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Introduction

We are excited to welcome you to this year’s SIGDIAL Conference, the 16th Annual Meeting of the
Special Interest Group on Discourse and Dialogue. We are pleased to hold the conference this year in
Prague, Czech Republic, on September 2nd-4th, in close proximity to INTERSPEECH 2015.

The SIGDIAL conference remains positioned as the publication venue for research under the broad
umbrella of discourse and dialogue. This year, the program includes oral presentations and poster
sessions on Dialogue Management, Discourse Strategy, Perspective and Point of View, and New
Directions. SIGDIAL 2015 also hosts a special session entitled MultiLing 2015: Multilingual
Summarization of Multiple Documents, organized by George Giannakopoulos. The papers from this
special session that appear in the proceedings were submitted and reviewed as regular SIGDIAL papers,
and cleared the same high bar for quality. Papers not accepted through the regular review process are not
included in the proceedings, but were still invited to be presented as posters in the special session. Due
to the success of last year’s special session, this is the second year SIGDIAL has issued a general call for
special sessions.

We received a record breaking number of submissions this year, 136 complete submissions altogether,
which included 79 long papers, 42 short papers and 15 demo descriptions—from a broad, international
set of authors. Additionally, 2 papers were submitted and then withdrawn, and 1 was rejected without
review due to being out of scope. All papers received 3 reviews. We carefully considered both the
numeric ratings and the tenor of the comments, both as written in the reviews, and as submitted in
the discussion period, in making our selection for the program. Overall, the members of the Program
Committee did an excellent job in reviewing the submitted papers. We thank them for the important role
their reviews have played in selecting the accepted papers and for helping to maintain the high quality
of the program. In line with the SIGDIAL tradition, our aim has been to create a balanced program that
accommodates as many favorably rated papers as possible.

This year’s SIGDIAL conference runs 2.5 days as it did in 2014, with the special session being held on
the second day. Of the 79 long paper submissions: 14 were accepted as long papers for oral presentation,
21 were accepted as long papers for poster presentation. Of the 42 short paper submissions, 17 were
accepted for poster presentation, for a total of 38 posters. There were 7 demonstration papers that were
accepted. 3 of the long papers and 4 of the short papers accepted for poster presentation were accepted
for publication to appear in the MULTILING Special Session.

We enthusiastically thank the two keynote speakers, Dilek Hakkani-Tur (Microsoft Research, USA) and
Frank Fischer (Ludwigs Maximilian Universitit Miinchen) and for their contributions to research on
discourse and dialogue systems, and we look forward to their keynote talks!

We offer our thanks to Svetlana Stoyanchev, Mentoring Chair for SIGDIAL 2015, for her dedicated work
on coordinating the mentoring process, just as last year. The goal of mentoring is to assist authors of
papers that contain important ideas but lack clarity. Mentors work with the authors to improve English
language usage or paper organization. This year, 3 of the accepted papers were mentored. We thank the
Program Committee members who served as mentors: Pamela Jordan, Jason Williams, and Heriberto
Cuayahuitl.

We extend special thanks to our local arrangements chair, Filip Jurcicek, and his team Libuse Brdickova,
Ondrej Dusek, Lukas Zilka, and Ahmad Agha Ebrahimian. We know SIGDIAL 2015 would not have
been possible without Filip and his team, who invested so much effort in arranging the conference
hotel venue and accommodations, handling registration, making banquet arrangements, and handling
numerous other preparations for the conference. The student volunteers for on-site assistance also
deserve our appreciation.
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Kristy Boyer, Sponsorships Chair, has earned our appreciation for recruiting and liaising with our
conference sponsors, many of whom continue to contribute year after year. The sponsorship program
enables valuable aspects of the program, such as the invited speakers, conference reception and dinner. In
recognition of this, we gratefully acknowledge the support of our sponsors: Educational Testing Service,
Interactions, Microsoft Research, Honda Research Institute, Mitsubishi Electric Research Laboratories,
and Turnitin/LightSide. At the same time, we thank Priscilla Rasmussen at the ACL for tirelessly
handling the financial aspects of sponsorship for SIGDIAL 2015, and for securing our ISBN on a
moment’s notice!

We also thank the SIGdial board, especially officers, Jason Williams, Amanda Stent and Kristiina Jokinen
for their advice and support from beginning to end. We especially appreciate Jason’s substantial, prompt
and patient replies to numerous questions along the way.

Finally, we thank all the authors of the papers in this volume, and all the conference participants for
making this stimulating event a valuable opportunity for growth in research in the areas of dialogue and
discourse.

Alexander Koller and Gabriel Skantze,
General Co-Chairs

Masahiro Araki and Carolyn Penstein Rosé,
Technical Program Co-Chairs

v



SIGDIAL 2014

General Co-Chairs:

Alexander Koller, University of Potsdam, Germany
Gabriel Skantze, KTH Royal Institute of Technology, Sweden

Technical Program Co-Chairs:

Masahiro Araki, Kyoto Institute of Technology, Japan
Carolym Penstein Rosé, Carnegie Mellon University, United States

Local Chair:
Filip Jurcicek, Charles Univeristy, Czech Republic

Mentoring Chair:

Svetlana Stoyancheyv, Interactions Corporation, United States

Sponsorship Chair:
Kristy Boyer, University of Florida, United States

SIGdial Officers:

President: Amanda Stent, Yahoo! Labs, United States
Vice President: Jason D. Williams, Microsoft Research, United States
Secretary/Treasurer: Kristiina Jokinen, University of Helsinki, Finland

Program Committee:

Jan Alexandersson, DFKI GmbH, Germany
Masahiro Araki, Kyoto Institute of Technology, Japan
Yasuo Ariki, Kobe University, Japan
Ron Artstein, USC Institute for Creative Technologies, United States
Timo Baumann, Universitit Hamburg, Germany
Frederic Bechet, Aix Marseille Universite - LIF/CNRS, France
Steve Beet, Aculab plc, United Kingdom
Jose Miguel Benedi, Universitat Politecnica de Valéncia, Spain
Nicole Beringer, Germany
Nate Blaylock, Nuance Communications, Canada
Dan Bohus, Microsoft Research, United States
Johan Boye, KTH, Sweden
Kristy Boyer, University of Florida, United States
Christophe Cerisara, CNRS, France
Joyce Chai, Michigan State University, United States
Mark Core, University of Southern California, United States
Paul Crook, Microsoft Corporation, United States
Heriberto Cuayahuitl, Heriot-Watt University, United Kingdom
Xiaodong Cui, IBM T. J. Watson Research Center, United States
David DeVault, USC Institute for Creative Technologies, United States
Barbara Di Eugenio, University of Illinois at Chicago, United States
Giuseppe Di Fabbrizio, Amazon.com, United States

v



Dimitrios Dimitriadis, IBM Watson, United States

Myroslava Dzikovska, University of Edinburgh, United Kingdom
Jens Edlund, KTH Speech, Music and Hearing, Sweden

Arash Eshghi, Heriot-Watt University, United Kingdom

Keelan Evanini, Educational Testing Service, United States
Mauro Falcone, Fondazione Ugo Bordoni, Italy

Benoit Favre, Aix-Marseille University LIF/CNRS, France
Raquel Fernandez, ILLC, University of Amsterdam, Netherlands
Kotaro Funakoshi, Honda Research Institute Japan Co., Ltd., Japan
Claire Gardent, CNRS/LORIA, France

Kallirroi Georgila, USC Institute for Creative Technologies, United States
Agustin Gravano, Universidad de Buenos Aires, Argentina

Nancy Green, University of North Carolina Greensboro, United States
Curry Guinn, University of North Carolina Wilmington, United States
Joakim Gustafson, KTH, Sweden

Dilek Hakkani-Tur, Microsoft Research, United States

Mark Hasegawa-Johnson, University of Illinois, United States
Helen Hastie, Heriot-Watt University, United Kingdom

Peter Heeman, OHSU / CSLU, United States

Ryuichiro Higashinaka, NTT Media Intelligence Labs, Japan
Keikichi Hirose, University of Tokyo, Japan

Anna Hjalmarsson, Speech, Music and Hearing, KTH, Sweden
David Janiszek, Université Paris Descartes, France

Kristiina Jokinen, University of Helsinki, Finland

Arne Jonsson, Linkdping University, Sweden

Pamela Jordan, University of Pittsburgh, United States

Tatsuya Kawahara, Kyoto University, Japan

Simon Keizer, Heriot-Watt University, United Kingdom

Norihide Kitaoka, Nagoya University, Japan

Kazunori Komatani, Osaka University, Japan

Stefan Kopp, Bielefeld University, Germany

Romain Laroche, Orange Labs, France

Alex Lascarides, University of Edinburgh, United Kingdom
Sungjin Lee, Yahoo Labs, United States

Fabrice Lefevre, Univ. Avignon, France

James Lester, North Carolina State University, United States
Eduardo Lleida Solano, University of Zaragoza, Spain

Ramon Lopez-Cozar, University of Granada, Spain

Annie Louis, University of Edinburgh, United Kingdom

Florian Metze, Carnegie Mellon University, United States
Teruhisa Misu, Honda Research Institute, United States

Helena Moniz, INESC-ID, FLUL, Portugal

Satoshi Nakamura, Nara Institute of Science and Technology, Japan
Yukiko Nakano, Seikei University, Japan

Mikio Nakano, Honda Research Institute Japan Co., Ltd., Japan
Ani Nenkova, University of Pennsylvania, United States

Vincent Ng, University of Texas at Dallas, United States

Douglas O’Shaughnessy, INRS-EMT (Univ. of Quebec), Canada
Aasish Pappu, Yahoo! Labs, United States

Olivier Pietquin, University Lille 1 - LIFL (CNRS/Lille 1), France
Paul Piwek, The Open University, United Kingdom

vi



Andrei Popescu-Belis, Idiap Research Institute, Switzerland
Matthew Purver, Queen Mary University of London, United Kingdom
Antoine Raux, Lenovo Labs, United States

Norbert Reithinger, DFKI GmbH, Germany

Carolym Penstein Rosé, Carnegie Mellon University, United States
Alexander Rudnicky, Carnegie Mellon University, United States
David Schlangen, Bielefeld University, Germany

Manfred Stede, University of Potsdam, Germany

Georg Stemmer, Intel Corp., Germany

Matthew Stone, Rutgers University, United States

Svetlana Stoyancheyv, Interactions Corporation, United States
Kristina Striegnitz, Union College

Marc Swerts, Tilburg University, the Netherlands

Anténio Teixeira, DETI/IEETA, University of Aveiro, Portugal
Joel Tetreault, Yahoo Labs, United States

Takenobu Tokunaga, Tokyo Institute of Technology, Japan

David Traum, USC Institute for Creative Technologies, United States
Gokhan Tur, Microsoft Research, United States

Renata Vieira, PUCRS, Brazil

Marilyn Walker, University of California Santa Cruz, United States
Hsin-Min Wang, Academia Sinica, Taiwan

Nigel Ward, University of Texas at El Paso, United States

Jason D Williams, Microsoft Research, United States

Steve Young, Cambridge University, United Kingdom

Kai Yu, Shanghai Jiao Tong University, China

Jian ZHANG , Dongguan University of Technology, China

Additional Reviewers:

Pierre Albert, DFKI GmbH, Germany
Merwan Barlier, Orange Labs, France

Aude Genevay, Orange Labs, France

Casey Kennington

Hatim Khouzaimi, Orange Labs, France
Soren Klett

Yashar Mehdad, Yahoo Labs, United States
Christer Samuelsson, DFKI GmbH, Germany
Ramin Yaghoubzadeh

Invited Speakers:

Professor Frank Fischer, Ludwigs Maximilian Universitidt Miinchen, Germany
Dilek Hakkani-Tur, Microsoft Research, United States

vii






Table of Contents

Keynote: The Interplay of Discussion, Cognition and Instruction in Computer-Supported Collaborative
Learning Environments
Frank Fischer. . ... ..o 1

Human-Machine Dialogue as a Stochastic Game
Merwan Barlier, Julien Perolat, Romain Laroche and Olivier Pietquin......................... 2

Knowledge transfer between speakers for personalised dialogue management
Ifigo Casanueva, Thomas Hain, Heidi Christensen, Ricard Marxer and Phil Green ............ 12

Miscommunication Recovery in Physically Situated Dialogue
Matthew Marge and Alexander Rudnicky ........ ... ... i i 22

Reinforcement Learning in Multi-Party Trading Dialog
Takuya Hiraoka, Kallirroi Georgila, Elnaz Nouri, David Traum and Satoshi Nakamura. ........ 32

An Incremental Turn-Taking Model with Active System Barge-in for Spoken Dialog Systems
Tiancheng Zhao, Alan W Black and Maxine Eskenazi................... ... oot 42

Exploring the Effects of Redundancy within a Tutorial Dialogue System: Restating Students’ Responses
Pamela Jordan, Patricia Albacete and Sandra Katz ............ ... 51

A Discursive Grid Approach to Model Local Coherence in Multi-document Summaries

Marcio Dias and Thiago Pardo . .. ... ...t e i 60
Belief Tracking with Stacked Relational Trees

Deepak Ramachandran and Adwait Ratnaparkhi .............. ... ... i, 68
“So, which one is it?” The effect of alternative incremental architectures in a high-performance game-
playing agent

Maike Paetzel, Ramesh Manuvinakurike and David DeVault ................................ 77

Towards Taxonomy of Errors in Chat-oriented Dialogue Systems
Ryuichiro Higashinaka, Kotaro Funakoshi, Masahiro Araki, Hiroshi Tsukahara, Yuka Kobayashi
and Masahiro MIZUKamli . . ... ..o e e e 87

PDTB Discourse Parsing as a Tagging Task: The Two Taggers Approach
Or Biran and Kathleen McKeown . ... e 96

Which Synthetic Voice Should I Choose for an Evocative Task?
Eli Pincus, Kallirroi Georgila and David Traum............ .o i 105

Dialog Act Annotation for Twitter Conversations
Elina Zarisheva and Tatjana Scheffler........ ... .. . . i 114

Towards Improving Dialogue Topic Tracking Performances with Wikification of Concept Mentions
Seokhwan Kim, Rafael E. Banchs and Haizhou Li .......... ... .. ... ... .. ... . oot 124

Exploiting knowledge base to generate responses for natural language dialog listening agents
Sangdo Han, Jeesoo Bang, Seonghan Ryu and Gary Geunbae Lee .......................... 129

iX



Automated Speech Recognition Technology for Dialogue Interaction with Non-Native Interlocutors
Alexei V. Ivanov, Vikram Ramanarayanan, David Suendermann-Oeft, Melissa Lopez, Keelan Evanini
AN JIdONE Ta0 . . . oot e 134

Conversational Knowledge Teaching Agent that uses a Knowledge Base
Kyusong Lee, Paul Hongsuck Seo, Junhwi Choi, Sangjun Koo and Gary Geunbae Lee........ 139

Information Theoretical and Statistical Features for Intrinsic Plagiarism Detection
Rashedur Rahman . .. ... e 144

A SIP of CoFee : A Sample of Interesting Productions of Conversational Feedback
Laurent Prévot, Jan Gorisch, Roxane Bertrand, Emilien Gorene and Brigitte Bigi ............ 149

Reinforcement Learning of Multi-Issue Negotiation Dialogue Policies
Alexandros Papangelis and Kallirroi Georgila ............ .. ..o it 154

Fast and easy language understanding for dialog systems with Microsoft Language Understanding In-
telligent Service (LUIS)
Jason D Williams, Eslam Kamal, Mokhtar Ashour, Hani Amr, Jessica Miller and Geoff Zweig 159

Multilingual WikiTalk: Wikipedia-based talking robots that switch languages.
Graham Wilcock and KristiinaJokinen ................ ... ... ... ... 162

Modelling situated human-robot interaction using IrisTK
Gabriel Skantze and Martin Johansson............... i 165

I Couldn’t Agree More: The Role of Conversational Structure in Agreement and Disagreement Detection
in Online Discussions
Sara Rosenthal and Kathy McKeown . ........ . i 168

Memory-Based Acquisition of Argument Structures and its Application to Implicit Role Detection
Christian Chiarcos and NiKo SchenK. . ... e 178

Generating Sentence Planning Variations for Story Telling
Stephanie Lukin, Lena Reed and Marilyn Walker ............... ... ... . i, 188

Keynote: Graph-based Approaches for Spoken Language Understanding
Dilek Hakkani-Tur. . ... ... e e e 198

Evaluating Spoken Dialogue Processing for Time-Offset Interaction
David Traum, Kallirroi Georgila, Ron Artstein and Anton Leuski.................. ... ... 199

THE REAL CHALLENGE 2014: PROGRESS AND PROSPECTS
Maxine Eskenazi, Alan W Black, Sungjin Lee and David Traum ........................... 209

Argument Mining: Extracting Arguments from Online Dialogue
Reid Swanson, Brian Ecker and Marilyn Walker......... .. ... .. o i i 217

Multilingual Summarization with Polytope Model
Natalia Vanetik and Marina Litvak . ....... .. 227

Call Centre Conversation Summarization: A Pilot Task at Multiling 2015
Benoit Favre, Evgeny Stepanov, Jérémy Trione, Frederic Bechet and Giuseppe Riccardi . . . ... 232

AllSummarizer system at MultiLing 2015: Multilingual single and multi-document summarization
Abdelkrime Aries, Djamel Eddine Zegour and Khaled Walid Hidouci....................... 237



Comment-to-Article Linking in the Online News Domain
Ahmet Aker, Emina Kurtic, Mark Hepple, Rob Gaizauskas and Giuseppe Di Fabbrizio .. ..... 245

The University of Alicante at MultiLing 2015: approach, results and further insights
Marta Vicente, Oscar Alcon and Elena Lloret. . ... ... . it 250

ExB Text Summarizer
Stefan Thomas, Christian Beutenmiiller, Xose de la Puente, Robert Remus and Stefan Bordag . 260

MultiLing 2015: Multilingual Summarization of Single and Multi-Documents, On-line Fora, and Call-
center Conversations

George Giannakopoulos, Jeff Kubina, John Conroy, Josef Steinberger, Benoit Favre, Mijail Kabad-
jov, Udo Kruschwitz and Massimo Po€Sio . ....... ... 270

Stochastic Language Generation in Dialogue using Recurrent Neural Networks with Convolutional Sen-
tence Reranking

Tsung-Hsien Wen, Milica Gasic, Dongho Kim, Nikola Mrksic, Pei-Hao Su, David Vandyke and
STEVE YOUINZ . . o ettt ettt et et e e e e e e e 275

The Ubuntu Dialogue Corpus: A Large Dataset for Research in Unstructured Multi-Turn Dialogue Sys-
tems
Ryan Lowe, Nissan Pow, Iulian Serban and Joelle Pineau................... ... . ... ..... 285

Recurrent Polynomial Network for Dialogue State Tracking with Mismatched Semantic Parsers
Qizhe Xie, Kai Sun, SuZhu, LuChenand Kai Yu ......... ..., 295

Opportunities and Obligations to Take Turns in Collaborative Multi-Party Human-Robot Interaction
Martin Johansson and Gabriel Skantze.......... ... ... i e 305

Optimising Turn-Taking Strategies With Reinforcement Learning
Hatim KHOUZAIMI, Romain Laroche and Fabrice Lefevre ............ .. ... ... ... ... .. ... 315

Acoustic-prosodic entrainment in Slovak, Spanish, English and Chinese: A cross-linguistic comparison
Rivka Levitan, Stefan Befius, Agustin Gravano and Julia Hirschberg........................ 325

A statistical approach for Non-Sentential Utterance Resolution for Interactive QA System
Dinesh Raghu, Sathish Indurthi, Jitendra Ajmera and Sachindra Joshi....................... 335

The Interplay of User-Centered Dialog Systems and Al Planning
Florian Nothdurft, Gregor Behnke, Pascal Bercher, Susanne Biundo and Wolfgang Minker . . . .344

Automatic Detection of Miscommunication in Spoken Dialogue Systems
Raveesh Meena, Jose Lopes, Gabriel Skantze and Joakim Gustafson........................ 354

Dialogue Management based on Multi-domain Corpus
wendong ge and Bo XU . ... 364

Quality-adaptive Spoken Dialogue Initiative Selection And Implications On Reward Modelling
Stefan Ultes, Matthias Kraus, Alexander Schmitt and Wolfgang Minker..................... 374

Metaphor Detection in Discourse
Hyeju Jang, Seungwhan Moon, Yohan Jo and CarolynRose ............................... 384

User Adaptive Restoration for Incorrectly-Segmented Utterances in Spoken Dialogue Systems
Kazunori Komatani, Naoki Hotta, Satoshi Sato and Mikio Nakano.......................... 393

bl



Incremental Coordination: Attention-Centric Speech Production in a Physically Situated Conversational

Agent

Zhou Yu, Dan Bohus and Eric Horvitz .. ........ oo 402
Hyper-parameter Optimisation of Gaussian Process Reinforcement Learning for Statistical Dialogue
Management

Lu Chen, Pei-Hao Suand Milica GasiC . ...ttt e e e 407

Learning Domain-Independent Dialogue Policies via Ontology Parameterisation
Zhuoran Wang, Tsung-Hsien Wen, Pei-Hao Su and Yannis Stylianou ....................... 412

Reward Shaping with Recurrent Neural Networks for Speeding up On-Line Policy Learning in Spoken
Dialogue Systems
Pei-Hao Su, David Vandyke, Milica Gasic, Nikola Mrksic, Tsung-Hsien Wen and Steve Young417

Effects of Game on User Engagement with Spoken Dialogue System
Hayato Kobayashi, Kaori Tanio and Manabu Sassano .................cceviiiiiineennnnn... 422

Evaluation of Crowdsourced User Input Data for Spoken Dialog Systems
Maria Schmidt, Markus Miiller, Martin Wagner, Sebastian Stiiker, Alex Waibel, Hansjorg Hofmann
and Steffen Werner . . ... ... e 427

A distributed cloud-based dialog system for conversational application development
Vikram Ramanarayanan, David Suendermann-Oeft, Alexei V. Ivanov and Keelan Evanini.. ... 432

A TV Program Discovery Dialog System using recommendations
Deepak Ramachandran, Mark Fanty, Ronald Provine, Peter Yeh, William Jarrold, Adwait Ratna-
parkhi and Benjamin Douglas . ... ... e 435

Description of the PatientGenesys Dialogue System
Leonardo Campillos Llanos, Dhouha Bouamor, Eric Bilinski, Anne-Laure Ligozat, Pierre Zweigen-
baum and Sophie ROSSEL . . ... ..o e 438

The Cohort and Speechify Libraries for Rapid Construction of Speech Enabled Applications for Android
Tejaswi Kasturi, Haojian Jin, Aasish Pappu, Sungjin Lee, Beverley Harrison, Ramana Murthy and
Amanda StENLt. .. ...t e 441

Xii



Conference Program

Wednesday, September 2, 2015

09:10-10:10

10:35-11:50

13:00-13:50

Keynote I

Keynote: The Interplay of Discussion, Cognition and Instruction in Computer-
Supported Collaborative Learning Environments

Frank Fischer

Oral Session 1: Dialogue Management

Human-Machine Dialogue as a Stochastic Game
Merwan Barlier, Julien Perolat, Romain Laroche and Olivier Pietquin

Knowledge transfer between speakers for personalised dialogue management
Ifiigo Casanueva, Thomas Hain, Heidi Christensen, Ricard Marxer and Phil Green

Miscommunication Recovery in Physically Situated Dialogue

Matthew Marge and Alexander Rudnicky

Oral Session 2: Discourse Strategy

Reinforcement Learning in Multi-Party Trading Dialog

Takuya Hiraoka, Kallirroi Georgila, Elnaz Nouri, David Traum and Satoshi Naka-
mura

An Incremental Turn-Taking Model with Active System Barge-in for Spoken Dialog

Systems
Tiancheng Zhao, Alan W Black and Maxine Eskenazi

Xiii



Wednesday, September 2, 2015 (continued)

13:50-14:10 Poster madness

14:10-16:30 Poster session 1

Exploring the Effects of Redundancy within a Tutorial Dialogue System: Restating
Students’ Responses
Pamela Jordan, Patricia Albacete and Sandra Katz

A Discursive Grid Approach to Model Local Coherence in Multi-document Sum-
maries
Mircio Dias and Thiago Pardo

Belief Tracking with Stacked Relational Trees
Deepak Ramachandran and Adwait Ratnaparkhi

“So, which one is it?” The effect of alternative incremental architectures in a high-
performance game-playing agent
Maike Paetzel, Ramesh Manuvinakurike and David DeVault

Towards Taxonomy of Errors in Chat-oriented Dialogue Systems
Ryuichiro Higashinaka, Kotaro Funakoshi, Masahiro Araki, Hiroshi Tsukahara,
Yuka Kobayashi and Masahiro Mizukami

PDTB Discourse Parsing as a Tagging Task: The Two Taggers Approach
Or Biran and Kathleen McKeown

Which Synthetic Voice Should I Choose for an Evocative Task?
Eli Pincus, Kallirroi Georgila and David Traum

Dialog Act Annotation for Twitter Conversations
Elina Zarisheva and Tatjana Scheffler

Towards Improving Dialogue Topic Tracking Performances with Wikification of
Concept Mentions
Seokhwan Kim, Rafael E. Banchs and Haizhou Li

Exploiting knowledge base to generate responses for natural language dialog lis-
tening agents
Sangdo Han, Jeesoo Bang, Seonghan Ryu and Gary Geunbae Lee

Automated Speech Recognition Technology for Dialogue Interaction with Non-
Native Interlocutors

Alexei V. Ivanov, Vikram Ramanarayanan, David Suendermann-Oeft, Melissa
Lopez, Keelan Evanini and Jidong Tao

X1V



Wednesday, September 2, 2015 (continued)

16:30-17:45

Conversational Knowledge Teaching Agent that uses a Knowledge Base
Kyusong Lee, Paul Hongsuck Seo, Junhwi Choi, Sangjun Koo and Gary Geunbae
Lee

Information Theoretical and Statistical Features for Intrinsic Plagiarism Detection
Rashedur Rahman

A SIP of CoFee : A Sample of Interesting Productions of Conversational Feedback
Laurent Prévot, Jan Gorisch, Roxane Bertrand, Emilien Gorene and Brigitte Bigi

Reinforcement Learning of Multi-Issue Negotiation Dialogue Policies
Alexandros Papangelis and Kallirroi Georgila

Fast and easy language understanding for dialog systems with Microsoft Language
Understanding Intelligent Service (LUIS)

Jason D Williams, Eslam Kamal, Mokhtar Ashour, Hani Amr, Jessica Miller and
Geoff Zweig

Multilingual WikiTalk: Wikipedia-based talking robots that switch languages.
Graham Wilcock and Kristiina Jokinen

Modelling situated human-robot interaction using IrisTK

Gabriel Skantze and Martin Johansson

Oral Session 3: Perspective and Point of View

I Couldn’t Agree More: The Role of Conversational Structure in Agreement and
Disagreement Detection in Online Discussions

Sara Rosenthal and Kathy McKeown

Memory-Based Acquisition of Argument Structures and its Application to Implicit
Role Detection

Christian Chiarcos and Niko Schenk

Generating Sentence Planning Variations for Story Telling
Stephanie Lukin, Lena Reed and Marilyn Walker

XV



Thursday, September 3, 2015

09:05-10:05

10:30-11:45

11:45-13:30

13:30-17:30

Keynote 11

Keynote: Graph-based Approaches for Spoken Language Understanding
Dilek Hakkani-Tur

Oral Session 4: New directions

Evaluating Spoken Dialogue Processing for Time-Offset Interaction
David Traum, Kallirroi Georgila, Ron Artstein and Anton Leuski

THE REAL CHALLENGE 2014: PROGRESS AND PROSPECTS
Maxine Eskenazi, Alan W Black, Sungjin Lee and David Traum

Argument Mining: Extracting Arguments from Online Dialogue
Reid Swanson, Brian Ecker and Marilyn Walker

Lunch, business meeting, and sponsor talks

Special session (MultiLing 2015) and Open Space

Multilingual Summarization with Polytope Model
Natalia Vanetik and Marina Litvak

Call Centre Conversation Summarization: A Pilot Task at Multiling 2015
Benoit Favre, Evgeny Stepanov, Jérémy Trione, Frederic Bechet and Giuseppe Ric-
cardi

AllSummarizer system at MultiLing 2015: Multilingual single and multi-document
summarization
Abdelkrime Aries, Djamel Eddine Zegour and Khaled Walid Hidouci

Comment-to-Article Linking in the Online News Domain
Ahmet Aker, Emina Kurtic, Mark Hepple, Rob Gaizauskas and Giuseppe Di Fab-
brizio

XVi



Thursday, September 3, 2015 (continued)

The University of Alicante at MultiLing 2015: approach, results and further insights
Marta Vicente, Oscar Alcén and Elena Lloret

ExB Text Summarizer
Stefan Thomas, Christian Beutenmiiller, Xose de 1la Puente, Robert Remus and Ste-
fan Bordag

MultiLing 2015: Multilingual Summarization of Single and Multi-Documents, On-
line Fora, and Call-center Conversations

George Giannakopoulos, Jeff Kubina, John Conroy, Josef Steinberger, Benoit Favre,
Mijail Kabadjov, Udo Kruschwitz and Massimo Poesio

Friday, September 4, 2015

09:05-10:20 Oral Session 5: Neural Network for dialogue processing

Stochastic Language Generation in Dialogue using Recurrent Neural Networks with
Convolutional Sentence Reranking

Tsung-Hsien Wen, Milica Gasic, Dongho Kim, Nikola Mrksic, Pei-Hao Su, David
Vandyke and Steve Young

The Ubuntu Dialogue Corpus: A Large Dataset for Research in Unstructured Multi-
Turn Dialogue Systems

Ryan Lowe, Nissan Pow, Iulian Serban and Joelle Pineau

Recurrent Polynomial Network for Dialogue State Tracking with Mismatched Se-

mantic Parsers
Qizhe Xie, Kai Sun, Su Zhu, Lu Chen and Kai Yu

10:20-10:40 Poster madness

X Vil



Friday, September 4, 2015 (continued)

10:40-12:40 Poster session 2

Opportunities and Obligations to Take Turns in Collaborative Multi-Party Human-
Robot Interaction
Martin Johansson and Gabriel Skantze

Optimising Turn-Taking Strategies With Reinforcement Learning
Hatim KHOUZAIMI, Romain Laroche and Fabrice Lefevre

Acoustic-prosodic entrainment in Slovak, Spanish, English and Chinese: A cross-
linguistic comparison
Rivka Levitan, Stefan Beiiu§, Agustin Gravano and Julia Hirschberg

A statistical approach for Non-Sentential Utterance Resolution for Interactive QA
System
Dinesh Raghu, Sathish Indurthi, Jitendra Ajmera and Sachindra Joshi

The Interplay of User-Centered Dialog Systems and Al Planning
Florian Nothdurft, Gregor Behnke, Pascal Bercher, Susanne Biundo and Wolfgang
Minker

Automatic Detection of Miscommunication in Spoken Dialogue Systems
Raveesh Meena, Jose Lopes, Gabriel Skantze and Joakim Gustafson

Dialogue Management based on Multi-domain Corpus
wendong ge and Bo Xu

Quality-adaptive Spoken Dialogue Initiative Selection And Implications On Reward
Modelling
Stefan Ultes, Matthias Kraus, Alexander Schmitt and Wolfgang Minker

Metaphor Detection in Discourse
Hyeju Jang, Seungwhan Moon, Yohan Jo and Carolyn Rose

User Adaptive Restoration for Incorrectly-Segmented Utterances in Spoken Dia-
logue Systems
Kazunori Komatani, Naoki Hotta, Satoshi Sato and Mikio Nakano

Incremental Coordination: Attention-Centric Speech Production in a Physically Sit-
uated Conversational Agent
Zhou Yu, Dan Bohus and Eric Horvitz

Hyper-parameter Optimisation of Gaussian Process Reinforcement Learning for
Statistical Dialogue Management
Lu Chen, Pei-Hao Su and Milica Gasic

XViil



Friday, September 4, 2015 (continued)

Learning Domain-Independent Dialogue Policies via Ontology Parameterisation
Zhuoran Wang, Tsung-Hsien Wen, Pei-Hao Su and Yannis Stylianou

Reward Shaping with Recurrent Neural Networks for Speeding up On-Line Policy
Learning in Spoken Dialogue Systems

Pei-Hao Su, David Vandyke, Milica Gasic, Nikola Mrksic, Tsung-Hsien Wen and
Steve Young

Effects of Game on User Engagement with Spoken Dialogue System
Hayato Kobayashi, Kaori Tanio and Manabu Sassano

Evaluation of Crowdsourced User Input Data for Spoken Dialog Systems
Maria Schmidt, Markus Miiller, Martin Wagner, Sebastian Stiiker, Alex Waibel,
Hansjorg Hofmann and Steffen Werner

A distributed cloud-based dialog system for conversational application development
Vikram Ramanarayanan, David Suendermann-Oeft, Alexei V. Ivanov and Keelan
Evanini

A TV Program Discovery Dialog System using recommendations
Deepak Ramachandran, Mark Fanty, Ronald Provine, Peter Yeh, William Jarrold,
Adwait Ratnaparkhi and Benjamin Douglas

Description of the PatientGenesys Dialogue System
Leonardo Campillos Llanos, Dhouha Bouamor, Eric Bilinski, Anne-Laure Ligozat,
Pierre Zweigenbaum and Sophie Rosset

The Cohort and Speechify Libraries for Rapid Construction of Speech Enabled Ap-
plications for Android

Tejaswi Kasturi, Haojian Jin, Aasish Pappu, Sungjin Lee, Beverley Harrison, Ra-
mana Murthy and Amanda Stent

12:40-13:00 Best paper award ceremony and closing

X1X






Keynote: The Interplay of Discussion, Cognition and
Instruction in Computer-Supported Collaborative

Learning Environments

Frank Fischer
University of Munich, Germany
frank.fischer@psy.lmu.de

Educational discourse is an important area for impact, which is especially timely given
recent attention given to online education. In this talk I will first present a theoretical
account of the complex interplay between written or oral discourse, individual cognitive
processes, and external guidance in Computer-Supported Collaborative Learning (CSCL)
environments. Based on the Script Theory of Guidance I will analyze how cognitive configu-
rations shape discussions, and how participation in discussions may lead to re-configuration
of the participating individual student’s cognition. Second, I will give an overview of studies
demonstrating the instructional value of specific types of discussion contributions, namely
transactive contributions. I will finally elaborate on ways in which transactive contributions
to discourse can be facilitated through external guidance, and how technologies may play

an important role both in research and in instruction.
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Abstract

In this paper, an original framework to
model human-machine spoken dialogues
is proposed to deal with co-adaptation be-
tween users and Spoken Dialogue Systems
in non-cooperative tasks. The conversa-
tion is modeled as a Stochastic Game:
both the user and the system have their
own preferences but have to come up with
an agreement to solve a non-cooperative
task. They are jointly trained so the Dia-
logue Manager learns the optimal strategy
against the best possible user. Results ob-
tained by simulation show that non-trivial
strategies are learned and that this frame-
work is suitable for dialogue modeling.

1 Introduction

In a Spoken Dialogue System (SDS), the Dia-
logue Manager (DM) is designed in order to im-
plement a decision-making process (called strat-
egy or policy) aiming at choosing the system inter-
action moves. The decision is taken according to
the current interaction context which can rely on
bad transcriptions and misunderstandings due to
Automatic Speech Recognition (ASR) and Spoken
Language Understanding (SLU) errors. Machine
learning methods, such as Reinforcement Learn-
ing (RL) (Sutton and Barto, 1998), are now very
popular to learn optimal dialogue policies under
noisy conditions and inter-user variability (Levin
and Pieraccini, 1997; Lemon and Pietquin, 2007;
Laroche et al.,, 2010; Young et al., 2013). In
this framework, the dialogue task is modeled as
a (Partially Observable) Markov Decision Process
((PO)MDP), and the DM is an RL-agent learning
an optimal policy. Yet, despite some rare exam-

2

ples, RL-based DMs only consider task-oriented
dialogues and stationary (non-adapting) users.

Unfortunately, (PO)MDP are restricted to
model game-against-nature problems (Milnor,
1951). These are problems in which the learn-
ing agent evolves in an environment that doesn’t
change with time and acts in a totally disinter-
ested manner. (PO)MDP-based dialogue model-
ing thus applies only if 1) the user doesn’t modify
his/her behavior along time (the strategy is learned
for a stationary environment) and 2) the dialogue
is task-oriented and requires the user and the ma-
chine to positively collaborate to achieve the user’s
goal.

The first assumption doesn’t hold if the user
adapts his/her behavior to the continuously im-
proving performance of a learning DM. Some re-
cent studies have tried to model this co-adaptation
effect between a learning machine and a hu-
man (Chandramohan et al., 2012b) but this ap-
proach still considers the user and the machine as
independent learning agents. Although there has
already been some few attempts to model the “co-
evolution” of human machine interfaces (Bour-
guin et al., 2001), this work doesn’t extend to
RL-based interfaces (automatically learning) and
is not related to SDS.

More challenging situations do also arise when
the common-goal assumption doesn’t hold either,
which is the case in many interesting applications
such as negotiation (El Asri et al., 2014), seri-
ous games, e-learning, robotic co-workers efc. Es-
pecially, adapting the MDP paradigm to the case
of negotiation dialogues has been the topic of re-
cent works. In (Georgila et al., 2014), the authors
model the problem of negotiation as a Multi-Agent
Reinforcement Learning (MARL) problem. Yet,
this approach relies on algorithms that are treat-
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ing the multi-player issue as a non-stationnarity
problem (e.g. WoLF-PHC (Bowling and Veloso,
2002)). Each agent is assumed to keep a stable in-
teraction policy for a time sufficiently long so that
the other agent can learn it’s current policy. Oth-
erwise, there is no convergence guarantees. An-
other major issue with these works is that noise in
the ASR or NLU results is not taken into account
although this is a major reason for using stochas-
tic dialogue models. In (Efstathiou and Lemon,
2014), the authors follow the same direction by
considering both agents as acting in a stationary
MDP.

In this paper, we propose a paradigm shift
from the now state-of-the-art (PO)MDP model
to Stochastic Games (Patek and Bertsekas, 1999)
to model dialogue. This model extends the
MDP paradigm to multi-player interactions and
allows learning jointly the strategies of both
agents (the user and the DM), which leads to the
best system strategy in the face of the optimal
user/adversary (in terms of his/her goal). This
paradigm models both co-adaptation and possi-
ble non-cooperativness. Unlike models based on
standard game theory (Caelen and Xuereb, 2011),
Stochastic Games allow to learn from data. Es-
pecially, departing from recent results (Perolat et
al., 2015), we show that the optimal strategy can
be learned from batch data as for MDPs (Pietquin
et al., 2011). This means that optimal negotiation
policies can be learnt from non-optimal logged in-
teractions. This new paradigm is also very dif-
ferent from MARL methods proposed in previous
work (Chandramohan et al., 2012b; Georgila et
al., 2014; Efstathiou and Lemon, 2014) since op-
timization is jointly performed instead of alterna-
tively optimizing each agent, considering the other
can stay stationary for a while. Although experi-
ments are only concerned with purely adversarial
tasks (Zero-Sum games), we show that it could be
naturally extended to collaborative tasks (general
sum games) (Prasad et al., 2015). Experiments
show that an efficient strategy can be learned even
under noisy conditions which is suitable for mod-
eling realistic human-machine spoken dialogues.

2 Markov Decision Processes and
Reinforcement Learning

As said before, human-machine dialogue has been
modeled as an (PO)MDP to make it suitable for
automatic strategy learning (Levin and Pieraccini,

1997; Young et al., 2013). In this framework,
the dialogue is seen as a turn-taking process in
which two agents (a user and a DM) interact
through a noisy channel (ASR, NLU) to exchange
information. Each agent has to take a decision
about what to say next according to the dialogue
context (also called dialogue state). In this sec-
tion, MDPs (Puterman, 1994) and RL (Sutton and
Barto, 1998; Bertsekas and Tsitsiklis, 1996) are
briefly reviewed and formally defined which will
help switching the Stochastic Games in Section 3.

2.1 Markov Decision Processes

Definition 2.1. A Markov Decision Process
(MDP) is a tuple (S, A,7,R,~) where: S is the
discrete set of environment states, A the discrete
set of actions, 7 : S x A x § — [0, 1] the state
transition probability functionand R : Sx A — R
the reward function. Finally, v € [0,1) is a dis-
count factor.

At each time step, the RL-agent acts accord-
ing to a policy m, which is either deterministic
or stochastic. In the first case, 7w is a mapping
from state space to action space : ™ : S — A,
while in the latter, m is a probability distribu-
tion on the state-action space 7 : S x A —
[0,1]. Policies are generally designed to maxi-
mize the value of each state, i.e. the expected dis-
counted cumulative reward: Vs € S,V7™(s) =
E[y 2o r(se,m(se))|so = s]. Let V be the
space of all possible value functions. The optimal
value function V* is the only value function such
that: YV € V,Vs € §,V* > V. The following
result, proved in (Puterman, 1994), is fundamental
in the study of MDPs:

Theorem 2.1. Let M be an MDP. Its optimal value
Sfunction V'* exists, is unique and verifies:

Vs e S, Vi(s) = I(?l(lefﬁ((’l“(s,a)

+ Z 7 (s,a, s')V*(s’))
s'eS
Furthermore, one can always find a deterministic
policy T inducing V'*.

The function @ (s,a) +— r(s,a) +
YovesT(s,a,s")Va(s') is called Q-function. We
thus have: 7*(s) = argmax,Qr-(s,a) =
argmax, Q*(s,a).

2.2 Reinforcement Learning

In many cases, transition and reward functions are
unknown. It is thus not possible to compute values



nor (J-Functions, the RL-agent learns an approx-
imation by sampling through actual interactions
with the environment. The set of techniques solv-
ing this problem is called Reinforcement Learning.

For instance the Q-Learning algorithm
(Watkins and Dayan, 1992) approximates, at each
time step, the optimal )-Function and uses the
following update rule:

Qi+1(5¢,a¢) «— Qi(s¢,a¢) + afrey1(se, ag)
+ymax Qi(st41,a) — Qi(st, ar)]

It can been shown that, under the assumption that
Y a =ocand Y a? < co and that all states are
visited infinitely often, ()-values converge towards
the optimal ones. Thus, by taking at each state the
action maximizing those values, one finds the op-
timal policy. There are batch algorithms solving
the same problem among which Fitted-Q) (Gor-
don, 1999; Ernst et al., 2005).

3 Stochastic Games

Stochastic Games (Filar and Vrieze, 1996; Ney-
man and Sorin, 2003), introduced in (Shapley,
1953), are a natural extension of MDPs to the
Multi-Agent setting.

3.1 Definitions

Definition 3.1. A discounted Stochastic Game
(SG) is a tuple (D,S,A,7,R,7) where: D =
{1,...,n} represents the set of agents, S the dis-
crete set of environment states, A = X;epA;
the joint action set, where for all : = 1,...,n,
A; is the discrete set of actions available to the
i" agent, T : S x A x S — [0,1] the state
transition probability function, R = X;cpR; the
joint reward function, where for all ¢« = 1,...,n,
Ri:S x A — Ris the reward function of agent .
Finally, v € [0, 1) is a discount factor.

An agent ¢ chooses its actions according to
some strategy o;, which is in the general case a
probability distribution on 7’s state-action space. If
the whole space of agents is considered, we speak
about the joint strategy o. The notation o_; repre-
sents the joint strategy of all agents except .

This definition is general, every 'MDP’ in
which multiple agents interact may be interpreted
as a Stochastic Game. It is therefore useful to
introduce a taxonomy. A game where there are
only two players and where the rewards are oppo-
site (i.e. R1 = —R») is called Zero-Sum Game.

Conversely, a Purely Cooperative Game is a game
where all the agents have the same reward (i.e.
Vi € D,R; = R). A game which is neither Zero-
Sum nor Purely Cooperative is said to be General-
Sum.

3.2 Best Response

In all environments, agents learn by acting ac-
cording to what has previously been learned. In
other words, agents adapt to an environment. This
is also valid in a multi-agent scenario, if agent ¢
wants to learn about agent j, it will act accord-
ing to what has previously been learned about j.
But conversely, if j wants to learn about agent 4,
it will act according to what it knows about 7. We
say that agents co-adapt. Co-adapation is, due to
this feedback loop, an intrinsically non-stationary
process. An algorithm converges if it converges to
stationary strategies.

Each agent acts in order to maximize its ex-
pected discounted cumulative reward, also called
the discounted value of the joint strategy o in state
s to player i : Vi(s,o) = E[D> 2y 7'r(se, o)l
The @-function is then defined as (Filar and
Vrieze, 1996):

Q(s,0,a) = R(s,a) + v Z T (s,a,8V(s, o)

s'eS

This value function depends on the opponents’
strategies. It is therefore not possible to define
in the general case a strategy optimal against ev-
ery other strategy. A Best Response is an optimal
strategy given the opponents ones.

Definition 3.2. Agent ¢ plays a Best Response o;
against the other players’ joint strategy o_; if o; is
optimal given o_;. We write 0; € BR(o_;).

Best Response induces naturally the following
definition:

Definition 3.3. The strategy profile {o;};ep is a
Nash Equilibrium (NE) if for all © € D, we have
o; €B R(O’ —i)-

It is interesting to notice that in a single-player
game, Nash Equilibrium strategies match the opti-
mal policies defined in the previous section.

The existence of Nash Equilibria in all dis-
counted Stochastic Games is assured by the fol-
lowing theorem (Filar and Vrieze, 1996):

Theorem 3.1. In a discounted Stochastic Game
G, there exists a Nash Equilibrium in stationary
strategies.



Two remarks need to be introduced here. First,
nothing was said about uniqueness since in the
general case, there are many Nash Equilibria.
Equilibrium selection and tracking may be a big
deal while working with SGs. Second, contrarily
to the MDP case, there may be no deterministic
Nash Equilibrium strategies (but only stochastic).

3.3 The Zero-Sum Case

There are two ways to consider a Zero-Sum
Stochastic Game: one can see two agents aiming
at maximizing two opposite ()-functions or one
can also see only one ()-function, with the first
agent (called the maximizer) aiming at maximiz-
ing it and the second one (the minimizer) aim-
ing at minimizing it. One can prove (Patek and
Bertsekas, 1999), that if both players follow those
maximizing and minimizing strategies, the game
will converge towards a Nash Equilibrium, which
is the only one of the game. In this case, thanks
to the Minmax theorem (Osborne and Rubinstein,
1994), the value of the game is (with player 1 max-
imizing and player 2 minimizing):

V* = maxmin V (o1, 02)
o1 o9

= minmax V (01, 02)
o2 o1
As we will see later, the existence of this unique
value function for both player is helpful for finding
efficient algorithms solving zero-sum SGs.

4 Algorithms

Even if the field of Reinforcement Learning in
Stochastic Games is still young and guaranteed
Nash Equilibrium convergence with tractable al-
gorithms is, according to our knowledge, still an
open problem, many algorithms have however al-
ready been proposed (Busoniu et al., 2008), all
with strengths and weaknesses.

Reinforcement  Learning techniques to
solve Stochastic Games were first introduced
in (Littman, 1994). In his paper, Littman presents
minimax-(), a variant of the QQ-Learning algorithm
for the zero-sum setting, which is guaranteed to
converge to the Nash Equilibrium in self-play. He
then extended his work in (Littman, 2001) with
Friend-or-Foe @-Learning (FFQ), an algorithm
assured to converge, and converging to Nash
Equilibria in purely cooperative or purely compet-
itive settings. The authors of (Hu and Wellman,
2003) were the first to propose an algorithm for

general-sum Stochastic Games. Their algorithm,
Nash-Q), is also a variant of ()-Learning able to
allow the agents to reach a Nash Equilibrium
under some restrictive conditions on the rewards’
distribution. In the general case, they empirically
proved that convergence was not guaranteed any
more. (Zinkevich et al., 2006) proved by giving
a counter-example that the @-function does not
contain enough information to converge towards a
Nash Equilibrium in the general setting.

For any known Stochastic Game, the Stochas-
tic Tracing Procedure algorithm (Herings and
Peeters, 2000) finds a Nash Equilibrium of it. The
algorithm proposed in (Akchurina, 2009) was the
first learning algorithm converging to an approx-
imate Nash Equilibrium in all settings (even with
an unknown game). Equilibrium tracking is made
here by solving at each iteration a system of or-
dinary differential equations. The algorithm has
no guaranty to converge toward a Nash Equilib-
rium even however, it seems empirically to work.
Finally, (Prasad et al., 2015) presented two algo-
rithms converging towards a Nash Equilibrium in
the General-Sum setting: one batch algorithm as-
suming the complete knowledge of the game and
an on-line algorithm working with simulated tran-
sitions of the Stochastic Game.

In this paper we will use two algorithms which
are reviewed hereafter: WoLF-PHC (Bowling and
Veloso, 2002) and AGPI-@) (Perolat et al., 2015).

4.1 WoLF-PHC

WoLF-PHC is an extension of the ()-learning al-
gorithm allowing probabilistic strategies. It con-
siders independent agents evolving in an environ-
ment made non-stationary by the presence of the
others. In such a setting, the aim of the agents
is not to find a Nash Equilibrium (it is therefore
not an SG algorithm) but to do as good as possi-
ble in this environment (and as a consequence, it
may lead to a Nash Equilibrium). The algorithm
is based on the following idea: convergence shall
be facilitated if agents learn quickly to adapt when
they are sub-optimal and learn slowly when they
are near-optimal (in order to let the other agents
adapt to this strategy).

Q-values are updated as in (Q-learning and the
probability of selecting the best action is incre-
mentally increased according to some (variable)
learning rate §, which is decomposed into two
learning rates &7, and Jyy, with 0p > . The



policy update is made according to d;, while los-
ing and to dy while winning.

To determine if an agent is losing or win-
ning, the expected value of its actual strategy m,
is compared to the expected value of the aver-
age policy 7. Formally, an agent is winning if
Y oum(s,0)Q(s,a) > >, (s, a)Q(s,a) and los-
ing otherwise.

In the general case, convergence is not proven
and it is even shown on some toy-examples
that sometimes, the algorithm does not converge
(Bowling and Veloso, 2002).

42 AGPI-Q

Approximate Generalized Policy Iteration-(), or
AGPI-Q (Perolat et al., 2015), is an extension of
the Fitted-Q) (Gordon, 1999; Ernst et al., 2005) al-
gorithm solving Zero-Sum Stochastic Games in a
batch setting. At the initialization step, /N samples
(s,a1,az,r,s") and a Q-function (for instance, the
null function) are given. The algorithm consists
then in K iterations, each of them composed of
two parts : a greedy part and an evaluation part.
The algorithm provides then at each iteration a bet-
ter approximation of the Q)-function.

Let j = (s7,a7,b7,17,5") be N collected sam-
ples. At time step k + 1, the greedy part consists
of finding the maximizer’s maxminimizing action
a of the matrix game defined by Q{C(s’j, al,b).
In our case, a turn-based setting, this involves
finding a maximum. Then, during the evalua-
tion part, since the second agent plays a mini-
mizing strategy, the following value is computed:
Q7 =1+~ min, Q7 (s”,a’,b). At each iteration,
the algorithm returns the Q-function Q1 fitting
at best these values over some hypothesis space.

5 Dialogue as a Stochastic Game

Dialogue is a multi-agent interaction and there-
fore, it shall be considered as such during the op-
timization process. If each agent (i.e. the user
and the DM) has its own goals and takes its de-
cisions to achieve them, it sounds natural to model
it as an MDP. In traditional dialogue system stud-
ies, this is only done for one conversant over two.
Since (Levin and Pieraccini, 1997; Singh et al.,
1999), only the DM is encoded as an RL agent, de-
spite rare exceptions (Chandramohan et al., 2011;
Chandramohan et al., 2012b; Chandramohan et
al.,, 2012a)). The user is rather considered as
a stationary agent modeled as a Bayesian net-

work (Pietquin, 2006) or an agenda-based pro-
cess (Schatzmann et al., 2007), leading to model-
ing errors (Schatztnann et al., 2005; Pietquin and
Hastie, 2013).

At first sight, it seems reasonable to think that
if two RL agents, previously trained to reach an
optimal strategy, interact with each other, it would
result in ”optimal” dialogues. Yet, this assertion is
wrong. Each agent would be optimal given the
environment it’s been trained on, but given an-
other environment, nothing can be said about the
learnt policy. Furthermore, if two DMs are trained
together with traditional RL techniques, no con-
vergence is guaranteed since, as seen above, non-
stationarities emerge. Indeed, non-stationarity is
not well managed by standard RL methods al-
though some methods can deal with it (Geist et
al., 2009; Daubigney et al., 2012) but adaptation
might not be fast enough.

Jointly optimizing RL-agents in the framework
of Stochastic Games finds a Nash Equilibrium.
This guarantees both strategies to be optimal and
this makes a fundamental difference with previous
work (Chandramohan et al., 2012b; Georgila et al.,
2014; Efstathiou and Lemon, 2014).

In the next section, we illustrate how dialogue
may be modeled by a Stochastic Game, how tran-
sitions and reward functions depend on the pol-
icy of both agents. We propose now a Zero-Sum
dialogue game where agents have to drive effi-
ciently the dialogue to gather information quicker
than their opponent. In this example, human user
(Agent 1) and DM (Agent 2) are modeled with
MDPs: each of them has a goal encoded into re-
ward functions R and Ry (they may depend on
the joint action).

5.1 A Zero-Sum Dialogue Game

The task involves two agents, each of them re-
ceives a random secret number and aims at guess-
ing the other agent’s number. They are adver-
saries: if one wins, the other one loses as much.

To find the secret number out, agents may per-
form one of the following actions: ask, answer,
guess, ok, confirmand 1isten.

During a dialogue turn, the agent asking the
question is called the guesser and the one answer-
ing is the opponent. To retrieve information about
the opponent’s hidden number, the guesser may
ask if this number is smaller or greater than some
other number. The opponent is forced to answer



the truth. To show that it has understood the an-
swer, the agent says ok and releases then the turn
to its adversary, which endorses the guesser’s role.

Agents are not perfect, they can misunderstand
what has been said. This simulates ASR and NLU
errors arising in real SDSs. They have an indicator
giving a hint about the probability of having well
understood (a confidence level). They are however
never certain and they may answer a wrong ques-
tion, e.g. in the following exchange :

- Is your secret number greater than x ?

- My number is greater than y.

When such an error arises, Agent 1 is allowed
to ask another question instead of just saying ok.
This punishment is harsh for the agent which mis-
understood, it is almost as if it has to pass its turn.
Another dialogue act is introduced to deal with
such situations. If an agent is not sure, it may ask
to confirm. In this case, Agent 1 may ask its
question again. To avoid abuses, i.e. infinitely ask
for a confirmation, this action induces a cost (and
therefore a gain for the opponent).

If an agent thinks that it has found the num-
ber out, it can make a guess. If it was right, it
wins (and therefore its opponent loses), otherwise,
it loses (and its opponent wins).

Since we model dialogue as a turn-based inter-
action and we will need to consider joint actions,
we introduce the action 11isten corresponding to
the empty action.

6 Experimental Setting

Effects of the multi-agent setting are studied here
through one special feature of the human-machine
dialogue: the uncertainty management due to the
dysfunctions of the ASR and the NLU. To promote
simple algorithms, we ran our experiments on the
zero-sum dialogue game presented above.

On this task, we compare three algorithms: Q-
Learning, WoLF-PHC and AGPI-Q). Among those
algorithms, only AGPI-(Q) is proved to converge to-
wards a Nash Equilibrium in a Multi-Agent set-
ting. (Q-Learning and WoLF-PHC have however
been used as Multi-Agent learning algorithm in
a dialogue setting (English and Heeman, 2005;
Georgila et al., 2014). Similarly to these papers,
experiments will be done using simulation. We
will show that, contrarily to AGPI-Q, they do not
converge towards the Nash Equilibrium and there-
fore do not fit to the dialogue problem.

6.1 Modeling ASR and NLU Confidence
Estimation

One difficulty while working with Spoken Dia-
logue Systems is how can a DM deal with uncer-
tainty resulting from ASR and NLU errors and re-
flected by their Confidence Scores. Those scores
are not always a probability. The only assumption
made here is that with a score lower (resp. greater)
than 0.5, the probability to misunderstand the last
utterance is greater (resp. lower) than 0.5. Since
dialogues are simulated, the ASR and NLU confi-
dence levels will be modeled the following way.

Each agent owns some fixed Sentence Error
Rate (SER;). With probability (1 — SER;), agent
i receives each utterance undisrupted, while with
probability SER;, this utterance is misunderstood
and replaced by another one.

A (—00, 00) score is then sampled according to
a normal distribution centered in -1 for incorrect
understanding and +1 for correct understanding.
The (0,1) score is obtained by applying the sig-
moid function f(z) = m, to the (—o0, 00)
score.

Since )-Learning and WoLF-PHC are used in
their tabular form, it was necessary to discretize
this score. To have states where the agent is almost
sure of having understood (or sure of having mis-
understood), we discretized by splitting the score
around the cut points 0.1, 0.5 and 0.9. By equity
concerns, the same discretization was applied for
the AGPI-() algorithm.

6.2 Task Modeling
6.2.1 State Space

Consider two agents ¢ and j. Their secret numbers
are respectively m and n. To gather information
about m, agent ¢ asks if the secret number m is
smaller or greater than some given number k. If
agent j answers that m is greater (resp. smaller)
than k, it will provides ¢ a lower bound b; (resp.
an upper bound b)) on m. Agent i’s knowledge on
m may be represented by the interval I; = [b;, b}].
The probability of wining by making a guess is

then given by p = 7——. Progress of agent i

i—bi+1"

in the game may therefore measured by only ¢; =

b, — b; + 1, the cardinal of I;. At the beginning of

the game, one has: I; = I; = [1,5]. Since agents

have to know the progress of the whole game, they
both track ¢; and c;.

To take an action, an agent needs to remember

who pronounced the last utterance, what was the



last utterance it heard and to what extent it believes
that what it heard was what had been said.

To summarize, agents taking actions make their
decision according to the following features: the
last utterance, its trust in this utterance, who ut-
tered it, its progress in the game and its opponent’s
progress. they do not need to track the whole range
of possible secret numbers but only the cardinal
of these sets. Dialogue turn, last action, confi-
dence score, cardinal of possible numbers for both
agents are thus the five state features. The state
space thus contains 2 * 5% 4 x 5 x 5 = 1000 states.

6.2.2 Action Space

Agents are able to make one of the following
actions: ask, answer, guess, confirm and
listen. The actions ask, answer and guess
need an argument: the number the agent wants to
compare to. To learn quicker, we chose not to take
a decision about this value. When an agent asks, it
asks if the secret number is greater or smaller than
the number in the middle of his range (this range is
computed by the environment, it is not taken into
account in the states). An agent answering says
that her secret number is greater or smaller than
the number it heard (which may be not the uttered
number). An agent guessing proposes randomly a
number in his range of possible values.

6.2.3 Reward function

To define the reward function, we consider the
maximizing player. It is its turn to play. If it is
guessing the right number, it earns +1. If it asks
for a confirmation, it earns —0.2. Therefore, it is
never in its interest to block the dialogue by al-
ways asking for a confirmation (in the worst case,
ie if second agent immediately wins, it earns —1
while if it infinitely blocks the dialogue, it earns
02322 5 (v?)* =~ —1.05 for v = 0.9).

6.3 Training of the algorithms

To train ()-Learning and WoLF-PHC, we followed
the setup proposed in (Georgila et al., 2014). Both
algorithms are trained in self-play by following an
e-greedy policy. Training is split into five epochs
of 100000 dialogues. The exploration rate is set to
0.95 in the first epoch, 0.8 in the second, 0.5 in the
third, 0.3 in the fourth and 0.1 in the fifth.

The parameters ¢, and oy of WoLF-PHC are
set to oy = 0.05 and 6; = 0.2. The ratio
01, /0w = 4 assures an aggressive learning when
losing.

As a batch RL algorithm, AGPI-Q) requires
samples. To generate them, we followed the setup
proposed in (Pietquin et al., 2011). An optimal
(or at least near) policy is first handcrafted. This
policy is the following: an agent always asks for
more information except when it or its opponent
have enough information to make the right guess
with probability 1. When the agent has to answer,
it asks to confirm if its confidence score is be-
low 0.5.

An e-random policy is then designed. Agents
make their decisions according the hand-crafted
policy with probability e and pick randomly
actions with probability (1 — e). Tuples
(s,a1,az,r,s") are then gathered. We are then as-
sured that the problem space is well-sampled and
that there also exists samples giving the successful
task completion reward. To ensure convergence,
75000 such dialogues are generated.

To keep the model as parameter-free as possi-
ble, CART trees are used as hypothesis space for
the regression.

Each algorithm is trained with the following
SER values: 0, 0.1, 0.2, 0.3 and 0.4.

6.4 Results

The decision in the game is made on only two
points: when is the best moment to end the di-
alogue with the guess action and what is the
best way to deal with uncertainty by the use of
the confirm action. Average duration of dia-
logues and average number of confirm actions
are therefore chosen as the feature characterizing
the Nash Equilibrium. Both are calculated over
5000 dialogues. Figures 1 and 2 illustrate those
results.

@-Learning dialogues’ length decreases grad-
ually with respect to an increasing SER (Figure
1). Figure 2 brings an explanation: (-Learning
agents do not learn to use the CONFIRM action.
More, dialogue length is even not regular, proving
that the algorithm did not converge to a ’stable’
policy. @-Learning is a slow algorithm and there-
fore, agents do not have enough time to face the
non-stationarities of the multi-agent environment.
Convergence is thus not possible.

WoLF-PHC does not treat uncertainty too. Its
number of confirm actions is by far the high-
est but stays constant. If the SDS asks for con-
firmation, even when there is no noise, it may be
because being disadvantaged, it always loses, and



while losing, its quick learning rate makes its strat-
egy always changing. As previously said, conver-
gence was not guaranteed.

AGPI-Q is then the only algorithm providing
robustness against noise. The length of dialogues
and the number of conf i rm actions increase both
gradually with the SER of the SDS. We are also
assured by the theory that in this setting, no im-
provement is possible.

It is also interesting to note the emergence of
non-trivial strategies coming from the interaction
between the AGPI-() agents. For instance, when
both agents are almost at the end of the dialogue
(c; = 2 for each agent), agents make guess.
Even if they have very low chances of wining,
agents make also guess when it is sure that the
adversary will win at the next turn.

e—e Q_Learning
e—e WoLF-PHC |]
e—e AGPI-Q

1o

14

12+

Turns/Dialogue

10+

0.00 0.05 010 0.15 0.20 0.25 0.30 0.35 0.40 0.45
SER

Figure 1: Length of dialogues
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Figure 2: Frequency of the action CONF IRM

7 Conclusion: Beyond the Zero-Sum
Setting

We provided a rigorous framework for co-learning
in Dialogue Systems allowing optimization for
both conversants. Its efficiency was shown on a
purely adversarial setting under noisy conditions
and an extension to situations more general than
the purely adversarial setting is now proposed.

7.1 An appointment scheduling problem

The previous model considers only purely compet-
itive scenarios. In this section, it is extended for
the General-Sum case. We take as an example the
task of scheduling the best appointment between
two agents, where conversants have to interact to
find an agreement.

Each agent ¢ has its own preferences about a slot
in their agenda, they are encoded into some reward
function R;. At each turn, an agent proposes
some slot k. Next turn, its interlocutor may
propose another slot or accept this one. If
it accepts, agent ¢ earns R;(k), it gets nothing oth-
erwise. The conversation ends when an agent ac-
cepts an offered slot.

Agents, which are not always perfect, can mis-
understand the last offer. An action confirm is
therefore introduced. If an agent thinks that the
last offer was on the slot &’ instead of the slot k&,
the outcome may be disastrous. An agent has thus
always to find a trade-off between the uncertainty
management on the last offer and its impatience,
(due to the discount factor v which penalizes long
dialogues).

Here, cooperation is implicit. Conversants are
self-centered, they care only on their own value
functions, but, since it depends on both actions, or
more explicitly the opponent may refuse an offer,
they have to take into account the opponent’s be-
havior.

7.2 Future work

In future, using General-Sum algorithms (Prasad
et al., 2015), our framework will be applied on
those much more complicated dialogue situations
where cooperative and competitive phenomenon
get mixed up in addition to the noisy conditions
encountered in dialogue.

The long-term goal of this work is to use the
model on a real data set in order to provide model
of real interactions and designing adaptive SDS
freeing ourselves from user modeling.
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Abstract

Model-free reinforcement learning has
been shown to be a promising data driven
approach for automatic dialogue policy
optimization, but a relatively large amount
of dialogue interactions is needed be-
fore the system reaches reasonable perfor-
mance. Recently, Gaussian process based
reinforcement learning methods have been
shown to reduce the number of dialogues
needed to reach optimal performance, and
pre-training the policy with data gathered
from different dialogue systems has fur-
ther reduced this amount. Following this
idea, a dialogue system designed for a sin-
gle speaker can be initialised with data
from other speakers, but if the dynamics of
the speakers are very different the model
will have a poor performance. When data
gathered from different speakers is avail-
able, selecting the data from the most sim-
ilar ones might improve the performance.
We propose a method which automatically
selects the data to transfer by defining a
similarity measure between speakers, and
uses this measure to weight the influence
of the data from each speaker in the pol-
icy model. The methods are tested by sim-
ulating users with different severities of
dysarthria interacting with a voice enabled
environmental control system.

1 Introduction

Partially observable Markov decision processes
(POMDP) (Young et al., 2013) are a popular
framework to model dialogue management as
a reinforcement learning (RL) problem. In a
POMDP, a state tracker (Thomson and Young,
2010)(Williams, 2014) maintains a distribution
over possible user goals (states), called the be-
lief state, and RL methods (Sutton and Barto,
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1998) are used to optimize a metric called cumu-
lative reward, a score that combines dialogue suc-
cess rate and dialogue length. However, existing
model-based RL approaches become intractable
for real world sized dialogue systems (Williams
and Young, 2007), and model-free approaches of-
ten need a large number of dialogues to converge

N4

to the optimal policy (Jurcicek et al., 2012).

Recently, Gaussian process (GP) based RL (En-
gel et al., 2005) has been proposed for dialogue
policy optimization, reducing the number of in-
teractions needed to converge to the optimal pol-
icy by an order of magnitude with respect to other
POMDP models, allowing the policy to be learned
directly from real users interactions (Gasi¢ et al.,
2013 a). In addition, using transfer learning meth-
ods (Taylor and Stone, 2009) to initialise the pol-
icy with data gathered from dialogue systems in
different domains has increased the learning speed
of the policy further (Gasi¢ et al., 2013 b), and
provided an acceptable system performance when
there is no domain specific data available. In the
case of dialogue managers personalised for a sin-
gle speaker, data gathered from other “source”
speakers can be used to pre-train the policy, but if
the dynamics of the other speakers are very differ-
ent, this data will have a different distribution than
the data of the current “target” speaker, and there-
fore, using this data to train the policy model does
not have any benefit. In the context of speaker
specific acoustic models for users with dysarthria
(a speech impairment), Christensen et al. (2014)
demonstrated that using a speaker similarity met-
ric to select the data to train the acoustic mod-
els improves ASR performance. Taking this idea
into dialogue management, if a similarity metric
is defined between different speakers, this metric
can be used to select which data from the source
speakers is used to train the model, and even to
weight the influence of the data from each speaker
in the model. As GP-RL is a non-parametric
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method, a straightforward way to transfer knowl-
edge is to directly initialise the GP model for the
target speaker using data from source speakers,
and update the GP with the data from the tar-
get speaker as this is gathered through interaction.
But GP-RL soon becomes intractable as the data
amount increases, limiting the amount of data that
can be transferred. Gasi¢ et al. (2013 a) proposes
to transfer knowledge between domains by using
the source data to train a prior GP, whose pos-
terior is used as prior mean in the new GP. An-
other option is to use a GP approximation method
(Quifionero and Rasmussen, 2005) which permits
data selection, use the speaker similarity metric to
select the source data to initialise the policy, and
then discard source data points as data points from
the target speaker become available, keeping the
number of data points up to a maximum.

This paper investigates knowledge transfer be-
tween speakers in the context of a spoken environ-
mental control system personalised for speakers
with dysarthria (Christensen et al., 2013), where
the ASR is adapted as speaker specific data is
gathered (Christensen et al., 2012), thus improv-
ing the ASR performance with usage. The pa-
per is organised as follows: Section 2 gives the
background of GP-RL and defines the methods to
select and weight the transferred data. Section
3 presents the experimental setup of the environ-
mental control system and the different dysarthric
simulated users, as well as the different features
used to define the speaker similarities. In Section
4 the results of the experiments are presented and
explained and Section 5 concludes the paper.

2 GPs for reinforcement learning

The objective of a POMDP based dialogue man-
ager is to find the policy w(b) = a that maximizes
the expected cumulative reward c; defined as the
sum of immediate rewards from time step ¢ until
the dialogue is finished, where a € A is the action
taken by the manager, and the belief state b is a
probability distribution over a discrete set of states
S . The Q-function defines the expected cumula-
tive reward when the dialogue is in belief state b;
and action a; is taken, following policy 7:

N
Q(b;,a;) = Erlc] ; where ¢; = ny"‘irn (D

where [V is the time step at which the terminal ac-
tion is taken (end of the dialogue), r; is the im-
mediate reward given by the reward function, and

0 < v < 1 is the discount factor, which weights
future rewards. If ¢; is considered to be a random
variable, it can be modelled as a mean plus a resid-
ual, ¢; = Q(b;,a;) + AQ(b;,a;). Then the im-
mediate reward 7; can be written recursively as the
temporal difference (TD) between @ at time ¢ and
14+ 1:
ri = Q(by, a;) + AQ(b;, a;)
—7iQ(bit1,ai+1) — ¥AQ(bit1,ai+1)(2)

where v; = 0 if a; is a terminal action!, and the
discount factor v otherwise. Given a set of ob-
served belief-action points (b;, a;), with their re-
spective r; values, the set of linear equations can
be represented in matrix form as:

r;1 = Hyq + H; Aqy 3)

where qt=[Q(b1,a1),Q(b2,02),...,Q(bt,at)]—r,
Aqi=[AQ(b1,a1), AQ (b2, a2), ... AQ(by, ar)] T
y Tg—1 = [Tla’r% ""thl]—r and

1 -Y1 ... 0 0

0 1 ... 0 0
H; =

0 0 I =y

If the random variables q; are assumed to have
a joint Gaussian distribution with zero mean and
AQ(b;, a;) ~ N(0,0?), the system can be mod-
elled as a GP (Rasmussen and Williams, 2005),
with the covariance matrix determined by a kernel
function defined independently over the belief and
the action space (Engel et al., 2005):

kij = k((bi, ), (bj, a;)) = k" (bi, b))k (ai, a;)

“)
To simplify the notation, from now on x; =
(b;, a;) will be defined as each belief-action point,
and Ky y as the matrix of size |Y| x [Y'| whose
elements are computed by the kernel function (eq.
4) between any set of points Y and Y’. For a new
belief-action point x, = (b, a.), the posterior of
the expected cumulative reward can be computed:

Q(x) Xy, 11 ~ N(Q(x4), Q(x4))

(x.) = K. xH] (H;Kx xH/ +3) " 'r, 3

(%) = k(Xu, Xx)

— K, xH] (H;Kx xH/ + %) 'HKx.,
%)

'As dialogue management is an episodic RL problem,
the temporal difference relationship between 2 consecutive
belief-action points only happens if the points belong to the
same dialogue.

Q
Q



where X, is the set of size ¢ of all the previously
visited (b;, a;) points, * denotes the set of size
1 composed by the new belief-action point to be
evaluated and X; = 02HtH;r .Q and Q represent
the mean and the variance of () respectively.

To further simplify the notation it is possible to
redefine eq. 5 by defining a kernel in the tempo-
ral difference space instead of in the belief-action
space. If the set of belief-action points X; is rede-
fined? as Z; where z; = (bi, a;, bit1, ai+1), with
b;;1 and a;41 set to any default values if a; is a
terminal action, a kernel function between 2 tem-
poral difference points can be defined as:
kfz = k‘td(ZZ’, Zj)

= k"((by, ai, bit1, ait1), (bj, aj,bji1,a511))
= (kij +vivikir1541 — ki g+1)

(6)
where k; ; is the kernel function in the belief-
action space (eq. 4) and v; = 0 and y; = 0 if a;
and a; are terminal actions respectively, or the dis-
count factor v otherwise (as in eq. 2). When a; is
a terminal action, the value of a;,1 and b, in z;
is irrelevant, as it will be multiplied by v; = 0. In
the same way, when this kernel is used to compute
the covariance vector between a new test point
and the set Z;, as the new point x, = (b.,a.)
lies in the belief-action space, it is redefined as
Z. = (b, s, bst1, asq1) With by and a.4 1 set
to default values. Then, a, is considered a terminal
action, so b, and a.41 won’t affect the value of
kff due to v, = 0. A more detailed derivation of
the temporal difference kernel is given in appendix
A. Using the temporal difference kernel defined in
eq. 6, eq. 5 can be rewritten as:

(Z*)’Ztart 1~ N(Q(2:), Q(24))
(z:) = (thz +3) e
(z4) = ktd(z*,z*) K (K

— Yikiv1,j

Q
Q +3)'KY,

(7
where K%ify, is the covariance matrix computed
with the temporal difference kernel between any
set of TD points Y and Y’. With this notation,
the shape of the equation for the posterior of () is
equivalent to classic GP regression models. Thus,
it is straightforward to apply a wide range of well
studied GP techniques, such as sparse methods.
Redefining the belief-action set of points X; as the
set of temporal difference points Z; also simplifies
the selection of data points (e.g. to select inducing

>Take into account that |Z;| = |X;| — 1
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points in sparse models), because the dependency
between consecutive points is well defined.

The GP literature proposes various sparse meth-
ods which select a subset of inducing points U
of size m < ¢ from the set of training points Z
(Quifionero and Rasmussen, 2005). In this pa-
per the deterministic training conditional (DTC)
method is used. Once the subset of points
has been selected and assuming AQ(b;,a;) —
Y AQ(biy1,a;41) ~ N(0,0?) as in (Engel et al.,
2003), the GP posterior can be approximated in
O(t - m?) with the DTC method as:

Q" (2:)|Zes i1 ~ N(Q(2:), Q(2.))
QY(z.) = o KU AKL yry g (8)
Q" (2.) = k'(z.,2.) — ® + KL AKY,

where A = (0K} ;K + Kif,) " and @ =

K% (Kify) 'K,

Once the posterior for any new belief-action
point can be computed with eq. 7 or eq. 8, the pol-
icy m(b) = a can be computed as the action a that
maximizes the (Q-function from the current belief
state b,, but in order to avoid getting stuck in
a local optimum, an exploration-exploitation ap-
proach should be taken. One of the advantages of
GPs is that they compute the uncertainty of the ex-
pected cumulative reward in form of a variance,
which can be used as a metric for active explo-
ration (Geist and Pietquin, 2011) to speed up the
learning of the policy with an e-greedy approach:

b., a) with prob. (1 — ¢€)
ae

arg max @) (b, a) with prob. €
acA

m(by)

_ { arg max C?(
©))
where € controls the exploration rate. The pol-
icy optimization loop is performed following the
Episodic GP-Sarsa algorithm defined by (GasSié
and Young, 2014).
2.1 Transfer learning with GP-RL
The scenario where a statistical model for a spe-
cific “target” task must be trained, but only data
from different but related “source” tasks is avail-
able, is known as transfer learning (Pan and Yang,
2010). In the context of this paper the different
tasks will be dialogues with different speakers, and
three points of transfer learning will be addressed:

* How to transfer the knowledge

¢ In the case of multiple source speakers, which
data to transfer, and



* How to weight data from different sources.

In the context of reinforcement learning (Taylor
and Stone, 2009) and dialogue policy optimization
(Gasi¢ et al., 2013 a), transfer learning has been
shown to increase the performance of the system
in the initial stages of use and to speed up the pol-
icy learning, requiring a smaller amount of target
data to reach the optimal policy.

2.1.1 Knowledge transfer

The most straightforward way to transfer the data
in GP-RL is to initialise the set of temporal differ-
ence points Z¢ of the GP with the source points
and then continue updating it with target data
points as they are gathered through interaction.
However, this approach has a few shortcomings.
First, as GP-RLs complexity increases with the
number of data points, the model might quickly
become intractable if it is initialised with too many
source points. Also, when data points from the tar-
get speaker are gathered through interaction, the
source points may not improve the performance
of the system, while increasing the model com-
plexity. Second, as the computation of the vari-
ance for a new point depends on the number of
close points already visited, the variance of the
new belief-action points will be reduced by the ef-
fect of the source points close in the belief-action
space. If the distribution of the source data points
is unbalanced, the effectiveness of the policy of
eq. 9 will be affected. Gasi¢ et al. (2013 a) pro-
poses to use the source points to train a prior GP,
and use its posterior as mean function for the GP
trained with the target points. With this approach,
the mean of the posterior in eq. 7 will be modified
as:

Q(zx)

— () K (K4 2) 7 (1 —my)

(10)
where m(z,) is the mean of the posterior of the
@-function given by the prior GP and m;
[m(zo), ..., m(z¢)] ". If the DTC approach (eq. 8)

is taken, the posterior (J-function mean becomes:

QU (z.) = m(z.) +0 Ky AKY (1,1 —my)
(11)
This approach has the advantage of being com-
putationally cheaper than the former method while
modelling the uncertainty for new target points
more accurately, but at the cost of not taking into
account the correlation between source and target
points, which might reduce the performance when
there is a small amount of target data.
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A third approach combines the two previous
methods, using a portion of the transfer points to
train a GP for the prior mean function, while the
rest is used to initialise the set Z; of the GP that
will be updated with target points. This method
will be computationally cheaper than the first one
while increasing the performance of the second
method with a small amount of target data.

2.1.2 Transfer data selection

As non-parametric models, the complexity of GPs
will increase with the number of data points, lim-
iting the amount of source data that can be trans-
ferred. Additionally, if the points come from
multiple sources, it is possible that the data dis-
tribution from some sources is more similar to
the target speaker than others, hence transferring
data from these sources will increase performance.
We propose to extract a speaker feature vector s
from each speaker and define a similarity function
f(s,s) between speakers (see sec. 3.4). The data
can be selected by choosing the points from the
source speakers more similar to the target.

With the DTC approach (eq. 8), a subset of
inducing points U, must be selected. The most
straightforward way is to select the most similar
points to the speaker from the transferred points.
As the user interacts with the system and target
data points are gathered, these points may be used
as inducing points. This approach acts like an-
other layer of data selection; the reduced com-
plexity will allow for the transfer of more source
points, while using the target points as inducing
points will mean that only the source points that
lie in the same part of the belief-action space as
the target points have influence on the model.

2.1.3 Transfer data weighting

When transferring data from multiple sources,
the similarity between each source and the target
speaker might be different. Thus the data from a
source more similar to the target should have more
influence in the model than less similar ones. As a
GP is defined by computing covariances between
data points through a kernel function, one way to
weight the data from different sources is to ex-
tend the belief-action vector used to compute the
covariance with the speaker feature vector s ex-
plained in the previous section as x; = (b;, a;,s;),
and then extend the kernel (eq. 4) by multiplying
it by a new kernel in the speaker space k° as:



kie,gt:k((bi7aiasi)7(bj>aj’sj)) (12)
= Kk*(by, b))k (ai, a;)k* (s, 5;)
By adding this extra space to the data points, the
covariance between points will not only depend on
the similarity between points in the belief-action
space, but also in the speaker space, reducing the
covariance between two points that lie in differ-
ent parts of the speaker space. This approach will
also help to partially deal with the variance com-
puting problem of the first model in sec. 2.1.1, as
the source points will lie on a different part of the
speaker space than the new target points, thus hav-
ing less influence in the variance computation.
3 Experimental setup
To test the system in a scenario with high vari-
ability between the dynamics of the speakers,
the experiments are performed within the con-
text of a voice-enabled control system designed
to help speakers with dysarthria to interact with
their home devices (TV, radio, lamps...), where
the speakers have different severities of dysarthria
(this is an instance of the homeService application
(Christensen et al., 2013)). The system has a vo-
cabulary of 36 commands and is organised in a
tree setup where each node in the tree represents
either a device (e.g. “TV?”), a property of that de-
vice (e.g. “channel”), or actions that trigger some
change in one of the devices (e.g. “one”, child
of “channel”, will change the TV to channel one).
When the system transitions to one of the terminal
nodes that trigger an action, the action associated
with this node is performed, and subsequently the
system returns to the root node. In the following
experiments a dialogue will be considered finished
when one of the terminal node actions is carried
out. In the non-terminal nodes, the user may ei-
ther speak one of the commands available in that
node (defined by its children nodes) to transition
to them, or say the meta-command “back” to re-
turn to its parent node. The ASR is configured
to recognise single words, so there is no need for
a language understanding system, as the concepts
are just a direct mapping from the ASR output. A
more detailed explanation of the system is given
in (Casanueva et al., 2014) and two example dia-
logues are presented in Appendix B.

3.1 Simulated dysarthric users
In the homeService application, each system is

personalised for a single speaker by adapting the
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ASR system’s acoustic model as more data is gath-
ered through interaction, thus increasing the accu-
racy of the ASR over time. In the following exper-
iments, the system is tested by interacting with a
set of simulated users with dysarthria, where each
user interacts with a set of different ASR simu-
lators, arising from the different amounts of data
used to adapt the ASR. To train the ASR simula-
tor for these users, data from a dysarthric speech
database (UASpeech database (Kim et al., 2008))
has been used. Table 1 shows the characteristics
of the 15 speakers of the database, and the ASR
accuracy for each speaker in the 36 word vocabu-
lary of the system without adaptation and adapted
with 500 words from that speaker. Additionally,
an intelligibility measure assessment is presented
for each speaker as the percentage of words spo-
ken by each speaker which are understood by un-
familiar speakers; these are shown in the second
column in table 1.

The system is tested with 6 different simulated
users trained with data from low and medium in-
telligibility®> speakers. Each user interacts with
4 different ASRs, adapted with 0, 150, 300 and
500 words respectively. For a more detailed ex-
planation of the simulated users configuration, the
reader may refer to (Casanueva et al., 2014).

3.2 POMDP setup

Each non-terminal node in the tree is modelled as
an independent POMDP where the state set S is
the set of possible goals of the node and the ac-
tion set A is the set of actions associated with each
goal plus an “ask” action, which requests the user
to repeat his last command. The reward function
for all the POMDPs is -1 for the “ask” action, and
+10 for each other action if it corresponds to the
user goal, or -10 otherwise, and v = 0.95. The
state tracker is a logistic regression classifier (Pe-
dregosa et al., 2011), where classes are the set of
states S. The belief state b is computed as the pos-
terior over the states given the last 5 observations
(N-best lists with normalised confidence scores).
For each speaker, the state tracker has been trained
with data from the other 14 speakers.

In (Casanueva et al., 2014) it was shown that, with a
36 command setup, statistical DM is most useful for low
and medium intelligibility speakers. For high intelligibility
speakers, the ASR accuracy is close to 100% so the improve-
ment obtained from DM is small, and for very low intelligi-
bility speakers, the absolute performance is not high enough
to make the system useful.



Speaker Range of Number of | Speaker independent Adapted ASR

intelligibility | int. measures | speakers | ASR accuracy range accuracy range
Very low 2% - 15% 4 12.04% - 46.80% 23.06% - 74.37%
Low 28% - 43% 3 27.04% - 55.99% 80.52% - 95.28%
Medium 58% - 62% 3 55.34% - 68.34% 85.93% - 89.61%
High 86% - 95% 5 68.14% - 97.76% 95.38% - 100.00%

Table 1: Stats for the UASpeech database

3.3 Policy models
The DTC approach (eq. 8) is used to compute the
@-function for the policy (eq. 9) with Gaussian
noise variance o> = 5. The kernel over the belief
space is a radial basis function kernel (RBF):

[[bi — by||?

)

with variance 013 = 25 and lengthscale l,%, = 0.5.
The delta kernel is used over the action space:

k’(b;,b;) = of exp ( -

K@i, a5) = olai, a;) = {égtl?z:rwi(slé (19
and the kernels over the speaker space are defined
in section 3.4. The size of the inducing set U,,, is
500 and the maximum size of the TD points set Z;
is 2000. Whenever a new data point is observed
from the target speaker, it is added to the set of in-
ducing points U,,,, and the first point of the set U,,
(which, due to the ordering done by data selection,
corresponds to the least similar source point or to
the oldest target point) is discarded from the in-
ducing set. Whenever a new data point is observed
and the size of the set of temporal difference points
|Z:| = 2000, the first point of this set is discarded.
Three variations of the DTC approach are used:

e DTC: Equation 8 is used to compute the Q
posterior for the policy (eq. 9) and the set
of temporal difference points Z; is initialised
with the source points.

Prior: Equation 11 is used to compute the Q
posterior for the policy (eq. 9) and the prior
GP is trained with the source points.

Hybrid: Equation 11 is used to compute the
Q posterior for the policy (eq. 9), the prior
GP is trained with half of the source points
and the set of temporal difference points Z;
is initialised with the other half.

3.4 Speaker similarities

To compute the similarities between speakers a
vector of speaker features s must be extracted.
Different kinds of features may be extracted, such
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as meta-data based features, acoustic features, fea-
tures related to the ASR performance, etc. In this
paper, we explore 3 different methods to extract s;

* [ntelligibility assessment: The intelligibility
assessment for each speaker in the UASpeech
database (table 1) can be used as a single di-
mensional feature.

e [-vectors: Martinez et al. (2013) showed that
i-vectors (Dehak et al., 2011) can be used
to predict the intelligibility of a dysarthric
speaker. For each speaker, s is defined as a
400 dimensional vector corresponding to the
mean i-vector extracted from each utterance
from that speaker. For more information on
the i-vector extraction and characteristics, re-
fer to (Martinez et al., 2014).

* ASR accuracy: The performance statistics
of the ASR (e.g. accuracy) can be used as
speaker features. In this paper we use the ac-
curacy per word (command), defining s as a
36 dimensional vector where each element is
the ASR accuracy for each of the 36 com-
mands.

The kernel over the speaker space k° (eq. 12),
is defined as an RBF kernel (eq. 13). This ker-
nel is used both to compute the similarity between
speakers in order to select data (section 2.1.2),
and to weight the data from each source speaker
(section 2.1.3). k® has variance o,% = 1 and the
lengthscale l,% varies depending on the features.
For intelligibility features [2 = 0.5, for i-vectors
I2 = 8.0 and for ASR accuracy features [ = 4.0

4 Results

In the following experiments the reward is com-
puted as -1 for each dialogue turn, +20 if the dia-
logue was successful®. The system has been tested

“Because of the variable depth tree structure of the spoken
dialogue system, the sum or average of cumulative rewards
obtained in each sub-dialogue is not a good measure of the
overall system performance. If the dialogue gets stuck in a
loop going back and forth between two sub-dialogues, the
extra amount of turns spent in this loop would not be reflected
in the average of rewards
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Figure 1: different policy models compared

with the 24 speaker-ASR pairs explained in sec-
tion 3.1, and in the following figures, each plotted
line is the average results for these 24 speaker-
ASR pairs. As the behaviour of the simulated
user and some data selection methods partially de-
pend on random variables, each experiment has
been initialised with four different seeds and all
the results presented are the average of the four
seeds tested over 500 dialogues. In all the experi-
ments the data to initialise each POMDP is trans-
ferred from a pool of 4200 points corresponding
to 300 points from each speaker in table 1 except
the speaker being tested, where each data pool is
different for each seed.

Figure 1 compares the different policy models
presented in section 3.3 using the intelligibility
measure based similarity to select and weight the
data. The dotted line named DTC-conv shows the
performance of the DTC policy when trained un-
til convergence with the target speaker by simulat-
ing 1200 sub-dialogues in each node. DTC-1000
and DTC-2000 show the performance of the basic
DTC approach when 1000 and 2000 source points
are transferred respectively. It can be observed
that, transferring more points boosts the perfor-
mance, but at the cost of increasing the complex-
ity. pri-1000 and pri-2000 show the performance
of the prior policy with 1000 and 2000 transfer
points respectively. The success rate is above the
DTC policy but the learning rate for the reward is
slower. This might be because the small amount
of target data points make the predictions of the
@-function given by the GP unreliable. Hyb-1000
and hyb-2000 show the performance of the hybrid
model, showing the best behaviour on success rate
after 100 dialogues, and for hyb-2000 even outper-
forming DTC-2000 in reward after 400 dialogues.

In figure 2 the different approaches to com-
pute the speaker similarities for data selection
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and weighting presented in section 3.4 are com-
pared, using the DTC model with 1000 transfer
points (named DTC-1000 in the previous figure).
DTC-int uses the intelligibility measure based fea-
tures, DTC-iv the i-vector features and DTC-acc
the ASR accuracy based features. DTC-iv outper-
forms the other two features, followed closely by
DTC-acc. The performance of DTC-int is way
below the other two metrics, suggesting that the
information given by intelligibility assessments is
a weak feature for source speaker selection (as it
is done by humans, it might be very noisy). As
DTC-acc uses information about the ASR statis-
tics (which is the input for the dialogue manager),
it might be expected that it will outperform the
rest, but in this case a purely acoustic based mea-
sure such as the DTC-iv works better. The reason
for this might be that these features are not corre-
lated to the ASR performance, so hidden variables
are used to better organise the data. To investi-
gate the usefulness of similarity based data selec-
tion, two different data selection methods which
do not weight the transferred data have been tried.
DTC-randspk selects the ordering of the speak-
ers from whom the data is transferred at random,
and has a much worse performance than the sim-
ilarity based method, but DTC-allspk selects the
1000 source points from all the speakers, select-
ing 1000 points at random from the pool of 4200
points and, as it can be seen, the reward obtained
by this method is slightly better than with DTC-iv,
even if the success rate is lower. This suggests that
transferring points from more speakers rather than
from just the closest ones is a better strategy, prob-
ably because points selected by this method are
distributed more uniformly over the belief-action
space. A method which does a trade-off between
filling the belief-action space while selecting the

most similar points could be a better option.
To further investigate the effect of selection and

weighting of the data, figure 3 plots the results
for the DTC policy model using the i-vector based
similarity to weight the data but different data se-
lection methods. iv-clo selects the closest speakers
with respect to the i-vector metric, iv-randspk or-
ders the speakers at random, and iv-allspk selects
the 1000 transfer points from all the speakers but
the tested one. As in the previous figure, selecting
speakers by similarity works better than selecting
speakers at random, but selecting the points from
all the speakers and weighting them with the i-
vector metric outperforms all the previous meth-
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ods. This might be because weighting the data
does a kind of data selection, as the data points
from source speakers closer to the target will have
more influence than the further ones, while trans-
ferring points from all the speakers covers a big-
ger part of the belief-action space. acc-allspk and
allspk-uw show the results of weighting the data
with the ASR accuracy metric and not weighting
the data respectively, when selecting the data from
all speakers. The accuracy metric performs worse
than the i-vector metric once again, but it still out-
performs not weighting the data, suggesting that
data weighting works for different metrics. Finally
iv-allspk-hyb plots the performance of the hybrid
model when selecting the data from all the speak-
ers and weighting it with the i-vector based simi-
larity. Even if it is computationally cheaper, it out-
performs iv-allspk after 100 dialogues, suggesting
that with a good similarity metric and data selec-
tion method, the hybrid model in section 3.3 is the
best option to take.

5 Conclusions

When transferring knowledge between speakers in
a GP-RL based policy, weighting the data by us-
ing a similarity metric between speakers, and to
a lesser extent, selecting the data using this sim-
ilarity, improves the performance of the dialogue
manager. By defining a kernel between temporal
difference points and interpreting the ()-function
as a GP regression problem where data points are
in the TD space, sparse methods that allow the se-
lection of the subset of inducing points such as
DTC can be applied. In a transfer learning sce-
nario, DTC permits a larger number of data points
to be transferred and the selection of points col-
lected from the target speaker as inducing points.
We showed that using part of the transferred
data to train a prior GP for the mean function,

19

Success rate (%) Reward

84

821
80
781
761

741 Fa

DTC-Conv
iv-clo
iv-allspk
acc-allspk
alispk-uw ||
iv-allspk-hyb
iv-randspk

72

701/

68
0 100 200 300
training dialogues

400 100 200 300

training dialogues

400

Figure 3: different transfer data selection methods
compared

and the rest to initialize the set of points of the
GP, improves the performance of each of these ap-
proaches. Transferring data points from a larger
number of speakers outperformed selecting the
data points only from the more similar ones, prob-
ably because the belief-action space is covered
better. This suggests that more complex data se-
lection algorithms that trade-off between selecting
the data points by similarity and covering more
uniformly the belief-action space should be used.
Also, increasing the amount of data transferred in-
creased the performance, but the complexity in-
crease of GP-RL limits the amount of data that
can be transferred. More computationally efficient
ways to transfer the data could be studied.

Of the three metrics based on speaker features
tested (speaker intelligibility, i-vectors and ASR
accuracy), i-vectors outperformed the rest. This
suggest that i-vectors are a potentially good fea-
ture for speaker specific dialogue management and
could be used in other tasks such as state tracking.
ASR accuracy based metrics also outperformed
the intelligibility based one, and as ASR accuracy
and i-vector are uncorrelated features, a combina-
tion of them could give further improvement.

Finally, as the models were tested with simu-
lated users in a hierarchically structured dialogue
system (following the structure of the homeSer-
vice application), future work directions include
evaluating the policy models in a mixed initiative
dialogue system and testing them with real users.
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Appendix A. Temporal difference kernel

In equation 5, a linear transformation from
the belief-action space to the temporal difference
space is applied to the to the covariance vector
K, x and to the covariance matrix K x x by mul-
tiplying them by the matrix H;. Deriving the
term H; K x XHtT we obtain the matrix in eq. 15
(page bottom), where k; ; is the kernel function be-
tween two belief-action points x; = (b;,a;) and
x; = (bj, a;), defined in eq. 4. The transformed
matrix (eq. 15) has the form of a covariance ma-
trix where each element is a sum of kernel func-
tions k; ; between belief-action points on time 7 or
1 + 1 weighted by the discount factors. So each
element of this matrix can be defined as a function
of 2 temporal differences between belief-action
points (TD points), z; = (b;, a;,b;t1,a;+1) and
z; = (bj,a;,bj11,aj41) in the form of (eq. 6):

k% = (ki j + vivikir1 g1 — Yikivrg — vikijr1)

(16)
where 7; and y; will be 0 if a; and a; are terminal
actions respectively. Deriving the term K, XH;r
(and H;K x ) we obtain:

K*,XH;F =
(k‘l,* (k‘z* (ktfl,* 17)
_71]{;27*) _72k3,*) _fyt—lkt,*)
which is a vector with k{4 = (ki — vikit1.4)

for each term. This is equivalent to equation 16 if
the action of the new point a, is considered a ter-
minal action, thus «, = 0. Then, redefining the
set of belief-action points X; as the set of belief-
action temporal difference points denoted as Z;,
and defining K*@ as the covariance matrix com-
puted with the kernel function between two tem-
poral difference points (eq. 6), eq. 7 can be de-
rived from eq. 5 by doing the following substitu-
tions: K*7XHtT = Ki‘fz, HKyx. = KtZd’* and
HKx xH/ =KY,

(k11 +13k22
—271k1,2)
(k1,2 +7172k2,3

HKx yH = | —ke2—mkis)

(B +y1vi-1koy
| —ve—1kot , — ki)

(k12 +7172k2,3
—oky o — Y1k13)
(ko2 + 3k 3

(ko,t_y +72y-1k3t
—Yi—1k3 s, — v2kay)

Appendix B. Example homeService dialogues

For a more detailed description of the hierarchi-
cal structure of the homeService environment, this
appendix presents two example dialogues between
an user and the system. The second column rep-
resents the actions taken either by the user (com-
mands) or by the system (actions)

Dialogue 1: Goal = {TV, Channel, One}
Dialogue starts in node “Devices”

Sub-dialogue “Devices”

User TV ( Speaks the command “TV”)
System | Ask (Requests to repeat last command)
User TV (Repeats his last command)

System | TV (Dialogue transitions to node “TV”)

Sub-dialogue “TV”
Chan. (Command “Channel”)
Chan. (Transitions to node “Channel”)

User
System

Sub-dialogue “Channel”
User One (Command “One”)
System | One (Performs action 7V-Channel-One)
As an action has been taken in a terminal node,

the dialogue ends.

Dialogue 2: Goal = {Hi-fi, On}
Dialogue starts in node “Devices”
Sub-dialogue “Devices”

Hi-fi (Command “Hi-fi”)

Light (transitions to node Light)

User
System

Sub-dialogue “Light”
User Back (Requests to go to previous node)
System | Back (transitions to node Devices)

Sub-dialogue “Devices”
Hi-fi (Command “Hi-fi”)
Hi-fi (transitions to node Hi-fi)

User
System

Sub-dialogue “Hi-fi”
User On (Command “On”)
System | Off (Performs action Hifi-Off)

As the action taken in the terminal node does not
match the goal, it is a failed dialogue.
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Abstract

We describe an empirical study that
crowdsourced human-authored recovery
strategies for various problems encoun-
tered in physically situated dialogue. The
purpose was to investigate the strategies
that people use in response to requests
that are referentially ambiguous or impos-
sible to execute. Results suggest a gen-
eral preference for including specific kinds
of visual information when disambiguat-
ing referents, and for volunteering alter-
native plans when the original instruction
was not possible to carry out.

1 Introduction

Physically situated dialogue differs from tradi-
tional human-computer dialogue in that interac-
tions will make use of reference to a dialogue
agent’s surroundings. Tasks may fail due to depen-
dencies on specific environment configurations,
such as when a robot’s path to a goal is blocked.
People will often help; in navigation dialogues
they tend to ask proactive, task-related questions
instead of simply signaling communication fail-
ure (Skantze, 2005). They supplement the agent’s
representation of the environment and allow it to
complete tasks. The current study establishes an
empirical basis for grounding in physically situ-
ated contexts. We had people provide recovery
strategies for a robot in various situations.

The focus of this work is on recovery from
situated grounding problems, a type of miscom-
munication that occurs when an agent fails to
uniquely map a person’s instructions to its sur-
roundings (Marge and Rudnicky, 2013). A refer-
ential ambiguity is where an instruction resolves to
more than one possibility (e.g., “Search the room
on the left” when there are multiple rooms on
the agent’s left); an impossible-to-execute problem
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fails to resolve to any action (e.g., same instruction
but there are no rooms on the agent’s left). A com-
mon strategy evidenced in human-human corpora
is for people to ask questions to recover from situ-
ated grounding problems (Tenbrink et al., 2010).

Dialogue divides into two levels: that of
managing the actual dialogue—determining who
has the floor, that an utterance was recog-
nized, etc.—and the dialogue that serves the
main joint activities that dialogue partners are car-
rying out, like a human-robot team exploring a
new area (Bangerter and Clark, 2003). Most ap-
proaches to grounding in dialogue systems are
managing the dialogue itself, making use of spo-
ken language input as an indicator of understand-
ing (e.g., (Bohus, 2007; Skantze, 2007)). Situated
grounding problems are associated with the main
joint activities; to resolve them we believe that the
recovery model must be extended to include plan-
ning and environment information. Flexible re-
covery strategies make this possible by enabling
dialogue partners to coordinate their joint activi-
ties and accomplish tasks.

We cast the problem space as one where the
agent aims to select the most efficient recovery
strategy that would resolve a user’s intended ref-
erent. We expect that this efficiency is tied to the
cognitive load it takes to produce clarifications.
Viethen and Dale (2006) suggest a similar predic-
tion in their study comparing human and automat-
ically generated referring expressions of objects
and their properties. We sought to answer the fol-
lowing questions in this work:

e How good are people at detecting situated
grounding problems?

e How do people organize recovery strategies?

e When resolving ambiguity, which properties do
people use to differentiate referents?

e When resolving impossible-to-execute instruc-
tions, do people use active or passive ways to
get the conversation back on track?
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We determined the most common recovery strate-
gies for referential ambiguity and impossible-to-
execute problems. Several patterns emerged that
suggest ways that people expect agents to recover.
Ultimately we intend for dialogue systems to use
such strategies in physically situated contexts.

2 Related Work

Researchers have long observed miscommunica-
tion and recovery in human-human dialogue cor-
pora. The HCRC MapTask had a direction giver-
direction follower pair navigate two dimensional
schematics with slightly different maps (Anderson
et al., 1991). Carletta (1992) proposed several re-
covery strategies following an analysis of this cor-
pus. The SCARE corpus collected human-human
dialogues in a similar scenario where the direction
follower was situated in a three-dimensional vir-
tual environment (Stoia et al., 2008).

The current study follows up an initial proposal
set of recovery strategies for physically situated
domains (Marge and Rudnicky, 2011). Others
have also developed recovery strategies for situ-
ated dialogue. Kruijff et al. (2006) developed a
framework for a robot mapping an environment
that employed conversational strategies as part of
the grounding process. A similar study focused
on resolving misunderstandings in the human-
robot domain using the Wizard-of-Oz methodol-
ogy (Koulouri and Lauria, 2009). A body of
work on referring expression generation uses ob-
ject attributes to generate descriptions of refer-
ents (e.g., (Guhe and Bard, 2008; Garoufi and
Koller, 2014)). Viethen and Dale (2006) compared
human-authored referring expressions of objects
to existing natural language generation algorithms
and found them to have very different content.

Crowdsourcing has been shown to provide
useful dialogue data: Manuvinakurike and De-
Vault (2015) used the technique to collect game-
playing conversations. Wang et al. (2012) and
Mitchell et al. (2014) have used crowdsourced
data for training, while others have used it in real
time systems (Lasecki et al., 2013; Huang et al.,
2014).

3 Method

In this study, participants came up with phrases
that a search-and-rescue robot should say in re-
sponse to an operator’s command. The partici-
pant’s task was to view scenes in a virtual envi-
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Figure 1: An example trial where the operator’s command
was “Move to the table”. In red is the robot (centered) pointed
toward the back wall. Participants would listen to the opera-
tor’s command and enter a response into a text box.

ronment then formulate the robot’s response to an
operator’s request. Participants listened to an op-
erator’s verbal command then typed in a response.

Scenes displayed one of three situations: refer-
ential ambiguity (more than one possible action),
impossible-to-execute (zero possible actions), and
executable (one possible action). The instructions
showed some example problems. All situations in-
volved one operator and one robot.

3.1 Experiment Design

After instructions and a practice trial, participants
viewed scenes in one of 10 different environments
(see Figure 1). They would first watch a fly-
over video of the robot’s environment, then view
a screen showing labels for all possible referable
objects in the scene. The participant would then
watch the robot enter the first scene. The practice
trial and instructions did not provide any examples
of questions.

The robot would stop and a spoken instruction
from the operator would be heard. The partic-
ipant was free to replay the instruction multiple
times. They would then enter a response (say an
acknowledgment or a question). Upon completion
of the trial, the robot would move to a different
scene, where the process was repeated.

Only self-contained questions that would allow
the operator to answer without follow-up were al-
lowed. Thus generic questions like “which one?”
would not allow the operator to give the robot
enough useful information to proceed. In the in-
structions, we suggested that participants include
some detail about the environment in their ques-



Trial Group | #PARTIC | #AMB | #IMP | #EXE
1 15 9 9 7

2 15 16 6 3
Total 30 25 15 10

Table 1: Distribution of stimulus types across the two trial
groups of participants (PARTIC). Trials either had referen-
tial ambiguity (AMB), were impossible-to-execute (IMP), or
executable (EXE).

tions.

Participants used a web form' to view situations
and provide responses. We recorded demographic
information (gender, age, native language, native
country) and time on task. The instructions had
several attention checks (Paolacci et al., 2010) to
ensure that participants were focusing on the task.

We created fifty trials across ten environments.
Each environment had five trials that represented
waypoints the robot was to reach.  Partici-
pants viewed five different environments (totaling
twenty-five trials). Each command from the re-
mote operator to the robot was a route instruction
in the robot navigation domain. Trials were assem-
bled in two groups and participants were assigned
randomly to one (see Table 1). Trial order was
randomized according to a Latin Square.

3.1.1 Scenes and Environments

Scenes were of a 3D virtual environment at eye
level, with the camera one to two meters behind
the robot. Camera angle issues with environment
objects caused this variation.

Participants understood that the fictional op-
erator was not co-located with the robot. The
USARSim robot simulation toolkit and the
UnrealEd game map editor were used to create the
environment. Cepstral’s SwiftTalker was used for
the operator voice.

Of the fifty scenes, twenty-five (50%) had
referential ambiguities, fifteen (30%) were
impossible-to-execute, and ten (20%) were exe-
cutable controls. The selection was weighted to
referential ambiguity, as these were expected to
produce greater variety in recovery strategies. We
randomly assigned each of fifty trials a stimulus
type according to this distribution, then divided
the list into ten environments. The environments
featured objects and doorways appropriate to the
trial type, as well as waypoints.

!See http://goo.gl/forms/ZGpK3L1nPh for an example.
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Referential Ambiguity We arranged the sources
of information participants could use to describe
referents, to enable analysis of the relationship
between context and recovery strategies. The
sources of information (i.e., “situated dimen-
sions”) were: (1) intrinsic properties (either color
or size), (2) history (objects that the robot already
encountered), (3) egocentric proximity of the robot
to candidate referents around it (the robot’s per-
spective is always taken), and (4) object proximity
(proximity of candidate referents to other objects).
Table 2 provides additional details.

Scenes with referential ambiguity had up to
four sources of information available. Information
sources were evenly distributed across five trial
types: one that included all four sources, and four
that included all but one source of information
(e.g., one division excluded using history infor-
mation but did allow proximity, spatial, and object
properties, one excluded proximity, etc.).

Impossible-to-Execute The impossible-to-execute
trials divided into two broad types. Nine of
the fifteen scenes were impossible because the
operator’s command did not match to any referent
in the environment. The other six scenes were
impossible because a path to get to the matching
referent was not possible.

Executable Ten scenes were executable for the
study and served as controls. The operator’s com-
mand mentioned existing, unambiguous referents.

3.1.2 Robot Capabilities

Participants were aware of the robot’s capabilities
before the start of the experiment. The instructions
said that the robot knew the locations of all objects
in the environment and whether doors were closed
or open. The robot also knew the color and size of
objects in the environment (intrinsic properties),
where objects were relative to the robot itself and
to other objects (proximity), when objects were
right, left, in front, and behind it (spatial terms),
the room and hallway locations of objects (loca-
tion), and the places it has been (history, the robot
kept track of which objects it had visited). The
robot could not pass through closed doors.

3.2 Hypotheses

We made five hypotheses about the organization
and content of participant responses to situated
grounding problems:



Dimension Property

#Scenes

Intrinsic (aka “perceptual feature™) On no dimension does the target referent share an in- 20
trinsic property value with any other object of its type.
The two intrinsic properties are color and size.

History (aka “conceptual feature”) The robot already visited the referent once. 14
Object Proximity The referent has a unique, nearby object that can serve 21
(aka “functional relation’) as a “feature” for reference purposes.

Egocentric Proximity The referent has a unique spatial relationship relative to 20
(aka “spatial relation”™) the robot. The relation is prototypical, generally falling

along a supposed axis with the robot.

e Hypothesis 1: Participants will have more dif-
ficulty detecting impossible-to-execute scenes
than ambiguous ones. Determining a robot’s
tasks to be impossible requires good situation
awareness (Nielsen et al., 2007) (i.e., an under-
standing of surroundings with respect to cor-
rectly completing tasks). Detecting referen-
tial ambiguity requires understanding the op-
erator’s command and visually inspecting the
space (Spivey et al., 2002); detecting impossi-
ble commands also requires recalling the robot’s
capabilities and noticing obstacles. Previous re-
search has noted that remote teleoperators have
trouble establishing good situation awareness
of a robot’s surroundings (Casper and Murphy,
2003; Burke et al., 2004). Moreover, obstacles
near a robot can be difficult to detect with a re-
stricted view as in the current study (Alfano and
Michel, 1990; Arthur, 2000).

Hypotheses 2a and 2b: Responses will more
commonly be single, self-contained questions
instead of a scene description followed by a
question (2a for scenes with referential ambi-
guity, 2b for scenes that were impossible-to-
execute). This should reflect the principle of
least effort (Clark, 1996), and follow from Car-
letta’s (1992) observations in a similar dataset.
e Hypothesis 3: Responses will use the situated
dimensions that require the least cognitive effort
when disambiguating referents. Viethen and
Dale (2006) suggest that minimizing cognitive
load for the speaker or listener would produce
more human-like referring expressions. We pre-
dict that responses will mention visually salient
features of the scene, such as color or size of
referents, more than history or object proxim-
ity. Desimone and Duncan (1995) found that
color and shape draw more attention than other
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Table 2: Ambiguous scene referent description space. Number of scenes was out of 25 total. We relate the current terms to
general types defined by Carlson and Hill (2009).

properties in visual search tasks when they are
highly distinguishable.

e Hypothesis 4: In cases of referential ambiguity
where two candidate referents are present, re-
sponses will confirm one referent in the form
of a yes-no question more than presenting a
list. Results from an analysis of task-oriented
dialogue suggests that people are efficient
when asking clarification questions (Rieser and
Moore, 2005). Additionally, Clark’s least ef-
fort principle (Clark, 1996) suggests that clar-
ifying one referent using a yes-no confirmation
would require less effort than presenting a list
in two ways: producing a shorter question and
constraining the range of responses to expect.

e Hypothesis 5: For impossible-to-execute in-
structions, responses will most commonly be
ways for the robot to proactively work with the
operator’s instruction, in an effort to get the
conversation back on track. The other possi-
ble technique, to simply declare that the prob-
lem is not possible, will be less common. This
is because participants will believe such a strat-
egy will not align with the task goal of hav-
ing the robot say something that will allow it
to proceed with the task. Skantze found that
in human-human navigation dialogues, peo-
ple would prefer to look for alternative ways
to proceed rather than simply express non-
understanding (Skantze, 2005).

3.3 Measures

The key independent variable in this study was
the stimulus type that the participant viewed (i.e.,
referential ambiguity, impossible-to-execute, or
executable). Dependent variables were observa-
tional measurements, presented below. We report
Fleiss’ kappa score for inter-annotator agreement



between three native English speaking annotators
on a subset of the data.

Correctness (k 0.77): Whether participants
correctly determined the situation as ambiguous,
impossible, or executable. Annotators labeled
correctness based on the content of participant
responses. This measure assessed participant ac-
curacy for detecting situated grounding problems.
Either correct or incorrect.

Sentence type (v = 0.82): Either declarative,
interrogative, imperative, or exclamatory (Cowan,

2008).

Question type (k = 0.92): Sentences that needed
an answer from the operator. The three types
were yes-no questions, alternative questions
(which presented a list of options and includes
wh- questions that used sources from Table 2),
and generic wh- questions (Cowan, 2008).
Situated dimensions in response (v = 0.75):
The capability (or capabilities) that the participant
mentioned when providing a response. The types
were intrinsic (color or size), object proximity,
egocentric proximity, and history.

Projected belief (impossible-to-execute trials
only, x = 0.80): The participant’s belief about
the next task, given the current operator instruc-
tion (projected onto the robot). The types were
unknown (response indicates participant is unsure
what to do next), ask for more (ask for more de-
tails), propose alternative (propose alternative ob-
ject), ask for help (ask operator to physically ma-
nipulate environment), and off topic.

3.4 Participation

We recruited 30 participants. All participants
completed the web form through the Amazon Me-
chanical Turk (MTurk) web portal®, all were lo-
cated in the United States and had a task approval
rate >95%. The group included 29 self-reported
native English speakers born in the United States;
1 self-reported as a native Bangla speaker born in
Bangladesh. The gender distribution was 15 male
to 15 female. Participants ranged in age from 22
to 52 (mean: 33 years, std. dev.: 7.7). They were
paid between $1 and $2 for their participation. We

*https://www.mturk.com
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Problem Type | Sample Crowdsourced Responses
Referential > Do you mean the table in front of me?
Ambiguity > Should I go to the small or big table?

Impossible-to-
Execute

> There is not a lamp behind me. Would
you like for me to go to the lamp in
front of me?

> Do you mean the lamp in front of me?

Table 3: Participants composed recovery strategies in re-
sponse to operator commands that were referentially ambigu-
ous or impossible-to-execute.

collected a total of 750 responses.

4 Results

We analyzed the measures by tabulating frequen-
cies for each possible value. Table 3 presents some
example responses.

4.1 Correctness

In general, participants were good at detecting
situated grounding problems. Out of 750 re-
sponses, 667 (89%) implied the correct scene
type. We analyzed correctness across actual stim-
ulus types (ambiguous, impossible-to-execute, ex-
ecutable) using a mixed-effects analysis of vari-
ance model®, with participant included as a ran-
dom effect and trial group as a fixed effect.

Hypothesis 1 predicted that participants will
do better detecting scenes with referential ambi-
guity than those that were impossible-to-execute;
the results support this hypothesis. Actual stimu-
lus type had a significant main effect on correct-
ness (F[2, 58] = 12.3, p < 0.001); trial group
did not (F[1, 28] = 0.1, p = 0.72). Partici-
pants had significantly worse performance detect-
ing impossible-to-execute scenes compared to am-
biguous ones (p < 0.001; Tukey HSD test). In fact,
they were four times worse; of the impossible-to-
execute scenes, participants failed to detect that
22% (50/225) of them were impossible, compared
to 5% (17/375) of scenes with referential ambigu-
ity. Of the 150 instructions that were executable,
participants failed to detect 11% (16/150) of them
as such.

4.2 Referential Ambiguity

We analyzed the 358 responses where participants
correctly detected referential ambiguity.

3This approach computed standard least squares regres-
sion using reduced maximum likelihood (Harville, 1977).
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Figure 2: Counts of situated dimensions in recovery strategies
for scenarios with referential ambiguity.

Hypothesis 2a predicted that participants would
more commonly ask single, self-contained ques-
tions instead of describing the scene and asking a
question. We assessed this by counting sentence
types within a response. Responses that had both
a declarative sentence and an interrogative would
fit this case. The results confirmed this hypothe-
sis. Only 4.5% (16/358) of possible responses had
a declarative and an interrogative.

Hypothesis 3 predicted that participants would
use the situated dimensions that require the least
cognitive effort when disambiguating referents.
More specifically, the most common mentions will
be those that are visually apparent (intrinsic prop-
erties like color and size), while those that require
more processing would have fewer mentions (his-
tory and to a lesser extent object proximity and
egocentric proximity). We measured this by tabu-
lating mentions of situated dimensions in all 358
correct participant responses, summarized in Fig-
ure 2. Multiple dimensions could occur in a sin-
gle response. The results support this hypothe-
sis. By far, across all ambiguous scenarios, the
most mentioned dimension was an intrinsic prop-
erty. More than half of all situated dimensions
used were intrinsic (59%, 242/410 total mentions).
This was followed by the dimensions that we hy-
pothesize require more cognitive effort: egocen-
tric proximity had 30% (125/410) of mentions,
object proximity 9.5% (39/410), and history 1%
(4/410). Of the intrinsic dimensions mentioned,
most were only color (61%, 148/242), followed by
size (33%, 81/242), and using both (5%, 13/242).

Hypothesis 4 predicted that participants would
ask yes-no confirmation questions in favor of pre-
senting lists when disambiguating a referent with
exactly two candidates. The results suggest that
the opposite is true; people strongly preferred to
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Projected Belief Count | Percentage
Propose Alternative 72 41%
Unknown 56 32%
Ask for More 42 24%
Ask for Help 5 3%
Total 175 100%

Table 4: Projected belief annotations for the 175 correct de-
tections of impossible-to-execute stimuli.

list options, even when a confirmation question
about one would have been sufficient. Of the 285
responses that were correctly detected as ambigu-
ous and were for scenes of exactly two possible
referents, 74% (212/285) presented a list of op-
tions. Only 14% (39/285) asked yes-no confir-
mation questions. The remaining 34 questions
(12%) were generic wh-questions. These results
held in scenes where three options were present.
Overall 72% (259/358) presented a list of options,
while 16% (58/358) asked generic wh-questions
and 11% (41/358) asked yes-no confirmations.

4.3 Impossible-to-Execute

We analyzed the 175 responses where participants
correctly identified impossible-to-execute situa-
tions.

Hypothesis 2b predicted that participants would
more often only ask a question than also describe
the scene. Results confirmed this hypothesis. 42%
(73/175) of responses simply asked a question,
while 22% (39/175) used only a declarative. More
than a third included a declarative as well (36%,
63/175). The general organization to these was to
declare the problem then ask a question about it
(89%, 56/63).

Hypothesis 5 predicted that responses for
impossible-to-execute instructions will more com-
monly be proactive and make suggestions, instead
of simply declaring that an action was not possi-
ble. Table 4 summarizes the results, which con-
firmed this hypothesis. The most common belief
that participants had for the robot was to have it
propose an alternative referent to the impossible
one specified by the operator. The next-most com-
mon was to have the robot simply express uncer-
tainty about what to do next. Though this belief
occurred in about a third of responses, the remain-
ing responses were all proactive ways for the robot
to get the conversation back on track (i.e., propose
alternative, ask for more, and ask for help).



5 Discussion

The results largely support the hypotheses, with
the exception of Hypothesis 4. They also provide
information about how people expect robots to
recover from situated grounding problems.

Correctness Participants had the most trouble
detecting impossible-to-execute scenes, sup-
porting Hypothesis 1. An error analysis of the
50 responses for this condition had participants
responding as if the impossible scenes were
possible (62%, 31/50). The lack of good situa-
tion awareness was a factor, which agrees with
previous findings in the human-robot interaction
literature (Casper and Murphy, 2003; Burke et al.,
2004). We found that participants had trouble with
a specific scene where they confused the front
and back of the robot (9 of the 31 impossible-
executable responses were for this scene). Note
that all scenes showed the robot entering the room
with the same perspective, facing forward.

Referential Ambiguity Results for Hypothesis 2a
showed that participants overwhelmingly asked
only a single, self-contained question as opposed
to first stating that there was an ambiguity. Par-
ticipants also preferred to present a list of op-
tions, despite the number of possible candidates.
This contradicted Hypothesis 4. Rieser and Moore
(2005) found that in task-oriented human-human
dialogues, clarification requests aim to be as effi-
cient as possible; they are mostly partially formed.
The results in our study were not of real-time di-
alogue; we isolated specific parts of what partic-
ipants believed to be human-computer dialogue.
Moreover, Rieser and Moore were observing clar-
ifications at Bangerter and Clark’s (2003) dialogue
management level; we were observing them in ser-
vice of the joint activity of navigating the robot.
We believe that this difference resulted in partici-
pants using caution by disambiguating with lists.
These results suggest that dialogue systems
should present detection of referential ambiguity
implicitly, and as a list. Generic wh- questions
(e.g., “which one?” without presenting a follow-
on list) are less desirable because they don’t con-
strain what the user can say, and don’t provide any
indication of what the dialogue system can under-
stand. A list offers several benefits: it grounds
awareness of surroundings, presents a fixed set of
options to the user, and constrains the range of
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linguistic responses. This could also extend to
general ambiguity, as in when there are a list of
matches to a query, but that is outside the scope of
this work. Lists may be less useful as they grow
in size; in our study they could not grow beyond
three candidates.

The data also supported Hypothesis 3. Partic-
ipants generally preferred to use situated dimen-
sions that required less effort to describe. Intrinsic
dimensions (color and size) had the greatest count,
followed by egocentric proximity, object proxim-
ity, and finally using history. We attribute these
results to the salient nature of intrinsic properties
compared to ones that must be computed (i.e., ego-
centric and object proximity require spatial pro-
cessing, while history requires thinking about pre-
vious exchanges). This also speaks to a similar
claim by Viethen and Dale (2006). Responses in-
cluded color more than any other property, sug-
gesting that an object’s color draws more visual
attention than its size. Bright colors and big shapes
stand out most in visual search tasks; we had more
of the former than the latter (Desimone and Dun-
can, 1995).

For an ambiguous scene, participants appear to
traverse a salience hierarchy (Hirst et al., 1994)
whereby they select the most visually salient fea-
ture that also uniquely teases apart candidates.
While the salience hierarchy varies depending on
the current context of a referent, we anticipate
such a hierarchy can be defined computationally.
Others have proposed similar processes for refer-
ring expression generation (Van Der Sluis, 2005;
Guhe and Bard, 2008). One way to rank salience
on the hierarchy could be predicted mental load;
we speculate that this is a reason why history was
barely mentioned to disambiguate. Another would
be to model visual attention, which could explain
why color was so dominant.

Note that only a few dimensions were “com-
peting” at any given time, and their presence in
the scenes was equal (save for history, which had
slightly fewer due to task design constraints). Ego-
centric proximity, which uses spatial language to
orient candidate referents relative to the robot, had
a moderate presence. When intrinsic properties
were unavailable in the scene, responses most of-
ten used this property. We found that sometimes
participants would derive this property even if it
wasn’t made prototypical in the scene (e.g., refer-
ring to a table as “left” when it was in front and



off to the left side of the robot). This suggests
that using egocentric proximity to disambiguate
makes a good fallback strategy when nothing else
works. Another situated dimension emerged from
the responses, disambiguation by location (e.g.,
“Do you mean the box in this room or the other
one?”’). Though not frequent, it provides another
useful technique to disambiguate when visually
salient properties are not available.

Our findings differ from those of Carlson
and Hill (2009) who found that salience is not as
prominent as spatial relationships between a target
(in the current study, this would be the robot) and
other objects. Our study did not direct participants
to formulate spatial descriptions; they were free
to compose responses. In addition, our work
directly compares intrinsic properties for objects
of the same broad type (e.g., disambiguation of a
doors of different colors). Our findings suggest
the opposite of Moratz et al. (2003), who found
that when pointing out an object, describing
its position may be better than describing its
attributes in human-robot interactions.  Their
study only had one object type (cube) and did not
vary color, size, or proximity to nearby objects.
As a result, participants described objects using
spatial terms. In our study, we explored variation
of several attributes to determine participants’
preferences.

Impossible-to-Execute Results supported Hypoth-
esis 2b. Most responses had a single sentence
type. Although unanticipated, a useful strat-
egy emerged: describe the problem that makes
the scene impossible, then propose an alternative
referent. This type of strategy helped support
Hypothesis 5. Responses for impossible scenes
largely had the participant proactively presenting
a way to move the task forward, similar to what
Skantze (2005) observed in human-human dia-
logues. This suggests that participants believed
the robot should ask directed questions to recover.
These questions often took the form of posing al-
ternative options.

5.1 Limitations

We used the Amazon Mechanical Turk web por-
tal to gather responses in this study. As such
we could not control the participant environment
when taking the study, but we did include atten-
tion checks. Participants did not interact with a
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dialogue system. Instead we isolated parts of the
interaction that were instances of where the robot
would have to say something in response to an in-
struction. We asked participants to provide what
they think the robot should say; there was no on-
going interaction. However, we maintained conti-
nuity by presenting videos of the robot navigating
through the environment as participants completed
the task. The robot was represented in a virtual en-
vironment, which prevents us from understanding
if there are any influencing factors that may im-
pact results if the robot were in physical form or
co-present with the participant.

6 Conclusions

Recovery strategies allow situated agents like
robots to recover from misunderstandings by us-
ing the human dialogue partner. We conducted a
study that collected recovery strategies for physi-
cally situated dialogue with the goal of establish-
ing an empirical basis for grounding in physically
situated contexts. We crowdsourced 750 written
strategies across 30 participants and analyzed their
situated properties and how they were organized.

We found that participants’ recovery strategies
minimize cognitive effort and indicate a desire to
successfully complete the task. For disambigua-
tion, there was a preference for strategies that use
visually salient properties over ones that require
additional mental processing, like spatial reason-
ing or memory recall. For impossible-to-execute
scenes, responses more often presented alterna-
tive referents than just noting non-understanding.
We should note that some differences between our
findings and those of others may in part rest on dif-
ferences in task and environment, though intrinsic
variables such as mental effort will likely persist
over different situations.

In future work, we intend to use these data
to model salience ranking in similar contexts.
We will further assess the hypothesis that partic-
ipants’ preferences in this study will enhance per-
formance in a spoken dialogue system that deploys
similar strategies.
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Abstract

In this paper, we apply reinforcement
learning (RL) to a multi-party trading sce-
nario where the dialog system (learner)
trades with one, two, or three other agents.
We experiment with different RL algo-
rithms and reward functions. The nego-
tiation strategy of the learner is learned
through simulated dialog with trader sim-
ulators. In our experiments, we evaluate
how the performance of the learner varies
depending on the RL algorithm used and
the number of traders. Our results show
that (1) even in simple multi-party trad-
ing dialog tasks, learning an effective ne-
gotiation policy is a very hard problem;
and (2) the use of neural fitted Q itera-
tion combined with an incremental reward
function produces negotiation policies as
effective or even better than the policies of
two strong hand-crafted baselines.

1 Introduction

Trading dialogs are a kind of interaction in
which an exchange of ownership of items is dis-
cussed, possibly resulting in an actual exchange.
These kinds of dialogs are pervasive in many
situations, such as marketplaces, business deals,
school lunchrooms, and some kinds of games, like
Monopoly or Settlers of Catan (Guhe and Las-
carides, 2012). Most of these dialogs are non-
cooperative (Traum, 2008; Asher and Lascarides,
2013), in the sense that mere recognition of the
desire for one party to engage in a trade does not
provide sufficient inducement for the other party
to accept the trade. Usually a trade will only be
accepted if it is in the perceived interest of each
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party. Trading dialogs can be considered as a kind
of negotiation, in which participants use various
tactics to try to reach an agreement. It is com-
mon to have dialogs that may involve multiple of-
fers or even multiple trades. In this way, trading
dialogs are different from other sorts of negoti-
ation in which a single decision (possibly about
multiple issues) is considered, for example parti-
tioning a set of items (Nouri et al., 2013; Georgila
et al., 2014). Another difference between trading
dialogs and partitioning dialogs is what happens
when a deal is not made. In partitioning dialogs,
if an agreement is not reached, then participants
get nothing, so there is a very strong incentive to
reach a deal, which allows pressure and can result
in a “chicken game”, where people give up value
in order to avoid a total loss. By contrast, in trad-
ing dialogs, if no deal is made, participants stick
with the status quo. Competitive two-party trading
dialogs may result in a kind of stasis, where the
wealthier party will pass up mutually beneficial
deals, in order to maintain primacy. On the other
hand, multi-party trading dialogs involving more
than two participants changes the dynamic again,
because now a single participant cannot necessar-
ily even block another from acquiring a missing
resource, because it might be available through
trades with a third party. A player who does not
engage in deals may lose relative position, if the
other participants make mutually beneficial deals.

In this paper, we present a first approach toward
learning dialog policies for multi-party trading di-
alogs. We introduce a simple, but flexible game-
like scenario, where items can have different val-
ues for different participants, and also where the
value of an item can depend on the context of other
items held. We examine a number of strategies for
this game, including random, simple, and complex
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hand-crafted strategies, as well as several rein-
forcement learning (RL) (Sutton and Barto, 1998)
algorithms, and examine performance with differ-
ent numbers and kinds of opponents.

In most of the previous work on statistical di-
alog management, RL was applied to coopera-
tive slot-filling dialog domains. For example, RL
was used to learn the policies of dialog systems
for food ordering (Williams and Young, 2007a),
tourist information (Williams and Young, 2007b),
flight information (Levin et al., 2000), appoint-
ment scheduling (Georgila et al., 2010), and e-
mail access (Walker, 2000). In these typical slot-
filling dialog systems, the reward function de-
pends on whether the user’s goal has been accom-
plished or not. For example, in the food ordering
system presented by Williams and Young (2007a),
the dialog system earns higher rewards when it
succeeds in taking the order from the user.

Recently, there has been an increasing amount
of research on applying RL to negotiation dialog
domains, which are generally more complex than
slot-filling dialog because the system needs to con-
sider its own goal as well as the user’s goal, and
may need to keep track of more information, e.g.,
what has been accepted or rejected so far, propos-
als and arguments on the table, etc. Georgila and
Traum (2011) applied RL to the problem of learn-
ing negotiation dialog system policies for different
cultural norms (individualists, collectivists, and al-
truists). The domain was negotiation between a
florist and a grocer who had to agree on the tem-
perature of a shared retail space. Georgila (2013)
used RL to learn the dialog system policy in a
two-issue negotiation domain where two partici-
pants (the user and the system) organize a party,
and need to decide on both the day that the party
will take place and the type of food that will be
served. Also, Heeman (2009) modeled negotiation
dialog for a furniture layout task, and Paruchuri
et al. (2009) modeled negotiation dialog between
a seller and buyer. More recently, Efstathiou and
Lemon (2014) focused on non-cooperative aspects
of trading dialog, and Georgila et al. (2014) used
multi-agent RL to learn negotiation policies in a
resource allocation scenario. Finally, Hiraoka et
al. (2014) applied RL to the problem of learn-
ing cooperative persuasive policies using fram-
ing, and Nouri et al. (2012) learned models for
cultural decision-making in a simple negotiation
game (the Ultimatum Game). In contrast to typical
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slot-filling dialog systems, in these negotiation di-
alogs, the dialog system is rewarded based on the
achievement of its own goals rather than those of
its interlocutor. For example, in Georgila (2013),
the dialog system gets a higher reward when its
party plan is accepted by the other participant.

Note that in all of the previous work mentioned
above, the focus was on negotiation dialog be-
tween two participants only, ignoring cases where
negotiation takes place between more than two in-
terlocutors. However, in the real world, multi-
party negotiation is quite common. In this paper,
as a first study on multi-party negotiation, we ap-
ply RL to a multi-party trading scenario where the
dialog system (learner) trades with one, two, or
three other agents. We experiment with different
RL algorithms and reward functions. The nego-
tiation strategy of the learner is learned through
simulated dialog with trader simulators. In our
experiments, we evaluate how the performance of
the learner varies depending on the RL algorithm
used and the number of traders. To the best of our
knowledge this is the first study that applies RL to
multi-party (more than two participants) negotia-
tion dialog management. We are not aware of any
previous research on dialog using RL to learn the
system’s policy in multi-party negotiation.'

Our paper is structured as follows. Section 2
provides an introduction to RL. Section 3 de-
scribes our multi-party trading domain. Section 4
describes the dialog state and set of actions for
both the learner and the trader simulators, as well
as the reward functions of the learner and the hand-
crafted policies of the trader simulators. In Sec-
tion 5, we present our evaluation methodology and
results. Finally, Section 6 summarizes the paper
and proposes future work.

2 Reinforcement Learning

Reinforcement learning (RL) is a machine learn-
ing technique for learning the policy of an agent

"Note that there is some previous work on using RL to
learn negotiation policies among more than two participants.
For example, Mayya et al. (2011) and Zou et al. (2014) used
multi-agent RL to learn the negotiation policies of sellers and
buyers in a marketplace. Moreover, Pfeiffer (2004) used RL
to learn policies for board games where sometimes negotia-
tion takes place among players. However, these works did
not focus on negotiation dialog (i.e., exchange of dialog acts,
such as offers and responses to offers), but only focused on
specific problems of marketing or board games. For exam-
ple, in Zou et al. (2014)’s work, RL was used to learn policies
for setting selling/purchasing prices in order to achieve good
payoffs.



that takes some action to maximize a reward (not
only immediate but also long-term or delayed re-
ward). In this section, we briefly describe RL
in the context of dialog management. In dialog,
the policy is a mapping function from a dialog
state to a particular system action. In RL, the
policy’s goal is to maximize a reward function,
which in traditional task-based dialog systems is
user satisfaction or task completion (Walker et al.,
1998). RL is applied to dialog modeling in the
framework of Markov decision processes (MDPs)
or partially observable Markov decision processes
(POMDPs).

In this paper, we follow an MDP-based ap-
proach. An MDP is defined as a tuple
(S, A, P,R,~) where S is the set of states (repre-
senting different contexts) which the system may
be in (the system’s world), A is the set of actions
of the system, P : S x A — P(S, A) is the set of
transition probabilities between states after taking
an action, R : S x A — R is the reward function,
and v € [0, 1] a discount factor weighting long-
term rewards. At any given time step ¢ the world
is in some state s; € .S. When the system performs
an action «; € A following a policy 7 : S — A, it
receives a reward 7;(s;, ;) € R and transitions
to state s;y; according to P(s;y1]s;, ;) € P.
The quality of the policy 7 followed by the agent
is measured by the expected future reward, also
called Q-function, Q™ : S x A — R.

We experiment with 3 different RL algorithms:

LinQ: This is the basic Q-learning algorithm with
linear function approximation (Sutton and
Barto, 1998). The Q-function is a weighted
function of state-action features. It is updated
whenever the system performs an action and
gets a reward for that action (in contrast to
batch RL mentioned below).

LSPI: Inleast-squares policy iteration (LSPI), the
Q-function is also approximated by a linear
function (similarly to LinQ). However, un-
like LinQ, LSPI is a batch learning method.
It samples the training data one or more
times (batches) using a fixed system policy
(the policy that has been learned so far), and
the approximated Q-function is updated after
each batch. We use LSPI because it has been
shown to achieve higher performance than
LinQ in some tasks (Lagoudakis and Parr,
2003).

NFQ: Neural fitted Q iteration (NFQ) uses a
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multi-layered perceptron as the Q-function
approximator. Like LSPI, NFQ is a batch
learning method. We introduce NFQ because
it has been shown to perform well in some
tasks (Riedmiller, 2005).

During training we use e-greedy exploration,
i.e., the system randomly selects an action with a
probability of € (we used a value of 0.1 for €) oth-
erwise it selects the action which maximizes the
Q-function given the current state. During testing
there is no exploration and the policy is dictated
by the Q-values learned during training.

3 Multi-Party Trading Domain

Our domain is trading, where two or more traders
have a number of items that they can keep or ex-
change with the other traders in order to achieve
their goals. The value of each item for a trader is
dictated by the trader’s payoff matrix. So at the
end of the interaction each trader earns a number
of points based on the items that it holds and the
value of each item. Note that each trader has its
own payoff matrix. During the interaction, each
trader can trade an item with the other traders (i.e.,
offer an item in exchange for another item). If the
addressee of the offer accepts it, then the items of
the traders involved in this exchange are updated.
If the offer is not accepted, the dialog proceeds
without any changes in the number of items that
each trader possesses. To make the search space
of possible optimal trading policies more tractable,
we assume that each trader can only trade one item
at a time, and also that each offer is addressed only
to one other trader. Each trader can take the turn
(decide to trade) in random order, unless there is a
pending offer. That is, if a trader makes an offer
to another trader, then the addressee of that offer
has priority to take the next turn; the addressee can
decide to accept the offer, or to do nothing, or to
make a different offer. Note that the traders do not
know each other’s payoff matrices but they know
the items that each trader owns. The dialog is com-
pleted after a fixed period of time passes or when
all traders decide not to make any offers.

In our experiments, there are three types of
items: apple, orange, and grape, and each trader
may like, hate, or feel neutral about each type of
fruit. At the end of the dialog the trader earns 100
points for each fruit that he likes, 0 points for each
fruit that he is neutral to, and -100 points for each
fruit that he hates. Payoff matrices are structured



such that there is always one fruit that each trader
likes, one fruit that he is neutral to, and one fruit
that he hates. Furthermore, all traders can get a big
payoff for having a fruit salad, i.e., the trader earns
500 additional points if he ends up with one fruit
of each type. Thus even hated fruits may some-
times be beneficial, but only if they can be part of
a fruit salad. Thus the outcome for a trader oy, is
calculated by Equation (1).
Otr Pay(appleg,) * Num(appleg,)
y(
(

Pay(oranges,) * Num(oranget,)
Pay(graper) * Num(grapet:)
Pa

+ o+ A+

y(saladsr) (D)

500 if Num(applet) > 1

and N ) >1
Pay(salader) um(oranges) >

@

and Num(grapes:) > 1

0 otherwise

where Pay is a function which takes as argu-
ment a fruit type and returns the value of that fruit
type for the trader, and Num shows the num-
ber of items of a particular fruit type that the
trader possesses. At the beginning of each dia-
log, the initial conditions (i.e., number of items
per fruit type and payoff matrix) of the traders (ex-
cept for the learner) are randomly assigned. The
learner always has the same payoff matrix for all
dialogs, i.e., the learner always likes grape, always
feels neutral about apple, and always hates orange.
Also, the total number of fruits that the learner
holds in the beginning of the dialog is always 3.
However, the number of each fruit type that the
learner holds is randomly initialized for each di-
alog, e.g., the learner could be initialized with (1
apple, 2 oranges, 0 grapes), or (1 apple, 1 orange,
1 grape), etc. The total number of fruits for each
trader is determined based on his role (Rich: 4
items, Middle: 3 items, Poor: 2 items), which is
also randomly assigned at the beginning of each
dialog. Table 1 shows two example dialogs.

4 Methodology for Learning Multi-Party
Negotiation Policies

In this section, we present our methodology for
training the learner, including how we built our
trader simulators. The trader simulators are used
as negotiation partners of the learner for both train-
ing and evaluating the learner’s policy (see Sec-
tion 5).
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4.1 Learner’s Model

Below we define the reward function, sets of ac-
tions, and state of our MDP-based learner’s model.
Note that we use two kinds of rewards.

The first type of reward is based on Equa-
tion (3). In this case, the learner is rewarded based
on its outcome only at the end of the dialog. In all
other dialog turns 7 its reward is 0.

Tend = {

We also introduce an incremental reward for
training, because rewarding a learning agent only
at the end of the dialog makes the learning prob-
lem very difficult, thus sub-goals can be utilized to
reward the learning agent incrementally (McGov-
ern and Barto, 2001). The incremental reward at
turn ¢ is given by Equation (4), where oy,-(2) is the
outcome for a trader applied at time point 3.

’
T,L':

This equation represents the improvement on the
outcome of the learner at turn ¢ compared to its
outcome at the previous turn ¢ — 1. Note that this
implementation of the incremental reward func-
tion is basically the same as reward shaping, and
has the following property (Ng et al., 1999; Asri
et al., 2013): the policy learned by using Equa-
tion (4) maximizes the expectation of the cumula-
tive reward given by Equation (3).

The learner’s actions are presented below. By
speaker we mean the trader who is performing the
action. In this case, the speaker is the learner, but
as we will see below this is also the set of actions
that a trader simulator can perform.

Offer(A, I, I,): offering addressee A to trade
the speaker’s item I for the addressee’s item
1.

Accept: accepting the most recent offer addressed
to the speaker.

Keep: passing the turn without doing anything.
If there is a pending offer addressed to the
speaker, then this offer is rejected.

oy if dialog ends

0 3)

otherwise

ifi >0
ifi=0

Y ok Otr(i) — Otr(i — 1)

4
0 4)

The dialog state consists of the offered table and
the distribution of the items among the negotia-
tors:

Offered table: The offered table consists of all

possible tuples (Trading partner, Fruit re-
quested, Fruit offered in return). If another



Item Outcome
Speaker | Utterance TRI1 TR2 TR3 TRI1 [ TR2 | TR3
Dialog 1:
1: TR1 TR2, could you give me an orange? | A:0,0:0,G:3 | A:1,0:1,G:0 | A:0,0:1,G:2 | 0 -100 | 100
I’ll give you a grape. (Offer)
2: TR2 Okay. (Accept) A:0,0:1,G:2 | A:1,0:0,G:1 | A:0,0:1,G:2 | 100 | O 100
Dialog 2:
1: TR2 TR1, could you give me a grape? A:0,0:0,G:3 | A:1,0:1,G:0 | A:0,0:1,G:2 | 0 -100 | 100
I'll give you a apple. (Offer)
2: TR1 I want to keep my fruits. (Keep) A:0,0:0,G:3 | A:1,0:1,G:0 | A:0,0:1,G:2 |0 -100 | 100
3: TR3 TR2, could you give me an apple? | A:0,0:0,G:3 | A:1,0:1,G:0 | A:0,0:1,G:2 | 0 -100 | 100
I’ll give you a grape. (Offer)
4: TR2 Okay. (Accept) A:0,0:0,G:3 | A:0,0:1,G:1 | A:1,0:1,G:1 |0 100 | 500

Table 1: Examples of two trading dialogs among traders TR1, TR2, and TR3. In these examples, the
payoff matrix of TR1 is (apple: -100, orange: 100, grape: 0), that of TR2 is (apple: -100, orange: 0,
grape: 100), and that of TR3 is (apple: 0, orange: -100, grape: 100). Item and Outcome show the number
of items per fruit type of each trader and the points that each trader has accumulated after an action. A

stands for apple, O for orange, and G for grape.

agent makes an offer to the learner then the
learner’s offered table is updated. The dia-
log state is represented by binary variables
(or features). In Example 1, we can see a dia-
log state in a 2-party dialog, after the learner
receives an offer to give an orange and in re-
turn take an apple.

Number of items: The number of items for each
fruit type that each negotiator possesses.
Once a trade is performed, this part of the di-
alog state is updated in the dialog states of all
agents involved in this trade.

4.2 Trader Simulator

In order to train the learner we need trader sim-
ulators to generate a variety of trading episodes,
so that in the end the learner learns to follow ac-
tions that lead to high rewards and avoid actions
that lead to penalties. The trader simulator has the
same dialog state and actions as the learner. We
have as many trader simulators as traders that the
learner negotiates with. Thus in a 3-party nego-
tiation we have 2 trader simulators. The policy of
the trader simulator can be either hand-crafted, de-
signed to maximize the reward function given by
Equation (3); or random.

The hand-crafted policy is based on planning.
More concretely, this policy selects an action
based on the following steps:

1. Pre-compute all possible sets of items (called
“hands”, by analogy with card games, where
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e I

Example 1: Status of the learner’s dialog
state’s features in a 2-party trading dialog
(learner vs. Agent 1). Agent 1 has just of-
fered the learner 1 apple for 1 of the learner’s
2 oranges (but the learner has not accepted
or rejected the offer yet). This is why the
(Agent 1, orange, apple) tuple has value 1.
Initially the learner has (O apples, 2 oranges,
1 grape) and Agent 1 has (1 apple, O oranges,
1 grape). Note that if we had more negotiators
e.g., Agent 2, the dialog state would include
features for offer tuples for Agent 2, and the
number of items that Agent 2 possessed.

Trading | Item requested | Item given | Occurrence
partner | by partner by partner | binary value
to learner | (used as feature)
Agent 1 | apple orange 0
apple grape 0
orange apple 1
orange grape 0
grape apple 0
grape orange 0
Agent who Fruit type | Number of fruits
possesses fruits (used as feature)
apple 0
learner orange 2
grape 1
apple 1
Agent 1 orange 0
grape 1




each item is represented by a card), given the
role of the trader (Rich, Middle, Poor) and
how many items there can be in the hand.

. Compute the valuation of each of the hands,
according to the payoff matrix.

. Based on the possible trades with the other
agents, compute a set of achievable hands,
and order them according to the valuations
defined in step 2. A hand is “achievable” if
there are enough of the right types of items in
the deal. For example, if the hand is 4 apples,
and there are only 3 apples in the deal, then
this hand is not achievable.

. Remove all hands that have a lower valuation
than the current hand. The remaining set is
the set of achievable goals.

. Calculate a set of plans for each achievable
goal. A plan is a sequence of trades (one
item in hand for one item out of hand) that
will lead to the goal. There are many possible
plans for each goal. For simplicity, we ignore
any plans that involve cycles, where the same
hand appears more than once.

. Calculate the expected utility (outcome) of
each plan. Each plan will have a prob-
ability distribution of outcomes, based on
the probability that each trade is successful.
The outcome will be the hand that results
from the end state, or the state before the
trade that fails. For example, suppose the
simulator’s hand is (apple, apple, orange),
and the simulator’s plan is (apple—orange,
orange—grape). The three possible out-
comes are:

(apple, orange, grape) (i.e., if the plan suc-
ceeds) the probability is calculated as
P(t1) x P(t2).

(apple, orange, orange) (i.e., if the first
trade succeeds and the second fails) the
probability is calculated as P(t1) x (1 —
P(t2)).

(apple, apple, orange) (i.c., if the first trade
fails) the probability is calculated as 1 —
P(t1).

Therefore, the simulator can calculate the ex-
pected utility of each plan, by multiplying the
probability of each trade with the valuation of
each hand from step 2. We set the probability
of success of each trade to 0.5 (i.e., uninfor-
mative probability). This value of probability
represents the fact that the simulator does not
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know a priori whether the trade will succeed
or not.

. Select the plan which has the highest ex-
pected utility as the plan that the policy will
follow.

. Select an action implementing the plan that
was chosen in the previous step, as follows:
if the plan is completed (i.e., the simulator
reached the goal), the policy will select Keep
as an action. If the plan is not completed and
there is a pending offer which will allow the
plan to move forward, the policy will select
Accept as an action. Otherwise, the policy
will select Offer as an action. The addressee
of the offer is randomly selected from the
traders holding the item which is required for
moving the plan forward.

In addition to the above hand-crafted trader sim-
ulator’s policy, we also use a random policy.

5 Evaluation

In this section, we evaluate the learner’s policies
learned with (1) different algorithms i.e., LinQ,
LSPI, and NFQ (see Section 2), (2) different re-
ward functions i.e., Equations 3 and 4 (see Sec-
tion 4.1), and (3) different numbers of traders.

The evaluation is performed in trading dialogs
with different numbers of participants (from 2
players to 4 players), and different trader simula-
tor’s policies (hand-crafted policy or random pol-
icy as presented in Section 4.2). More specifically,
there are 9 different setups:

H: 2-party dialog, where the trader simulator fol-
lows a hand-crafted policy.

R: 2-party dialog, where the trader simulator fol-
lows a random policy.

HxH: 3-party dialog, where both trader simula-
tors follow hand-crafted policies.

HxR: 3-party dialog, where one trader simulator
follows a hand-crafted policy and the other
one follows a random policy.

RxR: 3-party dialog, where both trader simula-
tors follow random policies.

HxHxH: 4-party dialog, where all three trader
simulators follow hand-crafted policies.
HxHxR: 4-party dialog, where two trader sim-
ulators follow hand-crafted policies and the

other one follows a random policy.

HxRxR: 4-party dialog, where one trader simu-
lator follows a hand-crafted policy and the
other ones follow random policies.



RxRxR: 4-party dialog, where all three trader
simulators follow random policies.

There are also 9 different learner policies:

AlwaysKeep: weak baseline which always passes
the turn.

Random: weak baseline which randomly selects
one action from all possible valid actions.

LinQ-End: learned policy using LinQ and re-
ward given at the end of the dialog.

LSPI-End: learned policy using LSPI and reward
given at the end of the dialog.

NFQ-End: learned policy using NFQ and reward
given at the end of the dialog.

LinQ-Incr: learned policy using LinQ and an in-
cremental reward.

LSPI-Incr: learned policy using LSPI and an in-
cremental reward.

NFQ-Incr: learned policy using NFQ and an in-
cremental reward.

Handcraftl: strong baseline following the hand-
crafted policy presented in Section 4.2.

Handcraft2: strong baseline similar to Hand-
craftl except the plan is randomly selected
from the set of plans produced by step 6,
rather than picking only the highest utility
one (see Section 4.2).

We use the Pybrain library (Schaul et al., 2010)
for the RL algorithms LinQ, LSPI, and NFQ. The
learning parameters follow the default Pybrain set-
tings except for the discount factor ~; we set the
discount factor v to 1. We consider 2000 dialogs
as one epoch, and learning is finished when the
number of epochs becomes 200 (400,000 dialogs).
The policy at the epoch where the average reward
reaches its highest value is used in the evaluation.
We evaluate the learner’s policy against trader
simulators. We calculate the average reward of the
learner’s policy in 20000 dialogs. Furthermore,
we show how fast the learned policies converge
as a function of the number of epochs in training.
In terms of comparing the average rewards of
policies (see Figure 1), NFQ-Incr achieves the best
performance in almost every situation. In 2-party
trading, the performance of NFQ-Incr is almost
the same as that of Handcraft2 which achieves
the best score, and better than the performance
of Handcraftl. In both 3-party and 4-party trad-
ing, the performance of NFQ-Incr is better than
that of the two strong baselines, and achieves the

38

best score. In contrast to NFQ-Incr, the perfor-
mance of the other learned policies is much worse
than that of the two strong baselines. As the
number of trader simulators who follow a ran-
dom policy increases, the difference in perfor-
mance between NFQ-Incr and the other learned
policies tends to also increase. One reason is that,
as the number of trader simulators who follow
a random policy increases, the variability of di-
alog flow also increases. Trader simulators that
follow a hand-crafted policy behave more strictly
than trader simulators that follow a random pol-
icy. For example, if the trader simulator following
a hand-crafted policy reaches its goal, then there
is nothing else to do except for Keep. In con-
trast, if a trader simulator following a random pol-
icy reaches its goal, there is still a chance that it
will accept an offer which will be beneficial to the
learner. As a result there are more chances for the
learner to gain better outcomes, when the com-
plexity of the dialog is higher. In summary, our
results show that combining NFQ with an incre-
mental reward produces the best results.

Moreover, the learning curve in 2-party trad-
ing (Figure 2 in the Appendix) indicates that, ba-
sically, only the NFQ-Incr achieves stable learn-
ing. NFQ-Incr reaches its best performance from
epoch 140 to epoch 190. On the other hand, LSPI
somehow converges fast, but its performance is
not so high. Moreover, LinQ converges in the first
epoch, but it performs the worst.

6 Conclusion

In this paper, we used RL to learn the dialog sys-
tem’s (learner’s) policy in a multi-party trading
scenario. We experimented with different RL al-
gorithms and reward functions. The negotiation
policies of the learner were learned and evalu-
ated through simulated dialog with trader simula-
tors. We presented results for different numbers of
traders. Our results showed that (1) even in simple
multi-party trading dialog tasks, learning an effec-
tive negotiation policy is a very hard problem; and
(2) the use of neural fitted Q iteration combined
with an incremental reward function produces as
effective or even better negotiation policies than
the policies of two strong hand-crafted baselines.
For future work we will expand the dialog
model to augment the dialog state with informa-
tion about the estimated payoff matrix of other
traders. This means expanding from an MDP-



450
400

Average reward
[ - N N w w
o w o w o v
® © &6 © & ©

v
o

Average rewards in H

0 I IIIIIIII I Illlll“

Average rewards in R

AlwaysKeep M LinQ-End ®LSPI-End mNFQ-End ® LinQ-Incr ELSPI-Incr ®NFQ-Incr ® Handcraftl ® Handcraft2

Average rewards in RxR

AlwaysKeep mLinQ-End mLSPI-End m NFQ-End ® LinQ-Incr M LSPl-Incr ® NFQ-Incr mHandcraftl ® Handcraft2

W Random
450
400
350
T 300
©
5 250
[
@ 200
2
< 150
100
0
Average rewards in HxH Average rewards in HxR
W Random
450
400
350
e 300
2
v 250
&
® 200
[
Z 150

[
u O
o O

Average rewards in HxHxH

W Random

Average rewards in HXHxR

| ||||IIII ] I|||I||| | |||||||| | lllll“l

Average rewards in HXRxR Average rewards in RXRxR

AlwaysKeep M LinQ-End M LSPI-End B NFQ-End M LinQ-Incr B LSPI-Incr B NFQ-Incr B Handcraftl M Handcraft2

Figure 1: Comparison of RL algorithms and types of reward functions. The upper figure corresponds
to 2-party dialog, the middle figure to 3-party dialog, and the lower figure to 4-party dialog. In these
figures, the performances of the policies are evaluated by using the reward function given by Equation 3.

based dialog model to a POMDP-based model.
We will also apply multi-agent RL (Georgila et al.,
2014) to multi-party trading dialog. Furthermore,
we will perform evaluation with human traders.
Finally, we will collect and analyze data from hu-
man trading dialogs in order to improve our mod-
els and make them more realistic.
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Abstract

This paper deals with an incremental turn-
taking model that provides a novel solution
for end-of-turn detection. It includes a flex-
ible framework that enables active system
barge-in. In order to accomplish this, a sys-
tematic procedure of teaching a dialog sys-
tem to produce meaningful system barge-in
is presented. This procedure improves sys-
tem robustness and success rate. It includes
constructing cost models and learning op-
timal policy using reinforcement learning.
Results show that our model reduces false
cut-in rate by 37.1% and response delay
by 32.5% compared to the baseline system.
Also the learned system barge-in strategy
yields a 27.7% increase in average reward
from user responses.

1 Introduction

Human-human conversation has flexible turn-
taking behavior: back channeling, overlapping
speech and smooth turn transitions. Imitating
human-like turn-taking in a spoken dialog system
(SDS) is challenging due to the degradation in qual-
ity of the dialog when overlapping speech is pro-
duced in the wrong place. For this, a traditional
SDS often uses a simplified turn-taking model with
rigid turn taking. They only respond when users
have finished speaking. Thus past research has
mostly focused on end-of-turn detection, finding
the end of the user utterance as quickly as possible
while minimizing the chance of wrongly interrupt-
ing the users. We refer here to the interruption issue
as false cut-ins (FCs).

Recent research in incremental dialog processing
promises more flexible turn-taking behavior (At-
terer et al., 2008; Breslin et al., 2013). Here,
the automatic speech recognizer (ASR) and nat-
ural language understanding (NLU) incrementally
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produce partial decoding/understating messages for
decision-making. This allows for system barge-in
(SB), starting to respond before end-of-utterance.
Although this framework has shown promising re-
sults in creating flexible SDSs, the following two
fundamental issues remain:

1. We need a model that unifies incremental pro-
cessing and traditional turn-taking behavior.
We also need a systematic procedure that trains
a system to produce meaningful SBs.

This paper first proposes a finite state machine
(FSM) that both shows superior performance in
end-of-turn detection compared to previous meth-
ods and is compatible with incremental processing.
Then we propose a systematic procedure to endow a
system with meaningful SB by combining the the-
ory of optimal stopping with reinforcement learn-
ing.

Section 2 of the paper discusses related work;
Section 3 describes the finite state machine; Sec-
tions 4, 5, and 6 describe how to produce mean-
ingful SB; Section 7 gives experimental results of
an evaluation using the CMU Let’s Go Live system
and simulation results on the Dialog State Track-
ing Challenging (DTSC) Corpus and Section 8 con-
cludes.

2 Related Work and Limitations

This work is closely related to end-of-turn detection
and incremental processing (IP) dialog systems.
There are several methods for detecting the end-
of-turn. Raux (2008) built a decision tree for
final pause duration using ASR and NLU fea-
tures. At runtime, the system first dynamically
chooses the final pause duration threshold based
on the dialog state and then predicts end-of-turn
if final pause duration is longer than that thresh-
old. Other work explored predicting end-of-turn
within a user’s speech. This showed substantial im-
provement in speed of response (Raux and Eske-
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nazi, 2009). Another approach examined prosodic
and semantic features such as pitch and speaking
rate in human-human conversation for turn-yielding
cues (Gravano, 2009).

The key limitation of those methods is that the
decision made by the end-of-turn detector is treated
as a “hard” decision, obliging developers to com-
promise in a tradeoff between response latency and
FC rate (Raux and Eskenazi, 2008). Although
adding more complex prosodic and semantic fea-
tures can improve the performance of the detector,
it also increases computation cost and requires sig-
nificant knowledge of the SDS, which can limit the
accessibility for non-expert developers.

For IP, Kim (2014) has demonstrated the possi-
bility of learning turn-taking from human dialogs
using inverse reinforcement learning. Other work
has focused on incremental NLU (DeVault et al.,
2009), showing that the correct interpretation of
users’ meaning can be predicted before end-of-turn.
Another topic is modeling user and system barge-in.
Selfridge (2013) has presented a FSM that predicts
users’ barge-ins. Also, Ghigi (2014) has shown that
allowing SB when users produce lengthy speech in-
creases robustness and task success.

Different from Kim’s work that learns human-
like turn-taking, our approach is more related to
Ghigi’s method, which tries to improve dialog ef-
ficiency from a system-centric perspective. We take
one step further by optimizing the turn-taking us-
ing all available features based on a global objective
function with machine learning methods.

3 A Finite State Turn-Taking Model
3.1 Model Description

Our model has two distinct modes: passive and ac-
tive. The passive mode exhibits traditional rigid
turn-taking behavior while the active mode has the
system respond in the middle of a user turn. We first
describe how these two modes operate, and then
show how they are compatible with existing incre-
mental dialog approaches.

The idea is to combine an aggressive speaker
with a patient listener. The speaker consists of the
Text-to-Speech (TTS) and Natural Language Gen-
eration (NLG) modules. The listener is composed
of the ASR and Voice Activity Detection (VAD)
modules. The system attempts to respond to a user
every time it detects a short pause (e.g. 100ms). But
before a long pause (e.g. 1000ms) is detected, the
user’s continued speech will stop the system from
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responding, as shown on Figure 1:

Detect long pause

Figure 1: Turn-taking Model as a finite state ma-
chine

Most of the system’s attempts to respond will
thus be FCs. However, since the listener can stop
the system from speaking, the FCs have no effect
on the conversation (users may hear the false start
of the system’s prompt, but often the respond state
is cancelled before the synthesized speech begins).
If the attempt is correct, however, the system re-
sponds with almost O-latency, as shown in Figure
2. Furthermore, because the dialog manager (DM)
can receive partial ASR output whenever there is
a short pause, this model produces relatively stable
partial ASR output and supports incremental dialog
processing.

Action Threshold Listening Threshold

User speech User spefch continued

A A

Y

>

>
Time
System speech cancelled

Action Threshold Listening Threshold

User speech

A A

>
Time
System speech

Figure 2: The first example illustrates the system
canceling its response when it detects new speech
before LT. The second example shows that users
will not notice the waiting time between AT and LT.

We then define the short pause as the action
threshold (AT) and the long pause as the listening
threshold (LT), where 0 < AT < LT, which can
be interpreted respectively as the “aggression” and
“patience” of the system. By changing the value of
each of these thresholds we can modify the system’s
behavior from rigid turn taking to active SB.

1. Passive Agent: act fast and listen patiently
(AT = small value, LT = large value)



2. Active Agent: act and listen impatiently.
(AT = LT = small value)

This abstraction simplifies the challenge: “when
the system should barge in” as the following transi-

tion: Passive Agent Dldialog state) Active Agent
where ®(-) : dialog State — {true, false} is
a function that outputs true whenever the agent
should take the floor, regardless of the current state
of the floor. For example, this function could out-
put true when the current dialog states fulfill cer-
tain rules in a hand-crafted system, or could output
true when the system has reached its maximal un-
derstanding of the user’s intention (DeVault et al.,
2009). A natural next step is to use statistical tech-
niques to learn an optimized ®(-) based on all fea-
tures related to the dialog states, in order to support
more complex SB behavior.

3.2 Advantages over Past Methods

First our model solves end-of-turn detection by us-
ing a combination of VAD and TTS control, in-
stead of trying to build a perfect classifier. This
avoids the tradeoff between response latency and
FC. Under the assumption that the TTS can oper-
ate at high speed, the proposed system can achieve
almost 0-lag and 0-FC by setting AT to be small
(e.g. 100ms). Second, the model does not require
expensive prosodic and semantic turn-yielding cue
detectors, thus simplifying the implementation.

4 Toward Active System Barge-in

In state-of-the-art SDS, the DM uses ex-
plicit/implicit confirmation to fill each slot and
carries out an error recovery strategy for incorrectly
recognized slots (Bohus and Rudnicky, 2009). The
system should receive many correctly-recognized
slots, thus avoiding lengthy error recovery. While a
better ASR and NLU could help, Ghigh (2014) has
shown that allowing the system to actively respond
to users also leads to more correct slots.

Transcription ASR Output

To Forbes, you know, at To Forbes, herron vee
Squirrel Hill lyn road

Leaving from Forbes, Leaving from Forbes
(Noise) from highland bus
(Noise), Leaving from PA 71C Pittsburgh, lib-
Forbes erty from Forbes

Table 1: Examples of wordy turns and noise pres-
ence. Bold text is the part of speech incorrectly rec-
ognized.
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Table 1 demonstrates three cases where active SB
can help. The first two rows show the first half of
the user’s speech being correctly recognized while
the second half is not. In this scenario, if, in the
middle of the utterance, the system can tell that
the existing ASR hypothesis is sufficient and ac-
tively barges on the user, it can potentially avoid the
poorly-recognized speech that follows. The third
example has noise at the beginning of the user turn.
The system could back channel in the middle of the
utterance to ask the user to go to a quieter place or
to repeat an answer. In these examples active SB
can help improve robustness:

1. Barge in when the current hypothesis has high
confidence and contains sufficient information
to move the dialog along.

Barge in when the hypothesis confidence is
low and the predicted future hypothesis will
not get better. This can avoid recovering from
a large number of incorrect slots.

A natural choice of objective function to train
such a system is to maximize the expected quality of
information in the users’ utterances. The quality of
the recognized information is positively correlated
to number of correctly recognized slots (CS) and in-
versely correlated to the number of incorrectly rec-
ognized slots (ICS). In the next section, we describe
how we transform CS and ICS into a real-value re-
ward.

5 A Cost Model for System Barge-in

We first design a cost model that defines a reward
function. This model is based on the assumption
that the system will use explicit confirmation for ev-
ery slot. We choose this because it is the most basic
dialog strategy. A sample dialog for this strategy is
as follows:

Sys: Where do you want to leave from?

User: Leaving from X.

Sys: Do you mean leaving from Y?

User: No.

Sys: Where do you want to leave from?

User: <No Parse>

Sys: Where do you want to leave from?

User: I am leaving from X.

Sys: Do you mean X?

User: Yes.

Given this dialog strategy the system spends one
turn asking the question, and & turns confirming k&
slots in the user response. Also, for no-parse (0
slot) input, the system asks the same question again.
Therefore, the minimum number of turns required



to acquire n slots is 2n. However, because user re-
sponses contain ICS and no-parses, the system takes
more than 2n turns to obtain all the slot information
(assume confirmation are never misrecognized).

We denote cs; and ics; as the number of cor-
rectly/incorrectly recognized slots in the user re-
sponse. So the quality of the user response is cap-
tured by a tuple, (cs;,ics;). The goal is to obtain
a reward function that maps from a given user re-
sponse (cs;,ics;) to a reward value r; € R. This
reward value should correlate with the overall ef-
ficiency of a dialog, which is inversely correlated
with the number of turns needed for task comple-
tion.

Then for a dialog task that has 7 slots to fill, we
can denote h; as the number of turns already spent,
fi as the estimated number of future turns needed
for task completion and E[S] as the expected num-
ber of turns needed to fill 1 slot. Then for each new
user response (cs;,ics;), we update the following
recursive formulas:

Initialization: ho = 0, fo = nE|s]

Update Rules:
hi=hi—1+ 1 +ecs;+ics; (D
question confirm
(2)

fi=fio1 — csiE[S]

——
acquired slots
Based on the above setup, it is clear that h; + f;
equals the estimated total number of turns needed
to fill n slots. Then the reward, r;, associated with

each user response can be expressed as the differ-
ence between the previous and current estimates:

= (hi—1 + fic1) — (hi + f3) 3)
=—1+4+ (F[S] —1)cs; —ics; 4
—_———
weight to CS

T

Therefore, a positive reward means the new user
response reduces the estimated number of turns
for task completion while a negative reward means
the opposite. Another interpretation of this reward
function is that for no-parse user response (cs; =
0,ics; = 0), the cost is to waste 1 turn asking the
same question again. When there is a parse, each
correct slot can save E[S] turns in the future, while
each slot, regardless of its correctness, needs a 1-
turn confirmation. As a result, this rewards function
is correlated with the global efficiency of a dialog
because it assigns a corpus-dependent weight to cs;,
based on E'[S] estimated from historical dialogs.
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6 Learning Active Turn-taking Policy

After modeling the cost of a user turn, we learn a
turn-taking policy that can maximize the expected
reward in user turns, namely the ®(dialog state)
that controls the switching between passive and ac-
tive agent of our FSM in Section 3.1. Before going
into detail, we first introduce the optimal stopping
problem and reinforcement learning.

6.1 Optimal Stopping Problem and
Reinforcement Learning

The theory of optimal stopping is an area of mathe-
matics that addresses the decision of when to take a
given action based on a set of sequentially observed
random variables, in order to maximize an expected
payoff (Ferguson, 2012).
A formal description is as follows:

1. A sequence of random variables X7, Xo...

2. A sequence of real-valued reward functions,

Yo, y1(21), Y2 (21, 22)...

The decider may observe the sequence x1, Zs...
and after observing X; = z1,...X,, = x,, the de-
cider may stop and receive the reward y,, (x1, ...2p ),
or continue and observe X, ;. The optimal stop-
ping problem searches for an optimal stopping rule
that maximizes the expected reward.

Reinforcement learning models are based on the
Markov decision process (MDP). A (finite) MDP is
atuple (S, A, {Psq},7, R), where:

S is a finite set of N states

A = aq,...a; is a set of k actions

Py, (-) are the state transition probabilities on
taking action a in state s.

v € [0, 1) is the discount factor

R : S — R is the rewards function.

Then a policy, 7 , is a mapping from each state,
s € S and action a € A, to the probability 7 (s, a)
of taking action @ when in state s (Sutton and Barto,
1998). Then, for MDPs, the Q-function, is the ex-
pected return starting from s taking action a and
thereafter following policy 7 and has the Bellman
equation:

Q"(s,0) = R(s) +1 Y P(sIs, )V (s)). (5)

The goal of reinforcement learning is to find the
optimal policy 7*, such that Q™ (s, a) can be max-
imized. Thus the optimal stopping problem can be
formulated as an MDP, where the action space con-
tains two actions {wait, stop}. Also, solving the
optimal stopping rule is equivalent to finding the
optimal policy, 7*.



6.2 Solving Active Turn-taking

Equipped with the above two frameworks, we first
show that SB can be formulated as an optimal stop-
ping problem. Then we propose a novel, non-
iterative, model-free method for solving for the op-
timal policy.

An SDS dialog contains N user utterances. Each
user utterance contains K partial hypotheses and
each partial hypothesis, p;, is associated with a tuple
(cs;,ics;) and a feature vector, z; € RS>, where
f is the dimension of the feature vector. We also
assume that every user utterance is independent of
every other utterance. We will call one user utter-
ance an episode.

In an episode, the turn-taking decider will see
each partial hypothesis sequentially over time,
At each hypothesis it takes an action from
{wait, stop}. Wait means it continues to listen.
Stop means it takes the floor. The turn-taking de-
cider receives 0 reward for taking the action wait
and receives the reward r; from (cs;,ics;) accord-
ing to our cost model for taking the action stop.
This is an optimal stopping problem that can be for-
mulated as an MDP:

o S = {1’1, {1’11’[(}}
o A = {wait, stop}
e R=—1+(E[S] —1)cs; —ics;

Then the Bellman equations are:
Q" (s, stop) = R(s) = r(s) (©)

Q" (s, wait) =~ Zs, P(s]s,a)V™(s") (D

The first equation shows that the Q-value for
any state, s, with action, stop, is simply the im-
mediate reward for s. The second equation shows
that the Q-value for any state s, with action, wasit,
only depends on the future return by following pol-
icy m. This result is crucial because it means that
Q7 (s, stop) for any state, s, can be directly calcu-
lated based on the cost model, independent of the
policy m. Also, given a policy m, Q7 (s, wait)can
also be directly calculated as the discounted reward
the first time that the policy chooses to stop.

Meanwhile, for a given episode with known re-
ward r; for each partial hypothesis p;, optimal stop-
ping means always to stop at the largest reward,
meaning that we can obtain the oracle action for
the training corpus. Given a sequence of reward
(rs,...rx) , the optimal policy, 7, chooses to stop
at partial py, if m = argmax;c(; g 7;-
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The Bellman equations become:
Q" (si, stop) = (®)

Q™ (4, wait) = y™ ry, 9)

and the oracle action at any s can be obtained by :

a; = wait  if Q*(s;, stop) < Q(si, wait)
if Q" (s4, stop) > Q™ (s4, wait)

This special property of optimal stopping prob-
lem allows us to use supervised learning meth-
ods directly modeling the optimal Q function, by
finding a mapping from the input state space, s;,
into the Q-value for both actions: Q(s;, stop)* and
Q(s;, wait)*. Further, inspired by the work of re-
inforcement learning as classification (Lagoudakis
and Parr, 2003), we decide to map directly from the
input state space into the action space: S — A*,
using a Support Vector Machine (SVM).

a; = stop

—Reward |
—e Action

1 2 3 4

5 6 7 8 9
Partial Index

Figure 3: An example showing the oracle actions
for one episode. 1 = stop and 0 = wait.

Advantages of solving this problem as a classi-
fication rather than a regression include: 1) it ex-
plicitly models sign(Q(s;, stop)* — Q(s;, wait)*),
which sufficiently determines the behavior of the
agent. 2) SVM is known as a state-of-the-art mod-
eler for the binary classification task, due to its abil-
ity to find the separating hyperplane in nonlinear
space.

6.3 Feature Construction

Since SVM requires a fixed input dimension size,
while the available features will continue to in-
crease as the turn-taking decider observes more par-
tial hypotheses, we adopt the functional idea used
by the openSMILE toolkit (Eyben et al., 2010).
There are three categories of features: immediate
feature, delta feature and long-term feature. Imme-
diate features come from the ASR and the NLU in
the latest partial hypothesis. Delta features are the
first-order derivate of immediate features with re-
spect to the previous observed feature. Long-term
features are global statistics associated with all the
observed features.



Immediate Features
Final pause duration Number of slots
Hypothesis stability Transitions of (no)parse
Frame number Number of words
Utterance duration Number of unparsed gap
Language model score Unparsed percentage
Word confidence Max of pause duration
Number of noun Mean of pause duration
Boundary LM score Var of pause duration
First level matched Hypothesis confidence

Long-term Functional Features

Mean Standard Deviation
Maximum Position of maximum
Minimum Position of miniumu

Table 2: List of immediate/long-term features

Table 2 shows that we have 18 immediate fea-
tures, 18 delta features and 18 x 7 = 126 long-term
features. Then we apply F-score feature selection as
described in (Chen and Lin, 2006). The final feature
set contains 138 features.

7 Experiments and Results

We conducted a live study and a simulation study.
The live study evaluates the model’s end-of-turn de-
tection. The simulated study evaluates the active SB
behavior.

7.1 Live Study

The finite state machine was implemented in the
Interaction Manager of the CMU Lets Go system
that provides bus information in Pittsburgh (Raux
et al., 2005). We compared base system data from
November 1-30, 2014 (773 dialogs), to data from
our system from December 1-31, 2014 (565 di-
alogs).

The base system used the decision tree end-
of-turn detector described in (Raux and Eske-
nazi, 2008) and the active SB algorithm described
in (Ghigi et al., 2014). The action threshold (AT)
in the new system was set at 60% of the decision
tree output in the former system and the listening
threshold (LT) was empirically set at 1200ms.

7.2 Live Study Metrics

We observed that FCs result in several users’ utter-
ances having overlapping timestamps due to a built-
in 500ms padding before an utterances in Pocket-
Sphinx. This means that we consider two consecu-
tive utterances with a pause less than 500ms as one
utterance. Figure 4 shows that when the end-of-turn
detector produces an FC, the continued flow of user
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speech instantiates a new user utterance which over-
laps with the previous one. In this example, utter-
ances 0 and 1 have overlaps while utterance 2 does
not. So users actually produce two utterances, while
the system thinks there are three due to FC.

utt & utt 2

utt 1 |
| response @ |

Figure 4: Utterance fragments caused by FCs. This
example has UFR = %

User

L

System Tina;

Thus, we can automatically calculate the FC rate
of every dialog, by counting the number of user ut-
terances with overlaps. We define an utterance frag-
ment ratio (UFR) that measures the FC rate in a di-
alog.

U F R = e of e eringes

We also manually label task success (TS) of all
the dialogs. We define TS as: a dialog is success-
ful if and only if the system conducted a back-end
search for bus information with all required slots
correctly recognized. In summary, we use the fol-
lowing metrics to evaluate the new system:

1. Task success rate
2. Utterance fragment ratio (UFR)
3. Average number of system barge-in (ANSB)
4. Proportion of long user utterances interrupted
by system barge-in (PLUISB)
Average response delay (ARD)
Average user utterance duration over time

b

6.

7.3 Live Study Results

Table 3 shows that the TS rate of the new system
is 7.5% higher than the previous system (p-value <
0.01). Table 4 shows that overall UFR decreased by
37.1%. UFR for successful and for failed dialogs
indicates that the UFR decreases more in failed di-
alogs than in successful ones. One explanation is
that failed dialogs usually have a noisier environ-
ment. The UFR reduction explains the increase in
success rate since UFRs are positively correlated
with TS rate, as reported in (Zhao and Eskenazi,
2015)

Table 5 shows that the SB algorithm was acti-
vated more often in the new system. This is because
the SB algorithm described in (Ghigi et al., 2014)
only activates for user utterances longer than 3 sec-
onds. FCs will therefore hinder the ability of this
algorithm to reliably measure user utterance dura-



Success Failed TS Rate P-value
New 271 294 48.0%
System
ol DT 450 415% 0.0096
System

Table 3: Success rate between old and new systems.
P-value is obtained via Wald Test

UFR Overall Successful  Failed dia-
dialog log

New 12.2% 9.2% 15.0%

System

Old 19.4% 12.5% 24.3%

System

Table 4: Breakdown into successful/failed dialogs

tion. This is an example of how reliable end-of-turn
detection can benefit other SDS modules. Table 5
also shows that the new system is 32.5% more re-
sponsive than the old system. We purposely set the
action threshold to 60% of the threshold in the old
system, which demonstrates that the new model can
have an response speed equals to action threshold
that is independent of the FC rate.

Metric Old System New System
ANSB 1.04 1.50
PLUISB 53.9% 77.8%

ARD (ms) 853.49 576.09

Table 5: Comparison of barge-in activation rate and
response delay

Figure 5 shows how average user utterance dura-
tion evolves in a dialog. Utterance duration is more
stable in the new system than in the old one. Two
possible explanations are: 1) since UFR is much
higher in the old system, the system is more likely
to cut in at the wrong time, possibly making users
abandon their normal turn-taking behavior and talk
over the system. 2) more frequent activation of the
SB algorithm entrains the users to produce more
concise utterances.

7.4 Simulation Study

This part of the experiment uses the DSTC corpus
training2 (643 dialogs) (Black et al., 2013). The
data was manually transcribed. The reported 1-best
word error rate (WER) is 58.2% (Williams et al.,
2013). This study focuses on all user responses
to:“Where are you leaving from?” and “Where are
you going?”” which have 688 and 773 utterances re-
spectively.

An automatic script, based on the manual tran-
scription, labels the number of correct and incorrect

48

—OId System
-—New System

Average Duration (ms

1!
i
i
i
i
]
[
H
'
v
]
'

o
-

)

Q

o
e

15 20 25
Tum

30

Figure 5: Average user utterance duration over the
index of user turns in a dialog.

slots (cs;, ics;) for each partial hypothesis, p;. Also
from the training data, the expected number of turns
needed to obtain 1 slot, E[S], is 3.82. For simplic-
ity, E[S] is set to be 4. So the reward function dis-
cussed in Section 5 is: r; = —1 + 3c¢s; — ics;.

After obtaining the reward value for each hypoth-
esis, the oracle action at each partial hypothesis is
calculated based on the procedure discussed in Sec-
tion 6.3 with v = 1.

We set the SVM kernel as RBF kernel and use a
grid search to choose the best parameters for cost
and kernel width using 5-fold cross validation on
the training data (Hsu et al., 2003). The optimiza-
tion criterion is the F-measure.

7.5 Simulation Study Metrics

The evaluation metrics have two parts:
classification-related (precision and recall) and
dialog-related. Dialog related metrics are:

1. Accuracy of system barge-in

2. Average decrease in utterance duration com-
pared to no system barge-in
Percentage of no-parse utterance
Average CS per utterance
Average ICS per utterance
Average reward = 1/7") . r; , where T is the
number of utterances in the test set.

oWk W

The learned policy is compared to two reference
systems: the oracle and the baseline system. The or-
acle directly follows optimal policy obtained from
the ground-truth label. The baseline system always
waits for the last partial (no SB).

Furthermore, a simple smoothing algorithm is
applied to the SVM output for comparison. This
algorithm confirms the stop action after two consec-
utive stop outputs from the classifier. This increases
the classifier’s precision.



7.6 Simulation Study Results

10-fold cross validation was conducted on the two
datasets. Instead of using the SVM binary output,
we apply a global threshold of 0.4 on the SVM de-
cision function for output to achieve the best aver-
age reward. The threshold is determined based on
cross-validation on training data.

Table 6 shows that the SVM classifier can
achieve very high precision and high recall in pre-
dicting the correct action. The F-measure (after
smoothing) is 84.46% for departure question re-
sponses and 85.99% for arrival questions.

Precision Recall Precision Recall
(smooth) (smooth)
D 92.64%+ 78.04%+ 93.86%+ T76.79%+
2.88 2.39 2.80 2.35
A 93.59%+ T79.64%+ 93.63%+ 79.51%+
2.42 3.41 2.30 3.04

Table 6: Cross-validation precision and recall with
standard error for SVM. D = responses to departure
question, A = responses to arrival question.

Table 7 shows that learned policy increases the
average reward by 27.7% and 14.9% compared to
the baseline system for the departure and arrival re-
sponses respectively. We notice that the average
reward of the baseline arrival responses is signifi-
cantly higher. A possible reason is that by this sec-
ond question the users are adapting to the system.

The decrease in average utterance duration shows
some interesting results. For responses to both
questions, the oracle system utterance duration is
about 55% shorter than the baseline one. The
learned policy is also 45% shorter, which means
that at about the middle of a user utterance, the sys-
tem can already predict that the user either has ex-
pressed enough information or that the ASR is so
wrong that there is no point of continuing to listen.

Depature Arrival
Policy = Average Average  Average Average
reward duration  reward duration
decrease decrease
Baseline 0.795 0% 0.959 0%
Oracle 1.396 58.1% 1.430 55.7%
Learned 0.998 42.8% 1.089 47.6%
Learned 1.016 45.6% 1.102 46.2%

(smooth)

Table 7: Average reward and duration decrease for
baseline, oracle, SVM and smooth SVM system.

Table 8 expands our understanding of the oracle
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and learned policy behaviors. We see that the ora-
cle produces a much higher percentage of no-parse
utterances in order to maximize the average reward,
which, at first, seems counter-intuitive. The reason
is that some utterances contain a large number of
incorrect slots at the end and the oracle chooses to
barge in at the beginning of the utterance to avoid
the large negative reward for waiting until the end.
This is the expected behavior discussed in Section
4. The learned policy is more conservative in pro-
ducing no-parse utterances because it cannot cheat
like the oracle to access future information and
know that all future hypotheses will contain only in-
correct information. However, although the learned
policy only has access to historical information, it
manages to predict future return by increasing CS
and reducing ICS compared to the baseline.

Policy No-parse Average Average

percent CS ICS
Baseline  6.86% 0.765 0.499
Oracle 14.71% 0.865 0.196
Learned  8.14% 0.796 0.389
Learned  8.71% 0.789 0.360
(smooth)

Table 8: No parse percentages and average CS and
ICS for responses to the departure question.

8 Conclusions and Future Directions

This paper describes a novel turn-taking model that
unifies the traditional rigid turn-taking model with
incremental dialog processing. It also illustrates a
systematic procedure of constructing a cost model
and teaching a dialog system to actively grab the
conversation floor in order to improve system ro-
bustness. The turn-taking model was tested for
end-of-turn detection and active SB. The proposed
model has shown superior performance in reducing
FC rate and response delay. Also, the proposed SB
algorithm has shown promise in increasing the av-
erage reward in user responses.

Future studies will include constructing a more
comprehensive cost model that not only takes into
account of CS/ICS, but also includes other fac-
tors such as conversational behavior. Further, since
E[S] will decrease after applying the learned policy,
it invalidates the previous reward function. Future
work should investigate how the change in E'[S] im-
pacts the optimality of the policy. Also, we will add
more complex actions to the system such as back
channeling, clarifications etc.
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Abstract

Although restating part of a student’s cor-
rect response correlates with learning and
various types of restatements have been in-
corporated into tutorial dialogue systems,
this tactic has not been tested in isolation
to determine if it causally contributes to
learning. When we explored the effect of
tutor restatements that support inference
on student learning, it did not benefit all
students equally. We found that students
with lower incoming knowledge tend to
benefit more from an increased level of
these types of restatement while students
with higher incoming knowledge tend to
benefit more from a decreased level of
such restatements. This finding has impli-
cations for tutorial dialogue system design
since an inappropriate use of restatements
could dampen learning.

1 Introduction

A tutor restating part of a student’s dialogue con-
tribution can be motivated by a range of commu-
nicative intentions (e.g. a tutor intends to refor-
mulate a response, so that it is correct) and at
the surface level can range from exact repetitions,
to using different words while keeping the con-
tent semantically equivalent, to semantic reformu-
lations which are often prefaced by markers such
as “in other words” and “this means that” (Hyland,
2007). Some of the intentions associated with re-
formulations in the context of classroom lectures
(Murillo, 2008) that also appear in human tuto-
rial dialogue (Jordan et al., 2012) include, among
others, definition (reformulate a prior statement so
terms are defined), correction (reformulate a prior
statement so it is correct) and consequence (re-
formulate so implications of a prior statement are
clear).
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But restatements also have intentions unique to
the context of interactive discourse. We observed
that human tutors, like classroom teachers who en-
courage and support discussion, frequently imple-
ment two types of restatement moves: revoicing
and marking. Revoicing is characterized by a re-
formulation of what the student said. Like class-
room teachers who facilitate discussions using a
technique called “Accountable Talk™ (O’Connor
and Michaels, 1993), tutors sometimes revoice in
order to verify their understanding of what a stu-
dent was trying to say and, in the case of a cor-
rect student contribution, perhaps to model a better
way of saying it. Marking, on the other hand, em-
phasizes what the teacher or tutor considers most
important in what the student said and attempts to
direct the student to focus his/her continued dis-
cussion on that.

Several recent studies of human tutorial dia-
logue have looked at particular aspects of restate-
ments, for example, (Chi and Roy, 2010; Becker
et al., 2011; Dzikovska et al., 2008; Litman and
Forbes-Riley, 2006). One study examines face-to-
face naturalistic tutorial dialogue in which a tu-
tor helps a student work through a physics prob-
lem (Chi and Roy, 2010). The authors suggest
that when the tutor repeats part of what the stu-
dent said, it is often done with the intention of
providing positive feedback for correct answers.
Another of these recent studies collected a corpus
using trained human tutors who filled in for a con-
versational virtual tutor in a science education sys-
tem (Becker et al., 2011) and noted that a restate-
ment can help a student who is struggling with a
particular concept by modeling a good answer and
can mark an aspect of the student’s response to fo-
cus on in the ongoing discussion. Below we show
excerpts from our corpus of human-human typed
dialogues that illustrate these uses of restatement.

T: How do we know if there is a net force on the bullet
in this problem?
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S: if m*a does not equal 0

T: Right, if the bullet is accelerating it must have a
net force on it - [tutor restatement to mark and provide
positive feedback]

T: how do we know it is accelerating?

T: What is speed?

S: it is velocity without direction

T: Right, The (instantaneous) speed is the magni-
tude of the (instantenous) velocity. [tutor restate-
ment to model a good answer and provide positive
feedback]

Because restatements of correct responses have
been shown to correlate with learning (Dzikovska
et al., 2008), this suggests the possibility that re-
statements could causally contribute to learning.
While restatements of various types have been
incorporated into a number of tutorial dialogue
systems, restatement has not been tested in iso-
lation from other tactics to determine whether it
has any causal connection to learning. Exam-
ples of tutorial dialogue systems that have incor-
porated restatement include: AutoTutor (Person et
al., 2003) where elaborations and summaries often
include restatements, CIRCSIM-Tutor (Freedman,
2000), which restates students’ answers that are
nearly correct except for terminology, and Beetle
II (Dzikovska et al., 2008), which restates the cor-
rect parts of students’ nearly correct or partially
correct answers.

Here, we explore the effects on student learning
of a tutor’s restatement of the student’s correct re-
sponse in the context of a consequence intention
(Murillo, 2008)—that is, making an inference ex-
plicit as shown in the excerpt below from our cor-
pus.

T: How do we know that we have an acceleration in this
problem?

S: because velocity starts at zero, and since the stone is
falling, it doesn’t remain at zero, thus there is a change
in the velocity of the stone

T: Ok so because there is a change in velocity then
there has to be an acc [sic] right? [tutor restatement of
correct response while making its implications clear]

We test two alternative hypotheses about this
type of restatement: 1) that it will benefit students
and 2) that its effect varies according to students’
incoming knowledge.

Our discussion of the study that we conducted
to test our hypotheses will proceed as follows.
First we discuss the motivation for our hypothe-
ses and then we describe the existing tutorial dia-
logue system we used as a platform for conducting
our experiments with three different populations
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of students. We characterize the degree of restate-
ment supported by the unaltered system and the
modifications we made to produce a high restate-
ment and a low restatement version of the system.
Next we describe the experimental design and dis-
cuss our results in relation to two earlier experi-
ments using different populations and test materi-
als. We conclude by summarizing our results and
plans for future work.

2 Background

From the perspective of memory encoding, stor-
age and retrieval (McLeod, 2007), simply repeat-
ing back a student’s correct answer may have
an effect similar to maintenance rehearsal which
would just maintain it in the student’s working
memory but do little to aid transfer to long-term
memory. However, connecting the correct answer
to something else, which a consequence restate-
ment would do, may have more of an elabora-
tive rehearsal effect which is better for transfer to
long-term memory (McLeod, 2007). But the ef-
fect may not be applicable for very low incom-
ing knowledge students who are not correct of-
ten. Conversely, if the correct answer is already
more strongly established in the student’s long-
term memory-—as may be the case for high incom-
ing knowledge students—then restating it could be
detrimental, whether the tutor’s restatement only
acknowledges the student’s correct answer or is in
the context of a consequence. In this situation it
may be better to focus on strengthening the con-
nection between the correct knowledge and other
knowledge by having the student recall the correct
knowledge on his/her own when it is needed.
From the perspective of interactions between
communication strategies and cognitive process-
ing, simulations with artificial agents showed
that task performance varied as communication
strategies and cognitive processing limits varied
(Walker, 1996; Jordan and Walker, 1996). For
example, under certain conditions as attention be-
came more limited, repetition of mutually known
information displaced from attention other criti-
cal problem-solving knowledge for the “hearer”
while, conversely, such redundancies could be-
come beneficial when attention was less lim-
ited. Possibly a student should not have mutually
known information repeated when they are deep
in thought (i.e. the processing load is high), be-
cause it could displace critical knowledge. On the



other hand, a student who may be having trouble
getting started on a question (i.e. the processing
load may be lower), may find the repetition bene-
ficial because there is less chance of displacement.
The former case may more often describe a high-
knowledge student and the latter a low-knowledge
student.

Two other strands of research in psychology
that are related to our hypotheses examined the
effect of text cohesiveness on comprehension for
low-knowledge and high-knowledge readers. The
first found that unpacking the inferences in text
supports comprehension among low-knowledge
readers, while less cohesive (higher inference-
inducing) text is better suited for high-knowledge
readers (McNamara et al., 1996). Forcing the stu-
dent to figure out what led to a consequence when
no premise is explicitly provided could make it
similar to a higher inference-inducing text. Re-
duced cognitive load is a proposed alternative ex-
planation for the “cohesion reversal effect”, par-
ticularly for high-knowledge readers, who must
reconcile their existing schema about the topic
discussed in the text with the background mate-
rial provided in a “highly coherent” text (Kalyuga
and Ayres, 2003). High-knowledge students might
benefit more from less frequent consequence re-
statements because these students can make more
inferences on their own. Frequent consequence
restatements might entail more frequent schema
alignment, and therefore an increased cognitive
load. However, both of these explanations of
the cohesion reversal effect, with respect to high
knowledge students (prompted inference-making,
or increased cognitive load), may be less plausi-
ble for consequence restatement during tutorial di-
alogue than for reading, because the former in-
volves a proposition that was recently explicitly
covered in the dialogue.

3 Experimental Platform

We used an existing natural-language tutoring
system, Rimac, to conduct our experiments. It
is a web-based system that aims to improve
students’ conceptual understanding of physics
through typed reflective dialogues (Katz and Al-
bacete, 2013). Rimac was built using the TuTalk
natural language (NL) tutorial dialogue toolkit
(Jordan et al., 2007). Thus its dialogue can be rep-
resented as a finite state machine where each state
represents a tutor turn. The arcs leaving a state
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correspond to all classifications of a student’s re-
sponse to the tutor’s turn. When a student turn
is received, the system determines which arc it
best represents and this in turn indicates what tu-
tor state to transition to next. In the context of
restatements, because the arc that is the best clas-
sification of the student’s response leads to a par-
ticular tutor state, the tutor state can include that
arc in its representation and can easily restate that
arc. Note that this simplified approach will pro-
duce more reformulations than exact repetitions of
student responses but both are acceptable for our
experiment.

For this experiment we used Rimac’s dynamics
content which covers three problems with two re-
flection questions per problem. These problems
and their associated reflective dialogues (two dia-
logues per problem) were developed in consulta-
tion with high school physics teachers. The reflec-
tion question dialogues are tutor-initiative only.
The tutor primarily asks short answer questions,
to keep accuracy of automatic recognition of stu-
dent responses high. However, the dialogues in-
clude some questions that prompt the student for
explanations at key points and then presents a
menu of responses to which students are directed
to map their previously typed explanation. We ex-
pect there to be a comparable frequency of mis-
classification of student responses across the two
versions of the system that we created for our ex-
periments since we made no modifications to any
student response arcs in the original system.

To create a high restatement system for this
experiment, three dialogue content authors inde-
pendently reviewed and cross-reviewed all of the
tutor states in the dialogue specifications for the
base system and added tutor restatements of stu-
dent responses that occurred in two dialogue con-
texts. Those contexts were: 1) an explicit if-then
statement or question that draws the “if”” or “then”
part from the student’s immediately preceding re-
sponse and 2) a statement or question at the end
of a sub-dialogue that draws upon the student’s re-
sponses during the sub-dialogue. An example for
contexts 1 and 2 are shown below for the high re-
statement condition:

Context 1:

T: Now let’s look at our case in which we have a flying
arrow. While the arrow is flying is anything touching
or in contact with it?

S: No [there is nothing touching the arrow during its
flight]



T: I agree. Hence since there is nothing touching the
arrow during its flight there is no contact force ap-
plied to it.

Context 2:

T: What is the initial velocity of the faster arrow in the
vertical direction as it leaves the bow?

S: [the initial velocity is] O

T: I agree. Now does the faster arrow have an accelera-
tion in the vertical direction when it leaves the bow?

S: yes, [it has a vertical acceleration of] 9.8 m/s?

T: Okay! Now that we know the initial vertical veloc-
ity of the fast arrow is zero and that it has a vertical
acceleration of 9.8 m/s?, what will the value of verti-
cal velocity of the arrow be a second after it leaves the
bow?

To create the low restatement system, the same
dialogue content authors reviewed the dialogue
specifications for all instances of consequence
restatements and either deleted or replaced the
restatement of the student’s response with an
anaphoric expression. But the content authors
were further directed to not carry out any mod-
ification that would disturb the coherency of the
dialogue. The low restatement version of the first
example above would be identical, except for the
second tutor turn, which would read: “I agree.
Hence there is no contact force applied to it.”” The
example for context 2 is shown below for the low
restatement condition.

Context 2:

T: What is the initial velocity of the faster arrow in the
vertical direction as it leaves the bow?

S:0

T: I agree. Now does the faster arrow have an accelera-
tion in the vertical direction when it leaves the bow?
S: yes, 9.8 m/s?

T: Okay! Now given what we know about the fast ar-
row, what will the value of vertical velocity of the arrow
be a second after it leaves the bow?

After the experiments (described below) were
completed, one of the authors of this paper re-
viewed the tutor states in the base system and the
high and low restatement systems to characterize
the number of changes made to create the high
and low restatement systems from the base system.
These findings are shown in Table 1 in the columns
“possible”. The “other” restatements, as shown
in column 3 of Table 1, include restating the cor-
rect part of a partially correct answer and restating
a correct answer when it required deeper reason-
ing to produce. These remain because they were
deemed essential to tutoring. Ideally the number
of “other” restatements should be equal for “high”
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Table 1: Modifications to create the high and low
restatement systems from the base system (labeled
“possible”) and the average number of states stu-
dents experienced (labeled “avg™)

System | Number of Restatement States
Consequence Other
possible | avg | possible | avg

Base 48 NA 18 NA

High 77 19.8 19 2.6

Low 4 .8 7 375

and “low”. Content authors were instructed to re-
move repetitions of fully correct answers to simple
short answer questions but some were missed for
“high”. In addition, some restatements that were
added to increase consequence for “high” were
instead simple repetitions. However, we do not
expect simple repetitions to affect learning, espe-
cially when their frequency is low, as reflected in
the “avg” columns.

4 Methods

Participants Our comparison of the high and low
restatement versions of Rimac was conducted dur-
ing high school physics classes at three schools in
the Pittsburgh PA area. The study followed the
course unit on dynamics with a total of 168 stu-
dents participating. Students were randomly as-
signed to one of two conditions: high restatement
(N=88; 30 females, 58 males) and low restatement
(N= 80; 27 females, 53 males).

Materials Students interacted with either a high
or low restatement version of Rimac, as described
in the previous section, to discuss the physics con-
ceptual knowledge associated with three quantita-
tive dynamics problems.

We developed a 21 item pretest and isomorphic
post-test (that is, each question was equivalent to
a pretest question, but with a different cover story)
to measure learning differences from interactions
with the system. The test included nine multiple
choice problems and twelve open response prob-
lems and focused on testing students’ conceptual
understanding of physics instead of their ability to
solve quantitative problems.

Procedure On the first day, the teacher gave
the pretest in class and assigned the three dynam-
ics problems for homework. During the next one
to two class days (depending on whether classes



Table 2: Learning from interacting with the systems, for both conditions combined and separately for the

high and low restatement conditions

Problems | Condition | Pretest Posttest t(n),p
Mean (SD) Mean (SD)
All Combined | 7.90 (2.40) 8.97 (2.88) 1(167)=5.60,
0.376 (0.114) | 0.427 (0.137) | p<0.01
High 7.71 (2.36) 8.73 (2.73) 1(87)=3.56,
0.367 (0.113) | 0.416 (0.130) | p<0.01
Low 8.11 (2.44) 9.23 (3.02) 1(79)=4.49,
0.386 (0.116) | 0.440 (0.144) | p<0.01
Multiple- | Combined | 4.73 (1.40) 5.20 (1.50) 1(167)=3.63,
choice 0.525 (0.156) | 0.578 (0.167) | p<0.01
High 4.67 (1.37) 5.16 (1.46) 1(87)=2.73,
0.519 (0.152) | 0.573 (0.162) | p=0.01
Low 479 (1.44) 5.25 (1.55) 1(79)=2.39,
0.532 (0.160) | 0.583 (0.173) | p=0.02
Open- Combined | 3.18 (1.48) 3.77 (1.78) 1(167)=5.38,
response 0.265 (0.124) | 0.314 (0.148) | p<0.01
High 3.04 (1.47) 3.57 (1.68) 1(87)=3.13,
0.253 (0.123) | 0.298 (0.140) | p<0.01
Low 3.32(1.49) 3.98 (1.87) 1(79)=4.8,
0.277 (0.124) | 0.332 (0.156) | p<0.01

were approximately 45 min. or 80 min. long),
students watched a video of a sample, worked-out
solution to each homework problem in one of the
two versions of Rimac and engaged in two “reflec-
tive dialogues” after each problem-solving video.
The videos demonstrated how to solve the prob-
lem only and did not offer any conceptual expla-
nations. Hence we do not believe that the videos
contributed to learning gains. Finally, at the next
class meeting, teachers gave the post-test.

5 Results

We evaluated the data to determine whether stu-
dents who interacted with the tutoring system
learned, as measured by gain from pretest to post-
test, regardless of their treatment condition (i.e.
which version of Rimac they were assigned to
use), and if there was an aptitude-treatment inter-
action; in particular, an interaction between stu-
dents’ prior knowledge about physics (as mea-
sured by pretest score) and how much students
learned in each condition (as measured by gain
score).

The data was first analyzed considering all
problems together and then multiple-choice and
open-response problems were considered sepa-
rately. The rationale for this further division of
test items is that open-response problems, unlike
multiple-choice problems, would allow us to de-
termine whether students are able to verbalize co-
herent conceptual explanations of the physics phe-
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nomena tested in these problems. Moreover, open-
response problems do not allow for guessing of the
correct answer to the extent that multiple-choice
test items do.

Learning Performance & Time on Task To
determine whether interaction with the system, re-
gardless of condition, promoted learning, we com-
pared pretest scores with post-test scores. To-
wards this end, we performed paired samples t-
tests. When all students were considered to-
gether, we found a statistically significant dif-
ference between pretest and post-test scores for
all problems together, multiple-choice problems,
and open-response problems as shown in Table 2.
When students in each condition were considered
separately, we again found a statistically signifi-
cant difference between pretest and post-test for
all problems together, multiple-choice problems,
and open-response problems as shown in Table 2.
These results suggest that students in both condi-
tions learned from interacting with the system.

Prior to testing for differences between condi-
tions, we tested for a difference in time on task
between conditions. No statistically significant
difference was found between conditions for the
mean time on task.

High Restatement vs. Low Restatement First,
we confirmed that there was significantly more
consequence restatement in the high restatement
condition than in the low restatement condition
using independent samples t-tests: M(high)=20.4,
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Figure 1: Prior knowledge-treatment interaction
for All Problems

M(low)=.8; #91)=29.3,p<.0001. Next, to test
whether students who used the high restatement
version of the system would perform differently
from students who used the low restatement ver-
sion, we compared students’ gains from pretest
to post-test between conditions using independent
samples t-tests. Gains were defined as (post-test
- pretest) and their normalized versions as (post-
test/#problems) - (pretest/#problems).!

We found no significant differences in gains be-
tween conditions for any subset of problems. This
suggests that the presence or absence of a conse-
quence restatement has the same effect on learning
when students of all knowledge levels are consid-
ered together.

Prior knowledge-treatment interaction To
investigate whether there was a prior knowl-
edge treatment interaction, we performed a mul-
tiple regression analysis using condition, prior-
knowledge (as measured by pretest) and condi-
tion * prior-knowledge (interaction) as explana-
tory variables, and gain as the dependent variable.
When all problems were considered together, we
found a significant interaction between condition
and prior knowledge in their effect on gains (t=-
2.126,p=0.04). Likewise, we found a significant
interaction when we considered only gains on
open-response problems (t=-2.689,p=0.01). How-
ever, for multiple-choice problems we did not find
a significant interaction.

The graph of gain vs. prior knowledge in Fig-

!'The reason for using both measures is that each mea-
sure relates the same information, but in a different way. The
full test scores show means and standard deviations in terms
of number of problems solved correctly (given that each test
item has a score of 0-1) whereas the normalized values con-
vey the same results in terms of percent of correct responses.
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Figure 2: Prior knowledge-treatment interaction
for Open-Response Problems

ure 1 shows the fitted lines for both conditions
when considering all problems. It suggests that
students with pretest scores that are 35% correct
(7.5) or less benefit more from the high restate-
ment version of the system than from the low re-
statement version. However students with pretest
scores above 35% correct benefit more from the
low restatement version of the system. The graph
of gain vs. prior knowledge for open-response
problems is shown in Figure 2. It suggests that stu-
dents with pretest scores of 23% or less on open-
response items benefit more from higher restate-
ment and students with pretest scores greater than
23% benefit more from lower restatement. Both
findings offer evidence to support the hypothesis
that the effect of consequence restatements varies
according to students’ incoming knowledge. In
particular, it suggests that lower knowledge stu-
dents benefit more from high restatement in infer-
ential contexts while higher knowledge students
benefit more from low restatement.

6 Additional Support for a Prior
Knowledge-Treatment Interaction
from Earlier Experiments

Prior to the study that we described in Section 5,
which we will refer to now as experiment E3, we
conducted two field trials, E1 and E2, which dif-
fered only by the versions of the tests that we ad-
ministered and the populations recruited. We will
refer to the test we previously described in Sec-
tion 4 as T3, to distinguish it from the tests admin-
istered during the prior experiments (T1 and T2).
Field Trial E1 with test T1 The first field trial,
El, utilized undergraduate students only and test
T1. We recruited undergraduates (N=62) who had
taken only high school physics within the last two



years. The goal was to sample students whose
knowledge of physics was similar to that of our
target high school population. Test T1 was used
in previous experiments with high school students
for the dynamics domain.

Just as with E3, we confirmed that there was
significantly more consequence restatement in the
high restatement condition than in the low restate-
ment condition using independent samples t-tests:
M(high)=24.2, M(low)=1.2; #(36)=45.7,p<.0001.
Similarly, we found that for the undergraduate
population there were no significant differences
in gains between conditions. However, for this
population there were no significant interactions
between conditions and prior knowledge. Since
we had found a prior knowledge treatment in-
teraction in experiment E3, we re-examined the
pretest scores of the undergraduates, to investigate
whether students’ incoming knowledge could have
been a factor.

We found that the pretest mean for the under-
graduates was 44% correct (SD=14%) while the
pretest mean for the high school students who had
taken test T1 was lower at 37% correct (SD=13%).
Furthermore, the high school students who had
taken T1 had a post-test mean of 40% correct
(SD=16%) which was lower than the pretest mean
of E1’s undergraduates. The undergraduates’ prior
knowledge is clearly higher than that of the high
school students. Given the higher prior knowledge
of the undergraduates in E1 (compared with the
high school students who had taken T1), we ex-
pected that the mean gain for the low restatement
condition in E1 (M=2.71, SD=2.18; normalized
M=.12, SD=.10) would tend to be higher than for
the high restatement condition (M=1.99, SD=2.24;
normalized M=.09, SD=.10) and that was the case.

Hence, this pattern is consistent with the sec-
ond hypothesis that the effect of consequence re-
statements varies according to incoming knowl-
edge. While there was no significant difference
between conditions for the undergraduate popula-
tion, undergraduates had higher prior knowledge
than high school students and for undergraduates
the mean gain for the low restatement condition
was higher than for the high restatement condition
which is in the same direction as the findings for
E3.

Field Trial E2 with test T2 We decided to re-
fine test T1, which was used in El, to create test
T2. We used test T2 in field trial E2 with high
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school students (N=88) who were from two differ-
ent local high schools from those who participated
in experiment E3.
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Figure 3: Prior knowledge-treatment interaction
for All Problems for E2

As before with E3, we confirmed that there was
significantly more consequence restatement in the
high restatement condition than in the low restate-
ment condition using independent samples t-tests:
M(high)=20.3, M(low)=.64; #(56)=21.8,p<.0001.
With this population, however, we found statisti-
cally significant differences in learning gains be-
tween conditions that favored the high restatement
version of the system. Using independent sam-
ples t-tests, we found significant differences for all
test problems together: M(high)=2.49 SD=2.90,
M(low)=1.04 SD=3.68; #(86)=2.07,p<.04 and for
multiple-choice problems: M(high)=.66 SD=1.27,
M(low)=-.-6 SD=1.4; #(86)=2.51,p<.01 but not
for open-response problems. However, there were
no statistically significant interactions between
condition and prior knowledge for any subset of
test problems.

Given the results of experiment E3 and the pat-
tern in E1, we re-examined the pretest scores of
these high school students to consider whether
their incoming knowledge could have been lower
than the students in E3. The graph of the gain
vs. pretest scores in Figure 3 shows that gains
for students in the high restatement condition were
better than for students in the low restatement
condition. However, the difference was more
pronounced for lower incoming knowledge stu-
dents than for higher incoming knowledge stu-
dents which agrees with the pattern in E3. More-
over, one of the schools in this sample had a
significantly lower pretest mean than the other
school M=36%, SD=16% vs. M=86%, SD=8%;



t(86)=14.9,p=.000) and a larger sample size (N=65
vs. N=23). This suggests there were more lower
incoming knowledge students in E2 than higher
incoming knowledge students.

So there is a pattern that is consistent with the
finding in E3 and the pattern in E1. The results
suggested that the high restatement condition was
significantly better than the low restatement one;
however, more of the population seemed to have
lower incoming knowledge which would favor the
high restatement condition. However, more exper-
imentation with populations similar to these two
schools is needed. It is possible that the incom-
ing knowledge in this one school is comparable to
the ones in E3. This was the only high-school in
which we had to move from the classroom to a
computer lab. This added disruption to the usual
classroom routine may have made it more difficult
for students to “settle in” and concentrate. If the
students had problems focusing, then the added
repetitions may have been helpful.

Experiment E3 with test T3 After E2, we
shortened the test to create T3, which was used in
experiment E3, the focus of this paper. While the
tests differed across all three experiments, so we
cannot directly compare the populations, the pat-
terns in each case seem consistent with the prior
knowledge treatment interactions that we found in
study E3, as reported in Section 5. However, ex-
periments that use the same test would be neces-
sary to verify these patterns.

7 Conclusions and Future Work

We found that students learned from the tutoring
system, across conditions, as measured by differ-
ences in pre-test and post-test scores. In the main
study reported here (E3), there was no difference
in learning gains between conditions, which sug-
gests that the presence or absence of consequence
restatement in a system has a similar effect for
all students considered together; that is, irrespec-
tive of their prior knowledge. However, we did
find a prior knowledge treatment interaction which
supported the hypothesis that the effect of conse-
quence restatement varies according to students’
prior knowledge. In particular, our results sug-
gest that lower knowledge students would benefit
more from a high restatement system while higher
knowledge students would benefit more from a
low restatement system.

Two earlier studies with different populations
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and tests also support this finding. While there
was no significant difference in learning gains be-
tween conditions for the study with the undergrad-
uate population (E1), undergraduates had higher
prior knowledge than high school students and for
undergraduates the low restatement condition had
a higher mean gain than the high restatement con-
dition. For the earlier study with a different set
of high schools (E2), there was a significant dif-
ference in learning gains between the high and
low restatement conditions that favored the high
restatement condition but more of the population
seemed to have lower incoming knowledge which
would favor that condition. Moreover, the lower
the student’s incoming knowledge, the larger the
benefit of high restatement. However, these re-
sults are preliminary and require further experi-
mentation to better understand when and why con-
sequence restatements can support learning.

The findings across the three experiments sug-
gest that system designers may need to be care-
ful in their use of restatement as it may dampen
learning if there is a mismatch with students’ prior
knowledge levels. Further it suggests that when
building tutorial dialogue systems, care must be
taken in the tactics and strategies that may be ap-
plied to address system limitations. For exam-
ple, spoken dialogue systems sometimes use an
explicit confirmation strategy to address repeated
speech recognition errors (Litman and Pan, 2000).
Carrying such a strategy over to tutorial applica-
tions could have an unintended impact on some
students’ learning outcomes.

In future research, we plan to determine if the
benefits of the high and low restatement versions
of Rimac can be used advantageously in a system
that adapts to students’ knowledge levels and to
formulate and test additional hypotheses for other
types of restatement.
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Abstract

Multi-document summarization is a very im-
portant area of Natural Language Processing
(NLP) nowadays because of the huge amount
of data in the web. People want more and
more information and this information must
be coherently organized and summarized.
The main focus of this paper is to deal with
the coherence of multi-document summaries.
Therefore, a model that uses discursive in-
formation to automatically evaluate local co-
herence in multi-document summaries has
been developed. This model obtains 92.69%
of accuracy in distinguishing coherent from
incoherent summaries, outperforming the
state of the art in the area.

1 Introduction

In text generation systems (as summarizers,
question-answering systems, etc.), coherence is
an essential characteristic in order to produce
comprehensible texts. As such, studies and theo-
ries on coherence ((Mann and Thompson, 1998),
(Grosz et al., 1995)) have supported applications
that involve text generation ((Seno, 2005),
(Bosma, 2004), (Kibble and Power, 2004)).

According to Mani (2001), Multi-document
Summarization (MDS) is the task of automatical-
ly producing a unique summary from a set of
source texts on the same topic. In MDS, local
coherence is as important as informativity. A
summary must contain relevant information but
also present it in a coherent, readable and under-
standable way.

Coherence is the possibility of establishing
a meaning for the text (Koch and Travaglia,
2002). Coherence supposes that there are rela-
tionships among the elements of the text for it to
make sense. It also involves aspects that are out
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of the text, for example, the shared knowledge
between the producer (writer) and the receiver
(reader/listener) of the text, inferences, intertex-
tuality, intentionality and acceptability, among
others (Koch and Travaglia, 2002).

Textual coherence occurs in local and global
levels (Dijk and Kintsch, 1983). Local level co-
herence is presented by the local relationship
among the parts of a text, for instance, sentences
and shorter sequences. On the other hand, a text
presents global coherence when this text links all
its elements as a whole. Psycholinguistics con-
sider that local coherence is essential in order to
achieve global coherence (Mckoon, 1992).

The main phenomena that affect coherence
in  multi-document summaries are redundant,
complementary and contradictory information
(Jorge and Pardo, 2010). These phenomena may
occur because the information contained in the
summaries possibly come from different sources
that narrate the same topic. Thus, a good multi-
document summary should a) not contain redun-
dant information, b) properly link and order
complementary information, and c) avoid or treat
contradictory information.

In this context, we present, in this paper, a
discourse-based model for capturing the above
properties and distinguishing coherent from in-
coherent (or less coherent) multi-document
summaries. Cross-document Structure Theory
(CST) (Radev, 2000) and Rhetorical Structure
Theory (RST) (Mann and Thompson, 1998) rela-
tions are used to create the discursive model.

RST considers that each text presents an
underlying rhetorical structure that allows the
recovery of the writer’s communicative inten-
tion. RST relations are structured in the form of a
tree, where Elementary Discourse Units (EDUS)
are located in the leaves of this tree. CST, in
turn, organizes multiple texts on the same topic
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and establishes relations among different textual
segments.

In particular, this work is based on the fol-
lowing assumptions: (i) there are transition pat-
terns of discursive relations (CST and RST) in
locally coherent summaries; (ii) and coherent
summaries show certain distinct intra- and inter-
discursive relation organization (Lin et al.,
2011), (Castro Jorge et al., 2014), (Feng et al.,
2014). The model we propose aims at incorporat-
ing such issues, learning summary discourse or-
ganization preferences from corpus.

This paper is organized as follows: in Sec-
tion 2, it is presented an overview of the most
relevant researches related to local coherence;
Section 3 details the proposed approach in this
paper; Section 4 shows the experimental setup
and the obtained results; finally, Section 5 pre-
sents some final remarks.

2 Related Work

Foltz et al. (1998) used Latent Semantic Analysis
(LSA) (Landauer and Dumais, 1997) to compute
a coherence value for texts. LSA produces a vec-
tor for each word or sentence, so that the similar-
ity between two words or two sentences may be
measured by their cosine (Salton, 1988). The
coherence value of a text may be obtained by the
cosine measures for all pairs of adjacent sentenc-
es. With this statistical approach, the authors ob-
tained 81% and 87.3% of accuracy applied to the
earthquakes and accidents corpus from North
American News Corpus', respectively.

Barzilay and Lapata (2008) proposed to deal
with local coherence with an Entity Grid Model.
This model is based on Centering Theory (Grosz
et al., 1995), whose assumption is that locally
coherent texts present certain regularities con-
cerning entity distribution. These regularities are
calculated over an Entity Grid, i.e., a matrix in
which the rows represent the sentences of the
text and the columns the text entities. For exam-
ple, Figure 2 shows part of the Entity Grid for
the text in Figure 1. For instance, the “Depart.”
(Department) column in the grid (Figure 2)
shows that the entity “Department” only happens
in the first sentence in the Subject (S) position.
Analogously, the marks O and X indicate the
syntactical functions “Object” and “other syntac-
tical functions” that are neither subject nor ob-
ject, respectively. The hyphen (‘-’) indicates that

! https://catalog.ldc.upenn.edu/LDC95T21
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the entity did not happen in the corresponding
sentence.

Probabilities of entity transitions in texts
may be computed from the entity grid and they
compose a feature vector. For example, the prob-
ability of transition [O -] (i.e., the entity hap-
pened in the object position in one sentence and
did not happen in the following sentence) in the
grid in Figure 2 is 0.12, computed as the ratio
between its occurrence in the grid (3 occurrenc-
es) and the total number of transitions (24).

1 (The Justice Department)s is conducting an (an-
ti-trust trial)o against (Microsoft Corp.)x with
(evidence)y that (the company)s is increasingly
attempting to crush (competitors)o.

2 (Microsoft)o is accused of trying to forcefully
buy into (markets)x where (its own products)s are
not competitive enough to unseat (established
brands)o.

3 (The case)s revolves around (evidence)o of
(Microsoft)s aggressively pressuring (Netscape)o
into merging (browser software)o.

Figure 1. Text with syntactic tags (Barzilay and
Lapata, 2008)

Trial
» O » Microsoft
X Evidence
Markets
Products

Brands

Case
Netscape
Software

X - - - -
O - - - - 500 -
2. Entity Grid (Barzilay and Lapata,
2008)

' v Depart.
' O Compet.

'O

]
]

WwWN -

1
2
3

Figure

The authors evaluated the generated models in a
text-ordering task (the one that interests us in this
paper). In this task, each original text is consid-
ered “coherent”, and a set of randomly sentence-
permutated versions were produced and consid-
ered “incoherent” texts. Ranking values for co-
herent and incoherent texts were produced by a
predictive model trained in the SVMlight (Joa-
chims, 2002) package, using a set of text pairs
(coherent text, incoherent text). It is supposed
that the ranking values of coherent texts are
higher than the ones for incoherent texts. Barzi-
lay and Lapata obtained 87.2% and 90.4% of
accuracy (fraction of correct pairwise rankings in
the test set) applied respectively to the set of
texts related to earthquakes and accidents, in
English. Such results were achieved by a model
considering three types of information, namely,
coreference, syntactical and salience information.



Using coreference, it is possible to recognize di-
fferent terms that refer to the same entity in the
texts (resulting, therefore, in only one column in
the grid). Syntax provides the functions of the
entities; if not used, the grid only indicates if an
entity occurs or not in each sentence; if salience
is used, different grids are produced for more
frequent and less frequent entities. It is important
to notice that any combination of these features
may be used.

Lin et al. (2011) assumed that local cohe-
rence implicitly favors certain types of discursive
relation transitions. Based on the Entity Model
from Barzilay and Lapata (2008), the authors
used terms instead of entities and discursive in-
formation instead of syntactic information. The
terms are the stemmed forms of open class
words: nouns, verbs, adjectives and adverbs. The
discursive relations used in this work came from
the Penn Discourse Treebank (PDTB) (Prasad et
al., 2008). The authors developed the Discursive
Grid, which is composed of sentences (rows) and
terms (columns) with discursive relations used
over their arguments. For example, part of the
discursive grid (b) for a text (a) is shown in Fi-
gure 3.

(S1) Japan normally depends heavily on the
Highland Valley and Cananea mines as well as
the Bougainville mine in Papua New Guinea.
(S2) Recently, Japan has been buying copper
elsewhere.

(@)
Terms
copper cananea depend
S; nil Comp.Argl | Comp.Argl
S, | Comp.Arg2 nil nil
Comp.Argl
(b)

Figure 3. A text (a) and part of its grid (b)

A cell contains the set of the discursive roles of a
term that appears in a sentence Sj. For example,
the term “depend” in S1 is part of the Compari-
son (Comp) relation as argument 1 (Argl), so the
cell Cdepend,S1 contains the Comp.Argl role.
The authors obtained 89.25% and 91.64% of ac-
curacy applied to the set of English texts related
to earthquakes and accidents, respectively.
Guinaudeau and Strube (2013) created an
approach based on graph to eliminate the process
of machine learning of the Entity Grid Model
from Barzilay and Lapata (2008). Due to this, the
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authors proposed to represent entities in a graph
and then to model local coherence by applying
centrality measures to the nodes in the graph.
Their main assumption was that this bipartite
graph contained the entity transition information
needed for the computation of local coherence,
thus feature vectors and a learning phase are un-
necessary. Figure 4 shows part of the bipartite
graph of the entity grid illustrated in Figure 2.

Depart.2l Trial@ Microsoft® Evidencel Compet.E:MarketsE products? Brands
Figure 4. Bipartite graph

There is a group of nodes for the sentences and
another group for the entities. Edges are stab-
lished when the entities occur in the sentences,
and their weights correspond to the syntactical
function of the entities in the sentences (3 for
subjects, 2 for objects and 1 for other functions).

Given the bipartite graph, the authors de-
fined three kinds of projection graphs: Un-
weighted One-mode Projection (PU), Weighted
One-mode Projection (PW) and Syntactic Pro-
jection (PAcc). In PU, weights are binary and
equal to 1 when two sentences have at least one
entity in common. In PW, edges are weighted
according to the number of entities “shared” by
two sentences. In PAcc, the syntactical weights
are used. From PU, PW and PAcc, the local co-
herence of a text may be measured by computing
the average outdegree of a projection graph. Dis-
tance information (Dist) between sentences may
also be integrated in the weight of one-mode pro-
jections to decrease the importance of links that
exist between non-adjacent sentences.

The approach was evaluated using the cor-
pus from Barzilay and Lapata (2008). This model
obtained 84.6% and 63.5% of accuracy in the
Accidents and Earthquakes corpus, respectively.

Feng et al. (2014) is similar to Lin et al.’s
(2011) work. Feng et al. (2014) created a discur-
sive grid formed by sentences in rows and enti-
ties in columns. The cells of the grid are filled
with RST relations together with nuclearity in-
formation. For example, Figure 5 shows a text
fragment with 3 sentences and 7 EDUs. In Figure
6, a RST discourse tree representation of the text
in Figure 5 is shown. Figure 7 shows a fragment
of the RST-style discursive role grid of the text
in Figure 5. This grid is based on the discursive
tree representation in Figure 6. One may see in



Figure 7 that the entity “Yesterday” in sentence 1
occurs in the nuclei (N) of the Background and
Temporal relations; the entity “session”, in turn,
is the satellite (S) of the Temporal relation.

S1: [The dollar finished lower yesterday,]el [after
tracking another rollercoaster session on Wall
Street.]e2

S2: [Concern about the volatile U.S. stock market
had faded in recent sessions,]e3 [and traders ap-
peared content to let the dollar languish in a nar-
row range until tomorrow,]e4 [when the prelimi-
nary report on third-quarter U.S. gross national
product is released.]e5

S3: [But seesaw gyrations in the Dow Jones In-
dustrial Average yesterday put Wall Street back in
the spotlight]e6 [and inspired market participants
to bid the U.S. unit lower.]e7

Figure 5. A text fragment (Feng et al., 2014)

(e1-€7)

Background
er-e
( 1‘ 2) (6r;
Temporal Contra
(ere) — (erer)
(e) i
is
ey Y
(e) Condition (¢} (©)
. N\

(e (es)

Figure 6. RST discursive tree representation
(Feng et al., 2014)

dollar Yesterday session

Background.N
Temporal.N

Background.N

St Temporal.N

Temporal.S

List.N
Condition.N
Contrast.N

S2 nil nil

Contrast.N
Background.N
Cause.N

S3 Cause.S nil

Figure 7. Part of the RST-style discursive role
grid for the example text (Feng et al., 2014)

Feng et al. (2014) developed two models: the
Full RST Model and the Shallow RST Model.
The Full RST Model uses long-distance RST
relations for the most relevant entities in the RST
tree representation of the text. For example, con-
sidering the RST discursive tree representation in
Figure 6, the Background relation was encoded
for the entities “dollar” and “Yesterday” in S1, as
well as the entity “dollar” in S3, but not for the
remaining entities in the text, even though the
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Background relation covers the whole text. The
corresponding full RST-style discursive role ma-
trix for the example text is shown in Figure 7.
The shallow RST Model only considers relations
that hold between text spans of the same sen-
tence, or between two adjacent sentences. The
Full RST Model obtained an accuracy of 99.1%
and the Shallow RST Model obtained 98.5% of
accuracy in the text-ordering task.

Dias et al. (2014b) also implemented a co-
herence model that uses RST relations. The au-
thors created a grid composed by sentences in
rows and entities in columns. The cells were
filled with RST relation. This model was applied
to a corpus of news texts written in Brazilian
Portuguese. This model had the accuracy of
79.4% with 10-fold cross validation in the text-
ordering task. This model is similar to the Full
RST Model. These models were created in paral-
lel and used in corpora of different languages.
Besides the corpus and the language, the Shallow
RST Model only uses the RST relations of a sen-
tence and/or adjacent sentences, while Dias et al.
capture all the possible relations among sentenc-
es.

Regarding the model of Lin et al. (2011),
the discursive information used by Lin et al. and
Dias et al. is the main difference between these
models, i.e., Dias et al. use RST relations and Lin
et al. use PDTB-style discursive relations.

Castro Jorge et al. (2014) combined CST re-
lations and syntactic information in order to
evaluate the coherence of multi-document sum-
maries. The authors created a CST relation grid
represented by sentences in the rows and in the
columns, and the cells were filled with 1 or 0
(presence/absence of CST relations — called Enti-
ty-based Model with CST bool). This model was
applied to a corpus of news summaries written in
Brazilian Portuguese and it obtained 81.39% of
accuracy in the text-ordering task. Castro Jorge
et al.’s model differs from the previous models
since it uses CST information and a summariza-
tion corpus (instead of full texts).

3  The Discursive Model

The model proposed in this paper considers that
all coherent multi-document summaries have
patterns of discursive relation (RST and CST)
that distinguish them from the incoherent (less
coherent) multi-document summaries.

The model is based on a grid of RST and
CST relations. Then, a predictive model that uses
the probabilities of relations between two sen-



tences as features was trained by the SVM"™

package and evaluated in the text-ordering task.

As an illustration, Figure 8 shows a multi-
document summary. The CST relation “Follow-
up” relates the sentences S2 and S3. Between the
sentences S1 and S3, there is the RST relation
“elaboration”. The RST relation “sequence” hap-
pens between S1 and S4. After the identification
of the relations in the summary, a grid of discur-
sive relations is created. Figure 9 shows the dis-
cursive grid for the summary in Figure 8. In this
grid, the sentences of the summary are represent-
ed in the rows and in the columns. The cells are
filled with RST and/or CST relations that happen
in the transition between the sentences (the CST
relations have their first letters capitalized,
whereas RST relations do not).

(S1) Ended the rebellion of prisoners in the Jus-
tice Prisoners Custody Center (CCPJ) in S&o
Luis, in the early afternoon of Wednesday (17).
(S2) After the prisoners handed the gun used to
start the riot, the Military Police Shock troops
entered the prison and freed 30 hostages - includ-
ing 16 children.

(S3) The riot began during the Children's Day
party, held on Tuesday (16).

(S4) According to the police, the leader of the
rebellion was transferred to the prison of Pedrin-
has, in the capital of Maranhdo.

Figure 8. Summary with discursive information
from the CSTNews corpus (Cardoso et al., 2011)

S1 | S2 S3 S4
S1 - | elaboration | Sequence
S2 Follow-up -
S3 -
S4

Figure 9. Discursive grid for Figure 8

Consider two sentences S; and S; (where i and j
indicate the place of the sentence in the sum-
mary): if i <j, it is a valid transition and 1 is add-
ed to the total of possible relationships. Consid-
ering that the transitions are visualized from the
left to the right in the discursive grid in Figure 9,
the cells in gray do not characterize a valid tran-
sition (since only the superior diagonal of the
grid is necessary in this model).

The probabilities of relations present in the
transitions are calculated as the ratio between the
frequency of a specific relation in the grid and
the total number of valid transitions between two
sentences. For instance, the probability of the
RST relation “elaboration” (i.e., the relation
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“elaboration” to happen in a valid transition) in
the grid in Figure 9 is 0.16, i.e., one occurrence
of “elaboration” in 6 possible transitions.

The probabilities of all relations present in
the summary (both RST and CST relations) form
a feature vector. The feature vectors for all the
summaries become training instances for a ma-
chine learning process. In Figure 10, part of the
feature vector for the grid in Figure 9 is shown.

elaboration
0.16

Follow-up
0.16

sequence
0.16

Figure 10. Part of the feature vector for Figure 9

4 Experiments and Results

The text-ordering task from Barzilay and Lapata
(2008) was used to evaluate the performance of
the proposed model and to compare it with other
methods in literature.

The corpus used was the CSTNews? from
Cardoso et al. (2011). This corpus has been cre-
ated for multi-document summarization. It is
composed of 140 texts distributed in 50 sets of
news texts written in Brazilian Portuguese from
various domains. Each set has 2 or 3 texts from
different sources that address the same topic. Be-
sides the original texts, the corpus has several
annotation layers: (i) CST and RST manual an-
notations; (ii) the identification of temporal ex-
pressions; (iii) automatic syntactical analyses;
(iv) noun and verb senses; (V) text-summary
alignments; and (vi) the semantic annotation of
informative aspects in summaries; among others.
For this work, the CST and RST annotations
have been used.

Originally, the CSTNews corpus had one
extractive multi-document summary for each set
of texts. However, Dias et al (2014a) produced 5
more extractive multi-document summaries for
each set of texts. Now, the corpus has 6 reference
extractive multi-document summaries for each
set of texts. In this work, 251 reference multi-
document extracts (with average size of 6.5 sen-
tences) and 20 permutations for each one (total-
izing 5020 summaries) were used in the experi-
ments.

Besides the proposed model, some other
methods from the literature have also been re-
implemented in order to compare our results to
the current state of the art. The following meth-
ods were chosen based on their importance and
on the techniques used to evaluate local coher-

Z \wwww.icmc.usp.br/~taspardo/sucinto/cstnews.html



ence: the LSA method of Foltz et al. (1998), the
Entity Grid Model of Barzilay and Lapata
(2008), the Graph Model of Guinaudeau and
Strube (2013), the Shallow RST Model of Feng et
al (2014), the RST Model of Dias et al. (2014b)
and the Entity-based Model with CST bool of
Castro Jorge et al. (2014). The LSA method, En-
tity Grid, Graph and Shallow RST Models were
adapted to Brazilian Portuguese, using the ap-
propriate available tools and resources for this
language, as the PALAVRAS parser (Bick,
2000) that was used to identify the summary en-
tities, which are all nouns and proper nouns. The
implementation of these methods carefully fol-
lowed each step of the original ones.

Barzilay and Lapata’s method has been im-
plemented without coreference information,
since, to the best of our knowledge, there is no
robust coreference resolution system available
for Brazilian Portuguese, and the CSTNews cor-
pus still does not have referential information in
its annotation layers. Furthermore, the imple-
mentation of Barzilay and Lapata’s approach
produced 4 models: with syntax and salience in-
formation (referred by Syntactic+Salience+),
with syntax but without salience information
(Syntactic+Salience-), with salience information
but without syntax (Syntactic-Salience+), and
without syntax and salience information (Syntac-
tic-Salience-), in which salience distinguishes
entities with frequency higher or equal to 2.

The Full RST Approach is similar to Dias et
al.’s model (2014b), and then it was not used in
these experiments.

Lin et al.’s model (2011) was not used in the
experiments, since the CSTNews corpus does not
have the PDTB-style discursive relations anno-
tated. However, according to Feng et al. (2014),
the PDTB-style discursive relations encode only
very shallow discursive structures, i.e., the rela-
tions are mostly local, e.g., within a single sen-
tence or between two adjacent sentences. Due to
this, the Shallow RST Model from Feng et al.
(2014), which behaves as Lin et al.’s (2001), was
used in these experiments.

Table 1 shows the accuracy of our approach
compared to the other methods, ordered by accu-
racy.

Models Acc. (%)

Our approach 92.69
Syntactic-Salience- of Barzilay and Lapata 68.40*
Syntactic+Salience+ of Barzilay and Lapata 64.78*
Syntactic-Salience+ of Barzilay and Lapata 61.99*
Syntactic+Salience- of Barzilay and Lapata 60.21*
Graph Model of Guinaudeau and Strube 57.69*
LSA of Foltz et al. 55.18*
RST Model of Dias et al. 51.32*
Shallow RST Model of Feng et al. 48.92*
Entity-based Model with CST bool of Castro | 32.53*
Jorge et al.
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Table 1. Results of the evaluation, where diacri-
tics * (p < .01) indicates whether there is a signi-
ficant statistical difference in accuracy compared
to our approach (using t-test)

The t-test has been used for pointing out whether
differences in accuracy are statistically signifi-
cant or not. Comparing our approach with the
other methods, one may observe that the use of
all the RST and CST relations obtained better
results for evaluating the local coherence of mul-
ti-document summaries.

These results show that the combination of
RST and CST relations with a machine learning
process has a high discriminatory power. This is
due to discursive relation patterns that are pre-
sent in the transitions between two sentences in
the reference summaries. The “elaboration” RST
relation was the one that presented the highest
frequency, 237 out of the 603 possible ones in
the reference summaries. The transition between
S1 and S2 in the reference summaries was the
transition in which the “elaboration” relation
more frequently occurred, 61 out of 237. After
this one, the RST relation “list” had 115 occur-
rences, and the transition between S3 and S4 was
the more frequent to happen with the “list” rela-
tion (17 times out of 115 occurrences).

The Shallow RST Model from Feng et al.
(2014) and the Entity-based Model with CST
bool from Castro Jorge et al. (2014), that also use
discursive information, obtained the lowest accu-
racy in the experiments. The low accuracy may
have been caused for the following reasons: (i)
the discursive information used was not suffi-
cient for capturing the discursive patterns of the
reference summaries; (ii) the quantity of features
used by these models negatively influenced in
the learning process; and (iii) the type of text
used in this work was not appropriate, because
the RST Model of Dias et al. (2014b) and the
Shallow RST Model of Feng et al. (2014) had
better results with full/source texts. Besides this,




the quantity of summaries may have influenced
the performance of the Entity-based Model with
CST bool of Castro Jorge et al. (2014), since
their model was originally applied in 50 multi-
document summaries, while 251 summaries were
used in this work

The best result of the Graph Model of Guin-
audeau and Strube (2013) (given in Table 1) used
the Syntactic Projection (PAcc), without distance
information (Dist).

Overall, our approach highly exceeded the
results of the other methods, since we obtained a
minimum gain of 35.5% in accuracy.

5 Final remarks

According to the results obtained in the text-
ordering task, the use of RST and CST relations
to evaluate local coherence in multi-document
summaries obtained the best accuracy in relation
to other tested models. We believe that such dis-
course information may be equally useful for
dealing with full texts too, since it is known that
discourse organization highly correlates with
(global an local) coherence.

It is important to notice that the discursive
information used in our model is considered as
“subjective” knowledge and that automatically
parsing texts to achieve it is an expensive task,
with results still far from ideal. However, the
obtained gain in comparison with the other ap-
proaches suggests that it is a challenge worthy of
following.
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Abstract

We describe a new model for Dialog State
Tracking called a Stacked Relational Tree,
which naturally models complex relation-
ships between entities across user utter-
ances. It can represent multiple conver-
sational intents and the change of focus
between them. Updates to the model are
made by a rule-based system in the lan-
guage of tree regular expressions. We also
introduce a probabilistic version that can
handle ASR/NLU uncertainty. We show
how the parameters can be trained from log
data, showing gains on a variety of standard
Belief Tracker metrics, and a measurable
impact on the success rate of an end-to-end
dialog system for TV program discovery.

1 Introduction

Significant advances have been made in recent
years on the problem of Dialog State Tracking or
Belief Tracking. Successive iterations of the Dialog
State Tracking Challenge (Williams et al., 2013;
Henderson et al., 2014b; Henderson et al., 2014a)
have expanded the scope of the problem to more
general settings such as changing goals and domain
adaptation. It has been shown that improvements
in Belief Tracking metrics lead to improvements in
extrinsic measures of dialog success as well (Lee,
2014). However, the underlying representations
of state have almost always been propositional i.e.
defined by a collection of slot-value pairs, though
the probability distribution used for tracking might
be quite complex (Mehta et al., 2010). These repre-
sentations are good for form-filling or information
collection type dialogs that are most commonly de-
ployed e.g. airline reservation systems that fill in all
the constraints a user has (such as destination and
source) before doing a database lookup. However,
as dialog systems get more sophisticated, complex
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dialog phenomena present in human-human conver-
sations such as common ground or conversational
focus need to be supported as well.

This work is motivated by the need for a belief
tracker capable of tracking conversations with the
end-to-end conversational prototype for TV pro-
gram discovery described in (Ramachandran et al.,
2014). The prototype understands concepts at a
deep relational level and and supports nested sub-
dialogs with multiple intents of different types like
searches, questions, and explanations. We intro-
duce a representation called a Stacked Relational
Tree to represent the state of a dialog between a
user and system. It uses the notion of a relational
tree, similar to a dependency graph but constructed
between entities from a Named Entity Recognizer
(NER), to represent each individual intent of the
user. A stack (i.e. LIFO structure) of these trees
is used to model the conversational focus and the
structure of subdialogs. State updates are mod-
eled by sequences of stack and tree-editing opera-
tions. Allowable operations are defined using the
language of tree-regular expressions (Lai and Bird,
2004). The use of stacks to represent intentional
structure is common in dialog modeling (Grosz
and Sidner, 1986) and plan recognition (Carberry,
1990). Our novel contribution is to combine it
with a semantic representation and update rules
that are simple enough so that the entire model can
be trained from dialog data.

A system using this belief tracker was deployed
in a user study and made a dramatic difference in
the task success rate. We also describe a probabilis-
tic extension of this model for handling uncertainty
in input and ambiguity in understanding. We show
that training the weights of this model on log data
can improve its performance.

2 Dialog State Representation

Most commercial and research dialog systems rep-
resent the state of a conversation as a collection

Proceedings of the SIGDIAL 2015 Conference, pages 6876,
Prague, Czech Republic, 2-4 September 2015. (©2015 Association for Computational Linguistics



p
actor

ﬁlmingLocati
\

Play  Country Movie
play a french movie with an italian

Country Person
actor

Figure 1: REL-Tree for the utterance ‘“Play a
French movie with an Italian actor.”

and

MovieTitle And MovieTitle
directed mystic river and stars in unforgiven

WhoQA
who

Figure 2: REL-Tree for the question “Who directed
Mystic river and stars in Unforgiven?”

Play Person Movie not Person
play a superman movie without christopher reeve

Figure 3: REL-Tree for the utterance “Play a Su-
perman movie without Christopher Reeve.”

of slot-value pairs that define the system’s best
understanding of the user’s intent e.g. an airline
reservation system might have slots for destination
city, arrival city, and date. Shallow NLP techniques
such as Named-Entity Recognition are used to ex-
tract the relevant slot-value pairs from each spoken
utterance of the user. As successive utterances
accumulate, a state tracking strategy is needed to
update the state given the slot-value pairs provided
at each turn. Traditionally, state tracking followed
a simple replacement semantics. Modern systems
maintain a probability distribution over possible
states, reflecting all the uncertainty and ambiguity
in ASR and NLU. Recent extensions have focused
on adaptation to new domains (Henderson et al.,
2014b) and changing user goals (Zhu et al., 2014).
However, in most cases we are aware of, the base
representation of the dialog state is propositional
(i.e. a collection of slot-value pairs). This reflects
the simple, goal-directed nature of the dialogs sup-
ported by such systems.

2.1 REL-Trees

Consider an utterance like “Play a French movie
with an Italian actor.” A slot-based system with a
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NarrativeRole

Play Movie Person not Person
*virtual* a movie where christopher reeve doesn’t play superman

Figure 4: REL-Tree for the fragmentary utterance
“A movie where Christopher Reeve doesn’t play
Superman.”

slot called Count ry would not be able to distin-
guish between the filming location and the actor’s
country of origin. A possible solution is to intro-
duce two separate slots called actorEthnicity
and filmingLocation, but scaling this ap-
proach leads to a multiplicity of slots that becomes
difficult to manage and extend. A more com-
pact representation (called a Relational Tree or
REL-Tree) is shown in Fig. 1. The only entity
types are Country, Movie, and Person. To
elaborate the meaning of the utterance, “French”
is attached to the Movie entity by the relation
filmingLocation and “italian” is attached to
Person by the relation ethnicOrigin. A
REL-Tree is a rooted tree with node labels corre-
sponding to entities and edge labels corresponding
to relations between them. In most cases, a relation
link is analogous to a syntactic dependency link
from a dependency parser — a link from child to par-
ent signifies that the child is a modifier of the parent.
The label at the root of the tree represents the in-
tent of the utterance (e.g., “Play”, “Who-QA”, and
“ExpressPreference”) if one can be distinguished,
see Fig. 2 for another example. Fragmentary utter-
ances can have missing intents, in which case the
root is simply labeled ROOT.

Comparing the REL-Trees in Figures 3 and 4
shows another example of the representational
power of REL-Trees . The two utterances have dif-
ferent meanings and indeed yield different results
(The 2013 movie “Man of Steel” had Christopher
Reeve in a cameo role, but not as Superman). In
our dialog system, REL-Trees are produced by a
Relation Extraction component that operates after
NER. Note that the NER is trained to label boolean
connectors such as “and” and “without” as entities
as well. In some cases, it adds “virtual” entities to
fragmentary utterances when they are not explicit
in the text (e.g. the Play entity in Fig. 4). For
more details refer to (Ramachandran et al., 2014).



2.2 Stacks

The dialog example of Table 4 (see Appendix) illus-
trates another phenomenon not usually considered
by belief trackers: multiple intents and the con-
cept of a conversational focus (Grosz and Sidner,
1986). The user starts with the intention of finding
a romantic movie to watch but is then led by the
system response into asking a question about one
of the search results (a query). He then modifies
the argument of the query to ask about a different
movie. Then, he gives a command to provide him
with more suggestions. Finally, he goes back to
the original search intent and modifies the genre.
The second column of this table shows how we
model multiple intents and the change in focus by
a stack of REL-Trees (called a Stacked REL-Tree
or a Stack). Each REL-Tree represents a separate
intent of the user and the REL-Tree on top of the
stack is the current focus of the conversation. Sub-
sequent utterances are interpretated as refining or
modifying this REL-Tree. If no such interpreta-
tion is possible, then either the focus is assumed to
have shifted back to an earlier intent in the stack or
we treat the utterance as a new intents. The allow-
able set of operations and the algorithm by which
they are applied are fully specified in the next few
sections. A REL-Tree that represents an utterance
from the user will be called an utterance REL-Tree
wherever it is necessary to make the distinction.

3 Update Rules

The Stacked REL-Tree representation of dialog
state was introduced in the previous section and
Table 4 shows how a dialog state progresses as
each utterance comes in. A set of state update rules
are used to specify how the REL-tree on the top
of a stack is modified by the incoming utterance.
To describe the update rules, we will need three
definitions.

Tree Regular Expressions A free regular ex-
pression (or tree regex) is a regular expression that
matches against paths in a rooted tree from a node
to one of its descendants, with node and edge labels
serving as the tokens of the string (Lai and Bird,
2004). The basic elements of a tree regex are:

1. Node and Edge labels: These are repre-
sented by a string regular expression (i.e. a
regular expression over strings) surrounded by
“/I”e.g. /lactor|director]/ matches
a node with an actor or director label.
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When labels are concantenated they represent
a path from the root to a descendant node with
each successive label alternatively matching
node and edge labels on the path. For example,
/Movie/actor/Person/ethnicOrigin/Place
would match against the path from the “movie”
node to the “italian” in Fig. 1. The empty
label / / matches any node or edge label.

. Node Values: A node label followed by
the expression {V} where V is a string
regular expression, matches nodes where
the surface text of the node equals V. e.g.
/Movie/narrativeRole/Person{superman}/
matches the path from the “movie” node to
the “superman” node in Fig. 3.

. Operators: The symbols *, 7, . have the usual
meanings for regular expressions when placed
after a tree regular expression. Note however,
that * and + automatically match against al-
ternating node and edge labels along a path.
Thus, the expression // /P lace/ matches
against two paths from the root in Fig. 1. The
operators A and $ represent the root node and
a leaf node respectively.

. Groups: Groups are defined by enclosing a
part of a tree regex inside parentheses. Let
M be a successful match of a tree regex P to
the tree 7', the sub-path in M matching the
ith group in P can be retrieved by M.Qq. For
example, for the tree in Fig. 2 and the pat-
tern /And/./ (MovieTitle), there are
two matches M7 and M5 with M;.Q1 hav-
ing value “mystic river” and M5.@1 having
value “unforgiven.”

Tree Constraints For tree regexes P, and P, a
Tree constraint on P| and P5 is an expression of
the form P;.@Qj = PQ.@j, Pl@l{} = PQ@]{},
or P;.@i{} < P,.@j{}. Here, z < y means z is a
substring of y. {} retrieves the value of a node (the
surface form).

Transformations A transformation T on tree
regexes P; and P, is a list of one or more of the fol-
lowing operations performed on paths that match
against groups from P and P :

1. Add (g1,92): Add the matched sub-path
from group go as a child of the head node
of the matched sub-path from group g;.



2. Delete (g): Remove the head node and all
descendants of the path matching group g.

3. Unify (g1,92): Replace the head node hj,
of g1 with the head node, hs of g2, and add all
children of h9 as children of h;.

An update rule is defined as a tuple (Py, P, E, T)
where P; and P, are tree regular expressions, F
is a set of tree constraints on P; and P, and 7 is
a transformation on P; and P». An update rule U
is applicable to a dialog state tree 1" and an input
REL-tree L if:

1. P; has a match, M; on T

2. P, has a match, M5 on L

3. FE holds for the groups in M; and Ms.

In such case, the result of applying U on 7" and
L are the trees S” and L’ obtained by applying each
operation in 7 to { M7, Ms} in the order specified.

Here are some example update rules with expla-
nations:

1. Head Variable Unification

P: /object/ (Program/)
Py:  /object/ ([Movie|TvShow|Game]/)
E: {}

7: {Unify(P;.@1,P.@1)}

If the object of the current intent is Program
and the current utterance from the user asks
for either a movie, tv show, or game, then
update the dialog state to reflect that we are
searching for this kind of program (See Fig. 5
for an example).

2. Concept Replacement

P NI S
P NS
E: {P].@].:Pz.@l}

7: {Unify(P1.@1l,P,.Q1l),Delete (P.Q1)})

This rule is applicable when the input utter-
ance has a value for some attribute that is al-
ready present in the dialog state. In this case,
the new value of the attribute replaces the old
one. Note that the constraint in the utterance
tree is also “consumed” by this rule (See Fig.
5 for an example).

3. Boolean fragment

P:  (/lorland]/[And|Or]/)«*(/or/Or) (///)$
Py: A(/or/Or) (///)$

E: {P.e3=P.e2}

7: {Add(P.@2,P,.@3),Delete (P.@3),

Add (P,.@2, P, .@2) ,Delete (P».@2)})

This rule is applicable when the input utter-
ance is a boolean fragment with an attribute

Play Movie Person
play a movie with tom cruise

Play  Program Person
*virtual* *virtual* with bruce willis

Play Movie Person
movie bruce willis

Figure 5: The tree at the bottom is the result of
applying rules 1 and 2 to the trees at the top (current
dialog state) and the middle (current utterance).

Play Movie Person
play a movie with tom cruise

ROOT Or Person
or bruce willis

(Acto]

Play Movie Person Or Person
movie tom cruise bruce willis

Figure 6: The tree at the bottom is the result of
applying rules 1 and 3 to the trees at the top (current
dialog state) and the middle (current utterance).

already present in the dialog state. The sub-
trees are then unified as shown in Fig. 6.

The definition of update rules and the allowable
operations we have presented were tailored to our
particular domain. In principle, it is possible to
extend them to be more general, but care must
be taken so that the operations and especially the
regex matching algorithm can be efficiently imple-
mented (Lai and Bird, 2004). For our implemen-
tation of tree regexes we adapted the TSurgeon
package (Levy and Andrew, 2006) from the Stan-
ford Parser.



Algorithm 1: UpdateDialogState
Data: Stacked REL-Tree S, utterance
REL-Tree L, List of Update Rules R
Applied:=false, S, := 5;

repeat
T := S.pop();
for each update rule R; € R in sequence
do

if R; is applicable to (T, L) then
Applied=true;
Apply transformation 7; (from R;)
to (7, L);

until S.empty() or Applied==true;
if not Applied then

L S:= Securs

S.push(T);
return S;

3.1 The Belief Tracking Algorithm

Recall that our state representation is a stack of
REL-Trees as in Table 4. Algorithm 1 shows how
we update the dialog state at each turn. It is pa-
rameterized by an ordered list of update rules as
described in Section 3. We attempt to apply them
in order to the REL-Tree at the top of the stack
first. If no rule is applicable, this indicates that
the conversational focus has shifted. We pop the
top REL-Tree off the stack and try again with the
REL-Tree below it. This process continues, until a
rule is succesfully applied or the stack is empty. In
the latter case, the utterance is regarded as being a
new intent, and the utterance REL-Tree is pushed
on top of the old dialog state.

4 A Probabilistic Extension

The State Tracker described above is able to model
relational representations and shifting conversa-
tional focus. However, it is deterministic and thus
unable to handle ambiguity caused by multiple ap-
plicable rules. Consider the third user turn in Table
4. We interpret “How about The Notebook?” as
a modification to the question intent, but it is pos-
sible that the user intended it to be a refinement
of his search intent i.e. he wants to watch “The
Notebook”. Furthermore, in most practical dialog
systems the output of the ASR and NLU compo-
nents will have multiple hypotheses with associated
confidence scores or probabilities.

To represent this uncertainty in a compact way,
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Ground State Probability

PersonQA MovieTitle
who  the notebook

Play Movie Genre Time
movie romance tonight

=) e \

Play Movie Genre Time Title
movie romance tonight the notebook

0.8

TitleOf

(ShowTime}

0.2

Figure 7: A sample belief state after turn 3 of the
dialog in Table 4. The first ground state is the result
of a merge of the utterance REL-Tree with the top
of the stack. The second ground state is the result
of a pop followed by a merge.

we will expand our representation of dialog state to
adialog belief state that is a probability distribution
over Stacked REL-Trees. An example belief state
for the case above is shown in Fig. 7, having two
ground dialog states (i.e. Stacked REL-Trees) with
probability 0.8 and 0.2. The belief state, By, for a
particular turn ¢, is constructed from the belief state
of the previous turn B;_1, by trying every combi-
nation of Stacked REL-Tree S;_; in the support
of B;_1, utterance REL-Tree L, and sequence of
applicable rule {R;} to yield a different Stacked
REL-Tree S;. The probability of S; is given by:

Prp,(S¢|Si—1, L, {R;}) =
Prp,_,(Se-1)-Pro(L)- [ Pr(Ri|S;—{, L)

where S is obtained by applying R; to Sf_l, and

PT(R2|S, L) X e_wi'f(S’L7Ri) (1)

Here, (S, L, R;) is a feature-generating func-
tion. It uses a combination of structural tree fea-
tures such as number of children and depth from
root and features from the surface text (e.g., func-
tional words/phrases such as “and” or “instead of”
). We also have special rules for pushing a REL-
Tree on top of the stack, popping the top REL-Tree,
and rules marked terminal indicating that no more
rules are to be applied. The weights for all rules
are trained by logistic regression.



Algorithm 2: UpdateBeliefState
Data: Belief State of previous turn By_1(5),
Distribution over utterance REL-Trees
Pr(L), List of Update Rules R
for each stack S in the support of B;_1 do
for each tree L in the support of Pr, do
L W = B;_1(S) - PL(L)
B; := B; U Updatel-State (S, L, W)
Prune B, down to the top K elements;
Normalize the weights to 1.
return B;

Algorithm 3: Updatel-State
Data: Stacked REL-Tree S, Utterance
REL-Tree L, List of Update Rules R,
Prior Weight W
S={}
for each update rule R; € R applicable to
(S,L) do
Apply transformation 7; (from R;) to
(S, L) to get (S, L)
W;:=W - Pr(R;|S,L)
if R; is terminal then
L S: =S+ (5, W;)
else
| S:=S U Updatel-State(S’,L',W;)

return S;

The full probabilistic belief tracking algorithm
is shown in Algorithm 2. It uses a recursive helper
method (Algorithm 3) to apply rules successively
to stacks in the input distribution. The intermediate
states of this process are called I-States. To prevent
a combinatorial explosion in the size of the belief
state over successive turns, it is pruned down at
the end to a distribution over at most K stacks
(K = 50).

Training For training data, we use conversations
with a full dialog-system. Each turn of the dialog is
annotated with the sequence of update rules that are
applied to the belief state of the previous turn to get
the correct belief state for the current turn. From
these, we can compute the sequence of I-States for
that turn. Then, for each rule that is applicable to
each of these I-States, a training instance is added
to the classifier for that rule, along with a binary
label indicating whether the rule was applied in
that I-State or not. The classifier (using logistic
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regression) then learns to distinguish I-States where
the rule should be used, from those where it should
not. Note that this training protocol requires very
strong labels from the annotator (a sequence of
operations for every turn). This limits its scalability
to larger training sets, but nevertheless we present
it as a proof of concept that training this model is
possible in principle. Exploring ways to ease this
constraint is a topic we plan to explore in future
work.

5 Evaluation

We present two evaluations of the tracking ap-
proaches described above. The first one measures
the impact of using the deterministic algorithm as
part of a larger conversational prototype for TV
Program Discovery, in contrast to a system with no
belief tracking (stateless). In the second, we show
the additional value gained by the probabilistic ver-
sion, trained on dialogs from developer logs. The
framework for the second evaluation was made to
be as close as possible to the methods in the DSTC
competition.

5.1 User Study

An implementation of Algorithm 1 with 16 update
rules and 4 kinds of user intents (search requests,
questions, commands, and preference statements)
was included as a component of a Spoken Dialog
System for TV Program Discovery on an IPad. The
system had an NER and a Relation Extractor as
described in Section 2 as well as a dialog manager
that operated on Stacked REL-Trees and a back-
end for program search that used both structured
database queries and graph inference on Freebase.
For more details, see (Ramachandran et al., 2014).
This system was evaluated in a user study with 14
subjects to determine how much the statefulness
of the dialog model impacted success and usabil-
ity. Subjects were presented with 7 scenarios to
imagine themselves in and asked to find a suitable
program to watch using the prototype, for example:

You are at home and have young nieces
and nephews coming over. Find a pro-
gram to watch with them.

The subject was asked to continue speaking with
the system until he/she either found a suitable pro-
gram (in which case the scenario was recorded
as a success) or gave up (in which case a failure
was recorded). For this evaluation, the subject was



Figure 8: A Screenshot of our IPad Conversational
Prototype after the query “Movies playing this
weekend”.

System Succ. Avg. # SUS
Rate of turns Score

Stateful | 85.72 % 4.81 84.29 (15.7)

Stateless | 63.27% 5.38 85.71 (15.5)

Table 1: Comparison of dialog system performance
for 14 real users with and without the state tracker.
SUS score is a industry-standard usability metric.

asked to do these tasks using both the complete
stateful dialog system and a stateless repeated one-
shot version where the belief tracker and dependent
components were deactivated. Both systems were
otherwise identical and the subjects were not told
what the differences between them was. Table 1
summarizes the result of the comparsion. The use
of belief tracking was found to make a 22% (ab-
solute) difference to the objective success rate of
the system. The stateful model allowed subjects to
pose more complex requests that are difficult to for-
mulate as a single utterance as a series of simpler
ones; or allowed them to explore the space of op-
tions more efficiently. This was also reflected in a
lower average number of turns per dialog. Interest-
ingly, this did not lead to a significant difference in
the perceived usability of the system, as measured
by the industry standard SUS score (Brooke, 1996).
Indeed, users barely noticed the stateful/stateless
distinction between the systems. The overall us-
ability was still pretty high, corresponding to an
adjective rating of “Good” verging on “Excellent.”
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User  football games this weekend

Sys Football games this weekend. Would you like College Football
or Classic College Football?

User  or next weekend

Sys Football games this weekend or next weekend. Would you like
Classic College Football, College Football, or Rose Bow1?

User  romantic movies tomorrow

Sys Ok starting a new search. Romantic movies tomorrow. Would
you like something with Sandra Bullock, Nicole Kidman, Kristen
Stewart, or more suggestions?

User  more suggestions

Sys How about Robert Pattinson, Kate Winslet, Katherine Heigl or
more suggestions?

User  Winslet

Sys Romantic movies with Kate Winslet tomorrow. Would you like
Titanic or Little Children?

User the first one

Sys You chose Titanic on Bravo at 10:30 AM on Saturday

User  movies about the gulf war

Sys Movies set during the Gulf war. Would you like Courage Under
Fire, Jarhead, or The Finest Hour?

User  explain the second one

Sys This film is an adaptation of the book “Jarhead: a Marine’s

Chronicle of the Gulf War and Other Battles”, whose subject is
the Gulf War. Would you like Courage under Fire, Jarhead, or
The Finest Hour?

Table 2: Example dialog with our system. Sys-
tem responses are accompanied by movie or TV
thumbnail images on the iPad UL

5.2 Probabilistic Belief Tracking

The Dialog State Track Competitions (Williams
et al., 2013; Henderson et al., 2014b; Henderson
et al., 2014a) introduced a shared evaluation task
for belief tracking on a corpus of dialog data from
various domains. Unfortunately, the data is purely
slot-based so it cannot be used to evaluate our meth-
ods directly. However, the competitions also intro-
duced a rubric for evaluation that we endevoured
to follow as closely as possible in this section.

Algorithm 2 was implemented with 16 update
rules similar to the deterministic tracker described
above. The weight vectors for each rule were
trained by logistic regression as described. The
training data came from the developer logs of our
system.! Each turn of dialog was labelled by us
with the correct dialog-state (i.e. stacked REL-tree)
and the sequence of updates rule that were applied
to progress to the next state. The training protocol
of Section 4 was then followed. Overall there were
673 dialogs with 1726 turns of speech and 3642 I-
states. After training, the belief tracking algorithm
(Algorithm 2) was evaluated on a held out test set
of 50 dialogs with 142 turns.

The DSTC competitions identified 4 clusters of
evaluation metrics that tended to rank various track-
ing algorithms equivalently. In Table 3 we show
the performance of the trained tracker and the deter-

"Logs of conversations involving testing and bug fixing
were removed.



System Accuracy | L2 | ROC.V2.CA20 | ROC.V1.EER
Deterministic-Test Set 0.743 0.264 0.82 0.25
Trained-Test Set 0.788 0.237 0.73 0.22
Deterministic-User Study 0.661 0.348 0.75 0.35
Trained-User Study 0.680 0.335 0.72 0.33

Table 3: Comparsion of belief tracker performance with and without training using DSTC metrics.

mininstic baseline on one metric from each cluster:
Accuracy measures the percent of turns where the
top-ranked hypothesis is correct. L2 measures the
L? distance between the vector of scores for each
hypothesis, and a vector of zeros with 1 in the po-
sition of the correct hypothesis. The other two
measures relate to receiver-operating characteristic
(ROC) curves, which measure the discrimination
of the score for the highest-ranked state hypothe-
sis. ROC.V2.CA20 is the Correct acceptance-rate
for the highest ranked hypothesis when the false-
acceptance rate is set to 20%, for correctly clas-
sified utterances only. ROC.VI1.EER is the Equal-
error rate i.e. where false-acceptance rate equals
false-reject rate, for all utterances. In addition to
the test data-set, performance was also measured
on all dialogs from the user study of Section 5.1.
This gives a measure of generalization to dialogs
from outside the training distribution. The results
show that the trained belief tracker outperformed
the handcrafted on all measures, though not by
large amounts. As expected, performance was uni-
formly worse on the (out-of-sample) user study
data but there was still some improvement.

6 Conclusions and Future Work

In this paper, we present the first (to our knowledge)
Belief Tracking approach that represents the dialog
state with a probabalistic relational and multi-intent
model. We show that this model is effective when
measured on standard metrics used for belief track-
ing, as well as making a marked difference in the
task success rate of a complete dialog system.

The most serious shortcoming of this approach
is the reliance on very strong labels for the training.
To relax this requirement, we are exploring the
possibility of training our model using weak labels
(such as query results) in the manner of (Berant
et al., 2013). Another direction to explore is the
representation of distributions over Stacked REL-
trees in compact forms.
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A Dialog Example

In Table 4 we show the belief tracking process us-
ing a Stacked REL-Tree for a sample conversation.
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Utterance

System state after utterance

Operation performed on
stack

User: I want a romance movie
tonight.

Play Movie Genre Time
movie romance tonight

Initial Search Intent

System: Ok how about The Note-
book or Walk the Line?

User: Who directed walk the
line?

PersonQA MovieTitle
walk the line

Play Movie Genre Time
movie romance tonight

New question intent put on
top of stack

System: James Mangold
User: How about The Notebook?

PersonQA MovieTitle
the notebook

Play Movie Genre Time
movie romance tonight

Modification to question on
top of stack.

System: Nick Cassavetes.
User: Give me more suggestions.

ProvideInfo MoreSuggestions

Play Movie Genre Time
movie romance tonight

Utterance is a command
for more suggestions, gets
placed on top of the stack re-
placing the question.

System: No more suggestions.
User: Ok well, let’s try a comedy
then.

Play Movie Genre Time
movie comedy tonight

Command is popped off,
comedy replaces romance in
the original search intent.

Table 4: Dialog State updates of the deterministic tracker (Algorithm 1) for each turn of a sample dialog.
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Abstract

This paper introduces Eve, a high-
performance agent that plays a fast-paced
image matching game in a spoken dia-
logue with a human partner. The agent can
be optimized and operated in three differ-
ent modes of incremental speech process-
ing that optionally include incremental
speech recognition, language understand-
ing, and dialogue policies. We present
our framework for training and evaluating
the agent’s dialogue policies. In a user
study involving 125 human participants,
we evaluate three incremental architec-
tures against each other and also compare
their performance to human-human game-
play. Our study reveals that the most fully
incremental agent achieves game scores
that are comparable to those achieved
in human-human gameplay, are higher
than those achieved by partially and non-
incremental versions, and are accompa-
nied by improved user perceptions of effi-
ciency, understanding of speech, and natu-
ralness of interaction.

1 Introduction

This paper presents and evaluates a game play-
ing dialogue agent named Eve that relies on sev-
eral forms of incremental language processing to
achieve its best performance. In recent years, the
development and adoption of incremental process-
ing techniques in dialogue systems has contin-
ued to advance, and more-and-more research sys-
tems have included some form of incremental pro-
cessing; see for example (Selfridge et al., 2013;
Hastie et al., 2013; Baumann and Schlangen,
2013; Dethlefs et al., 2012; Selfridge et al., 2012;
DeVault et al., 2011; Skantze and Schlangen,
2009; Schlangen et al., 2009). One compelling

Ramesh Manuvinakurike and David DeVault

USC Institute for Creative Technologies
Playa Vista, CA, USA,

{manuvinakurike, devault}@ict.usc.edu

high-level motivation for systems builders to in-
corporate incremental processing into their sys-
tems is to reduce system response latency (Skantze
and Schlangen, 2009). Recent studies have also
demonstrated user preference of incremental sys-
tems over non-incremental counterparts (Skantze
and Schlangen, 2009; Aist et al., 2007), shown
positive effects of incrementality on user ratings
of system efficiency and politeness (Skantze and
Hjalmarsson, 2010), and even shown increases in
the fluency of user speech when appropriate incre-
mental feedback is provided (Gratch et al., 2006).

Despite this progress, there remain many open
questions about the use of incremental process-
ing in systems. One important research direction
is to explore and clarify the implications and ad-
vantages of alternative incremental architectures.
Using pervasive incremental processing in a dia-
logue system poses a fundamental challenge to tra-
ditional system architectures, which generally as-
sume turn-level or dialogue act level units of pro-
cessing rather than much smaller and higher fre-
quency incremental units (Schlangen and Skantze,
2011). Rather than completely redesigning their
architectures, system builders may be able to gain
some of the advantages of incrementality, such
as reduced response latencies, by incorporating
incremental processing in select system modules
such as automatic speech recognition or language
understanding. The extent to which all modules of
a dialogue system need to operate incrementally to
achieve specific effects needs further exploration.

Another important research direction is to de-
velop effective optimization techniques for dia-
logue policies in incremental systems. Incremen-
tal dialogue policies may need to make many fine-
grained decisions per second, such as whether to
initiate a backchannel or interruption of a user ut-
terance in progress. Developing data-driven ap-
proaches to such decision-making may allow us to
build more highly optimized, interactive, and ef-
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fective systems than are currently possible (Ward
and DeVault, 2015). Yet the computational tech-
niques that can achieve this fine-grained optimiza-
tion in practice are not yet clear. Approaches that
use (Partially Observable) Markov Decision Pro-
cesses and a reinforcement learning framework to
optimize fine-grained turn-taking control may ulti-
mately prove effective (see e.g. (Kim et al., 2014;
Selfridge et al., 2012)), but optimizing live system
interactions in this way remains a challenge.

In this paper, we present a case study of
a high-performance incremental dialogue system
that contributes to both of these research direc-
tions. First, our study investigates the effects of
increasing levels of incremental processing on the
performance and user perceptions of an agent that
plays a fast-paced game where the value of rapid
decision-making is emphasized. In a user study in-
volving 125 human participants, we demonstrate a
level of game performance that is broadly com-
parable to the performance of live human play-
ers. Only the version of our agent which makes
maximal use of incremental processing achieves
this level of performance, along with significantly
higher user ratings of efficiency, understanding of
speech, and naturalness of interaction.

Our study also provides a practical approach
to the optimization of dialogue policies for in-
cremental understanding of users’ referential lan-
guage in finite domains; see e.g. (Schlangen et al.,
2009). Our optimization approach delivers a high
level of performance for our agent, and offers in-
sights into how the optimal decision-making pol-
icy can vary as the level of incrementality in sys-
tem modules is changed. This supports a view of
incremental policy optimization as a holistic pro-
cess to be undertaken in conjunction with overall
system design choices.

2 The RDG-Image Game

In the RDG-Image game (Paetzel et al., 2014;
Manuvinakurike and DeVault, 2015), depicted in
Figure 1, one person acts as a director and the
other as a matcher. Players see a set of eight im-
ages on separate screens. The set of images is ex-
actly the same for both players, but they are ar-
ranged in a different order on the screen. Image
sets include pets (Figure 1), fruits, bicycles, road
signs, and robots, among others.

One of the eight images is randomly selected as
a target image (TI) and it is highlighted on the di-
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Ready to start

Time Left
35 secs

Next Question

Instructions :

0. Please do not click randomly

1. Select 'Allow" sharing microphone. Click 'click to begin game', Click 'Lets !
2. Start Giving Clues for the highlighted object

3. Click 'Next Question' once other person has made the selection

Score Previous Selection
S0 Wrong selection

Click this ONLY if the game is stuck

Figure 1: Browser interface for the director. The
target image is highlighted by a red border. The
Next Question button moves on to the next target.

rector’s screen with a thick red border as shown in
Figure 1. The goal of the director is to describe the
TI so that the matcher is able to uniquely identify
it from the distractors. The director and matcher
are able to talk back-and-forth freely in order to
identify the TI. When the matcher believes he has
correctly identified the TI, he clicks on the image
and communicates this to the director who has to
press a button to continue with the next TI. The
team scores a point for each correct guess, with a
goal to complete as many images as possible.

Each team participates in 4 main game rounds.
In this study, the roles remain the same for the
players across all four rounds and our agent is al-
ways in the matcher role. The maximum number
of TIs within each round is 12, and the rounds have
a variable duration ranging from 45 to 60 seconds.
The time limit for each round was chosen based on
analysis of the subdialogues for that round’s im-
age sets in our earlier game corpora (Paetzel et al.,
2014; Manuvinakurike and DeVault, 2015) and
was set specifically to prevent participants in this
study from exhausting the 12 images in a round
before they run out of time. In this way, the speed
and accuracy of communication are always the
limiting factor to higher scores.

One game in this study consists of one training
round, during which participants get comfortable
with the interface and their partner, plus four main
game rounds which are scored. The maximum
game score is therefore 48 points (4*12). Fol-
lowing our approach in (Manuvinakurike and De-
Vault, 2015), participants are incentivized to score
quickly with a bonus of $0.02 per point scored.



Manual annotated corpus excerpt

Director utterance yﬂrl okay ﬂﬁ% _uﬂrL falling apart on one side @ﬂtﬁ Matcher utterance
Director annotation Filled Pause  Discourse Marker  Describe-Target Filled Pause Describe-Target E Assert-ldentified  Matcher annotation
time
Target Image (TI) Information used in Eavesdropper optimization
ASR result NLU assigned confidence timeins Picture
selection

oh 1.42
um 1.52
uh 1.72

uh okay 2.02 §

uh okay uh 2.32 :
uh okay a 2.52
__________________________ uh okay arow 2,62

uhokay arock | e TTTTTTTImTmmmmmmImTTmmIEA .2-7-5 -------

uh okay a rock oh 3.12
uh okay a rock um 3.22
uh okay a rock uh 3.62
uh okay a rock a straw 3.72

uh okay a rock uh falling — 3.92 g

uh okay a rock uh falling up 4.12 "5'

uh okay a rock uh falling yup uh 4.22 N
uh okay a rock uh falling apart 4.42
uh okay a rock uh falling apart on 4.62
uh okay a rock uh falling apart on one 4.82
uh okay a rock uh falling apart on once f 4.92
uh okay a rock uh falling apart on one side ¢ 5.02

0.2 0.4

0.6 0.8 1.0

Figure 2: An image subdialogue from the RDG-Image lab corpus. The upper part shows the manual DA
annotation. The lower part shows information used in the Eavesdropper policy optimization. For brevity,
we include only partial ASR results that differ from the previous one. In the middle and at right are the
NLU’s evolving classification confidence, elapsed time, and correctness of the NLU’s best guess image.

3 Observations of Human Matchers

Two corpora of human-human gameplay have
previously been collected for the RDG-Image
game, including the RDG-Image lab corpus (col-
lected in our lab) (Paetzel et al., 2014) and the
RDG-Image web corpus (collected on the web)
(Manuvinakurike and DeVault, 2015). These cor-
pora were used to design our automated agent.

A first step was to identify the most common
types of matcher utterances and behaviour in our
lab corpus. To support this analysis, 21 dialogue
acts (DAs) were defined. The most important
DAs for our automated matcher agents are Assert-
Identified, used for utterances such as Got it! that
assert the TI has been identified, and Request-Skip,
used for utterances such as Let’s move on that re-
quest the director to advance to the next TI.

34 human-human games were manually tran-
scribed and annotated for dialogue acts (DAs) by
a human annotator, resulting in 5415 annotated
DAs. The inter-annotator agreement, measured
by Krippendorf’s alpha, is 0.83. 40.70% of all
matcher DAs were Assert-Identified, and this is
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by far the most common DA by the matcher. For
the matcher, this is followed by 15.83% of DAs
which are annotated as Out-of-domain DAs such
as laughter or meta-level discussion of the game.
All other matcher DAs occur in less than 6.5% of
DAs each.

Our analysis of these annotations revealed that,
typically, the matcher simply listens to the direc-
tor’s continuing descriptions until they can per-
form an Assert-Identified, rather than taking the
initiative to ask questions, for example. The top
of Figure 2 shows a typical image subdialogue.

4 Design of the Agent Matcher

Based on our observations of human matchers, we
focused our design of Eve on the Assert-Identified
and Request-Skip acts. Request-Skip is a move not
often used by matchers in human-human game-
play, where teams tend to take additional time as
needed to agree on each image, and where teams
eventually score a point for 92-98% of the TIs they
encounter (depending on the image set). We antic-
ipated that Eve might struggle with certain images



User speech o | | ! |
ask | N L S S |
NLU + Policy T 1
Speech Output -

time
(a) fully incremental version
incremental ASR, incremental NLU

(b) partially incremental version
incremental ASR, non-incremental NLU

time time
(C) non-incremental version

non-incremental ASR, non-incremental NLU

Figure 3: Timeline of the processing order of the modules in the three different versions of incrementality.

or image sets, because its NLU would be data-
driven and its understanding limited to previously
seen description types. Eve is therefore designed
to use Request-Skip strategically if trying to score
on the current T1 appears not a good use of time.

To train our agent, the 16 image sets contain-
ing the most training examples per set were chosen
from the RDG-Image lab and web corpora. Addi-
tionally, two sets of simple geometric shapes from
the lab corpus were selected to serve as a train-
ing round in this study. The lab corpus includes
34 games with 68 unique participants and the web
corpus includes 179 participants (some of them
in multiple games). In our total training data, on
average, there are 256.13 image subdialogues per
image set.

4.1 Voice Activity Detection (VAD),
Automatic Speech Recognition (ASR)

Audio is streamed from the user’s browser to our
voice activity detector, which uses the Adaptive
Multi-Rate (AMR) codec (3rd Generation Part-
nership Project, 2008) to classify each incoming
20ms audio frame as containing voice activity or
not. The VAD works incrementally in all versions
of our agent. It emits voice activity events and
delivers segments of detected speech (in units of
100ms) to the ASR.

Our ASR is based on Kaldi (Povey et al,
2011), and is specifically adapted from the work
of (Platek and Jurcicek, 2014), which provides
support for online, incremental recognition using
Kaldi. Discriminative acoustic models are trained
using a combination of our in-domain audio data
and out-of-domain audio using Boosted Max-
imum Mutual Information (BMMI) with LDA
and MLLT feature transformations (Platek and
Jurcicek, 2014). Statistical language models are
created using our transcribed data.

Incremental ASR. In versions of our agent
with incremental ASR, detected user speech is
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streamed into the ASR every 100ms for online de-
coding, and incremental (partial) ASR results are
immediately computed and sent to the NLU and
policy modules. Incremental ASR is illustrated at
the left of Figure 2. It is used in the fully incre-
mental and partially incremental versions of our
agent, which are illustrated in Figure 3(a) and (b).
Non-incremental ASR. In the non-incremental
version of our agent (see Figure 3(c)), detected
user speech is buffered until the VAD segment is
concluded by the VAD. At that point, all speech
is provided to the ASR and the final ASR result is
computed and provided to the NLU and policy.
The non-incremental (Nonlnc) version serves
as a performance baseline where none of ASR,
NLU, or policy run incrementally. The partially
incremental (PartInc) version helps quantify the
benefits that come from reducing system latency
through online decoding in the ASR. The fully in-
cremental (Fulllnc) version explores the benefits
of reacting more continuously during user speech.

4.2 Natural Language Understanding (NLU)

Our NLU operates on 1-best text outputs from the
ASR. At each time ¢, all the 1-best texts for the
current T1I (i.e., spanning multiple VAD segments)
are concatenated to form a combined text d; which
we call the image subdialogue text. For example,
at time ¢ = 2.72 in Figure 2, the NLU input is
dy = uh okay a rock.

Prior to classification, stop-words are filtered
out.! This process yields for example the filtered
text filtered(uh okay a rock) = rock. From the
filtered text, unigrams and bigrams are calculated.
To reduce overfitting, only those unigrams and bi-
grams which occur more than three times in our
training corpus are kept. The remaining unigrams
and bigrams are used as input for the classifiers.

'The stop-word list is based on http:/jmlr.org/papers/
volume5/lewisO4a/al1-smart-stop-list/english.stop and ex-
tended by domain-specific stop words.



A separate classifier is trained for each image
set. The approach is broadly similar to (DeVault
et al., 2011), and each partial ASR result is prob-
abilistically classified as one of the eight TIs. The
training data maps all the image subdialogue texts
in our corpora for that image set to the correct
TI. To select the classifier type, Weka (Hall et
al., 2009) was used on manually transcribed data
from the RDG-Image lab corpus. Multiple clas-
sifiers were tested with 10-fold cross validation.
The best performance was achieved using a Naive
Bayes classifier, which classified 69.15% of test
instances correctly. Maximum Entropy classifica-
tion performed second best with 61.37% accuracy.

4.3 General Form of Eve’s Dialogue Policies

Eve’s dialogue policies take the following form.
Let the image set at time ¢ be Z; = {iy,...,i8},
with the correct target image 7' € Z; unknown to
the agent. The maximum probability assigned to
any image at time ¢ is P} = max; P(T = i;|dy).
Let elapsed(t) be the elapsed time spent on the
current TT up to time ¢.

Eve’s parameterized policy is to continue wait-
ing for additional user speech until either her con-
fidence P exceeds a threshold IT, or else the
elapsed time on this TI exceeds a threshold GT.
The identification threshold (IT) represents the
minimal classifier confidence at which Eve per-
forms an Assert-Identified (by saying Got it!). The
give-up threshold (GT) is the time in seconds af-
ter which Eve performs a Request-Skip. Eve uses
NeoSpeech? TTS to interact with the dialogue
partner. All Eve utterances are pre-synthesized to
minimize output latency.

Eve’s policy is invoked by different trigger
events depending on the incremental architecture.
In the Fulllnc version (Figure 3(a)), the policy is
invoked with each new partial and final ASR re-
sult (i.e. every 100ms during user speech). In the
PartInc and Nonlnc versions (Figure 3(b) and (c)),
the policy is invoked only after a new final ASR
result becomes available.

Each time Eve’s policy is invoked, Eve selects
an action using Algorithm 1.3 Eve’s policy allows
the agent to make trade-offs that incorporate both

“http://www.neospeech.com/

Requiring |filtered(d;)| > 1 prevents Eve from ever
saying Got it! before any content words (non-stop words)
have been received from the ASR. This could otherwise hap-
pen if the learned IT happens to be less than Eve’s prior at the
start of a new image.
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Algorithm 1 Eve’s dialogue policy

if P > IT & |[filtered(d;)| > 1 then
Assert-Identified

else if elapsed(t) < GT then
continue listening

else
Request-Skip

end if

its confidence in its best guess and the opportunity
cost of spending too much time on an image. In
Section 5, we describe how we optimize the nu-
meric parameters [T and GT in these policies.
Note that this policy learning problem could
also be cast in a reinforcement learning (RL)
framework. In theory, a RL model could learn
when to Assert-Identified, continue listening, or
Request-Skip based on the current dialogue state.
One challenge in this approach would be encoding
the state space in a compact way (while capturing
aspects of history and temporal features relevant to
action selection). A second challenge would be to
use the modest amount of available data to build a
user simulation that can generate incremental de-
scriptions of objects by simulated users in a real-
istic way. It would be interesting to compare such
an approach to our approach here in future work.

5 Policy Optimization

Optimization of the parameters IT and GT in Al-
gorithm 1 is done using a metaphor of the agent as
an eavesdropper on human-human gameplay. To
train our agent, we start by imagining the agent
as listening to the speech in human-human image
subdialogues from our corpora. We imagine that
as the human director describes an image to his
partner, our eavesdropping agent simulates mak-
ing its own independent decisions about when, if
it were the matcher, it would commit to a specific
TI (by saying “Got it!”’) or request an image skip.

For example, in Figure 2, we visualize the ASR
results that would be arriving in the Fulllnc archi-
tecture, and the time at which they would be arriv-
ing, as this human director describes the TI as uh
okay a rock uh falling apart on one side. In the
middle and right, we visualize what the agent’s
NLU confidence would be in its best guess (F/)
as these ASR results arrive. At the right, we show
that this best guess is incorrect until time 2.72.

In our optimizations in this study, we assume
that the objective metric to be maximized is points



per second (points/s). The key idea in this opti-
mization is that each value of parameters IT and
GT in Algorithm 1 translates into a specific simu-
latable agent response and outcome for each direc-
tor description of a TI in our corpus. For example,
if IT=0.3 and GT=5, then in the figure’s example
the agent would commit to its best interpretation
at time 2.72 by performing Assert-Identified (“Got
it!”). The agent would turn out to be correct and
score a point. The time taken to score this point
would be 2.72 seconds, plus some additional time
for the matcher to say “Got it!” and for the direc-
tor to click the Next Question button in the UI (see
Figure 1). Our agent needs 0.5 seconds to say “Got
it!”, and we add an additional 0.25 seconds equal
to the mean additional director click latency in our
corpora. The total simulated time for this image is
therefore 2.72+0.5+0.25 = 3.47 seconds.*

If one simulates this decision-making across
an entire corpus, then for each value of IT and
GT, one can calculate the total number of points
hypothetically scored, total time hypothetically
elapsed, and thus an estimated performance in
points/s for the policy. As the parameter space is
tractable here, we perform grid search across pos-
sible values of IT (step .01) and GT (step 1) and
select values that maximize total points/s. We car-
ried out this optimization for each combination of
image set and incrementality type. Our optimiza-
tion accounts for when ASR results would become
available in a given incremental architecture.

Perhaps the biggest concern with this approach
is that it assumes that human directors, when inter-
acting with the agent, would produce similar ut-
terances to what they produced when interacting
with a human matcher. We have two reasons for
believing this is true enough. First, as discussed
in Section 3, the matcher’s utterances in human-
human gameplay typically play a limited role in
changing the director’s descriptions. Second, our
results in live human-agent interactions, reported
in Section 7, confirm that high performance can
be achieved under this assumption.

In Table 1, the learned values for IT and GT
are compared over four sample image sets (from
among the 18 that are trained) in various incre-
mentality conditions. An interesting observation
is that the optimized dialogue policy changes as
the incrementality type changes. For example, the

“Note that when our agent performs Request-Skip, it is

still able to select its best guess image, and so it may still
score a point for that image (as human players can).
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Fully Incre- | Partially In- | Non-
mental cremental incremental
Image set | IT GT IT GT IT GT
Pets 0.7 8 0.52 8 0.89 2
Z00 0.61 8 0.58 3 0.23 4
Cocktails | 0.88 8 0.48 1 0.44 10
Bikes 0.80 18 0.49 7 0.0 0

Table 1: Identification threshold and give-up

threshold in optimized policies for 4 image sets.

Fulllnc policy for pet images (depicted in Fig-
ure 1) will wait up to 8 seconds (GT) for the confi-
dence to reach 0.7 or higher (IT). The NonlInc pol-
icy, on the other hand, will give up if confidence
does not reach 0.89 within 2 seconds. Intuitively,
one reason these policies can vary is that an ability
to understand and respond incrementally can re-
duce the risk associated with waiting for additional
user speech and ASR results. In the PartInc and
Nonlnc versions, once the user begins to speak,
the agent must wait for the user to complete their
(possibly long) utterance before it can assess the
(possibly unhelpful) new information and respond.
The decision to let the user speak is therefore rel-
atively heavyweight. This leads for example to an
immediate skip for the Bikes in the Nonlnc ver-
sion. In the Fulllnc version, the agent always has
the option to listen to a little more speech and re-
consider.

5.1 Offline Policy Evaluation Results

Our eavesdropper framework allows policies to
not only be trained, but also evaluated in offline
simulation, both in terms of total points scored
and total points/s (which is the direct optimization
metric). An excerpt from our offline evaluation re-
sults, using hold-one-user-out cross-validation, is
shown in Table 2. In these offline results, the agent
is sometimes able to achieve higher points/s than
our human matchers did in human-human game-
play. This is true for some image sets in all three
incrementality types. In general, we also observe
that simulated points/s decreases as the level of in-
crementality in the system decreases. Note that the
total number of simulated points achieved by these
policies is generally less than what human players
scored; the agents optimized for points/s are less
likely to score a point for each image, but make
up for this in speed. These offline results led us
to hypothesize that, in live interaction with users,
the Fulllnc agent would score higher than the less
incremental versions in a time-constrained game.



Fully Incremental | Partially Incremental | Non-Incremental Human
Points/s | points | Points/s points Points/s | points | Points/s | points
Pets 0.185 182 0.151 188 0.151 154 0.069 227
Zoo 0.220 203 0.184 196 0.177 193 0.154 243
Cocktails | 0.118 153 0.103 137 0.102 172 0.124 237
Bikes 0.077 126 0.073 147 0.071 100 0.072 223

Table 2: Offline policy evaluation results for all three incrementality types and four image sets. 14
additional image sets are omitted for space reasons.

6 Online Human-Agent Study

Our online data was captured with 125 remote
participants, recruited on Amazon Mechanical
Turk, who interacted entirely through their web
browsers. They either conversed with each other
or with one of our agents.

We captured the data using the Pair Me Up
web framework (Manuvinakurike and DeVault,
2015), which enables spoken dialogues through
a web browser using HTMLS libraries to stream
audio between remote users and our server. In
(Manuvinakurike and DeVault, 2015), we demon-
strated the feasibility of collecting real-time, high
quality human-human game data with this web
framework. For this study, we adapted Pair
Me Up to support human-agent interaction. See
(Manuvinakurike et al., 2015) for a detailed dis-
cussion of our web architecture, study costs, and
how we managed the Amazon HITs for this study,
including steps to verify each participant’s audio
setup and network latency.

Of the 125 participants, 50 were paired with
each other (forming 25 human-human pairs) and
25 were paired with each of the Fulllnc, Partlnc,
and Nonlnc agents. None participated in our study
more than once. From self-disclosure of the di-
rectors, 50% were female, all were over 18 (mean
age 31.01, std. 10.13), and all were native English
speakers.

Excerpts of Eve’s gameplay during the study are
included in Figure 5 in the Appendix.

After each game, participants answered a ques-
tionnaire that included basic demographic ques-
tions and also asked for their judgments on various
aspects of the interaction with their partner.

7 Human-Agent Evaluation Results

In this section, we summarize our user study re-
sults, many of which are visualized in Figure 4.
We evaluate our Fulllne, Partlnc, and Nonlnc
agents by game score and by user’s perceptions as
captured in post-game questionnaires. Users re-
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sponded to a range of statements with answers on
a five point Likert-scale ranging from Totally dis-
agree (0) to Totally agree (4). We compare the
responses of the director in human-human (HH)
pairs to the responses of human directors playing
with our agent as matcher. All significance tests in
this section are Wilcoxon rank sum tests.

Score (Fig. 4a). We report scores in U.S. dol-
lars paid to participants for correct TIs ($0.02/cor-
rect TI). The Fulllnc system achieved a mean score
of $0.33 that is significantly better than the mean
$0.25 for PartInc (p = 0.013) and the mean $0.23
for Nonlnc (p = 0.002). No significant differ-
ence in score was observed between the Partlnc
and Nonlnc versions. These results suggest that,
beyond incorporating online decoding in the ASR
to reduce ASR latency, also incorporating an in-
cremental NLU+policy is important to score max-
imization.

Our Fulllnc agent’s performance in terms of
score is quite strong, and comparable to HH
scores. Although the mean HH score of $0.36
was a little higher than that of our Fulllnc agent
($0.33), the difference is not significant. The best
Fulllnc score of $0.50 achieved as part of the
study is higher than 76% of HH teams, and its
worst score of $0.14 is higher than 20% of HH
teams. HH teams scored significantly higher than
the PartInc (p = 0.038) and NonlInc (p = 0.008)
versions of the system, which underscores the im-
portance of pervasive incremental processing to
achieving human-like performance in some dia-
logue systems.

Satisfaction with score (Fig. 4d). Human par-
ticipants were significantly more satisfied with
their score when working with a human matcher
than with any version of our agent (for the Fulllnc
version, p 0.037). Participants who played
with the Fulllnc agent were significantly more sat-
isfied with their score than those in the Partlnc
(p 0.002) and Nonlnc (p 0.017) condi-
tions. These results generally mirror our findings
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Figure 4: Scores and survey responses by condition (means and standard errors). Significant differences
in Wilcoxon rank sum tests are indicated by * (p < 0.05), ** (p < 0.005), and *** (p < 0.0005).

for game score, and score and score satisfaction
are clearly connected.

Perceived ease of gameplay (Fig. 4b). Human
partners were perceived as significantly easier to
play with than all agent versions. We observed a
trend (not quite significant) for people to consider
it easier to play with the Fulllnc version than with
Nonlnc version (p = 0.052).

Perceived efficiency (Fig. 4c). Human partners
were rated as significantly more efficient than the
Fulllnc (p = 0.038), Partlnc (p < 0.0005) and
Nonlnc (p < 0.0005) agents. Among the agent
versions, the Fulllnc agent was rated significantly
more efficient than Partlnc (p = 0.001) and Non-
Inc (p = 0.002). This result echoes previous find-
ings of increases in perceived efficiency for incre-
mental systems, though here with a differing sys-
tem architecture and task (Skantze and Hjalmars-
son, 2010).

Perceived understanding of speech (Fig. 4e).
Human partners elicited the most confidence that
the two players were understanding each other.
This perceived understanding of each other’s
speech was significantly higher in Fulllnc than in
PartInc (p = 0.010) and Nonlnc (p = 0.006). It is
interesting to consider that the NLU in these three
versions is identical, and thus the level of actual
understanding of user speech should be similar
across conditions. We speculate that the greater re-
sponsiveness of the Fulllnc system increased con-
fidence that users were being understood.

Perceived naturalness of wuser speech
(Fig. 4f). One of our survey items investigated
whether people felt they could speak naturally
to their partner, “in the way I normally talk to
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another person”. Human partners scored signif-
icantly higher than all agent versions here. The
Fulllnc agent scored significantly higher than the
Nonlnc agent (p = 0.037).

8 Conclusions

In this paper, we have presented the design, train-
ing, and evaluation of a high-performance agent
that plays the RDG-Image game in the matcher
role. Our policy training approach allows the sys-
tem to be optimized based on its specific incre-
mental processing architecture. In a live user eval-
uation, three agent versions utilizing different de-
grees of incremental processing were evaluated in
terms of game performance and user perceptions.
Our results showed that the most fully incremen-
tal agent achieves game scores that are comparable
to those achieved in human-human gameplay, are
higher than those achieved by partially and non-
incremental versions, and are accompanied by im-
proved user perceptions of efficiency, understand-
ing of speech, and naturalness of interaction.
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Appendix

u [CAR GOING OFF INTO WATER U THIS IS A CAR DRIVING OFF CLIFR
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(a) Example of Eve in fully incremental mode (b) Example of Eve in partially incremental mode

u CAR FALLING INTO WATER
E
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(c) Example of Eve in non-incremental mode (d) The target image for these examples

Figure 5: Examples of Eve’s behavior in this study as different users describe the target image in (d).
Seven distractor signs are also present in the display (not shown). The timing of the user’s ASR results
(U) and Eve’s utterances (E) are indicated.

Image sources

The images of pets used in Figure 1 and of the street signs used in Figure 2 and 5 are excerpted from
pictures protected by copyright and released under different licenses by their original authors. In the
following attributions, we will identify the 8 images shown in the director’s screen capture in Figure 1
from left-right and top-down direction, with a number from 1 to 8. Thanks to Joaquim Alves Gaspar for
image 1° and Magnus Colossus for image 3%, both published under CC BY-SA 3.0. Thanks to Randy
Pertiet for image 27, Brent Moore for image 7% and Domenique Godbout for image 8°, all licensed under
CC-BY 2.0 and to Opacha for image 4!° and TomiTapio for image 6'!, both licenced under CC-BY
3.0. Additionally, we kindly acknowledge Ilmari Karonen for image 5'? and the Irish Department of
Transport for the street signs shown in Figure 2'* and 5'%, all published under Public Domain.

Shttp://commons.wikimedia.org/wiki/File:Cat_March_2010-1a.jpg
®http://commons.wikimedia.org/wiki/File:Canario_canary_p%C3%A 1jaro_bird.jpg
"http://www.flickr.com/photos/34652102N04/5428922582/
8http://commons.wikimedia.org/wiki/File:2006_TN_State_Fair-_Guinea_Pig.jpg
“https://www.flickr.com/photos/dominiquegodbout/5 140544743/
http://commons.wikimedia.org/wiki/File:Baby—_Yellow_Naped_Amazon_Parrot_Closeup.jpg
"http://tomitapio.deviantart.com/art/The-bunny-says-nothing-129138755
https://commons.wikimedia.org/wiki/File:Mouse_white_background.jpg
Bhttp://commons.wikimedia.org/wiki/File:Treland road_sign_W _164.svg
"*http://commons.wikimedia.org/wiki/File:Ireland road_sign_W _160.svg

86



Towards Taxonomy of Errors in Chat-oriented Dialogue Systems

Ryuichiro Higashinaka', Kotaro Funakoshi?, Masahiro Araki?,
Hiroshi Tsukahara*, Yuka Kobayashi®, Masahiro Mizukami®
INTT Corporation, 2Honda Research Institute Japan, *Kyoto Institute of Technology,
“Denso IT Laboratory, Inc., *Toshiba Corporation, *Nara Institute of Science and Technology

Abstract

This paper presents a taxonomy of errors
in chat-oriented dialogue systems. Com-
pared to human-human conversations and
task-oriented dialogues, little is known
about the errors made in chat-oriented di-
alogue systems. Through a data collection
of chat dialogues and analyses of dialogue
breakdowns, we classified errors and cre-
ated a taxonomy. Although the proposed
taxonomy may not be complete, this pa-
per is the first to present a taxonomy of er-
rors in chat-oriented dialogue systems. We
also highlight the difficulty in pinpointing
errors in such systems.

1 Introduction

The last decade has seen an emergence of systems
that can engage in chat, small talk, or open-domain
conversation. Such systems can be useful for culti-
vating trust between a system and users (Bickmore
and Cassell, 2001), entertaining users (Wallace,
2004; Banchs and Li, 2012; Wilcock and Jokinen,
2013), and obtaining preferences from users for
recommendations (Bang et al., 2015).

Error analysis is important to improve any sys-
tem. However, little is known about the types of
errors that can be made in chat-oriented dialogue
systems. This is in contrast with many studies
on task-oriented dialogue systems in which vari-
ous taxonomies of errors have been proposed (Dy-
bkjer et al., 1996; Moller et al., 2007; Ward et al.,
2005; Green et al., 2006).

This paper presents a taxonomy of errors in
chat-oriented dialogue systems. In our approach,
we collect dialogues with a chat-oriented dia-
logue system and identify breakdowns (situations
in which users cannot proceed with the conversa-
tion (Martinovsky and Traum, 2003)) as possible
points of errors. Then, we classify the errors that
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led to such breakdowns to create a taxonomy. By
having such a taxonomy, we hope to better grasp
the main causes of breakdown in current chat-
oriented dialogue systems; thereby, making it pos-
sible to make improvements. The contributions of
this paper are that this is the first attempt to cre-
ate a taxonomy of errors in chat-oriented dialogue
systems and that we quantitatively show, by the
distribution of error categories and inter-annotator
agreement, the possibilities and difficulties in pin-
pointing errors in chat-oriented dialogue systems.

In Section 2, we cover related work on creating
a taxonomy of errors in dialogue systems. In Sec-
tion 3, we describe our data collection followed
by the annotation of breakdowns in Section 4. In
Section 5, we discuss the taxonomy we devised.
In Section 6, we evaluate the taxonomy in terms of
the distribution of errors and inter-annotator agree-
ment. In Section 7, we summarize the paper and
mention future work.

2 Related Work

In task-oriented dialogue systems, there is a good
body of research related to the classification of er-
rors. There are several ways to categorize errors.
One is to adopt the general taxonomy of mis-
communication proposed by Clark (1996). Ac-
cording to Clark, there are four levels in com-
munication; channel, signal, intention, and con-
versation, and by using these four levels, errors
can be classified into four categories depending
on which level the errors occurred. For exam-
ple, if the system fails to take in audio input, it
is regarded as a channel-level error. Bohus and
Rudnicky (2005) applied this taxonomy to classify
their non-understanding errors. A similar catego-
rization was used by Moller et al. (2007) for their
smart home and restaurant information systems.
Paek (2003) discussed the generality of using the
four levels for error analysis in dialogue systems,
referring to the use cases across disciplines.
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From the viewpoint of cooperativeness in dia-
logue, there is also a taxonomy based on Grice’s
maxims (Grice, 1975). Dybkjaer et al. (1996)
and Bernsen et al. (1996) had four categories of
errors related to Grice’s maxims; quantity, qual-
ity, relevance, and manner. They also added part-
ner asymmetry, background knowledge, and meta-
communication as error categories from their ob-
servation. Their evaluation indicated that the
taxonomy can appropriately classify errors in
their flight reservation system. The work by
Moller (2005) also incorporated Grice’s maxims
into “cooperativity-related parameters” as impor-
tant elements that affect interaction quality in
telephone-based services.

There is also an approach to creating a task
or system-specific taxonomy or errors. Aberdeen
and Ferro (2003) analyzed misunderstandings by
a DARPA communicator system and classified its
errors into such categories as failure to obey com-
mand and repeated prompt. There is also a tax-
onomy for a service robot (Green et al., 2006), in
which major errors are robot-specific, such as tim-
ing and reference (pointing) errors. Dzikovska et
al. (2009) also classified errors in a tutorial dia-
logue system.

Dialogue systems are usually composed of var-
ious modules. Therefore, there is also an ap-
proach to attributing errors to modules. Ward et
al. (2005) attributed causes of errors to modules,
such as speech recognition, understanding, gener-
ation, and synthesis, and discussed their relative
impact on usability. This approach is useful when
the system has clear separation of modules.

Our approach is similar to that of (Dybkjer et
al., 1996) in that we incorporate Grice’s maxims
into our error categories (See Section 5) and that
we add other categories by our observation. The
difference is that we deal with chat, which is very
different from task-oriented dialogue. In this pa-
per, we do not use their taxonomy to avoid pre-
conception about possible errors. In this work, we
did not use the four levels by Clark because we
currently deal with text-based systems in which
channel and signal level errors rarely occur. In ad-
dition, we do not categorize errors by modules as
in (Ward et al., 2005) because chat-oriented dia-
logue systems usually do not have clear separation
of modules.
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3 Data Collection

Since there are no chat data available for analy-
sis, we decided to create our own data set using
a publicly available chat APIL. In this section, we
describe our system based on the API, data collec-
tion procedure, and statistics of the collected dia-
logues.

3.1 System

We built a web-based dialogue data collection sys-
tem using a chat API by NTT DOCOMO (Onishi
and Yoshimura, 2014). The system is text-based,
and users can chat with it in Japanese. Since the
API is based on the system by Higashinaka et
al. (2014a), which uses a number of natural lan-
guage processing techniques (e.g., zero anaphora
resolution, language generation from predicate-
argument structures, and open-domain question
answering), the system can be regarded as one
of the most advanced (or at least complex) chat-
oriented dialogue systems.

Users can chat with the system on a web
browser to create 21-utterance-long dialogues;
each dialogue consists of one system prompt fol-
lowed by ten user-system utterance pairs. Figure 1
shows an excerpt of a dialogue collected with the
system. As can be seen, the content of the con-
versation is open-domain. See (Higashinaka et al.,
2014a) for more dialogue examples.

3.2 Procedure

We called for dialogue researchers (and their col-
laborators) in Japan to participate in our data col-
lection. Since the system may not live up to their
full expectations, we instructed them to follow a
simple guideline that basically asked them to be
as cooperative as possible. We also restricted the
use of emoticons such as facial expressions. Other
than that, the participants were free to chat about
any topic.

3.3 Collected dialogues

One-hundred sixteen participants including the au-
thors conversed using the system, resulting in the
collection of 1,146 dialogues. Table 1 lists the
statistics. This is a reasonably large data set for
analyses with over 10,000 user utterances.

4 Annotation of dialogue breakdowns

Before analyzing errors, it is necessary to iden-
tify the areas of errors. To this end, we asked



Hello! I've been waiting for you.

Today, the temperature will hit 36 degrees
Celsius. It’s really hot.

Is the max temperature expected to be 177
Not at all. It’s a heat wave!

Are you prepared for a heat wave?

Yeah, with sunshades, water, and air-
conditioners. . .

Air-conditioners make it comfortable.
Yeah, my company doesn’t allow me to
use air-conditioners in the morning, I'm
gonna die.

In the company, air-conditioners really
work.

Daytime, they work. They are necessary
because we have many PCs here.

They don’t work.

Really? Ours are fine here.

PCs are not user-friendly.

o v

vy

o

S:
U:
S.

Figure 1: Excerpt of collected dialogue. S and U
stand for system and user utterances, respectively.
Dialogue was originally in Japanese and translated
by authors.

# of Dialogues 1,146
# of Participants 116

User System
# of Utterances 11,460 12,606
# of Unique Utterances | 10,452 7,777
# of Words 86,367 76,235
# of Unique Words 6,262 5,076

Table 1: Statistics of collected dialogues

annotators (researchers and their collaborators as
in Section 3.2) to label system utterances indicat-
ing whether the utterances led to dialogue break-
downs. We used three labels depending on how
easy/difficult it is to continue the conversation af-
ter each system utterance. The three labels are as
follows:

(1) Not a breakdown: It is easy to continue the
conversation.

(2) Possible breakdown: It is difficult to con-
tinue the conversation smoothly.

(3) Breakdown: It is difficult to continue the con-
versation.

We first divided the data into two sets: init100
(consisting of 100 randomly sampled dialogues)

&9

Breakdown label Ratio  Freq.
(1) Not a breakdown 59.3% 13,363
(2) Possible breakdown | 25.3% 5,805
(3) Breakdown 164% 3,752

Table 2: Distributions of breakdown annotations
for rest1046 data set

and rest1046 (the remaining 1046 dialogues). Af-
ter some trial annotations with init100, we split
rest1046 into eleven subsets (a—k) of 100 dia-
logues each (subset k contained only 46 dialogues)
and allocated two annotators for each subset. For
ten dialogues within each subset, we asked the an-
notators to provide reasons for their annotations as
comments.

Table 2 shows the distribution of the three
breakdown labels for the entire rest1046 data set.
This shows that we have a good percentage (about
40%) of breakdowns for analysis. The inter-
annotator agreement in Fleiss’ « was 0.28 (the
macro-average over the subsets), showing the sub-
jective nature of dialogue breakdown.

5 Creating taxonomy of errors

We manually examined the system utterances an-
notated with breakdowns and the comments pro-
vided by the annotators to create our taxonomy of
errors. After several iterations of devising error
categories and annotating system utterances with
the categories, we reached our agreed-upon taxon-
omy. We explain the taxonomy in detail as fol-
lows.

5.1 Taxonomy

Since there were many comments related to the
grammar and semantics of single utterances as
well as the violation of adjacency pairs (Schegloff
and Sacks, 1973) and pragmatic constraints, we
thought it was better to have main categories that
distinguish to which scope of the context the errors
relate; namely, we distinguished utterance-level,
response-level (adjacency pair), context-level (lo-
cal context (Allen, 1995)), and environment-level
(not within the local context) errors.

Within each main category, we created sub-
categories. Since there were many comments
mentioning the violation of principles of coop-
erativeness, we created sub-categories that corre-
spond to Grice’s maxims for response and context-
level errors. We then added other error categories.



We describe each error category with examples as
follows.

5.1.1 Utterance-level errors

Utterance-level errors are those that can be rec-
ognized as errors by looking at single utterances.
They typically come from language-generation
deficiencies of the system. Note that the sys-
tem generates on the basis of automatically ac-
quired resources from the web (Higashinaka et
al., 2014a). In this level, we identified three sub-
categories.

Syntactic error: The utterance is not grammati-
cal or lacks important elements to be a valid sen-
tence such as missing necessary arguments and
particles.

*Necchuushoni ki wo tsuke ka
Heat stroke DAT care ACC take Q

‘Do you take care against heat stroke?’

(D

Here, ‘tsuke’ (take) should be ‘tsukeru’ or ‘tsuke-
masu’ for valid Japanese conjugation.

Semantic error: The utterance is semantically
invalid such as when the combination of a pred-
icate and its arguments cannot constitute any
meaning.

(2) Tam good at raining.
(one cannot be good at raining)
(3) The work is honest.

(work cannot be honest)

Uninterpretable: The utterance is not under-
standable. There are no recognizable words or
it is just a fragment of an utterance.

(4) Chu-Chu
(seemingly expressing some noise)

5.1.2 Response-level errors

Response-level errors are those that can be rec-
ognized as errors by looking at adjacency pairs.
In this level, we identified five sub-categories in
which the first four relate to Grice’s maxims.

Excess/lack of information: The utterance vio-
lates the maxim of quantity. The utterance misses
some piece of information in response to the pre-
vious user utterance or contains unnecessary in-
formation.
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(5) U: Good morning! It’s nice and cool, re-
cently.
S: I like. (missing object for a predi-
cate)
6) I think simple is best.
S: Oh, it’s a serious problem.

(missing reason for a proposition)

Non-understanding: The utterance violates the
maxim of quality. Because of the lack of un-
derstanding, the content of the utterance is false
or inappropriate in terms of the previous user ut-
terance such as when the system says something
that contradicts what the user has said.

(7) U: I’minto video games lately.

S: Do you stay away from video games?

No-relevance: The utterance violates the maxim
of relation. The utterance does not have a relation
to the previous user utterance such as when the
system ignores a user’s question and continues
with other topics.

(8) U: What is your hobby, then?

S: When was your last trip?

Unclear intention: The utterance violates the
maxim of manner. The utterance relates to the
previous user utterance in some way but the re-
lation is not clear, leading to the difficulty in un-
derstanding the underlying intention of the utter-
ance.

(9) U: What catches fire?

S: Fire goes into the oven.

Misunderstanding: The utterance displays the
misunderstanding of the previous user utterance
such as when the system mishandles the sense of
a polysemic word.

(10) U: Good evening. I think watermelons
are delicious.

S: Are you shopping using a SUICA?

Watermelon (“suika” in Japanese) was misunder-
stood for “SUICA”, an IC-card used for mass-
transit and shopping in Japan.



5.1.3 Context-level errors

Context-level errors are those that can be recog-
nized as errors by looking at the local context, not
just by adjacency pairs. In this level, we identified
five sub-categories in which the first four relate to
Grice’s maxims. Compared to response-level er-
rors, the errors here are more to do with proposi-
tions and topics in the current context.

Excess/lack of proposition: The utterance vio-
lates the maxim of quantity. The utterance does
not provide any new proposition to the discourse
context (e.g., repetition of already mentioned
propositions) or provides excessive information
than required.

(11) S: A typhoon is strong.
U: Because of it, I got soaked.

S: The force of the typhoon is strong.

Contradiction: The utterance violates the maxim
of quality. The utterance contains propositions
that contradict what has been said by the system
or by the user. For example, the system changes
its opinion or preferences within a dialogue.

(12) S: It’s nice to go shopping alone.
I agree. That’s nice.
Shopping takes time.

Window shopping is also fun.

v C wu g

It’s fun to go shopping with some-
body.

Non-relevant topic: The utterance violates the
maxim of relation. The topic of the utterance
is irrelevant to the current context such as when
the system suddenly jumps to some other topic
triggered by some particular word in the previous
user utterance.

(13) S: Ilose my SUICA.
U: Don’t lose it!
S: Ican get it reissued.
U: But, you can’t get your deposit back.
S: TI’ll be careful.
U: Why don’t you hang it from your
neck.
S: You swing it, don’t you?

‘I’ seems to refer to ‘neck’, which is a totally
different topic from the previous topic “SUICA”.
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Unclear relation: The utterance violates the
maxim of manner. Although the utterance relates
to the previous user utterance, its relation to the
current topic is unclear. Note that the utterance
constitutes an appropriate adjacency pair but is
contextually inappropriate.

S:
U:
S:
U:
S:

(14) You are good at surfing.
I haven’t tried yet.

The style is important.
Good style is cool.

Slender are stylish.

Although the system is talking about “style”, its
relation to surfing is unclear.

Topic switch error: The utterance displays the
fact that the system missed the switch in topic by
the user, continuing with the previous topic.

(15) S: I am going to the pool in the after-
noon.
U: Ienvy you.
S: Oh!
U: It seems to continue to be hot in the
afternoon.
S: The pool is dirty.

5.1.4 Environment-level errors

Environment-level errors are those that cannot be
recognized as errors by the local context but by
other issues outside the dialogue. In this level, we
identified three sub-categories.

Lack of common ground: The utterance intro-
duces, out of the blue, a proposition that has not
been yet grounded.

(16) Tuna is stale, isn’t it?
(Not all tuna is stale.)

Lack of common sense: The utterance displays a
lack of common sense such as when the utterance
has a proposition that is believed to be false in the
real world.

(17) 1It’s good to have a disease.

Lack of sociality: The utterance violates social
common sense such as when the utterance breaks
the social relationships with users such as insults
and lack of politeness.

(18) U: Iwilllook for a good pool for you.
S: Why don’t you know it!



Main cat. | # of Ann Ratio
UTT 220 0.126
RES 889 0.511
CON 521 0.299
ENV 110 0.063

Table 3: Number of annotations given to each
main category. UTT, RES, CON, and ENV denote
utterance, response, context, and environment lev-
els, respectively.

6 Evaluation of the taxonomy

To test the validity of our taxonomy, we asked an-
notators to label system utterances in our data with
our error categories.

One way to check the validity of a taxonomy
is to observe the distribution of the annotations.
When the annotations are biased towards cer-
tain categories, it is an indication that the taxon-
omy is not decomposing the phenomena appro-
priately. Another way for verifying the taxon-
omy is to check inter-annotator agreement. If the
inter-annotator agreement is high, it is an indica-
tion that the categories are appropriately separated
from each other.

We assigned three annotators for each subset of
a—j (See Section 4; we did not use subset k because
it had a small number of dialogues). Within each
subset, we asked the annotators to annotate system
utterances in the ten dialogues that had obligatory
comments for breakdowns so that they could use
the comments as hints to facilitate annotation. For
each system utterance in question, a single error
category label (i.e. sub-category label) was anno-
tated. We instructed the annotators to check er-
ror categories from the utterance level to the en-
vironment level; that is, they first check whether
the system utterance is an utterance-level error, if
it is not, the check proceeds to the response level.
For checking the response-level error, it was rec-
ommended that the annotators hide the context so
that they can just focus on the adjacency pairs.

With this annotation process, 580 system utter-
ances were annotated by 3 annotators with our er-
ror categories, resulting in 1740 (580 x 3) annota-
tions. Note that we could not use the same annota-
tors for all data because of the high burden of this
annotation.

Main Sub # of Ann| Ratio
UTT Syntactic error 4810.028
Semantic error 143]0.082
Uninterpretable 2910.017
RES Excess/lack of information 185]0.106
Non-understanding 292|0.168
No relevance 168/0.097
Unclear intention 186|0.107
Misunderstanding 5810.033
CON Excess/lack of proposition 125]0.072
Contradiction 13210.076
Non-relevant topic 71/0.041
Unclear relation 9510.055
Topic switch error 9810.056
ENV Lack of common ground 41/0.024
Lack of common sense 36/0.021
Lack of sociality 3310.019

Table 4: Number of annotations given to each sub-
category. Ratio is calculated over all annotations.

6.1 Distribution of error categories

Table 3 shows the distribution of annotations sum-
marized by the main categories. As can be seen
from the table, the response-level error has the
most annotations (more than 50%), followed by
the context-level error. We also see quite a few
utterance-level and environment-level errors.
Table 4 shows the distribution of annotations by
sub-category. Within the utterance-level category,
the semantic error is dominant. For the other lev-
els, the errors seem to be equally distributed under
each main category, although the number of RES-
Non-understandings is larger and that of RES-
Misunderstandings is less than the others. This is
an indication that the taxonomy has a good cat-
egorization of errors since the distribution is not
biased to only a small number of categories.

6.2 Inter-annotator agreement

Table 5 shows Fleiss’ x for main and sub-
categories of errors. The kappa values were cal-
culated within each subset because the annotators
were different for each subset. The average value
indicates the macro-average over the subsets.

For the main categories, the averaged Fleiss’ s
was 0.4, which we consider as moderate agree-
ment. It is quite surprising that there was some
difficulty in distinguishing between such obvious
levels of discourse scope. For a detailed analysis,
we created a confusion matrix for the main cate-



Subset | # of Utts Main cat. Sub cat.
a 45 0.472 0.284
b 46 0.263 0.208
c 59 0.372 0.252
d 67 0.405 0.207
e 55 0.485 0.098
f 81 0.528 0.336
g 54 0.353 0.312
h 61 0.359 0.275
i 46 0.367 0.131
] 66 0.396 0.292

Avg 0.400 0.239

Table 5: Fleiss’ « for main and sub-categories of
errors. # of Utts indicates number of annotated
utterances in each subset.

UTT RES CON ENV

UTT | 246 140 27 27
RES | 140 1242 330 66

CON 27 330 654 31
ENV 27 66 31 96

Table 6: Confusion matrix for main categories

gories (See Table 6). There was most confusion
with RES vs. CON. This may be understandable
because responses are closely related to the con-
text. It is also interesting that there was much
confusion regarding UTT vs. RES. Some anno-
tators seemed to be lenient on syntactic/semantic
errors and considered such errors to be response-
level. Another interesting point is regarding ENV
because it was most confused with RES, not CON,
which is in the next level. This may be attributable
to the fact that ENV is concerned with some-
thing more than the discourse scope. Although we
instructed annotators to proceed from utterance-
level to environment-level errors, it might have
been difficult for them to ignore easy-to-find er-
rors related to sociality and common sense.

For the sub-categories, the averaged Fleiss’ x
was 0.239, which is rather low. For subset e, the
kappa value was as low as 0.098. To further in-
vestigate the cause of this low agreement, we cre-
ated a confusion matrix for the sub-category anno-
tations. Since there are 16 sub-categories and the
number of possible confusing pairs is 120 (16C2),
for brevity, we only show the top-10 confusing
sub-category pairs (See Table 7). From the table,
the top six pairs are all between response-level er-
rors. The top six confusing pairs comprise about
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20% of all confusions. After that, the confused
pairs are mostly between response and context lev-
els.

The confusion between RES-Non-understan-
ding and RES-No-relevance was probably because
of the perception of “what the system really un-
derstood”. Some annotators thought the system
made an utterance that did not match the content
of the previous user utterance because it did not
“understand” the user; therefore, he/she used the
RES-Non-understanding category, whereas oth-
ers just used the RES-No-relevance category. In
fact, other confusing pairs in the response level
had similar problems. For example, the cat-
egory RES-Excess/lack-of-information was con-
fused with RES-Unclear-intention because some
annotators thought the intention was unclear due
to the lack of information. This lack of infor-
mation also made an utterance seem irrelevant in
some cases.

This analysis made it clear that it is difficult
to distinguish between the categories related to
Grice’s maxims. This may be reasonable since
Grice’s maxims are not claimed to be mutually
exclusive. However, considering that the maxims
have been successfully used to classify errors in
task-oriented dialogue (Bernsen et al., 1996; Dy-
bkjer et al., 1996), this can be due to the nature
of chat-oriented dialogue systems. Our hypothesis
for this confusion is that system utterances in cur-
rent chat-oriented dialogue systems are far from
being cooperative; thus, are not placed within the
understandable regions of conversational implica-
ture, making the classification highly subjective.
Another hypothesis is that there can be multiple
cooperativeness errors for the same utterance. In
this case, our single-label classification scheme
may not be appropriate because it necessitates the
subjective choice between the cooperativeness er-
rors.

6.3 Discussions

Since errors were not biased to particular error cat-
egories in the annotation, the taxonomy seems to
have a good decomposition of errors. The main
categories, which roughly distinguish the errors by
the scope of discourse context, also seem to be rea-
sonable from moderate inter-annotator agreement.
However, we encountered very low inter-annotator
agreement for the sub-categories. According to
our analysis, it was the difficulty in distinguish-



Confusing sub-categories Ratio Accum
1 | RES-Non-understanding RES-No relevance 0.048  0.048
2 | RES-Excess/lack of information ~RES-Unclear intention 0.034  0.082
3 | RES-Excess/lack of information RES-Non-understanding 0.032  0.114
4 | RES-Excess/lack of information ~RES-No relevance 0.028  0.142
5 | RES-No relevance RES-Unclear intention 0.027 0.169
6 | RES-Non-understanding RES-Unclear intention 0.025 0.194
7 | RES-Non-understanding CON-Topic switch error  0.024  0.218
8 | RES-Non-understanding CON-Contradiction 0.017  0.235
9 | CON-Non-relevant topic CON-Unclear relation 0.017  0.252
10 | RES-Unclear intention CON-Unclear relation 0.017  0.270

Table 7: Top-10 confusing sub-category pairs

ing among the categories related to Grice’s max-
ims that attributed to this low agreement, due to
the possible reason of subjectivity.

While we improve the categories and the la-
beling scheme to cope with the subjectivity, our
suggestion for the time being is to shrink Grice’s
maxim-related categories (in both RES and CON)
to one ‘“‘cooperativeness error” category. To sup-
port this idea, we shrank such categories and re-
calculated Fleiss’ x. As a result, we found that
the inter-annotator agreement increased to 0.358
(macro-average over the subsets). Considering
that this kappa value is bounded by that of the
main categories (i.e., 0.4), the reliability of this
classification is reasonable.

7 Summary and Future Work

We presented a taxonomy of errors in chat-
oriented dialogue systems. Through a data col-
lection of chat dialogues and analyses of dialogue
breakdowns, we created a taxonomy of errors. We
then evaluated the validity of our taxonomy from
two view points: the distribution of error cate-
gories and inter-annotator agreement. We argued
that our taxonomy is reasonable, although some
amendments are necessary. Our contributions are
that we presented the first taxonomy of errors in
chat-oriented dialogue systems and quantitatively
evaluated the taxonomy and highlighted the dif-
ficulties in mapping errors to Grice’s maxims in
such systems.

There are a number of limitations in this work.
First, the kappa is still low. We need to refine the
categories and their definitions to reduce subjec-
tivity in our classification scheme. It may also
be necessary to incorporate a multi-label scheme.
Another limitation is that the research was con-
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ducted using a single system. Although the sys-
tem we adopted had many advanced features in
terms of natural language processing, for gener-
ality, we need to verify our taxonomy using data
of other chat-oriented dialogue systems. Another
limitation is the modality considered. We only
dealt with text, whereas there are many systems
based on other modalities. The research was con-
ducted only in Japanese, which is another lim-
itation. Although we believe our approach is
language-independent, we need to verify this with
systems using other languages.

Our ultimate goal is to reduce errors in chat-
oriented dialogue systems. Although we strive to
reduce errors ourselves, since the errors concern
many aspects of conversation, we are planning to
make dialogue-breakdown detection an open chal-
lenge. To this end, we have released the data'
to the public so that researchers in the field can
test their ideas for detecting breakdowns. Al-
though there have been approaches to detecting
errors in open-domain conversation, the reported
accuracies are not that high (Xiang et al., 2014;
Higashinaka et al., 2014b). We believe our taxon-
omy will be helpful for conceptualizing the errors,
and the forthcoming challenge will encourage a
more detailed analysis of errors in chat-oriented
dialogue systems.
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Abstract

Full discourse parsing in the PDTB frame-
work is a task that has only recently been
attempted. We present the Two Tag-
gers approach, which reformulates the dis-
course parsing task as two simpler tagging
tasks: identifying the relation within each
sentence, and identifying the relation be-
tween each pair of adjacent sentences. We
then describe a system that uses two CRFs
to achieve an F1 score of 39.33, higher
than the only previously existing system,
at the full discourse parsing task. Our
results show that sequential information
is important for discourse relations, espe-
cially cross-sentence relations, and that a
simple approach to argument span identi-
fication is enough to achieve state of the
art results. We make our easy to use, easy
to extend parser publicly available.

1 Introduction

Discourse structure is an important part of what
makes a text coherent. Parts of the text are con-
nected to one another by what is known as dis-
course relations, such as causality, contrast, and
specification. Discourse parsing is the task of au-
tomatically determining the discourse structure of
a text according to a particular theory of discourse.
The ability to parse an entire document is crucial
for understanding its linguistic structure and the
intentions of its authors.

Discourse parsing is a difficult task. While
some discourse relations have explicit lexical cues
called discourse connectives or markers, such as
“because” and “but”, these are often ambiguous:
they may apply to more than one relation category,
or they may be used in a way that has nothing to
do with discourse at all. In addition, many rela-
tions are not marked by connectives in text, and
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disambiguating these implicit relations is difficult
even when it is known a relation exists. Adding
to the difficulty is the fact that the arguments of
the relation (there are usually two, although some
frameworks allow more for certain relations) do
not necessarily correspond to sentences or clauses,
and may not even be contiguous under some theo-
ries.

Over the years, multiple theories of discourse
have been proposed. Most recently, the Penn
Discourse Treebank (PDTB) (Prasad et al., 2008)
has been introduced, featuring hierarchical rela-
tion categories which generalize over other the-
ories such as Rhetorical Structure Theory (RST)
(Mann and Thompson, 1987) and SDRT (Asher
and Lascarides, 2003), as well as a relatively large
annotated corpus aligned with the WSJ section of
the Penn Treebank (PTB) (Marcus et al., 1993).
While the relation categories in PDTB are hierar-
chical, unlike RST and other frameworks, the dis-
course structure of a PDTB document is not fully
hierarchical so that documents in general do not
have a tree-like discourse structure. This is a cru-
cial detail which allows our proposed method to
work on PDTB documents.

While there has been much work recently on
disambiguating discourse relations in the PDTB,
most have not been full parsing systems. That
is, they operate in an experimental environment
where some information is given (for example,
some systems disambiguate only implicit rela-
tions, where it is assumed that the arguments of the
relation have been identified and that the relation
is known to be implicit (Pitler and Nenkova, 2009;
Park and Cardie, 2012)). Full systems, in contrast,
operate on unannotated text documents producing
the full discourse structure of the text, including
both implicit and explicit relations, and so can be
realistically used in NLP applications. Although
not strictly parsing in the case of PTDB, such sys-
tems perform what has been called the end-fo-end
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discourse parsing task. Interest in full discourse
parsing in the PDTB has been increasing, and it is
this year’s CoNLL shared task.

The only work, to our knowledge, which pro-
vides end-to-end PDTB discourse parsing is (Lin
et al.,, 2014); they use a four-stage architecture
where each stage carries out one subtask in iden-
tifying discourse relations (e.g., explicit or im-
plicit). The parser is evaluated in terms of exact
match and partial match. Unlike exact match re-
sults, which are considered correct only if both
the relation type and the exact span of its argu-
ments are identified correctly, partial match results
are correct as long as the relation type is correctly
identified and each proposed argument shares at
least one noun and verb with the true argument.
We believe that partial match results are best to
focus on at this point in time, since current per-
formance on exact match results is too low to be
useful. Many current NLP applications (such as
summarization and question answering) focus on
sentences or clauses anyway and would find this
formulation natural.

In this paper, we present a simple yet power-
ful sequential approach to PDTB discourse pars-
ing, utilizing two CRFs and features that are de-
signed to discriminate both explicit and implicit
relations. We surpass state-of-the-art performance
with a simpler structure, less hand-crafted rules for
special scenarios and with an approach that makes
adding new features extremely easy.

2 Related Work

Early data-driven work on discourse has focused
on frameworks such as RST, using the small RST
Discourse Treebank (Carlson et al., 2001). Marcu
(1997) and later Soricut and Marcu (2003) de-
veloped methods for parsing documents into the
RST discourse representation. There has also been
more recent work on end-to-end RST-style pars-
ing (LeThanh et al., 2004; duVerle and Prendinger,
2009).

Recently, there has been more focus on the
PDTB (Prasad et al., 2008), the largest annotated
discourse corpus currently in existence. Most
work so far has focused on solving specific sub-
tasks of the overall parsing task. Pitler and
Nenkova (2009) focused on explicit relations and
found that they are relatively easy to disambiguate
using syntactic features. Wellner (2009) used both
lexical and syntactic features to identify the argu-
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ments of a relation. Identifying and disambiguat-
ing implicit relations has been the hardest task to
achieve good performance at, and is an active area
of research. Pitler et al. (2009) were the first to
identify implicit relations in the PDTB in a re-
alistic setting, and later work has improved on
their methods as well as introducing new ideas
(Lin et al., 2009; Zhou et al., 2010; Park and
Cardie, 2012; Biran and McKeown, 2013; Li and
Nenkova, 2014a).

Most recently, Lin et al. (2014) have introduced
and evaluated the first system which provides
end-to-end discourse parsing over PDTB (the Lin
parser). In their work, they have combined much
of the earlier work on specific subtasks, utiliz-
ing a connective disambiguation component and
an explicit relation disambiguation component in-
spired by Pitler and Nenkova (2009)’s method, as
well as an implicit relation disambiguation com-
ponent descending from their own previous work
(Lin et al., 2009). Their approach is to decipher
the document in a structured way, in four steps:
first, identify explicit discourse connectives; sec-
ond, identify the text spans of the arguments (in
PDTB, there are always two arguments, argl and
arg2) corresponding to the connective; third, iden-
tify the type of relation between the arguments (the
third step completes the subtask of finding explicit
relations); and fourth, for every adjacent pair of
sentences, identify which type of implicit relation
- relations where there is no connective - exists be-
tween them (or, if none does, identify the relation
as EntRel - meaning the sentences share an entity
but not a relation, or NoRel - meaning they share
nothing at all). !

While the structured approach of the Lin parser
has many advantages in that it attempts to solve
the sub-tasks of discourse parsing in an organized,
intuitive way, it has some disadvantages. One is
that because of the pipeline structure, errors prop-
agate from step to step. For example, if a (truly)
implicit relation was incorrectly identified as an
explicit relation because of a false connective, the
features used by the implicit relation identifier that
may correctly discriminate its type will not get a
chance to be used.

Another disadvantage is the fact that in the

"There is also a fifth step, identifying spans that attribute
a statement to a source, e.g. “B.P. explains that ...”. Attri-
bution span detection is a secondary task which is evaluated
separately from the main discourse structure pipeline, and we

are not concerned with it here.



structured approach, potential relations are consid-
ered individually, although adjacent relations can
intuitively be indicators of the relation type.

Finally, building such a system requires signifi-
cant design and engineering, and making changes
that are not localized to a specific component can
be difficult and time-consuming. At this point in
time, when work on discourse parsing in PDTB is
at its early stage, a more flexible and easily exten-
sible approach would be beneficial to the commu-
nity.

3 Method

PDTB discourse relations can be seen as a triple:
relation type, argument 1 and argument 2. While
in principle, the discourse structure theory of
PDTB allows for the two arguments of a discourse
relation to be located anywhere, in practice 92.9%
of the relations annotated either a) are wholly con-
tained in a single sentence, or b) span two adjacent
sentences, with each argument contained in one of
the sentences.”

Given this information, and the intuition that
the structure of the document as a whole (in par-
ticular, the sequence of discourse relations) can
be useful for determining the type of a relation,
we reformulate the task of parsing the PDTB dis-
course relations as the combination of two tagging
tasks. For each document, we separately tag the
sequence of sentences for intra-sentence relations,
and the sequence of adjacent sentence pairs for
cross-sentence relations. While intra-sentence re-
lations are always explicit, adjacent sentence re-
lations may be explicit, implicit, or fall into the
PDTB’s AltLex or EntRel categories. Unlike pre-
vious work, we use a single method to disam-
biguate all adjacent sentence relations. We call
this approach to discourse parsing the Two Taggers
approach.

As a result, we have a sequence of sentences,
each tagged with the relation that exists within it
and each adjacent pair tagged with the relation that
exists between them. In order to transform this
structure to a full discourse parse, we must also
identify the arguments and their spans. Since our
goal is a simpler system and our focus is on par-
tial match results, we avoid using a complicated
syntactic rule system for each possible scenario

21t should be noted that by the definition given in the an-
notation manual, all implicit relations in PDTB exist between
arguments contained within two adjacent sentences.
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in favor of a few simple rules. For adjacent sen-
tence relations, we mark argl as being the entire
first sentence and arg2 as being the entire second
sentence (under partial match, this turns out to be
correct in all but 0.002% of relations in the train-
ing set). For single-sentence relations, we distin-
guish among two cases: if the first word of the sen-
tence is an intra-sentence initial connective® then
we identify arg2 from the beginning of the sen-
tence until the end of the first VP, and argl from
there to the end of the sentence. Otherwise we
identify argl from the beginning of the sentence to
the middle connective (if there are more than one)
and arg2 from there to the end of the sentence.
While this approach ignores many complexities of
the true argument structure of PDTB (for example,
arguments may be nested, and a sentence may in-
clude text that is not inside an argument), it works
well for partial match. In fact, as we show in our
evaluation, it is also not too far behind the state of
the art on a slightly more lenient version of exact
match. We use Pitler and Nenkova (2009)’s high
performing connective classifier (F1 above 95) to
distinguish discourse connectives from their non-
discourse counterparts.

The PDTB relation categories are hierarchi-
cal, and we are interested in finding the fype,
or second-level categories, of which there are 16
(plus EntRel and NoRel, for a total of 18). The
first level (the class, of which there are 4) is too
coarse to be useful for many applications, and the
third level (the subtype, of which there are 25)
is too fine-grained and difficult to disambiguate.
Table 1 shows the hierarchy of 4 classes and 16
types. The Lin parser also deals with type-level
categories, but almost all other previous work has
focused on the significantly easier class-level cat-
egories.

Treating discourse parsing as a tagging prob-
lem has many advantages. Tagging tasks have
been widely explored in NLP and there are many
off-the-shelf tools and methods for tackling them.
Many generic taggers that can be applied to
this task with minimal effort are available to re-
searchers, while generic parsers do no exist. Tag-
ging is a simpler and often more tractable task than
parsing, and it can be done using sequential clas-
sifiers, which are both fast and powerful.

There are also some limitations to the tagging

3After, although, as, because, before, except, if, since,

though, unless, until, when, whereas, and while (as well as
variations such as if and when).



approach. As mentioned earlier, some rare rela-
tions span more than two sentences, or sentences
that are not adjacent. In addition, there are (also
rare) situations where there are multiple relations
in a single sentence, and with our approach we
can at most tag one correctly. Because of these
two limitations, we have an upper bound on F-
measure performance of 89.4 in the PDTB cor-
pus. Since current state-of-the-art performance is
far below this level, we do not view this as an ur-
gent problem. At any rate, additional specialized
approaches can be added to correctly handle those
rare cases.

In this paper, we use Conditional Random
Fields (CRFs) for both taggers. CRFs were first
introduced by Lafferty et al. (2001) and have
been successfully used for many NLP tagging
tasks such as named entity recognition (McCal-
lum and Li, 2003) and shallow parsing (Sha and
Pereira, 2003). We use simple linear-chain CRFs
for both taggers. In the linear-chain CRF model,
the posterior probabilities for an ordered sequence
input x {w1,..., 2y} of tag labels y

K

{y1,..., Yz} are defined as
(Z qu)k(yilax)>
k=1

where 60}, are weights corresponding to the features
®;.. The feature values at index ¢ of the sequence
may be computed based on the previous tag in
the sequence y;—1 and the entire sequence x. The
weights ), are estimated using gradient descent to
maximize the likelihood of the input.

In our formulation, each x is a PDTB docu-
ment, consisting of a sequence of sentences (for
the intra-sentence relation tagger) or a sequence
of sentence pairs (for the adjacent sentence rela-
tion tagger). y consists of all type-level discourse
relation categories.

In our experiments, we used a maximum like-
lihood prior and limited the gradient descent to a
maximum of 200 epochs instead of waiting for it
to converge.

While CRFs have been used in the past for sub-
tasks of RST discourse parsing (Feng and Hirst,
2014) and for finding the arguments of explicit re-
lations in PDTB (Ghosh et al., 2011), no sequen-
tial approaches have ever been used in a way that
models the sequential dependency between PDTB
relations. Previous work (Pitler et al., 2009; Zhou

|z|

P(ylx) H exp

=1
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’ Class (Level 1) ‘ Type (Level 2) ‘

Comparison

Concession

Contrast

Pragmatic Concession
Pragmatic Contrast
Cause

Condition
Pragmatic Cause
Pragmatic Condition
Alternative
Conjunction
Exception
Instantiation

List

Restatement
Asynchronous
Synchrony

Contingency

Expansion

Temporal

Table 1: The PTDB relation category hierarchy,
with level 1 classes and level 2 types. The level 3
subtypes are not shown

et al., 2010) has utilized features that consider ad-
jacent lexical information in relation type classi-
fication, but true sequential or joint classifications
have not been attempted.

4 Features

4.1 Intra-sentence tagger

The intra-sentence tagger deals only with explicit
relations, and as such focuses on features related to
discourse connectives. We use Pitler and Nenkova
(2009)’s connective classifier to identify discourse
connectives within the sentence, and for each con-
nective generate the following binary features:

e Connective
Previous word + connective

Connective + next word

Connective’s syntactic category

Parent’s category

Left sibling’s category

Right sibling’s category

Path to root

Compressed path to root



All of which are features used in explicit rela-
tion detection by Pitler and Nenkova (2009) or by
Lin et al. (2014).

4.2 Adjacent sentence tagger

The adjacent sentence tagger utilizes a larger vari-
ety of features, designed to disambiguate relations
across sentences that may be explicit, implicit, Al-
tLex or EntRel.

We divide the features into four thematic types:
lexical, connective-related, syntactic and struc-
tural features.

4.2.1 Lexical features

Lexical features are based on the surface lexical
terms of the sentence pair.

In addition to unigrams and bigrams, we make
use of word pair similarity features, the set of
features described in Biran and McKeown (2013),
which utilize sets of word pairs that were mined
from unannotated corpora around each discourse
connective. The word pair scores within the set
are given by TF*IDF and treated as a vector. The
feature value is the cosine similarity of the con-
nective’s vector to the vector of word pairs ex-
tracted from the pair of adjacent sentences, where
each pair contains one word from each sentence.
It models the similarity of the sentence pair to
a sentence where the connective is used directly,
and is intended to help in identifying implicit re-
lations. We also add a variation on these features:
the word pair similarity average for connective
pair, where we get the similarities of the adjacent
sentence pair to the word pair sets of a couple of
connectives (we use every possible combination of
two connectives) and use the average as the fea-
ture value. The idea is that if two connectives are
related to the same relation type, a high average
similarity to both may be a stronger indicator for
that relation.

We also utilize a simplistic form of topic cen-
trality. Centrality in document is the cosine sim-
ilarity of the sentence pair to the document as a
whole. The intuition is that certain relations (e.g.,
argumentative relations such as causality and con-
cession) would tend to be more common around
the main topic of the document.

Finally, we include features for words that are
shared by both sentences called expanded shared
words - expanded because we use WordNet (Fell-
baum, 1998) to expand the usual list of words in

each sentence with all synonyms and immediate
hypernyms of each word’s most frequent sense.

4.2.2 Connective features

For each sentence separately, we find all connec-
tives (using Pitler and Nenkova (2009)’s connec-
tive classifier), and use the connective itself as a
feature, as well as the previous word and the con-
nective, which includes cases where the previous
word is the implicit [START] (when the connec-
tive is the first word of the sentence). These fea-
tures are mainly useful for disambiguating cross-
sentence explicit relations.

4.2.3 Syntactic features

Syntactic features are derived from the parse tree
of the sentence. We use the Stanford Parser (Klein
and Manning, 2003) to derive the trees. Unlike
much previous work, we do not use the gold parse
trees of the PTB.

Lin et al. (2009) introduced the production rule
features, which are some of the strongest for im-
plicit relation disambiguation. Production rules
are all parent-children relations in the constituent
parse of a sentence, e.g. [VP — NP PP NP]. The
binary feature formulation includes the existence
of each rule in argl, in arg2, and in both. Li
and Nenkova (2014b) hypothesized that produc-
tion rules are too sparse, and found that using their
production stick features achieved higher perfor-
mance. Unlike a production rule, which relates
to all children of a parent, a production stick is
a parent-single child relation. We experimented
with both feature sets, and found that we achieve
the best performance with a novel middle-ground
formulation. Production angles are a family
of features indicating the appearance of syntac-
tic triples: a parent and two adjacent children. In
cases where a parent has only one child, as in the
lexical leaf nodes of the tree, we produce a stick-
like feature (e.g. [NP — resources]. The triples
are formed using the label of each node and the de-
scendant directionality. We use features for angles
in each sentence separately, as well as for angles
that are shared by both.

4.2.4 Structural features

Structural features are related to the structure of
the document. One intuitively important feature
is the paragraph split feature which indicates
whether the pair is split across two paragraphs or
not. We also use a binary feature that specifies
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whether the sentence pair is in a short document
(three sentences or less).

4.3 Sequential features

Sequential features are the transitional features
that consider the previous tag in the sequence. The
same sequential features are used in both taggers.
We use two basic pieces of information from
the previous tag: the previous tag type is the
type (second-level relation category) of the previ-
ous tag, while the previous tag class is the class
(first-level relation category) of the previous tag.

5 Evaluation

Following Lin et al. (2014) and other previous
work, we use sections 2-21 of the PDTB as the
training set, section 22 as the development set, and
section 23 as the test set. Since we use an auto-
matic parser for our syntactic features, our results
are equivalent to Lin et al.’s “Partial, Auto + EP”
overall results for partial match, and to their “Ex-
act, Auto + EP” results for exact match. We con-
sider the results using gold standard parses to be
less important for an end-to-end system, the main
function of which is an out of the box document
parsing tool. The evaluation metric in all experi-
ments, following Lin et al., is the micro-averaged
F1 score.

We show our final partial match results on the
test set in Table 2, compared with the Lin Parser
performance. We also compare our approach with
the results achieved by using the exact same for-
mulation and features (other than the sequential
features, of course) in two Logistic Regression
classifiers, to show that the sequential approach is
in fact helpful. To illustrate the effect of our sim-
plistic argument span identification rules, we also
show results without span matching, where argu-
ment spans are presumed to always partially match
if the sentence/sentences and relation type are cor-
rectly identified.

The results of each tagger individually are
shown in Table 3. Note that the overall results
are compared against all true relations in the doc-
ument, including those that our method inherently
cannot identify (hence the upper bound), while the
individual tagger results are only in the context of
the individual tagging task. This is why the recall
of the end-to-end results is smaller than the recall
of either of the individual taggers.

While we are focused on partial match results,
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’ H Prec. ‘ Recall ‘ F1 ‘

Two classifiers 46.12 | 31.68 | 37.56
Lin Parser 38.18

| Two Taggers | 4852 | 33.06 | 39.33 |
No span matching || 48.72 | 33.32 | 39.57
Upper bound 100 80.82 | 89.40

Table 2: Partial match results on all relations in
the PDTB. The Lin parser paper does not report
precision and recall

H Prec. \ Recall \ F1 ‘

Intra-sent. tagger 66.36 | 49.82 | 56.91
Intra-sent. classifier || 66.19 | 48.77 | 56.16
Adj. sent. tagger 40.31 | 36.53 | 38.33
Adj. sent. classifier || 37.13 | 34.21 | 35.61

Table 3: Results for each of the two taggers sepa-
rately

we also show exact match results in Table 4. In
error analysis we noticed that many of our errors
on exact match arise because we include in the
span another discourse connective, or an initial
word like “Eventually” or “Admittedly” in a non-
discourse usage. We therefore include another set
of results we call “almost-exact match” which al-
lows a match if there is at most one word at the be-
ginning or the end of the span that does not match.
Using this less strict definition, we reach a per-
formance that comes close to the Lin parser exact
match results.

To emphasize how much harder it is to iden-
tify the level 2 relation types than it is to identify
the level 1 classes, we also provide results on the
class-level discourse parsing task in Table 5.

5.1 Discussion

As seen in Table 2, we achieve higher performance
than the Lin parser on partial match results. This is
despite the fact that we use fewer manually-crafted

H Prec. ‘ Recall ‘ F1

2T exact match 14.47 | 5.93 8.41
2T almost-exact match || 29.61 | 14.75 | 19.69
Lin Parser 20.64

Table 4: Exact match results on all relations in the
PDTB. The Lin parser paper does not report pre-
cision and recall



’ H Prec. ‘ Recall ‘ F1 ‘
| Two Taggers || 62.56 | 443 | 51.87 |
| Upper bound || 100 | 80.82 | 89.40 |

Table 5: Results for the same task when using the
level 1 classes instead of the level 2 type relation
categories

rules and do not rely on a complex argument span
identification component. Moreover, the two tag-
gers are clearly stronger than two classifiers with
identical features, especially for the adjacent sen-
tence task, which shows that there is value to the
sequential approach.

It is clear from Table 3 that identifying rela-
tions in adjacent sentence pairs is a more diffi-
cult task than identifying them inside a single sen-
tence. This makes sense because single sentence
relations are always explicit in the PDTB while
most adjacent sentence relations are implicit. It
is well established that implicit relations are much
harder to disambiguate than explicit ones. While
we cannot provide an evaluation for implicit re-
lations only - it is not clear how to fairly define
false positives since we tag the entire document
without differentiating between explicit and im-
plicit relations - we can provide a lower bound
for our performance by using only implicit rela-
tions to collect the true positives and false nega-
tives, and all tagged relations to collect false posi-
tives. Our lower bound F-measure for implicit re-
lations is 28.32.% In the Lin parser, the F-measure
performance of the implicit relation classifier is
25.46, while the explicit relation classifier has an
F-measure over 80. These numbers imply that
our method is especially advantageous for implicit
relations, while explicit relations may be harder
to disambiguate without the specialized argument
location/span identification step taken by the Lin
parser. In addition, the relations that our approach
inherently cannot handle are all explicit.

It is interesting to note that the difference be-
tween the taggers and the classifiers is much larger
for the adjacent sentence pairs, meaning that the
sequential features are very strong in the adjacent
sentences tagger. This may indicate that intra-
sentence relations are more “stand-alone” in na-
ture while inter-sentence relations are more con-
nected with the rest of the document. This re-

“Precision is 28.02 and recall is 28.63.
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sult, and the fact that our performance on intra-
sentence relations are not as high as previous re-
sults on explicit relations, suggest that one promis-
ing path for future work is the combination of a
more structured intra-sentence explicit relation ap-
proach (one that would, among other advantages,
allow finding multiple relations within the same
sentence) with a sequential adjacent-sentence ap-
proach. Our performance suggests that this sep-
aration (intra-sentence and adjacent sentence) in
methodology, which allows a sequential view, may
in some cases be more useful than the traditional
explicit vs. implicit separation.

Our approach beats state-of-the-art perfor-
mance using partial match, which is the natural
evaluation to use at this point in time given exact
match performance (this view has been expressed
by Lin et al. (2014) as well). While we do not
achieve the same results on exact match, which
is to be expected given our very simple approach
to argument span identification, Table 4 shows
that we come very close if a slightly less restric-
tive evaluation is used. This reaffirms the conclu-
sion that exact match is a very difficult task: even
with complex hand-crafted syntactic rules, cor-
rectly identified spans are relatively simple cases
which can also be identified (if a single word error
is allowed) by a much simpler method.

Table 5 illustrates how much harder the type-
level parsing task is than the class-level parsing
task. While it is possible that the class-level pars-
ing can be useful for some downstream applica-
tions, we believe that the more granular type-level
parsing is a better choice for properly understand-
ing a document’s discourse structure.

6 Conclusion and Future Work

We presented a reformulation of the PTDB dis-
course parsing task as two simple tagging tasks.
This formulation makes it easier to approach the
task and can be used as a convenient way to eval-
uate new ideas and features as they arise. Us-
ing chain-CRFs to implement this approach, we
surpass state-of-the-art performance at the overall
parsing task. While we used some of the strongest
features that have shown up in the literature in this
evaluation, there are many immediate candidate
methods for improving the results, such as adding
more specific features for the various grammati-
cal classes of explicit connectives described in the
PDTB.



Our results show that treating the task as se-
quential is useful. One interesting direction for
continuing this research is to transform the two
tagging tasks into two joint prediction tasks, and
perhaps eventually into one joint prediction task.

While we build on previous work in defining
our features, we also introduced some novel varia-
tions. We have defined the production angles fam-
ily of features, which are related to the production
rules of Lin et al. (2009) and the production sticks
of Li and Nenkova (2014b). We also contribute
to the word pair features line of research, which
started with Marcu and Echihabi (2002) and has
been part of most work on implicit relation disam-
biguation since, with our variations on the dense
word pair similarity features introduced by Bi-
ran and McKeown (2013). Our expanded shared
words features are also novel.

Our main aim in this paper was to show that
experiments with discourse parsing can be done
fairly easily using one of the many freely avail-
able sequential models. We hope that this method
will make the task more accessible to researchers
and help in moving towards a fully statistical and
holistic approach to discourse parsing. The parser
described in this paper is publicly available at
www.cs.columbia.edu/~orb.
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Abstract

We explore different evaluation methods
for 4 different synthetic voices and 1 hu-
man voice. We investigate whether in-
telligibility, naturalness, or likability of a
voice is correlated to the voice’s evoca-
tive function potential, a measure of the
voice’s ability to evoke an intended reac-
tion from the listener. We also investigate
the extent to which naturalness and lika-
bility ratings vary depending on whether
or not exposure to a voice is extended
and continuous vs. short-term and spo-
radic (interleaved with other voices). Fi-
nally, we show that an automatic test can
replace the standard intelligibility tests for
text-to-speech (TTS) systems, which elim-
inates the need to hire humans to perform
transcription tasks saving both time and
money.

1 Introduction

Currently there are a wealth of choices for which
output voice to use for a spoken dialogue system.
If the set of prompts is fixed and small, one can use
a human voice actor. If a wider variety and/or dy-
namic utterances are needed, then text-to-speech
synthesis (TTS) is a better solution. There are
high quality commercial solutions as well as toolk-
its for building voices. While many of these are
getting better, none are completely natural, espe-
cially when it comes to emotional and conversa-
tional speech. It can be difficult to decide which
voice to choose for a specific system, given mul-
tiple criteria, and also since TTS evaluation is a
labor-intensive process, without good automated
understudies.

In this paper, we perform a comparative eval-
uation of several natural and synthetic voices us-
ing several different criteria, including subjective
ratings and objective task measures. In particular,

we compare the relationship of a voice’s evocative
function potential, a measure of the voice’s ability
to evoke an intended reaction from the listener, to
the voice’s intelligibility and to the listener’s per-
ception of the voice’s naturalness and likability.

Our first hypothesis is that voice quality is
a multi-dimensional construct, and that the best
voice for some purposes may not be the best for all
purposes. There may be different aspects that gov-
ern subjective perceptions of a voice and objec-
tive task performance, and different aspects may
facilitate different tasks. For example, a neutral
highly intelligible voice may be perfect for a sys-
tem that provides information but very unpleasant
for a story-telling system that is trying to express
strong emotion.

Our second hypothesis is that naturalness and
likability perceptions of a voice may depend on
whether or not the user’s exposure to a voice is
extended and continuous vs. short-term and spo-
radic (interleaved with other voices). The current
practice in speech synthesis evaluation is to ask
human raters to rate isolated audio clips, usually
in terms of naturalness and intelligibility (Fraser
and King, 2007; Karaiskos et al., 2008), without
extended exposure to a voice. This approach can
certainly inform us about the general quality of a
synthetic voice; but it cannot necessarily provide
any insight about the appropriateness of this voice
for a task that requires that the listener be exposed
to that voice for a considerable amount of time.
Furthermore, as the environments where these di-
alogue systems are deployed become increasingly
immersive involving multiple agents, e.g., virtual
and augmented reality environments, it becomes
critical to determine how subjective perceptions of
a voice change if voice exposure is sporadic and

interleaved with other voices!.

"From now on, we will assume that sporadic voice expo-
sure implies that the user is exposed to multiple voices inter-
leaved.
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Noting that it is not always feasible to evalu-
ate a voice in the context of a full dialogue task
we seek to determine whether results from stan-
dard voice evaluation experiments can act as a
valid proxy for results from experiments that fea-
ture voice evaluation in a manner that more closely
approximates the full dialogue task. Taking this
idea one step further, we explore whether or not
standard TTS evaluation tests such as transcrip-
tion tasks (designed to assess the intelligibility of a
voice) can be fully automated by using automatic
speech recognition (ASR) output rather than man-
ual transcriptions.

To test our hypotheses we perform 5 experi-
ments using 4 synthetic voices (covering a range
of speech synthesis techniques) and 1 human
voice. Each experiment is defined by a unique
set of stimuli, subjects, and measures. In the first
two experiments, we perform standard speech syn-
thesis evaluation, i.e., human raters rate isolated
audio clips with regard to naturalness in one ex-
periment and likability in the other experiment
(each rater has short-term sporadic exposure to the
voices). Experiments 3 and 4 are intelligibility ex-
periments; in one, participants transcribe the utter-
ances that they hear; in the other, we send audio
files through an ASR engine. The fifth experiment
is conducted in the context of a guessing game
with extended continuous naturalness and likabil-
ity ratings collected from participants. The evoca-
tive intention of an utterance is the behavior of
the addressee that a speaker intends to evoke (All-
wood, 1976; Allwood, 1995). In the case of the
guessing game, a clue is given to evoke the ex-
pression of a target word. We ascertain a voice’s
evocative function potential (EVP) by calculating
the ratio of targets that a clue evokes from listen-
ers. Each participant listens to many consecutive
clues uttered with the same voice (extended con-
tinuous exposure). Our participants are recruited
using the Amazon Mechanical Turk (AMT) ser-
vice? in the same fashion as in (Wolters et al.,
2010; Georgila et al., 2012). To the best of our
knowledge, our work is the first to systemati-
cally attempt to validate or disprove the hypothe-
ses mentioned above, and compare the results of
human transcriptions to ASR results in order to de-
termine whether or not the latter can be used as an
automatic intelligibility test for TTS system eval-
uations. This is also a first important step towards

https://www.mturk.com

speech synthesis evaluation in a full dialogue con-
text. Finally, this is the first time that a systematic
evaluation is conducted on a voice’s EVP.

The rest of the paper is organized as follows.
First, we discuss previous work in Section 2 on
TTS system evaluations. In Section 3 we present
the voices that we use as well as meta-data about
the clues that the voices spoke. In Section 4 we
delineate the experiment methodology, and in Sec-
tion 5 we report the results of our experiments and
some inferences we can draw from them. Finally,
Section 6 concludes.

2 Previous Work

Our ultimate goal is to evaluate synthetic voices
in the context of a full interaction with a dia-
logue system, and analysis of the effects of ex-
tended/continuous vs. short-term/sporadic expo-
sure of a listener to a voice is a first important
step towards this goal. There has been some work
on comparing the effect of synthetic vs. human
speech on the interaction with a dialogue system,
e.g., a virtual patient dialogue system (Dicker-
son et al., 2006) and an intelligent tutoring dia-
logue system (Forbes-Riley et al., 2006), but none
of these studies has compared a large variety of
voices or conditions, e.g., length and content of
utterances, etc.

Recently, Georgila et al. (2012) performed a
systematic evaluation of human and synthetic
voices with regard to naturalness, conversational
aspect, and likability. They also varied the type
(in- vs. out-of-domain), length, and content of ut-
terances, and took into account the age and native
language of raters as well as their familiarity with
speech synthesis. However, this study was based
on the standard speech synthesis evaluation.

3 Data
3.1 Materials

Our experiments use 4 different synthetic voices
and 1 human voice, all male, with standard Amer-
ican accents.

e Human voice (HUM): The audio clips were
recorded by the first author using a high-
quality microphone with noise cancellation
features. The resulting audio clips were very
clear, almost studio-quality.

o Commercial voice 1 (US1): This is a high-
quality commercial stylized voice based on



Table 1: Example Clues

Clue Type Source Target Word
“an explosive dCYICG fuse'd.to efplode Definition WordNet Bomb
under specific conditions
“a blank to talk too much” Example Usage | Dictionary.com Tendency
“taxi” Word Relation Human Cab
“a mixture containing two or more blank
elements or blank and nonblaflk elements Definition WordNet Metal
usually fused together or dissolving
into each other when molten”
“elephants may look alike to you and me,
but the shapes of their blank flaps and their | Example Usage | Dictionary.com Ear
tusks set them apart”
“um not video but” Word Relation Human Audio

Unit-Selection (Hunt and Black, 1996; Black
and Taylor, 1997).

Commercial voice 2 (US2): This is a
high-quality commercial customized Unit-
Selection voice developed specifically for our
institute.

e Hidden Markov model -based voice (HMM):
This voice is based on HMM synthesis (Zen
et al., 2009), in particular, speaker-adaptive
HMM-based speech synthesis (Yamagishi et
al., 2009). First an average voice was built
using the CMU ARCTIC speech databases?.
Then this average voice was adapted to the
voice characteristics of a speaker using ap-
prox. 15 minutes of speech from that speaker
(studio-quality recordings). We built this
voice using the HTS toolkit with its standard
vocoder (Zen et al., 2007).

o Lower quality voice (SAM): We used Mi-
crosoft Sam.

We measure a voice’s EVP for the guessing task
by providing clues for listeners to guess a specific
target word. We used 54 clues from a corpus of au-
tomatically and human generated clues. The ma-
terial for the automatically generated clues came
from two sources: WordNet (Miller, 1995) and
the Dictionary.com pages associated with the tar-
get word. We replaced any occurrence of the tar-
get word or inflected forms of the target word in
the clues used with the word “blank”. The human
clues were culled from the rapid dialogue game

*http://www.festvox.org/cmu_arctic/
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corpus which contains audio and video record-
ings of human pairs playing a word guessing game
(Paetzel et al., 2014). We only used clues that were
able to elicit at least one correct guess in a previ-
ous study designed to measure clue effectiveness
(Pincus et al., 2014). Some example clues used in
this experiment, their source, their type, and the
target word they intend to evoke can be found in
Table 1. Each of the 54 clues was synthesized in
each of the voices.

We categorized the 54 clues into 3 main clue
types: a definition type which provided a defini-
tion of the target word, an example usage type
which is generally a commonly used sentence that
contains the word, and a word relation type which
refers to clue types such as synonyms, hyponyms,
hypernyms, antonyms, etc. of the target word. Hu-
man clues were annotated according to this taxon-
omy (Pincus and Traum, 2014). For our analysis
we looked at cumulative statistics for the full set
of clues as well as statistics for two different par-
titions of the clue corpus; by type and by length
(> 5 words and < 5 words). The relative fre-
quency for each type of clue can be found in Ta-
ble 2; 24% or 13/54 of the clues are composed of 5
or fewer words while 76% (41/54) of the clues are
composed of more than 5 words. The average clue
length is 10.75 words and the standard deviation
of clue lengths is 7.86 words.

3.2 Participants

We crowdsourced data collection for this experi-
ment via Amazon Mechanical Turk. All Turkers
who completed the task were required to have a
90% approval rating or higher and have at least 50



approved HITs. Note that no Turker participated
in more than one of any of the experiments de-
scribed in Section 4.

Table 2: Clue Type Frequency

Relative Frequency
Clue Type (absolute #/ 54)
Definition 63% (34)
Example Usage 24% (13)
Word Relation 13% (7)
4 Method

A summary of the 5 experiments conducted in this
study, introduced in section 1, and the measures
obtained from each experiment can be found in Ta-
ble 3. The standard naturalness, likability and in-
telligibility experiments featured short-term spo-
radic exposure to the 5 voices and were designed
using the online survey software Qualtrics*. In
these experiments all participating Turkers lis-
tened to 20 audio recordings (human or synthetic
speech) of clues randomly selected from the 54
clues described previously. Each set of 20 au-
dio recordings was balanced so that the partici-
pant would listen to 4 clips per voice. The or-
der of clues and voices was randomized, i.e., there
was constant switching from one voice to another
(short-term sporadic exposure to a voice). Gener-
ally, each participant never heard a clue more than
once. Turkers were instructed to listen to an au-
dio file only once in these experiments in order to
more accurately model a normal spoken language
situation such as transcribing a lecture or simulta-
neous interpretation.

54 different Turkers participated in the standard
naturalness experiment. After listening to an au-
dio file a Turker answered the following question:
“For the utterance you just heard, how did the
voice sound?” (1=very unnatural, 2=somewhat un-
natural, 3=neither natural nor unnatural, 4=some-
what natural, 5=very natural). We will call this a
Turker’s short-term/sporadic (S/S) naturalness
measure.

54 different Turkers participated in the likabil-
ity experiment. After listening to an audio file a
Turker answered the following question: “Would
you like to have a conversation with this speaker?”
(1=definitely not, 2=maybe not, 3=cannot decide,
4=maybe yes, S=definitely yes). We will call this

*nttp://www.qualtrics.com/
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Table 3: Experiments & Obtained Measures

Experiment | Obtained Measures
1. Standard 1. Short-Term/Sporadic
Naturalness (S/S) Naturalness
2. Standard 1. Short-Term/Sporadic
Likability (S/S) Likability
3. Standard 1. Human Wrd. Err. Rate
Intelligibility | 2. Human Miss. Word %
4. ASR 1. ASR Wrd. Err. Rate
Intelligibility | 2. ASR Miss. Word %
1. Extended/Continuous
(E/C) Naturalness
5. Guessability | 2. Extended/Continuous
(E/C) Likability
3. Guessability

a Turker’s short-term/sporadic (S/S) likability
measure.

The standard intelligibility experiment was de-
signed as a transcription task. 55 Turkers listened
to audio recordings of the clues described previ-
ously and then wrote into a text box what they
heard. 6 of the 55 Turkers’ transcription results
were discarded; 2 Turkers did not appear to make
a best effort and 4 misread the instructions and
provided guesses for the clues they heard rather
than transcribing the audio. We compared the
transcriptions with the actual text of the clue that
was synthesized or recorded (reference). In or-
der to compare the results of this intelligibility ex-
periment with the results from an automatic test
of intelligibility (ASR intelligibility experiment)
we send the 54 audio recordings of each clue for
each voice through the Google Chrome ASR’. For
both standard and ASR intelligibility, we calcu-
lated word error rate (WER) (Equation 1), and
the percentage of words contained in the reference
but not in the target transcription (missing word
%).

__ Subs. + Delets. + Inserts.

ER =
WER # Of Words In Reference

€]

A web application was developed for the guess-
ability experiment, and Turkers were redirected to
this application from the AMT site to participate
in the experiment. Each Turker in the guessing ex-
periment had extended continuous exposure to 3
of the 5 voices, listening to 18 clues in each voice,
for a total of 54 clues. We collected a full set of 54

Shttps://www.google.com/intl/en/chrome/
demos/speech.html



recordings from 59 different Turkers and almost
a full set (53/54) recordings from a 60th Turker
(who failed to make a guess for the last clue).
Note that many more Turkers attempted the exper-
iment but failed to finish for unknown reasons. We
do not consider this partially collected data except
for the 60th Turker’s data just mentioned. Turkers
heard only one instance of each clue. The order of
voices was balanced (there are 60 permutations of
the voices possible with our experimental set up;
so each Turker heard 3 voices in a unique order),
but clues were presented in a fixed order. Each
Turker, when listening to a clue, was instructed to
make as many guesses as he could before a pop-
up alert appeared (six seconds later), indicating
that recording had ended and revealing the target
word. After each clue the Turker was asked to
rate the naturalness of the voice he had just heard
on a Likert scale as in the previously described
experiments except the word “clue” replaced the
word “utterance” in the question. The average of
these 18 naturalness scores for each Turker will
be called a Turker’s extended/continuous (E/C)
naturalness score. After each set of 18 clues with
the same voice, the Turker was asked whether or
not he would like to have a conversation with the
speaker the Turker had just been exposed to for the
last 18 clues (same question as in the previously
described likability experiment). We will call this
a Turker’s extended/continuous (E/C) likability
score.

We annotated the 60 sets of audio recordings
(3,239 audio files) of Turkers’ guesses for whether
or not the recording contained a correct guess. An
audio recording was annotated as correct if it con-
tained a guess composed of the target word or an
inflected form of the target word for the previously
spoken clue. We define a guessability score for a
voice as the percentage of correctly guessed clues
out of the total number of clues played to partici-
pants with that voice.

All the likability and naturalness measures we
categorize as subjective measures while the intel-
ligibility and guessability measures we categorize
as objective measures.

5 Results

This section contains the results of our experi-
ments including the S/S and E/C naturalness rat-
ings in Table 4, and the S/S and E/C likability
ratings in Table 5, and all the objective measures
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in Table 6. The general ranking of the voices
across the various subjective and objective dimen-
sions measured were (starting with the highest
ranking voice and proceeding in decreasing or-
der): human (HUM), commercial (US1), commer-
cial (US2), hidden Markov model (HMM), lower
quality voice (SAM). We will refer to this as the
standard order. The existence of a standard or-
der indicates that we did not find good evidence
to support hypothesis 1. At first glance any mea-
sure is a good proxy for another measure; however
there are some exceptions. If there is a statistically
significant exception we will explicitly mention it.
A marking of “***” by a measure in one of the
three tables indicates that the difference between
that measure with the measure for the next ranked
voice is highly significant (p<.001)°. A marking
of “**” by a measure in one of the three tables
indicates that the difference between that measure
with the measure for the next ranked voice is sig-
nificant (p<.01). Finally, a marking of # by a
measure in one of the three tables indicates that
the difference between that measure and the voice
ranked 2 below is significant (p<.01).

5.1 Subjective & Objective Measures

Table 4: S/S & E/C Naturalness Means

Voice S/S E/C

Naturalness Avg. | Naturalness Avg.
HUM 4.15%%* 4.59%%*
US1 3.03%#%* 3.48%%*
uUS2 2.92%*% 2.04%*%
HMM 2.04%*% 1.83%*%%*
SAM 1.81 1.57

Table 5: S/S & E/C Likability Means

Voice S/S E/C
Likability Avg. | Likability Avg.
HUM 3.78% 4.17%%
USI 3.63 %k 3.36%%*
US2 2.66%%% 1.69
HMM 1.81 1.53
SAM 1.72 1.35

The voices follow the standard order for both
S/S and E/C mean naturalness, and all pair-wise

SStatistical tests conducted were paired or unpaired t-tests
(based on the relationship of the data sets tested) with the use
(if needed) of the Holm - Bonferroni method to counteract
the issue of multiple comparisons.



Table 6: Objective Measure Means

Voice | Guessability Human Human ASR ASR
Word Err. Rate | Missing Word % | Word Err. Rate | Missing Word %
HUM 57.10%" 18.35% * 15.64%" 5.41%%** 5.24%%**
US1 59.72%%* 23.31%%*** 20.53%*** 6.11%" 4.54%"
uUS2 50.39%" 29.65%" 25.18%" 21.82%** 18.5%**
HMM 46.45% 29.329p*** 25.449p%** 13.26%" 10.3%"
SAM 42.44% 35.43% 32.36% 28.27% 24.78%

comparisons for both S/S and E/C show differ-
ences in means that were highly statistically sig-
nificant. This indicates that synthetic voices, at
least the ones tested, have still not reached human-
level naturalness. There were no significant vio-
lations to this pattern in various subsets of clues
tested. The S/S and E/C likability scores can be
found in Table 5 for all clues. Again, both mea-
sures follow the standard order. It is interesting
that the US1 and HUM voices do not have a sig-
nificant difference in their S/S likability but do for
their E/C likability (p = 0.008). In terms of natu-
ralness and likability we believe the HMM scored
low due to the fact that it was not trained on a large
amount of data (only 15 minutes of speech was
used for adaptation) and also the fact that it did not
use a more advanced vocoder such as STRAIGHT
(Speech Transformation and Representation using
Adaptive Interpolation of weiGHTed spectrum)
(Kawahara, 1997). Overall, this data suggests that
synthetic voices are catching up faster in the lik-
ability dimension to HUM voices than in the nat-
uralness dimension, although an experiment with
more human voices is needed for more evidence
of this trend.

For standard intelligibility results the standard
order is followed for both WER and missing word
%. The HUM voice performs best although its per-
formance over US1 is not significant, demonstrat-
ing that synthetic voices are able to match human
voices in intelligibility measures. We see from
Table 6 that the overall intelligibility of US2 and
HMM is comparable. However, the HMM voice
outperformed US2 significantly (WER : p
0.002, missing word % : p = 0.017) on ex-
ample usage clues. Noting that the HMM voice
extended the pronunciation of the word “blank”
(which appeared in almost all of the example us-
age clues) this could provide some support for
a hypothesis that unnatural sounding words re-
mained in the listeners’ short-term memory more
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readily. However, further experiments are needed
to verify whether or not this is just an aberration.
For the ASR intelligibility results although the
standard order was violated, HMM outperformed
US2 for both WER and missing word % and US1
outperformed HUM for missing word %, these de-
viations were not significant. Overall, the intelli-
gibility results indicate that Google Chrome ASR
is much better than real-time Turkers at the tran-
scription task (where Turkers have only a single
opportunity to hear the audio).

In the guessability dimension the standard or-
der is violated because US1 outperformed HUM
there but we draw no conclusions from this as it is
not a statistically significant difference. The per-
formance of US1 for guessability is significantly
(p = 0.001) better than US2 but has compara-
ble performance to the HUM voice indicating that
synthetic voices have reached an EVP approach-
ing human level for the clue guessing task. One
hypothesis on why US2 has significantly worse
guessability than US1 and HUM is that although
US2 is a high-quality voice, more effort has been
put in making this voice expressive rather than
making sure that all phonetic units are fully cov-
ered in all possible contexts. In terms of the guess-
ability for the various sub-groups of clues it ap-
pears all voices are performing much better for
long clues except for HUM which has similar per-
formance for both long and short clues. SAM is
particularly bad for short clues, with guessability
33.3% (compared to 45.3% for long clues).

These results indicate that if one is concerned
with the subjective perception of the system car-
rying out the task or its intelligibility rather than
only the task performance measure then HUM is
the undeniable best voice. However, if one is only
concerned with maximizing the EVP of a dialogue
system then US1 might be the preferred choice; as
it eliminates the need for human recordings.




5.2 Time/Continuity-Exposure

In order to determine if time/continuity of voice
exposure is an important variable in determining
people’s subjective evaluations of a voice (note
that hypothesis 2 was that this is an important
variable) we consider the difference between 3
different pairs of statistics for each voice for all
clues. The first pair of statistics we compare are
the average S/S likability scores and the average
E/C likability scores. These statistics are found
in Table 5. We see that the likability scores de-
creased for all the synthetic voices (decrease in
US2’s likability scores highly statistically signifi-
cant: p = 3.6e~%%) but increased for the human
voice (p = 0.04) . The second pair of statis-
tics we compare are the S/S naturalness scores
and the E/C naturalness scores. These statistics
are given in table 4. We see the same pattern
with S/S and E/C naturalness scores that we saw
with S/S and E/C likability scores for the 5 voices;
increasing naturalness scores for the HUM voice
and decreasing naturalness scores for the synthetic
voices. Moreover, every difference is highly sig-
nificant here (HUM : p = 3.08¢716, US1: p
1.0le™2, US2 : p = 6.72¢733, HMM : p
0.06e72, SAM : p = 6.53¢~%).

Table 7: First vs. Last Naturalness Scores

Voice First Three Last Three
Naturalness Avg. | Naturalness Avg.

HUM 4.25 4.81*

US1 3.42 3.52

US2 2.58 1.833*

HMM 1.69 1.78

SAM 1.67 1.31

An attempt to examine whether or not time ex-
posure alone has an effect on subjective evaluation
of a voice leads us to examine a third pair of statis-
tics: comparing the average of the first three nat-
uralness scores from a Turker in the guessability
experiment to the average of the last three natu-
ralness scores (of 18 total) of the same voice (first
voice heard only). This comparison provides ev-
idence that the pattern we are discussing is not
simply due to the difference in the types of tasks
participants were asked to perform. These scores
can be found in Table 7. A “*” in the second col-
umn indicates that the corresponding increase or
decrease is statistically significant (HUM : p =
0.017,US2 : p = 0.013). Although US1’s and
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HMM’s naturalness averages increase, these in-
creases are not significant. One issue to point out
here is that the order of clues was fixed so the syn-
thetic voices might have had worse performance
on the last clues vs. the first clues.

We now note that this study has results from
two experiments where synthetic voices have a
statistically significant decrease and where a hu-
man voice has a statistically significant increase in
subjective evaluation ratings when comparing the
ratings from people who had S/S vs. E/C exposure
to the voices. These findings provide support for
hypothesis 2 indicating that extended/continuous
exposure to a synthetic voice negatively affects
subjective perception of that voice. Furthermore,
this study has shown results from one experiment
which suggests that people’s subjective percep-
tions of synthetic voices degrade over time while
their subjective perceptions of human voices im-
prove over time. Additional experiments with
more human voices and a balanced order of clues
could be conducted to provide further support for
this phenomenon.

5.3 Correlation Analysis

Table 8 presents the results of a correlation analy-
sis between guessability and the other dimensions
previously discussed. The correlation results for
guessability and the two naturalness scores do not
lead us to any clear conclusions. The only statis-
tically significant correlation is between E/C nat-
uralness, which had ratings collected after a par-
ticipant had received feedback on the correctness
of their guess (which could affect the rating), and
guessability.

Table 8: Guessability Correlations

Categories rs' | P-Value
S‘;e;sjﬁi;y & 0.122 | 0.051
gfgﬁ?&ﬁi’ & 0.31 | 0.002¢*
Stl;flsds.a&gz grror Rate -0.108 1 0.081
S/:Iausets:rallz.ﬂi\t/i]ifsing Word % 012910035

’Spearman’s Rank-Order Correlation Coefficient



Table 9: Intelligibility Correlations

Word Error Rate | Missing Word %
Voice Standard Standard
ASR ASR
Corr. (p)8(p-val) | Corr. (p)® (p-val)
HUM 0.06 (0.37) 0.07 (0.29)
US1 0.27 (1.66e~3%) 0.26 (3.97¢7%)
US2 | 0.55(1.37¢7 %) 0.58 (5.21e=23)
HMM | 0.78 (7.17¢°?) 0.74 (2.52¢=%3)
SAM 0.07 (0.29) 0.17 (0.007)

We find weak negative correlations between
guessability and both of the measures from the
standard intelligibility experiments. Note that
only the correlation between missing word % and
guessability is statistically significant. This indi-
cates that while intelligibility measures of a voice
could be useful information when evaluating a
voice’s EVP the correlation is not strong enough
to suggest that they are valid proxy measures for a
voice’s EVP. Furthermore, performing voice eval-
uation in an experiment that features the full con-
text of the system being evaluated might still be
required for precise voice evaluation results of a
dialogue system.

Table 9 shows the correlations for each voice
between the ASR intelligibility experiment results
and the standard intelligibility experiment results.
For almost all of the synthetic voices there is a
strong or somewhat strong positive correlation be-
tween the ASR intelligibility experiment results
and the standard intelligibility results that has high
statistical significance. The one exception to this
is SAM’s ASR WER which shows no significant
relationship with the human transcriptions WER.
It is also interesting that for the HUM voice the
ASR intelligibility results show basically no corre-
lation to the standard intelligibility results. Overall
though, it appears that for synthetic voices intelli-
gibility results can be obtained automatically by
sending recordings of the voice to a well-trained
ASR engine such as Google Chrome ASR; and
these should be able to predict the results from a
standard (human participant) intelligibility test.

6 Conclusion

We presented the results of an evaluation for 4
synthetic voices and 1 human voice that featured
collection of data for subjective perception mea-

8Pearson Product-Moment Correlation Coefficient
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sures as well as for objective task measures of the
voices. We demonstrated that synthetic voices do
not always have significantly lower EVP than a
human voice (USI is similar); although they do
significantly differ in subjective ratings assigned
to them by listeners. For this reason, we would
choose a human voice for a dialogue system de-
signed to evoke an intended reaction from a lis-
tener only if subjective perceptions were important
enough to the system designer to warrant the extra
cost and time of making human audio recordings.

We showed via comparison of measures of the
voice’s EVP with measures of subjective percep-
tions and intelligibility that while you cannot al-
ways use standard measures of synthetic voice
evaluation as a proxy for a new task, in deter-
mining the voice’s effectiveness at that new task,
the results from standard tests can provide use-
ful information. Some of our data led us to sug-
gest that synthetic voices’ likability and natural-
ness perceptions degrade based on time/continuity
of exposure while human voices’ likability and
naturalness perceptions improve with increasing
time/continuity. Finally, we provided evidence
that the automatic method of sending synthetic
voice audio recordings through an ASR engine
can serve as an adequate substitute for standard
(human participant) intelligibility experimental re-
sults, and that the automatic method even outper-
forms Turkers’ transcription ability (when Turkers
hear the audio only once).

Future work includes additional experiments
that will control for the order of the clues as well as
cover a wider variety of tasks. Finally, we would
like to evaluate EVP in the context of a full dia-
logue, where users can clarify and perform moves
other than guesses, and multiple clues might con-
tribute to a guess.
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Abstract

We present a dialog act annotation for Ger-
man Twitter conversations. In this paper,
we describe our annotation effort of a cor-
pus of German Twitter conversations us-
ing a full schema of 57 dialog acts, with
a moderate inter-annotator agreement of
multi-m = 0.56 for three untrained an-
notators. This translates to an agreement
of 0.76 for a minimal set of 10 broad di-
alog acts, comparable to previous work.
Based on multiple annotations, we con-
struct a merged gold standard, backing
off to broader categories when needed.
We draw conclusions wrt. the structure
of Twitter conversations and the problems
they pose for dialog act characterization.

1 Introduction

Social media and particularly Twitter have become
a central data source for natural language process-
ing methods and applications in recent years. One
issue that has not received much attention yet, is
the social or interactive nature of many posts. Of-
ten, only individual tweets are analyzed in isola-
tion, ignoring the links between posts.! However,
it is known that up to 40% of all Twitter messages
are part of conversations—(Scheffler, 2014) report
that 21.2% of all tweets in their German corpus
are replies. In this paper, we view tweets in their
original dialog context and apply a dialog anno-
tation scheme to analyze the function of Twitter
utterances. To our knowledge, this is the first at-
tempt to apply a detailed dialog act annotation to
Twitter dialogs.

We view our work as a first step in studying
the make-up of Twitter conversations. So far, not

1Usually, this is done by necessity, as Twitter data is most
commonly accessed through an API stream that provides a

random 1% of public statuses.
2really, multilogs, but we use the term broadly here
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much is known about the types of conversations
that occur there, since the focus has been on ana-
lyzing single tweets. Our guiding question is in
which way Twitter dialogs differ from the rela-
tively well-studied genres of human-human and
human-machine spoken dialogs. In this paper,
we apply dialog act annotation because it cap-
tures the functional relevance of an utterance in
context. This will enable us to answer questions
about the nature of discourse on social media,
such as whether individuals from different opinion
“camps” talk with each other, whether Twitter di-
alogs are just exchanges of opinions and emotions,
or whether true argumentation is taking place, etc.
In addition, dialog act annotations are useful for
further research on Twitter dialogs, as well as for
applications dealing with this kind of data, e.g.,
automatic analyses of conversations on different
types of topics, or simulated conversation partic-
ipants (Twitter bots). We address both practical
issues related to applying dialog act annotation to
tweets as well as theoretical implications about the
nature of (German) Twitter conversations that can
be gleaned from our annotated data.

2 Related Work

In the following, we briefly summarize the rele-
vant previous literature on dialog act annotation
for other media, and existing research on Twitter
dialogs in general.

Dialog act annotation One of the first steps to-
wards analyzing the structure of dialogs is dialog
act (DA) annotation. Dialog acts, a notion based
on Austin’s speech acts (Austin, 1975), character-
ize the dialog function of an utterance in broad
terms, independent of its individual semantic con-
tent. There is a large number of DA schemata for
conversational and task-based interactions (Core
and Allen, 1997; Bunt et al., 2010; Traum, 2000,
among many others), and these taxonomies have

Proceedings of the SIGDIAL 2015 Conference, pages 114—123,
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been applied to the construction of annotated cor-
pora of human-human dialogs such as the Map-
Task corpus (Carletta et al., 1997), Verbmobil cor-
pus (Jekat et al., 1995), or the AMI meeting cor-
pus (McCowan et al., 2005). DA taxonomies and
annotated resources have also been used in auto-
matic DA recognition efforts (Stolcke et al., 2000,
and many others). Dialog act annotation has also
been carried out for some types of social media.
(Forsyth and Martell, 2007) annotated chat mes-
sages with a custom-made schema of 15 dialog
acts, and built a dialog act recognizer. They con-
sider each turn to correspond to only one DA,
even though they note that several acts can appear
within one turn in their data. However, Twitter
conversations have only recently become of inter-
est to researchers.

Twitter conversations Twitter data is a mix of
different genres and styles. But users are gener-
ally able to reply to existing messages, produc-
ing either personal discussions or interactions with
strangers. Up to a quarter of tweets are replies to
other messages (Scheffler, 2014; Honey and Her-
ring, 2009), and due to the log-scale length dis-
tribution of conversations (most are just one tweet
+ its answer (Ritter et al., 2010)), around 40% of
tweets thus are a part of conversations.

There are few studies that analyze Twitter di-
alogs, most likely because connected conversa-
tional data cannot easily be obtained through the
Twitter API. Studies concentrate on samples based
on individual, random users (Ritter et al., 2010)
or based on frequently-updated snapshots over a
short time-scale (Honey and Herring, 2009). We
know of only two previous studies that address di-
alog acts in Twitter conversations. (Ritter et al.,
2010) train an unsupervised model of dialog acts
from Twitter data. Their system learns 8 dialog
acts that were manually inspected and received
labels such as STATUS, QUESTION, REACTION,
COMMENT, etc. They also obtain an informative
transition model between DAs from their data.

In contrast, (Zhang et al., 2011) build a super-
vised system that can classify between 5 broad
speech acts (STATEMENT, QUESTION, SUGGES-
TION, COMMENT, MIsSC), using 8613 hand-
annotated tweets to train their model. How-
ever, this work uses disconnected tweets in isola-
tion (disregarding the underlying dialog structure).
They do not report on inter-annotator agreement.
Further, both this work and (Ritter et al., 2010)
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Figure 1: Distribution of depth in long conversa-
tions. X axis shows binned depth, values = number
of conversations in the corpus.

also assume that each tweet can be characterized
by exactly one dialog act. We will show that this
is not borne out in our data.

3 Dialog Act Annotation
3.1 Corpus

For our work we use Twitter data that was col-
lected within the BMBF project Analysis of Dis-
courses in Social Media®. 1In the scope of this
project, social media data concerning the topic En-
ergiewende (energy turnaround) from Twitter and
other sources was collected during the months of
Aug-Nov, 2013. During November 11-30, Twit-
ter conversations were automatically completed by
re-crawling. Each conversation (= thread) can be
represented as a tree with the first tweet as root
node, and the edges between tweets drawn accord-
ing to the in_reply_ to_status_id field. The
thread’s length or size is the total number of tweets
in the thread, its depth is the maximum level of
embedding of a tweet (= the tree depth). Since
we assume that the dialog structure of long Twit-
ter discussions might differ from short interac-
tions (which comprise the bulk of Twitter conver-
sations), we extracted our corpus from the avail-
able data according to the two following criteria:

1. all long conversations of more than 20 tweets
and minimum depth 5;

2. arandom selection of short conversations of
4-5 tweets and arbitrary depth.

The total number of tweets is 1566, grouped in
172 dialogs. Figure 1 shows the depth distribution
of long conversations.

3http://www.social-media-analytics.org/



For 18 tweets the text is missing: either they
were deleted or they originate from a private ac-
count. To filter out non-German tweets we used
the langid (Lui and Baldwin, 2012) and Compact
Language Detection® libraries for Python 2.7, with
some manual correction. 1271 tweets were rec-
ognized as German by both packages. Further
problems with the raw and annotated data and our
cleaning steps are described in Section 4.

3.2 Schema

We based our DA annotation schema on the
general-purpose DIT++ taxonomy for dialog acts
(Bunt et al., 2010)°. Twitter conversations are
a type of human-human, non-task-oriented dia-
log. Many existing DA taxonomies are more suit-
able for task-oriented dialogs (even DIT++ has a
very limited range of non-task-oriented acts) or
for human-machine dialog. In order to reflect
the type of interactions we expected in our data,
and to reduce the difficulty of the annotation task,
we changed the DIT++ schema according to our
needs. Our adapted DA schema is shown in Fig-
ure 3 in the Appendix. In many places, the DA hi-
erarchy was simplified by removing the finest dis-
tinctions, which are either hard to judge for novice
annotators (e.g., subtypes of directives), or can be
recovered from other properties of the data (e.g.,
types of check questions). We only included DAs
from the dimensions Information Transfer, Action
Discussion, and Social, as well as selected items
from Discourse Structure Management and Com-
munication Management. Even though the dimen-
sions are in principle often independent of each
other, we instructed the annotators to assign only
the most relevant DA label to each segment.

3.3 Annotation task, annotators, tool

In recent years, crowdsourcing annotations has be-
come ever more popular in linguistics. This ap-
proach is useful for quickly creating new resources
based on newly available data (like the Twitter
conversations we use). However, dialog act seg-
mentation and labelling is a relatively complex
task that is not easily done by untrained volun-
teers. For example, the taxonomy needs to be ex-
plained and internalized, and native knowledge of
German is required. For this reason we used min-
imally trained undergraduate linguistics students

‘nttps://code.google.com/p/cld2/
*http://dit.uvt.nl
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as annotators for this study. The 36 students were
participants of a Fall 2014 seminar on Dialogs on
Twitter at the University of Potsdam, and received
instruction on dialog acts as well as an overview
of the DIT++ and other annotation schemes.

The students viewed entire conversations and
were asked to segment each tweet (if necessary)
into individual dialog acts and assign a DA la-
bel from the presented taxonomy. We used the
WebAnno framework (Yimam et al., 2013), a free,
web-based application that is especially easy to
use for novice annotators. Although there were
some technical problems with the tool (difficulty
deleting annotations, the ability of annotators to
add new labels), it was generally well-suited to the
basic span-labelling annotation we required.

Each conversation in the corpus was assigned
to three annotators, but no two annotators worked
on the exact same set of conversations. For each
annotator, WebAnno provides a token-based B-I
label format as output, which is the basis of further
analysis in this paper.

4 Annotation Validation

In this section we discuss initial steps to cleaning
the raw annotation data and an evaluation of the
quality of annotations.

4.1 Pre-processing

Before further analysis steps are possible, some
cleaning steps were necessary. Although we de-
signed the schema in a such way that tags are
unambiguous, some tokens were assigned several
tags by the same annotator. There are 122 tweets
with ambiguous annotations. Unless one annota-
tion was removed for another reason (see below),
these additional annotations were retained during
the construction of the gold standard.

In Section 3 we discussed that 1271 tweets
of 1566 were classified as German. The other
tweets were checked manually, so that only 106
tweets were deemed non-German and had to be
excluded. We rebuilt the conversations by deleting
non-German tweets, as well as all their replies (see
Figure 2). After rebuilding, 1213 German tweets
remain in the corpus.

As a second step, we standardized the annota-
tions of @-tagged user names at the start of tweets,
which mark the tweet as a reply to that user’s
tweet. Some annotators have included these @-
tags in the following dialog act, others have not
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(a) Before language cleaning.

Figure 2: Twitter conversation with non-German
tweets (in gray) before and after cleaning.

tagged these at all. We decided to delete all tags
for all user names at the start of the tweet. For this
case we introduced a new label 0, indicating that
there is no DA tag for this particular token.

The third step was to delete faulty annotations.
In the annotations we found four “dialog act”
labels that are not included in our DA schema
and had been introduced by annotators: IRONIE
(irony), NEIN (no), WURST (sausage) tags and the
O- label (Table 1).

Tags and labels | Number of tweets
O- 51

IRONIE 72

NEIN 1

WURST 3

Table 1: Odd tags

We deleted these odd tags. In some cases (e.g.,
irony), an annotator also assigned a proper label
to the token, which then remains as the sole an-
notation. In other cases, the token becomes un-
tagged (marked with 0) for this annotator, result-
ing in missing annotations.

4.2 Segmentation

In order to evaluate the quality of the annotation
and the chosen schema, we have separately deter-
mined the inter-annotator agreement for the seg-
mentation and dialog act labelling steps.

Several of the proposed methods for determin-
ing the validity of annotations are based on com-
paring two annotations with each other (i.e., one

(b) After language cleaning.
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candidate annotation with a gold standard). Even
when more annotators can be included, it is of-
ten assumed that those annotators have worked
on the same data, as for example with the popu-
lar Cohen’s k-statistic (Carletta, 1996). Instead,
we chose Fleiss’ multi-m, which measures how
consistent the assigned labels are for each item,
without regard to which annotator gave the label
(Artstein and Poesio, 2008). In order to be able
to use this metric, which nevertheless assumes a
fixed number of annotations per item, we include
in our validation only those tweets for which we
have three annotations after the cleaning steps de-
scribed above (1004 tweets). We exclude tweets
with missing annotations and those where removal
of spurious labels resulted in missing annotations
for some tokens.

The overall observed agreement is the mean of
the individual agreement values for each item:

72 (%)
agri = o (1
O\ 2
1
Ao == agr; ©)
L i€l

where agr; is the relative frequency of agreeing
judgment pairs among all pairs of judgments, I the
number of taggable items in the corpus, & the num-
ber of tags in the schema, and ¢ = 3 the number
of annotators (Artstein and Poesio, 2008, p. 563).

The overall expected agreement is calculated as
the random chance event that two annotators as-
sign an item to the same category/DA k (4). Each
annotator’s chance of assigning an item to k is
based on the overall proportion P(k) of items as-
signed to k, ng, over all assignments.

Pk) = =2 3)
AT =) (P(k))? (4)
ke K

We calculate the amount of agreement beyond
chance by the standard formula:

_Ao_Ae

Sﬂ' - 1_7146 (5)

For the segmentation task, we used the simplest
approach by taking each token to be a taggable
item which can be labelled either a BOUNDARY
or NON-BOUNDARY. As discussed in (Fournier



and Inkpen, 2012), such measures are too strict
by punishing even small disagreements over the
exact location of a segment boundary (e.g., if
annotators disagree by one token). In addition,
since most judgments fall into the majority class
(NON-BOUNDARY), the expected agreement will
be high, making it harder to improve upon it.
However, we show in Section 5.3 that the DA seg-
ments in our Twitter data are relatively short on
average, possibly partially relieving this problem.
Consequently, the agreement determined this way
can be seen as a lower limit that underestimates
the actual agreement between annotators.

We observe a segmentation agreement of 0.88
between three annotators, which indicates very
good agreement. Disagreements are due to ad-
ditional segments that some annotators posited (=
Does an explanation after a question constitute its
own speech act?) or were triggered by special
Twitter vocabulary such as emoticons, to which
some annotators assigned their own DA labels (see
example (6) on page 8). Some of these disagree-
ments can be solved by more comprehensive an-
notation guidelines.

Segment. | DA labelling
A, 0.966 0.658
AT 0.716 0.224
Fleiss’ multi-7 0.883 0.559

Table 2: Chance-corrected coefficient between
three annotators for segmentation and DA la-
belling tasks.

4.3 DA labelling

We then computed the inter-annotator agreement
for DA labels on the raw annotation data, using
the same procedure. For this measure, we only
included those tweets where all three annotators
agreed on the segmentation. The results for the
full DA schema of 57 dialog acts are shown in
Table 2. As such, the agreement on DA labels
is at most moderate, but the measure does not
take the DA taxonomy into account. For exam-
ple, disagreements on a subtype of QUESTION are
counted as one error, just like a mix-up between
top-level DA labels would be. Other annotation
efforts report even worse IAA values with novice
annotators, even using a weighted agreement score
(Geertzen et al., 2008). In order to better com-
pare our annotation effort to other work, we also

computed agreement scores for two reduced DA
schemas by merging similar DAs. With a reduced
set of 14 DAs, three annotators achieve multi-
7 = 0.65, whereas a minimal DA set of 10 basic
DAs yields multi-m = 0.76, a good agreement.

To better evaluate the chosen DA schema we
built a confusion matrix, recording the DA labels
that caused the most disagreements. The great ma-
jority of disagreements occurred within the differ-
ent subtypes of INFORMATION PROVIDING func-
tions. In addition, there were 36 cases of confu-
sion between INFORM and the discourse structur-
ing functions OPEN, TOPICINTRODUCTION and
ToPICSHIFT. These errors indicate a limited ap-
plicability of the chosen schema to conversational
Twitter data. The INFORM category is too broad
for conversational statements, and annotators thus
had two kinds of problems: First, clearly delin-
eating plain INFORMs from other dialog moves
that may be carried out simultaneously (like the
discourse structuring moves or social moves), and
second, deciding whether a statement can be clas-
sified as INFORM at all—in cases of doubt, an-
notators may have chosen the higher level label
INFORMATION PROVIDING but not INFORM. We
discuss this issue further in Section 6.

Another source of multiple disagreements is the
distinction between different types of questions.
These confusions are true errors than can be cor-
rected with better training of annotators.

In contrast, there were no systematic cases of
confusion between between the ACTION DISCUS-
SION, INFORMATION TRANSFER, and SOCIAL
functions. Tables 8 and 9 in the Appendix show
the frequencies of confusion between DA labels.

5 Analysis

The evaluation in the previous section has shown
that (i) about two-thirds of judgment pairs on in-
dividual items are in agreement (i.e., on aver-
age, two out of the three annotators agree), and
(i) most disagreements between annotators ex-
ist in the lower tiers of the annotation schema,
whereas the agreement on broader categories is
better. Based on these observations, we devised an
algorithm to automatically merge the annotations
into a gold standard.

5.1 Merging annotations

As was mentioned in Section 3, each tweet should
be annotated by three students, in principle provid-
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ing a possibility to use majority voting (the most
common decision tactic in crowdsourced lay an-
notations (Sabou et al., 2014)) to decide on the
‘correct’ annotation. However, since the annota-
tors carry out two tasks simultaneously (segment-
ing and labelling), merging became less trivial. If
we first merge the segmentations we would lose
DA information. Instead we observe tag variations
for a particular word token and determine the true
tag based on the results.

In the raw data there were 1004 tweets anno-
tated by three students, 180 tweets — by two, 29 —
only by one. Moreover, some tokens have received
more than one label even by the same annotator
(contrary to the guidelines). Therefore we adapted
our algorithm to differing numbers of annotations.

The merging process is composed of three steps.
For this phase, we disregard segmentation bound-
aries because there are no tweets with several suc-
cessive segments with the same tag. We can recog-
nize segment boundaries by simply observing the
tag change.

First step: Perfect agreement We find all
tweets that have exactly the same segmentation for
all their annotators (405 unique tweets). Among
these, 82 tweets have the same annotation as well.
Since there is already perfect agreement for these
tweets, no further work is required.

Second step: Majority vote In this step we pick
one tag from several for a particular token. For
each occurrence of a tag we assign weight 1. Tags
whose weight is higher than the sum of weights
for other tags are deemed ‘correct’ and assigned
to that token.

For example, the word Erde has been assigned
INFORM once, tag DIRECTIVE once, QUESTION
three times. Since 3 > 2, we keep QUESTION and
the other tags are deleted. After this step, another
421 tweets have no ambiguous tokens left and can
be added to the ‘done’ tweets from the first step.

Third step: DA generalization Our DA taxon-
omy has a tree structure, viz., some DA labels have
the same ancestor, or one tag is a child of another.
In this phase we compare tags for a particular to-
ken based on their relationship in the DA hierar-
chy. In the DIT++ taxonomy, it is assumed that
parent DAs subsume the function of all children
(they indicate more general dialog functions). In
case of inapplicability of all the leaf-level labels,
or in case the annotator isn’t sure, a higher-level
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DA label can be chosen from the hierarchy. In this
step, we use this structure of the DA taxonomy in
order to capture some of the information that an-
notators agreed upon when labelling tweets.

If DA tags for a token are in a direct inheritance
(parent-child) relationship or siblings, we choose
the parent tag for this token. The other tags that
take part in this relationship are deleted (they are
replaced by the higher-level option). Below is an
example of the two scenarios.

Patent-child relationship:

Tag IT_IP_INFORM_AGREEMENT and parent tag
IT_IP_INFORM. Parent tag IT_IP_INFORM is kept
and child is deleted.

Siblings:
Tag IT_IP_INFORM_AGREEMENT and tag
IT_IP_INFORM_DISAGREEMENT both  have

the parent tag IT_IP_INFORM. We assign tag
IT_IP_INFORM and delete the siblings.

This step results in another 66 ‘done’ tweets. To
account for the changes in the voting pattern af-
ter the third step, we apply the second (majority
vote) merging step once again. After each merge
the segments are recalculated. As a result we have
816 ‘done’ tweets and 397 tweets that still need to
be reviewed because disagreements on at least one
segment could not be resolved automatically. This
happened particularly for tweets with only two an-
notators, where majority voting did not help to re-
solve problems. Two students among the anno-
tators adjudicated the remaining problem tweets
manually. Further analysis in this paper is based
on this merged ‘gold standard’ dialog act annota-
tion for German conversations, in part in compari-
son with the original raw annotations.

5.2 DA n-grams

First, we examine DA unigrams to see which kind
of acts/functions are common in our data. Both the
original and merged data lack the same two tags:
PCM and INTRODUCE_RETURN. In the merged
data the root tag of the annotation schema, DIT++
TAXONOMY appears additionally. This is the re-
sult of a merging error, unifying two top level di-
mension tags. These mistakes will be manually
corrected in the future.

Table 3 shows the top 5 and bottom 5 tags that
are used in the original and merged data. As
we can observe, the top 5 tags stay the same af-
ter merging but some rare tags appear by merg-
ing (IS, the main question label), and some of the



Original annotation | Merged annotation
0 0

INFORM INFORM

ANSWER ANSWER
AGREEMENT AGREEMENT
SETQUESTION SETQUESTION
APOLOGIZE OCM
BYE_RETURN BYE_RETURN
INTRODUCE INTRODUCE

OCM IS

DSM INTRODUCE_ INITIAL

Table 3: Unigrams in the original and merged data.

rarest tags in the raw data move higher up after the
merging process. We have also extracted the uni-
gram frequencies for long and short conversations
(see above) separately, but the frequency of cer-
tain DAs is generally very similar in these different
types of conversations. By far the most frequent
DA (26% or 22%, respectively) is INFORM. This
is in line with data from spoken human-human
dialogs, where STATEMENTS are sometimes even
more frequent, at 36% (Stolcke et al., 2000). How-
ever, about twice as many dialog acts (8.7%) are
characterized as SOCIAL in the long conversations
as in the short conversations (4.4%), showing that
short conversations are more aligned with the task.

To get a first glimpse of the structure of Twit-
ter conversations, we calculated DA label bigrams
as well. Twitter dialogs differ from more con-
ventional dialog types in their branching structure:
one turn can have several replies, each of which
can be the basis of additional answers (see Fig-
ure 2b). In Twitter, in contrast to spoken con-
versations, this does not necessarily indicate a
split of the conversation (and participants) into
two separate strands. Instead, speakers can mon-
itor both parts of the conversation and potentially
contribute. Still, since replies mostly refer to the
linked previous tweet, we can observe DA bigrams
either within one tweet or across a tweet and its re-
ply. Thus the last tag from the previous tweet and
the first tag of the reply tweet are registered as a
bigram. To distinguish the conversation start, we
add another additional tag <S> to mark the be-
ginning of the conversation. We also skip 0-tags
(marking primarily user names at the beginning of
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reply tweets). Tables 4 and 5 show the top 5 bi-
grams and the most common starts of conversa-
tions, respectively. Table 6 compares the frequent
bigrams for short and long conversations.

Bigram Occurrence
INFORM, INFORM 135
ANSWER, INFORM 66
SETQUESTION, ANSWER 64
INFORM, AGREEMENT 63
AGREEMENT, INFORM 59

Table 4: Top five bigrams in the merged data.

5.3 Structure within tweets

Our analysis shows that despite their brevity, most
tweets exhibit some internal structure. In 1213
tweets, we annotated altogether 2936 dialog acts.
Table 7 shows the distribution of segments in
tweets. It demonstrates that even though tweets
are generally short, many contain more than just
one dialog act. Even disregarding 0-segments
(user names), which cannot be seen as true dia-
log acts, almost 500 tweets (more than 1/3) carry
out more than one dialog act.

A tweet consists of at most 140 symbols. Since
German words are on average six letters long®, one
German tweet consists of up to 23 words. Thus, in
a tweet with five or six segments, each segment
should have four to five tokens. Below we show
two examples that have more than five segments,
together with their annotations. Whereas some
segments are debatable (e.g. the split-off dash in
(7)), these examples show that Twitter turns can be
quite complex, combining social acts with state-
ments, questions, and emotional comments.

®Values around 6 are reported for the large Du-
den corpus http://www.duden.de/suchen/

sprachwissen/Wortldnge, as well as for the TIGER
corpus

Bigram Occurrence
<S>, OPEN 40
<S>, TOPICINRODUCTION 32
<S>, INFORM 23
<S>, DSM 20
<S>, SETQUESTION 9

Table 5: Most common starts of the conversation.



Long conversations Short conversations
INFORM, INFORM INFORM, INFORM
INFORM, AGREEMENT | <S >, OPEN
SETQUESTION,
AGREEMENT, INFORM
ANSWER
ANSWER, INFORM ANSWER, INFORM
SETQUESTION, <S >,
ANSWER TOPICINTRODUCTION

Table 6: Bigrams in merged long and short con-
versations.

Number of segments per tweet | Tweets

1 segment 89 times
2 segments 671 times
3 segments 320 times
4 segments 114 times
5 segments 17 times
6 segments 2 times

Table 7: Distribution of segments.

(6) | @Marsmaedschen | Hey Mella, | sage mal,
kocht ihr auf einem Induktionsherd? | Wenn
ja, von welcher Firma ist die Grillpfanne? \
Sowas suche ich! | :-) |
| 0 | GREET | QUESTION | SETQUESTION |
INFORM | O |

(7) |@TheBug0815 @Luegendetektor
@McGeiz | Genau, wir brauchen gar keine
Grundlast, ist nur ein kapitalistisches
Konstrukt | - | Wind/PV reichen? | Lol |

| 0 | AGREEMENT| O] PROPQUESTION]|

DISAGREEMENT|
6 Discussion

In this paper we presented our attempt to anno-
tate Twitter conversations with a detailed dialog
act schema. We achieved only moderate inter-
annotator agreement of m = (.56 between three
annotators on the DA labelling task, in contrast
with work in other domains that achieved good
agreement ((Stolcke et al., 2000) report k = 0.8
for DA labelling of spoken data using 42 cate-
gories). Partially, annotation accuracy can be im-
proved by better annotator training, e.g. to distin-
guish the different question types (see Table 9).
On the other hand, our data shows that the DA
schema exhibits some inherent problems when ap-
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plied to Twitter dialogs. For example, even though
opening a conversation is rarely the main func-
tion of a tweet, every dialog-initial tweet could
be argued to fulfil both the conversation OPEN
function as well as a TOPICINTRODUCTION func-
tion, in addition to its communicative function
(QUESTION, INFORM, etc.). Annotators found it
hard to decide which dimension is more impor-
tant. In the future, annotation in multiple dimen-
sions should probably be encouraged, just like it
was done for spoken human-human dialogs (Core
and Allen, 1997; Bunt et al., 2010).

Many annotation problems are due to the fuzzy
nature of INFORM and its relatives. Some IN-
FORMSs are shown in translation in (8-11). Even
though all have been annotated with the same
DA, they constitute very different dialog func-
tions. Some are factual statements (8), some meta-
commentary or discourse management (9), some
opinions (10) and some read like statements or
opinions, but are extremely sarcastic/ironic and
thus do not have a primary “Information Provid-
ing” function (11). In order to properly analyse
Twitter discussions, it seems necessary to make a
clearer distinction between these kinds of dialog
moves.

(8) Coal 300 kWh, nuclear power 100 kWh
9) The link still doesn’t work.

(10) I'm going to end it right away, it got boring
anyway.

(11) And the solar panels and wind power plants
in the Middle Ages were great

One implication of our DA annotation was that
assigning single DAs to entire tweets is not suffi-
cient. Not only does one utterance in Twitter di-
alogs often express several dialog functions as ar-
gued above, our data also shows that many tweets
are composed of several successive dialog acts.
This can be due to two discussion strands being
carried out in parallel (like in text messaging), but
often results from a combination of dialog moves
as in this example:

(12) True, unfortunately. | But what about the

realization of high solar activity in the 70s
and 80s?

Finally, the non-linear structure of Twitter di-
alogs has interesting implications for their struc-
tural analysis, e.g. for DA recognition approaches



that take the context into account. In these cases,
the initial tweet/DA will potentially be the first to-
ken of many DA bigrams. All answers taken to-
gether may provide context that helps determine
what function the initial tweet was intended to ful-
fill. We leave these issues for further work.
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(b) Adapted DIT++ taxonomy (2).
Figure 3: Adapted DIT++ taxonomy.
1 2 3 4 5 6 7 8 9
DSM_OPEN 5 1 0 5 10 0 1 0 0
1 DSM_TOPICINTRODUCTION 0 0 0 9 1 1 0 0
2 DSM_TOPICSHIFT 0 3 17 3 8 1 5
3 IT 0 0 0 0 0 0
4 IT_IP 31 5 17 6 2
5 IT_IP_INFORM 26 45 31 15
6 IT_IP_INF_AGREEMENT 24 8 5
7 IT_IP_INF_ANSWER 14 8
8 IT_IP_INF_DISAGREEMENT 13
9 IT_IP_INF_DIS_CORRECTION

Table 8: Annotation confusion matrix (1): Number of segments judged as both indicated dialog act labels
by different annotators.

PROPQUESTION_CHECKQ SETQUESTION
PROPQUESTION 6 25
PROPQUESTION_CHECKQ 6

PCM_COMPLETION SOCIAL
INFORM 13 10
INFORM_AGREEMENT 2 15

Table 9: Annotation confusion matrix (2): Segments often confused within questions (top) or in other
parts of the taxonomy (bottom).
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Abstract

Dialogue topic tracking aims at analyz-
ing and maintaining topic transitions in
on-going dialogues. This paper proposes
to utilize Wikification-based features for
providing mention-level correspondences
to Wikipedia concepts for dialogue topic
tracking. The experimental results show
that our proposed features can signifi-
cantly improve the performances of the
task in mixed-initiative human-human
dialogues.

1 Introduction

Dialogue topic tracking aims at detecting topic
transitions and predicting topic categories in on-
going dialogues which address more than a single
topic. Since human communications in real-world
situations tend to consist of a series of multiple
topics even for a single domain, tracking dialogue
topics plays a key role in analyzing human-human
dialogues as well as improving the naturalness of
human-machine interactions by conducting multi-
topic conversations.

Some researchers (Nakata et al., 2002; Lagus
and Kuusisto, 2002; Adams and Martell, 2008) at-
tempted to solve this problem with text categoriza-
tion approaches for the utterances in a given turn.
However, these approaches can only be effective
for the cases when users mention the topic-related
expressions explicitly in their utterances, because
the models for text categorization assume that the
proper category for each textual unit can be as-
signed based only on its own contents.

The other direction of dialogue topic tracking
made use of external knowledge sources including
domain models (Roy and Subramaniam, 2006),
heuristics (Young et al., 2007), and agendas (Bo-
hus and Rudnicky, 2003; Lee et al., 2008). While
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these knowledge-based methods have an advan-
tage of dealing with system-initiative dialogues
by controlling dialogue flows based on given re-
sources, they have drawbacks in low flexibility
to handle the user’s responses and high costs for
building the resources.

Recently, we have proposed to explore domain
knowledge from Wikipedia for mixed-initiative di-
alogue topic tracking without significant costs for
building resources (Kim et al., 2014a; Kim et al.,
2014b). In these methods, a set of articles that
have similar contents to a given dialogue segment
are selected using vector space model. Then vari-
ous types of information obtained from the articles
are utilized to learn topic trackers based on kernel
methods.

In this work, we focus on the following limi-
tations of our former work in retrieving relevant
concepts at a given turn with the term vector sim-
ilarity between each pair of dialogue segment and
Wikipedia article. Firstly, the contents of conver-
sation could be expressed in totally different ways
from the descriptions in the actual relevant articles
in Wikipedia. This mismatch between spoken dia-
logues and written encyclopedia could bring about
inaccuracy in selecting proper Wikipedia articles
as sources for domain knowledge. Secondly, a set
of articles that are selected by comparing with a
whole dialogue segment can be limited to reflect
the multiple relevances if more than one concept
are actually mentioned in the segment. Lastly,
lack of semantic or discourse aspects in concept
retrieval could cause a limited capability of the
tracker to deal with implicitly mentioned subjects.

To solve these issues, we propose to incorpo-
rate Wikification (Mihalcea and Csomai, 2007)
features for building dialogue topic trackers. The
goal of Wikification is resolving ambiguities and
variabilities of every mention in natural language
by linking the expression to its relevant Wikipedia
concept. Since this task is performed using not

Proceedings of the SIGDIAL 2015 Conference, pages 124—128,
Prague, Czech Republic, 2-4 September 2015. (©2015 Association for Computational Linguistics
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Speaker Utterance Topic Transition

Guide How can I help you? NONE—NONE

Tourist Can you recommend some good places to visit NONE—ATTR
in Singapore?
‘Well if you like to visit an icon of Singapore,

Merlion park will be a nice place to visit.

Guide

Tourist ATTR—ATTR

Guide

That is a symbol for your country, right?
Yes, we use that to symbolise Singapore.

Tourist ATTR—ATTR

Guide

Okay.

The lion head symbolised the founding of the is-
land and the fish body just symbolised the hum-
ble fishing village.

Tourist ATTR—TRSP

Guide

How can I get there from Orchard Road?
You can take the red line train from Orchard and
stop at Raffles Place.

Tourist Is this walking distance from the station to the TRSP—TRSP

destination?

Guide Yes, it’ll take only ten minutes on foot.

Tourist TRSP—FOOD

Guide

Alright.
Well, you can also enjoy some seafoods at the
riverside near the place.

Tourist ‘What food do you have any recommendations FOOD—FOOD
to try there?
If you like spicy foods, you must try chilli crab

which is one of our favourite dishes here.

Guide

8 Tourist Great! I'll try that. FOOD—FOOD

Figure 1: Examples of dialogue topic tracking on
Singapore tour guide dialogues

only surface form features, but also various types
of semantic and discourse aspects obtained from
both given texts and Wikipedia collection, our pro-
posed method utilizing the results from Wikifica-
tion contributes to improve the tracking perfor-
mances compared to the former approaches based
on dialogue segment-level correspondences.

2 Dialogue Topic Tracking

Dialogue topic tracking can be defined as a classi-
fication problem to detect where topic transitions
occur and what the topic category follows after
each transition. The most probable pair of topics
at just before and after each turn is predicted by
the following classifier:

f(@e) = (Ye-1,91),

where z; contains the input features obtained at a
turn ¢, y; € C, and C' is a closed set of topic cate-
gories. If a topic transition occurs at ¢, y; should be
different from g;_1. Otherwise, both 1; and ;1
have the same value.

Figure 1 shows an example of dialogue topic
tracking in a given dialogue fragment on Singa-
pore tour guide domain between a tourist and a
guide. This conversation is divided into four seg-
ments, since f detects three topic transitions at ¢1,
ty and tg. The mixed-initiative aspects are also
shown in this dialogue, because the first two tran-
sitions are initiated by the tourist, while the other
one is driven by the guide without any explicit re-
quirement from the tourist. From these results,
we could obtain a topic sequence of ‘Attraction’,
‘Transportation’, and ‘Food’.
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t Speaker ~ Mention Wikipedia Concept
1 Tourist Singapore Singapore
Guide Singapore Singapore
Merlion park Merlion Park
2 Tourist That Merlion
your country Singapore
Guide that Merlion
Singapore Singapore
4 Tourist there Merlion Park
Orchard Road Orchard Road
Guide red line train North South MRT Line
Orchard Orchard MRT Station
Raffles Place Raffles Place MRT Station
5 Tourist the station Raffles Place MRT Station
the destination ~ Merlion Park
6 Guide seafoods Seafood
the riverside Singapore River
the place Merlion Park
7 Tourist there Singapore River
Guide chilli crab Chilli crab
here Singapore

Figure 2: Examples of Wikification on Singapore
tour guide dialogues

3 Wikification of Concept Mentions in
Spoken Dialogues

Wikification aims at linking mentions to the rele-
vant entries in Wikipedia. As shown in the exam-
ples in Figure 2 for the dialogue in Figure 1, this
task is performed by dealing with co-references,
ambiguities, and variabilities of the mentions.

Following most previous work on Wikifica-
tion (Bunescu and Pasca, 2006; Mihalcea and Cso-
mai, 2007; Milne and Witten, 2008; Dredze et al.,
2010; Han and Sun, 2011; Chen and Ji, 2011), this
work also takes a supervised learning to rank al-
gorithm for determining the most relevant concept
for each mention in transcribed utterances.

In this work, every noun phrase in a given di-
alogue session is defined as a single mention. To
capture more abstract concepts, we take not only
named entities or base noun phrases, but also ev-
ery complex or recursive noun phrase in a dialogue
as the instance to be linked. For each mention,
a set of candidates are retrieved from a Lucene !
index on the whole Wikipedia collection divided
by section-level. The ranking score s(m, c) for a
given pair of a mention m and its candidate con-
cept c is assigned as follows:

4 if ¢ is the exactly same as g(m),

3 if ¢ is the parent article of g(m),

2 if c belongs to the same article
but different section of g(m),

1 otherwise.

s(m,c) =

where g(m) is the manual annotation for the most
relevant concept of m.

"http://lucene.apache.org/



Name Description

Sp the speaker who spoke that mention

WM word n-grams within the surface of m

WT word n-grams within the title of ¢

EMT  whether the surface of m is same as the title of ¢

EMR  whether the surface of m is same as one of re-
directions to ¢

MIT whether the surface of m is a sub-string of the
title of ¢

TIM whether the title of c is a sub-string of the m’s
surface form

MIR whether the surface of m is a sub-string of a re-
directed title to ¢

RIM whether a re-directed title to c is a sub-string of
the m’s surface form

PMT  similarity score based on edit distance between
the surface of m and the title of ¢

PMR  maximum similarity score between the surface of
m and the redirected titles to ¢

oC whether c previously occurred in the full dialogue
history

0C, whether ¢ occurred within w previous turns with
w € {1,3,5,10}

Table 1: List of features for training the ranking
SVM model for Wikification

Then, a ranking SVM (Joachims, 2002) model,
a pairwise ranking algorithm learned from the
ranked lists, is trained based on the scores and the
features in Table 1. In the execution time, the top-
ranked item in the list of candidates scored by this
model is considered as the result of Wikification
for a given mention.

4 Wikification-based Features for
Dialogue Topic Tracking

Following our previous work (Kim et al., 2014a;
Kim et al., 2014b), the classifier f for dialogue
topic tracking is trained on the labeled dataset us-
ing supervised machine learning techniques.

The simplest baseline is to learn the classi-
fier based on the vector space model (Salton et
al., 1975) considering bag-of-words for the terms
within the given utterances. An instance for each
turn is represented by a weighted term vector de-
fined as follows:

¢(z)

where a; = Z?:o ()\j -t fidf (w;, U(t_j))), ug 18
the utterance mentioned in a turn ¢, ¢ fidf (w;, ut)
is the product of term frequency of a word w; in
u; and inverse document frequency of w;, A is a
decay factor for giving more importance to more
recent turns, |W| is the size of word dictionary,
and A is the number of previous turns considered
as dialogue history features.

(a17a27 T 704\W\) € R‘W‘a
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To overcome the limitations caused by lack of
semantic or domain-specific aspects in the first
baseline, we previosly proposed (Kim et al.,
2014b) to leverage on Wikipedia as an external
knowledge source with an extended feature space
defined by concatenating the concept space with
the previous term vector space as follows:

¢/($) = (&1,&2,"' aa\W\7617/827"' 7/8|D\)7

where ¢/(z) € RIWIHICl 3, is the semantic re-
latedness between the input x and the concept in
the i-th Wikipedia article and |C'| is the number of
concepts in the Wikipedia collection. The value
for 3; is computed with the cosine similarity be-
tween term vectors as follows:

_ 9l)-9(c)
@)l

where ¢(c;) is the term vector composed from the
1-th Wikipedia concept in the collection.

In this work, the results of Wikification de-
scribed in Section 3 are utilized to extend the fea-
ture space for training the topic tracker, instead of
or in addition to the above mentioned feature val-
ues obtained from dialogue segment-level analy-
ses. A value ~; in the new feature space is defined
as the weighted sum of the number of mentions
linked to a given concept c¢; within a dialogue seg-
ment as follows:

Bi = sim(z, ¢;) = cos (0)

h
Yi = Z ()\j : Hmk € U(t—j)|9(mk) = Cz}}) )
§=0

where my is the k-th mention in a given utterance
u, g(m) is the top-ranked result of Wikification
for the mention m, A is a decay factor, and h is the
window size for considering dialogue history.

5 Evaluation

To demonstrate the effectiveness of our proposed
approach for dialogue topic tracking using Wik-
ification results, we performed experiments on
the Singapore tour guide dialogues which consists
of 35 sessions collected from human-human con-
versations between tour guides and tourists. All
the recorded dialogues with the total length of
21 hours were manually transcribed, then these
31,034 utterances were manually annotated with
the following nine topic categories: Opening,
Closing, Itinerary, Accommodation, Attraction,
Food, Transportation, Shopping, and Other.



Schedule: All

Schedule: Tourist Turns

Schedule: Guide Turns

Transition Turn Transition Turn Transition Turn
Features P R F ACC P R F ACC P R F ACC
a 42.08 5348 47.10 67.97 41.88 52.59 46.63 67.15 41.96 52.11 4649 67.13
a, 8 42.12 5338 47.08 67.98 41.84 5275 46.67 67.08 4191 52.03 4642 67.13
a,y 4736 50.19 4873 72.38 46.58 51.09 48.73 71.99 47.10 48.44 4776 7194
a, B,y 4735 5024 4875 7243 46.57 51.09 48.72 7199 47.02 4821 4761 7193
o,y 50.77 4936 50.06 79.12 50.51 49.58 50.04 81.10 50.94 49.10 50.00 78.92
o, 3,7 50.82 4941 50.10 79.15 50.43 49.58 50.00 81.10 5098 49.02 4998 78.92

Table 2: Comparisons of the topic tracking performances with different combinations of features

For topic tracking, an instance for both train-
ing and prediction of topic transition was created
for every utterance in the dialogues. For each in-
stance x, the term vector ¢(x) was generated with
the a values from utterances within the window
sizes h = 2 for the current and previous turns
and h = 10 for the history turns. The ( values
for representing the segment-level relevances were
computed based on 3,155 Singapore-related arti-
cles which were used in our previous work (Kim
et al., 2014b).

For Wikification, all the utterance were pre-
processed by Stanford CoreNLP toolkit 2, firstly.
Each noun phrase in the constituent trees provided
by the parser was considered as an instance for
Wikification and manually annotated with the cor-
responding concept in Wikipedia. For every men-
tion, we retrieved top 100 candidates from the
Lucene index based on the Wikipedia database
dump as of January 2015 which has 4,797,927 ar-
ticles and 25,577,464 sections in total and added
one more special candidate for NIL detection.
Then, a ranking function using SVM"*"*3 was
trained on this dataset, which achieved 38.04,
31.97, and 34.74 in precision, recall, and F-
measure, respectively, in the evaluation for Wik-
ification for each mention-level based on five-fold
cross validation. The +y values in our proposed ap-
proach were assigned based on the top-ranked re-
sults from this ranking fuction for the mentions in
the dialogues.

In this evaluation, the following three different
schedules were applied for both training the mod-
els and prediction the topic transitions: (a) taking
every utterance regardless of the speaker into ac-
count; (b) considering only the turns taken by the
tourists; and (c) by the guides. While the first
schedule aims at learning the human behaviours
in topic tracking from the third person point of

*http://nlp.stanford.edu/software/corenlp.shtml

3http://www.cs.cornell.edu/people/tj/svm_light/svm_rank html
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view, the others could show the tracking capabil-
ities of the models as a sub-component in the di-
alogue system which act as a guide and a tourist,
respectively.

The SVM models were trained using
SVMlight 4 (Joachims, 1999) with different
combinations of the features. All the evaluations
were done in five-fold cross validation to the man-
ual annotations with two different metrics: one
is accuracy of the predicted topic label for every
turn, and the other is precision/recall/F-measure
for each event of topic transition occurred either
in the answer or the predicted result.

Table 2 compares the performances of the fea-
ture combinations for each schedule. While the
dialogue segment-level 3 features failed to show
significant improvement compared to the baseline
only with term vectors, the models with our pro-
posed Wikification-based features  achieved bet-
ter performances in both transition and turn-level
evaluations for all the schedules. The further en-
hancement led by the oracle features with the man-
ual annotations for Wikification represented by +/
indicates that the overall performances could be
improved by refining the Wikification model.

6 Conclusions

This paper presented a dialogue topic tracking ap-
proach using Wikification-based features. This ap-
proach aimed to incorporate more detailed infor-
mation regarding the correspondences between a
given dialogue and Wikipedia concepts. Exper-
imental results show that our proposed approach
helped to improve the topic tracking performances
compared to the baselines. For future work, we
plan to apply the kernel methods proposed in our
previous work also on the feature spaces based on
Wikification as well as to improve the Wikifica-
tion model itself for achieving better overall per-
formances in dialogue topic tracking.

*http:/svmlight joachims.org/
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Exploiting knowledge base to generate responses for natural language
dialog listening agents
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Abstract

We developed a natural language dialog
listening agent that uses a knowledge base
(KB) to generate rich and relevant re-
sponses. Our system extracts an important
named entity from a user utterance, then
scans the KB to extract contents related
to this entity. The system can generate
diverse and relevant responses by assem-
bling the related KB contents into appro-
priate sentences. Fifteen students tested
our system; they gave it higher approval
scores than they gave other systems. These
results demonstrate that our system gen-
erated various responses and encouraged
users to continue talking.

1 Introduction

Dialog systems can be separated into task-oriented
dialog systems and nontask-oriented dialog sys-
tems. Task-oriented dialog systems have mainly
been intended to communicate with devices like
cellphones or televisions. Nontask-oriented dialog
systems are intended for use as entertainment, or
to provide casual dialog. In this paper, we studied
the listening agent, which is one nontask-oriented
dialog system.

The main objective of the listening agent is to
analyze user’s utterances and to generate appro-
priate response that satisfies user’s desire to speak
(Meguro et al., 2009). To satisfy this desire, the
system should emulate actual ’listening’ by re-
sponding appropriately to user utterances in ways
that make the user feel that the system is respond-
ing specifically to the utterances.

Listening agents should generate various re-
sponses to encourage the user to continue the di-
alog. If responses are monotonous, a dialog can
be boring, and a user may lose interest in talking
to the system. In previous work, listening agents
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generated system responses to content extracted
from user utterances (Weizenbaum, 1966; Han et
al., 2013; Han et al., 2015). For example, when a
user talk about the footballer Lionel Messi I like
Messi”, the system responses are "Why do you
like Messi?”, or ”You like Messi”. However, by
using only extracted contents from user utterances,
system responses are too restricted to encourage
the user to engage in conversation. To increase the
user’s motivation to interact with the system, the
diversity and relevance of the external knowledge
that it uses must be increased.

Our objective of this study is to increase the va-
riety of system responses. For the previous ex-
ample, our system could generate responses like:
”What is Messi’s position?”, Do you like David
Beckham, too?”, or ”You like Messi, a football
player”. We also expected encouraging dialog
by talking about related information, and increas-
ing dialog satisfaction by pin-pointing the con-
tent that user want to talk about. The system ex-
tracts named entities from a user utterance, recog-
nizes them, and extracts related information from
a knowledge base (KB) to guide generation of re-
sponses.

2 Related Work

2.1 Listening Agent

Two main types of listening agents have been
developed: non-verbal agents and verbal agents.
Non-verbal listening agents generate multimodal
responses from multimodal user input (Schroder
et al., 2012). Verbal listening agents get text input
from user and generate a text response (Weizen-
baum, 1966; Han et al., 2013; Han et al., 2015).
Our study focused on a verbal listening agent.

2.2 ELIZA & Counseling Dialog System

ELIZA (Weizenbaum, 1966) is a natural lan-
guage conversation program that interacts with

Proceedings of the SIGDIAL 2015 Conference, pages 129-133,
Prague, Czech Republic, 2-4 September 2015. (©2015 Association for Computational Linguistics



a speaker as a psychoterapist would. The sys-
tem models person-centered therapy, a counseling
technique based on the reflective listening strategy
(Rautalinko and Lisper, 2004), which aims to en-
courage a user to continue talking. It includes en-
couragement, recapitulation, questioning, and re-
flecting emotion. Because the system generates a
response by matching keywords and replaces slot
with the contents for user utterance, the variety of
responses that it can generate is limited.

Han et al. (2015) developed a listening agent
that uses a dialog strategy based on microskills
(Ivey et al., 2013), which is a basic communica-
tion technique that includes attending, paraphras-
ing, questioning, and reflecting feeling. This is
similar to the reflective listening strategy used in
ELIZA. Han’s system encourages users to con-
tinue talking. Because the system also generates
a response based only on information extracted
from user utterances, the variety of responses that
it can generate is also limited.

ELIZA and Han’s dialog strategies are both
based on effective listening. In this study, we de-
signed our dialog strategy, focusing on knowledge
driven response generation while simultaneously
communicating using microskills.

3 System Architecture

Our system (Figure 1) includes five modules:
emotion detection, natural language understand-
ing, related information extraction, dialog man-
agement, and natural language generation mod-
ule. The natural language understanding module
includes user intention detection, triple extraction,
and named entity recognition module.

3.1 Emotion Detection

Our emotion detection module uses a keyword-
based method (Guinn and Hubal, 2013). We as-
sembled an emotional keyword lexicon, which in-
cludes 170 keywords with 7 basic emotions: sad-
ness, anger, happiness, fear, disgust, contempt,
and surprise. Emotional keywords were collected
from Ivey’s list of ’feeling words’ (Ivey et al.,
2013). We detect these basic emotion when a user
utterance includes one or more of these keywords.

3.2 Natural Language Understanding

3.2.1 User Intention Detection

We detected user intention in collected listening
agent training data. We collected dialogues with

User Input
|

l 1
. User . Named Recognized
Emotion Intention Triple Entit Entity
Detection Detection || EXtraction y

l User
[Detected 1| Intention
Fmoter Dia |Og Extracted
Management Triple

Recognition
Natural Language Understanding

motiona
Keywords

Related
Information
Extraction

System

l Intention

Related

Natural Information
W’_) Language
Templates Generation -
] Knowledge
System Base
Output

Figure 1: System Architecture. Components and
processes are described in the text.

15 students who generated a total of 77 dialogues
in English. Students worked in pairs to gener-
ate dialogues; one student had the role of speaker
or the other had the role of listener. Listeners
responded based on listening techniques of mi-
croskills. They communicated by text through the
internet. The dialog topic was chosen freely by the
speaker. Each conversation was restricted to 10
min. This corpus collection process was inspired
by Meguro et al. (2009).

We defined five user intentions: ’greeting’ (say
’hello’ to user), ’self-disclosure’ (express users
preference and experience), *informating’ (provid-
ing information for the dialog), ’questioning’ (ask-
ing questions to the listener), and ’else’ (other ut-
terances). Our definition of user intention also ref-
erenced Meguro et al. (2009). In total, 1281 ut-
terances were collected from the speakers; 51.2%
were self-disclosure, 32.7% were information,
7.6% were else, 5.7% were greetings, and 2.7%
were questions.

We used the maximum entropy classifier (Rat-
naparkhi, 1998) with word-n grams (uni-gram, bi-
gram, and tri-gram) features to detect user inten-
tion.

3.2.2 Triple Extraction

We extracted arguments and their relation (triple)
from user utterances. For example, a triple [I, like,
Messi] is extracted from I like Messi”. These
words are the subject, verb, and object of the sen-
tence. We used ClausIE (Del Corro and Gemulla,
2013) to extract triples, then sent them to the nat-
ural language generation module.

130



3.2.3 Entity Recognition

To extract related information from the KB, the
named entities in the user utterances were de-
tected and recognized. Each entity was recog-
nized by matching to an entity name in DBpe-
dia, which is a structured database that contains
data from Wikipedia. For example, when T like
Messi” is the input, the module detects “"Messi”
and matches it with “Lionel Messi”, an entity of
DBpedia (Auer et al., 2007). We used DBpedia
Spotlight (Mendes et al., 2011) for entity detec-
tion and recognition. Recognized entities are sent
to the related information extraction module.

3.3 Related Information Extraction

The related information extraction module takes
a recognized entity as input, then extracts related
information from the KB. We used Freebase (Bol-
lacker et al.,, 2008) as our KB. Freebase is a
database system which stores a public repository
of the world’s knowledge. Because Freebase in-
cludes DBpedia, we easily converted DBpedia en-
tities to Freebase entities.

We should choose appropriate related informa-
tion from Freebase. For example, when a user
utterance includes the name of a football player,
the topics of the system responses should also be
about football players, or the player’s position.

For the scenarios above, we extracted type, in-
stances of the type, and properties of the type. For
example, when the user talked about a football
player, ’Lionel Messi’, the system extracts type
"football player’, instances of type 'David Beck-
ham’, ’Pél¢’, and other players, and properties
such as ’position’, matches played’.

We used ’notable type’ of Freebase. Because
an entity can have many types, we used a type
that could be the best disambiguator. For example,
’Barack Obama’ has multiple types: "US Pres-
ident’, ’Person’, ’Politician’, ’Author’, ’Award
Winner’. The ’notable type’ that is the best dis-
ambiguator is "US President’.

To generate a system response, we chose one in-
stance and one property. The instance was chosen
randomly from top-10 popular instances to find an
instance that the user will find relevant interesting.
We also chose one property randomly from prop-
erties whose object instance is in the top-10 pop-
ular instances. We used Freebase popularity score
to get top-10 popular instances. Extracted infor-
mation is sent to the language generation module.

3.4 Dialog Management

The dialog management module returns system
intention based on interpretation of emotion and
user intention. We generated a rule-based man-
agement strategy based on microskills (Algorithm
1) (Evans et al., 2010). Each system intention is
given below:

Greeting: Say hello to user.

Attending: Encourage users to continue talk-
ing. For example, when a user enters 1 watched
Avatar”, the system responses Tell me more”, I
see”, or ”Tell me about Avatar”.

Paraphrasing: Reflect contents of user utter-
ance. For example, ”You watched Avatar”, or
”You watched Avatar, a movie”.

Questioning: Ask questions from user utter-
ance. For example, "Did you watch Titanic, too?”,
or Do you know the genre of Avatar?” for same
above input.

Reflect Feeling: Acknowledges the user’s feel-
ing. When user enters "I was so angry”, or ’I was
annoyed”, then the system response could You
were so mad”.

Questioning Response: This is our additional
strategy to deal with user questions. It changes
topic or asks users to talk about themselves. For
example, when user asks “"Who is your mother?”
to system, then questioning response could be
“Let’s just keep talking about Avatar”, or "Why
don’t we talk about you?”.

Algorithm 1 Dialog Management Strategy

if User Intention = Greeting then
return Greeting
else if User Intention = Questioning then
return Questioning Response
else if User Intention = Information then
return Paraphrasing or Questioning
else if User Intention = Self Disclosure then
if Emotion Detected then
return Reflect Feeling
else
return Paraphrasing or Questioning
end if
else
return Attending
end if

3.5 Natural Language Generation

Our system response is generated using templates.
A template is chosen by system intention, entity



System Entity Related Emotional | Response
Intention | Location | Information | Keyword | Template
Greeting * * * Nice to meet you.
Attending * type * Please tell me about the [type], [entity].
Paraphrase * * * [ST[V]I[O].
Paraphrase S property * [entity], whose [property] is [object], [V] [O]
Questioning (0] instance, type * [S] [V] another [type], [instance], too?
E:Sie;; * * Sad Oh, cheer up.
Questioning * * * Why don’t we talk about you?
Response

Table 1: System Utterance Template Examples. Slots: [S] subject of triple; [V] verb of triple; [O] object
of triple; [object] object instance of Freebase triple ; * for don’t care condition

Speaker | Utterance

User Hello.

System | Hi. What do you want to talk about?
User I want to talk about Messi.

System | Lionel Messi, a football player?

User Yes. Messi is my favorite.

System | Is David Beckham your favorite, too?
User No, I just like Messi.

System | What is Lionel Messi’s position?
User It’s forward.

Table 2: Dialog Example

location, related information, and detected emo-
tion (Tablel). Entity location is the triple slot that
includes entity. For example, when a user says,
I like Messi”, then the entity location is the ob-
ject; if the user says, "Messi is my favorite player”,
then the entity location is the subject. The sys-
tem response is generated with filling slots with
the extracted entity, an extracted triple, and re-
lated information. We changed words "I, my, my-
self, you” to ”You, your, yourself, me” by apply-
ing simple rules. For example, when a user enters
I like Messi” and a system template ”[S] [V] an-
other [type], [instance], too?” is chosen, then sys-
tem response generated is ”You like another foot-
ball player, David Beckham, too?”.

3.6 Experiment and Results

We recruited another 15 students to evaluate our
system, who did not join the dialogue generation
task in Section 3.2.1. They chatted with three sys-
tems (ELIZA (Weizenbaum, 1966), Counseling
Dialog System (Han et al., 2015), and our system)
for 10 min, they rated each of them on three ques-

tions (Likert scale of 1 [low] to 10 [high]). The
first question measured the variety of responses,
the second question asked whether the system en-
couraged the user to continue talking, and the last
question asked about overall satisfaction with the
dialog. Our system got highest score for all ques-
tions (Figure 2).

W ELIZA
H Counseling Dialog System
O Proposed System

7.5 7

Dialog Satisfaction

Various Response

Encourage Dialog

Figure 2: Averaged user experiment score.

3.7 Conclusion

We designed a natural language dialog listening
agent that exploits the important and relevant in-
formation to the utterance from the KB. Results of
our experiment indicated that our usage of a KB
generated various responses and encouraged users
to continue talking. Related information diversi-
fied the contents of system responses, and made
users talk with the related information. Dialog sat-
isfaction was increased by pin-pointing the content
that user want to talk about.
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Abstract

Dialogue interaction with remote inter-
locutors is a difficult application area for
speech recognition technology because of
the limited duration of acoustic context
available for adaptation, the narrow-band
and compressed signal encoding used in
telecommunications, high variability of
spontaneous speech and the processing
time constraints. It is even more difficult
in the case of interacting with non-native
speakers because of the broader allophonic
variation, less canonical prosodic patterns,
a higher rate of false starts and incomplete
words, unusual word choice and smaller
probability to have a grammatically well
formed sentence. We present a compara-
tive study of various approaches to speech
recognition in non-native context. Com-
paring systems in terms of their accu-
racy and real-time factor we find that a
Kaldi-based Deep Neural Network Acous-
tic Model (DNN-AM) system with on-
line speaker adaptation by far outperforms
other available methods.

1 Introduction

Designing automatic speech recognition (ASR)
and spoken language understanding (SLU) mod-
ules for spoken dialog systems (SDSs) poses more
intricate challenges than standalone ASR systems,
for many reasons. First, speech recognition la-
tency is extremely important in a spoken dialog
system for smooth operation and a good caller
experience; one needs to ensure that recognition
hypotheses are obtained in near real-time. Sec-
ond, one needs to deal with the lack of (or min-
imal) context, since responses in dialogic situa-
tions can often be short and succinct. This also
means that one might have to deal with minimal
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data for model adaptation. Third, these responses
being typically spontaneous in nature, often ex-
hibit pauses, hesitations and other disfluencies.
Fourth, dialogic applications might have to deal
with audio bandwidth limitations that will also
have important implications for the recognizer de-
sign. For instance, in telephonic speech, the band-
width (300-3200 Hz) is lesser than that of the hi-
fidelity audio recorded at 44.1 kHz. All these is-
sues can drive up the word error rate (WER) of
the ASR component. In a recent study compar-
ing several popular ASRs such as Kaldi (Povey
et al., 2011), Pocketsphinx (Huggins-Daines et
al., 2006) and cloud-based APIs from Apple',
Google? and AT&T? in terms of their suitability
for use in SDSs, In (Morbini et al., 2013) there was
found no particular consensus on the best ASR,
but observed that the open-source Kaldi ASR per-
formed competently in comparison with the other
closed-source industry-based APIs. Moreover, in
a recent study, (Gaida et al., 2014) it was found
that Kaldi significantly outperformed other open-
source recognizers on recognition tasks on Ger-
man Verbmobil and English Wall Street Journal
corpora. The Kaldi online ASR was also shown to
outperform the Google ASR API when integrated
into the Czech-based ALEX spoken dialog frame-
work (Platek and Jurcicek, 2014).

The aforementioned issues with automatic
speech recognition in SDSs are only exacerbated
in the case of non-native speakers. Not only
do non-native speakers pause, hesitate and make
false starts more often than native speakers of a
language, but their speech is also characterized
by a broader allophonic variation, a less canoni-
cal prosodic pattern, a higher rate of incomplete
words, unusual word choices and a lower probabil-

' Apple’s Dictation is an OS level feature in both MacOSX
and i0S.

Zhttps://www.google.com/speech-api/v1/recognize

*https://service.research.att.com/smm
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Figure 1: Architecture of the HALEF spoken dia-
log system.

ity of producing grammatically well-formed sen-
tences. An important application scenario for non-
native dialogic speech recognition is the case of
conversation-based Computer-Assisted Language
Learning (CALL) systems. For instance, Sub-
arashii is an interactive dialog system for learn-
ing Japanese (Bernstein et al., 1999; Ehsani et
al., 2000), where the ASR component of the
system was built using the HTK speech rec-
ognizer (Young et al., 1993) with both native
and non-native acoustic models. In general,
the performance of the system after SLU was
good for in-domain utterances, but not for out-
of-domain utterances. As another example, in
Robot Assisted Language Learning (Dong-Hoon
and Chung, 2004) and CALL applications for
Korean-speaking learners of English (Lee et al.,
2010), whose authors showed that acoustic mod-
els trained on the Wall Street Journal corpus
with an additional 17 hours of Korean children’s
transcribed English speech for adaptation pro-
duced as low as 22.8% WER across multiple do-
mains tested. In the present work, we investi-
gate the online and offline performance of a Kaldi
Large Vocabulary Continuous Speech Recognition
(LVCSR) system in conjunction with the open-
source and distributed HALEF spoken dialog sys-
tem (Mehrez et al., 2013; Suendermann-Oeft et
al., 2015).

2 System description

Figure 1 schematically depicts the main compo-
nents of the HALEF spoken dialog framework,
of which the speech recognizer is a component.
The various modules of HALEF include the Aster-
isk telephony server (van Meggelen et al., 2009),
a voice browser based on JVoiceXML (Schnelle-
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Walka et al., 2013), a web server running Apache
Tomcat, and a speech server, which consists of an
MRCP server (Prylipko et al., 2011) in addition
to text-to-speech (TTS) engines—Festival (Taylor
et al., 1998) and Mary (Schroder and Trouvain,
2003)—as well as support for Sphinx-4 (Lamere
et al., 2003) and Kaldi (Povey et al., 2011) ASRs.
In contrast to Sphinx-4 which is tightly integrated
into the speech server code base, Kaldi-based ASR
is installed on an own server, which is commu-
nicating with the speech server via TCP socket.
The advantages of this design decision are (a)
the ease of management of the computational re-
sources, required by Kaldi when operating in real-
time mode (including the potential use of Graph-
ical Processing Units (GPUs)), which could oth-
erwise interfere with the other processes running
on the speech server (audio streaming, TTS, Ses-
sion Initiation Protocol (SIP) and Media Resource
Control Protocol (MRCP) communication) and (b)
the ease to test the very speech recognizer used in
the live SDS also in the offline mode, for example
for batch experiments. Often ASR configurations
in live SDSs differ from batch systems that may
result in different behaviour w.r.t. WER, latency,
etc.

In this paper, we will be focusing specifically
on evaluating the performance of the Kaldi ASR
system within HALEF (we have already covered
the Sphinx version in the papers cited above). We
generally follow Kaldi’s WSJ standard model gen-
eration recipe with a few modifications to accom-
modate our training data. The most sophisticated
acoustic models are obtained with speaker adap-
tive training (SAT) on the feature Maximum Like-
lihood Linear Regression (fMLLR)-adapted data.

We use about 780 hours of non-native English
speech to train the acoustic model. The speaker
population covers a diversity of native languages,
geographical locations and age groups. In order
to match the audio quality standard of the Public
Switched Telephone Network (PSTN), we reduce
the sampling rate of our recordings down to 8 kHz.
The language model was estimated on the manual
transcriptions of the same training corpus consist-
ing of ~ 5.8 million tokens and finally was rep-
resented as a trigram language model with ~ 525
thousand trigrams and ~ 605 thousand bigrams
over a lexicon of ~ 23 thousand words which in-
cluded entries for the most frequent partially pro-
duced words (e.g. ATTR-; ATTRA-; ATTRAC-



; ATTRACT; ATTRACT-; ATTRACTABLE). Ul-
timately, the final decoding graph was compiled
having approximately 5.5 million states and 14
million arcs.

The default Kaldi speech recognizer use case
is oriented towards optimal performance in tran-
scription of large amounts of pre-recorded speech.
In these circumstances there exists a possibility to
perform several recognition passes and estimate
the adaptation transformation from a substantial
body of spoken material. The highest perform-
ing Deep Neural Network (DNN) acoustic model
(“nnet2” in Kaldi notation) requires a prior pro-
cessing pass with the highest performing Gaussian
Mixture Model (GMM, “tri4b” in Kaldi notation),
which in turn requires a prior processing pass with
the same GMM in the speaker-independent mode.

However, in the dialogue environment, it is es-
sential to be able to produce recognition results
with the smallest possible latency and little adap-
tation material. That is the main reason for us to
look for alternatives to the mentioned approach.
One such possibility is to use the DNN acous-
tic model with un-adapted data and constrain its
output via a speaker-dependent i- Vector (Dehak et
al., 2011). This i-Vector contains information on
centroids of the speaker-dependent GMM. The i-
Vector can be continuously re-estimated based on
the available up-to-the-moment acoustic evidence
(“online” mode) or after presentation of the entire
spoken content (the so called “offline” mode).

3 Experiments

The evaluation was performed using vocal produc-
tions obtained from language learners in the scope
of large-scale internet-based language assessment.
The production length is a major distinction of this
data from the data one may expect to find in the
spoken dialogue domain. The individual utterance
is a quasi-spontaneous monologue elicited by a
certain evaluation setup. The utterances were col-
lected from six different test questions comprising
two different speaking tasks: 1) providing an opin-
ion based on personal experience and 2) summa-
rizing or discussing material provided in a reading
and/or listening passage. The longest utterances
are expected to last up to a minute. The average
speaking rate is about 2 words per second. Every
speaker produces up to six such utterances. Speak-
ers had a brief time to familiarize themselves with
the task and prepare an approximate production
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plan. Although in strict terms, these productions
are different from the true dialogue behavior, they
are suitable for the purposes of the dialogic speech
recognition system development.

The evaluation of the speech recognition sys-
tem was performed using the data obtained in the
same fashion as the training material. Two sets
are used: the development set (dev), containing
593 utterances (68329 tokens, 3575 singletons,
0% OOV rate) coming from 100 speakers with the
total amount of audio exceeding 9 hours; and the
test set (test), that contains 599 utterances (68112
tokens, 3709 singletons, 0.18% OOV rate) com-
ing from 100 speakers (also more than 9 hours
of speech in total). We attempted to have a non-
biased random speaker sampling, covering a broad
range of native languages, English speaking pro-
ficiency levels, demographics, etc. However, no
extensive effort has been spent to ensure that fre-
quencies of the stratified sub-populations follow
their natural distribution. Comparative results are
presented in Table 1.

As it can be learned from Table 1, the “DNN i-
Vector” method of speech recognition outperforms
Kaldi’s default “DNN fMLLR” setup. This can be
explained by the higher variability of non-native
speech. In this case the reduced complexity of the
i-Vector speaker adaptation matches better the task
that we attempt to solve. There is only a very mi-
nor degradation of the accuracy with the reduction
of the i-Vector support data from the whole inter-
action to a single utterance. As expected, the “on-
line” scenario loses some accuracy to the “offline”
in the utterance beginning, as we could verify by
analyzing multiple recognition results.

It is also important to notice that the accuracy
of the “DNN i-Vector” system compares favor-
ably with human performance in the same task. In
fact, experts have the average WER of about 15%
(Zechner, 2009), while Turkers in a crowdsourcing
environment perform significantly worse, around
30% WER (Evanini et al., 2010). Our proposed
system is therefore already approaching the level
of broadly defined average human accuracy in the
task of non-native speech transcription.

The “DNN i-Vector” ASR method vastly out-
performs the baseline in terms of processing
speed. Even with the large vocabulary model
in a typical 10-second spoken turn we expect to
have only 3 seconds of ASR-specific processing
latency. Indeed, in order to obtain an expected de-



System Adaptation WER (dev) | WER (test) | XRT
GMM SI Offline, whole interaction 37.58% 37.98% 0.46
GMM fMLLR | Offline, whole interaction 29.96% 31.73% 2.10
DNN fMLLR | Offline, whole interaction 22.58% 24.44% 3.44
DNN i-Vector | Online, whole interaction 21.87% 23.33% 1.11
DNN i-Vector | Offline, whole interaction 21.81% 23.29% 1.05
DNN i-Vector | Online, every utterance 22.01% 23.48% 1.30
DNN i-Vector | Offline, every utterance 21.90% 23.22% 1.13

Table 1: Accuracy and speed of the explored ASR configurations; WER — Word Error Rate; (dev) - as
measured on the development set; (test) — as measured on the test set; XRT - Real Time factor, i.e. the
ratio between processing time and audio duration; SI - Speaker Independent mode.

lay one shall subtract the duration of an utterance
from the total processing time as the “online” rec-
ognizer commences speech processing at the mo-
ment that speech is started. That 3 seconds de-
lay is very close to the natural inter-turn pause of
0.5 — 1.5 seconds. Better language modeling is
expected to bring the xRT factor below one. The
difference of the xRT factor between the “online”
and “offline” modes can be explained with some-
what lower quality of acoustic normalization in the
“online” case. Larger numbers of hypotheses fit
within the decoder’s search beam and, thus, in-
crease the processing time.

4 Conclusions

The DNN i-Vector speech recognition method has
proven to be sufficient in the task of support-
ing a dialogue interaction with non-native speak-
ers. In respect to our baseline systems we ob-
serve improvements both in accuracy and process-
ing speed. The “online” mode of operation ap-
pears particularly attractive because it allows to
minimize the processing latency at the cost of a
minor performance degradation. Indeed, the “on-
line” recognizer is capable to start the processing
simultaneously with the start of speech produc-
tion. Thus, unlike the “offline” case, the total per-
ceived latency in the case of “online” recognizer is
xRT-1.

There are ways to improve our system by per-
forming a more targeted language modeling and,
possibly, language model adaptation to a specific
dialogue turn. Our further efforts will be directed
to reducing processing latency and increasing the
system’s robustness by incorporating interpreta-
tion feedback into the decoding process.

We plan to perform a comparative error analysis
to have a better picture of how our automated sys-

tem compares to the average human performance.
It is important to separately evaluate WERSs for the
content vs functional word subgroups; determine
the balance between insertions, deletions and sub-
stitutions in the optimal operating point; compare
humans and machines in ability to recover back
from the context of the mis-recognized word (e.g.
a filler or false start).

We plan to collect actual spoken dialogue in-
teractions to further refine our system through a
crowdsourcing experiment in a language assess-
ment task. Specifically, the ASR sub-sytem can
benefit from sampling the elicited responses, mea-
suring their apparent semantic uncertainty and tai-
loring system’s lexicon and language model to
better handle acoustic uncertainty of non-native
speech.
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Abstract

When implementing a conversational ed-
ucational teaching agent, user-intent un-
derstanding and dialog management in a
dialog system are not sufficient to give us-
ers educational information. In this paper,
we propose a conversational educational
teaching agent that gives users some edu-
cational information or triggers interests
on educational contents. The proposed
system not only converses with a user but
also answer questions that the user asked
or asks some educational questions by in-
tegrating a dialog system with a
knowledge base. We used the Wikipedia
corpus to learn the weights between two
entities and embedding of properties to
calculate similarities for the selection of
system questions and answers.

1 Introduction

Dialog is the most natural interaction between a
mentor and mentee in the real world. Therefore,
dialog-based intelligent tutoring systems (ITSs)
have been widely studied to teach science (Jordan
et al., 2013; Litman and Silliman, 2004; Graesser
et al., 2004; VanLehn et al., 2002; Vanlehn et al.,
2005), foreign language (Kyusong et al.,
2014;Lee et al., 2010; Lee et al., 2011;Johnson et
al., 2007), and programming language (Fossati et
al., 2008; Lane and VVanLehn, 2015) usually with-
out intervention from a human teacher. However,
previous dialog-based language learning systems
mostly only play the role of a conversational part-
ner using chatting like spoken dialog technology,
and providing feedback such as grammatical error
correction and suggesting better expressions.

1 http://isoft.postech.ac.kr/research/language learning/db-
call/videos/e3-1.mp4

chasunee, giantpanda,

gblee}@postech.ac.kr

However, in real situations, students usually ask
many questions to indulge their curiosity and a tu-
tor also asks questions to continue the conversa-
tion and maintain students’ interest during the
learning process. In science and programming
language learning, mostly pre-designed scenarios
and contents are necessary; these are usually
handcrafted by human education experts. How-
ever, this process is expensive and time-consum-
ing.

Our group is currently involved in a project
called POSTECH Immersive English Study
(POMY). The program allows users to exercise
their visual, aural and tactile senses to receive a
full immersion experience to develop into inde-
pendent EFL learners and to increase their
memory and concentration abilities to the greatest
extent (Kyusong Lee et al., 2014). During field
tests, we found that many advanced students
asked questions that cannot be answered using
only a dialog system?. Recently, knowledge base
(KB) data such as freebase and DBpedia have be-
come publicly available. Using the KB,
knowledge base question answering (KB-QA) has
been studied (Berant and Liang, 2014); it has ad-
vantages of very high precision because it exploits
huge databases. Hence, we proposed a dialog-
based intelligent tutoring system that uses a KB,
as an extension of POMY, POMY Intelligent Tu-
toring System (POMY-ITS). The main advantage
is that the human cost to manually construct edu-
cational contents is eliminated. Moreover, the sys-
tem chooses its response after considering infor-
mation importance, current discourse, relative
weights between two entities, and property simi-
larity. The additional functions of the POMY-ITS
are that it:

1) Answersuser’s question such as factoid ques-
tions, word meaning;
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2) Generates questions to continue the conver-
sation and to interest the user;

3) Uses entities and properties in freebase to
generate useful information that might inter-
est a user, and presents it in natural language.

To implement 1) the QA function, we used Par-
asempre (Berant and Liang, 2014) based KB-QA
system as our QA system. However, in this paper,
we focus only on 2) and 3) which are generating
questions or informing by selecting appropriate
entity and property in the KB; we do not present
the detailed explanation or assess the accuracy of
the QA system.

2 Intuition of the system

A user who asks about Bill Gates, may also be in-
terested in Microsoft and Paul Allen, which are
topics strongly related to Bill Gates. In the KB
graph, the ‘Bill Gates’ entity is connected to many
other entities. However, these connections present
too much information, such as URLs of related
websites, gender of Bill Gates, published books,
music, and architecture. However, KB does not
contain the entity importance or weighted rela-
tionship between entities and properties (Figure 1).
This information can be useful to POMY-ITS to
enable it to decide what to ask or talk about. When
a system and a user are talking about Bill Gates’

Algorithm 1 : RuleBasedDA (U,S;_;)
Require: U: user utterance

Require: S;_;: previous system action

1:if U contains WH questions and IsEntity(U)
2. then DA = U: Question

3. elseif S;_; is S:Question

4.  then DA = U: Answer

5: else

6: then DA = U:others

Algorithm 1: Generation Algorithm, ISEntity returns
true is when entitv is detected in user utterance

Table 1: Example dialog and user dialog act and
system action (S:system, U:user)

Utterance Dialog Act
U:Hi, nice to meet you. U:others
S:Hello, good to see you. Matched Exam-

ple

U:Who is Bill Gates? U:question
S:Bill Gates is organization S:Answer
learner and programmer.
S:Do you know what company S:Question
Bill Gates founded?
U:Microsoft U:answer
S: That’s right. S:CheckAnswer
S: Bill Gates founded Microsoft S: Inform
with Paul Allen

wife’s name, the user may also want to know
when they got married or who Bill Gates’ other
family members are. Manual construction of the
entity relationship or order of scenarios would be
very expensive. Our system considers entity and
property to decide automatically what to ask or to
inform. To deploy the system, we used the Wik-
ipedia corpus to learn property similarity, and
weight between two entity pairs.

3 Method

The main role of the POMY-ITS is to give infor-
mation that a user wants to know. The KB-QA
technology will give the answer if the utterance is
a ‘wh’ question, but often, a user does not know
what to ask. Thus, the conversation must include
initiative dialog. When the dialog between a tutor
and a user stalls, the tutor should ask a relevant
question to or give useful information related to
the current context.

3.1 The Role of Dialog Management

First, the system should know whether a user ut-
terance is a question, an answer, or has some other
function (Algorithm 1). If the user utterance is a
question, KB-QA will answer. If the utterance is
an answer, the system will check whether or not
the user utterance is correct. Otherwise, we used
the example based dialog system which uses a
similarity measure to find an example sentence in
the example DB (Nio et al., 2014), and utters the
sentence (Table 1). The following are the system
actions such as Answer, Question (entity, prop-
erty), Inform (entity, property, obj, Check-
UserAnswer. To generate the next system utter-
ance, we should select arguments such as entity,
property, and object. For example,

*  Question (entity="Bill Gates ", property="0r-
ganization.founded”) will generate “Do you
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(1) Entity Linking in Wikipedia

Gates was born i Seattle, Washington, in an upper-middle-class
family, the son of[(William H. Gates, Sr.Jand Mary Maxwell Gates|

---------------------------------------------------------------

Mary Maxwell Gates

(3) Property sequence in Wikipedia text

(CPlace of Birth |- Parents of |} Parents of | -
(4) Property embedding
[ Place_of girth | [[[0.1,0.4,0.2,..] | [ Parents_of ][ [0.3,02,07,..] ]

Figure 2: Procedure of property embedding

want to know the company Bill Gates
founded?”

Inform(entity="Bill Gates”, property=""0r-
ganization.founded”,0bj="Microsoft”’) Wwill
generate “Bill Gates founded Microsoft”

In this paper, we mainly explore how to select the
most appropriate entity and property for generat-
ing system utterances.

3.2

Freebase is stored in a graph structure. The entity
‘Bill Gates’ is linked to many properties and enti-
ties in “triple’ format. However, the edges are not
weighted. When the system provides useful infor-
mation to a user about Bill Gates, then his profes-
sion, or books that he wrote will be more interest-
ing to a user than Gates’ gender or URL infor-
mation. Moreover, the relationship between two
entities can be represented as a directional graph.
When we explain about Bill Gates, Basic pro-
graming language is important because he used it
when he was programming. However, when we
explain about Basic programing language, Bill
Gates is not very important. Entities in Wikipedia
are linked (Mendes et al., 2011) to obtain the
weight information. Weight w(v,, v;) is obtained
as the follows when v, is ‘Bill Gates’ and v; is
‘Microsoft’; First, we need the number of occur-
rence of “Microsoft” entity in the “Bill Gates”
Wikipedia page to get Freq(v;),,. Second, we
search the shortest path from “Bill Gates” to “Mi-
crosoft” in Freebase KB graph, then count the
number of properties to get n(v,, v;).

Weight between two entities

Freq(j)y 1
Yvpevvy Fr:q (;k)vt n(vg,vj) (1)
Freq(v;),, denotes frequency of v; in Wikipedia
v, page. VV, denotes all entities in the Wikipedia
v, page. n(v, v;) denotes # of hops between v,
and v; (e.g., n(Billl Gates, Microsoft) = 1, n(Bill

W(Ut, vj) =a
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Figure 3 Skip-gram of property embedding

Gates, Microsoft Windows) = 2 in Figure 1-(a))
We eliminate edges that have w(v,,v;) = 0 and
nodes where n(v,, v;) > 2 (a ‘more than 3 hop’ re-
lationship). a and {3 are currently set to 1.

3.3

The intuition of property-embedding similarity is
as follows: when a user is talking about Bill Gates’
professional achievement, POMY-ITS’s best op-
tion would be to explain something related to pro-
fessional achievement. However, designing all
possible replies manually would be too expensive.
When a user asks about Bill Gates’ parents,
POMY-ITS’s best option would be to explain or
ask the user about Gates’ other family members.
To determine that the “people.person.parents”
property is more similar to “people.person.chil-
dren” than “people.person.employment_history”
(Figure 5), property-embedding vectors are gen-
erated to compute the similarity between two
properties. We first obtain the sequence of the
property from the Wikipedia corpus (Figure 2),
then we use Skip-gram to train the vectors (Figure
3). The training objective of the Skip-gram model
is to find word representations that are useful to
predict the surrounding (Mikolov et al., 2013). We
used skip-gram to predict the next property r
given the current property as the following equa-
tion:

Property Embedding

T
1

T .
t=1-2<j<2,j#0

where 1 denotes current property. The basic
Skip-gram formulation uses the soft-max function

to define p(7ej|r):

logp(rtﬂ- ) @)

exp(vf,vr,)
= 7 (3)

Yire1 exp(vr VrI)

where v, and v, are, respectively, the input and

output vector representations of r, and R is the

number of properties in Freebase.

3.4

After choosing entity and property, we can gener-
ate either question or inform sentences. Template-
based natural language generation uses rules (Ta-
ble 2) to generate question utterances. Questions
begin with a question word, are followed by the

p(rolr) =

System Utterance Generation



Freebase description of the expected answer type
d(t), the further followed by Freebase descriptions
of entities d(e) and d(p). To fill in auxiliary verbs,
determiners, and prepositions, we parse the de-
scription d(p) into one of NP, VP, PP, or NP VP.
For inform system actions, we generate the sen-
tences from triple <Bill Gates, organiza-
tion.founded, Microsoft> to “Bill Gates founded
Microsoft” as follows: extract the triple from the
text, and disambiguate to KB entities. Then, align
to existing triples in KB, fourth. Finally, collect
matched phrase-property pairs from aligned tri-
les.
‘F;able 2: Template of questioning. WH represents

“Do you know what”.

Rule | Example

WH d(t) has d(e) as NP? WH election contest has George Bush
as winner?
WH radio station serves area New-
York?
WH beer from region Argentina?
WH mass transportation system
served the area Berlin?

WH d(t) (AUX) VP d(e)?

WH PP d(e) ?
WH d(t) VP the NP d(e)?

3.5 Experiment and Result

To compare the weight of two entities, 10 human
experts ranked among the 60 entities that were
most closely related to the target entity. We asked
them to rank the entities as if they were teaching
students about the target entities such as “Bill
Gates”, “Steve Jobs”, “Seoul”, etc. We considered
the human labeled rankings to be the correct an-
swers, and compared them to answers provided by
the proposed method and word2vec? (Figure 4);
as a similarity statistic we used the average score
of Mean reciprocal rank (MRR). We obtained
MRR scores 10 times, then got mean and standard
deviation by repeating one human labels as the an-
swer and another human labels as the test; this al-
lows quantification of the correlation between hu-
man labels. The results show that human-to-hu-
man has the highest correlation. Next, the correla-
tion between human and the proposed method is
significantly better than between human and
word2vec (Figure 4). We found that word2vec has
high similarity when entities are of the same type;
e.g., Melinda Gates, Steve Ballmer, and Jeff are
all “person” in Table 3. However, humans and the
proposed system selected entities of different
types such as ‘Microsoft’ and “Windows”. Thus,
semantic similarity does not necessarily represent
the most related entities for explanation about the
target entity in the educational perspective. To
show property similarity, we plot in the 2D space
using t-SNE (Van der Maaten and Hinton, 2008).

2 The model of freebase entity embedding is already availa-
ble in https://code.google.com/p/word2vec/

Table 3: Ranked Results of the top 5 entities gen-
erated for Bill Gates

Rank Human Proposed Word2Vec
1 Microsoft Microsoft Melinda Gates
2 MS Windows Paul Allen Steve Ballmer
3 MS-DOS Harvard Unv. Bill Melinda Gates
Foundation
4 Harvard Univ. Lakeside Feff_Raikes
School
5 0s/2 CEO Ray Ozzie
4
3
[:4
x 2
| % %
1
0 T
< ©° &
o° eso o
‘27\\\ \7/4

Bl Human [ Proposed EEJ word2vec

Figure 4: Mean and SD of MRR scores for 10
human labeled rankinas

peaple.person.children

@
people person parents
L

film film_directed_by
® !
people.person.religion
[}

aople person nafionality
.peu&_pgrsu place_ol j]”%].neume person.profession

film.film.written_by
P _by

.Iocation country.second_level_divisions

people person.anguages
.mm nrntlumﬂ\_cnmpany fivns. film featured_film_locations

people p.fémﬂe\mI{l‘\énvprndummn_tleslgn_h;.
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glocation.country.currency_used
.Iu:atlun country.official_language
.ﬁlm film.executive_produced_by

Figure 5: plotting property-embedding vectors

The graph shows that similar properties are
closely plotted in 2D space, especially people.per-
son.children and people.person.parents (Figure 5).
This is exactly consistent with our purpose of
property-embedding, and our property-embed-
ding model is available® which includes 779 total
properties and 100 dimension.

4  Conclusion

We developed a conversational knowledge-teach-
ing agent using knowledge base for educational
purposes. To generate proper system utterance,
we obtained the weight between two entities and
property similarity. The proposed method signifi-
cantly improved upon baseline methods. In the fu-
ture, we will improve our conversational agent for
knowledge education more tightly integrated into
QA systems and dialog systems.

3 http://isoft.postech.ac.kr/~kyusonglee/sigdial/p.emb.vec
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Abstract

In this paper we present some information
theoretical and statistical features includ-
ing function word skip n-grams for detect-
ing plagiarism intrinsically. We train a bi-
nary classifier with different feature sets
and observe their performances. Basically,
we propose a set of 36 features for clas-
sifying plagiarized and non-plagiarized
texts in suspicious documents. Our ex-
periment finds that entropy, relative en-
tropy and correlation coefficient of func-
tion word skip n-gram frequency profiles
are very effective features. The proposed
feature set achieves F-Score of 85.10%.

1 Introduction

Extrinsic plagiarism detection attempts to detect
whether a document is plagiarised relative to refer-
ence documents. IPD (intrinsic plagiarism detec-
tion), which is relatively new, detects the plagia-
rised section(s) in a suspicious document without
using any reference document. The basic hypoth-
esis behind IPD is different writers have their own
styles and they maintain these in their writings
consciously or subconsciously. Sometimes it is
very difficult to define the reference set for the task
of external plagiarism detection. Additionally, the
source of the plagiarized text may not be available
in digitized format. Therefore, researchers are try-
ing to answer whether it is possible to detect pla-
giarism without using any reference.

In this paper, we investigate some information
theoretical and statistical measurements for IPD as
a binary classification task. A set of 36 features
has been proposed for classifying plagiarized and
non-plagiarized segments in the suspicious docu-
ments. We use the PAN-PC-11 (Potthast et al.,
2010) corpus compiled for IPD task. The PAN
corpus is artificially plagiarised and it provides
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a meta-file mentioning the offsets of plagiarised
and non-plagiarized parts for each suspicious doc-
ument. We consider that each suspicious docu-
ment is written by single author and it is either
partially plagiarised or not plagiarised and we try
to identify the text-segments that differ in writing
style compared to the whole document. We train
an SMO (Platt, 1998) classifier in Weka3.6 (Hall
et al., 2009) by using 10 fold cross-validation.
Then the classification performances are observed
with different feature sets according to the stan-
dard precision, recall and F-score.

The next sections are organized as follows: sec-
tion 2 discusses related works and section 3 briefly
describes information theoretical and statistical
features. The text segmentation and windowing
process is summarized in section 4 while the ex-
perimental framework and baseline feature sets are
discussed in section 5. Section 6 compares the
classification performances with different feature
sets and finally, the paper concludes in section 7.

2 Related Work

A series of regular studies on plagiarism detec-
tion were started following the first international
competition for plagiarism detection, the PAN!
workshop in 2009. Potthast et al. (2009) pro-
vides an overview on PAN’09 including the cor-
pus design for plagiarism detection, quality mea-
surements and the methods of plagiarism detection
developed by the participants.

Zu Eissen and Stein (2006) proposed the first
method for IPD and presented a taxonomy of pla-
giarism with methods for analysis. They also pro-
posed some features including average sentence
length, part-of-speech features, average stopword
number and averaged word frequency class for
quantifying the writing style. Some researchers
used character n-gram profiles for the task of IPD

"http://pan.webis.de/
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(Stamatatos, 2009; Kestemont et al., 2011). Ober-
reuter et al. (2011) proposed word n-gram based
method and they assumed that different writers
use different sets of words that they repeat fre-
quently. Tschuggnall and Specht (2012) proposed
the Plag-Inn algorithm that finds plagiarized sen-
tences in a suspicious document by comparing
grammar trees of the sentences.

Stamatatos (2009) introduced sliding window and
proposed a distance function for calculating the
dissimilarity between two texts based on a charac-
ter tri-gram profile. Stamatatos (2011) employed
n-grams of function word sequence with different
lengths and found significant impact to distinguish
between plagiarised and non-plagiarized texts. We
employ function words differently as skip n-gram
profiles for measuring entropy, relative entropy
and correlation coefficient as discussed in Section
5.2. Stein et al. (2011) employed unmasking tech-
nique and proposed a set of features of different
types for example POS, function words etc for in-
trinsic plagiarism analysis.

Seaward and Matwin (2009) and Chuda and
Uhlik (2011) proposed compression based meth-
ods for IPD. They measured the Kolmogorov com-
plexity of the distributions of different parts-of-
speech and word classes in the sentences. For
calculating the complexity a binary string is gen-
erated for each distribution and later the string is
compressed by a compression algorithm.

3 Information Theoretical and Statistical
Features

Shannon Entropy (Shannon, 1948) has a great im-
pact on communication theory or theory of infor-
mation transmission, it measures the uncertainty
of a random variable. Mathematically, entropy is
defined as in equation (1).

H(X) = —Z p(xi) loga(p(z:)) (D
i=1
KLD(qu) = Z p(.’L‘) lOgg @

Swonm(23) @
0 o

Sy
We measure entropy of n-gram frequency profile
generated from each text-window (X) for quan-
tifying the writing style. Manning and Schiitze

n

D

=1

1
n—1

X;i—X

SX

r =
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(1999) measured the distance between two prob-
ability distributions by using Relative entropy or
Kullback-Leibler divergence (KLD) which is cal-
culated by using the equation (2). The Pearson
correlation coefficient (Pearson, 1920) or simply
correlation coefficient measures the linear corre-
lation between two samples that is calculated by
the equation (3). Since the task of IPD does not
use any reference document we require a robust
method for comparing small sections of the docu-
ment relative to the whole document under ques-
tion. Measuring the relative entropy and correla-
tion coefficient between a small section and the
rest of the document are possible methods. We
use the frequency profiles of n-grams generated
from the individual text-window (X) and the com-
plete suspicious document (Y) separately for cal-
culating relative entropy and correlation coeffi-
cient. The probability distributions of n-gram fre-
quencies (P and Q) is calculated from n-gram fre-
quency profiles (from X and Y) for measuring the
relative entropy.

4 Text Segmentation and windowing

To define the small sections of text for comparison
to the rest of the document, we experiment with
window of different lengths (1000, 2000, 5000
characters). To prepare the corpus for training
and testing to support this additional experimenta-
tion, we separate plagiarised and non-plagiarized
sections of the documents in the corpus accord-
ing to the offsets (as indicated in the meta-file).
By doing this we can guarantee that the smaller
texts we generate are still accurately annotated as
to whether the content is plagiarised or not. The
whole procedure is illustrated in figure 1.
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Figure 1: Text segmentation and windowing



S Experimental Framework and Feature
Sets

This section illustrates the experimental frame-
work of IPD task by combining the preprocessing
and classification tools, the framework is graphi-
cally described in figure 2. After extracting and
windowing the corpus, we calculate different fea-
ture values for generating the feature vectors. Be-
fore calculating the features, several text prepro-
cessing tasks, for example, tokenizing, sentence
detection and POS-tagging are employed. We gen-

PAN-PC-11 COrpus

|

Suspicious Documents
iwith Plagiarized and Non-|
Plplagiarized Texts

Plagiarized Texts

Non-plagiarized Texts|

Preprocessor

i

entence detected, Tokenized
and POS-tagged

v

Feature Vector Generated

(Weka3.6) Classifier
Training and Testing

/ Performance Measured /

/

Figure 2: Experimental framework

erate several feature vectors for different baseline
feature sets and proposed feature set. Then a clas-
sifier model is trained with the feature sets, we
train SMO classifier with 10 fold cross valida-
tion in Weka 3.6 explorer interface. Equal number
of plagiarized and non-plagiarized text samples
are trained with the classifier. We train the clas-
sifier with 8,100 text segments from each class
where each segment initially contains 5, 000 char-
acters. Finally, the classification performances are
observed for different feature sets.

5.1 Baseline feature sets

We used three different baseline feature sets for
the experiment which are listed below:

e Baseline-1 (feature set used by Stein et al.
(2011)): used 30 features that includes lex-
ical and syntactical features, surface fea-
tures, vocabulary richness and readability
measurement-based features, n-gram-based
features, POS-based features etc.
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e Baseline-2 (feature set used by Seaward and
Matwin (2009)): calculated the Kolmogorov
complexity of function words and different
parts-of-speech.

Baseline-3 (distance function proposed by
Stamatatos (2009)): measured distance func-
tion or style-change score of the text-
windows with respect to the whole suspicious
document by using their character tri-gram
profiles.

5.2 Proposed feature set

We propose 36 features for IPD including en-
tropy, relative entropy, correlation coefficient, skip
n-grams of function words etc. Lavergne et al.
(2008) and Zhao et al. (2006) used relative en-
tropy for fake content detection and authorship at-
tribution accordingly. Islam et al. (2012) classified
readability levels of texts by using both entropy
and relative entropy. Stamatatos (2011) used func-
tion word n-grams for exterinsic plagiarism detec-
tion but here we generate several skip n-grams of
function words instead of simple n-grams. Guthrie
et al. (2006) used 1 to 4 skip n-grams for mod-
elling unseen sequences of words in the text. Here
we summarize the proposed feature set:

e Character fri-gram frequency profile: we
measure entropy for text windows and rela-
tive entropy and the correlation coefficient of
the character tri-gram frequency profile for
the text windows and documents. Addition-
ally, we calculate average n-gram frequency
class by using the equation of average word
frequency class proposed by Zu Eissen and
Stein (2006). Here we have 4 features: en-
tropy, relative entropy, correlation coefficient
and n-gram frequency class calculated from
character tri-gram frequency profiles of text-
windows and complete document.

bi-gram and tri-gram frequency profile
with 1, 2, 3 and 4 skips : we measure
entropy, relative entropy, correlation coeffi-
cient of function-word bi-gram and tri-gram
frequency profile with 1, 2, 3 and 4 skips.
Additionally, we calculate the style change
scores with these frequency profiles using
the distance function proposed by Stamatatos
(2009). For generating the skip n-gram pro-
files of function-words we extract the func-
tion words sequentially from each sentence.



We generate function-word skip n-gram pro-
files of the text segments by considering only
the function words at sentence level instead
of passage level as Stamatatos (2011) used.
Here we have 32 features: entropy, rela-
tive entropy, correlation coefficient and style-
change score calculated from 8 function-
word skip n-gram frequency profiles.

6 Experimental Results

We observe that the proposed feature set achieves
the highest F-Score compared to the baseline fea-
ture sets as illustrated in figure 3. All the fea-
ture sets together obtain a promising F-Score of
91% while the three baselines combined result in
an F-Score around 89%. The proposed feature
set achieves an 85% F-Score which is the high-
est compared to the three baseline feature sets.
Baseline-1 and baseline-2 obtain F-Score around
68% and 62% while baseline-3 surprisingly results
in an 84% F-Score as a single feature. We pair fea-
ture sets and observe their performances, figure 4
shows that the proposed feature set increases the
F-Score with the combination of baseline feature
sets.

Figure 5 depicts separate observations of en-
tropy, relative entropy, correlation coefficient and
distance function of function word skip n-gram
frequency profiles. Here we notice that relative
entropy achieves a very good F-Score of 72%, en-
tropy and correlation coefficient also obtain better
F-Scores than the distance function. Though dis-
tance function results in very good F-Score with
the character tri-gram frequency profile it does not
perform good enough with the function word skip
n-gram frequency profile. Distance function with
function word skip n-gram frequency profile ob-
tains around a 35% F-Score which is the lowest
compared to other functions with function word
skip n-gram frequency profile. We also observe
the effect of different window lengths (discussed
in section 4) on classification performance, the
classification performance increases for each fea-
ture set if the window length is increased. All the
feature sets combined result in F-Score of 82%
and 87% for window lengths of 1000 and 2000
characters accordingly while a 91% F-Score is
achieved with the window length of 5000 charac-
ters.
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7 Conclusion

In this paper we proposed a set of new features
for intrinsic plagiarism detection that support ar-
guments for continued research on IPD. In the fu-
ture we would like to evaluate these features on
human-plagiarised and different domain corpora.
We are also interested in expanding the IPD task
by considering the case that a suspicious document
is written by multiple authors.
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A SIP of CoFee : A Sample of Interesting Productions of Conversational
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Abstract

Feedback utterances are among the most
frequent in dialogue. Feedback is also
a crucial aspect of linguistic theories
that take social interaction, involving lan-
guage, into account. This paper introduces
the corpora and datasets of a project scru-
tinizing this kind of feedback utterances in
French. We present the genesis of the cor-
pora (for a total of about 16 hours of tran-
scribed and phone force-aligned speech)
involved in the project. We introduce the
resulting datasets and discuss how they are
being used in on-going work with focus on
the form-function relationship of conver-
sational feedback. All the corpora created
and the datasets produced in the frame-
work of this project will be made available
for research purposes.

1 Introduction

Feedback utterances are the most frequent utter-
ance type in dialogue (Stolcke et al., 2000; Misu
et al.,, 2011). They also play a crucial role in
managing the common ground of a conversation
(Clark, 1996). However, perhaps due to their ap-
parent simplicity, they have been ignored in many
linguistic studies on dialogue. The main contri-
bution to the understanding of the feedback utter-
ance type comes from neighboring fields: (i) Con-
versational Analysis (CA) has shed light on turn-
taking including a careful description of response
tokens, such as “uh-huh” (Schegloff, 1982), for-
merly also termed back-channels by (ii) computa-
tional linguist Victor Yngve (Yngve, 1970)!; (iii)
Dialogue engineers dealt with them because of
their ubiquity in task-oriented dialogues (Traum,
1994); (iv) Cognitive psychologists gave them an

ISee section 2 for details on the definitions and terminol-
ogy.
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important role in their theory of communication
(Clark, 1996); (v) The most linguistic attempt to
describe feedback is the work by Allwood et al.
(1992) who suggest a semantic framework for it.

We take the apparent lack of sophistication of
the lexical forms and structures involved in the
majority of feedback utterances to be an interest-
ing feature for a multimodal study. In our opin-
ion, multimodal corpus studies are suffering form
a combinatorial explosion that results from the
simultaneous integration of complex phenomena
and structures from all levels of analysis. Our
aim is to use feedback as a filtering constraint on
large multimodal corpora. In this way, all the di-
mensions will be analyzed but in a restricted way:
on feedback utterances. Feedback production is
known to be dependent on the discourse situation.
Therefore, a second aim is to provide a model that
is not domain-restricted: our objective is rather a
model that is generalisable enough to be interest-
ing from a linguistic viewpoint.

These parameters lead us to constitute a dataset
that is built from four different corpora recorded in
four different situations: almost free conversation
(CID corpus), Map Task (MTR corpus), Face-to-
Face Map Task (MTX corpus), and discussion /
negotiation centered on DVD movies (DVD cor-
pus). Since the overall goal of the project is a
study of the form-function relationship of feed-
back utterances, the corpora are needed to create
rich datasets that include extracted features from
the audio, video, and their transcriptions, as well
as annotated functions of the feedback utterances.

In this paper, after coming back to definitions,
terminology and related work (Section 2), we
present how the corpora were created (Section
3), including various stages of non-trivial post-
processing, how they were pre-segmented in the
gestural domain and annotated for communicative
functions. We also present the different datasets
(Section 4), including automatically enriched tran-
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scriptions and large feature files, how they were
produced and how they can also be useful for other
researchers and their studies.

2 Feedback items

Concerning the definition of the term feedback ut-
terance, we follow Bunt (1994, p.27):

“Feedback is the phenomenon that
a dialogue participant provides informa-
tion about his processing of the part-
ner’s previous utterances. This includes
information about perceptual process-
ing (hearing, reading), about interpreta-
tion (direct or indirect), about evaluation
(agreement, disbelief, surprise,...) and
about dispatch (fulfillment of a request,
carrying out a command,...).”

As a working definition of our class feedback,
we could have followed Gravano et al. (2012),
who selected their tokens according to the indi-
vidual word transcriptions. Alternatively, Neiberg
et al. (2013) performed an acoustic automatic de-
tection of potential feedback turns, followed by a
manual check and selection. Given our objective,
we preferred to use perhaps more complex units
that are closer to feedback utterances. We con-
sider that the feedback function is expressed over-
whelmingly through short utterances or fragments
(Ginzburg, 2012) or in the beginning of potentially
longer contributions. We therefore automatically
extracted candidate feedback utterances of these
two kinds. Utterances are however already sophis-
ticated objects that would require a specific seg-
mentation campaign. We rely on a rougher unit:
the Inter-Pausal Unit (IPU). IPUs are stretches of
talk situated between silent pauses of a given du-
ration, here 200 milliseconds. In addition to these
isolated feedback IPUs, we added sequences of
feedback-related lexical items situated at the very
beginning of an IPU.

3 Corpora

Our collection is composed of four different
corpora: an 8 hour conversational data corpus
(Bertrand et al., 2008), a 2.5 hours MapTask cor-
pus (Bard et al., 2013), a 2.5 hours face-to-face
MapTask corpus (Gorisch et al., 2014) and a 4
hours DVD negotiation corpus. All these cor-
pora are accessible as a collection of resources
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through the Ortolang platform (http://sldr.
org/ortolang—000911).

3.1 Corpus creation: Protocols, Recordings
and Transcriptions

All recordings include headset microphone chan-
nels that were transcribed on IPU level and auto-
matically aligned on word and phone level. The
recording setups are illustrated in Figure 1. The
first two corpora (CID and MTR) already existed
before our current project, while the other two
(MTX and DVD) were specifically recorded and
transcribed (using SPPAS (Bigi, 2012)) for this
project and are therefore explained in more de-
tail below. CID, MTX and DVD primary are di-
rectly accessible for research purposes; MTR re-
quires agreement from its creators.

Mk

(c) MTX

Figure 1: Recording setups of corpora.

CID Conversation Interaction Data (CID) in-
cludes participants having a chat about “strange
things” (Bertrand et al., 2008). Each interaction
took 60 minutes. Three of them were additionally
recorded on video. Figure 1a illustrates the setup.

MTR The remote condition of the French Map-
Task corpus (MTR) (Bard et al., 2013) follows
the original MapTask protocol (Anderson et al.,
1991), where the role of map giver and follower
change through the 8 maps per session. An exam-
ple of a pair of maps is illustrated in Figure 1b. In
this condition, the participants could not see each
other and were therefore not recorded on video.

MTX The face-to-face condition of the French
MapTask corpus (IMTX) (Gorisch et al., 2014) in-
cludes additional video recordings for both partic-



ipants individually as they could see each other
during the dialogue (cf. Figure 1c). Similar to
the remote condition, 4 maps were “given” by one
participant and “followed” by the other and vice
versa. Each map took ca. 5 minutes to complete.

DVD We recruited 16 participants to take part in
the recording of this corpus. The aim was to in-
volve them in a discussion on movies, DVDs, ac-
tors, and all other topics that they may come up
with during a 30 minute conversation. A set of
DVD boxes (with content) were placed on a table
in front of them: 4 on each side (see Figure 1d).
The instructions included that each participant can
take 2 of the 8 boxes home if they are on their side
once the recording session is finished (as compen-
sation for participation). Several weeks prior to
the recording session, the participants were asked
to fill out a short questionnaire answering four
questions: what are your preferred movie genres,
what are your three most preferred movies, what
are your dispreferred movie genres, and what are
your three most dispreferred movies. According
to the answers, we paired mis-matching partici-
pants, chose 8 DVDs and placed them on the two
sides in a way that maximises negotiation (who
takes which DVDs home). 2 dispreferred movies
or genres were placed on the own side and two
preferred ones were placed on the other side.

3.2 Post-processing

Due to clocking differences in the audio and video
recording devices and random image loss in the
video, both signals ran out of synchronisation over
time. For multimodal analyses, such desynchroni-
sation is not acceptable. The videos of the CID
corpus have been corrected by hand in order to
match the audio channels. A more precise and less
time-consuming procedure was developed for the
newer recordings of MTX and DVD, as it is de-
scribed by Gorisch and Prévot (2015). First, the
audio and video files were cut in a rough man-
ner to the approximate start time of the task, e.g.
maps in the MapTask. Second, a dynamic pro-
gramming approach took the audio channel of the
camera and aligned it to the headset microphone
mix in order to estimate the missing images for
each video. Third, scripts were used to extract
all images, insert images at the appropriate places
and recombine the images to a film that can run
synchronously with the headset microphone chan-
nels. This procedure helped to repair the videos of
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2h (out of 2.5h) of the MTX corpus and the entire
DVD corpus.

3.3 Gesture pre-segmentation

As our project aims to describe conversational
feedback in general, the visible part of that feed-
back should receive sufficient attention, too. Three
of the four corpora include participants’ visibil-
ity and video recordings. An entire labelling of
all gestures of the corpus is however impossible.
Therefore, we employed two students (working
on gesture for their research) to perform a pre-
segmentation task. Those sections of a video that
involve feedback in the domain of gestures or fa-
cial expressions were segmented using the ELAN
tool in its segmentation mode (Wittenburg et al.,
2006). The focus on this pass was on recall rather
than precision since all the marked units will be
annotated later on for precise gestures and poten-
tially discarded if it turns out that they are not feed-
back.

3.4 Quantitative presentation

The content of all corpora that are included in
our SIP of CoFee database, sums up to almost 17
hours of actual speech duration, with a number
of 268,581 tokens in 33,378 utterances (See Ta-
ble 1). This relatively large collection is used in
subsequent analyses in order to quantify the form-
function relationship of conversational feedback.
In Table 1, the column # Feedback includes all
(13,036) candidate feedback units (isolated IPUs
and initial of an IPU). How thay have been se-
lected is explained in Section 4. The column #
Gestures indicates the number of pre-segmented
feedback gestures. In parenthesis is the number of
those gestures that co-occur with verbal feedback
items. The number of gestures however should not
be taken as indicator of importance of gestures in
different corpora: the CID corpus has only three
hours out of eight that include video-recording,
while MTX misses some video files due to tech-
nical issues (see Section 3.2).

4 Datasets

This section describes how the verbal units of
feedback have been selected from the transcrip-
tions, what basic features have been extracted and
what communicative functions have been (and are
currently) annotated in order to form the dataset
for the form-function analysis.



Corpus #Tokens  #IPUs  actual speech duration = # Feedback # Gestures

CID 125,619 13,134 7h 34min 4,795 802 (516)

MTR 42,016 6,425 2h 32min 2,622 - -

MTX 36,923 5,830 2h 33min 2,484 652 (466)

DVD 64,023 7,989 4h 12min 3,135 1,386 (668)

CoFee (all) 268,581 33,378 16h 51min 13,036 2,840  (1,650)

Table 1: Basic figures of our SIP of CoFee

Extracting units of analysis We first identified ~ Token CID DVD MTR MTX all
the small set of most frequent items composing oui+ 17 11 8 6 42
feedback utterances by building the token distri- ouais+ 141 63 26 22 252
bution for Inter-Pausal Units (IPUs) of length 3 or voila 47 41 133 105 326
less. The 10 most frequent forms are: ouais / yeah ah 164 112 28 61 365
(2781), mh (2321), d’accord / agree-right (1082), ok 5 47 132 213 397
laughter (920), oui / yes (888), euh / uh (669), ok non 109 112 103 91 415
(632), ah (433), voila / that’s it-right (360). The oui 99 74 175 220 568
next ones are et/ and (360), non/no (319), tu/you mh+ 334 39 246 45 664
(287), alors / then (151), bon / well (150) and then d’accord 35 83 199 366 683
follows a series of other pronouns and determiners mh 548 312 79 79 1,018
with frequency dropping quickly. After qualitative @ 611 286 48 81 1,026
evaluation, we excluded tu, et and alors as they ouais 843 727 565 434 2,569
were unrelated to feedback in these short isolated complex 1,842 1,228 880 761 4,711
IPUs. Table 2 shows the feedback tokens and the Total 4,795 3,135 2,622 2,484 13,036

number of occurrences in each corpus. In order to
count multiple sayings of a token in an IPU, such
as “oui oui”, they appear in separate rows indi-
cated by a plus sign (+). The category complex
simply corresponds to any other transcription in
the IPUs; it includes mainly various feedback item
combinations (ah ouais d’accord, euh ben ouais)
and repeated material from the left context. This
yielded us a dataset of 13,036 utterances.

Feature extraction and function annotation In
order to deepen our understanding of these feed-
back items, we extracted a set of form-related and
contextual features. Concerning the form, aside
the simplified transcription presented in Table 2,
we included some features trying to describe the
complex category (namely the presence of a given
discourse marker in the unit or a repetition of the
left context). Various acoustic features including
duration, pitch, intensity and voice quality param-
eters were also extracted. Concerning contextual
features, we extracted timing features within the
speech environment (that provide us information
about feedback timing and overlap), discourse lex-
ical (initial and final n-grams) and acoustic (pitch,
intensity, etc.) features defined in terms of prop-
erties of the previous IPU from speaker and inter-
locutor.
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Table 2: Distribution of the ‘simplified’ transcrip-
tion of IPUs.

We currently run campaigns to annotate the re-
maining data with feedback communicative func-
tions (acknowledgment, approval, answer, etc.).
Completely annotated subdatasets are used to run
form-function classification experiments and cor-
relation testing (Prévot and Gorisch, 2014).

5 Conclusion

The SIP of CoFee is ready for consumption. It is
a composition of corpora of varying recording sit-
uations, including multimodality, and datasets that
can be — and are currently — used for the study of
one of the most basic practices in human commu-
nication, namely feedback.
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Abstract

We use reinforcement learning (RL) to
learn a multi-issue negotiation dialogue
policy. For training and evaluation, we
build a hand-crafted agenda-based pol-
icy, which serves as the negotiation part-
ner of the RL policy. Both the agenda-
based and the RL policies are designed
to work for a large variety of negotia-
tion settings, and perform well against
negotiation partners whose behavior has
not been observed before. We evaluate
the two models by having them negoti-
ate against each other under various set-
tings. The learned model consistently out-
performs the agenda-based model. We
also ask human raters to rate negotiation
transcripts between the RL policy and the
agenda-based policy, regarding the ratio-
nality of the two negotiators. The RL pol-
icy is perceived as more rational than the
agenda-based policy.

1 Introduction

Negotiation is a process in which two or more par-
ties participate in order to reach a joint decision.
Negotiators have goals and preferences, and fol-
low a negotiation policy or strategy to accomplish
their goals. There has been a lot of work on build-
ing automated agents for negotiation in the com-
munities of autonomous agents and game theory.
Lin and Kraus (2010) present a quite comprehen-
sive survey on automated agents designed to ne-
gotiate with humans. Below we focus only on re-
search that is directly related to our work.

English and Heeman (2005) and Heeman
(2009) applied reinforcement learning (RL) to
a furniture layout negotiation task. Georgila
and Traum (2011) learned argumentation policies
against users of different cultural norms in a one-
issue negotiation scenario. Then Georgila (2013)
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learned argumentation policies in a two-issue ne-
gotiation scenario. These policies were trained for
some initial conditions, and they could perform
well only when they were tested under similar
conditions. More recently, Efstathiou and Lemon
(2014) learned negotiation behaviors for a non-
cooperative trading game (the Settlers of Catan).
Again, in Efstathiou and Lemon (2014)’s work,
the initial settings were always the same. Georgila
et al. (2014) used multi-agent RL to learn nego-
tiation policies in a resource allocation scenario.
They compared single-agent RL vs. multi-agent
RL and they did not deal with argumentation, nor
did they allow for a variety of initial conditions.
Finally, Hiraoka et al. (2014) applied RL to the
problem of learning cooperative persuasive poli-
cies using framing. Due to the complexity of ne-
gotiation tasks, none of the above works dealt with
speech recognition or understanding errors.

In this paper, we focus on two-party negotia-
tion, and use RL to learn a multi-issue negotia-
tion policy for an agent aimed for negotiating with
humans. We train our RL policy against a simu-
lated user (SU), which plays the role of the other
negotiator. Our SU is a hand-crafted negotiation
dialogue policy inspired by the agenda paradigm,
previously used for dialogue management (Rud-
nicky and Xu, 1999) and user modeling (Schatz-
mann and Young, 2009) in information providing
tasks.

Both the agenda-based and the RL policies are
designed to work for a variety of goals, prefer-
ences, and negotiation moves, even under condi-
tions that are very different from the conditions
that the agents have experienced before. We vary
the goals of the agents, how easy it is for the agents
to be persuaded, whether they have enough argu-
ments to accomplish their goals (i.e., shift their
partners’ preferences), and the importance of each
issue for each agent. We evaluate our two models
by having them negotiate against each other under
various settings. We also ask human raters to rate
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negotiation transcripts between the RL policy and
the agenda-based SU, regarding the rationality of
the two negotiators.

In our negotiation task, both the agenda-based
SU and the RL policy have human-like constraints
of imperfect information about each other; they do
not know each other’s goals or preferences, num-
ber of available arguments, degree of persuadabil-
ity, or degree of rationality. Furthermore, both
agents are required to perform well for a variety of
negotiation settings, and against opponents whose
negotiation behavior has not been observed before
and may vary from one interaction to another or
even within the same interaction. Thus our negoti-
ation task is very complex and it is not possible (or
at least it is very difficult) to compute an analytical
solution to the problem using game theory.

Our contributions are as follows. First, this is
the first time in the literature that the agenda-based
paradigm is applied to negotiation. Second, to our
knowledge this is the first time that RL is used to
learn so complex multi-issue negotiation and ar-
gumentation policies (how to employ arguments
to persuade the other party) designed to work for a
large variety of negotiation settings, including set-
tings that did not appear during training.

2 Agenda-Based Negotiation Model

The original agenda-based SU factors the user
state S into an agenda A and a goal G (Schatz-
mann and Young, 2009), and was used in a restau-
rant recommendation dialogue system. We re-
placed the constraints and requests (which refer to
slot-value pairs) with negotiation goals and nego-
tiation profiles, and designed new rules for popu-
lating the agenda.

The agenda can be thought of as a stack contain-
ing the SU’s pending actions, also called speech
acts (SAs), that are required for accomplishing the
SU’s goal. For example, the agenda could be ini-
tialized with offers for each issue (with the val-
ues preferred by the SU) and with requests for
the opponent’s preferences for each issue. Based
on hand-crafted rules, new SAs are generated and
pushed onto the agenda as a response to the op-
ponent’s actions. For example, if the opponent
requests the SU’s preference for an issue, a SA
for providing this preference will be pushed onto
the agenda and no longer relevant SAs will be re-
moved from the agenda. When the SU is ready
to respond, one or more SAs will be popped off
the agenda based on a probability distribution. In
our experiments, the maximum number of SAs
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that can be popped at the same time is 4 based on
a probability distribution (popping 1 SA is more
likely than popping 2 SAs, etc.).

The set of available SAs is: Offer(issue,
value), TradeOff(issueq, value;, issues, values),
Provide Argument(issue, value, argument-
strength), ProvidePreference(issue, value),
RequestPreference(issue), Accept(issue;, valuey,
issueq, values), Reject(issue, value), ReleaseTurn,
and Null. TradeOff is a special action, where the
agent commits to accept value; for issue;, on
the condition that the opponent accepts values
for issuey. Accept refers to a TradeOff when
all four arguments are present, or to an Offer
when only two arguments are present. An agent
is not allowed to partially accept a TradeOff.
The agenda-based SU’s internal state consists
of the following features: “self standing offers”,
“self standing trade-offs”, “agreed issues”, ‘“re-
jected offers”, “self negotiation profile”, “self

goals”, “opponent’s standing offers”, “opponent’s
standing trade-offs”, “estimated opponent’s
goal”, “estimated opponent’s persuadability”,

“negotiation focus”.

The negotiation profile models useful character-
istics of the SU, such as persuadability, available
arguments, and preferred/acceptable values (pos-
sible outcomes) for each issue. Negotiation goals
represent the agent’s best value (of highest pref-
erence) for each issue. Negotiation focus repre-
sents the current value on the table for each issue.
Persuadability is defined as low, medium, or high,
and reflects the number of arguments that the agent
needs to receive to be convinced to change its
mind. Arguments for an issue can be either strong
or weak. We define strong arguments to count for
1 “persuasion point” and weak arguments to count
for 0.25. Any combination of strong and weak
arguments, whose cumulative points surpass the
agent’s persuadability (10 points for low, 5 points
for medium, and 2 points for high persuadability),
are enough to convince the agent and shift its ne-
gotiation goal for one issue. Also, the agent has
a set number of arguments for each issue, not for
each issue-value pair (this will be addressed in fu-
ture work). Apart from persuadability, we model
how important each issue is for the agent (a real
number from O to 1). Rules, concerning whether
a TradeOff or Offer should be accepted or not,
take into account issue importance and number of
available arguments for that issue (to see if there
is any chance to convince the opponent).

There is a number of parameters used to con-



figure the SU: number of issues under negotiation
and possible values for each issue (in our setup 4
and 3 respectively); probability of number of SAs
popped (this is based on a probability distribution
as explained above); and minimum and maximum
available arguments per issue (this applies sepa-
rately to strong and weak arguments and in our
setup is 0 and 4 respectively). The SU also keeps
track of an estimate of the opponent’s persuadabil-
ity and the opponent’s goal. These estimates are
more accurate for longer dialogues. Table 3 (in
the Appendix) shows an example interaction be-
tween the SU and another agent, including how
the agenda is updated.

3 Negotiation Policy Learning

To deal with the very large state space, we ex-
perimented with different feature-based represen-
tations of the state and action spaces, and used Q-
learning with function approximation (Szepesvari,
2010). We used 10 state-action features: ‘“‘issue
and value under negotiation”, “are there enough
arguments to convince the opponent?”, “will my
offer be accepted?”, “opponent’s offer quality”,
“opponent’s trade-off quality”, “are there pend-
ing issues?”, “is there agreement for the current
issue?”’, “is the agreed-upon value for the current
issue good?”, “importance of current issue”, “cur-
rent action”.

We worked on a summary state space, rather
than the full state space. The full state space keeps
track of the interaction in detail, e.g., what of-
fers have been made exactly, and the summary
state space keeps track of more abstract represen-
tations, e.g., whether an offer was made, out of
which we extract the 10 state-action features that
the RL policy uses to make decisions. This is also
similar to how our agenda-based SU works; rules,
that decide on e.g., whether a trade-off should be
proposed or accepted, take into account the oppo-
nent’s estimated persuadability and context of the
interaction, in essence allowing the agent to oper-
ate on a summary state space.

The learning algorithm was trained for 5 epochs
(batches) of 20000 episodes each, with a limit to
35 iterations per episode, and was tuned with the
following parameter values: « set to 0.95, decayed
by m after each episode, where N (s,a) is
the number of times the state-action pair (s, ) has
been explored so far, and +y set to 0.15. We varied
the exploration rate €. Initially it was set to 1, grad-
ually decreasing until in the last epoch it was close
to 0. To ensure that the policies did not converge

156

by chance, we ran the training and test sessions 10
times each and we report averages. Thus all results
presented below are averages of 10 runs.

In our reward function (regular reward), we pe-
nalized each turn if no agreement was reached or,
in the opposite case, assigned a reward value in-
versely proportional to how far the agreed-upon
values are from the agent’s preferences.

During training we discovered that this reward
function fails to capture the fact that depending on
the initial conditions (agents’ goals, number of ar-
guments, etc.) it may not be possible to reach an
agreement or to achieve one’s goals. Therefore,
we also calculated the best achievable score (BAS)
of the policy, which is the best possible score that
the agent can achieve given its resources (num-
ber of strong and weak arguments), the opponent’s
persuadability, and assuming the best possible cir-
cumstances (i.e., that the opponent is very cooper-
ative and accepts everything).

To assess whether Q-learning has converged,
we calculate a normalized score, reflecting how
well the goals were achieved, similar to the reg-
ular reward function presented above. The differ-
ence is that we do not have a turn penalty and that
the maximum penalty is set lower (in training the
penalty for sub-optimal agreements was higher to
ensure that the policy learns to avoid such cases).

Figure 1 shows the scores of the policy and the
SU as a function of the training episodes, when we
use the regular reward. We can also see the BAS
for both the RL policy and the SU. The maximum
possible value for each agent is 100 (the agent ac-
complishes its exact goals) and the minimum is 0
(there is no agreement for any issue at all). In the
last training epoch the exploration rate e is almost
0, and the RL policy consistently outperforms the
SU. During training, in each episode, we randomly
initialize the following settings for both agents:
number of available strong and weak arguments,
persuadability per issue, importance per issue, and
preferences per issue.

4 Evaluation

For our evaluation, we have the RL policy inter-
act with the agenda-based SU for 20000 episodes
varying the initial settings for both agents in the
same fashion as for training. Similarly to train-
ing, we have 10 runs and report averages (see Fig-
ure 1). The RL policy outperforms the agenda-
based SU. The RL policy learned to exploit trade-
offs that while not being optimal for the SU, they
are good enough for the SU to accept (the SU is
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Figure 1: Average scores as a function of the num-
ber of episodes during training (10 runs). In the
last 20000 episodes the exploration rate € is almost
0 (similarly to testing).

designed to accept only trade-offs and offers that
lead to reasonable agreements). Note that some
decisions of the SU about what to accept are based
on inaccurate estimates of its opponent’s persuad-
ability and goals.

Table 1 reports results about the success per-
centages of the RL policy and the agenda-based
SU. We show on average how many times (10
runs) the agents fully succeeded in their goals
(score equal to 100), how many times they
achieved roughly at least their second best values
for all issues (score > 65), and how many times
they achieved roughly at least their third best val-
ues for all issues (score > 30). A higher than 65
score can also be achieved when an agent achieves
the best possible outcome in some of the issues
and the third possible outcome in the rest of the
issues. Likewise for scores greater than 30.

In a second experiment we asked human raters
to rate negotiation transcripts between the agenda-
based SU and the RL policy. The domain was or-
ganizing a party. The negotiators had to agree on
4 issues (food type, drink, music, day of week)
and there were 3 possible values per issue. We re-
placed the speech acts with full sentences but for
arguments we used sentences such as “here is a
strong argument supporting jazz for music”. We
randomly selected 20 negotiations between the RL
policy and the agenda-based SU. In 10 of those
the RL policy earned more points, and in the other
10 the agenda-based SU earned more points. This
was to ensure that the transcripts were balanced
and that we had not picked only transcripts where
one of the agents was always better than the other.
We did not tell raters that these were artificial
dialogues. We deliberately included some ques-
tions with rather obvious answers (sanity checks)
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to check how committed the raters were. We re-
cruited raters from MTurk (www.mturk.com). We
asked raters to read 2 transcripts and for each tran-
script rate the negotiators in terms of how ratio-
nally they behaved, on a Likert scale from 1 to 5.
We excluded ratings that were done in less than
3 minutes and that had failed in more than half
of our sanity checks. In total there were 6 san-
ity checks (3 per negotiation transcript). Thus we
ended up with 89 raters. Results are shown in Ta-
ble 2. The RL policy was perceived as more ratio-
nal, and both agents were rated as reasonably ra-
tional. Interestingly, rationality was perceived dif-
ferently by different human raters, e.g., revisiting
an agreed-upon issue was considered as rational
by some and irrational by others.

Full At least At least
success second third
(%) choice (%) | choice (%)
Policy Score 10.3 30.7 53.5
SU Score 0 11.2 55.1
Policy BAS 20.2 73.3 100
SU BAS 18.1 75.8 100

Table 1: Average success percentages (10 runs).

Learned Policy Score 343
Agenda-based SU Score | 3.02
p-value 0.027

Table 2: Human evaluation scores (the p-value is
based on the Wilcoxon signed-rank test).

5 Conclusion

We built a hand-crafted agenda-based SU, which
was then used together with RL to learn a multi-
issue negotiation policy. Both the agenda-based
SU and the RL policy were designed to work for
a variety of goals, preferences, and negotiation
moves. In both of our evaluation experiments,
the learned model consistently outperformed the
agenda-based SU, even though both models used
similar features and heuristics, which shows the
potential of using RL for complex negotiation do-
mains. For future work, we plan to work on
better estimates of the opponent’s persuadability
and goals, and employ multi-agent RL techniques
(Bowling and Veloso, 2002; Georgila et al., 2014).
Finally, we will have our policies directly negoti-
ate with humans.
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Initial Conditions:

SU: args(strong: 3, weak: 1), persuadability:
high

prefs: A: aj-ag-as, B: b3-by-bg, C: ci-c3-co,
D: dl-dg—dg

importance: 0.2,0.2,0.7,0.9

Agent: args(strong: 2, weak: 2), persuadability:
high

prefs: A: as-aj-as, B: ba-by-bs, C: c1-co-c3,

D: d3—d2-d1

importance: 0.7,0.3,0.3,0.9

Agenda: ReqB,ReqC,ReqD,OffA,OffB,OffC,
OffD,ReqA (the agenda is randomly initialized)
SA: RequestPreference(issueB)

SU: What do you prefer for issue B?

Agenda: ReqC,ReqD,OffA,OftB,OffC,OffD,
ReqA

SA: ProvidePreference(issueB)
Agent: I prefer bs for issue B.

Agenda: ArgB,ReqC,ReqD,OffA,OftB,OffC,
OffD,ReqA

SA: ProvideArgument(issueB,bs,strong)

SU: Here’s a strong argument, supporting bs
for issue B.

Agenda: ReqC,ReqD,OffA,OffB,OffC,OffD,
ReqA

SA: Trade-off(issueB,bs,issueA,as),
Offer(issueC,cq)

Agent: I'll accept bs for issue B, if you accept as
for issue A.

Agent: How about cy, for issue C?

Agenda: ArgB,AccC,ReqC,ReqD,OffA,OffB,
OffC,OffD,ReqA

SA: ProvideArgument(issueB,bs,strong)

SU: Here’s a strong argument, supporting bs
for issue B.

Agenda: AccC,ReqC,ReqD,OffA,OffB,OffC,
OffD,ReqA

SA: Offer(issueB,bg)
Agent: How about bs, for issue B?
(after 2 strong arguments the agent is convinced)

Agenda: AceB,AccC,ReqC,ReqD,OffA,OffB,
OffC,OffD,ReqA

SA: Accept(issueB,bs)

SU: I accept bs, for issue B.

SA: Accept(issueC,c1)

SU: [ accept c1, for issue C.

Agenda: ReqD,OffA,OffD,ReqA

Table 3: Example interaction between our agenda-
based SU and an agent. Actions that are pushed
onto the SU agenda based on previous actions of
the agent are shown in bold.
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Abstract

With Language Understanding Intelligent
Service (LUIS), developers without ma-
chine learning expertise can quickly build
and use language understanding models
specific to their task. LUIS is entirely
cloud-based: developers log into a web-
site, enter a few example utterances and
their labels, and then deploy a model to
an HTTP endpoint. Utterances sent to the
endpoint are logged and can be efficiently
labeled using active learning. Visualiza-
tions help identify issues, which can be re-
solved by either adding more labels or by
giving hints to the machine learner in the
form of features. Altogether, a developer
can create and deploy an initial language
understanding model in minutes, and eas-
ily maintain it as usage of their application
Srows.

1 Introduction and Background

In a spoken dialog system, language understand-
ing (LU) converts from the words in an utter-
ance into a machine-readable meaning represen-
tation, typically indicating the intent of the ut-
terance and any entities present in the utter-
ance (Wang et al., 2005; Tur and Mori, 2011).
For example, consider a physical fitness do-
main, with a dialog system embedded in a wear-
able device like a watch. This dialog system
could recognize intents like StartActivity
and StopActivity, and could recognize enti-
ties like ActivityType. In the user utterance
“begin a jog”, the goal of LU is to identify the ut-
terance intent as StartActivity, and identify
the entity ActivityType='"' jog’"’.
Historically, there have been two options for
implementing language understanding: machine-
learning (ML) models and handcrafted rules.
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Handcrafted rules are accessible for general soft-
ware developers, but they are difficult to scale up,
and do not benefit from data. ML-based models
are trained on real usage data, generalize well to
new situations, and are superior in terms of robust-
ness. However, they require rare and expensive ex-
pertise, and are therefore generally employed only
by organizations with substantial resources.

Microsoft’s Language Understanding Intelli-
gent Service (LUIS) aims to enable software de-
velopers to create cloud-based machine-learning
language understanding models specific to their
application domain, without ML expertise. LUIS
is built on prior work in Microsoft Research on in-
teractive learning (Simard et al, 2014), and rapid
development of language understanding models
(Williams et al., 2015).

2 LUIS overview

Developers begin by creating a new LUIS “ap-
plication”, and specifying the intents and entities
needed in their domain. They then enter a few ut-
terances they would like their application to han-
dle. For each, they choose the intent label by
choosing from a drop-down, and specify any en-
tities in the utterance by highlighting a contiguous
subset of words in the utterance. As the developer
enters labels, the model is automatically and asyn-
chronously re-built (requring 1-2 seconds), and
the current model is used to propose labels when
new utterances are entered. These proposed labels
serve two purposes: first, they act as a rotating test
set and illustrate the performance of the current
model on unseen data; second, when the proposed
labels are correct, they act as an accelerator.

As labeling progresses, LUIS shows several
visualizations which show performance, includ-
ing overall accuracy and any confusions — for
example, if an utterance is labeled with the in-
tent StartActivity but is being classified
as StopActivity, or if an utterance was la-
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beled as containing an instance of the entity
ActivityType, but that entity is not being de-
tected. These visualizations are shown on all the
data labeled so far; i.e., the visualizations show
performance on the training set, which is impor-
tant because developers want to ensure that their
model will reproduce the labels they’ve entered.

When a classification error surfaces in a visual-
ization, developers have a few options for fixing
it: they can add more labels; they can change a la-
bel (for example, if an utterance was mis-labeled);
or they can add a feature. A feature is a dic-
tionary of words or phrases which will be used
by the machine learning algorithm. Features are
particularly useful for helping the models to gen-
eralize from very few examples — for example,
to help a model generalize to many types of de-
vices, the developer could add a feature called
ActivityWords that contains 100 words like
“run”, “walk”, “jog”, “hike”, and so on. This
would help the learner generalize from a few ex-
amples like “begin a walk” and “start tracking a
run”, without needing to label utterances with ev-
ery type of activity.

In addition to creating custom entities, devel-
opers can also add “pre-built” ready-to-use enti-
ties, including numbers, temperatures, locations,
monetary amounts, ages, encyclopaedic concepts,
dates, and times.

At any point, the developer can “publish” their
models to an HTTP endpoint. This HTTP end-
point takes the utterance text as input, and returns
an object in JavaScript Object Notation (JSON)
form. An example of the return format is shown
in Figure 1. This URL can then be called from
within the developer’s application. The endpoint
is accessible by any internet-connected device, in-
cluding mobile phones, tablets, wearables, robots,
and embedded devices; and is optimized for real-
time operation.

As utterances are received on the HTTP end-
point, they are logged, and are available for la-
beling in LUIS. However, successful applications
will receive substantial usage, so labeling every ut-
terance would be inefficient. LUIS provides two
ways of managing large scale traffic efficiently.
First, a conventional (text) search index is created
which allows a developer to search for utterances
that contain a word or phrase, like “switch on” or
“air conditioning”. This lets a developer explore
the data to look for new intents or entirely new
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"query": "start tracking a run",
"entities": [
{
"entity": "run",
"type": "ActivityType"
}
1,
"intents": [
{
"intent": "StartActivity",
"score": 0.993625045
b
{
"intent": "None",
"score": 0.03260582
I
{
"intent": "StopActivity",
"score": 0.0249939673
I
{
"intent": "SetHRTarget",
"score": 0.003474009

}
]
}

Figure 1: Example JSON response for the utter-
ance “start tracking a run”.

phrasings. Second, LUIS can suggest the most
useful utterances to label by using active learning.
Here, all logged utterances are scored with the cur-
rent model, and utterances closest to the decision
boundary are presented first. This ensures that the
developer’s labeling effort has maximal impact.

3 Demonstration

This demonstration will largely follow the presen-
tation of LUIS at the Microsoft //build developer
event. A video of this presentation is available at
www.luis.ai/home/video.

The demonstration begins by logging into
www.luis.ai and inputting the intents and enti-
ties in the domain, including new domain-specific
entities and pre-built entities. The developer then
starts entering utterances in the domain and label-
ing them. After a label is entered, the model is
re-built, and the visualizations are updated. When
errors are observed, a feature is added to address
them. The demonstration continues by publish-
ing the model to an HTTP endpoint, and a few
requests are made to the endpoint by using a sec-
ond web browser window, or by running a Python
script to simulate more usage. The demonstration
then shows how these utterances are now available
for labeling in LUIS, either through searching, or
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Figure 2: Microsoft Language Understanding Intelligent Service (LUIS). In the left pane, the developer
can add or remove intents, entities, and features. By clicking on a feature, the developer can edit the
words and phrases in that feature. The center pane provides different ways of labeling utterances: in the
“New utterances” tab, the developer can type in new utterances; in the “Search” tab, the developer can
run text searches for unlabeled utterances received on the HTTP endpoint; in the “Suggest” tab, LUIS
scans utterances received on the HTTP endpoint and automatically suggests utterances to label using
active learning; and in the “Review labels” tab, the developer can see utterances they’ve already labeled.
The right pane, shows application performance — the drop-down box lets the developer drill down to see
performance of individual intents or entities.

by using active learning. After labeling a few ut- problems. http://arxiv.org/ftp/arxiv/
terances using these methods, the demonstration papers/1409/1409.4814.pdf.
C'(mdudes b}’ showing how.the updated applica- G Tur and R De Mori. 2011. Spoken Language Un-
tion can be instantly re-published. derstanding — Systems for Extracting Semantic In-
Sformation from Speech. John Wiley and Sons.

4 Access

Y Wang, L Deng, and A Acero. 2005. Spoken lan-
LUIS is currently in use by hundreds of develop- guage understanding. Signal Processing Magazine,
ers in an invitation-only beta — an invitation may IEEE, 22(5):16-31, Sept.
be requested at www.luis.ai. We have begun  jp williams, NB Niraula, P Dasigi, A Lakshmiratan,
in an invitation-only mode so that we can work CG]J Suarez, M Reddy, and G Zweig. 2015. Rapidly
closely with a group of developers of a manage- scaling dialog systems with interactive learning. In

International Workshop on Spoken Dialog Systems,

able size, to understand their needs and refine the
Busan, Korea.

user interface. We expect to migrate to an open
public beta in the coming months.
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Abstract

At SIGDIAL-2013 our talking robot
demonstrated Wikipedia-based spoken in-
formation access in English. Our new
demo shows a robot speaking different
languages, getting content from different
language Wikipedias, and switching lan-
guages to meet the linguistic capabilities
of different dialogue partners.

1 Introduction

In the digital world, information services need
to be multilingual. While there has been much
progress in some areas such as on-line translation,
it is less clear in other areas such as interactive ap-
plications. For many people, the most effective
form of communication is face-to-face, and it is
important to be able to use one’s mother tongue
when dealing with interactive services.

Our previous demo at SIGDIAL-2013 (Jokinen
and Wilcock, 2013) showed spoken information
access dialogues in English with a monolingual
humanoid robot. Our new demo shows a robot
speaking different languages, getting information
from different language Wikipedias, and switch-
ing languages to meet the linguistic capabilities of
different dialogue partners.

Section 2 gives a summary of our spoken infor-
mation access system, which has been described
in more detail in previous papers, and Section 3
outlines the development of multilingual versions
of the system. A description of the language-
switching demo is given in Section 4.

2 Outline of WikiTalk

WikiTalk (Wilcock, 2012) is a spoken dialogue
system for Wikipedia-based information access.
On humanoid robots WikiTalk uses face-tracking,
nodding and gesturing to support interaction man-
agement and the presentation of new information
(Jokinen and Wilcock, 2014).
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The dialogue model uses a finite state machine
but the states function at a dialogue management
meta-level dealing primarily with topic initiation,
topic continuation, and topic switching (Wilcock,
2012; Jokinen, 2015).

An important feature is the ability to make
smooth topic shifts by following hyperlinks in
Wikipedia when the user repeats the name of a
link. For example if the robot is talking about
Japan and mentions “kanji” when explaining the
Japanese name for Japan, the user can say “kanji?”
and the system will smoothly switch topics and
start talking about kanji after getting information
from Wikipedia about this new topic.

To jump to an unrelated topic, an awkward
topic shift can be made by saying ”Alphabet!” and
spelling the first few letters of the new topic using
a spelling alphabet (Alpha, Bravo, Charlie, etc.).

The user can interrupt the robot at any time by
touching the top of the robot’s head. The robot
stops talking, says ”Oh sorry!” and waits. The
user can tell the robot to continue, go back, skip
to another chunk, or switch to a new topic.

The robot can take the initiative by suggesting
new topics, using the ”"Did you know ...?” sections
from Wikipedia that are new every day.

The interaction history is stored by the dialogue
manager. Using heuristics, the robot avoids giving
the same instructions to the user in the same way.
At first the robot gives simple instructions so the
user can learn the basic functionalities. Later, it
suggests new options that the user may not know.

3 Multilingual WikiTalk

The first version of WikiTalk was developed with
the Pyro robotics simulator (Wilcock and Jokinen,
2011; Jokinen and Wilcock, 2012). This version
was monolingual and used English Wikipedia and
English speech components.

A humanoid robot version of WikiTalk was
implemented at 8th International Summer Work-
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shop on Multimodal Interfaces (Csapo et al.,
2012; Meena et al.,, 2012; Han et al., 2012).
This version was also monolingual English. The
system architecture is shown in Figure 1. An
annotated video of the first demo can be seen at
https://drive.google.com/open?id=
0B-D1kVgPM1KdOEcyS25nMWp jUGS.

WikiTalk is very suitable for making multi-
lingual versions. The essential requirements are
the availablity of a Wikipedia in a given language
and suitable speech components (recognition and
synthesis) for the language. Advanced NLP tools
such as syntactic parsers can also be useful but
WikiTalk does not depend on them.

In order to prepare for making different lan-
guage versions of WikiTalk for humanoid robots,
an internationalized version of the software was
developed (Laxstrom et al., 2014). The first two
localizations were for English and Finnish. Each
localized version is based on the internationalized
system. Each version uses its own Wikipedia and
its own speech components (i.e. English WikiTalk
uses English Wikipedia and English speech com-
ponents, Finnish WikiTalk uses Finnish Wikipedia
and Finnish speech components).

Finnish WikiTalk was first demonstrated at EU
Robotics Week 2014 in Helsinki. A video report
by Iltalehti newspaper titled “This robot speaks
Finnish and can tell you what is a robot” can
be seen at www.iltalehti.fi/iltvdigi/
201411290140927_v4.shtml.

A localized Japanese version of WikiTalk was
developed in 2015 (Okonogi et al., 2015). This
version uses Japanese Wikipedia and Japanese
speech components.

We also intend to develop localized versions of
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WikiTalk for smaller languages such as Northern
Sami which is spoken by a few thousand people in
Lapland. For the revitalization of under-resourced
languages in the digital world it is important for
speakers of such languages to see that their lan-
guage is part of the future as well as part of the
past. This view may be strengthened by hearing
robots speaking their language.

Currently the robot does not perform automatic
language recognition, it switches language only
when this is explicitly requested by the user. For
example, the user says “Nihongo” to switch to
Japanese, ”Suomi” to switch to Finnish, "English”
to switch to English. Robot-initiated language-
switching raises interesting issues which will be
addressed in future work.

4 The language-switching demo

The demo starts in English. The robot identifies
a human face and makes eye-contact. It explains
that it can talk about any topic in Wikipedia, and
suggests some favourites such as Shakespeare and
Manchester United. When the human moves, the
robot does face-tracking to maintain eye contact.

The user selects a suggested topic, Shakespeare,
so the robot downloads information about this
topic directly from Wikipedia via a wifi network.
The robot begins talking about Shakespeare and
continues talking about this topic for a while as
the human does not interrupt. After a paragraph,
the robot stops and asks explicitly whether to con-
tinue or not.

After the user has listened to another paragraph
about the same topic, the robot explains ~’You can
change to other topics related to Shakespeare sim-
ply by saying them”. The user then asks about
Shakespeare’s son Hamnet so the robot makes a
smooth topic shift and talks about Hamnet Shake-
speare.

The robot mentions Shakespeare’s play Julius
Caesar and the human says ”Julius Caesar”, so the
robot starts talking about Julius Caesar (the play).
While talking about the play, the robot mentions
the historical person Julius Caesar and the human
again says simply “Julius Caesar”. This time the
robot starts talking about the person Julius Caesar,
not the play.

When the English-speaking user says "Enough”
and moves away, a Japanese-speaking person ap-
proaches the robot and says “Nihongo”. The
robot makes eye-contact with the new person,



and switches to Japanese speech. It explains
in Japanese that it can talk about any topic in
Wikipedia, suggesting some favourite topics. The
Japanese user also selects Shakespeare, and the
robot gets information about Shakespeare, but this
time from Japanese Wikipedia.

While talking about Shakespeare in Japanese,
the robot also explains the Japanese versions of
some basic commands and interactions. After a
while the Japanese-speaking user decides to stop.
The English-speaker returns. He says “English”

and the robot switches back to English speech.
An annotated video (Figure 2) of the English-
Japanese language-switching demo can be seen at
https://drive.google.com/open?id=
0B-D1kVgPM1KdRD1kVHh4Z2tUTGS.

l

The robot speaks Eng
information from EngI|

J

8 pia

Figure 2: Annotated video of an English-Japanese
language-switching robot.
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Modelling situated human-robot interaction using IrisTK

Gabrid Skantze and Martin Johansson
Department of Speech Music and Hearing, KTH
Stockholm, Sweden

{skant ze, vhnj } @t h. se

orchestrated in order to handle phenomena such
Abstract as overlaps, interruptions, coordination of head
pose and gaze in turn-taking, etc. Also, the
In this demonstration we show how situ-  knowledge to develop and put together the nec-
ated multi-party human-robot interaction  essary modules is of a very interdisciplinary na-
can be modelled using the open source ture. This calls for a dialog system toolkit for
framework IrisTK. We will demonstrate multi-party face-to-face interaction, which pro-
the capabilities of IrisTK by showing an vides necessary modules for multimodal input
application where two users are playinga and output and allows the developer or research-
collaborative card sorting game together er to author the dialog flow in a way that is sim-
with the robot head Furhat, where the ple to understand for the novice, yet powerful
cards are shown on a touch table between enough to model more sophisticated behaviours.
the players. The application is interesting At KTH, we are developing the open source
from a research perspective, as it in- Java-based framework IrisTK (www.iristk.net),
volves both multi-party interaction, as  which has exactly this purpose (but can of course
well as joint attention to the objects under  also be used for speech-only systems). Since we

discussion. first presented it (Skantze & Al Moubayed,
2012), the framework has matured and has been
1 Introduction applied in many different settings (Johansson et

i i al., 2014; Al Moubayed et al., 2014; Skantze et
Recently, there has been an increased interest i 2014). In this demonstration, we will show a
undgrstandl_ng and modelling multi-party, S'tuat'system that was implemented using IrisTK, and
ed interaction between humans and robotghich was exhibited at the Swedish National
(Bohus & Horvitz, 2011; Mutlu et al., 2012: Jo- \yyseym of Science and Technology, in Novem-
hansson et al., 2014; Al Moubayed et al., 2014}61 15.23 201% As can be seen in Figure 1, two
In situated interaction, the system is typicallyisjtors at a time can play a collaborative game
embodied and the space in which the 'nteraCt'Ofbgether with the robot head Furhat (Al Mou-
takes place is of importance. By modelling thg,5veq et al., 2013). On the touch table between
physical S|tuat|o_n, the system can track multiplg},q players, a set of cards are shown. The two
users (and possibly system agents) that enter a0ljiors and Furhat are given the task of sorting
leave the interaction. Also, the discussion cam,e cards according to some criterion. For exam-
involve objects in the shared space. The possibilje the task could be to sort a set of inventians
ity to model this kind of interaction is facilitate 1o orger they were invented, or a set of animals
by the many affordable sensors that are becomyy, oy fast they can run. This is a collaborative
ing available, such as Microsoft Kinect. Howev-game \which means that the visitors have to dis-
er, while there are many examples of researcf),ss the solution together with Furhat. However,
systems that can engage in situated interactiq,rhat does not have perfect knowledge about
(Bohus & Horvitz, 2011; Mutlu et al., 2012), the i goytion. Instead, Furhat's behaviour is moti-

combination of all these techniques together withy o q by a randomized belief model. This means
spoken dialog technology is not trivial, and it

might be hard for a novice to put such systems
together. Face-to-face interaction involves a A igeo of the interaction can be seen at
large amount of real-time events that need to be hips:/www.youtube.com/watch?v=5fhjuGu3dol
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Figure 1. A schematic illustration of some of the modules aments used in the card sorting application.

that the visitors have to determine whether thegpeech recognizers, Nuance NDEV mobile
should trust Furhat's belief or not, just like theywhich allows Furhat to understand the users even
have to do with each other. Thus, Furhat’s role invhen they are talking simultaneously. However,
the interaction is similar to that of the visitoas, the modularity of the framework makes it very
opposed to for example a tutor role which is ofeasy to use the array microphone in the Kinect
ten given to robots in similar settings (cf. Alsensor instead. It is also possible to use SRGS

Moubayed et al., 2014). grammars for speech recognition and/or semantic
_ _ parsing, as well as extending the audio pro-
2 Overview of IrisTK cessing chain to add for example prosodic analy-

The system architecture is schematically illus>">

trated in Figure 1. IrisTK provides a large set 0.3 |risFlow
modules for processing multimodal input and .
output, and for dialogue management, that can
put together in different ways. The framework
defines a set of standardized events (as can e .

( Harel, 1987) and similar to SCXMLAs dis-

seen in Figure 1), which makes it possible to ea . .
ily switch different modules (such as systemcusseqI n Skant_ze & Al I\_/Iou_b_ayed (2012),_th|s
ormalism combines the intuitiveness of Finite

agents or speech recognizers), as well as impl : ; L
g P g ) P tate Machines with the flexibility and expres-

menting new ones. L .
g sivity of the Information State Update approach
2.1 Vision and Situation modelling to dialogue management. As can be seen in Fig-

. ure 1, we use two such behaviour modules run-
A Kinect camera (V1 or V2) can be used to traCkning in parallel for the museum application: one

the location and rotation of the two users’ heads, dialogue management and one for maintain-
as well as their hands. The head pose of the usqrr]% Furhat's attention. Thus. IrisElow can be

can for example be used to determine Whethel ey 1 seript both higher-level and lower-level
they are addressing Furhat or not. This data, t%— P 9

. o : ehaviours. The Dialogue Flow module orches-
gether with the position of t_he f_|ve cards on th%rates the spoken interaction, based on events
touch table are sent to a Situation model, Wh'cfrom the Situation model s:uch as someone
maintains a 3D representation of the situation (as ’

N o peaking, shifting attention, entering or leaving
seen in Figure 1). The task of the Situation mOde[ e interaction, or moving cards on the table. The
s to take all sensor data and merge them into Ritention Flow keeps Furhat's attention to a
common coordinate system, assign speech event

to the right users based on the spatial c:om‘igurzf—Secncleol target (a user or a card), even when the

tion. and produce hiaher-level events arget is moving, by consulting the Situation
' P 9 ' model. The 3D position of the target is then

2.2 Speech processing transformed into neck and gaze movement of

sTK also provides an XML-based formalism
(IrisFlow) for rapidly developing behaviour
dules, based on the notion of Harel statecharts

IrisTK supports different combinations of micro-

phones and speech recognisers. In the museum

setup, we used close talking microphones togethp://dragonmobile.nuancemobiledeveloper.com/
er with two parallel cloud-based large vocabulary http:/imww.w3.org/TR/scxml/
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Furhat (again taking Furhat's position in the 3D(although it should be easy to port since it isaJav

space into account). based). We are also working on adding modules
for face recognition, so that the system can main-
24 System output tain a long-term relationship with the users. An-

For face-to-face interaction, IrisTK provides another improvement will be to add support for
animated agent that can be presented on a screether robot platforms, such as NAO, which
While this solution suffice when only one persorwould also make it possible to explore body ges-
is interacting with the system, it does not work sdures. Another extension will be to combine the
well for multi-party interaction, due to the Mona authoring of the flow with statistical models,
Lisa effect (Al Moubayed et al., 2013), which such as reinforcement learning, so that some be-
means that it is impossible to achieve mutuahaviours can be learned through interaction with
gaze with only one of the users, or for users tgsers.

infer the target of the agent's gaze in the shared

space (such as the cards on the table). The préicknowledgements

erable solution is to instead use a robot. IrISTKThis work is supported by the Swedish research-coun
currently supports the Furhat robot higdmiit we i (vR) projectincremental processing in multimod-
are working on supporting other robot platformsa| conversational systenf2011-6237).

Furhat has an animated face back-projected on a

translucent mask, as well as a mechanical necReferences

which allows Furhat to signal his focus of atten- |
tion using a (;oml?lnatlon .Of head po_se anql eyeA- Abdelaziz, A., Johansson, M., Koutsombogera,
gaze. The animation solution makes it possible to M., Lopes, J.. Novikova, J., Oertel, C., Skantze
express subtle and detailed facial gestures (such G Stefan’ov,’ K., & Var’ol, G (201’4)_ ’Tutoring '
as raising the eye brows or smiling), as well as  Robots: Multiparty multimodal social dialogue
accurate IIp sync. The facial manifestation iS  with an embodied tutor. IfProceedings of eN-
completely decoupled from the speech synthesis, TERFACE2013Springer.

so that different agents can be combined witl Moubayed, S., Skantze, G., & Beskow, J. (2013).

Moubayed, S., Beskow, J., Bollepalli, B., Hussen

different speech synthesizers. The Furhat Back-Projected Humanoid Head - Lip
reading, Gaze and Multiparty Interactiomter-
3 Discussion national Journal of Humanoid Robotics, (1].

Bohus, D., & Horvitz, E. (2011). Decisions about
During the 9 days the system was exhibited at turns in multiparty conversation: from perception
the Swedish National Museum of Science and to action. INICMI '11 Proceedings of the 13th in-
Technology, we recorded data from 373 interac- ternational conference on multimodal interfaces
tions with the system. To this end, IrisTK pro-  (PP. 153-160). , ,
vides many tools for easily logging all events inHareI, D. (1987). Statech_arts: A visual formalison f
the system, as well as the audio. Thus, we think complex systems.Science of Computer Pro-

: ; . gramming, 8§231-274.
that IrisTK is an excellent tool for doing research\lohansson, M., Skantze, G., & Gustafson, J. (2014).

on situated interaction. _ Comparison of human-human and human-robot

Apart from being used for research, IrisTK has  Turn-taking Behaviour in multi-party Situated in-
also been used for education at KTH. In the teraction. Ininternational Workshop on Under-
course Multimodal interaction and interfaces standing and Modeling Multiparty, Multimodal
given to master students, it is used both for a Interactions, at ICMI 2014istanbul, Turkey.
three hour lab on conversational interfaces, a¥utlu, B., Kanda, T., Forlizzi, J., Hodgins, J.,I&hi-
well as a platform for group projects. Only with ~ 9uro, H. (2012). Conversational Gaze Mecha-
two—three weeks of work and with little need for ~ iSms for Humanlike RODOtACM Trans. Inter-
supervision, the students have used IrisTK t act. Intell. Syst., (£), 12:1-12:33.

; ! . ; %kantze, G., & Al Moubayed, S. (2012). IrisTK: a
mpler_nent _systems_ for travel' b°°k'”9’ city €X- statechart-based toolkit for multi-party face-to-
ploration, cinema ticket booking, an interactive  tace interaction. IProceedings of ICMISanta
calendar and a virtual doctor Monica, CA.

We are still working on several ways to im-Skantze, G., Hjalmarsson, A., & Oertel, C. (2014).
prove IrisTK. Currently it only runs on Windows Turn-taking, Feedback and Joint Attention in Sit-
uated Human-Robot InteractioBpeech Commu-
nication, 65 50-66.

* http://www.furhatrobotics.com
® Videos of these system can be seen at
http://www.iristk.net/examples.html
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Abstract

Determining when conversational partici-
pants agree or disagree is instrumental for
broader conversational analysis; it is nec-
essary, for example, in deciding when a
group has reached consensus. In this pa-
per, we describe three main contributions.
We show how different aspects of con-
versational structure can be used to de-
tect agreement and disagreement in dis-
cussion forums. In particular, we ex-
ploit information about meta-thread struc-
ture and accommodation between partic-
ipants. Second, we demonstrate the im-
pact of the features using 3-way classifi-
cation, including sentences expressing dis-
agreement, agreement or neither. Finally,
we show how to use a naturally occurring
data set with labels derived from the sides
that participants choose in debates on cre-
atedebate.com. The resulting new agree-
ment corpus, Agreement by Create De-
baters (ABCD) is 25 times larger than any
prior corpus. We demonstrate that using
this data enables us to outperform the same
system trained on prior existing in-domain
smaller annotated datasets.

1 Introduction

Any time people have a discussion, whether it be
to solve a problem, discuss politics, products, or
more casually, gossip, they will express their opin-
ions. As a conversation evolves, the participants
of the discussion will agree or disagree with the
views of others. The ability to automatically detect
agreement and disagreement (henceforth referred
to as (dis)agreement) in the discussion is useful
for understanding how conflicts arise and are re-
solved, and the role of each person in the conver-
sation. Furthermore, detecting (dis)agreement has
been found to be useful for other tasks, such as
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detecting subgroups (Hassan et al. 2012), stance
(Lin et al., 2006; Thomas et al., 2006), power
(Danescu-Niculescu-Mizil et al., 2012; Biran et
al., 2012), and interactions (Mukherjee and Liu,
2013).

In this paper, we explore a rich suite of features
to detect (dis)agreement between two posts, the
quote and the response (Q-R pairs (Walker et al.,
2012)), in online discussions where the response
post directly succeeds the quote post. We analyze
the impact of features including meta-thread struc-
ture, lexical and stylistic features, Linguistic In-
quiry Word Count categories, sentiment, sentence
similarity and accommodation. Our research in-
dicates that conversational structure, as indicated
by meta-thread information as well as accommo-
dation between participants, plays an important
role. Accommodation (Giles et al., 1991), is a phe-
nomenon where conversational participants adopt
the conversational characteristics of the other par-
ticipants as conversation progresses. Our ap-
proach represents accommodation as a complex
interplay of semantic and syntactic shared in-
formation between the Q-R posts. Both meta-
thread structure and accommodation use informa-
tion drawn from both the quote and response;
these features provide significant improvements
over information from the response alone.

We detect (dis)agreement in a supervised ma-
chine learning setting using 3-way classifica-
tion (agreement/disagreement/none) between Q-R
posts in several datasets annotated for agreement,
whereas most prior work uses 2-way classifica-
tion. In many online discussions, none (i.e., the
lack of (dis)agreement) is the majority category
so leaving it out makes it impossible to accurately
classify the majority of the sentences in an online
discussion with a binary classification model.

We also present a new naturally occurring
agreement corpus, Agreement by Create Debaters
(ABCD), derived from a discussion forum web-

Proceedings of the SIGDIAL 2015 Conference, pages 168—177,
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[ Example of disagreement in an ABCD discussion indicated by different sides (Against and For).

|

Abortion is WRONG! God created that person for a reason. If your not ready to raise a kid then put it up for adoption so it
can be with a good family. Dont murder it! Its wrong. It has a life. If you can have sex then you should be ready for the
consequences tht come with it! Side: Against

Those who were raped through the multiple varieties of means, are expected to birth this child although it was coerced
rape. I don’t think so. Taking a woman’s right to choice is wrong regardless what a church or the government suggests.
Side: For

Example of agreement in an ABCD discussion indicated by the same side (Against).

HELL NO! ... KILLING A INNOCENT BABY ISN’T GONNA JUST GO AWAY YOU WILL HAVE TO LIVE WITH

> That is soo true living with the guilt forever know you murder you child it would
have been even better if the murder hadn’t been born. Side: Against

Example of no (dis)agreement in an ABCD discussion between the original post and a response.

Coke or Pepsi?

They taste the same no big difference between them for me

Table 1: Examples of Agreement, Disagreement, and None in ABCD discussions

site, createdebate.com, where the participants are ~ Abbott et al., 2011; Misra and Walker, 2013

required to provide which side of the debate = Mukherjee and Liu, 2012). The prior work
they are on. This enabled us to easily gather  performs 2-way classification between agreement

over 10,000 discussions in which there are over  and disagreement using features that are lexi-

200,000 posts containing (dis)agreement or the  cal (e.g. n-grams), basic meta-thread structure

lack of, 25 times larger than any pre-existing (e.g. post length), social media features (e.g.
agreement dataset. We show that this large dataset =~ emoticons), and polarity using dictionaries (e.g.

can be used to successfully detect (dis)agreement  SentiWordNet). Yin et al (2012), detect local

in other forums (e.g. 4forums.com and Wikipedia  and global (dis)agreement in discussion forums

Talk Pages) where the labels cannot be mined,  where people debate topics. Their focus is global
thereby avoiding the time consuming and difficult  (dis)agreement, which occurs between a post and

annotation process. the root post of the discussion. They manually an-
In the following sections, we first discuss re-  notated posts from US Message Board (818 posts)
lated work in spoken conversations and discus-  and Political Forum (170 posts) for global agree-

sion forums. We then turn to describe our new  ment. This approach ignores off-topic posts in
dataset, ABCD, as well as two other manually an-  the discussion which can indicate incorrect label-
notated corpora, Internet Argument Corpus (IAC), ing and the small size makes it difficult to de-

and Agreement in Wikipedia Talk Pages (AWTP).  termine how consistent their results would be in
We explain the features used in our system and de-  unseen datasets. Abbott et al (2011), look at
scribe our experiments and results. We conclude  (dis)agreement using 2,800 annotated posts from
with a discussion containing an error analysis of  the Internet Argument Corpus (IAC) (Walker et

the hard cases of (dis)agreement detection. al.,, 2012). Their work was extended to topic

independent classification by Misra and Walker
Since it is the largest previously used

2 Related Work (2013).

Early prior work on detecting (dis)agreement has ~ COTpUS, W€ use the IAC corpus in our experi-
focused on spoken dialogue (Galley et al., 2004; ~ ments. Lastly, Mukherjee and Liu (2012) , devel-
Hillard et al., 2003; Hahn et al., 2006) using the oped an SVM-+Joint Topic Model classifier to de-
ICSI meeting corpus (Janin et al., 2003). Ger-  tect (dis)agreement using 2,000 posts. They stud-
mesin and Wilson (2009) detect (dis)agreement on ied accommodation across (dis)agreement by clas-
dialog acts in the AMI meeting corpus (Mccowan sifying over 300,000 posts and explore the differ-
et al., 2005) and Wang et al (2011a, 2011b) de- ~ ence in accommodation across LIWC categories.
tect (dis)agreement in broadcast conversation in ~ While they did not implement accommodation,

English and Arabic. Prior work in spoken dialog ~ they found that it is more common in agreement

has motivated some of our features (e.g., lists of ~ for most categories, except for a few style dimen-
agreement and disagreement terms, sentiment and 51008 (e.g. negation) where it is reversed. This

n-grams). paper highly motivates our inclusion of accommo-
Recent work has turned to (dis)agreement de-  dation for (dis)agreement detection.
tection in online discussions (Yin et al., 2012; In other work, Opitz and Zirn (2013) detect
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(dis)agreement on sentences using the Authority
and Alignments in Wikipedia Discussions cor-
pus (Bender et al., 2011) which is different than
the AWTP corpus used in this paper. In the fu-
ture we would like to explore whether we could in-
corporate this corpus into ours. Wang and Cardie
(2014) also detect (dis)agreement on the sentence
and segment! level using this corpus and the IAC.

Our approach differs from prior work in that
it explores (dis)agreement detection on a large,
naturally occurring dataset where the annotations
are derived from participant information. We ex-
plore new features representing aspects of conver-
sational structure (e.g. sentence similarity) and the
more difficult 3-way classification task of detect-
ing agreement/disagreement/none.

3 Data

In this work we focus on direct (dis)agreement
between quote-response (Q-R) posts in the three
datasets described in the following subsections.
Across all datasets we only include discussions of
depth > 2 to ensure a response chain of at least
three people and thus, a thread. We also excluded
extremely large discussions to improve processing
speed. We only consider entire posts in Q-R pairs.

3.1 Agreement by Create Debaters (ABCD)

Create Debate is a website where people can start
a debate on a topic by asking a question. On this
site, a debate can be:

e open-ended: there is no side

o for-or-against: two sided

o multiple-sides: three or more sides
In this paper, we only focus on debates of the for-
or-against nature where there are two sides. For
example, we use a debate discussing whether peo-
ple are for or against abortion” in our examples
throughout the paper. In this corpus, the partici-
pants in the debate choose what side they are on
each time they participate in the discussion. Prior
work (Abu-Jbara et al., 2012) has used the side la-
bel of this corpus to detect the subgroups in the
discussion. We annotate the corpus as follows:
the side label determines whether a post (the Re-
sponse) is in agreement with the post prior to it
(the Quote). If the two labels are the same, then
they agree. If the two labels are different, they dis-
agree. When the author is the same for both posts,

! a segment is a portion of a post

2 www.createdebate.com/debate/show/Abortion_9

Dataset | Thread | Post Agree | Disagree | None
Count | Count

ABCD | 9981 | 185479| 38195 | 60991 86293

IAC 1220 | 5940 | 428 1236 4276

AWTP | 50 822 38 148 636

Table 2: Statistics for full datasets

there is no (dis)agreement as the second post is
just a continuation of the first. Finally, the first
post and its direct responses do not agree with
anyone; the first post does not have a side as it
is generally a question asking whether people are
for, or against the topic of the debate. Examples
of (dis)agreement and none are shown in Table 1.
We call this corpus Agreement by Create Debaters
or ABCD.

Our dataset includes over 10,000 discussions
which include 200,000 posts on a variety of top-
ics. Additional statistics for ABCD are shown in
Table 2. There are far more disagreements than
agreements as people tend to be argumentative
when they are debating a topic.

3.2 Internet Argument Corpus (IAC)

The second dataset we use is the IAC (Walker
et al.,, 2012). The IAC consists of posts gath-
ered from 4 forums.com discussions that were
annotated on Mechanical Turk. The Turkers
were provided with a Q-R pair and had to indi-
cate the level of (dis)agreement using a scale of
[—5, 5] where —5 indicated high disagreement, 0
no (dis)agreement, and 5 high agreement. As in
prior work with this corpus (Abbott et al., 2011;
Misra and Walker, 2013), we converted the scalar
values to (dis)agreement with [—5, —2] as dis-
agreement, [—1,1] as none, and [2,5] as agree-
ment. In this dataset is it possible for multiple
annotations to occur in a single post. We com-
bine the annotation to the post level as follows. We
ignored the none annotations unless there was no
(dis)agreement. In all other cases, we use the aver-
age (dis)agreement score as the final score for the
post. 10% of the posts had more than one anno-
tation label. The number of annotations per class
is shown in Table 2. Not all Q-R posts in a thread
were annotated for agreement as is evident by the
ratio of threads to post annotations.

3.3 Agreement in Wikipedia Talk Pages
(AWTP)

Our last corpus is 50 Wikipedia talk pages (used
to discuss edits) containing 822 posts (see full
statistics in Table 2) that were manually annotated
as the ATWP (Andreas et al., 2012). Although
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smaller than the IAC, the advantage to this dataset
is that each thread was annotated in its entirety. As
in the create debate discussions, disagreement is
more common than agreement due to the nature of
the discussion. These annotations were on the sen-
tence level where multiple sentences can be part
of a single annotation. In 99% of the Q-R posts,
there was just one pair of sentences that were an-
notated with a (dis)agreement label and we used
that annotation for the post. When there was one
more than one pair, we used the majority annota-
tion. The post was labeled with none only when
all sentences within the post had the none label.
AWTP was annotated by three different people.
Inter-Annotator Agreement (IAA) using the sen-
tence pairs was very high because most annota-
tions were none. Therefore, we computed IAA by
randomly sampling an equivalent amount of sen-
tences pairs per label from two of the annotators
(A1 & A2) and had the third annotator (A3) an-
notate all of those sentence pairs. Cohen’s « for
A1,A3 was .90 and for A2,A3 was .70 indicating
high TAA.

4 Method

We model our data by posts. Each data point (the
Response) is a single post and its label indicates
whether it agrees, disagrees, or none, to the post it
is responding to (the Quote). The following sec-
tions discuss the features used to train our model.
Each feature is computed within the entire post.
In addition, in all applicable features, we also in-
dicate if the feature occurs in the first sentence of
the post. Our analysis showed that (dis)agreement
tends to occur in the first sentence of the response.

Meta-Thread Structure features include: 1)
The post is the root of the discussion: This is
useful because the root of the discussion tends to
be a question (e.g., “Are you for or against abor-
tion”) and thus, does not express (dis)agreement.
2) The reply was by the same author: The sec-
ond post is just a continuation of the first. 3) The
distance, or depth, of the post from the begin-
ning of the discussion: anyone that replied to the
root (Depth of 1) has no (dis)agreement because
the root is a question and therefore has no side.
The average depth per thread is 4.9 in ABCD, 12.7
in IAC and 6.2 in ATWP, and 4) The number of
sentences in the response: people who disagree
tend to write more than those who agree.

Lexical Features are generated for each post.
We use (1-3)gram features and also generate up
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to 4 possible Part of Speech (POS) tag features
(Toutanova et al., 2003) for each word in the
post. We include all unigram POS tags and per-
form Chi-Squared feature selection on everything
else. In addition, we also generated small lists
of negation terms (e.g. not, nothing; 11 terms in
total), agreement terms (e.g. agree, concur; 16
terms in total), and disagreement terms (e.g. dis-
agree, differ; 14 terms in total) and generate a bi-
nary feature for each list indicating that the post
has one of the terms from the respective list of
words. Finally, we also include a feature indicat-
ing whether there is a sentence that ends in a ques-
tion as when someone asks a question, it may be
followed by (dis)agreement, but it probably won’t
be in (dis)agreement with the post preceding it.

Lexical Stylistic Features that fall into two
groups are included, general: ones that are com-
mon across online and traditional genres, and so-
cial media: ones that are far more common in on-
line genres. Examples of general style features are
exclamation points and ellipses. Examples of so-
cial media style features are emoticons and word
lengthening (e.g. sweeeet).

Linguistic Inquiry Word Count The Linguis-
tic Inquiry Word Count (LIWC) (Tausczik and
Pennebaker, 2010) aims to capture the way peo-
ple talk by categorizing words into a variety of
categories such as negative emotion, past tense,
and health and has been used previously in agree-
ment (Abbott et al., 2011). The 2007 LIWC dic-
tionary contains 4487 words with each word be-
longing in one or more categories. We use all the
categories as features to indicate whether the re-
sponse has a word in the category.

Sentiment By definition, (dis)agreement indi-
cates whether someone has the same, or differ-
ent, opinion than the original speaker. A sentence
tagged with subjectivity can help differentiate be-
tween (dis)agreement and the lack thereof, while
polarity can help differentiate between agreement
and disagreement. We use a phrase-based sen-
timent detection system (Agarwal et al., 2009;
Rosenthal et al., 2014) that has been optimized
for lexical style to tag the sentences with opinion
and polarity. For example, it produces the follow-
ing tagged sentence “[That is soo true]/Obj [living
with the guilt forever]/neg [know you murder you
child]/neg...” We use the tagged sentence to gen-
erate several opinion-related features. We gener-
ate bag of words for all opinionated words in the



opinion and polarity phrases, labeling each word
as to which class it belongs to (opinion, positive,
or negative). We also have binary features indicat-
ing the prominence of opinion and polarity (posi-
tive or negative).

Sentence Similarity A useful indicator for de-
termining whether people are (dis)agreeing or not
is if they are talking about the same topic. We
use sentence similarity (Guo and Diab, 2012) to
determine the similarity between the Q-R posts.
For example the disagreement posts in Table 1 are
similar because of the statements “LIVE WITH

the guilt forever”. We use the output of the sys-
tem to indicate whether there are two similar sen-
tences above some threshold and whether all the
sentences are similar to one another.

Furthermore, we also look at similar Q-R
phrases in conjunction with sentiment. We gen-
erate phrases using the Stanford parser (Socher et
al., 2013) by adding reasonably sized branches of
the parse tree as phrases. We then find the simi-
larity (Guo and Diab, 2012) and opinion (Agarwal
et al., 2009; Rosenthal et al., 2014) of the phrases
and extract the unique words in the similar phrases
as features. We hypothesize that this could help
indicate disagreement, for example, if the word
“not” was mentioned in one of the phrases, e.g.
“I do not see anything wrong with abortion =/ vs
“I do see something wrong with abortion ...”. We
also include unique negation terms using the list
described in the Lexical Feature section and fea-
tures to indicate whether there is a similar phrase
and if its opinion in the Q-R posts are of the same
polarity (agree) or different polarity (disagree).

Accommodation When people speak to each
other, they tend to take on the speaking habits and
mannerisms of the person they are talking to (Giles
et al.,, 1991). This phenomenon is known as ac-
commodation. Mukherjee and Liu (2012) found
that accommodation differs among people who
(dis)agree. This strongly motivates using accom-
modation in (dis)agreement detection’. We partly
capture this via sentence similarity which explores
whether they share the same words. We also
explore whether Q-R posts use the same syntax
(POS, n-grams), copy lexical style, and use the
same category of words (LIWC). We use the fea-
tures as described in prior sections but only in-
clude ones that exist in the quote and response.

3 Accommodation wasn’t used to classify (dis)agreement.
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5 Experiments

All of our experiments were run using Mallet
(McCallum, 2002). We experimented with Naive
Bayes, Maximum Entropy (i.e. Logistic Regres-
sion), and J48 Decision Trees and found that Max-
imum Entropy consistently outperformed or there
was no statistically significant difference to the
other classifiers; we only show the results for
Maximum Entropy here. We show our results
in terms of None, Agreement, and Disagreement
F-Score as well as macro-average F-score for all
three classes. The ABCD and IAC datasets were
split into 80% train, 10% development, and 10%
test. We use the entire AWTP dataset as a test
set because of its small size. All results shown
are using a balanced training set by downsam-
pling and the full test set. It is important to use
a balanced dataset for training because the ratio
of agreement/disagreement/none differs in each
dataset. We tuned the features using the devel-
opment set and ran an exhaustive experiment to
determine which features provided the best results
and use that best group of features as an additional
experiment in the test sets.

In order to show the impact of our large dataset,
we experimented with increasing the size of the
training set by starting with 25 posts from each
class and increased the size until the full dataset
is reached (e.g. 25, 50, 100, ...). We also show a
more detailed analysis of the various features us-
ing the full datasets. In all datasets, the best exper-
iment includes the features found to be most useful
during development and differs per dataset.

We compare our experiments to two baselines.
The first is the majority class, which is none. Al-
though none is more common, it is important to
note that we would prefer to achieve higher f-
score in the other classes as our goal is to detect
(dis)agreement. The second baseline is n-grams,
the commonly used baseline in prior work. We
compute statistical significance using the Approx-
imate Randomization test (Noreen, 1989; Yeh,
2000), a suitable significance metric for F-score.

5.1 Agreement by Create Debaters (ABCD)

Our first experiments were performed on the large
ABCD dataset of almost 10,000 discussions de-
scribed in the Data Section. We experimented with
balancing and unbalancing the training dataset and
the balanced datasets consistently outperformed
the unbalanced datasets. Therefore, we only used



Features None | Agree| Disagree | Avg
majority 632 0.0 |0.0 21.1
n-gram 457 |35.6 413 40.9
n-grams+POS+lex -style+ | 58.7" [42.2 [51.6 50.8
LIWCinR

Thread Structure 100 |45.8 |62.0 69.2
Accommodation 74.0 |45.1 |59.1 59.4
Thread+Accommodation | 99.6 |57.8 | 68.2 75.2
All 99.6 |58.0 [73.1 76.9
Best 100 | 585 [73.0 77.6

Table 3: The effect, in F-score, of conversational
structure in the ABCD corpus. Statistical signifi-
cance is shown over majority® and n-gram” base-
lines.

Agreement By Create Debaters

750 1500 3000 15000 30000 60000 101745

Figure 1: Average F-score as the ABCD training
size increases when testing on the ABCD.

balanced datasets in the training set for the rest
of the experiments. Table 3 shows how accom-
modation and meta-thread structure are very use-
ful for detecting (dis)agreement. In fact, using
n-grams, POS, LIWC, and lexical style features
in just the response yields an average F-score of
50.8% whereas using POS, LIWC and lexical style
in both the quote and response as well as sentence
similarity yields a significant improvement of 8.6
points or 16.9% to an average F-score of 59.4%,
indicating that conversational structure is very in-
dicative of (dis)agreement. Using all features and
the best features (computed using the development
set) provide a statistically significant improvement
at < .05 over both baselines. Our best results in-
clude all features except polarity with an average
F-Score of 77.6%. Figure 1 shows that as the train-
ing size increases the results improve.

5.2 Internet Argument Corpus (IAC)

In contrast to prior work we detect (dis)agreement
as a 3-way classification task: agreement, dis-
agreement, none. Detecting (dis)agreement with-
out including none pairs is unrealistic in a threaded
discussion where the majority of posts will be
neither agreement or disagreement. Additionally,
we do not balance the test set as do Abbott et
al (2011) and Walker et al (2013), but rather use
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all annotated posts to maintain a realistic agree-
ment/disagreement/none ratio.

We experiment with using the small manually
annotated in-domain IAC corpus and the large
ABCD corpus. In contrast to the ABCD, we did
not find accommodation to be significantly useful
when training and testing using the IAC. We be-
lieve this is due to the large amount of none posts
in the dataset (71.9%) where one does not expect
accommodation to occur. However, in examin-
ing the average F-score for (dis)agreement, with-
out none, we found that accommodation provides
a 2.7 point or 11% improvement over only using
features from the response. This improvement is
masked by a 1.2 reduction in the none class where
accommodation is not useful. The best IAC fea-
tures differ depending on the training set and were
computed using the IAC development set. Us-
ing the IAC training set, meta-thread structure, the
LIWC, sentence similarity, and lexical style were
most important. Using the ABCD corpus, the best
features on the IAC development set were meta-
thread structure, polarity, sentence similarity, the
LIWC, and the negation/agreement/disagreement
terms and question lexical features. We found it
especially interesting that polarity and lexical fea-
tures were useful on the ABCD while lexical style
was useful for the IAC indicating clear variations
in content across genres. Using the best features
per corpus found from tuning towards the devel-
opment sets (e.g. training and tuning on ABCD)
provide a statistically significant improvement at
< .05 over the n-gram baseline. The best and all
(dis)agreement results provide a statistically sig-
nificant improvement over the majority baseline.
More detailed results are shown in Table 4. Fi-
nally, Figure 2a shows how increasing the size of
the automatic ABCD training set improves the re-
sults compared to the manually annotated training
set using the best feature set. Interestingly, there
is little variation between the use of both datasets
using the best features. We believe this is because
thread structure is the most useful feature due to
the large occurrence of none posts.

5.3 Agreement in Wikipedia Talk Pages
(AWTP)

Our last set of experiments were performed on

the AWTP which was annotated in-house. The

advantage to the AWTP corpus is that the an-

notators were given the entire thread during an-

notation time, and annotated all (dis)agreement,



Features IAC ABCD

None | Agree | Disagree | Average || None | Agree | Disagree | Average
majority 85.1 |00 0.0 28.4 85.1 |00 0.0 28.4
n-gram 586 |11.7 |27.8 32.7 467 |7.8 36.6 30.3
n-grams+POS+lexical-style+LIWC in R | 54.1 | 12.0% |29.7¢ 31.9 439 [13.6% |30.1% 29.2
Thread Structure 87.4% | 25.3%7 | 50.0° | 54.2° 87.3% | 26.4%7 | 53.8%7 | 55.8°
Accommodation 529 [13.9% [324% |33.1 517 |14.7% |34.3% |33.6
Thread+Accommodation 87.5% | 26.5%7 | 48.9° 54.3%7 || 87.2° | 28.0%° | 55.5%% | 56.9°
All 83.5% | 28.8%7 | 50.4%° | 54.2° 87.3% | 27.0%7 | 41.2¢ 51.8
Best 87.4°% 131.5%% | 54.4%8 | 57.8% || 87.3%|25.5%% | 57.3%% |56.7°

Table 4: The effect, in F-score, of conversational structure in the IAC test set using the IAC and ABCD
as training data. Results highlighted to indicate statistical significance over majority® and n-gram” base-

lines.
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Figure 2: Avg. F-score as the training size increases. The vertical line is the size of the IAC training set.
The F-score succeeding the vertical line is the score at the peak size, included for contrast.

whether between Q-R pairs or not. In contrast, the
IAC annotators were not provided with the entire
thread. It was annotated only between Q-R pairs
and even all Q-R pairs in a thread were not anno-
tated. This means that each ATWP thread can be
used for (dis)agreement detection in its entirety.
Having fully annotated threads preserves the ratio
of agreement/disagreement/none pairs better (the
IAC has posts that are missing annotations).

We experiment with predicting (dis)agreement
using the large naturally occurring ABCD dataset
and the gold TAC dataset. Despite its advantage
of gold labels, we found that using the ABCD as
training consistently outperforms using the IAC as
training on out-of-domain data, excluding when
using just n-grams. In contrast to the other
datasets, meta-thread structure and accommoda-
tion individually perform worse than using similar
features found in the response alone. We believe
this is because meta-thread structure is not strictly
enforced in Wikipedia Talk Pages, providing an
inaccurate representation of who is responding to
who. Using all and the best features found dur-
ing development (e.g. via training and tuning on
ABCD) provide a statistically significant improve-
ment at < .05 over the n-gram baseline for ABCD.
The all and best (dis)agreement results provide a

statistically significant improvement over the ma-
jority baseline for training on ABCD and IAC.
More detailed results are shown in Table 3. We ran
identical experiments to those performed on the
IAC by increasing the training size of the ABCD
corpus and IAC corpus to show their effects on the
test set as shown in Figure 2b. The IAC dataset
performs worse than using the ABCD dataset once
the size of the ABCD training set exceeds the size
of the IAC training set. This is further indication
that automatic labeling is useful.

6 Discussion

We performed an error analysis to determine the
kind of errors our system was making on 50
ABCD posts and 50 IAC posts from the devel-
opment sets. In the ABCD posts we focused on
agreement posts that were labeled incorrectly as
our performance was worst in this class. Our
analysis indicated that in most cases, 72.7% of
the time, the error was due to the incorrect la-
bel; it should have been disagreement or none
and not agreement as suggested by the side of
the post. This is unsurprising as the label is de-
termined using the side chosen by the post au-
thor. However, what is more surprising is that
this was the common cause of error in the IAC
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Features IAC ABCD

None | Agree | Disagree | Average || None | Agree | Disagree | Average
majority 872 |00 0.0 29.1 872 | 0.0 0.0 29.1
n-gram 68.1 [12.7 [21.3 34.1 365 |11.6 |32 26.7
n-grams+POS+lexical-style+LIWC in R | 64.1 | 12.1% | 22.7% 33.0 54.0° | 27.7°F [ 36.2F ]39.3°
Thread Structure 58.0 | 12.4% | 23.7% 314 63.6° | 15.0% | 33.4% 37.3
Accommodation 524 |12.4%]30.7%°% |31.8 50.7° | 17.5%7 | 40.1*° | 36.1°
Thread+Accommodation 55.0 |14.9% [37.2%% |357 62.97 | 21.3%° | 52.2%% | 43.98
All 642 |15.5% | 36.4%°% |38.7 61.97 | 25.8%7 | 43.5%7 | 43.7°
Best 593 | 14.4% | 34.5%% | 36.1 63.6° | 23.3%7 | 46.8%F | 44.4°

Table 5: The effect, in F-score, of conversational structure in the AWTP test set using the IAC and ABCD

as training data. Statistical significance is shown over majority® and n-gram” baselines.

[ Dataset | Quote

[ Response

[ Description

|

ABCD | The same thing people use all words

for; to convey information.

to convey information. Give me an ex-
ample of when you are fully capable of
saying this without offending someone.

The first sentence sounds like
agreement but the second sentence
is argumentative

IAC Nowhere does it say, that she kept a

And nowhere does it say she went to her

Agreement. It is an elaboration.

gun in the bathroom emoticon_xkill

bedroom and retrieved a gun.

Further context would help.

Table 6: Hard examples of (dis)agreement in ABCD and IAC

dataset as well, occurring 58.3% of the time. This
is because the IAA using Cohen’s x among Ama-
zon Turk workers for the IAC is low, averaging
to .47 (Walker et al., 2012) across all topics. In
addition, detecting agreement is hard as is evi-
dent in the incorrectly labeled examples in Ta-
ble 6. Other errors were in posts where the agree-
ment was a response, an elaboration, there was no
(dis)agreement, and a conjunction indicating the
post contained agreement and disagreement. To
gain true insight into our model and gauge the im-
pact of mislabeling, the labels of a small set of
60 threads (908 posts) were manually annotated to
correct (dis)agreement errors resulting in 99 label
changes. We allowed a post to be both agreement
and disagreement and avoided changing labels to
none as it is not a self-labeling option. This did
not provide a significant change in F-score.

As is evident from our experiments, exploit-
ing meta-thread structure and accommodation pro-
vide significant improvements. We also explored
whether additional context would help by explor-
ing the entire thread structure using general CRF.
However, our experiments found that using CRF
did not provide a significant improvement com-
pared to using Maximum Entropy in the ABCD
and AWTP corpora. This may be explained by
our error analysis, which showed that in only 2/50
ABCD posts and 9/50 IAC posts further context
beyond the Q-R posts would possibly help make it
clearer whether it was agreement or disagreement.

7 Conclusion

We have shown that by exploiting conversational
structure our system achieves significant improve-
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ments compared to using lexical features alone.
In particular, our approach demonstrates the im-
portance of meta-thread features, and accommo-
dation between participants of an online discus-
sion reflected in the semantic, syntactic and stylis-
tic similarity between their posts. Furthermore,
we use naturally occurring labels derived from
Create Debate, to achieve improvements in de-
tecting (dis)agreement compared to using smaller
manually labeled datasets of the IAC and AWTP.
The ABCD and AWTP datasets are available
at www.cs.columbia.edu/~sara/data.
php. This is promising for domains where no
annotated data exists; the dataset can be used to
avoid performing a time consuming and costly an-
notation effort. In the future we would like to take
further advantage of existing manually annotated
datasets by using domain adaptation to combine
the datasets. In addition, our error analysis indi-
cated that a significant amount of errors were due
to mislabeling. We would like to explore improv-
ing results by using the system to automatically
correct such errors in held-out training data and
then using the corrected data to retrain the model.
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Abstract

We propose a generic, memory-based ap-
proach for the detection of implicit se-
mantic roles. While state-of-the-art meth-
ods for this task combine hand-crafted
rules with specialized and costly lexical
resources, our models use large corpora
with automated annotations for explicit se-
mantic roles only to capture the distri-
bution of predicates and their associated
roles. We show that memory-based learn-
ing can increase the recognition rate of im-
plicit roles beyond the state-of-the-art.

1 Introduction

Automated implicit semantic role labeling (iISRL)
has emerged as a novel area of interest in the re-
cent years. In contrast to traditional SRL, which
aims to detect events (e.g., verbal or nominal
predicates) together with their associated seman-
tic roles (agent, theme, recipient, etc.) as overtly
realized in the current sentence, iSRL extends this
analysis with locally unexpressed linguistic items.
Hence, iSRL requires to broaden the scope beyond
isolated sentences to the surrounding discourse.
As an illustration, consider the following example
from Roth and Frank (2013):

El Salvador is now the only Latin Ameri-
can country which still has troops in [Iraq].
Nicaragua, Honduras and the Dominican Repub-
lic have withdrawn their troops [&].

In the second sentence, a standard SRL parser
would ideally identify withdraw as the main ver-
bal predicate. In its thematic relation to the other
words within the same sentence, all countries
serve as the overtly expressed (explicit) agents,
and are thus labeled as arguments AQ.! Seman-
tically, they are the action performers, whereas

"For details on all PropBank labels used in our study, see
Palmer et al. (2005).
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troops would carry the patient role A1 as the entity
which undergoes the action of being withdrawn.
However, given these explicit role annotations for
A0 and A1 in the second sentence, the standard
system would definitely fail to infer the underly-
ing, linguistically unexpressed, i.e., non-overt re-
alization of an implicit argument of withdraw (de-
noted by [&]) about source information. Its corre-
sponding realization is associated with Iraq in the
preceding sentence, which is outside of the scope
of any standard SRL parser. The resulting implicit
role has the label A2.

Many role realizations are suppressed on the
surface level. The automated detection of such im-
plicit roles and their fillers, which are also called
null instantiations (NIs) (Fillmore, 1986; Ruppen-
hofer, 2005), is a challenging task. Yet, if un-
covered, NIs provide highly beneficial ‘supple-
mentary’ information which in turn can be incor-
porated into practical, downstream NLU applica-
tions, like automated text summarization, recog-
nizing textual entailment or question answering.

Current issues in iSRL.  Corpus data with man-
ually annotated implicit roles is extremely sparse
and hard to obtain, and annotation efforts have
emerged only recently; cf. Ruppenhofer et al.
(2010), Gerber and Chai (2012), and also Feiz-
abadi and Padé (2015) for an attempt to enlarge
the number of annotation instances by combina-
tion of scarce resources. As a result, most state-of-
the-art iSRL systems cannot be trained in a super-
vised setting and thus integrate custom, rule-based
components to detect NIs (we elaborate on related
work in Section 2). To this end, a predicate’s overt
roles are matched against a predefined predicate-
specific template. Informally, all roles found in the
template but not in the text are regarded as null in-
stantiations. Such pattern-based methods perform
satisfactorily, yet there are drawbacks:

(1) They are inflexible and absolute according to
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their type, in that they assume that all candidate
NIs are equally likely to be missing, which is unre-
alistic given the variety of different linguistic con-
texts in which predicates co-occur with their se-
mantic roles.

(2) They are expensive in that they require hand-
crafted, idiosyncratic rules (Ruppenhofer et al.,
2011) and rich background knowledge in the form
of language-specific lexical resources, such as
FrameNet (Baker et al., 1998), PropBank (Palmer
et al.,, 2005) or NomBank (Meyers et al., 2004).
Dictionaries providing information about each
predicate and status of the individual roles (e.g.,
whether they can serve as implicit elements or not)
are costly, and for most other languages not avail-
able to the same extent as for English.

(3) Most earlier studies heuristically restrict im-
plicit arguments to core roles? only (Tonelli and
Delmonte, 2010; Silberer and Frank, 2012), but
this is problematic as it ignores the fact that im-
plicit non-core roles also provide valid and valu-
able information. Our approach remains agnostic
regarding the role inventory, and can address both
core and non-core arguments. Yet, in accordance
with the limited evaluation data and in line with
earlier literature, we had to restrict ourselves to
evaluate NI predictions for core arguments only.

Our contribution We propose a novel, generic
approach to infer information about implicit roles
which does not rely on the availability of manually
annotated gold data. Our focus is exclusively on
NI role identification, i.e., per-predicate detection
of the missing implicit semantic role(s) given their
overtly expressed explicit role(s) (without finding
filler elements) as we believe that it serves as a
crucial preprocessing step and still bears great po-
tential for improvement. We treat NI identification
separately from the resolution of their fillers, also
because not all NIs are resolvable from the con-
text. In order to facilitate a more flexible mech-
anism, we propose to condition on the presence
of other roles, and primarily argue that NI de-
tection should be probabilistic instead of rule-
based. More specifically, we predict implicit ar-
guments using large corpora from which we build
a background knowledge base of predicates, co-
occurring (explicit) roles and their probabilities.
With such a memory-based approach, we gener-

2Core roles are obligatory arguments of a predicate. Infor-
mally, non-core roles are optional arguments often realized as
adjuncts or modifiers.
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alize over large quantities of explicit roles to find
evidence for implicit information in a mildly su-
pervised manner. Our proposed models are largely
domain independent, include a sense distinction
for predicates, and are not bound to a specific re-
lease of a hand-maintained dictionary. Our ap-
proach is portable across languages in that train-
ing data can be created using projected SRL anno-
tations. Unlike most earlier approaches, we em-
ploy a generic role set which is based on Prop-
Bank/NomBank rather than FrameNet: The Prop-
Bank format comprises a relatively small role in-
ventory which is better suited to obtain statisti-
cal generalizations than the great variety of highly
specific FrameNet roles. While FrameNet roles
seem to be more fine-grained, their greater num-
ber arises mostly from predicate-specific semantic
roles, whose specific semantics can be recovered
from PropBank annotations by pairing semantic
roles with the predicate.

Yet another motivation of our work is related
to the recent development of AMR parsing (Ba-
narescu et al., 2013, Abstract Meaning Represen-
tation) which aims at modeling the semantic rep-
resentation of a sentence while abstracting from
syntactic idiosyncrasies. This particular appraoch
makes extensive use of the PropBank-style frame-
sets, as well, and would greatly benefit from the
integration of information on implicit roles.

The paper is structured as follows: Section 2
outlines related work in which we exclusively fo-
cus on how previous research has handled the
sole identification of NIs. Sect. 3 describes our
approach to probabilistic NI detection; Sect. 4
presents two experiments and their evaluation;
Sect. 5 concludes our work.

2 Related Work

In the context of the 2010 SemEval Shared Task
on Linking Events and Their Participants in Dis-
course’ on implicit argument resolution, Ruppen-
hofer et al. (2010) have released a data set of fic-
tion novels with manual NI role annotations for
diverse predicates. The data has been referred to
by various researchers in the community for di-
rect or indirect evaluation of their results. The
NIs in the data set are further subdivided into two
categories: Definite NIs (DNIs) are locally unex-
pressed arguments which can be resolved to ele-

ments in the proceeding or following discourse;

Shttp://semeval2. fbk.eu/semeval?2.php



Indefinite NIs (INIs) are elements for which no an-
tecedent can be identified in the surrounding con-
text.* Also, the evaluation data comes in two fla-
vors: a base format which is compliant with the
FrameNet paradigm and a CoNLL-based Prop-
Bank format. Previous research has exclusively
focused on the former.

Chen et al. (2010) present an extension of an ex-
isting FrameNet-style parser (SEMAFOR) to han-
dle implicit elements in text. The identification of
NIs is guided by the assumption that, whenever the
traditional SRL parser returns the default label in-
volved in a non-saturated analysis for a sentence,
an implicit role has to be found in the context in-
stead. Additional FrameNet-specific heuristics are
employed in which, e.g., the presence of one par-
ticular role in a frame makes the identification of
another implicit role redundant.’

Tonelli and Delmonte (2010, VENSES++)
present a deep semantic approach to NI resolu-
tion whose system-specific output is mapped to
FrameNet valency patterns. For the detection of
NIs, they assume that these are always core ar-
guments, i.e., non-omissible roles in the interac-
tion with a specific predicate. It is unclear how
different predicate senses are handled by their ap-
proach. Moreover, not all types of NIs can be de-
tected, resulting in a low overall recall of identi-
fied NIs, also having drawbacks for nouns. Again
using FrameNet-specific modeling assumptions,
their work has been significantly refined in Tonelli
and Delmonte (2011).

Despite their good performance in the overall
task, Silberer and Frank (2012, S&F) give a rather
vague explanation regarding NI identification in
text. Using a FrameNet API, the authors restrict
their analysis only to the core roles by exclud-
ing “conceptually redundant” roles without further
elaboration.

Laparra and Rigau (2013) propose a determinis-
tic algorithm to detect NIs on grounds of discourse
coherence: It predicts an NI for a predicate if the
corresponding role has been explicitly realized for
the same predicate in the preceding discourse but
is currently unfilled. Their approach is promising
but ignorant of INIs.

Earlier, Laparra and Rigau (2012, L&R) intro-
duce a statistical approach to identifying NIs sim-
ilar to ours in that they rely on frequencies from

*The average F-score annotator agreement for frame as-

signments is about .75 (Ruppenhofer et al., 2010).
3Cf. CoreSet and Exludes relationship in FrameNet.
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overt arguments to predict implicit arguments. For
each predicate template (frame), their algorithm
computes all Frame Element patterns, i.e., all co-
occurring overt roles and their frequencies. For
NI identification a given predicate and its overtly
expressed roles are matched against the most fre-
quent pattern not violated by the explicit argu-
ments. Roles of the pattern which are not overtly
expressed in the text are predicted as missing NIs.
Even though their approach outperforms all pre-
vious results in terms of NI detection, Laparra
and Rigau (2012) only estimate the raw frequen-
cies from a very limited training corpus, raising
the question whether all patterns are actually suf-
ficiently robust. Also, the authors disregard all the
valuable less frequent patterns and limit their anal-
ysis to only a subtype of NI instances which are
resolvable from the context.

Finally, Gerber and Chai (2012) describe a su-
pervised model for implicit argument resolution
on the NomBank corpus which—unlike the pre-
vious literature—follows the PropBank annotation
format. However, NI detection is still done by dic-
tionary lookup, and the analysis is limited to only
a small set of predicates with only one unambigu-
ous sense. Again limiting NIs to only core roles,
the authors empirically demonstrate that this sim-
plification accounts for 8% of the overall error rate
of their system.

3 Experimental Setup

3.1 Memory-Based Learning

Memory-based learning for NLP (Daelemans and
van den Bosch, 2009) is a lazy learning technique
which keeps a record of training instances in the
form of a background knowledge base (BKB).
Classification compares new items directly to the
stored items in the BKB via a distance metric. In
semantics, the method has been applied by, e.g.,
Pefias and Hovy (2010) for semantic enrichment,
and Chiarcos (2012) to infer (implicit markers for)
discourse relations. Here, we adopt its methodol-
ogy to identify null-instantiated argument roles in
text. More precisely, we setup a BKB of proba-
blistic predicate-role co-occurrences and estimate
thresholds which serve as a trigger for the predic-
tion of an implicit role (a slight modification of the
distance metric). We elaborate on this methodol-
ogy in Section 4.



3.2 Data & Preprocessing

We train our model on a subset of the
WaCkypedia_EN® corpus (Baroni et al., 2009).
The data set provides a 2008 Wikipedia dump
from which we extracted the tokens and sentences.
We have further divided the dump into pieces of
growing size (cumulatively by 100 sentences) and
applied MATE’ (Bjorkelund et al., 2009) for the
automatic detection of semantic roles to the vary-
ing portions and annotated them with SRL infor-
mation. For each sentence, MATE identifies the
predicates and all of its associated core and non-
core arguments.® MATE has been used in previ-
ous research on implicit elements in text (Roth and
Frank, 2013) and provides semantic roles with a
sense disambiguation for both verbal and nominal
predicates. The resulting output is based on the
PropBank format.

3.3 Model Generation

We build a probablistic model from annotated

predicate-role co-occurrences as follows:

1. For every sentence, record all distinct predicate

instances and their associated roles.

For every predicate instance, sort the role labels

lexicographically (not the role fillers), disre-

garding their sequential order. (We thus obtain

a normalized template of role co-occurrences

for each frame instantiation.)

. Compute the frequencies for all templates asso-
ciated with the same predicate.

. By relative frequency estimation, derive all
conditional probabilities of the form:

2.

P(r|R, PREDICATE)

with R being the role inventory of the SRL
parser, R C R a (sub)set of explicitly realized
semantic roles, and 7 € R \ R an arbitrary se-
mantic role. When we try to gather information
on null instantiated roles, r is typically an un-
realized role label. The PREDICATE consists of
the lemma of the corresponding verb or noun,
optionally followed by sense number (if pred-
icates are sense-disambiguated) and its part of
speech (V/N), e.g., PLAY.01.N.

®http://wacky.sslmit.unibo.it/doku.php?id=corpora

"http://code.google.com/p/mate-tools/

8In order to minimize the noise in the data, we attempted
to resplit unrealistically long sentences (> 90 tokens) by
means of the Stanford Core NLP module (Manning et al.,
2014). All resulting splits > 70 tokens were rejected.
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Paradigm #Roles #Overt
Overt DNI INI  #DNI+#INI
Train FrameNet 2,526 303 277 4.36
" PropBank 1,027 125 101 4.52
Test FrameNet 3,141 349 361 4.42
PropBank 1,332 167 85 5.28

Table 1: Label distribution of the SemEval 2010 data set for
overt and null instantiated arguments for both the FrameNet
(all roles and parts of speech) and the PropBank version (only
core roles for nouns and verbs).

We build models from SRL data in PropBank for-
mat, both manually and automatically annotated.
We experiment with models for two different
styles of predicates: Sense-ignorant or SI models
represent predicates by lemma and part of speech
(PLAY.N), sense-disambiguated or SD models rep-
resent predicates by lemma, sense number and part
of speech (PLAY.01.N, PLAY.02.N, etc.).

3.4 Annotated Data

In accordance with previous iSRL studies, we
evaluate our model on the SemEval data set (Rup-
penhofer et al., 2010). However, to the best of our
knowledge, this is the first study to focus on the
PropBank version of this data set. It has been de-
rived semi-automatically from the FrameNet base
format using hand-crafted mapping rules (as part
of the data set) for both verbs and nouns. For
example, a conversion for the predicate fear in
FrameNet’s EXPERIENCER_FOCUS frame is de-
fined as fear.01 (its first sense) with the roles EX-
PERIENCER and CONTENT mapped to PropBank
labels AO and Al, respectively. In accordance
with the mapping patterns, the resulting distribu-
tion of NIs varies slightly from the base format.
Table 1 shows the label distribution of overt roles,
DNIs, INIs for both the FrameNet and PropBank
versions, respectively. Some information is lost
while the general proportions remain similar to the
base format. This is also due to the fact that for
some parts of speech (e.g., for adjectives) no map-
pings are defined, even though some of them are
annotated with NI information in the FrameNet
version. Moreover, mapping rules exist only for
core roles AO-A4 (agent, patient, ...). As a con-
sequence, we restrict our analysis to these five
(unique) roles, even though our models described
in this work incorporate probabilistic information
for all possible roles in R, i.e., AO-A4, but also
for non-core (modifier) roles, such as AM-TEMP
(temporal), AM-LOC (location), etc.



Role Verbs Nouns
Overt NIs Overt NIs
A0 40 45 24 23
Al 83 39 29 33
A2 3 11 10 6
A3 - 7 - 1
A4 - 24 - -
totals: 126 126 63 63

Table 2: Label distributions of all roles in both data sets
from Experiment 1; majority NI classes in bold.

4 Experiments

4.1 Experiment 1

To evaluate the general usefulness of our memory-
based approach to detect implicit roles, we set up
a simplified framework for predicates with exactly
one overt argument and one NI annotated in the
SemEval data (for all verbs and all nouns and from
both the train and test files to obtain a reasonably
large sample; no differentiation of DNIs and INIs).
This pattern accounts for 189 instances—roughly
9% of the data samples in the SemEval set. We di-
vided the instances into two subsets based on the
predicate’s part of speech. The label distributions
over overt and null instantiated roles for both ver-
bal and nominal predicates are given in Table 2.

4.1.1 Task Description

Predict the role of the single missing NI (A0—-A4)
for each given predicate instance.

4.1.2 Predicting Null Instantiations

We trained one sense-disambiguated (SD) gold
model for verbs (PB) and one for nouns (NB) ac-
cording to Sect. 3.3 on the complete PropBank
and the complete NomBank, respectively. This
was compared with 30 separate SD and S models
on varying portions of the automatically annotated
WaCkypedia_EN dump: These were trained on the
first k£ sentences each, in order to make their pre-
diction quality comparable, while k ranges from
50 sentences for the smallest model to & = 10
million for the largest model (= % of the whole
corpus). For NI role prediction, we return n;, i.e.,
the maximally probable unrealized semantic role
given the overt argument o; plus the predicate:

n; = arg max P(n|o;, PREDICATE
’ neR\R (nloj, )

where R = {o;}, the predicate’s single explicit
role and R = {A0..44} D R, the role inventory.
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4.1.3 Results & Evaluation

The prediction accuracies for verbal and nominal
predicates are illustrated in Figure 1. Although the
number of instances in the data sets is small, some
general trends are clearly visible. Our major find-
ings are:

By increasing the number of training sentences
the performance of the SD and the SI-based clas-
sification models steadily increases as well. The
trend is the same for both verbs and for nouns,
even though training in the nominal domain re-
quires more data to obtain similarly good results.
More precisely, models trained on only 50k sen-
tences already have an adequate performance on
test data for verbs (=76% with the SD model). To
reach a similar performance on nouns, we need to
increase the training size roughly by a factor of 5.

Likewise, the performance of the SD models is
better in general than the one of the S/ models
throughout all models analyzing verbal predicates,
but only marginally better for nouns.

Both the SD and the SI models outperform the
majority class baseline for both parts of speech.’

Also, with 800k sentences for nouns and only
50k sentences for verbs, both SD model types
reach accuracies equal to or greater than the super-
vised PB and NB (gold) models which have been
trained on the complete PropBank and NomBank
corpus including sense distinctions, respectively.

The classification accuracies for the SD models
reach their saturated maxima for verbs at around
91.27% (115/126) with 6 million training sen-
tences and 85.71% (54/63) with 2.85 million sen-
tences for nouns. For verbs, a x? test confirms
a significant (p < .01) improvement of our best
model over the PB gold model. On the sparse eval-
uation data for nouns, the improvement over the
NB gold model is, however, not significant.

Taken together, the improvements confirm that
memory-based learning over mass data of auto-
matically annotated (explicit) semantic roles can
actually outperform gold models constructed from
corpora with manual SRL annotations, even if the
tools for automated mass annotation were trained
on the very same corpora used to build the gold
models (PropBank, NomBank). Also, the exper-
iment demonstrated the feasibility of predicting
implicit roles solely using information about the
distribution of explicit roles. For the artificially

935.71% with only 1k training sentences (verbs), 52.38%
with 50k sentences (nouns).
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Figure 1: Prediction accuracies for verbal (left figure) and nominal predicates (right figure) from Experiment 1. Majority
class (MC) baselines in red, PropBank (PB) and NomBank (NB) gold models in green. The log-scaled x-axis only refers to the
SD and SI models and indicates first k sentences used for training.

simplified NI patterns in Experiment 1, already
small portions of automatically annotated SRL
data are sufficient to yield adequate results for both
types (DNIs and INIs). Sense disambiguation of
predicates generally increases the performance.'?

4.2 Experiment 2

The setup from the previous experiment is by far
too simplistic compared to a real linguistic sce-
nario. Usually, a predicate can have an arbitrary
number of overt arguments, and similarly the num-
ber of missing NIs varies. To tackle this problem,
we take the original train and test split (744 vs.
929 unrestricted frame instances of the form: any
combination of overt roles vs. any combination of
NI roles per predicate). Again, we do not draw a
distinction between DNIs and INIs, but treat them
generally as NIs. Table 3 shows the distribution of
the different NI role patterns in the test data.

4.2.1 Task Description

Given a predicate and its overtly expressed argu-
ments (ranging from any combination of A0 to A4
or none), predict the correct set of null instantia-
tions (which can also be empty or contain up to
five different implicit elements).

A simple error analysis of the misclassified noun in-
stances revealed that classification on the test data suffers
from sparsity issues: In the portions of the WaCkypedia EN
that we used for model building, three predicates were not
attested (twice murder.01 and once murderer.01). This has a
considerable impact on test results.

NI Pattern ~ Freq NI Pattern ~ Freq
- 706 A0 A2 7
Al 86 Al A2 6
A0 51 A3 5
A2 35 Al A4 3
A4 18 A0 Al A2 1
A0 Al 11

Table 3: The 929 NI role patterns from the test set sorted
by their number of occurrence. Most of the predicates are
saturated and do not seek an implicit argument. Only one
predicate instance has three implicit roles.

4.2.2 Predicting Null Instantiations

We distinguish two main types of classifiers: su-
pervised classifiers are directly obtained from NI
annotations in the SemEval training data, mildly
supervised classifiers instead use only information
about (automatically obtained) explicitly realized
semantic roles in a given corpus, hybrid classifiers
combine both sources of information. We esti-
mated all parameters optimizing F-measure on the
train section of the SemEval data set. Their perfor-
mance is evaluated on its test section. We aim to
demonstrate that mildly supervised classifiers are
capable of predicting implicit roles, and to study
whether NI annotations can be used to improve
their performance.

Baseline: Given the diversity of possible patterns,
it is hard to decide how a suitable and competitive
baseline should be defined: predicting the majority
class means not to predict anything. So, instead,
we predict implicit argument roles randomly, but
in a way that emulates their frequency distribu-
tion in the SemEval data (cf. Tab. 3), i.e., predict
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Classifier A B1 Bo Co Cq Cs Cs Cy Cy, , CA;TW_’B1 C4n,v132
precision | 0.149 | 0.848 0.853 | 0.368 0.378 0.398 0.400 0.400 0.423 0.561 0.582
Recall 0.075 | 0.155 0.206 | 0.861 0.851 0.837 0.837 0.837 0.782 0.615 0.814
Fiscore | 0.100 | 0.262 0.332 | 0.516 0.523 0.540 0.541 0.541 0.549 0.589 0.679

Table 4: Precision, recall and F; scores for all classifiers introduced in Experiment 2. Scores are compared row-wise to the
best-performing classifier Ca,, , 5,. A significant improvement over a cell entry with p < .05 is indicated in ifalics.

no NIs with a probability of 76.0% (706/929), A1l
with 38.6% (86/929), etc. The baseline scores are
averaged over 100 runs of this random ‘classifier’,
further referred to as A.

Supervised classifier: Supervised classifiers, as
understood here, are classifiers that use the in-
formation obtained from manual NI annotations.
We set up two predictors By and By tuned on the
SemEval training set: B; is obtained by count-
ing for each predicate its most frequent NI role
pattern. For instance, for seem.02—once anno-
tated with implicit A1, but twice without implicit
arguments—B; would predict an empty set of
NIs. By is similar to B but conditions NI role pat-
terns not only on the predicate, but also on its ex-
plicit arguments.!! For prediction, these classifiers
consult the most frequent NI pattern observed for
a predicate (Ba: plus its overt arguments). If a test
predicate is unknown (i.e., not present in the train-
ing data), we predict the majority class (empty set)
for NI

Mildly supervised classifier: Mildly supervised
classifiers do not take any NI annotation into ac-
count. Instead, they rely on explicitly realized
semantic roles observed in a corpus, but use ex-
plicit NI annotations only to estimate prediction
thresholds. We describe an extension of our pre-
diction method from Exp. 1 and present eight
parameter-based classification algorithms for our
best-performing SD model from Exp. 1, trained
on 6 million sentences.

We define prediction for classifier Cy as fol-
lows: Given a predicate PREDICATE, the role in-
ventory R = {A0..A4}, its (possibly empty) set
of overt roles R C ‘R and a fixed, predicate-
independent threshold t3. We start by optimiz-
ing threshold ¢y on all predicate instances with no
given overt argument. If there is no overt role and
an unrealized role n; € R for which it is true that

Specifically, we extract finer-grained patterns, e.g.,
evening.01[Al] — {}=2, {A2}=3, where a predicate is as-
sociated with its overt role(s) (left side of the arrow). The
corresponding implicit role patterns and their number of oc-
currence is shown to the right.
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P(n;|PREDICATE) > ty, then predict n; as an im-
plicit role. If there is an overt role o; € IR and an
unrealized role n; € R\ R for which it is true that
P(n;ilo; ,PREDICATE) > ty, then predict n; as an
implicit role. Note that Cy requires that this condi-
tion to hold for one o;, not all explicit arguments
of the predicate instance (logical disjunction).

We refine this classifier by introducing an
additional parameter that accounts for the
group of overtly realized frames with exactly
one overt argument, ie., C; predicts n; if
P(n;ilo;,PREDICATE) > t1; for all other configu-
rations the procedure is the same as in Cy, i.e., the
threshold % is applied.

Classifiers Co, C3 and C4 extend C; ac-
cordingly and introduce additional thresholds %o,
t3, t4 for the respective number of overt ar-
guments. For example, Cs predicts n; if
P(n;|oj,,0j,, 04, ,PREDICATE) > t3, for config-
urations with less arguments, it relies on Ca, etc.
Our general intuition here is to see whether the in-
creasing number of specialized parameters for in-
creasingly marginal groups of frames is justified
by the improvements we achieve in this way.

A final classifier Cy4, , extends C4 by distin-
guishing verbal and nominal predicates, yielding
a total of ten parameters tg,,..t4,,, to,--t0,,-
Hybrid classifier: To explore to what extent ex-
plicit NI annotations improve the classification re-
sults, we combine the best-performing and most
elaborate mildly supervised classifier Cy, , with
the supervised classifiers B; and By: For pred-
icates encountered in the training data, Cq, , 5
(resp., C4M’ 32) uses B (resp., B2) to predict the
most frequent pattern observed for the predicate;
for unknown predicates, apply the threshold-based
procedure of Cy,, .

4.2.3 Results & Evaluation

Table 4 contains the evaluation scores for the in-
dividual parameter-based classifiers. All classi-
fiers demonstrate significant improvements over
the random baseline. Also the mildly supervised



classifiers outperform the supervised algorithms in
terms of F; score and recall. However, detecting
NIs by the supervised classifiers is very accurate in
terms of high precision. Classifier By outperforms
B as a result of directly incorporating additional
information about the overt arguments.

Concerning our parameter-based classifiers, the
main observations are: First, the overall perfor-
mance (F; score) increases from Cy to C4 (yet
not significantly). Secondly, with more param-
eters, recall decreases while precision increases.
We can observe, however, that improvements from
Cs to Cy are marginal, at best, due to the spar-
sity of predicates with two or more overt argu-
ments. Similar problems related to data sparsity
have been reported in Chen et al. (2010). Results
for C3 and C, are identical, as no predicate with
more than three overt arguments occurred in the
test data. Encoding the distinction between ver-
bal and nominal predicates into the classifier again
slightly increases the performance.

A combination of the high-precision supervised
classifiers and the best performing mildly super-
vised algorithm yields a significant boost in per-
formance (Tab. 4, last two columns). The optimal
parameter values for all classifiers Cy,, , estimated
on the train section of the SemEval data set are
given in Table 5.

Noun thresholds  tc, ~— tcy, tc,, tos, tog,
Values 035 010 020 035 045
Verb thresholds  tc, ~— tc,, tc,, tos, tcy,
Values 005 025 025 030 0.20

Table 5: Optimal parameter values for the thresholds in
all Cy4, , classifiers estimated on the train section of the
SemEval data set.

In Table 6, we report the performance of our
best classifier Cy,, , 5, With detailed label scores.
Its overall NI recoghition rate of 0.81 (recall) out-
performs the state-of-the-art in implicit role identi-
fication: cf. L&P (0.66), SEMAFOR (0.63), S&F
(0.58), T&D (0.54), VENSES++ (0.08).12

Summarizing our results, Exp. 2 has shown
that combining supervised and mildly supervised
strategies to NI detection achieves the best re-
sults on the SemEval test set. Concerning the
mildly supervised, parameter-based classifiers, it

2Note that only an indirect comparison of these scores is
possible due to the aforementioned difference between data

formats and also because none of the other systems report
precision scores for their pattern-based NI detection systems.
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Roles A0 Al A2 A3 A4
#Labels 70 107 49 5 21
Precision 0.675 0.578 0432 0.400 0.791
Recall 0.800 0.897 0.653 0.400 0.905
F1 Score  0.732  0.703 0.520 0.400 0.844

Table 6: Evaluation of C4 for all 252 implicit roles.

n,v,B2

has proven beneficial to incorporate a maximum
of available information on overtly expressed ar-
guments in order to determine implicit roles. Our
best-performing classifier achieves NI recognition
rate beyond state-of-the-art.

Interestingly, memory-based learning offers the
capability to detect both DNIs (resolvable from
context), as well as INIs (not resolvable from con-
text), simply by learning patterns from local ex-
plicit role realizations. Subsequent experiments
should extend this approach to distinguish be-
tween the two types, as well, which we have
treated equivalently in our settings. First promis-
ing experiments in this direction are being con-
ducted in Chiarcos and Schenk (2015).

5 Summary and Outlook

We have presented a novel, statistical method to
infer evidence for implicit roles from their explicit
realizations in large amounts of automatically an-
notated SRL data. We conclude that—especially
when annotated training data is sparse—memory-
based approaches to implicit role detection seem
highly promising. With a much greater degree
of flexibility, they offer an alternative solution to
static rule-/template-based methods.

Despite its simplicity, we demonstrated the suit-
ability of our approach: It is competitive with
state-of-the-art systems in terms of the overall
recognition rate, however, still suffers in preci-
sion of the respective null instantiated arguments.
Thus, directions for future research should con-
sider integrating additional contextual features,
and would benefit from the complete role inven-
tory of our models (including non-core roles). In
this extended setting, we would like to experiment
with other machine learning approaches to assess
whether the accuracy of the detected NIs can be
increased. Also, we plan to apply the memory-
based strategy described in this paper to NI reso-
lution (on top their detection), and in this context,
examine more closely the characteristic (possibly
contrastive) distributions of DNIs and INIs.
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Abstract

There has been a recent explosion in ap-
plications for dialogue interaction rang-
ing from direction-giving and tourist infor-
mation to interactive story systems. Yet
the natural language generation (NLG)
component for many of these systems re-
mains largely handcrafted. This limita-
tion greatly restricts the range of applica-
tions; it also means that it is impossible to
take advantage of recent work in expres-
sive and statistical language generation
that can dynamically and automatically
produce a large number of variations of
given content. We propose that a solution
to this problem lies in new methods for
developing language generation resources.
We describe the ES-TRANSLATOR, a com-
putational language generator that has pre-
viously been applied only to fables, and
quantitatively evaluate the domain inde-
pendence of the EST by applying it to per-
sonal narratives from weblogs. We then
take advantage of recent work on language
generation to create a parameterized sen-
tence planner for story generation that pro-
vides aggregation operations, variations in
discourse and in point of view. Finally, we
present a user evaluation of different per-
sonal narrative retellings.

1 Introduction

Recently there has been an explosion in applica-
tions for natural language and dialogue interac-
tion ranging from direction-giving and tourist in-
formation to interactive story systems (Dethlefs et
al., 2014; Walker et al., 2011; Hu et al., 2015).
While this is due in part to progress in statisti-
cal natural language understanding, many appli-
cations require the system to actually respond in a
meaningful way. Yet the natural language gener-
ation (NLG) component of many interactive dia-
logue systems remains largely handcrafted. This
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Original

This is one of those times I wish I had a digital camera.
We keep a large stainless steel bowl of water outside on
the back deck for Benjamin to drink out of when he’s
playing outside. His bowl has become a very popular
site. Throughout the day, many birds drink out of it
and bathe in it. The birds literally line up on the railing
and wait their turn. Squirrels also come to drink out of
it. The craziest squirrel just came by- he was literally
jumping in fright at what I believe was his own reflec-
tion in the bowl. He was startled so much at one point
that he leap in the air and fell off the deck. But not quite,
I saw his one little paw hanging on! After a moment or
two his paw slipped and he tumbled down a few feet.
But oh, if you could have seen the look on his startled
face and how he jumped back each time he caught his
reflection in the bowl!

Table 1: The Startled Squirrel Weblog Story

limitation greatly restricts the range of applica-
tions; it also means that it is impossible to take
advantage of recent work in expressive and sta-
tistical language generation that can dynamically
and automatically produce a large number of vari-
ations of given content (Rieser and Lemon, 2011;
Paiva and Evans, 2004; Langkilde, 1998; Rowe
et al., 2008; Mairesse and Walker, 2011). Such
variations are important for expressive purposes,
we well as for user adaptation and personalization
(Zukerman and Litman, 2001; Wang et al., 2005;
McQuiggan et al., 2008). We propose that a solu-
tion to this problem lies in new methods for devel-
oping language generation resources.

First we describe the ES-TRANSLATOR (or
EST), a computational language generator that has
previously been applied only to fables, e.g. the
fable in Table 3 (Rishes et al., 2013). We quanti-
tatively evaluate the domain independence of the
EST by applying it to social media narratives, such
as the Startled Squirrel story in Table 1. We then
present a parameterized general-purpose frame-
work built on the EST pipeline, EST 2.0, that can
generate many different tellings of the same story,
by utilizing sentence planning and point of view
parameters. Automatically generated story varia-
tions are shown in Table 2 and Table 4.

We hypothesize many potential uses for our ap-

Proceedings of the SIGDIAL 2015 Conference, pages 188—197,
Prague, Czech Republic, 2-4 September 2015. (©2015 Association for Computational Linguistics



EST 2.0

Original

Benjamin wanted to drink the bowl’s water, so I placed

the bowl on the deck. The bowl was popular. The birds
drank the bowl’s water. The birds bathed themselves in
the bowl. The birds organized themselves on the deck’s
railing because the birds wanted to wait. The squirrels
drank the bowl’s water. The squirrel approached the bowl.
The squirrel was startled because the squirrel saw the
squirrel’s reflection. Because it was startled, the squir-
rel leapt. The squirrel fell over the deck’s railing because
the squirrel leaped because the squirrel was startled. The
squirrel held the deck’s railing with the squirrel’s paw.
The squirrel’s paw slipped off the deck’s railing. The
squirrel fell.

A Crow was sitting on a branch of a tree with a piece of
cheese in her beak when a Fox observed her and set his
wits to work to discover some way of getting the cheese.
Coming and standing under the tree he looked up and
said, “What a noble bird I see above me! Her beauty is
without equal, the hue of her plumage exquisite. If only
her voice is as sweet as her looks are fair, she ought
without doubt to be Queen of the Birds.” The Crow
was hugely flattered by this, and just to show the Fox
that she could sing she gave a loud caw. Down came
the cheese,of course, and the Fox, snatching it up, said,
“You have a voice, madam, I see: what you want is
wits.”

Table 2: Retelling of the Startled Squirrel

proach to repurposing and retelling existing sto-
ries. First, such stories are created daily in the
thousands and cover any topic imaginable. They
are natural and personal, and may be funny, sad,
heart-warming or serious. There are many poten-
tial applications: virtual companions, educational
storytelling, or to share troubles in therapeutic set-
tings (Bickmore, 2003; Pennebaker and Seagal,
1999; Gratch et al., 2012).

Previous research on NLG of linguistic style
shows that dialogue systems are more effective
if they can generate stylistic linguistic variations
based on the user’s emotional state, personality,
style, confidence, or other factors (André et al.,
2000; Piwek, 2003; McQuiggan et al., 2008;
Porayska-Pomsta and Mellish, 2004; Forbes-Riley
and Litman, 2011; Wang et al., 2005; Dethlefs
et al., 2014). Other work focuses on variation in
journalistic writing or instruction manuals, where
stylistic variations as well as journalistic slant or
connotations have been explored (Hovy, 1988;
Green and DiMarco, 1993; Paris and Scott, 1994;
Power et al., 2003; Inkpen and Hirst, 2004). Pre-
vious iterations of the EST simply presented a se-
quence of events (Rishes et al., 2013). This work
implements parameterized variation of linguistic
style in the context of weblogs in order to intro-
duce discourse structure into our generated stories.

Our approach differs from previous work on
NLG for narrative because we emphasize (1)
domain-independent methods; and (2) generating
a large range of variation, both narratological and
stylistic. (Lukin and Walker, 2015)’s work on the
EST is the first to generate dialogue within sto-
ries, to have the ability to vary direct vs. indirect
speech, and to generate dialogue utterances using
different stylistic models for character voices. Pre-
vious work can generate narratological variations,
but is domain dependent (Callaway and Lester,
2002; Montfort, 2007).

Sec. 2 describes our corpus of stories and the ar-
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Table 3: “The Fox and the Crow”

chitecture of our story generation framework, EST
2.0.! Sec. 3 describes experiments testing the cov-
erage and correctness of EST 2.0. Sec. 4 describes
experiments testing user perceptions of different
linguistic variations in storytelling. Our contribu-
tions are:

e We produce SIG representations of 100 per-
sonal narratives from a weblog corpus, using
the story annotation tool Scheherezade (EI-
son and McKeown, 2009; Elson, 2012);

e We compare EST 2.0 to EST and show how
we have not only made improvements to
the translation algorithm, but can extend and
compare to personal narratives.

e We implement a parameterized variation of
linguistic style in order to introduce discourse
structure into our generated narratives.

e We carry out experiments to gather user
perceptions of different sentence planning
choices that can be made with complex sen-
tences in stories.

We sum up and discuss future work in Sec. 5.

2 Story Generation Framework

N S
Content Sentence —_
Planner Planner

Introduces Creates

-

Transforms Produces

characters SIG into linguistic text from
and events DSyntS representation linguistic
i for those events structures
Story Intention EST P 20
Graph (Rishes el W ﬁg’sonag(le 2 011)
| @son 2012 | al. 2019 alker et al.

Figure 1: NLG pipeline method of the ES Trans-
lator.

Fig. 1 illustrates our overall architecture, which
uses NLG modules to separate the process of plan-
ning What to say (content planning and selection,

'The corpus is available from http:nlds.soe.
ucsc.edu\story—database.



fabula) from decisions about How to say it (sen-
tence planning and realization, discourse). We
build on three existing tools from previous work:
the SCHEHEREZADE story annotation tool, the
PERSONAGE generator, and the ES-TRANSLATOR
(EST) (Elson, 2012; Mairesse and Walker, 2011;
Rishes et al., 2013). The EST uses the STORY
INTENTION GRAPH (SIG) representation produced
by SCHEHEREZADE and its theoretical grounding
as a basis for the content for generation. The
EST bridges the narrative representation of the SIG
to the representation required by PERSONAGE by
generating the text plans and the deep syntactic
structures that PERSONAGE requires. Thus any
story or content represented as a SIG can be retold
using PERSONAGE. See Fig. 1.

There are several advantages to using the SIG as
the representation for a content pool:

e Elson’s DRAMABANK provides stories en-
coded as SIGs including 36 Aesop’s Fables,
such as The Fox and the Crow in Table 3.

The SIG framework includes an annotation
tool called SCHEHERAZADE that supports
representing any narrative as a SIG.

SCHEHEREZADE comes with a realizer that
regenerates stories from the SIG: this realizer
provides alternative story realizations that we
can compare to the EST 2.0 output.

We currently have 100 personal narratives an-
notated with the SIG representation on topics such
as travel, storms, gardening, funerals, going to the
doctor, camping, and snorkeling, selected from a
corpus of a million stories (Gordon and Swanson,
2009). We use the stories in Tables 1 and 3 in this
paper to explain our framework.

Fig. 2 shows the SI1G for The Startled Squirrel
story in Table 1. To create a SIG, SCHEHERAZADE
annotators: (1) identify key entities; (2) model
events and statives as propositions and arrange
them in a timeline; and (3) model the annotator’s
understanding of the overarching goals, plans and
beliefs of the story’s agents. SCHEHERAZADE al-
lows users to annotate a story along several di-
mensions, starting with the surface form of the
story (first column in Table 2) and then pro-
ceeding to deeper representations. The first di-
mension (second column in Table 2) is called
the “timeline layer”, in which the story is en-
coded as predicate-argument structures (propo-
sitions) that are temporally ordered on a time-
line. SCHEHERAZADE adapts information about
predicate-argument structures from the VerbNet
lexical database (Kipper et al., 2006) and uses
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EST 2.0

The crow sat on the tree’s branch. The cheese was
in the crow’s pecker. The crow thought “I will eat the
cheese on the branch of the tree because the clarity of
the sky is so-somewhat beautiful.” The fox observed
the crow. The fox thought “I will obtain the cheese
from the crow’s nib.” The fox came. The fox stood
under the tree. The fox looked toward the crow. The
fox avered “I see you!” The fox alleged ‘your’s beauty
is quite incomparable, okay?” The fox alleged ‘your’s
feather’s chromaticity is damn exquisite.” The fox said
“if your’s voice’s pleasantness is equal to your’s vi-
sual aspect’s loveliness you undoubtedly are every ev-
ery birds’s queen!” The crow thought “the fox was so-
somewhat flattering.” The crow thought “I will demon-
strate my voice.” The crow loudly cawed. The cheese
fell. The fox snatched the cheese. The fox said “you are
somewhat able to sing, alright?” The fox alleged “you
need the wits!”

Table 4: Retelling of “The Fox and the Crow”

AFFECTUAL

DOG:
HEALTH
provides
for

DISCOURSE TIMELINE INTERPRETIVE

We ki i
o neep a 1a_,| place(bowl, deck) attempt to
cause

GOAL: NARRATOR

provide(water, dog)

ia_,| approach(
squirrel, bowl) attempt to
cause

GOAL: SQUIRREL

drink(water)

attempt to

his paw slipped | i
and he
down a few feet

stainless steal
bowl of water
outside on the
back deck for
Benjamin to
drink out of
when he’s
playing outside.

The craziest
squirrel just
came by

. provides
He was literally for

Jjumping in

fright at what | SQUIRREL:
believe was his HEALTH

own i

in the bowl.

Figure 2: Part of the STORY INTENTION GRAPH
(SIG) for The Startled Squirrel.

WordNet (Fellbaum, 1998) as its noun and adjec-
tives taxonomy. The arcs of the story graph are
labeled with discourse relations, such as attempts
to cause, or temporal order (see Chapter 4 of (El-
son, 2012).)

The EST applies a model of syntax to the SIG
which translates from the semantic representation
of the SIG to the syntactic formalism of Deep Syn-
tactic Structures (DSYNTS) required by the PER-
SONAGE generator (Lavoie and Rambow, 1997;
Melcuk, 1988; Mairesse and Walker, 2011). Fig. 1
provides a high level view of the architecture of
EST. The full translation methodology is described
in (Rishes et al., 2013).

DSYNTS are a flexible dependency tree repre-
sentation of an utterance that gives us access to
the underlying linguistic structure of a sentence
that goes beyond surface string manipulation. The
nodes of the DSYNTS syntactic trees are labeled
with lexemes and the arcs of the tree are labeled
with syntactic relations. The DSYNTS formal-
ism distinguishes between arguments and mod-
ifiers and between different types of arguments



Variation | Blog Output Fable Output
Original | We keep a large stainless steel bowl of water out- | The Crow was hugely flattered by this, and just
side on the back deck for Benjamin to drink out | to show the Fox that she could sing she gave a
of when he’s playing outside. loud caw.
Sch | A narrator placed a steely and large bowl on a | The crow cawed loudly in order for she to show
back deck in order for a dog to drink the water | him that she was able to sing.
of the bowl.
EST 1.0 | I placed the bowl on the deck in order for Ben- | The crow cawed loudly in order to show the fox
jamin to drink the bowl’s water. the crow was able to sing.
becauseNS | I placed the bowl on the deck because Benjamin | The crow cawed loudly because she wanted to
wanted to drink the bowl’s water. show the fox the crow was able to sing.
becauseSN | Because Benjamin wanted to drink the bowl’s | Because the crow wanted to show the fox the
water, I placed the bowl on the deck. crow was able to sing, she cawed loudly.
NS | Iplaced the bowl on the deck. Benjamin wanted | The crow cawed loudly. She wanted to show the
to drink the bowl’s water. fox the crow was able to sing.
N | Iplaced the bowl on the deck. The crow cawed loudly.
soSN | Benjamin wanted to drink the bowl’s water, soI | The crow wanted to show the fox the crow was
placed the bowl on the deck. able to sing, so she cawed loudly.

Table 5: Sentence Planning Variations added to EST 2.0 for Contingency relations, exemplified by The
Startled Squirrel and The Fox and the Crow. Variation N is intended to test whether the content of the
satellite can be recovered from context. Sch is the realization produced by Scheherezade.

(subject, direct and indirect object etc). Lexical-
ized nodes also contain a range of grammatical
features used in generation. RealPro handles mor-
phology, agreement and function words to produce
an output string.

This paper utilizes the ability of the EST 2.0
and the flexibility of DSYNTS to produce direct
speech that varies the character voice as illustrated
in Table 4 (Lukin and Walker, 2015). By simply
modifying the person parameter in the DSYNTS,
we can change the sentence to be realized in the
first person. For example, to produce the varia-
tions in Table 4, we use both first person, and di-
rect speech, as well as linguistic styles from PER-
SONAGE: a neutral voice for the narrator, a shy
voice for the crow, and a laid-back voice for the
fox (Lukin and Walker, 2015). We fully utilize
this variation when we retell personal narratives in
EST 2.0.

This paper and introduces support for new dis-
course relations, such as aggregating clauses re-
lated by the contingency discourse relation (one
of many listed in the Penn Discourse Tree Bank
(PDTB) (Prasad et al., 2008)). In SIG encoding,
contingency clauses are always expressed with the
“in order to” relation (Table 6, 1). To support lin-
guistic variation, we introduce “de-aggregation”
onto these aggregating clauses in order to have
the flexibility to rephrase, restructure, or ignore
clauses as indicated by our parameterized sentence
planner. We identify candidate story points in the
SIG that contain a contingency relation (annotated
in the Timeline layer) and deliberately break apart
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this hard relationship to create nucleus and satel-
lite DSYNTS that represents the entire sentence
(Table 6, 2) (Mann and Thompson, 1988). We
create a text plan (Table 6, 3) to allow the sen-
tence planner to reconstruct this content in various
ways. Table 5 shows sentence planning variations
for the contingency relation for both fables and
personal narratives (soSN, becauseNS, becaus-
eSN, NS, N), the output of EST 1.0, the original
sentence (original), and the SCHEHERAZADE re-
alization (Sch) which provides an additional base-
line. The Sch variant is the original “in order to”
contingency relationship produced by the SIG an-
notation. The becauseNS operation presents the
nucleus first, followed by a because, and then the
satellite. We can also treat the nucleus and satel-
lite as two different sentences (NS) or completely
leave off the satellite (N). We believe the N variant
is useful if the satellite can be easily inferred from
the prior context.

The richness of the discourse information
present in the SIG and our ability to de-aggregate
and aggregate will enable us to implement other
discourse relations in future work.

3 Personal Narrative Evaluation

After annotating our 100 stories with the
SCHEHERAZADE annotation tool, we ran them
through the EST, and examined the output. We
discovered several bugs arising from variation
in the blogs that are not present in the Fables,
and fixed them. In previous work on the EST,
the machine translation metrics Levenshtein’s dis-
tance and BLEU score were used to compare



Table 6: 1: original unbroken DSYNTS; 2) deag-
gregated DSYNTS; 3) contingency text plan

1: ORIGINAL

<dsynts id="5_6">
<dsyntnode class="verb" lexeme="organize"
mode="" mood="ind" rel="II" tense="past">
<dsyntnode article="def" class="common_noun"
lexeme="bird" number="pl" person="" rel="I"/>
<dsyntnode article="def" class="common_noun"
lexeme="bird" number="pl" person=""
<dsyntnode class="preposition" lexeme="on"
rel="ATTR">
<dsyntnode article="def" class="common_noun"

<dsyntnode article="no-art" class="
lexeme="deck" number="sg" person=""
</dsyntnode>
</dsyntnode>
<dsyntnode class="preposition" lexeme="in_order"
rel="ATTR">
<dsyntnode class="verb" extrapo="+"
mode="inf-to" mood="inf-to"
rel="II" tense="inf-to">
<dsyntnode article="def" class="common_noun"

rel="1"/>

</dsyntnode>
</dsyntnode>
</dsyntnode>
</dsynts>

rel="I1"/>

lexeme="railing" number="sg" person="" rel="II">
common_noun"

lexeme="wait"

lexeme="bird" number="pl" person="" rel="I"/>

2: DEAGGREGATION

<dsynts id="5">
<dsyntnode class="verb" lexeme="organize"

mood="ind" rel="II" tense="past">

<dsyntnode article="def" class="common_noun"
lexeme="bird" number="pl" person="" rel="I"/>

<dsyntnode article="def" class="common_noun"
lexeme="bird" number="pl" person=""

<dsyntnode class="preposition" lexeme="on"

rel="ATTR">

lexeme="railing" number="sg"
person="" rel="II">

—nn

lexeme="deck"
</dsyntnode>
</dsyntnode>
</dsyntnode>
</dsynts>

number="sg" person

<dsynts id="6">
<dsyntnode class="verb" lexeme="want"
mood="ind" rel="II" tense="past">
<dsyntnode article="def" class="common_noun"
lexeme="bird" number="pl" person="" r
<dsyntnode class="verb" extrapo="+"
lexeme="wait" mode="inf-to" mood="inf-to"
rel="II" tense="inf-to"/>
</dsyntnode>
</dsynts>

rel="I1"/>

<dsyntnode article="def" class="common_noun" 1

<dsyntnode article="no-art" class="common_noun"
rel="1I"/>

w

: AGGREGATION TEXT PLAN

<speechplan voice="Narrator">
<rstplan>
<relation name="contingency_cause">
<proposition id="1" ns="nucleus"/>
<proposition id="2" ns="satellite"/>
</relation>
</rstplan>
<proposition dialogue_act="5" id="1"/>
<proposition dialogue_act="6" id="2"/>
</speechplan>

the original Aesop’s Fables to their generated
EST and SCHEHERAZADE reproductions (denoted
EST and Sch) (Rishes et al., 2013). These met-
rics are not ideal for evaluating story quality, es-
pecially when generating stylistic variations of the
original story. However they allow us to automat-
ically test some aspects of system coverage, so we
repeat this evaluation on the blog dataset.

Table 7 presents BLEU and Levenshtein scores
for the original 36 Fables and all 100 blog stories,
compared to both Sch and EST 1.0. Levenshtein
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distance computes the minimum edit distance be-
tween two strings, so we compare the entire orig-
inal story to a generated version. A lower score
indicates a closer comparison. BLEU score com-
putes the overlap between two strings taking word
order into consideration: a higher BLEU score in-
dicates a closer match between candidate strings.
Thus Table 7 provides quantitative evidence that
the style of the original blogs is very different from
Aesop’s Fables. Neither the EST output nor the
Sch output comes close to representing the origi-
nal textual style (Blogs Original-Sch and Original-
EST).

Table 7: Mean for Levenshtein and BLEU on the
Fables development set vs. the Blogs

] \ | Lev | BLEU |
FABLES Sch-EST | 72 32
Original-Sch | 116 .06
Original-EST | 108 .03
BLOGS Sch-EST | 110 .66
Original-Sch | 736 21
Original-EST | 33 21

However we find that EST compares favorably
to Sch on the blogs with a relatively low Lev-
enshtein score, and higher BLEU score (Blogs
Sch-EST) than the original Fables evaluation (Fa-
bles Sch-EST). This indicates that even though the
blogs have a diversity of language and style, our
translation comes close to the Sch baseline.

4 Experimental Design and Results

We conduct two experiments on Mechanical
Turk to test variations generated with the de-
aggregation and point of view parameters. We
compare the variations amongst themselves and to
the original sentence in a story. We are also inter-
ested in identifying differences among individual
stories.

In the first experiment, we show an excerpt from
the original story telling and indicate to the partic-
ipants that “any of the following sentences could
come next in the story”. We then list all variations
of the following sentence with the “in order to”
contingency relationship (examples from the Star-
tled Squirrel 1abeled EST 2.0 in Table 5).

Our aim is to elicit rating of the variations in
terms of correctness and goodness of fit within the
story context (1 is best, 5 is worst), and to rank
the sentences by personal preference (in experi-
ment 1 we showed 7 variations where 1 is best,
7 is worst; in experiment 2 we showed 3 varia-
tions where 1 is best, 3 is worst). We also show



the original blog sentence and the EST 1.0 output
before de-aggregation and sentence planning. We
emphasize that the readers should read each varia-
tion in the context of the entire story and encourage
them to reread the story with each new sentence to
understand this context.

In the second experiment, we compare the orig-
inal sentence with our best realization, and the
realization produced by SCHEHEREZADE (Sch).
We expect that SCHEHEREZADE will score more
poorly in this instance because it cannot change
point of view from third person to first person,
even though its output is more fluent than EST 2.0
for many cases.

4.1 Results Experiment 1

We had 7 participants analyze each of the 16 story
segments. All participants were native English
speakers. Table 8 shows the means and standard
deviations for correctness and preference rankings
in the first experiment. We find that averaged
across all stories, there is a clear order for correct-
ness and preference: original, soSN, becauseNS,
becauseSN, NS, EST, N.

We performed an ANOVA on preference and
found that story has no significant effect on the re-
sults (F(1, 15) = 0.18, p = 1.00), indicating that all
stories are well-formed and there are no outliers in
the story selection. On the other hand, realization
does have a significant effect on preference (F(1,
6) = 33.74, p = 0.00). This supports our hypothe-
sis that the realizations are distinct from each other
and there are preferences amongst them.

Fig. 3 shows the average correctness and prefer-
ence for all stories. Paired t-tests show that there is
a significant difference in reported correctness be-
tween orig and soSN (p < 0.05), but no difference
between soSN and becauseNS (p = 0.133), or be-
causeSN (p = 0.08). There is a difference between
soSN and NS (p < 0.005), as well as between
the two different because operations and NS (p <
0.05). There are no other significant differences.

The are larger differences on the preference
metric. Paired t-tests show that there is a sig-
nificant difference between orig and soSN (p <
0.0001) and soSN and becauseNS (p < 0.05).
There is no difference in preference between be-
causeNS and becauseSN (p = 0.31). However
there is a significant difference between soSN and
becauseSN (p < 0.005) and becauseNS and NS
(p < 0.0001). Finally, there is significant differ-
ence between becauseSN and NS (p < 0.005) and
NS and EST (p < 0.005). There is no difference
between EST and N (p = 0.375), but there is a dif-
ference between NS and N (p < 0.05).
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Experiment 1 Averaged all Stories

: I
NS est N

N

-

original soSN becauseNS becauseSN

W Correctness preference

Figure 3: Histogram of Correctness and Pref-
erence for Experiment 1 averaged across story
(lower is better)

These results indicate that the original sentence,
as expected, is the most correct and preferred.
Qualitative feedback on the original sentence in-
cluded: “The one I ranked first makes a more
interesting story. Most of the others would be
sufficient, but boring.”; “The sentence I ranked
first makes more sense in the context of the story.
The others tell you similar info, but do not really
fit.”. Some participants ranked soSN as their pre-
ferred variant (although the difference was never
statistically significant): “The one I rated the best
sounded really natural.”

Although we observe an overall ranking trend,
there are some differences by story for NS and N.
Most of the time, these two are ranked the lowest.
Some subjects observe: “#1 [orig] & #2 [soSN]
had a lot of detail. #7 [N] did not explain what the
person wanted to see” (a044 in Table 10); “The
sentence I rated the worst [N] didn’t explain why
the person wanted to cook them, but it would have
been an okay sentence.” (a060 in Table 10); “I
ranked the lower number [N] because they either
did not contain the full thought of the subject or
they added details that are to be assumed.” (a044
in Table 10); “They were all fairly good sentences.
The one I ranked worst [N] just left out why they
decided to use facebook.” (a042 in Table 10).

However, there is some support for NS and N.
We also find that there is a significant interaction
between story and realization (F(2, 89) = 1.70, p
= 0.00), thus subjects’ preference of the realiza-
tion are based on the story they are reading. One
subject commented: “#1 [orig] was the most de-
scriptive about what family the person is looking
for. I did like the way #3 [NS] was two sentences.
It seemed to put a different emphasis on finding
family” (a042 in Table 10). Another thought that
the explanatory utterance altered the tone of the
story: “The parent and the children in the story



] | Orig | soSN | becauseNS | becauseSN [ NS | EST | N |

ALL C| 138 23 24 2.5 27| 27 | 3.0
P| 24 3.1 3.7 3.8 42| 49 | 49

Protest C| 49 2.7 24 39 21 27 | 27
P| 1.0 4.1 43 4.4 44| 44 |28

Story042 C | 42 4.2 4.3 3.8 371 42 | 27
P| 33 3.7 3.6 4.6 31 5 4

Table 8: Exp 1: Means for correctness C and preference P for original sentences and generated variations
for ALL stories vs. the Protest Story and a042 (stimuli in Table 10). Lower is better.

were having a good time. It doesn’t make sense
that parent would want to do something to annoy
them [the satellite utterance]” (a060 in Table 10).
This person preferred leaving off the satellite and
ranked N as the highest preference.

We examined these interactions between story
and preference ranking for NS and N. This may
be depend on either context or on the SIG anno-
tations. For example, in one story (protest in Ta-
ble 10) our best realization soSN, produces: “The
protesters wanted to block the street, so the per-
son said for the protesters to protest in the street
in order to block it.” and N produces “The per-
son said for the protesters to protest in the street
in order to block it.”. One subject, who ranked N
second only to original, observed: “Since the po-
lice were coming there with tear gas, it appears the
protesters had already shut things down. There is
no need to tell them to block the street.”” Another
subject who ranked N as second preference simi-
larly observed “Frankly using the word protesters
and protest too many times made it seem like a
word puzzle or riddle. The meaning was lost in
too many variations of the word ‘protest.” If the
wording was awkward, I tried to assign it toward
the ‘worst’ end of the scale. If it seemed to flow
more naturally, as a story would, I tried to assign
it toward the ‘best’ end.”

Experiment 2 Averaged all Stories

Sch

Figure 4: Histogram of Correctness and Pref-
erence for Experiment 1 averaged across story
(lower is better)

35
3

25

2
15
1 I
05
org soEM

W correctness preference
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Although the means in this story seem very dis-
tinct (Table 8), there is only a significant difference
between orig and N (p < 0.005) and N and EST (p
< 0.05). Table 8 also includes the means for story
a042 (Table 10) where NS is ranked highest for
preference. Despite this, the only significant dif-
ference between NS is with EST 1.0 (p < 0.05).

4.2 Results Experiment 2

Experiment 2 compares our best realization to the
SCHEHERAZADE realizer, exploiting the ability of
EST 2.0 to change the point of view. Seven partic-
ipants analyzed each of the 16 story segments. All
participants were native English speakers.

] | Original | soSN [ Sch |
1.6 2.5 3.5
14 1.9 2.7

Correctness
Preference

Table 9: Exp 2: Means for correctness and pref-
erence for original sentence, our best realization
soSN, and Sch. Lower is better.

Table 9 shows the means for correctness and
preference rankings. Figure 4 shows a histogram
of average correctness and preference by realiza-
tion for all stories. There is a clear order for cor-
rectness and preference: original, soSN, Sch, with
significant differences between all pairs of realiza-
tions (p < 0.0001).

However, in six of the 19 stories, there is no sig-
nificant difference between Sch and soSN. Three
of them do not contain “I” or “the narrator” in
the realization sentence. Many of the subjects
comment that the realization with “the narrator”
does not follow the style of the story: “The sec-
ond [Sch] uses that awful ‘narrator.””” (a001 in Ta-
ble 10); “Forget the narrator sentence. From here
on out it’s always the worst!” (a001 in Table 10).
We hypothesize that in the three sentences with-
out “the narrator”, Sch can be properly evaluated
without the “narrator” bias. In fact, in these situ-
ations, Sch was rated higher than soSN: “I chose



the sentences in order of best explanatory detail”
(Startled Squirrel in Table 5).

Compare the soSN realization in the protest
story in Table 10 “The leaders wanted to talk, so
they met near the workplace.” with Sch “The
group of leaders was meeting in order to talk about
running a group of countries and near a work-
place.” Sch has so much more detail than soSN.
While the EST has massively improved and over-
all is preferred to Sch, some semantic components
are lost in the translation process.

5 Discussion and Conclusions

To our knowledge, this is the first time that
sentence planning variations for story telling
have been implemented in a framework where
the discourse (telling) is completely independent
of the fabula (content) of the story (Lonneker,
2005). We also show for the first time that the
SCHEHEREZADE annotation tool can be applied
to informal narratives such as personal narratives
from weblogs, and the resulting SIG representa-
tions work with existing tools for translating from
the SIG to a retelling of a story.

We present a parameterized sentence planner
for story generation, that provides aggregation op-
erations and variations in point of view. The tech-
nical aspects of de-aggregation and aggregation
builds on previous work in NLG and our earlier
work on SPaRKy (Cahill et al., 2001; Scott and de
Souza, 1990; Paris and Scott, 1994; Nakatsu and
White, 2010; Howcroft et al., 2013; Walker et al.,
2007, Stent and Molina, 2009). However we are
not aware of previous NLG applications needing
to first de-aggregate the content, before applying
aggregation operations.

Our experiments show that, as expected, readers
almost always prefer the original sentence over au-
tomatically produced variations, but that the soSN
variant is preferred. We examine two specific sto-
ries where preferences vary from the overall trend:
these stories suggest future possible experiments
where we might vary more aspects of the story
context and audience. We also compare our best
variation to what SCHEHERAZADE produces. De-
spite the fact that the SCHEHERAZADE realizer
was targeted at the SIG, our best variant is most
often ranked as a preferred choice.

In future work, we aim to explore interactions
between a number of our novel narratological
parameters. We expect to do this both with a
rule-based approach, as well as by building on
recent work on statistical models for expressive
generation (Rieser and Lemon, 2011; Paiva and
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Evans, 2004; Langkilde, 1998; Rowe et al., 2008;
Mairesse and Walker, 2011). This should allow us
to train a narrative generator to achieve particular
narrative effects, such as engagement or empathy
with particular characters. We will also expand the
discourse relations that EST 2.0 can handle.

Acknowledgements. This research was sup-
ported by Nuance Foundation Grant SC-14-74,
NSF Grants IIS-HCC-1115742 and IIS-1002921.

Appendix. Table 10 provides additional examples
of the output of the EST 2.0 system, illustrating
particular user preferences and system strengths
and weaknesses.
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a001 | Bug out for blood the other night, I left the patio door open just long enough to let in a dozen bugs
of various size. I didn’t notice them until the middle of the night, when I saw them clinging to the
ceiling. I grabbed the closest object within reach, and with a rolled-up comic book I smote mine
enemies and smeared their greasy bug guts. All except for the biggest one. I only clipped that one,
taking off one of its limbs. But it got away before I could finish the job. So now there’s a five-limbed
insect lurking in the apartment, no doubt looking for some vengeance against me.
orig | I’'m looking around corners, checking the toilet before sitting down
Sch | The narrator began to check the toilet seat of the narrator for the leader of the group of bugs in order
for she to sit down on the toilet seat of the narrator
EST | I wanted to sit down on my toilet seat, so I checked my toilet seat for the bugs’s leader.
a042-1 | This last week I was exploring the FamilySearch Learning Center area to see what was new. I ran-
domly choose a video to check it out. In the middle of the video he was talking about using Facebook
as a research tool. I listened as he talked about finding a family group on Facebook, on which he
found pictures and information.
orig | I considered this and decided it was time to set up our Family Facebook to find those branches that
have not yet been found.
Sch | The narrator decided to use the utility in order to find the family of the narrator.
soSN | I wanted to find my family, so I decided to use Facebook.
becauseNS | I decided to use Facebook because I wanted to find my family.
becauseSN | Because I wanted to find my family, I decided to use Facebook.
NS | Idecided to use Facebook. I wanted to find my family.
EST | Idecided to use Facebook in order for me to find my family.
N | Idecided to use Facebook.
a044 | I'm writing this from the Bogota airport, waiting for my flight back to Santiago. When I last posted,
I was about to head off to northern Colombia to Cartagena. So, how was it?
orig | Isplit the 4 days between Cartagena and Santa Marta
Sch
soSN | I wanted to see Cartagena, so I traveled to Colombia.
becauseNS | Itraveled to Colombia because I wanted to see Cartagena.
becauseSN | Because I wanted to see Cartagena, I traveled to Colombia.
NS | Itraveled to Colombia. I wanted to see Cartagena.
EST | Itraveled to Colombia in order for me to see Cartagena and for me to see Santa Marta.
N | Itraveled to Colombia.
a060-1 | I hope everyone survived the snow! With the early school dismissal on Friday, it felt like a 3 day
weekend. My kids are just not creatures of Winter. I did manage to take them and some of the
neighborhood kids out sledding on Friday and Saturday. That was a blast. The kids had more fun,
and I had a fire in the shelter with a bag of marshmallows and just enjoying myself. Followed up, of
course, with hot chocolate at home. I even managed to cook cornbread from scratch, in an old (my
grandmothers) cast-iron skillet, with chicken and gravy for dinner.
orig | If I had any collard greens, I think I would have cooked them too (just to annoy the kids).
Sch | The narrator wanted to cook a group of collards in order to annoy the group of children of the narrator.
soSN | I wanted to annoy my children, so I wanted to cook the collards.
becauseNS | I wanted to cook the collards because I wanted to annoy my children.
becauseSN | Because I wanted to annoy my children, I wanted to cook the collards.
NS | I wanted to cook the collards. I wanted to annoy my children.
EST | I wanted to cook the collards in order for me to annoy my child.
N | I wanted to cook the collards.
protest | The protesters apparently started their protest at the Capitol Building then moved to downtown. We
happened to be standing at the corner of 16th and Stout when somebody said that the Police were
getting ready to tear-gas a group of demonstrators. We looked around the corner and there were
Police everywhere.
orig | They had blockaded the whole street, and shut down the light rail.
Sch | A person said that the group of protesters had protested in a street and in order to block the street.
soSN | The pro