This shows that our model learns
splits which correspond well to human morpho-
logical analysis, even though we build no morpho-
logical knowledge into our model. However, when
evaluating on all words, the Porter stemmer has a
great advantage, as it is rule-based and able to give
just the stem of words with great precision, which
is effectively giving a canonical segmentation for
words with just 2 morphemes.

We show some model analyses against the gold
standard in Table 2.

4.2 Capturing semantic similarity

Next, we tested our model similarity scores
against human similarity judgments. For these
datasets, human annotators are asked to judge how
similar two words are on a fixed scale. Model
word vectors are evaluated based on ranking the
word pairs according to their cosine similarity, and
then measuring the correlation (using Spearman’s
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on pairs in the RW dataset with at least one word
not seen in the training corpus.

p) between model judgments and human judg-
ments (Levy et al., 2015).

We use the WordSim353 dataset (Finkelstein et
al., 2002), the test split of the MEN dataset (Bruni
et al., 2014), and the Rare Word (RW) dataset (Lu-
ong et al., 2013). The word pairs in the Word-
Sim353 and MEN datasets are typically simple,
commonly occurring words denoting basic con-
cepts, whereas the RW dataset contains many mor-
phologically derived words which have low corpus
frequencies. This is reflected by how many of the
test pairs in each dataset contain out of vocabu-
lary (OOV) items: 3/353 and 6/1000 of the word
pairs in WordSim353 and MEN, compared with
1083/2034 for the RW dataset.

We report results for in-corpus word pairs in Ta-
ble 3, and for all word pairs for those models able
to predict vectors for unseen words in Table 4.

Overall, word-based embedding models learn
vectors that correlate better with human judg-
ments, particularly for morphologically simple
words. However, character-based models are
competitive with word-based models on the RW
dataset. While the words in this dataset appear
rarely in our corpus (of the in-corpus words, over
half appear fewer than 100 times), each morpheme
may be common, and the character-level models
can use this information. We note that on the entire
RW dataset (of which over half contain an OOV
word), the character-based models still perform
reasonably. We also note that on word pairs in the
RW test containing at least one OOV word, the



In-vocabulary Out-of-Vocabulary
germany football bible foulness definately
germaine  footballer bibles illness definitely

germanies  footballing testament seriousness indefinitely
Char2Vec unfiltered  germain  footballing librarianship sickness enthusiastically
germano foosball literature loudness emphatically
germaniae  footballers librarian cuteness consistently
poland footballer testament illness definitely
german basketball literature blindness consistently
Char2Vec filtered spain tennis hebrew consciousness drastically
germans rugby Jjudaism hardness theoretically
france baseball biblical weakness infinitely

Table 5: Filtered and unfiltered model nearest neighbours for some in-vocabulary and out-of-vocabulary

words

full Char2Vec model outperforms the C2V model
without morphology. This suggests that character-
based embedding models are learning to morpho-
logically analyse complex word forms, even on
unseen words, and that giving the model the capa-
bility to learn word segments independently helps
this process.

We also present some word nearest neighbours
for our Char2Vec model in Table 5, both on the
whole vocabulary and then filtering the nearest
neighbours to only include words which appear
100 times or more in our corpus. This corresponds
to keeping the top 10k words, which is common
among language models (Ling et al., 2015; Kim et
al., 2016). We note that nearest neighbour pre-
dictions include words that are orthographically
distant but semantically similar, showing that our
model has the capability to learn to compose char-
acters into word meanings.

We also note that word nearest neighbours seem
to be more semantically coherent when rarely-
observed words are filtered out of the vocabulary,
and more based on orthographic overlap when the
entire vocabulary is included. This suggests that
for rarely-observed words, the model is basing its
predictions on orthographic analysis, whereas for
more commonly observed words it can ‘memo-
rize’ the mapping between the orthography and
word semantics.

4.3 Capturing syntactic and semantic
regularity

Finally, we evaluate the structure of the embed-
ding space of our various models. In particular,
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Model All Acc  Sem. Acc Syn. Acc
PPMI-SVD 0.365 0.444 0.341
SGNS 0.436 0.339 0.513
C2V-NO-ATT 0.316 0.016 0.472
CHAR2VEC 0.355 0.025 0.525

Table 6: Results on the Google analogy task

we test whether affixation corresponds to regular
linear shifts in the embedding space.

To do this, we use the Google analogy dataset
(Mikolov et al., 2013a). This consists of 19544
questions of the form “A is to B as C is to X”.
We split this collection into semantic and syntactic
sections, based on whether the analogies between
the words are driven by morphological changes or
deeper semantic shifts. Example semantic ques-
tions are on capital-country relationships (“Paris
is to France as Berlin is to X’) and currency-
country relationships (“pound is to Great Britain
as dollar is to X”’). Example syntactic questions
are adjective-adverb relationships (“amazing is to
amazingly as apparent is to X’) and opposites
formed by prefixing a negation particle (“accept-
able is to unacceptable as aware is to X”). This
results in 5537 semantic analogies and 10411 syn-
tactic analogies.

We use the method of Mikolov et al. (2013a) to
answer these questions. We first /o-normalize all
of our word vectors. Then, to answer a question of
the form “A is to B as C is to X”’, we find the word



w which satisfies

argmax cos(w,b—a + c)
weV —{a,b,c}

w =

4)

where a, b, c are the word vectors for the words A,
B and C respectively.

We report the results in Table 6. The most in-
triguing result is that character-level models are
competitive with word-level models for syntactic
analogy, with our Char2Vec model holding the
best result for syntactic analogy answering. This
suggests that incorporating morphological knowl-
edge explicitly rather than latently helps the model
learn morphological features. However, on the se-
mantic analogies, the character-based models do
much worse than the word-based models. This is
perhaps unsurprising in light of the previous sec-
tion, where we demonstrate that character-based
models do worse at the semantic similarity task
than word-level models.

5 Discussion

We only report results for English. However, En-
glish is a morphologically impoverished language,
with little inflection and relatively few productive
patterns of derivation. Our morphology test set re-
flects this, with over half the words consisting of a
simple morpheme, and over 90% having at most 2
morphemes.

This is unfortunate for our model, as it performs
better on words with richer morphology. It gives
consistently more accurate morphological analy-
ses for these words compared to standard base-
lines, and matches word-level models for seman-
tic similarity on rare words with rich morphol-
ogy. In addition, it seems to learn morphosyntactic
features to help solve the syntactic analogy task.
Most of all, it is language-agnostic, and easy to
port across different languages. We thus expect
our model to perform even better for languages
with a richer morphology than English, such as
Turkish and German.

6 Conclusion

In this paper, we present a model which learns
morphology and word embeddings jointly. Given
a word, it splits the word in to segments and ranks
the segments based on their context-predictive
power. Our model can segment words into mor-
phemes, and also embed the word into a represen-
tation space.
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We show that our model is competitive at the
task of morpheme boundary recovery compared to
a dedicated morphological analyzer, beating dedi-
cated analyzers on words with a rich morphology.
We also show that in the representation space word
affixation corresponds to linear shifts, demonstrat-
ing that our model can learn morphological fea-
tures.

Finally, we show that character-level models,
while outperformed by word-level models gener-
ally at the task of semantic similarity, are com-
petitive at representing rare morphologically rich
words. In addition, the character-level models can
predict good quality representations for unseen
words, with the morphologically aware character-
level model doing slightly better.
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Abstract

In this paper we present a study cover-
ing the creation of compositional distri-
butional representations for English noun
compounds (e.g. computer science) using
two compositional models proposed in the
literature. The compositional representa-
tions are first evaluated based on their sim-
ilarity to the corresponding corpus-learned
representations and then on the task of au-
tomatic classification of semantic relations
for English noun compounds. Our experi-
ments show that compositional models are
able to build meaningful representations
for more than half of the test set com-
pounds. However, using pre-trained com-
positional models does not lead to the ex-
pected performance gains for the semantic
relation classification task. Models using
compositional representations have a sim-
ilar performance as a basic classification
model, despite the advantage of being pre-
trained on a large set of compounds.

1 Introduction

Creating word representations for multiword ex-
pressions is a challenging NLP task. The chal-
lenge comes from the fact that these constructions
have “idiosyncratic interpretations that cross word
boundaries (or spaces)” (Sag et al., 2002). A good
example of such challenging multiword expres-
sions are noun compounds (e.g. finger nail, health
care), where the meaning of a compound often in-
volves combining some aspect or aspects of the
meanings of its constituents.

Over the last few years distributed word repre-
sentations (Collobert et al., 2011b; Mikolov et al.,
2013; Pennington et al., 2014) have proven very
successful at representing single-token words, and
there have been several attempts at creating com-
positional distributional models of meaning for
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multi-token expressions, in particular adjective-
word phrases (Baroni and Zamparelli, 2010), de-
terminer phrases (Dinu et al., 2013b) or verb
phrases (Yin and Schiitze, 2014).

Studying the semantics of multiword units, and
in particular the semantic interpretation of noun
compounds has been an active area of research
in both theoretical and computational linguistics.
Here, one train of research has focused on under-
standing the mechanism of compounding by pro-
viding a label for the relation between the con-
stituents (e.g. in finger nail, the nail is PART OF the
finger) as in (O Séaghdha, 2008; Tratz and Hovy,
2010) or by identifying the preposition in the pre-
ferred paraphrase of the compound (e.g. nail of
the finger) as in (Lauer, 1995).

In this paper, we explore compositional distri-
butional models for English noun compounds, and
analyze the impact of such models on the task of
predicting the compound-internal semantic rela-
tion given a labeled dataset of compounds. At the
same time, we analyze the results of the compo-
sitional process through the lens of the semantic
relation annotation, in an attempt to uncover com-
pounding patterns that are particularly challenging
for the compositional distributional models.

2 Context and Compound Interpretation

There are two possible settings for compound
interpretation: out-of-context interpretation and
context-dependent interpretation.

Bauer (1983, pp. 45) describes a continuum of
types of complex words, arranged with respect
to their formation status and to how dependent
their interpretation is on the context: (i)“nonce for-
mations, coined by a speaker/writer on the spur
of the moment to cover some immediate need”,
where there is a large ambiguity with respect
to the meaning of the compound which cannot
be resolved without the immediate context (e.g.
Nakov’s (2013) example compound plate length,

Proceedings of the 1st Workshop on Representation Learning for NLP, pages 27-39,
Berlin, Germany, August 11th, 2016. (©2016 Association for Computational Linguistics



for which a possible interpretation in a given con-
text could be what your hair is when it drags in
your food); (ii) institutionalized lexemes, whose
potential ambiguity is canceled by the frequency
of use and familiarity with the term, and whose
more established meaning could be inferred based
on the meanings of the constituents and prior
world experience, without the need for an imme-
diate context (e.g. orange juice); (iii) lexicalized
lexemes, where the meaning has become a con-
vention which cannot be inferred from the con-
stituents alone and can only be successfully inter-
preted if the term is familiar or if the context pro-
vides enough clues (e.g. couch potato").

The available datasets we use (described in Sec-
tion 3) are very likely to contain some very low
frequency items of type (i), whose actual inter-
pretation would necessitate taking the immediate
context into account, as well some highly lexical-
ized compounds of type (iii), where the meaning
can only be deduced from context. Nevertheless,
because of a lack of annotated resources that pro-
vide the semantic interpretation of a compound to-
gether with its context, we will focus on the out-
of-context interpretation of compounds.

3 Datasets

3.1 English Compound Dataset for
Compositionality

The English compound dataset used for the com-
position tests was constructed from two existing
compound datasets and a selection of the nom-
inal compounds in the WordNet database. The
first existing compound dataset was described in
(Tratz, 2011) and contains 19158 compounds2.
The second existing compound dataset was pro-
posed in (O Séaghdha, 2008) and contains 1443
compounds?.

Additional compounds were collected from the
WordNet 3.1 database files 4, more specifically
from the noun database file data.noun. The
WordNet compound collection process involved
3 steps: (i) collecting all candidate compounds,

'a couch potato is not a potato, but a person who exercises
little and spends most of the time in front of a TV.

>The dataset is part of the semantically-enriched
parser described in (Tratz, 2011) which can be obtained
from http://www.isi.edu/publications/licensed-sw/
fanseparser/

3Available  at http://www.cl.cam.ac.uk/~do242/
Resources/1443_Compounds.tar.gz

4 Available at http://wordnetcode.princeton.edu/
wn3.l.dict.tar.gz
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i.e. words that contained an underscore or a dash
(e.g. abstract_entity, self-service); (ii) filtering out
candidates that included numbers or dots, or had
more than 2 constituents; (iii) filtering out candi-
dates where either one of the constituents had a
part-of-speech tag that was different from noun
or verb. The part-of-speech tagging of the can-
didate compounds was performed using the spaCy
Python library for advanced natural language pro-
cessing®. The reason for allowing both noun
and verb as accepted part-of-speech tags was
that given the extremely limited context available
when PoS-tagging a compound the tagger would
frequently label as verb multi-sense words that
were actually nouns in the given context (e.g. eye
drop, where drop was tagged as a verb). The final
compound list extracted from WordNet 3.1 con-
tained 18775 compounds.

The compounds collected from all three re-
sources were combined into one list. The list
was deduplicated and filtered for capitalized com-
pounds (the Tratz (2011) dataset contained a small
amount of person names and titles). A final fil-
tering step removed all the compounds where ei-
ther of the two constituents or the compound itself
did not have a minimum frequency of 100 in the
support corpus (presented later, in Section 4.1).
The frequency filtering step was motivated by the
assumption that the compositional process can be
better modeled using “well-learned” word vectors
that are based on a minimum number of contexts.

The final dataset contains 27220 compounds,
formed through the combination of 5335 modifiers
and 4761 heads. The set of unique modifiers and
heads contains 7646 words, with 2450 words ap-
pearing both as modifiers and as heads. The dictio-
nary for the final dataset contains therefore 34866
unique words. The dataset was partitioned into
train, test and dev splits containing 19054,
5444 and 2722 compounds respectively.

3.2 English Compound Datasets for
Semantic Interpretation

The Tratz (2011) dataset and the O Séaghdha
(2008) dataset are both annotated with seman-
tic relations between the compound constituents.
The Tratz (2011) dataset has 37 semantic relations
and 19158 compounds. The O Séaghdha (2008)
dataset has 1443 compounds annotated with 6
coarse relation labels (ABOUT, ACTOR, BE, HAVE,

5https://spacy.io/



IN, INST). Appendix A lists the relations in the
two datasets together with some example anno-
tated compounds.

For both datasets a small fraction of the
constituents had to be recoded to the artificial
underscore-based form described in Section 4.1, in
order to maximize the coverage of the word repre-
sentations for the constituents (e.g. database was
recoded to data_base).

4 Composition Models for English
Nominal Compounds

A common view of natural language regards it as
being inherently compositional. Words are com-
bined to obtain phrases, which in turn combine
to create sentences. The composition continues to
the paragraph, section and document levels. It is
this defining trait of human language, its compo-
sitionality, that allows us to produce and to under-
stand the potentially infinite number of utterances
in a human language.

Gottlob Frege (1848-1925) is credited with
phrasing this intuition into the form of a principle,
known as the Principle of Compositionality: “The
meaning of the whole is a function of the mean-
ing of the parts and their mode of combination”
(Dowty et al., 1981, p.8).

The adoption of distributional vectors as a
proxy for the meaning of individual words (in
other words, having a “meaning of the parts”) en-
couraged researchers to focus their attention on
finding composition models which could act as the
“mode of combination”.

When applied to vector space models of lan-
guage, the idea of looking for a “mode of
combination” translates to finding a composi-
tion function f which takes as input some n-
dimensional distributional representations for the
two constituents constructed using a support cor-
pus, uorPUE pcorPuS ¢ R™ and outputs another

n-dimensional representation for the compound
pcomposed cR”

corpus
)

u

composed _ f( v

corpus )

p

Additionally, we consider p®"?** & R", the
learned representation for the compound, to be the
“gold standard” for the composed representation
of the compound p™Po%¢?, Therefore the com-
position function f should minimize Jy;5g, the
mean squared error between the composed and the
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corpus-induced representations:

nc n
J o 1 composed
MSE = E — E (pij —-D
: n -
=1 7=1

where nc is the number of compounds in our
dataset.

Previous studies like (Guevara, 2010; Baroni
and Zamparelli, 2010) evaluate their proposed
composition functions on training data created us-
ing the following procedure: first, they gather a
set of word pairs to model. Then, a large corpus
is used to construct distributional representations
both for the word pairs as well as for the individ-
ual words in each pair. In order to derive word pair
representations the corpus is first pre-processed
such that all the occurrences of the word pairs of
interest are linked with the underscore character
‘. This tricks the tokenizer into considering each
pair a singe-unit word, thus making it possible to
record its co-occurrence statistics using the same
distributional methods one would use for a gen-
uine single-unit word.

The same methodology is applied here for creat-
ing a training dataset for compositional models us-
ing the list of compounds described in Section 3.1.
The process is detailed in Section 4.1.

Next, we selected two composition functions
(we also refer to them as composition models)
from the ones presented in the literature:

corpuS)Q
ij

e the full additive model, introduced in Zan-
zotto et al. (2010) (in their work this model
is called the estimated additive model) and
popularized as part of the DISSECT toolkit
(Dinu et al., 2013a; Dinu et al., 2013b). In
this model the two constituent vectors » and
v € R™ are composed by multiplying them
via two square matrices A,B € R™". A
and B are the same for every v and v, so dur-
ing training we only have to estimate the pa-
rameters in two n X n matrices, making the
model constant in the number of parameters.
The mathematical formulation of the full ad-
ditive model is presented in Eq. 1.

p=Au+ Bv (D)
the matrix model, introduced in Socher et al.
(2011). It is a non-linear composition model
where the constituent vectors u,v € R"
are first concatenated, resulting in a vector



[u;v] € R?*" and then multiplied with a ma-
trix W € R?"X"_ The result of the mul-
tiplication is an n-dimensional vector which
is passed as a final step through a non-linear
function g (in this case the element-wise hy-
perbolic tangent tanh). The parameter ma-
trix W which has to be estimated during the
training process is the same for all the pos-
sible input vectors u and v. Since this com-
position function is implemented via a neural
network, a bias term b € R" is added after the
multiplication of the matrix W with the con-
catenated vector [u; v]. The complete form of
this composition function is given in Eq. 2.

p=g(Wlu;v] + ) (2)

The preference for these particular composition
models is justified by their constant number of pa-
rameters with respect to the vocabulary size. This
allows us to use this composition model for a sig-
nificantly larger number of constituents than the
one in the list of compounds it was trained on. In
particular, this allows us to predict a composition
vector even for the compounds that were not at-
tested in the corpus, if their constituents are fre-
quent enough to be part of our full vocabulary.

Both models were reimplemented using the
Torch7 library (Collobert et al., 2011a), whose nn-
graph module allows for an easy creation of archi-
tectures with multiple inputs and outputs. Reim-
plementing the composition models is also justi-
fied by the use of trained composition models as
a form of pre-training for the semantic interpreta-
tion models described in Section 5.

4.1 Compound-aware Word Representations

The support corpus for creating English word rep-
resentations for compositionality experiments (re-
ferred to in Section 3.1) was obtained by concate-
nating the raw text from the ENCOW14AX corpus
(Schéfer, 2015) and the pre-processed 2014 En-
glish Wikipedia dump described and made avail-
able in Miiller and Schiitze (2015). A preprocess-
ing step similar to the one described in Miiller
and Schiitze (2015) was applied to the concate-
nated corpus: the text was lowercased and the dig-
its were replaced with Os. An additional prepro-
cessing step was necessary for creating compound
representations. A list of compounds (described
in Section 3.1) was used to recode the initial cor-
pus such that the two-part compounds in the list
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would be considered a single token. The recod-
ing process involved replacing different spelling
variants of a compound - written as two sepa-
rate words, contiguously or with a dash (as in
dress code, dresscode or dress-code), as well as
their respective plural forms (dress codes, dress-
codes, dress-codes) with an artificial underscore-
based form (e.g. dress_code). We did not, how-
ever, modify the plural first constituents (i.e. sav-
ings account), nor did we normalize the spelling
variation which is the result of different spelling
standards as in color scheme (American English)
and colour scheme (British English). The result
was a 9 billion words raw-text corpus with a cor-
responding vocabulary containing 424,014 words
(both simplex words and compounds) with mini-
mum frequency 100 (the full vocabulary had 16M
words).

The raw-text corpus was the basis for training
300 dimensional word representations using the
GloVe package (Pennington et al., 2014). The
GloVe model was trained for 15 iterations using
a 10-word symmetric context (20 words in total)
for constructing the co-occurence matrix. The
vector spaces were normalized to the L2-norm,
first across features and then across samples using
scikit-learn (Pedregosa et al., 2011).

4.2 Evaluation and Results

The parameters of the two composition models
described in Section 4 were estimated with the
help of the list of compounds in the train set
described in Section 3.1 and the word represen-
tations presented in Section 4.1. We evaluated
the performance of the composition models on the
test split of the dataset, using the rank evalu-
ation proposed by Baroni and Zamparelli (2010).
Using a trained model, we generate composed rep-
resentations for all the compounds in the test
set. The composed representation of each com-
pound is ranked with respect to all the 34866
unique words in the dictionary (the set of all
compounds and their respective constituents) us-
ing the cosine similarity. The best possible re-
sult is when the corpus-learned representation is
the nearest neighbor of the composed representa-
tion, and corresponds to assigning the rank 1 to
the composed vector. Rank 2 is assigned when the
corpus-learned representation is the second near-
est neighbor, and so on. The cut-off rank 1000
is assigned to all the representations with a rank
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Figure 1: Semantic relations in the Tratz (2011) dataset: number of compounds labeled with a relation
(green triangle) vs. the median rank assigned to their composed representations by the full additive model

(blue circle).

> 1000. The first, second and third quartiles (Q1,
Q2/median, Q3) are then computed for the sorted
list of ranks of the composed representations of the
test set compounds. The result of our evaluation
are displayed in Table 1.

Model Ranks dev Ranks test
Q1 Q2 Q3 Max|Q1 Q2 Q3 Max

matrix 2 5 28 1K|1 5 25 1K

full additive| 1 5 28 1K |1 5 25 1K

Table 1: Composition models results: quartiles
for the ranks assigned to the dev and test com-
posed representations (lower is better).

Both composition models obtain good results
on the test dataset with respect to the Q1, Q2,
Q3 quartiles. Ranks in the 1-5 range, which were
assigned to half of the test set compounds cor-
respond to a well-built compound representation
which resides in the expected vectorial neighbor-
hood. For the next quarter of the data, the rank in
the 6-25 range points to a representation that might
still be considered reasonable depending on the
application. For the last segment of ranked com-
pounds the constructed representations are most
likely incorrect. As detailed in the next paragraph,
such high ranks usually suggest a difficulty in cre-
ating a compound representation based on the con-
stituent representations and indicate that the com-
pound belongs to a special class (e.g. lexicalized,
multi-sense etc). For both models the maximum
assigned rank is the cut-off rank 1000.

To put these results into perspective, the results

31

of compositional models were interpreted through
the lens of annotated semantic relations in publicly
available datasets. Figure 1 plots the median rank
assigned to the compounds with a particular se-
mantic relation against the number of compounds
labeled with that semantic relation in the subset
of the Tratz (2011) dataset included in the compo-
sitionality dataset described in Section 3.1. The
figure confirms the intuition that recovering the
meaning of lexicalized compounds like eye candy
and basket case is very difficult given only the
constituents: the LEXICALIZED relation, which
labels 131 compounds, has the median rank 27.
Another difficult semantic relation for the compo-
sition model is PARTIAL_ATTRIBUTE_TRANSFER,
which labels compounds such as hairline crack
and bullet train, which has a median rank of 12
for its 41 compounds. The high median rank sug-
gests that this type of attributive relation is difficult
to model using distributional representations of the
individual constituents, as it is based on a common
attribute which is not present in the surface form
of the compound (the width for the hairline and
the crack; the speed for the bullet and the train).

5 Automatic Semantic Relation
Classification for English Nominal
Compounds

The goal of the current section is to asses the im-
pact of composition models on the task of auto-
matic semantic relation classification for English
nominal compounds. The semantic relation classi-
fication task deals with predicting the correct label
for the relation between the constituents of a com-



pound, given a fixed set of possible labels (e.g. the
label of the relation linking iron to fence in iron
fence is MATERIAL). The two datasets described
in Section 3.2 are used as a testbed for the com-
parison of the composition models described in
Section 4. The state of the art results for these
datasets are 65.4% 5-fold cross-validation (CV)
accuracy for the O Séaghdha dataset, obtained in
O Séaghdha and Copestake (2013), 79.3% 10-
fold CV accuracy for an unpublished version of
the Tratz dataset, with 17509 noun pairs annotated
with 43 semantic relations (Tratz and Hovy, 2010)
and 77.70% 10-fold CV accuracy on a subset of
the Tratz (2011) dataset obtained in (Dima and
Hinrichs, 2015).

Our MLP architecture for semantic classifica-
tion consists of two modules: the composition
module which constructs the compound represen-
tation from the representations of its constituents
and the classification module which takes as in-
put the constructed compound representation and
uses it as a basis for classifying the compound with
respect to the semantic relations defined by each
dataset.®

In the experiments described next the architec-
ture of the composition module varies according
to the method used for creating compound rep-
resentations, while the classification module al-
ways follows the same architecture: a linear layer
W,er € R™*% where n, is the dimensionality of
the compound representation and k is the number
of semantic relations in the dataset, the nonlin-
earity tanh and a softmax layer that selects the
“winning” semantic relation from the %k possible
relations. Another constant addition to the full ar-
chitecture is a 0.1 dropout layer for regularization
and a reLU nonlinearity between the composition
and the classification modules.

All the described models are trained using a
negative log-likelihood criterion, optimized with
mini-batch Adagrad (Duchi et al., 2011) with a
fixed initial learning rate (0.1, Tratz dataset; 5e—2,
O Séaghdha dataset), learning rate decay le — 5,
weight decay 1e — 5 and a batch size of 100 as hy-
perparameters for the optimization process. The
models are trained using early stopping with a pa-
tience of 100 epochs.

Our working hypothesis is that learning first
how to compose, and then doing the semantic re-

The code for composing representations and for doing

automatic classification of semantic relations is available at
https://github.com/corinadima/gWordcomp
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lation classification task should yield better results
than when the composition is learned based only
on the signal provided by the classification task.
We expect that pre-training the composition mod-
ule would make the semantic relation classifica-
tion task easier and that having a good compound
representation would aid its semantic interpreta-
tion.

We define as a basic composition module a
simple architecture that takes as input v and v,
the two n-dimensional constituent representations,
concatenates them, and multiplies the concate-
nated 2n-dimensional vector with a matrix W.
Depending on the output dimensions of the model
we want to compare it to, the dimensions of W
will range from € R?"%" to € R2">*4n,

Table 2 presents the results of the classification
models, grouped according to the number of pa-
rameters in the composition module. We used the
matrix and full additive composition models eval-
uated in Section 4.2 as pre-trained composition
modules.

The first two rows in Table 2 present the results
of doing semantic relation classification using the
composed compound representations as the only
input to the classifier. In these settings, which are
labeled compoM 300« 600 and compoFAs00x 600, the
input is the composed representation as computed
by the pretrained matrix and full additive compo-
sition models. The composed representations are
kept fixed during the classification process. This
configuration obtained the weakest results from all
the tested configurations. An explanation for this
result might be that the composition models per-
form well for only half of our test compounds,
meaning that a good portion of the compounds
have a potentially suboptimal representation.

In the the pre-trained
composition fine-tuned  for
the semantic task  (models
labeled  pretrain_matrixgoox300 and  pre-
train_fullAdditivegno x300)- The input in this
case are the initial corpus-based vectors of the two
constituents.

next two Trows
models are
classification

Contrary to our hypothesis, the classification re-
sults of the basicgoox 300 model (the last model in
the first subsection) are on par or slightly better
than the previous results, where the classification
used the direct or fine-tuned output of a pre-trained
composition module.

This effect extends to the other settings that



Composition module Pre-trained? | Fine-tuned? | Tratz CV | O Séaghdha CV
Comp0M300><600 yes no 74.22% 57.52%
CompoFA300><600 yes no 73.70% 56.62%
pretrain_matrixgoox 300 yes yes 78.05% 59.18%
pretrain_fullAdditivegoo < 300 yes yes 77.89% 59.18%
basi6600><300 no no 78.57% 59.25%
pretrain_matrix_full Addgoox 600 yes yes 78.92% 59.39%
baSiCGOQXGOO no no 78.88% 59.60%
clc2_compoMgpox900 yes no 79.06% 61.12%
clc2_compoFAgnox900 yes no 79.07% 59.60%
baSiC600X1200 no no 79.03% 59.60%
clc2_compoMcompoFA1200x1200 yes no 79.16% 59.18%
basi6600><2400 no no 79.36 % 58.49%

Table 2: Semantic relation classification results on the Tratz and O Séaghdha datasets using accuracy
as a classification measure. Results obtained through 10-fold cross-validation on the Tratz dataset and
5-fold CV on the O Séaghdha dataset (with the original folds).

were investigated, where:

e both pre-trained composition models are
used for the composition module; the com-
pound representation is the concatenation
of the two composed representations (pre-
train_matrix_fullAddgooxe00); even if the
combined classifier outperforms each of the
classifiers based on only one composition
model, its results are still on par with the ones
of the basic classifier with a similar num-
ber of parameters (basiceooxe00, Se€ results
in Table 2, subsection 2).

e the initial vector representations of
the constituents as well as their
composed  representation  are  used
as an  input  (clc2_compoMopox900,

clc2_compoFAgpox900); the composition
is in this case not fine-tuned; the results
on the Tratz (2011) dataset are again
similar to the comparable basic model
(basiceoox1200). The clc2_compoMgpox 900
obtains the best overall result, 61.12%, on
the O Séaghdha (2008) dataset.

the input consists of the initial vector rep-
resentations and both composed representa-
tions (cIc2_compoMcompoFA1200%x1200); the
composed vectors are fixed; the results are
compared to the basicggox 2400 model (again,
with a similar number of parameters). This
last section contains the best overall result for
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the Tratz (2011) dataset, 79.36%, obtained by
the basiceogx 2400 model.

To wunderstand this unexpected result we
analyzed the predictions made by the best
performing classification models, basicgggx2400
and clc2_compoMcompoFAi200x1200, oOn the
Tratz (2011) dataset. The analysis targeted the dis-
tribution of errors per semantic relation for each
of the two classifiers. As the distribution of com-
pounds labeled with a particular semantic relation
is rather skewed, we found it more informative
to look at the percentage of errors for each class
(shown in Figure 2) rather than at the absolute er-
ror values.

A first conclusion that can be drawn from this
figure is that the two models have roughly the
same distribution of errors: both struggle the
most with the semantic relations with a low com-
pound count (left side of the figure) and with the
class of lexicalized compounds. In addition, even
some of the relations with more than 500 labeled
examples (starting from SUBSTANCE-MATERIAL-
INGREDIENT) remain difficult to identify (in par-
ticular the heterogeneous OTHER relation, which
labels compounds whose relation is not covered
by the rest of the inventory, and the EQUATIVE re-
lation, which labels compounds based on subtype
or logical-and relations, i.e. mozzarella cheese, fe-
male owner).

An analysis of the classification errors revealed
that both classifiers actually struggle to generalize
above the lexical level. If a word has the majority
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Figure 2: Error analysis for semantic relation classification on the Tratz (2011) dataset: the percentage of
errors for each semantic class for the basicgggx2400 (blue, left) and the c¢1c2_compoMcompoFA1200x1200
(green, right) models. The semantic relations are sorted by compound count (low count to the left, high

count to the right).

of compounds labeled with a relation (e.g. TOPIC
for compounds with guide: travel guide, fishing
guide), other compounds with the head guide will
be assigned the same relation (e.g. user guide
is labeled TOPIC although the correct relation is
USER_RECIPIENT). This phenomenon where the
classifier memorizes lexical associations between
words in particular slots and classification labels
as opposed to learning relations between the words
in the two slots is referred to in Levy et al. (2015)
as lexical memorization. To get a sense of how this
phenomenon affects our classification task we plot
in Figure 3 two ratios for every semantic relation
in the Tratz (2011) dataset: the number of distinct
modifiers over the total number of compounds and
the number of distinct heads over the total number
of compounds. A small ratio indicates that a large
subset of the compounds labeled with a particular
semantic relation share a common constituent: for
example, the ADJ-LIKE_NOUN subclass has only
7 distinct modifiers for 254 compounds, resulting
in a very low modifier ratio (0.03). Similarly the
AMOUNT_OF subclass has 168 compounds with 15
heads (head ratio: 0.09).

Comparing Figure 3 to Figure 2, one can ob-
serve that the majority of the classes with ei-
ther a low head ratio or a low modifier ra-
tio also have the lowest percentage of er-
rors per class. This is the case for relations
like TIME_OF2, TOPIC_OF_EXPERT, AMOUNT-OF,
ADJ-LIKE_NOUN and MEASURE, all of which
have under 10% error rate. A notable excep-
tion is the PERSONAL_NAME semantic relation for
which the classifiers manage to have a small error
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rate even with very diverse modifiers and heads
(both modifier and head ratio is 0.96). A more re-
alistic estimate of the actual performance of the
classifiers are the semantic relations which have
both a larger number of compounds and a more
diverse set of constituents, like in the case of
USER_RECIPIENT, CREATOR_PROVIDER_CAUSE-
OF, WHOLE+PART_OR_MEMBER_OF or PURPOSE,
which have a 40-60% error rate.

As a concluding point, the best results in our
study are comparable to the respective state-of-
the-art counterparts (79.3%/77.70% accuracy vs.
79.36% accuracy on the Tratz data; 65.4% vs.
61.12% on the O Séaghdha data). However, it
must be taken into account that in this study
the only available information for the classifiers
comes from the word embeddings themselves, and
from the correlations learned in the composition
process. By contrast the classifiers used in (Tratz
and Hovy, 2010; Tratz, 2011) relied on an exten-
sive feature set which included information from
the WordNet (hypernyms, synonyms, gloss, part-
of-speech indicators; “lexicalized” indicator if the
compound had an WN entry as a single term), Ro-
get’s thesaurus, surface-level features and n-gram
features extracted from the Web 1T corpus. The
state-of-the-art of the O Séaghdha (2008) dataset
is based on both lexical features (for the individ-
ual constituents, constructed on the basis of de-
pendency relations) and relational features (for the
typical interactions of constituents, constructed on
the basis of contexts where the constituents appear
together as separate words). The distributional
representations we use as input are likely to cap-
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or the head (green triangle) correlates with a small error rate for the classification task.

ture both lexical and relational aspects, but do not
explicitly model pairwise constituent interactions.

6 Conclusions

In this paper we have presented a study covering
the creation of compositional distributional rep-
resentations for English noun compounds. The
representations created by the compositional mod-
els were further evaluated on the task of auto-
matic semantic relation classification for English
noun compounds, using two preexisting annotated
datasets. The experiments are, to the best of
our knowledge, the first compositional investiga-
tions focusing on English noun compounds. The
composition models have a good performance and
manage to build meaningful composed vectors for
half of the test set compounds.

The investigation of semantically annotated
compound datasets revealed that composition
models cannot represent compounds with lexical-
ized meaning. This suggests that the represen-
tations of compounds where the meaning of the
whole is substantially different from the one of
the parts should be learned directly from corpus
co-occurence data. Another vocabulary-related
observation concerns the extensive pre-processing
necessary to create distributional representations
for compounds. Spelling variation (e.g. health
care, health-care, healthcare) artificially creates
separate forms with the same meaning. Such
forms should be identified and collapsed back to a
single meaning representation when creating vec-
tor space models of language.
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The semantic relation classification experi-
ments showed that state-of-the-art composition
models must be further refined before they can
be of use for downstream semantic tasks. In our
experiments compositional models were unable to
improve upon a basic model for semantic relation
identification, despite being pretrained on a large
set of compounds. Their mediocre performance on
the semantic relation classification task is likely
caused by the use of individual word representa-
tions as the exclusive source of input, combined
with the expectation that mathematical composi-
tion functions can directly extract and model pat-
terns of interaction between pairs of words. We
hypothesize that composition models can be im-
proved by first modeling the semantic relations be-
tween words and then using the semantic relation
representations together with the word representa-
tions as inputs to the composition process.
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A Overview of the Semantic Relations in the Tratz (2011) and o Séaghdha (2008)

Datasets

Category name Dataset percentage Example
Objective

OBJECTIVE 17.1% leaf blower
Doer-Cause-Means

SUBJECT 3.5% police abuse
CREATOR-PROVIDER-CAUSE_OF 1.5% ad revenue
JUSTIFICATION 0.3% murder arrest
MEANS 1.5% faith healer
Purpose/Activity Group

PERFORM&ENGAGE_IN 11.5% cooking pot
CREATE-PROVIDE-GENERATE-SELL 4.8% nicotine patch
OBTAIN&ACCESS&SEEK 0.9% shrimp boat
MITIGATE&OPPOSE 0.8% flak jacket
ORGANIZE&SUPERVISE&AUTHORITY 1.6% ethics authority
PURPOSE 1.9% chicken spit
Ownership, Experience, Employment, Use

OWNER-USER 2.1% family estate
EXPERIENCER-OF-EXPERIENCE 0.5% family greed
EMPLOYER 2.3% team doctor
USER_RECIPIENT 1.0% voter pamphlet
Temporal Group

TIME-OF1 2.2% night work
TIME-OF2 0.5% birth date
Location and Whole+Part/Member of

LOCATION 5.2% hillside home
WHOLE+PART_OR_MEMBER _OF 1.7% robot arm
Composition and Containment Group

CONTAIN 1.2% shoe box
SUBSTANCE-MATERIAL-INGREDIENT 2.6% plastic bag
PART&MEMBER_OF_COLLECTION& CONFIG&SERIES 1.8% truck convoy
VARIETY &GENUS_OF 0.1% plant species
AMOUNT-OF 0.9% traffic volume
Topic Group

TOPIC 7.0% travel story
TOPIC_OF_COGNITION&EMOTION 0.3% auto fanatic
TOPIC_OF_EXPERT 0.7% policy expert
Other Complements Group

RELATIONAL-NOUN-COMPLEMENT 5.6% eye shape
WHOLE+ATTRIBUTE&FEATURE 0.3% earth tone

&QUALITY _VALUE_IS_CHARACTERISTIC_OF
Attributive and Equative

EQUATIVE 5.4% fighter plane
ADJ-LIKE_NOUN 1.3% core activity
PARTIAL_ATTRIBUTE_TRANSFER 0.3% skeleton crew
MEASURE 4.2% hour meeting
Other

LEXICALIZED 0.8% pig iron

OTHER 5.4% contact lense
Personal*

PERSONAL_NAME 0.5% Ronald Reagan
PERSONAL_TITLE 0.5% Gen. Eisenhower

Table 3: Semantic relations in the Tratz inventory - abbreviated version of Table 4.5 from Tratz (2011).
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Relation Frequency Proportion Examples

BE 191 13.2% guide dog, rubber wheel, cat burglar

HAVE 199 13.8% family firm, coma victim, sentence structure, computer clock, star cluster
IN 308 21.3% pig pen, air disaster, evening edition, dawn attack

ACTOR 266 18.4% army coup, project organiser

INST 236 16.4% cereal cultivation, foot imprint

ABOUT 243 16.8% history book, waterways museum, embryo research, house price

Table 4: Semantic relations in the O Séaghdha inventory - Table 6.2 from O Séaghdha (2008), augmented
with examples from Table 3.1.
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Abstract

Vector space models have become popu-
lar in distributional semantics, despite the
challenges they face in capturing various
semantic phenomena. We propose a novel
probabilistic framework which draws on
both formal semantics and recent advances
in machine learning. In particular, we sep-
arate predicates from the entities they refer
to, allowing us to perform Bayesian infer-
ence based on logical forms. We describe
an implementation of this framework us-
ing a combination of Restricted Boltz-
mann Machines and feedforward neural
networks. Finally, we demonstrate the fea-
sibility of this approach by training it on a
parsed corpus and evaluating it on estab-
lished similarity datasets.

1 Introduction

Current approaches to distributional semantics
generally involve representing words as points in
a high-dimensional vector space. However, vec-
tors do not provide ‘natural’ composition oper-
ations that have clear analogues with operations
in formal semantics, which makes it challenging
to perform inference, or capture various aspects
of meaning studied by semanticists. This is true
whether the vectors are constructed using a count
approach (e.g. Turney and Pantel, 2010) or an em-
bedding approach (e.g. Mikolov et al., 2013), and
indeed Levy and Goldberg (2014b) showed that
there are close links between them. Even the ten-
sorial approach described by Coecke et al. (2010)
and Baroni et al. (2014), which naturally captures
argument structure, does not allow an obvious ac-
count of context dependence, or logical inference.

In this paper, we build on insights drawn from
formal semantics, and seek to learn representa-
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tions which have a more natural logical structure,
and which can be more easily integrated with other
sources of information.

Our contributions in this paper are to introduce a
novel framework for distributional semantics, and
to describe an implementation and training regime
in this framework. We present some initial results
to demonstrate that training this model is feasible.

2 Formal Framework of Functional
Distributional Semantics

In this section, we describe our framework, ex-
plaining the connections to formal semantics, and
defining our probabilistic model. We first motivate
representing predicates with functions, and then
explain how these functions can be incorporated
into a representation for a full utterance.

2.1 Semantic Functions

We begin by assuming an extensional model struc-
ture, as standard in formal semantics (Kamp and
Reyle, 1993; Cann, 1993; Allan, 2001). In the
simplest case, a model contains a set of entities,
which predicates can be true or false of. Mod-
els can be endowed with additional structure, such
as for plurals (Link, 2002), although we will not
discuss such details here. For now, the important
point is that we should separate the representation
of a predicate from the representations of the enti-
ties it is true of.

We generalise this formalisation of predicates
by treating truth values as random variables,'

"The move to replace absolute truth values with probabil-
ities has parallels in much computational work based on for-
mal logic. For example, Garrette et al. (2011) incorporate dis-
tributional information in a Markov Logic Network (Richard-
son and Domingos, 2006). However, while their approach
allows probabilistic inference, they rely on existing distribu-
tional vectors, and convert similarity scores to weighted logi-
cal formulae. Instead, we aim to learn representations which
are directly interpretable within in a probabilistic logic.

Proceedings of the 1st Workshop on Representation Learning for NLP, pages 40-52,
Berlin, Germany, August 11th, 2016. (©2016 Association for Computational Linguistics



EEX X

Figure 1: Comparison between a semantic function and a distribution over a space of entities. The veg-
etables depicted above (five differently coloured bell peppers, a carrot, and a cucumber) form a discrete
semantic space X. We are interested in the truth ¢ of the predicate for bell pepper for an entity z € X.
Solid bars: the semantic function P(¢|z) represents how much each entity is considered to be a pepper,
and is bounded between 0 and 1; it is high for all the peppers, but slightly lower for atypical colours.
Shaded bars: the distribution P(x|t) represents our belief about an entity if all we know is that the pred-
icate for bell pepper applies to it; the probability mass must sum to 1, so it is split between the peppers,
skewed towards typical colours, and excluding colours believed to be impossible.

which enables us to apply Bayesian inference. For
any entity, we can ask which predicates are true of
it (or ‘applicable’ to it). More formally, if we take
entities to lie in some semantic space X (whose di-
mensions may denote different features), then we
can take the meaning of a predicate to be a func-
tion from X to values in the interval [0, 1], denot-
ing how likely a speaker is to judge the predicate
applicable to the entity. This judgement is variable
between speakers (Labov, 1973), and for border-
line cases, it is even variable for one speaker at dif-
ferent times (McCloskey and Glucksberg, 1978).

Representing predicates as functions allows us
to naturally capture vagueness (a predicate can be
equally applicable to multiple points), and using
values between 0 and 1 allows us to naturally cap-
ture gradedness (a predicate can be more applica-
ble to some points than to others). To use Labov’s
example, the predicate for cup is equally applica-
ble to vessels of different shapes and materials, but
becomes steadily less applicable to wider vessels.

We can also view such a function as a classifier
— for example, the semantic function for the pred-
icate for cat would be a classifier separating cats
from non-cats. This ties in with a view of concepts
as abilities, as proposed in both philosophy (Dum-
mett, 1978; Kenny, 2010), and cognitive science
(Murphy, 2002; Bennett and Hacker, 2008). A
similar approach is taken by Larsson (2013), who
argues in favour of representing perceptual con-
cepts as classifiers of perceptual input.

Note that these functions do not directly de-
fine probability distributions over entities. Rather,
they define binary-valued conditional distribu-
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tions, given an entity. We can write this as P(t|x),
where x is an entity, and ¢ is a stochastic truth
value. It is only possible to get a correspond-
ing distribution over entities given a truth value,
P(zt), if we have some background distribution
P(x). If we do, we can apply Bayes’ Rule to get
P(x|t) < P(t|x)P(x). In other words, the truth
of an expression depends crucially on our knowl-
edge of the situation. This fits neatly within a ver-
ificationist view of truth, as proposed by Dummett
(1976), who argues that to understand a sentence
is to know how we could verify or falsify it.

By using both P(t|x) and P(x|t), we can distin-
guish between underspecification and uncertainty
as two kinds of ‘vagueness’. In the first case, we
want to state partial information about an entity,
but leave other features unspecified; P(t|x) rep-
resents which kinds of entity could be described
by the predicate, regardless of how likely we think
the entities are. In the second case, we have uncer-
tain knowledge about the entity; P(x|t) represents
which kinds of entity we think are likely for this
predicate, given all our world knowledge.

For example, bell peppers come in many
colours, most typically green, yellow, orange or
red. As all these colours are typical, the semantic
function for the predicate for bell pepper would
take a high value for each. In contrast, to define
a probability distribution over entities, we must
split probability mass between different colours,?

?In fact, colour would be most properly treated as a con-
tinuous feature. In this case, P (z) must be a probability den-
sity function, not a probability mass function, whose value
would further depend on the parametrisation of the space.



and for a large number of colours, we would only
have a small probability for each. As purple and
blue are atypical colours for a pepper, a speaker
might be less willing to label such a vegetable a
pepper, but not completely unwilling to do so —
this linguistic knowledge belongs to the semantic
function for the predicate. In contrast, after ob-
serving a large number of peppers, we might con-
clude that blue peppers do not exist, purple pep-
pers are rare, green peppers common, and red pep-
pers more common still — this world knowledge
belongs to the probability distribution over enti-
ties. The contrast between these two quantities is
depicted in figure 1, for a simple discrete space.

2.2 Incorporation with Dependency Minimal
Recursion Semantics

Semantic dependency graphs have become popu-
lar in NLP. We use Dependency Minimal Recur-
sion Semantics (DMRS) (Copestake et al., 2005;
Copestake, 2009), which represents meaning as
a directed acyclic graph: nodes represent predi-
cates/entities (relying on a one-to-one correspon-
dence between them) and links (edges) repre-
sent argument structure and scopal constraints.
Note that we assume a neo-Davidsonian approach
(Davidson, 1967; Parsons, 1990), where events are
also treated as entities, which allows a better ac-
count of adverbials, among other phenomena.

For example (simplifying a little), to represent
“the dog barked”, we have three nodes, for the
predicates the, dog, and bark, and two links: an
ARG]1 link from bark to dog, and a RSTR link
from the to dog. Unlike syntactic dependencies,
DMRS abstracts over semantically equivalent ex-
pressions, such as “dogs chase cats” and “cats
are chased by dogs”. Furthermore, unlike other
types of semantic dependencies, including Ab-
stract Meaning Representations (Banarescu et al.,
2012), and Prague Dependencies (Bohmovéa et
al., 2003), DMRS is interconvertible with MRS,
which can be given a direct logical interpretation.

We deal here with the extensional fragment of
language, and while we can account for different
quantifiers in our framework, we do not have space
to discuss this here — for the rest of this paper,
we neglect quantifiers, and the reader may assume
that all variables are existentially quantified.

We can use the structure of a DMRS graph to
define a probabilistic graphical model. This gives
us a distribution over lexicalisations of the graph —

42

V]

Figure 2: A situation composed of three entities.
Top row: the entities x, y, and z lie in a semantic
space X, jointly distributed according to DMRS
links. Bottom row: each predicate c in the vocab-
ulary V' has a stochastic truth value for each entity.

given an abstract graph structure, where links are
labelled but nodes are not, we have a process to
generate a predicate for each node. Although this
process is different for each graph structure, we
can share parameters between them (e.g. accord-
ing to the labels on links). Furthermore, if we have
a distribution over graph structures, we can incor-
porate that in our generative process, to produce a
distribution over lexicalised graphs.

The entity nodes can be viewed as together rep-
resenting a situation, in the sense of Barwise and
Perry (1983). We want to be able to represent the
entities without reference to the predicates — intu-
itively, the world is the same however we choose
to describe it. To avoid postulating causal struc-
ture amongst the entities (which would be difficult
for a large graph), we can model the entity nodes
as an undirected graphical model, with edges ac-
cording to the DMRS links. The edges are undi-
rected in the sense that they don’t impose condi-
tional dependencies. However, this is still compat-
ible with having ‘directed’ semantic dependencies
— the probability distributions are not symmetric,
which maintains the asymmetry of DMRS links.

Each node takes values in the semantic space X,
and the network defines a joint distribution over
entities, which represents our knowledge about
which situations are likely or unlikely. An exam-
ple is shown in the top row of figure 2, of an entity
y along with its two arguments x and z — these
might represent an event, along with the agent and
patient involved in the event. The structure of the
graph means that we can factorise the joint distri-
bution P (x,y, z) over the entities as being pro-
portional to the product P (z,y) P (y, ).

For any entity, we can ask which predicates
are true of it. We can therefore introduce a
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Figure 3: The probabilistic model in figure 2, ex-
tended to generate utterances. Each predicate in
the bottom row is chosen out of all predicates
which are true for the corresponding entity.
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node for every predicate in the vocabulary, where
the value of the node is either true (T) or false
(L). Each of these predicate nodes has a sin-
gle directed link from the entity node, with the
probability of the node being true being deter-
mined by the predicate’s semantic function, i.e.
P (te,; = T|x) = tc(x). This is shown in the sec-
ond row of figure 2, where the plate denotes that
these nodes are repeated for each predicate c in the
vocabulary V. For example, if the situation repre-
sented a dog chasing a cat, then nodes like 4,4, 2,
Lanimal, z» and Lpyrsye,y Would be true (with high
probability), while ?gemocracy, « OF tdog, - Would be
false (with high probability).

The probabilistic model described above
closely matches traditional model-theoretic
semantics. However, while we could stop our
semantic description there, we do not generally
observe truth-value judgements for all predicates
at once;® rather, we observe utterances, which
have specific predicates. We can therefore define
a final node for each entity, which takes values
over predicates in the vocabulary, and which is
conditionally dependent on the truth values of all
predicates. This is shown in the bottom row of
figure 3. Including these final nodes means that
we can train such a model on observed utterances.
The process of choosing a predicate from the true
ones may be complex, potentially depending on
speaker intention and other pragmatic factors —
but in section 3, we will simply choose a true
predicate at random (weighted by frequency).

3This corresponds to what Copestake and Herbelot (2012)
call an ideal distribution. If we have access to such informa-
tion, we only need the two rows given in figure 2.
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The separation of entities and predicates allows
us to naturally capture context-dependent mean-
ings. Following the terminology of Quine (1960),
we can distinguish context-independent standing
meaning from context-dependent occasion mean-
ing. Each predicate type has a corresponding
semantic function — this represents its standing
meaning. Meanwhile, each predicate token has a
corresponding entity, for which there is a posterior
distribution over the semantic space, conditioning
on the rest of the graph and any pragmatic factors
— this represents its occasion meaning.

Unlike previous approaches to context depen-
dence, such as Dinu et al. (2012), Erk and Padé
(2008), and Thater et al. (2011), we represent
meanings in and out of context by different kinds
of object, reflecting a type/token distinction. Even
Herbelot (2015), who explicitly contrasts individ-
uals and kinds, embeds both in the same space.

As an example of how this separation of pred-
icates and entities can be helpful, suppose we
would like “dogs chase cats” and “cats chase
mice” to be true in a model, but “dogs chase mice”
and “cats chase cats” to be false. In other words,
there is a dependence between the verb’s argu-
ments. If we represent each predicate by a single
vector, it is not clear how to capture this. However,
by separating predicates from entities, we can have
two different entities which chase is true of, where
one co-occurs with a dog-entity ARG1 and cat-
entity ARG2, while the other co-occurs with a cat-
entity ARG1 and a mouse-entity ARG2.

3 Implementation

In the previous section, we described a general
framework for probabilistic semantics. Here we
give details of one way that such a framework
can be implemented for distributional semantics,
keeping the architecture as simple as possible.

3.1 Network Architecture

We take the semantic space X to be a set of binary-
valued vectors,* {0,1}"V. A situation s is then
composed of entity vectors e oK) ey
(where the number of entities K may vary), along
with links between the entities. We denote a link
from =™ to (™ with label [ as: z(™ L z(m).
We define the background distribution over sit-
uations using a Restricted Boltzmann Machine

“We use the term vector in the computer science sense of

a linear array, rather than in the mathematical sense of a point
in a vector space.



(RBM) (Smolensky, 1986; Hinton et al., 2006),
but rather than having connections between hidden
and visible units, we have connections between
components of entities, according to the links.
The probability of the network being in the
particular configuration s depends on the energy
of the configuration, E®(s), as shown in equa-
tions (1)-(2). A high energy denotes an unlikely
configuration. The energy depends on the edges
of the graphical model, plus bias terms, as shown
in (3). Note that we follow the Einstein sum-
mation convention, where repeated indices indi-
cate summation; although this notation is not typ-
ical in NLP, we find it much clearer than matrix-
vector notation, particularly for higher-order ten-
sors. Each link label [ has a corresponding weight
matrix W, which determines the strength of as-
sociation between components of the linked enti-
ties. The first term in (3) sums these contributions
over all links (™ 5 (™) between entities. We
also introduce bias terms, to control how likely an
entity vector is, independent of links. The second
term in (3) sums the biases over all entities 2(™).

P(s) = o (~E'(s) M)
Z = Zexp (—Eb(s')) (2)

2(m) L g(m) ()

Furthermore, since sparse representations have
been shown to be beneficial in NLP, both for ap-
plications and for interpretability of features (Mur-
phy et al., 2012; Faruqui et al., 2015), we can en-
force sparsity in these entity vectors by fixing a
specific number of units to be active at any time.
Swersky et al. (2012) introduce this RBM variant
as the Cardinality RBM, and also give an efficient
exact sampling procedure using belief propaga-
tion. Since we are using sparse representations, we
also assume that all link weights are non-negative.

Now that we’ve defined the background distri-
bution over situations, we turn to the semantic
functions ¢., which map entities x to probabilities.
We implement these as feedforward networks, as
shown in (4)-(5). For simplicity, we do not in-
troduce any hidden layers. Each predicate c has
a vector of weights 1W/(¢), which determines the
strength of association with each dimension of the
semantic space, as well as a bias term (©), These
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together define the energy E”(z, ¢) of an entity
with the predicate, which is passed through a sig-
moid function to give a value in the range [0, 1].

1
te(z) = o(—EP(z,c)) = T+ oxp (B7) 4)
—EP(z,¢) = W9z, — b/ (5)

Given the semantic functions, choosing a predi-
cate for a entity can be hard-coded, for simplicity.
The probability of choosing a predicate ¢ for an
entity = is weighted by the predicate’s frequency
fe and the value of its semantic function ¢.(z)
(how true the predicate is of the entity), as shown
in (6)-(7). This is a mean field approximation to
the stochastic truth values shown in figure 3.

Plela) = - fite@)

Zy = Z fete(z)

(6)
(N

3.2 Learning Algorithm

To train this model, we aim to maximise the likeli-
hood of observing the training data — in Bayesian
terminology, this is maximum a posteriori estima-
tion. As described in section 2.2, each data point
is a lexicalised DMRS graph, while our model de-
fines distributions over lexicalisations of graphs.
In other words, we take as given the observed
distribution over abstract graph structures (where
links are given, but nodes are unlabelled), and try
to optimise how the model generates predicates
(via the parameters VVS), b;, Wi/(c), v(©).

For the family of optimisation algorithms based
on gradient descent, we need to know the gradient
of the likelihood with respect to the model param-
eters, which is given in (8), where x € X is a latent
entity, and ¢ € V is an observed predicate (corre-
sponding to the top and bottom rows of figure 3).
Note that we extend the definition of energy from
situations to entities in the obvious way: half the
energy of an entity’s links, plus its bias energy. A
full derivation of (8) is given in the appendix.

880 log P(c) = Ey. [880 (—Eb(az))}

e [f (s)

®)
T Eap [(1 o)) 2

5y (B0

e

~Egi. [E| [(1 ~ (@) 55



There are four terms in this gradient: the first
two are for the background distribution, and the
last two are for the semantic functions. In both
cases, one term is positive, and conditioned on the
data, while the other term is negative, and repre-
sents the predictions of the model.

Calculating the expectations exactly is infeasi-
ble, as this requires summing over all possible
configurations. Instead, we can use a Markov
Chain Monte Carlo method, as typically done for
Latent Dirichlet Allocation (Blei et al., 2003; Grif-
fiths and Steyvers, 2004). Our aim is to sample
values of z and c, and use these samples to ap-
proximate the expectations: rather than summing
over all values, we just consider the samples. For
each token in the training data, we introduce a la-
tent entity vector, which we use to approximate the
first, third, and fourth terms in (8). Additionally,
we introduce a latent predicate for each latent en-
tity, which we use to approximate the fourth term
— this latent predicate is analogous to the negative
samples used by Mikolov et al. (2013).

When resampling a latent entity conditioned on
the data, the conditional distribution P(x|c) is un-
known, and calculating it directly requires sum-
ming over the whole semantic space. For this rea-
son, we cannot apply Gibbs sampling (as used in
LDA), which relies on knowing the conditional
distribution. However, if we compare two enti-
ties  and 2/, the normalisation constant cancels
out in the ratio P(2'|c)/P(z|c), so we can use
the Metropolis-Hastings algorithm (Metropolis et
al., 1953; Hastings, 1970). Given the current sam-
ple z, we can uniformly choose one unit to switch
on, and one to switch off, to get a proposal z’. If
the ratio of probabilities shown in (9) is above 1,
we switch the sample to 2’; if it’s below 1, it is the
probability of switching to z’.

P(z'lc)  ©Xp (—E*") 7
P(zle) — exp (~Eb(x)) 4-te(x)

Although Metropolis-Hastings avoids the need
to calculate the normalisation constant Z of the
background distribution, we still have the nor-
malisation constant Z, of choosing a predicate
given an entity. This constant represents the num-
ber of predicates true of the entity (weighted by
frequency). The intuitive explanation is that we
should sample an entity which few predicates are
true of, rather than an entity which many predi-
cates are true of. We approximate this constant
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by assuming that we have an independent contri-
bution from each dimension of z. We first aver-
age over all predicates (weighted by frequency), to
get the average predicate W 9. We then take the
exponential of W9 for the dimensions that we
are proposing switching off and on — intuitively,
if many predicates have a large weight for a given
dimension, then many predicates will be true of
an entity where that dimension is active. This is
shown in (10), where z and 2’ differ in dimensions
i and 7’ only, and where k is a constant.

)

We must also resample latent predicates given a
latent entity, for the fourth term in (8). This can
similarly be done using the Metropolis-Hastings
algorithm, according to the ratio shown in (11).

P(dlz) _ fote(z)
Pefr)  fete(x)

Finally, we need to resample entities from
the background distribution, for the second term
in (8). Rather than recalculating the samples from
scratch after each weight update, we used fantasy
particles (persistent Markov chains), which Tiele-
man (2008) found effective for training RBMs.
Resampling a particle can be done more straight-
forwardly than resampling the latent entities — we
can sample each entity conditioned on the other
entities in the situation, which can be done exactly
using belief propagation (see Yedidia et al. (2003)
and references therein), as Swersky et al. (2012)
applied to the Cardinality RBM.

To make weight updates from the gradients, we
used AdaGrad (Duchi et al., 2011), with exponen-
tial decay of the sum of squared gradients. We also
used L1 and L2 regularisation, which determines
our prior over model parameters.

We found that using a random initialisation is
possible, but seems to lead to a long training time,
due to slow convergence. We suspect that this
could be because the co-occurrence of predicates
is mediated via at least two latent vectors, which
leads to mixing of semantic classes in each di-
mension, particularly in the early stages of train-
ing. Such behaviour can happen with compli-
cated topic models — for example, O Séaghdha
(2010) found this for their “Dual Topic” model.
One method to reduce convergence time is to ini-
tialise predicate parameters using pre-trained vec-
tors. The link parameters can then be initialised

L~ exp (k: (I/Vl-(wg - (10)

Z
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as follows: we consider a situation with just one
entity, and for each predicate, we find the mean-
field entity vector given the pre-trained predicate
parameters; we then fix all entity vectors in our
training corpus to be these mean-field vectors, and
find the positive pointwise mutual information of
each each pair of entity dimensions, for each link
label. In particular, we initialised predicate pa-
rameters using our sparse SVO Word2Vec vectors,
which we describe in section 4.2.

4 Training and Initial Experiments

In this section, we report the first experiments car-
ried out within our framework.

4.1 Training Data

Training our model requires a corpus of DMRS
graphs. In particular, we used WikiWoods, an
automatically parsed version of the July 2008
dump of the full English Wikipedia, distributed
by DELPH-IN®. This resource was produced by
Flickinger et al. (2010), using the English Re-
source Grammar (ERG; Flickinger, 2000), trained
on the manually treebanked subcorpus WeScience
(Ytrestgl et al., 2009), and implemented with
the PET parser (Callmeier, 2001; Toutanova et
al., 2005). To preprocess the corpus, we used
the python packages pydelphin® (developed by
Michael Goodman), and pydmrs’ (Copestake et
al., 2016).

For simplicity, we restricted attention to
subject-verb-object (SVO) triples, although we
should stress that this is not an inherent limita-
tion of our model, which could be applied to ar-
bitrary graphs. We searched for all verbs in the
WikiWoods treebank, excluding modals, that had
either an ARG1 or an ARG2, or both. We kept all
instances whose arguments were nominal, exclud-
ing pronouns and proper nouns. The ERG does
not automatically convert out-of-vocabulary items
from their surface form to lemmatised predicates,
so we applied WordNet’s morphological processor
Morphy (Fellbaum, 1998), as available in NLTK
(Bird et al., 2009). Finally, we filtered out situa-
tions including rare predicates, so that every pred-
icate appears at least five times in the dataset.

As a result of this process, all data was of the
form (verb, ARG1, ARG2), where one (but not

Shttp://moin.delph-in.net/WikiWoods
*https://github.com/delph-in/pydelphin
"nttps://github.com/delph—-in/pydmrs

46

both) of the arguments may be missing. A sum-
mary is given in table 1. In total, the dataset con-
tains 72m tokens, with 88,526 distinct predicates.

Situation type No. instances
Both arguments 10,091,234
ARG]1 only 6,301,280
ARG?2 only 14,868,213
Total 31,260,727

Table 1: Size of the training data.

4.2 Evaluation

As our first attempt at evaluation, we chose to look
at two lexical similarity datasets. The aim of this
evaluation was simply to verify that the model was
learning something reasonable. We did not expect
this task to illustrate our model’s strengths, since
we need richer tasks to exploit its full expressive-
ness. Both of our chosen datasets aim to evalu-
ate similarity, rather than thematic relatedness: the
first is Hill et al. (2015)’s SimLex-999 dataset, and
the second is Finkelstein et al. (2001)’s WordSim-
353 dataset, which was split by Agirre et al. (2009)
into similarity and relatedness subsets. So far, we
have not tuned hyperparameters.

Results are given in table 2. We also trained
Mikolov et al. (2013)’s Word2Vec model on the
SVO data described in section 4.1, in order to
give a direct comparison of models on the same
training data. In particular, we used the continu-
ous bag-of-words model with negative sampling,
as implemented in Rehiifek and Sojka (2010)’s
gensim package, with off-the-shelf hyperparame-
ter settings. We also converted these to sparse vec-
tors using Faruqui et al. (2015)’s algorithm, again
using off-the-shelf hyperparameter settings. To
measure similarity of our semantic functions, we
treated each function’s parameters as a vector and
used cosine similarity, for simplicity.

For comparison, we also include the perfor-
mance of Word2Vec when trained on raw text. For
SimLex-999, we give the results reported by Hill
et al. (2015), where the 2-word window model
was the best performing model that they tested.
For WordSim-353, we trained a model on the full
WikiWoods text, after stripping all punctuation
and converting to lowercase. We used the gensim
implementation with off-the-shelf settings, except
for window size (2 or 10) and dimension (200, as
recommended by Hill et al.). In fact, our re-trained
model performed better on SimLex-999 than Hill



Model SimLex Nouns | SimLex Verbs | WordSim Sim. | WordSim Rel.
Word2Vec (10-word window) 28 A1 .69 46
Word2Vec (2-word window) .30 .16 .65 .34
SVO Word2Vec 44 18 .61 24
Sparse SVO Word2Vec 45 27 .63 .30
Semantic Functions .26 14 34 01

Table 2: Spearman rank correlation of different models with average annotator judgements. Note that we
would like to have a low score on the final column (which measures relatedness, rather than similarity).

flood | water (related verb and noun) .06
flood | water (related nouns) 43
law I lawyer (related nouns) 44
sadness / joy (near-antonyms) 17
happiness / joy (near-synonyms) 78
aunt [ uncle (differ in a single feature) | .90
cat | dog (differ in many features) 92

Table 3: Similarity scores for thematically related
words, and various types of co-hyponym.

et al. reported (even when we used less preprocess-
ing or a different edition of Wikipedia), although
still worse than our sparse SVO Word2Vec model.

It is interesting to note that training Word2Vec
on verbs and their arguments gives noticeably bet-
ter results on SimLex-999 than training on full
sentences, even though far less data is being used:
~72m tokens, rather than ~1000m. The better
performance suggests that semantic dependencies
may provide more informative contexts than sim-
ple word windows. This is in line with previous
results, such as Levy and Goldberg (2014a)’s work
on using syntactic dependencies. Nonetheless, this
result deserves further investigation.

Of all the models we tested, only our semantic
function model failed on the relatedness subset of
WordSim-353. We take this as a positive result,
since it means the model clearly distinguishes re-
latedness and similarity.

Examples of thematically related predicates and
various kinds of co-hyponym are given in table 3,
along with our model’s similarity scores. How-
ever, it is not clear that it is possible, or even de-
sirable, to represent these varied relationships on a
single scale of similarity. For example, it could be
sensible to treat aunt and uncle either as synonyms
(they refer to relatives of the same degree of re-
latedness) or as antonyms (they are “opposite” in
some sense). Which view is more appropriate will
depend on the application, or on the context.
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Nouns and verbs are very strongly distin-
guished, which we would expect given the struc-
ture of our model. This can be seen in the simi-
larity scores between flood and water, when flood
is considered either as a verb or as a noun.
SimLex-999 generally assigns low scores to near-
antonyms, and to pairs differing in a single fea-
ture, which might explain why the performance of
our model is not higher on this task. However, the
separation of thematically related predicates from
co-hyponyms is a promising result.

5 Related Work

As mentioned above, Coecke et al. (2010) and Ba-
roni et al. (2014) introduce a tensor-based frame-
work that incorporates argument structure through
tensor contraction. However, for logical inference,
we need to know how one vector can entail an-
other. Grefenstette (2013) explores one method
to do this; however, they do not show that this
approach is learnable from distributional informa-
tion, and furthermore, they prove that quantifiers
cannot be expressed with tensors.

Balkir (2014), working in the tensorial frame-
work, uses the quantum mechanical notion of a
“mixed state” to model uncertainty. However, this
doubles the number of tensor indices, so squares
the number of dimensions (e.g. vectors become
matrices). In the original framework, expressions
with several arguments already have a high dimen-
sionality (e.g. whose is represented by a fifth-order
tensor), and this problem becomes worse.

Vilnis and McCallum (2015) embed predicates
as Gaussian distributions over vectors. By assum-
ing covariances are diagonal, this only doubles
the number of dimensions (/N dimensions for the
mean, and N for the covariances). However, simi-
larly to Mikolov et al. (2013), they simply assume

8We considered the ERG predicates _flood_v_cause
and _flood_n_of, which were the most frequent predicates
in WikiWoods for flood, for each part of speech.



that nearby words have similar meanings, so the
model does not naturally capture compositionality
or argument structure.

In both Balkir’s and Vilnis and McCallum’s
models, they use the probability of a vector
given a word — in the notation from section 2.1,
P(z|t). However, the opposite conditional prob-
ability, P(t|x), more easily allows composition.
For instance, if we know two predicates are true
(t1 and t2), we cannot easily combine P(z|t;) and
P(z|t2) to get P(x|t1,t2) — intuitively, we’re gen-
erating = twice. In contrast, for semantic func-
tions, we can write P(t1, to|x) = P(t1|z)P(t2|z).

Girdenfors (2004) argues concepts should be
modelled as convex subsets of a semantic space.
Erk (2009) builds on this idea, but their model re-
quires pre-trained count vectors, while we learn
our representations directly. McMahan and Stone
(2015) also learn representations directly, consid-
ering colour terms, which are grounded in a well-
understood perceptual space. Instead of consider-
ing a single subset, they use a probability distribu-
tion over subsets: P(A|t) for A C X. This is more
general than a semantic function P(¢|x), since we
can write P(t|z) = ) 45, P(A|t). However, this
framework may be too general, since it means we
cannot determine the truth of a predicate until we
know the entire set A. To avoid this issue, they
factorise the distribution, by assuming different
boundaries of the set are independent. However,
this is equivalent to considering P(t|x) directly,
along with some constraints on this function. In-
deed, for the experiments they describe, it is suffi-
cient to know a semantic function P(¢|z). Fur-
thermore, McMahan and Stone find expressions
like greenish which are nonconvex in perceptual
space, which suggests that representing concepts
with convex sets may not be the right way to go.

Our semantic functions are similar to Cooper et
al. (2015)’s probabilistic type judgements, which
they introduce within the framework of Type The-
ory with Records (Cooper, 2005), a rich seman-
tic theory. However, one difference between our
models is that they represent situations in terms
of situation types, while we are careful to define
our semantic space without reference to any pred-
icates. More practically, although they outline
how their model might be learned, they assume we
have access to type judgements for observed situ-
ations. In contrast, we describe how a model can
be learned from observed utterances, which was

48

necessary for us to train a model on a corpus.

Goodman and Lassiter (2014) propose another
linguistically motivated probabilistic model, using
the stochastic A-calculus (more concretely, prob-
abilistic programs written in Church). However,
they rely on relatively complex generative pro-
cesses, specific to individual semantic domains,
where each word’s meaning may be represented
by a complex expression. For a wide-scale sys-
tem, such structures would need to be extended to
cover all concepts. In contrast, our model assumes
a direct mapping between predicates and seman-
tic functions, with a relatively simple generative
structure determined by semantic dependencies.

Finally, our approach should be distinguished
from work which takes pre-trained distributional
vectors, and uses them within a richer semantic
model. For example, Herbelot and Vecchi (2015)
construct a mapping from a distributional vector
to judgements of which quantifier is most appro-
priate for a range of properties. Erk (2016) uses
distributional similarity to probabilistically infer
properties of one concept, given properties of an-
other. Beltagy et al. (2016) use distributional sim-
ilarity to produce weighted inference rules, which
they incorporate in a Markov Logic Network. Un-
like these authors, we aim to directly learn in-
terpretable representations, rather than interpret
given representations.

6 Conclusion

We have introduced a novel framework for distri-
butional semantics, where each predicate is rep-
resented as a function, expressing how applica-
ble the predicate is to different entities. We have
shown how this approach can capture semantic
phenomena which are challenging for standard
vector space models. We have explained how our
framework can be implemented, and trained on a
corpus of DMRS graphs. Finally, our initial eval-
uation on similarity datasets demonstrates the fea-
sibility of this approach, and shows that themati-
cally related words are not given similar represen-
tations. In future work, we plan to use richer tasks
which exploit the model’s expressiveness.
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Appendix: Derivation of Gradients

In this section, we derive equation (8). As our
model generates predicates from entities, to find
the probability of observing the predicates, we
need to sum over all possible entities. After then
applying the chain rule to log, and expanding
P(x,c), we obtain the expression below.
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When we now apply the product rule, we will
get four terms, but we can make use of the fact
that the derivatives of all four terms are multiples
of the original term:
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This allows us to derive:
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We can now simplify using conditional proba-
bilities, and expand the derivatives of the normali-
sation constants:

Finally, we write expectations instead of sums
of probabilities:
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Abstract

We present a discussion forum assistant
based on deep recurrent neural networks
(RNNs). The assistant is trained to per-
form three different tasks when faced with
a question from a user. Firstly, to rec-
ommend related posts. Secondly, to rec-
ommend other users that might be able
to help. Thirdly, it recommends other
channels in the forum where people may
discuss related topics. Our recurrent fo-
rum assistant is evaluated experimentally
by prediction accuracy for the end-to—end
trainable parts, as well as by performing
an end-user study. We conclude that the
model generalizes well, and is helpful for
the users.

1 Introduction

Discussion forums pose an interesting setting for
human interaction. Chat systems, social media,
and customer support systems are closely related,
and in this paper, we will use the term “discus-
sion forum” for all of them. These platforms play
an increasingly important role for people, both in
their professional and personal lives. For exam-
ple, many software developers are familiar with
web services such as Stack Overflow where you
ask questions and other users can respond. Simi-
lar approaches are also used in customer support
systems, allowing for quick turnaround time and
a growing database of queries that can be made
available to customers along with their responses.

In this paper, we will discuss how an automated
system can help people make better use of ex-
isting platforms, and we propose a system that
solves some of the associated problems. More
specifically, our system helps people find their
way around a discussion forum and gives intelli-
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Figure 1: The layout of our recommendation

model. The recommendations of users and chan-
nels are modelled as two different softmax out-
put layers, attached to the end of a deep recurrent
LSTM network modelling the input.

gent suggestions on where to get the information
that they need.

The proposed system is based on deep recurrent
neural networks (RNNs) and solves three differ-
ent problems for discussion forum users. Firstly,
faced with a question from a forum user, our sys-
tem can suggest related posts from other channels
in the system, based on a similarity measure com-
puted on representations learned by a Long Short
Term Memory (LSTM) RNN (Schmidhuber and
Hochreiter, 1997). Secondly, we train a similar
network end—to—end to recommend other forum
users that might be knowledgeable about the cur-
rent question. Finally, the model is also trained to
suggest other channels where similar discussions
have been held previously.

The assistant is evaluated on data from a corpo-
rate discussion forum on the chat-platform Slack.
We show experimental results by evaluating the
generalization of our model, as well as perform-
ing and analysing a study based on collecting data
from users who interact with the discussion forum
assistant.

Proceedings of the 1st Workshop on Representation Learning for NLP, pages 53-61,
Berlin, Germany, August 11th, 2016. (©2016 Association for Computational Linguistics



2 Background

A recurrent neural network (RNN) is an artificial
neural network that can model a sequence of arbi-
trary length. The basic layout is simply a feedfor-
ward neural network with weight sharing at each
position in the sequence, making it a recursive
function on the hidden state h;. The network has
an input layer at each position ¢ in the sequence,
and the input z; is combined with the the previ-
ous internal state h;_1. In a language setting, it is
common to model sequences of words, in which
case each input z; is the vector representation of
a word. In the basic variant (“vanilla” RNN), the
transition function is a linear transformation of the
hidden state and the input, followed by a pointwise
nonlinearity.

hy = tanh(Wxt +Uhi_1 + b),

where W and U are weight matrices, and b is a
bias term.

Basic “vanilla” RNNs have some shortcomings.
One of them is that these models are unable to
capture longer dependencies in the input. Another
one is the vanishing gradient problem that affects
many neural models when many layers get stacked
after each other, making these models difficult to
train (Hochreiter, 1998; Bengio et al., 1994).

The Long Short Term Memory
(LSTM) (Schmidhuber and Hochreiter, 1997) was
presented as a solution to these shortcomings. An
LSTM is an RNN where the layer at each timestep
is a cell that contains three gates controlling what
parts of the internal memory will be kept (the
forget gate f;), what parts of the input that will be
stored in the internal memory (the input gate 7;),
as well as what will be included in the output (the
output gate o). In essence, this means that the
following expressions are evaluated at each step in
the sequence, to compute the new internal mem-
ory ¢; and the cell output h;. Here “©” represents
element-wise multiplication.

oWz, + UDpy_y + b0,

iy =
fi =Wz + UDpy_y + b)),
0 = U(W(O)xt +U9hy + 5(0))>
u; = tanh(W ™z, + U™ hy_y + b)),

=1 ©Qup + fr ©ce_1,

ht =0+ ©® tanh(ct). (1)
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Figure 2: A recurrent neural language model. At
each input x;, the model is trained to output a pre-
diction y; of the next token in the sequence, ;1.
In this paper, each block is a deep LSTM cell,
and the network is trained using backpropagation
through time (BPTT).

LSTM networks have been used successfully
for language modelling (predicting the distribution
of the word following after a given sequence) (see
Figure 2), sentiment analysis (Tang et al., 2015),
textual entailment (Rocktidschel et al., 2016), and
machine translation (Sutskever et al., 2014). In the
following section, we will see that the learned fea-
tures are also suitable for relating forum posts to
each other, and as a building block for the recom-
mendation system in our virtual forum assistant.

3 The Recurrent Forum Assistant

In this section, we present a virtual forum assistant
built using LSTM networks.

The assistant solves three different tasks in a
discussion forum at an IT consultant organization.
The forum is used internally and contains discus-
sions regarding both technical topics and more
everyday issues. When a user enters a question
(defined simply by containing a question mark),
the assistant produces one output corresponding
to each task, and posts this back to the channel
where the question was asked. The first task is
recommending forum posts, the goal of which is
to suggest related posts that might be of help to
the user. The second task is to recommend other
forum users that are suited to answer the question,
and the third task is to suggest other forum chan-
nels where you could look for an answer to the
question. See Figure 3 for an illustration of the
assistant in action.

All three tasks are solved using the same un-
derlying model, a deep recurrent LSTM network
initially pretrained as a language model (see Fig-
ure 2). The pretraining is first performed us-
ing a general corpus (Wikipedia), and then using



the posts from the discussion forum. Finally the
model is trained in a supervised fashion to perform
the recommendation tasks (see Figure 1).

The following sections will go through how the
agent solves the three different tasks.

3.1 Recommending Related Posts

The subsystem for recommending related forum
posts works by first feeding each post p through
the recurrent network to compute the final internal
representation, 7, = cr (see Equation 1). The fo-
rum post representations are then compared using
cosine similarity to get a similarity score between
different forum posts:

1 -T9

Iralllirall

)

sim(ri,re) =

When posed with a question g from a user, the as-
sistant finds the post p that maximizes sim(q, p).

Representing the posts using the internal repre-
sentations learned by a recurrent neural network
has a number of benefits. Firstly, we can repre-
sent a sequence of arbitrary length. Secondly, the
structure of the LSTM cells gives us a model that
takes into account the order of the words.

3.2 End-to-End Learning of
Recommendations

The second part of our virtual forum assistant is
trained in an end-to—end fashion with the aim
of recommending relevant (a) forum users, and
(b) forum channels that might be of help to the
user.

The recommendation model is built on the post
recommendation model, and hence first pretrained
as a language model. In order to recommend users
and forum channels, we attach two multiclass clas-
sification output layers to our recurrent neural net-
work (see Figure 1 on page 1). These are softmax
layers with the number of outputs corresponding
to the number of users and the number of channels
in the forum, respectively. During training, the au-
thor of each post is assigned as the target value
for the user recommendation layer. Similarly, the
channel in which the post was made, is assigned
as the target value for the channel recommenda-
tion layer. This means that we can get recommen-
dations for forum posts, forum users, and forum
channels at the same time, from the same source
forum post, using the same underlying model.
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Figure 3: Screenshot of the Slack user interface
when asking a question to which the recurrent as-
sistant provides responses. Names and usernames
have been anonymized.

4 Experimental Setup

This section explains the setup of the empirical
study of our model. How it is designed, trained,
and evaluated.

4.1 Model Layout

The same recurrent neural network is used both in
the forum post recommendation step and for the
recommendations for users and channels. We use
a deep recurrent neural network with LSTM cells.
The depth of the network is 2, and we use 650 hid-
den units in the LSTM cells.

For the pretraining phase, the output layer of
the model is a softmax layer with 45985 outputs
(the number of words in the vocabulary). For the
user and channel recommendations, two softmax
layers are attached to the last output of the recur-
rent network, one for user recommendations and
one for channel recommendations (see Figure 1 on
page 1). As pretraining, only the language model
is trained. Then, both the recommendation output
layers are trained simultaneously.



4.2 Baselines

For the related forum post recommendations,
a baseline was implemented and evaluated
using precomputed word embeddings from
Word2Vec! (Mikolov et al., 2013). The precom-
puted model contains 300 dimensional vectors for
3 million words that were trained on the Google
News corpus. For each post, a representation
was computed by simply summing the vectors
for each word. The forum post representations
were then compared using cosine similarity (see
Equation 2).

For forum user and channel recommendations,
the baseline reported is a naive solution, consis-
tently recommending the same top-2 items; the
items that maximizes the score, i.e. the 2 most
common targets.

4.3 Datasets

Two datasets were used during the training; the
English Wikipedia and data exported from a fo-
rum on the Slack platform.

The Wikipedia data was used to prime the
model with generic English language. For this,
the complete dump from 20150315 was used?.
The dump was cleaned using Wiki-Extractor’, and
then tokenized using the Punkt tokenizer in Python
NLTK.

In the discussion data from Slack, we collected
all public posts made by an IT consultant organi-
zation. The discussions contain questions and an-
swers about programming practices; different li-
braries and languages and what they are best suited
for. The nature of the discussions are similar to
that of the well known online system Stack Over-
flow*, where software developers ask questions
and anyone can respond. In both environments,
the responses can then receive feedback and reac-
tions.

At the time of exporting data from Slack, this
forum contained 1.7 million messages written by
799 users in 664 channels. Many of these are pri-
vate messages that were not used in this work.
Non-public messages, inactive users (having au-

'https://code.google.com/p/word2vec/
https://dumps.wikimedia.org/
Shttps://github.com/bwbaugh/
wikipedia-extractor
*nttps://stackoverflow.com/
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Figure 4: T-SNE projections of forum post repre-
sentations.

Top: posts are represented as a sum of embed-
dings from Word2Vec over the words in each post.
Bottom: the internal state of an LSTM network is
used as the representation.

The posts were taken from a discussion channel
about mobile app development. You can see that
while the word-embedding sum baseline are all
clustered together, the representations created us-
ing LSTMs result in easily separable clusters.

thored less than 10 posts) and channels with fewer
than 50 messages were removed, leaving 184.637
public messages, 660 users, and 321 channels that
were used for training. The messages were in av-
erage 17 words long (minimum 0 and maximum
1008). A random split was made, reserving 369
posts for the validation set, and a separate ex-
port of data from the following month, resulted in
14.000 posts for the (separate) test set.



Cosine (a) Word Embedding Baseline
0.854 Having a edge on differen javascript frameworks would be very cool. We could have multi-
ple [...]
0.848 So I have a lot of javascript that will be used across about 40 sites. [...]
0.842 Hey guys! Me myself and <user> are having a discussion regarding using Typescript with
Angular.js [...]
Cosine (b) Recurrent Forum Assistant
0.927 can someone recommend testing frameworks for Python?
0.921 Does anyone have experience in using Zend Server (for debugging) with Eclipse?
0.918 are you using any framework? such as phpspec?

Table 1: Top 3 responses from (a) the baseline method (see Section 4.2), (b) the recurrent forum assistant,
when asking the question: “Do we have any experience with using angular and javascript two way
databinding?”. The first 15 words of each post was included.

4.4 Training

Preliminary results showed that training the model
on the discussion forum data alone was not enough
to give good suggestions of related posts. Given
the limited nature of this data, we decided to
pretrain the model (as a language model) us-
ing one pass through the whole Wikipedia dump.
The model was then trained for 39 epochs as
a language model on the discussion data from
Slack, whereafter finally the two recommenda-
tion output layers (for forum user recommenda-
tions and forum channel recommendations) were
trained simultaneously for 19 epochs. Using the
Wikipedia pretraining substantially improved the
performance of the system. Training time was de-
cided using early stopping (Wang et al., 1994).

Training was done with backpropagation
through time (BPTT) and minibatch stochastic
gradient descent.

Training the user recommendation classification
was done by having the author of each forum post
as the classification target. Similarly, the train-
ing target for the forum channel classification was
the channel in which the corresponding post was
made.

4.5 Evaluation

To evaluate the performance of the proposed vir-
tual assistant system, two different approaches
were used. Firstly, a separate test set (see Sec-
tion 4.3) was constructed to evaluate the gener-
alization of the model in the user and channel
recommendations. Secondly, a user study was
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performed, evaluating actual performance of the
agent in a live setting in the live system with users
interacting with it.

When evaluating the recommendations pro-
duced by the assistant on the held—out test set, sev-
eral recommendations could be reasonable choices
to any one question. Therefore, we employed a
top-2 testing approach, where the system was al-
lowed to produce two recommendations for each
query. If the correct target was one of the two rec-
ommendations, it was counted as “correct”. The
top-2 evaluation also reflects the live implementa-
tion of our system, where two recommendations
are always produced.

In the user study, the agent collected a number
of data-points for the evaluation after each recom-
mendation produced. These included an identifier
of the questioner, the agent’s response, a times-
tamp, what kind of recommendation that the agent
provided (posts, users, or channels), and a list of
reactions that was provided by the users towards
the agent’s action. Positive and negative reactions
were then counted and reported, as well as recom-
mendations from the assistant that did not receive
any user reactions. Along with each recommen-
dation, the assistant encourages users to provide
reactions to them (see Figure 3).

For the post recommendations in the user study,
each question was served either by the LSTM state
representation, or by the word embedding repre-
sentation baseline, randomly picked with equal
probability.



5 Results

This section presents the results of the experimen-
tal evaluation of the recurrent forum assistant.

Table 1 shows example forum post recommen-
dation outputs from the assistant using (a) the
word-embedding sum representations, and (b) the
LSTM representations when posed with the
example question:

“Do we have any experience with using an-
gular and javascript two way databinding?”.

We present the top-3 outputs from the word-
embedding baseline method and from the
recurrent forum assistant, along with the cosine
similarity to the representation for the question.

For recommending forum users and channels,
we report accuracy scores for the test set (see
Table 3). The accuracy score is the percentage
of recommendations performed on the previously
unseen test-set, compared to the naive baseline
of consistently recommending the top-2 users or
channels respectively; the fixed recommendation
that maximizes the score.

We also report results from the user study (see
Table 2). For each recommendation that the as-
sistant post in the forum, positive and negative re-
actions are counted. If more than 60 minutes go
without a reaction, we count this as one “No re-
action”. Hence, you can get more than one posi-
tive reaction and more than one negative reaction
for each recommendation, but only one “No reac-
tion”.

In total, 123 reactions were collected in the user
study.

6 Related Work

Machines that can communicate with humans in
natural language have fascinated people a long
time. Alan Turing defined and gave name to a test
that he meant aimed to measure a machine’s abil-
ity to exhibit intelligent behavior (Turing, 1950).
Taking place in a chat setting, the task is for the
machine to appear like a human to a panel of
judges. The test has been debated by some for not
measuring intelligent behavior at all. However, the
topic is at the heart of artificial intelligence, and a
machine that can communicate in natural language
is not only fascinating, but can also be very useful.
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Positive  Negative No reaction
Users 70.4% 6.1% 23.5%
Channels 80.9% 4.8% 14.3%
Posts LSTM 42.1% 47.4% 10.5%
Posts W2V 35.7% 57.1% 7.1%

Table 2: The results from the live user study. Per-
centage is based on the total number of reactions
to the agent’s actions (and an action from the agent
that resulted in no reaction from users is counted
as “no reaction”). For users and channels recom-
mendations most reactions are positive, suggesting
that our assistant is useful to the forum users.

User Channel
Recurrent assistant 14.39% 22.01%
Naive baseline 2.46% 5.54%

Table 3: Accuracy of the recommendations from
the agent regarding forum users and channels, re-
spectively, on the separate test set. The proposed
assistant beats the naive baseline by a large mar-
gin.

There has been a number of different ap-
proaches to neural representations of sentences
and documents. A common way of representing
sequences of words is to use some form of word
embeddings, and for each word in the sequence,
do an element-wise addition (Mitchell and Lap-
ata, 2010). This approach works well for many
applications, such as phrase similarity and multi-
document summarization (Mogren et al., 2015),
even though it disregards the order of the words.
Paragraph vectors (Le and Mikolov, 2014) trains
a model to predict the word following a sequence.
The paragraph vectors are trained, using gradient
descent, at the same time as the word vectors in the
model. Our approach for embedding forum posts
(as described in Section 3) is more similar to (Cho
et al., 2014), where the authors use a recurrent
LSTM network for machine translation, by encod-
ing an input sequence into a fixed representation
which is then decoded into a sequence in another
language. Other approaches have been using con-
volutional neural networks (Blunsom et al., 2014),
and sequential denoising autoencoders (Hill et al.,
2016).



Dialog systems, also known as conversational
agents, typically focus on learning to produce a
well-formed response, and put less emphasis on
the message that they convey in their responses.
Partially observed Markov descision processes
(POMDPs) have been applied to this task (Young
et al,, 2013), but they typically require hand-
crafted features. (Sordoni et al., 2015) used a
recurrent encoder—decoder model to perform re-
sponse generation from questions as input, and
training the model using two posts as input and the
following response as target. (Serban et al., 2016)
presented a dialog system built as a hierarchical
recurrent LSTM encoder—decoder, where the dia-
logue is seen as a sequence of utterances, and each
utterance is modelled as a sequence of words.

QA systems attempt to give the answer to a
question given a knowledgebase as input. (Her-
mann et al., 2015) used LSTM networks with an
attention mechanism to answer questions about an
input text. (Bordes et al., 2015) used memory net-
works to answer questions with data from Free-
base.

7 Discussion

The results in the empirical evaluation of the sys-
tem proposed in this paper show some interesting
points.

The accuracy of the model on the test set (see
Table 3) shows that the model beats the naive base-
line by a large margin for forum user and chan-
nel recommendations. Since we employed a top-
2 testing approach (see Section 4.5), the baseline
system were allowed to recommend the two most
frequent targets, resulting in a score of 2.46% and
5.54%, for user and channel recommendations, re-
spectively. However, with the corresponding accu-
racy scores of 14.39% and 22.01% for the recur-
rent forum assistant, we have a solid improvement.

The user study (see Table 2) shows that fo-
rum users give positive reactions to most recom-
mendations made by the recurrent assistant when
recommending forum users and channels (70.4%
and 80.9%, respectively). Some recommendations
did not receive any reactions, and although peo-
ple were encouraged to give reactions, it is hard to
say what the reason is for the missing ones. How-
ever, even if you interpret each missing reaction
as one negative reaction, the positive reactions are
still many more.
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For the related post recommendations, the num-
ber of positive user reactions are much lower
(42.1% and 35.7%, respectively). We note that
the two evaluated methods for representing forum
posts give recommendations of comparable qual-
ity. You can see in the examples in Table 1 that
using the LSTM state to represent forum posts re-
sults in a system that is able to generalize very
well, which might be desirable or not depending
on application. The system finds responses that
are less specific compared to the ones found by
using the word embedding representations. This
seems like a reasonable result from a network that
was trained as a language model. E.g: a language
model will compute a similar distribution over the
next word after observing the word “Python”, as
compared to observing the word “Java”. In a fo-
rum post recommendation system, however, the
difference between the two are crucial. Even if
the network was in the end trained to recommend
users and channels (something that we presumed
would help learn features that were well suited
also for the forum post recommendations), per-
haps some other strategy for training the network,
using more direct feedback from the learning ob-
jective, would work better for this task.

Figure 4 shows clustering of forum posts cre-
ated with T-SNE, using (top) word-embedding
representations, and (bottom) LSTM representa-
tions. The bottom plot shows how forum posts are
clearly separated into clusters based on the LSTM
representations, but this technique seems unable
to separate the posts into clusters using word-
embeddings. We believe that the reason might
be connected to the observation in previous para-
graph, as the LSTM representations are trained us-
ing a different objective.

In this paper, we stated the problem (and the
three subproblems) as the task of finding relevant
information (posts, users, and channels) whithin
the current forum. The same approach can be used
to find things from other sources. In the same
setting, recommending posts in other forums, or
pages on Wikipedia would be reasonable choices.
In a customer support setting, a database of pre-
defined statements or solution suggestions would
be more suitable. With subtle changes to the im-
plementation, the system can learn to choose from
a number of output templates, and then fill in the
related information from the context.



8 Conclusions

In this paper, we have proposed a virtual assistant
for discussion forum users, built using deep recur-
rent neural networks with LSTM cells. Our solu-
tion relies heavily on learning useful representa-
tions for the data in discussion forums.

We found that using the representations from a
deep recurrent neural network can be useful for the
retrieval of relevant posts. However, in this par-
ticular task we found that using a representation
based on summing word-embeddings works com-
parably well. We also found that pretraining the
RNN as a language model with a general corpus
such as Wikipedia gave substantially better sug-
gestions of related posts.

Given an input question, the proposed model
is able to give good recommendations for forum
users and forum channels. This is evaluated both
as a prediction task on an unseen test-set, and in a
user study where we measure user reactions when
interacting with our assistant.

Our joint model learns to produce recommenda-
tions for both users and channels, and generalize
well to unseen data.

Our results from the user study clearly shows
that the users find the suggestions from the assis-
tant to be positive and useful. More experiments
and A/B testing is left for future work to determine
how the assistant can create the most useful sug-
gestions.

In this work, we have taken an approach that
we have not seen in previous work. Our aim was
to create a useful virtual assistant for professional
users of a discussion forum in an IT organization,
and to help point users in the right directions for
further reading. Vast amounts of knowledge can
potentially reside inside a discussion platform, but
the tools for navigating it are often primitive at
best. We have seen that some of the tasks oth-
erwise performed by helpful forum members can
also be performed by a virtual recurrent forum as-
sistant.

8.1 Future Work

Even though we have presented ways to learn
good representations to perform recommendations
of forum users and channels, more research is
needed to find out how to best learn the represen-
tations for the post recommendation task.

We are currently working on a complete con-
versational agent that generates responses using a
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sequence—to—sequence learning approach with an
attention mechanism. We believe that this, in com-
bination with using external sources of informa-
tion such as Wikipedia pages or databases contain-
ing information for customer support, can result in
a promising virtual assistant.

Another exciting direction for this research will
be to use the collected data from user reactions and
create a model using deep reinforcement learning
that can improve as it collects more data.

Acknowledgments

This work has been done within the project “Data-
driven secure business intelligence”, grant 1IS11-
0089 from the Swedish Foundation for Strategic
Research (SSF).

References

Yoshua Bengio, Patrice Simard, and Paolo Frasconi.
1994. Learning long-term dependencies with gra-
dient descent is difficult. Neural Networks, IEEE
Transactions on, 5(2):157-166.

Phil Blunsom, Edward Grefenstette, and Nal Kalch-
brenner. 2014. A convolutional neural network for
modelling sentences. In Proceedings of the 52nd
Annual Meeting of the Association for Computa-
tional Linguistics. Proceedings of the 52nd Annual
Meeting of the Association for Computational Lin-
guistics.

Antoine Bordes, Nicolas Usunier, Sumit Chopra, and
Jason Weston. 2015. Large-scale simple ques-
tion answering with memory networks. CoRR,
abs/1506.02075.

Kyunghyun Cho, Bart van Merrienboer, aglar Glehre,
Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. In Alessandro
Moschitti, Bo Pang, and Walter Daelemans, editors,
EMNLP, pages 1724—-1734. ACL.

Karl Moritz Hermann, Tomas Kocisky, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett,
editors, Advances in Neural Information Processing
Systems 28, pages 1693—1701. Curran Associates,
Inc.

. Hill, K. Cho, and A. Korhonen. 2016. Learning
Distributed Representations of Sentences from Un-
labelled Data. ArXiv e-prints, February.

Sepp Hochreiter.  1998.  The vanishing gradient
problem during learning recurrent neural nets and



problem solutions. [International Journal of Un-
certainty, Fuzziness and Knowledge-Based Systems,
6(02):107-116.

Quoc Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In Tony
Jebara and Eric P. Xing, editors, Proceedings of the
31st International Conference on Machine Learning
(ICML-14), pages 1188-1196. IMLR Workshop and
Conference Proceedings.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In ICLR.

Jeff Mitchell and Mirella Lapata. 2010. Composition
in distributional models of semantics. Cognitive sci-
ence, 34(8):1388-1429.

Olof Mogren, Mikael Kagebick, and Devdatt Dub-
hashi. 2015. Extractive summarization by aggre-
gating multiple similarities. In Recent Advances in
Natural Language Processing, page 451.

Tim Rocktischel, Edward Grefenstette, Karl Moritz
Hermann, Tomas Kocisky, and Phil Blunsom. 2016.
Reasoning about entailment with neural attention.
In International Conference on Learning Represen-
tations.

Jirgen Schmidhuber and Sepp Hochreiter.  1997.
Long short-term memory. Neural computation,
7(8):1735-1780.

Tulian Vlad Serban, Alessandro Sordoni, Yoshua Ben-
gio, Aaron C. Courville, and Joelle Pineau. 2016.
Building end-to-end dialogue systems using gener-
ative hierarchical neural network models. In Dale
Schuurmans and Michael P. Wellman, editors, AAAI,
pages 3776-3784. AAAI Press.

Alessandro Sordoni, Michel Galley, Michael Auli,
Chris Brockett, Yangfeng Ji, Margaret Mitchell,
Jian-Yun Nie, Jianfeng Gao, and Bill Dolan. 2015.
A neural network approach to context-sensitive gen-
eration of conversational responses. In Rada Mi-
halcea, Joyce Yue Chai, and Anoop Sarkar, editors,
HLT-NAACL, pages 196-205. The Association for
Computational Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems, pages 3104-3112.

Duyu Tang, Bing Qin, and Ting Liu. 2015. Docu-
ment modeling with gated recurrent neural network
for sentiment classification. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 1422-1432.

Alan M Turing. 1950. Computing machinery and in-
telligence. Mind, 59(236):433-460.

61

C. Wang, S. S. Venkatesh, and J. S. Judd. 1994. Op-
timal stopping and effective machine complexity in
learning. In Advances in Neural Information Pro-
cessing Systems 6. Morgan Kaufmann.

Stephanie Young, Milica Gasic, Blaise Thomson, and
John D Williams. 2013. Pomdp-based statistical
spoken dialog systems: A review. Proceedings of
the IEEE, 101(5):1160-1179.



Adjusting Word Embeddings with Semantic Intensity Orders

Joo-Kyung Kim', Marie-Catherine de Marneffe!, Eric Fosler-Lussier'
fDepartment of Computer Science and Engineering,
iDepartment of Linguistics,

The Ohio State University,

Columbus, Ohio 43210, USA
kimjook@cse.ohio-state.edu,mcdm@ling.ohio-state.edu,
fosler@cse.ohio-state.edu

Abstract

Semantic lexicons such as WordNet and
PPDB have been used to improve the
vector-based semantic representations of
words by adjusting the word vectors.
However, such lexicons lack semantic in-
tensity information, inhibiting adjustment
of vector spaces to better represent seman-
tic intensity scales. In this work, we ad-
just word vectors using the semantic inten-
sity information in addition to synonyms
and antonyms from WordNet and PPDB,
and show improved performance on judg-
ing semantic intensity orders of adjective
pairs on three different human annotated
datasets.

1 Introduction

Word embedding models that represent words
as real-valued vectors have been directly used
in word-level NLP tasks such as word similar-
ity (Mikolov et al.,, 2013b), antonym detection
(Ono et al., 2015; Pham et al.,, 2015; Chen
et al., 2015), knowledge relations (Toutanova et
al., 2015; Socher et al., 2013; Bordes et al.,
2013), and semantic scale inference (Kim and de
Marneffe, 2013). Word embedding models such
as Word2Vec (continuous bag-of-words (CBOW)
and skip-gram) (Mikolov et al., 2013a) and GloVe
(Pennington et al., 2014), widely used to gener-
ate word vectors, are trained following the distri-
butional hypothesis (Harris, 1954) which assumes
that the meaning of words can be represented by
their context.

However, word embedding models based solely
on the distributional hypothesis often place words
improperly in vector spaces. For example, in a
vector space, a word and its antonym should be
sufficiently far apart, but they can be quite close
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because they can have similar contexts in many
cases.

For better semantic representations, different
approaches using semantic lexicons as well as lex-
ical knowledge to adjust word vectors have re-
cently been introduced. Faruqui et al. (2015)
adjusted each word vector to be in the middle
between the initial position and its synonymous
words. Mrksi¢ et al. (2016) used max-margin
approaches to adjust each word vector with syn-
onyms and antonyms while keeping the relative
similarities to the neighbors. While these two ap-
proaches are post-processing models that adjust
preexisting word vectors, Ono et al. (2015), Pham
et al. (2015), and Liu et al. (2015) jointly train
models that augment the skip-gram (Mikolov et
al., 2013a) objective function to include knowl-
edge from semantic lexicons. The common goal
in these approaches is to make semantically close
words closer and semantically distant words far-
ther apart while keeping each word vector not to
be too far from the original position. Although
the joint training models can even indirectly adjust
words that are not listed in the semantic lexicons
(Pham et al., 2015), the post-processing models
are much more efficient and can be applied to word
vectors from any kinds of models, which can even-
tually perform better than the joint training models
(Mrksic et al., 2016).

Although Faruqui et al. (2015), Mrksi¢ et al.
(2016), Ono et al. (2015), Pham et al. (2015),
and Liu et al. (2015)’s adjustment approaches have
been shown to represent word semantics better
in vector spaces, their coarse modeling of words
as synonyms or antonyms may be insufficient for
modeling words lying along a semantic intensity
scale. For example, assume that “great” is er-
roneously between “bad” and “good” in a vec-
tor space (“bad” should be closer to “good” than
“great”). Since semantic lexicons such as Word-
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Net (Fellbaum, 1998) and the Paraphrase Database
(PPDB) (Pavlick et al., 2015) only inform us that
“good” and “great” are semantically similar and
“good” is semantically opposite to “bad”, adjust-
ing word vectors with those semantic lexicons
does not permit to retrieve the appropriate seman-
tic intensity ordering: 