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Preface

Hibernation is certainly not one of the activities of computational semanticists. In the midst of
winter they defy sub-zero temperatures, vicious snowstorms, and ice-covered roads to attend the
mother of all computational semantics conferences: IWCS. This has been an almost biennial
tradition since December 1994, when the first IWCS was initiated by Harry Bunt and held in
Tilburg, Netherlands. The workshop turned out to be a successful event, and seven more IWCS
meetings were organised — all by Harry Bunt, and all in Tilburg — between 1997 and 2009.

The ninth episode of IWCS, however, is different from various points of view. For the first time
in its history, it is not taking place in Tilburg, and not organised by Harry Bunt. IWCS released
itself, crossed the channel and landed in Oxford. Yet many of its key characteristics remain
as they were. For instance the IWCS logo, inspired by the park “Oude Warande” near the
traditional IWCS site at Tilburg University, continues to decorate the cover of the proceedings.

The call for papers for IWCS-2011 triggered a record number of 110 submissions, of which 75
were submitted as regular papers, and 35 as short papers. The programme committee, based on
a total of 328 reviews, selected 50 of these — 30 long and 20 short (three regular papers were
accepted as short papers). This gives an overall acceptance rate of 50/110 = 45% (30/72 = 42%
for regular papers, and 20/38 = 53% for short papers). Two papers (one regular, one short) were
withdrawn by their authors after the notification of acceptance.

It remains to say that we hope to offer you an exciting selection of state-of-the-art work in
computational semantics at IWCS-2011. We wish you a pleasant stay in Oxford!

Johan Bos, University of Groningen

Stephen Pulman, Oxford University

http://www.sigsem.org
IWCS is endorsed by SIGSEM, the ACL special interest group on computational semantics.
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The Semantics of Dialogue Acts

Harry Bunt
TiCC, Tilburg Center for Cognition and Communication
Tilburg University, The Netherlands
harry.bunt@uvt.nl

Abstract

This paper presents an update semantic for dialogue acts, defined in terms of combinations of
very simple ‘elementary update functions’. This approach allows fine-grained distinctions to be
made between related types of dialogue acts, and relations like entailment and exclusion between
dialogue acts to be established. The approach is applied to dialogue act representations as defined in
the Dialogue Act Markup Language (DiAML), part of the recently proposed ISO standard 24617-2
for dialogue act annotation.

1 Introduction

The notion of a dialogue act plays a key role in studies of dialogue, in particular in the interpretation
of the behaviour of dialogue participants and in the design of spoken dialogue systems. But in spite of
their popularity, their status is nearly always reduced to that of informal, intuitive concepts which lack
proper definitions (see Poesio and Traum, 1998 for one of the few attempts at formalization). A wide
range of alternative dialogue act taxonomies and inventories have been proposed, causing considerable
terminological and conceptual confusion, and problems for reusing annotated corpora. This has moti-
vated the International Organisation for Standards ISO to develop a standard for interoperable dialogue
act annotation, ISO 24617-2 (see ISO 2010). This proposed standard is partly based on the comprehen-
sive DIT™ taxonomy, which has added to the earlier DIT taxonomy (Bunt, 1994) a number of concepts
from other proposals and studies. Semantically, the DIT* taxonomy is based on the dynamic approach
to utterance meaning taken in Dynamic Interpretation Theory (DIT), which views dialogue acts as cor-
responding to update operations on the information states of participants in the dialogue; an approach
commonly known as the ‘information-state update approach’ to meaning in dialogue — see e.g. Bunt
(2000); Traum & Larsson (2003). A dialogue act, on this approach, has two main components: a seman-
tic content, which describes the objects, properties, relations, or actions that the dialogue act is about,
and a communicative function, which specifies how an addressee should update his information state
with the semantic content.

Utterances in dialogue are often multifunctional, i.e., they have more than one communicative func-
tion. Dialogue analysis and annotation frameworks are therefore often ‘multidimensional’ in the sense of
allowing the assignment of multiple functions to functional segments. The DAMSL annotation scheme
for example (DAMSL = Dialogue Act Markup using Several Layers) distinguishes nine ‘dimensions’ as
mutually exclusive groups of function tags.

Bunt (2006) introduces a notion of dimension based on the observation that participation in a dia-
logue involves, beyond activities strictly related to performing the underlying task, sharing information
about the processing of utterances, managing the use of time, taking turns, and various other types of
communicative activity, and defines dimensions as corresponding to such aspects of communication.
Each dimension in this sense constitutes a category of communicative activity, and the dialogue acts
involved in these activities are concerned with different types of information: feedback acts with the
success of processing previous utterances; turn management acts with the allocation of the speaker role,
task-related acts with the dialogue task; and so on. Dimensions thus classify semantic content.



Petukhova & Bunt (2009a; 2009b) formulate criteria for distinguishing dimensions, and apply these
in the analysis of the dimensions that occur in 18 existing annotation schemes, showing that the 10
dimensions of DIT™" form a well-founded set of dimensions. These are the following:

) 1. Task/Activity: dialogue acts for performing the task or activity underlying the dialogue
2. Auto-Feedback: providing information about the speaker’s processing of previous utterances.
3. Allo-Feedback: the speaker expresses opinions or elicits information about the addressee’s processing
of previous utterances;
Contact Management: dialogue acts for establishing and maintaining contact;
Turn Management: concerned with grabbing, keeping, giving, or accepting the speaker role;
Time Management: the speaker indicates to need some extra time to formulate his contribution;
Discourse Structuring: dialogue acts for explicitly structuring the conversation;
Own Communication Management: dialogue acts for editing the speaker’s current utterance;
Partner Communication Management: dialogue acts to assists or correct the current speaker;
10. Social Obligations Management: dialogue acts that take care of social conventions such as greetings,
apologies, and expressions of gratitude.

A e

Some communicative functions are specific for a particular dimension; for instance Turn Accept
and Turn Release are specific for turn management; Stalling and Pausing for time management. Other
functions can be applied in any dimension; for instance a Check Question can be used with task-related
semantic content, but also for checking correct understanding (feedback). Similarly for commissive
and directive functions. These functions are therefore called general-purpose functions, as opposed
to dimension-specific functions. The DIT** taxonomy therefore consists of two parts: a taxonomy
of general-purpose functions and one of dimension-specific functions - see Appendix A and http:
//dit.uvt.nl.

2 DiAML: Dialogue Act Markup Language

The Dialogue Act Markup Language (DiAML) which is part of the ISO standard under development for
dialogue act annotation (see Bunt et al., 2010, and http://semantic-annotation.uvt.nl)
has been designed in accordance with the ISO Linguistic Annotation Framework (Ide & Romary, 2004),
which makes a distinction between annotation and representation; ‘annotation’ refers to the linguistic
information that is added to segments of language data, independent of format; ‘representation’ refers to
the format in which an annotation is rendered, independent of content. This distinction is implemented in
the DIAML definition by a syntax that specifies, besides a class of XML-based representation structures,
also a class of more abstract annotation structures. These two components are called the concrete and
abstract syntax, respectively.

The abstract syntax defines a class of set-theoretical structures, called ‘annotation structures’. It
consists of: (a) a specification of the elements from which annotation structures are built up, called a
‘conceptual inventory’, and (b) a specification of the possible ways of combining these elements. The
conceptual inventory consists of finite sets of elements called ‘functional segments’, ‘dimensions’, ‘com-
municative functions’, ‘qualifiers’, and ‘rhetorical relations’.

An annotation structure consists of a set of entity structures and a set of link structures. Entity
structures contain semantic information about a functional segment; link structures describe semantic
relations between segments. The most important kind of entity structure is a so-called ‘dialogue act
structure’, which is a quadruple (S, A, d, f) where S and A are the sender and addressee of a dialogue
act; d is a dimension; and f is a communicative function or a pair (f, ¢), where ¢ is a list of qualifiers.

The concrete syntax defines a rendering of annotation structures in XML. It is defined in accordance
with the methodology for defining semantic annotation languages described in Bunt (2010), which intro-
duces the notion of an ideal representation format, defined as one where every representation represents
a uniquely determined annotation structureThe semantics of the language is then defined for the struc-
tures defined by the abstract syntax. This has the effect that any two ‘ideal’ representation formats



are semantically equivalent; every representation in one such format can be converted by a meaning-
preserving mapping into any other such format.! The concrete syntax of DiAML is illustrated in (3)
and (2). P2’s utterance is segmented into two overlapping functional segments: one (fs2.1) in the Auto-
Feedback dimension and one (fs2.2) in the Task dimension, with value ‘answer’ qualified as ‘uncertain’.
(#-prefixed elements are assumed to be identified in the metadata of the source material or in another
layer of annotation.)

1. P1: What time does the next train to Utrecht leave?
TA: fs1: What time does the next train to Utrecht leave?
2 2 P2: The next train to Utrecht leaves I think at 8:32.

AuFB fs2.1:  The next train to Utrecht
TA fs2.2:  The next train to Utrecht leaves I think at 8:32.

<diaml xmlns:"http://www.iso.org/diaml/">
<dialogueAct xml:id="dal" target="#fsl"
sender="#pl" addressee="#p2"
communicativeFunction="setQuestion" dimension="task"
conditionality="conditional"/>
<dialogueAct xml:id="da2" target="#fs2"
sender="#p2" addressee="#pl"

(3) communicativeFunction="autoPositive" dimension="autoFeedback"/>
<feedbackDependence dact="#da2.1" fbSegment="#fsl"/>
<dialogueAct xml:id="da3" target="#£fs2.2"

sender="#p2" addressee="#pl"
communicativeFunction="answer" certainty="uncertain"
dimension="task" />
<functionalDependence dact="#da3" functAntecedent="#dal"/>
</diaml>

3 Context Model Structure and Content

As the proposed semantics of dialogue acts is in terms of information-state updates, the question arises
as to what exactly is an information state in this context; what information does it contain, and how is it
structured. An information state will be assumed to have a number of components, an assumption which
is shared between all proposals for information states (e.g. Poesio & Traum, 1998; Bunt, 2000; Ahn,
2001; Cooper, 2004); moreover, certain types of information can be argued to be required in information
states. The details of an information-state update semantics also depend on whether only the information
state of an addressee is considered to be updated by dialogue acts, or also that of the sender, and on
whether these updates involve mutual beliefs, as e.g. argued in Bunt (2000). We consider here only the
updates of a single addressee’s information state, disregarding mutual beliefs; this is anyway the basis
for more complex approaches involving multiple information states and mutual beliefs. In DIT, it is
customary to speak of ‘contexts’ or context models’, rather than ‘information states’, and we will use
this terminology in the rest of this paper.

A fundamental requirement for an adequate context model is that, for a given range of dialogue act
types, the model contains the kinds of information that are updated by a dialogue act. Bunt (forthc.)
argues that an agent’s context model does not necessarily have a separate component for each DIT di-
mension, but that it is convenient to distinguish the following five components:

4) 1. Linguistic Context, which contains a record of the dialogue history, information about discourse plans
(if any), and wishes concerning the occupation of the speaker role;
2. Semantic Context, which contains the agent’s information and goals relating to the dialogue task, as
well as his assumptions about the dialogue partner’s task-related goals and beliefs;
3. Cognitive Context, which contains information about the agent’s cognitive processes concerned with
the processing and production of dialogue utterances, including time estimates for these processes;

!See Bunt (2010) for formal definitions and proofs relating to alternative representation formats sharing the same abstract
syntax, and Ide & Bunt (2010) for applying this to the GrAF framework for linguistic annotation.



4. Physical/Perceptual Context, which contains information about physical and perceptual properties of
the interactive situation;

5. Social Context, which contains information relevant for interpreting and generating ‘social’ acts like
greetings, apologies, expressions of gratitude.

Versions of such a 5-component context model have been implemented in the PARADIME dialogue
manager (Keizer and Bunt, 2006; 2007) and for experimentation by Petukhova et al. (2010).

An update semantics has to take into account that update operations should not undermine the con-
sistency of the context model. A dialogue participant may change his mind during the dialogue, as an
effect of receiving some unexpected information, which can have the effect that the participant brings in
new information which contradicts something that was already grounded, and hence cannot simply be
added without making the context model inconsistent. Rather then building consistency checks into the
semantics of each dialogue act, we exploit the DIT distinction of five levels of utterance processing: (1)
attention, (2) perception, (3) understanding, (4) evaluation, and (5) execution. The level of understand-
ing determines the meaning of a dialogue segment in terms of dialogue acts. The evaluation level checks
whether the corresponding updates would keep the current context model consistent. If so, it performs
the updates. One way to implement this approach is to add to a context model a part called the pending
context, which serves as a buffer for items to be inserted in the main context once their consistency with
the current content of the main context has been established.”? Updating the pending context is a matter
of simply adding items to it. For convenience we will assume the pending context A’ of an agent A’s
context model to be structured in the same way as the main context. We will use the notation (5a) to
specify the update consisting of adding the information =z to component A’ i of A’s pending context. If
f is the update (5a) and g the update A;- —=+tu, then (5b) designates the combination of the two updates.>

(5) a. Al =tz
b. fug

An analysis of the definitions of the DIT™" communicative functions shows that a formal description
of the update effects of dialogue acts with a general-purpose function requires the basic concepts listed in
Table 1. For convenience, we also introduce the following abbreviations: Bel(.S, p) abbreviates BelS, p,
firm); Wk-Bel(S, p) abbreviates BelS, p, weak); Assumes(S,p) abbreviates Bel(S,p) V WKk-Bel(S,p).
In all action-related attitude operators we suppress the argument T representing the ‘empty’ condition,
hence WilDo(S, o) abbreviates WilDo(.S, «, T ), and so on.

description notation meaning

believes that Bel(S,p, o) S believes that p; o indicates whether this is a firm belief
or an uncertain belief (¢ can have the values ‘firm’ and ‘weak’)

knows value of Know-val(S, 2) S possesses the information z

has goal Wantl(.S, p) S has the goal that p

is able to do CanDo(S, o) S is able to perform the action o

is willing to do WilDo(S, a, Cy,) S is willing to perform the action « if the condition C, is
fulfilled; C', may be the universally true statement T

is committed to do  CommitDo(S, o, Cy,) S is committed to perform the action « if the condition C,, is
fulfilled; the condition C,, may be ‘empty’ (T)

is committed to RefrainDo(S5, o, C,,) S is committed to refrain from performing the action «

refrain from doing if the condition C\, is fulfilled C,, may be ‘empty’ (T)

is considering ConsidDo (X, «,Y,C,) X is considering the action «, to be performed by Y,

to be done if the condition C,, is fulfilled C,, may be ‘empty’ (T)

is in the interest of Interest(Y, o) action « is of interest to agent Y.

Table 1: Basic semantic concepts for general-purpose communicative function interpretation

2This approach has been implemented in the multimodal DenK dialogue system; see Kievit et al. (2001).
3The combined update ( f L g) is undefined if the order of performing the two updates would make a difference.



Dimension Primitives

Auto- and Allo-feedback Attended, Perceived, Understood, Accepted, Executed, Attention-
Problem, Perception-Problem, Interpretation-Problem, Evaluation-
Problem, Execution-Problem

Turn Management Current-Speaker, Next-Speaker

Time Mangement Time-Need, small, substantial

Contact Management Present

Discourse Structuring Ready, Available, Start-Dialogue, Close-Dialogue
Own and Partner Communication Man. | Delete, Replace, Append

Social Obligations Man. Available, Thankful, Regretful, Knows-id, Final

Table 2: Dimension-specific semantic primitives

Dimension-specific communicative functions are always concerned with a specific category of se-
mantic content, which requires certain specific semantic primitives for its representation. Table 2 lists
the basic concepts for describing their update semantics.

For expressing the semantics of a feedback act which is underspecified for the level of processing,
we introduce in (6) the predicates Succes-Processing, defined as successful at least at the level of under-
standing, and Unsuccessful-Processing, defined as unsuccessful at the level of understanding or lower.

(6) a. Succes-Processing = Understood V Accepted \V Executed
b. Unsuccessful-Processing = Interpretation-Problem \ Perception-Problem V Attention-Problem

4 Dialogue Act Semantics

In this section we outline a semantics of dialogue acts in the form of an update semantics for the *dialogue
act structures’ defined by the DiAML abstract syntax. A dialogue act structure does not correspond to
a full-blown dialogue act representation, since it does not include the full semantic content, but only
the dimension which classifies the semantic content. The semantics of a dialogue act structure should
therefore be something which can be combined with a semantic content in order to form the interpretation
of a full-blown dialogue act. This is precisely the case, for the recursive interpretation of a dialogue
act structure (S, A, d, f) is defined through the recursive valuation function V' as specified in (7). Of
the four arguments of V' in the left-hand side of (7), S, A, and d are elements of the categories of the
DiAML conceptual inventory, so there is no recursion in their interpretation; for such elements, the
valuation function is defined by a value assignment function F', playing the same role as that of a ‘model
assignment’ function in model-theoretic semantics; F' for example assigns to a sender and an addressee
certain individuals, identified in the metadata of an annotated dialogue (cf. #pl and #p2 in (3)). To the
dimension argument d, F' assigns that component of an information state that should be updated.

(1) V(<S, A, d, £>) = (VIO)EF(S), F(A), F(d))

4.1 The Update Semantics of Communicative Functions

A communicative function will be interpreted as a function which, applied to a given speaker, addressee,
and dimension, results in a function which can be applied to a semantic content in order to obtain a
context-update specification. Since related communicative functions often share parts of their defining
preconditions, we will construct such interpretations as combinations of elementary update functions,
each of which takes care of the update corresponding to a single dialogue act precondition; see Table
3 and Table 4 for illustration: Table 3 lists the definitions of the update semantics of the communica-
tive functions of the information-providing class, while Table 4 lists the elementary elementary update
functions used in these definitions.



4.1.1 General-Purpose Communicative Functions

The class of general-purpose communicative functions in the DITT" taxonomy falls apart into the
information-transfer functions and action-discussion functions, further subdivided into information-providing
and information-seeking functions, and commissives and directives, respectively.

a. Information-Providing and Information-Seeking Functions The class of information-providing
functions has a hierarchical structure, with the communicative function Inform as the mother of all
information-providing functions; all other functions are specializations of this function. These func-
tions all have in common that (1) the speaker wants the addressee to possess certain information which
(2) the speaker assumes to be correct.

Using the epistemic operators introduced in Section 5, these preconditions are formalized as follows:

(8) 1. Want(S,U, Bel(A,p,0))
2. Bel(A, p, o)

The semantics of the Inform function, specified in Table 3, binds the variable o, representing the belief
strength for both the elementary update functions involved. (See further below, section 4.2.)

The update semantics in terms of combinations of elementary update functions often brings out
immediately that some communicative functions are specializations of others (as visualized in Appendix
A), for instance, the update semantics of the Answer function shares with the Inform function the updates
defined by the elementary update functions U; and Us, and adds to that the effects of U; and Uy; the
semantic of the Confirm function adds to that the update defined by Ug. Hence Confirm is a specialization
of Answer, which is a specialization of Inform, or in other words Confirm entails Answer entails Inform.

F(Inform) = ASAXAYAD; M\p.Ui(X,Y, D;,p,s) UWU2(X,Y, D;,p, s)

F(Agreement) = ASAXAYAD; AUy (X, Y, Ds,p, s) U Us(X,Y, Di,p, s) U Us(X,Y, Di,p)
F(Disagreement) = ASAXANYAD; \p.Uy (X, Y, D;, —p, 8) U U,y (X'7 Y, D;, —p, s) L Us (X, Y, D;,p)
F(COHCCtiOH) = /\S)\)()\}/)\l)l)\])le()(7 Y, Di,pl,s) L UQ(X,YV,Di,_\pl,S) U U6(X’Y’Di7p2)
F(Answer) = )\S.)\X.)\Y.)\DT;.)\p.Ul(X, Y, D;,p, S) U UQ(X,Y,Di,p, 8) L Ug(X,Y,Di,p)

U U7(X7Y7Diap)

ASAXAYAD; Ap.Ur(X,Y, D;,p,s) UU2(X,Y, D;,p,s) UUs(X,Y, D;,p)

UUs(X,Y,D;,p,s) UU(X,Y, D;, p)

F(Disconfirm) = ASAXAYAD; \p.U(X,Y, D;,—p,s) UU2(X,Y, D;,—p,s) UUs(X,Y, D;, p, s)
U []9()(7 Y, Di,p) [ U7(X, Y, Dl‘,p)

F(Confirm)

F(Question) = AXAYAD; A2.Uro(X,Y, Dy, 2) UUn (X, Y, Dy, 2)
F(Prop.Question) = AXAY.AD; \p.Uro(X,Y, Dy, p) U U (X,Y, Dy, p) U Usa(X,Y, Dy, p)
F(CheckQuestion) = /\X)\Y)\Dl)\ZUlo(X,KD“p) L Ull(X, Y, Di,p) [ U4(X, Y, Dz,p)

F(SetQuestion) = AXAY.AD;\2.Uyo(X,Y,D;, P) LU (X,Y, D;, P) UU3(X,Y, D;, P)
F(ChoiceQuestion) )\X)\Y)\DiApULt;a(X, Y; Dz,p) (] U15(X, Y: Di, p) (] U16 (X, Y'7 Dz,p)

Table 3: Update semantics for information-providing and information-seeking communicative functions

As an illustration of the update semantics of information-providing functions, consider the case of the
answer in (9.2).

(9) 1. D: twenty-five euros, how much is that in pounds?
2. C: twenty-five euros is something like 20 pounds

Applying the semantics of the Answer function (see Table 3) to the participants C and D and the semantic
content of (9.2), we obtain:

(10) F(Answer)(C, D, Task, EU25=BP20) = U, (C,D,SemC, EU25=BP20) L
U Uy (C,D,Task, EU25=BP20) LI Uy(C, D, Task, EU25=BP20) LI U (C, D, Task, EU25=BP20) =
D%, . =+ Bel(D, Want(C, Bel(D, EU25=BP20))); D’., . =+ Bel(D, Bel(C, EU25=BP20));
D%....cc =+ Bel(D, Bel(C, Want(D, Know-val(D, EU25=BP20)))); D%, =+ Bel(D, Bel(C, Assume(D,
Know-val(C, EU25=BP20))))



Hence the following beliefs are added to D’s pending Semantic Context: (1) C wants D to know that
EU25=BP20; (2) C believes that EU25=BP20; (3) C believes that D wants to know whether EU25=BP20;
and (4) C believes that D assumes C to know whether EU25=BP20.

UL(X,Y,D;,p,5) Y/ = Bel(Y, Want(X,Bel(Y, p, s)))
Us(X,Y,Dy,p,s) Y/ =+ Bel(Y,Bel(X,p,s))

Us(X,Y,D;,p) Y/ =+ Bel(Y, Assume(X, p))

Uy(X,Y, D, p) Y/ =+ Bel(Y, Wk-Bel(X, p))

Us(X,Y,D;,p) Y/ =+ Bel(Y, Bel(X, Assume(Y, p)))
Us(X,Y,D;,p) Y/ =+ Bel(Y, Assume(X, Assume(Y, p)))
U:(X,Y,D;,p) Y/ =+ Bel(Y, Bel( X, Assume(Y Know-val(X, P))))
Us(X,Y,D;,p) Y,/ =+ Bel(Y, Assume(X, Wk-Bel(Y, p))

Us(X,Y, D;,p) Y/ =+ Bel(Y, Bel(X, Want(Y, Know-val(Y, p))))
Uio(X,Y,D;,p) Y/ =+ Bel(Y, Want(X, Know-val(X, )))
Ui1(X,Y,D;,p) Y/ =+ Bel(Y, Assume(X, Know-val(Y’ p))
Us(X,Y,Di,p) Y/ =+ Bel(Y, Bel(X, pV —p))

Uis(X,Y,D;,p) Y/ =+ Bel(Y, Assume(X, p; zor p3))
Uisa(X,Y,Ds,p) Y/ =+ Bel(Y, Want(X, Bel(X,p;) V Bel (X, p2))))
Uis(X,Y,D;,p) Y/ =+ Bel(Y, Assume(X, Bel(Y,p;) V Bel(Y, p2))))

Table 4: Elementary update functions used in the semantics of information-transfer functions

b. Commissive and Directive Functions For the classes of commissive and directive communicative
functions, we provide for reasons of space the semantics of only a small selection of functions; see Bunt
(2011a) for more.

F(Offer) = ACu AXAYAD; A .Uss0 (X, Y, Dy, ) U Uso(X,Y, Dy, 0, Cyy)

F(AddressRequest) =/\CO{AXAY>\D,)\O£U17(L (X, }/, Di, a, Ca) (] U18 (X, }/, Di, Oé) U Ugﬁb(X, K Di7 Ot)
F(AcceptRequest)  =ACo AXAYAD; Aa.U17(X,Y, D;, a0, Cyo) U U1s(X, Y, Dy, ) U Usgp(X, Y, Dy, x)
F(DeclineRequest) =ACo AXAYAD; Aa.Us7(X,Y, D;, . Cp) UU1s(X,Y, D, o) U Uy (X, Y, Dy, )
F(Request) = ACo AXAY.AD; Aa.Uss (X, Y, D;, o, Cp) U Usg(X, Y, Dy, )

F(Instruct) = )\Ca)\X)\Y)\D/LAaU24(X7 Y, Di, «, Ca) U U26<X7 Y, Di, Oé) (] U25(X, K Di, Oé)
F(AddressOffer) = ACu AXAYAD; AUy (X, Y, D, o, C) U Uas (X, Y, Dy, ) U Uasp (X, Y, Dy, )
F(AcceptOffer) = ACu AXANY AD; Aa.Usy (X, Y, D;, o) U Uss(X, Y, Dy, ) U Ussp (X, Y, Dy, )

Table 5: Update semantics for a selection of commissive and directive functions

As an example of the interpretation of a directive dialogue act, consider the request in (11.2):

(11 1. A:(..)
2. B: Could you please repeat that?

Applied to the participants A and B and the semantic content Repeat(ul), which situates the Request
act in the Auto-Feedback dimension, the definition of the Request semantics in Table 5 leads to:

(12) F(Request)(A, B, Auto-Feedback, (Repeat(ul), unconditional)) = A\C, AX.A\Y.AD;. \v.)
Uss(X,Y, D;, o, Co, U U (X, Y, Dy, ) (A, B, Auto-Feedback, Repeat(ul), T) =
= Us3(A,B, CC, Repeat(ul), T) U Uss(A,B, C, Repeat(ul)) =
Bl =+ Bel(B, Want(A, [WilDo(A, Repeat(ul) — CommitDo(B, Repeat(ul))]));
B{. =+ Bel(B, Bel(A4, CanDo(B, Repeat(ul))))

where ‘CC’ stands for Cognitive Context.

4.1.2 Dimension-Specific Communicative Functions

4.1.2.1 Feedback Functions The communicative functions for providing and eliciting feedback in DIT**
fall apart in those concerned with the speaker’s own processing of previous utterances (Auto-Feedback)
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U17(X,Y,D;,a,C,) Y/ =+ Bel(Y, CommitDo(X, o, Cy,))

Ur7a(X,Y, Ds,0r,Cy)  Y! =+ Bel(Y, ConsidDo(X, , X, Cy))

Urne(X,Y, D, 0, C,) Y/ =+ Bel(Y, ConsidDo(X, o, Y, C,,))

Uis(X,Y, D;, @) Y, =+ Bel(Y, Bel(X,Want(Y,CommitDo(X, o, Cy,)))
Uso(X,Y,D;,0,Co) Y/ =+ Bel(Y, WilDo(X, o, C.,))

Ua1(X,Y, D;, ) Y/ =+ Bel(Y, Bel(X, Interest(c,Y")))

Uss(X,Y, D;, ) Y! =+ Bel(Y, Want(X, [WilDo(Y, o, C,) = CommitDo(Y, o, C,)]))
Usy(X,Y, D;, ) Y/ =+ Bel(Y, Want(X, CommitDo(Y, a)))
Uss(X,Y,Di,0,Co)  Y{ =+ Bel(Y, Bel(X,WilDo(Y, o, C.,)))

Ussa(X,Y, Di,a,Cy) Y/ =+ Bel(Y, Want(X, Bel(Y, WilDo(X, o, C,,))))
Uasp(X,Y, D, a,Cy) Y] =+ Bel(Y, Bel(X, Want(Y, Bel(X, WilDo(Y, «, Cy,)))))
Us(X,Y, D;, ) Y! =t Bel(Y, Assume(X, CanDo(Y, )))

Usen(X,Y, Dy, @) Y/ =+ Bel(Y, Bel(X, Assume(Y, CanDo(X, «)))

U7 (X,Y,D;,,Cy) Y/ =+ Bel(Y, CommitRefrain(X, «, C,))

Table 6: Elementary update functions used in the semantics of action-discussion functions.

and those concerned with the addressee’s processing, as perceived by the speaker (Allo-Feedback). The
elementary update functions for both dimensions are nearly identical, only differing in whose processing
is concerned. Tables 7 and 8 show the update semantics of a small, representative subset of the (25)
DIT*+ communicative functions for providing and eliciting feedback.

Us1(X,Y,D;,z) Yo =+ Bel(Y, Want(X, Bel(Y, Succes-Processing( X, z)))
Uss(X,Y,D;,z) Yio =+ Bel(Y, Want(X, Bel(Y, Accepted (X, z)))
Ur(X,Y,D;,z) Yo =+ Bel(Y, Want(X, Bel(Y, Perception-Problem(Y, z)))
Uw(X,Y,D;,z) Yo =+ Bel(Y, Want(X, Bel(Y, Execution-Problem(Y’, 2)))
Us1(X,Y,D;,z) Yl =+ Bel(Y, Bel(X, Success-Processing( X, z)))
Uss(X,Y,D;,z) Yo =+ Bel(Y, Bel(X, Accepted (X, z)))

Us7(X,Y,D;,z) Yo =+ Bel(Y, Bel(X, Perception-Problem (X, z)))
Uss(X,Y,D;,z) Y/~ =+ Bel(Y, Bel(X, Execution-Problem(Y’, z)))

Table 7: Elementary update schemes for the semantics of auto- and allo-feedback functions (selection).

F'(AutoPositive)

F(AlloPerceptionNegative)
F'(AutoEvaluationPositive)
F(AlloExecutionNegative)

)\X)\Y)\DZ)\pUgl(X, K D“p) L Uﬁl(X, }/, Dz)
)\X)\Y)\Dl)\pUgg(X, K Dz,p) L UﬁQ(X, K Di)
)\X.)\Y)\Di.)\p.U'm(X, K Di,p) U Ug5 (X, K Dl)

Table 8: Semantics of feedback functions (selection)

4.1.2.2 Turn Management Functions
The communicative functions for turn management serve to decide who has or will have the speaker role.
Hence the various functions for taking, accepting, grabbing, keeping, releasing, or assigning the turn are
all defined in terms in who currently occupies the speaker and who wants or should have it next.

For example, assigning the turn to somebody (Turn Assign) means that the participant A, who cur-
rently occupies the speaker role, wants the indicated other participant, B, to occupy the speaker role next.
This is expressed in the form of a combination of elementary update functions as shown in (13):

(13) F(TurnAssign)(4, B) = AXAY.U101(X, Y, TurnM) U Uyp2(X, Y, TurnM](A, B) =
= UlOl(A; B, TUTTLM) U Ulog(X, Y, TU’/‘TLM) =
= B;c =t Bel(4, Current-Speaker(A)); B}, =+ Want(A, Next-Speaker(B))

In other words, the Linguistic Context component of B’s pending context is updated to contain the beliefs
that A is the current speaker and wants B to be the next speaker.



U01(X,Y, TurnM) Y], =+ Bel(X, Current-Speaker(X))

Uio2(X,Y, TurnM) Y], =+ Want(X, Next-Speaker(Y))

U103(X,Y, TurnM) Y], =+ Bel(X, Current-Speaker(1"))

Ur04(X,Y, TurnM) Y], =+ Wants(X, Current-Speaker(X))

Uo5(X, Y, TurnM) Y], =+ Wants(X, Next-Speaker(X))

Uwos(X, Y, TurnM) Y], =+ Want(X, -~ Next-Speaker(X))
( ) Y],o =+ Bel(X, - Next-Speaker(X) A — Next-Speaker(}"))
( ) Y/.. =t Bel(X, Want(Y, Next-Speaker(X)))

U1()7 X, K TurnM
U108 X, }/, TurnM

Table 9: Elementary update schemes for the semantics of turn management functions.

F(TurnAccept) = )\XAY)\DzUlog(X Y D; ) L U105(X Y D ) U [/1()’7()(7 Y, Dl)
F(TurnAssign) = )\X)\Y)\DlUlol(X Y D; ) (] U102(X Y D; )
F(TurnGrab) = AX.AY.AD;.Uigs(X,Y, D;) UUsu(X,Y, D;)
F(TurnKeep) = )\X}\Y}\DZUlol (X Y D; ) (] U10 (X Y D; )
F(TurnRelease) = )\XAYADLUlol (X Y D; ) U U106 (X Y D; )
F(TurnTake) = )\XAYADquog)(X Y D; ) U U107(X Y D )

Table 10: Update semantics of turn management functions

4.1.2.3 Time Management Functions Time management acts are used by a speaker to indicate that
he needs some time to compose his utterance, as signalled for instance by protracting (decreasing his
speech tempo) or filled pauses; or that he needs so much time that he suspends the dialogue as in Just a
moment. The semantics of such acts requires a context model to contain beliefs about the amount of time
needed by cetain cognitive processes; the DIT context model therefore assumes the representation of
estimates of amount of time to be represented in the Cognitive Context component, which also contains
other information about the speaker’s cognitive processing.
Consider for example consider the update semantics of a Stalling act:

V (<Sys, Usr, TimeM, Stalling>) F(Stalling)(Sys, Usr, CogC)
U111 (Sys, Usr, CogC,Time-Need(Sys, small))

Usrge =+ TimeNeed(Sys, small)

(14)

This update operation adds to the pending cognitive context of Usr the information that Sys needs a small
amount of time.

Ui11(X,Y,CC) Yl =+ TimeNeed(X, small)
U112(X,Y, CC) Y., =+ TimeNeed(X, substantial)
Ui (X,Y,CC) Y., =+ TimeNeed(X, small)
Ui12(X,Y, CC) Yl =+ TimeNeed(X, substantial)

Table 11: Elementary update schemes for the semantics of time management functions.

4.1.2.4 Other Communicative Functions

The semantics of the dimension-specific communicative functions for Contact Management, Discourse
Structuring, Own Communication Management, Partner Communication Management, and Social Obli-
gations Management is quite similar to that of the dimension-specific communicative functions that
considered above. the main difference being the use of other, dimension-specific predicates.

4.2 The Interpretation of Communicative Function Qualifiers

Communicative function qualifiers come in two varieties, ‘q-specifiers’ and ‘q-additives’. Q-specifiers
make preconditions of the communicative function that they qualify more specific, for instance spec-
ifying for an answer that there is some uncertainty about the correctness of its content. Q-additives
enrich a communicative function, for instance adding that an offer is accepted happily. Currently DIT
distinguishes two classes of g-specifiers, the ‘certainty’ and ‘conditionality’ qualifiers, and one type of
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g-additive, for ‘sentiment’ representation.Qualifiers can apply only to general-purpose communicative
functions; certainty qualifiers to information-providing functions, and conditionality qualifiers to action-
discussion functions. Sentiment qualifiers can be attached in principle to every communicative function.

For the semantics of qualified communicative functions we thus have three possible cases to consider,
where f; is an unqualified communicative function: (a) (f;, ¢s;) where gs; is a g-specifier; (b) (f;, gag)
where gay, is a g-additive; and (c) (f;, ¢s;, asy) where ¢s; is a g-specifier and gay, is a q-additive. The
following clauses in the definition of the recursive valuation function V' for DIAML specify the semantic
interpretation in each of these cases:

(5) a. V((fi,qs;)) = (F(f:))(F(gs;))
b. VI({fi, qar)) = ASAz[(F(£i))(S, 2) U (F(qax))(S, 2)]
V({firqs5, qax)) = ASAz.[((F(f:))(F(gs7)))(S, 2) U (F(qax))(S, 2)]

The semantics of each of the individual qualifiers is defined as follows:

F'(certain) = ‘“firm’
F(uncertain) = ‘weak’
(16) F(conditional) = ‘cond’
F(unconditional) = T (the ‘empty’ condition)

F'(sentimenty,) AX . Au. SENTIMENT-PREDICATE (X, u)

We consider two examples. The first illustrates the semantics of an answer, qualified as uncertain, as
in (17) (‘pS’ abbreviates the proposition that the train to Tilburg leaves from platform 5):

(17) 1. A: Does the train to Tilburg leave from platform 5?
2. B: I think so, probably yes.

V({B, A,Task, p5, (Answer, uncertain)) = V' ((Answer, uncertain)) (A, B, Task, p5)
= B! =+ Bel(B, Uy (A4, B,Task, p5,weak) LI Uz (A, B,Task, p5,weak) Ll Ug(A, B, Task, p)
u U7(A7 B7 Takvp)
= A,..c =+ Bel(A, Want(B Bel(4, p, weak))); Al,,,c =+ Bel(A, Bel(5, p, weak));
Al =F Bel(A, Bel(B, Want(A, Know-val(A,p)))):

Sem

Ao =F Bel(A, Bel(B, Assume(A, Know-val(B,p))))

(18)

This means that A’s pending semantic context is extended with the following pieces of information:

(19) 1. Bel(B, p5,weak), or equivalently: Wk-Bel(B, p5); i.e., B holds the uncertain belief that p5;
2. Want(B, Wk-Bel(A4, p5)), i.e. B has the goal that A also holds this uncertain belief;
3. Bel(B, Want(A, Know-val(A, p))), i.e. B believes that A wants to know whether p5.
4. Bel(B,Assume(A, Know-val(B,p))): B believes that A assumes that B knows whether p5.

Second, example (20) illustrates the semantics of an unconditional Accept Offer with a happy sentiment
(as in A: How about a cup of coffee? B: Oh yes, that would be wonderful!), using (15c).

V((AcceptOffer unconditional, happy)) =
= ASAz.[[F(AcceptOffer)(F(unconditional))] (.S, z) U [F'(happy)](S, 2)]
= ASAZ[[AXAYAD; AACy. Usa(X, Y, Di, ) U Uss(X, Y, Di, at, C) U
Ussp(X,Y, Dy, o, Co, )[(T)](S, 2) U HAPPY(S, 2))]
= H)\S)\YADl)\Z)\OZ (]24(57 Y, D,L', Z) [ U25(S, Y, DT;, z, T) L
Uasp(S,Y, D;, z, T)] LU HAPPY (S, 2))]

(20)

Applied to the participants A and B and the action ‘coffee’, we obtain:

= Al .=+ Bel(4, Want(B, CommitDo(A4, coffee)));
Al o =F Bel(A, Bel(B, WilDo (A, coffee)));
Al o =F Bel(A, Bel(B, Want(A, Bel(B, WilDo( A, coffee)))));
At =+ HAPPY (B, coffee))]

21
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In other words, the Task component of A’s pending context is extended with the beliefs that B wants
A to commit himself to arrange coffee; that A is willing to do s 0; and that A wants B to believe that.
Moreover, the understanding that B is happy to get some coffee is represented in the cognitive component
of A’s pending context.

Concerning the certainty regarding the correctness of provided information, as represented through
certainty qualifiers, the unmarked case in natural language is certain. A speaker who is quite certain about
something may indicate this by expressions like definitely, most certainly, but this tends to occur only
when doubt or disbelief has expressed about something that was claimed. When there is no expression
of uncertainty, the speaker’s utterance is therefore interpreted as expressing certainty. For conditionality,
the unmarked case is unconditional; an unconditional commitment or willingness to perform a certain
action can be expressed explicitly, but this tends to occur only if some doubt has been expressed about
someone’s commitment or willingness. When no conditions for performing an action are expressed, we
therefore interpret the utterance as unconditional.

5 Conclusion and Future Work

This paper has outlined an update semantics of dialogue acts, associated with annotation structures de-
fined by the abstract syntax of the DIAML language for semantic annotation, which forms part of ISO
standard (24617-2) under development for dialogue act annotation.

Future work that’s crying to be done includes further implementation, testing and evaluation beyond
what has already been done (see Petukhova, Bunt and Malchanau, 2010; Keizer, Bunt and Petukhova,
2010), and supplementing the approach with an interpretation of the relations between dialogue acts and
other units in dialogue (see Petukhova, Prévot and Bunt, 2011).
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Appendix: The DIT++ taxonomy of communicative functions

General-purpose functions

Wns ActionW
Information-seeking functions Information-providing Commissives Directives
functions \ A
Y Y
Question Inform Offer  Address Suggestion Request
\ / Suggestion
A A Y i
Propositional Q Choice SetQ Answer Agreement Disagreement Promise  Accept Decline Instruct
Question Suggestion
99 Suggestion
Check Q Disconfirm Confirm Correction Address Address
Request Offer
. Y
Posi-Check  Nega-Check Accept Decline Decline Accept
Request Request Offer Offer
Figure 1: General-purpose functions
Dimension-specific functions
Auto-Feedback  Allo-Feedback Time Contact PCM Turn OCM DS SOM
Positive Positive  Stalling Completion Error sign.  Opening |-Greeting
Pos. Attention Negative Pausing Correct- Retract Pre- R-Greeting
Pos. Perception  Ejicitation misspeaking Self- closing Self-Intro
(-r) () C-Indication correction  (...) R-Self-Intro
Pos. Executlon C-Check Apology
Negative Accept-Ap.
z\‘e)g- Attention Turn-initial Turn-final Thanking
: Acc.-Thanking
Neg. E t
eg. Execution I-Goodbye
R-Goodbye
Turn Accept Turn Assign
Turn Take Turn Release
Turn Grab Turn Keep

Figure 2: Dimension-specific communicative functions
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A New Semantics:
Merging Propositional and Distributional Information

Eduard Hovy

Information Sciences Institute
University of Southern California
hovy@isi.edu

Despite hundreds of years of study on semantics, theories and representations of semantic
content—the actual meaning of the symbols used in semantic propositions—remain
impoverished. The traditional extensional and intensional models of semantics are difficult
to actually flesh out in practice, and no large-scale models of this kind exist. Recently,
researchers in Natural Language Processing (NLP) have increasingly treated fopic signature
word distributions (also called ‘context vectors’, ‘topic models’, ‘language models’, etc.) as a
de facto placeholder for semantics at various levels of granularity. This talk argues for a new
kind of semantics that combines traditional symbolic logic-based proposition-style semantics
(of the kind used in older NLP) with (computation-based) statistical word distribution
information (what is being called Distributional Semantics in modern NLP). The core
resource 1is a single lexico-semantic ‘lexicon’ that can be used for a variety of tasks. I show
how to define such a lexicon, how to build and format it, and how to use it for various tasks.
Combining the two views of semantics opens many fascinating questions that beg study,
including the operation of logical operators such as negation and modalities over word(sense)
distributions, the nature of ontological facets required to define concepts, and the action of
compositionality over statistical concepts.
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Deterministic Statistical Mapping of
Sentences to Underspecified Semantics

Hiyan Alshawi Pi-Chuan Chang Michael Ringgaard
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Abstract

We present a method for training a statistical model for nrappatural language sentences to
semantic expressions. The semantics are expressions nflarspecified logical form that has prop-
erties making it particularly suitable for statistical npaqm from text. An encoding of the semantic
expressions into dependency trees with automatically rgéed labels allows application of exist-
ing methods for statistical dependency parsing to the nmapgzisk (without the need for separate
traditional dependency labels or parts of speech). Thediéngalso results in a natural per-word
semantic-mapping accuracy measure. We report on thesesuitining and testing statistical mod-
els for mapping sentences of the Penn Treebank into the $ieneapressions, for which per-word
semantic mapping accuracy ranges between 79% and 86% degemdthe experimental condi-
tions. The particular choice of algorithms used also melaatsdur trained mapping is deterministic
(in the sense of deterministic parsing), paving the waydagé-scale text-to-semantic mapping.

1 Introduction

Producing semantic representations of text is motivated not only by thesdreticsiderations but also
by the hypothesis that semantics can be used to improve automatic systemissftiaaare intrinsically
semantic in nature such as question answering, textual entailment, machsiativan and more gen-
erally any natural language task that might benefit from inference ier dodmore closely approximate
human performance. Since formal logics have formal denotational ses\aamid are good candidates
for supporting inference, they have often been taken to be the targetsafgping text to semantic
representations, with frameworks emphasizing (more) tractable infeokioosing first order predicate
logic (Stickel, 1985) while those emphasizing representational powerifigvone of the many available
higher order logics (van Benthem, 1995).

It was later recognized that in order to support some tasks, fully spegifertain aspects of a logic
representation, such as quantifier scope, or reference resolutodterinot necessary. For example, for
semantic translation, most ambiguities of quantifier scope can be carriett@avethe source language
to the target language without being resolved. This led to the developmendefspecified semantic
representations (e.g. QLF, Alshawi and Crouch (1992) and MRSe€lake et al (2005)) which are
easier to produce from text without contextual inference but whichbeaiurther specified as necessary
for the task being performed.

While traditionally mapping text to formal representations was predominantiyoaged, for both
the syntactic and semantic components (Montague (1973), Pereira abdiShi@87), Alshawi (1992)),
good progress in statistical syntactic parsing (e.g. Collins (1999), Gthaf2000)) led to systems that
applied rules for semantic interpretation to the output of a statistical syntacterp@.g. Bos et al.
(2004)). More recently researchers have looked at statistical metbquevide robust and trainable
methods for mapping text to formal representations of meaning (ZettlemogeéZallins, 2005).

In this paper we further develop the two strands of work mentioned albh@emapping text to
underspecified semantic representations and using statistical parsingdsahmerform the analysis.
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Here we take a more direct route, starting from scratch by designingdarspecified semantic repre-
sentation (Natural Logical Form, or NLF) that is purpose-built for staistiext-to-semantics mapping.
An underspecified logic whose constructs are motivated by natural dgegand that is amenable to
trainable direct semantic mapping from text without an intervening layerrasyic representation. In
contrast, the approach taken by (Zettlemoyer and Collins, 2005), forramaps into traditional logic
via lambda expressions, and the approach taken by (Poon and Don2@§83,depends on an initial
step of syntactic parsing.

In this paper, we describe a supervised training method for mapping textRothat is, producing
a statistical model for this mapping starting from training pairs consisting aésees and their corre-
sponding NLF expressions. This method makes use of an encoding oé¥irEssions into dependency
trees in which the set of labels is automatically generated from the encodingssr(rather than being
pre-supplied by a linguistically motivated dependency grammar). This engatiows us to perform the
text-to-NLF mapping using any existing statistical methods for labeled depeyngarsing (e.g. Eisner
(1996), Yamada and Matsumoto (2003), McDonald, Crammer, Perei@b)YR0A side benefit of the
encoding is that it leads to a natural per-word measure for semantic maauingacy which we use for
evaluation purposes. By combing our method with deterministic statistical depeyndcodels together
with deterministic (hard) clusters instead of parts of speech, we obtain @iittic statistical text-to-
semantics mapper, opening the way to feasible mapping of text-to-semantlasggt scale, for example
the entire web.

This paper concentrates on the text-to-semantics mapping which depepald, on some properties
of NLF. We will not attempt to defend the semantic representation choicespémific constructions il-
lustrated here. NLF is akin to a variable-free variant of QLF or an MRShitlvsome handle constraints
are determined during parsing. For the purposes of this paper it issotfio note that NLF has roughly
the same granularity of semantic representation as these earlier undexdpepresentations.

We outline the steps of our text-to-semantics mapping method in Section 2, irgrdidikcin Sec-
tion 3, explain the encoding of NLF expressions as formal dependesey itn Section 4, and report on
experiments for training and testing statistical models for mapping text to NLfessipns in Section 5.

2 Direct Semantic Mapping

Our method for mapping text to natural semantics expressions procefallowas:

1. Create a corpus of pairs consisting of text sentences and theisponding NLF semantic ex-
pressions.

2. For each of the sentence-semantics pairs in the corpus, align theafittidsentence to the tokens
of the NLF expressions.

3. “Encode” each alignment pair as an ordered dependency tree ih thigidabels are generated by
the encoding process.

4. Train a statistical dependency parsing model with the set of depgntiers.

5. For a new input sentencg apply the statistical parsing model £y producing a labeled depen-
dency treeDg.

6. “Decode”Dg into a semantic expression 6t

For step 1, the experiments in this paper (Section 5) obtain the corpus fgriog an existing
constituency treebank into semantic expressions. However, dirediadioncof a corpus with semantic
expressionss a viable alternative, and indeed we are separately exploring that posdiiléydifferent,
open domain, text corpus.
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For steps 4 and 5, any method for training and applying a dependency frood@ corpus of labeled
dependency trees may be used. As described in Section 5, for thénesptsrreported here we use an
algorithm similar to that of Nivre (2003).

For steps 2, 3 and 6, the encoding of NLF semantic expressions asléepgrirees with automati-
cally constructed labels is described in Section 4.

3 Semantic Expressions

NLF expressions are by design amenable to facilitating training of text-torgemanappings. For this
purpose, NLF has a number of desirable properties:

1. Apart from a few built-in logical connectives, all the symbols appeginnNLF expressions are
natural language words.

2. For an NLF semantic expression corresponding to a sentence, thetakens of the sentence
appear exactly once in the NLF expression.

3. The NLF notation is variable-free.

Technically, NLF expressions are expression of an underspecifjied i®. a semantic representation
that leaves open the interpretation of certain constructs (for exampledhe st quantifiers and some
operators and the referents of terms such as anaphora, and certairit irafatons such as those for
compound nominals). NLF is similar in some ways to Quasi Logical Form, or @lsh&wi, 1992), but
the properties listed above keep NLF closer to natural language tharh®h&enatural logical form.®
There is no explicit formal connection between NLF and Natural Logio @anthem, 1986), though it
may turn out that NLF is a convenient starting point for some Natural Lo@gcénces.

In contrast to statements of a fully specified logic in which denotations areatiypiaken to be
functionsfrom possible worlds to truth values (Montague, 1973), denotationstatensent in an under-
specified logic are typically taken to bbelationsbetween possible worlds and truth values (Alshawi and
Crouch (1992), Alshawi (1996)). Formal denotations for NLF egpi@ns are beyond the scope of this
paper and will be described elsewhere.

3.1 Connectives and Examples
A NLF expression for the sentence

In 2002, Chirpy Systems stealthily acquired two profitable companiesipiragl pet acces-
sories.

is shown in Figure 1.

The NLF constructs and connectives are explained in Table 1. Fobledfie abstraction, an NLF
expressiorip, ~, a] corresponds tdz.p(x, a). Note that some common logical operators are not
built-in since they will appear directly as words suchas.? We currently use the unknown/unspecified
operator,% mainly for linguistic constructions that are beyond the coverage of a pktisemantic
mapping model. A simple example that includés our converted WSJ corpus @ther analysts are
nearly as pessimistifor which the NLF expression is

[are, analysts.other, pessimistic%nearly%as]

In Section 5 we give some statistics on the number of semantic expressidamowoin the data used
for our experiments and explain how it affects our accruracy results.

1The term QLF is now sometimes used informally (e.g. Liakata and Puln@i2)2Poon and Domingos (2009)) for any
logic-like semantic representation without explicit quantifier scope.

2NLF does include Horn clauses, which implictly encode negation, but $ioce clauses are not part of the experiments
reported in this paper, we will not discuss them further here.
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[acquired
[stealthily
:[in, 7, 2002],
Chirpy+Systems,
companies.two

:profitable
:[producing,
pet+accessories]]
Figure 1: Example of an NLF semantic expression.

Operator Example Denotation L anguage Constructs
[...] [sold, Chirpy, Growler] predication tuple clauses, prepositions, ...
: company:profitable intersection adjectives, relative clauses, ...
. companies.two (unscoped) quantification  determiners, measure terms
" [in, ~, 2005] variable-free abstract prepositions, relatives, ...
_ [eating, _, apples] unspecified argument missing verb arguments, ...
{.} and{Chirpy, Growler} collection noun phrase coordination, ...
/ acquired/stealthily type-preserving operator  adverbs, modals, ...
+ Chirpy+Systems implicit relation compound nominals, ...
@ meeting@yesterday temporal restriction bare temporal modifiers, ...
& [...] & [.-] conjunction sentences, ...
[ [Dublin, Paris, Bonn| sequence paragraphs, fragments, lists, ...
% met%as uncovered op constructs not covered

Table 1: NLF constructs and connectives.

4 Encoding Semantics as Dependencies

We encode NLF semantic expressions as labeled dependency trees lintéhiabel set is generated
automatically by the encoding process. This is in contrast to conventiopahdency trees for which

the label sets are presupplied (e.g. by a linguistic theory of dependeagynar). The purpose of
the encoding is to enable training of a statistical dependency parser anerting the output of that

parser for a new sentence into a semantic expression. The encodihgitloee aspects: Alignment,
headedness, and label construction.

4.1 Alignment

Since, by design, each word token corresponds to a symbol tokeraftieewgord type) in the NLF ex-
pression, the only substantive issue in determining the alignment is the eocarrof multiple tokens
of the same word type in the sentence. Depending on the source of thaceehteF pairs used for
training, a particular word in the sentence may or may not already be assbwith its corresponding
word position in the sentence. For example, in some of the experiments ckjpoittés paper, this corre-
spondence is provided by the semantic expressions obtained by cognedimstituency treebank (the
well-known Penn WSJ treebank). For situations in which the pairs arédaawithout this informa-
tion, as is the case for direct annotation of sentences with NLF expressiercurrently use a heuristic
greedy algorithm for deciding the alignment. This algorithm tries to ensurelépeindents are near their
heads, with a preference for projective dependency trees. Tedhagmportance of including correct
alignments in the input pairs (as opposed to training with inferred alignmergsyjilpresent accuracy
results for semantic mapping for both correct and automatically infereliggthaents.
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4.2 Headedness

The encoding requires a definition of headedness for words in an kfession, i.e., a head-function
h from dependent words to head words. We defina terms of a head-functiog from an NLF
(sub)expression to a wordw appearing in that (sub)expression, so that, recursively:

Then a head word(w) for a dependentv is defined in terms of the smallest (sub)expression
containingw for which

h(w) = gle) # w

For example, for the NLF expression in Figure 1, this yields the headsrsimovable 3. (The labels
shown in that table will be explained in the following section.)

This definition of headedness is not the only possible one, and othetimasiaould be argued for.
The specific definition for NLF heads turns out to be fairly close to the naifdmead in traditional
dependency grammars. This is perhaps not surprising since traditepahdency grammars are often
partly motivated by semantic considerations, if only informally.

4.3 Labed Construction

As mentioned, the labels used during the encoding of a semantic expregsiandependency tree are
derived so as to enable reconstruction of the expression from a latheeshdency tree. In a general
sense, the labels may be regarded as a kind of formal semantic label, thougkpecifically, a label is
interpretable as a sequence of instructions for constructing the pageshantic expression that links a
dependent to its head, given that part of the semantic expression,inghhat derived from the head,
has already been constructed. The string for a label thus consisteqtiaree of atomic instructions,
where the decoder keeps track of a current expression and the phtieat expression in the expression
tree being constructed. When a new expression is created it becomesrdre expression whose parent
is the old current expression. The atomic instructions (each expregsedibgle character) are shown
in Table 2.

A sequence of instructions in a label can typically (but not always) bapbaased informally as
“starting from head wordy;,, move to a suitable node (at or abavg) in the expression tree, add speci-
fied NLF constructs (connectives, tuples, abstracted arguments)emedbhw, as a tuple or connective
argument.”

Continuing with our running example, the labels for each of the words anersim Table 3.

Algorithmically, we find it convenient to transform semantic expressions iapeddency trees and
vice versa via a derivation tree for the semantic expression in which the atwtriection symbols listed
above are associated with individual nodes in the derivation tree.

The output of the statistical parser may contain inconsistent trees with féabels, in particular
trees in which two different arguments are predicated to fill the same positems@mantic expression
tuple. For such cases, the decoder that produces the semantic expeggdies the simple heuristic
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Instruction

Decoding action

L4

:1/1-1+1&1@%

Set the current expression to a
newly created tuple, collection,

or sequence.

Attach the current subexpression
to its parent with the specified
connective.

Set the current expression to a
newly created symbol from the
dependent word.

Add the current expression at the
specified parent tuple position.

Set the current subexpression to

a newly created abstracted-over or
unspecfied argument.

Set the current subexpression to be
the parent of the current expression.

Table 2: Atomic instructions in formal label sequences.

Dependent Head Label

In acquired [F1- =*0
2002 in -*2
Chirpy Systems  *+
Systems acquired -=*1
stealthily acquired =/
acquired [+0

two companies *.
profitable companies *:
companies acquired -=*2
producing  companies [:"1- *0
pet accessories * +
accessories producing - * 2

Table 3: Formal labels for an example sentence.
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Dataset Null Labels? Auto Align? WSJ sections  Sentences

Train+Null-AAlign  yes no 2-21 39213
Train-Null-AAlign  no no 2-21 24110
Train+Null+AAlign  yes yes 2-21 35778
Train-Null+AAlign  no yes 2-21 22611
Test+Null-AAlign yes no 23 2416
Test-Null-AAlign no no 23 1479

Table 4: Datasets used in experiments.

of using the next available tuple position when such a conflicting configaréipredicated. In our
experiments, we are measuring per-word semantic head-and-labeh@gccso this heuristic does not
play a part in that evaluation measure.

5 Experiments

5.1 Data Preparation

In the experiments reported here, we derive our sentence-semantg$opdraining and testing from
the Penn WSJ Treebank. This choice reflects the lack, to our knowleflgeset of such pairs for a
reasonably sized publicly available corpus, at least for NLF expressiour first step in preparing the
data was to convert the WSJ phrase structure trees into semantic expgesdiis conversion is done
by programming the Stanford treebank toolkit to produce NLF trees bottofrenmpthe phrase structure
trees. This conversion process is not particularly noteworthy in itseifdbe traditional rule-based
syntax-to-semantics translation process) except perhaps to the eatahttbloseness of NLF to natural
language perhaps makes the conversion somewhat easier thannsaysiom to a fully resolved logical
form.

Since our main goal is to investigate trainable mappings from text strings to Seragpressions,
we only use the WSJ phrase structure trees in data preparation: the ptrtacture trees are not used as
inputs when training a semantic mapping model, or when applying such a mod¢heFsame reason,
in these experiments, we do not use the part-of-speech informatioriateslowith the phrase structure
trees in training or applying a semantic mapping model. Instead of parteetispve use word cluster
features from a hierarchical clustering produced with the unsuper2smavn clustering method (Brown
et al, 1992); specifically we use the publicly available clusters reporteddngkal. (2008).

Constructions in the WSJ that are beyond the explicit coverage of theisdon rules used for data
preparation result in expressions that include the unknown/unspe(fiédull’) operator% We report
on different experimental settings in which we vary how we treat trainintpsting expressions with
% This gives rise to the data sets in Table 4 which have +Null (i.e., inclu#ngnd -Null (i.e., not
including?) in the data set names.

Another attribute we vary in the experiments is whether to align the words inthergiE expressions
to the words in the sentence automatically, or whether to use the correct atigfimiis case preserved
from the conversion process, but could equally be provided as parintanual semantic annotation
scheme, for example). In our current experiments, we discard rajaetive dependency trees from
training sets. Automatic alignment results in additional non-projective treesggise to different
effective training sets when auto-alignment is used: these sets are nwitketdAAlign, otherwise -
AAlign. The training set numbers shown in Table 4 are the resulting setgaft@val of non-projective
trees.
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Training Test Accuracy(%)
+Null-AAlign  +Null-AAlign  81.2
-Null-AAlign  +Null-AAlign  78.9
-Null-AAlign  -Null-AAlign  86.1
+Null-AAlign  -Null-AAlign  86.5

Table 5: Per-word semantic accuracy when training with the correct aliginme

Training Test Accuracy(%)
+Null+AAlign  +Null-AAlign  80.4
-Null+AAlign  +Null-AAlign  78.0
-Null+AAlign  -Null-AAlign  85.5
+Null+AAlign  -Null-AAlign  85.8

Table 6: Per-word semantic accuracy when training with an auto-alignment.

5.2 Parser

As mentioned earlier, our method can make use of any trainable statisticadésyy parsing algorithm.
The parser is trained on a set of dependency trees with formal labekplased in Sections 2 and 4.
The specific parsing algorithm we use in these experiments is a deterministiceshite algorithm
(Nivre, 2003), and the specific implementation of the algorithm uses a linddrctassifier for predict-
ing parsing actions (Chang et al., 2010). As noted above, hierardisdér features are used instead
of parts-of-speech; some of the features use coarse (6-bit) or(fidsit) clusters from the hierarchy.
More specifically, the full set of features is:

e The words for the current and next input tokens, for the top of the&kstaw for the head of the
top of the stack.

e The formal labels for the top-of-stack token and its leftmost and rightmalsireh, and for the
leftmost child of the current token.

e The cluster for the current and next three input tokens and for theftthe stack and the token
below the top of the stack.

e Pairs of features combining 6-bit clusters for these tokens together withit £Risters for the top
of stack and next input token.

5.3 Results

Tables 5 and 6 show thger-word semantic accuradgr different training and test sets. This measure is
simply the percentage of words in the test set for which both the prediateéftabel and the head word
are correct. In syntactic dependency evaluation terminology, this pames to the labeled attachment
score.

All tests are with respect to the correct alignment; we vary whether theaatlignment (Table 5)
or auto-alignment (Table 6) is used for training to give an idea of how mucheuristic alignment
is hurting the semantic mapping model. As shown by comparing the two tables, shim lascuracy
due to using the automatic alignment is only about 1%, so while the automatic aligalgerithm can
probably be improved, the resulting increase in accuracy would be ediasmall.

As shown in the Tables 5 and 6, two versions of the test set are usedhatriacludes the 'Null’
operator% and a smaller test set with which we are testing only the subset of senfenedsich the
semantic expressions do not include this label. The highest accuracie8@isjcshown are for the
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#Labels #Train Sents Accuracy(%)

151 (all) 22611 85.5
100 22499 85.5
50 21945 85.5
25 17669 83.8
12 7008 73.4

Table 7: Per-word semantic accuracy after pruning label sets in TralirAAlign (and testing with
Test-Null-AAlign).

(easier) test set which excludes examples in which the test semanticeapsesontain Null operators.
The strictest settings, in which semantic expressions with Null are not irctindeaining but included
in the test set effectively treat prediction of Null operators as erfbs. lower accuracy (high 70’s) for
such stricter settings thus incorporates a penalty for our incomplete gevefgemantics for the WSJ
sentences. The less strict Test+Null settings in whigh treated as a valid output may be relevant to
applications that can tolerate some unknown operators between sudmapsan the output semantics.
Next we look at the effect of limiting the size of the automatically generated fidabal set prior
to training. For this we take the configuration using the TrainWSJ-Null+AAligiming set and the
TestWSJ-Null-AAlign test set (the third row in Table refPerWordSemanto#acyAAlign for which
auto-alignment is used and only labels without the NULL operééare included). For this training
set there are 151 formal labels. We then limit the training set to instancesrtlyainolude the most
frequentk labels, fork = 100, 50, 25, 12, while keeping the test set the same. As can be seen in Table 7,
the accuracy is unaffected when the training set is limited to the 100 mosefrequ50 most frequent
labels. There is a slight loss when training is limited to 25 labels and a large logs Iintited to 12
labels. This appears to show that, for this corpus, the core label sgtchée construct the majority
of semantic expressions has a size somewhere between 25 and 50.rhtaipgpmteresting that this is
roughly the size of hand-produced traditional dependency label ®@gtshe other hand, it needs to be
emphasized that since Table 7 ignores beyond-coverage construbtdpsesently include Null labels,
it is likely that a larger label set would be needed for more complete semantécage.

6 Conclusion and Further Work

We've shown that by designing an underspecified logical form that is/atetd by, and closely related to,
natural language constructions, it is possible to train a direct statisticalingajppm pairs of sentences
and their corresponding semantic expressions, with per-word agesiranging from 79% to 86% de-
pending on the strictness of the experimental setup. The input to trainisgdbesquire any traditional
syntactic categories or parts of speech. We also showed, more spigcitiea we can train a model that
can be applied deterministically at runtime (using a deterministic shift reducethlgaombined with
deterministic clusters), making large-scale text-to-semantics mapping feasible.

In traditional formal semantic mapping methods (Montague (1973), Bos €2G04)), and even
some recent statistical mapping methods (Zettlemoyer and Collins, 2005)ntheatserepresentation is
overloaded to performs two functions: (i) representing the final meaaimg)(ii) composing meanings
from the meanings of subconstituents (e.g. through application of higtler ’imbda functions). In our
view, this leads to what are perhaps overly complex semantic represestatisnme basic linguistic
constructions. In contrast, in the method we presented, these two csifisexaning representation and
semantic construction) are separated, enabling us to keep the semanticstitients simple, while
turning the construction of semantic expressions into a separate strutgaraohg problem (with its
own internal prediction and decoding mechanisms).

Although, in the experiments we reported here deeprepare the training data from a traditional
treebank, we are encouraged by the results and believe that annofagi@ompus with only semantic
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expressions is sufficient for building an efficient and reasonablyrate text-to-semantics mapper. In-
deed, we have started building such a corpus for a question answeptigation, and hope to report
results for that corpus in the future. Other further work includes a fbdmaotational semantics of the
underspecified logical form and elaboration of practical inferenegaijpns with the semantic expres-
sions. This work may also be seen as a step towards viewing semantic itaopref language as the
interaction between a pattern recognition process (described herahamigrence process.
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Abstract

This paper explores the role played by a multilingual feature representation for the task of word
sense disambiguation. We translate the context of an ambiguous word in multiple languages, and
show through experiments on standard datasets that by using a multilingual vector space we can
obtain error rate reductions of up to 25%, as compared to a monolingual classifier.

1 Introduction

Ambiguity is inherent to human language. In particular, word sense ambiguity is prevalent in all natural
languages, with a large number of the words in any given language carrying more than one meaning.
For instance, the English noun plant can mean green plant or factory; similarly the French word feuille
can mean leaf or paper. The correct sense of an ambiguous word can be selected based on the context
where it occurs, and correspondingly the problem of word sense disambiguation is defined as the task of
automatically assigning the most appropriate meaning to a polysemous word within a given context.

Among the various knowledge-based (Lesk, 1986; Mihalcea et al., 2004) and data-driven (Yarowsky,
1995; Ng and Lee, 1996) word sense disambiguation methods that have been proposed to date, supervised
systems have been constantly observed as leading to the highest performance. In these systems, the sense
disambiguation problem is formulated as a supervised learning task, where each sense-tagged occurrence
of a particular word is transformed into a feature vector which is then used in an automatic learning
process. One of the main drawbacks associated with these methods is the fact that their performance is
closely connected to the amount of labeled data available at hand.

In this paper, we investigate a new supervised word sense disambiguation method that is able to take
additional advantage of the sense-labeled examples by exploiting the information that can be obtained
from a multilingual representation. We show that by representing the features in a multilingual space,
we are able to improve the performance of a word sense disambiguation system by a significant margin,
as compared to a traditional system that uses only monolingual features.

2 Related Work

Despite the large number of word sense disambiguation methods that have been proposed so far, targeting
the resolution of word ambiguity in different languages, there are only a few methods that try to explore
more than one language at a time. The work that is perhaps most closely related to ours is the bilin-
gual bootstrapping method introduced in (Li and Li, 2002), where word translations are automatically
disambiguated using information iteratively drawn from two languages. Unlike that approach, which
iterates between two languages to select the correct translation for a given target word, in our method we
simultaneously use the features extracted from several languages. In fact, our method can handle more
than two languages at a time, and we show that the accuracy of the disambiguation algorithm increases
with the number of languages used.

There have also been a number of attempts to exploit parallel corpora for word sense disambiguation
(Resnik and Yarowsky, 1999; Diab and Resnik, 2002; Ng et al., 2003), but in that line of work the parallel
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texts were mainly used as a way to induce word senses or to create sense-tagged corpora, rather than as
a source of additional multilingual views for the disambiguation features. Another related technique is
concerned with the selection of correct word senses in context using large corpora in a second language
(Dagan and Itai, 1994), but as before, the additional language is used to help distinguishing between the
word senses in the original language, and not as a source of additional information for the disambiguation
context.

Also related is the recent SEMEVAL task that has been proposed for cross-lingual lexical substitution,
where the word sense disambiguation task was more flexibly formulated as the identification of cross-
lingual lexical substitutes in context (Mihalcea et al., 2010). A number of different approaches have been
proposed by the teams participating in the task, and although several of them involved the translation of
contexts or substitutes from one language to another, none of them attempted to make simultaneous use
of the information available in the two languages.

Finally, although the multilingual subjectivity classifier proposed in Banea et al. (2010) is not directly
applicable to the disambiguation task we address in this paper, their findings are similar to ours. In that
paper, the authors showed how a natural language task can benefit from the use of features drawn from
multiple languages, thus supporting the hypothesis that multilingual features can be effectively used to
improve the accuracy of a monolingual classifier.

3 Motivation

Our work seeks to explore the expansion of a monolingual feature set with features drawn from multiple
languages in order to generate a more robust and more effective vector-space representation that can be
used for the task of word sense disambiguation. While traditional monolingual representations allow a
supervised learning systems to achieve a certain accuracy, we try to surpass this limitation by infusing
additional information in the model, mainly in the form of features extracted from the machine translated
view of the monolingual data. A statistical machine translation (MT) engine does not only provide
a dictionary-based translation of the words surrounding a given ambiguous word, but it also encodes
the translation knowledge derived from very large parallel corpora, thus accounting for the contextual
dependencies between the words.

In order to better explain why a multilingual vector space provides for a better representation for
the word sense disambiguation task, consider the following examples centered around the ambiguous
verb build.! For illustration purposes, we only show examples for four out of the ten possible meanings
in WordNet (Fellbaum, 1998), and we only show the translations in one language (French). All the
translations are performed using the Google Translate engine.

En 1: Telegraph Co. said it will spend $20 million to build a factory in Guadalajara, Mex-
ico, to make telephone answering machines. (sense id I)

Fr 1: Telegraph Co. a annoncé qu’il dépensera 20 millions de dollars pour construire une
usine 4 Guadalajara, au Mexique, pour faire répondeurs téléphoniques.

En 2: A member in the House leadership and skilled legislator, Mr. Fazio nonetheless found
himself burdened not only by California’s needs but by Hurricane Hugo amendments he ac-
cepted in a vain effort to build support in the panel. (sense id 3)

Fr 2: Un membre de la direction de la Chambre et le l1égislateur compétent, M. Fazio a
néanmoins conclu lui-méme souffre, non seulement par les besoins de la Californie, mais
par I’ouragan Hugo amendements qu’il a accepté dans un vain effort pour renforcer le sou-
tien dans le panneau.

En 3: Burmah Oil PLC, a British independent oil and specialty-chemicals marketing con-
cern, said SHV Holdings N.V. has built up a 7.5% stake in the company. (sense id 3)

!The sentences provided and their annotations are extracted from the SEMEVAL corpus.
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Fr 3: Burmah Oil PLC, une huile indépendant britannique et le souci de commercialisation
des produits chimiques de spécialité, a déclaré SHV Holdings NV a acquis une participation
de 7,5% dans la société.

En 4: Plaintiffs’ lawyers say that buildings become “sick” when inadequate fresh air and
poor ventilation systems lead pollutants to build up inside. (sense id 2)

Fr 4: Avocats des plaignants disent que les batiments tombent malades quand I’insuffisance
d’air frais et des systemes de ventilation insuffisante de plomb polluants de s’accumuler 2
I’intérieur.

As illustrated by these examples, the multilingual representation helps in two important ways. First,
it attempts to disambiguate the target ambiguous word by assigning it a different translation depending
on the context where it occurs. For instance, the first example includes a usage for the verb build in its
most frequent sense, namely that of construct (WordNet: make by combining materials and parts), and
this sense is correctly translated into French as construire. In the second sentence, build is used as part
of the verbal expression build support where it means fo form or accumulate steadily (WordNet), and
it is accurately translated in both French sentences as renforcer. For sentences three and four, build is
followed by the adverb up, yet in the first case, its sense id in WordNet is 3, build or establish something
abstract, while in the second one is 2, form or accumulate steadily. Being able to infer from the co-
occurrence of additional words appearing the context, the MT engine differentiates the two usages in
French, translating the first occurrence as acquis and the second one as accumuler.

Second, the multilingual representation also significantly enriches the feature space, by adding fea-
tures drawn from multiple languages. For instance, the feature vector for the first example will not only
include English features such as factory and make, but it will also include additional French features
such as usine and faire. Similarly, the second example will have a feature vector including words such
as buildings and systems, and also bdtiments and systémes. While this multilingual representation can
sometime result in redundancy when there is a one-to-one translation between languages, in most cases
however the translations will enrich the feature space, by either indicating that two features in English
share the same meaning (e.g., the words manufactory and factory will both be translated as usine in
French), or by disambiguating ambiguous English features using different translations (e.g., the context
word plant will be translated in French as usine or plante, depending on its meaning).

Appending therefore multilingual features to the monolingual vector generates a more orthogonal
vector space. If, previously, the different senses of build were completely dependent on their surrounding
context in the source language, now they are additionally dependent on the disambiguated translation of
build given its context, as well as the context itself and the translation of the context.

4 Multilingual Vector Space Representations for WSD

4.1 Datasets

We test our model on two publicly available word sense disambiguation datasets. Each dataset includes
a number of ambiguous words. For each word, a number of sample contexts were extracted and then
manually labeled with their correct sense. Therefore, both datasets follow a Zipfian distribution of senses
in context, given their natural usage. Note also that senses do not cross part-of-speech boundaries.

The TWA? (two-way ambiguities) dataset contains sense tagged examples for six words that have
two-way ambiguities (bass, crane, motion, palm, plant, tank). These are words that have been previously
used in word sense disambiguation experiments reported in (Yarowsky, 1995; Mihalcea, 2003). Each
word has approximately 100 to 200 examples extracted from the British National Corpus. Since the
words included in this dataset have only two homonym senses, the classification task is easier.

http://www.cse.unt.edu/-rada/downloads.html\#twa
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Figure 1: Construction of a multilingual vector (combinations of target languages C'(3, k), where k = 0..3

The second dataset is the SEMEVAL corpus 2007 (Pradhan et al., 2007),? consisting of a sample of 35
nouns and 65 verbs with usage examples extracted from the Penn Treebank as well as the Brown corpus,
and annotated with OntoNotes sense tags (Hovy et al., 2006). These senses are more coarse grained
when compared to the traditional sense repository encoded in the WordNet lexical database. While
OntoNotes attains over 90% inter-annotator agreement, rendering it particularly useful for supervised
learning approaches, WordNet is too fine grained even for human judges to agree (Hovy et al., 2006).
The number of examples available per word and per sense varies greatly; some words have as few as
50 examples, while some others can have as many as 2,000 examples. Some of these contexts are
considerably longer than those appearing in TWA, containing around 200 words. For the experiments
reported in this paper, given the limitations imposed by the number of contexts that can be translated by
the online translation engine,* we randomly selected a subset of 31 nouns and verbs from this dataset.

4.2 Model

In order to generate a multilingual representation for the TWA and SEMEVAL datasets, we rely on the
method proposed in Banea et al. (2010) and use Google Translate to transfer the data from English into
several other languages and produce multilingual representations. We experiment with three languages,
namely French (Fr), German (De) and Spanish (Es). Our choice is motivated by the fact that when
Google made public their statistical machine translation system in 2007, these were the only languages
covered by their service, and we therefore assume that the underlying statistical translation models are
also the most robust. Upon translation, the data is aligned at instance level, so that the original English
context is augmented with three mirroring contexts in French, German, and Spanish, respectively.

We extract the word unigrams from each of these contexts, and then generate vectors that consist of
the original English unigrams followed by the multilingual portion resulted from all possible combina-
tions of the three languages taken 0 through 3 at a time, or more formally C' (3, k), where & = 0..3 (see
Figure 1). For instance, a vector resulting from C'(3,0) is the traditional monolingual vector, whereas a
vector built from the combination C'(3, 3) contains features extracted from all languages.

‘http://nlp.cs.swarthmore.edu/semeval/tasks/taskl7/description.shtml
*We use Google Translate (http://translate.google.com/), which has a limitation of 1,000 translations per day.
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Figure 2: Example of sentence whose words are weighted based on a normal distribution with variance of 5, and
an amplification factor of 20

4.2.1 Feature Weighting

For weighting, we use a parametrized weighting based on a normal distribution scheme, to better leverage
the multilingual features. Let us consider the following sentence:

We made the non-slip surfaces by stippling the tops with a <head>> bass </head> broom a
fairly new one works best.

Every instance in our datasets contains an XML-marking before and after the word to be disam-
biguated (also known as a headword), in order to identify it from the context. For instance, in the
example above, the headword is bass. The position of this headword in the context can be considered
the mean of a normal distribution. When considering a 02 = 5, five words to the left and right of the
mean are activated with a value above 1072 (see the dotted line in Figure 2). However, all the features
are actually activated by some amount, allowing this weighting model to capture a continuous weight
distribution across the entire context. In order to attain a higher level of discrepancy between the weight
of consecutive words, we amplify the normal distribution curve by an empirically determined factor of
20, effectively mapping the values to an interval ranging from O to 4. We apply this amplified activation
to every occurrence of a headword in a context. If two activation curves overlap, meaning that a given
word has two possible weights, the final weight is set to the highest (generated by the closest headword in
context). Similar weighting is also performed on the translated contexts, allowing for the highest weight
to be attained by the headword translated into the target language, and a decrementally lower weight for
its surrounding context.

This method therefore allows the vector-space model to capture information pertaining to both the
headword and its translations in the other languages, as well as a language dependent gradient of the
neighboring context usage. While a traditional bigram or trigram model only captures an exact expres-
sion, a normal distribution based model is able to account for wild cards, and transforms the traditionally
sparse feature space into one that is richer and more compact at the same time.

4.3 Adjustments

We encountered several technical difficulties in translating the XML-formatted datasets, which we will
expand on in this section.
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4.3.1 XML-formatting and alignment

First of all, as every instance in our datasets contains an XML-marked headword (as shown in Section
4.2.1), the tags interfere with the MT system, and we had to remove them from the context before
proceeding with the translation. The difficulty came from the fact that the translated context provides
no way of identifying the translation of the original headword. In order to acquire candidate translations
of the English headword we query the Google Multilingual Dictionary> (setting the dictionary direction
from English to the target language) and consider only the candidates listed under the correct part-of-
speech. We then scan the translated context for any of the occurrences mined from the dictionary, and
locate the candidates.

In some of the cases we also identify candidate headwords in the translated context that do not mirror
the occurrence of a headword in the English context (i.e., the number of candidates is higher than the
number of headwords in English). We solve this problem by relying on the assumption that there is an
ideal position for a headword candidate, and this ideal position should reflect the relative position of the
original headword with regard to its context. This alignment procedure is supported by the fact that the
languages we use follow a somewhat similar sentence structure; given parallel paragraphs of text, these
cross-lingual “context anchors” will lie in close vicinity. We therefore create two lists: the first list is
the reference English list, and contains the indexes of the English headwords (normalized to 100); the
second list contains the normalized indexes of the candidate headwords in the target language context.
For each candidate headword in the target language, we calculate the shortest distance to a headword
appearing in the reference English list. Once the overall shortest distance is found, both the candidate
headword’s index in the target language and its corresponding English headword’s index are removed
from their respective list. The process continues until the reference English list is empty.

4.3.2 Inflections

There are also cases when we are not able to identify a headword due to the fact that we are trying to find
the lemma (extracted from the multilingual dictionary) in a fully inflected context, where most probably
the candidate translation is inflected as well. As French, German and Spanish are all highly inflected
languages, we are faced with two options: to either lemmatize the contexts in each of the languages,
which requires a lemmatizer tuned for each language individually, or to stem them. We chose the latter
option, and used the Lingua::Stem::Snowball,® which is a publicly available implementation of the Porter
stemmer in multiple languages.

To summarize, all the translations are stemmed to obtain maximum coverage, and alignment is performed
when the number of candidate entries found in a translated context does not match the frequency of
candidate headwords in the reference English context. Also, all the contexts are processed to remove any
special symbols and numbers.

5 Results and Discussion

5.1 Experimental Setup

In order to determine the effect of the multilingual expanded feature space on word sense disambiguation,
we conduct several experiments using the TWA and SEMEVAL datasets. The results are shown in Tables
1 and 2.

Our proposed model relies on a multilingual vector space, where each individual feature is weighted
using a scheme based on a modified normal distribution (Section 4.2.1). As eight possible combinations
are available when selecting one main language (English) and combinations of three additional languages

Shttp://www.google.com/dictionary
®http://search.cpan.org/dist/Lingua-Stem-Snowball/lib/Lingua/Stem/Snowball.pm
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taken O through 3 at a time (Spanish, French and German), we train eight Naive Bayes learners’ on the

resulted datasets: one monolingual (En), three bilingual (En-De, En-Fr, En-Es), three tri-lingual (En-
De-Es, En-De-Fr, En-Fr-Es), and one quadri-lingual (En-Fr-De-Es). Each dataset is evaluated using ten
fold cross-validation; the resulting micro-accuracy measures are averaged across each of the language
groupings and they appear in Tables 1 and 2 in ND-L1 (column 4), ND-L2 (column 5), ND-L3 (column
6), and ND-L4 (column 7), respectively. Our hypothesis is that as more languages are added to the mix
(and therefore the number of features increases), the learner will be able to distinguish better between
the various senses.

5.2 Baselines

Our baseline consists of the predictions made by a majority class learner, which labels all examples with
the predominant sense encountered in the training data.® Note that the most frequent sense baseline
is often times difficult to surpass because many of the words exhibit a disproportionate usage of their
main sense (i.e., higher than 90%), such as the noun bass or the verb approve. Despite the fact that the
majority vote learner provides us with a supervised baseline, it does not take into consideration actual
features pertaining to the instances. We therefore introduce a second, more informed baseline that relies
on binary-weighted features extracted from the English view of the datasets and we train a multinomial
Naive Bayes learner on this data. For every word included in our datasets, the binary-weighted Naive
Bayes learner achieves the same or higher accuracy as the most frequent sense baseline.

5.3 Experiments

Comparing the accuracies obtained when training on the monolingual data, the binary weighted baseline
surpasses the normal distribution-based weighting model in only three out of six cases on the TWA
dataset (difference ranging from .5% to 4.81%), and in 6 out of 31 cases on the SEMEVAL dataset
(difference ranging from .53% to 7.57%, where for 5 of the words, the difference is lower than 3%). The
normal distribution-based model is thus able to activate regions around a particular headword, and not
an entire context, ensuring more accurate sense boundaries, and allowing this behavior to be expressed
in multilingual vector spaces as well (as seen in columns 7-9 in Tables 1 and 2).

When comparing the normal distribution-based model using one language versus more languages,
5 out of 6 words in TWA score highest when the expanded feature space includes all languages, and
one scores highest for combinations of 3 languages (only .17% higher than the accuracy obtained for
all languages). We notice the same behavior in the SEMEVAL dataset, where 18 of the words exhibit
their highest accuracy when all four languages are taken into consideration, and 3 achieve the highest
score for three-language groupings (at most .37% higher than the accuracy obtained for the four language
grouping). While the model displays a steady improvement as more languages are added to the mix, four
of the SEMEVAL words are unable to benefit from this expansion, namely the verbs buy (-0.61%), care
(-1.45%), feel (-0.29%) and propose (-2.94%). Even so, we are able to achieve error rate reductions
ranging from 6.52% to 63.41% for TWA, and from 3.33% to 34.62% for SEMEVAL.

To summarize the performance of the model based on the expanded feature set and the proposed
baselines, we aggregate all the accuracies from Tables 1 and 2, and present the results obtained in Table 3.
The monolingual modified normal-distribution model is able to exceed the most common sense baseline
and the binary-weighted Naive Bayes learner for both datasets, proving its superiority as compared to
a purely binary-weighted model. Furthermore, we notice a consistent increase in accuracy as more
languages are added to the vector space, displaying an average increment of 1.7% at every step for
TWA, and 0.67% for SEMEVAL. The highest accuracy is achieved when all languages are taken into
consideration: 86.02% for TWA and 83.36% for SEMEVAL, corresponding to an error reduction of
25.96% and 10.58%, respectively.

"We use the multinomial Naive Bayes implementation provided by the Weka machine learning software (Hall et al., 2009).
80ur baseline it is not the same as the traditional most common sense baseline that uses WordNet’s first sense heuristic,
because our data sets are not annotated with WordNet senses.
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1 2 3 4 5 6 7 8 9 10
Word #Inst | # Senses | MCS | BIN-L1 | ND-L1 ND-L2 ND-L3 ND-L4 | Error Red.

bass.n 107 2 90.65 | 90.65 90.65 9128 9190 92.52 20.00

crane.n 95 2 75.79 | 75.79 76.84  76.14 7649  78.95 9.09
motion.n | 201 2 70.65 | 81.09 79.60  86.73 89.88  92.54 63.41
palm.n 201 2 71.14 | 73.13 87.06  88.89  89.72  89.55 19.23
plant.n 187 2 54.55 | 79.14 7433 7790  81.82  83.96 37.50
tank.n 201 2 62.69 | 77.61 77.11 7629 7645  178.61 6.52

Table 1: Accuracies obtained on the TWA dataset; Columns: 1 - words contained in the corpus, 2 - number of
examples for a given word, 3 - number of senses covered by the examples, 4 - micro-accuracy obtained when
using the most common sense (MCS), 5 - micro-accuracy obtained using the multinomial Naive Bayes classifier
on binary weighted monolingual features in English, 6 - 9 - average micro-accuracy computed over all possible
combinations of English and 3 languages taken O through 3 at a time, resulted from features weighted following
a modified normal distribution with 02 = 5 and an amplification factor of 20 using a multinomial Naive Bayes
learner, where 6 - one language, 7 - 2 languages, 8 - 3 languages, 9 - 4 languages, 10 - error reduction calculated
between ND-L1 (6) and ND-L4 (9)

6 Conclusion

This paper explored the cumulative ability of features originating from multiple languages to improve
on the monolingual word sense disambiguation task. We showed that a multilingual model is suited to
better leverage two aspects of the semantics of text by using a machine translation engine. First, the
various senses of a target word may be translated into other languages by using different words, which
constitute unique, yet highly salient features that effectively expand the target word’s space. Second, the
translated context words themselves embed co-occurrence information that a translation engine gathers
from very large parallel corpora. This information is infused in the model and allows for thematic spaces
to emerge, where features from multiple languages can be grouped together based on their semantics,
leading to a more effective context representation for word sense disambiguation. The average micro-
accuracy results showed a steadily increasing progression as more languages are added to the vector
space. Using two standard word sense disambiguation datasets, we showed that a classifier based on a
multilingual representation can lead to an error reduction ranging from 10.58% (SEMEVAL) to 25.96%
(TWA) as compared to the monolingual classifier.
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1 2 3 4 5 6 7 8 9 10
Word #1Inst | # Senses | MCS | BIN-L1 | ND-L1 ND-L2 ND-L3 ND-L4 | Error Red.
approve.v 53 2 94.34 | 94.34 9434 9434 9560  96.23 33.33
ask.v 348 6 64.94 | 68.39 72.41 73.66 7471 75.00 9.37
bill.n 404 3 65.10 | 88.12 90.59 91.75 92.41 92.82 23.68
buy.v 164 5 78.66 | 78.66 78.05 77.64 7744  77.44 -2.78
capital.n 278 4 92.81 | 92.81 92.81 92.81 93.17 93.53 10.00
care.v 69 3 78.26 | 78.26 86.96 86.47 85.99 85.51 -11.11
effect.n 178 3 82.02 | 82.02 84.83 85.96  86.33 85.96 7.41
exchange.n | 363 5 7190 | 73.83 78.51 82.37 84.85 85.95 34.62
explain.v 85 2 88.24 | 88.24 88.24 88.24 88.24 88.24 0.00
feel.v 347 3 82.13 | 82.13 82.13 82.04 81.94 81.84 -1.61
grant.v 19 2 63.16 | 73.68 73.68 71.93 71.93 78.95 20.00
hold.v 129 8 3488 | 45.74 4341 43.41 4341 4341 0.00
hour.n 187 4 84.49 | 84.49 83.96 83.78 83.78 84.49 3.33
job.n 188 3 7447 | T74.47 80.32 80.67 82.62  84.04 18.92
part.n 481 4 81.91 | 8191 82.12 83.30 84.13 85.45 18.60
people.n 754 4 91.11 | 91.11 91.11 91.29 9222  93.37 25.37
point.n 469 9 71.64 | 73.99 77.61 82.09 83.51 84.22 29.52
position.n 268 7 27.61 | 60.82 61.19 66.17 68.91 68.66 19.23
power.n 251 3 47.81 | 84.46 76.89 81.94 82.87 83.27 27.59
president.n 879 3 86.23 | 89.87 87.14 88.28 89.34  90.79 28.32
promise.v 50 2 88.00 | 88.00 86.00 86.67 87.33 88.00 14.29
propose.v 34 2 85.29 | 85.29 88.24 87.25 86.27 85.29 -25.00
rate.n 1009 2 84.64 | 86.92 87.02 88.07 88.64  89.30 17.56
remember.v | 121 2 99.17 | 99.17 99.17 99.17 99.17 99.17 0.00
rush.v 28 2 92.86 | 92.86 9286 9286 92.86 92.86 0.00
say.v 2161 5 97.78 | 97.78 97.78 97.78 97.78 97.78 0.00
see.v 158 6 4494 | 47.47 49.37 51.05 51.69 52.53 6.25
state.n 617 3 83.14 | 83.95 85.25 85.25 85.47 85.74 3.30
system.n 450 5 55.56 | 72.44 74.00  73.85 7526  75.78 6.84
value.n 335 3 89.25 | 89.25 89.25 89.35 89.45 89.85 5.56
work.v 230 7 64.78 | 65.65 6696 6826 6899 68.70 5.26

Table 2: Accuracies obtained on the SEMEVAL dataset; Columns: 1 - words contained in the corpus, 2 - number
of examples for a given word, 3 - number of senses covered by the examples, 4 - micro-accuracy obtained when
using the most common sense (MCS), 5 - micro-accuracy obtained using the multinomial Naive Bayes classifier
on binary weighted monolingual features in English, 6 - 9 - average micro-accuracy computed over all possible
combinations of English and 3 languages taken O through 3 at a time, resulted from features weighted following
a modified normal distribution with 02 = 5 and an amplification factor of 20 using a multinomial Naive Bayes
learner, where 6 - one language, 7 - 2 languages, 8 - 3 languages, 9 - 4 languages, 10 - error reduction calculated
between ND-L1 (6) and ND-L4 (9)

1 2 3 4 5 6 7 8
Dataset MCS | BIN-L1 | ND-L1 ND-L2 ND-L3 ND-L4 | Error Red.
TWA 7091 | 79.57 80.93 82.87 84.38 86.02 25.96
SEMEVAL | 75.71 | 80.52 81.36  82.18 82.78 83.36 10.58

Table 3: Aggregate accuracies obtained on the TWA and SEMEVAL datasets; Columns: 1 - dataset, 2 - average
micro-accuracy obtained when using the most common sense (MCS), 3 - average micro-accuracy obtained using
the multinomial Naive Bayes classifier on binary weighted monolingual features in English, 4 - 7 - average micro-
accuracy computed over all possible combinations of English and 3 languages taken O through 3 at a time, resulted
from features weighted following a modified normal distribution with 0 = 5 and an amplification factor of 20
using a multinomial Naive Bayes learner, where 4 - one language, 5 - 2 languages, 6 - 3 languages, 7 - 4 languages,
8 - error reduction calculated between ND-L1 (4) and ND-L4 (7)
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Abstract

We present a system to translate natural language sentences to formulas in a formal or a knowl-
edge representation language. Our system uses two inverse A-calculus operators and using them can
take as input the semantic representation of some words, phrases and sentences and from that de-
rive the semantic representation of other words and phrases. Our inverse A operator works on many
formal languages including first order logic, database query languages and answer set programming.
Our system uses a syntactic combinatorial categorial parser to parse natural language sentences and
also to construct the semantic meaning of the sentences as directed by their parsing. The same parser
is used for both. In addition to the inverse A-calculus operators, our system uses a notion of gener-
alization to learn semantic representation of words from the semantic representation of other words
that are of the same category. Together with this, we use an existing statistical learning approach to
assign weights to deal with multiple meanings of words. Our system produces improved results on
standard corpora on natural language interfaces for robot command and control and database queries.

1 Introduction

Our long term goal is to develop general methodologies to translate natural language text into a formal
knowledge representation (KR) language. In the absence of a single KR language that is appropriate
for expressing all the nuances of a natural language, currently, depending on the need different KR
languages are used. For example, while first-order logic is appropriate for mathematical knowledge, one
of its subset Description logic is considered appropriate for expressing ontologies, temporal logics are
considered appropriate for expressing goals of agents and robots, and various non-monotonic logics have
been proposed to express common-sense knowledge. Thus, one of of our goals in this paper is to develop
general methodologies that can be used in translating natural language to a desired KR language.

There have been several learning based approaches, mainly from two groups at MIT and Austin.
These include the following works: Zettlemoyer and Collins (2005), Kate and Mooney (2006), Wong
and Mooney (2006), Wong and Mooney (2007), Lu et al. (2008), Zettlemoyer and Collins (2007) and Ge
and Mooney (2009). Given a training corpus of natural language sentences coupled with their desired
representations, these approaches learn a model capable of translating sentences to a desired meaning
representation. For example, in the work by Zettlemoyer and Collins (2005), a set of hand crafted
rules is used to learn syntactic categories and semantic representations of words based on combinatorial
categorial grammar (CCG), as described by Steedman (2000), and A-calculus formulas, as discussed
by Gamut (1991). The later work of Zettlemoyer and Collins (2007), also uses hand crafted rules. The
Austin group has several papers over the years. Many of their works including the one by Ge and Mooney
(2009) use a word alignment method to learn semantic lexicon and learn rules for composing meaning
representation.
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Similar to the work by Ge and Mooney (2009), we use an existing syntactic parser to parse natural
language. However we use a CCG parser, as described by Clark and Curran (2007), to parse sentences,
use lambda calculus for meaning representation, use the CCG parsing to compose meaning and have an
initial dictionary. Note that unlike the work by Ge and Mooney (2009), we do not need to learn rules
for composing meaning representation. We use a novel method to learn semantic lexicon which is based
on two inverse lambda operators that allow us to compute F' given G and H such that FQG = H
or GQF = H. Compared to the work by Zettlemoyer and Collins (2005), we use the same learning
approach but use a completely different approach in lexical generation. Our inverse A\ operator has been
tested to work for many languages including first order logic, database query language, CLANG by
Chen et al. (2003), answer set programming (ASP) as described by Baral (2003), and temporal logic.
Thus our approach is not dependent on the language used to represent the semantics, nor limited by a
fixed set of rules. Rather, the new A-calculus formulas and their semantic models, corresponding to the
semantic or meaning representations, are directly obtained from known semantic representations which
were provided with the data or learned before. The richness of A calculus allows us to rely only on the
syntactic parse itself without the need to have separate rules for composing the semantics. The provided
method yields improved experimental results on existing corpora on robot command and control and
database queries.

2 Motivation and Background

We now illustrate how one can use CCG parsing and A-calculus applications to obtain database query
representation of sentences. We then motivate and explain the role of our “inverse \” operator. A
syntactic and semantic parse tree for the sentence “Give me the largest state.” is given in Table 1.

Give me the largest state.
S/ NP NP/N N/N N
S/NP NP/N N

S/INP — NP
S
Give me the largest state.
Az.answer(A, zQA) Az.x Az Ay largest(y, zQy)  Az.state(z)
Az.answer(A, zQA) Az.x Ay.largest(y, state(y))
Az.answer(A, xQA) Ay.largest(y, state(y))

answer (A, largest(A, state(A)))

Table 1: CCG and A-calculus derivation for “Give me the largest state.”

The upper portion of the figure lists the nodes corresponding to the CCG categories which are used to
syntactically parse the sentence. These are assigned to each word and then combined using combinatorial
rules, as described by Steedman (2000), to obtain the categories corresponding to parts of the sentence
and finally the complete sentence itself. For example, the category for “largest”, N/N is combined with
the category of “state.”, IV, to obtain the category of “largest state.”, which is N. In a similar manner, each
word is assigned a semantic meaning in the form of a A-calculus formula, as indicated by the lower por-
tion of the figure. The language used to represent the semantics of words and the sentence is the database
query language used in the robocup domain. The formulas corresponding to words are combined by ap-
plying one to another, as dictated by the syntactic parse tree to obtain the semantic representation of the
whole sentence. For example, the semantics of “the largest state.”, \y.largest(y, state(y)) is applied
to the semantics of “Give me”, Az.answer(A, @A), to obtain the semantics of “Give me the largest
state.”, answer (A, largest(A, state(A))).

The given example illustrates how to obtain the semantics of the sentence given the semantics of
words. However, what happens if the semantics of the word “largest” is not given? It might be either
missing completely, or the current semantics of “largest” in the dictionary might simply not be applicable

36



for the sentence “Give me the largest state.”.

Let us assume that the semantic representation of “largest” is not known, while the semantic repre-
sentation of the rest of the sentence is known. We can then obtain the semantic representation of “largest”
as follows. Given the formula answer(A, largest(A, state(A))) for the whole sentence “Give me the
largest state.” and the formula Az.answer(A, z@QA) for “Give me”, we can perform some kind of an in-
verse application ' to obtain the semantics representation of “the largest state”, \y.largest(y, state(y)).
Similarly, we can then use the known semantics of “the”, to obtain the semantic representation of “largest
state.” as \y.largest(y, state(y)). Finally, using the known semantics of state, Az.state(z) we can ob-
tain the the semantics of “largest” as Az.\y.largest(y, xQy).

It is important to note that using @ we are able to construct relatively complex semantic representa-
tions that are properly mapped to the required syntax.

Given a set of training sentences with their desired semantic representations, a syntactic parser, such
as the one by Clark and Curran (2007), and an initial dictionary, we can apply the above idea on each
of the sentences to learn the missing semantic representations of words. We can then apply a learning
model, such as the one used by Zettlemoyer and Collins (2005), on these new semantic representations
and assign weights to different semantic representations. These can then be used to parse and represent
the semantics of new sentences. This briefly sums up our approach to learn and compute new semantic
representations. It is easy to see that this approach can be applied with respect to any language that can
be handled by “inverse A” operators and is not limited in the set of new representations it provides.

We will consider two domains to evaluate our approach. The fist one is the GEOQUERY domain used
by Zelle and Mooney (1996), which uses a Prolog based language to query a database with geographical
information about the U.S. It should be noted that this language uses higher-order predicates. An example
query is provided in Table 1. The second domain is the ROBOCUP domain of Chen et al. (2003). This is
a multi-agent domain where agents compete against each other in a simulated soccer game. The language
CLANG of Chen et al. (2003) is a formal language used to provide instructions to the agents. An example
query with the corresponding natural language sentence is given below.

o [f the ball is in our midfield, position player 3 at (-5, -23).

e ((bpos (midfield our)) (do (player our 3) (pos (pt -5 -23))))

3 Learning Approach

We adopt the learning model given by Zettlemoyer and Collins (2005, 2007, 2009) and use it to assign
weights to the semantic representations of words. Since a word can have multiple possible syntac-
tic and semantic representations assigned to it, such as John may be represented as John as well as
Az.z@QJohn, we use the probabilistic model to assign weights to these representations.

The main differences between our algorithm and the one given by Zettlemoyer and Collins (2005)
are the way in which new semantic representations are obtained. While Zettlemoyer and Collins (2005)
uses a predefined table to obtain these, we obtain the new semantic representations by using inverse A
operators and generalization.

3.1 Learning model and parsing

We assume that complete syntactic parses are available?. The parsing uses a probabilistic combinatorial
categorial grammar framework similar to the one given by Zettlemoyer and Collins (2005). We assume a
probabilistic categorial grammar (PCCG) based on a log linear model. Let S denote a sentence, L denote
the semantic representation of the sentence, and 7" denote it’s parse tree. We assume a mapping f of a
triple (L, T, S) to feature vectors R? and a vector of parameters © € R? representing the weights. Then
the probability of a particular syntactic and semantic parse is given as:

'Thus instead of applying G to F to obtain H, G@F = H, we try to find an F such that GQF = H given G and H.
%A sentence can have several different parses.
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_ f(L,1,8).6
P(L,T|S;0) = Z(;T) FETS0

We use only lexical features. Each feature f; counts the number of times that the lexical entry is used
inT.
Parsing a sentence under PCCG includes finding L such that P(L|S; ©) is maximized.
argmaxy P(L|S;©) =
argmazy, Yy P(L,T|S;©)

We use dynamic programming techniques to calculate the most probable parse for a sentence.

3.2 The inverse \ operators

For lack of space, we present only one of the two Inverse A\ operators, Inversey, and Inverser of
Gonzalez (2010). The objective of these two algorithms is that given typed A-calculus formulas H and
G, we want to compute the formula F' such that FQG = H and GQF = H. First, we introduce the
different symbols used in the algorithm and their meaning :

e Let G, H represent typed A-calculus formulas, J!',.J2,...,J" represent typed terms, v to vy, v and
w represent variables and o1,...,0,, represent typed atomic terms.

e Let f() represent a typed atomic formula. Atomic formulas may have a different arity than the one
specified and still satisfy the conditions of the algorithm if they contain the necessary typed atomic
terms.

e Typed terms that are sub terms of a typed term J are denoted as J;.

o If the formulas we are processing within the algorithm do not satisfy any of the i f conditions then
the algorithm returns null.

Definition 1 (operator :) Consider two lists of typed \-elements A and B, (ai, ..., an) and (bj, ..., by)
respectively and a formula H. The result of the operation H(A : B) is obtained by replacing a; by b;,
for each appearance of A in H.

Next, we present the definition of an inverse operators® Inverser(H, G):

Definition 2 (Inversegr(H, G)) The function Inverser(H, G), is defined as:
Given G and H:

1. If G is \v.vQJ, set F = Inverser,(H,J)
2. If Jis a sub term of H and G is \v.H(J : v) then F = J.

3. If G is not Av.vQJ, J is a sub term of H and G is \w.H(J(J1, ..., Jy,) : wQdJ,, ..., QJ,) with 1
<p.gs<m.then F = \vi,...,vs.J (J1, ..., Jpm : Up, ..., Vg).

The function Inverser,(H, G) is defined similarly.

Ilustration: Inverser - Case 3:

Suppose H = in(river, Texas) and G = \v.v@QT exasQriver

G is not of the form Av.v@J since J = TexasQriver is not a formula. Thus the first condition is not
satisfied. Similarly, there is no J that satisfies the second condition. Thus let us try to find a suitable .J
that satisfies third condition. If we take J; = river and Jy = Texas, then the third condition is satisfied
by G =Ax.H((J(J1, J2) : xQJ3@.J;), which in this case corresponds to G = Az. H (in(river, Texas) :
rQTexasQriver). Thus, F = Avy, ve.J (J1, Ja : v2,v1) and so F' = \vy, va.in(ve, v1).

Itis easy tosee that G @ F' = H.

3This is the operator that was used in this implementation. In a companion work we develop an enhancement of this operator
which is proven sound and complete.
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3.3 Generalization

Using INVERSE_L and INVERSE_R, we are able to obtain new semantic representations of par-
ticular words in the sentence. However, without any form of generalization, we are not able to extend
these to words beyond the ones actually contained in the training data. Since our goal is to go beyond
that, we strive to generalize the new semantic representations beyond those words.

To extend our coverage, a function that will take any new learned semantic expressions and the cur-
rent lexicon and will try to use them to obtain new semantic expressions for words of the same category
has to be designed. It will use the following idea. Consider the non-transitive verb “fly” of category
S\ N P. Lets assume we obtain a new semantic expression for “fly” as Az. fly(z) using INVERSE_L
and INVERSE_R. The GENERALIZFE function looks up all the words of the same syntactic cat-
egory, S\ N P. It then identifies the part of the semantic expression in which “fly” is involved. In our
particular case, it’s the subexpression fly. It then proceeds to search the dictionary for all the words of
category S\ N P. For each such word w, it will add a new semantic expression Az.w(x) to the dictionary.
For example for the verb “swim”, it would add Az.swim(z).

However, the above idea also comes with a drawback. It can produce a vast amount of new se-
mantics representations that are not necessary for most of the sentences, and thus have a negative
impact on performance. Thus instead of applying the above idea on the whole dictionary, we per-
form generalization “on demand”. That is, if a sentence contains words with unknown semantics, we
look for words of the same category and use the same idea to find their semantics. Let us assume
IDENTIFY (word, semantics) identifies the parts of semantics in which word is involved and
REPLACE(s,a,b) replaces a with b in s. We assume that each lexical entry is a triple (w, cat, sem)
where w is the actual word, cat is the syntactic category and sem is the semantic expression correspond-
ing to w and cat.

GENERALIZEp(L,«)

e Foreachl; € L

- If lj(cat) = afcat)
x I = IDENTIFY (I;(w),1;(sem))
x S = REPLACE(l;(sem), I, o(w))
* L=LU (a(w),a(cat),S)

As an example, consider the sentence “Give me the largest state.” from Table 1. Let us assume that
the semantics of the word “largest” as well as “the” is not known, however the semantics of “longest”
is given by the dictionary as A\z.\y.longest(y, zQy). Normally, the system would be unable to parse
this sentence and would continue on. However, upon calling GENERALIZEp (L, “largest”), the
word longest is found in the dictionary with the same syntactic category. Thus this function takes the
semantic representation of “longest” Az.\y.longest(y, x@Qy), modifies it accordingly for largest, giving
Az \y.largest(y, xQy) and stores it in the lexicon. After that, the INVERSE}, and INV ERSER can
be applied to obtain the semantics of “the”.

3.4 'Trivial inverse solutions

Even with on demand generalization, we might still be missing large amounts of semantics information
to be able to use INVFERSFE and INVERSFER. To make up for this, we allow trivial solutions
under certain conditions. A trivial solution is a solution, where one of the formulas is assigned a Az.z
representation. For example, given H, we are looking for F' such that H = GQF'. If we set G to be
Az.z, then trivially F' = H. Thus we can try to carefully set some unknown semantics of words as
Ax.x which will allow us to compute the semantics of the remaining words using INV ERSFE}, and
INVERSER. The question then becomes, when do we allow these? In our approach, we allow these
for words that do not seem to have any contribution to the final semantic meaning of the text. In some
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cases, articles such as “the”, while having a specific place in the English language, might not contribute
anything to the actual meaning representation of the sentence. In general, any word not present in the
final semantics is a potential candidate to be assigned the trivial semantic representation Ax.z. These are
added with very low weights compared to the semantics found using INVERSFE} and INV ERSFER,
so that if at one point a non-trivial semantic representation is found, the system will attempt to use it over
the trivial one.

As an example, consider again the sentence “Give me the largest state.” from Table 1 with the se-
mantics answer (A, largest(A, state(A))). Let us assume the semantic representations of “the” and
“largest” are not known. Under normal circumstances the algorithm would be unable to find the seman-
tics of “largest” using INV ERSE and INV ERS ER, as it is missing the semantics of “the”. However,
as “the” is not present in the desired semantics, the system will attempt to assign A\z.x as its semantic
representation. After doing that, INV ERSFE} and INV ERSER can be used to compute the semantic
representation of “largest” as Az.\y.largest(y, zQy).

3.5 The overall learning algorithm.

The complete learning algorithm used within our approach is shown below. The input to the algorithm
is an initial lexicon Lg and a set of pairs (5;, L;),i = 1,...,n, where S; is a sentence and L; its corre-
sponding logical form. The output of the algorithm is a PCCG defined by the lexicon L1 and a parameter
vector Or.

The parameter vector ©; is updated at each iteration of the algorithm. It stores a real number for each
item in the dictionary. The initial values were set to 0.1. The algorithm is divided into two major steps,
lexical generation and parameters update. The goal of the algorithm is to extract as much information as
possible given the provided training data.

In the first step, the algorithm iterates over all the sentences n times and for each sentence constructs a
syntactic and (potentially incomplete) semantic parse tree. Using the semantic parse tree, it then attempts
to obtain new A-calculus formulas by traversing the tree and performing regular applications and inverse
computations where possible. Any new semantics are then generalized and stored in the lexicon.

The main reason to iterate over all the sentences n times is to extract all the possible information
given the current parameter vector. There may be cases where the information learned from the last
sentence can be used to learn additional information from the third sentence, which can then be used to
learn new semantics from the second sentence etc. By looping over all sentences n times, we ensure we
capture and learn as much information as possible.

Note that the semantic parse trees of the sentences may change once the parameters of words change.
Thus even though we are looping over all the sentences 7' times, the semantic parse tree of a sentence
might change as a result of a change in the parameter vector. This change can be very minor, such as
change in the semantics of a single word, or in a rare case a major one where most of the semantic
expressions present in the tree change. Thus we might learn different semantics of words given different
parameter vectors.

In the second step, the parameter vector ©; is updated using stochastic gradient descent. Steps one
and two are performed 7' times. In our experiments, the value of 7" ranged from 50 to 100.

Overall, steps one and two form an exhaustive search which optimizes the log-likelihood of the
training model.

e Input:

A set of training sentences with their corresponding desired representations S = {(S;, L;) : i =
1...n} where S; are sentences and L; are desired expressions. Weights are given an initial value of
0.1.

An initial lexicon Lg. An initial feature vector ©g.

e Output:

An updated lexicon L1 1. An updated feature vector O .
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e Algorithm:

- Fort=1...T
— Step 1: (Lexical generation)
— Fori=1...n.

* Forj=1..n.
* Parse sentence S; to obtain T
* Traverse T}

- apply INVERSE_L,INVERSE_Rand GENERALIZEp to find new A-calculus
expressions of words and phrases a.

* Set Ly = Ly U«
— Step 2: (Parameter Estimation)
- Set ©;41 = UPDATE(Oy, Li+1)*

o return GENERALIZE(Ly, Lt), O(T)

4 Experimental Evaluation

4.1 The data

To evaluate our algorithm, we used the standard corpus in GEOQUERY and CLANG. The GEOQUERY
corpus contained 880 English sentences with respective database queries. The CLANG corpus contained
300 entries specifying rules, conditions and definitions in CLANG. The GEOQUERY corpus contained
relatively short sentences with the sentences ranging from four to seventeen words of quite similar syn-
tactic structure. The sentences in CLANG are much longer, with more complex structure with length
ranging from five to thirty eight words.

For our experiments, we used the C'&C' parser of Clark and Curran (2007) to provide syntactic
parses for sentences. For CLANG corpus, the position vectors and compound nouns with numbers were
pre-processed and consequently treated as single noun.

Our experiments were done using a 10 fold cross validation and were conducted as follows. A set of
training and testing examples was generated from the respective corpus. These were parsed by the C&C
parser to obtain the syntactic tree structure. These together with the training sets containing the training
sentences with their corresponding semantic representations (SRs) and an initial dictionary was used to
train a new dictionary with corresponding parameters. This dictionary was generalized with respect of
all the words in the test sentences. Note that it is possible that many of the words were still missing their
SRs. This dictionary was then used to parse the test sentences and highest scoring parse was used to
determine precision and recall. Since many words might have been missing their SRs, the system might
not have returned a proper complete semantic parse.

To measure precision and recall, we adopted the measures given by Ge and Mooney (2009). Precision
denotes the percentage of of returned SRs that were correct, while Recall denotes the percentage of test
examples with pre-specified SRs returned. F-measure is the standard harmonic mean of precision and
recall. For database querying, an SR was considered correct if it retrieved the same answer as the standard
query. For CLANG, an SR was correct if it was an exact match of the desired SR, except for argument
ordering of conjunctions and other commutative predicates. Additionally, a set of additional experiments
was run with “(definec” and “(definer” treated as being equal.

We evaluated two different version of our system. The first one, INV ERSFE, uses INVERSE],
and INVERSER and regular generalization which is applied after each step. The second version,
INV ERSE+, uses trivial inverse solutions as well as on demand generalization. Both systems were

“For details on © computation, please see the work by Zettlemoyer and Collins (2005)
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evaluated on the same data sets using 10 fold cross validation and the C'&C parser using an equal number
of train and test sentences, randomly chosen from their respective corpus. The initial dictionary contained
a few nouns, with the addition of one randomly selected word from the set {what, where, which} in
case of GEOQUERY. For CLANG, the initial dictionary also contained a few nouns, together with the
addition of one randomly selected word from the set {i f, when, during}. The learning parameters were
set to the values used by Zettlemoyer and Collins (2005).

4.2 Results

We compared our systems with the performance results of several alternative systems for which the
performance data is available in the literature. In particular, we used the performance data given by
Ge and Mooney (2009). The systems that we compared with are: The SYNO, SYN20 and GOLDSYN
systems by Ge and Mooney (2009), the system SCISSOR by Ge and Mooney (2005), an SVM based
system KRIPS by Kate and Mooney (2006), a synchronous grammar based system WASP by Wong and
Mooney (2007), the CCG based system by Zettlemoyer and Collins (2007) and the work by Lu et al.
(2008). Please note that many of these approaches require different parsers, human supervision or other
additional tools, while our approach requires a syntactic parse of the sentences and an initial dictionary.
Our and their reported results for the respective corpora are given in the Tables 2 and 3.

Precision | Recall | F-measure

Precision | Recall | F-measure || INVERSE+(i) 87.67 79.08 83.15

INVERSE+ 93.41 89.04 91.17 INVERSE+ 85.74 76.63 80.92

INVERSE 91.12 85.78 88.37 GOLDSYN 84.73 74.00 79.00

GOLDSYN 91.94 88.18 90.02 SYN20 85.37 70.00 76.92

WASP 91.95 86.59 89.19 SYNO 87.01 67.00 75.71

7&C 91.63 86.07 88.76 WASP 88.85 61.93 72.99

SCISSOR 95.50 77.20 85.38 KRISP 85.20 61.85 71.67

KRISP 93.34 71.70 81.10 SCISSOR 89.50 73.70 80.80

Lu at al. 89.30 81.50 85.20 Lu at al. 82.50 67.70 74.40
Table 2: Performance on GEOQUERY. Table 3: Performance on CLANG.

The INVERSE + (i) denotes training where “(definec” and “(definer” at the start of SRs were
treated as being equal. The main reason for this was that there seems to be no way to distinguish in
between them. Even as a human, we found it hard to be able to distinguish between them.

4.3 Analysis

Our testing showed that our method is capable of outperforming all of the existing parsers in F-measure.
However, there are parsers which can produce greater precision, such as WASP and SCISSOR on
CLANG corpus, however they do at the cost in recall. As discussed by Ge and Mooney (2009), the
GEOQUERY results for SCISSOR, KRISP and Lu’s work use a different, less accurate representation
language FUNSQL which may skew the results. Also, SCISSOR outperforms our system on GEO-
QUERY corpus in terms of precision, but at the cost of additional human supervision.

Our system is particularly accurate for shorter sentences, or a corpus where many sentences have
similar general structure, such as GEOQUERY. Howeyver, it is also capable of handling longer sentences,
in particular if they in fact consists of several shorter sentences, such as for example “If the ball is in
our midfield, position player 3 at (-5,-23).”, which can be looked at as “IF A, B” where “A” and “B”
are smaller complete sentences themselves. The system is capable of learning the semantics of several
basic categories such as verbs, after which most of the training sentences are easily parsed and missing
semantics is learned quickly. The inability to parse other sentences mostly comes from two sources. First
one is if the test sentence contains a syntactic category not seen in the training data. Our generalization
model is not capable of generalizing these and thus fails to produce a semantic parse. The second problem
comes from ambiguity of SRs. During training, many words will be assigned several SRs based on the
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training data. The parses are then ranked and in several cases, the correct SR might not be on the top.
Re-ranking might help alleviate the second issue.

Unlike the other systems, we do not make use of a grammar for the semantics of the sentence. The
reason it is not required is that the actual semantics is analyzed in computing the inverse lambdas, and
the richness of A-calculus allows us to compute relatively complex formulas to represent the semantic of
words.

We also run examples with increased size of training data. These produced larger dictionaries and in
general did not significantly affect the results. The main reason is that as discussed before, once the most
common categories of words have their semantics assigned, most of the sentences can be properly parsed.
Increasing the amount of training data increases the coverage in terms of the rare syntactic categories,
but these are also rarely present in the testing data. The used training sample was in all cases sufficient to
learn almost all of the categories. This might not be the case in general, for example if we had a corpus
with all of the sentences of a particular length and structure, our method might not be capable of learning
any new semantics. In such cases, additional words would have to be added to the initial dictionary, or
additional sentences of varying lengths would have to be added.

The C&C' parser of Clark and Curran (2007) was primarily trained on news paper text and thus
did have some problems with these different domains and in some cases resulted in complex semantic
representations of words. This could be improved by using a different parser, or by simply adjusting
some of the parse trees. In addition, our system can be gradually improved by increasing the size of
initial dictionary.

5 Conclusions and Discussion

We presented a new approach to map natural language sentences to their semantic representations. We
used an existing syntactic parser, a novel inverse A operator and several generalization techniques to learn
the semantic representations of words. Our method is largely independent of the target representation
language and directly computes the semantic representations based on the syntactic structure of the
syntactic parse tree and known semantic representations. We used statistical learning methods to assign
weights to different semantic representation of words and sentences.

Our results indicate that our approach outperforms many of the existing systems on the standard
corpora of database querying and robot command and control.

We envision several directions of future work. One direction is to experiment our system with cor-
pora where the natural language semantics is given through other Knowledge Representation languages
such as answer set programming (ASP)’ and temporal logic. We are currently building such corpora.
Another direction is to improve the statistical learning part of the system. An initial experimentation
with a different learning algorithm shows significant decrease in training time with slight reduction in
performance. Finally, since our system uses an initial dictionary, which we tried to minimize by only hav-
ing a few nouns and one of the query words, exploring how to reduce it further and possibly completely
eliminating it is a future direction of research.
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Abstract

This paper presents a model to compose semantic relations. The model is independent of any
particular set of relations and uses an extended definition for semantic relations. This extended def-
inition includes restrictions on the domain and range of relations and utilizes semantic primitives
to characterize them. Primitives capture elementary properties between the arguments of a relation.
An algebra for composing semantic primitives is used to automatically identify the resulting rela-
tion of composing a pair of compatible relations. Inference axioms are obtained. Axioms take as
input a pair of semantic relations and output a new, previously ignored relation. The usefulness of
this proposed model is shown using PropBank relations. Eight inference axioms are obtained and
their accuracy and productivity are evaluated. The model offers an unsupervised way of accurately
extracting additional semantics from text.

1 Introduction

Semantic representation of text is an important step toward text understanding, performing inferences
and reasoning. Potentially, it could dramatically improve the performance of several Natural Language
Processing applications.

Semantic relations have been studied in linguistics for decades. They are unidirectional underlying
connections between concepts. For example, the sentence The construction slowed down the traffic
encodes a CAUSE and detecting it would help answer the question Why is traffic slower?

In Computational Linguistics, there have been several proposals to detect semantic relations. Current
approaches focus on a particular set of relations and given a text they output relations. There have
been competitions aiming at detecting semantic roles (i.e., relations between a verb and its arguments)
(Carreras and Marquez, 2005), and between nominals (Girju et al., 2007; Hendrickx et al., 2009).

In this paper, we propose a model to compose semantic relations to extract previously ignored rela-
tions. The model allows us to automatically obtain inference axioms given a set of relations and is not
coupled to any particular set. Axioms take as their input semantic relations and yield a new semantic
relation as their conclusion.

Consider the sentence John went to the shop to buy flowers. Figure 1 shows semantic role annotation
with solid arrows. By composing this basic annotation with inference axioms, one can obtain the relations
shown with discontinuous arrows: John had the intention to buy, the buying event took place at the shop
and John and the flowers were at some point in the shop.

_ —INTENT— _
— -

T < AT-LOC — _
— -

—

~ _ATLOC— _ __~ _AT-LOC— - =l
John \ to the shop to Tbuy ‘ ‘ flowers ‘
AGENT AT-LOC SSTHEME

PURPOSE

Figure 1: Semantic representation of the sentence John went to the shop to buy flowers.
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2 Semantic Relations

Semantic relations are the underlying relations between concepts expressed by words or phrases. In other
words, semantic relations are implicit associations between concepts in text.

In general, a semantic relation is defined by stating the kind of connection linking two concepts. For
example, Hendrickx et al. (2009) loosely define ENTITY-ORIGIN as an entity is coming or is derived from
an origin (e.g., position or material) and give one example: Earth is located in the Milky Way. We find
this kind of definition weak and prone to confusion.

Following Helbig (2005), we propose an extended definition for semantic relations, including seman-
tic restrictions for its domain and range. For example, DOMAIN(AGENT) must be an animate concrete
object and RANGE(AGENT) must be a situation.

Moreover, we propose to characterize relations by semantic primitives. Primitives indicate if a certain
property holds between the arguments of a relation. For example, the primitive temporal indicates if the
first argument must happen before the second in order for the relation to hold. This primitive holds for
CAUSE (a cause must precede its effect) and it does not apply to PART-WHOLE since the later relation
does not consider time.

Besides having a better understanding of each relation, this extended definition allows us to create a
model that automatically obtains inference axioms for composing semantic relations. The model detects
possible combinations of relations and identifies the conclusion of composing them.

Formally, we represent a relation R as R(x, y), where R is the relation type and x and y are the first
and second argument respectively. R(x, y) should be read x is R of Y. DOMAIN(R) and RANGE(R) are the
sorts of concepts that can be part of the first and second argument respectively. Any ontology can be used
to define domains and ranges, e.g., Helbig (2005) defined one to define a set of 89 relations. Primitives
are represented by an array Py of length n, where n is the number of primitives and P! indicates the
value R takes for the ¢th primitive.

The inverse of R is denoted R~! and can be obtained by simply switching the arguments of R. Given
R(X, y), R~1(y, x) always holds. We can easily define R™! given the definition for R: DOMAIN(R™!) =
RANGE(R), RANGE(R™!) = DOMAIN(R), and P, 1 is defined according to the fourth column of Table
1 for each primitive, i.e., Vi € [1,n] : Pj,_; = Inverse(Py).

2.1 Semantic Primitives

Relation primitives capture deep characteristics of relations. Huhns and Stephens (1989) define them as:

They [primitives] are independently determinable for each relation and relatively self-explanatory.
They specify a relationship between an element of the domain and an element of the range
of the semantic relation being described.

Relation primitives are fundamental properties that cannot be explained using other primitives; they are
elemental. They specify basic attributes of a relation by stating if a particular property must hold by
definition between the domain and range.

Each relation takes a value for each primitive from the set V' = {+, —, 0}, where ‘+’ indicates that
the property holds, ‘—’ that it does not hold and ‘0’ that it does not apply. For example, the primitive
volitional indicates if a relation requires volition between domain and range. AGENT takes as value +
for this primitive and PART-WHOLE takes 0.

Primitives complement the definition of a relation by stating if a particular property holds between its
arguments. They help to understand the inter-relation differences and clustering relations. Primitives can
be used as conditions to be fulfilled in order to determine if a potential relation holds. They are general
enough to be determined for a relation, not a particular instantiation. In other words, they state properties
that hold for all instances of a relation by definition.

Our set of primitives (Table 1) is inspired on previous work in Knowledge Bases (Huhns and Stephens,
1989). We only select from them useful primitives for our purpose and add more primitives. The
additional primitives are justified by the fact that we aim at combining relations capturing semantics

46



No. | Primitive Description Inverse | Ref.

1 Composable Relation can be meaningfully composed with other relations | same [3]
due to their fundamental characteristics

2 Functional Domain is in a specific spatial or temporal position with re- | same [1]
spect to the range in order for the connection to exist

3 Separable Domain can be temporally or spatially separated from the | same [1]
range, and can thus exist independently of the range

4 Temporal Domain temporally precedes the range opposite | [2]

5 Connected Domain is physically or temporally connected to the range; | same [3]
connection might be indirect.

6 Intrinsic Relation is an attribute of the essence/stufflike nature of the | same [3]
domain or range

7 Volitional Relation requires volition between the arguments same -

8 Fully Implicational The existence of the domain implies the existence of the | opposite -
range

9 Weakly Implicational | The existence of the domain generally implies the existence | opposite -
of the range

Table 1: Primitives for characterizing semantic relations, values for the inverse relation and references. In the fifth
column, [1] stands for Winston et al. (1987), [2] for Cohen and Losielle (1988) and [3] for Huhns and Stephens
(1989). ‘-’ indicates new primitive.

1: Composable 2: Functional 3: Separable 4: Temporal
Ro Ro Ro Ra

Ry - 0 + R1 - 0 + Ry |- 0 + Rq - 0 +

- x 0 x - - 0 + - - - - - - - X

0 0 0 O 0 |0 0 O 0 |- 0 + 0 - 0 +

+ x 0 + + |+ 0 + + |- + + + X 4+ o+
5: Connected 6: Intrinsic 7: Volitional 8: F Impl. 9: W Impl.

R Ro Ro Ro Ro
Rq ﬁ Ry -07+ Rq - 0 + Rq - 0 + Ry - 0 +
- - -+ - - 0 - - - 0 + - - 0 - - - 0 -
0 - 0 + 0 |0 O O 0O |0 0 O 0 |0 O0 O 0 |0 0 O
+ |+ + + + - 0 + + |+ 0 + + - 0 + + - 0 +

Table 2: Algebra for composing semantic primitives. Each cell of the ith table indicates P! L © P y

from natural language. Whatever the set of chosen relations, it will describe the characteristics of
events (who/when/where/how something happened), which elements were involved, connections be-
tween events (e.g. CAUSE, CORRELATION). Time (whether an argument is guaranteed to happen before
than the other), space and volition (whether or not there must be volition between the arguments) also
play an important role.

The fourth column in Table 1 indicates the value of the primitive for the inverse relation. Same means
the inverse relation takes the same value, opposite means it takes the opposite. The opposite of — is +,
the opposite of — is +, and the opposite of 0 is 0.

For example, Pygent = {+, +,+,0, —, —, +, 0,0}, indicating that P3 ., = — and Pl oxr = +,
i.e., AGENT(X, y) does not require x and y to be connected and it requires volition between the arguments.
Note that PAGENTfl = Pagenr.

2.2 An Algebra for Composing Semantic Relations

The key to automatically obtaining inference axioms is the ability to know beforehand the result of
composing semantic primitives using an algebra. This way, one can identify prohibited combinations of
relations and determine conclusions for the composition of valid combinations.
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Given Pé , and PﬁQ, i.e., the values of Ry and Ry for a primitive p;, we define an algebra that indicates
the result of composing them (i.e., P;, o Py, ). Composing two primitives can yield three values: +, —
or 0, indicating if the primitive holds, does not hold or does not apply to the composition of Ry and Ro.
Additionally, the composition can be prohibited, indicated with x. After composing all the primitives
for Ry and Rg, we obtain the primitives values for the composition of Ry and Rg (i.e., Py, o Fk,).

We define the values for the composition using a table for each primitive. Table 2 depicts the whole
algebra. The ith table indicates the rules for composing the ith primitive. For example, regarding the
intrinsic primitive, we have the following rules:

o If both relations are intrinsic, the composition is intrinsic;
e clse if intrinsic does not apply to either relation, the primitive does not apply to the composition;
e clse, the composition is not intrinsic.

Other rules stated by the algebra are: (1) two relations shall not compose if they have different
opposite values for the primitive temporal; (2) the composition of R; and Ry is not separable if either
relation is not separable; and (3) if either R; or Ry are connected, then the composition is connected.

3 Necessary Conditions for Composing Semantic Relations

In principle, one could define axioms for every single possible combination of relations. However, there
are two necessary conditions in order to compose R; and Ry:

1. They have to be compatible. A pair of relations is compatible if it is possible, from a theo-
retical point of view, to compose them. Formally, R; and Ry are compatible iff RANGE(R1) N
DOMAIN(R2) # 0.

2. A third relation R3 must fit as conclusion, that is, 3Rz such that DOMAIN(R3) "DOMAIN(R1) # ()
and RANGE(R3) N RANGE(R32) # 0.

Furthermore, P, must be compatible with the result of composing P, and Fx,.

It is important to note that domain and range compatibility is not enough to compose two relations.
For example, given KINSHIP(Mary, John) and AT-LOCATION(John, Dallas), no relation can be inferred
between Mary and Dallas.

4 Inference Axioms

An axiom is defined as a set of relations called premises and a conclusion. The composition operator o
is the basic way of combining two relations to form an axiom. We denote an inference axiom as Ry (X, y)
o Ra(y, z) — R3(x, z), where R and Ry are the premises and Rs the conclusion. In order to instantiate
an axiom the premises must have an argument in common, y.
In general, for n relations there are (Z) = n(”;l) different pairs. For each pair, taking into account
the two relations and their inverses, there are 4 x 4 = 16 different possible combinations.

We note that Ry o Ry = (R2_1 o Rl_l)_l, reducing the total number of different combinations to
10. Out of these 10, (1) 4 combine Ry, Ry and their inverses (Table 3); (2) 3 combine R and its inverse;
and (3) 3 combine R and its inverse. The most interesting combinations to use as premises for an axiom
fall into category (1), since the other two can be resolved by the transitivity property of a relation and its
inverse. Therefore, for n relations there are 2n? +n potential axioms: (g‘) x443n =2xn(n—1)+3n =
2n2 — 2n + 3n = 2n? 4+ n.

4.1 An Algorithm for Obtaining Inference Axioms

Given a set of relations R defined using the extended definition, one can automatically obtain inference
axioms using the following steps for each pair of relations Ry € R and Ry € R, where Ry # Ra:
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Ry 0 Ry R; ! oRy Rs O Rj Ry 0 Ry &
R1 R1
r—Y r<—"-1Y x Xz
NN AN AN
R2 R2 R2 R2
R3 R3
z z Y ——s2z Y<—2
R1 R1

Table 3: The four unique axioms taking as premises Ry and Rs. R3 indicates the conclusion.

Role Primitive Role Primitive
2 .| B 2 .| =
S| = = — | B8 g <3 T - | 2| E
SIE|2|B|&8|o|E|E|7 SIE|I2|B|8||2|E|"
S | S| = o) 13| 3|l=1]2=2 o | 8= o) Szl e|l=|2=
S|l B8l 5| &l | g8|lc| | S8 5| & |s|E|lE|xn|=
g s | al| B S| B =|= B g | & | 8 S| B | =|=
|l 5| o |8 | L|IE|ZS|ZE |2 Sl 5| o |8 | RIE|ZS|BE |2
O |E|S |[E|O|ES|F|&E |2 O |E|ad | B |O|E|F|E |2
ARGO | + [+ | + ] 0 [ - +0]lO0larcO” |+ [+ +] 01 - +]01]0
ARGl | + [ -+ o -T-]T-Toloflarcl™" [+ -]T+JO0]-]-1T-]T07]o
Moc | + [+ ] 0o+ -JolofJo[moc [ +]+«]0]0o][+]-]0]0]oO0
MCAU | + [+ | + [+ [ -[+]o0]l+]+[Mcav P [+ ]+ +]-]-]+]0]-1-
MIMP | + |+ | OO0+ -Jololo|[mmMmp T | +[+]O0]JO0O[+]-]T0]O0]O
MPNC | + | - |+ | -[-T-1T-To]-Jme~xc [+ -]T+]+]-1]-17-7T0714+
MMNR | + | - [+ O -[-T+«JToJo[mmmr |+ -]+]O0-]-]+]07]0

Table 4: Semantic Roles in PropBank, their inverses and their primitives.

Repeat Steps 1, 2 and 3 for (R, R;) € [(R1,R2), (R171,Ra), (R2,R1), (R2, Ry 1)

1. Domain and range compatibility

If RANGE(R;) N DOMAIN(R;) = (), break
2. Primitives composition

Using the algebra for composing semantic primitives, calculate Py; o Py,
3. Conclusion match Repeat for R3 € R

If DOMAIN(R3) N DOMAIN(R;) # () and RANGE(R3) N RANGE(R;) # 0

and consistent( Py, Py, o Py;), then
inference_axioms +=R;(x, y) o Rj(y, z) = R3(x, 2)

The method consistent(P;, P») is a simple procedure that compares the values assigned to each
primitive one by one. Two values for the same primitive are compatible unless they have different
opposites or either value is ‘X’ (i.e., prohibited).

5 Case Study: PropBank

PropBank (Palmer et al., 2005) adds a layer of predicate-argument information, or semantic role labels,
on top of the syntactic trees provided by the Penn TreeBank. Along with FrameNet, it is the resource
most widely used for semantic role annotation.

PropBank uses a series of numeric core roles (ARGO - ARGS) and a set of more general roles, ARGMs
(e.g. MTMP, MLOC, MMNR). The interpretation of the numeric roles is determined by a verb-specific
framesets, although ARGO and ARG1 usually correspond to the prototypical AGENT and THEME. On the
other hand, the meaning of AGRMs generalize across verbs.

An example of PropBank annotation is the following: [Winston],rgo [procrastinated],e; [a 1ot]yapv
[due to his nervous demeanor]ycay. Palmer et al. (2005) discuss the creation of PropBank. For more
information about the semantics of each role, we refer the reader to the annotation guidelines'.

Since ARG2, AGR3, ARG4 and ARG5S do not have a common meaning across verbs, they become not
composable. For example, ARG?2 is used for INSTRUMENT in the frameset kick.0l and for BENEFACTIVE
in the frameset call.02.

"http://verbs.colorado.edu/"m palmer/projects/ace/PBguidelines.pdf
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c: MLOC | - =|lc|-|c| -
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eMIMP | -|-|-|e|=|e]| -
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g MMNR |- |-|-|-|-]g]|=

Table 5: Results after applying the steps depicted in Section 4.1 using PropBank semantic roles. A letter indicates
an inference axiom R oRo — R3 by indicating the conclusion R3. ‘-’ indicates that the combination is not prohibited
but a relation compatible with P, o Py, could not be found; ‘=" indicates that the cell corresponds to a relation
and its inverse.

The remaining labels (ARGO, ARG1 and all ARGMs) do generalize in meaning across verbs. Roles
MEXT, MDIS, MADV, MNEG, MMOD, MDIR, are not composable because they encode a very narrow
semantic connection. Manual examination of several examples leads to this conclusion.

Table 4 depicts the primitives for the roles which are composable and their inverses. Note that for
any two relations their primitives are different.

PropBank does not provide domains and ranges for its roles, although we can specify our own. We
do so by using the ontology defined by Helbig (2005). All relations in PropBank are denoted as R(x, y),
where x is an argument of y, and y is a verb. The range of all relations is a situation. The domain of
AGRO and ARG are objects, the domain of MLOC and MTMP local and temporal descriptors respectively,
the domain of MMNR qualities or states, and the domain of MPNC and MCAU are situations.

5.1 Inference Axioms from PropBank

Out of the four possible axioms between any pair of relations (Table 3), the only way to compose two
relations from PropBank is by using as common argument y a verb. This restriction is due to the fact
that PropBank exclusively annotates relations between a verb and its arguments. Thus, the only possible
axiom for any pair of roles Ry and Ry is R1(X, y) o R2_1(y, z) — R3(X, z), where y is a verb.

Table 5 shows the eight inference axioms obtained after following the steps depicted in Section 4.1.
Note that the matrix is symmetric as stated by the property Ry o Ry = (Ry"tor;~H~ L

Some of the axioms obtained are:

e MCAU o MLOC™! — MLOC™Y, the location of a cause is the same than the location of its effect.
e MPNC o ARGO™! — ARGO ™!, the agent of an action is inherited by its purpose.
e MPNC o MMNR ™' — MMNR ™!, the manner of an action is inherited by its purpose.

5.2 Evaluation

First, we evaluated all the instantiations of axiom MPNC o MMNR ™} — MMNR!. This axiom can be
instantiated 237 times using PropBank annotation, yielding 189 new MANNER not present in PropBank.
The overall accuracy is 0.797, superior to state-of-the art semantic role labelers.

Second, we have evaluated the accuracy of the eight inference axioms (Table 5). Since PropBank is
a large corpus, the amount of instantiations found for all axioms is too large to be checked by hand. We
have manually evaluated the first 1,000 sentences that are an instantiation of any axiom. Since a sentence
may instantiate several axioms, we have actually evaluated 1,412 instantiations. The first 1,000 sentences
which are an instantiation of any axiom are found within the first 31,450 sentences in PropBank. Table
6 shows the number of roles PropBank annotates for these sentences.
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Role No. Instances
CAUSE 421
PURPOSE 768
AGENT 22,525
THEME 29,738
AT-LOCATION 2,024
AT-TIME 5,743
MANNER 2,212

Table 6: Number of relations in PropBank for the first 31,450 sentences.

no heuristic with heuristic
No. | Axiom No. Inst. | Acc. | Produc. || No. Inst. | Acc. | Produc.
1 CAU 0 AGT T — AGT ! 201 | 0.40 0.89% 75 | 0.67 0.33%
2 CAU 0 AT-L  — AT-L 17 | 0.82 0.84% 15 | 0.93 0.74%
3 CAU 0 AT-T  — AT-T 72 | 0.85 1.25% 69 | 0.87 1.20%
1-3 | CAU o R2 — R3 290 | 0.53 0.96% 159 | 0.78 0.53%
4 PRP 0 AGT | — AGT * 375 | 0.89 1.66% 347 | 0.94 1.54%
5 PRP o THM ™! — THM ! 489 | 0.12 1.64% 87 | 0.65 0.29%
6 PRP 0 AT-L  — AT-L 49 | 0.90 2.42% 48 | 0.92 2.37%
7 PRP 0 AT-T  — AT-T 138 | 0.84 2.40% 129 | 0.88 2.25%
8 PRP 0 MNR™! — MNR! 71 | 0.82 3.21% 70 | 0.83 3.16%
4-8 | PRP o R2 — R3 1,122 | 0.54 1.80% 681 | 0.88 1.09%
1-8 | All 1,412 | 0.54 2.26% 840 | 0.86 1.35%

Table 7: Axioms used during evaluation, number of instances, accuracy and productivity. Results are reported
both using and not using the heuristic. Productivity refers to the number of relations added by the axiom in relative
terms.

Table 7 depicts the total number of instantiations for each axiom and its accuracy (columns 3 and
4). Accuracies range from 0.12 to 0.90, showing that the plausibility of an axiom depends on the axiom.
The average accuracy for axioms involving MCAU is 0.53 and for axioms involving MPNC is 0.54.

Axiom MCAU o ARGO™! — ARGO™! adds 201 relations, which corresponds to 0.89% in relative
terms. Its accuracy is low, 0.40. Other axioms are less productive overall, but have a greater relative
impact and accuracy. For example, axiom MPNC o MMNR~! — MMNR ™!, only yields 71 new MMNR,
and yet it is adding 3.21% in relative terms with an accuracy of 0.82.

It is worth noting that overall, applying the eight axioms used during evaluation adds 1,412 relations
on top of the ones already present (2.26% in relative terms) with an accuracy of 0.54.

5.3 Error Analysis

Because of the low accuracy of axioms 1 and 5, an error analysis was performed. We found that unlike
other axioms, these axioms often yield a relation type that is already present in the semantic representa-
tion. Specifically, axioms 1 and 5 often yield R(x, z) when R(x’, z) is already known.

An example can be found in Figure 4, where axiom 5 yields ARG1(orders, to buy) when the relation
ARG 1(the basket, to buy) is already present. We use the following heuristic in order to improve the
accuracy of axioms 1 and 5: do not instantiate an axiom Ri(X, y) o Ra(y, z) — R3(X, z) if a relation of
the form R3(x’, z) is already known.

This simple heuristic allows us to augment the accuracy of the inferences at the cost of lowering their
productivity. The last three columns in Table 7 show results when using the heuristic. The eight axioms
add 840 relations (1.35% in relative terms) with an accuracy of 0.86.

5.4 Examples

In this section we present several examples of instantiations. We provide the full text of each example,
but only the relevant semantic annotation for instantiating axioms. For all examples, solid arrows indicate
semantic role annotation from PropBank, and discontinuous arrows inferred relations.
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— — MLOC — —

—

’ In the fibers division ‘ ’ p ‘ persistent overcapacity ‘
-MLOC: MCAU-

Figure 2: In the fibers division, profit remains weak, largely because of persistent overcapacity. (wsj_0552, 28).

_ — — — — —ARGO— — — —
- — — —MTMP— = =

it T~ [would take ‘ in the fourth quarter ‘ ’ plans to expand its systems operations ‘
ARG ™M—
-MCAU-

Figure 3: First Tennessee National Corp. said it would take a $4 million charge in the fourth quarter, as a result
of plans to expand its systems operation. (wsj_0621, 0).

— — ARGO — —
- \ARGI\
_ P
—~ - _ - ——

-
— <
_ _ - _ _MMNRS.

The traders
ARGO'

’ via computers ‘

Figure 4: When it occurs, the traders place orders via computers to buy the basket of stocks ...in whichever
market is cheaper and sell them in the more expensive market; ... (wsj_0118, 48).

_ — — — —ARGO— — —
— _ —MLOC——
- - - - \\\
— ~
- —~ _ MTMES

Aman ... ‘ came | ‘ before the House ... ‘ ’ yesterday ‘ to talk about
ARG

Figure 5: A man from the Bush administration came before the House Agriculture Committee yesterday to talk
about ... (wsj_0134, 0).

Figures 2 and 3 instantiate axioms 1, 2 and 3. For these examples, all inferences are correct.
Figures 4 and 5 instantiate the rest of axioms. Not using the heuristic leads to a wrong inference in
the example shown in Figure 4, indicated with *. Using the heuristic, all inferences are correct.

6 Comparison with Previous Work

There have been abundant proposals to detect semantic relations without taking into account composition
of relations. All these approaches, regardless of their particular details, take as their input text and output
the relations found in it. In contrast, the framework proposed in this article obtains axioms that take as
their input relations found in text and output more relations previously ignored.

Generally, efforts to extract semantic relations have concentrated on particular sets of relations or a
single relation, e.g. CAUSE (Bethard and Martin, 2008; Chang and Choi, 2006) and PART-WHOLE (Girju
et al., 2006). Automatic detection of semantic roles has received a lot of attention lately (Marquez et al.,
2008; Carreras and Marquez, 2005). The SemEval-2007 Task 04 (Girju et al., 2007) and SemEval-2010
Task 08 (Hendrickx et al., 2009) aimed at relations between nominals. There has been work on detecting
relations within noun phrases (Moldovan et al., 2004; Nulty, 2007), clauses (Szpakowicz et al., 1995)
and syntax-based comma resolution (Srikumar et al., 2008).

Previous research has exploited the idea of using semantic primitives to define and classify semantic
relations under different names. Among others, the literature uses relation elements, deep structure,
aspects and primitives. To the best of our knowledge, the first effort on describing semantic relations
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using primitives was made by Chaffin and Herrmann (1987). They introduce Relation Element Theory,
and differentiate relations by relation elements. The authors describe a set of 31 relations clustered in five
groups (CONTRAST, SIMILARS, CLASS INCLUSION, CASE-RELATIONS, PART-WHOLE), and distinguish
each relation by its relations elements and not just a definition and examples. Their 30 relation elements
are clustered into five groups (elements of intensional force, dimension elements, elements of agreement,
propositional elements, elements of part-whole inclusion). They only use the elements to define relations,
not to compose relations.

Winston et al. (1987) work with six subtypes of PART-WHOLE and uses 3 relation elements (func-
tional, homeomerous and separable) to distinguish the subtypes. Cohen and Losielle (1988) introduce
the notion of deep structure and characterize it using two aspects: hierarchical and temporal. Huhns and
Stephens (1989) extend previous works by considering an extended set of 10 primitives.

In Computational Linguistics there have been previous proposals to combine semantic relations.
Harabagiu and Moldovan (1998) manually extract plausible inference axioms using WordNet relations.
Helbig (2005) transforms chains of relations into theoretical axioms. On the other hand, the model
presented in this paper extracts inference axioms automatically.

Composing relations has been proposed before in the more general field of Artificial Intelligence,
in particular in the context of Knowledge Bases. Cohen and Losielle (1988) point out that two relations
shall combine if and only if they do not have contradictory values for the aspect hierarchical or temporal.
They work with a set of nine specific relations (CAUSES, COMPONENT-OF, FOCUS-OF, MECHANISM-OF,
PRODUCT-OF, PURPOSE-OF, SETTING-OF, SUBJECT-OF and SUBFIELD-OF) and their inverses. Huhns
and Stephens (1989) are the first to propose an algebra for composing semantic primitives. Unlike ours,
their set of relations is not linguistically motivated; ten of them map to some sort of PART-WHOLE (e.g.
PIECE-OF, SUBREGION-OF).

7 Conclusions

In this paper, we have presented a model to compose semantic relations. The model is independent of
any particular set of relations and is able to obtain inference axioms. These axioms take as their input
two semantic relations and yield a previously ignored relation as conclusion.

The model is based on an extended definition of semantic relations, including restrictions on domains
and ranges and values for a set of semantic primitives. We have defined an algebra for composing
semantic primitives. This algebra is the key to automatically identify the resulting relation of composing
a pair of compatible relations and to form an axiom.

The proposed algorithm to compose semantic relations identifies eight inference axioms using Prop-
Bank relations. When instantiated in a subset of PropBank, these axioms add 2.26% of annotation in
relative terms with an accuracy of 0.54. We believe these results are worthwhile for a completely unsu-
pervised approach to obtain semantic relations. Adding a simple heuristic improves the accuracy to 0.86,
lowering the productivity in relative terms to 1.35%.

The model has limitations and is not always correct. First, relations are defined manually and mis-
takes could be made when assigning values to their primitives. Second, the algebra for composing
primitives is also manually defined.

We find the first problem easy to overcome. Whatever the set of relations one might use, we believe
thinking in terms of primitives helps to understand the nature of the relations and their differences. An
issue might be that the proposed set of primitives is not enough for a particular set, but more primitives
could be added to solve this eventuality.

A further issue with the algebra is the fact that primitives are composed orthogonally. This is a
simplification, but we have shown that this simplified algebra works.

Even though different sets of semantic relations may call for different ontologies to define domains
and ranges, and possibly an extended set of primitives, we believe the model presented in this paper is
applicable to any set. As far as we are concerned, this is a novel way to compose semantic relations in
the field of Computational Linguistics.
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Abstract

Abduction is a method for finding the best explanation for observations. Arguably
the most advanced approach to abduction, especially for natural language processing, is
weighted abduction, which uses logical formulas with costs to guide inference. But it
has no clear probabilistic semantics. In this paper we propose an approach that imple-
ments weighted abduction in Markov logic, which uses weighted first-order formulas to
represent probabilistic knowledge, pointing toward a sound probabilistic semantics for
weighted abduction. Application to a series of challenge problems shows the power and
coverage of our approach.

1 Introduction

Abduction is inference to the best explanatiofypically, one uses it to find the best hypothesis ex-
plaining a set of observations, e.g., in diagnosis and plan recognition. In natural language processing the
content of an utterance can be viewed as a set of observations, and the best explanation then constitutes
the interpretation of the utterance. Hobbs et al. [7] described a variety of abduction called “weighted
abduction” for interpreting natural language discourse. The key idea was that the best interpretation of
a text is the best explanation or proof of the logical form of the text, allowing for assumptions. What
counted as “best” was defined in terms of a cost function which favored proofs with the fewest number of
assumptions and the most salient and plausible axioms, and in which the pervasive redundancy implicit
in natural language discourse was exploited. It was argued in that paper that such interpretation problems
as coreference and syntactic ambiguity resolution, determining the specific meanings of vague predicates
and lexical ambiguity resolution, metonymy resolution, metaphor interpretation, and the recognition of
discourse structure could be seen to “fall out” of the best abductive proof.

Specifically, weighted abduction has the following features:

1. In a goal expression consisting of an existentially quantified conjunction of positive literals, each
literal is given a cost that represents the utility of proving that literal as opposed to assuming it.
That is, a low cost on a literal will make it more likely for it to be assumed, whereas a high cost
will result in a greater effort to find a proof.

We are indebted to Jesse Davis, Parag Singla and Marc Sumner for discussions about this work. This research was
supported in part by the Defense Advanced Research Projects Agency (DARPA) Machine Reading Program under Air Force
Research Laboratory (AFRL) prime contract no. FA8750-09-C-0172, in part by the Office of Naval Research under contract
no. N00014-09-1-1029, and in part by the Army Research Office under grant W911NF-08-1-0242. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the view of
the DARPA, AFRL, ONR, ARO, or the US government.
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2. Costs are passed back across the implication in Horn clauses according to weights on the conjuncts
in the antecedents. Specifically, if a consequent costan#l the weight on a conjunct in the
antecedent is, then the cost on that conjunct will be& Note that if the weights add up to less
than one, backchaining on the rule will be favored, as the cost of the antecedent will be less than
the cost of the consequent. If the weights add up to more than one, backchaining will be disfavored
unless a proof can be found for one or more of the conjuncts in the antecedent, thereby providing
partial evidence for the consequent.

3. Two literals can be factored or unified, where the result is given the minimum cost of the two,
providing no contradiction would result. This is a frequent mechanism for coreference resolution.
In practice, only a shallow or heuristic check for contradiction is done.

4. The lowest-cost proof is the best interpretation, or the best abductive proof of the goal expression.

However, there are two significant problems with weighted abduction as it was originally presented.
First, it required a large knowledge base of commonsense knowledge. This was not available when
weighted abduction was first described, but since that time there have been substantial efforts to build up
knowledge bases for various purposes, and at least two of these have been used with promising results
in an abductive setting—Extended WordNet [6] for question-answering and FrameNet [11] for textual
inference.

The second problem with weighted abduction was that the weights and costs did not have a prob-
abilistic semantics. This, for example, hampers automatic learning of weights from data or existing
resources. That is the issue we address in the present paper.

In the last decade and a half, a number of formalisms for adding uncertain reasoning to predicate logic
have been developed that are well-founded in probability theory. Among the most widely investigated
is Markov logic [14, 4]. In this paper we show how weighted abduction can be implemented in Markov
logic. This demonstrates that Markov logic networks can be used as a powerful mechanism for interpret-
ing natural language discourse, and at the same time provides weighted abduction with something like a
probabilistic semantics.

In Section 2 we briefly describe Markov logic and Markov logic networks. Section 3 then describes
how weighted abduction can be implemented in Markov logic. In Section 4 we describe experiments in
which fourteen published examples of the use of weighted abduction in natural language understanding
are implemented in Markov logic networks, with good results. Section 5 on current and future directions
briefly describes an ongoing experiment in which we are attempting to scale up to apply this procedure
to the textual inference problem with a knowledge base derived from FrameNet with tens of thousands
of axioms.

2 Markov Logic Networks and Related Work

Markov logic [14, 4] is a recently developed theoretically sound framework for combining first-order
logic and probabilistic graphical models. A traditional first-order knowledge base can be seen as a set of
hard constraints on the set of possible worlds: if a world violates even one formula, its probability is zero.
In order to soften these constraints, Markov logic attaches a weight to each first-order logic formula in
the knowledge base. Such a set of weighted first-order logic formulae is cdladkav logic network

(MLN). A formula’s weight reflects how strong a constraint it imposes on the set of possible worlds: the
higher the weight, the lower the probability of a world that violates it; however, that probability need not
be zero. An MLN with all infinite weights reduces to a traditional first-order knowledge base with only
hard constraints.
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Formally, an MLN L is a set of formula—weight paifd;, w;). Given a set of constants, it defines
a joint probability distribution over a set of boolean variabés= (X, X»...) corresponding to the
possible groundings (using the given constants) of the literals present in the first-order formulae:

P(X = 1) = yeap(3; wini())
wheren;(z) is the number of true groundings &% in x and Z is a normalization term obtained by
summingP (X = z) over all values ofX .

Semantically, an MLN can be viewed as a set of templates for constructing Markov networks [12],
the undirected counterparts of Bayesian networks. An MLN and a set of constants produce a Markov
network in which each ground literal is a node and every pair of ground literals that appear together in
some grounding of some formula are connected by an edge. Different sets of constants produce different
Markov networks; however, there are certain regularities in their structure and parameters. For example,
all groundings of the same formula have the same weight.

Probabilistic inference for an MLN (such as finding the most probable truth assignment for a given
set of ground literals, or finding the probability that a particular formula holds) can be performed by
first producing the ground Markov network and then using well known inference techniques for Markov
networks, like Gibbs sampling. Given a knowledge base as a set of first-order logic formulae, and a
database of training examples each consisting of a set of true ground literals, it is also possible to learn
appropriate weights for the MLN formulae which maximize the probability of the training data. An open-
source software package for MLNs, called Alchefpys also available with many built-in algorithms
for performing inference and learning.

Much of the early work on abduction was done in a purely logical framework (e.g., [13, 3, 9, 10].
Typically the choice between alternative explanations is made on the basis of parsimony; the shortest
proofs with the fewest assumptions are favored. However, a significant limitation of these purely logical
approaches is that they are unable to reason under uncertainty or estimate the likelihood of alternative
explanations. A probabilistic form of abduction is needed in order to account for uncertainty in the
background knowledge and to handle noisy and incomplete observations.

In Bayesian networks [12] background knowledge with its uncertainties is encoded in a directed
graph. Then, given a set of observations, probabilistic inference over the graph structure is done to
compute the posterior probability of alternative explanations. However, Bayesian networks are based on
propositional logic and cannot handle structured representations, hence preventing their use in situations,
characteristic of natural language processing, that involve an unbounded number of entities with a variety
of relations between them.

In recent years there have been a number of proposals attempting to combine the probabilistic nature
of Bayesian networks with structured first-order representations. Itis impossible here to review this liter-
ature here. A a good review of much of it can be found in [5], and in [14] there are detailed comparisonss
of various models to MLNs.

Charniak and Shimony [2] define a variant of weighted abduction, called “cost-based abduction” in
which weights are attached to terms rather than to rules or to antecedents in rules. Thus, tRe term
has the same cost whatever rule it is used in. The cost of an assignment to the variables in the domain
is the sum of the costs of the variables that are true in the assignment. Charniak and Shimony provide
a probabilistic semantics for their approach by showing how to construct a Bayesian network from a
domain such that a most probable explanation solution to the Bayes net corresponds to a lowest-cost
solution to the abduction problem. However, in natural language applications the utility of proving a
proposition can vary by context; weighted abduction accomodates this, whereas cost-based abduction

doerﬁtﬁl.g&lchemy.cs.washington.edu
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3 Weighted Abduction and MLNs

Kate and Mooney [8] show how logical abduction can be implemented in Markov logic networks. They
use forward inference in MLNs to perform abduction by adding clauses with reverse implications. Uni-
versally quantified variables from the left hand side of rules are converted to existentially quantified
variables in the reversed clause. For example, suppose we have the following rule saying that mosquito
bites transmit malaria:
mosquito(x) A infected(x, Malaria) A bite(x,y) D infected(y, Malaria)
This would be translated into the soft rule
[w] infected(y, Malaria) D Jz[mosquito(x) A infected(x, Malaria) A bite(z,y)]
Where there is more than one possible explanation, they include a closure axiom saying that one of the
explanations must hold. Since blood transfusions also cause malaria, they have the hard rule
infected(y, Malaria) D
dx[mosquito(x) Ainfected(x, Malaria) A bite(x,y)]
V 3zlinfected(x, Malaria) A trans fuse(Blood, x,y)].
Kate and Mooney also add a soft mutual exclusivity clause that states that no more than one of the
possible explanations is true.

In translating between weighted abduction and Markov logic, we need similarly to specify the axioms
in Markov logic that correspond to a Horn clause axiom in weighted abduction. In addition, we need to
describe the relation between the numbers in weighted abduction and the weights on the Markov logic
axioms. Hobbs et al. [7] give only broad, informal guidelines about how the numbers correspond to
probabilities. In this development, we elaborate on how the numbers can be defined more precisely
within these guidelines in a way that links with the weights in Markov logic, thereby pointing to a
probabilistic semantics for the weighted abduction numbers.

There are two sorts of numbers in weighted abduction—the weights on conjuncts in the antecedents
of Horn clause axioms, and the costs on conjuncts in goal expressions, which are existentially quantified
conjunctions of positive literals. We deal first with the weights, then with the costs.

The space of events over which probabilities are taken is the set of proof graphs constituting the best
interpretations of a set of texts in a corpus. Thus, by the probabilip(:of given ¢(z), we mean the
probability thatp(z) will occur in a proof graph in whiclg(x) occurs.

The translation from weighted abduction axioms to Markov logic axioms can be broken into two
steps. First we consider the “or” node case, determining the relative costs of axioms that have the same
consequent. Then we look at the “and” node case, determining how the weights should be distributed
across the conjuncts in the antecedent of a Horn clause, given the total weight for the antecedent.

Weights on Antecedents in Axioms.First consider a set of Horn clause axioms all with the same
consequent, where we collapse the antecedent into a single literal, and for simplicity: al@tand for
all the universally quantified variables in the antecedent, and assume the consequent to have only those
variables. That is, we convert all axioms of the form

pi(x) A... D q(x)
into axioms of the form

Ai(z) D q(z), wherepi(z) A ... = A;(x)

To convert this into Markov logic, we first introduce the hard constraint

Ai(z) O q(=).
In addition, given a goal of proving(x), in weighted abduction we will want to backchain on at least
(and usually at most) one of these axioms or we will want simply to asg@me Thus, we can introduce
another hard constraint with the disjunction of these antecedents as well as aditerabeQ(x) that
means;(x) is assumed rather than proved.
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q(z) D Ai(x) V As(x) V ... V A,(z) V AssumeQ(x).
Then we need to introduce soft constraints to indicate that each of these disjuncts is a possible explana-
tion, or proof, ofg(x), with an associated probability, or weight.

[wi] ¢(z) D Ai(z), ...

[wo] ¢(x) D AssumeQ(z)
The probability thatdssumeQ(z) is true is the conditional probabiliti, that none of the antecedents
is true given that(z) is true.

Py = P(ﬁ[Al(.I‘) V A2($) V...V An(l')] | q(m))
In weighted abduction, when the antecedent weight is greater than one, we prefer assuming the conse-
guent to assuming the antecedent. When the antecedent weight is less than one we prefer to assume the
antecedent. If the probability that an antecedéritr) is the explanation of(z) is greater tharP, it
should be given a weighted abduction weightess than 1, making it more likely to be choseor-
respondingly, if it is less thaif, it should be given a weight; greater than 1, making it less likely
to be chosen. In general, the weighted abduction weights should be in reverse order of the conditional
probabilitiesP; that A;(z) is the explanation of(x).

P; = P(Ai(z) | q(z))

If we assign the weights; in weighted abduction to be

- __ logP;
Ui = logPy

then this is consistent with informal guidelines in [7] on the meaning of these weights. We use the logs
of the probabilities rather than the probabilities themselves to moderate the effect of one axiom being
very much more probable than any of the others.

Kate and Mooney [8], in their translation of logical abduction into Markov logic, also include soft
constraints stipulating that the different possible explanatiésis) are normally mutually exclusive.
We do not do that here, but we get a kind of soft mutual exclusivity constraint by virtue of the axioms
below that levy a cost for any literal that is taken to be true. In general, more parimonious explanations
will be favored.

Nevertheless, in most cases a single explanation will suffice. When this is true, the probability of
A;(z) holding wheng(z) holds is%. Then a reasonable approximation for the relation between the
weighted abduction weights and the Markov logic weights; is

w; = —v;logPy
Weights on Conjuncts in AntecedentsNext consider how cost is spread across the conjuncts in the
antecedent of a Horn clause in weighted abduction. Here we’'si$e represent the weighted abduction
weights on the conjuncts.
p1(z)" Apa(x)2 A ... = A(x)
Theuw's should somehow represent the semantic contribution of each conjunct to the conclusion. That is,
given that the conjunct is true, what is the probability that it is part of an explanation of the consequent?
Conjuncts with a higher such probability should be given higher weightisey play a more significant
role in explainingA(z).
Let P; be the conditional probability of the consequent givenitheonjunct in the antecedent.
Py = P(A(z)|pi(z))
and letZ be a normalization factor.
Z=30" b

3We usew; for these weighted abduction weights angfor Markov logic weights.
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Let v be the weight of the entire antecedent as determined above.

Then it is consistent with the guidelines in [7] to define the weights on the conjuncts as follows:

The weightsu; will sum tov and each will correspond to the semantic contribution of its conjunct to the
consequent.

In Markov logic, weights apply only to axioms as a whole, not parts of axioms. Thus, the single
axiom above must be decomposed into one axiom for each conjunct and the dependencies must be
written as

[wi] pi(z) D A(x), ...
The relation between the weighted abduction weightand the Markov logic weights); can be
approximated by

_ ve” i
U; = A

Costs on Goals.The other numbers in weighted abduction are the costs associated with the conjuncts
in the goal expression. In weighted abduction these costs function as utilities. Some parts of the goal
expression are more important to interpret correctly than others; we should try harder to prove these
parts, rather than simply assuming them. In language it is important to recognize the referential anchor
of an utterance in shared knowledge. Thus, those parts of a sentence most likely to provide this anchor
have the highest utility. If we simply assume them, we lose their connection with what is already known.
Those parts of a sentence most likely to be new information will have a lower cost, because we usually
would not be able to prove them in any case.

Consider the two sentences

The smart man is tall.
The tall man is smatrt.
The logical form for each of them will be
(Fz)[smart(z) A tall(z) A man(z)]
In weighted abduction, an interpretation of the sentence is a proof of the logical form, allowing assump-
tions. In the first sentence we want to proveart(x) to anchor the sentence referentially. Theti(x)
is new information; it will have to be assumed. We will want to have a high costan-t(x) to force
the proof procedure to find this referential anchor. The costadi{x) will be low, to allow it to be
assumed without expending too much effort in trying to locate that fact in shared knowledge.
In the second sentence, the case is the reverse.
Let's focus on the first sentence and assume we know that educated people are smart and big people
are tall, and furthermore that John is educated and Bill is big.

educated(x)*? O smart(z)

big(z)'? O tall(x)

educated(J), big(B)
In weighted abduction, the best interpretation will be that the smart man is John, because he is educated,
and we pay the cost for assuming he is tall. The interpretation we want to avoid is one thaisByl§
he is tall because he is big, and we pay the cost of assuming he is smart. Weighted abduction with its
differential costs on conjuncts in the goal expression favors the first and disfavors the second.

In weighted abduction, only assumptions cost; literals that are proved cost nothing. When the above
axioms are translated into Markov logic, it would be natural to capture the differential costs by attaching a
negative weight tamart(x) to model the cost associated with assuming it. However, this weight would
apply to any assignment in whichnart(J) is true, regardless of whether it was assumed, derived from
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an assumed fact, or derived from a known fact. A potential solution might be to attach the negative weight
to AssumeSmart(z). But the first axiom above allows us to bypass the negative weightant(x).
We can hypothesize thatis Bill, pay a low cost omrdssumeFEducated(B), derivesmart(B), and get
the wrong assignment. Thus it is not enough to attach a negative weight to high-cost conjuncts in the
goal expression. This negative weight would have to be passed back through the whole knowledge base,
making the complexity of setting the weights at problem time in the MLN knowledge base equal to the
complexity of running the inference problem.

An alternative solution, which avoids this problem when the forward inferences are exact, is to use
a set of predicates that express knowing a fact without any assumptions. In the current example, we
would addK smart(x) for knowing that an entity is smart. The facts asserted in the data base are now
Keducated(J) and Kbig(B). For each hard axiom involving noR-predicates, we have a correspond-
ing axiom that expresses the relation betweenihpredicates, and we have a soft axiom allowing us to
cross the border between thepredicates and their noR- counterparts.

Keducated(x) D Ksmart(x)., ...
[w] Ksmart(z) D smart(x), ...

Here the positive weightv attached is chosen to counteract the negative weight we would attach to
smart(x) to reflect the high cost of assuming it.

This removes the weight associated with assumsimgt(x) regardless of the inference path that
leads to knowingsmart(x) (K.Smart(z))). Further, this translation takes linear time in the size of
the goal expression to compute, since we do not need to know the equivalent weighted abduction cost
assigned to the possible antecedentsofirt(x).

If the initial facts do not includéS Educated(B) and insteadducated(B) must be assumed, then
the negative weight associated witlvart(B) is still present. In this solution, there is no danger that
the inference process can by-pass the cost of assusningt(B), since it is attached to the required
predicate and can only be removed by inferrii§mart(B).

Finally, there is a tendency in Markov logic networks for assignments of high probability for proposi-
tions for which there is no evidence one way or the other. To suppress this, we associate a small negative
weight with every predicate. In practice, it has turned out that a weightlaffectively suppresses this
behavior.

4 Experimental Results

We have tested our approach on a set of fourteen challenge problems from [7] and subsequent papers,
designed to exercise the principal features of weighted abduction and show its utility for solving natural
language interpretation problems. The knowledge bases used for each of these problems are sparse,
consisting of only the axioms required for solving the problems plus a few distractors.

An example of a relatively simple problem is #5 in the table below, resolving “he” in the text

| saw my doctor last week. He told me to get more exercise.

where we are given a knowledge base that says a doctor is a person and a male person is a “he”. Solving
the problem requires assuming the doctor is male.

(Vz)[doctor(x)'? D person(z)]
(Vz)[male(z)® A person(z)® D he(z)]
The logical form fragment to prove {§ z)he(x), where we knowloctor(D).
A problem of intermediate difficulty (#7) is resolving the three lexical ambiguities in the sentence

The plane taxied to the terminal.
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where we are given a knowledge base saying that airplanes and wood smoothers are planes, planes
moving on the ground and people taking taxis are both described as “taxiing”, and computer terminals
and airport terminals are both terminals.

An example of a difficult problem is #12, finding the coherence relation, thereby resolving the pro-
noun “they”, between the sentences

The police prohibited the women from demonstrating. They feared violence.

The axioms specify relations between fearing, not wanting, and prohibiting, as well as the defeasible
transitivity of causality and the fact that a causal relation between sentences makes the discourse coher-
ent.

The weights in the axioms were mostly distributed evenly across the conjuncts in the antecedents and
summed to 1.2.

For each of these problems, we compare the performance of the method described here with a man-
ually constructed gold standard and also with a method based on Kate and Mooney’s (KM) approach.
In this method, weights were assigned to the reversed clauses based on the negative log of the sum of
weights in the original clause. This approach does not capture different weights for different antecedents
of the same rule, and so has less fidelity to weighted abduction than our approach. In each case, we used
Alchemy’s probabilistic inference to determine the most probable explanation (MPE) [12].

In some of the problems the system should make more than one assumption, so there are 22 assump-
tions in total over all 14 problems in the gold standard. Using our method, 18 of the assumptions were
found, while 15 were found using the KM method. Table 1 shows the number of correct assumptions
found and the running time for the two approaches for each problem. Our method in particular provides
good coverage, with a recall of over 80% of the assumptions made in the gold standard. It has a shorter
running time overall, approximately 5.3 seconds versus 8.7 seconds for the reversal method. This is
largely due to one problem in the test set, problem #9, where the running time for the KM method is
relatively high because the technique finds a less sparse network, leading to larger cliques. There were
two problems in the test set that neither approach could solve. One of these contains predicates that have
a large number of arguments, leading to large clique sizes.

5 Current and Future Directions

In other work [11] we are experimenting with using weighted abduction with a knowledge base with tens
of thousands of axioms derived from FrameNet for solving problems in recognizing textual entailment
(RTEZ2) from the Pascal dataset [1]. For a direct comparison between standard weighted abduction and
the Markov logic approach described here, we are also experimenting with using the latter on the same
task with the same knowledge base.

For each text-hypothesis pair, the sentences are parsed and a logical form is produced. The output for
the first sentence forms the specific knowledge the system has while the output for the second sentence
is used as the target to be explained. If the cost of the best explanation is below a threshold we take the
target sentence to be true given the initial information.

It is a major challenge to scale our approach to handle all the problems from the RTE2 development
and test sets. We are not yet able to address the most complex of these using inference in Markov logic
networks. However, we have devised a number of pre-processing steps to reduce the complexity of the
resultant network, which significantly increase the number of problems that are tractable.

The FrameNet knowledge base contains a large number of axioms with general coverage. For any
individual entailment problem, most of them are irrelevant and can be removed after a simple graphical
analysis. We are able to remove more irrelevant axioms and predicates with an iterative approach that in
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Our Method KM Method Gold
Problem| score| seconds score| seconds| standard
1 3 300 3 16 3

2 1 250 1 265 1

3 1 234 1 266 1

4 2 234 2 203 2

5 1 218 1 218 1

6 1 218 0 265 1

7 3 300 3 218 3

8 1 200 1 250 1

9 2 421 0 5000 2
10 1 2500 1 1500 3
11 0 0 1
12 0 0 1
13 1 250 1 250 1
14 1 219 1 219 1
Total 18 5344 15 8670 22

Table 1. Performance on each problem in our test set, comparing two encodings of weighted abduction
into Markov logic networks and a gold standard.

each iteration both drops axioms that are shown to be irrelevant and simplifies remaining axioms in such
a way as not to change the probability of entailment.

We also simplify predications by removing unnecessary arguments. The most natural way to convert
FrameNet frames to axioms is to treat a frame as a predicate whose arguments are the frame elements for
all of its roles. After converting to Markov logic, this results in rules having large numbers of existentially
guantified variables in the consequent. This can lead to a combinatorial explosion in the number of
possible ground rules. Many of the variables in the frame predicate are for general use and can be pruned
in the particular entailment. Our approach essentially creates abstractions of the original predicates that
preserve all the information that is relevant to the current problem but greatly reduces the number of
ground instances to consider.

Before implementing these pre-processing steps, only two or three problems could be run to com-
pletion on a Macbook Pro with 8 gigabytes of RAM. After making them, 28 of the initial 100 problems
could be run to completion.

Work on this effort continues.

6 Summary

Weighted abduction is a logical reasoning framework that has been successfully applied to solve a num-
ber of interesting and important problems in computational natural-language semantics ranging from
word sense disambiguation to coreference resolution. However, its method for representing and combin-
ing assumption costs to determine the most preferred explanation is ad hoc and without a firm theoretical
foundation. Markov Logic is a recently developed formalism for combining first-order logic with prob-
abilistic graphical models that has a well-defined formal semantics in terms of specifying a probability
distribution over possible worlds. This paper has presented a method for mapping weighted abduction
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to Markov logic, thereby providing a sound probabilistic semantics for the approach and also allowing
it to exploit the growing toolbox of inference and learning algorithms available for Markov logic. Com-
plementarily, it has also demonstrated how Markov logic can thereby be applied to help solve important
problems in computational semantics.
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Abstract

Taking an asynchronous perspective on the syntax-semantics interface, we propose to use modu-
lar graph rewriting systems as the model of computation. We formally define them and demonstrate
their use with a set of modules which produce underspecified semantic representations from a syn-
tactic dependency graph. We experimentally validate this approach on a set of sentences. The results
open the way for the production of underspecified semantic dependency structures from corpora an-
notated with syntactic dependencies and, more generally, for a broader use of modular rewriting
systems for computational linguistics.

Introduction

The aim of our work is to produce a semantic representation of sentences on a large scale using a formal
and exact approach based on linguistic knowledge. In this perspective, the design of the syntax-semantics
interface is crucial.

Based on the compositionality principle, most models of the syntax-semantics interface use a syn-
chronous approach: the semantic representation of a sentence is built step by step in parallel with its
syntactic structure. According to the choice of the syntactic formalism, this approach is implemented in
different ways: in a Context-Free Grammars (CFG) style framework, every syntactic rule of a grammar
is associated with a semantic composition rule, as in the classical textbook by Heim and Kratzer (1998);
following the principles introduced by Montague, Categorial Grammars use an homomorphism from the
syntax to the semantics (Carpenter (1992)). HPSG integrates the semantic and syntactic representations
in feature structures which combine by unification (Copestake et al. (2005)). LFG follows a similar prin-
ciple (Dalrymple (2001)). In a synchronous approach, the syntax-semantics interface closely depends on
the grammatical formalism. Building such an interface can be very costly, especially if we aim at a large
coverage for the grammar.

In our work, we have chosen an asynchronous approach in the sense that we start from a given
syntactic analysis of a sentence to produce a semantic representation. With respect to the synchronous
approach, a drawback is that the reaction of the semantics on the syntax is delayed. On the other hand,
the computation of the semantics is made relatively independent from the syntactic formalism. The only
constraint is the shape of the output of the syntactic analysis.

In the formalisms mentioned above, the syntactic structure most often takes the form of a phrase
structure, but the choice of constituency for the syntax makes the relationship with the semantics more
complicated. We have chosen dependency graphs, because syntactic dependencies are closely related
to predicate-argument relations. Moreover, they can be enriched with relations derived from the syntax,
which are usually ignored, such as the arguments of infinitives or the anaphora determined by the syntax.
One may observe that our syntactic representation of sentences involves plain graphs and not trees.
Indeed, these relations can give rise to multiple governors and dependency cycles. On the semantic side,
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we have also chosen graphs, which are widely used in different formalisms and theories, such as DMRS
(Copestake (2009)) or MTT (Mel’Cuk (1988)) .

The principles being fixed, our problem was then to choose a model of computation well suited
to transforming syntactic graphs into semantic graphs. The A-calculus, which is widely used in formal
semantics, is not a good candidate because it is appropriate for computing on trees but not on graphs. Our
choice naturally went to graph rewriting. Graph rewriting is barely used in computational linguistics;
it could be due to the difficulty to manage large sets of rules. Among the pioneers in the use of graph
rewriting, we mention Hyvonen (1984); Bohnet and Wanner (2001); Crouch (2005); Jijkoun and de Rijke
(2007); Bédaride and Gardent (2009); Chaumartin and Kahane (2010).

A graph rewriting system is defined as a set of graph rewrite rules and a computation is a sequence
of rewrite rule applications to a given graph. The application of a rule is triggered via a mechanism of
pattern matching, hence a sub-graph is isolated from its context and the result is a local modification of
the input. This allows a linguistic phenomenon to be easily isolated for applying a transformation.

Since each step of computation is fired by some local conditions in the whole graph, it is well known
that one has no grip on the sequence of rewriting steps. The more rules, the more interaction between
rules, and the consistency of the whole rule system becomes difficult to maintain. This bothers our
ambition of a large coverage for the grammar. To solve this problem, we propose to organize rules in
modules. A module is a set of rules that is linguistically consistent and represents a particular step of
the transformation. For instance, in our proposal, there is a module transforming the syntactic arguments
of verbs, predicative nouns and adjectives into their semantic arguments. Another module resolves the
anaphoric links which are internal to the sentence and determined by the syntax.

From a computational point of view, the grouping of a small number of rules inside a module allows
some optimizations in their application, thus leading to efficiency. For instance, the confluence of rewrit-
ing is a critical feature — one computes only one normal form, not all of them — for the performance
of the program. Since the underlying relation from syntax to semantics is not functional but relational,
the system cannot be globally confluent. Then, it is particularly interesting to isolate subsets of conflu-
ent rules. Second point, with a small number of rules, one gets much more control on their output. In
particular, it is possible to automatically infer some invariant properties of graphs along the computation
within a particular module. Thus, it simplifies the writing of the rules for the next modules. It is also
possible to plan a strategy in the global evaluation process.

It is well known that syntactic parsers produce outputs in various formats. As a by-product of our
approach, we show that the choice of the input format (that is the syntax) seems to be of low importance
overall. Indeed, as far as two formats contain the same linguistic information with different representa-
tions, a system of rewrite rules can be designed to transform any graph from one format to another as a
preliminary step. The same remark holds for the output formats.

To illustrate our proposal, we have chosen the Paris7 TreeBank (hereafter P7TB) dependency format
defined by Candito et al. (2010) as the syntactic input format and the Dependency MRS format (hereafter
DMRS) defined by Copestake (2009) as the semantic output format. We chose those two formats because
the information they represent, if it is not complete, is relatively consensual and because both draw on
large scale experiments: statistical dependency parsing for French! on the one hand and the DELPH-IN
project” on the other hand.

Actually, in our experiments, since we do not have an appropriate corpus annotated according to the
P7TB standard, we used our syntactic parser LEOPAR? whose outputs differ from this standard and we
designed a rewriting system to go from one format to the other.

The paper is organized as follows. In section 1, we define our graph rewriting calculus, the 3-calculus.
In Section 2, we describe the particular rewriting system that is used to transform graphs from the syn-
tactic P7TB format into the DMRS semantic format. In Section 3, we present experimental results on a
test suite of sentences.

"http://alpage.inria.fr/statgram/frdep/fr_stat_dep_parsing.html
http://www.delph-in.net/
‘http://leopar.loria.fr
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1 The S-calculus, a graph rewriting calculus

Term rewriting and tree rewriting can be defined in a straightforward and canonical way. Graph rewriting
is much more problematic and there is unfortunately no canonical definition of a graph rewriting system.
Graph rewriting can be defined through a categorical approach like SPO or DPO (Rozenberg (1997)).
But, in practice, it is much easier to use a more operational view of rewriting where modification of
the graph (the “right-hand side” of a rule) is defined by means of a set of commands; the control of the
way rules are applied (the “left hand-side”) still uses pattern matching as this is done in traditional graph
rewriting.

In this context, a rule is a pair of a pattern and a sequence of commands. We give below the formal
materials about graphs, patterns, matchings and commands. We illustrate the section with examples of
rules and of rewriting.

1.1 Graph definition

In the following, we suppose given a finite set £ of edge labels corresponding to the kind of dependencies
used to describe sentences. They may correspond to syntax or to semantics. For instance, we use
L = {SuJ, 0BJ, ARG1, ANT, .. .}.

To decorate vertices, we use the standard notion of feature structures. Let A/ be a finite set of
feature names and A be a finite set of atomic feature values. In our example, N = {cat, mood, ...} and
A = {passive,v,n,...}. A feature is a pair made of a feature name and a set of atomic values. The
feature (cat, {v, auz}) means that the feature name cat is associated to either the value v or auz. In the
sequel, we use the notation cat = v|aux for this feature. Two features f = v and f’ = v’ are compatible
whenever f = f" and v N v’ # ().

A feature structure is a finite set of features such that each feature name occurs at most once. F de-
notes the set of feature structures. Two feature structures are compatible if their respective features with
the same name are pairwise compatible.

A graph G is then defined by a 6-tuple (V, fs, £, lab, o, 7) with:

o a finite set V of vertices;

a labelling function fs from V to F;

a finite set £ of edges;

a labelling function lab from £ to £;
e two functions ¢ and 7 from £ to V which give the source and the target of each edge.

Moreover, we require that two edges between the same couple of nodes cannot have the same label.

1.2 Patterns and matchings

Formally, a pattern is a graph and a matching ¢ of a pattern P = (V' fs’, £’,1ab’, o/, 7') into a graph
G = (V,fs,&,1ab, 0, 7) is an injective graph morphism from P to G. More precisely, ¢ is a couple of
injective functions: ¢y from V' to V and ¢¢ from &’ to £ which:

e respects vertex labelling: fs(¢y(v)) and fs'(v) are compatible;

respects edge labelling: lab(¢g(e)) = lab’(e);

(
respects edge sources: o(¢g(e)) = dy(a’(e));
)-

respects edge targets: T(¢g(e)) = oy (7' (e)
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1.3 Commands

Commands are low-level operations on graphs that are used to describe the rewriting of the graph within
a rule application. In the description below, we suppose to be given a pattern matching ¢ : P — G. We
describe here the set of commands which we used in our experiment so far. Naturally, this set could be
extended.

o del_edge(a, 3,¢) removes the edge labelled ¢ between o and . More formally, we suppose that
a € Vp, 8 € Vp and P contains an edge e from « to 8 with label £ € L. Then, del edge(«, 3, ¢)(G)
is the graph G without the edge ¢(e). In the following, we give only the intuitive definition of the
command: thanks to injectivity of the matching ¢, we implicitly forget the distinction between x

and ¢(x).

e add_edge(«, 3, () adds an edge labelled ¢ between « and (. Such an edge is supposed not to exist
ingG.

o shift_edge(«, 5) modifies all edges that are incident to «: each edge starting from « is moved to
start from /3; similarly each edge ending on « is moved to end on (3;

e del node(«) removes the a node in G. If G contains edges starting from « or ending on «, they
are silently removed.

e add_node(3) adds a new node with identifier 3 (a fresh name).

e add feat(a, f = v) adds the feature f = v to the node . If «v already contains a feature name f,
it is replaced by the new one.

e copy_feat(a, 3, f) copies the value of the feature named f from the node « to the node . If «
does not contain a feature named f, nothing is done. If 5 already contains a feature named f, it is
replaced by the new value.

Note that commands define a partial function on graphs: the action add_edge(c, 3, ¢) is undefined
on a graph which already contains an edge labelled ¢ from « to 3.

The action of a sequence of commands is the composition of actions of each command. Sequences
of commands are supposed to be consistent with the pattern:

o del_edge always refers to an edge described in the pattern and not previously modified by a
del_edge or a shift_edge command;

e cach command refers only to identifiers defined either in the pattern or in a previous add_node;
e no command refers to a node previously deleted by a del_node command.

Finally, we define a rewrite rule to be a pair of a pattern and a consistent sequence of commands.

A first example of a rule is given below with the pattern on the left and the sequence of commands
on the right. This rule called INIT_PASSIVE is used to remove the node corresponding to the auxiliary
of the passive construction and to modify the features accordingly.

INIT_PASSIVE
AUX_PASS
v | c1 = copy_feat(a, 3, mood) c4 = del_edge(3, o, AUX_PASS)
a B co = copy_feat(a, 3, tense) cs = shift_edge(a, 3)
cat = v cat = v cs = add_feat (53, voice = passive) cg = del_node(«)
voice = active voice = unk

Our second example (PASSIVE_ATYS) illustrates the add_node command. It is used in a passive
construction where the semantic subject of the verb is not realized syntactically.
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PASSIVE_ATS
i L 1] A ] c1 = del_edge(a, 3, sUJ) cs = add feat(o, voice = active)
3 o 5 co = add_edge(«, 3, 0BJ) c¢ = add_node(?)
@t = @ cs = del_edge (o, 7, ATS) ¢y = add_edge(«, SUJ, §)
voice = passive ¢4 = add_edge(c, v, ATO)
1.4 Rewriting
We consider a graph G and a rewrite rule » = (P, [c1, ..., cx]). We say that G’ is obtained from G by a

rewrite step with the 7 rule (written G —,. G’) if there is a matching morphism ¢ : P — G and G’ is
obtained from G by applying the composition of commands ci o ... o ¢y.

Let us now illustrate two rewrite steps with the rules above. Consider the first graph below which is
a syntactic dependency structure for the French sentence “Marie est considérée comme brillante” [Mary
is considered as bright]. The second graph is obtained by application of the INIT_PASSIVE rewrite rule
and the last one with the PASSIVE_ATS rewrite rule.

SuJ

AUX_PASS ATS OBJ
Marie est considérée comme brillante
cat = mnp cat = v cat = v cat = prep cat = adj
lemma = MARIE lemma = ETRE lemma = CONSIDERER lemma = COMME lemma = BRILLANT
voice = active voice = unk
tense = present
suJ ATS OBJ
Marie est_considérée comme brillante
cat = mnp cat = v cat = prep cat = adj
lemma = MARIE lemma = CONSIDERER lemma = COMME lemma = BRILLANT
voice = passive
tense = present
suJ
OBJ ATO OBJ
€ Marie est_considérée comme brillante
cat = mnp cat = v cat = prep cat = adj
lemma = MARIE lemma = CONSIDERER lemma = COMME lemma = BRILLANT
voice = aclive
tense = present

1.5 Modules and normal forms

A module contains a set of rewrite rules but, in order to have a finer control on the output of these
modules, it is useful to declare some forbidden patterns. Hence a module is defined by a set R of rules
and a set P of forbidden patterns.

For a given module M = (R, P), we say that G’ is an M-normal form of the graph G if there is a
sequence of rewriting steps with rules of R from Gto G': G —,, G1 —, Ga. .. — G', if no rule
of R can be applied to G’ and no pattern of P matches in G'.

In our experiment, forbidden patterns are often used to control the subset of edges allowed in normal
forms. For instance, the NORMAL module contains the forbidden pattern: 2225, Hence, we
can then safely suppose that no graph contains any AUX_PASS edge afterward.

2 From syntactic dependency graphs to semantic graphs

Linguistic theories diverge on many issues including the exact definition of the linguistic levels and
the relationships between them. Our aim here is not to commit to any linguistic theory but rather to
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demonstrate that graph rewriting is an adequate and realistic computational framework for the syntax-
semantics interface. Consequently, our approach is bound to neither the (syntactic and semantic) formats
we have chosen nor the transformation modules we have designed; both are mainly meant to exemplify
our proposal.

2.1 Representational formats

Our syntactic and semantic formats both rely on the notion of linguistic dependency. The syntactic
format is an enrichment of the one which was designed to annotate the French Treebank (Abeillé and
Barrier (2004)) with surface syntactic dependencies (Candito et al. (2010)). The enrichment is twofold:

o if they are present in the sentence, the deep arguments of infinitives and participles (from participial
subordinate clauses) are marked with the usual labels of syntactic functions,

e the anaphora relations that are predictable from the syntax (i.e. the antecedents of relative, reflexive
and repeated pronouns) are marked with a special label ANT.

This additional information can already be provided by many syntactic parsers and is particularly inter-
esting to compute semantics.

The semantic format is Dependency Minimal Recursion Semantics (DMRS) which was introduced by
Copestake (2009) as a compact and easily readable equivalent to Robust Minimal Recursion Semantics
(RMRS), which was defined by Copestake (2007). This underspecified semantic formalism was designed
for large scale experiments without committing to fine-grained semantic choices. DMRS graphs contain
the predicate-argument relations, the restriction of generalized quantifiers and the mode of combination
between predicates. Predicate-argument relations are labelled ARGi, where ¢ is an integer following a
fixed order of obliqueness SUJ, OBJ, ATS, ATO, A-OBJ, DE-OBJ. ... Naturally, the lexicon must be consistent
with this ordering. The restrictions of generalized quantifiers are labelled RSTR ; their bodies are not
overtly expressed but can be retrieved from the graph. There are three ways of combining predicates:

e EQ when two predicates are elements of a same conjunction;

e H when a predicate is in the scope of another predicate; it is not necessarily one of its arguments
because quantifiers may occur between them;

e NEO for all other cases.

2.2 Modular rewriting system

Graph rewriting allows to proceed step by step to the transformation of a syntactic graph into a semantic
one, by associating a rewrite rule to each linguistic rule. While the effect of every rule is local, grouping
rules in modules allows a better control on the global effect of all rules.

We do not have the space here to propose a system of rules that covers the whole French grammar.
We however propose six modules which cover a significative part of this grammar (cleft clauses, coor-
dination, enumeration, comparatives and ellipses are left aside but they can be handled by other rewrite
modules):

e NORMAL handles the regular syntactic transformations involving predicates: it computes tense
and transforms all redistributions of arguments (passive and middle voices, impersonal construc-
tions and the combination of them) to the active canonical form. This reduces the number of rules
required to produce the predicate-argument relations in the ARG module below.

e PREP removes affixes, prepositions and complementizers.

e ARG transforms the verbal, nominal and adjectival predicative phrases into predicate-argument
relations.
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e DET translates the determiner dependencies (denoted DET) to generalized quantifiers.

e MOD interprets the various modifier dependencies (denoted MOD), according to their specificity:
adjectives, adverbs, adjunct prepositional phrases, participial clauses, relative clauses, adjunct
clauses.

e ANA interprets all anaphoric relations that are determined by the syntax (denoted ANT).

Modules provide an easy way to control the order in which rules are fired. In order to properly set up the
rules in modules, we first have to fix the global ordering of the modules. Some ordering constraints are
evident: for instance, NORMAL must precede PREP, which must precede ARG. The rules we present in
the following are based on the order NORMAL, PREP, ARG, DET, MOD, ANA.

2.2.1 Normalization of syntactic dependencies

The NORMAL module has two effects: it merges tense and voice auxiliaries with their past participle
and brings all the argument redistributions back to the canonical active form. This module accounts
for the passive and middle voices and the impersonal construction for verbs that are not essentially
impersonal. The combination of the two voices with the impersonal construction is naturally expressed
by the composition of the corresponding rewrite rules. The two rules given in section 1.4 are part of this
module. The first rule INIT_PASSIVE) merges the past participle of the verb with its passive auxiliary.
The auxiliary brings its mood and tense to the verb, which is marked as being passive. The second rule
(PASSIVE_ATS) transforms a passive verb with a subject and an attribute of the subject into its active
equivalent with a semantically undetermined subject, an object (which corresponds to the subject of the
passive form) and an attribute of the object (which corresponds to the attribute of the subject of the
passive form).

2.2.2 Erasure of affixes, prepositions and complementizers

The PREP module removes affixes, prepositions and complementizers. For example, the rule given here
merges prepositions with the attribute of the object that they introduce. The value of the preposition is
kept to compute the semantics.

PREP_ATO
| — l | = l 1 = copyfeat(ﬂ, Vs pT’Ep)
- 3 > co = del_edge(3,~, OBJ)
voice = active cat = prep c3 = shift_edge(3, )
prep = x Cy = delmode(ﬁ)

2.2.3 From lexical predicative phrases to semantic predicates

The ARG module transforms the syntactic arguments of a predicative word (a verb, a common noun or
an adjective) into its semantic arguments. Following DMRS, the predicate-argument relations are not
labelled with thematic roles but only numbered. The numbering reflects the syntactic obliqueness.

ARG_OBIJ
OBJ
I ! c1 = del_edge(«, 5, 0BJ)
a B co = add_edge(«, 3, ARG2)
= cs = add_edge(«, 3, NEQ)

2.2.4 From determiners to generalized quantifiers

DET reverts the determiner dependencies (labelled DET) from common nouns to determiners into depen-
dencies of type RSTR from the corresponding generalized quantifier to the nominal predicate which is
the core of their restriction.
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DET

DET

| ¢1 = del_edge(f, a, DET)
«a B co = add_edge(«, 3, RSTR)
cat = det cat = n c3 = add,edge(a, 6’ H)

2.2.5 Interpretation of different kinds of modification

MOD deals with the modifier dependencies (labelled MOD, MOD_REL and MOD_LOC), providing rules
for the different kinds of modifiers. Adjectives and adverbs are translated as predicates whose first
argument is the modified entity. The modifier and modified entities are in a conjunction (EQ), except
for scopal adverbs which take scope () over the modified predicate. Because only lexical information
enables to differentiate scopal from non-scopal adverbs, we consider all adverbs to be systematically
ambiguous at the moment. Adjunct prepositional phrases (resp. clauses) have a similar rule except that
their corresponding predicate is the translation of the preposition (resp. complementizer), which has
two arguments: the modified entity and the noun (resp. verb) which heads the phrase (resp. clause).
Participial and relative clauses exhibit a relation labelled EQ or NEQ between the head of the clause and
the antecedent, depending on the restrictive or appositive type of the clause.

2.2.6 Resolution of syntactic anaphora

ANA deals with dependencies of type ANT and merges their source and their target. We apply them to
reflexive, relative and repeated pronouns.

3 Experiments

For the experimentation, we are interested in a test suite which is at the same time small enough to be
manually validated and large enough to cover a rich variety of linguistic phenomena. As said earlier, we
use the P7 surface dependency format as input, so the first attempt at building a test suite is to consider
examples in the guide which describes the format. By nature, an annotation guide tries to cover a large
range of phenomena with a small set of examples.

The latest version* of this guide (Candito et al. (2010)) contains 186 linguistic examples. In our cur-
rent implementation of the semantic constructions, we leave out clefts, coordinations and comparatives.
We also leave out a small set of exotic sentences for which we are not able to give a sensible syntactic
structure. Finally, our experiment runs on 116 French sentences. Syntactic structures following P7 spec-
ifications are obtained with some graph rewriting on the output of our parser. Each syntactic structure
was manually checked and corrected when needed. Then, graph rewriting with the modules described in
the previous section is performed.

For all of these sentences, we produce at least one normal form. Even if DMRS is underspecified, our
system can output several semantic representations for one syntactic structure (for instance, for appositive
and restrictive relative clauses). We sometimes overgenerate because we do not use lexical information
like the difference between scopal and non-scopal adverbs.

The result for three sentences is given below and the full set is available on a web page °.

*version 1.1, january 2010

Shttp://leopar.loria.fr/doku.php?id=iwcs2011
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[012] “Le francais se parle de moins en moins dans les conférences.” [The French language is less and

less spoken in conferences.]

SUJ MOD_LOC 0OBJ
DET { AFF_MOYEN ][ MOD 1[ DET 1
le frangais se parle de moins en moins  dans les conférences
cat=det cat=n cat=pro cat=v cat=adv cat=prep cat=det cat=n
mood=ind prep=loc
tense=pres
voice=unk
/de moins en moins/ C;:i_ans/ les/
cat=adv =prep cat=det
prep=loc
ARGI \EQ %ARG] NEQ \ARG2 H RSTR
/parle/
e/ m(f;é:_‘;n d /conférences/
cat=det - cat=n
tense=pres
voice=active
H \RSTR A‘MEQ \:Rcl EQ
/frangais/ J
cat=n
[057] “J’encourage Marie a venir.” [I invite Mary to come.]
/encourage/
cat=v
mood=ind
tense=pres
voice=active
ARGl NEQ ARG3 \EQ
/venir/
Jie/ cat=v
x ARG2 | NEQ mood=inf
cat=pro prep=3
A-OBJ h .
voice=active
[SUJ
SUJ [ OBJ 0OBJ
' RN 3 1 ) ARG1 /NEQ
je encourage  Marie a venir
cat=pro cat=v cat=np cat=prep cat=v /Marie/
mood=ind prep=a mood=inf cat=np
tense=pres voice=unk
voice=unk

[106] “La série dont Pierre connait la fin” [The story Peter knows the end of]

DE-OBJ

( wmop_ReL 0BJ
DET [ ANT l suJ 1[ DET
£ . N A
la série  dont Pierre  connait la fin
cat=det cat=n cat=pro cat=np cat=v cat=det cat=n
mood=ind
tense=pres
voice=unk
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/connait/
cat=v

mood=ind

tense=pres

voice=active

NEQ lARGI NEQWRG2 /RSTR /H
/Pierre/ /fin/

EQ cat=np cat=n

NEQ



Conclusion

In this paper, we have shown the relevance of modular graph rewriting to compute semantic representa-
tions from graph-shaped syntactic structures. The positive results of our experiments on a test suite of
varied sentences make us confident that the method can apply to large corpora.

The particular modular graph rewriting system presented in the paper was merely here to illustrate
the method, which can be used for other input and output formats. There is another aspect to the flexi-
bility of the method: we may start from the same system of rules and enrich it with new rules to get a
finer semantic analysis — if DMRS is considered as providing a minimal analysis — or integrate lexi-
cal information. The method allows the semantic ambiguity to remain unsolved within underspecified
representations or to be solved with a rule system aiming at computing models of underspecified rep-
resentations. Moreover, we believe that its flexibility makes graph rewriting a convenient framework to
deal with idiomatic expressions.
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Abstract

In three experiments, we investigated the computational complexity of German reciprocal sen-
tences with different quantificational antecedents. Building upon the tractable cognition thesis (van
Rooij, 2008) and its application to the verification of quantifiers (Szymanik, 2010) we predicted
complexity differences among these sentences. Reciprocals with all-antecedents are expected to
preferably receive a strong interpretation (Dalrymple et al., 1998), but reciprocals with proportional
or numerical quantifier antecedents should be interpreted weakly. Experiment 1, where participants
completed pictures according to their preferred interpretation, provides evidence for these predic-
tions. Experiment 2 was a picture verification task. The results show that the strong interpretation
was in fact possible for tractable all but one-reciprocals, but not for exactly n. The last experiment
manipulated monotonicity of the quantifier antecedents.

Formal semantics hasn’t paid much attention to issues of computational complexity when the mean-
ing of an expression is derived. However, when it comes to semantic processing in humans (and com-
puters) with limited processing resources, computational tractability becomes one of the most important
constraints a cognitively realistic semantics must face. Two consequences come to mind immediately.
If there is a choice between algorithms, we should choose tractable ones over intractable ones. And
secondly, meanings which cannot be effectively computed shouldn’t be posited for natural language
expressions. In this paper we present three psycholinguistic experiments investigating the latter aspect.

Following traditions in computer science, a number of cognitive scientists have defined computa-
tional tractability as polynomial-time-computability (for an overview see van Rooij, 2008) leading to the
P-Cognition Hypothesis (PCH): cognitive capacities are limited to those functions that can be computed
in polynomial time. These functions are input-output functions in the sense of Marr (1982)’s first level.
One objection against the PCH is that computational complexity is defined in terms of limit behavior as
the input increases. In practice, however, the input may be rather small. van Rooij (2008) points out
that the input size can be parametrized turning a problem that is intractable for a large input size into a
tractable one for small inputs. We manipulated the input size in an experiment to test this more refined
version of the PCH.

An interesting test case for the PCH are quantified sentences containing reciprocal expressions of the
form Q of the As R each other. Consider (1-a) — (1-c).
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(D) a. Most of the dots are connected to each other.
Four of the dots are connected to each other.
c. All dots are connected to each other.

It has been commonly observed that such sentences are highly ambiguous (see eg. Dalrymple et al.,
1998). For instance, under its logically strongest interpretation (1-a) is true iff given n dots there is a
subset of more than & dots which are pairwise connected. But there are weaker readings of reciprocity,
too, i.e. connectedness by a path (a continuous path runs through Q of the dots) or — even weaker — Q
of the dots are interconnected, but no path has to connect them all. Following Dalrymple et al. (1998)
we call these reciprocal meanings strong, intermediate, and weak, respectively. As for verification, Szy-
manik (2010) has shown that the various meanings assigned to reciprocals with quantified antecedents
differ drastically in their computational complexity. In particular, the strong meanings of reciprocal sen-
tences with proportional and counting® quantifiers in their antecedents are intractable, i.e. the verification
problem for those readings is NP-complete. This is due to the combinatorial explosion in identifying the
relevant completely-connected subsets for these two types of quantifiers (cf. CLIQUE problem, see
Garey and Johnson (1979, problem GT19)) which does not emerge with all. However, intermediate and
weak interpretations are PTIME computable. For example, going through all the elements in the model,
thereby listing all the paths, and then evaluating the paths against the quantifier in the antecedent solves
the problem in ploynomial time. The PCH thus allows us to derive the following predictions. A strong
interpretation should be impossible for sentences (1-a) and (1-b), but possible for the tractable sentence
(1-c). Therefore, Szymanik (2010) suggests that if the processor initially tries to establish a strong in-
terpretation, there should be a change in the meanings of sentences (1-a) and (1-b) to one of the weaker
interpretations.

In an attempt to explain variations in the literal meaning of the reciprocal expressions Dalrymple
et al. (1998) proposed the Strong Meaning Hypothesis (SMH). According to the SMH, the reading asso-
ciated with the reciprocal is the strongest available reading which is consistent with the properties of the
reciprocal relation and the relevant information supplied by the context. Consider (2-a) to (2-c).

2 a.  All members of parliament refer to each other indirectly.
b.  All Boston pitchers sat alongside each other.
c. All pirates were staring at each other in surprise.

The interpretation of reciprocity differs among those sentences. Sentence (2-a) implies that each par-
liament member refers to each of the other parliament members indirectly. In other words, the strong
interpretation seems to be the most natural reading. This is different in (2-b) and (2-c) which receive
intermediate and weak interpretations, respectively. Here the predicates sit alongside and stare at ar-
guably constrain the meaning. Observations like these lend intuitive support to the SMH. Kerem et al.
(2010) modified the SMH and provided experimental evidence that comprehenders are biased towards

L1t is natural to assume that people have one quantifier concept Exactly k, for every natural number k, rather than the infinite
set of concepts Exactly 1, Exactly 2, and so on. Mathematically, we can account for this idea by introducing the counting
quantifier C=* saying that the number of elements satisfying some property is equal to the cardinality of the set A. The idea
here is that determiners like Exactly & express a relation between the number of elements satisfying a certain property and the
cardinality of some prototypical set A (see Szymanik (2010) for more discussion).
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the most typical interpretation of the reciprocal relation. Thus, the reciprocal relation seems to constrain
the meaning. Neither the original SMH nor Kerem et al. (2010)’s account leads us to expect that the three
quantifiers in (1-a) — (1-c) should differ with respect to how they constrain reciprocal meanings. With
‘neutral’ predicates like to be connected by lines the SMH predicts an overall preference for the strong
interpretation in all three sentences. A property that should matter, though, is the monotonicity of the
quantificational antecedent. Since monotone decreasing quantifiers have the exact opposite entailment
pattern as increasing ones, the SMH leads us to expect that preferences should be reversed in monotone
decreasing quantificational antecedents.

We tested the PCH and the SMH in three experiments. In the first we surveyed the default interpre-
tation of reciprocal sentences with quantificational antecedents like (1-a) — (1-c) by having participants
complete dot pictures. The second experiment tested the availability of strong and intermediate inter-
pretations in a picture verification task using clearly disambiguated pictures where, in addition, the input
size was manipulated. The last experiment compared upward increasing and decreasing quantifiers.

Experiment 1. what isthe preferred interpretation?

According to the SMH, sentences like (3-a) are preferably interpreted with their strong meaning in (3-b).

3) a.  All/Most/Four of the dots are connected to each other.
b. 3IX C DOTS[Q(DOTS, X) AVx,y € X(x # y — connect(z,y))],
where Q is ALL, MOST or FOUR.

The PCH, on the other hand, predicts differences between the three quantifiers. While the strong meaning
of reciprocal all can be checked in polynomial time, verifying the strong interpretation of reciprocal most
and reciprocal four is NP-hard?. By contrast, the weaker readings are computable in polynomial time
for all three types of quantifiers. It is thus expected that the choice of Q should affect the preference
for strong vs. intermediate/weak interpretations. Bringing the SMH and the PCH together we get the
following predictions: reciprocal all should receive a strong reading, but reciprocal most/four should
receive an intermediate or weak one.

M ethod

These predictions were tested in a paper-and-pencil questionnaire. 23 German native speakers (mean
age 24.3 years; 10 female) received a series of sentences, each paired with a picture of unconnected dots.
Their task was to connect the dots in such a way that the resulting picture matched their interpretation of
the sentence. We tested German sentences in the following three conditions (all vs. most vs. four).

(@) Alle / Die meisten / Vier Punkte sind miteinander  verbunden.

All /Themost /Fourdots are with-one-other connected.
All / Most / Four dots are connected with each other.

All-sentences were always paired with a picture consisting of four dots, whereas most and four had pic-
tures with seven dots. Each participant completed five pictures for each quantifier. For this purpose, we

2See footnote 1.
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drew 15 pictures with randomly distributed dots. In addition, we included 48 filler sentences. Half of
them clearly required a complete (sub)graph, just like the experimental sentences in their strong interpre-
tation. The other half were only consistent with a path. We constructed four pseudorandomized orders,
making sure that two adjacent items were separated by at least two fillers and each condition was as often
preceded by a complete graph filler as it was by a path filler. The latter was done to prevent participants
from being biased towards either strong or intermediate interpretations in any of the conditions.

The completed pictures were labeled with respect to the chosen interpretation taking both truth con-
ditions and scalar implicatures into account. A picture was judged to show a strong meaning if the truth
conditions in (3-b) were met and no implicatures of Q were violated. It was classified as intermediate if
a (sub)graph of appropriate size was connected by a continuous path, but there was no complete graph
connecting these nodes. Finally, a picture was labeled weak if Q nodes all had some connections, but
there was no path connecting them all. Since we didn’t find any weak readings, we will just consider the
strong and intermediate readings in the analysis. Cases that did not correspond to any of these readings
were coded as mistakes. Here is an example:

(5) Most of the dots are connected to each other.

Since the strong meaning of (5) requires at least four dots to form a complete subgraph, (5) is clearly
false in this reading. The intermediate or weak reading is ruled out pragmatically, since all dots are con-
nected by a continuous path. We checked whether participants obeyed pragmatic principles by analyzing
sentences in the condition with four. In this condition participants (except for six cases) never connected
more than four dots suggesting that they paid attention to implicatures.

Results

The proportions of strong meanings in the three conditions were analyzed using logit mixed effects
model analyses (see eg. Jager (2009)) with quantifier as a fixed effect and participants and items as
random effects. We computed three pairwise comparisons: all vs. most, all vs. four and most vs. four.
In all of these analyses, we only included the correct pictures.

Participants chose strong meanings in the all-condition 47.0% of the time, 22.9% in the most-
condition and 17.4% in the four-condition. The logit mixed effects model analyses revealed a significant
difference between all and most (estimate = —1.82; z = —3.99; p < .01) and between all and four
(estimate = —3.16; z = —5.51; p < .01), but only a marginally significant difference between four
and most (estimate = .80; z = 1.65; p = .10).

The error rates differed between conditions. Participants did not make a single mistake in the all-
condition. In the four-condition 94.8% of the answers were correct. In the most-condition the proportion
of correct pictures dropped down to 83.5%. Two pairwise comparisons using Fisher’s exact test revealed

®Implicatures were only an issue in the four- and the most-conditions, but not in the all-condition.
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a significant difference between all and four (p < .05) and a significant difference between four and most

(p < .01).

Discussion

The results provide evidence against the SMH. Participants overwhelmingly drew pictures which do not
satisfy a strong reading. In the all condition our data provide evidence for a real ambiguity between
the strong and the intermediate interpretation. This is unexpected under the SMH; if the predicate to be
connected is neutral, a strong interpretation should be favored. For the quantifiers most and four, the
results provide even stronger evidence against the SMH. In these two conditions intermediate readings
were clearly preferred over strong ones which were hardly, if at all, available.

The PCH, on the other hand, receives initial support by our findings, in particular by the observed
difference in the proportion of strong interpretations between reciprocal all, reciprocal most and recip-
rocal four. The error rates provide further support for the PCH. Most and four led to more errors than
all did. This can be accounted for if we assume that participants sometimes tried to compute a strong
interpretation but due to the complexity of the task failed to do so. To clarify whether this explanation
is on the right track we clearly need real-time data on the interpretation process. This has to be left to
future research. Another open question is whether the strong readings of reciprocal most and reciprocal
four are just dispreferred or completely unavailable. This cannot be decided on the basis of the current
experiment. What is needed instead is a task which allows us to determine whether a particular reading
is possible or not.

Experiment 2: which readings are available?

The second experiment employed a picture verification task using clearly disambiguating pictures for
strong vs. intermediate readings. Unfortunately, the quantifiers we used in the last experiment are all
upward monotone in their right argument and therefore their strong interpretation implies the interme-
diate reading. Hence, even if the diagrams supporting the strong reading were judged to be true, we
still wouldn’t know which interpretation subjects had in mind. Luckily, in sentences that contain non-
monotone quantifiers neither reading entails the other. We therefore chose the quantifiers all but one,
most and exactly n in (6). All but one and exactly four are clearly non-monotone. For most, if we take
the implicature most, but not all into account, it is possible to construct strong pictures in a way that the
other readings are ruled out pragmatically. Crucially, the strong reading of all but one is still PTIME
computable, although it is more complex than all. For instance, for verifying a model of size n, only the
n subsets of size n — 1 have to be considered. By contrast, verifying the strong meaning of (6-b,c) is
intractable.
(6) a. Alle Punkte bis  auf einen sind miteinander verbunden.

All dots except for one are with-one-another connected.

h. Die meisten Punkte sind miteinander verbunden.
The most dots are with-one-another connected.
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Figure 1: Diagrams used in Exp. 2
c. Genau drei Punkte sind miteinander verbunden.

Exactly three dots  are with-one-another connected.
We paired these sentences with diagrams disambiguating towards the intermediate or strong reading.

Sample diagrams are depicted in Figure 1(a) and 1(b). For strong pictures, the PCH predicts lower ac-
ceptance rates for (6-b,c) than for (6-a). In order to find out whether the strong readings of (6-b,c) are
dispreferred or completely unavailable we also paired them with false control diagrams (see Figurel(c)).
The wrong pictures differed from the strong ones in that a single line was removed from the completely
connected subset. If the strong reading is available for these two sentences at all, we expect more positive
judgments following a strong diagram than following a false control. Furthermore, we included ambigu-
ous diagrams as an upper bound for the intermediate pictures (cf. Figure 1(d)). If the strong meaning
should conflict with an intermediate picture, we would expect more positive responses following an
ambiguous diagram than following an intermediate diagram.

Secondly, as mentioned in the introduction we wanted to investigate whether availability of the strong
reading in sentences with counting or proportional quantifiers depends on the size of the model. The
strong meaning of (6-b,c) may be easy to verify in small universes, but not in larger ones. To test this
possibility we manipulated the number of dots. Small models always contained four dots and large
models six dots. We chose small models only consisting of four dots because this is the smallest number
for which the strong meaning can be distinguished from the intermediate interpretation, so we could be
sure that the task would be doable at al*. For the more complex six-dot pictures we presented sentences
with exactly five instead of exactly three. Example diagrams are given in Figure ®. In total, this yielded
24 conditions according to a 3 (quantifier) x 4 (picturetype) x 2 (size) factorial design.

“We had the intuitive impression that pictures with ten dots were already far too complex to be evaluated by naive informants.
®The wrong pictures with six dots were slightly different for most. In these diagrams, all dots were connected by lines, but

there was no subset containing four or more elements forming a complete graph.
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Figure 2: Mean judgments in Exp. 2 (low = pictures with 4 dots; high = pictures with 6 dots)

M ethod

Each participant provided three judgments per condition yielding a total of 72 experimental trials. We
added 54 filler trials (20 false/34 true) and the 12 monotonicity trials from Experiment 3.

36 German native speakers (mean age 26.9 years; 23 female) read reciprocal quantified sentences
on a computer screen in a self-paced fashion. When they finished reading the sentence, it disappeared
from the screen and a dot picture was presented for which a truth value judgment had to be provided
within a time limit of 10s°. Participants received feedback about how fast they had responded. This was
done to trigger the first interpretation they had in mind. We collected judgments and judgment times,
but because of space limitations will only report the former. The experiment started with a practice
session of 10 trials, followed by the experiment with 138 trials in an individually randomized order. An
experimental session lasted approximately 15 minutes.

Results

Two kinds of analyses were conducted on the proportion of ‘true’ judgments. The upper bound analyses
concerned the default status of the intermediate interpretation by comparing intermediate picture con-
ditions with ambiguous conditions. Lower bound analyses aimed at clarifying the status of the strong
interpretation by comparing strong picture conditions with wrong conditions. The mean judgments of
both analyses are presented in Figure 2.

Upper bound analysis: A logit mixed effects model analysis including quantifier, reading (am-
biguous vs. intermediate), complexity and their interactions as fixed effects and participants and items
as random effects only revealed a significant main effect of reading (estimate = —2.37; z = —2.88;
p < .01). This main effect was due to an across-the-board preference (7.3% on average) of ambiguous
pictures to pictures disambiguating towards an intermediate interpretation.

Lower bound analyses: We computed a logit mixed effects model analysis including quantifier,
truth (strong vs. wrong), complexity and their interactions as fixed effects and participants and items as
random effects. The only reliable effect was the fixed effect of quantifier (estimate = 3.31; z = 8.10;
p < .01). The effect of truth was marginal (estimate = 0.72; z = 1.77; p = .07). As it turned

SParticipants were very fast. On average they spent 2.5s reading the sentence and 1.8s to provide a judgment.
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out, a simpler model taking into account only these two main effects and the random effects accounted
for the data with a comparable fit. This was revealed by a comparison of the log-likelihood of the
saturated and the simpler model (st) = 12.36; p = .14). Thus, complexity had no significant influence
on the judgments. The simple model revealed a significant main effect of truth (estimate = 0.67;
z = 4.08; p < .01) which was due to 7.9% more ‘true’ judgments on average in the strong conditions
than in the wrong conditions. The main effect of quantifier was also significant (most vs. all/exactly:
estimate = 3.21; z = 15.10; p < .01). This was due to more than 60% acceptance for all most
conditions but much lower acceptance for the other two quantifiers.

We analyzed the data by computing separate logit mixed effect models with fixed effects of truth,
complexity and their interaction for all three quantifiers and simplified the models when a fixed effect
failed to contribute to model fit. The best model for all but one contained only the fixed effect of truth
which was reliable (estimate = 1.04; z = 3.47; p < .01), but neither complexity nor the interaction
enhanced model fit (X%g) = 1.04; p = .60). Thus, independently of complexity strong pictures were more
often accepted than wrong pictures. The same held for most (fixed effect of truth: estimate = 0.98;
z = 2.71; p < .01). Exactly n was different in that the fixed effect of truth and the interaction didn’t
matter (X?Q) = 2.68; p = .26), but complexity was significant (estimate = —0.97; z = —2.96; p < .01).
This effect was due to more errors in complex pictures than in simpler ones.

Discussion

Overall, the intermediate reading was overwhelmingly preferred to the strong one. However, both the
upper bound and the lower bound analyses provide evidence that the strong reading is available to some
degree. Both analyses revealed a significant effect of picture type. Intermediate diagrams were less
often accepted than the ambiguous diagrams. Moreover, strong diagrams were more often accepted than
false ones. Focussing on all but one and exactly n with respect to the difference between the strong
and wrong conditions the pattern looks as predicted by the PCH. The strong reading was possible for
tractable all but one reciprocals but less so for intractable exactly n reciprocals. With most, the picture
looks different. Even though verification of its strong meaning should be intractable, there was a reliable
difference between the strong and wrong conditions. Thus, participants seemed to sometimes choose
strong readings. An intractable problem can of course be innocuous under certain circumstances, for
instance, when the input size is sufficiently small. The lack of effects of the number of dots manipulation
points in this direction. Perhaps even the ‘complex’ conditions with six dots presented a relatively easy
task. This brings us to a parametrized version of the PCH. A hard verification problem may be easy if we
include parameters like the size and arrangement of the model. Although far from conclusive, we take
our results as pointing in this direction.

Surprisingly, most was accepted quite often in the strong and the allegedly wrong conditions. The
high acceptance rates in the latter indicate that participants were canceling the implicature of most and
interpreting it as the upward monotone more than half. This also explains the high acceptance of the
strong most conditions which were, without implicature, consistent with an intermediate interpretation.
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Experiment 3: monotone increasing vs. decreasing antecedents

So far, we have been investigating reciprocal sentences with the upward monotone quantifiers all, most,
four (Exp. 1) and the non-monotone quantifiers all but one and exactly n (Exp. 2). As it looks, only
all licenses a strong interpretation easily. This finding may follow from the monotonicity plus impli-
catures. According to Dalrymple et al. (1998)’s SMH strong readings are preferred in sentences with
upward monotone quantificational antecedents. For downward monotone quantifiers, on the other hand,
intermediate readings should be preferred to strong readings. The reverse preferences are triggered by
opposite entailment patterns. In the present experiment we compared upward monotone more than n
with downward monotone antecedents fewer than n+2.

We paired diagrams like Figure 1(f) vs. Figure 1(e) with the two sentences in (7) according to a 2
(monotonicity) x 2 (truth) factorial design. The diagrams of the first type were identical to the strong pic-
tures of the last experiment. With monotone increasing quantifiers they were ambiguous between strong
and intermediate interpretations while in the monotone decreasing cases they disambiguated towards a
strong interpretation. The second type of pictures disambiguated towards weak readings in monotone
increasing quantifiers, but were ambiguous for monotone decreasing quantificational antecedents. On
the basis of the first two experiments we expected high acceptance of both picture types with monotone
increasing quantifiers, but much lower acceptance rates for (7-b) with strong than with ambiguous pic-
tures. We constructed six items and collected three judgments from each participant in each condition.
The experiment was run together with Experiment 2 using the same method.

(7) a  Mehrals vier Punkte sind miteinander verbunden.
More than four dots  are with-one-another connected.

b.  Wenigerals sechs Punkte sind miteinander verbunden.
Fewer thansix dots are with-one-another connected.

Results and Discussion

As expected, upward monotone antecedents were accepted in both picture types (ambiguous 98.1%;
intermediate 92.5%). A logit mixed effect model analysis revealed no significant difference between
the picture types (estimate = 1.53; z = 1.60; p = .11). This was completely different in sentences
with monotone decreasing antecedents where strong pictures were only accepted in 13.0% of all trials
while ambiguous pictures were accepted 92.6% of the time. This asymmetric distribution provides clear
evidence that the predicate be connected to each other induced a bias towards the intermediate reading.
Thus, although intended to be neutral we apparently chose a predicate that is far from optimal.

Conclusions

We have presented evidence that the kind of quantificational antecedent influences the amount of ambigu-
ity displayed by reciprocal sentences. For example, in Exp. 1 only all reciprocals were fully ambiguous.
Furthermore, comparing tractable reciprocals with antecedents all and all but one to intractable recipro-
cals with nand exactly n we found support for the predictions of the PCH. In reciprocals with all and all
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but one strong readings were possible whereas exactly n blocked a strong interpretation. As for most the
results are somewhat mixed. In Exp. 1 the strong reading was hardly available, but Exp. 2 showed that
although dispreferred it is nevertheless possible.

At first sight, our findings provide evidence against the SMH. Strong interpretations were not the
default in Exp. 1 and for the monotone increasing quantifiers in Exp. 3 weak interpretations were just as
acceptable as the ambiguous pictures. However, contrary to our initial assumptions be connected doesn’t
seem to be neutral but seems to bias towards an intermediate interpretation. This may have to do with
the transitivity of the relation. If two dots are only indirectly connected, it seems impossible to say that
they are not connected, yet possible to say they are not directly connected. A next step, therefore, will
be to apply the design of Exp. 2 to other predicates like to know someone, a relation that is clearly not
transitive.

Another route to pursue is increasing the size of the models. A particularly strong test for the PCH
would be to increase the model size up to a point where the acceptance rate for the strong reading of
proportional quantifiers drops to the level of wrong pictures and see whether tractable antecedents still
exhibit their strong interpretation. Exp. 2 was a first step in that direction but the size of the models was
obviously still too small.

To conclude, we hope to have shown that relatively innocent looking reciprocal sentences with quan-
tificational antecedents are an interesting test case for considerations of tractability in verification. More
generally, within this domain research can be applied to a number of different constructions (for instance,
branching quantifiers), so claims about computational complexity can be validated extending the test case
investigated in the present study.
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Abstract

The VerbNet lexical resource classifies English verbs based on semantic and syntactic
regularities and has been used for numerous NLP tasks, most notably, semantic role
labeling. Since, in addition to thematic roles, it also provides semantic predicates, it can
serve as a foundation for further inferencing. Many verbs belong to multiple VerbNet
classes, with each class membership corresponding roughly to a different sense of the verb.
A VerbNet token classifier is essential for current applications using the resource and could
provide the basis for a deep semantic parsing system, one that made full use of VerbNet’s
extensive syntactic and semantic information. We describe our VerbNet classifier, which
uses rich syntactic and semantic features to label verb instances with their appropriate
VerbNet class. It achieves an accuracy of 88.67% with multiclass verbs, which is a 49%
error reduction over the most frequent class baseline.

1 Introduction

Rich verb representations are central to deep semantic parsing, requiring the identification of not only
a verb’s meaning but also how it connects the participants in the sentence. Disambiguating verbs
using a lexicon that has already been enriched with syntactic and semantic information, rather than a
more traditional lexicon, can bring end systems a step closer to accurate knowledge representation and
reasoning. One such lexical resource, VerbNet, groups verbs into classes based on commonalities in
their semantic and syntactic behavior. It is widely used for a number of semantic processing tasks,
including semantic role labeling (Swier and Stevenson, 2004), the creation of conceptual graphs
(Hensman and Dunion, 2004), and the creation of semantic parse trees (Shi and Mihalcea, 2005). In
addition, the detailed semantic predicates associated with each VerbNet class have the potential to
contribute to text-specific semantic representations and, thereby, to inferencing tasks. However,
application of VerbNet’s semantic and syntactic information to specific text requires first identifying
the appropriate VerbNet class of each verb token, a task very similar to word sense disambiguation.

Studies that have made use of VerbNet have dealt with the issue of multiclass verbs in different ways.
When deciding on the class for a particular token of a verb in text, Zapirain et al. (2008) simply
assigned the most frequent class for the verb rather than attempt to disambiguate. Their data consisted
of any sentences in the Semlink corpus (Loper et al., 2007) in which the thematic roles mapped
completely between PropBank and VerbNet, which resulted in a corpus that contained about 56% of
the original. For the data in their study, the most frequent class label was accurate 97% of the time.
Multiclass verbs throughout the entire Semlink corpus, however, have a most frequent class baseline
of 73.8%.

Other systems seem to have set aside the problem of multiclass verbs. For example, Bobrow et al.
(2007) describe using VerbNet’s semantic predicates in PARC’s question-answering system to derive
pre- and post-conditions of events, such as the change of location of entities. For a verb like leave, the
system attempts to use the semantic predicates provided by the VerbNet Leave-51.2 class:

MOTION(DURING(E), THEME)LOCATION(START(E), THEME, SOURCE)
NOT(LOCATION(END(E), THEME, SOURCE))DIRECTION(DURING(E), FROM, THEME, SOURCE)
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to show that an entity was located in one place before the event and was in another location after the
event. However, leave has multiple usages, not all of them involving physical change of location.

Table 1 shows its VerbNet classes and their semantic predicates. The PARC system would need to
identify only those instances in their data where /eave has the change of location meaning.

VerbNet class Example VerbNet semantics

Escape-51.1 The students left. MOTION(DURING(E), THEME)
DIRECTION(DURING(E), PREP_DIR, THEME)

Leave-51.2 Elvis has left the building. MOTION(DURING(E), THEME)

LOCATION(START(E), THEME, SOURCE)
NOT(LOCATION(END(E), THEME, SOURCE))
DIRECTION(DURING(E), FROM, THEME, SOURCE)

Resign-10.11 He left Microsoft in 2008. CAUSE(AGENT, E) LOCATION(START(E), SOURCE)
NOT(LOCATION(END(E), SOURCE))

Fulfilling-13.1.4 | He left the tenant with his business HAS_POSSESSION(START(E), AGENT, THEME)
card. HAS_POSSESSION(END(E), RECIPIENT, THEME)
TRANSFER(DURING(E), THEME) CAUSE(AGENT, E)

Future having- He left Sam his stamp collection. HAS_POSSESSION(START(E), AGENT, THEME)

13.3 FUTURE_POSSESSION(END(E), RECIPIENT, THEME)
CAUSE(AGENT, E)

Keep-15.2 She left the papers in her desk PREP(DURING(E), THEME, LOCATION)

CAUSE(AGENT, E)

Table 1: VerbNet classes and semantic predicates for the verb leave

Zaenen et al. (2008, p. 387) explain that the problem of automatically selecting only those instances
that fit the desired class remains to be solved, especially in terms of dividing metaphorical from literal
tokens of a verb: “We ignore the problem of metaphorical extensions for the relevant verbs.
Resources other than VerbNet will need to be exploited to insure that these non-physical
interpretations are excluded.”Although they do not state which ones are the relevant verbs, for many
verbs this problem could be alleviated by disambiguating the class assignment for a specific verb
instance. To continue our example, leave has six VerbNet classes: Escape, Fulfilling, Future having,
Keep, Leave and Resign. Only the Leave class and the Resign class have the start location and end
location information they are looking for, and, for the Resign class, the change of location is
metaphorical. Therefore, the Leave class is the only class for this verb that suits their purposes.
Classifying instances with the appropriate VerbNet class would enable them to apply the Location
predicate to only those instances that are relevant. For the Semlink corpus, applying a most frequent
class heuristic for leave would result in only 59% accuracy. This is only one example of how an
accurate, automatic VerbNet classifier would be useful.

2 Related Work

We know of only two previous efforts to create a VerbNet class disambiguator for verb tokens, those
of Girju et al. (2005) and Abend et al. (2008). Girju et al. used a supervised machine learning
methodology, with features from the words within three positions of the verb. These features included
lemma, part of speech tag, phrase type from a syntactic chunker and named entity information. First,
however, they faced the problem of creating a training set tagged with VerbNet class labels. They
automatically constructed one by mapping from PropBank roleset labels to VerbNet classes, choosing
to label only those verb instances in which the PropBank roleset mapped to only one VerbNet class.
This methodology resulted in a set of target verbs in which 96% belonged to only one VerbNet class.
The high most-frequent-class baseline of 96.5% reflects the predominance of monosemous verbs and
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explains the low level of improvement over it: only 2%. Because our classifier uses only multiclass
verbs and a gold standard corpus with VerbNet class labels, it is not comparable to the Girju classifier.

The disambiguator developed by Abend et al. (2008) supports a much closer comparison. They also
approach the task as a supervised machine learning problem, training and testing on the Semlink
corpus. Polysemous verbs account for 58% of their data, and they report results for all verbs and for
just polysemous verbs. The Semlink corpus has annotated the verbs in the Wall Street Journal corpus
with VerbNet classes. They selected instances that had been labeled with a VerbNet class,
disregarding those verb instances that had been labeled as having no appropriate VerbNet class. Their
system achieved 96.4% accuracy, which was a 2.9% increase over the 93.7% baseline. The high
baseline can also be attributed to the large number of monosemous verbs in their data. Considering
only the polysemous verbs and the model using an automatic parser, the scenario most closely
resembling our experimental setup, the most frequent class baseline was 88.6% and the system
accuracy was 91.9%, which represents an error reduction of 28.95%.

The results of the Abend et al. study suggest that automatic disambiguation of VerbNet classes is a
reasonable line of research, and a possible method for verb sense disambiguation. The classifier relies
on lexical and syntactic features, such as part of speech and heads of phrases. The classifier we
describe is similar in several ways, although it adds several unique syntactic and semantic features
and trains and tests only on multiclass verbs. The following sections will include comparisons of
features and results where appropriate.

3 Method

To achieve verb token classification with VerbNet classes, we use a supervised machine learning
approach. Using a corpus annotated with VerbNet class labels, we create a feature vector for each
verb instance. A learning algorithm is then applied to generate a classifier. The following sections
describe the data, the features and the experimental setup.

3.1 The Data

The training and test data are drawn from the Semlink corpus (Loper et al., 2007), which consists of
the Penn Treebank portions of the Wall Street Journal corpus. A combination of automatic and
manual techniques was used to label each verb instance with the appropriate VerbNet class. The
resulting corpus is the largest repository of VerbNet token classification available. The corpus
contains 113K verb instances, 97K of which are verbs represented in at least one VerbNet class (i.c.,
86%). Semlink includes 495 verbs that have instances labeled with more than one class (including
verbs labeled with a single VerbNet class and None). We have trained and tested with all of these
verbs that have 10 or more instances, resulting in a set of 344 verbs. The average number of classes
for these verbs is 2.7, and the average number of instances was 133. All instances in the corpus for
each verb were used, which created a dataset of 45,584 instances.

3.2 Features

We use a wide variety of features, including lexical, syntactic and semantic features, all derived
automatically. Previous work has focused on lexical and syntactic features possibly because of the
strong association of a VerbNet class to its syntactic alternations. However, a verb’s membership in
different classes also depends on its meaning, making the inclusion of semantic features a possible
benefit. As mentioned earlier, multiple class memberships usually correlate with different senses of
the verb, making VerbNet class disambiguation much like verb sense disambiguation. For this reason,
we thought it was appropriate to treat the task as a verb sense disambiguation task. Some of the
features are fairly standard ones used for general word sense disambiguation, but we have added some
rich syntactic and semantic features that have proven useful for sense disambiguation of verbs. All
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features, which were previously also shown to be useful for WSD (Dligach and Palmer, 2008) are
summarized in Table 2 and explained more fully in the sections that follow.

Lexical All open class words from target sentence and the surrounding sentences

The two words preceding the target and their POS tags

The two words following the target and their POS tags

Syntactic The path through the parse tree from the target verb to its arguments

Whether the target has a subj or obj and their head words and POS.

Whether the target has a subordinate clause

Whether the target has a PP adjunct

The subcategorization frame

The verb’s voice (active or passive)

Semantic Named-entity tags of the target’s arguments

WN hypernyms of the target’s arguments

WN synonyms of the target’s arguments

Dynamic Dependency Neighbors (DDNs)

Table 2: Classifier features

3.2.1 Lexical features

The lexical features include all open class words drawn from the target sentence and the sentence
directly before and the sentence directly after it. In addition, we use a feature that pairs each of the
two words before and the two words after the target verb with their respective part of speech tag.

3.2.2  Syntactic features

The syntactic features are drawn from syntactic parses automatically created with the Bikel Parser
(Bikel, 2004). These features focus on the type of patterns that often distinguish one verb sense from
another and that help delineate VerbNet classes. These include whether the target verb is in an active
or passive form, whether it has a subject, an object, a subordinate clause, or a prepositional phrase
adjunct. For each of these dependent items, the head word and its part of speech are included as
features.

We also implement several unusual syntactic features that seem particularly well suited for VerbNet
class disambiguation. The first is the path through the parse tree from the target verb to the verb’s
arguments, and the second is the sentence’s subcategorization frame, as used in semantic role
labeling. Because syntactic alternations, or patterns of subcategorization frames, play a large role in
the organization of VerbNet classes, we expect these final two features to be particularly useful.

3.2.3 Semantic features

Our use of semantic features is motivated by the work of Patrick Hanks (1996), who proposed that
sense distinctions in verbs often rely on the membership of the verb's arguments in narrowly defined
verb-specific semantic classes that he called lexical sets. A lexical set could consist, for example, of
such nouns as fist, finger, hand, etc. (but not all body-parts); its members, when used as objects of
shake, form instances of the communicative act sense of shake. This view corroborates our motivation
that states the necessity of capturing the semantics of the verb's arguments and semantic similarities
among them.

To illustrate with an example from our data, the verb fix falls into two VerbNet classes: (1) Preparing-
26.3, (e.g., He fixed lunch for the team; My mom fixed me a peanut butter and bacon sandwich) and
(2) Price-54.4, with the sense of “establish” (e.g., They fixed the interest rate at 3%, The lawyers fixed
the terms of the agreement at their last meeting). These two senses can be distinguished largely on the
basis of the objects lunch, sandwich, rate and terms, the first two indicating the Preparing-26.3 class
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and the latter two indicating the Price-54.4 class. Not surprisingly, semantic features drawn from a
target verb’s arguments have been shown to improve verb sense disambiguation above and beyond
lexical and syntactic features (Dligach and Palmer, 2008).

Another study that reinforces a similar idea was reported by Federici et. al. (1999). They describe
their SENSE system that relies on inter-contextual analogies between tagged and untagged instances
of a word to infer that word's sense. For example, if a verb's sense is preserved when used with two
different objects, it is often possible to conclude by analogy that the sense of another verb is also
preserved when it is used with the same two objects.

In word sense disambiguation, the existing approaches to extracting semantic features are often based
on obtaining lexical knowledge about the target verb's arguments from electronic dictionaries such as
WordNet (Fellbaum, 1998). WordNet synonyms and hypernyms are often used as semantic features
(Dang, 2002; Dligach, 2008). Named entity tags, another source of lexical knowledge, can be
obtained from the output of a named-entity tagger such as IdentiFinder (Bikel, 1999).

Four types of semantic features are used, all derived from the arguments of the target verb: (1) named
entity tags for all of the arguments of the target verb, extracted using IdentiFinder; (2) synonyms of
the arguments as listed in their synonym sets in WordNet; (3) hypernyms of the arguments, also taken
from WordNet; and (4) dynamic dependency neighbors (Dligach and Palmer, 2008), which connect
objects of the verb based on the type of verbs they frequently occur with in object position. In this
paper we utilized object-based DDNs to capture the semantics of the target verb's object. Elsewhere
(citation below) we also experimented with subject-based DDNs in the context of verb sense
disambiguation. We discovered that subject-based DDNs do not improve the performance over and
above object-based DDNs. For these experiments the DDNs were calculated from the verbs’ and
objects’ occurrence in the English Gigaword corpus, parsed with the dependency MaltParser (Nivre,
2007).

This last feature finds similarities between objects that can be missed by the other three, as can be
seen in Table 3. The similarity in the first two objects, price and terms, is captured by the WordNet
synset. The third object, rate, can be grouped with these via its WordNet hypernym. The fourth
object, however, has none of these features in common with the others. Even moving up the WN
hypernym hierarchy, number does not connect to the others until the very general category of Abstract
Entity. However, objects with very different hypernyms or named entity tags may still be common
objects of the same verbs. Objects grouped in this way can often help identify the particular sense of a
verb (Dligach and Palmer, 2008). Comparing lists of the top 50 verbs that each object occurs with
shows a great deal of overlap and notably draws the noun number into a group with the other three.

Object NE | WN synset WN hypernyms | Sample DDNs
tag
price n/a | price, terms, | cost raise, bring, increase, put, reduce, cut, have,
damage offer, set
terms n/a | price, terms, | cost reduce, cut, have, offer, set
damage
rate n/a | charge per unit | cost raise, bring, increase, put, reduce, cut, have,
offer, set
number | n/a | figure amount raise, bring, increase, put, reduce, cut, have,
offer, set

Table 3: Semantic features for one sense of the verb fix
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33 Experimental Setup

Like all supervised word sense disambiguation, each verb required the training and testing of its own
classifier. We classified using support vector machines (Chang and Lin, 2001). Accuracy and error
rates were computed with 5-fold cross validation. Baselines were established for each target verb type
by calculating the accuracy that would be achieved if all instances of a verb were labeled with its most
frequent VerbNet class. The average baseline for our verb set was 77.78%.

4 Results

The average accuracy of the system with the target verbs was 88.67%, which represents an error
reduction of 49% over the baseline of 77.78%. The closest comparison to the Abend et al. classifier is
to their results based on only polysemous verbs and using features drawn from an automatic parser. In
this scenario, their classifier had an accuracy of 91.9%, with an error reduction of 28.95% over their
baseline of 88.6%.

In order to assess the contribution of the features we use to the performance of the classifier, we
developed several different models composed of various combinations of our features. In addition we
created a dedicated test set using 30% of the Semlink corpus so that each model would be evaluated
on identical training and test sets, assuring consistent comparisons. Using this test set, the overall
performance of our classifier (the model with all features) was 84.64%. This result is somewhat lower
than the classifier accuracy using 5-fold cross-validation described above, possibly because of the
smaller amount of training data used for this method. Compared to the most frequent class baseline,
this figure still represents an error reduction of 31%.

Lexical features are generally the most standard in supervised WSD systems and seem to contribute
the most to the accuracy. Therefore, we used a model containing only the lexical features as our most
stripped-down model. This model had an accuracy of 83.07%. The second model added syntactic
features to that, and achieved an accuracy of 84.44%. Adding semantic features brought the accuracy
to 84.65%. We were particularly interested in assessing the contribution of the DDN feature, given
that it can be generated automatically and requires no manually built lexical resource. For that reason,
we also created a model with all the features but the DDN and a model with all the features but the
non-DDN semantic features, which resulted in accuracies of 84.12% and 84.89% respectively,
validating the efficacy of the DDN feature. See Table 4 for a summary of these results, along with
error reduction figures.

Model Baseline (%) | Accuracy (%) | Error Reduction (%)
Lexical features only 77.78 83.07 23.81
Lexical + syntactic 77.78 84.44 29.97
Lexical + semantic 77.78 83.75 26.87
All but DDN 77.78 84.12 28.53
Lexical + syntactic + DDN 77.78 84.89 32.00
All features 77.78 84.65 30.92

Table 4: Accuracy and error reduction of models using various features

5 Discussion

The accuracy of our VerbNet classifier approaches 90%, the level that several researchers have
indicated is needed for useful WSD (Sanderson, 2000; Ide and Wilks, 2006). Using VerbNet classes
as sense distinctions makes available sets of semantic predicates that can be used for deeper analysis.
WSD is not an end in itself; it is only useful in so far as it improves more complex applications. By
substituting VerbNet classification for verb sense disambiguation, we would gain both a coarse-
grained sense of the verb and direct mappings to VerbNet’s class-specific syntactic and semantic
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information. With the goal of improving future VerbNet classifiers, we discuss several pertinent
issues in the following sections.

5.1 Contributions of the Features

The difference between the model with only lexical features and that with both lexical and syntactic
features was statistically significant (p=.0005)", suggesting that our syntactic features were a notable
improvement to the model. Given the strong basis of VerbNet classes on syntactic alternations, we
expected that syntactic features focused on argument structure would improve the system, and this
comparison supports that hypothesis.

The semantic features showed a more complex pattern. A model with lexical and semantic features
achieved an accuracy of 83.75%. Compared to the accuracy of the lexical-only model, this was a
significant improvement (p=.0182), although less strongly so than the syntactic features. Interestingly,
when the lexical+syntactic model (no semantic features) was compared to one with lexical, syntactic
and semantic features, the difference in accuracy was not significant (p=.6982), suggesting that the
small improvement we saw with the semantic features was only replicating some of the information
the system was gaining from the syntactic features.

When the semantic features were tested separately, however, we found that the DDN feature
substantially improved the system, while the other semantic features did not help the system. A
model with all the features but the DDN feature showed no significant improvement over the
lexical+syntactic model. This suggests that the named entity, WordNet synset, and WordNet
hypernym features added nothing to the model. In a head-to-head comparison between the model
with all features but the DDN and one with lexical, syntactic, and only DDNs, we found that the DDN
feature significantly improved the system (p<.05). With an error reduction of 32%, the lexical +
syntactic + DDN model performed the best of all those we tested.

These results suggest that the system could be streamlined by removing the named entity tag,
WordNet synset, and WordNet hypernym features and leaving the DDNs as the only semantic
features. This would reduce the system’s dependence on other resources with no loss of accuracy. In
addition, the DDN feature is created dynamically, and can be done with any corpus, increasing the
portability of this system to new domains.

52 Semlink Annotation

A couple of matters came to light during a close examination of some of the Semlink annotation in
our dataset. First, for some of the verbs, the mapping from PropBank to VerbNet that was the basis of
the semiautomatic labeling inappropriately mapped some VerbNet classes. For example, the verb fix
belongs to the Preparing class, which primarily describes events of food preparation. The thematic
roles and semantic predicates for this class indicate the creation of some entity, such as He fixed me a
sandwich. This class was used in the Semlink data to label such instances, but also to label instances
of fix as a repair event, such as We had to fix his car, a usage that is currently not covered by any
VerbNet class. Accuracy for this verb was still high at 89%, possibly because the feature patterns
were still consistent when these instances were labeled with the Preparing class.

The consequences of inappropriate labeling in this case are mixed. If thematic roles were assigned
based on this label, they would likely still be correct. Both senses of fix call for an Agent and a
Patient. The subject in “We had to fix his car” would be correctly labeled as an Agent and the object
would be correctly labeled as a Patient. For semantic role labeling, this sort of error should have little
negative effect. Any inferences based on the semantic predicates, however, would be misleading. In a
Repair event, such as We had to fix his car no new entity is created, but the Preparing class label
would incorrectly imply that the car is a newly created entity. It is not clear whether such

! All tests of statistical significance in this section were performed using the Wilcoxon signed rank test.
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inappropriate mapping is an isolated problem or not. In section 7 we discuss some methods for
assessing the existing annotation and for efficiently augmenting it.

53 Metaphorical Interpretations

A more common issue concerns the extension of VerbNet classes to metaphorical or figurative usages
of a verb. Although some classes include metaphorical usages of the member verbs, such as the
Amalgamate-22.2 class, others restrict the uses to literal events. For example, the Bump-18.4 class
describes events of contact between a Theme and a Location, such as The grocery cart hit the wall.
The class restricts both the Theme and Location to [+concrete] arguments. A natural extension of this
sense of Ait would apply to abstract arguments and metaphorical events of contact, such as The Bank
of England was hit hard by the financial slump. This usage of hit would not strictly fit the Bump-18.4
class because the financial slump (the Theme) is not a concrete entity and the Bank of England would
not qualify as a concrete location, at least as it is used in this sentence. There is currently no VerbNet
class, however, that would accommodate this usage of #it.

For several verbs in our set, including 4it and pay, class labels were applied to metaphorical sense
extensions. It is unclear whether this affected the accuracy of the classifier; for these two examples,
the accuracy for hit was 75%, whereas for pay, it was 97%. More importantly, in terms of applying
the labeled data to further semantic processing, metaphorical extensions should have little detrimental
effect. Any thematic roles assigned based on the class label would be correct, although the semantic
restrictions on the roles (e.g., +concrete) would not. The semantic predicates would also be correct, as
long as they were interpreted metaphorically as well.

6 Conclusion

The VerbNet class disambiguator we present in this paper achieves 89% accuracy with polysemous
verbs, which is a 49% error reduction over the most frequent class baseline. Given that most
applications that currently use verb mappings to VerbNet classes rely on a most-frequent-class
heuristic (or hand-selected data), this classifier should improve the functioning of these applications.

In addition, we have demonstrated that VerbNet class disambiguation often corresponds to coarse-
grained verb sense disambiguation. However, unlike sense disambiguation with more traditional
lexicons, VerbNet class disambiguation would not only help disambiguate the senses of verbs in
context, it would automatically connect that context to detailed information about likely thematic
roles, semantic representations, and related verbs. In combination with a syntactic parse of the
sentence, knowing the appropriate VerbNet class could help select a semantic representation of the
events in the sentence. By choosing VerbNet as a sense inventory, the next steps in complex
knowledge representation and reasoning tasks could be facilitated.

7 Future Work

Some additional steps can be taken to improve the usefulness of VerbNet class labeling. The coverage
of verbs and verb senses could be improved, both in the Semlink corpus and in VerbNet itself: 25% of
the verb tokens in the Semlink corpus have no VerbNet class label. However, Semlink is based on
version 2.1 of VerbNet. The current version, 3.1, incorporates over 700 new verb senses, many of
which introduce very common verbs, such as seem, involve, and own. Updating the corpus with
annotations for these new verbs and verb senses would improve coverage. A more long-term goal is to
annotate data from other types of corpora than the WSJ, which would likely improve any VerbNet
classifier’s portability to new domains.

We plan to increase VerbNet annotation in the Semlink corpus using methods that take advantage of
existing mappings between PropBank and VerbNet and efficient manual annotation (Dligach, 2010).
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SemLink expansion can be accomplished in two ways. First, more data can be labeled using some
form of active learning (Settles, 2009) (e.g., batch mode uncertainty sampling). Once more annotated
data has been acquired, it may be a good idea to double annotate all or parts of the data, leading to a
more error-free labeled corpus. Various error detection techniques can be used to reduce the amount
of the second round of annotation (Dligach, 2010). These methods can also be used to judge the
reliability of the semiautomatic annotation that has already been done, which should indicate how
widespread mislabeling is (such as with the verb fix, see section 5.2).

The question of metaphorical extensions in the VerbNet annotation is currently being addressed by
the VerbNet team. Plans are underway to enhance VerbNet classes with metaphorical information,
where appropriate. These enhancements will indicate any changes in thematic role restrictions with a
metaphoric usage, and any changes necessary for a semantic predicate to be interpreted correctly.

Given the success of the DDN feature, we would like to see if expanding its contribution would
further enhance our classifier. Currently, the DDN feature is only calculated for objects of the verb,
but the feature could be encoded for the subject of the verb as well.

We see this classifier as an important step toward using VerbNet for deep semantic analysis. We have
shown that verbs in multiple VerbNet classes can be disambiguated with close to 90% accuracy.
Another related task, semantic role labeling, has made great strides lately (Palmer, Gildea and Xue,
2010). Using the output from both these tasks should enable us to identify the specific VerbNet frame
and semantic predicate for the sentence. For example, VerbNet class disambiguation and semantic
role labeling would identify the sentence “He left Sam his stamp collection” as

Agent V(class:Future-having-13.3)Recipient Theme

Only one frame in the Future-having-13.3 class has that pattern: the NP V NP-dative NP frame. Its
semantic predicates are

HAS_POSSESSION(START(E), AGENT, THEME)
FUTURE_POSSESSION(END(E), RECIPIENT, THEME)
CAUSE(AGENT, E)

Given the argument labels from the semantic role labeling, it is straightforward to map from the
original sentence to the semantic representation:

HAS_POSSESSION(START(E), HE, THE STAMP COLLECTION)
FUTURE_POSSESSION(END(E), SAM, THE STAMP COLLECTION)
CAUSE(HE, E)

Recent work in coreference resolution (Haghighi and Klein, 2009) and implicit argument resolution
(Gerber and Chai, 2010) suggest how this representation could be enriched by identifying the referent
of he from the surrounding text. All of these pieces of the semantic puzzle have the potential to fit
together into a richer and deeper semantic representation of text. To further this goal, we intend to
develop our classifier for all of the verbs in VerbNet and release the system to the public, along with
an expanded version of the Semlink corpus.
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Abstract

Entailment pairs are sentence pairs of a premise and a hypothesis, where the premise textually
entails the hypothesis. Such sentence pairs are important for the development of Textual Entailment
systems. In this paper, we take a closer look at a prominent strategy for their automatic acquisition
from newspaper corpora, pairing first sentences of articles with their titles. We propose a simple
logistic regression model that incorporates and extends this heuristic and investigate its robustness
across three languages and three domains. We manage to identify two predictors which predict
entailment pairs with a fairly high accuracy across all languages. However, we find that robustness
across domains within a language is more difficult to achieve.

1 Introduction

Semantic processing has become a major focus of attention in NLP. However, different applications
such as Question Answering, Information Extraction and Machine Translation often adopt very different,
task-specific semantic processing strategies. Textual entailment (TE) was introduced by Dagan et al.
(2006) as a “meta-task” that can subsume a large part of the semantic processing requirements of such
applications by providing a generic concept of inference that corresponds to “common sense” reasoning
patterns. Textual Entailment is defined as a relation between two natural language utterances (a Premise
P and a Hypothesis H) that holds if “a human reading P would infer that H is most likely true”. See,
e.g., the ACL “challenge paper” by Sammons et al. (2010) for further details.

The successive TE workshops that have taken place yearly since 2005 have produced annotation for
English which amount to a total of several thousand entailing Premise-Hypothesis sentence pairs, which
we will call entailment pairs:

) P: Swedish bond yields end 21 basis points higher.
H: Swedish bond yields rose further.

From the machine learning perspective assumed by many approaches to TE, this is a very small number
of examples, given the complex nature of entailment. Given the problems of manual annotation, therefore,
Burger and Ferro (2005) proposed to take advantage of the structural properties of a particular type of
discourse — namely newspaper articles — to automatically harvest entailment pairs. They proposed to pair
the title of each article with its first sentence, interpreting the first sentence as Premise and the title as
Hypothesis. Their results were mixed, with an average of 50% actual entailment pairs among all pairs
constructed in this manner. SVMs which identified “entailment-friendly” documents based on their bags
of words lead to an accuracy of 77%. Building on the same general idea, Hickl et al. (2006) applied a
simple unsupervised filter which removes all entailment pair candidates that “did not share an entity (or
an NP)”. They report an accuracy of 91.8% on a manually evaluated sample — considerably better Burger
and Ferro. The article however does not mention the size of the original corpus, and whether “entity” is to
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be understood as named entity, so it is difficult to assess what its recall is, and whether it presupposes a
high-quality NER system.

In this paper, we model the task using a logistic regression model that allows us to synchronously
analyse the data and predict entailment pairs, and focus on the question of how well these results generalize
across domains and languages, for many of which no entailment pairs are available at all. We make three
main contributions: (a), we define an annotation scheme based on semantic and discourse phenomena that
can break entailment and annotate two datasets with it; (b), we idenfiy two robust properties of sentence
pairs that correlate strongly with entailment and which are robust enough to support high-precision
entailment pair extraction; (c), we find that cross-domain differences are actually larger than cross-lingual
differences, even for languages as different as German and Hindi.

Plan of the paper. Section 2 defines our annotation scheme. In Section 3, we sketch the logistic
regression framework we use for analysis, and motivate our choice of predictors. Sections 4 and 5 present
the two experiments on language and domain comparisons, respectively. We conclude in Section 6.

2 A fine-grained annotation scheme for entailment pairs

The motivation of our annotation scheme is to better understand why entailment breaks down between
titles and first sentences of newswire articles. We subdivide the general no entailment category of earlier
studies according to an inventory of reasons for non-entailment that we collected from an informal
inspection of some dozen articles from an English-language newspaper. Additionally, we separate out
sentences that are ill-formed in the sense of not forming one proposition.

2.1 Subtypes of non-entailment

No-par (Partial entailment). The Premise entails the Hypothesis almost, but not completely, in one of
two ways: (a), The Hypothesis is a conjunction and the Premise entails just one conjunct; or (b),
Premise and Hypothesis share the main event, but the Premise is missing an argument or adjunct
that forms part of the Hypothesis. Presumably, in our setting, such information is provided by the
other sentences in the article than the first one. In Ex. (1), if P and H were switched, this would be
the case for the size of the rise.

No-pre (Presupposition): The Premise uses a construction which can only be understood with informa-
tion from the Hypothesis, typically a definite description or an adjunct. This category arises because
the title stands before the first sentence and is available as context. In the following example, the
Premise NP “des Verbandes” can only be resolved through the mention of “VDA” (the German car
manufacturer’s association) in the Hypothesis.

2 P: Herzog wird in dem vierkdpfigen Filhrungsgremium des  Verbands fiir die Teile-
Herzog will in the four-head management board of the association for the parts
und Zubehorindustrie  zustdndig sein.
and accessory business resposible be.

H: Martin Herzog wird VDA-Geschiftsfiihrer.
Martin Herzog becomes VDA manager.

No-con (Contradiction): Direct contradiction of Premise and Hypothesis.

3) P: Wie die innere Uhr [...] funktioniert, ist noch weitgehend unbekannt.
How the biological clock [...] works, is still mostly unknown.

H: Licht stellt die innere ~ Uhr.
Light regulates the biological clock.
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No-emb (Embedding): The Premise uses an embedding that breaks entailment (e.g., modal adverbials or
non-factural embedding verb). In the following pair, the proposition in the Hypothesis is embedded
under “expect”.

(4)  P: An Arkansas gambling amendment [...] is expected to be submitted to the state Supreme
Court Monday for a rehearing, a court official said.
H: Arkansas gaming petition goes before court again Monday

No-oth (Other): All other negative examples where Premise and Hypothesis are well-formed, and which
could not be assigned to a more specific category, are included under this tag. In this sense, “Other’
is a catch-all category. Often, Premise and Hypothesis, taken in isolation, are simply unrelated:

’

5) P: Victor the Parrot kept shrieking "Voda, Voda" — "Water, Water".
H: Thirsty jaguar procures water for Bulgarian zoo.

2.2 Ill-formed sentence pairs

Err (Error): These cases arise due to errors in sentence boundary detection: Premise or Hypothesis may
be cut off in the middle of the sentence.

I (Ill-formed): Often, the titles are not single grammatical sentences and can therefore not be interpreted
sensibly as the Hypothesis of an entailment pair. They can be incomplete proposition such as NPs
or PPs (“Beautiful house situated in woods”), or, frequently, combinations of multiple sentences
(“RESEARCH ALERT - Mexico upped, Chile cut.”).

3 Modeling entailment with logistic regression

We will model the entailment annotation labels on candidate sentence pairs using a logistic regression
model. From a machine learning point of view, logistic regression models can be seen as a rather simple
statistical classifier which can be used to acquire new entailment pairs. From a linguistic point of view,
they can be used to explain the phenomena in the data, see e.g., Bresnan et al. (2007).

Formally, logistic regression models assume that datapoints consist of a set of predictors z and a
binary response variable y. They have the form

ply=1)= 1 —i—le_Z with z = zz:ﬁlxz )
where p is the probability of a datapoint x, (; is the coefficient assigned to the linguistically motivated
factor x;. Model estimation sets the parameters [ so that the likelihood of the observed data is maximized.

From the linguistics perspective, we are most interested in analysing the importance of the different
predictors: for each predictor z;, the comparison of the estimated value of its coefficient 8; can be
compared to its estimated standard error, and it is possible to test the hypothesis that 3; = 0, i.e., the
predictor does not significantly contribute to the model. Furthermore, the absolute value of 3; can be
interpreted as the log odds — that is, as the change in the probability of the response variable being positive
depending on z; being positive.

5 Ply=1llz=1,...)/Ply=0[z=1,...)

T Py =1z=0,..)/Ply=0z =0,...) @

The fact that z is just a linear combination of predictor weights encodes the assumption that the log odds
combine linearly among factors.

From the natural language processing perspective, we would like to create predictions for new
observations. Note, however, that simply assessing the significance of predictors on some dataset, as
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provided by the logistic regression model, corresponds to an evaluation of the model on the training set,
which is prone to the problem of overfitting. We will therefore in our experiments always apply the models
acquired from one dataset on another to see how well they generalize.

3.1 Choice of Predictors

Next, we need a set of plausible predictors that we can plug into the logistic regression framework. These
predictors should ideally be language-independent. We analyse the categories of our annotation, as an
inventory of phenomena that break entailment, to motivate a small set of robust predictors.

Following early work on textual entailment, we use word overlap as a strong indicator of entail-
ment (Monz and de Rijke, 2001). Our weighted overlap predictor uses the well-known tf/idf weighting
scheme to compute the overlap between P and H (Manning et al., 2008):

> werny t-idf(w, D)
> wep t-idf(w, D)

where we treat each article as a separate document and the whole corpus as document collection D. We
expect that No-oth pairs have generally the lowest weighted overlap, followed by No-par pairs, while Yes
pairs have the highest weighted overlap. We also use a categorical version of this observation in the form
of our strict noun match predictor. This predictor is similar in spirit to the proposal by Hickl et al. (2006)
mentioned in Section 1. The boolean strict noun match predictor is true if all Hypothesis nouns are present
in the Premise, and is therefore a predictor that is geared at precision rather than recall. A third predictor
that was motivated by the No-par and No-oth categories was the number of words in the article: No-oth
sentence pairs often come from long articles, where the first sentence provides merely an introduction. For
this predictor, log num words, we count the total number of words in the article and logarithmize it.! The
remaining subcategories of No were more difficult to model. No-pre pairs should be identifiable by testing
whether the Premise contains a definite description that cannot be accommodated, a difficult problem
that seems to require world knowledge. Similarly, the recognition of contradictions, as is required to find
No-con pairs, is very difficult in itself (de Marneffe et al., 2008). Finally, No-emb requires the detection
of a counterfactual context in the Premise. Since we do not currently see robust, language-independent
ways of modelling these phenomena, we do not include specific predictors to address them.

The situation is similar with regard to the Err category. While it might be possible to detect incomplete
sentences with the help of a parser, this again involves substantial knowledge about the language. The 111
category, however, appears easier to target: at least cases of Hypotheses consisting of multiple phrases
case be detected easily by checking for sentence end markers in the middle of the Hypothesis (full stop,
colon, dash). We call this predictor punctuation.

weightedOverlap(T, H, D) = 3)

4 Experiment 1: Analysis by Language

4.1 Data sources and preparation

This experiment performs a cross-lingual comparison of three newswire corpora. We use English, German,
and Hindi. All three belong to the Indo-European language family, but English and German are more
closely related.

For English and German, we used the Reuters RCV2 Multilingual Corpus?>. RCV2 contains over
487,000 news stories in 13 different languages. Almost all news stories cover the business and politics
domains. The corpus marks the title of each article; we used the sentence splitter provided by Treetag-
ger (Schmid, 1995) to extract the first sentences. Our Hindi corpus is extracted from the text collection
of South Asian languages prepared by the EMILLE project (Xiao et al., 2004)>. We use the Hindi

'This makes the coefficiently easier to interpret. The predictive difference is minimal.
nttp://trec.nist.gov/data/reuters/reuters.html
Shttp://www.elda.org/catalogue/en/text /WO037.html
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No. of sentence pairs English German Hindi
Original 473,874 (100%) 112,259 (100%) 20,209 (100%)
Filtered 264.711 (55.8%) 50.039 (44.5%) 10.475 (51.8%)

Table 1: Pair extraction statistics

Corpus err il no-con no-emb no-oth no-par no-pre yes
English Reuters 3.5 2.9 0 0.2 3.7 7.4 0 82.3
German Reuters 2.1 11.0 0.4 0.2 4.3 2.1 0.2 79.7
Hindi Emille 1.1 25 0 0.3 14.7 5.7 0 75.7

Table 2: Exp.1: Distribution of annotation categories (in percent)

monolingual data, which was crawled from Webdunia,* an Indian daily online newspaper. The articles
are predominantly political, with a focus on Indo-Pakistani and Indo-US affairs. We identify sentence
boudaries with the Hindi sentence marker (‘I’), which is used exclusively for this purpose.

We preprocessed the data by extracting the title and the first sentence, treating the first sentence as
Premise and the title as Hypothesis. We applied a filter to remove pairs where the chance of entailment
was impossible or very small. Specifically, our filter keeps only sentence pairs that (a) share at least one
noun and where (b) both sentences include at least one verb and are not questions. Table 1 shows the
corpus sizes before and after filtering. Note that the percentage of selected sentences across the languages
are all in the 45%-55% range. This filter could presumably be improved by requiring a shared named
entity, but since language-independent NER is still an open research issue, we did not follow up on this
avenue. We randomly sampled 1,000 of the remaining sentence pairs per language for manual annotation.

4.2 Distribution of annotation categories

First, we compared the frequencies of the annotation categories defined in Section 3.1. The results are
shown in Table 2. We find our simple preprocessing filter results in an accuracy of between 75 and 82%.
This is still considerably below the results of Hickl et al., who report 92% accuracy on their English data.’

Even though the overall percentage of “yes” cases is quite similar among languages, the details of the
distribution differ. One fairly surprising observation was the fairly large number of ill-formed sentence
pairs. As described in Section 2, this category comprises cases where the Hypothesis (i.e., a title) is not a
grammatical sentence. Further analysis of the category shows that the common patterns are participle
constructions (Ex. (6)) and combinations of multiple statements (Ex. (7)). The participle construction is
particularly prominent in German.

(6) Glencoe Electric, Minn., rated single-A by Moody’s.

@) Wieder Kdmpfe in Siidlibanon - Israeli getotet.
Again fights in Southern Lebanon - Israeli killed.

The “no”-categories make up a total of 11.3% (English), 6.6% (German), and 20.7% (Hindi). The “other”
and “partial” categories clearly dominate. This is to be expected, in particular the high number of partial
entailments. The “other” category mostly consists of cases where the title summarizes the whole article,
but the first sentence provides only a gentle introduction to the topic:

8) P: One automotive industry analyst has dubbed it the ‘Lincoln Town Truck’.
H: Ford hopes Navigator will lure young buyers to Lincoln.

As regards the high ratio of “no-other” cases in the Hindi corpus, we found a high number of instances
where the title states the gist of the article too differently from the first sentence to preserve entailment:

*http://www.webdunia.com
>We attribute the difference to the filtering scheme which is difficult to reconstruct from Hickl et al. (2006).
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Predictor German sig English sig Hindi sig
weighted overlap  0.77 o 2.30 Rk 335 wEE

log num words -0.05 - 0.03 - -0.17 -
punctuation -1.04 k2043 #E 2035 k*
strict noun match ~ 0.12 - 0.19 - 0.38  **

Table 3: Exp. 1: Predictors in the logreg model (*: p<0.05; **: p<0.01; ***: p<0.001)

9) P TS T fE® AT # ARHIAT FH AR EE R |

Even today, Princess Diana’s popularity has not decreased.
H: {599 sToeT & 9 3T f1e T 80 |
Bidding on Princess Diana’s letter and cards would take place.

The remaining error categories (embedding, presupposition, contradiction) were, disappointingly, almost
absent. Another sizable category is formed by errors, though. We find the highest percentage for English,
where our sentence splitter misinterpreted full stops in abbreviations as sentence boundaries.

4.3 Modelling the data

We estimated logistic regression models on each dataset, using the predictors from Section 3.1. Consider-
ing the eventual goal of extracting entailment pairs, we use the decision yes vs. everything else as our
response variable. The analysis was performed with R, using the rms® and ROCR” packages.

Analysis of predictors. The coefficients for the predictors and their significances are shown in Table 3.
There is considerable parallelism between the languages. In all three languages, weighted overlap between
H and P is a significant predictor: high overlap indicates entailment, and vice versa. Its effect size is large
as well: Perfect overlap increases the probability of entailment for German by a factor of €%77 = 2.16, for
English by 10, and for Hindi even by 28. Similarly, the punctuation predictor comes out as a significant
negative effect for all three languages, presumably by identifying ill-formed sentence pairs. In contrast,
the length of the article (log num words) is not a significant predictor. This is a surprising result, given
our hypothesis that long articles often involve an “introduction” which reduces the chance for entailment
between the title and the first sentence. The explanation is that the two predictors, log num words and
weighted overlap, are highly significantly correlated in all three corpora. Since weighted overlap is the
predictive of the two, the model discards article length.

Finally, strict noun match, which requires that all nouns match between H and P, is assigned a
positive coefficient for each language, but only reaches significance for Hindi. This is the only genuine
cross-lingual difference: In our Hindi corpus, the titles are copied more verbatim from the text than for
English and German (median weighted overlap: Hindi 0.76, English 0.72, German 0.69). Consequently,
in English and German the filter discards too many entailment instances. For all three languages, though,
the coefficient is small — for Hindi, where it is largest, it increases the odds by a factor of €93 ~ 1.4.

Evaluation. We trained models on the three corpora, using only the two predictors that contributed
significantly in all languages (weighted overlap and punctuation), in order to avoid overfitting on the
individual datasets.® We applied each model to each dataset. How such models should be evaluated
depends on the intended purpose of the classification. We assume that it is fairly easy to obtain large
corpora of newspaper text, which makes precision an issue rather than recall. The logistic regression
classifier assigns a probability to each datapoint, so we can trade off recall and precision. We fix recall at
a reasonable value (30%) and compare precision values.

®http://biostat.mc.vanderbilt.edu/twiki/bin/view/Main/Design
"Thttp://rocr.bioinf.mpi-sb.mpg.de/
8Subsequent analysis of “full” models (with all features) showed that they did not generally improve over two-feature models.
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Models German model English model Hindi model

Data

German data 91.6 88.8 88.8
English data 93.2 94.3 94.6
Hindi data 98.7 98.7 99.1

Table 4: Exp. 1: Precision for the class “yes” (entailment) at 30% Recall

Our expectation is that each model will perform best on its own corpus (since this is basically the
training data), and worse on the other languages. The size of the drop for the other languages reflects the
differences between the corpora as well as the degree of overfitting models show to their training data.

The actual results are shown in Table 4.3. The precision is fairly high, generally over 90%, and well
above the baseline percentage of entailment pairs. The German data is modelled best by the German
model, with the two other models performing 3 percent worse. The situation is similar, although less
pronounced, on Hindi data, where the Hindi-trained model is 0.4% better than the two other models. For
English, the Hindi model even outperforms the English model by 0.3%°, which in turn works about 1%
better than the German model. In sum, the logistic regression models can be applied very well across
languages, with little loss in precision. The German data with its high ratio of ill-formed headlines (cf.
Table 2) is most difficult to model. Hindi is simplest, due to the tendency of title and first sentence to be
almost identical (cf. the large weight for the overlap predictor).

S Experiment 2: Analysis by Domain of German corpora

5.1 Data

This experiment compares three German corpora from different newspapers to study the impact of domain
differences: Reuters, “Stuttgarter Zeitung”, and “Die Zeit”. These corpora differ in domain and in style.
The Reuters corpus was already described in Section 4.1. “Stuttgarter Zeitung” (StuttZ) is a daily regional
newspaper which covers international business and politics like Reuters, but does not draw its material
completely from large news agencies and gives more importance to regional and local events. Its style is
therefore less consistent. Our corpus covers some 80,000 sentences of text from StuttZ. The third corpus
comprises over 4 million sentences of text from “Die Zeit”, a major German national weekly. The text is
predominantly from the 2000s, plus selected articles from the 1940s through 1990s. “Die Zeit” focuses on
op-ed pieces and general discussions of political and social issues. It also covers arts and science, which
the two other newspapers rarely do.

5.2 Distribution of annotation categories

We extracted and annotated entailment pair candidates in the same manner as before (cf. Section 4.1).
The new breakdown of annotation categories in Table (10) shows, in comparison to the cross-lingual
results in Table 2, a higher incidence of errors, which we attribute to formatting problems of these corpora.
Compared to the German Reuters corpus we considered in Exp. 1, StuttZ and Die Zeit contain considerably
fewer entailment pairs, most notably Die Zeit, where the percentage of entailment pairs is just 21.6% in
our sample, compared to 82.3% for Reuters. Notably, there are almost no cases where the first sentence
represents a partial entailment; in contrast, for more than one third of the examples (33.9%), there is no
entailment relation between the title and the first sentence. This seems to be a domain-dependent, or even
stylistic, effect: in “Die Zeit”, titles are often designed solely as “bait” to interest readers in the article:

(10) P: Sat.1 sah [...] Doris dabei zu , wie sie [...] Auto fahren lernte.
Sat.1 watched [...] Doris , how she [...] to drive learned.

The English model outperforms the Hindi model at higher recall levels, though.
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Corpus err ill no-con no-emb no-oth no-par no-pre yes

Reuters 3.5 29 0 0.2 3.7 7.4 0 82.3
StuttZ 62 3.6 0.5 2.8 12.4 3.0 0.6 70.7
Die Zeit 2.3 39.0 0.5 1.8 33.9 0.9 0.0 216

Table 5: Exp. 2: Distribution of annotation categories on German corpora (in percent)

Predictor Reuters sig  StuttZ sig Die Zeit sig
weighted overlap  0.77 *ok 1.82  *** 2,60 HAE
log num words -0.05 - -024 - -0.20 -
punctuation -1.04 ¥Ex o 0.01 - -1.21 HAE
strict noun match ~ 0.12 - 020 - -0.01 -

Table 6: Exp. 2: Predictors in the logreg model (*: p<0.05; **: p<0.01; ***: p<0.001)

Models Reuters StuttZ Die Zeit
Data
Reuters 91.6 854 91.6
StuttZ 83.0 83.0 82.6
Die Zeit 45.2 45.2 46.7

Table 7: Exp. 2: Precision for the class “yes” at 30% recall

H: Doris, es ist griin!
Doris, it is green!

Other titles are just noun or verb phrases, which accounts for the large number (39%) of ill-formed pairs.

5.3 Modelling the data

Predictors and evaluation. The predictors of the logistic regression models for the three German
corpora are shown in Table 6. The picture is strikingly similar to the results of Exp. 1 (Table 3): weighted
overlap and punctuation are highly significant predictors for all three corpora (except punctuation, which
is insignificant for StuttZ); even the effect sizes are roughly similar. Again, neither sentence length
nor strict noun match are significant. This indicates that the predictors we have identified work fairly
robustly. Unfortunately, this does not imply that they always work well. Table 6 shows the precision of
the predictors in Exp. 2, again at 30% Recall. Here, the difference to Exp. 1 (Table 4.3) is striking. First,
overfitting of the predictors is worse across domains, with losses of 5% on Reuters and Die Zeit when they
are classified with models trained on other corpora even though use just two generic features. Second, and
more seriously, it is much more difficult to extract entailment pairs from the Stuttgarter Zeitung corpus
and, especially, the Die Zeit corpus. For the latter, we can obtain a precision of at most 46.7%, compared
to >90% in Exp. 1.

We interpret this result as evidence that domain adaptation may be an even greater challenge than
multilinguality in the acquisition of entailment pairs. More specifically, our impression is that the heuristic
of pairing title and first sentence works fairly well for a particular segment of newswire text, but not
otherwise. This segment consists of factual, “no-nonsense” articles provided by large news agencies such
as Reuters, which tend to be simple in their discourse structure and have an informative title. In domains
where articles become longer, and the intent to entertain becomes more pertinent (as for Die Zeit), the
heuristic fails very frequently. Note that the weighted overlap predictor cannot recover all negative cases.
Example (10) is a case in point: one of the two informative words in H, “Doris” and “griin”, is in fact in P.

Domain specificity. The fact that it is difficult to extract entailment pairs from some corpora is serious
exactly because, according to our intuition, the “easier” news agency corpora (like Reuters) are domain-
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Corpus  D(-| deWac) words w with highest P(w)/Q(w)

Reuters 0.98 Hiéndler (trader), Borse (exchange), Prozent (per cent), erkldrte (stated)

StuttZ 0.93 DM (German Mark), Prozent (per cent), Millionen (millions), Geschifts-
jahr (fiscal year), Milliarden (billions)

Die Zeit 0.64 heit (means), weil’ (knows), 146t (leaves/lets)

Table 8: Exp. 2: Domain specificity (KL distance from deWac); typical content words

specific. We quantify this intuition with an approach by Ciaramita and Baroni (2006), who propose

to model the representativeness of web-crawled corpora as the KL divergence between their Laplace-

smoothed unigram distribution P and that of a reference corpus, () (w € W are vocabulary words):
Pw)

DIP,Q) =Y Pw)log ~— @)
u;V £ Q(w)

We use the deWac German web corpus (Baroni et al., 2009) as reference, making the idealizing assumption
that it is representative for the German language. We interpret a large distance from deWac as domain
specificity. The results in Table 8 bear out our hypothesis: Die Zeit is less domain specific than StuttZ,
which in turn is less specific than Reuters. The table also lists the content words (nouns/verbs) that are
most typical for each corpus, i.e., which have the highest value of P(w)/Q(w). The lists bolster the
interpretation that Reuters and StuttZ concentrate on the economical domain, while the typical terms of
Die Zeit show an argumentative style, but no obvious domain bias. In sum, domain specificity is inversely
correlated with the difficulty of extracting entailment pairs: from a representativity standpoint, we should
draw entailment pairs from Die Zeit.

6 Conclusion

In this paper, we have discussed the robustness of extracting entailment pairs from the title and first
sentence of newspaper articles. We have proposed a logistic regression model and have analysed its
performance on two datasets that we have created: a cross-lingual one a cross-domain one. Our cross-
lingual experiment shows a positive result: despite differences in the distribution of annotation categories
across domains and languages, the predictors of all logistic regression models look remarkably similar. In
particular, we have found two predictors which are correlated significantly with entailment across (almost)
all languages and domains. These are (a), a tf/idf measure of word overlap between the title and the first
sentence; and (b), the presence of punctuation indicating that the title is not a single grammatical sentence.
These predictors extract entailment pairs from newswire text at a precision of > 90%, at a recall of 30%,
and represent a simple, cross-lingually robust method for entailment pair acquisition.

The cross-domain experiment, however, forces us to qualify this positive result. On two other German
corpora from different newspapers, we see a substantial degradation of the model’s performance. It may
seem surprising that cross-domain robustness is a larger problem than cross-lingual robustness. Our
interpretation is that the limiting factor is the degree to which the underlying assumption, namely that
first sentence entails the title, is true. If the assumption is true only for a minority of sentences, our
predictors cannot save the day. This assumption holds well in the Reuters corpora, but less so for the
other newspapers. Unfortunately, we also found that the Reuters corpora are at the same time thematically
constrained, and therefore only of limited use for extracting a representative corpus of entailment pairs. A
second problem is that the addition of features we considered beyond the two mentioned above threatens
to degrade the classifier due to overfitting, at least across domains.

Given these limitation of the present headline-based approach, other approaches that are more
generally applicable may need to be explored. Entailment pairs have for example been extracted from
Wikipedia (Bos et al., 2009). Another direction is to build on methods to extract paraphrases from
comparable corpora (Barzilay and Lee, 2003), and extend them to capture asymmetrical pairs, where
entailment holds in one, but not the other, direction.
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Abstract

First-order logic provides a powerful and flexible mechanism for representing natural language
semantics. However, it is an open question of how best to integrate it with uncertain, probabilistic
knowledge, for example regarding word meaning. This paper describes the first steps of an approach
to recasting first-order semantics into the probabilistic models that are part of Statistical Relational
Al Specifically, we show how Discourse Representation Structures can be combined with distribu-
tional models for word meaning inside a Markov Logic Network and used to successfully perform
inferences that take advantage of logical concepts such as factivity as well as probabilistic informa-
tion on word meaning in context.

1 Introduction

Logic-based representations of natural language meaning have a long history. Representing the meaning
of language in a first-order logical form is appealing because it provides a powerful and flexible way to
express even complex propositions. However, systems built solely using first-order logical forms tend
to be very brittle as they have no way of integrating uncertain knowledge. They, therefore, tend to have
high precision at the cost of low recall (Bos and Markert, 2005).

Recent advances in computational linguistics have yielded robust methods that use weighted or prob-
abilistic models. For example, distributional models of word meaning have been used successfully to
judge paraphrase appropriateness. This has been done by representing the word meaning in context as
a point in a high-dimensional semantics space (Erk and Padé, 2008; Thater et al., 2010; Erk and Pado,
2010). However, these models typically handle only individual phenomena instead of providing a mean-
ing representation for complete sentences. It is a long-standing open question how best to integrate the
weighted or probabilistic information coming from such modules with logic-based representations in a
way that allows for reasoning over both. See, for example, Hobbs et al. (1993).

The goal of this work is to combine logic-based meaning representations with probabilities in a
single unified framework. This will allow us to obtain the best of both situations: we will have the
full expressivity of first-order logic and be able to reason with probabilities. We believe that this will
allow for a more complete and robust approach to natural language understanding. In order to perform
logical inference with probabilities, we draw from the large and active body of work related to Statistical
Relational Al (Getoor and Taskar, 2007). Specifically, we make use of Markov Logic Networks (MLNs)
(Richardson and Domingos, 2006) which employ weighted graphical models to represent first-order
logical formulas. MLNs are appropriate for our approach because they provide an elegant method of
assigning weights to first-order logical rules, combining a diverse set of inference rules, and performing
inference in a probabilistic way.

While this is a large and complex task, this paper proposes a series of first steps toward our goal.
In this paper, we focus on three natural language phenomena and their interaction: implicativity and
factivity, word meaning, and coreference. Our framework parses natural language into a logical form,
adds rule weights computed by external NLP modules, and performs inferences using an MLN. Our
end-to-end approach integrates multiple existing tools. We use Boxer (Bos et al., 2004) to parse natural
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language into a logical form. We use Alchemy (Kok et al., 2005) for MLN inference. Finally, we use the
exemplar-based distributional model of Erk and Pad6 (2010) to produce rule weights.

2 Background

Logic-based semantics. Boxer (Bos et al., 2004) is a software package for wide-coverage semantic anal-
ysis that provides semantic representations in the form of Discourse Representation Structures (Kamp
and Reyle, 1993). It builds on the C&C CCG parser (Clark and Curran, 2004). Bos and Markert (2005)
describe a system for Recognizing Textual Entailment (RTE) that uses Boxer to convert both the premise
and hypothesis of an RTE pair into first-order logical semantic representations and then uses a theorem
prover to check for logical entailment.

Distributional models for lexical meaning. Distributional models describe the meaning of a word
through the context in which it appears (Landauer and Dumais, 1997; Lund and Burgess, 1996), where
contexts can be documents, other words, or snippets of syntactic structure. Distributional models are able
to predict semantic similarity between words based on distributional similarity and they can be learned
in an unsupervised fashion. Recently distributional models have been used to predict the applicability
of paraphrases in context (Mitchell and Lapata, 2008; Erk and Pad6, 2008; Thater et al., 2010; Erk and
Padd, 2010). For example, in “The wine left a stain”, “result in” is a better paraphrase for “leave” than is
“entrust”, while the opposite is true in “He left the children with the nurse”. Usually, the distributional
representation for a word mixes all its usages (senses). For the paraphrase appropriateness task, these

representations are then reweighted, extended, or filtered to focus on contextually appropriate usages.

Markov Logic. An MLN consists of a set of weighted first-order clauses. It provides a way of softening
first-order logic by making situations in which not all clauses are satisfied less likely but not impossible
(Richardson and Domingos, 2006). More formally, let X be the set of all propositions describing a world
(i.e. the set of all ground atoms), F be the set of all clauses in the MLN, w; be the weight associated
with clause f; € F, Gy, be the set of all possible groundings of clause f;, and Z be the normalization
constant. Then the probability of a particular truth assignment x to the variables in X is defined as:

P(X =x) = %exp Z wj Z g(x) | = %exp Z w;in;(x) (1)

fieF 9€Gy,; fieF

where g(x) is 1 if g is satisfied and 0 otherwise, and n;(x) = >_ g(x) is the number of groundings

9€3y,
of f; that are satisfied given the current truth assignment to the Va{fiables in X. This means that the
probability of a truth assignment rises exponentially with the number of groundings that are satisfied.

Markov Logic has been used previously in other NLP application (e.g. Poon and Domingos (2009)).
However, this paper marks the first attempt at representing deep logical semantics in an MLN.

While it is possible learn rule weights in an MLN directly from training data, our approach at this time
focuses on incorporating weights computed by external knowledge sources. Weights for word meaning
rules are computed from the distributional model of lexical meaning and then injected into the MLN.

Rules governing implicativity and coreference are given infinite weight (hard constraints).

3 Evaluation and phenomena

Textual entailment offers a good framework for testing whether a system performs correct analyses and
thus draws the right inferences from a given text. For example, to test whether a system correctly handles
implicative verbs, one can use the premise p along with the hypothesis h in (1) below. If the system
analyses the two sentences correctly, it should infer that A holds. While the most prominent forum using
textual entailment is the Recognizing Textual Entailment (RTE) challenge (Dagan et al., 2005), the RTE
datasets do not test the phenomena in which we are interested. For example, in order to evaluate our
system’s ability to determine word meaning in context, the RTE pair would have to specifically test word
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sense confusion by having a word’s context in the hypothesis be different from the context of the premise.
However, this simply does not occur in the RTE corpora. In order to properly test our phenomena, we
construct hand-tailored premises and hypotheses based on real-world texts.

In this paper, we focus on three natural language phenomena and their interaction: implicativity and
factivity, word meaning, and coreference. The first phenomenon, implicativity and factivity, is concerned
with analyzing the truth conditions of nested propositions. For example, in the premise of the entailment
pair shown in example (1), “arrange that” falls under the scope of “forget to”” and “fail” is under the scope
of “arrange that”. Correctly recognizing nested propositions is necessary for preventing false inferences
such as the one in example (2).

) p: Ed did not forget to arrange that Dave fail'
h: Dave failed

2) p: The mayor hoped to build a new stadium?
h*: The mayor built a new stadium

For the second phenomenon, word meaning, we address paraphrasing and hypernymy. For example,
in (3) “covering” is a good paraphrase for “sweeping” while “brushing” is not.

A3) p: A stadium craze is sweeping the country
h1: A stadium craze is covering the country
ho*: A stadium craze is brushing the country

The third phenomenon is coreference, as illustrated in (4). For this example, to correctly judge the
hypothesis as entailed, it is necessary to recognize that “he” corefers with “Christopher” and “the new
ballpark” corefers with “a replacement for Candlestick Park”.

@) p: George Christopher has been a critic of the plan to build a replacement for Candlestick Park.
As aresult, he won’t endorse the new ballpark.
h: Christopher won’t endorse a replacement for Candlestick Park.

Some natural language phenomena are most naturally treated as categorial, while others are more
naturally treated using weights or probabilities. In this paper, we treat implicativity and coreference as
categorial phenomena, while using a probabilistic approach to word meaning.

4 Transforming natural language text to logical form

In transforming natural language text to logical form, we build on the software package Boxer (Bos et al.,
2004). We chose to use Boxer for two main reasons. First, Boxer is a wide-coverage system that can deal
with arbitrary text. Second, the DRSs that Boxer produces are close to the standard first-order logical
forms that are required for use by the MLN software package Alchemy. Our system transforms Boxer
output into a format that Alchemy can read and augments it with additional information.

To demonstrate our transformation procedure, consider again the premise of example (1). When
given to Boxer, the sentence produces the output given in Figure 1a. We then transform this output to the
format given in Figure 1b.

Flat structure. In Boxer output, nested propositional statements are represented as nested sub-DRS
structures. For example, in the premise of (1), the verbs “forget to” and “arrange that” both introduce
nested propositions, as is shown in Figure 1a where DRS x3 (the “arranging that”) is the theme of “forget
to” and DRS x5 (the “failing”) is the theme of “arrange that”.

In order to write logical rules about the truth conditions of nested propositions, the structure has to
be flattened. However, it is clearly not sufficient to just conjoin all propositions at the top level. Such an
approach, applied to example (2), would yield (hope(x1) A theme(z1,x2) A build(x2) A ...), leading
to the wrong inference that the stadium was built. Instead, we add a new argument to each predicate that

1Examples (1) and (16) and Figure 2 are based on examples by MacCartney and Manning (2009)
2Examples (2), (3), (4), and (18) are modified versions of sentences from document wsj_0126 from the Penn Treebank
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x0 x1
named(x0,ed,per)
named(x 1,dave,per) named(10, ne_per_ed_d_s0_w0, z0)
2 X3 named(l0, ne_per_dave_d_sO_w7, z1)
not(10, 11)
forget(x2) pred(11, v_forget_d_s0_w3, e2)
event(x2) event(l1, e2)
agent(x2,x0) rel(11, agent, e2, z0)
theme(x2,x3) rel(11, theme, €2, 12)
<4 x5 transforms to prop(ll, 12)
x3: pred(12, v_arrange_d_sO_w5, e4)
1 Zi?ri%:%“) event(12, e4)
agent(x4,x0) rel(12, agent, e4, z0)
theme(x4 x5) rel(12, theme, e4, 13)
2 prop(12, 13)
X6 pred(13, v_fail_d_sO_w8, ¢6)
X531 | fail(x6) event(I3, e6)
event(x6) rel(13, agent, €6, z1)
agent(x6,x1) (b) Canonical form

(a) Output from Boxer

Figure 1: Converting the premise of (1) from Boxer output to MLN input

names the DRS in which the predicate originally occurred. Assigning the label // to the DRS containing
the predicate forget, we add [] as the first argument to the atom pred(l1, v_forget_d_sO_w3, e2).> Having
flattened the structure, we need to re-introduce the information about relations between DRSs. For this
we use predicates not, imp, and or whose arguments are DRS labels. For example, not (10, 1) states that
[1 is inside [0 and negated. Additionally, an atom prop(l0,[1) indicates that DRS [0 has a subordinate
DRS labeled /1.

One important consequence of our flat structure is that the truth conditions of our representation no
longer coincide with the truth conditions of the underlying DRS being represented. For example, we do
not directly express the fact that the “forgetting” is actually negated, since the negation is only expressed
as arelation between DRS labels. To access the information encoded in relations between DRS labels, we
add predicates that capture the truth conditions of the underlying DRS. We use the predicates true(label)
and false(label) that state whether the DRS referenced by label is true or false. We also add rules that
govern how the predicates for logical operators interact with these truth values. For example, the rules in
(5) state that if a DRS is true, then any negated subordinate must be false and vice versa.

V pn.[not(p,n) — (true(p) <> false(n)) A (false(p) <> true(n))] (5)

Injecting additional information into the logical form. We want to augment Boxer output with addi-
tional information, for example gold coreference annotation for sentences that we subsequently analyze
with Boxer. In order to do so, we need to be able to tie predicates in the Boxer output back to words in
the original sentence. Fortunately, the optional “Prolog” output format from Boxer provides the sentence
and word indices from the original sentence. When parsing the Boxer output, we extract these indices
and concatenate them to the word lemma to specific the exact occurrence of the lemma that is under
discussion. For example, the atom pred(li, v_forget_.d_sO_w3, e2) indicates that event e2 refers to the
lemma “forget” that appears in the 0" sentence of discourse d at word index 3.

Atomic formulas. We represent the words from the sentence as arguments instead of predicates in order
to simplify the set of inference rules we need to specify. Because our flattened structure requires that
the inference mechanism be reimplemented as a set of logical rules, it is desirable for us to be able to
write general rules that govern the interaction of atoms. With the representation we have chosen, we
can quantify over all predicates or all relations. For example, the rule in (6) states that a predicate is
accessible if it is found in an out-scoping DRS.

The extension to the word, such as d_sO_w3 for “forget”, is an index providing the location of the original word that
triggered this atom; this is addressed in more detail shortly.
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signature example

managed to +/- he managed to escape F he escaped
he did not manage to escape F he did not escape
refused to -/o he refused to fight = he did not fight

he did not refuse to fight  {he fought, he did not fight}

Figure 2: Implication Signatures

Y 1y ly.Joutscopes(ly,la) — ¥V p x.[pred(ly, p, x) — pred(le, p, x)]] 6)

We use three different predicate symbols to distinguish three types of atomic concepts: predicates,
named entities, and relations. Predicates and named entities represent words that appear in the text.
For example, named(10, ne_per_ed_d_sO_wO0, z0) indicates that variable z0 is a person named “Ed” while
pred(ll, v_forget_d_sO_w3, e2) says that e2 is a “forgetting to” event. Relations capture the relationships
between words. For example, rel(11, agent, e2, z0) indicates that z0, “Ed”, is the “agent” of the “forgetting
to” event e2.

S Handling the phenomena

Implicatives and factives

Nairn et al. (2006) presented an approach to the treatment of inferences involving implicatives and fac-
tives. Their approach identifies an “implication signature” for every implicative or factive verb that
determines the truth conditions for the verb’s nested proposition, whether in a positive or negative en-
vironment. Implication signatures take the form “x/y” where x represents the implicativity in the the
positive environment and y represents the implicativity in the negative environment. Both z and y have
three possible values: “+” for positive entailment, meaning the nested proposition is entailed, “-” for
negative entailment, meaning the negation of the proposition is entailed, and “o0” for “null” entailment,
meaning that neither the proposition nor its negation is entailed. Figure 2 gives concrete examples.

We use these implication signatures to automatically generate rules that license specific entailments
in the MLN. Since “forget to”” has implication signature “-/+”, we generate the two rules in (7).
™) (@) Vi lyel(pred(ly, “forget”,e) Atrue(ly) Arel(ly, “theme”, e, lz) A prop(l1,l2)) — false(l2)]]*

(b) Vi lze[(pred(ly, “forget”,e) A false(ly) Arel(ly, “theme”, e, la) A prop(ly,lz)) — true(ls)]

To understand these rules, consider (7a). The rule says that if the atom for the verb “forget to” appears
in a DRS that has been determined to be true, then the DRS representing any “theme” proposition of that
verb should be considered false. Likewise, (7b) says that if the occurrence of “forget to” appears in a
DRS determined to be false, then the theme DRS should be considered frue.

Note that when the implication signature indicates a “null” entailment, no rule is generated for that
case. This prevents the MLN from licensing entailments related directly to the nested proposition, but
still allows for entailments that include the factive verb. So he wanted to fly entails neither ke flew nor he
did not fly, but it does still license he wanted to fly.

Ambiguity in word meaning

In order for our system to be able to make correct natural language inference, it must be able to handle
paraphrasing and deal with hypernymy. For example, in order to license the entailment pair in (8), the
system must recognize that “owns” is a valid paraphrase for “has”, and that “car” is a hypernym of
“convertible”.

(8) p: Ed has a convertible
h: Ed owns a car

*Occurrence-indexing on the predicate “forget” has been left out for brevity.
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In this section we discuss our probabilistic approach to paraphrasing. In the next section we discuss
how this approach is extended to cover hypernymy. A central problem to solve in the context of para-
phrases is that they are context-dependent. Consider again example (3) and its two hypotheses. The first
hypothesis replaces the word “sweeping” with a paraphrase that is valid in the given context, while the
second uses an incorrect paraphrase.

To incorporate paraphrasing information into our system, we first generate rules stating all paraphrase
relationships that may possibly apply to a given predicate/hypothesis pair, using WordNet (Miller, 2009)
as a resource. Then we associate those rules with weights to signal contextual adequacy. For any two
occurrence-indexed words wy, wo occurring anywhere in the premise or hypothesis, we check whether
they co-occur in a WordNet synset. If wp, w9 have a common synset, we generate rules of the form
V[ x.[pred(l,wy,x) > pred(l,wy,x)] to connect them. For named entities, we perform a similar
routine: for each pair of matching named entities found in the premise and hypothesis, we generate a
rule V| z.[named(l, wy, z) <> named(l, wa, x)].

We then use the distributional model of Erk and Pad6 (2010) to compute paraphrase appropriateness.
In the case of (3) this means measuring the cosine similarity between the vectors for “sweep” and “cover”
(and between “sweep” and “brush”) in the sentential context of the premise. MLN formula weights are
expected to be log-odds (i.e., log(P/(1— P)) for some probability P), so we rank all possible paraphrases
of a given word w by their cosine similarity to w and then give them probabilities that decrease by
rank according to a Zipfian distribution. So, the k" closest paraphrase by cosine similarity will have
probability P given by (9):

Py ~1/k )

The generated rules are given in (10) with the actual weights calculated for example (3). Note that
the valid paraphrase “cover” is given a higher weight than the incorrect paraphrase “brush”, which allows
the MLN inference procedure to judge h; as a more likely entailment than h.> This same result would
not be achieved if we did not take context into consideration because, without context, “brush” is a more
likely paraphrase of “sweep” than “cover”.

(10)  (a) -2.602 V[ z.[pred(l, “v_sweep_p_sO_w4d”,x) <> pred(l, “v_cover_h_s0_w4”, z)]
(b) -3.842 V[ x.[pred(l, “v_sweep_p_sO0_wd”, x) <> pred(l, “v_brush_h_s0_w4” )]

Since Alchemy outputs a probability of entailment and not a binary judgment, it is necessary to
specify a probability threshold indicating entailment. An appropriate threshold between “entailment”
and “non-entailment” will be one that separates the probability of an inference with the valid rule from
the probability of an inference with the invalid rule. While we plan to automatically induce a threshold
in the future, our current implementation uses a value set manually.

Hypernymy

LEENTY

Like paraphrasehood, hypernymy is context-dependent: In “A bat flew out of the cave”, “animal” is
an appropriate hypernym for “bat”, but “artifact” is not. So we again use distributional similarity to
determine contextual appropriateness. However, we do not directly compute cosine similarities between
a word and its potential hypernym. We can hardly assume “baseball bat” and “artifact” to occur in similar
distributional contexts. So instead of checking for similarity of “bat” and ““artifact” in a given context, we
check “bat” and “club”. That is, we pick a synonym or close hypernym of the word in question (‘“bat”)
that is also a WordNet hyponym of the hypernym to check (‘“‘artifact’).

A second problem to take into account is the interaction of hypernymy and polarity. While (8) is a
valid pair, (11) is not, because “have a convertible” is under negation. So, we create weighted rules of
the form hypernym(w, h), along with inference rules to guide their interaction with polarity. We create

Because weights are calculated according to the equation log(P/(1 — P)), any paraphrase that has a probability of less
than 0.5 will have a negative weight. Since most paraphrases will have probabilities less than 0.5, most will yield negative
rule weights. However, the inferences are still handled properly in the MLN because the inference is dependent on the relative
weights.
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these rules for all pairs of words w, h in premise and hypothesis such that h is a hypernym of w, again
using WordNet to determine potential hypernymy.

(11) p: Ed does not have a convertible
h: Ed does not own a car

Our inference rules governing the interaction of hypernymy and polarity are given in (12). The rule
in (12a) states that in a positive environment, the hyponym entails the hypernym while the rule in (12b)
states that in a negative environment, the opposite is true: the hypernym entails the hyponym.

(12)  (a) Y1 p1 p2 x.[(hypernym(p1, p2) A true(l) A pred(l,p1,x)) — pred(l, p2, z)]]
(b) Y1 p1 p2 z.[(hypernym(pi,p2) A false(l) A pred(l, p2,x)) — pred(l, p1,x)]]

Making use of coreference information

As a test case for incorporating additional resources into Boxer’s logical form, we used the coreference
data in OntoNotes (Hovy et al., 2006). However, the same mechanism would allow us to transfer in-
formation into Boxer output from arbitrary additional NLP tools such as automatic coreference analysis
tools or semantic role labelers. Our system uses coreference information into two distinct ways.

The first way we make use of coreference data is to copy atoms describing a particular variable
to those variables that corefer. Consider again example (4) which has a two-sentence premise. This
inference requires recognizing that the “he” in the second sentence of the premise refers to “George
Christopher” from the first sentence. Boxer alone is unable to make this connection, but if we receive
this information as input, either from gold-labeled data or a third-party coreference tool, we are able to
incorporate it. Since Boxer is able to identify the index of the word that generated a particular predicate,
we can tie each predicate to any related coreference chains. Then, for each atom on the chain, we can
inject copies of all of the coreferring atoms, replacing the variables to match. For example, the word
“he” generates an atom pred(10, male, z5 )6 and “Christopher” generates atom named(10, christopher, x0).
So, we can create a new atom by taking the atom for “christopher” and replacing the label and variable
with that of the atom for “he”, generating named(l0, christopher, x5).

As a more complex example, the coreference information will inform us that “the new ballpark”
corefers with “a replacement for Candlestick Park”. However, our system is currently unable to handle
this coreference correctly at this time because, unlike the previous example, the expression “a replace-
ment for Candlestick Park™ results in a complex three-atom conjunct with two separate variables: pred(I2,
replacement, x6), rel(12, for, x6, x7), and named(I2, candlestick_park, x7). Now, unifying with the atom
for ““a ballpark™, pred(10, ballpark, x3), is not as simple as replacing the variable because there are two
variables to choose from. Note that it would not be correct to replace both variables since this would
result in a unification of “ballpark™ with “candlestick_park” which is wrong. Instead we must determine
that x6 should be the one to unify with x3 while x7 is replaced with a fresh variable. The way that we can
accomplish this is to look at the dependency parse of the sentence that is produced by the C&C parser is
a precursor to running Boxer. By looking up both “replacement” and “Candlestick Park™ in the parse, we
can determine that “replacement” is the head of the phrase, and thus is the atom whose variable should
be unified. So, we would create new atoms, pred(10, replacement, x3), rel(10, for, x3, z0), and named(l0,
candlestick_park, z0), where z0 is a fresh variable.

The second way that we make use of coreference information is to extend the sentential contexts
used for calculating the appropriateness of paraphrases in the distributional model. In the simplest case,
the sentential context of a word would simply be the other words in the sentence. However, consider the
context of the word “lost” in the second sentence of (13).

(13)  pi1: In [the final game of the season];, [the team]s held on to their lead until overtime
p2: But despite that, [they]s eventually lost [it all];

8 Atoms simplified for brevity
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Here we would like to disambiguate “lost”, but its immediate context, words like “despite” and
“eventually”, gives no indication as to its correct sense. Our procedure extends the context of the sentence
by incorporating all of the words from all of the phrases that corefer with a word in the immediate
context. Since coreference chains 1 and 2 have words in ps, the context of “lost” ends up including
“final”, “game”, “season”, and “team” which give a strong indication of the sense of “lost”. Note that
using coreference data is stronger than simply expanding the window because coreferences can cover

arbitrarily long distances.

6 Evaluation

As a preliminary evaluation of our system, we constructed a set of demonstrative examples to test our
ability to handle the previously discussed phenomena and their interactions and ran each example with
both a theorem prover and Alchemy. Note that when running an example in the theorem prover, weights
are not possible, so any rule that would be weighted in an MLN is simply treated as a “hard clause”
following Bos and Markert (2005).

Checking the logical form. We constructed a list of 72 simple examples that exhaustively cover cases
of implicativity (positive, negative, null entailments in both positive and negative environments), hyper-
nymy, quantification, and the interaction between implicativity and hypernymy. The purpose of these
simple tests is to ensure that our flattened logical form and truth condition rules correctly maintain the
semantics of the underlying DRSs. Examples are given in (14).

(14)  (a) The mayor did not manage to build a stadium ¥ The mayor built a stadium
(b) Fido is a dog and every dog walks F A dog walks

Examples in previous sections. Examples (1), (2), (3), (8), and (11) all come out as expected. Each
of these examples demonstrates one of the phenomena in isolation. However, example (4) returns “not
entailed”, the incorrect answer. As discussed previously, this failure is a result of our system’s inabil-
ity to correctly incorporate the complex coreferring expression “a replacement for Candlestick Park”.
However, the system is able to correctly incorporate the coreference of “he” in the second sentence to
“Christopher” in the first.

Implicativity and word sense. For example (15), “fail to” is a negatively entailing implicative in a
positive environment. So, p correctly entails /4404 in both the theorem prover and Alchemy. However,
the theorem prover incorrectly licenses the entailment of /.4 while Alchemy does not. The probabilistic
approach performs better in this situation because the categorial approach does not distinguish between
a good paraphrase and a bad one. This example also demonstrates the advantage of using a context-
sensitive distributional model to calculate the probabilities of paraphrases because “reward” is an a priori
better paraphrase than “observe” according to WordNet since it appears in a higher ranked synset.

(15)  p: The U.S. is watching closely as South Korea fails to honor U.S. patents’
hgood: South Korea does not observe U.S. patents
hpaq: South Korea does not reward U.S. patents

Implicativity and hypernymy. MacCartney and Manning (2009) extended the work by Nairn et al.
(2006) in order to correctly treat inference involving monotonicity and exclusion. Our approaches to
implicatives and factivity and hyper/hyponymy combine naturally to address these issues because of the
structure of our logical representations and rules. For example, no additional work is required to license
the entailments in (16).

(16)  (a) John refused to dance F John didn’t tango
(b) John did not forget to tango F John danced

"Example (15) is adapted from Penn Treebank document wsj_0020 while (17) is adapted from document wsj_2358
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Example (17) demonstrates how our system combines categorial implicativity with a probabilistic
approach to hypernymy. The verb “anticipate that” is positively entailing in the negative environment.
The verb “moderate” can mean “chair” as in “chair a discussion” or “curb” as in “curb spending”. Since
“restrain” is a hypernym of “curb”, it receives a weight based on the applicability of the word “curb” in
the context. Similarly, “talk” receives a weight based on its hyponym “chair”. Since our model predicts
“curb” to be a more probable paraphrase of “moderate” in this context than “chair” (even though the
priors according to WordNet are reversed), the system is able to infer A 4,04 While rejecting hpqq.

(17)  p: He did not anticipate that inflation would moderate this year
hgood: Inflation restrained this year
hpaq: Inflation talked this year

Word sense, coreference, and hypernymy. Example (18) demonstrates the interaction between para-
phrase, hypernymy, and coreference incorporated into a single entailment. The relevant coreference
chains are marked explicitly in the example. The correct inference relies on recognizing that “he” in the
hypothesis refers to “Joe Robbie” and “it” to “coliseum”, which is a hyponym of “stadium”. Further,
our model recognizes that “sizable” is a better paraphrase for “healthy” than “intelligent” even though
WordNet has the reverse order.

(18) p: [Joe Robbie]ss couldn’t persuade the mayor , so [he]ss built [[his]s3 own coliseum]s,.
[He]ss has used [it]54 to turn a healthy proﬁt.8
hgood: Joe Robbie used a stadium to turn a sizable profit
hpad—1: Joe Robbie used a stadium to turn an intelligent profit
hpad—2: The mayor used a stadium to turn a healthy profit

7 Future work

The next step is to execute a full-scale evaluation of our approach using more varied phenomena and
naturally occurring sentences. However, the memory requirements of Alchemy are a limitation that
prevents us from currently executing larger and more complex examples. The problem arises because
Alchemy considers every possible grounding of every atom, even when a more focused subset of atoms
and inference rules would suffice. There is on-going work to modify Alchemy so that only the required
groundings are incorporated into the network, reducing the size of the model and thus making it possible
to handle more complex inferences. We will be able to begin using this new version of Alchemy very
soon and our task will provide an excellent test case for the modification.

Since Alchemy outputs a probability of entailment, it is necessary to fix a threshold that separates
entailment from nonentailment. We plan to use machine learning techniques to compute an appropriate
threshold automatically from a calibration dataset such as a corpus of valid and invalid paraphrases.

8 Conclusion

In this paper, we have introduced a system that implements a first step towards integrating logical seman-
tic representations with probabilistic weights using methods from Statistical Relational Al, particularly
Markov Logic. We have focused on three phenomena and their interaction: implicatives, coreference,
and word meaning. Taking implicatives and coreference as categorial and word meaning as probabilis-
tic, we have used a distributional model to generate paraphrase appropriateness ratings, which we then
transformed into weights on first order formulas. The resulting MLN approach is able to correctly solve
a number of difficult textual entailment problems that require handling complex combinations of these
important semantic phenomena.

80nly relevent coreferences have been marked
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Abstract

This paper presents a novel approach to semantic role annotation implementing an entailment-
based view of the concept of semantic role. I propose to represent arguments of predicates with
grammatically relevant primitive properties entailed by the semantics of predicates. Such meaning
components generalise over a range of semantic relations which humans tend to express systemati-
cally through language. In a preliminary study, I show that we can model linguistic knowledge at a
general, principled syntax-semantics interface by incorporating a layer of skeletal, entailment-based
representation of word meaning in large-scale corpus annotation.

1 Introduction

Large-scale lexical semantic resources that provide relational information about words have recently re-
ceived much focus in the field of Natural Language Processing (NLP). In particular, data-driven models
for lexical semantics require the creation of broad-coverage, hand-annotated corpora with predicate-
argument information, i.e. rich information about words expressing a semantic relation having argument
slots filled by the interpretations of their grammatical complements. Corpora combining semantic and
syntactic annotations constitute the backbone for the development of probabilistic models that automat-
ically identify the semantic relationships, or semantic roles, conveyed by sentential constituents (Gildea
and Jurafsky, 2002). That is, given an input sentence and a target predicator the system labels constituents
with general roles like Agent, Patient, Theme, etc., or more specific roles, as in (1).

(1) [cognizer Il admired [ gyaiuee him] [ pegree greatly] [ Reason for his bravery and his cheerfulness].!
The task of automatic semantic role labelling (or shallow semantic parsing) is a first step towards text
understanding and has found use in a variety of NLP applications including information extraction (Sur-
deanu et al., 2003), machine translation (Boas, 2002), question answering (Narayanan and Harabagiu,
2004), summarisation (Melli et al., 2005), recognition of textual entailment relations (Burchardt and
Frank, 20006), etc.

Corpora with semantic role labels additionally lend themselves to extraction of linguistic knowledge
at the syntax-semantics interface. The range of semantic and syntactic combinatorial properties (va-
lences) of each word in each of its senses is documented in terms of annotated corpus attestations. For
instance, the valence pattern for the use of admire in (1) is shown in (2).

(2) Cognizer: Noun Phrase (NP), Subject
Evaluee: Noun Phrase (NP), Object
Degree: Adverbial Dependent
Reason: Prepositional Dependent

!'This annotated example is from the FrameNet lexicon (discussed in the next section). In all examples throughout the paper,
predicators are marked in italics.
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This data enables the quantitative study of various linguistic phenomena and the investigation of the
relationship between the distinct linguistic layers comprised by predicate-argument analysis. Further-
more, the formulation of generalisations over predicate-specific annotations can capture how predicates
relate in terms of both semantic and syntactic features. Such syntax-semantics mappings (so-called link-
ing generalisations) encode regularities concerning the associations of semantic roles with grammatical
functions and are essential for a linguistic knowledge base for NLP applications.

This paper addresses the problem of generalising over the valences of individual predicators and pro-
poses an abstract semantic basis for the representation of participant roles. The definition of semantic
notions at an appropriate level of abstraction is the prerequisite for the formulation of a general, princi-
pled syntax-semantics interface. This is in accordance with a somewhat intuitive conception of semantic
roles as classificatory notions encoding semantic similarities across different types of events or situations
in the world. In effect, all conceptions of semantic roles as opposed to predicate-specific roles, such
as admirer-admired, posit some sort of semantic classification of arguments across predicators while
indicating an acknowledgment that the syntax-semantics interface (referred to with the term linking) is
not completely arbitrary. Put differently, semantic roles constitute a level of representation suitable for
capturing semantic generalisations which humans tend to express systematically through language.

The structure of the paper is organised as follows. Section 2 looks at conceptions of semantic roles
in state-of-the-art approaches to semantic annotation indicating problems or complications related to the
question of whether or how these roles can support generalisations across predicates. Section 3 calls
attention to the theoretical underpinnings of the notion of semantic role and introduces an annotation
schema which departs from the traditional view of semantic roles as atomic, undecomposable categories.
Following the insight of Dowty’s (1991) theory of Proto-Roles, I will propose analytical representations
of verbal arguments based on semantically well-founded, grammatically relevant meaning components
entailed by the semantics of predicates (Proto-Role entailments). Finally, section 4 presents a study in
which lexical entailments are marked in a corpus in accordance with the proposed schema. General
syntax-semantics mappings are extracted from the annotated data and are formalised in abstract classes
which readily encode generalisations concerning linking to syntactic form.

2 Corpora with Semantic Roles and Related Work

Semantically annotated corpora currently available for English implement two distinct approaches to the
prickly notion of semantic role. The Proposition Bank (PropBank) (Kingsbury et al., 2002) is a one
million word corpus in which predicate-argument relations are hand-annotated for every occurrence of
every verb in the Wall Street Journal part of the Penn Treebank (Marcus et al., 1994). Verb senses are
distinguished informally on the basis of semantic as well as syntactic criteria. The semantic arguments
of a verb are numbered sequentially. PropBank uses a common set of role labels (Arg0 up to Arg5) for
all predicators, but these labels are defined on a per-verb basis, i.e. they have verb-specific meanings.
Example PropBank annotations:

(3) a. [apgo John] broke [ 441 the window] [ 4r-¢2 With a rock].
b. [arg0 JOhn] broke [ ar41 the window] [ 4,43 into a million pieces].

. [arg1 The window] broke [ ar43 into a million pieces].

(4)  [argo Blue-chip consumer stocks] provided [ or41 a lift] [ ar¢2 to the industrial average].

(5) In addition, [4,40 the bank] has an option to buy [a,q1 @ 30% stake in BIP] [ 4,42 from Societe
Generale] [ Argnr -7 p after Jan.1, 1990] [ 4,43 at 1,015 francs a share].?

As illustrated in (3), argument labels are consistent across alternate syntactic patterns of a given pred-
icator in a given sense. However, PropBank refrains from formalising the semantics of the role labels
and does not ensure their coherence across verbs. This is particularly clear with higher numbered labels,

2 ArgM-TMP indicates a temporal adjunct modifier.
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which correspond to distinct types of participants: Arg2 marks an Instrument for break (3), a Benefactive
for provide (4), and a Source for buy (5). Lower-numbered labels denote various roles as well, but they
are less arbitrary across verbs: Arg0 corresponds to traditional Agents, Experiencers, certain types of
Theme, etc. which surface as subjects of transitive verbs and a class of intransitives called unergatives;
Argl, on the other hand, is assigned to objects of transitive verbs and subjects of unaccusatives and is the
equivalent of traditional Patients, Themes, etc.

While the PropBank corpus enables empirical insight into a variety of linguistic phenomena (e.g.
variations in the grammatical expression of arguments) providing useful frequency information for the
uses of predicators, it does not lend itself to extraction of a principled linguistic knowledge base with
semantic generalisations across predicates. Inasmuch as no consistent mapping is ensured between a
label and a semantic role, the argument labels result seriously overloaded across verbs. This explains why
role recognition models have particularly poor performance in assigning the labels Arg2-ArgS5. In fact, an
attempt is currently made to map PropBank argument labels to semantically coherent roles specified by
VerbNet (Kipper et al., 2000) (i.e. a broad-coverage verb lexicon based on Levin’s (1993) classification
of English verbs according to shared meaning and behaviour). Even though VerbNet specifies a small list
of abstract roles (23 in total) which are intended to support generalisations, these roles are not defined as
global primitives, but are meaningful only within verb classes. Because mappings of labels to semantic
roles with class-specific interpretations would lead to very sparse data, argument labels are subdivided
into groupings of VerbNet roles. The latter are created manually on the basis of analysis of argument
use.’ The subdivided (more coherent) PropBank labels perform better for semantic role labelling (Loper
et al., 2007).

A different paradigm for semantic role annotation is put forth by FrameNet. The Berkeley FrameNet
project (Baker et al., 1998) is creating an online lexical database containing semantic descriptions of
words based on Fillmore’s (1985) theory of frame semantics. The basic unit of analysis is the semantic
frame, i.e. a schematic representation of a stereotypical scene or situation. Each frame is associated
with a set of predicates (including verbs, nouns, and adjectives) and a set of semantic roles (called Frame
Elements, FEs) encoding the participants and props in the designated scene. FrameNet includes manually
annotated example sentences from the British National Corpus incorporating additional layers of phrase
structure and grammatical function annotation. It also includes two small corpora of full-text annotation
intended to facilitate statistical analysis of frame-semantic structures. Currently it contains more than 960
frames covering more than 11,600 lexical items exemplified in more than 150,000 annotated sentences.
The Judgment frame evoked by admire in (1) is shown in Table 3.

Frame: JUDGMENT
Definition A Cognizer makes a judgment about an Evaluee. The judgment may
be positive (e.g. respect) or negative (e.g. condemn) and this infor-
mation is recorded in the semantic types Positive and Negative on the
Lexical Units of this frame. There may be a specific Reason for the
Cognizer’s judgment, or there may be a capacity or Role in which the
Evaluee is judged.
FEs Cognizer: [The boss] appreciates you for your diligence.
Evaluee: The boss appreciates [you] for your diligence.
Expressor: She viewed him with an appreciative [gaze].
Reason: I admire you [for your intellect].
Predicates accolade.n, accuse.v, admiration.n, admire.v, admiring.a, applaud.v,
appreciate.v, appreciation.n, appreciative.a, approbation.n, approv-
ing.a, blame.n, blame.v, boo.v, ...

Table 1: The Judgment frame

3This endeavour is part of the SemLink project which aims at developing computationally explicit connections between
lexical semantic resources (PropBank, VerbNet, FrameNet, WordNet). The idea is to combine the advantages of these resources
and overcome their limitations by bridging the complementary lexical information they offer. In a related vein, the LIRICS
(i.e. Linguistic Infrastructure for Interoperable Resources and Systems) project has recently evaluated several approaches for
semantic role annotation (PropBank, VerbNet, FrameNet, among others) aiming to propose ISO ratified standards for semantic
representation that will enable the exchange and reuse of (multilingual) language resources (Petukhova and Bunt, 2008).
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FrameNet avoids the difficulties of attempting to pin down a small set of general roles. Instead Frame
Elements are defined locally, i.e. in terms of frames. Frames are situated in semantic space by means
of directed (asymmetric) relations. Each frame-to-frame relation associates a less dependent or more
general frame (Super_frame) with a more dependent or less general one (Sub_frame). The hierarchical
organisation of frames along with FE identities or analogs across frames are intended to enable the for-
mulation of generalisations concerning the combinatorial properties (valences) of predicates. In practice,
however, the frame hierarchy turns out to be somewhat complicated. Inheritance (i.e. the strongest se-
mantic relation and the most plausible to propagate valence information across frames) is conditioned on
complex sets of semantic components underlying frame definitions, ranging from FE membership and
relations to other frames to relationships among FEs and Semantic Types on frames and FEs.* This kind
of frame dependence based on fine-grained semantic or ontological distinctions is doomed to miss argu-
ment structure commonalities in predicates evoking frames that are related at a more abstract, essentially
structural semantic level. Section 4 includes a concrete example of the complications in generalising
valence information across FrameNet frames.

Researchers working in the FrameNet paradigm have proposed different approaches for abstract-
ing over the properties of individual predicators and increasing the size of training data for semantic
role labelling systems. Gildea and Jurafsky (2002) attempt to generalise the behaviour of semantically
related predicates experimenting with a small set of abstract semantic roles mapped to FrameNet roles.
Frank (2004) discusses the potential of applying various generalisation ‘filters’ to corpus-induced syntax-
semantics mappings for abstraction of a general linguistic knowledge base. The generalisations proposed
by Frank are intended to apply within frames but not across frames. Baldewein et al. (2004) have trained
semantic role classifiers re-using training instances of roles that are similar to the target role. As sim-
ilarity measures, they use the FrameNet hierarchy, peripheral roles of FrameNet and clusters of roles
constructed automatically. Matsubayashi et al. (2009) also explore various machine learning features for
generalising semantic roles in FrameNet, namely role hierarchy, human-understandable descriptors of
Frame Elements, Semantic Types of filler phrases, and mappings of FrameNet roles to roles of VerbNet.
The experimental result of the role classification using these generalisation features shows significant
improvements in the system. This is due to the fact that role generalisations can form a remedy for the
severe problem of sparse data which is inherent in lexical semantic corpus annotation. Data sparseness,
i.e. the insufficient coverage of the range of predicate senses and constructions within sensible sizes of
manually annotated data, is a bottleneck both for acquisition of linguistic knowledge for the semantic
lexicon and for automated techniques for semantic role assignment.

3 An Abstract Semantic Basis for the Representation of Participant Roles

From the presentation of different annotation projects it becomes evident that semantic role annotation
is a complicated task whose product is deeply influenced by its initial design philosophy and underlying
criteria.” Among these criteria the notion of semantic role itself is central. PropBank uses general
role labels that lack semantic coherence. VerbNet and FrameNet, on the other hand, specify coherent
roles at a more fine-grained level (i.e. roles with class-specific or frame-specific interpretations). In this
section, I consider the linguistic contours of the concept of semantic role proposing an annotation schema
based upon theoretically well-founded role concepts which meet the requirements of both generality and
coherence. This schema is intended at enabling the formulation of a general syntax-semantics interface
suitable for modelling the relations of predicates in terms of combinatorial features.

Espousing and extending Dowty’s (1991) Proto-Role hypothesis, I propose to associate arguments of
predicates with properties entailed by the semantics of predicates.® Mappings of entailments to syntactic

*Semantic Types encode information that is not representable in terms of frames and FE hierarchies, e.g. basic typing
of fillers of FEs referring to some (external) ontological classification, descriptions of aspects of semantic variation between
lexical units such as the Positive and Negative types in the Judgment frame above, etc.

5This point is discussed in detail by Ellsworth et al., 2004.

SThe term entailment is used in the standard logical sense according to which one formula entails another if in every possible
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constituents can be many-to-one. That is, an argument can be marked with one or more properties
necessarily entailed by the meaning of the predicator.” Prepositional complements are also marked with
verbal entailments to which prepositions may contribute more specific content. In this paper, I will make
no attempt to formalise the content added by prepositions; prepositional semantics is represented solely
in terms of the common entailment basis it shares with verbal meaning.

Each Proto-Role entailment indicates a grammatically pervasive concept, i.e. a property having direct
effect on the grammatical behaviour of predicates. It is defined in terms of an abstract semantic relation
underlying the lexical meaning of the predicate. Five such relations are identified in terms of which
entailment-based representations are specified: Notion, Causation, Motion, Possession, Conditioning.
Note that contrary to mere ontological labels, entailment-based representations encode structural char-
acterisations of the semantics of arguments. Consider, for instance, the sentence in (1), repeated here as

(6):
(6) [cognizer 1] admired [ gyaiuee im] [Reason for his bravery and his cheerfulness].

A structural representation of the meaning of this construction will explicitly encode the relationships
between each of the arguments of admire, i.e. between the NP I and the NP him, between the NP him
and the PP for his bravery and his cheerfulness, and between the NP I and the PP for his bravery and
his cheerfulness. By contrast, the FrameNet roles shown above do not model the fact that the semantic
content of an Evaluee requires a Cognizer, or that a Reason requires both a Cognizer and an Evaluee.
The view that the semantic properties underlying lexical meaning are relational in nature (i.e. they are
not to be conceived entirely independently of one another) has been advocated by several researchers,
among others Wechsler (1995), Pinker (1989), Jackendoff (1990), and Davis (2001), on whose work I
build.

In the rest of this section, I define a set of recurring entailments which underlie the semantics of a
range of verbs displaying various syntactic patterns. Note that this set can be extended on the basis of
additional primitive meaning components of the sort described above, covering the semantics of broad
verb classes.

(7)) Lconceiver The other two] pondered [conceived OVer this morsel] as they tramped along behind
him.®

(8) [Canceiver,lntentional ThCY] tested [conceived the software] [Conceived_bsoa for similar errors].
9)  [conceiver,Intentional The government] had reneged [conceived ON promises to give them land].
(10) [Conceiver He] likes stereotyping [Conceived People] [Conceived,bsoa by appearance]-
(11)  [conceiver The jury] has found out [conceived the truth] [conceived_bsoa about the suspect].

(12) [Conceive'r The court] Categorised [C’onceived,Entity the issue] [Conceived,Property as a collateral
question].

situation (in every model) in which the first is true, the second is also true. For linguistic predicates, in particular, an entailment
(or lexical entailment) is an analytic implication following from the meaning of the predicate in question.

"The presence of ‘necessarily’ in this sentence is somewhat redundant, in that its meaning is incorporated by the notion
of entailment. I insist, however, on emphasising it to indicate that semantic properties that are accidentally associated with
the meaning of a particular use of a verb will not be annotated. Dowty points out that entailments of the predicate must be
distinguished from what follows from any one sentence as a whole (e.g. entailments that may arise from NP meanings) (Dowty,
1991:572, footnote 16). For example, in the sentence Mary slapped John, assuming that John is a human entity, it follows
from the meaning of the sentence that John will perceive something as a result of the action of slapping. But this ‘entailment’
is not intrinsically tied to the meaning of slap, because the sentences Mary slapped the table or Mary slapped the corpse are
also felicitous. That is, sentience of the direct object is not an essential component of the semantics of slap, in the way it is
for a verb like awaken. The sentences Mary awakened the table and Mary awakened the corpse are clearly anomalous. True
entailments of predicators (which are the ones that will be annotated) must be detectable in every possible environment in
which the predicator is used.

8The examples used to illustrate the proposed schema are from the British National Corpus. Some of them are slightly
modified for reasons of conciseness.
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(13) [Conceiver OPPOSition members] accuse [C’onceived,Entity the COLlIlCﬂ] [Conceived,Property of acting
purely ideologically].

The predicates in (7)-(13) are represented in terms of a Notion relation. That is, they involve a
Conceiver who is entailed to have a notion or perception of a Conceived participant (while the reverse
entailment does not necessarily go through).” In situation types in which a Conceiver is entailed to
have a notion of more than one participant, Conceived arguments are distinguished on the basis of their
salience in the overall semantics of the predicate. For instance, test (8) intuitively lexicalises a dyadic re-
lation between a Conceiver (tester) and a Conceived (tested) entity. A sought entity denoted by a for-PP
is represented as part of a secondary Notion relation situated at the background of the primary (testing)
relation. Conceived entities that are peripheral to the essential relation lexicalised by the predicate are as-
sociated with a more specific property termed Conceived_background_state_of_affairs (Conceived_bsoa).
These arguments receive less focus in the meaning of the predicate, in a sense that they are not absolutely
necessary to understand the predicate’s meaning. The representation of test (8), stereotype (10), and find
out (11) in terms of two Notion relations, one of which is treated as more salient, reifies the concept
of relative significance of Proto-Role properties in the verbal semantics. This concept is related to the
weighting of entailments in the overall semantics of a verb, which plays a critical role in determining the
syntactic patterns in which the verb appears (i.e. the grammatical realisations of its arguments).'?

The verbs in (8) and (9) involve an additional entailment of Intentionality. This is used to mark
entities characterised by conscious choice, decision, or control over the course of inherently intentional
actions. Intentional participants necessarily have a notion/perception of some event participant(s). The
annotations in (12) and (13) include the Entity and Property tags which are intended to distinguish
Conceived arguments in terms of a predicative relation assigned in the Conceiver’s mental model. The
Property label corresponds to a representation of the form P(x) denoting a property P which is predicated
of some object x.

The entailments of Notion are not applicable in the semantics of the predicates in (14)-(15) below.
These verbs refer to situations with affected participants and are described in terms of an abstract relation
of Causation. In the denoted events, a Causer is entailed to affect some entity (the Causee) either phys-
ically or mentally. Causally affected participants sometimes undergo radical changes in their (physical
or mental) state, which are identified in terms of a readily observable transition from a source to a final
(result) state, as shown in (15).

(14)  [cquser Diet] influences [cqusee disease].

(15) [causer The sun] has Changed [Causee,Change,of,state her hair color] [source_state from red]
[End_state tO blue].

Verbs as in (16)-(17) are represented in terms of a Motion relation involving a Moving entity (i.e.
an object entailed to change location) and Stationary reference frame. Locations at the start, end, or
intermediate points of the stationary frame are tagged with the labels Path_source, Path_goal, and Path,
respectively.

(16)  [Moving The car] passed [siationary the railway station].

(17)  [Moving The river] flowed silently [ pp, through the forest].

Finally, verbs such as own, possess, acquire, lack, etc. are treated in terms of a Possession relation
involving a Possessor and an entity entailed to be Possessed (18).

The Notion relation, as defined by Wechsler (1995), essentially reconstructs the entailment of sentience, which was pro-
posed by Dowty (1991).

10 Arguments identified as conceived_bsoas have many of the syntactic properties of so-called semantic adjuncts. However,
I refrain from invoking an argument versus adjunct division, in that it is known to involve serious theoretical pitfalls. Instead
I classify conceived participants on the basis of the concept of importance of entailments, which lies exactly at the syntax-
semantics interface. This concept is defined in terms of the lexicalised event rather than the real-world event that traditional
analyses of adjuncthood appeal to.

120



(18) [Possessor This house] lacks [ possessed @ guest room].

Verbs of caused Motion (19) or caused Possession (20) are represented in terms of both Causation and
Motion/Possession, i.e. as meaning ‘cause to move’ (set to motion) or ’cause to possess’. This analysis
posits a main (causal) event and a caused sub-event. The entailments associated with the latter are marked
in square brackets.

(19)  [causer Lucie] threw [causee,[Moving] MM [[Path_source] from the parapet of a bridge] [[path_goal
into deep water].

(20)  [causer Hel handed [[possessed) the letter] [[possessor] to Weir], who nodded.

Proto-Role entailments are defined in terms of inherently asymmetric semantic relations involving
fixed role positions. Each of these relations (with the exception of Motion) can be thought of as instance
of a more general relation entailing that properties of an entity 3 are dependent on an entity «. For
example, a conceived entity in a Notion relation depends on the existence of a conceiver (it is taken to be
within the scope of the conceiver’s beliefs). An affected or possessed object in a causation or possession
relation depends on the existence of some causer or possessor, respectively. I refer to this relation as
Conditioning relation and associate it with appropriate Proto-Role properties capturing the semantics of
a broad range of verbs for which none of the entailments specified so far seems to hold. These verbs
conform to the basic transitivity pattern that motivated Dowty’s Proto-Role hypothesis. Below are some
characteristic examples:

(21) [Condition This game] demands [C’onditioned great Sklll]
(22)  [condition Code 1425] bans [conditioned 1arge trucks in tunnels].

(23) [condition The adjective ‘beautiful’] denotes [conditioned @ quality which can be found in many
different objects].

(24)  [condition Diversity] characterises [conditioned the sociolinguistics domain].

A Conditioning relation encodes the asymmetries in such predicators in terms of the underlying
entailment that the properties of a participant « impose a condition on properties of a participant (.
In each of the sentences above we can conclude something about the object participant (e.g. that it is
necessary, illegal, or linguistically expressed) on the basis of the subject referent (i.e. the characteristics
of the game, the regulations specified by the code, the usage of the adjective ‘beautiful’). By contrast,
no property of the subject referent is necessarily conditioned on the object: the semantics of ban, for
example, does not allow us to characterise code 1425 as fair/unfair, severe/lax, complete/incomplete,
new/old, etc. on the basis of the object NP ‘large trucks in tunnels’; similarly, we cannot infer the precise
meaning of the word ‘beautiful’ or whether it is a verb or a noun or an adjective on the basis of the
content of the NP ‘a quality which can be found in many different objects’. A more precise definition
of the Conditioning relation could state that the intrinsic (i.e. invariable) properties of a participant o
determine or condition some non-intrinsic (i.e. variable or event-dependent) property of a participant /3
while the converse entailment does not go through. In (24), for example, the sociolinguistics domain
is associated with a property of being diverse whereas the intrinsic properties of the domain have no
significance for the definition of ‘diversity’ or what this notion may characterise.

4 Formulation of a General Syntax-Semantics Interface

A preliminary study has been carried out mapping state-of-the-art semantic role annotations to lexical
entailment representations. In particular, a portion of the FrameNet corpora has been annotated with
Proto-Role properties by a single annotator. The study focuses on a set of English verbs selected from
250 random FrameNet frames. For each verb in these frames, collections of example annotated sentences
as well as sentences from the FrameNet full-text annotation corpora (where available) were extracted.
More than 900 lexical units were considered in ~20K sentences. Proto-Role entailments were annotated
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on top of FrameNet’s syntactic annotations in accordance with the schema sketched out above. The
annotations were produced semi-automatically following a three-stage procedure: (i) mapping Frame
Elements (FEs) to entailments at a frame level (ii) automatically adding this information to the data
in a new annotation layer, (iii) manually correcting the novel annotations by examining the argument
structures of individual predicators for finer semantic distinctions.

From the newly annotated data mappings of entailments to grammatical categories were acquired.
The syntactic realisations of Proto-Role properties were found to readily generalise over combinatorial
features of verbs pertaining to various FrameNet frames. Valence information can be formally rendered
in entailment-based classes called Lexicalisation Types (L-Types) abstracting away from the semantics
of predicators. L-Types are defined on the basis of grammatically relevant meaning components and
encode linking generalisations cutting across FrameNet frames.

For instance, predicates such as believe and desire (evoking the frames Religious_Belief and Desir-
ing, respectively) involve arguments that are equivalent in terms of entailments, as illustrated in (25)-(26)
below. Hence they are categorised in the Notion L-Type shown in Table 2. Table 2 includes the corre-
spondences between combinations of entailments and FrameNet Frame Elements.

Notion L-Type Religious_belief | Desiring

Conceiver Believer Experiencer

Conceived, (Entity) Element Focal_participant
Conceived_bsoa, Property | Role Role_of _focal_participant

Table 2: Mappings between Notion L-Type and FrameNet frames

(25) If [Concez'ver he] believes [Conceived,Entity in Jesus] [Conceived,bsoa,Property as his Saviour], he
can be baptised.

(26) [Conceiver He] wanted [Conceived,Entity Smlth] [Conceived,bsozz,Property as the new PrOducer]-

In a similar fashion, operate, research, and ratify can be grouped together in a L-Type based on the
underlying property of Intentionality. Examples (27)-(28) show that these verbs share common valence
patterns despite the differences in the definition of the frames they evoke (Using, Research and Rati-
fication): Role and Purpose are core Frame Elements in the Using frame, while Purpose is peripheral
in Research and Ratification. Research and Ratification have no Role FE (but this kind of argument is
clearly present in the constructions exemplified in (28b-c).

Intentionality L-Type Using Research Ratification
Conceiver, Intentional Agent Researcher | Ratifier
Conceived, (Entity) Instrument | Question Proposal
Conceived_bsoa, Property | Role

Conceived_bsoa, Intention | Purpose Purpose Purpose

Table 3: Mappings between Intentionality L-Type and FrameNet frames

(27) a. [Conceiver,[ntentional We] operate [Conceived a menu] [Conceived,bsoa,[ntention to get the best
out of rations].

b. [Conceiver,[ntentional WC] research [Conceived this fungus] [Conceived,bsoa,Intention to ﬁght
aliments in tobacco and tomato fields].

C. [Conceiver,lntentional The}’] had to I"Cll’lfy [Conceived the amendments] [Conceived,bsoa,Intention
to be readmitted to the Union].

(28)

o

There has been a long debate as to whether [conceived, Entity the Severn Mill] was operated
[Conceived,bsoa,Property as a tide mill].

b. [Conceived, Entity Thin films] are being researched [ conceived_bsoa, Property as a potential medium
for integrated optical circuits].
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C. [Conceived,Entity Such agreements] may be ratiﬁed [Conceived,bsoa,Property as being in the
public interest].

In the same Intentionality L-Type we also categorise verbs such as carry out and visit evoking the
frames Intentionally_act and Visiting. It is important to note that despite the argument structure sim-
ilarities of these predicators, it is not possible to establish an identity link between the Act FE of the
Intentionally_act frame and the Entity FE of Visiting in terms of the frame hierarchy, because the FEs
are associated with different Semantic Types in the corresponding frame definitions, i.e. Act is of type
State_of _affairs whereas Entity is of type Physical_object. The examples (29)-(30) illustrate the common
use of these verbs in the transitive construction. The (a) sentences show the FE annotation while the (b)
sentences show the annotated entailments.

(29) a. [Aagent They] had carried out [ 4¢; 113 uranium conversion experiments].

b. [Conceiver,Intentional They] had carried out [conceivea 113 uranium conversion experiments].

(30) a. [Agent You] have to visit [ gptity your parents] every once in a while.

b. [Conceiver,Intentional YOU] have to visit [conceived YOUT parents] every once in a while.

Predicates grouped together in L-Types have some but not necessarily all their grammatical prop-
erties in common. This is in accordance with the fact that L-Types are essentially semantically-driven
modelling recurring, abstract features in the semantics of predicators while disregarding ephemeral prop-
erties as well as lexical idiosyncrasies.!! In addition to the set of entailments discussed in the previous
section, L-Types may also incorporate more fine-grained properties that are clearly relevant to linking.
For instance, verbs lexicalising a Desiring situation were found with prepositional complements intro-
duced by for, after, to, towards, of, or over (e.g. long for, hanker after, aspire to, pine over, etc.), but
not on, upon, at, or about (like other Notion verbs, such as ponder, muse, think, etc.). Inasmuch as a
Desiring relation is identified as a recurring concept systematically associated with a particular gram-
matical relation (e.g. a for-PP), it can be represented in a separate L-Type inheriting from the Notion
L-Type presented previously.'? An initial classification like the one exemplified above captures general
conditions which determine possible associations between the semantics of predicators and grammati-
cal relations realising their arguments (e.g. the fact that a conceived entity can only surface in subject
position in a passive sentence). It can be extended and refined on the basis of more specific semantic re-
lations. Moreover, L-Types can be organised in hierarchical structures. They can form the upper portion
of a principled hierarchy of classes encoding successively broader levels of generalisations concerning
argument linking.

This study indicated that a small number of Lexicalisation Types abstracts over a wide range of
FrameNet frames.!> More precisely, in the annotated dataset 48 L-Types were identified based on various
combinations of entailments: 9 Notion Types, 7 Intentionality Types, 10 Causation Types, 7 Commu-
nication (Caused_Notion) Types, 7 Motion (including Caused_Motion) Types, 7 Possession (including
Caused_Possession) Types, and 1 Conditioning Type. These Types readily abstract over associations of
semantic properties and grammatical functions attested in over 200 FrameNet frames.'# In the FrameNet
paradigm, L-Types can be modelled as non-lexicalised frames specifying syntactic mapping constraints.

UL-Types crucially differ from verb classes in VerbNet, which are based on a rigorous commitment to syntax. This commit-
ment yields fine-grained distinctions that very often split semantically coherent classes. In fact, L-Types abstract over VerbNet
classes encoding broader levels of linking generalisations.

12 For-PPs are indeed associated with a desiderative sense with a wide range of verbs in various argument positions: ‘He
desperately hunted for a new job’. ‘They searched the ground for traces’. ‘John ran for cover when it started to rain’.

BNote that inasmuch as L-Types abstract over both VerbNet classes and FrameNet frames, they can also be useful for
combining the two resources.

14 About 30 frames contained predicates for which none of our entailments seemed to hold. Most of these verbs (e.g. re-
semble, adjoin, concern, fit, suit, etc.) involve what Dowty (1991) called perspective-dependent semantic roles traditionally
described with labels such as Figure and Ground. The lexicalisation patterns of these verbs have been shown to depend on prag-
matic or discourse factors rather than intrinsic semantic properties. Such predicates display great variability in their argument
realisation options and are outside the scope of this study.
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Mappings between FrameNet frames and L-Types can be stated by means of a separate relation in ad-
dition to the frame relations currently specified by FrameNet. A relation generalising the combinatorial
properties of lexical items across frames would simplify the picture of the frame hierarchy, in that it
would essentially decouple purely lexical semantic information (encoded by existing frame-to-frame re-
lations) from information pertaining exactly to the interface of syntax and semantics. In future work, our
intention is to test whether the proposed semantic role schema and the attested L-Types can be useful for
dealing with the sparse data problem and increasing the performance of semantic role labelling systems.
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Abstract

Coecke, Sadrzadeh, and Clark [3] developed a compositional model of meaning for distributional
semantics, in which each word in a sentence has a meaning vector and the distributional meaning of the
sentence is a function of the tensor products of the word vectors. Abstractly speaking, this function is the
morphism corresponding to the grammatical structure of the sentence in the category of finite dimensional
vector spaces. In this paper, we provide a concrete method for implementing this linear meaning map,
by constructing a corpus-based vector space for the type of sentence. Our construction method is based
on structured vector spaces whereby meaning vectors of all sentences, regardless of their grammatical
structure, live in the same vector space. Our proposed sentence space is the tensor product of two noun
spaces, in which the basis vectors are pairs of words each augmented with a grammatical role. This
enables us to compare meanings of sentences by simply taking the inner product of their vectors.

1 Background

Coecke, Sadrzadeh, and Clark [3] develop a mathematical framework for a compositional distributional
model of meaning, based on the intuition that syntactic analysis guides the semantic vector composition.
The setting consists of two parts: a formalism for a type-logical syntax and a formalism for vector space
semantics. Each word is assigned a grammatical type and a meaning vector in the space corresponding to
its type. The meaning of a sentence is obtained by applying the function corresponding to the grammatical
structure of the sentence to the tensor product of the meanings of the words in the sentence. Based on the
type-logic used, some words will have atomic types and some compound function types. The compound
types live in a tensor space where the vectors are weighted sums (i.e. superpositions) of the pairs of bases
from each space. Compound types are “applied” to their arguments by taking inner products, in a similar
manner to how predicates are applied to their arguments in Montague semantics.

For the type-logic we use Lambek’s Pregroup grammars [7]. The use of pregoups is not essential, but
leads to a more elegant formalism, given its proximity to the categorical structure of vector spaces (see [3]).
A Pregroup is a partially ordered monoid where each element has a right and left cancelling element, referred
to as an adjoint. It can be seen as the algebraic counterpart of the cancellation calculus of Harris [6]. The
operational difference between a Pregroup and Lambek’s Syntactic Calculus is that, in the latter, the monoid
multiplication of the algebra (used to model juxtaposition of the types of the words) has a right and a left
adjoint, whereas in the pregroup it is the elements themselves which have adjoints. The adjoint types are
used to denote functions, e.g. that of a transitive verb with a subject and object as input and a sentence as
output. In the Pregroup setting, these function types are still denoted by adjoints, but this time the adjoints
of the elements themselves.

As an example, consider the sentence “dogs chase cats”. We assign the type n (for noun phrase) to “dog”
and “cat”, and n"sn! to “chase”, where n" and n' are the right and left adjoints of n and s is the type of a
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(declarative) sentence. The type n” sn! expresses the fact that the verb is a predicate that takes two arguments
of type n as input, on its right and left, and outputs the type s of a sentence. The parsing of the sentence is
the following reduction:
n(n"snn < 1s1 = s

This parse is based on the cancellation of n and n", and also nt and n; i.e. nn” < 1 and n'n < 1 for 1
the unit of juxtaposition. The reduction expresses the fact that the juxtapositions of the types of the words
reduce to the type of a sentence.

On the semantic side, we assign the vector space N to the type n, and the tensor space N ® S ® N to the
type n”sn'. Very briefly, and in order to introduce some notation, recall that the tensor space A ® B has as a
basis the cartesian product of a basis of A with a basis of B. Recall also that any vector can be expressed as

a weighted sum of basis vectors; e.g. if (17)1, ey ﬁ) is a basis of A then any vector d € A can be written as

@ =Y, C;v] where each C; € R is a weighting factor. Now for (1, . .., 7,) a basis of A and (71, e ,17n)
a basis of B, a vector ¢ in the tensor space A ® B can be expressed as follows:

Z Cij (0] ® 17;)
ij

ﬁ

where the tensor of basis vectors v, @ v stands for their pair (Uf, 17]) In general ¢ is not separable into
the tensor of two vectors, except for the case when @ is not entangled. For non-entangled vectors we can

write @ = @ ® T for @ = >, Civf and T = >_; Cjv;;: hence the weighting factor of ¢ can be obtained
by simply multiplying the weights of its tensored counterparts, i.e. C;; = C; X CJ’-. In the entangled case
these weights cannot be determined as such and range over all the possibilities. We take advantage of this
fact to encode meanings of verbs, and in general all words that have compound types and are interpreted as
predicates, relations, or functions. For a brief discussion see the last paragrigh of this section. Finally, we
use the Dirac notation to denote the dot or inner product of two vectors @ | b) € Rdefinedby ), C; x C.
Returning to our example, for the meanings of nouns we have dogs, caté € N, and for the meanings of

verbs we have chase € N ® S ® IV, i.e. the following superposition:

> Cir (0 @ 5 @ )

ijk
Here 72} and nj, are basis vectors of N and s_; is a basis vector of S. From the categorical translation method

presented in [3] and the grammatical reduction n(n"sn')n < s, we obtain the following linear map as the
categorical morphism corresponding to the reduction:

N®L,@en: NO(N®SRN)®N — S

Using this map, the meaning of the sentence is computed as follows:

_— —  ——
dogschasecats = (ex® 1s®en) (dogs ® chase ® ca_t§>

—
= (n®L®ey) |dogse | Y Cpu(@ @5 omt) | @ cats

ijk
— —
= ) Cijpldogs | m))5; (il | catd)

ijk

The key features of this operation are, first, that the inner-products reduce dimensionality by ‘consuming’
tensored vectors and by virtue of the following component function:

— —

eN:NON—-sR:d®b—(d|b

)
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Thus the tensored word vectors c@g ® ch—ase> ® cats are mapped into a sentence space .S which is common
to all sentences regardless of their grammatical structure or complexity. Second, note that the tensor product
c@ ® ch—ase> ® cats does not need to be calculated, since all that is required for computation of the sentence
vector are the noun vectors and the C;j;, weights for the verb. Note also that the inner product operations
are simply picking out basis vectors in the noun space, an operation that can be performed in constant
time. Hence this formalism avoids two problems faced by approaches in the vein of [9, 2], which use
the tensor product as a composition operation: first, that the sentence meaning space is high dimensional
and grammatically different sentences have representations with different dimensionalities, preventing them
from being compared directly using inner products; and second, that the space complexity of the tensored
representation grows exponentially with the length and grammatical complexity of the sentence. In constrast,
the model we propose does not require the tensored vectors being combined to be represented explicitly.

Note that we have taken the vector of the transitive verb, e.g. chase, to be an entangled vector in the
tensor space N ® S ® IN. But why can this not be a separable vector, in which case the meaning of the verb
would be as follows:

—
chase = Z cinl  ® Z C]’s_} ® Z g,
i j k

The meaning of the sentence would then become o102 3 C'J’s_]> foroy = Y, C; (cTo?s | 7j) and o9 =
>RCr <(E§ | n4). The problem is that this meaning only depends on the meaning of the verb and is
independent of the meanings of the subject and object, whereas the meaning from the entangled case,
ie. o102, ik Cijks_}, depends on the meanings of subject and object as well as the verb.

2 From Truth-Theoretic to Corpus-based Meaning

The model presented above is compositional and distributional, but still abstract. To make it concrete, N and
S have to be constructed by providing a method for determining the Cj;;, weightings. Coecke, Sadrzadeh,
and Clark [3] show how a truth-theoretic meaning can be derived in the compositional framework. For
example, assume that /V is spanned by all animals and S is the two-dimensional space spanned by trué and
false. We use the weighting factor to define a model-theoretic meaning for the verb as follows:

—
- trué  chase(n;,nj,) = true
Cijksj = { ==
false o.w.

The definition of our meaning map ensures that this value propagates to the meaning of the whole sentence.
So ch,ase(cﬁgs, ca,—tg’) becomes true whenever “dogs chase cats” is true and false otherwise. This is exactly
how meaning is computed in the model-theoretic view on semantics. One way to generalise this truth-
theoretic meaning is to assume that chase(n_g-, 7?;6) has degrees of truth, for instance by defining chase as a
combination of run and catch, such as:

2 1
chase = —run + —catch
3 3

Again, the meaning map ensures that these degrees propagate to the meaning of the whole sentence. For a
worked out example see [3]. But neither of these examples provide a distributional sentence meaning.

Here we take a first step towards a corpus-based distributional model, by attempting to recover a meaning
for a sentence based on the meanings of the words derived from a corpus. But crucially this meaning goes
beyond just composing the meanings of words using a vector operator, such as tensor product, summation
or multiplication [8]. Our computation of sentence meaning treats some vectors as functions and others as
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function arguments, according to how the words in the sentence are typed, and uses the syntactic structure
as a guide to determine how the functions are applied to their arguments. The intuition behind this approach
is that syntactic analysis guides semantic vector composition.

The contribution of this paper is to introduce some concrete constructions for a compositional distri-
butional model of meaning. These constructions demonstrate how the mathematical model of [3] can be
implemented in a concrete setting which introduces a richer, not necessarily truth-theoretic, notion of natural
language semantics which is closer to the ideas underlying standard distributional models of word meaning.
We leave full evaluation to future work, in order to determine whether the following method in conjunction
with word vectors built from large corpora leads to improved results on language processing tasks, such as
computing sentence similarity and paraphrase evaluation.

Nouns and Transitive Verbs. We take N to be a structured vector space, as in [4, 5]. The bases of N are
annotated by ‘properties’ obtained by combining dependency relations with nouns, verbs and adjectives. For
example, basis vectors might be associated with properties such as “arg-fluffy”, denoting the argument of
the adjective fluffy, “subj-chase” denoting the subject of the verb chase, “obj-buy” denoting the object of the
verb buy, and so on. We construct the vector for a noun by counting how many times in the corpus a word
has been the argument of “fluffy’, the subject of ‘chase’, the object of ‘buy’, and so on.

The framework in [3] offers no guidance as to what the sentence space should consist of. Here we take
the sentence space S to be N ® N, so its bases are of the form s_; = (E), 77%) The intuition is that, for a
transitive verb, the meaning of a sentence is determined by the meaning of the verb together with its subject
and object.! The verb vectors C’ijk(ﬁg, er)) are built by counting how many times a word that is n; (e.g. has
the property of being fluffy) has been subject of the verb and a word that is ny (e.g. has the property that it’s
bought) has been its object, where the counts are moderated by the extent to which the subject and object
exemplify each property (e.g. how fluffy the subject is). To give a rough paraphrase of the intuition behind
this approach, the meaning of “dog chases cat” is given by: the extent to which a dog is fluffy and a cat is
something that is bought (for the N ® N property pair “arg-fluffy” and “obj-buy”), and the extent to which
fluffy things chase things that are bought (accounting for the meaning of the verb for this particular property
pair); plus the extent to which a dog is something that runs and a cat is something that is cute (for the N @ N
pair “subj-run” and “arg-cute”), and the extent to which things that run chase things that are cute (accounting
for the meaning of the verb for this particular property pair); and so on for all noun property pairs.

Adjective Phrases. Adjectives are dealt with in a similar way. We give them the syntactic type nn! and
build their vectors in N ® N. The syntactic reduction nn!n — n associated with applying an adjective to a
noun gives us the map 1 ® e by which we semantically compose an adjective with a noun, as follows:

— - — —
red fox = (1xy ® en)(red ® fox) = Z Cijni () | fox)
ij
We can view the C;; counts as determining what sorts of properties the arguments of a particular adjective
typically have (e.g. arg-red, arg-colourful for the adjective “red”).

Prepositional Phrases. We assign the type n"n to the whole prepositional phrase (when it modifies a noun),
for example to “in the forest” in the sentence “dogs chase cats in the forest”. The pregroup parsing is as
follows:

n(n"sn)n(n"n) < lsn'ln < sn'n < s1=s

The vector space corresponding to the prepositional phrase will thus be the tensor space N ® N and the
categorification of the parse will be the composition of two morphisms: (15®eh;)o(eh @15 1Ny ®eh @1 N).

Intransitive and ditransitive verbs are interpreted in an analagous fashion; see §4.

128



The substitution specific to the prepositional phrase happens when computing the vector for “cats in the
forest” as follows:

—>
cats in the forest = (ey ® 1n) ((ﬁg ®in the forest)

—
= (y ®1y) (cats ® Z CroT] & 77>k>
lw
—
= Z Clu(cats | 1] )it
lw
Here we set the weights Cj,, in a similar manner to the cases of adjective phrases and verbs with the counts

determining what sorts of properties the noun modified by the prepositional phrase has, e.g. the number of
times something that has attribute n; has been in the forest.

Adverbs. We assign the type s” s to the adverb, for example to “quickly” in the sentence “Dogs chase cats
quickly”. The pregroup parsing is as follows:

n(n"sn )n(s"s) < 1sls"s = ss"s < 1s = s

Its categorification will be a composition of two morphisms (€ ® 1g) o (€h ® 1g ® €y ® 15 ® 1g). The
substitution specific to the adverb happens after computing the meaning of the sentence without it, i.e. that
of “Dogs chase cats”, and is as follows:

—  —— T
Dogs chase cats quickly = (€5 ® 1g) o (€y ® 1g @ €y @ 15 ® 1g) (Dogs ® chase ® cats ® quickly)

—
ats) ® quickly

2l

—
= (€5 @ Lg) [ Y Ciju(dogs | n})] (i |
ijk

— —
= (s @ 1g) [ Y Ciju(dogs | n})5] (if | cats) @ Y Cru's ® 54

ijk lw
— —
“Ya <z e o8t | R3] (7 ) | %> %
lw ijk

The Cj,, weights are defined in a similar manner to the above cases, i.e. according to the properties the
adverb has, e.g. which verbs it has modified. Note that now the basis vectors 5/ and 5, are themselves pairs
of basis vectors from the noun space, (ﬁ;, 775 ). Hence, Clw(ﬁ;, 775 ) can be set only for the case when [ = ¢
and w = j; these counts determine what sorts of properties the verbs that happen quickly have (or more
specifically what properties the subjects and objects of such verbs have). By taking the whole sentence into
account in the interpretation of the adverb, we are in a better position to semantically distinguish between
the meaning of adverbs such as “slowly” and “quickly”, for instance in terms of the properties that the verb’s
subjects have. For example, it is possible that elephants are more likely to be the subject of a verb which is
happening slowly, e.g. run slowly, and cheetahs are more likely to be the subject of a verb which is happening
quickly.

3 Concrete Computations

In this section we first describe how to obtain the relevant counts from a parsed corpus, and then give some
similarity calculations for some example sentence pairs.
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Let C; be the set of grammatical relations (GRs) for sentence s; in the corpus. Define verbs(C;) to be
the function which returns all instances of verbs in C;, and subj (and similarly 0bj) to be the function which
returns the subject of an instance V,g4nce Of a verb V, for a particular set of GRs for a sentence:

noun if Vigance 1S @ verb with subject noun

En o.w.

SUbj(V;nstance) = {
where ¢, is the empty string. We express Cj;;, for a verb V' as follows:

Ciip = {Zz 2 veverbs(Cy) 5(07V)<5Ubj(11; | ni><0bj(U; | ng) if sj = (ni,nk)
ijk —
0 o.w

where §(v,V) = 1 if v = V and 0 otherwise. Thus we construct Cjj;, for verb V' only for cases where
the subject property n; and the object property n; are paired in the basis s_} This is done by counting the
number of times the subject of V' has property n; and the object of V' has property ny, then multiplying them,
as prescribed by the inner products (which simply pick out the properties n; and nj from the noun vectors
for the subjects and objects).

The procedure for calculating the verb vectors, based on the formulation above, is as follows:

1. Foreach GR in a sentence, if the relation is subject and the head is a verb, then find the complementary
GR with object as a relation and the same head verb. If none, set the object to ,,.

2. Retrieve the noun vectors subject, object for the subject dependent and object dependent from previ-
ously constructed noun vectors.

3. For each (n;,ny) € basis(N) x basis(N) compute the inner-product of 72 with subject and nj, with
object (which involves simply picking out the relevant basis vectors from the noun vectors). Multiply
the inner-products and add this to Cjj;, for the verb, with j such that s_; = (ﬁz, 77;1)

The procedure for other grammatical types is similar, based on the definitions of C weights for the semantics

of these types.

We now give a number of example calculations. We first manually define the distributions for nouns,
which in practice would be obtained from a corpus:

bankers cats dogs stock Kkittens

1. arg-fluffy 0 7 3 0 2
2. arg-ferocious 4 1 6 0 0
3. obj-buys 0 4 2 7 0
4. arg-shrewd 6 3 1 0 1
5. arg-valuable 0 1 2 8 0

We aim to make these counts match our intuitions, in that bankers are shrewd and a little ferocious but not
furry, cats are furry but not typically valuable, and so on.

We also define the distributions for the transitive verbs ‘chase’, ‘pursue’ and ‘sell’, again manually
specified according to our intuitions about how these verbs are used. Since in the formalism proposed above,
Cijr, = 0if s_; #+ (ﬁi, 77;2 ), we can simplify the weight matrices for transitive verbs to two dimensional Cjy,
matrices as shown below, where Cjj, corresponds to the number of times the verb has a subject with attribute
n; and an object with attribute ny. For example, the matrix below encodes the fact that something ferocious
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(i = 2) chases something fluffy (k = 1) seven times in the hypothetical corpus from which we might have
obtained these distributions.

1 00 0O 0 00 0O 0 0 00O
7 1 2 3 1 4 2 2 2 4 0 0 3 0 4
che=10 000 0| CM"™=]00000| C"=]00000
2 01 0 1 302 0 1 0 0 5 0 8
1 0 00O 0 0 00O 0 01 0 1
These matrices can be used to perform sentence comparisons:
(dogs chase cats | dogs pursue kittens) =
=< S e (dogs | )3 (| cat) || | D0 O (dogs | )5 (7 | Kittens) >
ijk ijk
= > Colech (dogs | 7l)(dogs | 1) (i | caid) (. | Kitiens)

ijk

The raw number obtained from the above calculation is 14844. Normalising it by the product of the length
of both sentence vectors gives the cosine value of 0.979.

Consider now the sentence comparison (dogs chase cats | cats chase dogs). The sentences in this pair
contain the same words but the different word orders give the sentences very different meanings. The raw
number calculated from this inner product is 7341, and its normalised cosine measure is 0.656, which demon-
strates the sharp drop in similarity obtained from changing sentence structure. We expect some similarity
since there is some non-trivial overlap between the properties identifying cats and those identifying dogs
(namely those salient to the act of chasing).

Our final example for transitive sentences is (dogs chase cats | bankers sell stock), as two sentences that
diverge in meaning completely. The raw number for this inner product is 6024, and its cosine measure is
0.042, demonstrating the very low semantic similarity between these two sentences.

Next we consider some examples involving adjective-noun modification. The C;; counts for an adjective
A are obtained in a similar manner to transitive or intransitive verbs:

o {zl Sacatisicy o A)(arg-of(a) | T) it 7 =T
1) —
0

o.w.

where adjs(C;) returns all instances of adjectives in C;; §(a,A) = 1if a = A and 0 otherwise; and
arg-of(a) = noun if a is an adjective with argument noun, and ,, otherwise.

As before, we stipulate the C;; matrices by hand (and we eliminate all cases where ¢ # j since C;; = 0
by definition in such cases):

chMy=[93422 M =[03191] C™*=[30818]
We compute vectors for “fluffy dog” and “shrewd banker” as follows:
fluffy dog = (3 9) arg-fluffy + (6 - 3) arg-ferocious + (2 - 4) obj-buys + (5 - 2) arg-shrewd + (2 - 2) arg-valuablé
shrewd banker = (0 - 0) arg-fluffy + (4 - 3) arg-ferocious + (0 - 0) obj-buy$ + (6 - 9) arg-shrewd -+ (0 - 1) arg-valuable

Vectors for fluffy cat and valuable stock are computed similarly. We obtain the following similarity mea-
sures:

cosine(fluffy dog, shrewd banker) = 0.389 cosine(fluffy cat, valuable stock) = 0.184
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These calculations carry over to sentences which contain the adjective-noun pairings compositionally and
we obtain an even lower similarity measure between sentences:

cosine(fluffy dogs chase fluffy cats, shrewd bankers sell valuable stock) = 0.016

To summarise, our example vectors provide us with the following similarity measures:

Sentence 1 ‘ Sentence 2 ‘ Degree of similarity
dogs chase cats dogs pursue kittens 0.979
dogs chase cats cats chase dogs 0.656
dogs chase cats bankers sell stock 0.042
fluffy dogs chase fluffy cats | shrewd bankers sell valuable stock 0.016

4 Different Grammatical Structures

So far we have only presented the treatment of sentences with transitive verbs. For sentences with intransitive
verbs, the sentence space suffices to be just N. To compare the meaning of a transitive sentence with an
intransitive one, we embed the meaning of the latter from N into the former N ® N, by taking Z, (the
‘object’ of an intransitive verb) to be >, n;, i.e. the superposition of all basis vectors of N.

Followmg the method for the transitive verb, we calculate C; ;. for an instransitive verb V' and basis pair

s_]> = (nz, n_ff) as follows, where [ ranges over the sentences in the corpus:

> 5(v,V><subj<v§|Wi><obj(v3|v?k>=2 > 5(v, V) {subj(v) | m}) (2 | k)

I veverbs(C) I wveverbs(Cy)

and (g, | m}) = 1 for any basis vector n;.

We can now compare the meanings of transitive and intransitive sentences by taking the inner product of
their meanings (despite the different arities of the verbs) and then normalising it by vector length to obtain
the cosine measure. For example:

dogs chase cats | dogs chase) Ciix d0 S nl nk cats do S n_Z B
< g g J g ] zjk g J

ijk ijk
—
= chk Lk dogs | nz>(dogs | 77) (| cats)
ijk

The raw number for the inner product is 14092 and its normalised cosine measure is 0.961, indicating high
similarity (but some difference) between a sentence with a transitive verb and one where the subject remains
the same, but the verb is used intransitively.

Comparing sentences containing nouns modified by adjectives to sentences with unmodified nouns is straight-
forward:

(fluffy dogs chase fluffy cats | dogs chase cats) =

u u —
Z OB O oghase oehase (og | )2 () | cat$)? = 2437005
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From the above we obtain the following similarity measure:

cosine(fluffy dogs chase fluffy cats, dogs chase cats) = 0.971

For sentences with ditransitive verbs, the sentence space changes to N ® N ® N, on the basis of the verb
needing two objects; hence its grammatical type changes to n”sn‘n!. The transitive and intransitive verbs
are embedded in this larger space in a similar manner to that described above; hence comparison of their
meanings becomes possible.

S Ambiguous Words

The two different meanings of a word can be distinguished by the different properties that they have. These
properties are reflected in the corpus, by the different contexts in which the words appear. Consider the
following example from [4]: the verb “catch” has two different meanings, “grab” and “contract”. They are
reflected in the two sentences “catch a ball” and “catch a disease”. The compositional feature of our meaning
computation enables us to realise the different properties of the context words via the grammatical roles they
take in the corpus. For instance, the word ‘ball’ occurs as argument of ‘round’, and so has a high weight
for the base ‘arg-round’, whereas the word ‘disease’ has a high weight for the base ‘arg-contagious’ and as
‘mod-of-heart’. We extend our example corpus from previously to reflect these differences as follows:

ball disease

1. arg-fluffy 1 0
2. arg-ferocious 0 0
3. obj-buys 5 0
4. arg-shrewd 0 0
5. arg-valuable 1 0
6. arg-round 8 0
7. arg-contagious | 0 7
8. mod-of-heart 0 6

In a similar way, we build a matrix for the verb ‘catch’ as follows:

Ccatch _

S OO = W WWw
S OO =MD WwWWw
S OO~ NN B~

S OO = = B~
S OO OO~ O W
S OO OO = =W
S OO N WA B~
S OO O AN

The last three rows are zero because we have assumed that the words that can take these roles are mostly
objects and hence cannot catch anything. Given these values, we compute the similarity measure between
the two sentences “dogs catch a ball” and “dogs catch a disease” as follows:

(dogs catch a ball | dogs catch a disease) = 0

In an idealised case like this where there is very little (or no) overlap between the properties of the objects
associated with one sense of “catch” (e.g. a disease), and those properties of the objects associated with an-
other sense (e.g. a ball), disambiguation is perfect in that there is no similarity between the resulting phrases.
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In practice, in richer vector spaces, we would expect even diseases and balls to share some properties. How-
ever, as long as those shared properties are not those typically held by the object of catch, and as long as the
usages of catch play to distinctive properties of diseases and balls, disambiguation will occur by the same
mechanism as the idealised case above, and we can expect low similarity measures between such sentences.

6 Related Work

Mitchell and Lapata introduce and evaluate a multiplicative model for vector composition [8]. The particular
concrete construction of this paper differs from that of [8] in that our framework subsumes truth-theoretic
as well as corpus-based meaning, and our meaning construction relies on and is guided by the grammatical
structure of the sentence. The approach of [4] is more in the spirit of ours, in that extra information about
syntax is used to compose meaning. Similar to us, they use a structured vector space to integrate lexical
information with selectional preferences. Finally, Baroni and Zamparelli model adjective-noun combinations
by treating an adjective as a function from noun space to noun space, represented using a matrix, as we do
in this paper [1].
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Abstract

This article introduces and evaluates an approach to semantic compositionality in computational lin-
guistics based on the combination of Distributional Semantics and supervised Machine Learning. In
brief, distributional semantic spaces containing representations for complex constructions such as
Adjective-Noun and Verb-Noun pairs, as well as for their constituent parts, are built. These repre-
sentations are then used as feature vectors in a supervised learning model using multivariate multiple
regression. In particular, the distributional semantic representations of the constituents are used to
predict those of the complex structures. This approach outperforms the rivals in a series of experi-
ments with Adjective-Noun pairs extracted from the BNC. In a second experimental setting based on
Verb-Noun pairs, a comparatively much lower performance was obtained by all the models; however,
the proposed approach gives the best results in combination with a Random Indexing semantic space.

1 Introduction

Probably the most important missing ingredient from the current NLP state-of-the-art is the ability to
compute the meaning of complex structures, i.e. semantically compositional structures. In this pa-
per, I propose a methodological approach and a series of experiments designed to teach computers the
ability to compute the compositionality of (relatively simple) complex linguistic structures. This work
uses a combination of Distributional Semantics and Machine Learning techniques. The starting data in
the experiments reported below are multidimensional vectorial semantic representations extracted from
electronic corpora. This work extends the basic methodology presented in Guevara (2010) with new data
collection techniques, improved evaluation metrics and new case studies.

Compositionality is probably one of the defining properties of human language and, perhaps, a nearly
uncontroversial notion among linguists. One of the best-known formulations of compositionality is:

(1) The Principle of Compositionality:
The meaning of a complex expression is a function of the meaning of its parts and of the syntactic
rules by which they are combined. (Partee, ter Meulen and Wall, 1990: 318)

The Principle of Compositionality is a standard notion in many different fields of research, notably in
logic, in philosophy of language, in linguistics and in computer science; this intrinsic multi-disciplinarity
makes tracing back its recent history somewhat difficult.

The recent years have witnessed an ever-increasing interest in techniques that enable computers to
automatically extract semantic information from linguistic corpora. In this paper I will refer to this
new field in general as Distributional Semantics. Distributional Semantics, in short, extracts spatial
representations of meaning from electronic corpora by using distributional (i.e. statistical) patterns of
word usage. The main hypothesis in Distributional Semantics is the so-called distributional hypothesis of
meaning, expressing the fact that “words that occur in the same contexts tend to have similar meanings”
(Pantel, 2005). The distributional hypothesis of meaning is ascribed to Zellig Harris, who proposed a
general distributional methodology for linguistics.

Since representations in Distributional Semantics are spatial in nature (e.g. vectors representing
points in a multidimensional space), differences in meaning are captured through differences in location:
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in the multidimensional space, two semantically (i.e. distributionally) similar words are closer than two
words that are dissimilar. See Sahlgren (2006) and Turney and Pantel (2010) for detailed overviews of
the methodology and applications of Distributional Semantics.

2 Compositionality in distributional semantics: state-of-the-art

I stressed above that computers are still not able to deal with the compositionality of meaning. However
basically true, this statement should be qualified somewhat. Previous work in the field has produced a
small number of operations to approximate the composition of vectorial representations of word mean-
ing. In particular, given two independent vectors v1 and v2, the semantically compositional result v3 is
modelled by one of the following four basic operations: vector addition, vector pointwise-multiplication,
tensor product or linear regression.

In the literature on Information Retrieval, vector addition is the standard approach to model the
composed meaning of a group of words (or a document) as the sum of their vectors (see, among many
others, Widdows, 2004: ch. 5). More schematically:

(2) Vector addition: vl; +v2; = v3;
Given two independent vectors v1 and v2, the compositional meaning of v3 consists of the sum
of the corresponding components of the original vectors.

Mitchell and Lapata (2008) introduce a whole family of models of compositionality based on vector
addition and pointwise-multiplication (and a weighted combination of both), evaluated on a sentence
similarity task inspired by Kintsch (2001). While the additive model captures the compositionality of
meaning by considering all available components, multiplicative models only operate on a subset of
them, i.e. non-zero components. They claim that when we pointwise-multiply the vectors representing
two words, we obtain an output that captures their composition; actually, this operation is keeping in
the output only the components which had corresponding non-zero values: whether this operation has
any relation with semantics is still unclear. However, in their experiments, Mitchell and Lapata prove
that the pointwise-multiplicative model and the weighted combination of the additive and the multiplica-
tive models perform equally well. Of these, only the simple multiplicative model will be tested in the
experiments I present in the following section.

(3) Vector pointwise multiplication: vl; X v2; = v3;
Each corresponding pair of components of v1 and v2 is multiplied to obtain the corresponding
component of v3.

Widdows (2008) proposes to apply a number of more complex vector operations imported from
quantum mechanics to model composition in semantic spaces, in particular tensor product and the related
operation of convolution product. Widdows (2008) obtains results indicating that both the tensor product
and the convolution product perform better than the simple additive model in two small experiments
(relation extraction and phrasal composition). Giesbrecht (2009) presents a more complex task, singling
out non-compositional multiword expressions. Her results clearly show that tensor product outperforms
vector addition, multiplication and convolution.

(4) Tensor product: v1Qv2 = v3
where v3 is a matrix whose ij-th entry is equal to v1; x v2;

However, since the tensor product (also called outer product) of two vectors produces a result with higher
dimensionality (a matrix), it cannot be directly compared against the other methods, which instead gener-
ate compositional representations in the same original space. In the experiments reported in the following
section, we will use the circular convolution composition method (Plate, 1991): in brief, circular convo-
Iution is a mathematical operation that effectively compresses the tensor product of two vectors onto the
original space, thus allowing us to compare its outcome with that of the other methods here reviewed.
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(5) Circular convolution: v1®v2 = v3
n—1

where v3 = Z j=0 vljv2;_;

It is interesting to note that a great deal of attention has recently been devoted to the tensor product
as the basic operation for modelling compositionality, even at the sentential level (e.g. Grefenstette et
al. 2010), through a combination of mathematical operations and symbolic models of logic (inspired by
Clark and Pulman, 2007). Although extremely motivating and thought provoking, these proposals have
not been tested on empirical grounds yet.

A common thread ties all the approaches briefly outlined above: all information that is present in
the systems is conveyed by the vectors v1 and v2, e.g. the independent word representations, while
completely disregarding v3 (the composed vector). Furthermore, all of these approaches are based on
the application of a single geometric operation on the independent vectors v1 and v2. It seems highly
unlikely that just one geometric operation could reliably represent all the semantic transformations in-
troduced by all syntactic relations in every language.

Guevara (2010) and Baroni and Zamparelli (2010) introduce a different approach to model semantic
compositionality in distributional spaces by extracting context vectors from the corpus also for the com-
posed vector v3. For example, Guevara collects vector representations for nice and house, but also for the
observed pair nice_house. With these data, a model of Adjective-Noun (AN) compositionality is built by
using a supervised machine learning approach: multivariate multiple linear regression analysis by partial
least squares. This method is able to learn the transformation function that best approximates v3 on the
basis of both v1 and v2. Baroni and Zamparelli (2010) use a slightly different methodology: assuming
that each adjective is a linear transformation function (i.e. the function to be learnt by the algorithm),
they model AN compositionality by approximating v3 only on the basis of v2 (the noun) but running a
different regression analysis for each adjective in their data.

The approach proposed by Guevara (2010) is really only an extension of the full additive model of
Mitchell and Lapata (2008), the only difference being that adopting a supervised learning methodology
ensures that the weight parameters in the function are estimated optimally by linear regression. In the
following section, I present a new series of experiments that refine, extend and improve this approach to
model the compositionality of adjacent AN and VN pairs by linear regression.

(6) Compositionality by regression: Avl + Bv2 = v3
where A and B are weight matrices estimated by the supervised learning algorithm using multi-
variate multiple linear regression.

3 Compositionality by regression

Let us reconsider the highly underspecified definition of the Principle of Compositionality. Let us start by
setting the syntactic relation that we want to focus on for the purposes of this study: following Guevara
(2010) and Baroni and Zamparelli (2010), I model the semantic composition of adjacent Adjective-Noun
pairs expressing attributive modification of a nominal head. In a second analogous experiment, I also
model the syntactic relation between adjacent Verb-Noun expressing object selection by the verbal head.

The complex expression and its parts are, respectively, adjacent Adjective-Noun and Verb-Noun!
pairs and their corresponding constituents (respectively, adjectives and nouns, verbs and nouns) extracted
from the British National Corpus. Furthermore, the meaning of both complex expressions and their
constituents is assumed to be the multidimensional context vectors obtained by building semantic spaces.

What remains to be done, therefore, is to model the function combining meanings of the constituent
parts to yield the meaning of the resulting complex expression. This is precisely the main assumption
made in this article. Since we are dealing with multidimensional vector representations of meaning,
we suggest that compositionality can be interpreted as a linear transformation function mapping two

'Actually, the extracted Verb-Noun pairs are not always strictly adjacent, an optional determiner was allowed to occur
between verb and noun. Thus, phrases such as "raise money" and "visit a client" were both included.
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independent vectors in a multidimensional space into a composed vector in the same space. Moreover,
considering that each component in the independent vectors v1 and v2 is a candidate predictor, and that
each component in the composed vector v3 is a dependent variable, it is proposed to formulate composi-
tionality of meaning in Distributional Semantics as a problem of multivariate multiple regression. Such
a formulation allows us to model compositionality by applying well-known standard machine learning
techniques such as the Multilayer Perceptron or Support Vector Machines.

However, since word sequences in corpora tend to have low frequency distributions (usually lower
than the frequency of their constituents) and very sparse vectorial representations, it is very difficult to
build datasets where the number of observations (the size of the dataset) is greater than the number of
variables considered (the dimensions of the vector in the dataset). This issue is known as the curse
of dimensionality, and specific mathematical techniques have been developed to deal with it. In our
experiments, we use one such regression technique, Partial Least Squares.

3.1 Partial least squares regression

Partial Least Squares Regression (PLS) is a multivariate regression technique that has been designed
specifically to treat cases where the curse of dimensionality is a serious issue. PLS has been successfully
applied in a wide range of different scientific fields such as spectroscopy, chemistry, brain imaging and
marketing (Mevik and Wehrens, 2007).

PLS predicts the output matrix Y from information found in both the input matrix X and in Y. It
does so by looking for a set of latent variables in the data that perform a simultaneous decomposition of
both matrices while trying to explain as much as possible of the covariance between X and Y. Next, PLS
carries out regression using the decomposition of X to predict Y. Thus, PLS performs the prediction by
extracting the latent variables with the best predictive power. PLS is a robust regression technique that
is particularly efficient in situations with a high number of predictors and few observations (Abdi, 2007,
Hastie et al., 2009). Standard linear regression will fail in such cases.

3.2 Experimental setup
3.2.1 Corpus and construction of the dataset

Using a lemmatised and POS tagged version of the BNC, a list of adjacent AN pair candidates was
extracted with simple regex-based queries targeting sequences composed of [Det/Art—A-N] (i.e. pairs
expressing attributive modification of a nominal head like ‘that little house’). In order to ensure the
computational attainability of the successive steps, the candidate list was filtered by frequency (> 400)
obtaining 1,367 different AN pairs.

A new version of the BNC was then prepared to represent the selected AN lemma pairs as a single to-
ken; for example, while in the original BNC the phrase [nice houses] consists in two separate POS-tagged
lemmas, nice_AJ and house_NN, in the processed corpus it appears as a single entry nice_AJ_house_NN).
The corpus was also processed by stop-word removal (very high frequency items, mainly functional mor-
phemes). The re-tokenization process of the BNC enables us to extract independent context vectors for
each AN pair in our list (v3) and their corresponding constituents (A and N, respectively v1 and v2),
while ensuring that the extracted vectors do not contain overlapping information.

The same preprocessing steps were carried out to extract VN pair candidates. Sequences composed of
[V-(Det/Art)-N] with an optional determiner were targeted and filtered by frequency (> 400), resulting
in a first list of 545 VN pairs. This list contained a large amount of noise due to lemmatisation and
POS-tagging problems (e.g. housing association), and it also contained many very frequent lexicalized
items (e.g. thank goodness). The list was manually cleaned, resulting in 193 different VN pairs.

3.2.2 Building semantic spaces and composition models

For each syntactic relation (AN and VN), two different semantic spaces were built with the S-Space
package (Jurgen and Stevens, 2010): a Hyperspace Analogue to Language space (HAL, Burgess and
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Lund, 1997) and a Random Indexing space (RI, Sahlgren, 2006). The spaces were built using the same
vocabulary, the 23,222 elements in the corpus with a frequency > 100 (comprising both individual
lemmas and all the selected AN pairs) and the same contextual window of 5 words to the left and to the
right of the target (either a word or a AN/VN pair).

HAL is a co-occurrence based semantic space that corresponds very closely to the well-known term-
by-term matrix collection method. However, given the size of our vocabulary, the resulting matrix is
extremely large (23,222 x 23,222). HAL reduces the dimensionality of the space by computing the
variances of the row and column vectors for each word, and discarding the elements with lowest variance.
The dimensionality of this space was reduced to the 500 most informative dimensions, thus ending with
a size of 23,222 x 500. The vectors in this space were normalised before the successive steps.

RI avoids the problem of dimensionality of semantic spaces by applying a different strategy to collect
the context vectors. Each word in the corpus is assigned an initial unique and randomly generated index
vector of a fixed size. As the algorithm scans the corpus one token at a time, the vector of the target
word is incrementally updated by combining it with the index vector of the context. In order to keep
the comparability of the built spaces, the RI space was built with 500-dimensional index vectors, thus
obtaining a space of 23,222 x 500 dimensions. The vectors in this space were also normalised.

With the AN/VN pair vectors and their corresponding constituents (respectively v3, v1 and v2), four
different models of compositionality were built from each semantic space (HAL and RI) in each of the
considered syntactic relations:

e an additive model (ADD) vl; +v2; = v3;

e a simple multiplicative model (MUL) vl; X v2; = v3;
e a circular convolution model (CON) vl ® v2 =v3

e a partial least squares regression model (PLS) Avl + Bv2 = v3

In addition, two baseline models were introduced in the evaluation process. The baseline models were
built by simply extracting the context vectors for the constituents in each pair from each space (A and N,
V and N, respectively v1 and v2).

Of all the considered models, only PLS requires a stage of parameter estimation, i.e. training. In
order to accomplish this, the data were randomly divided into a training set (1,000 AN pairs — 73%) and
a test set (the remaining 367 AN pairs — 27%). In the much smaller VN dataset, the training set was built
with 133 pairs (69%) and the test set with 60 pairs (31%). These parameters for the regression models
were estimated by performing a 10-fold cross-validation in the training phase. All the models were built
and evaluated using the R statistical computing environment and simple Python scripts. In particular,
the regression analysis was carried out with the pls package (Mevik and Wehrens, 2007). After various
preliminary trials, the PLS model’s predictions were computed by using the first 50 latent variables.

3.3 Evaluation

The evaluation of models of compositionality is still a very uncertain and problematic issue. Previous
work has relied mainly on “external” tasks such as rating sentence similarity or detection idioms. These
evaluation strategies are “external” in the sense that each compared model produces a set of predictions
which are then used in order to reproduce human annotation of datasets that do not have a representation
in the semantic space under consideration. For example, Mitchell and Lapata (2008) use their models to
approximate the human ratings in their sentence similarity dataset. Giesbrecht (2009) also uses human
annotated data (manually classified collocations, compositional and non-compositional) in her evaluation
task. However, any evaluation task requiring hand-annotated datasets will have a considerable cost in
resource building. At present time, there are no suitable datasets in the public domain.

I propose instead to take a radically different point of view, developing “internal” evaluation tasks
that try to measure how well the proposed models approximate the distributional patterns of corpus-
extracted composed vectors. That is to say, I want to compare the predicted output of every model (i.e. a
predicted context vector for v3) with the real observation of v3 that was collected from the corpus. The
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following subsections present a few experimental evaluation methods based on neighbour analysis and
on the Euclidean measure of distance.

The evaluation strategies here presented rests on the sensible assumption that if a model of AN
compositionality is reliable, its predicted output for any AN pair, e.g. weird_banana, should be in prin-
ciple usable as a substitute for the corresponding corpus-attested AN vector. Moreover, if such a model
performs acceptably, it could even be used predict the compositionality of unattested candidates like
shadowy_banana: this kind of operations is the key to attaining human-like semantic performance.

3.3.1 Correlation analysis between modelled predictions and observations

Let us start the comparative evaluation of the modelled predictions by considering the results of a series
of Mantel correlation tests. First, distance matrices were computed for the observations in the test sets
and then the same was done for each of the prediction models. Then, each of the models’ distance
matrices was compared against the distance matrix of the observations trying to determine their degree
of correlation. The null hypothesis in each Mantel test is that the distance matrices being compared are
unrelated. The aim of this task is similar to the evaluation method used by Mitchell and Lapata (2008):
we try to find out which model has the strongest correlation with the original data, with the difference
that in our case no “external” human ratings are used.

HAL RI
Model | Correlation | Simul. p-value | Correlation | Simul. p-value
PLS 0.5438081 0.001 0.4341146 0.001
ADD 0.5344057 0.001 0.3223733 0.001
MUL 0.3297359 0.001 0.1811038 0.002
CON | -0.05557023 0.956 -0.02584655 0.727

Table 1: Adjective-Noun pairs. Mantel tests of correlation (max. correlation = 1)

Considering the results for the AN dataset in Table 1, with the PLS and ADD models we can reject
the null hypothesis that the two matrices (distance matrix between the observed AN pairs and distance
matrix between each model’s predictions) are unrelated with p-value = 0.001 in both the semantic spaces
(HAL and RI). MUL also allows the null hypothesis to be rejected, but with a lower correlation (and with
a greater p-value = 0.002 in RI). Having obtained the highest observed correlation in both settings, the
PLS model is highly positively associated with the observed data. Also ADD and MUL have produced
predictions that are positively correlated with the observed AN vectors. CON is not correlated with
the original data. In other words, PLS and ADD seem to be much better that the remaining models in
reproducing unseen AN pairs; overall, however, PLS produces the closest approximation of the corpus-
based test set. Finally, although both semantic spaces (HAL and RI) produce the same ordering among
the models, it seems that the predictions using the HAL space are relatively closer to the observed data.

HAL RI
Model | Correlation | Simul. p-value | Correlation | Simul. p-value
PLS 0.2186435 0.003 0.1113741 0.116
ADD 0.4094653 0.001 0.1290508 0.124
MUL | 0.1375934 0.042 -0.08865458 0.8
CON | 0.05153776 0.174 -0.08186146 0.807

Table 2: Verb-Noun pairs. Mantel tests of correlation (max. correlation = 1)

Turning to the VN dataset, the obtained results are much less promising (see Table 2). As a general
observation, the correlations between each of the models and the observations are very low, except for
ADD in the HAL semantic space. In addition, ADD obtains the best correlation also in the RI space.
PLS comes in second place. Given that PLS is based on the estimation of parameters from training data,
its low performance can be attributed to the size of dataset (only 133 VN examples used for training). On
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the contrary, ADD, MUL and CON do not have this excuse and their extremely low performance must
be due to other factors. Finally, it is very clear that HAL produces better correlations for all the models.

3.3.2 Observation-based neighbour analysis

For this and for the remaining evaluation protocols, a preliminary step was taken. Since our intention is
to base the evaluation on the analysis of nearest neighbours, we extracted an identical subset of the built
semantic spaces (HAL and RI, which originally had a vocabulary of 23,222 items) in order to compute a
distance matrix of a manageable size.

In the Adjective-Noun dataset, the extracted subset comprises vectors for all the observed AN vectors
in both the training and test sets (1,367 items), all the corresponding predictions, the NOUN- and ADJ-
baseline models, the 2,500 most frequent nouns (not included in the baseline) and the 2,500 most frequent
adjectives (not included in the baseline). The distance matrix for the selected sub-space was then created
by using the Euclidean measure of distance, resulting in a 8,666 x 8,666 matrix.

The Verb-Noun dataset was treated in the same way, extracting vectors for all the VN observations,
the corresponding predictions from each model, the VERB- and NOUN-baseline models and the 1,000
most frequent nouns and verbs in the space (not overlapping with the baselines); this resulted in a 2,420
x 2,420 distance matrix.

Following Guevara’s (2010) neighbour analysis, for each observed AN pair in the test datasets, the
list of n-top neighbours were extracted from the distance matrix (n=10 and n=20). Then, the resulting
neighbour lists were analysed to see if any of the modelled predictions was to be found in the n-top list.
The ADJ- and NOUN-baselines were introduced in the evaluation to further compare the appropriateness
of each model. Below we only report the results obtained with n=20, but very similar results were
obtained in the 10-top neighbour setting.

As can be observed from Table 3, in the HAL space, PLS obtains the highest score, followed by the
NOUN-baseline at a short distance and then by the ADJ-baseline at a greater distance. The performance
of the remaining models is negligible. A different situation can be seen for the RI space, where the
winner is the NOUN-baseline followed by PLS and AD]J.

HAL RI
Model | Predictions found | Predictions found
ADD 0 0
CON 0 0
MUL 3 0
PLS 152 112
ADJ 32 53
NOUN 123 144

Table 3: AN pairs. Observation-based neighbour analysis (max. score = 367)

It is interesting to see that PLS is actually competing against the NOUN-baseline alone, being the rival
models almost insensible to the evaluation task. This same pattern will be seen in the other evaluation
tasks. Furthermore, the score differences obtained by PLS and the NOUN-baseline are significant (HAL
p-value = 0.03275, RI p-value = 0.01635, 2-sample test for equality of proportions).

The VN dataset gave much poorer results, once more. In fact, it is almost pointless to comment
anything except that only MUL was able to rank its predictions in top-20 neighbours six times (only in
the HAL space) and that PLS managed to do the same 9 times (only in the RI space). The maximum
score in this setting was 60.

3.3.3 Prediction-based neighbour analysis

Building on the previous neighbour analysis, a new task was set up by changing the starting point for
neighbour extraction. In this case, for each modelled AN pair in the test dataset in each composition
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model, the list of n-top neighbours were extracted from the distance matrix (n=10 and n=20). Then, the
resulting neighbour lists were analysed to see if the originally observed corresponding AN pair was to
be found in the n-top list. The same procedure was used with the VN dataset.

Below we only report the results obtained with n=20, but very similar results were obtained in the
10-top neighbour setting. This task at first did not seem to be particularly difficult, but the obtained

results were very poor.

HAL RI
Model | Predictions found | Predictions found
ADD 2 0
CON 0 0
MUL 0 0
PLS 32 25
ADJ 6 2
NOUN 26 16

Table 4: AN pairs. Prediction-based neighbour analysis (max. score = 367)

The winner in this experiment was PLS, once again followed by the NOUN-baseline. However, the score
differences obtained by PLS and the NOUN-baseline are not significant (HAL p-value = 0.4939, RI p-
value = 0.1985, 2-sample test for equality of proportions). The main observation to be made is that the
obtained scores are surprisingly low if compared with the previous evaluation task. The reason for this
difference is to be found in the homogeneity and specialization that characterizes each of the models’
neighbour sets: each model produces predictions that are relatively very close to each other. This has the
consequence that the nearest neighbour lists for each model’s predictions are, by and large, populated
by items generated in the same model, as shown in Table 5. In conclusion, although PLS obtained the
highest score in this task, we cannot be sure that it performed better than the NOUN-baseline. In any
case, the remaining composition models did not reach the performance of PLS.

Model | Same-model items
ADD 3626 (98,8 %)
CON 3670 (100 %)
MUL 3670 (100 %)
PLS 2767 (75,4 %)
NOUN 1524 (41,5 %)
ADJ 1382 (36,1 %)

Table 5: AN pairs. Same-model neighbours in each models’ top-10 list of neighbours extracted from
HAL semantic space (total items in each list = 3670)

The VN dataset once again did not produce interesting results. As a brief note, ADD won in the
HAL space (but managing to score only two observations in its predictions’ top-20 neighbours) while
PLS won in the RI space as before, scoring 5 observations in its predictions’ top-20 neighbours (max.
score 60).

3.3.4 Gold-standard comparison of shared neighbours

Our previous evaluation methods targeted the distance between predictions and observations, i.e. the
ability of each model to reproduce unseen AN/VN pairs. Changing perspective, it would be desirable to
test if the models’ predictions show a similar distributional behaviour with respect to the corresponding
observed vector and to other words in the semantic space.

To test this idea, the n-top neighbour-lists (n=10 and n=20) for the observed AN/VN pairs were
extracted and taken to be the gold-standard. Then, each prediction’s n-top list of neighbours was analysed
looking for shared neighbours with respect to the corresponding gold-standard list. Each time a shared
neighbour was found, 1 point was awarded to the model.
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Table 6 summarises the results obtained with n=20 (similar figures obtained with n=10) in the AN
dataset. Although by a small margin, the winner in this task is PLS. Even if the obtained scores are
still rather low (in the best cases, about 17% of all the available points were obtained), this experiment
represents a significant improvement over Guevara’s (2010) reported results, which reached only about
10% of the maximum score. Here again the same ordering of models can be observed: after PLS we find
the NOUN- and ADJ-baselines, leaving the performance of the remaining models at a extremely modest
level. Additionally, the score differences obtained by PLS and the NOUN-baseline are highly significant
(HAL p-value = 2.363e-08, RI p-value = 0.0003983, 2-sample test for equality of proportions).

HAL RI
Model Shared neighbours | Shared neighbours
ADD 28 0
CON 0 0
MUL 5 0
PLS 1299 1267
ADJ 259 534
NOU 1050 1108
Total shared: 2641 2909

Table 6: AN pairs. Gold-standard comparison of shared neighbours (max. score = 7340)

Table 7 summarises the results obtained in the VN dataset, which show a considerable improvement
over the preceding evaluation methods. Here we have to clear winners, ADD in the HAL space and PLS
in the RI space. Interestingly, although the numbers are still on the low side, ADD obtained 8.6% of
the total points, with shared neighbours for 35 out of 60 VN pairs; PLS obtained 21% of the total, with
shared neighbours for 40 out of 60 VN pairs. In particular this last score is (21%) is the highest one ever
obtained with gold-standard comparison of shared neighbours (also considering Guevara’s 2010 results).

HAL RI
Model Shared neighbours | Shared neighbours
ADD 103 0
CON 0 0
MUL 31 0
PLS 0 253
VERB 0 0
NOUN 0 0
Total shared: 134 253

Table 7: VN pairs. Gold-standard comparison of shared neighbours (max. score = 1200)
4 Conclusions

This paper proposes an improved framework to model the compositionality of meaning in Distributional
Semantics. The method, Partial Least Squares Regression, is well known in other data-intensive fields of
research, but to our knowledge had never been put to work in computational semantics.

PLS outperformed all the competing models in the reported experiments with AN pairs. In particular,
the PLS model generates compositional predictions that are closer to the observed composed vectors than
those of its rivals. This is an extremely promising result, indicating that it is possible to generalize linear
transformation functions beyond single lexical items in Distributional Semantics’ spaces.

It is remarkable that PLS did not actually have to compete against any of the previously proposed
approaches to compositionality, but only against the NOUN- and ADJ-baselines, and in particular against
the former. This fact is expected from a theoretical point of view: since the Noun is the head of the AN
pair, it is likely that the complex expression and its head share much of their distributional properties.
PLS nearly always outperformed the NOUN-baseline, but only by small margins, which indicates that
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there is a still plenty of space for improvement. Our experiments also show that AN compositionality by
regression performs nearly equally well in semantic spaces of very different nature (HAL and RI).

The second dataset used in this paper contained VN pairs. Generally, this dataset did not produce
good results with any of the considered approaches to model compositionality. This rather negative result
may be due to its relatively smaller size, but this excuse may only be applied to PLS, the only model that
relies on parameter estimation. Surprisingly, though, the gold-standard comparison of shared neighbours
gave much better results, with ADD performing well in the HAL space and PLS performing very well
in the RI space. Even if the VN dataset did not produce excellent results, it highlights some interesting
issues. First, not all syntactic relations may be equally "easy" to model. Second, different evaluation
methods may favor competing approaches. Finally, some approaches may be particularly successful
with a specific distributional space architecture (like PLS and RI, and ADD and HAL).

This work has intentionally left the data as raw as possible, in order to keep the noise present in
the models at a realistic level. The combination of Machine Learning and Distributional Semantics here
advocated suggests a very promising perspective: transformation functions corresponding to different
syntactic relations could be learned from suitably processed corpora and then combined to model larger,
more complex structures, probably also recursive phenomena. It remains to prove if this approach is able
to model the symbolic, logic-inspired kind of compositionality that is common in Formal Semantics; be-
ing inherently based on functional items, it is at present time very difficult and computationally intensive
to attain, but hopefully this will change in the near future.
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Abstract

We present the first approach to learning the durations of events without annotated training data,
employing web query patterns to infer duration distributions. For example, we learn that “war”
lasts years or decades, while “look”™ lasts seconds or minutes. Learning aspectual information is an
important goal for computational semantics and duration information may help enable rich document
understanding. We first describe and improve a supervised baseline that relies on event duration
annotations. We then show how web queries for linguistic patterns can help learn the duration of
events without labeled data, producing fine-grained duration judgments that surpass the supervised
system. We evaluate on the TimeBank duration corpus, and also investigate how an event’s participants
(arguments) effect its duration using a corpus collected through Amazon’s Mechanical Turk. We make
available a new database of events and their duration distributions for use in research involving the
temporal and aspectual properties of events.

1 Introduction

Bridging the gap between lexical knowledge and world knowledge is crucial for achieving natural language
understanding. For example, knowing whether a nominal is a person or organization and whether a person
is male or female substantially improves coreference resolution, even when such knowledge is gathered
through noisy unsupervised approaches (Bergsma, 2005; Haghighi and Klein, 2009). However, existing
algorithms and resources for such semantic knowledge have focused primarily on static properties of
nominals (e.g. gender or entity type), not dynamic properties of verbs and events.

This paper shows how to learn one such property: the typical duration of events. Since an event’s
duration is highly dependent on context, our algorithm models this aspectual property as a distribution
over durations rather than a single mean duration. For example, a “war” typically lasts years, sometimes
months, but almost never seconds, while “look” typically lasts seconds or minutes, but rarely years or
decades. Our approach uses web queries to model an event’s typical distribution in the real world.

Learning such rich aspectual properties of events is an important area for computational semantics,
and should enrich applications like event coreference (e.g., Chen and Ji, 2009) in much the same way
that gender has benefited nominal coreference systems. Event durations are also key to building event
timelines and other deeper temporal understandings of a text (Verhagen et al., 2007; Pustejovsky and
Verhagen, 2009).

The contributions of this work are:

e Demonstrating how to acquire event duration distributions by querying the web with patterns.

e Showing that a system that predicts event durations based only on our web count distributions can
outperform a supervised system that requires manually annotated training data.

e Making available an event duration lexicon with duration distributions for common English events.

We first review previous work and describe our re-implementation and augmentation of the latest
supervised system for predicting event durations. Next, we present our approach to learning event
distributions based on web counts. We then evaluate both of these models on an existing annotated corpus
of event durations and make comparisons to durations we collected using Amazon’s Mechanical Turk.
Finally, we present a generated database of event durations.
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2 Previous Work

Early work on extracting event properties focused on linguistic aspect, for example, automatically
distinguishing culminated events that have an end point from non-culminated events that do not (Siegel
and McKeown, 2000). The more fine-grained task of predicting the duration of events was first proposed
by Pan et al. (2006), who annotated each event in a small section of the TimeBank (Pustejovsky et al.,
2003) with duration lower and upper bounds. They then trained support vector machines on their annotated
corpus for two prediction tasks: less-than-a-day vs. more-than-a-day, and bins like seconds, minutes,
hours, etc. Their models used features like bags of words, heads of syntactic subjects and objects, and
WordNet hypernyms of the events. This work provides a valuable resource in its annotated corpus and is
also a good baseline. We replicate their work and also add new features as described below.

Our approach to the duration problem is inspired by the standard use of web patterns for the acquisition
of relational lexical knowledge. Hearst (1998) first observed that a phrase like “...algae, such as
Gelidium. ..” indicates that “Gelidium” is a type of “algae”, and so hypernym-hyponym relations can
be identified by querying a text collection with patterns like “such <noun> as <noun>" and “<noun> ,
including <noun>". A wide variety of pattern-based work followed, including the application of the idea
in VerbOcean to acquire aspects and temporal structure such as happens-before, using patterns like “to
<verb> and then <verb>"" (Chklovski and Pantel, 2004).

More recent work has learned nominal gender and animacy by matching patterns like “<noun> *
himself”” and “<noun> and her” to a corpus of Web n-grams (Bergsma, 2005; Ji and Lin, 2009). Phrases like
“John Joseph”, which were observed often with masculine pronouns and never with feminine or neuter
pronouns, can thus have their gender identified as masculine. Ji and Lin found that such web-counts can
predict person names as well as a fully supervised named entity recognition system.

Our goal, then, is to integrate these two strands in the literature, applying pattern/web approaches to
the task of estimating event durations. One difference from previous work is the distributional nature of
the extracted knowledge. In the time domain, unlike in most previous relation-extraction domains, there is
rarely a single correct answer: “war” may last months, years or decades, though years is the most likely.
Our goal is thus to produce a distribution over durations rather than a single mean duration.

3 Duration Prediction Tasks

In both our supervised and unsupervised models, we consider two types of event duration predictions: a
coarse-grained task in which we only want to know whether the event lasts more or less than a day, and a
fine-grained task in which we want to know whether the event lasts seconds, minutes, hours, days, weeks,
months or years. These two duration prediction tasks were originally suggested by Pan et al. (2006), based
on their annotation of a subset of newspaper articles in the Timebank corpus (Pustejovsky et al., 2003).
Events were annotated with a minimum and maximum duration like the following:

e 5 minutes — 1 hour: A Brooklyn woman who was watching her clothes dry in a laundromat.

e 1 week — 3 months: Eileen Collins will be named commander of the Space Shuttle mission.

e 3 days — 2 months: President Clinton says he is committed to a possible strike against Iraq. ..

Pan et al. suggested the coarse-grained binary classification task because they found that the mean event
durations from their annotations were distributed bimodally across the corpus, roughly split into short
events (less than a day) and long events (more than a day). The fine-grained classification task provides
additional information beyond this simple two way distinction.

For both tasks, we must convert the minimum/maximum duration annotations into single labels. We
follow Pan et al. (2006) and take the arithmetic mean of the minimum and maximum durations in seconds.
For example, in the first event above, 5 minutes would be converted into 300 seconds, / hour would be
converted into 3600 seconds, the resulting mean would be 1950 seconds, and therefore this event would
be labeled less-than-a-day for the coarse-grained task, and minutes for the fine-grained task. These labels
can then be used directly to train and evaluate our models.
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4 Supervised Approach

Before describing our query-based approach, we describe our baseline, a replication and extension of the
supervised system from Pan et al. (2006). We first briefly describe their features, which are shared across
the coarse and fine-grained tasks, and then suggest new features.

4.1 Pan et. al. Features

The Pan et al. (2006) system included the following features which we also replicate:

Event Properties: The event token, lemma and part of speech (POS) tag.

Bag of Words: The n tokens to the left and right of the event word. However, because Pan et al.
found that n = 0 performed best, we omit this feature.

Subject and Object: The head word of the syntactic subject and object of the event, along with their
lemmas and POS tags. Subjects and objects provide important context. For example, “saw Europe” lasts
for weeks or months while “saw the goal” lasts only seconds.

Hypernyms: WordNet hypernyms for the event, its subject and its object. Starting from the first
synset of each lemma, three hypernyms were extracted from the WordNet hierarchy. Hypernyms can help
cluster similar events together. For example, the event plan had three hypernym ancestors as features:
idea, content and cognition.

4.2 New Features

We present results for our implementation of the Pan et al. (2006) system in Section 8. However, we also
implemented additional features.

Event Attributes: Timebank annotates individual events with four attributes: the event word’s tense
(past, present, future, none), aspect (e.g., progressive), modality (e.g., could, would, can, etc.), and event
class (occurrence, aspectual, state, etc.). We use each of these as a feature in our classifier. The aspect and
tense of the event, in particular, are well known indicators of the temporal shape of events (Vendler, 1976).

Named Entity Classes: Pan et al. found the subject and object of the events to be useful features,
helping to identify the particular sense of the event. We used a named entity recognizer to add more
information about the subjects and objects, labeling them as persons, organizations, locations, or other.

Typed Dependencies: We coded aspects of the subcategorization frame of a predicate, such as
transitivity, or the presence of prepositional objects or adverbial modifiers, by adding a binary feature
for each typed dependency' seen with a verb or noun. We experimented with including the head of the
argument itself, but results were best when only the dependency type was included.

Reporting Verbs: Many of the events in Timebank are reporting verbs (say, report, reply, etc.). We
used a list of reporting verbs to identify these events with a binary feature.

4.3 Classifier

Both the Pan et al. feature set and our extended feature set were used to train supervised classifiers for the
two event duration prediction tasks. We experimented with naive bayes, logistic regression, maximum
entropy and support vector machine classifiers, but as discussed in Section 8, the maximum entropy model
performed best in cross-validations on the training data.

5 Unsupervised Approach

While supervised learning is effective for many NLP tasks, it is sensitive to the amount of available
training data. Unfortunately, the training data for event durations is very small, consisting of only 58 news
articles (Pan et al., 2006), and labeling further data is quite expensive. This motivates our desire to find an

"We parsed the documents into typed dependencies with the Stanford Parser (Klein and Manning, 2003).
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approach that does not rely on labeled data, but instead utilizes the large amounts of text available on the
Web to search for duration-specific patterns. This section describes our web-based approach to learning
event durations.

5.1 Web Query Patterns

Temporal properties of events are often described explicitly in language-specific constructions which can
help us infer an event’s duration. Consider the following two sentences from our corpus:

e Many spend hours surfing the Internet.

e The answer is coming up in a few minutes.
These sentences explicitly describe the duration of the events. In the first, the dominating clause spend
hours tells us how long surfing the Internet lasts (hours, not seconds), and in the second, the preposition
attachment serves a similar role. These examples are very rare in the corpus, but as can be seen, are
extremely informative when present. We developed several such informative patterns, and searched the
Web to find instances of them being used with our target events.

For each pattern described below, we use Yahoo! to search for the patterns occurring with our events.
We collect the total hit counts and use them as indicators of duration. The Yahoo! search API returns two
numbers for a query: fotalhits and deephits. The former excludes duplicate pages and limits the number
of documents per domain while the latter includes all duplicates. We take the sum of these two numbers
as our count (this worked better than either of the two individually on the training data and provides
a balance between the benefits of each estimate) and normalize the results as described in Section 5.2.
Queries are submitted as complete phrases with quotation marks, so the results only include exact phrase
matches. This greatly reduces the number of hits, but results in more precise distributions.

5.1.1 Coarse-Grained Patterns

The coarse grained task is a binary decision: less than a day or more than a day. We can model this
task directly by looking for constructions that can only be used with events that take less than a day.
The adverb yesterday fills this role nicely; an event modified by yesterday strongly implies that it took
place within a single day’s time. For example, ‘shares closed at $18 yesterday’ implies that the closing

happened in less than a day. We thus consider the following two query patterns:
o <eventpqsr> yesterday
o <eventyggssy > yesterday

where <eventyqs> is the past tense (preterite) form of the event (e.g., ran), and <eventy,qg,> is the past
progressive form of the event (e.g., was running).

5.1.2 Fine-Grained Patterns

For the fine-grained task, we need patterns that can identify when an event falls into any of the various
buckets: seconds, minutes, hours, etc. Thus, our fine-grained patterns are parameterized both by the event

and by the bucket of interest. We use the following patterns inspired in part by Dowty (1979):
L. <eventpqgs> for * <bucket>
2. <eventpggsp> for * <bucket>
3. spent * <bucket> <eventger>

where <eventyqg> and <eventyqs,> are defined as above, <eventger> is the gerund form of the event (e.g.,
running), and the wildcard ‘** can match any single token?.

The following three patterns ultimately did not improve the system’s performance on the training data:
4. <eventpggs> in * <bucket>

5. takes * <bucket> to <event>

6. <eventpggs> last <bucket>

Pattern 4 returned a lot of hits, but had low precision as it picked up many non-durative expressions.
Pattern 5 was very precise but typically returned few hits, and pattern 6 worked for, e.g., last week, but did
not work for shorter durations. All reported systems use patterns 1-3 and do not include 4-6.

>We experimented with varying numbers of wildcards but found little difference in performance on the training data.
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Figure 1: Normalizing the distribution for the pattern “was saying for <bucket>".

We also tried adding subjects and/or objects to the patterns when they were present for an event.
However, we found that the benefit of the extra context was outweighed by the significantly fewer hits that
resulted. We implemented several backoff approaches that removed the subject and object from the query,
however, the counts from these backoff approaches were less reliable than just using the base event.

5.2 Predicting Durations from Patterns

To predict the duration of an event from the above patterns, we first insert the event into each pattern
template and query the web to see how often the filled template occurs. These counts form a distribution
over each of the bins of interest, e.g., in the fine-grained task we have counts for seconds, minutes, hours,
etc. We discard pattern distributions with very low total counts, and normalize the remaining pattern
distributions based on the frequency with which the pattern occurs in general. Finally, we uniformly
merge the distributions from all patterns, and use the resulting distribution to select a duration label for
the event. The following sections detail this process.

5.2.1 Coarse-Grained Prediction

For the coarse-grained task of less than a day vs. more than a day, we collect counts using the two
yesterday patterns described above. We then normalize these counts by the count of the event’s occurrence
in general. For example, given the event run, we query for “ran yesterday” and divide by the count of
“ran”. This gives us the probability of seeing yesterday given that we saw ran. We average the probabilities
from the two yesterday patterns, and classify an event as lasting less than a day if its average probability
exceeds a threshold ¢t. We optimized ¢ to our training set (f = .002). This basically says that if an event
occurs with yesterday more than 0.2% of the time, we will assume that the event lasts less than a day.

5.2.2 Fine-Grained Prediction

As with the coarse-grained task, our fine-grained approach begins by collecting counts using the three
fine-grained patterns discussed above. Since each fine-grained pattern has both an <event> and a <bucket>
slot to be filled, for a single event and a single pattern, we end up making 8 queries to cover each of the 8
buckets: seconds, minutes, hours, days, weeks, months, years and decades. After these queries, we have a
pattern-specific distribution of counts over the various buckets, a coarse measure of the types of durations
that might be appropriate to this event. Figure 1(a) shows an example of such a distribution.

As can be seen in Figure 1(a), this initial distribution can be skewed in various ways — in this case,
years is given far too much mass. This is because in addition to the single event interpretation of words
like “saying”, there are iterative or habitual interpretations (Moens and Steedman, 1988; Frawley, 1992).
Iterative events occur repeatedly over a period of time, e.g., “he’s been saying for years that...” The two
interpretations are apparent in the raw distributions of smile and run in Figure 2. The large peak at years
for run shows that it is common to say someone “was running for years.” Conversely, it is less common to
say someone “was smiling for years,” so the distribution for smile is less biased towards years.
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All three 428 (25.7%) 65.7
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events. The training set consists of 1664 events.

Figure 2: Two double peaked distributions.

While the problem of distinguishing single events from iterative events is out of the scope of this paper
(though an interesting avenue for future research), we can partially address the problem by recognizing
that some buckets are simply more frequent in text than others. For example, Figure 1(b) shows that it is
by far more common to see “for <bucket>" filled with years than with any other duration unit. Thus, for
each bucket, we divide the counts collected with the event patterns by the counts we get for the pattern
without the event®. Essentially, this gives us for each bucket the probability of the event given that bucket.
Figure 1(c) shows that the resulting normalized distribution fits our intution of how long “saying” should
last much better than the raw counts: seconds and minutes have much more of the mass now.

After normalizing an event’s counts for each pattern, we combine the distributions from the three
different patterns if their hit counts pass certain confidence thresholds. The total hit count for each pattern
must exceed a minimum threshold ¢,,;, = 100 and not exceed a maximum threshold ¢,,,, = 100, 000
(both thresholds were optimized on the training data). The former avoids building distributions from a
sparse number of hits, and the latter avoids classifying generic and polysemous events like ‘to make’ that
return a large number of hits. We found such events to produce generic distributions that do not help in
classification. If all three patterns pass our confidence thresholds, we merge the pattern distributions by
summing them bucket-wise together and renormalizing the resulting distribution to sum to 1. Merging the
patterns mitigates the noise from any single pattern.

To predict the event’s duration, we then select the bucket with the highest smoothed score:

score(bi) =bi—1+b; + bip1

where b; is a duration bucket and 0 < 7 < 9. We define by = by = 0. In other words, the score of the
minute bucket is the sum of three buckets: second, minute and hour. This parallels the smoothing of the
evaluation metric introduced by (Pan et al., 2006) which we also adopt for evaluation in Section 7.

In the case that fewer than three of our patterns matched, we backoff to the majority class (months for
fine-grained, and more-than-a-day for coarse-grained). We experimented with only requiring one or two
patterns to match, but found the best results on training when requiring all three. Figure 3 shows the large
jump in precision when all three are required. The evaluation is discussed in Section 7.

5.2.3 Coarse-Grained Prediction via Fine-Grained Prediction

We can also use the distributions collected from the fine-grained task to predict coarse-grained labels. We
use the above approach and return less than a day if the selected fine-grained bucket was seconds, minutes
or hours, and more than a day otherwise. We also tried summing over the duration buckets: p(seconds) +
p(minutes) + p(hours) for less than day and p(days) + p(weeks) + p(months) + p(years) + p(decades) for
more than a day, but the simpler approach outperformed these summations in training.

3We also explored normalizing not by the global distribution on the Web, but by the average of the distributions of all the
events in our dataset. However, on the training data, using the global distribution performed better.
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6 Datasets

6.1 Timebank Duration

As described in Section 3, Pan et al. (2006) labeled 58 documents with event durations. We follow their
method of isolating the 10 WSJ articles as a separate test set which we call TestWSJ (147 events). For
the remaining 48 documents, they split the 2132 event instances into a Train and Test set with 1705 and
427 events respectively. Their split was conducted over the bag of events, so their train and test sets may
include events that came from the same document. Their particular split was unavailable.

We instead use a document-split that divides the two sets into bins of documents. Each document’s
entire set of events is assigned to either the training set or the test set, so we do not mix events across
sets. Since documents often repeat mentions of events, this split is more conservative by not mixing test
mentions with the training set. Train, Test, and TestWSJ contain 1664 events (714 unique verbs), 471 events
(274 unique), and 147 events (84 unique) respectively. For each base verb, we created queries as described
in Section 5.1.2. The train/test split is available at http://cs.stanford.edu/people/agusev/durations/.

6.2 Mechanical Turk Dataset

We also collected event durations from Amazon’s Mechanical Turk (MTurk), an online marketplace from
Amazon where requesters can find workers to solve Human Intelligence Tasks (HITs) for small amounts
of money. Prior work has shown that human judgments from MTurk can often be as reliable as trained
annotators (Snow et al., 2008) or subjects in controlled lab studies (Munro et al., 2010), particularly when
judgments are aggregated over many MTurk workers (“Turkers”). Our motivation for using Turkers is to
better analyze system errors. For example, if we give humans an event in isolation (no sentence context),
how well can they guess the durations assigned by the Pan et. al. annotators? This measures how big the
gap is between a system that looks only at the event, and a system that integrates all available context.

To collect event durations from MTurk, we presented Turkers with an event from the TimeBank (a
superset of the events annotated by Pan et al. (2006)) and asked them to decide whether the event was most
likely to take seconds, minutes, hours, days, weeks, months, years or decades. We had events annotated
in two different contexts: in isolation, where only the event itself was given (e.g., “allocated”), and in
subject-object context, where a minimal phrase including the event and its subject and object was given
(e.g., “the mayor allocated funds”). In both types of tasks, we asked 10 Turkers to label each event,
and they were paid $0.0025 for each annotation ($0.05 for a block of 20 events). To filter out obvious
spammers, we added a test item randomly to each block, e.g., adding the event “minutes” and rejecting
work from Turkers who labeled this anything other than the duration minutes.

The resulting annotations give duration distributions for each of our events. For example, when
presented the event “remodeling”, 1 Turker responded with days, 6 with weeks, 2 with months and 1
with years. These annotations suggest that we generally expect “remodeling” to take weeks, but it may
sometimes take more or less. To produce a single fine-grained label from these distributions, we take the
duration bin with the largest number of Turker annotations, e.g. for “remodeling”, we would produce the
label weeks. To produce a single coarse-grained label, we use the label less-than-a-day if the fine-grained
label was seconds, minutes or hours and more-than-a-day otherwise.

7 Experiment Setup

As discussed in Section 3, we convert the minimum and maximum duration annotations into labels by
converting each to seconds using ISO standards and calculating the arithmetic mean. If the mean is
< 86400 seconds, it is considered less-than-a-day for the coarse-grained task. The fine-grained buckets
are similarly calculated, e.g., X is labeled days if 86400 < X < 604800. The Pan et al. (2006) evaluation
does not include a decades bucket, but our system still uses “decades” in its queries.

We optimized all parameters of both the supervised and unsupervised systems on the training set, only
running on test after selecting our best performing model. We compare to the majority class as a baseline,
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Coarse-Grained Fine-Grained

Test | TestWSJ Test | TestWSJ
Supervised, Pan | 73.3 | 73.5 Supervised, Pan | 62.2 | 61.9
Supervised, all | 73.0 | 74.8 Supervised, all | 62.4 | 66.0

Figure 4: Accuracies of the supervised maximum entropy classifiers with two different feature sets.

Coarse-Grained

Test | TestWSJ
Majority class 624 | 57.1
Supervised, all 73.0% | 74.8*
Web counts, yesterday | 70.7*% | 74.8*
Web counts, buckets 72.4% | 73.5%

Fine-Grained

Test TestWSJ
Majority class 59.2 | 524
Supervised, all 62.4 | 66.07
Web counts, buckets | 66.5*% | 68.7*

Figure 5: System accuracy compared against supervised and majority class. * indicates statistical
significance (McNemar’s Test, two-tailed) against majority class at the p < 0.01 level, { at p < 0.05

tagging all events as more-than-a-day in the coarse-grained task and months in the fine-grained task.

To evaluate our models, we use simple accuracy on the coarse-grained task, and approximate agreement
matching as in Pan et al. (2006) on the fine-grained task. In this approximate agreement, a guess is
considered correct if it chooses either the gold label or its immediate neighbor (e.g., hours is correct if
minutes, hours or days is the gold class). Pan et al. use this approach since human labeling agreement is
low (44.4%) on the exact agreement fine-grained task.

8 Results

Figure 4 compares the performance of our two supervised models; the reimplementation of Pan et al.
(2006) (Supervised, Pan), and our improved model with new features (Supervised, all). The new model
performs similarily to the Pan model on the in-domain Test set, but better on the out-of-domain financial
news articles in the TestWS] test. On the latter, the new model improves over Pan et al. by 1.3% absolute
on the coarse-grained task, and by 4.1% absolute on the fine-grained task. We report results from the
maximum entropy model as it slightly outperformed the naive bayes and support vector machine models*.

We compare these supervised results against our web-based unsupervised systems in Figure 5. For the
coarse-grained task, we have two web count systems described in Section 5: one based on the yesterday
patterns (Web counts, yesterday), and one based on first gathering the fine-grained bucket counts and
then converting those to coarse-grained labels (Web counts, buckets). Generally, these models perform
within 1-2% of the supervised model on the coarse-grained task, though the yesterday-based classifier
exactly matches the supervised system’s performance on the TestWSJ data. The supervised system’s
higher results are not statistically significant against our web-based systems.

For the fine-grained task, Figure 5 compares our web counts algorithm based on duration distributions
(Section 5) to the baseline and supervised systems. Our web counts approach outperforms the best
supervised system by 4.1% absolute on the Test set and by 2.7% absolute on the out-of-domain TestWSJ.

To get an idea of how much the subject/object context could help predict event duration if integrated
perfectly, we evaluated the Mechanical Turk annotations against the Pan et. al. annotated dataset using
approximate agreement as described in Section 7. Figure 6 gives the performance of the Turkers given
two types of context: just the event itself (Event only), and the event plus its subject and/or object (Event
and args). Turkers performed below the majority class baseline when given only the event, but generally
above the baseline when given the subject and object, improving up to 20% over the event-only condition.

Figure 7 shows examples of events with different learned durations.

“This differs from Pan et al. who found support vector machines to be the best classifier.
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Mechanical Turk Accuracy Learned Examples

Coarse Fine talk to tourism leaders minutes
Test | WSJ | Test | WSJ driving hours
Majority class | 62.4 | 57.1 | 59.2 | 52.4 shut down the supply route  days
Event only 52.0 | 49.4 | 42.1 | 43.8 travel weeks
Event and args | 65.0 | 70.1 | 56.7 | 59.9 the downturn across Asia ~ months
build a museum years

Figure 6: Accuracy of Mechanical Turkers
against Pan et. al. annotations. Figure 7: Examples of web query durations.

9 Discussion

Our novel approach to learning event durations showed 4.1% and 2.7% absolute gains over a state-of-the-
art supervised classifier. Although the gain is not statistically significant, these results nonetheless suggest
that we are learning as much about event durations from the web counts as we are currently able to learn
with our improvements to Pan et al.’s (2006) supervised system. This is encouraging because it indicates
that we may not need extensive manual annotations to acquire event durations. Further, our final query
system achieves these results with only the event word, and without considering the subject, object or
other types of context.

Despite the fact that we saw little gains in performance when including subjects and objects in our
query patterns, the Mechanical Turk evaluation suggests that more information may still be gleaned from
the additional context. Giving Turkers the subject and object improved their label accuracy by 10-20%
absolute. This suggests that finding a way to include subjects and objects in the web queries, for example
by using thesauri to generate related queries, is a valuable line of research for future work.

Finally, these MTurk experiments suggest that classifying events for duration out of context is a
difficult task. Pan et al. (2006) reported 0.88 annotator agreement on the coarse-grained task when given
the entire document context. Out of context, given just the event word, our Turkers only achieved 52%
and 49% accuracy. Not surprisingly, the task is more difficult without the document. Our system, however,
was also only given the event word, but it was able achieve over 70% in accuracy. This suggests that rich
language understanding is often needed to correctly label an event for duration, but in the absence of such
understanding, modeling the duration by web counts appears to be a practical and useful alternative.

10 A Database of Event Durations

Given the strong performance of our model on duration classification, we are releasing a database of
events and their normalized duration distributions, as predicted by our bucket-based fine-grained model.
We extracted the 1000 most frequent verbs from a newspaper corpus (the NYT portion of Gigaword
Graff (2002)) with the 10 most frequent grammatical objects of each verb. These 10, 000 events and their
duration distributions are available at http://cs.stanford.edu/people/agusev/durations/.
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Abstract

This paper proposes a framework for representing cross-lingual/interlingual lexical semantic cor-
respondences that are expected to be recovered through a series of on-demand/on-the-fly invocations
of a lexical semantic matching process. One of the central notions of the proposed framework is a
pseudo synsgetvhich is introduced to represent a cross-lingual/multilingual lexical concept, jointly
denoted by word senses in more than one language. Another important ingredient of the proposed
framework is a framework fosemantifying bilingual lexical resource entrie$his is a necessary
substep when associating and representing corresponding lexical concepts in different languages
by using bilingual lexical resources. Based on these devices, this paper further discusses possible
extensions to the ISO standard lexical markup framework (LMF). These extensions would enable re-
covered correspondences to be organized as a dyrsmmandary language resoutcghile keeping
the existing primary language resources intact.

1 Introduction

As the world goes more global, the demand for multilingual lexical semantic resources has increased. A
central approach to realize such a multilingual resource has been nicely demonstrated by the EuroWord-
Net (Vossen 2004) and the succeeding it, Global WordNet Grid pfojetthese projects, the goal is to

build a worldwide grid of wordnets by means of interlingual pivots. While we may assume that the grid is
static and stable in its natur@ynamic lexical resourcg€alzolari 2008) are possible, provided a variety

of language resources are wrapped as Web seRvisesare accessible on a service infrastructure. For
example, a virtuallicombined lexicohcan be evolutionarily realized by opportunistically associating
semantically corresponding entries in the relevant lexical resources.

However, existing frameworks for modeling and representing lexical resources are not applicable
to this new type of lexical resource in their current configurations. For example, while the 1SO lexical
markup framework (LMF) provides useful constructs to represent a range of lexicons, it still concen-
trates on modeling one lexical resource at a time, and does not provide effective devices to integrate
different types of lexical resources into a single combined resource. This has motivated us to develop
a framework for representing cross-lingual/interlingual lexical semantic correspondences that may be
recovered through a series of on-demand/on-the-fly invocations of a lexical semantic matching process
that underlies combined lexicon access services.

The central concept of the framework is the notiorpséudo synsgtvhich is introduced to repre-
sent a cross-lingual/multilingual lexical concept, jointly denoted by words in more than one language.
As the name implies, it inherits and extends the constituting principle of wordnets: a lexical concept is

http:/ivww.globalwordnet.org/gwa/gwa _grid.htm

2\We use the terrservicizeto mean the wrapping of a static language resource as a dynamic Web service, which provides a
standardized application program interface (API).

3Hartmann(2005) discusses a rangehgbrid dictionaries which includes, for examplemonolingual cum interlingual
dictionary.

“Standardized as 1SO 24613:2008.
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defined as a set of synonymous word senses. Another component of the proposed framework is a frame-
work for semantifyingilingual lexical resource entries, which is a necessary substep for associating and
representing corresponding lexical concepts in different languages by using bilingual lexical resources.
This paper starts with a motivating example and a look at how to represent the abovementioned com-
ponents in the example. This paper then discusses possible extensions to the 1ISO LMF, which would
enable recovered cross-lingual/interlingual correspondences to be organizdgrasraclanguage re-
source. This dynamic resourcesiscondarybecause itis created on top of the exisfimgnary language
resources. Here it should be noted that this secondary language resource can be enriched and expanded,
graduallyevolvingin a collaborative Web service environment.

2 A Motivating Example and Representations

Figure 1 shows our motivating example, depicting five direct cross-lingual lexical semantic correspon-
dences: a Japanese wd@vacan be translated into eithgver or streamin English;river is associated

with either ofriviére or fleuvein French, depending on where the river flows irgbeamis associated

only withrivierein French.

Japanese English French
kawa river riviere
(i) < SZ

stream fleuve
Figure 1: Motivating Example.

Situations similar to this one would be brought about, for example, by invoking a lexical access
service on a Web-based linguistic service infrastructure. More specifically, think of a dictionary service
that implements a virtually combined dictionary. One user of this service might like to find the meaning
of the Japanese wokdiwa(by consulting a Japanese lexical semantic resource) and then want to know
the equivalents in English (by consulting a bilingual dictionary); another user may want to look for
French counterparts aiver. To fulfill these requirements, a computational lexical semantic matching
process behind the dictionary service should be invoked in an on-demand and on-the-fly manner, if the
relevant cross-lingual semantic correspondences are unknown to it. These invocations of the matching
process can induce possible indirect lexical semantic correspondences: for example, ketwaeserd
riviere viariver.

2.1 Problems with a Possible LMF Representation

The LMF NLP multilingual notation extensioffrrancopoulo et al. 2009) is devised to model and repre-

sent lexical semantic correspondences across languages. We can use this device to model and represent
the situation in the motivating example, as shown in Fig. 2, which makes use &etfee Axis

construct. Actually, this figure has been created from a figure presented in (Francopoulo et al. 2009) by
adding the following: a JapaneSense node associated wittawg an EnglishSense node associated

with stream and aSense Axis node that links the JapaneSense node to the two EnglisBense

nodes. Although this configuration seems to be natural, several questions may arise, including:

e How can we represent an indirect correspondence that could be dynamically derived or inferred
from a combination of direct correspondences? For example, should the derivable indirect corre-
spondence betwedmwaandfleuvealso be represented by adding ®ense Axis andSense
Axis Relation constructs? Or should we introduce anotBense Axis node, which, as
an interlingual pivot, aggregates all the corresponding senses?
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same as the Fig.4 in (Francopoulo et al. 2009)

:Sense —1 :Sense Axis :Sense :Sense Axis :Sense

id="ja.kawa .1” id="SA.3” id="en.river.1” id="SA.2” id="fr.riviére.1”

:Sense Axis Relation

label="more general”

:Sense :Sense Axis :Sense

id="en.stream.1” id="SA.1” id="fr.fleuve.1”

Figure 2: Straightforward LMF Representation of the Motivating Example.

e How and where should the details of a matching process be encoded? This is particularly crucial
for a dynamic resource, so that the potential user is able to assess the reliability of the resource.

e Is the introduction of th&ense Axis Relation instance with the label "more general” nec-
essary or adequate? The LMF specification states tf@rse Axis Relation instance
should be introduced if the correspondence is not direct (partially equivalent). However, in our
scenario, it is reasonable to expect that the lexical semantic relation batwiégeandfleuvehas
already been encoded somewhere in an existing French lexical semantic resource. This suggests
that the introduction of th&ense Axis Relation might be redundant.

2.2 Proposed Representation: Overview

Figure 3 shows the conceptual overview of the proposed representation for the motivating example in
consideration of these questions. In this representation, we have eight nodes, each depicted by a shaded
round rectangle node. Each of these nodes is classified@sstlingual pseudo syns@gEP_Synset )

node (marked by a number) onaultilingual pseudo syns@MP.Synset ) node (marked by a Greek let-

ter). While the former represents a directed cross-lingual correspondence between two senses, the latter
shows a set of multilingual word senses that may share an intersectional concept across the languages.
For example, th&€€P_Synset node labeled "1” represents a concept denoted by sendesaafand

stream along with the depicted direction. The node markeiddicates a concept jointly denoted by the
multilingual sense settkawa stream riviére}.

Figure 3: Conceptual Overview of the Proposed Representation for the Motivating Example.

Given the previously mentioned use case scenario, we presuppose that two types of lexical resources
already exist, and that they are made accessible by appropriate Web service interfaces:

e Three WordNet-type monolingual lexical semantic resources for Japgmesg English ewn)
and Frenchf(vn ) are assumed. We assume that they are modeled and represented using the LMF
NLP semantics extension.
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e Although not explicitly depicted in this figure, two bilingual lexical resources for Japanese-to-
English {-to-e ) and English-to-Frenclefto-f ) are assumed. They are assumed to be mod-
eled and represented by employing the LMF machine readable dictionary (MRD) extension. How-
ever these resources would be augmented externally by the semantification mechanism described
in the next section.

As we will see later in this paper, derived correspondences between/among the existing lexical re-
source elements should be organized as a kind of secondary language resource in order to be reused.

3 Semantifying Bilingual Lexical Resource Entries

The semantification of a bilingual lexical resource entry is a necessary substep when associating possibly
corresponding lexical concepts in different languages. In principle, the source language (SL) expression
(entry word) is first associated with a sense in an SL lexical semantic resource. Then, we seek a possible
corresponding sense for the target language (TL) expression (translation equivalent) in a TL lexical
semantic resource. This process enriches the bilingual lexical resource by grounding it in the lexical
semantic resources in the SL and TL.

3.1 Necessity of Semantification

Bilingual dictionaries provide lexical items in one language with counterparts in another language that
are similar in meaning and usage. However, although this definition is fairly straightforward, bilingual
dictionaries do exhibit problems that need to be addressed, mainly owing to differences in concept for-
mation in different languages (Svéms2009). Although the idea of using bilingual lexical resources

to integrate semantic resources is not new, as demonstrated by QEA#P) or Chen (2002), bilingual
dictionaries, in general, have attracted less attention than monolingual dictionaries. As pointed out by
Fontenelle (1997), this may, in part, be owing to their less structured machine-readable data format,
making it harder for a researcher to mine useful information from bilingual resources. However, a stan-
dardized modeling framework such as the ISO LMF can enable more bilingual lexical resources to be
disseminated in a well-structured format. The LMF introduces the MRD extension to provide a meta-
model to represent monolingual/bilingual dictionaries that are primarily compiled for human use.

Lemma —q Lexical Entry
1 Lo
WordForm [ Form Sense 2 Subject Field
/ ?o..* 0.* O"ﬂ
Definition Equivalent Context

Y Yo Yo.r

Text Representation

Figure 4: LMF MRD Class Model.

Figure 4 provides an overview of the LMF MRD extension in a UML diagram. It shows that the
translation equivalents in the TL for an entry word in the SL are represented by Egingalent
nodes, each of which is associated witlbense node of theLexical Entry node. The figure
also shows that a translation equivalent is represented by an instafi@xtofRepresentation
class, which basically carries a text string that may be annotated with linguistic data categories. This
simple and somewhat unstructured configuration is reasonable and can be acceptable, given the fact
that most bilingual resources are structurally messy. However, the configuration may be insufficient if
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we are to exploit a bilingual dictionary as a kind of semantic resource and leverage it as a bridge to
associate potentially corresponding lexical concepts in different languages. This motivated us to develop
a framework to semantify bilingual lexical resources.

3.2 Framework of Semantification

Figure 5 shows the process of semantification. It is noteworthy that before the semantification, the
bilingual lexical entry is represented according to the definition in the LMF MRD extension.

Lexical
Entry Sense Equivalent

AN
“river” river.* riviere

semantification
“fleuve
(river that flows into the sea)”

SL_Sense_Grounding CP_Synset

ewn
- '<>. ST TTLLLLL b D Closed: {river.ewn.1}
Vs \ o Open: {riviére.*}
/
V4 ", AP
river  riverewn.1l o riviere
synsetl J @000 — N\ (e .
! .'"D Closed: {river.ewn.1}

{river.ewn.1} Open: {fleuve.*}
TL_addition: “flows into the sea”

Figure 5: Example of Semantification of a Bilingual Dictionary Entry.
The semantification is as follows:

1. We first performSL sense groundinp associate th8ense node in the bilingual lexical resource
e-to-f  with a Sense node in the SL lexical semantic resoureen. To accomplish this, a
computational lexical semantic matching process first looks for possibly correspddelivsg
nodes inewn. This procesy is never decisive, even if it makes full use of the information, such
as the entry word itself, a gloss description, or additional semantic markers, provided in the lexical
resources. Therefore, a human judgment is then necessary to choose among the candidates and
establish a correspondence. Once the correspondence has been established, the formerly under-
specified word sengséver. * ine-to-f  is disambiguated asver.ewn.1 . Hereewn.l is
an identifief of theSense node inewn. At the same time, these tv@ense nodes are interlinked
by anSL_Sense _Grounding node, as shown in the Fig. 5.

2. TwoCP.Synset nodes are then created. For example, the cross-lingual pseudofyveeewn.1,
rivi ere. *} is associated with the upp@P.Synset node, indicating that the intersection of
these two senses denotes a multilingual lexical concept across individual languages. However,
note that the sensévi ere. * indicates that it is not yet grounded to a French lexical seman-
tic resource, and so theP.synset node is still underspecified. In the figure, the set marked
Closedrepresents the set of grounded senses, whereas the set rGqrdiedenotes the still un-
derspecified senses. These two sets together define the current status of the multilingual pseudo
synset. It should be noted that tBense node in thee-to-f  dictionary is associated with two
CP.Synset nodes. This is different from the original LMF specification, in whicBemnse node
can only be associated with ofsynset node. It does not matter, however, as the associations
are accomplished only externally, thereby keeping the existing LMF-modeled resource intact.

3. The additional description of the second translation equivalent "fleuve,” which is a "river that
flows into the sea,” is encoded as the value of Tlheaddition  feature and is stored in the

SWe are now developing the process, which basically relies on textual overlap (Banerjee and Pedersen 2003).
8A rigorous specification has not yet been determined.
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CPsynset node. As discussed in the next subsection, additional descriptions in a bilingual
lexical resource offer useful information to fill the semantic gap between an entry word and the
translation equivalents. This information includes semantic restrictions on the translation equiv-
alents, as well as collocational or phrasal equivalents that detail the semantic range of an entry
word. However, to extract the information from an additional description, we need to analyze the
presented translation equivalent appropriately. This process would be highly resource-dependent,
owning to lack of a standardized presentation format. Nevertheless, a technique to extract differ-
entia (O’hara and Wiebe 2004) can be applied, as some of the translation equivalents are given in
the so-calledyenus-differenti@xpression pattern.

4. Although it is not depicted in Fig. 5, if necessary, two underspecified TL senses, will eventu-
ally be grounded to the correspondiSgnse nodes in a French lexical semantic resource. This
sub-process is calletiL sense groundingnd is organized in a similar way to that of SL sense
grounding, requiring a computational lexical semantic matching process with human intervention.
However it may be a more difficult process, because, in general, translation equivalents provided
in a bilingual resource are not well structured and tend to lack rich semantic descriptions.

3.3 Dealing with Partial Equivalences

The method used for creatingGP_Synset node should consider the nature of the translation equiva-
lents given in a variety of bilingual resources. Translation equivalence can be classified into full equiv-
alence, partial equivalence or zero equivalence (e2609). He points out that this classification is
rough, but important, in the sense that it may determine the way in which a translation equivalent is
presented. Among these, partial equivalence is the most noteworthy, becpiisaent differentiation
has to be implemented in the dictionary description in some way, and the relevant information should
be extracted and encoded in the computational representation. The cases of partial equivalence can be
further divided intoconvergencéneutralizatior) or divergence

The English-to-French correspondences in the motivating example can be classified as an instance
of divergence. Another example of divergence is presented by the Japanesshupindwhich, in
English, corresponds thostor hostess depending on the gender of the perSoiThis example can
be represented in a similar way to Fig. 5:C&®.synset node for{shujin.jwn.1, host. * 1,
with TL_addition "male”, and anotheCP.synset for {shujin.jwn.1, hostess. * }, with
TL_addition  “female.” These examples show that in cases of divergence, an SL sense is divided into
a set of finer-grained concepts. Generally, a divergence instance is signalled by the additional description
that specifies the sense or semantic range of a translation equivalent.

........... D Closed: {ani.jwn.1}

o

o Open: {brother*}

K4 SL_addition: “older”
. [—OC—@
- <>\ “ani’— “ “anijwn.1 “(older) brother”

- JCLL L Closed: {otouto.jwn.1}

I .O O ‘.“‘ Open: {brother.*}
iR }{otouto.jwn.l) o SL_addition: “younger”

“otouto”  otouto.jwn.l “{younger) brother”

Figure 6: Sample Representation of Conversion-type Partial Equivalence.

Convergence can be illustrated by the example schematized in Figure 6, in which the Japanese word
ani (elder brother) andtouto(younger brother) are jointly associated with the English warather, in
the sense dblood brother . Contrary to the divergence cases, a convergence instance may be indi-
cated by a phrasal translation equivalent that preserves, or tries to convey, the finer-grained SL meaning.

"Actually, the EDR bilingual dictionaryhttp://www2.nict.go.jp/r/r312/EDR/ ) presents: {(male)) host”
and "((female)) hostess,” respectively.
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To encode the semantic restriction to the entry word in the SL, we introdu&i_tlagldition  feature,

as shown in Fig. 6. It should be noted that the two underspedifitdynset nodes would eventually

be grounded to the san&ense node in an English semantic resource and hence disambiguated and
converged

4 Modeling Cross-lingual/Interlingual Correspondences for Reuse

4.1 Overall Picture

Figure 7 shows almost the entire representation of the motivating example, providing more detail than the
brief sketch shown in Fig. 3. Note that the numbe@#iSynset nodes are placed at logically identical
positions to those in Fig. 3. In Fig. 7, we introduce instances of the dlasSense _Grounding

(shaded diamonds): BL_Sense _Grounding node is created when the open translation equivalent

of an MPSynset node is closed by being grounded tdSgnset node in the TL lexical semantic
resource. With this grounding, together with 8le Sense _grounding , an entry in a bilingual lexical
resource works as a bridge from an SL lexical concept to the corresponding TL lexical concept via the
MPSynset node.

Jjwn ewn fwn

stream.ewn.1, ...} {riviere.fwn.1, ..
- —
/’ - river.ewn.1} ’ - - ~ \
{kawa.jwn j}}/ I \\ TL_Sense_Grounding, \
{fleuve.fwn.1, ...}
L N R
<> "‘ Closed:{kawa.jwn.ll 7 N @Elosed:(ri_vg\r.ewn.l, ] 1
LI stream.ewn.l}}/ he e riviere.fwn.1} » I
(N ’
< ’: river  riverewn.l ‘0 ”Vlere - a‘ I
.... -
) " e e
I JLjwn.1 '0.,..."5_1‘_".?_0_’:7"_ \ Closed: {river.ewn.1, fleuve.fwn.1} ‘
Closed: {kawa.jwn.1,\_ “fleuve (river that flows into the sea)” TL_addition: “flows into the sea”

riverewn.1} - - ~a -

................ ————
-—— - -

D_O_. Closed: {stream.ewn.1,

stream  stream.ewn.l “riviére” riviere.fwn.1}

“river”

Figure 7: Proposed Representation of the Motivating Example.

Closed: {kawa.jwn.1,  Closed: {kawa.jwn.1,  Closed: {kawa.jwn.1,
stream.ewn.1, riverewn.1, riverewn.1,
riviere.fwn.1} riviere.fwn.1} fleuve.fwn.1}

OO NN
© T o

Figure 8: Resulted Lattice-like Structure.

To avoid an unnecessarily complicated diagram, Fig. 8 shows an extra part of the configuration shown
in Fig. 7. In this figure, thre®lPSynset nodes (indicated by Greek letters) are introduced, and linked
to the associate@P.Synset nodes. At the time of writing this paper, the underlying computational
process for deriving the indirect correspondences was still under investigation. However, it is however
obvious that the process has to properly filter out inappropriate transitivities to avoid the semantic drift
across languages. Again, this would need human intervention, but this may require that the person has
competence for all the relevant languages. Therefore an effective machinery to assist him/her to make
judgments will be necessary.

Incremental creation of thBIPSynset nodes gradually forms a lattice-like multilingual concept
structure. This suggests that our proposed framework is similar talSIMA (Janssen 2004), which
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applies formal concept analysis (FCA) to derive a concept lattice with the words and formal concepts.
However, our framework is clearly different in the sense that we propose an LMF-based representa-
tion framework, while considering an incremental formulation of a distributed network structure, as
discussed.

4.2 Specifications of the Proposed Constructs

Allin all, we have proposed four classes in this pag&P.Synset , MPSynset , SL_Sense _Grounding ,
andTL _Sense _Grounding . These classes, which could extend the current ISO LMF, are specified as
follows.

A CP.Synset node is initiated when a lexical entry in a bilingual lexical resource is activated.

e An MPSynset node is introduced whe@P_Synset /MP.Synset nodes are combined to define
a multilingual pseudo synset.

e An instance node of thBL_Sense _Grounding class associates@®ense node of an existing
bilingual lexical resource entry with the correspondiBygnset node in an SL lexical semantic
resource. In the original LMFSense -to-Synset  association is direct and does not require an
intermediate node. However, the insertion of $ilnSense _Grounding node is necessary to
record the detail of the lexical semantic matching process.

e An instance node of th€L_Sense _Grounding class associates the translation equivalent of a
bilingual lexical resource entry with the corresponding $§nset node, closing the formerly
open translation equivalent.

Central to our framework is theP_.Synset andMPSynset classes, which are similar to the LMF
Synset class in the sense that an instance of these classes represents a set of synonymous senses.
However, theCP_.Synset and MPSynset classes differ from the LMFSynset class, because an
instance node of the classes gathers synonymous senses across the languages. SéieskeMxis
class is another LMF construct that has something in common withB®ynset class is. However,
we strongly expect that with thdP Synset class, multilingual correspondences will be incrementally
recovered and established, while also pointing ta3base nodes in bilingual lexical resources.

4.3 Toward Reusing Recovered Correspondences

Recovered and established cross-lingual/interlingual correspondences should be made persistent some-
where on the Web-based linguistic service infrastructure, so that they can be reused. In other words, these
correspondences should be converted into a sort of secondary language resource. Jusbéikeghe
Axis class in the original LMF, instances of ti@gP_Synset andMPSynset classes can be aggre-
gated in an instance of theexical Resource . Inthis way, the_exical Resource instance can
indirectly associate the involvddexicon instances, which are existing primary resources.

However, to make this scenario work, the following issues have to be addressed.

¢ All the nodes and links external to the existing language resources have to be properly stored
somewhere in the infrastructure and made retrievable. This means that standardized Web APIs
that enable the search and retrieval of the storage have to be provided.

e At the same time, relevant elements of the existing language resources, stighsat nodes
or Sense nodes, have to be indexed and be retrievable externally. Assigning global identifiers
(URIs) to the elements may be a feasible way to do this. This may also facilitate the servicization
of language resources as exemplified in (Savas et al. 2010).
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5 Related Work

This paper discusses a framework for representing a global and distributed lexical semantic network,
while presupposing an environment in which a number of lexical resources have been Web-servicized.
Given such an environment, (Calzolari 2008) has pointed out the possibility of creating new resources
on the basis of existing resources, and some work in this direction has been published, such as Soria et
al. (2009) and Savas et al. (2010). This line of work is expected to improve further and increase, as
Web-based linguistic service infrastructures evolve and gain popularity.

Obviously, another related area of research is lexicon modeling. Although the ISO LMF will un-
doubtedly be used as a solid and shared framework, requirements to its revisions/extensions continue
to emerge. Among them, Maks et al. (2008) pointed out that LMF should more explicitly represent
language-dependent usage and contrasts, and they proposes a model that compromises between the MRD
extension and the multilingual extension. This solution might be reasonable, if we are to represent an
existing bilingual dictionary precisely. Nevertheless, the solution may not be sufficient to model and
represent an evolving distributed lexical semantic network, which is a prerequisite for this paper. The
problem raised up by Maks et al. (2008) is closely related to the issue posed by Trippel (2010), in
which he statest MF provides the container for combining such resources of different types, but does
not merge them into one formalisr®iven this motivation, he presented a formal lexicon model called
Lexicon Grapharguing that the lossless combination of lexical resources could be accomplished.

6 Conclusions

Presupposing a highly servicized language resources environment, this paper proposed a representation
framework for cross-lingual/interlingual lexical semantic correspondences that would be recovered in-
crementally on a Web-based linguistic service infrastructure. The main contribution of this paper is
twofold: (1) the notion opseudo synsgivhich is introduced to represent pseudo lexical concepts shared

by more than one language; (2) the frameworksamantifying bilingual lexical resourceshich allows

bilingual lexical resources to be used as a bridge to associate lexical concepts in different languages.
This paper also discussed how the recovered correspondences can be organized as sdyoadacy
language resourgenhile examining a set of possible extensions to the ISO LMF.

For future work, several items need to be pursued. First we have to extend the representation frame-
work to appropriately accommodate verb and adjective concepts, in which more complicated relation-
ships among linguistic elements have to be organized. Second, we plan to work further on the seman-
tification of bilingual lexical resources. In particular, we intend to devise a formalism and mechanism
to represent multi-word lexical entries and complicated translation equivalents. Multi-word expressions
are more frequently observed in bilingual resources compared to monolingual resources; they are useful
to describe the lexical semantic gaps between the languages. Last but not least, we intend to implement
prototype services around some existing lexical resources. To do this, along with the basic semantic
matching processes, we have to establish an effective workflow that involves human assessors to approve
the recovered cross-lingual correspondences and the inferred multilingual correspondences. In this re-
gard, the notion of aense pochnd the verification process proposed by Yu et al. (2007) should be highly
relevant as a reference.
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Abstract

This paper argues that all subject noun phrases can be given a quantified formalisation in terms
of the intersection between their denotation set and the denotation set of their verbal predicate. The
majority of subject noun phrases, however, are only implicitely quantified and the task of retrieving
the most plausible quantifier for a given NP is non-trivial. We propose a formalisation which captures
the underspecification of the quantifier in subject NPs and we show that this formalisation is widely
applicable, including in statements involving kinds. We then present a baseline for a quantification
resolution system using syntactic features as basis for classification. Although the syntactic baseline
provides a respectable 78% precision, our error analysis shows that obtaining true performance on
the task requires information beyond syntax.

1 Quantification resolution

Most subject noun phrases in English are not explicitly quantified. Still, humans are able to give them
quantificational interpretations in context:

Cats are mammals = A/l cats...
Cats have four legs = Most cats...
Cats were sleeping by the fire = Some cats...

The beans spilt out of the bag = Most/All of the beans...

A

Water was dripping through the ceiling = Some water...

We refer to this process as quantification resolution, that is, the process of giving an implicitely quan-
tified NP a formalisation which expresses a unique set relation appropriate to the semantics of the utter-
ance. For instance, the most plausible resolution of 1 can be expressed as:

6. All cats are mammals.

| N Y| = || where ¢ is the set of all cats and 1 the set of all mammals.

Resolving the quantification value of NPs is important for many NLP tasks, in particular for infer-
ence. We would like to be able to automatically perform the type of interpretations shown in 1 to 5.
It will allow us to draw conclusions such as If (all) cats are mammals and Tom is a cat, then Tom is a
mammal and If (some) cats are in my garden, then (some) animals are in my garden.

The task of quantification resolution involves finding a semantic representation that goes beyond what
is directly obtainable from a sentence’s syntactic composition. We can write the(z, cat’(x), sleep’(z))
as we would write some(x, cat’ (), sleep’(z))?, but while the quantification semantics of some can be

!'The type of entailment relying on word substitution is dependent on quantification: (All) cats are mammals doesn’t imply
that (All) animals are mammals.
>We use here a generalised quantifier notation were the first argument of the quantifier is the bound variable.
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fully defined (given a singular NP, we are talking of one entity only), that of the cannot: in a singu-
lar NP introduced by the, the referent can either be a single entity or a plurality with various possible
quantificational interpretations (cf The cat is sleeping vs The cat is a mammal).

This paper is an attempt to provide a formal semantics for implicitely quantified NPs which a) sup-
ports the type of inferences required by NLP, b) has good empirical coverage (beyond ‘standard’ lin-
guistic examples), c) lends itself to evaluation by human annotation and d) can be derived automatically.
We draw on work in formal linguistics, but by formulating the problem as quantification resolution,
we obtain an account which is more tractable from an NLP perspective. We also present preliminary
experiments that automate quantification resolution using a syntax-driven classifier.

2 Under(specified) quantification

The phenomenon of ambiguous quantification overlaps with genericity. Generic NPs have tradition-
ally been described as referring to kinds (Krifka et al., 1995) and one of their most frequent syntactic
expressions is the bare plural, although they occur in definite and indefinite singulars too, as well as
bare singulars. There are many views on the semantics of generics (e.g. Carlson, 1995; Pelletier and
Asher, 1997; Heyer, 1990; Leslie, 2008) but one of them is that they quantify (Cohen, 1996), although,
puzzlingly enough, not always with the same quantifier:

7. Dogs are in my garden = Some dogs...

8. Frenchmen eat horsemeat = Some/Relatively-many Frenchmen... (For the relatively many reading,
see Cohen, 2001.)

9. Cars have four wheels = Most cars...

This behaviour has so far prevented linguists from agreeing on a single formalisation for all generics.
Note that relegating the various readings to a matter of pragmatics, formalising all bare plurals using an
existential, is no solution as we are then unable to explain the semantic difference between, for instance,
Mosquitoes carry malaria and Some mosquitoes carry malaria. The only accepted assumption is that
an operator GEN exists, which acts as a silent quantifier over the restrictor (subject) and matrix (verbal
predicate) of the generic statement.

In this paper, we take an approach which sidesteps some of the intractable problems associated with
the literature on generics and which also extends to definite plurals, as discussed below. Instead of
talking of ambiguous quantification, we will talk of underspecified quantification, or underquantifi-
cation. By this, we mean that the bare plural, rather than exhibiting a silent, GEN quantifier, simply
features a placeholder in the logical form which must be filled with the appropriate quantifier (e.g.,
uq(z, cat’(z), sleep’(z)), where ugq is the placeholder quantifier). This account caters for the facts that
so-called generics can so easily be quantified via traditional quantifiers, that GEN is silent in all known
languages, and it explains also why it is the bare form which has the highest productivity, and can denote
a range of quantified entities, from existentials to universals. Using the underquantification hypothesis,
we can paraphrase any generic of the form ‘X does Y’ as ‘there is a set of things X, a certain number of
which do Y’ (note the partitive construction).

We now turn to definite plurals which have traditionally been thought to be outside of the genericity
phenomenon and associated with universals (e.g., Lyons, 1999). Definite plurals do exhibit a range of
quantificational behaviour and thus we argue that they should be studied as underquantified forms too.
Consider the following, from Dowty (1987):

10. At the end of the press conference, the reporters asked the president questions.

Dowty remarks that it is not necessary that all reporters ask questions for the sentence to be true. In fact,

it is only necessary that some of them did. Dowty says: “The question of how many members of the

group referent of a definite NP must have the distributive property is in part lexically determined and in

part determined by the context, and only rarely is every member required to have these properties.”
Following the existential reading, we can write:
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11. some(x,reporter’(x), askQuestion’(x))

The problem is that for Dowty, the NP refers to a ‘group’, i.e., to the reporters as a whole, and not to
specific reporters. We don’t want to say ‘there is a small set of reporters, each of which asked a question’;
we want to say ‘there is a large set of reporters — all those present at the press conference — and some
of them asked a question’, i.e., we want to use a partitive construction. We follow Brogaard’s (2007)
account of definite plurals as partitive constructions, where she examines the following:

12. The students asked questions.

Brogaard argues that, given X, the denotation of the students, a subset Y of X is selected via the quan-
tifier some and that the verbal predicate applies (distributively) to Y. A similar account can be given
of (10): there is a set of reporters, and a certain number of elements in that set (some reporters) asked
questions — which is our desired reading. Note that all definite plurals can have this interpretation (e.g.,
possessives and demonstratives also).

We will next argue that the partitive construct observed in definite plurals can be generally applied to
subject NPs and we will propose a single formalisation for all underquantified statements.

3 Formalisation

3.1 Link’s notation (1983)

In what follows, we briefly define each item of notation used in this work, as taken from Link (1983).
We illustrate the main points via examples over a closed world W containing three cats (Kitty, Sylvester
and Bagpuss).

The background assumption for our formalisation is that, following Link, plurals can be represented
as lattices. The star sign * generates all individual sums of members of the extension of predicate P. So
if P is cat’, the extension of * P is a join-semilattice representing all possible sums of cats in the world
under consideration. The join-semilattice of cats in world W is shown in Fig 1.

{K.5.B}

T | T

{K.5] {K.B} {8.B]

o<

{K} {8} {B}

Figure 1: Join-semilattice of all cats in world W

The sign o is the sum operator. ox Px represents the sum, or supremum, of all objects that are * P.
o*x Px represents the proper sum of Ps, that is, the supremum of all objects that are proper plural
predicates of P. The sum includes (non-plural) individuals such as K or S while the proper sum doesn’t.
In worlds where there is more than one object in the extension of *P, cxPx = o*xPx: e.g., in Fig 1,
the sum of all cats is the same as the proper sum of all cats, i.e., the set {K,S,B}. (Compare this with a
world where there is only one cat, say Kitty: then oz Px = { K} while o*x Pz = ().

The product sign ] expresses an individual-part relation. The - sign in combination with [[ indi-
cates atomic part. Following Chierchia (1998), we assume the same underlying lattice for both mass
terms and count nouns, so we use the [] and - operators for formalising quantification over mass entities.

3.2 Collective and distributive predicates

Some predicates are collective: they refer to a group as a whole and not to its instances (13). Other
predicates are always distributive (14):
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13. Antelopes gather near water holes (*Andy the antelope gathers near water holes.)

14. Three soldiers were asleep (Tom was asleep, Bill was asleep, Cornelia was asleep.)
Most verbal phrases, though, are ‘mixed predicates’ that accept both readings:
15. Three soldiers stole wine from the canteen.

(Tom, Bill and Cornelia went together to the canteen to steal wine or Tom, Bill and Cornelia each
stole wine from the canteen.)

Collective predicates can be a source of confusion when trying to directly apply quantification to an
ambiguously quantified NP:

16. (*Some/Most/All) Americans elect a new president every five years.

Quantifying 16 seems initially impossible in shallow form: we cannot write all(x,american’(z),electPres’(x))
as it seems to imply distributivity. However, we refer to the reporter example (10) and the latent partitive
construct that we suggested existed in that (distributive) sentence. By similarity, we can say that there

is a set X of Americans able to vote, and a subset Y of those — which in this case is selected by the
quantifier all and is therefore equal to X — collectively elects the president.

3.3 Formalising the partitive construct

Following Link (1998) for the formalisation of collective and distributive predicates, we can write, for
10 and 16:

17. X = o*x reporterAtPressConference’ (z) A IY[Y [[ X AVz[z - []Y —askques'(z)]]
18. X = o*zvotingAmerican’(z) A 3Y[Y [] X AelectPresident’ (V)]
For the collective case, we just apply the verbal predicate collectively.
We can then add the quantifier resolution. We assume a three-fold partitioning of the quantificational

space, corresponding to the natural language quantifiers some, most and all (in addition to one, for the
description of singular, unique entities). The corresponding set relations are:

19. if some(, 1) then 0 < |p N |
20. if most(¢p, ) then |p — | < |[p N Y|
21. if all($, 1) then | — | = 0

These set relations can be expressed in terms of the sets involved in the partitive construction: in 16,
if X is the set of all Americans able to vote, Y the subset of X selected by the quantifier, and Z the set of
all things that elect the president, then Y actually represents the intersection X N Z. We can thus write:

22. X = o*zreporterAtPressConference’ () A JY[Y [T X AVz[z - [[Y —askques'(z)] A (0 < |Y])]
23. X = o*z votingAmerican’(z) A FY[Y [] X AelectPresident’(Y') A (| X — Y| = 0)]
The same principle applies to mass nouns. We show below a distributive example.
24. Water was dripping through the ceiling.
X = o*z water’(z) AJY[Y [[ X AVz[z - [[Y —dripThroughCeiling’(z)] A (0 < [Y])]
We thus write the underspecified quantifier as:
25. X =co*z P'(x) NIY[Y [T X A Q(Y)] A quantConstraint(X,Y)]

where the quantConstraint ensures the correct cardinality of Y for various quantifiers and the predicate ()
applies distributively or collectively depending on the semantics of the sentence. X and Y respectively
denote the Nbar and NP referents in the quantified paraphrase of the statement.

3Note that in the two examples, we have restricted X to the relevant set of entities. We will not investigate here how this
particular reference resolution takes place.
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4 Kinds

In order to argue that our formalisation is applicable to all subject noun phrases, we must briefly come
back to the case of generics which, in some linguistic accounts, are not seen as quantified (Carlson,
1977).* According to those accounts, the subject NP in sentences such as The cat is a mammal (the
kind) can be regarded as an entity similar to proper nouns. The generic reading of the sentence then
takes a straightforward subject/predicate formalisation of the type mammal’(cat’). The main argument
in favour of such a representation is the existence of sentences where the verbal predicate seems to only
be applicable to a species rather than to its instances:

26. The dodo is extinct.

Such cases, we claim, do not preclude quantification. We use the accounts of Chierchia (1998) and
Krifka (2004), where a kind is defined as a function that returns the greatest element of the extension of
the property relevant to that kind: Kind(X) = o*x X'(x). This gives us the following for 26:

27. X =o*zdodd (x) N IYYTIX A extinct’ (V) A (JY — X| = 0)]

We stress however that we do not deny the validity of representations that involve a simple sub-
ject/predicate structure. It should be clear that the sentence The cat is a mammal has an interpretation
where the species ‘cat’ is attributed the property of being a mammal. What we argue is simply that the
meaning of the sentence also includes a quantificational aspect. We want, after all, to be able to make
natural inferences about individual cats: if the cat is a mammal then Tom the cat is a mammal. We believe
that both quantification and a subject/predicate formalisation are necessary to fully render the semantics
of such sentences. We will also argue in Section 7 that for the purposes of computational linguistics, it
is actually desirable to formalise the quantificational aspect separately, as part of the full semantics.

We should also note that the genericity phenomenon is usually seen as encompassing habitual con-
structions (Krifka et al., 1995). Our quantificational account of kinds will not necessarily be applicable
to quantification of events and we do not wish to make any claims with regard to habituality in this paper.
For completeness, we will however point out that, following Chierchia (1995) on indefinites, we see
quantification adverbs as able to bind, and therefore quantify over individuals: according to this view,
the most felicitous reading of Mosquitoes sometimes carry malaria is Some mosquitoes carry malaria,
formalisable with 25.

5 Automatic quantification: first attempts

To our knowledge, no attempt at the automatic specification of quantification has been made before. In
consequence, we start our investigation with the simplest possible type of machine learning algorithm,
using as determining features the direct syntactic context of the statement to be quantified. The general
idea of such a system is that grammatical information such as the number of a subject noun phrase and
the tense of its verbal predicate may be statistically related to its classification.

5.1 Gold standard

We built a gold standard by re-using and expanding the quantification annotations we produced in Herbe-
lot and Copestake (2010). This small corpus, which contains randomly extracted Wikipedia® sentences,
provides 300 instances of triply annotated subject noun phrases. The categories used for annotation are
the natural language quantifiers ONE, SOME, MOST, ALL and the label QUANT (for noun phrases of the
type some cats, most turtles or more than 37 unicorns which, being explicitly quantified, do not enter our
underquantification account and must be marked with a separate label). In order to convert the multiple

“A more comprehensive discussion can be found in Herbelot (2010).
Shttp://www.wikipedia.org/
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annotations to a gold standard, we used majority opinion when it was available and negotiation in cases
of complete disagreement. There were only 14 cases where a majority opinion cannot be obtained.

The main issue with the resulting gold standard is its relatively small size. The 300 data points it
provides are clearly insufficient for machine learning, but the annotation process is time-consuming and
we do not have the resources to set up a large-scale annotation effort. As a trade-off, the first author
of this paper annotated a further 300 noun phrases, thus doubling the size of the gold standard. As a
precaution, we ran the classifier presented later in this section over the original gold standard and over
the new annotations; no substantial difference in performance between the two runs was found.

Table 1 shows the class distribution of our five quantification labels over the 600 instances of the
extended gold standard.

Class | Number of instances | Percentage of corpus

ONE 367 61%
SOME 53 9%
MOST 34 6%

ALL 102 17%

QUANT 44 7%

Table 1: Class distribution over 600 instances

We note, first, that the number of explicitly quantified noun phrases amounts to only 7% of the an-
notation set. This shows that the resolution of underquantification has potentially high value for NLP
systems. Next, we remark that 61% of all instances simply denote a single entity, leaving 32% to under-
quantified plurals — 189 instances. This imbalance is problematic for the machine learning task that we
set out to achieve. First, it means that the training data available for SOME, MOST and ALL annotations
is comparably sparse. Secondly, it implies that the baseline for our future classifier is relatively high:
assuming a most frequent class baseline, we must beat 61% precision.

5.2 Quantifying with syntax

Most of the remarks that can be found in the literature on the relation between syntax and quantification
have been written with respect to the generic versus non-generic distinction. Although we have moved
away from the terminology on genericity, the two following examples show the potential promises —
and hurdles — of using syntax to induce quantification annotations.

e Noun phrases which act as subjects of simple past tense verbs are usually non-generic: A cow says
‘moo’ / A cow said ‘moo’ (Gelman, 2004). However, the so-called ‘historic past’ is an exception
to this rule: The woolly mammoth roamed the earth many years ago.

e The combination of a bare plural and present tense is a prototypical indication of genericity: Tigers
are massive (Cimpian and Markman, 2008). But news headlines behave differently: Cambridge
students steal cow.

We informally investigate the distribution of various grammatical constructions with respect to quan-
tification, as obtained from our gold standard. Although some constructions give a clear majority to one
or another label, that majority is not always overwhelming. For instance, consistently annotating bare
plurals followed by a past tense as SOME would result in a precision of only 54%. It is therefore unclear
how accurate a classifier based only on syntax can be. (Note that the quantification phenomenon is un-
derstood to be semantically complex and that syntax is only one of many features used in the annotation
guidelines produced in Herbelot and Copestake, 2010.)
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5.3 Features

We give the system article and number information for the noun phrase to be quantified, as well as the
tense of the verbal predicate following it. In order to cater for proper nouns, we also indicate whether the
head of the noun phrase is capitalised or not. Article, number and capitalisation information is similarly
provided for the object of the verb. All features are automatically extracted from the Robust Minimal
Recursion Semantics (RMRS, Copestake, 2004) representation of the sentence in which the noun phrase
appears (obtained via a RASP parse, Briscoe et al., 2006). The following shows an example of a feature
line for a particular noun phrase (the sentence in which the noun phrase appears is also given):

ORIGINAL: [His early blues influences] included artists such as Robert
Johnson, Bukka White, Skip James and Sleepy John Estes.
FEATURES: past,possessive,plural,nocap,bare,plural,nocap

Note that articles belonging to the same class are labelled according to that class: all possessive
articles, for instance, are simply marked as ‘possessive’. This is the same for demonstrative articles.

5.4 Experiments and results

The aim of this work is not only to produce an automatic quantification system, but also, if possible,
to learn about the linguistic phenomena surrounding the underspecification of quantification. Because
of this, we choose a tree-based classifier which has the advantage of letting us see the rules that are
created by the system and thereby may allow us to make some linguistic observations with regard to the
cooccurrence of certain quantification classes with certain grammatical constructions. We use an off-the-
shelf implementation of the C4.5 classifier (Quinlan, 1993) included in the Weka data mining software.
We perform a 6-fold cross-validation on the gold standard and report class precision, recall and F-score.

Class \ Precision \ Recall \ F-score

ONE 86% (362/422) | 99% (362/367) | 92%
SOME 60% (25/42) 47% (25/53) 53%
MOST 33% (2/6) 6% (2/34) 10%

ALL 53% (57/108) | 56% (57/102) 54%
QUANT | 100% (22/22) 50% (22/44) 67%

Table 2: Class precision and recall for the quantification task

The C4.5 classifier gives 78% overall precision to the quantification task. Tables 2 shows per class
results for the three tasks. The figures in brackets indicate the number of true positives for a particular
class, followed by the total number of instances annotated by the system as instances of that class. The
classifier performs extremely well with the ONE class, reaching 92% F-score. Already quantified noun
phrases yield perfect precision and mediocre recall, as might be expected since we do not provide the
system with a list of quantifiers. The system performs less well with the labels SOME, MOST and ALL.

In order to understand the distribution of errors, we perform a detailed analysis on the first fold of
our data. Out of 100 instances, the classifier assigns 25 to an incorrect class. The majority of those
errors (44%) are due to the fact that the classifier labels all singulars as ONE, missing out on generic
interpretations and in particular on the plural reading of mass terms: out of 11 errors, 5 are linked to
a bare singular). The next most frequent type of error, covering another 16% of incorrectly classified
instances, comes from already quantified noun phrases being labelled as another class. These errors
affect the recall of the QUANT class and the precision of the SOME, MOST and ALL labels in particular
(most of those errors occur in plural noun phrases). The coarseness of the rules is again to blame for
the remaining errors: looking at the decision tree produced by the classifier, we observe that all bare

Shttp://www.cs.waikato.ac.nz/ml/weka/
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plurals followed by a present tense, as well as all definite plurals, are labelled as universals, while all
bare plurals followed by a past tense are labelled as SOME. This accounts for a further 7 errors. The last
three incorrect assignments are due to a dubious capitalisation rule.

5.5 Correspondence with linguistics

We observe that most definite plurals (including demonstratives and possessives) are classified as either
MOST or ALL. This fits the linguistic notion of a definite as being essentially universal (Lyons, 1999) but
also misses out on the correct quantification of statements such as 10.

We note also that non-capitalised bare plurals followed by a present tense are similarly classed as
ALL. This echoes the observation that the combination of bare plural and present is a typical manifes-
tation of genericity (if one understands genericity as a quantification phenomenon close to universality).
When followed by past or perfect tenses, an existential quantification with SOME is however preferred.

One of the puzzles opened by the classifier’s decision trees is the use of the direct object feature to
distinguish between MOST and ALL in the case of some definite plurals. Given Sentences 28 and 29, our
classifier would label the first one as ALL and the second one as MOST.

28. My cats like the armchair. ALL

29. My cats like the armchairs. MOST

At first glance, the rule seems to be a mere statistical effect of our data. We will however remark
that statements like 29 are reserved a special section in Link (1998), where they are introduced as ‘rela-
tional plural sentences’. One of Link’s claims is that those sentences warrant four collective/distributive
combinations — as opposed to two only in the case where the object is an individual. So we can say in
Sentence 29 that a collective of cats likes a collective of armchairs, or that this collective of cats likes
each armchair individually, etc. This proliferation of interpretations makes uncertainties more likely with
regard to who likes what, and to the quantification of the subject and object.

For now, we will simply conclude that, although a simple syntax-based classifier is able to classify
certain constructs with high precision, other constructs are beyond its capabilities. Further, it is difficult
to see how improvements can be made to the current classification without venturing outside of the
grammatical context. For instance, it seems practically impossible to improve on the high-precision rule
specifying that every singular noun phrase should be classified as ONE. Due to space constraints, we
will not report any further experiments in this paper. However, preliminary investigations into the use of
lexical similarity to resolve quantification ambiguity can be found in Herbelot (2010).

6 Previous work

The general framework of this proposal is an underspecification account close to that described in Pinkal
(1996) or Egg (2010). Computational approaches to underspecified quantification have so far focused
on the genericity phenomenon. Leaving aside the question of annotation, which is treated in Herbelot
and Copestake (2010), research on genericity can be classified within two strands: theoretical research
on defeasible reasoning and extraction of common sense knowledge. Attempts to model defeasible
reasoning were made in the 1980s with, for instance, the developments of default logic (Reiter, 1980)
and non-monotonic logic (McDermott and Doyle, 1982). With information extraction as aim, Suh et al.
(2006) attempt to retrieve ‘common sense’ statements from Wikipedia. They posit that common sense
is contained in generic sentences. Their system, however, makes simplifying assumptions with regard to
syntax: in particular, all bare plurals (and bare plurals only) are considered generic. In general, common
sense extraction systems tend to restrict the data they mine to avoid the problem of identifying genericity
(e.g., Voelker et al., 2007).
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7 Conclusion, with some remarks on semantics

We have shown in this paper that subject noun phrases that are not explicitly quantified could be rep-
resented in an underspecified form. We have also argued that this formalisation is applicable to all
constructs, including so-called generics. We have introduced a syntax-based classifier for quantification
resolution and discussed the limits of an approach relying on compositional information only.

We acknowledge that our quantificational account of noun phrases, and especially of generics, does
not satisfy the common requirement that a formalisation be a full description of the semantic particu-
larities of a linguistic phenomenon. We think, however, that this requirement has led to over-restrictive
approaches. One of the debates surrounding generics, for instance, relates to whether they should be
given a ‘rules and regulations’ or an inductivist truth condition (Carlson, 1995). Our view is that it would
be a mistake to exclude either interpretation. Burton-Roberts’ (1977) A gentleman opens doors for ladies
clearly has normative force and without doubt, also allows the hearer to make their own conclusions with
regard to the intersection between the set of all gentlemen and the set of people opening doors for ladies.

Our view of semantics is that it is a layered system and that specifying the quantification semantics
of a noun phrase does not mean providing the full semantics of that noun phrase. It may be argued that
the ideal semantics of generics should be unified and integrate all possible aspects of meaning. But such
a theory is yet to be developed for genericity and, from a computational point of view, may not even
be desirable: a modular representation of meaning allows us to only formalise the aspects that we are
interested in for a particular task, leaving the rest out.

The approach presented here can be said to implement the idea of ‘slacker’ semantics (Copestake,
2009) in that a) our experiments try to derive a specification from compositional information only and
b) we only attempt to specify one aspect of the meaning of noun phrases (quantification), leaving other
aspects unspecified. In the future, we would like to take away some of the slack in a) by using lexical
semantics in the specification of quantification. In order to do this, a much larger corpus should be
created for the training and testing of the system, and this will be our next task.
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Abstract

We present the results of several machine learning tasks that exploit explicit spatial language
to classify rhetorical relations and the spatial information of narrative events. Three corpora are
annotated with figure and ground (granularity) relationships, mereotopologically classified verbs
and prepositions, and frames of reference. For rhetorical relations, Naive Bayesian models achieve
84.90% and 57.87% accuracy in classifying NARRATION and BACKGROUND / ELABORATION re-
lations respectively (16% and 23% above baseline). For the spatial information of narrative events,
K* models achieve 55.68% average accuracy (12% above baseline) for all spatial information types.
This result is boosted to 71.85% (28% above baseline) when inertial spatial reference and text se-
quence information are considered. Overall, spatial information is shown to be central to narrative
discourse structure and prediction tasks.

1 Introduction

Clauses in discourse are related to one another in a number of semantic and pragmatic ways. Some of the
most prominent are temporal relations that hold among the times of events and states described (Partee,
1984; Pustejovsky et al., 2003) and the rhetorical relations that hold between a pair of clauses (Mann
and Thompson, 1987; Asher and Lascarides, 2003). For example, (1) illustrates the NARRATION relation
which obtains between (1a-b) and between (1b-c).

(1) a. Klose was sitting with his teammates.
b. He walked to the sidelines.
¢. Then he entered the game.

Because of the temporal properties of NARRATION (Asher and Lascarides 2003, p. 462), the event
described in (1a) is taken to precede that described in (1b) and (1b)’s event to precede (1c)’s. As Asher
and Lascarides show, there is a close tie between the rhetorical structure of a discourse and its temporal
structure. In (2), for example, the fact that the clauses are related by ELABORATION entails that the
temporal relation between (2a) and (2b) is inclusion.

(2) a. Klose scored a goal.
b. He headed the ball into the upper corner.

We observe that the spatial relations among the locations of the events described in these discourses
are also highly determined by the rhetorical relations between the clauses used to describe them. In
the NARRATION-related discourse (1), there is a spatial progression: Klose is located relative to his
teammates (1a), he then moves from the bench to the sidelines (1b), and then he moves from the sidelines
into the game (1c). In the ELABORATION-related discourse (2), there is no such progression.

In this paper, we investigate the degree to which the spatial structure of discourse and its rhetorical
structure are co-determined. Using supervised machine learning techniques (Witten and Frank, 2002),
we evaluate two hypotheses: (a) spatial information encoded in adjacent clauses is highly predictive of
the rhetorical relations that hold between them and (b) spatial information is highly predictable based on
associated spatial information within narrative event clauses. To do this, we build a corpus of narrative
texts which are annotated both for spatial information (figure and ground (granularity) relationships,
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mereotopologically classified verbs and prepositions, and frames of reference) and rhetorical relations (a
binary NARRATION vs. ELABORATION/BACKGROUND distinction discussed in Section 3.2). This corpus
is then used to train two types of classifiers - one type that classifies the rhetorical relations holding
between clauses on the basis of spatial information, and another type that classifies spatial relationships
within clauses where the NARRATION relation holds. The results support both hypotheses and indicate
the centrality of spatial information to narrative discourse structure and associated classification tasks.

2 Background and Related Research

2.1 Rhetorical Relations

Rhetorical relations describe the role that one clause plays with respect to another in a text and contributes
to a text’s coherence (Hobbs, 1985). As such, these relations are pragmatic features of a text. In NLP
generally, classifying rhetorical relations has been an important area of research (Marcu, 2000; Sporleder
and Lascarides, 2005) and has been shown to be useful for tasks such as text summarization (Marcu,
1998). The inventory of rhetorical relations in Segmented Discourse Representation Theory (SDRT)
(Asher and Lascarides, 2003) is widely used in these applications. This inventory includes the following
relations, illustrated by example: NARRATION: Klose got up. He entered the game. ELABORATION:
Klose pushed the Serbian midfielder. He knew him from school. BACKGROUND: Klose entered the game.
The pitch was very wet. EXPLANATION: Klose received a red card. He pushed the Serbian midfielder.
CONSEQUENCE: If Klose received a red card, then he pushed the Serbian midfielder. RESULT: Klose
pushed the Serbian midfielder. He received a red card. ALTERNATION: Klose received a red card or he
received a yellow card. CONTINUATION: Klose received a red card. Ronaldo received a yellow card.

In previous work, rhetorical relations have been predicted based on a range of features including
discourse connectives, relation location, clause length, part-of-speech, content and function words, and
syntactic features (Marcu and Echihabi, 2002; Lapata and Lascarides, 2004). These systems have a wide
range of average accuracies for all relations sought to be predicted - e.g. 33.96% (Marcu and Echihabi,
2002) to 70.70% (Lapata and Lascarides, 2004) - and individual relations - e.g. RESULT - 16.21% and
EXPLANATION - 75.39% (Marcu and Echihabi, 2002) and CONTRAST - 43.64% and CONTINUATION -
83.35% (Sporleder and Lascarides, 2005). Our focus is on the NARRATION, BACKGROUND and ELAB-
ORATION relations, which account for over 90% of the discourses in our corpus.

2.2 Spatial Language and Discourse

Spatial language has been discussed in a number of NLP contexts. For example, linking natural language
with physical locations via semantic mark-up (e.g. SpatialML (MITRE, 2009)); spatial description and
wayfinding tasks (e.g. Anderson et al., 1991); and dialogue systems (e.g. Coventry et al., 2009), just
to name a very few. Perspectives on spatial language are similarly varied in terms of their focus and
theoretical background (e.g. cognitive, semantic and syntactic); however, common threads do emerge.
First, all physical spatial references are reducible to figure and ground relationships (Talmy, 2000). In
English, these are triggered by a deictic verb or adverb (e.g. went, here) (3a); a spatial preposition (e.g.
in, at) (3b); a particle verb (e.g. put on, got out) (3c); or a motion verb (e.g. drive, follow) (3d).

(3) a. [Ronaldo]t;gure is [here]ground-
b. [Ronaldo] ¢igure 1s in [the park] g, ound-
c. [Ronaldo] f;gyre rolled over [@D]ground-

[Ronaldo] f;4ure ran to [the park]y,ound-

a

Second, figure and ground relationships qualitatively vary by the type of verb and preposition cre-
ating the relationship. These differences can be modeled in mereotopology, which defines spatial re-
lationships in terms of regions and connections (e.g. RCC-8 (Randell et al., 1992)). We follow Asher
and Sablayrolles (1995) who classify prepositions based on the position (Position - at, Initial Direction
- from, Medial Position - through, Final Position - f0) and contact (Inner - in, Contact - against, Outer
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- along, and Outer-Most - beyond) of two regions (figure and ground). For verbs, Muller (2002) pro-
poses six mereotopological classes: Reach, Leave, Internal, External, Hit, and Cross. Pustejovsky and
Moszkowicz (2008) mapped Muller’s classes to FrameNet and VerbNet and propose ten general classes
of motion (Move, Move-External, Move-Internal, Leave, Reach, Detach, Hit, Follow, Deviate, Stay).

Third, figure and ground relationships vary by the perspective used to describe the relationship.
For this discussion, perspective takes two forms, granularity of spatial description (following Montello
(1993)) and frames of reference (following Levinson (1996)). Granularity refers to the level of detail
in a given spatial description. Montello (1993, p. 315) indicates four spatial granularities based on the
cognitive organization of spatial knowledge (summarized in (4)).

4 Ronaldo jumped on the ball.
Ronaldo is in the corner.
Ronaldo is running around the field.

d. Ronaldo is in Cape Town.

c oe

(4a) is a Figural granularity which describes space smaller than the human body. (4b) is a Vista gran-
ularity which describes space from a single point of view. (4c) is an Environmental granularity which
describes space larger than the body with multiple (scanning) point(s) of view. (4d) is a Geographic
granularity which describes space even larger than the body and is learned by symbolic representation.

Frames of reference provide different ways of describing the same spatial relationships. For example,
given a static scene of Ronaldo sitting on a bench next to his coach, each utterance in (5) would be an
accurate spatial description.

(5) a. Deictic: Ronaldo is there.
b. Contiguity: Ronaldo is on the bench.
c. Named Location: Ronaldo is at the sideline.
d. Relative: Ronaldo is in front of me.
e. Intrinsic: Ronaldo is behind his coach.
f. Absolute: Ronaldo is north of his coach.

(5a-c) are non-coordinated as they relate just the figure and ground. Coordinated information, relating
the figure to an additional entity within the ground, occurs in (5d-f). Frames of reference apply to both
static and dynamic relationships (Levinson, 1996, p. 360).

In terms of attending to spatial information in discourse, Herman (2001) argues that spatial informa-
tion patterns in narrative discourse carve out spatially defined domains that group narrative actions. In
particular, the emergence and change in different types of spatial reference to physical location (discourse
cues) create maps of the narrative actions. These discourse cues include figure, ground and path (motion)
relationships (3); frames of reference (5); and deictic shifts - here vs. there. Herman’s demonstration is
based on ghost story narratives that are rich in spatial reference.

Howald (2010) showed in a corpus of serial killer first person narratives, also rich in spatial reference,
that these spatial narrative domains, in the form of abstract Pre-Crime, Crime and Post-Crime events,
were predicted to a 90% accuracy from three spatial features (figure, ground, and spatial verb) and
discourse sequence. Overall, research by Herman (2001) and Howald (2010) demonstrates some level
of dependency between spatial information and discourse structure. The present research addresses the
specific question of whether there is a systematic relationship between spatial information and temporal
information via rhetorical relations and the spatial architecture of narrative events.

3 Data and Annotation

3.1 Data

Three corpora of narrative discourse were annotated with rhetorical and spatial information. These cor-
pora were then used to train and test machine learning systems. Summarized in Table 1, the three dif-
ferent narrative corpora selected for analysis were: (1) narratives from serial criminals (CRI) - oral and
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written confession statements and guilty pleas; (2) American National Corpus Charlotte Narrative and
Conversation Collection (Ide and Suderman, 2007) (ANC) - oral narratives in conversations collected in
a sociolinguistic interview format; and (3) The Degree Confluence Project (DEG) - this project, which
seeks to map all possible latitude-longitude intersections on Earth, requires that participants who visit
these intersections provide written narratives of the visit for inclusion on the project’s website.

Table 1: Relation and Spatial Clause Distribution

y Corpus | ANC n=20) DEG (n=20) CRI (n=20) || Total (N=60) |
Total Clauses 588 611 1,710 2,909
Spatial Clauses 260 354 932 1,546
Average 44.21 57.93 54.50 53.14
Total Rhetorical 568 591 1,690 2,848
Spatial Rhetorical 259 345 929 1,533
Average 45.59 58.37 55.00 53.82

20 narratives from each corpus were selected. There was a total of 2,909 (independent) clauses with
1,546 of those clauses containing spatial information - spatial clauses (53.14% on average). There was a
total of 2,848 relations with 1,533 of those relations where both clauses contained spatial information -
spatial rhetorical (53.82% on average).

3.2 Spatial Information and Rhetorical Relation Annotation

We developed a coding scheme for spatial information that consolidates the insights on spatial langauge
discussed in Section 2.2.

e FIGURE is an indication of grammatical person or a non-person entity (1 = I, my; 2 = you, your;
3 = he, she, it, his, her; 4 = we, our; 5 = you, your; 6 = they, their; NP = the purse, a bench, three
cars);,

e VERB is one of the four mereotopological classes - a consolidation of Pustejovsky and Moszkow-
icz’s (2008) ten classifications (State = was, stay, was sitting; Move = run, go, jump; Outside =
follow, pass, track; Hit = attach, detach, strike);

o PREPOSITION is one of four mereotopological classes based on Asher and Sablayrolles (1995)
(Positional = in, on; Initial = from ; Medial = through; Final = t0);

e GROUND is one of four granularities (Figural, Environmental, Vista, Geographic) (see (4)
above);

e FRAME is one of six frames of reference (Deictic, Contiguity, Named Location, Relative, In-
trinsic, Absolute) (see (5) above).

The three corpora were annotated by one of the authors. Annotation occurred one narrative at a
time and any information from that narrative could be used to resolve rhetorical relations and spatial
information. A reference sheet including several examples of each coding element was available to
the annotator. The annotation happened in two phases. First, each pair of clauses was annotated with
an SDRT relation. Second, each clause that contained a physical figure and ground relationship was
identified. The figure, ground, preposition and verb were annotated with a Figure, Verb, Preposition,
Ground, and Frame. We illustrate with (6) where the NARRATION relation obtains between (6a-b).

(6) a. Kaka kicked the ball into the goal.
b. Then he ran to the left side of the bench.
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The spatial annotation of (6a) is: FIGURE = NP, the ball; VERB = Hit (H), kicked; PREPOSITION =
Final (F), into, GROUND = Environmental (E), the goal; and FRAME = Contiguity (C). The spatial
annotation of (6b) is: FIGURE = 3, he; VERB = Move (M), ran; PREPOSITION = Final (F), fo the left
side of, GROUND = Environmental (E), the bench; and FRAME = Intrinsic (INT). The distribution of
spatial rhetorical relations is summarized in Table 2.

Table 2: Spatial Rhetorical Relation Distribution per Corpus
Relation [ ANC DEG CRI || Total |

NARRATION 133 124 654 911
BACKGROUND 74 87 238 399
ELABORATION 34 63 17 114
CONTINUATION 14 27 10 51

RESULT 3 22 0 25
EXPLANATION 0 16 1 17
ALTERNATION 0 0 9 9
CONSEQUENCE 1 6 0 7

Total 259 345 929 || 1,533

An additional individual was queried for inter-rater reliability against the author annotation. The rater
was given roughly one-third of the data (10 narratives (4 ANC, 4 DEG, 2 CRI) accounting for 510 spatial
clause pairs), the same example sheet used by the author, and as much time as needed to complete the
task. Average agreement and Cohen’s kappa statistics (Cohen, 1960) were computed between the inter-
rater and the author for the spatial annotations and NARRATION, BACKGROUND, and ELABORATION
codings. Individually, BACKGROUND and ELABORATION have low interannotator agreement (x = 32.92
and 54.20 respectively), but these two relations were often confused (26% of BACKGROUND relations
coded as ELABORATION and 12% of ELABORATION relations coded as BACKGROUND). As illustrated
in (7-8), both BACKGROUND and ELABORATION add information to the surrounding state of affairs.

(7) a. Klose entered the game.
b. The pitch was very wet.

(8) a. Klose pushed the Serbian midfielder.
b. He knew him from school.

As evidenced by the annotation confusions, the difference between these relations is difficult to distin-
guish and the distinction made by Asher and Lascarides (2003) is subtle - BACKGROUND’s temporal
consequence is one of overlap and ELABORATION, a subordinating relation, is one of part-of. However
collapsing these relations resulted in a fairly reliably distinguished category. Average agreement and
kappa statistics are summarized in Table 3.

Table 3: Agreement and Kappa Statistics for Relation and Spatial Codings

Coding H Agreement (%) H Kappa (x) ‘
All Rhetorical Relations 71.97 60.27
NARRATION 86.32 74.36
BACKGROUND / ELABORATION 73.40 62.20
Figure 9491 89.92
Verb 90.90 81.80
Preposition 78.35 56.70
Granularity 87.87 75.74
Frame 69.38 38.76
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For rhetorical relations, the average agreement and kappa statistic are consistent with previously re-
ported performances (e.g. Agreement = 71.25 / k = 61.00 (Sporleder and Lascarides, 2005)). We have
not been able to find previously reported performance accuracies for NARRATION, ELABORATION and
BACKGROUND relations specifically. However, « statistics from 60.00 to 75.00 and above are considered
acceptable (e.g. Landis and Koch, 1977). For the spatial codings, the average agreements are relatively
high with Preposition and Frame falling lowest. There is no basis for direct comparison of these num-
bers to other research as the coding scheme is novel.

4 Machine Learning Experiments

We constructed two machine learning tasks to exploit the annotated spatial information to determine what
contributions the information is making to narrative structure. The first task evaluates the prediction of
NARRATION and BACKGROUND/ ELABORATION relations based on pairs of spatial clauses. The second
task evaluates the prediction of spatial information types, based on the other spatial information types in
that clause, in individual clauses where the NARRATION relation holds.

4.1 Rhetorical Relation Prediction

4.1.1 Methods and Results

Task 1 builds a 2-way classifier for the NARRATION and BACKGROUND/ ELABORATION relations.
Clause pairs were coded as vectors (n = 1,424) - for example, the vector for (6) is NP3, HM, FF,
EE, CINT. These vectors were used to train and test (10-fold cross-validation) a number of classifiers.
The Naive Bayes classifier performed the best. Results are reported in Table 4.

Table 4: Naive Bayes Classification Accuracy and F-Measures for Task 1

] NARRATION H Accuracy (% / baseline) Precision Recall H F-Score

ANC 63.29 /58 .676 .633 .654
DEG 75.71/61 .803 57 779
CRI 90.12/73 .822 901 .860
TOTAL 84.90/ 68 .808 .841 .824
BACK/ ELAB || Accuracy (% / baseline) Precision Recall || F-Score
ANC 57.89 /41 532 .579 555
DEG 70.11/38 .642 701 .670
CRI 45.63/26 .624 456 527
TOTAL 57.87/35 .622 567 .593

For all corpora combined, the majority class ("baseline””) for NARRATION is 68% and 26% for BACK-
GROUND / ELABORATION; the classifier performs 16% and 22% above baseline respectively. The differ-
ence between the NARRATION and BACKGROUND / ELABORATION relations and baselines is statistically
significant for each corpus and all corpora combined - ANC: y? = 25.64, d.f. =1, p < .001; DEG: x? =
33.86,d.f. = 1, p < .001; CRI: x2 =22.69, d.f. = 1, p < .001; and TOTAL:x? = 34.09, d.f. = 1, p < .001.

4.1.2 Discussion

Again, we have not been able to find reported results for a direct comparison of NARRATION and BACK-
GROUND/ ELABORATION. However, the 84.90% and 57.87% (at 16% and 22% over baseline) perfor-
mance of our Naive Bayesian model is consistent with results reported in similar tasks. For example,
Marcu and Echihabi (2002) report an average accuracy of 33.96% (5-way classifier) and 49.70% (6-way
classifier) based on training with very large data sets. Sporleder and Lascarides (2005) report a 57.55%
average accuracy, based on training with large data sets, which is 20% over Marcu and Echihabi’s 5-way
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classifier and almost 40% over a random 20% baseline. Lapata and Lascarides (2004) report an average
accuracy of 70.70% for inferring temporal relations based on training.

We ran an additional set of experiments to determine the relative contribution of spatial features to
predict NARRATION and BACKGROUND / ELABORATION relations. As shown in Table 5, Figure and
Verb outperform Ground, Preposition and Frame in accuracy. Figure performs at a 71% average
accuracy (85% for NARRATION and 40% for BACKGROUND/ ELABORATION) and Verb performs at a
74% average accuracy (84% for NARRATION and 54% for BACKGROUND/ ELABORATION). Figure and
Verb appear to be most discriminating. Note that we are not suggesting that subject and verb generally
are similarly discriminatory - Figure and Verb in this task are overtly spatial. Despite the performance
of Figure and Verb, different subsets of spatial information worked better (we ran all permutations of
spatial features - the top five are listed in Table 5). However, the difference in performance is negligible.
For example, the best subset of Figure, Verb and Ground (85% and 58%) only performed 1% above
NARRATION and BACKGROUND/ ELABORATION prediction based on all five features combined.

Table 5: Single and Combined Spatial Feature Performance

Feature | NARRATION | BACK/ ELAB || Features | NARRATION | BACK/ ELAB
Figure (F) 85.58 40.33 FVG 85.24 58.33
Verb (V) 84.59 54.97 VGP 84.34 58.33
Prepostion (P) 97.34 1.00 FVGR 86.33 56.45
Ground (G) 97.33 1.00 FV 86.56 56.90
Frame (R) 98.02 2.00 VG 85.37 57.33

These results tell us several things about the relationship between spatial information and rhetorical
structure as it applies to narrative discourse. First, spatial information predicts rhetorical structure as
good as non-spatial types of linguistic information reported in other investigations and with many fewer
features. For example, Sporleder and Lascarides (2005) rely on 72 different features falling into nine
classes whereas we rely on 14 features in five classes. This suggests that spatial information is not only
central to rhetorical stucture, like temporal components, but central to the task of prediction. Second,
while the type of spatial information that predicts rhetorical structure is based on the primary figure and
ground relationship, it is the qualitative semantic variations within these elements that is providing the
discrimination. It is the organization of spatial relationships - (Verb and Preposition) and the perspective
provided by the narrator (Figure, Ground and Frame) combined - rather than any individual elements.

4.2 Spatial Information Prediction
4.2.1 Methods and Results

Task 2 is a series of five experiments. Each experiment builds a classifier for each type of spatial infor-
mation: a 6-way classifier for Frame; a 5-way classifier for Figure (Figure types 2 and 5 did not occur
in our corpus); and 4-way classifiers for Ground, Preposition and Verb. Single clauses that contribute
to the NARRATION relation were coded as vectors (n = 911) - for example, the single vectors for (6a)
and (6b) are NP, H, F, E, C and 3, M, F, E, INT. These vectors were used to train and test (10-fold
cross-validation) a number of classifiers to predict one of the five spatial features given the remaining
four. The K* classifier performed the best. Results are reported in Table 6. For all corpora combined, the
K* classifier performs above baseline for all spatial information (Figure = 9%, Verb = 17%, Preposition
= 9%, Ground = 19%, Frame = 8%) (x* = 20.95, d.f. =4, p < .001).

4.2.2 Discussion

Even though the accuracies of predicting spatial information are significantly above baseline, we sought
ways to boost performance by considering implicit spatial information. For those clauses without explicit
spatial information, we extended the annotation of the previous clause’s coding based on the inertia of
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Table 6: K* Classification Accuracy and F-Measures for Task 2

Spatial Information H Accuracy (% / baseline) Precision Recall H F-Score

Figure 4797/ 38 464 480 428
Verb 67.32/50 .635 .673 .640
Preposition 53.69 /46 492 537 499
Ground 53.59/34 .530 536 519
Frame 55.67 /47 .507 557 Sl

narrative texts. Rapaport, et al. (1994) discuss the temporal inertia of narrative texts - time moves forward
through narrative events. In the absence of updating, information is maintained. We suggest that inertia
applies to spatial information as well. For example, given the clauses - John entered the room. He sat
down. - we make the assumption that John sat down in the room that he entered. We illustrate with (9).

(9) a. Kaka kicked the ball into the goal.
NP, H.F.E,C, .33
b. The goaltender yelled in frustration.
NP.H, F.E, C, .66
¢. Then Kaka ran to the left side of the bench.
3, M\F,E INT, 1

No explicit spatial information exists in (9b). We took the coding from the explicit spatial information
in (9a) and maintained it for (9b). New explicit spatial information occurs in (9c) and the coding is
updated. Further, we included explicit sequence information as a measure of a given clause’s proportional
position within the text (.33, .66 and 1). In the absence of overt temporal specification (occuring in only
10% of the clauses in our corpus), the sequence information, a textual feature, parallels the temporal
progression (and inertia) of narrative events. This added 560 additional vectors (n = 1,471). The K*
classifier still performed the best. The results are summarized in Table 7.

Table 7: K* Classification Accuracy and F-Measures for Task 2 Boosted Vectors

SPATIAL INERTIA H Accuracy (% / baseline) Precision Recall H F-Score
Figure 51.73/41 .509 S17 473
Verb 70.22 /48 .673 .700 .679
Preposition 57.30/47 571 573 .540
Ground 62.61/35 .636 .626 .611
Frame 59.82/44 574 .598 564

SPATIAL INERTIA + SEQUENCE || Accuracy (% / baseline) Precision Recall | F-Score
Figure 70.56 / 41 702 .706 .699
Verb 79.33/48 .789 .793 .790
Preposition 67.91 /47 .676 .679 .674
Ground 72.39 /35 721 724 721
Frame 69.06 /44 .678 .6901 .681

Inclusion of the spatial inertia values improves performance of the K* classifier in all cases (x? =
40.59, d.f. =4, p < .001). Inclusion of sequence information improves performance even further (x>
= 102.36, d.f. =4, p < .001). Note that, despite the increase in performance, sequencing information
alone does not do as well, indicating that spatial information still plays a discriminatory role. Using
sequence information alone as a baseline (Figure = 47%, Verb = 52%, Preposition = 47%, Ground =
44%, Frame = 48%;), the normalized performance values above sequence baseline become Figure =
23%, Verb = 27%, Preposition = 28%, Ground = 20%, and Frame = 21%.

The ability to predict spatial features appears to be dependent both on a patterned distribution of
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the per-clause spatial information (increased by spatial inertia) and on the textual feature of sequence
(temporal inertia). This seems to hold despite the specific subject matter or spatial characteristics of a
given narrative. Considering the complete spatiotemporal picture for narrative clauses yields the best
prediction results and suggests that the spatial information structure of narrative discourse represents
some type of organization akin to what Herman (2001) and Howald (2010) have evaluated in spatially-
rich narratives. Based on the tasks presented here, this organization appears to be fundamental and
relative to formal temporally-informed discourse structure.

5 Conclusion

Exploration of the spatial dimension in narrative discourse provides interesting and robust possibilities
for computational discourse analysis. We have described two machine learning tasks which exploit
spatial linguistic features. In addition to improving on existing prediction systems, both tasks empirically
demonstrate that, when available, certain types of spatial information are predictors of the rhetorical
structure of narrative discourse and the spatial information of narrative event sequences. Based on these
results, we indicate that spatial structure is related to temporal structure in narrative discourse.

The coding scheme proposed here models complex and interrelated properties of spatial relationships
and perspectives and should be generalizeable to other non-narrative discourses. Future research will fo-
cus on different discourse corpora to determine how spatial information is related to rhetorical structure.
Additional future research will also focus on automation of the annotation process. The ambiguity of
spatial language makes automatic extraction of spatial features infeasible at the current state of the art.
Fortunately, average agreement and kappa statistics for coding of the spatial information and rhetorical
relations are within acceptable ranges. The annotated spatial features are semantically deep and useful
for not only computational discourse systems, but tasks that involve the semantic modeling of spatial
relations and spatial reasoning.
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Abstract

Measures of similarity have traditionally focused on cotmmythe semantic relatedness between
pairs of words and texts. In this paper, we construct an atialu framework to quantify cross-modal
semantic relationships that exist between arbitrary pingords and images. We study the effec-
tiveness of a corpus-based approach to automaticallyaltressemantic relatedness between words
and images, and perform empirical evaluations by measiusmgrrelation with human annotators.

1 Introduction

Traditionally, a large body of research in natural langupgeessing has focused on formalizing word
meanings. Several resources developed to date (e.g., Wb(hNler, 1995)) have enabled a systematic
encoding of the semantics of words and exemplify their usagkfferent linguistic frameworks. As a
result of this formalization, computing semantic relatesk between words has been possible and has
been used in applications such as information extractichramieval, query reformulation, word sense
disambiguation, plagiarism detection and textual entiin

In contrast, while research has shown that the human cegsijistem is sensitive to visual informa-
tion and incorporating a dual linguistic-and-pictoriapresentation of information can actually enhance
knowledge acquisition (Potter and Faulconer, 1975),nleaningof an image in isolation is not well-
defined and it is mostly task-specific. A given image, foranste, may be simultaneously labeled by a
set of words using an automatic image annotation algoritgrlassified under a different set of seman-
tic tags in the image classification task, or simply draw itsaming from a few representative regions
following image segmentation performed in an object I@adion framework.

Given that word meanings can be acquired and disambiguaied dictionaries, we can perhaps
express the meaning of an image in terms of the words thateanitably used to describe it. Specif-
ically, we are interested to bridge teemantic gaggSmeulders et al., 2000) between words and images
by exploring ways to harvest the information extracted frasual data in a general framework. While a
large body of work has focused on measuring the semantitasityiof words (e.g., (Miller and Charles,
1998)), or the similarity between images based on imageeooife.g., (Goldberger et al., 2003)), very
few researchers have considered the measure of semaatedmtssbetween words and images.

But, how exactly is an image related to a given word? In ngatjiantification of such a cross-
modal semantic relation is impossible without supplyingith a proper definition. Our work seeks to
address this challenge by constructing a standard evatutrimework to derive a semantic relatedness
metric for arbitrary pairs of words and images. In our worle @xplore methods to build a representa-
tion model consisting of a joint semantic space of imagesvamds by combining techniques widely
adopted in computer vision and natural language procesaintjwe evaluate the hypothesis that we can
automatically derive a semantic relatedness score usiaigpiht semantic space.

Importantly, we acknowledge that it is significantly hartiedecode the semantics of an image, as its
interpretation relies on a subjective and perceptual wtdeding of its visual components (Biederman,

In our paper, we are concerned with semamngiatednesswhich is a more general concept than semasiigilarity.
Similarity is concerned with entities related by virtuestioéir likeness, e.ghank-trust companybut dissimilar entities may
also be related, e.chpt-cold A full treatment of the topic can be found in Budanitsky arnidsH(2005).
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1987). Despite this challenge, we believe this is a wortegaech direction, as many important problems
can benefit from the association of image content in reldbomord meanings, such as automatic image
annotation, image retrieval and classification (e.g., (igeet al., 2010)) as well as tasks in the domains
of of text-to-image synthesis, image harvesting and auggtiga and alternative communication.

2 Reated Work

Despite the large amount of work in computing semantic eellass between words or similarity be-
tween images, there are only a few studies in the literatuse dssociate the meaning of words and
pictures in a joint semantic space. The work most similaruis evas done by Westerveld (2000), who
employed LSA to combine textual words with simple visuakfeas extracted from news images using
colors and textures. Although it was concluded that suclina jextual-visual representation model was
promising for image retrieval, no intensive evaluation yasformed on datasets on a large scale, or
datasets other than the news domain. Similarly, Hare e2@08) compared different methods such as
LSA and probabilistic LSA to construct joint semantic spaiteorder to study their effects on automatic
image annotation and semantic image retrieval, but theifuation was restricted exclusively to the
Corel dataset, which is somewhat idealistic and not refleaif the challenges presented by real-world,
noisy images.

Another related line of work by Barnard and Forsyth (20019dua generative hierarchical model
to learn the associative semantics of words and images fmowng information retrieval tasks. Their
approach was supervised and evaluated again only on thé dadaset.

More recently, Feng and Lapata (2010) showed that it is plesgd combine visual representations
of word meanings into a joint bimodal representation camstd by using latent topics. While their
work focused on unifying meanings from visual and textughdaa supervised techniques, no effort
was made to compare the semantic relatedness betweemgrpiirs of word and image.

3 Bagof Visual Codewords

Inspired by the bag-of-words approach employed in inforomatetrieval, the “bag of visual codewords”

is a similar technique used mainly for scene classificatdang et al., 2007). Starting with an image
collection, visual features are first extracted as datatpdiom each image, characterizing its appear-
ance. By projecting data points from all the images into aroom space and grouping them into a large
number of clusters such that similar data points are asdignéne same cluster, we can treat each cluster
as a “visual codeword” and express every image in the calects a “bag of visual codewords”. This
representation enables the application of methods usextimetrieval to tasks in image processing and
computer vision.

Typically, the type of visual features selected camgladal — suitable for representation in all images,
orlocal — specific to a given image type and task requirement. Glaaalifes are often described using a
continuous feature space, such as color histogram in tlifeestht color spaces (RGB, HSV and LAB),
or textures using Gabor and Haar wavelets (Makadia et @8)20n comparison, local features such as
key points (Fei-Fei and Perona, 2005) are often distinasacdifferent objects or scenes. Regardless of
the features used, visual codeword generation involvefotlmsving three important phases.

1. Feature Detection: The image is divided into partitions of varying degrees rlarity from
which features can be extracted and represented. Typieadlycan employ normalized cuts to
divide an image into irregular regions, or apply uniform reegtation to break it into smaller
but fixed grids, or simply locate information-rich local pla¢s on the image using interest point
detectors.

2. Feature Description: A descriptor is selected to represent the features thabeirgy extracted
from the image. Typically, feature descriptors (globalardl) are represented as numerical vec-
tors, with each vector describing the feature extractedacheegion. This way, an image is
represented by a set of vectors from its constituent regions
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Feature detection on overlapping patches

« y »
Projection of feature data points into Bag of Visual Codewords

a common feature space, followed by A®AS® - . ..
clustering to form visual codewords ®

Visual Codeword Vocabulary Set e

Figure 1: An illustration of the process of generating “Bé¢/sual Codewords”

3. Visual Codeword Generation: Clustering methods are applied to group vectors into efgst
where the center of each cluster is defined as a visual codeatd the entire collection of clusters
defines the visual vocabulary for that image collection. HHatage region or patch abstracted in
feature detection is now represented by the visual codemamped from its corresponding feature
vector.

The process of visual codeword generation is illustratefiguire 1. Fei-Fei and Perona (2005) has
shown that, unlike most previous work on object or scenesiflaation that focused on adopting global
features, local features are in fact extremely powerfulscu® our work, we use the Scale-Invariant
Feature Transform (SIFT) introduced by Lowe (2004) to dbscdistinctive local features of an image
in the feature description phase. SIFT descriptors areteeldor their invariance to image scale, rotation,
differences in 3D viewpoints, addition of noise, and chaimgédumination. They are also robust across
affine distortions.

4 Semantic Vector Models

The underlying idea behind semantic vector models is thateuts can be represented as points in a
mathematical space, and this representation is learneddrollection of documents such that concepts
related in their meanings are near to one another in thaesphcthe past, semantic vector models
have been widely adopted by natural language processiagnaers for tasks ranging from information
retrieval and lexical acquisition, to word sense disamdiigun and document segmentation. Several
variants have been proposed, including the original vespaice model (Salton et al., 1997) and the
Latent Semantic Analysis (Landauer and Dumais, 1997). faéimevector models are attractive because
they can be constructed using unsupervised methods obdtidnal corpus analysis and assume little
language-specific requirements as long as texts can belyelakenized. Furthermore, various studies
(Kanerva, 1998) have shown that by using collaborativetibigive memory units to represent semantic
vectors, a closer correspondence to human cognition cachievad.

While vector-space models typically require nontrivigdedraic machinery, reducing dimensions is
often key to uncover the hidden (latent) features of the $adistribution in the corpus, and to circumvent
the sparseness issue. There are a number of methods thaideaveeveloped to reduce dimensions —
see e.g., Widdows and Ferraro (2008) for an overview. Heeebriefly describe one commonly used
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technique, namely the Latent Semantic Analysis (LSA), tnéte its effectiveness in previous works for
reducing dimensions.

In LSA, term co-occurrences in a corpus are captured by mefaaslimensionality reduction op-
erated by &ingular Value Decomposition (SVD) on the term-by-document matrix representing the
corpus. SVD is a well-known operation in linear algebra,shitan be applied to any rectangular matrix
in order to find correlations among its rows and columns. S¥Bothposes the term-by-document ma-
trix T into three matrice3 = UX, VT whereX;, is the diagonak x k matrix containing the singula
values ofT, o > 09 > ... > 0} andU andV are column-orthogonal matrices. When the three matrices
are multiplied together the original term-by-document nimas re-composed. Typically we can choose
k' < k obtaining the approximatio ~ UX,/V7T.

5 Semantic Relatedness between Words and | mages

Although the bag of visual codewords has been extensivedd us image classification and retrieval
tasks, and vector-space models are well explored in na@mmgliage processing, there has been little
connection between the two streams of research. Spegijfitatiur knowledge, there is no research work
that combines the two techniques to model multimodal meprélatedness. Since we are exploring new
grounds, it is important to clarify what we mean by computing semantic relatedness between a word
and an image, and how the nature of this task impacts our hgpst The assumptions below are
necessary to validate our findings:

1. Computing semantic relatedness between a word and are imagves comparing the concepts
invoked by the word and the salient objects in the image abasgetheir interaction. This goes
beyond simply identifying the presence or absence of spedifiects indicated by a given word.
For instance, we expect a degree of relatedness betweenage showing a soccer ball and the
word “jersey,” since both invoke concepts liksports, soccer, teamwdrland so on.

2. The semantics of an image is dependent on the focus, sizpagition of distinct objects identi-
fied through image segmentation. During labeling, we exfféstsegmentation to be performed
implicitly by the annotators. Although it is possible to f@cone’s attention on specific objects via
bounding boxes, we are interested to harvest the meaningiofage using a holistic approach.

3. In the case of measuring the relatedness of a word that blfple senses with a given image,
humans are naturally inclined to choose the sense thatq@ethe highest relatedness inside the
pair. For example, an image of a river bank expectedly cgtnuhe “river bank” sense of the
word “bank” (and not “financial bank” or other alternative misenses).

4. A degree of semantic relatedness can exist between aityagrbvord and image, on a scale
ranging from being totally unrelated to perfectly synonymavith each other. This is trivially
true, as the same property holds when measuring similagityden words and texts.

Next, we evaluate our hypothesis that we can measure thedekss between a word and an image
empirically, using a parallel corpus of words and imageswasiataset.

5.1 ImageNet

We use the ImageNet database (Deng et al., 2009), which ig@daale ontology of images devel-
oped for advancing content-based image search algoritiimdsserving as a benchmarking standard for
various image processing and computer vision tasks. Imeigekploits the hierarchical structure of
WordNet by attaching relevant images to each synonym set(kras “synset”), hence providing picto-
rial illustrations of the concept associated with the syn€&mn average, each synset contains 500-1000
images that are carefully audited through a stringent tyuatintrol mechanism.

Compared to other image databases with keyword annotatinbelieve that ImageNet is suitable
for evaluating our hypothesis for three reasons. Firstelgriaging on reliable keyword annotations in
WordNet (i.e., words in the synset and their gloss natursdiyve as annotations for the corresponding
images), we can effectively circumvent the propagationradre caused by unreliable annotations, and
consequently hope to reach more conclusive results fosthdy. Second, unlike other image databases,
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ImageNet consists of millions of images, and it is a growiagource with more images added on a
regular basis. This aligns with our long-term goal of builyla large-scale joint semantic space of images
and words. Finally, third, although we can search for reiewmages using keywords in ImageNet,
there is currently no method to query it in the reverse dibact Given a test image, we must search
through millions of images in the database to find the mosil@irimage and its corresponding synset.
A joint semantic model can hopefully augment this shorteaniy allowing queries to be made in both
directions. Figure 2 shows an example of a synset and thesgmnding images in ImageNet.

(b)
Joint Semantic Space of Words and Images
Synsets 167
Images 230,864
Words 1144
Nouns 783
Verbs 140
Adjectives 221
Image:Words ratio 202:1

Figure 2: (a) A subset of images associated with a node inéidag The WordNet synset illustrated
here is{Dog, domestic dog, Canis familiajisvith the gloss:A member of the genus Canis (probably
descended from the common wolf) that has been domesticatadtbsince prehistoric times; occurs in
many breeds; “the dog barked all nigh{b) A table showing statistical information on our joint semtic
space model

5.2 Dataset

For our experiments, we randomly select 167 syddedsn ImageNet, covering a wide range of concepts
such as plants, mammals, fish, tools, vehicles etc. We perdosimple pre-processing step using Tree
Tagger (Schmid, 1994) and extract only the nouns. Multiwae explicitly recognized as collocations
or named entities in the synset. Not considering part-eksh distinctions, the vocabulary for synset
words is 352. The vocabulary for gloss words is 777. The shemeabulary between them is 251.

There are a total of 230,864 images associated with the I&éts; with an average of 1383 images
per synset. We randomly select an image for each synset,otftaiing a set of 167 test images in
total. The technique explained in Section 3 is used to gémeraual codewords for each image in this
datasef. Each image is first pre-processed to have a maximum sidehl@fi@00 pixels. Next, SIFT
descriptors are obtained by densely sampling the image x20206verlapping patches spaced 10 pixels
apart. K-means clustering is applied on a random subset wiillion SIFT descriptors to derive a visual
vocabulary of 1,000 codewords. Each descriptor is thent@mezhinto a visual codeword by assigning it
to the nearest cluster.

To create the gold-standard relatedness annotation, &brteat image, six nouns are randomly se-
lected from its associated synset and gloss words, andisgx nbuns are again randomly selected from
the shared vocabulary worédn all, we have 167 x 12 = 2004 word-image pairs as our tessdatsim-
ilar to previous word similarity evaluations (Miller and @ftes, 1998), we ask human annotators to rate
each pair on a scale of 0 to 10 to indicate their degree of sétnatatedness using the evaluation frame-
work outlined below, with 0 being totally unrelated and 1@ngeperfectly synonymous with each other.
To ensure quality ratings, for each word-image pair we ugedrinotators from Amazon Mechanical

2http://www.image-net.org/

3Not all synsets in ImageNet are annotated with images. Wairobur dataset from the Spring 2010 version of ImageNet
built around Wordnet 3.0.

“For our experiments, we obtained the visual codewords ctedpai priori from ImageNet. Test images are not used to
construct the model

®12 data points are generally considered sufficient forbigiaorrelation measures (Vania Kovic, p.c.).
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)

Synset {sunflower, helianthus

Synset {oxygen-mask

Synset {submarine , pigboat ,

sub, U-boa}

Gloss any plant of the genus
Helianthus having large flower|
heads with dark disk florets ang

Gloss a breathing device that
is placed over the mouth and
nose; supplies oxygen from an

Gloss a submersible warship
usually armed with torpedoes

showy yellow rays
Relatedness Scores
color (5.13)

attached storage tank
Relatedness Scores
basketball (0.20)

Relatedness Scores

dog (0.53) central (1.53) africa (0.80)  brass (1.73)

floret (6.53) flower (9.67) device (5.47) family (0.80)| door (1.67) good (2.40)
freshwater (2.40) hair (1.00) | iron-tree (0.47) mouth (5.13) pacific (2.40) pigboat (6.47)
garden (6.60) head (3.80)| oxygen-mask (7.73) tank (4.47) | sub (8.20) submarine (9.67)
plant (8.47) ray (3.67) storage (3.07) supply (5.2Q) tail (0.93) torpedo (7.60)
sunflower (9.80) reed (2.27) | nose (6.20) time (1.13) | u-boat (7.47) warship (8.73)

Table 1: A sample of test images with their synset words andsgls : The number in parenthesis rep-
resents the numerical association of the word with the infagk). Human annotations reveal different
degree of semantic relatedness between the image and wdtdassynset or gloss.

Turk.8 Finally, the average of all 15 annotations for each wordgenpair is taken as its gold-standard
relatedness scofeNote that only the pairs of images and words are providetigahnotators, and not
their synsets and gloss definitions.

The set of standard criteria underlying the cross-modailaiity evaluation framework shown here
is inspired by the semantic relations defined in Wordnet. s€heriteria were provided to the human
annotators, to help them decide whether a word and an imagelated to each other.

1. Instance of itself: Does the image contain an entity that is represented by tiné itself (e.g. an
image of “Obama” vs the word “Obama”) ?

Member-of Relation: Does the image contain an entity that is a member of the slaggested
by the word or vice versa (e.g. an image of an “apple” vs thedwifsuits”) ?

Part-of Relation: Does the image contain an entity that is a part of a largetyamfpresented by
the word or vice versa (e.g. an image of a “tree” vs the worde$g’) ?

Semantically Related: Do both the word and the image suggest concepts that ateddkag. an
image of troops at war vs the word “peace”) ?

Semantically Close: Do both the word and the image suggest concepts that arenhyotedated

but also close in meaning? (e.g. an image of troops at wareva/tind “gun”) ?

2.

3.

Criterion (1) basically tests for synonym relation. Ciitef2) and (3) are modeled after the hyponym-
hypernym and meronym-holonym relations in WordNet, whioh prevalent among nouns. Note that
none of the criteria is preemptive over the others. Ratherpvovide these criteria as guidelines in
a subjectiveevaluation framework, similar to the word semantic sinifiyatask in Miller and Charles
(1998). Importantly, criterion (4) models dissimilar betated concepts, or any other relation that indi-
cates frequent association, while criterion (5) servegowige additional distinction for pairs of words
and images on a higher level of relatedness toward simyildritTable 1, we show sample images from
our test dataset, along with the annotations provided bitinean annotators.

®We only allowed annotators with an approval rating of 97% ighr. Here, we expect some variance in the degree of
relatedness between the candidate words and images, haraations marked with all 10s or Os are discarded due todack
distinctions in similarity relatedness

"Annotation guidelines and dataset can be downloaded at/fittpsci.unt.edu/index.php/Downloads
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5.3 Experiments

Following Erk and McCarthy (2009), who argued that word niegs are graded over their senses, we
believe that the meaning of an image is not limited to a sebest fitting” tags, but rather it exists as
a distribution over arbitrary words with varying degreesassociation. Specifically, the focus of our
experiments is to investigate the correlation betweenmaatic measures of such relatedness scores with
respect to human judgments.

To construct the joint semantic space of words and imagesise¢he SVD described in Section 4
to reduce the number of dimensions. To build each model, wahes167 synsets from ImageNet and
their associated images (minus the held out test data) ehesmounting for 167 latent dimensions. We
first represent the synsets as a collection of documentsdb, @@cument containing visual codewords
used to describe their associated images as well as texardsvextracted from their gloss and synset
words. Thus, computing a cross-modal relatedness dis&moents to comparing the cosine similarity
of vectors representing an image to the vector represeatiwgrd in the term-document vector space.
Note that, unlike textual words, an image is representedudipte visual codewords. Prior to computing
the actual cosine distance, we perform a weighted addifieraiors representing each visual codeword
for that image.

To illustrate, consider a single document @presenting the synset “snail,” which consistg @#O0,
cwb555, cw23, cwl124, cw876, snail, freshwater, molluskiadpshell, where cwX represents a particular
visual codeword indexed from 0-999and the textual words are nouns extracted from the assdciat
synset and gloss. Given a test imdgé can be expressed as a bag of visual codew{eds , ... , cw; }.

We first represent each visual codeword/ims a vector of lengthD| using term-frequency inverse-
document-frequencyt fidf) weighting, e.g., cw=<0.4*d;, 0.2*d,, ... , 0.9*d,,>, where m=167, and
perform an addition ok such vectors to form a final vectog.vTo measure the semantic relatedness
between imagd and a wordw, e.g., “snail,” we simply compute the cosine similarityweén v and
V., Where v, is also a vector of lengthD| calculated usingfidf.

This paper seeks answers to the following questions. K} is the relation between the discrim-
inability of the visual codewords and their ability to cagsemantic relatedness between a word and an
image, as compared to the gold-standard annotation by l#m&acond, given the unbalanced dataset
of images and words, can we use a relatively small numberso&vicodewords to derive such semantic
relatedness measures reliably? Third, what is the effigiehan unsupervised vector semantic model in
measuring such relatedness, and is it applicable to langsels?

Analogous to text-retrieval methods, we measure the discability of the visual codewords using
two weighting factors. The first ierm-frequency (tf)which measures the number of times a codeword
appears in all images for a particular synset, while the rsgdmage-term-frequency (itfcaptures the
number of images using the codeword in a synset. For the tvighitieg schemes, we apply normal-
ization by using the total number of codewords for a syngmtt{f weighting) and the total number of
images in a synset (foif weighting).

We are interested to quantify the relatedness for pairs oflsvand images under two scenarios. By
ranking the 12 words associated with an image in reverse afdieir relatedness to the image, we
can determine the ability of our models to identify the madated words for a given imagén{age-
centered). In the second scenario, we measure the relatedness o wadlimages regardless of the
synset they belong to, thus evaluating the ability of ourhods to capture the relatedness between any
word and any image. This allows us to capture the correlati@m @rbitrary-image) scenario. For the
evaluations, we use the Spearman’s Rank correlation.

To place our results in perspective, we implemented twolipeseand an upper bound for each of
the two scenarios above. TRandonbaseline randomly assigns ratings to each word-image pahe
same 0to 10 scale, and then measures the correlation torttenigold-standard. Théector-Based (VB)
method is a stronger baseline aimed to study the correlpgdiormance in the absence of dimensionality
reduction. As an upper bound, theer-Human-Agreement (IHAheasures the correlation of the rating
by each annotator against the average of the ratings of shefréghe annotators, averaged over the 167
synsets (for the image-centered scenario) and over the ®08dimage pairs (for the arbitrary-image
scenario).

8For simplicity, we only show the top 5 visual codewords
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Spearman’s Rank Coefficient (image-centered)
Top K codewords| 100 200 300 400 500 600 700 800 900 1000

LSA tf 0.228 0325 0.273 0.242 0.185 _0.181 0.107 0.043 -0.018 0.000
LSA tf (norm) 0.233 0339 0.293 0.254 0.202 0.180 _0.124 0.047 -0.012 0.000

LSA tf*itf 0.268 0317 0.256 0.248 _0.219 0.166 0.081 -0.004 -0.037 0.000
LSA tf*itf (norm) | 0.252 0.327 0.257 0.246 0.211 0.153 0.097 0.002 -0.042 0.000
VB tf 0243 0.168 0.101 0.055 -0.021 -0.084 -0.157 -0.210 -0.236 -0.332
VB tf (norm) 0240 0.181 0.110 0.062 -0.010 -0.082 -0.152 -0.204 -0.235 -0.332
VB tf*itf 0262 0.181 0.107 0.065 -0.019 -0.081 -0.156 -0.211 -0.241 -0.332
VB tf*itf (norm) 0257 0.180 0.116 0.068 -0.014 -0.079 -0.150 -0.250 -0.237 -0.332
Random 0.001 0.018 0.016 -0.008 0.008 0.005 -0.001 0.014 -0.035120.0
IHA 0.687

Spearman’s Rank Coefficient (arbitrary-image)
Top K codewords| 100 200 300 400 500 600 700 800 900 1000

LSA tf 0.236 0341 0.291 0.249 0.208 0.183 0.106 _ 0.033-0.039 0.000
LSA tf (norm) 0.230 0353 0.301 0.271 0.220 0.186 0.115 0.032 -0.029 0.000

LSA tf*itf 0.291 0332 0.289 0.262 _0.235 0.172 0.092 0.008 -0.041 0.000
LSA tf*tf (norm) | 0.277 0345 0.292 0.269 0.234 0.164 0.098 0.015 -0.046 0.000
VB tf 0272 0.195 0.119 0.059 -0.012 -0.088 -0.164 -0.218 -0.240 -0.339
VB tf (norm) 0277 0.207 0.130 0.069 -0.003 -0.083 -0.160 -0.215 -0.242 -0.339
VB tf*itf 0287 0.206 0.127 0.062 -0.008 -0.085 -0.161 -0.214 -0.241 -0.339
VB tf*itf (norm) 0286 0.212 0.132 0.071 -0.005 -0.081 -0.158 -0.214 -0.241 -0.339
Random -0.024 -0.014 0.015 -0.015 -0.004 -0.014 0.024 -0.009 -0.0M®.007

IHA 0.764

Table 2: Correlation of automatically generated scorebk titman annotations on cross-modal semantic
relatedness, as performed on the ImageNet test dataseDéfgzirs of word and image. Correlation
figures scoring the highest within a weighting scheme aréeaukin bold, while those scoring the highest
across weighting schemes and within a visual vocabulagyaie underlined.

6 Discussion

Our experimental results are shown in Table 2. A somewhatisimg observation is the consistency of
correlation figures between the two scenarios. In both smena representative set of 200 visual code-
words is sufficient to consistently score the highest cati@h ratings across the 8 weighting schemes.
Intuitively, based on the experimental results, autoradlficchoosing the top 10% or 20% of the visual
codewords seems to suffice and gives optimal correlatiomefgguout requires further justification. Con-
versely, the relatively simple weighting scheme udingormalized)produces the highest correlation in
six visual codeword sizes (K=200,300,400,700,800,900}He image-centered scenario, as well as in
another six visual codeword sizes (K=200,300,400,600900) for the arbitrary-image scenario. Un-
like stopwords in text retrieval accounting for most of thighesttf scores, visual codewords weighted
by the same schenté and a similartf (normalized)scheme seem to be the most discriminative. The
correlation for including the entire visual vocabulary €600) produces identical results for all vector-
based and LSA weighting schemes, as images across syrsetsaencoded by the same set of visual
codewords without discrimination between them.

Dimensionality reduction using SVD gains an advantage thesvector-based method for both sce-
narios, with the highest correlation rating in LSA (200 \d@koodewordtf(norm)) achieving 0.077 points
better than the corresponding highest correlation in \feoésed (100 visual codewortf*itf ) for the
image-centered scenario, representing a 29.3% improvei@inilarly, in the arbitrary-image scenario,
the increase in correlation from 0.287 (MBitf at 100 visual codeword) to 0.353 (LS#(norm) at
200 visual codeword) underlines a gain of approximatelYp23. Overall, the arbitrary-image scenario
also scores consistently higher than the image-centemthgo under similar experimental conditions.
For instance, for the top 200 visual words, the same weigtgithemes produce consistently lower
correlation figures for the image-centered scenario. Thalso true for the Inter-Human-Agreement
score, which is higher in the arbitrary-image scenario®) €ompared to the image-centered scenario
(0.687). Note that for all the experiments, the semantiateelness scores generated from the semantic
vector space are significantly more correlated with the hugwd-standard than the random baselines.
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(a) (b)
Spearman Correlation against number of Synsets used Words Classification Accuracy against number of Synsets used

N Image-centered-LSA E Image-centered-VB [ Arbitrary-image-LSA [ Arbitrary-image-VB 038

04 mLsA
Ove

Words Classification Accuracy

Spearman Correlation with Human annotations

Number of Synsets used

Number of Synsets used

Figure 3: (a) Correlation performance, and (b) Classificaticcuracy, as more data is added to construct
the semantic space model.

To investigate the effectiveness of the model when scalptpuarge datasets, we employ the best
combination of weighting scheme and vocabulary size shewrable 2, i.e., a visual vocabulary size
of 200 andtf (normalized)weighting for LSA, and vocabulary size of 100 atititf weighting for the
vector-based model, and incrementally construct modelgimg from 167 synsets to 800 synsets (all
randomly selected from ImageNet). We then measure thelabor of relatedness scores generated
using the same test dataset with respect to human annatafibe dataset was randomly selected to in-
crease by approximately five times, from a total of 230,86dges with 878 words to a total of 1,014,528
images with 3887 words. Furthermore, for each unseen tegjartaken from Synset; and the associ-
ated 12 candidate words, we evaluate the ability of the mimdielentify which of the candidate words
actually appear in the gloss or the synsetSgfin a task we term as word classification. Here, the top
six words are predictably classified as those appearirtg imhile the last six are classified as outside
of S; , after all 12 words are ranked in reverse order of their eglia¢ss to the test image. We measure
the accuracy of the word classification task usﬁ%ﬁ—]\’, whereT P is the number of words correctly
classified as synset or gloss words, & is the number of words correctly classified as outside of
synset or gloss, both summed over the 2004 pairs of wordsnaagis.

As shown in Figure 3, when a small number of synsets (33) wasdatb the original semantic space,
correlation with human ratings increased steeply to ardud8 and higher for LSA in both scenarios,
while the vector-based method suffers a slight decreasarialation ratings from 0.262 to 0.251 (image-
centered) and from 0.287 to 0.278 (arbitrary-image). Asamiarages and words are added, correlation
for the vector-based model continues to decrease mark@dipparatively, LSA is less sensitive to data
scaling, as correlation figures for both scenarios decseslgghtly but stays within a 0.40 to 0.45 range.
Additionally, we infer that LSA is consistently more effet than the vector-based model in the words
classification task (as also seen in Figure 3). Even with rdata added to the semantic space, word
classification accuracy stays consistently at 0.7 for LSAilevit drops to 0.535 for the vector-based
model at a synset size of 800.

7 Conclusion

In this paper, we provided a proof of concept in quantifyihg semantic relatedness between words and
images through the use of visual codewords and textual wiardenstructing a joint semantic vector
space. Our experiments showed that the relatedness sawes positive correlation to human gold-
standards, as measured using a standard evaluation fraknewo

We believe many aspects of this work can be explored furtRer.instance, other visual codeword
attributes, such as pixel coordinates, can be employedtimetgred vector space along with the existing
model for improving vector similarity measures. To improsetual words coverage, a potentially effec-
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tive way would be to create mappings from WordNet synsets itapAtia entries, where the concepts
represented by the synsets are discussed in detail. We lalsdgpstudy the applicability of the joint
semantic representation model to tasks such as automatgeiannotation and image classification.
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Abstract

We describe the methodology for constructing axioms defining event-related words, anchored
in core theories of change of state and causality. We first derive from WordNet senses a smaller
set of abstract, general “supersenses”. We encode axioms for these, and we test them on textual
entailment pairs. We look at two specific examples in detail to illustrate both the power of the
method and the holes in the knowledge base that it exposes. Then we address the problem of holes
more systematically, asking, for example, what kinds of “pairwise interactions” are possible for core
theory predicates likehange andcause .t

1 Introduction

From the sentence
Russia is blocking oil from entering Ukraine.
we would like to be able to conclude

Oil can not be delivered to Ukraine.

But doing this requires fairly complex inference, because the words “block”, “enter”, “can”, “not” and
“deliver” carve up the world in different ways. Our approach is to define words such as these by means
of axioms that link with underlying core theorfesxplicating such very basic concepts as change of
state and causality. Given the logical form of sentences like these two, we apply these axioms to express
the meaning of the sentences in more fundamental predicates, and do a certain amount of defeasible
reasoning in the core theories to determine that the second follows from the first.

More generally, we are engaged in an enterprise we call “deep lexical semantics” (Hobbs, 2008), in
which we develop various core theories of fundamental commonsense phenomena and define English
word senses by means of axioms using predicates explicated in these theories. Among the core theories
are cognition, microsociology, and the structure of events. The last of these is the focus of this paper. We
use textual entailment pairs like the above to test out subsets of related axioms. This process enforces a

1This research was supported in part by the Defense Advanced Research Projects Agency (DARPA) Machine Reading
Program under Air Force Research Laboratory (AFRL) prime contract no. FA8750-09-C-0172, and in part by the Office of
Naval Research under contract no. N00014-09-1-1029.. Any opinions, findings, and conclusion or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the view of the DARPA, AFRL, ONR, or the US
government.

2http://www.isi.edu/ hobbs/csk.html
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uniformity in the way axioms are constructed, and also exposes missing inferences in the core theories.
The latter is a major issue in this paper.

In Section 2 we describe three aspects of the framework we are working in—the logical form we
use, abductive interpretation and defeasibility, and the core theories of change of state and causality. In
Section 3 we describe the methodology we use for constructing axioms, deriving from WordNet senses
a smaller set of abstract, general “supersenses”, encoding axioms for these, and testing them on textual
entailment pairs. In Section 4 we look at two specific examples to illustrate both the power of the method
and the holes in the knowledge base that it exposes. In Section 5 we address the problem of holes more
systematically, specifically asking, for example, what kinds of “pairwise interactions” are possible for
core theory predicates likehange andcause .

2 Framework

We use a logical notation in which states and events (eventualities) are reified. Specifically, if the ex-
pressionp X) says thap is true ofx, then(p’ e x) says thae is the eventuality op being true

of x. Eventualitye may exist in the real worldRexist ), in which casgp x) holds, or it may only

exist in some modal context, in which case that is expressed simply as another property of the possible
individuale. (In this paper we use a subset of Common L&dit the syntax of our notation.)

The logical form of a sentence is a flat conjunction of existentially quantified postive literals, with
about one literal per morpheme. (For example, logical words like “not” and “or” are treated as expressing
predications about possible eventualities.) We have developed sdftwaranslate Penn TreeBank-style
trees (as well as other syntactic formalisms) into this notation. The underlying core theories are expressed
as axioms in this notation (Hobbs, 1985).

The interpretation of a text is taken to be the lowest-cost abductive proof of the logical form of
the text, given the knowledge base. That is, to interpret a text we prove the logical form, allowing for
assumptions at cost, and pick the lowest-cost proof. Factors involved in computing costs include, besides
the number of assumptions, the salience of axioms, the plausibility of axioms expressing defeasible
knowledge, and consiliance or the degree to which the pervasive implicit redundancy of natural language
texts is exploited. We have demonstrated that many interpretation problems are solved as a by-product
of finding the lowest-cost proof. This method has been implemented in an abductive theorem-prover
called Mini-Tacitus that has been used in a number of applications (Hobbs et al., 1993; Mulkar et al.,
2007), and is used in the textual entailment problems described here. We are also working toward a
probabilistic semantics for the cost of proofs (Blythe et al., 2011). Abductive interpretation accounts for
script-like understanding of text—a script predicate provides the most economical interpretation (Hobbs
et al., 1993)—but also enables interpretation of novel texts.

Most commonsense knowledge is defeasible, i.e., it can be defeated. This is represented in our
framework by having a unique “et cetera” proposition in the antecedent of Horn clauses that cannot be
proved but can be assumed at a cost corresponding to the likeliehood that the conclusion is true. For
example, the axiom

(forall (x) (if (and (bird x)(etc-i x)(fly X))

would say that ifx is a bird and other unspecified conditions hqlekc-i) , thenx flies. No other
axioms enable provingetc-i x) , but it can be assumed, and hence participate in the lowest cost

3http://common-logic.org/ )
*http://www.rutumulkar.com/download/NL-Pipeline/NL-Pipeline.php
Shttp://rutumulkar.com/download/TACITUS/tacitus.php
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proof. The index is unique to this axiom. In this paper rather than invent new indices for each axiom, we
will use the abbreviatiofetc) to indicate the defeasibility of the rule. (This approach to defeasibility
is similar to circumscription (McCarthy, 1980).)

We have articulated a number of core thedtieBhe two most relevant to this paper are the theory
of change of state and the theory of causality. The predicétibange’ e el e2) says thak is
a change of state whose initial stateels and whose final state &2. The chief properties athange
are that there is some entity whose state is undergoing changehtrage is defeasibly transitive,
thatel ande2 cannot be the same unless there has been an intermediate state that is different, and that
change is consistent with theefore relation from our core theory of time. Since many lexical items
focus only on the initial or the final state of a change, we introduce for convenience the predications
(changeFrom’ e el) and(changeTo’ e e2) ,definedinterms othange .

The chief distinction in our core theory of causality is between the notiooaugalComplex and
cause . A causal complex includes all the states and events that have to happen or hold in order for the
effect to happen. A cause is that contextually relevant element of the causal complex that is somehow
central to the effect, whether because it is an action the agent performs, because it is not normally true,
or for some other reason. Most of our knowledge about causality is expressed in terms of the predicate
cause , rather than in terms of causal complexes, because we rarely if ever know the complete causal
complex. Typically planning, explanation, and the interpretation of texts (though not diagnosis) involves
reasoning aboutause . Among the principal properties @fuse are that it is defeasibly transitive,
that events defeasibly have causes, anddhase is consistent witlbefore

We also have a core theory of time, and the times of states and events can be represented as temporal
properties of the reified eventualities. The theory of time has an essential function in axioms for words
explicitly referencing time, such as “schedule” and “delay”. But for most of the words we are explicating
in this effort, we base our approach to the dynamic aspects of the world on the cognitively more basic
theory of change of state. For example, the word “enter” is axiomatized as a change of state from being
outside to being inside, and the fact that being outside camafsebeing inside follows from the axiom
relating the predicateshange andbefore

We find that reifying states and events as eventualities and treating them as first-class individuals is
preferable to employing the event calculus (Gruninger and Menzel, 2010; Mueller, 2006) which makes a
sharp distinction between the two, because language makes no distinction in where they can appear and
we can give them a uniform treatment.

3 Methodology

Our methodology consists of three steps.
1. Analyzing the structure of a word’s WordNet senses.
2. Writing axioms for the most general senses
3. Testing the axioms on textual entailment pairs.

Our focus in this paper is on words involving the concepts of change of state and causality, or event
words, such as “block”, “delay”, “deliver”, “destroy”, “enter”, “escape”, “give”, “hit”, “manage”, and
“provide”. For each word, we analyze the structure of its WordNet senses. Typically, there will be pairs
that differ only in, for example, constraints on their arguments or in that one is inchoative and the other

Shttp://www.isi.edu/ hobbs/csk.html
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causative. This analysis generally leads to a radial structure indicating how one sense leads by incre-
ments, logically and perhaps chronologically, to another word sense (Lakoff, 1987). The analysis also
leads us to posit “supersenses” that cover two or more WordNet senses. (Frequently, these supersenses
correspond to senses in FrameNet (Baker et al., 2003) or VerbNet (Kipper et al., 2006), which tend to be
coarser grained; sometimes the desired senses are in WordNet itself.)

For example, for the verb “enter”, three WordNet senses involve a change into a state:

V2: become a participant
V4. play a part in
V9: set out on an enterprise

Call this supersense S1. Two other senses add a causal role to this:

V5: make a record of
V8: put or introduce into something

Two more senses specialize supersense S1 by restricting the target state to be in a physical location:

V1. come or go into
V6: come on stage

One other sense specializes S1 by restricting the target state to be membership in a group.
V3: register formally as a participant or member

Knowing this radial structure of the senses helps enforce uniformity in the construction of the axioms. If
the senses are close, their axioms should be almost the same.

We are currently only constructing axioms for the most general or abstract senses or supersenses.
In this way, although we are missing some of the implications of the more specialized senses, we are
capturing the most basic topological structure in the meanings of the words. Moreover, the specialized
senses usually tap into some specialized domain that needs to be axiomatized before the axioms for these
senses can be written.

In constructing the axioms in the event domain, we are very much informed by the long tradition of
work on lexical decomposition in linguistics (e.g., Gruber, 1965; Jackendoff, 1972). Our work differs
from this in that our decompositions are done as logical inferences and not as tree transformations as in
the earliest linguistic work, they are not obligatory but only inferences that may or may not be part of the
lowest-cost abductive proof, and the “primitives” into which we decompose the words are explicated in
theories that enable reasoning about the concepts.

Figure 1 shows the radial structure of the senses for the word “enter”, together with the axioms that
characterize each sense. A link between two word senses means an incremental change in the axiom for
one gives the axiom for the other. For example, the axionefder-S2  says that iix1 entersx2 in
x3, thenx1 causes a change to the eventuallltyin which x2 is in x3; and the expanded axiom for
enter-S1.1  states that ikl entersx2, then there is a change to a stafein whichx1 isinx2. So
enter-S2 andenter-S1.1  are closely related and thus linked together.

Abstraction is a special incremental change where one sense S1.1 specializes another sense S1 ei-
ther by adding more predicates to or specializing some of the predicates in S1's axiom. We represent
abstractions via arrows pointing from the subsenses to the supersenses. In Faniez-§1.1  and
enter-S1.2  both specializeenter-S1 . The predicatenter-S1.1  adds an extra predicate de-
scribingel as anin eventuality ancknter-S1.2  specialize®1 to membership ix2, wherex2 is a

group.
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enter-§1
— enter-52
V2: become a participant
V4: play a part in V5:make a record of ]
V@: set out on (an enterprise etc.) V8: put or infroduce into something
(enter-51' ch1x1 e1) « (enter-52' c1 x1 x2 x3) g
(changeTo'chi et) (cause’ c1 x1 ch1)
& (arg x1 e1) & (changeTo'ch1i1)
Y & (in' i1 x2 x3)
enter-51.1 enter-51.2
V1:to comeor gointo V3:register formally as a
\V6: come on stage participant or member
(enter-S1.1' ch1 x1 x2) < (enter-51.2'c1 x1 x2) < .
{enter-S1'ch1x1 el) (enter-51' c1 x1 e1)
&(in'el x1 x2) & (member' el x1 x2)

Figure 1: Senses of and axioms for the verb “enter”

The supersenses capture the basic topology of the senses they subsume. The extra information that
the subsenses convey are typically the types and properties of the arguments, such as being a place or a
process, or qualities of the causing event, such as being sudden or forceful.

For each set of inferentially related words we construct textual entailment pairs, where the hypothesis
(H) intuitively follows from text (T), and use these for testing and evaluation. The person writing the
axioms does not know what the pairs are, and the person constructing the pairs does not know what the
axioms look like.

The ideal test then is whether given a knowledge base K consisting of all the axioms, H cannot be
proven from K alone, but H can be proven from the union of K and the best intepretation of T. This is
often too stringent a condition, since H may contain irrelevant material that doesn't follow from T, so an
alternative is to determine whether the lowest cost abductive proof of H given K plus T is substantially
lower than the lowest cost abductive proof of H given K alone, where “substantially lower” is defined by
a threshold that can be trained (Ovchinnikova et al., 2011).

4 Two Examples

Here we work through two examples to illustrate how textual entailment problems are handled in our
framework. In these examples, given a text T and a hypothesis H, we ask if H can be proven from T,
perhaps with a small number of low-cost assumptions.

Because the examples we deal with involve a great deal of embedding, we need to use the primed
predicates, keeping the eventuality arguments explicit.

We also assume in these examples that lexical disambiguation has been done correctly. With more
context, lexical disambiguation should fall out of the best interpretation, but it is unreasonable to ex-
pect that in these short examples. In practice we run the examples both with disambiguated and with
nondisambiguated predicates.

In these examples we do not show the costs, although they are used by our system.

The first example is the pair

T: Russia is blocking oil from entering Ukraine.
H: Oil cannot be delivered to Ukraine.
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The relevant part of the logical form of the text is
(and (block-V3' bl x1 el)(enter-S2’ el ol ul))

Thatis, there is a blocking evelt in which Russia1 blocks eventualityl from occurring, anel is
the eventuality of oib1 entering Ukrainaul. The-V3 onblock indicates that it is the third WordNet
sense of the verb “block” and th&2 suffix onenter indicates that it is the second supersense of
“enter”.

The relevant part of the logical form of the hypothesis is

(and (not’ n2 c2) (can-S1’' c2 x2 d2) (deliver-S2' d2 x2 02 u2))

That is,n2 is the eventuality that2 is not the case, whe2 is somex2’s being able to dal2, where
d2 is x2’s delivering oilo2 to Ukraineu2. Note that we don’t know yet that the oil and Ukraine in the

two sentences are coreferential.
The axiom relating the third verb sense of “block” to the underlying core theories is

AX4: (forall (c1 x1 el)
(if (block-V3 cl x1 el)
(exist (n1 pl)
(and (cause’ cl x1 nl)(not’ nl1 pl)(possible’ pl el)))))

This rule says that fox1 to block some eventualitgl is for x1 to causeel not to be possible. (In this
example, for expositional simplicity, we have allowed the eventualityf blocking be the same as the

eventuality of causing, where properly they should be closely related but not identical.)
The other axioms needed in this example are

AX1: (forall (c1 el)
(if (and (possible’ c1 el)(etc))
(exist (x1)(can-S1' cl x1 el))))

AX2: (forall (d1 x1 c1 rl x2 x3)
(if (and (cause’ d1 x1 cl)(changeTo’ c1 rl)(rel’ r1 x2 x3)
(deliver-S2' d1 x1 x2 x3))))

AX3: (forall (c1 x1 x2)
(if (enter-S2' cl x1 x2)
(exist (i1)(and changeTo’ cl i1)(in’ i1 x1 x2))))

AX1 says that defeasibly, if an eventual#y is possible, then someone can do it. AX2 says that if
causes a change to a situatidn in which x2 in in some relation tx3, then in a very general sense
(52), x1 has delivereck2 to x3. AX3 says that ifcl is the eventuality okl enteringx2, thencl is

the change into a staté in whichx1 isinx2.
Starting with the logical form of H as the initial interpretation and applying axioms AX1 and AX2,
we get interpretation H1:

H1l: (and (not’ n2 c2) (possible’ c2 d2) (cause’ d2 x2 cl)
(changeTo’ ¢l rl)(rel' r1 02 u2))

At this point we are stuck in our effort to back-chain to T. An axiom is missing, hamely, one that says
that “in” is a relation between two entities.

AX5: (forall (r x1 x2) (if (in" r1 x1 x2)(rel’ r1 x1 x2)))
Using AX5, we can back-chain from H1 and derive interpretation H2:

H2: (and (not’ n2 c2)(possible’ c2 d2)(cause’ d2 x2 cl)
(changeTo’ cl rl1)(in’ r1l 02 u2))

We can then further back-chain with AX3 to interpretation H3:
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H3: (and (not' n2 c2)(possible’ c¢2 d2)(cause’ d2 x2 cl)
(enter-S2’ c1 02 u2))

Again, we need a missing axiom, AX6, to get closer to the logical form of T:

AX6: (forall (p el)
(if (and (possible’ p,el)(etc))
(exist (c x1) (and (possible’ p c)(cause’ ¢ x1 el)))))

That is, if something is possible, it is possible for something to cause it. Using this axiom, we can derive

H4: (and (not' n2 c2)(possible’ c2 cl)(enter-S2’' ¢c1 02 u2))

The final missing axiom, AX7, says thatil causes eventuality2 not to occur, therm2 doesn’t occur.

AX7: (forall (n x1 nl1 c2)
(if (and (cause’ n x1 nl)(not’ nl c2))( not' n c2)))

Using this we derive interpretation H5.
H5: (and (cause’ n2 x3 n)(not' n c2)(possible’ c2 cl)(enter-S2’ cl 02 u2))

We can now apply the rule for “block”, identifyingl andn2, x1 andx3, el andcl, ol ando2, and
ul andu2, yielding H6 and establishing the entailment relation between H and T.

H6: (and (block-V3’' n2 x3 cl)(enter-S2' cl 02 u2))

Our second example is the text-hypothesis pair

T: The plane managed to escape the attack.
H: The plane was not captured.

The relevant parts of the logical forms of T and H are as follows:

T: (and (manage-V1' ml pl el)(escape-S1' el pl al))

H: (and (not' n2 c2)(capture-S1’ c2 x2 p2))
The axioms relating these words to the core theories are as follows:

AX1: (forall (cp ¢ x2 n chf a y1 x3 y0 x2)
(if (and (changeTo’ cp c)(cause’ ¢ x2 n)(not’ n chf)
(changeFrom’ chf a)(at' a yl1 x3)(arg’ y0 x2))
(capture’ cp y0 y1)))

AX2: (forall (es x0 x1)
(if (escape’ es x0 x1)
(exist (ch a)
(and (cause’ es x0 ch)(changeFrom’ ch a)(at’ a x0 x1)))))

AX3: (forall (m y0 el)
(if (manage’ m y0 el) (Rexist (m el))))
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The first says that a change to a situation in whighis causingyl not to change location is a capturing
by somey0 of y1. The second says that escaping implies causing a change from being at a location.
The third says that if you manage to di, thenel occurs.

Using these axioms, we would like to establish the entailment relation from T to H. However, in
order for this reasoning to go through, we need several more axioms—saying that if an eventuality does
not hold, there has been no change to that eventuality, and nothing has caused it to occur; that double
negation cancels out; and that if something is caused, it occurs.

It may seem at first blush that any new text-hypothesis pair will reveal new axioms that must be
encoded, and that therefore it is hopeless ever to achieve completeness in the theories. But a closer
examination reveals that the missing axioms all involve relations among the most fundamental predicates,
like cause , change , not , andpossible . These are axioms that should be a part of the core theories
of change and causality. They are not a random collection of facts, any one of which may turn out to
be necessary for any given example. Rather we can investigate the possibilities systematically. That
investigation is what we describe in the following section.

5 Relations among Fundamental Predicates

For completeness in the core theories, we need to look at pairs of fundamental predicates and ask what re-
lations hold between them, what their composition yields, and for each such axiom whether it is defeasi-
ble or indefeasible. The predicates we considepassible , Rexist ,not , cause ,changeFrom ,
andchangeTo .

The first type of axiom formulates the relationship between two predicates. For example, the rule
relatingcause andRexist is

(forall (x e) (if (cause x e)(Rexist €)))
That is, if something is caused, then it actually occurs. Other rules of this type are as follows:

(forall (x e) (if (Rexist e)(possible €)))
(forall (e) (if (and (Rexist e)(etc))(exist (x)(cause x e))))

(forall (e2)
(if (changeTo e2)
(exist (el)(and (changeFrom el)(not’ el e2)))))

(forall (el)
(if (changeFrom el)
(exist (e2)(and (changeTo e2)(not’ e2 el)))))

(forall (e) (if (changeTo e)(Rexist e€)))
(forall (e) (if (changeFrom e)(not e)))

(forall (e) (if (and (Rexist e)(etc))(changeTo e€)))

That is, if something occurs, it is possible and, defeasibly, something causes it. If there is a change to
some state obtaining, then there is a change from its not obtaining, and vice versa. If there is a change
to something, then it obtains, and if there is a change from something, then it no longer obtains. If some

state obtains, then defeasibly there was a change from something else to that state obtaining.
The second type of axiom involves the composition of predicates, and gives us rules of the form
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(forall (el e2 x) (if (and (p' el e2)(q e2 x)) (r el x)))

That is, wherp is applied tog, what relatiorr do we get?
Figure 2 shows the axioms encoding these compositions. The rows correspond(po tie

e2) 's and the columns correspond to {fog e2 Xx)
x) . If the rule is defeasible, the cell indicates that by addetg)
in italics are derivable from other rules.

's, and the cell contains the consequedntsel
to the antecedent. The consequents

(Rexist’ el e3)

(Rexist’ el e3)

(changeFram’el e3}

(possible’ e2 e3) |(Rexist’e2 e3) (not'e2e3) (cause’ e2 x2 e3) (changeFrom’e2 e3) [(changeTo'eZe3)
(possible’el e2) (possible’ el e3) |(possible’ el e3) (possible’el e3) (possible’el e3)
(Rexist’' el e2) {poszible' el e3) |(Rexist' el e3) (not'ele3) (Rexist’ el e3) (not'el e3} (Rexist’ el e3)
(not'ele2) (not'ele3) (not'eled) (Rexist' el e3) {etc)-=(not' el e3) (Rexist’ el e3) (etc)-»(not' eled)
(cause'elxled) {cause'elxled) (not'el e3} (couse’el x1e3)
(cause’elxle2) {possible"el e3) fnot'el e3}

(changeTo’el e3)

(Rexist’ el e3)

fnot'el e3)

{chongeFram’el e3}

+c -

{changeTa’el e3) [(?::a]|1>eFrolv' eled)

(changeFrom’ele2) (changeFrom’ el e3) ek E . (Rexist’ el e3) (etc)-=(not' el e3)
: e, et -=
(Rexist'el e3) {not’el e3)
(changeTo' el e3) (changeFrom’ el e3) [[celf;]w:eTo' ele3) {not'el e3} (Rexist el e3)
(changeTo'ele2) (possible’ el e3} =
(Rexist’ el 3)

(chongeTo el e3}

(couse’el xie3)

Figure 2: Axioms expressing compositions of fundamental predicates

For example, in thgpossible -possible cell, the rule says that if it is possible that something
is possible, then it is possible. To take a more complex examplehéegeFrom -cause cell says
that if there is a change from some entity causing (or maintaining) a state, then defeasibly there will be a
change from that state. So if a glass is released, it will fall.

We have also looked at axioms whose pattern is the converse of those in Figure 2. For example, if
something does not hold, then it was not caused. Many of the axioms used in the examples are of this
sort.

6 Conclusion

If we are ever to have sophisticated natural language understanding, our systems will have to be able to
draw inferences like the ones illustrated here, and therefore they will need axioms of this complexity or
something equivalent. Because of their complexity, we cannot expect to be able to acquire the axioms
automatically by statistical methods. But that does not mean the situation is bleak. We have shown in
this paper that there is a systematic methodology for developing axioms characterizing the meanings of
words in a way that enforces uniformity and for elaborating the core theories these axioms are anchored
in. Doing this for several thousand of the most common words in English would produce a huge gain in
the inferential power of our systems, as illustrated by the textual entailment examples in this paper, and
would be an enterprise no greater in scope than the manual construction of other widely used resources
such as WordNet and FrameNet.
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Abstract

We propose a method to automatically align WordNet synsets and Wikipedia articles to obtain a sense
inventory of higher coverage and quality. For each WordNet synset, we first extract a set of Wikipedia
articles as alignment candidates; in a second step, we determine which article (if any) is a valid
alignment, i.e. is about the same sense or concept. In this paper, we go significantly beyond state-
of-the-art word overlap approaches, and apply a threshold-based Personalized PageRank method for
the disambiguation step. We show that WordNet synsets can be aligned to Wikipedia articles with a
performance of up to 0.78 F;-Measure based on a comprehensive, well-balanced reference dataset
consisting of 1,815 manually annotated sense alignment candidates. The fully-aligned resource as
well as the reference dataset is publicly available.!

1 Introduction

Lexical semantic resources often used as sense inventories are a prerequisite in automatic processing of
human language. In the last few years, there has been a rise in research aligning different resources to
overcome the knowledge acquisition bottleneck and coverage problems pertinent to any single resource.
In this paper, we address the task of aligning WordNet noun synsets and Wikipedia articles to obtain a
sense inventory of higher coverage and quality. WordNet, a lexical database for English, is extensively
used in the NLP community and is a de-facto standard resource in many NLP tasks, especially in current
WSD research (Fellbaum, 1998). WordNet’s manually defined comprehensive taxonomy motivates many
researchers to utilize it. However, as WordNet is maintained by only a small group of experts, it is hard to
cope with neologisms, named entities, or rare usages on a large scale (Agirre and Edmonds, 2006; Meyer
and Gurevych, 2010). In order to compensate for WordNet’s lack of coverage, Wikipedia has turned
out to be a valuable resource in the NLP community. Wikipedia has the advantage of being constantly
updated by thousands of voluntary contributors. It is multilingual and freely available containing a
tremendous amount of encyclopedic knowledge enriched with hyperlink information.

In the past, researchers have explored the alignment of Wikipedia categories and WordNet synsets (e.g.,
Toral et al. (2008); Ponzetto and Navigli (2009)). However, using the categories instead of the articles
causes three limitations: First, the number of Wikipedia categories (about 0.5 million in the English
edition) is much smaller compared to the number of articles (about 3.35 million). Secondly, the category
system in Wikipedia is not structured consistently (Ponzetto and Navigli, 2009). And finally, disregarding
the article level neglects the huge amount of textual content provided by the articles.

Therefore, attempts to align WordNet synsets and Wikipedia articles (instead of categories) have been
recently made. This has three major benefits. First of all, as WordNet and Wikipedia were found to
be partly complementary on the word sense level, an aligned resource would increase the coverage of

'"http://www.ukp.tu-darmstadt .de/data/sense-alignment
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senses (Wolf and Gurevych, 2010). Second, word senses contained in both resources can then be rep-
resented by relational information from WordNet and encyclopedic information from Wikipedia in a
multilingual manner yielding an enriched knowledge representation. And finally, the third major benefit
of the alignment is the ability to automatically acquire sense-tagged corpora in a mono- and multilin-
gual fashion. For each WordNet synset, the text of the aligned Wikipedia article (or all sentences or
paragraphs in Wikipedia that contain a link to the article) can be automatically extracted similar to the
approach proposed by Mihalcea (2007). Automatically generated sense-tagged corpora can be used to,
e.g., counter the bottleneck of supervised WSD methods that rely on such sense-tagged text collections,
which are rare. Further, due to the cross-lingual links in Wikipedia, also corpora in different languages
can be constructed easily.

Our contribution to this paper is two-fold. First, we propose a novel two-step approach to align WordNet
synsets and Wikipedia articles. We model the task as a word sense disambiguation problem applying
the Personalized PageRank algorithm proposed by Agirre and Soroa (2009) as it is state-of-the-art in
WSD and combine it with a word overlap measure, which increases the overall performance. Second,
we generate and introduce a well-balanced reference dataset for evaluation consisting of 1,815 manually
annotated sense alignment candidates. WordNet synsets and their corresponding Wikipedia article can-
didates are sampled along their distinctive properties such as synset size, domain, or the location in the
WordNet taxonomy. An evaluation on this dataset let us generalize the performance to a full alignment
between WordNet and Wikipedia, which is publicly available for further research activities.

2 Related work

The alignment of WordNet and Wikipedia has been an active area of research for several years with the
goal of creating an enriched ontology. One of the first attempts proposed a new resource YAGO inte-
grating WordNet and Wikipedia consisting of more than 1 million entities and 5 million facts (Suchanek
et al., 2007). The set of entities contains all WordNet synsets and Wikipedia articles with titles that are
not represented as terms in WordNet. Thus, they ignore ambiguous entities, e.g., the British rock band
Queen is not covered as the term queen is already contained in WordNet.

Other approaches automatically align WordNet with the categories of Wikipedia instead of the articles.
Toral et al. (2008) enrich WordNet with named entities mined from Wikipedia. Therefore, the noun
is-a hierarchy of WordNet is mapped to the Wikipedia categories determining the overlap of articles
belonging to the category and the instances for each of the senses of a polysemous word in WordNet.
Ponzetto and Navigli (2009) applied a knowledge-rich method which maximizes the structural over-
lap between the WordNet taxonomy and the category graph extracted from Wikipedia. Based on the
mapping information, the taxonomy automatically generated from the Wikipedia category graph is re-
structured to enhance the quality. Toral et al. (2009) disambiguate WordNet noun synsets and Wikipedia
categories using multiple text similarity measures similar to our approach. A Wikipedia category is
thereby represented by its main article or an article, which has the same title string as the category. Wu
and Weld (2008) integrate the Wikipedia’s infobox information with WordNet to build a rich ontology
using statistical-relational learning.

Ruiz-Casado et al. (2005) proposed a method to align WordNet synsets and Wikipedia articles (instead
of categories). They align articles of the Simple English Wikipedia to their most similar WordNet synsets
depending on the vector-based similarity of the synset’s gloss and the article text. Recently, Ponzetto and
Navigli (2010) presented a method based on a conditional probability p(s|w) of selecting the WordNet
sense s given the Wikipedia article w, whereas the conditional probability relies on a normalized word
overlap measure of the textual sense representation. Both approaches, however, have the following
two major drawbacks: first, the algorithms are modeled such that they always assume a counterpart in
WordNet for a given Wikipedia article, which does not hold for the English Wikipedia (see Section 4).
Second, the algorithms always assign the most likely WordNet synset to a Wikipedia article, not allowing
multiple alignments. However, due to the different sense granularities in WordNet and Wikipedia, some
Wikipedia articles might be assigned to more than one WordNet synset. Based on these observations,
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there is a need for a better approach yielding none, one, or more than one alignment for a given synset or
article. We will describe a novel idea to tackle this in the next section.

3 Methodology

Automatic sense alignment aims to match senses of different resources that have the same meaning.? In
general, one sense is given and the task is to find a correspondent within another resource, in case one ex-
ists. Thereby, automatic sense alignment meets two subgoals. At first, all potential alignment candidate
senses for a given sense have to be extracted. Secondly, these extracted candidates have to be scored to
select the sense(s) that match in meaning. For example, given the WordNet synset wn =<schooner: sail-
ing vessel used in former times> and the two Wikipedia alignment candidate articles wp; =<Schooner:
A schooner is a type of sailing vessel ...> and wpy =<Schooner (glass): A schooner is a type of glass
used for ...>; the article wp; should be aligned with the synset wn, while the second should not be
aligned. The recall of the extraction step can highly influence the performance of the whole alignment
process. If a sense is not extracted in the first step, it cannot be selected in the alignment step either.

In Section 3.1, we state how we extract Wikipedia alignment candidate articles for a given synset. In the
subsequent Section 3.2, we describe how we determine the article that is aligned to the synset (if any at
all). As almost all Wikipedia articles refer to nouns, we focus on this part-of-speech.

3.1 Candidate extraction

In order to extract Wikipedia articles for a given WordNet synset, we follow the procedure introduced by
Wolf and Gurevych (2010). We shortly summarize this method here: Let wn be a WordNet synset with
a set of synonyms {sy,- - , s, } of size n. For each synonym s € wn, we extract all Wikipedia articles
wp € W P, that match one of the following constraints:
a) the article title matches s, e.g., the article Window is retrieved for the synonym term Window,
b) the article title is of the form s_(description tag), e.g., Window_(computing),
c) the article has a redirect that matches s or is of the form s_(description tag), e.g., Chaff_(counter-
measure) has a redirect Window_(codename) and, thus, is retrieved for the synonym term Window,
d) the article is linked in a hyperlink, in which the link anchor text matches s, e.g., the article
Bandwagon effect is retrieved for the term bandwagon, as there exist a hyperlink of the form
[[Bandwagon effect|bandwagon]]. Only hyperlinks that occur in at least 3 different articles are
taken into account in order to reduce noise.

3.2 Candidate alignment

Given the set of Wikipedia candidates W P, extracted for synset wn, we have to classify each Wikipedia
article wp € W P, as being a valid alignment or not with respect to wn. Therefore, we first calculate
similarities between synset—article pairs of a given training set. In a second step, we learn a threshold
corresponding to the minimum similarity a sense pair should have to be aligned. This threshold is then
used to fully align WordNet and Wikipedia.

Sense similarity. The basis of our new approach for sense alignment is the PageRank algorithm (Brin
and Page, 1998) relying on a lexical-semantic knowledge base, which is modeled as a graph G =
(V, E). As knowledge base we use WordNet 3.0 extended with manually disambiguated glosses from
the “Princeton Annotated Gloss Corpus™. The vertices v € V represent the synsets; the edges (undi-
rected and unweighted) represent semantic relations between synsets, such as hyponym and hypernym
relations.

2We do not differentiate between the terms sense and concept in this paper as they both refer to the same ‘artifact’ and
only differ in representation. Concepts in WordNet are described by the entire synset, e.g. the synset <design, plan>. Senses,
however, are words tagged with a sense number, e.g. design_N_#2, which means the word check as a noun in its second sense.
*http://wordnet .princeton.edu/glosstag.shtml
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Figure 1: Schematic illustration of the basic ppr (left) and direct ppr (right) approach.

The PageRank algorithm ranks the vertices in a graph according to their importance within the set. Let
M be a (n x n) transition probability matrix, where M;; = W, if there exist a link from vertex ¢
to vertex j. Then, the PageRank vector pr over the graph G is equlvalent to resolve:

pr = cMpr+ (1 —c)v, €))

whereas c is a damping factor between 0 and 1, and v is an n-dimensional vector whose elements are %

An element of the PageRank vector denotes the probability for the corresponding vertex that a jumper,
randomly following the edges in the graph, ends at that vertex, i.e. the importance of that vertex.

Now, vector v can be personalized by assigning stronger initial probabilities to certain vertices in the
graph. This personalized version of the PageRank algorithm (Agirre and Soroa, 2009) is used in our
approach in two different ways (see Figure 1):

In the basic version ppr , we represent both, Wikipedia articles and WordNet synsets as bag-of-words
(abbreviated as b in the following). The textual representation is tokenized and lemmatized using the
TreeTagger (Schmid, 1994); standard stopword removal is applied. For a given synset—article pair, we
calculate two Personalized PageRank vectors. For each Personalized PageRank vector, we initialize
vector v depending on the terms occurring in b:

m (@)

L if asynonymous word of synset; in WordNet occurs in b
v, =
’ 0 else,

where m is the number of synsets with a synonymous word occurring in b. For example, given the Word-
Net synset <payment, defrayal, defrayment: the act of paying money> with its bag-of-words (payment,
defrayal, defrayment, act, paying, money), we assign each synset, i.e. vertex in the graph, a weight, for
which at least one of its synonymous words occurs in the bag-of-words. Then, the PageRank vector is a
semantic representation over all WordNet synsets for the given bag-of-words.

In the direct version ppr 4, the WordNet synset is directly represented in v by assigning a weight of 1
to the corresponding vector element. It induces that the WordNet synset is already disambiguated and
thus, motivates the use of the Personalized PageRank algorithm on the WordNet graph. Only for the
Wikipedia article, the vector v is built up according to Eq. 2.

Given two Personalized PageRank vectors ppry, and ppr,, for the WordNet synset wn and the
Wikipedia article wp, we calculate their similarity using the y? measure.*

(pprwn; — PPTwp;)”
PDOTwn; + PPTwp;

simppr (wn, wp) =1 = X (PPrwn, PPrup) =1 3)

“This vector distance measure has shown the best overall performance compared to the cosine and euclidean distance in our
experiments.
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Learning classifier. Based on the similarity, the sense pair has to be classified as alignment (class 1)
or non-alignment (class 0) formally defined as:

1 if sim(wn,wp) >t

c(wn, wp) = { @)

0 else,

where sim(wn, wp) is the similarity of a WordNet synset and a Wikipedia article, and ¢ is a real valued
threshold. We apply 10-fold cross-validation to determine the threshold. We measure the performance of
classification by means of F;-Measure (see Section 5) and iteratively search (from 0 to 1 in 0.001 steps)
for a threshold that maximizes the performance on the training fold. A threshold-based classification
scheme induces that a WordNet synset can be aligned to none, one, or more than one Wikipedia article,
which is the main potential of our approach compared to existing methods. However, in the scope of this
paper, we assign at most one Wikipedia article (if any) to a WordNet synset (the one with the highest
similarity above the threshold) as this yields the best performance (see Section 5).

Word overlap measure. For comparison, we also applied the standard cosine word overlap similarity
measure cos used in existing sense alignment approaches (e.g., Ruiz-Casado et al. (2005)). We deter-
mine the similarity of the bag-of-words vectors of the WordNet synset and Wikipedia article calculating
the cosine between them. According to Eq. 4 we also learn a classifier based on the cosine similarity.

Combination of the classifiers’ output. Finally, we experiment with a heuristic, classifying only those
synset—article pairs as alignment, for which the Personalized PageRank-based classifier and the cosine-
based classifier, i.e. cppr and ceos, OF Cppr, and ceos, return an alignment to further increase the precision.

Baselines. We implemented two different baselines. The baseline rand randomly selects a Wikipedia
article from the extracted candidate set for each synset. The baseline mfs (most frequent sense) assigns
always the most frequently linked Wikipedia article of the candidate set defined as the article with the
highest number of incoming links. For example, for the synset wn =<tree: a tall perennial woody plant
having a main trunk [...]> suppose we extract the two Wikipedia articles, namely wp; =<Tree: A tree
is a perennial woody plant.> and wpy =<Tree (data structure)>. In this case, the sense wp; is aligned
to the synset wn as it has 4,339 inlinks, about 4,000 more than the article wps. Both, the rand and mfs
baseline always return a one-to-one alignment.

4 Well-balanced reference dataset

Publicly available evaluation datasets as provided by Fernando and 