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Preface

Hibernation is certainly not one of the activities of computational semanticists. In the midst of
winter they defy sub-zero temperatures, vicious snowstorms, and ice-covered roads to attend the
mother of all computational semantics conferences: IWCS. This has been an almost biennial
tradition since December 1994, when the first IWCS was initiated by Harry Bunt and held in
Tilburg, Netherlands. The workshop turned out to be a successful event, and seven more IWCS
meetings were organised — all by Harry Bunt, and all in Tilburg — between 1997 and 2009.

The ninth episode of IWCS, however, is different from various points of view. For the first time
in its history, it is not taking place in Tilburg, and not organised by Harry Bunt. IWCS released
itself, crossed the channel and landed in Oxford. Yet many of its key characteristics remain
as they were. For instance the IWCS logo, inspired by the park “Oude Warande” near the
traditional IWCS site at Tilburg University, continues to decorate the cover of the proceedings.

The call for papers for IWCS-2011 triggered a record number of 110 submissions, of which 75
were submitted as regular papers, and 35 as short papers. The programme committee, based on
a total of 328 reviews, selected 50 of these — 30 long and 20 short (three regular papers were
accepted as short papers). This gives an overall acceptance rate of 50/110 = 45% (30/72 = 42%
for regular papers, and 20/38 = 53% for short papers). Two papers (one regular, one short) were
withdrawn by their authors after the notification of acceptance.

It remains to say that we hope to offer you an exciting selection of state-of-the-art work in
computational semantics at IWCS-2011. We wish you a pleasant stay in Oxford!

Johan Bos, University of Groningen

Stephen Pulman, Oxford University

http://www.sigsem.org
IWCS is endorsed by SIGSEM, the ACL special interest group on computational semantics.
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The Semantics of Dialogue Acts

Harry Bunt
TiCC, Tilburg Center for Cognition and Communication

Tilburg University, The Netherlands
harry.bunt@uvt.nl

Abstract

This paper presents an update semantic for dialogue acts, defined in terms of combinations of
very simple ‘elementary update functions’. This approach allows fine-grained distinctions to be
made between related types of dialogue acts, and relations like entailment and exclusion between
dialogue acts to be established. The approach is applied to dialogue act representations as defined in
the Dialogue Act Markup Language (DiAML), part of the recently proposed ISO standard 24617-2
for dialogue act annotation.

1 Introduction

The notion of a dialogue act plays a key role in studies of dialogue, in particular in the interpretation
of the behaviour of dialogue participants and in the design of spoken dialogue systems. But in spite of
their popularity, their status is nearly always reduced to that of informal, intuitive concepts which lack
proper definitions (see Poesio and Traum, 1998 for one of the few attempts at formalization). A wide
range of alternative dialogue act taxonomies and inventories have been proposed, causing considerable
terminological and conceptual confusion, and problems for reusing annotated corpora. This has moti-
vated the International Organisation for Standards ISO to develop a standard for interoperable dialogue
act annotation, ISO 24617-2 (see ISO 2010). This proposed standard is partly based on the comprehen-
sive DIT++ taxonomy, which has added to the earlier DIT taxonomy (Bunt, 1994) a number of concepts
from other proposals and studies. Semantically, the DIT++ taxonomy is based on the dynamic approach
to utterance meaning taken in Dynamic Interpretation Theory (DIT), which views dialogue acts as cor-
responding to update operations on the information states of participants in the dialogue; an approach
commonly known as the ‘information-state update approach’ to meaning in dialogue – see e.g. Bunt
(2000); Traum & Larsson (2003). A dialogue act, on this approach, has two main components: a seman-
tic content, which describes the objects, properties, relations, or actions that the dialogue act is about,
and a communicative function, which specifies how an addressee should update his information state
with the semantic content.

Utterances in dialogue are often multifunctional, i.e., they have more than one communicative func-
tion. Dialogue analysis and annotation frameworks are therefore often ‘multidimensional’ in the sense of
allowing the assignment of multiple functions to functional segments. The DAMSL annotation scheme
for example (DAMSL = Dialogue Act Markup using Several Layers) distinguishes nine ‘dimensions’ as
mutually exclusive groups of function tags.

Bunt (2006) introduces a notion of dimension based on the observation that participation in a dia-
logue involves, beyond activities strictly related to performing the underlying task, sharing information
about the processing of utterances, managing the use of time, taking turns, and various other types of
communicative activity, and defines dimensions as corresponding to such aspects of communication.
Each dimension in this sense constitutes a category of communicative activity, and the dialogue acts
involved in these activities are concerned with different types of information: feedback acts with the
success of processing previous utterances; turn management acts with the allocation of the speaker role,
task-related acts with the dialogue task; and so on. Dimensions thus classify semantic content.
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Petukhova & Bunt (2009a; 2009b) formulate criteria for distinguishing dimensions, and apply these
in the analysis of the dimensions that occur in 18 existing annotation schemes, showing that the 10
dimensions of DIT++ form a well-founded set of dimensions. These are the following:

(1) 1. Task/Activity: dialogue acts for performing the task or activity underlying the dialogue
2. Auto-Feedback: providing information about the speaker’s processing of previous utterances.
3. Allo-Feedback: the speaker expresses opinions or elicits information about the addressee’s processing

of previous utterances;
4. Contact Management: dialogue acts for establishing and maintaining contact;
5. Turn Management: concerned with grabbing, keeping, giving, or accepting the speaker role;
6. Time Management: the speaker indicates to need some extra time to formulate his contribution;
7. Discourse Structuring: dialogue acts for explicitly structuring the conversation;
8. Own Communication Management: dialogue acts for editing the speaker’s current utterance;
9. Partner Communication Management: dialogue acts to assists or correct the current speaker;

10. Social Obligations Management: dialogue acts that take care of social conventions such as greetings,
apologies, and expressions of gratitude.

Some communicative functions are specific for a particular dimension; for instance Turn Accept
and Turn Release are specific for turn management; Stalling and Pausing for time management. Other
functions can be applied in any dimension; for instance a Check Question can be used with task-related
semantic content, but also for checking correct understanding (feedback). Similarly for commissive
and directive functions. These functions are therefore called general-purpose functions, as opposed
to dimension-specific functions. The DIT++ taxonomy therefore consists of two parts: a taxonomy
of general-purpose functions and one of dimension-specific functions - see Appendix A and http:
//dit.uvt.nl.

2 DiAML: Dialogue Act Markup Language

The Dialogue Act Markup Language (DiAML) which is part of the ISO standard under development for
dialogue act annotation (see Bunt et al., 2010, and http://semantic-annotation.uvt.nl)
has been designed in accordance with the ISO Linguistic Annotation Framework (Ide & Romary, 2004),
which makes a distinction between annotation and representation; ‘annotation’ refers to the linguistic
information that is added to segments of language data, independent of format; ‘representation’ refers to
the format in which an annotation is rendered, independent of content. This distinction is implemented in
the DiAML definition by a syntax that specifies, besides a class of XML-based representation structures,
also a class of more abstract annotation structures. These two components are called the concrete and
abstract syntax, respectively.

The abstract syntax defines a class of set-theoretical structures, called ‘annotation structures’. It
consists of: (a) a specification of the elements from which annotation structures are built up, called a
‘conceptual inventory’, and (b) a specification of the possible ways of combining these elements. The
conceptual inventory consists of finite sets of elements called ‘functional segments’, ‘dimensions’, ‘com-
municative functions’, ‘qualifiers’, and ‘rhetorical relations’.

An annotation structure consists of a set of entity structures and a set of link structures. Entity
structures contain semantic information about a functional segment; link structures describe semantic
relations between segments. The most important kind of entity structure is a so-called ‘dialogue act
structure’, which is a quadruple 〈S,A, d, f〉 where S and A are the sender and addressee of a dialogue
act; d is a dimension; and f is a communicative function or a pair 〈f, q〉, where q is a list of qualifiers.

The concrete syntax defines a rendering of annotation structures in XML. It is defined in accordance
with the methodology for defining semantic annotation languages described in Bunt (2010), which intro-
duces the notion of an ideal representation format, defined as one where every representation represents
a uniquely determined annotation structureThe semantics of the language is then defined for the struc-
tures defined by the abstract syntax. This has the effect that any two ‘ideal’ representation formats
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are semantically equivalent; every representation in one such format can be converted by a meaning-
preserving mapping into any other such format.1 The concrete syntax of DiAML is illustrated in (3)
and (2). P2’s utterance is segmented into two overlapping functional segments: one (fs2.1) in the Auto-
Feedback dimension and one (fs2.2) in the Task dimension, with value ‘answer’ qualified as ‘uncertain’.
(#-prefixed elements are assumed to be identified in the metadata of the source material or in another
layer of annotation.)

(2)

1. P1: What time does the next train to Utrecht leave?
TA: fs1: What time does the next train to Utrecht leave?
2. P2: The next train to Utrecht leaves I think at 8:32.
AuFB fs2.1: The next train to Utrecht
TA fs2.2: The next train to Utrecht leaves I think at 8:32.

(3)

<diaml xmlns:"http://www.iso.org/diaml/">
<dialogueAct xml:id="da1" target="#fs1"
sender="#p1" addressee="#p2"

communicativeFunction="setQuestion" dimension="task"
conditionality="conditional"/>

<dialogueAct xml:id="da2" target="#fs2"
sender="#p2" addressee="#p1"
communicativeFunction="autoPositive" dimension="autoFeedback"/>

<feedbackDependence dact="#da2.1" fbSegment="#fs1"/>
<dialogueAct xml:id="da3" target="#fs2.2"
sender="#p2" addressee="#p1"
communicativeFunction="answer" certainty="uncertain"
dimension="task" />

<functionalDependence dact="#da3" functAntecedent="#da1"/>
</diaml>

3 Context Model Structure and Content

As the proposed semantics of dialogue acts is in terms of information-state updates, the question arises
as to what exactly is an information state in this context; what information does it contain, and how is it
structured. An information state will be assumed to have a number of components, an assumption which
is shared between all proposals for information states (e.g. Poesio & Traum, 1998; Bunt, 2000; Ahn,
2001; Cooper, 2004); moreover, certain types of information can be argued to be required in information
states. The details of an information-state update semantics also depend on whether only the information
state of an addressee is considered to be updated by dialogue acts, or also that of the sender, and on
whether these updates involve mutual beliefs, as e.g. argued in Bunt (2000). We consider here only the
updates of a single addressee’s information state, disregarding mutual beliefs; this is anyway the basis
for more complex approaches involving multiple information states and mutual beliefs. In DIT, it is
customary to speak of ‘contexts’ or context models’, rather than ‘information states’, and we will use
this terminology in the rest of this paper.

A fundamental requirement for an adequate context model is that, for a given range of dialogue act
types, the model contains the kinds of information that are updated by a dialogue act. Bunt (forthc.)
argues that an agent’s context model does not necessarily have a separate component for each DIT di-
mension, but that it is convenient to distinguish the following five components:

(4) 1. Linguistic Context, which contains a record of the dialogue history, information about discourse plans
(if any), and wishes concerning the occupation of the speaker role;

2. Semantic Context, which contains the agent’s information and goals relating to the dialogue task, as
well as his assumptions about the dialogue partner’s task-related goals and beliefs;

3. Cognitive Context, which contains information about the agent’s cognitive processes concerned with
the processing and production of dialogue utterances, including time estimates for these processes;

1See Bunt (2010) for formal definitions and proofs relating to alternative representation formats sharing the same abstract
syntax, and Ide & Bunt (2010) for applying this to the GrAF framework for linguistic annotation.
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4. Physical/Perceptual Context, which contains information about physical and perceptual properties of
the interactive situation;

5. Social Context, which contains information relevant for interpreting and generating ‘social’ acts like
greetings, apologies, expressions of gratitude.

Versions of such a 5-component context model have been implemented in the PARADIME dialogue
manager (Keizer and Bunt, 2006; 2007) and for experimentation by Petukhova et al. (2010).

An update semantics has to take into account that update operations should not undermine the con-
sistency of the context model. A dialogue participant may change his mind during the dialogue, as an
effect of receiving some unexpected information, which can have the effect that the participant brings in
new information which contradicts something that was already grounded, and hence cannot simply be
added without making the context model inconsistent. Rather then building consistency checks into the
semantics of each dialogue act, we exploit the DIT distinction of five levels of utterance processing: (1)
attention, (2) perception, (3) understanding, (4) evaluation, and (5) execution. The level of understand-
ing determines the meaning of a dialogue segment in terms of dialogue acts. The evaluation level checks
whether the corresponding updates would keep the current context model consistent. If so, it performs
the updates. One way to implement this approach is to add to a context model a part called the pending
context, which serves as a buffer for items to be inserted in the main context once their consistency with
the current content of the main context has been established.2 Updating the pending context is a matter
of simply adding items to it. For convenience we will assume the pending context A′ of an agent A’s
context model to be structured in the same way as the main context. We will use the notation (5a) to
specify the update consisting of adding the information z to component A′

i i of A’s pending context. If
f is the update (5a) and g the update A′

j =+u, then (5b) designates the combination of the two updates.3

(5) a. A′
i =+z

b. f t g

An analysis of the definitions of the DIT++ communicative functions shows that a formal description
of the update effects of dialogue acts with a general-purpose function requires the basic concepts listed in
Table 1. For convenience, we also introduce the following abbreviations: Bel(S, p) abbreviates BelS, p,
firm); Wk-Bel(S, p) abbreviates BelS, p, weak); Assumes(S,p) abbreviates Bel(S,p) ∨ Wk-Bel(S,p).
In all action-related attitude operators we suppress the argument > representing the ‘empty’ condition,
hence WilDo(S, α) abbreviates WilDo(S, α,>), and so on.

description notation meaning
believes that Bel(S, p, σ) S believes that p; σ indicates whether this is a firm belief

or an uncertain belief (σ can have the values ‘firm’ and ‘weak’)
knows value of Know-val(S, z) S possesses the information z
has goal Wantl(S, p) S has the goal that p
is able to do CanDo(S, α) S is able to perform the action α
is willing to do WilDo(S, α,Cα) S is willing to perform the action α if the condition Cα is

fulfilled; Cα may be the universally true statement >
is committed to do CommitDo(S, α,Cα) S is committed to perform the action α if the condition Cα is

fulfilled; the condition Cα may be ‘empty’ (>)
is committed to RefrainDo(S, α,Cα) S is committed to refrain from performing the action α
refrain from doing if the condition Cα is fulfilled Cα may be ‘empty’ (>)
is considering ConsidDo (X,α, Y, Cα) X is considering the action α, to be performed by Y,
to be done if the condition Cα is fulfilled Cα may be ‘empty’ (>)
is in the interest of Interest(Y, α) action α is of interest to agent Y .

Table 1: Basic semantic concepts for general-purpose communicative function interpretation
2This approach has been implemented in the multimodal DenK dialogue system; see Kievit et al. (2001).
3The combined update (f t g) is undefined if the order of performing the two updates would make a difference.
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Dimension Primitives
Auto- and Allo-feedback Attended, Perceived, Understood, Accepted, Executed, Attention-

Problem, Perception-Problem, Interpretation-Problem, Evaluation-
Problem, Execution-Problem

Turn Management Current-Speaker, Next-Speaker
Time Mangement Time-Need, small, substantial
Contact Management Present
Discourse Structuring Ready, Available, Start-Dialogue, Close-Dialogue
Own and Partner Communication Man. Delete, Replace, Append
Social Obligations Man. Available, Thankful, Regretful, Knows-id, Final

Table 2: Dimension-specific semantic primitives

Dimension-specific communicative functions are always concerned with a specific category of se-
mantic content, which requires certain specific semantic primitives for its representation. Table 2 lists
the basic concepts for describing their update semantics.

For expressing the semantics of a feedback act which is underspecified for the level of processing,
we introduce in (6) the predicates Succes-Processing, defined as successful at least at the level of under-
standing, and Unsuccessful-Processing, defined as unsuccessful at the level of understanding or lower.

(6) a. Succes-Processing = Understood ∨ Accepted ∨ Executed
b. Unsuccessful-Processing = Interpretation-Problem ∨ Perception-Problem ∨ Attention-Problem

4 Dialogue Act Semantics

In this section we outline a semantics of dialogue acts in the form of an update semantics for the ’dialogue
act structures’ defined by the DiAML abstract syntax. A dialogue act structure does not correspond to
a full-blown dialogue act representation, since it does not include the full semantic content, but only
the dimension which classifies the semantic content. The semantics of a dialogue act structure should
therefore be something which can be combined with a semantic content in order to form the interpretation
of a full-blown dialogue act. This is precisely the case, for the recursive interpretation of a dialogue
act structure 〈S,A, d, f〉 is defined through the recursive valuation function V as specified in (7). Of
the four arguments of V in the left-hand side of (7), S, A, and d are elements of the categories of the
DiAML conceptual inventory, so there is no recursion in their interpretation; for such elements, the
valuation function is defined by a value assignment function F , playing the same role as that of a ‘model
assignment’ function in model-theoretic semantics; F for example assigns to a sender and an addressee
certain individuals, identified in the metadata of an annotated dialogue (cf. #p1 and #p2 in (3)). To the
dimension argument d, F assigns that component of an information state that should be updated.

(7) V (<S, A, d, f>) = (V (f))(F (S), F (A), F (d))

4.1 The Update Semantics of Communicative Functions

A communicative function will be interpreted as a function which, applied to a given speaker, addressee,
and dimension, results in a function which can be applied to a semantic content in order to obtain a
context-update specification. Since related communicative functions often share parts of their defining
preconditions, we will construct such interpretations as combinations of elementary update functions,
each of which takes care of the update corresponding to a single dialogue act precondition; see Table
3 and Table 4 for illustration: Table 3 lists the definitions of the update semantics of the communica-
tive functions of the information-providing class, while Table 4 lists the elementary elementary update
functions used in these definitions.
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4.1.1 General-Purpose Communicative Functions

The class of general-purpose communicative functions in the DIT++ taxonomy falls apart into the
information-transfer functions and action-discussion functions, further subdivided into information-providing
and information-seeking functions, and commissives and directives, respectively.

a. Information-Providing and Information-Seeking Functions The class of information-providing
functions has a hierarchical structure, with the communicative function Inform as the mother of all
information-providing functions; all other functions are specializations of this function. These func-
tions all have in common that (1) the speaker wants the addressee to possess certain information which
(2) the speaker assumes to be correct.

Using the epistemic operators introduced in Section 5, these preconditions are formalized as follows:

(8) 1. Want(S,U, Bel(A, p, σ))
2. Bel(A, p, σ)

The semantics of the Inform function, specified in Table 3, binds the variable σ, representing the belief
strength for both the elementary update functions involved. (See further below, section 4.2.)

The update semantics in terms of combinations of elementary update functions often brings out
immediately that some communicative functions are specializations of others (as visualized in Appendix
A), for instance, the update semantics of the Answer function shares with the Inform function the updates
defined by the elementary update functions U1 and U2, and adds to that the effects of U7 and U9; the
semantic of the Confirm function adds to that the update defined byU8. Hence Confirm is a specialization
of Answer, which is a specialization of Inform, or in other words Confirm entails Answer entails Inform.

F (Inform) = λs.λX.λY.λDi.λp.U1(X,Y,Di, p, s) t U2(X,Y,Di, p, s)
F (Agreement) = λs.λX.λY.λDi.λp.U1(X,Y,Di, p, s) t U2(X,Y,Di, p, s) t U5(X,Y,Di, p)
F (Disagreement) = λs.λX.λY.λDi.λp.U1(X,Y,Di,¬p, s) t U2(X,Y,Di,¬p, s) t U5(X,Y,Di, p)
F (Correction) = λs.λX.λY.λDi.λp.U1(X,Y,Di, p1, s) t U2(X,Y,Di,¬p1, s) t U6(X,Y,Di, p2)
F (Answer) = λs.λX.λY.λDi.λp.U1(X,Y,Di, p, s) t U2(X,Y,Di, p, s) t U9(X,Y,Di, p)

t U7(X,Y,Di, p)
F (Confirm) = λs.λX.λY.λDi.λp.U1(X,Y,Di, p, s) t U2(X,Y,Di, p, s) t U8(X,Y,Di, p)

t U9(X,Y,Di, p, s) t U7(X,Y,Di, p)
F (Disconfirm) = λs.λX.λY.λDi.λp.U1(X,Y,Di,¬p, s) t U2(X,Y,Di,¬p, s) t U8(X,Y,Di,¬p, s)

t U9(X,Y,Di, p) t U7(X,Y,Di, p)
F (Question) = λX.λY.λDi.λz.U10(X,Y,Di, z) t U11(X,Y,Di, z)
F (Prop.Question) = λX.λY.λDi.λp.U10(X,Y,Di, p) t U11(X,Y,Di, p) t U12(X,Y,Di, p)
F (CheckQuestion) = λX.λY.λDi.λz.U10(X,Y,Di, p) t U11(X,Y,Di, p) t U4(X,Y,Di, p)
F (SetQuestion) = λX.λY.λDi.λz.U10(X,Y,Di, P ) t U11(X,Y,Di, P ) t U13(X,Y,Di, P )
F (ChoiceQuestion) = λX.λY.λDi.λp.U15a(X,Y,Di, p) t U15(X,Y,Di, p) t U16(X,Y,Di, p)

Table 3: Update semantics for information-providing and information-seeking communicative functions

As an illustration of the update semantics of information-providing functions, consider the case of the
answer in (9.2).

(9) 1. D: twenty-five euros, how much is that in pounds?
2. C: twenty-five euros is something like 20 pounds

Applying the semantics of the Answer function (see Table 3) to the participants C and D and the semantic
content of (9.2), we obtain:

(10) F (Answer)(C, D, Task, EU25=BP20) = U1(C,D,SemC, EU25=BP20) t
t U2(C,D,Task, EU25=BP20) t U9(C, D, Task, EU25=BP20) t U7(C, D, Task, EU25=BP20) =
D′
SemC =+ Bel(D, Want(C, Bel(D, EU25=BP20))); D′

SemC =+ Bel(D, Bel(C, EU25=BP20));
D′
SemC =+ Bel(D, Bel(C, Want(D, Know-val(D, EU25=BP20)))); D′

SemC =+ Bel(D, Bel(C, Assume(D,
Know-val(C, EU25=BP20))))
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Hence the following beliefs are added to D’s pending Semantic Context: (1) C wants D to know that
EU25=BP20; (2) C believes that EU25=BP20; (3) C believes that D wants to know whether EU25=BP20;
and (4) C believes that D assumes C to know whether EU25=BP20.

U1(X,Y,Di, p, s) Y ′
i =+ Bel(Y , Want(X,Bel(Y, p, s)))

U2(X,Y,Di, p, s) Y ′
i =+ Bel(Y , Bel(X, p, s))

U3(X,Y,Di, p) Y ′
i =+ Bel(Y , Assume(X, p))

U4(X,Y,Di, p) Y ′
i =+ Bel(Y , Wk-Bel(X, p))

U5(X,Y,Di, p) Y ′
i =+ Bel(Y , Bel(X, Assume(Y, p)))

U6(X,Y,Di, p) Y ′
i =+ Bel(Y , Assume(X , Assume(Y, p)))

U7(X,Y,Di, p) Y ′
i =+ Bel(Y , Bel(X, Assume(Y, Know-val(X,P ))))

U8(X,Y,Di, p) Y ′
i =+ Bel(Y , Assume(X, Wk-Bel(Y, p))

U9(X,Y,Di, p) Y ′
i =+ Bel(Y , Bel(X, Want(Y, Know-val(Y, p))))

U10(X,Y,Di, p) Y ′
i =+ Bel(Y , Want(X, Know-val(X, )))

U11(X,Y,Di, p) Y ′
i =+ Bel(Y , Assume(X, Know-val(Y, p))

U12(X,Y,Di, p) Y ′
i =+ Bel(Y , Bel(X , p ∨ ¬p))

U15(X,Y,Di, p) Y ′
i =+ Bel(Y , Assume(X, p1 xor p2))

U15a(X,Y,Di, p) Y ′
i =+ Bel(Y , Want(X, Bel(X, p1) ∨ Bel(X, p2))))

U16(X,Y,Di, p) Y ′
i =+ Bel(Y , Assume(X,Bel(Y, p1) ∨ Bel(Y, p2))))

Table 4: Elementary update functions used in the semantics of information-transfer functions

b. Commissive and Directive Functions For the classes of commissive and directive communicative
functions, we provide for reasons of space the semantics of only a small selection of functions; see Bunt
(2011a) for more.

F (Offer) = λCα.λX.λY.λDi.λα.U25a(X,Y,Di, α) t U20(X,Y,Di, α, Cα)
F (AddressRequest) =λCα.λX.λY.λDi.λα.U17a(X,Y,Di, α, Cα) t U18(X,Y,Di, α) t U26b(X,Y,Di, α)
F (AcceptRequest) =λCα.λX.λY.λDi.λα.U17(X,Y,Di, α, Cα) t U18(X,Y,Di, α) t U26b(X,Y,Di, α)
F (DeclineRequest) =λCα.λX.λY.λDi.λα.U27(X,Y,Di, α,Cα) t U18(X,Y,Di, α) t U26b(X,Y,Di, α)
F (Request) = λCα.λX.λY.λDi.λα.U23(X,Y,Di, α, Cα) t U26(X,Y,Di, α)
F (Instruct) = λCα.λX.λY.λDi.λα.U24(X,Y,Di, α, Cα) t U26(X,Y,Di, α) t U25(X,Y,Di, α)
F (AddressOffer) = λCα.λX.λY.λDi.λα.U17b(X,Y,Di, α, Cα) t U25(X,Y,Di, α) t U25b(X,Y,Di, α)
F (AcceptOffer) = λCα.λX.λY.λDi.λα.U24(X,Y,Di, α) t U25(X,Y,Di, α) t U25b(X,Y,Di, α)

Table 5: Update semantics for a selection of commissive and directive functions

As an example of the interpretation of a directive dialogue act, consider the request in (11.2):

(11) 1. A: (...)
2. B: Could you please repeat that?

Applied to the participants A and B and the semantic content Repeat(u1), which situates the Request
act in the Auto-Feedback dimension, the definition of the Request semantics in Table 5 leads to:

(12) F (Request)(A, B, Auto-Feedback, 〈Repeat(u1), unconditional〉) = λCα.λX.λY.λDi.λα.)

U23(X,Y,Di, α, Cα t U26(X,Y,Di, α)(A, B, Auto-Feedback, Repeat(u1), >) =
= U23(A,B, CC, Repeat(u1), >) t U26(A,B, C, Repeat(u1)) =
B′
CC =+ Bel(B, Want(A, [WilDo(A,Repeat(u1) → CommitDo(B,Repeat(u1))]));

B′
CC =+ Bel(B, Bel(A, CanDo(B,Repeat(u1))))

where ‘CC’ stands for Cognitive Context.

4.1.2 Dimension-Specific Communicative Functions

4.1.2.1 Feedback Functions The communicative functions for providing and eliciting feedback in DIT++

fall apart in those concerned with the speaker’s own processing of previous utterances (Auto-Feedback)
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U17(X,Y,Di, α, Cα) Y ′
i =+ Bel(Y , CommitDo(X,α,Cα))

U17a(X,Y,Di, α, Cα) Y ′
i =+ Bel(Y , ConsidDo(X,α,X,Cα))

U17b(X,Y,Di, α, Cα) Y ′
i =+ Bel(Y , ConsidDo(X,α, Y, Cα))

U18(X,Y,Di, α) Y ′
i =+ Bel(Y , Bel(X,Want(Y,CommitDo(X,α,Cα)))

U20(X,Y,Di, α, Cα) Y ′
i =+ Bel(Y, WilDo(X,α,Cα))

U21(X,Y,Di, α) Y ′
i =+ Bel(Y , Bel(X, Interest(α, Y )))

U23(X,Y,Di, α) Y ′
i =+ Bel(Y , Want(X, [WilDo(Y, α,Cα) → CommitDo(Y, α,Cα)]))

U24(X,Y,Di, α) Y ′
i =+ Bel(Y , Want(X,CommitDo(Y, α)))

U25(X,Y,Di, α, Cα) Y ′
i =+ Bel(Y , Bel(X,WilDo(Y, α,Cα)))

U25a(X,Y,Di, α, Cα) Y ′
i =+ Bel(Y , Want(X, Bel(Y, WilDo(X,α,Cα))))

U25b(X,Y,Di, α, Cα) Y ′
i =+ Bel(Y , Bel(X , Want(Y, Bel(X, WilDo(Y, α,Cα)))))

U26(X,Y,Di, α) Y ′
i =+ Bel(Y , Assume(X, CanDo(Y, α)))

U26b(X,Y,Di, α) Y ′
i =+ Bel(Y , Bel(X, Assume(Y,CanDo(X,α)))

U27(X,Y,Di, α, Cα) Y ′
i =+ Bel(Y , CommitRefrain(X,α,Cα))

Table 6: Elementary update functions used in the semantics of action-discussion functions.

and those concerned with the addressee’s processing, as perceived by the speaker (Allo-Feedback). The
elementary update functions for both dimensions are nearly identical, only differing in whose processing
is concerned. Tables 7 and 8 show the update semantics of a small, representative subset of the (25)
DIT++ communicative functions for providing and eliciting feedback.

U31(X,Y,Di, z) Y ′
CC =+ Bel(Y , Want(X, Bel(Y, Succes-Processing(X, z)))

U35(X,Y,Di, z) Y ′
CC =+ Bel(Y , Want(X, Bel(Y, Accepted(X, z)))

U79(X,Y,Di, z) Y ′
CC =+ Bel(Y , Want(X, Bel(Y, Perception-Problem(Y, z)))

U76(X,Y,Di, z) Y ′
CC =+ Bel(Y , Want(X, Bel(Y, Execution-Problem(Y, z)))

U61(X,Y,Di, z) Y ′
CC =+ Bel(Y , Bel(X, Success-Processing(X, z)))

U64(X,Y,Di, z) Y ′
CC =+ Bel(Y , Bel(X, Accepted(X, z)))

U67(X,Y,Di, z) Y ′
CC =+ Bel(Y , Bel(X, Perception-Problem(X, z)))

U85(X,Y,Di, z) Y ′
CC =+ Bel(Y , Bel(X, Execution-Problem(Y, z)))

Table 7: Elementary update schemes for the semantics of auto- and allo-feedback functions (selection).

F (AutoPositive) = λX.λY.λDi.λp.U31(X,Y,Di, p) t U61(X,Y,Di)
F (AlloPerceptionNegative) = λX.λY.λDi.λp.U33(X,Y,Di, p) t U62(X,Y,Di)
F (AutoEvaluationPositive) = λX.λY.λDi.λp.U35(X,Y,Di, p) t U64(X,Y,Di)
F (AlloExecutionNegative) = λX.λY.λDi.λp.U76(X,Y,Di, p) t U85(X,Y,Di)

Table 8: Semantics of feedback functions (selection)

4.1.2.2 Turn Management Functions
The communicative functions for turn management serve to decide who has or will have the speaker role.
Hence the various functions for taking, accepting, grabbing, keeping, releasing, or assigning the turn are
all defined in terms in who currently occupies the speaker and who wants or should have it next.

For example, assigning the turn to somebody (Turn Assign) means that the participant A, who cur-
rently occupies the speaker role, wants the indicated other participant, B, to occupy the speaker role next.
This is expressed in the form of a combination of elementary update functions as shown in (13):

(13) F (TurnAssign)(A,B) = [λX.λY.U101(X,Y, TurnM) t U102(X,Y, TurnM ](A,B) =
= U101(A,B, TurnM) t U102(X,Y, TurnM) =
= B′

LiC =+ Bel(A, Current-Speaker(A)); B′
LiC =+ Want(A, Next-Speaker(B))

In other words, the Linguistic Context component of B’s pending context is updated to contain the beliefs
that A is the current speaker and wants B to be the next speaker.
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U101(X,Y,TurnM ) Y ′
LiC =+ Bel(X, Current-Speaker(X))

U102(X,Y,TurnM ) Y ′
LiC =+ Want(X, Next-Speaker(Y ))

U103(X,Y,TurnM ) Y ′
LiC =+ Bel(X, Current-Speaker(Y ))

U104(X,Y,TurnM ) Y ′
LiC =+ Wants(X, Current-Speaker(X))

U105(X,Y,TurnM ) Y ′
LiC =+ Wants(X, Next-Speaker(X))

U105(X,Y,TurnM ) Y ′
LiC =+ Want(X,¬ Next-Speaker(X))

U107(X,Y,TurnM ) Y ′
LiC =+ Bel(X,¬ Next-Speaker(X) ∧ ¬ Next-Speaker(Y ))

U108(X,Y,TurnM ) Y ′
LiC =+ Bel(X, Want(Y , Next-Speaker(X)))

Table 9: Elementary update schemes for the semantics of turn management functions.

F (TurnAccept) = λX.λY.λDi.U103(X,Y,Di) t U105(X,Y,Di) t U107(X,Y,Di)
F (TurnAssign) = λX.λY.λDi.U101(X,Y,Di) t U102(X,Y,Di)
F (TurnGrab) = λX.λY.λDi.U103(X,Y,Di) t U104(X,Y,Di)
F (TurnKeep) = λX.λY.λDi.U101(X,Y,Di) t U105(X,Y,Di)
F (TurnRelease) = λX.λY.λDi.U101(X,Y,Di) t U106(X,Y,Di)
F (TurnTake) = λX.λY.λDi.U105(X,Y,Di) t U107(X,Y,Di)

Table 10: Update semantics of turn management functions

4.1.2.3 Time Management Functions Time management acts are used by a speaker to indicate that
he needs some time to compose his utterance, as signalled for instance by protracting (decreasing his
speech tempo) or filled pauses; or that he needs so much time that he suspends the dialogue as in Just a
moment. The semantics of such acts requires a context model to contain beliefs about the amount of time
needed by cetain cognitive processes; the DIT context model therefore assumes the representation of
estimates of amount of time to be represented in the Cognitive Context component, which also contains
other information about the speaker’s cognitive processing.

Consider for example consider the update semantics of a Stalling act:

(14)
V (<Sys,Usr, TimeM, Stalling>) = F (Stalling)(Sys, Usr, CogC)

= U111(Sys,Usr ,CogC ,Time-Need(Sys, small))
= Usr′CC =+ TimeNeed(Sys, small)

This update operation adds to the pending cognitive context of Usr the information that Sys needs a small
amount of time.

U111(X,Y,CC ) Y ′
CC =+ TimeNeed(X, small)

U112(X,Y,CC ) Y ′
CC =+ TimeNeed(X, substantial)

U111(X,Y,CC ) Y ′
CC =+ TimeNeed(X, small)

U112(X,Y,CC ) Y ′
CC =+ TimeNeed(X, substantial)

Table 11: Elementary update schemes for the semantics of time management functions.

4.1.2.4 Other Communicative Functions
The semantics of the dimension-specific communicative functions for Contact Management, Discourse
Structuring, Own Communication Management, Partner Communication Management, and Social Obli-
gations Management is quite similar to that of the dimension-specific communicative functions that
considered above. the main difference being the use of other, dimension-specific predicates.

4.2 The Interpretation of Communicative Function Qualifiers

Communicative function qualifiers come in two varieties, ‘q-specifiers’ and ‘q-additives’. Q-specifiers
make preconditions of the communicative function that they qualify more specific, for instance spec-
ifying for an answer that there is some uncertainty about the correctness of its content. Q-additives
enrich a communicative function, for instance adding that an offer is accepted happily. Currently DIT
distinguishes two classes of q-specifiers, the ‘certainty’ and ‘conditionality’ qualifiers, and one type of
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q-additive, for ‘sentiment’ representation.Qualifiers can apply only to general-purpose communicative
functions; certainty qualifiers to information-providing functions, and conditionality qualifiers to action-
discussion functions. Sentiment qualifiers can be attached in principle to every communicative function.

For the semantics of qualified communicative functions we thus have three possible cases to consider,
where fi is an unqualified communicative function: (a) 〈fi, qsj〉 where qsj is a q-specifier; (b) 〈fi, qak〉
where qak is a q-additive; and (c) 〈fi, qsj , ask〉 where qsj is a q-specifier and qak is a q-additive. The
following clauses in the definition of the recursive valuation function V for DiAML specify the semantic
interpretation in each of these cases:

(15) a. V (〈fi, qsj〉) = (F (fi))(F (qsj))

b. V (〈fi, qak〉) = λS.λz.[(F (fi))(S, z) t (F (qak))(S, z)]

c. V (〈fi, qsj , qak〉) = λS.λz.[((F (fi))(F (qsj)))(S, z) t (F (qak))(S, z)]

The semantics of each of the individual qualifiers is defined as follows:

(16)

F (certain) = ‘firm’
F (uncertain) = ‘weak’
F (conditional) = ‘cond’
F (unconditional) = > (the ‘empty’ condition)
F (sentimentk) = λX.λu. SENTIMENT-PREDICATEk(X,u)

We consider two examples. The first illustrates the semantics of an answer, qualified as uncertain, as
in (17) (‘p5’ abbreviates the proposition that the train to Tilburg leaves from platform 5):

(17) 1. A: Does the train to Tilburg leave from platform 5?
2. B: I think so, probably yes.

(18)

V (〈B,A,Task, p5, 〈Answer, uncertain〉) = V (〈Answer, uncertain〉)(A,B,Task, p5)
= B′

i =+ Bel(B, U1(A,B,Task, p5,weak) t U2(A,B,Task, p5,weak) t U9(A,B, Task, p)
t U7(A,B, Tak, p)

= A′
SemC =+ Bel(A, Want(B,Bel(A, p, weak))); A′

SemC =+ Bel(A, Bel(B, p, weak));
A′
SemC =+ Bel(A, Bel(B, Want(A, Know-val(A, p))));

A′
SemC =+ Bel(A, Bel(B, Assume(A, Know-val(B, p))))

This means that A’s pending semantic context is extended with the following pieces of information:

(19) 1. Bel(B, p5,weak), or equivalently: Wk-Bel(B, p5); i.e., B holds the uncertain belief that p5;
2. Want(B, Wk-Bel(A, p5)), i.e. B has the goal that A also holds this uncertain belief;
3. Bel(B, Want(A, Know-val(A, p))), i.e. B believes that A wants to know whether p5.
4. Bel(B,Assume(A, Know-val(B, p))): B believes that A assumes that B knows whether p5.

Second, example (20) illustrates the semantics of an unconditional Accept Offer with a happy sentiment
(as in A: How about a cup of coffee? B: Oh yes, that would be wonderful!), using (15c).

(20)

V (〈AcceptOffer, unconditional, happy〉) =
= λS.λz.[[F (AcceptOffer)(F (unconditional))](S, z) t [F (happy)](S, z)]
= λS.λz.[[[λX.λY.λDi.λα.λCα. U24(X,Y,Di, α) t U25(X,Y,Di, α, Cα) t

U25b(X,Y,Di, α, Cα)](>)](S, z) t HAPPY(S, z))]
= [[λS.λY.λDi.λz.λCz. U24(S, Y,Di, z) t U25(S, Y,Di, z,>) t

U25b(S, Y,Di, z,>)] t HAPPY(S, z))]

Applied to the participants A and B and the action ‘coffee’, we obtain:

(21)

= A′
Task=+ Bel(A, Want(B,CommitDo(A, coffee)));

A′
Task =+ Bel(A, Bel(B, WilDo(A, coffee)));

A′
Task =+ Bel(A, Bel(B, Want(A, Bel(B, WilDo(A, coffee)))));

A′
CC =+ HAPPY(B, coffee))]
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In other words, the Task component of A’s pending context is extended with the beliefs that B wants
A to commit himself to arrange coffee; that A is willing to do s o; and that A wants B to believe that.
Moreover, the understanding thatB is happy to get some coffee is represented in the cognitive component
of A’s pending context.

Concerning the certainty regarding the correctness of provided information, as represented through
certainty qualifiers, the unmarked case in natural language is certain. A speaker who is quite certain about
something may indicate this by expressions like definitely, most certainly, but this tends to occur only
when doubt or disbelief has expressed about something that was claimed. When there is no expression
of uncertainty, the speaker’s utterance is therefore interpreted as expressing certainty. For conditionality,
the unmarked case is unconditional; an unconditional commitment or willingness to perform a certain
action can be expressed explicitly, but this tends to occur only if some doubt has been expressed about
someone’s commitment or willingness. When no conditions for performing an action are expressed, we
therefore interpret the utterance as unconditional.

5 Conclusion and Future Work

This paper has outlined an update semantics of dialogue acts, associated with annotation structures de-
fined by the abstract syntax of the DIAML language for semantic annotation, which forms part of ISO
standard (24617-2) under development for dialogue act annotation.

Future work that’s crying to be done includes further implementation, testing and evaluation beyond
what has already been done (see Petukhova, Bunt and Malchanau, 2010; Keizer, Bunt and Petukhova,
2010), and supplementing the approach with an interpretation of the relations between dialogue acts and
other units in dialogue (see Petukhova, Prévot and Bunt, 2011).
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Appendix: The DIT++ taxonomy of communicative functions
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A New Semantics:  
Merging Propositional and Distributional Information  
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Despite hundreds of years of study on semantics, theories and representations of semantic 
content—the actual meaning of the symbols used in semantic propositions—remain 
impoverished.  The traditional extensional and intensional models of semantics are difficult 
to actually flesh out in practice, and no large-scale models of this kind exist.  Recently, 
researchers in Natural Language Processing (NLP) have increasingly treated topic signature 
word distributions (also called ‘context vectors’, ‘topic models’, ‘language models’, etc.) as a 
de facto placeholder for semantics at various levels of granularity.  This talk argues for a new 
kind of semantics that combines traditional symbolic logic-based proposition-style semantics 
(of the kind used in older NLP) with (computation-based) statistical word distribution 
information (what is being called Distributional Semantics in modern NLP).  The core 
resource is a single lexico-semantic ‘lexicon’ that can be used for a variety of tasks.  I show 
how to define such a lexicon, how to build and format it, and how to use it for various tasks. 
Combining the two views of semantics opens many fascinating questions that beg study, 
including the operation of logical operators such as negation and modalities over word(sense) 
distributions, the nature of ontological facets required to define concepts, and the action of 
compositionality over statistical concepts.   
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Abstract

We present a method for training a statistical model for mapping natural language sentences to
semantic expressions. The semantics are expressions of an underspecified logical form that has prop-
erties making it particularly suitable for statistical mapping from text. An encoding of the semantic
expressions into dependency trees with automatically generated labels allows application of exist-
ing methods for statistical dependency parsing to the mapping task (without the need for separate
traditional dependency labels or parts of speech). The encoding also results in a natural per-word
semantic-mapping accuracy measure. We report on the results of training and testing statistical mod-
els for mapping sentences of the Penn Treebank into the semantic expressions, for which per-word
semantic mapping accuracy ranges between 79% and 86% depending on the experimental condi-
tions. The particular choice of algorithms used also means that our trained mapping is deterministic
(in the sense of deterministic parsing), paving the way for large-scale text-to-semantic mapping.

1 Introduction

Producing semantic representations of text is motivated not only by theoretical considerations but also
by the hypothesis that semantics can be used to improve automatic systems for tasks that are intrinsically
semantic in nature such as question answering, textual entailment, machine translation, and more gen-
erally any natural language task that might benefit from inference in order to more closely approximate
human performance. Since formal logics have formal denotational semantics, and are good candidates
for supporting inference, they have often been taken to be the targets for mapping text to semantic
representations, with frameworks emphasizing (more) tractable inferencechoosing first order predicate
logic (Stickel, 1985) while those emphasizing representational power favoring one of the many available
higher order logics (van Benthem, 1995).

It was later recognized that in order to support some tasks, fully specifying certain aspects of a logic
representation, such as quantifier scope, or reference resolution, isoften not necessary. For example, for
semantic translation, most ambiguities of quantifier scope can be carried overfrom the source language
to the target language without being resolved. This led to the development ofunderspecified semantic
representations (e.g. QLF, Alshawi and Crouch (1992) and MRS, Copestake et al (2005)) which are
easier to produce from text without contextual inference but which canbe further specified as necessary
for the task being performed.

While traditionally mapping text to formal representations was predominantly rule-based, for both
the syntactic and semantic components (Montague (1973), Pereira and Shieber (1987), Alshawi (1992)),
good progress in statistical syntactic parsing (e.g. Collins (1999), Charniak (2000)) led to systems that
applied rules for semantic interpretation to the output of a statistical syntactic parser (e.g. Bos et al.
(2004)). More recently researchers have looked at statistical methodsto provide robust and trainable
methods for mapping text to formal representations of meaning (Zettlemoyer and Collins, 2005).

In this paper we further develop the two strands of work mentioned above,i.e. mapping text to
underspecified semantic representations and using statistical parsing methods to perform the analysis.
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Here we take a more direct route, starting from scratch by designing an underspecified semantic repre-
sentation (Natural Logical Form, or NLF) that is purpose-built for statistical text-to-semantics mapping.
An underspecified logic whose constructs are motivated by natural language and that is amenable to
trainable direct semantic mapping from text without an intervening layer of syntactic representation. In
contrast, the approach taken by (Zettlemoyer and Collins, 2005), for example, maps into traditional logic
via lambda expressions, and the approach taken by (Poon and Domingos,2009) depends on an initial
step of syntactic parsing.

In this paper, we describe a supervised training method for mapping text to NLF, that is, producing
a statistical model for this mapping starting from training pairs consisting of sentences and their corre-
sponding NLF expressions. This method makes use of an encoding of NLFexpressions into dependency
trees in which the set of labels is automatically generated from the encoding process (rather than being
pre-supplied by a linguistically motivated dependency grammar). This encoding allows us to perform the
text-to-NLF mapping using any existing statistical methods for labeled dependency parsing (e.g. Eisner
(1996), Yamada and Matsumoto (2003), McDonald, Crammer, Pereira (2005)). A side benefit of the
encoding is that it leads to a natural per-word measure for semantic mappingaccuracy which we use for
evaluation purposes. By combing our method with deterministic statistical dependency models together
with deterministic (hard) clusters instead of parts of speech, we obtain a deterministic statistical text-to-
semantics mapper, opening the way to feasible mapping of text-to-semantics at alarge scale, for example
the entire web.

This paper concentrates on the text-to-semantics mapping which depends, inpart, on some properties
of NLF. We will not attempt to defend the semantic representation choices forspecific constructions il-
lustrated here. NLF is akin to a variable-free variant of QLF or an MRS in which some handle constraints
are determined during parsing. For the purposes of this paper it is sufficient to note that NLF has roughly
the same granularity of semantic representation as these earlier underspecified representations.

We outline the steps of our text-to-semantics mapping method in Section 2, introduce NLF in Sec-
tion 3, explain the encoding of NLF expressions as formal dependency trees in Section 4, and report on
experiments for training and testing statistical models for mapping text to NLF expressions in Section 5.

2 Direct Semantic Mapping

Our method for mapping text to natural semantics expressions proceeds asfollows:

1. Create a corpus of pairs consisting of text sentences and their corresponding NLF semantic ex-
pressions.

2. For each of the sentence-semantics pairs in the corpus, align the wordsof the sentence to the tokens
of the NLF expressions.

3. “Encode” each alignment pair as an ordered dependency tree in which the labels are generated by
the encoding process.

4. Train a statistical dependency parsing model with the set of dependency trees.

5. For a new input sentenceS, apply the statistical parsing model toS, producing a labeled depen-
dency treeDS .

6. “Decode”DS into a semantic expression forS.

For step 1, the experiments in this paper (Section 5) obtain the corpus by converting an existing
constituency treebank into semantic expressions. However, direct annotation of a corpus with semantic
expressionsis a viable alternative, and indeed we are separately exploring that possibilityfor a different,
open domain, text corpus.
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For steps 4 and 5, any method for training and applying a dependency model from a corpus of labeled
dependency trees may be used. As described in Section 5, for the experiments reported here we use an
algorithm similar to that of Nivre (2003).

For steps 2, 3 and 6, the encoding of NLF semantic expressions as dependency trees with automati-
cally constructed labels is described in Section 4.

3 Semantic Expressions

NLF expressions are by design amenable to facilitating training of text-to-semantics mappings. For this
purpose, NLF has a number of desirable properties:

1. Apart from a few built-in logical connectives, all the symbols appearing in NLF expressions are
natural language words.

2. For an NLF semantic expression corresponding to a sentence, the word tokens of the sentence
appear exactly once in the NLF expression.

3. The NLF notation is variable-free.

Technically, NLF expressions are expression of an underspecified logic, i.e. a semantic representation
that leaves open the interpretation of certain constructs (for example the scope of quantifiers and some
operators and the referents of terms such as anaphora, and certain implicit relations such as those for
compound nominals). NLF is similar in some ways to Quasi Logical Form, or QLF (Alshawi, 1992), but
the properties listed above keep NLF closer to natural language than QLF,hencenatural logical form. 1

There is no explicit formal connection between NLF and Natural Logic (van Benthem, 1986), though it
may turn out that NLF is a convenient starting point for some Natural Logic inferences.

In contrast to statements of a fully specified logic in which denotations are typically taken to be
functionsfrom possible worlds to truth values (Montague, 1973), denotations of a statement in an under-
specified logic are typically taken to berelationsbetween possible worlds and truth values (Alshawi and
Crouch (1992), Alshawi (1996)). Formal denotations for NLF expressions are beyond the scope of this
paper and will be described elsewhere.

3.1 Connectives and Examples

A NLF expression for the sentence

In 2002, Chirpy Systems stealthily acquired two profitable companies producing pet acces-
sories.

is shown in Figure 1.
The NLF constructs and connectives are explained in Table 1. For variable-free abstraction, an NLF

expression[p, ˆ, a] corresponds toλx.p(x, a). Note that some common logical operators are not
built-in since they will appear directly as words such asnot.2 We currently use the unknown/unspecified
operator,%, mainly for linguistic constructions that are beyond the coverage of a particular semantic
mapping model. A simple example that includes%in our converted WSJ corpus isOther analysts are
nearly as pessimisticfor which the NLF expression is

[are, analysts.other, pessimistic%nearly%as]

In Section 5 we give some statistics on the number of semantic expressions containing%in the data used
for our experiments and explain how it affects our accruracy results.

1The term QLF is now sometimes used informally (e.g. Liakata and Pulman (2002), Poon and Domingos (2009)) for any
logic-like semantic representation without explicit quantifier scope.

2NLF does include Horn clauses, which implictly encode negation, but sinceHorn clauses are not part of the experiments
reported in this paper, we will not discuss them further here.
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[acquired
/stealthily
:[in, ˆ, 2002],

Chirpy+Systems,
companies.two

:profitable
:[producing,

ˆ,
pet+accessories]]

Figure 1: Example of an NLF semantic expression.

Operator Example Denotation Language Constructs
[...] [sold, Chirpy, Growler] predication tuple clauses, prepositions, ...
: company:profitable intersection adjectives, relative clauses, ...
. companies.two (unscoped) quantification determiners, measure terms
ˆ [in, ˆ, 2005] variable-free abstract prepositions, relatives, ...
_ [eating, _, apples] unspecified argument missing verb arguments, ...
{...} and{Chirpy, Growler} collection noun phrase coordination, ...
/ acquired/stealthily type-preserving operator adverbs, modals, ...
+ Chirpy+Systems implicit relation compound nominals, ...
@ meeting@yesterday temporal restriction bare temporal modifiers, ...
& [...] & [...] conjunction sentences, ...
|...| |Dublin, Paris, Bonn| sequence paragraphs, fragments, lists, ...
% met%as uncovered op constructs not covered

Table 1: NLF constructs and connectives.

4 Encoding Semantics as Dependencies

We encode NLF semantic expressions as labeled dependency trees in which the label set is generated
automatically by the encoding process. This is in contrast to conventional dependency trees for which
the label sets are presupplied (e.g. by a linguistic theory of dependency grammar). The purpose of
the encoding is to enable training of a statistical dependency parser and converting the output of that
parser for a new sentence into a semantic expression. The encoding involves three aspects: Alignment,
headedness, and label construction.

4.1 Alignment

Since, by design, each word token corresponds to a symbol token (the same word type) in the NLF ex-
pression, the only substantive issue in determining the alignment is the occurrence of multiple tokens
of the same word type in the sentence. Depending on the source of the sentence-NLF pairs used for
training, a particular word in the sentence may or may not already be associated with its corresponding
word position in the sentence. For example, in some of the experiments reported in this paper, this corre-
spondence is provided by the semantic expressions obtained by converting a constituency treebank (the
well-known Penn WSJ treebank). For situations in which the pairs are provided without this informa-
tion, as is the case for direct annotation of sentences with NLF expressions, we currently use a heuristic
greedy algorithm for deciding the alignment. This algorithm tries to ensure thatdependents are near their
heads, with a preference for projective dependency trees. To guage the importance of including correct
alignments in the input pairs (as opposed to training with inferred alignments), we will present accuracy
results for semantic mapping for both correct and automatically infererred alignments.

18



4.2 Headedness

The encoding requires a definition of headedness for words in an NLF expression, i.e., a head-function
h from dependent words to head words. We defineh in terms of a head-functiong from an NLF
(sub)expressione to a wordw appearing in that (sub)expression, so that, recursively:

g(w) = w
g([e1, ..., en]) = g(e1)
g(e1 : e2) = g(e1)
g(e1.e2) = g(e1)
g(e1/e2) = g(e1)
g(e1@e2) = g(e1)
g(e1&e2) = g(e1)
g(|e1, ..., en|) = g(e1)
g(e1{e2, ..., en}) = g(e1)
g(e1 + ... + en) = g(en)
g(e1%e2) = g(e1)

Then a head wordh(w) for a dependentw is defined in terms of the smallest (sub)expressione
containingw for which

h(w) = g(e) 6= w

For example, for the NLF expression in Figure 1, this yields the heads shown in Table 3. (The labels
shown in that table will be explained in the following section.)

This definition of headedness is not the only possible one, and other variations could be argued for.
The specific definition for NLF heads turns out to be fairly close to the notionof head in traditional
dependency grammars. This is perhaps not surprising since traditional dependency grammars are often
partly motivated by semantic considerations, if only informally.

4.3 Label Construction

As mentioned, the labels used during the encoding of a semantic expression into a dependency tree are
derived so as to enable reconstruction of the expression from a labeleddependency tree. In a general
sense, the labels may be regarded as a kind of formal semantic label, thoughmore specifically, a label is
interpretable as a sequence of instructions for constructing the part of asemantic expression that links a
dependent to its head, given that part of the semantic expression, including that derived from the head,
has already been constructed. The string for a label thus consists of a sequence of atomic instructions,
where the decoder keeps track of a current expression and the parent of that expression in the expression
tree being constructed. When a new expression is created it becomes the current expression whose parent
is the old current expression. The atomic instructions (each expressed by a single character) are shown
in Table 2.

A sequence of instructions in a label can typically (but not always) be paraphrased informally as
“starting from head wordwh, move to a suitable node (at or abovewh) in the expression tree, add speci-
fied NLF constructs (connectives, tuples, abstracted arguments) and then addwd as a tuple or connective
argument.”

Continuing with our running example, the labels for each of the words are shown in Table 3.
Algorithmically, we find it convenient to transform semantic expressions into dependency trees and

vice versa via a derivation tree for the semantic expression in which the atomicinstruction symbols listed
above are associated with individual nodes in the derivation tree.

The output of the statistical parser may contain inconsistent trees with formallabels, in particular
trees in which two different arguments are predicated to fill the same position ina semantic expression
tuple. For such cases, the decoder that produces the semantic expression applies the simple heuristic
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Instruction Decoding action
[ , { , | Set the current expression to a

newly created tuple, collection,
or sequence.

: , / , . , +, &, @, % Attach the current subexpression
to its parent with the specified
connective.

* Set the current expression to a
newly created symbol from the
dependent word.

0, 1, ... Add the current expression at the
specified parent tuple position.

ˆ , _ Set the current subexpression to
a newly created abstracted-over or
unspecfied argument.

- Set the current subexpression to be
the parent of the current expression.

Table 2: Atomic instructions in formal label sequences.

Dependent Head Label
In acquired [:ˆ1- * 0
2002 in - * 2
Chirpy Systems * +
Systems acquired - * 1
stealthily acquired * /
acquired [ * 0
two companies * .
profitable companies * :
companies acquired - * 2
producing companies [:ˆ1- * 0
pet accessories * +
accessories producing - * 2

Table 3: Formal labels for an example sentence.
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Dataset Null Labels? Auto Align? WSJ sections Sentences
Train+Null-AAlign yes no 2-21 39213
Train-Null-AAlign no no 2-21 24110
Train+Null+AAlign yes yes 2-21 35778
Train-Null+AAlign no yes 2-21 22611
Test+Null-AAlign yes no 23 2416
Test-Null-AAlign no no 23 1479

Table 4: Datasets used in experiments.

of using the next available tuple position when such a conflicting configuration is predicated. In our
experiments, we are measuring per-word semantic head-and-label accuracy, so this heuristic does not
play a part in that evaluation measure.

5 Experiments

5.1 Data Preparation

In the experiments reported here, we derive our sentence-semantics pairs for training and testing from
the Penn WSJ Treebank. This choice reflects the lack, to our knowledge,of a set of such pairs for a
reasonably sized publicly available corpus, at least for NLF expressions. Our first step in preparing the
data was to convert the WSJ phrase structure trees into semantic expressions. This conversion is done
by programming the Stanford treebank toolkit to produce NLF trees bottom-upfrom the phrase structure
trees. This conversion process is not particularly noteworthy in itself (being a traditional rule-based
syntax-to-semantics translation process) except perhaps to the extent that the closeness of NLF to natural
language perhaps makes the conversion somewhat easier than, say, conversion to a fully resolved logical
form.

Since our main goal is to investigate trainable mappings from text strings to semantic expressions,
we only use the WSJ phrase structure trees in data preparation: the phrase structure trees are not used as
inputs when training a semantic mapping model, or when applying such a model. Forthe same reason,
in these experiments, we do not use the part-of-speech information associated with the phrase structure
trees in training or applying a semantic mapping model. Instead of parts-of-speech we use word cluster
features from a hierarchical clustering produced with the unsupervised Brown clustering method (Brown
et al, 1992); specifically we use the publicly available clusters reported in Koo et al. (2008).

Constructions in the WSJ that are beyond the explicit coverage of the conversion rules used for data
preparation result in expressions that include the unknown/unspecified(or ’Null’) operator%. We report
on different experimental settings in which we vary how we treat training ortesting expressions with
%. This gives rise to the data sets in Table 4 which have +Null (i.e., including%), and -Null (i.e., not
including%) in the data set names.

Another attribute we vary in the experiments is whether to align the words in the semantic expressions
to the words in the sentence automatically, or whether to use the correct alignment (in this case preserved
from the conversion process, but could equally be provided as part of a manual semantic annotation
scheme, for example). In our current experiments, we discard non-projective dependency trees from
training sets. Automatic alignment results in additional non-projective trees, giving rise to different
effective training sets when auto-alignment is used: these sets are markedwith +AAlign, otherwise -
AAlign. The training set numbers shown in Table 4 are the resulting sets afterremoval of non-projective
trees.
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Training Test Accuracy(%)
+Null-AAlign +Null-AAlign 81.2
-Null-AAlign +Null-AAlign 78.9
-Null-AAlign -Null-AAlign 86.1
+Null-AAlign -Null-AAlign 86.5

Table 5: Per-word semantic accuracy when training with the correct alignment.

Training Test Accuracy(%)
+Null+AAlign +Null-AAlign 80.4
-Null+AAlign +Null-AAlign 78.0
-Null+AAlign -Null-AAlign 85.5
+Null+AAlign -Null-AAlign 85.8

Table 6: Per-word semantic accuracy when training with an auto-alignment.

5.2 Parser

As mentioned earlier, our method can make use of any trainable statistical dependency parsing algorithm.
The parser is trained on a set of dependency trees with formal labels as explained in Sections 2 and 4.
The specific parsing algorithm we use in these experiments is a deterministic shift reduce algorithm
(Nivre, 2003), and the specific implementation of the algorithm uses a linear SVM classifier for predict-
ing parsing actions (Chang et al., 2010). As noted above, hierarchicalcluster features are used instead
of parts-of-speech; some of the features use coarse (6-bit) or finer(12-bit) clusters from the hierarchy.
More specifically, the full set of features is:

• The words for the current and next input tokens, for the top of the stack, and for the head of the
top of the stack.

• The formal labels for the top-of-stack token and its leftmost and rightmost children, and for the
leftmost child of the current token.

• The cluster for the current and next three input tokens and for the top of the stack and the token
below the top of the stack.

• Pairs of features combining 6-bit clusters for these tokens together with 12-bit clusters for the top
of stack and next input token.

5.3 Results

Tables 5 and 6 show theper-word semantic accuracyfor different training and test sets. This measure is
simply the percentage of words in the test set for which both the predicted formal label and the head word
are correct. In syntactic dependency evaluation terminology, this corresponds to the labeled attachment
score.

All tests are with respect to the correct alignment; we vary whether the correct alignment (Table 5)
or auto-alignment (Table 6) is used for training to give an idea of how much our heuristic alignment
is hurting the semantic mapping model. As shown by comparing the two tables, the loss in accuracy
due to using the automatic alignment is only about 1%, so while the automatic alignmentalgorithm can
probably be improved, the resulting increase in accuracy would be relatively small.

As shown in the Tables 5 and 6, two versions of the test set are used: onethat includes the ’Null’
operator%, and a smaller test set with which we are testing only the subset of sentencesfor which the
semantic expressions do not include this label. The highest accuracies (mid80’s) shown are for the
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# Labels # Train Sents Accuracy(%)
151 (all) 22611 85.5
100 22499 85.5
50 21945 85.5
25 17669 83.8
12 7008 73.4

Table 7: Per-word semantic accuracy after pruning label sets in Train-Null+AAlign (and testing with
Test-Null-AAlign).

(easier) test set which excludes examples in which the test semantic expressions contain Null operators.
The strictest settings, in which semantic expressions with Null are not included in training but included
in the test set effectively treat prediction of Null operators as errors.The lower accuracy (high 70’s) for
such stricter settings thus incorporates a penalty for our incomplete coverage of semantics for the WSJ
sentences. The less strict Test+Null settings in which%is treated as a valid output may be relevant to
applications that can tolerate some unknown operators between subexpressions in the output semantics.

Next we look at the effect of limiting the size of the automatically generated formal label set prior
to training. For this we take the configuration using the TrainWSJ-Null+AAlign training set and the
TestWSJ-Null-AAlign test set (the third row in Table refPerWordSemanticAccuracyAAlign for which
auto-alignment is used and only labels without the NULL operator%are included). For this training
set there are 151 formal labels. We then limit the training set to instances that only include the most
frequentk labels, fork = 100, 50, 25, 12, while keeping the test set the same. As can be seen in Table 7,
the accuracy is unaffected when the training set is limited to the 100 most frequent or 50 most frequent
labels. There is a slight loss when training is limited to 25 labels and a large loss if itis limited to 12
labels. This appears to show that, for this corpus, the core label set needed to construct the majority
of semantic expressions has a size somewhere between 25 and 50. It is perhaps interesting that this is
roughly the size of hand-produced traditional dependency label sets.On the other hand, it needs to be
emphasized that since Table 7 ignores beyond-coverage constructionsthat presently include Null labels,
it is likely that a larger label set would be needed for more complete semantic coverage.

6 Conclusion and Further Work

We’ve shown that by designing an underspecified logical form that is motivated by, and closely related to,
natural language constructions, it is possible to train a direct statistical mapping from pairs of sentences
and their corresponding semantic expressions, with per-word accuracies ranging from 79% to 86% de-
pending on the strictness of the experimental setup. The input to training does not require any traditional
syntactic categories or parts of speech. We also showed, more specifically, that we can train a model that
can be applied deterministically at runtime (using a deterministic shift reduce algorithm combined with
deterministic clusters), making large-scale text-to-semantics mapping feasible.

In traditional formal semantic mapping methods (Montague (1973), Bos et al.(2004)), and even
some recent statistical mapping methods (Zettlemoyer and Collins, 2005), the semantic representation is
overloaded to performs two functions: (i) representing the final meaning,and (ii) composing meanings
from the meanings of subconstituents (e.g. through application of higher order lambda functions). In our
view, this leads to what are perhaps overly complex semantic representations of some basic linguistic
constructions. In contrast, in the method we presented, these two concerns (meaning representation and
semantic construction) are separated, enabling us to keep the semantics of constituents simple, while
turning the construction of semantic expressions into a separate structuredlearning problem (with its
own internal prediction and decoding mechanisms).

Although, in the experiments we reported here wedo prepare the training data from a traditional
treebank, we are encouraged by the results and believe that annotation of a corpus with only semantic
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expressions is sufficient for building an efficient and reasonably accurate text-to-semantics mapper. In-
deed, we have started building such a corpus for a question answering application, and hope to report
results for that corpus in the future. Other further work includes a formal denotational semantics of the
underspecified logical form and elaboration of practical inference operations with the semantic expres-
sions. This work may also be seen as a step towards viewing semantic interpretation of language as the
interaction between a pattern recognition process (described here) andan inference process.
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Abstract
This paper explores the role played by a multilingual feature representation for the task of word

sense disambiguation. We translate the context of an ambiguous word in multiple languages, and
show through experiments on standard datasets that by using a multilingual vector space we can
obtain error rate reductions of up to 25%, as compared to a monolingual classifier.

1 Introduction

Ambiguity is inherent to human language. In particular, word sense ambiguity is prevalent in all natural
languages, with a large number of the words in any given language carrying more than one meaning.
For instance, the English noun plant can mean green plant or factory; similarly the French word feuille
can mean leaf or paper. The correct sense of an ambiguous word can be selected based on the context
where it occurs, and correspondingly the problem of word sense disambiguation is defined as the task of
automatically assigning the most appropriate meaning to a polysemous word within a given context.

Among the various knowledge-based (Lesk, 1986; Mihalcea et al., 2004) and data-driven (Yarowsky,
1995; Ng and Lee, 1996) word sense disambiguation methods that have been proposed to date, supervised
systems have been constantly observed as leading to the highest performance. In these systems, the sense
disambiguation problem is formulated as a supervised learning task, where each sense-tagged occurrence
of a particular word is transformed into a feature vector which is then used in an automatic learning
process. One of the main drawbacks associated with these methods is the fact that their performance is
closely connected to the amount of labeled data available at hand.

In this paper, we investigate a new supervised word sense disambiguation method that is able to take
additional advantage of the sense-labeled examples by exploiting the information that can be obtained
from a multilingual representation. We show that by representing the features in a multilingual space,
we are able to improve the performance of a word sense disambiguation system by a significant margin,
as compared to a traditional system that uses only monolingual features.

2 Related Work

Despite the large number of word sense disambiguation methods that have been proposed so far, targeting
the resolution of word ambiguity in different languages, there are only a few methods that try to explore
more than one language at a time. The work that is perhaps most closely related to ours is the bilin-
gual bootstrapping method introduced in (Li and Li, 2002), where word translations are automatically
disambiguated using information iteratively drawn from two languages. Unlike that approach, which
iterates between two languages to select the correct translation for a given target word, in our method we
simultaneously use the features extracted from several languages. In fact, our method can handle more
than two languages at a time, and we show that the accuracy of the disambiguation algorithm increases
with the number of languages used.

There have also been a number of attempts to exploit parallel corpora for word sense disambiguation
(Resnik and Yarowsky, 1999; Diab and Resnik, 2002; Ng et al., 2003), but in that line of work the parallel
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texts were mainly used as a way to induce word senses or to create sense-tagged corpora, rather than as
a source of additional multilingual views for the disambiguation features. Another related technique is
concerned with the selection of correct word senses in context using large corpora in a second language
(Dagan and Itai, 1994), but as before, the additional language is used to help distinguishing between the
word senses in the original language, and not as a source of additional information for the disambiguation
context.

Also related is the recent SEMEVAL task that has been proposed for cross-lingual lexical substitution,
where the word sense disambiguation task was more flexibly formulated as the identification of cross-
lingual lexical substitutes in context (Mihalcea et al., 2010). A number of different approaches have been
proposed by the teams participating in the task, and although several of them involved the translation of
contexts or substitutes from one language to another, none of them attempted to make simultaneous use
of the information available in the two languages.

Finally, although the multilingual subjectivity classifier proposed in Banea et al. (2010) is not directly
applicable to the disambiguation task we address in this paper, their findings are similar to ours. In that
paper, the authors showed how a natural language task can benefit from the use of features drawn from
multiple languages, thus supporting the hypothesis that multilingual features can be effectively used to
improve the accuracy of a monolingual classifier.

3 Motivation

Our work seeks to explore the expansion of a monolingual feature set with features drawn from multiple
languages in order to generate a more robust and more effective vector-space representation that can be
used for the task of word sense disambiguation. While traditional monolingual representations allow a
supervised learning systems to achieve a certain accuracy, we try to surpass this limitation by infusing
additional information in the model, mainly in the form of features extracted from the machine translated
view of the monolingual data. A statistical machine translation (MT) engine does not only provide
a dictionary-based translation of the words surrounding a given ambiguous word, but it also encodes
the translation knowledge derived from very large parallel corpora, thus accounting for the contextual
dependencies between the words.

In order to better explain why a multilingual vector space provides for a better representation for
the word sense disambiguation task, consider the following examples centered around the ambiguous
verb build.1 For illustration purposes, we only show examples for four out of the ten possible meanings
in WordNet (Fellbaum, 1998), and we only show the translations in one language (French). All the
translations are performed using the Google Translate engine.

En 1: Telegraph Co. said it will spend $20 million to build a factory in Guadalajara, Mex-
ico, to make telephone answering machines. (sense id 1)
Fr 1: Telegraph Co. a annoncé qu’il dépensera 20 millions de dollars pour construire une
usine á Guadalajara, au Mexique, pour faire répondeurs téléphoniques.

En 2: A member in the House leadership and skilled legislator, Mr. Fazio nonetheless found
himself burdened not only by California’s needs but by Hurricane Hugo amendments he ac-
cepted in a vain effort to build support in the panel. (sense id 3)
Fr 2: Un membre de la direction de la Chambre et le législateur compétent, M. Fazio a
néanmoins conclu lui-même souffre, non seulement par les besoins de la Californie, mais
par l’ouragan Hugo amendements qu’il a accepté dans un vain effort pour renforcer le sou-
tien dans le panneau.

En 3: Burmah Oil PLC, a British independent oil and specialty-chemicals marketing con-
cern, said SHV Holdings N.V. has built up a 7.5% stake in the company. (sense id 3)

1The sentences provided and their annotations are extracted from the SEMEVAL corpus.
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Fr 3: Burmah Oil PLC, une huile indépendant britannique et le souci de commercialisation
des produits chimiques de spécialité, a déclaré SHV Holdings NV a acquis une participation
de 7,5% dans la société.

En 4: Plaintiffs’ lawyers say that buildings become “sick” when inadequate fresh air and
poor ventilation systems lead pollutants to build up inside. (sense id 2)
Fr 4: Avocats des plaignants disent que les bâtiments tombent malades quand l’insuffisance
d’air frais et des systèmes de ventilation insuffisante de plomb polluants de s’accumuler à
l’intérieur.

As illustrated by these examples, the multilingual representation helps in two important ways. First,
it attempts to disambiguate the target ambiguous word by assigning it a different translation depending
on the context where it occurs. For instance, the first example includes a usage for the verb build in its
most frequent sense, namely that of construct (WordNet: make by combining materials and parts), and
this sense is correctly translated into French as construire. In the second sentence, build is used as part
of the verbal expression build support where it means to form or accumulate steadily (WordNet), and
it is accurately translated in both French sentences as renforcer. For sentences three and four, build is
followed by the adverb up, yet in the first case, its sense id in WordNet is 3, build or establish something
abstract, while in the second one is 2, form or accumulate steadily. Being able to infer from the co-
occurrence of additional words appearing the context, the MT engine differentiates the two usages in
French, translating the first occurrence as acquis and the second one as accumuler.

Second, the multilingual representation also significantly enriches the feature space, by adding fea-
tures drawn from multiple languages. For instance, the feature vector for the first example will not only
include English features such as factory and make, but it will also include additional French features
such as usine and faire. Similarly, the second example will have a feature vector including words such
as buildings and systems, and also bâtiments and systèmes. While this multilingual representation can
sometime result in redundancy when there is a one-to-one translation between languages, in most cases
however the translations will enrich the feature space, by either indicating that two features in English
share the same meaning (e.g., the words manufactory and factory will both be translated as usine in
French), or by disambiguating ambiguous English features using different translations (e.g., the context
word plant will be translated in French as usine or plante, depending on its meaning).

Appending therefore multilingual features to the monolingual vector generates a more orthogonal
vector space. If, previously, the different senses of build were completely dependent on their surrounding
context in the source language, now they are additionally dependent on the disambiguated translation of
build given its context, as well as the context itself and the translation of the context.

4 Multilingual Vector Space Representations for WSD

4.1 Datasets

We test our model on two publicly available word sense disambiguation datasets. Each dataset includes
a number of ambiguous words. For each word, a number of sample contexts were extracted and then
manually labeled with their correct sense. Therefore, both datasets follow a Zipfian distribution of senses
in context, given their natural usage. Note also that senses do not cross part-of-speech boundaries.

The TWA2 (two-way ambiguities) dataset contains sense tagged examples for six words that have
two-way ambiguities (bass, crane, motion, palm, plant, tank). These are words that have been previously
used in word sense disambiguation experiments reported in (Yarowsky, 1995; Mihalcea, 2003). Each
word has approximately 100 to 200 examples extracted from the British National Corpus. Since the
words included in this dataset have only two homonym senses, the classification task is easier.

2http://www.cse.unt.edu/˜rada/downloads.html\#twa
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Expanded multilingual features 

De 

Es 
Fr En 

English features 

En: suppose you let me 
explain actually 

Es: supongamos que 
vamos explicar la 

verdad 

Fr: supposons que vous 
laissez moi vous 
expliquer en fait 

De: angenommen sie 
lassen mir eigentlich 
erklären 

Figure 1: Construction of a multilingual vector (combinations of target languages C(3, k), where k = 0..3

The second dataset is the SEMEVAL corpus 2007 (Pradhan et al., 2007),3 consisting of a sample of 35
nouns and 65 verbs with usage examples extracted from the Penn Treebank as well as the Brown corpus,
and annotated with OntoNotes sense tags (Hovy et al., 2006). These senses are more coarse grained
when compared to the traditional sense repository encoded in the WordNet lexical database. While
OntoNotes attains over 90% inter-annotator agreement, rendering it particularly useful for supervised
learning approaches, WordNet is too fine grained even for human judges to agree (Hovy et al., 2006).
The number of examples available per word and per sense varies greatly; some words have as few as
50 examples, while some others can have as many as 2,000 examples. Some of these contexts are
considerably longer than those appearing in TWA, containing around 200 words. For the experiments
reported in this paper, given the limitations imposed by the number of contexts that can be translated by
the online translation engine,4 we randomly selected a subset of 31 nouns and verbs from this dataset.

4.2 Model

In order to generate a multilingual representation for the TWA and SEMEVAL datasets, we rely on the
method proposed in Banea et al. (2010) and use Google Translate to transfer the data from English into
several other languages and produce multilingual representations. We experiment with three languages,
namely French (Fr), German (De) and Spanish (Es). Our choice is motivated by the fact that when
Google made public their statistical machine translation system in 2007, these were the only languages
covered by their service, and we therefore assume that the underlying statistical translation models are
also the most robust. Upon translation, the data is aligned at instance level, so that the original English
context is augmented with three mirroring contexts in French, German, and Spanish, respectively.

We extract the word unigrams from each of these contexts, and then generate vectors that consist of
the original English unigrams followed by the multilingual portion resulted from all possible combina-
tions of the three languages taken 0 through 3 at a time, or more formally C(3, k), where k = 0..3 (see
Figure 1). For instance, a vector resulting from C(3, 0) is the traditional monolingual vector, whereas a
vector built from the combination C(3, 3) contains features extracted from all languages.

3http://nlp.cs.swarthmore.edu/semeval/tasks/task17/description.shtml
4We use Google Translate (http://translate.google.com/), which has a limitation of 1,000 translations per day.
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Figure 2: Example of sentence whose words are weighted based on a normal distribution with variance of 5, and
an amplification factor of 20

4.2.1 Feature Weighting

For weighting, we use a parametrized weighting based on a normal distribution scheme, to better leverage
the multilingual features. Let us consider the following sentence:

We made the non-slip surfaces by stippling the tops with a <head> bass </head> broom a
fairly new one works best.

Every instance in our datasets contains an XML-marking before and after the word to be disam-
biguated (also known as a headword), in order to identify it from the context. For instance, in the
example above, the headword is bass. The position of this headword in the context can be considered
the mean of a normal distribution. When considering a σ2 = 5, five words to the left and right of the
mean are activated with a value above 10−2 (see the dotted line in Figure 2). However, all the features
are actually activated by some amount, allowing this weighting model to capture a continuous weight
distribution across the entire context. In order to attain a higher level of discrepancy between the weight
of consecutive words, we amplify the normal distribution curve by an empirically determined factor of
20, effectively mapping the values to an interval ranging from 0 to 4. We apply this amplified activation
to every occurrence of a headword in a context. If two activation curves overlap, meaning that a given
word has two possible weights, the final weight is set to the highest (generated by the closest headword in
context). Similar weighting is also performed on the translated contexts, allowing for the highest weight
to be attained by the headword translated into the target language, and a decrementally lower weight for
its surrounding context.

This method therefore allows the vector-space model to capture information pertaining to both the
headword and its translations in the other languages, as well as a language dependent gradient of the
neighboring context usage. While a traditional bigram or trigram model only captures an exact expres-
sion, a normal distribution based model is able to account for wild cards, and transforms the traditionally
sparse feature space into one that is richer and more compact at the same time.

4.3 Adjustments

We encountered several technical difficulties in translating the XML-formatted datasets, which we will
expand on in this section.
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4.3.1 XML-formatting and alignment

First of all, as every instance in our datasets contains an XML-marked headword (as shown in Section
4.2.1), the tags interfere with the MT system, and we had to remove them from the context before
proceeding with the translation. The difficulty came from the fact that the translated context provides
no way of identifying the translation of the original headword. In order to acquire candidate translations
of the English headword we query the Google Multilingual Dictionary5 (setting the dictionary direction
from English to the target language) and consider only the candidates listed under the correct part-of-
speech. We then scan the translated context for any of the occurrences mined from the dictionary, and
locate the candidates.

In some of the cases we also identify candidate headwords in the translated context that do not mirror
the occurrence of a headword in the English context (i.e., the number of candidates is higher than the
number of headwords in English). We solve this problem by relying on the assumption that there is an
ideal position for a headword candidate, and this ideal position should reflect the relative position of the
original headword with regard to its context. This alignment procedure is supported by the fact that the
languages we use follow a somewhat similar sentence structure; given parallel paragraphs of text, these
cross-lingual “context anchors” will lie in close vicinity. We therefore create two lists: the first list is
the reference English list, and contains the indexes of the English headwords (normalized to 100); the
second list contains the normalized indexes of the candidate headwords in the target language context.
For each candidate headword in the target language, we calculate the shortest distance to a headword
appearing in the reference English list. Once the overall shortest distance is found, both the candidate
headword’s index in the target language and its corresponding English headword’s index are removed
from their respective list. The process continues until the reference English list is empty.

4.3.2 Inflections

There are also cases when we are not able to identify a headword due to the fact that we are trying to find
the lemma (extracted from the multilingual dictionary) in a fully inflected context, where most probably
the candidate translation is inflected as well. As French, German and Spanish are all highly inflected
languages, we are faced with two options: to either lemmatize the contexts in each of the languages,
which requires a lemmatizer tuned for each language individually, or to stem them. We chose the latter
option, and used the Lingua::Stem::Snowball,6 which is a publicly available implementation of the Porter
stemmer in multiple languages.

To summarize, all the translations are stemmed to obtain maximum coverage, and alignment is performed
when the number of candidate entries found in a translated context does not match the frequency of
candidate headwords in the reference English context. Also, all the contexts are processed to remove any
special symbols and numbers.

5 Results and Discussion

5.1 Experimental Setup

In order to determine the effect of the multilingual expanded feature space on word sense disambiguation,
we conduct several experiments using the TWA and SEMEVAL datasets. The results are shown in Tables
1 and 2.

Our proposed model relies on a multilingual vector space, where each individual feature is weighted
using a scheme based on a modified normal distribution (Section 4.2.1). As eight possible combinations
are available when selecting one main language (English) and combinations of three additional languages

5http://www.google.com/dictionary
6http://search.cpan.org/dist/Lingua-Stem-Snowball/lib/Lingua/Stem/Snowball.pm

30



taken 0 through 3 at a time (Spanish, French and German), we train eight Naı̈ve Bayes learners7 on the
resulted datasets: one monolingual (En), three bilingual (En-De, En-Fr, En-Es), three tri-lingual (En-
De-Es, En-De-Fr, En-Fr-Es), and one quadri-lingual (En-Fr-De-Es). Each dataset is evaluated using ten
fold cross-validation; the resulting micro-accuracy measures are averaged across each of the language
groupings and they appear in Tables 1 and 2 in ND-L1 (column 4), ND-L2 (column 5), ND-L3 (column
6), and ND-L4 (column 7), respectively. Our hypothesis is that as more languages are added to the mix
(and therefore the number of features increases), the learner will be able to distinguish better between
the various senses.

5.2 Baselines

Our baseline consists of the predictions made by a majority class learner, which labels all examples with
the predominant sense encountered in the training data.8 Note that the most frequent sense baseline
is often times difficult to surpass because many of the words exhibit a disproportionate usage of their
main sense (i.e., higher than 90%), such as the noun bass or the verb approve. Despite the fact that the
majority vote learner provides us with a supervised baseline, it does not take into consideration actual
features pertaining to the instances. We therefore introduce a second, more informed baseline that relies
on binary-weighted features extracted from the English view of the datasets and we train a multinomial
Naı̈ve Bayes learner on this data. For every word included in our datasets, the binary-weighted Naı̈ve
Bayes learner achieves the same or higher accuracy as the most frequent sense baseline.

5.3 Experiments

Comparing the accuracies obtained when training on the monolingual data, the binary weighted baseline
surpasses the normal distribution-based weighting model in only three out of six cases on the TWA
dataset (difference ranging from .5% to 4.81%), and in 6 out of 31 cases on the SEMEVAL dataset
(difference ranging from .53% to 7.57%, where for 5 of the words, the difference is lower than 3%). The
normal distribution-based model is thus able to activate regions around a particular headword, and not
an entire context, ensuring more accurate sense boundaries, and allowing this behavior to be expressed
in multilingual vector spaces as well (as seen in columns 7-9 in Tables 1 and 2).

When comparing the normal distribution-based model using one language versus more languages,
5 out of 6 words in TWA score highest when the expanded feature space includes all languages, and
one scores highest for combinations of 3 languages (only .17% higher than the accuracy obtained for
all languages). We notice the same behavior in the SEMEVAL dataset, where 18 of the words exhibit
their highest accuracy when all four languages are taken into consideration, and 3 achieve the highest
score for three-language groupings (at most .37% higher than the accuracy obtained for the four language
grouping). While the model displays a steady improvement as more languages are added to the mix, four
of the SEMEVAL words are unable to benefit from this expansion, namely the verbs buy (-0.61%), care
(-1.45%), feel (-0.29%) and propose (-2.94%). Even so, we are able to achieve error rate reductions
ranging from 6.52% to 63.41% for TWA, and from 3.33% to 34.62% for SEMEVAL.

To summarize the performance of the model based on the expanded feature set and the proposed
baselines, we aggregate all the accuracies from Tables 1 and 2, and present the results obtained in Table 3.
The monolingual modified normal-distribution model is able to exceed the most common sense baseline
and the binary-weighted Naı̈ve Bayes learner for both datasets, proving its superiority as compared to
a purely binary-weighted model. Furthermore, we notice a consistent increase in accuracy as more
languages are added to the vector space, displaying an average increment of 1.7% at every step for
TWA, and 0.67% for SEMEVAL. The highest accuracy is achieved when all languages are taken into
consideration: 86.02% for TWA and 83.36% for SEMEVAL, corresponding to an error reduction of
25.96% and 10.58%, respectively.

7We use the multinomial Naı̈ve Bayes implementation provided by the Weka machine learning software (Hall et al., 2009).
8Our baseline it is not the same as the traditional most common sense baseline that uses WordNet’s first sense heuristic,

because our data sets are not annotated with WordNet senses.
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1 2 3 4 5 6 7 8 9 10
Word # Inst # Senses MCS BIN-L1 ND-L1 ND-L2 ND-L3 ND-L4 Error Red.
bass.n 107 2 90.65 90.65 90.65 91.28 91.90 92.52 20.00
crane.n 95 2 75.79 75.79 76.84 76.14 76.49 78.95 9.09
motion.n 201 2 70.65 81.09 79.60 86.73 89.88 92.54 63.41
palm.n 201 2 71.14 73.13 87.06 88.89 89.72 89.55 19.23
plant.n 187 2 54.55 79.14 74.33 77.90 81.82 83.96 37.50
tank.n 201 2 62.69 77.61 77.11 76.29 76.45 78.61 6.52

Table 1: Accuracies obtained on the TWA dataset; Columns: 1 - words contained in the corpus, 2 - number of
examples for a given word, 3 - number of senses covered by the examples, 4 - micro-accuracy obtained when
using the most common sense (MCS), 5 - micro-accuracy obtained using the multinomial Naı̈ve Bayes classifier
on binary weighted monolingual features in English, 6 - 9 - average micro-accuracy computed over all possible
combinations of English and 3 languages taken 0 through 3 at a time, resulted from features weighted following
a modified normal distribution with σ2 = 5 and an amplification factor of 20 using a multinomial Naı̈ve Bayes
learner, where 6 - one language, 7 - 2 languages, 8 - 3 languages, 9 - 4 languages, 10 - error reduction calculated
between ND-L1 (6) and ND-L4 (9)

6 Conclusion

This paper explored the cumulative ability of features originating from multiple languages to improve
on the monolingual word sense disambiguation task. We showed that a multilingual model is suited to
better leverage two aspects of the semantics of text by using a machine translation engine. First, the
various senses of a target word may be translated into other languages by using different words, which
constitute unique, yet highly salient features that effectively expand the target word’s space. Second, the
translated context words themselves embed co-occurrence information that a translation engine gathers
from very large parallel corpora. This information is infused in the model and allows for thematic spaces
to emerge, where features from multiple languages can be grouped together based on their semantics,
leading to a more effective context representation for word sense disambiguation. The average micro-
accuracy results showed a steadily increasing progression as more languages are added to the vector
space. Using two standard word sense disambiguation datasets, we showed that a classifier based on a
multilingual representation can lead to an error reduction ranging from 10.58% (SEMEVAL) to 25.96%
(TWA) as compared to the monolingual classifier.
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Table 2: Accuracies obtained on the SEMEVAL dataset; Columns: 1 - words contained in the corpus, 2 - number
of examples for a given word, 3 - number of senses covered by the examples, 4 - micro-accuracy obtained when
using the most common sense (MCS), 5 - micro-accuracy obtained using the multinomial Naı̈ve Bayes classifier
on binary weighted monolingual features in English, 6 - 9 - average micro-accuracy computed over all possible
combinations of English and 3 languages taken 0 through 3 at a time, resulted from features weighted following
a modified normal distribution with σ2 = 5 and an amplification factor of 20 using a multinomial Naı̈ve Bayes
learner, where 6 - one language, 7 - 2 languages, 8 - 3 languages, 9 - 4 languages, 10 - error reduction calculated
between ND-L1 (6) and ND-L4 (9)

1 2 3 4 5 6 7 8
Dataset MCS BIN-L1 ND-L1 ND-L2 ND-L3 ND-L4 Error Red.
TWA 70.91 79.57 80.93 82.87 84.38 86.02 25.96
SEMEVAL 75.71 80.52 81.36 82.18 82.78 83.36 10.58

Table 3: Aggregate accuracies obtained on the TWA and SEMEVAL datasets; Columns: 1 - dataset, 2 - average
micro-accuracy obtained when using the most common sense (MCS), 3 - average micro-accuracy obtained using
the multinomial Naı̈ve Bayes classifier on binary weighted monolingual features in English, 4 - 7 - average micro-
accuracy computed over all possible combinations of English and 3 languages taken 0 through 3 at a time, resulted
from features weighted following a modified normal distribution with σ2 = 5 and an amplification factor of 20
using a multinomial Naı̈ve Bayes learner, where 4 - one language, 5 - 2 languages, 6 - 3 languages, 7 - 4 languages,
8 - error reduction calculated between ND-L1 (4) and ND-L4 (7)
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Abstract

We present a system to translate natural language sentences to formulas in a formal or a knowl-
edge representation language. Our system uses two inverse λ-calculus operators and using them can
take as input the semantic representation of some words, phrases and sentences and from that de-
rive the semantic representation of other words and phrases. Our inverse λ operator works on many
formal languages including first order logic, database query languages and answer set programming.
Our system uses a syntactic combinatorial categorial parser to parse natural language sentences and
also to construct the semantic meaning of the sentences as directed by their parsing. The same parser
is used for both. In addition to the inverse λ-calculus operators, our system uses a notion of gener-
alization to learn semantic representation of words from the semantic representation of other words
that are of the same category. Together with this, we use an existing statistical learning approach to
assign weights to deal with multiple meanings of words. Our system produces improved results on
standard corpora on natural language interfaces for robot command and control and database queries.

1 Introduction

Our long term goal is to develop general methodologies to translate natural language text into a formal
knowledge representation (KR) language. In the absence of a single KR language that is appropriate
for expressing all the nuances of a natural language, currently, depending on the need different KR
languages are used. For example, while first-order logic is appropriate for mathematical knowledge, one
of its subset Description logic is considered appropriate for expressing ontologies, temporal logics are
considered appropriate for expressing goals of agents and robots, and various non-monotonic logics have
been proposed to express common-sense knowledge. Thus, one of of our goals in this paper is to develop
general methodologies that can be used in translating natural language to a desired KR language.

There have been several learning based approaches, mainly from two groups at MIT and Austin.
These include the following works: Zettlemoyer and Collins (2005), Kate and Mooney (2006), Wong
and Mooney (2006), Wong and Mooney (2007), Lu et al. (2008), Zettlemoyer and Collins (2007) and Ge
and Mooney (2009). Given a training corpus of natural language sentences coupled with their desired
representations, these approaches learn a model capable of translating sentences to a desired meaning
representation. For example, in the work by Zettlemoyer and Collins (2005), a set of hand crafted
rules is used to learn syntactic categories and semantic representations of words based on combinatorial
categorial grammar (CCG), as described by Steedman (2000), and λ-calculus formulas, as discussed
by Gamut (1991). The later work of Zettlemoyer and Collins (2007), also uses hand crafted rules. The
Austin group has several papers over the years. Many of their works including the one by Ge and Mooney
(2009) use a word alignment method to learn semantic lexicon and learn rules for composing meaning
representation.
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Similar to the work by Ge and Mooney (2009), we use an existing syntactic parser to parse natural
language. However we use a CCG parser, as described by Clark and Curran (2007), to parse sentences,
use lambda calculus for meaning representation, use the CCG parsing to compose meaning and have an
initial dictionary. Note that unlike the work by Ge and Mooney (2009), we do not need to learn rules
for composing meaning representation. We use a novel method to learn semantic lexicon which is based
on two inverse lambda operators that allow us to compute F given G and H such that F@G = H
or G@F = H . Compared to the work by Zettlemoyer and Collins (2005), we use the same learning
approach but use a completely different approach in lexical generation. Our inverse λ operator has been
tested to work for many languages including first order logic, database query language, CLANG by
Chen et al. (2003), answer set programming (ASP) as described by Baral (2003), and temporal logic.
Thus our approach is not dependent on the language used to represent the semantics, nor limited by a
fixed set of rules. Rather, the new λ-calculus formulas and their semantic models, corresponding to the
semantic or meaning representations, are directly obtained from known semantic representations which
were provided with the data or learned before. The richness of λ calculus allows us to rely only on the
syntactic parse itself without the need to have separate rules for composing the semantics. The provided
method yields improved experimental results on existing corpora on robot command and control and
database queries.

2 Motivation and Background

We now illustrate how one can use CCG parsing and λ-calculus applications to obtain database query
representation of sentences. We then motivate and explain the role of our “inverse λ” operator. A
syntactic and semantic parse tree for the sentence “Give me the largest state.” is given in Table 1.

Give me the largest state.
S/NP NP/N N/N N
S/NP NP/N N
S/NP NP

S

Give me the largest state.
λx.answer(A, x@A) λx.x λx.λy.largest(y, x@y) λz.state(z)
λx.answer(A, x@A) λx.x λy.largest(y, state(y))
λx.answer(A, x@A) λy.largest(y, state(y))

answer(A, largest(A, state(A)))

Table 1: CCG and λ-calculus derivation for “Give me the largest state.”

The upper portion of the figure lists the nodes corresponding to the CCG categories which are used to
syntactically parse the sentence. These are assigned to each word and then combined using combinatorial
rules, as described by Steedman (2000), to obtain the categories corresponding to parts of the sentence
and finally the complete sentence itself. For example, the category for “largest”, N/N is combined with
the category of “state.”, N , to obtain the category of “largest state.”, which is N . In a similar manner, each
word is assigned a semantic meaning in the form of a λ-calculus formula, as indicated by the lower por-
tion of the figure. The language used to represent the semantics of words and the sentence is the database
query language used in the robocup domain. The formulas corresponding to words are combined by ap-
plying one to another, as dictated by the syntactic parse tree to obtain the semantic representation of the
whole sentence. For example, the semantics of “the largest state.”, λy.largest(y, state(y)) is applied
to the semantics of “Give me”, λx.answer(A, x@A), to obtain the semantics of “Give me the largest
state.”, answer(A, largest(A, state(A))).

The given example illustrates how to obtain the semantics of the sentence given the semantics of
words. However, what happens if the semantics of the word “largest” is not given? It might be either
missing completely, or the current semantics of “largest” in the dictionary might simply not be applicable
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for the sentence “Give me the largest state.”.
Let us assume that the semantic representation of “largest” is not known, while the semantic repre-

sentation of the rest of the sentence is known. We can then obtain the semantic representation of “largest”
as follows. Given the formula answer(A, largest(A, state(A))) for the whole sentence “Give me the
largest state.” and the formula λx.answer(A, x@A) for “Give me”, we can perform some kind of an in-
verse application 1 to obtain the semantics representation of “the largest state”, λy.largest(y, state(y)).
Similarly, we can then use the known semantics of “the”, to obtain the semantic representation of “largest
state.” as λy.largest(y, state(y)). Finally, using the known semantics of state, λz.state(z) we can ob-
tain the the semantics of “largest” as λx.λy.largest(y, x@y).

It is important to note that using @ we are able to construct relatively complex semantic representa-
tions that are properly mapped to the required syntax.

Given a set of training sentences with their desired semantic representations, a syntactic parser, such
as the one by Clark and Curran (2007), and an initial dictionary, we can apply the above idea on each
of the sentences to learn the missing semantic representations of words. We can then apply a learning
model, such as the one used by Zettlemoyer and Collins (2005), on these new semantic representations
and assign weights to different semantic representations. These can then be used to parse and represent
the semantics of new sentences. This briefly sums up our approach to learn and compute new semantic
representations. It is easy to see that this approach can be applied with respect to any language that can
be handled by “inverse λ” operators and is not limited in the set of new representations it provides.

We will consider two domains to evaluate our approach. The fist one is the GEOQUERY domain used
by Zelle and Mooney (1996), which uses a Prolog based language to query a database with geographical
information about the U.S. It should be noted that this language uses higher-order predicates. An example
query is provided in Table 1. The second domain is the ROBOCUP domain of Chen et al. (2003). This is
a multi-agent domain where agents compete against each other in a simulated soccer game. The language
CLANG of Chen et al. (2003) is a formal language used to provide instructions to the agents. An example
query with the corresponding natural language sentence is given below.

• If the ball is in our midfield, position player 3 at (-5, -23).

• ((bpos (midfield our)) (do (player our 3) (pos (pt -5 -23))))

3 Learning Approach

We adopt the learning model given by Zettlemoyer and Collins (2005, 2007, 2009) and use it to assign
weights to the semantic representations of words. Since a word can have multiple possible syntac-
tic and semantic representations assigned to it, such as John may be represented as John as well as
λx.x@John, we use the probabilistic model to assign weights to these representations.

The main differences between our algorithm and the one given by Zettlemoyer and Collins (2005)
are the way in which new semantic representations are obtained. While Zettlemoyer and Collins (2005)
uses a predefined table to obtain these, we obtain the new semantic representations by using inverse λ
operators and generalization.

3.1 Learning model and parsing

We assume that complete syntactic parses are available2. The parsing uses a probabilistic combinatorial
categorial grammar framework similar to the one given by Zettlemoyer and Collins (2005). We assume a
probabilistic categorial grammar (PCCG) based on a log linear model. Let S denote a sentence, L denote
the semantic representation of the sentence, and T denote it’s parse tree. We assume a mapping f̄ of a
triple (L, T, S) to feature vectors Rd and a vector of parameters Θ̄ ∈ Rd representing the weights. Then
the probability of a particular syntactic and semantic parse is given as:

1Thus instead of applying G to F to obtain H , G@F = H , we try to find an F such that G@F = H given G and H .
2A sentence can have several different parses.
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P (L, T |S; Θ̄) = ef̄(L,T,S).Θ̄∑
(L,T )

ef̄(L,T,S).Θ̄

We use only lexical features. Each feature fj counts the number of times that the lexical entry is used
in T .

Parsing a sentence under PCCG includes finding L such that P (L|S; Θ̄) is maximized.

argmaxLP (L|S; Θ̄) =
argmaxL

∑
T P (L, T |S; Θ̄)

We use dynamic programming techniques to calculate the most probable parse for a sentence.

3.2 The inverse λ operators

For lack of space, we present only one of the two Inverse λ operators, InverseL and InverseR of
Gonzalez (2010). The objective of these two algorithms is that given typed λ-calculus formulas H and
G, we want to compute the formula F such that F@G = H and G@F = H . First, we introduce the
different symbols used in the algorithm and their meaning :

• Let G, H represent typed λ-calculus formulas, J1,J2,...,Jn represent typed terms, v1 to vn, v and
w represent variables and σ1,...,σn represent typed atomic terms.

• Let f() represent a typed atomic formula. Atomic formulas may have a different arity than the one
specified and still satisfy the conditions of the algorithm if they contain the necessary typed atomic
terms.

• Typed terms that are sub terms of a typed term J are denoted as Ji.

• If the formulas we are processing within the algorithm do not satisfy any of the if conditions then
the algorithm returns null.

Definition 1 (operator :) Consider two lists of typed λ-elements A and B, (ai, ..., an) and (bj , ..., bn)
respectively and a formula H . The result of the operation H(A : B) is obtained by replacing ai by bi,
for each appearance of A in H.

Next, we present the definition of an inverse operators3 InverseR(H, G):

Definition 2 (InverseR(H, G)) The function InverseR(H, G), is defined as:
Given G and H:

1. If G is λv.v@J , set F = InverseL(H, J)

2. If J is a sub term of H and G is λv.H(J : v) then F = J .

3. If G is not λv.v@J , J is a sub term of H and G is λw.H(J(J1, ..., Jm) : w@Jp, ...,@Jq) with 1
≤ p,q,s ≤ m. then F = λv1, ..., vs.J(J1, ..., Jm : vp, ..., vq).

The function InverseL(H, G) is defined similarly.

Illustration: InverseR - Case 3:
Suppose H = in(river, Texas) and G = λv.v@Texas@river
G is not of the form λv.v@J since J = Texas@river is not a formula. Thus the first condition is not
satisfied. Similarly, there is no J that satisfies the second condition. Thus let us try to find a suitable J
that satisfies third condition. If we take J1 = river and J2 = Texas, then the third condition is satisfied
by G = λx.H((J(J1, J2) : x@J2@J1), which in this case corresponds to G = λx.H(in(river, Texas) :
x@Texas@river). Thus, F = λv1, v2.J(J1, J2 : v2, v1) and so F = λv1, v2.in(v2, v1).
It is easy to see that G @ F = H .

3This is the operator that was used in this implementation. In a companion work we develop an enhancement of this operator
which is proven sound and complete.
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3.3 Generalization

Using INV ERSE L and INV ERSE R, we are able to obtain new semantic representations of par-
ticular words in the sentence. However, without any form of generalization, we are not able to extend
these to words beyond the ones actually contained in the training data. Since our goal is to go beyond
that, we strive to generalize the new semantic representations beyond those words.

To extend our coverage, a function that will take any new learned semantic expressions and the cur-
rent lexicon and will try to use them to obtain new semantic expressions for words of the same category
has to be designed. It will use the following idea. Consider the non-transitive verb “fly” of category
S\NP . Lets assume we obtain a new semantic expression for “fly” as λx.fly(x) using INV ERSE L
and INV ERSE R. The GENERALIZE function looks up all the words of the same syntactic cat-
egory, S\NP . It then identifies the part of the semantic expression in which “fly” is involved. In our
particular case, it’s the subexpression fly. It then proceeds to search the dictionary for all the words of
category S\NP . For each such word w, it will add a new semantic expression λx.w(x) to the dictionary.
For example for the verb “swim”, it would add λx.swim(x).

However, the above idea also comes with a drawback. It can produce a vast amount of new se-
mantics representations that are not necessary for most of the sentences, and thus have a negative
impact on performance. Thus instead of applying the above idea on the whole dictionary, we per-
form generalization “on demand”. That is, if a sentence contains words with unknown semantics, we
look for words of the same category and use the same idea to find their semantics. Let us assume
IDENTIFY (word, semantics) identifies the parts of semantics in which word is involved and
REPLACE(s, a, b) replaces a with b in s. We assume that each lexical entry is a triple (w, cat, sem)
where w is the actual word, cat is the syntactic category and sem is the semantic expression correspond-
ing to w and cat.

GENERALIZED(L,α)

• For each lj ∈ L

– If lj(cat) = α(cat)

∗ I = IDENTIFY (lj(w), lj(sem))

∗ S = REPLACE(lj(sem), I, α(w))

∗ L = L ∪ (α(w), α(cat), S)

As an example, consider the sentence “Give me the largest state.” from Table 1. Let us assume that
the semantics of the word “largest” as well as “the” is not known, however the semantics of “longest”
is given by the dictionary as λx.λy.longest(y, x@y). Normally, the system would be unable to parse
this sentence and would continue on. However, upon calling GENERALIZED(L,“largest”), the
word longest is found in the dictionary with the same syntactic category. Thus this function takes the
semantic representation of “longest” λx.λy.longest(y, x@y), modifies it accordingly for largest, giving
λx.λy.largest(y, x@y) and stores it in the lexicon. After that, the INV ERSEL and INV ERSER can
be applied to obtain the semantics of “the”.

3.4 Trivial inverse solutions

Even with on demand generalization, we might still be missing large amounts of semantics information
to be able to use INV ERSEL and INV ERSER. To make up for this, we allow trivial solutions
under certain conditions. A trivial solution is a solution, where one of the formulas is assigned a λx.x
representation. For example, given H , we are looking for F such that H = G@F . If we set G to be
λx.x, then trivially F = H . Thus we can try to carefully set some unknown semantics of words as
λx.x which will allow us to compute the semantics of the remaining words using INV ERSEL and
INV ERSER. The question then becomes, when do we allow these? In our approach, we allow these
for words that do not seem to have any contribution to the final semantic meaning of the text. In some
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cases, articles such as “the”, while having a specific place in the English language, might not contribute
anything to the actual meaning representation of the sentence. In general, any word not present in the
final semantics is a potential candidate to be assigned the trivial semantic representation λx.x. These are
added with very low weights compared to the semantics found using INV ERSEL and INV ERSER,
so that if at one point a non-trivial semantic representation is found, the system will attempt to use it over
the trivial one.

As an example, consider again the sentence “Give me the largest state.” from Table 1 with the se-
mantics answer(A, largest(A, state(A))). Let us assume the semantic representations of “the” and
“largest” are not known. Under normal circumstances the algorithm would be unable to find the seman-
tics of “largest” using INV ERSEL and INV ERSER as it is missing the semantics of “the”. However,
as “the” is not present in the desired semantics, the system will attempt to assign λx.x as its semantic
representation. After doing that, INV ERSEL and INV ERSER can be used to compute the semantic
representation of “largest” as λx.λy.largest(y, x@y).

3.5 The overall learning algorithm.

The complete learning algorithm used within our approach is shown below. The input to the algorithm
is an initial lexicon L0 and a set of pairs (Si, Li), i = 1, ..., n, where Si is a sentence and Li its corre-
sponding logical form. The output of the algorithm is a PCCG defined by the lexicon LT and a parameter
vector ΘT .

The parameter vector Θi is updated at each iteration of the algorithm. It stores a real number for each
item in the dictionary. The initial values were set to 0.1. The algorithm is divided into two major steps,
lexical generation and parameters update. The goal of the algorithm is to extract as much information as
possible given the provided training data.

In the first step, the algorithm iterates over all the sentences n times and for each sentence constructs a
syntactic and (potentially incomplete) semantic parse tree. Using the semantic parse tree, it then attempts
to obtain new λ-calculus formulas by traversing the tree and performing regular applications and inverse
computations where possible. Any new semantics are then generalized and stored in the lexicon.

The main reason to iterate over all the sentences n times is to extract all the possible information
given the current parameter vector. There may be cases where the information learned from the last
sentence can be used to learn additional information from the third sentence, which can then be used to
learn new semantics from the second sentence etc. By looping over all sentences n times, we ensure we
capture and learn as much information as possible.

Note that the semantic parse trees of the sentences may change once the parameters of words change.
Thus even though we are looping over all the sentences T times, the semantic parse tree of a sentence
might change as a result of a change in the parameter vector. This change can be very minor, such as
change in the semantics of a single word, or in a rare case a major one where most of the semantic
expressions present in the tree change. Thus we might learn different semantics of words given different
parameter vectors.

In the second step, the parameter vector Θi is updated using stochastic gradient descent. Steps one
and two are performed T times. In our experiments, the value of T ranged from 50 to 100.

Overall, steps one and two form an exhaustive search which optimizes the log-likelihood of the
training model.

• Input:
A set of training sentences with their corresponding desired representations S = {(Si, Li) : i =
1...n} where Si are sentences and Li are desired expressions. Weights are given an initial value of
0.1.

An initial lexicon L0. An initial feature vector Θ0.

• Output:
An updated lexicon LT+1. An updated feature vector ΘT+1.
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• Algorithm:

– For t = 1 . . . T

– Step 1: (Lexical generation)

– For i = 1...n.

∗ For j = 1...n.
∗ Parse sentence Sj to obtain Tj

∗ Traverse Tj

· apply INV ERSE L, INV ERSE R and GENERALIZED to find new λ-calculus
expressions of words and phrases α.

∗ Set Lt+1 = Lt ∪ α

– Step 2: (Parameter Estimation)

– Set Θt+1 = UPDATE(Θt, Lt+1)
4

• return GENERALIZE(LT , LT ), Θ(T )

4 Experimental Evaluation

4.1 The data

To evaluate our algorithm, we used the standard corpus in GEOQUERY and CLANG. The GEOQUERY
corpus contained 880 English sentences with respective database queries. The CLANG corpus contained
300 entries specifying rules, conditions and definitions in CLANG. The GEOQUERY corpus contained
relatively short sentences with the sentences ranging from four to seventeen words of quite similar syn-
tactic structure. The sentences in CLANG are much longer, with more complex structure with length
ranging from five to thirty eight words.

For our experiments, we used the C&C parser of Clark and Curran (2007) to provide syntactic
parses for sentences. For CLANG corpus, the position vectors and compound nouns with numbers were
pre-processed and consequently treated as single noun.

Our experiments were done using a 10 fold cross validation and were conducted as follows. A set of
training and testing examples was generated from the respective corpus. These were parsed by the C&C
parser to obtain the syntactic tree structure. These together with the training sets containing the training
sentences with their corresponding semantic representations (SRs) and an initial dictionary was used to
train a new dictionary with corresponding parameters. This dictionary was generalized with respect of
all the words in the test sentences. Note that it is possible that many of the words were still missing their
SRs. This dictionary was then used to parse the test sentences and highest scoring parse was used to
determine precision and recall. Since many words might have been missing their SRs, the system might
not have returned a proper complete semantic parse.

To measure precision and recall, we adopted the measures given by Ge and Mooney (2009). Precision
denotes the percentage of of returned SRs that were correct, while Recall denotes the percentage of test
examples with pre-specified SRs returned. F-measure is the standard harmonic mean of precision and
recall. For database querying, an SR was considered correct if it retrieved the same answer as the standard
query. For CLANG, an SR was correct if it was an exact match of the desired SR, except for argument
ordering of conjunctions and other commutative predicates. Additionally, a set of additional experiments
was run with “(definec” and “(definer” treated as being equal.

We evaluated two different version of our system. The first one, INV ERSE, uses INV ERSEL

and INV ERSER and regular generalization which is applied after each step. The second version,
INV ERSE+, uses trivial inverse solutions as well as on demand generalization. Both systems were

4For details on Θ computation, please see the work by Zettlemoyer and Collins (2005)

41



evaluated on the same data sets using 10 fold cross validation and the C&C parser using an equal number
of train and test sentences, randomly chosen from their respective corpus. The initial dictionary contained
a few nouns, with the addition of one randomly selected word from the set {what, where, which} in
case of GEOQUERY. For CLANG, the initial dictionary also contained a few nouns, together with the
addition of one randomly selected word from the set {if, when, during}. The learning parameters were
set to the values used by Zettlemoyer and Collins (2005).

4.2 Results

We compared our systems with the performance results of several alternative systems for which the
performance data is available in the literature. In particular, we used the performance data given by
Ge and Mooney (2009). The systems that we compared with are: The SYN0, SYN20 and GOLDSYN
systems by Ge and Mooney (2009), the system SCISSOR by Ge and Mooney (2005), an SVM based
system KRIPS by Kate and Mooney (2006), a synchronous grammar based system WASP by Wong and
Mooney (2007), the CCG based system by Zettlemoyer and Collins (2007) and the work by Lu et al.
(2008). Please note that many of these approaches require different parsers, human supervision or other
additional tools, while our approach requires a syntactic parse of the sentences and an initial dictionary.

Our and their reported results for the respective corpora are given in the Tables 2 and 3.

Precision Recall F-measure
INVERSE+ 93.41 89.04 91.17
INVERSE 91.12 85.78 88.37

GOLDSYN 91.94 88.18 90.02
WASP 91.95 86.59 89.19
Z&C 91.63 86.07 88.76

SCISSOR 95.50 77.20 85.38
KRISP 93.34 71.70 81.10
Lu at al. 89.30 81.50 85.20

Table 2: Performance on GEOQUERY.

Precision Recall F-measure
INVERSE+(i) 87.67 79.08 83.15
INVERSE+ 85.74 76.63 80.92
GOLDSYN 84.73 74.00 79.00

SYN20 85.37 70.00 76.92
SYN0 87.01 67.00 75.71
WASP 88.85 61.93 72.99
KRISP 85.20 61.85 71.67

SCISSOR 89.50 73.70 80.80
Lu at al. 82.50 67.70 74.40

Table 3: Performance on CLANG.

The INV ERSE + (i) denotes training where “(definec” and “(definer” at the start of SRs were
treated as being equal. The main reason for this was that there seems to be no way to distinguish in
between them. Even as a human, we found it hard to be able to distinguish between them.

4.3 Analysis

Our testing showed that our method is capable of outperforming all of the existing parsers in F-measure.
However, there are parsers which can produce greater precision, such as WASP and SCISSOR on
CLANG corpus, however they do at the cost in recall. As discussed by Ge and Mooney (2009), the
GEOQUERY results for SCISSOR, KRISP and Lu’s work use a different, less accurate representation
language FUNSQL which may skew the results. Also, SCISSOR outperforms our system on GEO-
QUERY corpus in terms of precision, but at the cost of additional human supervision.

Our system is particularly accurate for shorter sentences, or a corpus where many sentences have
similar general structure, such as GEOQUERY. However, it is also capable of handling longer sentences,
in particular if they in fact consists of several shorter sentences, such as for example “If the ball is in
our midfield, position player 3 at (-5,-23).”, which can be looked at as “IF A, B” where “A” and “B”
are smaller complete sentences themselves. The system is capable of learning the semantics of several
basic categories such as verbs, after which most of the training sentences are easily parsed and missing
semantics is learned quickly. The inability to parse other sentences mostly comes from two sources. First
one is if the test sentence contains a syntactic category not seen in the training data. Our generalization
model is not capable of generalizing these and thus fails to produce a semantic parse. The second problem
comes from ambiguity of SRs. During training, many words will be assigned several SRs based on the
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training data. The parses are then ranked and in several cases, the correct SR might not be on the top.
Re-ranking might help alleviate the second issue.

Unlike the other systems, we do not make use of a grammar for the semantics of the sentence. The
reason it is not required is that the actual semantics is analyzed in computing the inverse lambdas, and
the richness of λ-calculus allows us to compute relatively complex formulas to represent the semantic of
words.

We also run examples with increased size of training data. These produced larger dictionaries and in
general did not significantly affect the results. The main reason is that as discussed before, once the most
common categories of words have their semantics assigned, most of the sentences can be properly parsed.
Increasing the amount of training data increases the coverage in terms of the rare syntactic categories,
but these are also rarely present in the testing data. The used training sample was in all cases sufficient to
learn almost all of the categories. This might not be the case in general, for example if we had a corpus
with all of the sentences of a particular length and structure, our method might not be capable of learning
any new semantics. In such cases, additional words would have to be added to the initial dictionary, or
additional sentences of varying lengths would have to be added.

The C&C parser of Clark and Curran (2007) was primarily trained on news paper text and thus
did have some problems with these different domains and in some cases resulted in complex semantic
representations of words. This could be improved by using a different parser, or by simply adjusting
some of the parse trees. In addition, our system can be gradually improved by increasing the size of
initial dictionary.

5 Conclusions and Discussion

We presented a new approach to map natural language sentences to their semantic representations. We
used an existing syntactic parser, a novel inverse λ operator and several generalization techniques to learn
the semantic representations of words. Our method is largely independent of the target representation
language and directly computes the semantic representations based on the syntactic structure of the
syntactic parse tree and known semantic representations. We used statistical learning methods to assign
weights to different semantic representation of words and sentences.

Our results indicate that our approach outperforms many of the existing systems on the standard
corpora of database querying and robot command and control.

We envision several directions of future work. One direction is to experiment our system with cor-
pora where the natural language semantics is given through other Knowledge Representation languages
such as answer set programming (ASP)5 and temporal logic. We are currently building such corpora.
Another direction is to improve the statistical learning part of the system. An initial experimentation
with a different learning algorithm shows significant decrease in training time with slight reduction in
performance. Finally, since our system uses an initial dictionary, which we tried to minimize by only hav-
ing a few nouns and one of the query words, exploring how to reduce it further and possibly completely
eliminating it is a future direction of research.
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Abstract

This paper presents a model to compose semantic relations. The model is independent of any
particular set of relations and uses an extended definition for semantic relations. This extended def-
inition includes restrictions on the domain and range of relations and utilizes semantic primitives
to characterize them. Primitives capture elementary properties between the arguments of a relation.
An algebra for composing semantic primitives is used to automatically identify the resulting rela-
tion of composing a pair of compatible relations. Inference axioms are obtained. Axioms take as
input a pair of semantic relations and output a new, previously ignored relation. The usefulness of
this proposed model is shown using PropBank relations. Eight inference axioms are obtained and
their accuracy and productivity are evaluated. The model offers an unsupervised way of accurately
extracting additional semantics from text.

1 Introduction

Semantic representation of text is an important step toward text understanding, performing inferences
and reasoning. Potentially, it could dramatically improve the performance of several Natural Language
Processing applications.

Semantic relations have been studied in linguistics for decades. They are unidirectional underlying
connections between concepts. For example, the sentence The construction slowed down the traffic
encodes a CAUSE and detecting it would help answer the question Why is traffic slower?

In Computational Linguistics, there have been several proposals to detect semantic relations. Current
approaches focus on a particular set of relations and given a text they output relations. There have
been competitions aiming at detecting semantic roles (i.e., relations between a verb and its arguments)
(Carreras and Màrquez, 2005), and between nominals (Girju et al., 2007; Hendrickx et al., 2009).

In this paper, we propose a model to compose semantic relations to extract previously ignored rela-
tions. The model allows us to automatically obtain inference axioms given a set of relations and is not
coupled to any particular set. Axioms take as their input semantic relations and yield a new semantic
relation as their conclusion.

Consider the sentence John went to the shop to buy flowers. Figure 1 shows semantic role annotation
with solid arrows. By composing this basic annotation with inference axioms, one can obtain the relations
shown with discontinuous arrows: John had the intention to buy, the buying event took place at the shop
and John and the flowers were at some point in the shop.
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Figure 1: Semantic representation of the sentence John went to the shop to buy flowers.
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2 Semantic Relations

Semantic relations are the underlying relations between concepts expressed by words or phrases. In other
words, semantic relations are implicit associations between concepts in text.

In general, a semantic relation is defined by stating the kind of connection linking two concepts. For
example, Hendrickx et al. (2009) loosely define ENTITY-ORIGIN as an entity is coming or is derived from
an origin (e.g., position or material) and give one example: Earth is located in the Milky Way. We find
this kind of definition weak and prone to confusion.

Following Helbig (2005), we propose an extended definition for semantic relations, including seman-
tic restrictions for its domain and range. For example, DOMAIN(AGENT) must be an animate concrete
object and RANGE(AGENT) must be a situation.

Moreover, we propose to characterize relations by semantic primitives. Primitives indicate if a certain
property holds between the arguments of a relation. For example, the primitive temporal indicates if the
first argument must happen before the second in order for the relation to hold. This primitive holds for
CAUSE (a cause must precede its effect) and it does not apply to PART-WHOLE since the later relation
does not consider time.

Besides having a better understanding of each relation, this extended definition allows us to create a
model that automatically obtains inference axioms for composing semantic relations. The model detects
possible combinations of relations and identifies the conclusion of composing them.

Formally, we represent a relation R as R(x, y), where R is the relation type and x and y are the first
and second argument respectively. R(x, y) should be read x is R of Y. DOMAIN(R) and RANGE(R) are the
sorts of concepts that can be part of the first and second argument respectively. Any ontology can be used
to define domains and ranges, e.g., Helbig (2005) defined one to define a set of 89 relations. Primitives
are represented by an array PR of length n, where n is the number of primitives and P i

R indicates the
value R takes for the ith primitive.

The inverse of R is denoted R−1 and can be obtained by simply switching the arguments of R. Given
R(x, y), R−1(y, x) always holds. We can easily define R−1 given the definition for R: DOMAIN(R−1) =
RANGE(R), RANGE(R−1) = DOMAIN(R), and PR−1 is defined according to the fourth column of Table
1 for each primitive, i.e., ∀i ∈ [1, n] : P i

R−1 = Inverse(P i
R).

2.1 Semantic Primitives

Relation primitives capture deep characteristics of relations. Huhns and Stephens (1989) define them as:

They [primitives] are independently determinable for each relation and relatively self-explanatory.
They specify a relationship between an element of the domain and an element of the range
of the semantic relation being described.

Relation primitives are fundamental properties that cannot be explained using other primitives; they are
elemental. They specify basic attributes of a relation by stating if a particular property must hold by
definition between the domain and range.

Each relation takes a value for each primitive from the set V = {+,−, 0}, where ‘+’ indicates that
the property holds, ‘−’ that it does not hold and ‘0’ that it does not apply. For example, the primitive
volitional indicates if a relation requires volition between domain and range. AGENT takes as value +
for this primitive and PART-WHOLE takes 0.

Primitives complement the definition of a relation by stating if a particular property holds between its
arguments. They help to understand the inter-relation differences and clustering relations. Primitives can
be used as conditions to be fulfilled in order to determine if a potential relation holds. They are general
enough to be determined for a relation, not a particular instantiation. In other words, they state properties
that hold for all instances of a relation by definition.

Our set of primitives (Table 1) is inspired on previous work in Knowledge Bases (Huhns and Stephens,
1989). We only select from them useful primitives for our purpose and add more primitives. The
additional primitives are justified by the fact that we aim at combining relations capturing semantics
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No. Primitive Description Inverse Ref.
1 Composable Relation can be meaningfully composed with other relations

due to their fundamental characteristics
same [3]

2 Functional Domain is in a specific spatial or temporal position with re-
spect to the range in order for the connection to exist

same [1]

3 Separable Domain can be temporally or spatially separated from the
range, and can thus exist independently of the range

same [1]

4 Temporal Domain temporally precedes the range opposite [2]
5 Connected Domain is physically or temporally connected to the range;

connection might be indirect.
same [3]

6 Intrinsic Relation is an attribute of the essence/stufflike nature of the
domain or range

same [3]

7 Volitional Relation requires volition between the arguments same -
8 Fully Implicational The existence of the domain implies the existence of the

range
opposite -

9 Weakly Implicational The existence of the domain generally implies the existence
of the range

opposite -

Table 1: Primitives for characterizing semantic relations, values for the inverse relation and references. In the fifth
column, [1] stands for Winston et al. (1987), [2] for Cohen and Losielle (1988) and [3] for Huhns and Stephens
(1989). ‘-’ indicates new primitive.

1: Composable
R2

R1 - 0 +
- × 0 ×
0 0 0 0
+ × 0 +

2: Functional
R2

R1 - 0 +
- - 0 +
0 0 0 0
+ + 0 +

3: Separable
R2

R1 - 0 +
- - - -
0 - 0 +
+ - + +

4: Temporal
R2

R1 - 0 +
- - - ×
0 - 0 +
+ × + +

5: Connected
R2

R1 - 0 +
- - - +
0 - 0 +
+ + + +

6: Intrinsic
R2

R1 - 0 +
- - 0 -
0 0 0 0
+ - 0 +

7: Volitional
R2

R1 - 0 +
- - 0 +
0 0 0 0
+ + 0 +

8: F Impl.
R2

R1 - 0 +
- - 0 -
0 0 0 0
+ - 0 +

9: W Impl.
R2

R1 - 0 +
- - 0 -
0 0 0 0
+ - 0 +

Table 2: Algebra for composing semantic primitives. Each cell of the ith table indicates P i
R1

◦ P i
R2

.

from natural language. Whatever the set of chosen relations, it will describe the characteristics of
events (who/when/where/how something happened), which elements were involved, connections be-
tween events (e.g. CAUSE, CORRELATION). Time (whether an argument is guaranteed to happen before
than the other), space and volition (whether or not there must be volition between the arguments) also
play an important role.

The fourth column in Table 1 indicates the value of the primitive for the inverse relation. Same means
the inverse relation takes the same value, opposite means it takes the opposite. The opposite of − is +,
the opposite of − is +, and the opposite of 0 is 0.

For example, PAGENT = {+,+,+, 0,−,−,+, 0, 0}, indicating that P 5
AGENT = − and P 7

AGENT = +,
i.e., AGENT(x, y) does not require x and y to be connected and it requires volition between the arguments.
Note that PAGENT

−1 = PAGENT.

2.2 An Algebra for Composing Semantic Relations

The key to automatically obtaining inference axioms is the ability to know beforehand the result of
composing semantic primitives using an algebra. This way, one can identify prohibited combinations of
relations and determine conclusions for the composition of valid combinations.
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Given P i
R1

and P i
R2

, i.e., the values of R1 and R2 for a primitive pi, we define an algebra that indicates
the result of composing them (i.e., P i

R1
◦ P i

R2
). Composing two primitives can yield three values: +, −

or 0, indicating if the primitive holds, does not hold or does not apply to the composition of R1 and R2.
Additionally, the composition can be prohibited, indicated with ×. After composing all the primitives
for R1 and R2, we obtain the primitives values for the composition of R1 and R2 (i.e., PR1 ◦ PR2).

We define the values for the composition using a table for each primitive. Table 2 depicts the whole
algebra. The ith table indicates the rules for composing the ith primitive. For example, regarding the
intrinsic primitive, we have the following rules:

• If both relations are intrinsic, the composition is intrinsic;
• else if intrinsic does not apply to either relation, the primitive does not apply to the composition;
• else, the composition is not intrinsic.

Other rules stated by the algebra are: (1) two relations shall not compose if they have different
opposite values for the primitive temporal; (2) the composition of R1 and R2 is not separable if either
relation is not separable; and (3) if either R1 or R2 are connected, then the composition is connected.

3 Necessary Conditions for Composing Semantic Relations

In principle, one could define axioms for every single possible combination of relations. However, there
are two necessary conditions in order to compose R1 and R2:

1. They have to be compatible. A pair of relations is compatible if it is possible, from a theo-
retical point of view, to compose them. Formally, R1 and R2 are compatible iff RANGE(R1) ∩
DOMAIN(R2) 6= ∅.

2. A third relation R3 must fit as conclusion, that is, ∃R3 such that DOMAIN(R3)∩DOMAIN(R1) 6= ∅
and RANGE(R3) ∩ RANGE(R2) 6= ∅.
Furthermore, PR3 must be compatible with the result of composing PR1 and PR2 .

It is important to note that domain and range compatibility is not enough to compose two relations.
For example, given KINSHIP(Mary, John) and AT-LOCATION(John, Dallas), no relation can be inferred
between Mary and Dallas.

4 Inference Axioms

An axiom is defined as a set of relations called premises and a conclusion. The composition operator ◦
is the basic way of combining two relations to form an axiom. We denote an inference axiom as R1(x, y)
◦ R2(y, z) → R3(x, z), where R1 and R2 are the premises and R3 the conclusion. In order to instantiate
an axiom the premises must have an argument in common, y.

In general, for n relations there are
(
n
2

)
= n(n−1)

2 different pairs. For each pair, taking into account
the two relations and their inverses, there are 4× 4 = 16 different possible combinations.

We note that R1 ◦ R2 = (R2
−1 ◦ R1

−1)−1, reducing the total number of different combinations to
10. Out of these 10, (1) 4 combine R1, R2 and their inverses (Table 3); (2) 3 combine R1 and its inverse;
and (3) 3 combine R2 and its inverse. The most interesting combinations to use as premises for an axiom
fall into category (1), since the other two can be resolved by the transitivity property of a relation and its
inverse. Therefore, for n relations there are 2n2+n potential axioms:

(
n
2

)
×4+3n = 2×n(n−1)+3n =

2n2 − 2n+ 3n = 2n2 + n.

4.1 An Algorithm for Obtaining Inference Axioms

Given a set of relations R defined using the extended definition, one can automatically obtain inference
axioms using the following steps for each pair of relations R1 ∈ R and R2 ∈ R, where R1 6= R2:
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Table 3: The four unique axioms taking as premises R1 and R2. R3 indicates the conclusion.
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ARG0 + + + 0 - - + 0 0 ARG0−1 + + + 0 - - + 0 0
ARG1 + - + 0 - - - 0 0 ARG1−1 + - + 0 - - - 0 0
MLOC + + 0 0 + - 0 0 0 MLOC−1 + + 0 0 + - 0 0 0
MCAU + + + + - + 0 + + MCAU−1 + + + - - + 0 - -
MTMP + + 0 0 + - 0 0 0 MTMP−1 + + 0 0 + - 0 0 0
MPNC + - + - - - - 0 - MPNC−1 + - + + - - - 0 +
MMNR + - + 0 - - + 0 0 MMNR−1 + - + 0 - - + 0 0

Table 4: Semantic Roles in PropBank, their inverses and their primitives.

Repeat Steps 1, 2 and 3 for (Ri, Rj) ∈ [(R1, R2), (R1
−1, R2), (R2, R1), (R2, R1

−1)]:

1. Domain and range compatibility
If RANGE(Ri) ∩ DOMAIN(Rj) = ∅, break

2. Primitives composition
Using the algebra for composing semantic primitives, calculate PRi ◦ PRj

3. Conclusion match Repeat for R3 ∈ R
If DOMAIN(R3) ∩ DOMAIN(Ri) 6= ∅ and RANGE(R3) ∩ RANGE(Rj) 6= ∅

and consistent(PR3 , PRi ◦ PRj ), then
inference axioms += Ri(x, y) ◦ Rj(y, z) → R3(x, z)

The method consistent(P1, P2) is a simple procedure that compares the values assigned to each
primitive one by one. Two values for the same primitive are compatible unless they have different
opposites or either value is ‘×’ (i.e., prohibited).

5 Case Study: PropBank

PropBank (Palmer et al., 2005) adds a layer of predicate-argument information, or semantic role labels,
on top of the syntactic trees provided by the Penn TreeBank. Along with FrameNet, it is the resource
most widely used for semantic role annotation.

PropBank uses a series of numeric core roles (ARG0 - ARG5) and a set of more general roles, ARGMs
(e.g. MTMP, MLOC, MMNR). The interpretation of the numeric roles is determined by a verb-specific
framesets, although ARG0 and ARG1 usually correspond to the prototypical AGENT and THEME. On the
other hand, the meaning of AGRMs generalize across verbs.

An example of PropBank annotation is the following: [Winston]ARG0 [procrastinated]rel [a lot]MADV

[due to his nervous demeanor]MCAU. Palmer et al. (2005) discuss the creation of PropBank. For more
information about the semantics of each role, we refer the reader to the annotation guidelines1.

Since ARG2, AGR3, ARG4 and ARG5 do not have a common meaning across verbs, they become not
composable. For example, ARG2 is used for INSTRUMENT in the frameset kick.01 and for BENEFACTIVE

in the frameset call.02.
1http://verbs.colorado.edu/˜m palmer/projects/ace/PBguidelines.pdf
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a: ARG0 = - - a - a -
b: ARG1 - = - - - b -
c: MLOC - - = c - c -
d: MCAU a - c = e - -
e: MTMP - - - e = e -
f: MPNC a b c - e = g
g: MMNR - - - - - g =

Table 5: Results after applying the steps depicted in Section 4.1 using PropBank semantic roles. A letter indicates
an inference axiom R1◦R2 → R3 by indicating the conclusion R3. ‘-’ indicates that the combination is not prohibited
but a relation compatible with PR1 ◦ PR2 could not be found; ‘=’ indicates that the cell corresponds to a relation
and its inverse.

The remaining labels (ARG0, ARG1 and all ARGMs) do generalize in meaning across verbs. Roles
MEXT, MDIS, MADV, MNEG, MMOD, MDIR, are not composable because they encode a very narrow
semantic connection. Manual examination of several examples leads to this conclusion.

Table 4 depicts the primitives for the roles which are composable and their inverses. Note that for
any two relations their primitives are different.

PropBank does not provide domains and ranges for its roles, although we can specify our own. We
do so by using the ontology defined by Helbig (2005). All relations in PropBank are denoted as R(x, y),
where x is an argument of y, and y is a verb. The range of all relations is a situation. The domain of
AGR0 and ARG1 are objects, the domain of MLOC and MTMP local and temporal descriptors respectively,
the domain of MMNR qualities or states, and the domain of MPNC and MCAU are situations.

5.1 Inference Axioms from PropBank

Out of the four possible axioms between any pair of relations (Table 3), the only way to compose two
relations from PropBank is by using as common argument y a verb. This restriction is due to the fact
that PropBank exclusively annotates relations between a verb and its arguments. Thus, the only possible
axiom for any pair of roles R1 and R2 is R1(x, y) ◦ R2

−1(y, z) → R3(x, z), where y is a verb.
Table 5 shows the eight inference axioms obtained after following the steps depicted in Section 4.1.

Note that the matrix is symmetric as stated by the property R1 ◦ R2 = (R2
−1 ◦ R1

−1)−1.
Some of the axioms obtained are:

• MCAU ◦ MLOC−1 → MLOC−1, the location of a cause is the same than the location of its effect.
• MPNC ◦ ARG0−1 → ARG0−1, the agent of an action is inherited by its purpose.
• MPNC ◦ MMNR−1 → MMNR−1, the manner of an action is inherited by its purpose.

5.2 Evaluation

First, we evaluated all the instantiations of axiom MPNC ◦ MMNR−1 → MMNR−1. This axiom can be
instantiated 237 times using PropBank annotation, yielding 189 new MANNER not present in PropBank.
The overall accuracy is 0.797, superior to state-of-the art semantic role labelers.

Second, we have evaluated the accuracy of the eight inference axioms (Table 5). Since PropBank is
a large corpus, the amount of instantiations found for all axioms is too large to be checked by hand. We
have manually evaluated the first 1,000 sentences that are an instantiation of any axiom. Since a sentence
may instantiate several axioms, we have actually evaluated 1,412 instantiations. The first 1,000 sentences
which are an instantiation of any axiom are found within the first 31,450 sentences in PropBank. Table
6 shows the number of roles PropBank annotates for these sentences.
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Role No. Instances
CAUSE 421
PURPOSE 768
AGENT 22,525
THEME 29,738
AT-LOCATION 2,024
AT-TIME 5,743
MANNER 2,212

Table 6: Number of relations in PropBank for the first 31,450 sentences.

no heuristic with heuristic
No. Axiom No. Inst. Acc. Produc. No. Inst. Acc. Produc.
1 CAU ◦ AGT−1 → AGT−1 201 0.40 0.89% 75 0.67 0.33%
2 CAU ◦ AT-L → AT-L 17 0.82 0.84% 15 0.93 0.74%
3 CAU ◦ AT-T → AT-T 72 0.85 1.25% 69 0.87 1.20%
1-3 CAU ◦ R2 → R3 290 0.53 0.96% 159 0.78 0.53%
4 PRP ◦ AGT−1 → AGT−1 375 0.89 1.66% 347 0.94 1.54%
5 PRP ◦ THM−1 → THM−1 489 0.12 1.64% 87 0.65 0.29%
6 PRP ◦ AT-L → AT-L 49 0.90 2.42% 48 0.92 2.37%
7 PRP ◦ AT-T → AT-T 138 0.84 2.40% 129 0.88 2.25%
8 PRP ◦ MNR−1 → MNR−1 71 0.82 3.21% 70 0.83 3.16%
4-8 PRP ◦ R2 → R3 1,122 0.54 1.80% 681 0.88 1.09%
1-8 All 1,412 0.54 2.26% 840 0.86 1.35%

Table 7: Axioms used during evaluation, number of instances, accuracy and productivity. Results are reported
both using and not using the heuristic. Productivity refers to the number of relations added by the axiom in relative
terms.

Table 7 depicts the total number of instantiations for each axiom and its accuracy (columns 3 and
4). Accuracies range from 0.12 to 0.90, showing that the plausibility of an axiom depends on the axiom.
The average accuracy for axioms involving MCAU is 0.53 and for axioms involving MPNC is 0.54.

Axiom MCAU ◦ ARG0−1 → ARG0−1 adds 201 relations, which corresponds to 0.89% in relative
terms. Its accuracy is low, 0.40. Other axioms are less productive overall, but have a greater relative
impact and accuracy. For example, axiom MPNC ◦ MMNR−1 → MMNR−1, only yields 71 new MMNR,
and yet it is adding 3.21% in relative terms with an accuracy of 0.82.

It is worth noting that overall, applying the eight axioms used during evaluation adds 1,412 relations
on top of the ones already present (2.26% in relative terms) with an accuracy of 0.54.

5.3 Error Analysis

Because of the low accuracy of axioms 1 and 5, an error analysis was performed. We found that unlike
other axioms, these axioms often yield a relation type that is already present in the semantic representa-
tion. Specifically, axioms 1 and 5 often yield R(x, z) when R(x’, z) is already known.

An example can be found in Figure 4, where axiom 5 yields ARG1(orders, to buy) when the relation
ARG1(the basket, to buy) is already present. We use the following heuristic in order to improve the
accuracy of axioms 1 and 5: do not instantiate an axiom R1(x, y) ◦ R2(y, z) → R3(x, z) if a relation of
the form R3(x’, z) is already known.

This simple heuristic allows us to augment the accuracy of the inferences at the cost of lowering their
productivity. The last three columns in Table 7 show results when using the heuristic. The eight axioms
add 840 relations (1.35% in relative terms) with an accuracy of 0.86.

5.4 Examples

In this section we present several examples of instantiations. We provide the full text of each example,
but only the relevant semantic annotation for instantiating axioms. For all examples, solid arrows indicate
semantic role annotation from PropBank, and discontinuous arrows inferred relations.

51
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Figure 2: In the fibers division, profit remains weak, largely because of persistent overcapacity. (wsj 0552, 28).
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Figure 3: First Tennessee National Corp. said it would take a $4 million charge in the fourth quarter, as a result
of plans to expand its systems operation. (wsj 0621, 0).

The traders
ARG0

77

ARG0

n m l k j
g e c a

''

] [ Y W T S R Q P
place orders

ARG1
ff

ARG1∗

q n l i g d

&&

Z W U R P

via computers

MMNR

ee

MMNRi d ((
Z U

to buy

MPNC

ee the basket
ARG1

gg

Figure 4: When it occurs, the traders place orders via computers to buy the basket of stocks . . . in whichever
market is cheaper and sell them in the more expensive market; . . . (wsj 0118, 48).
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Figure 5: A man from the Bush administration came before the House Agriculture Committee yesterday to talk
about . . . (wsj 0134, 0).

Figures 2 and 3 instantiate axioms 1, 2 and 3. For these examples, all inferences are correct.
Figures 4 and 5 instantiate the rest of axioms. Not using the heuristic leads to a wrong inference in

the example shown in Figure 4, indicated with *. Using the heuristic, all inferences are correct.

6 Comparison with Previous Work

There have been abundant proposals to detect semantic relations without taking into account composition
of relations. All these approaches, regardless of their particular details, take as their input text and output
the relations found in it. In contrast, the framework proposed in this article obtains axioms that take as
their input relations found in text and output more relations previously ignored.

Generally, efforts to extract semantic relations have concentrated on particular sets of relations or a
single relation, e.g. CAUSE (Bethard and Martin, 2008; Chang and Choi, 2006) and PART-WHOLE (Girju
et al., 2006). Automatic detection of semantic roles has received a lot of attention lately (Màrquez et al.,
2008; Carreras and Màrquez, 2005). The SemEval-2007 Task 04 (Girju et al., 2007) and SemEval-2010
Task 08 (Hendrickx et al., 2009) aimed at relations between nominals. There has been work on detecting
relations within noun phrases (Moldovan et al., 2004; Nulty, 2007), clauses (Szpakowicz et al., 1995)
and syntax-based comma resolution (Srikumar et al., 2008).

Previous research has exploited the idea of using semantic primitives to define and classify semantic
relations under different names. Among others, the literature uses relation elements, deep structure,
aspects and primitives. To the best of our knowledge, the first effort on describing semantic relations
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using primitives was made by Chaffin and Herrmann (1987). They introduce Relation Element Theory,
and differentiate relations by relation elements. The authors describe a set of 31 relations clustered in five
groups (CONTRAST, SIMILARS, CLASS INCLUSION, CASE-RELATIONS, PART-WHOLE), and distinguish
each relation by its relations elements and not just a definition and examples. Their 30 relation elements
are clustered into five groups (elements of intensional force, dimension elements, elements of agreement,
propositional elements, elements of part-whole inclusion). They only use the elements to define relations,
not to compose relations.

Winston et al. (1987) work with six subtypes of PART-WHOLE and uses 3 relation elements (func-
tional, homeomerous and separable) to distinguish the subtypes. Cohen and Losielle (1988) introduce
the notion of deep structure and characterize it using two aspects: hierarchical and temporal. Huhns and
Stephens (1989) extend previous works by considering an extended set of 10 primitives.

In Computational Linguistics there have been previous proposals to combine semantic relations.
Harabagiu and Moldovan (1998) manually extract plausible inference axioms using WordNet relations.
Helbig (2005) transforms chains of relations into theoretical axioms. On the other hand, the model
presented in this paper extracts inference axioms automatically.

Composing relations has been proposed before in the more general field of Artificial Intelligence,
in particular in the context of Knowledge Bases. Cohen and Losielle (1988) point out that two relations
shall combine if and only if they do not have contradictory values for the aspect hierarchical or temporal.
They work with a set of nine specific relations (CAUSES, COMPONENT-OF, FOCUS-OF, MECHANISM-OF,
PRODUCT-OF, PURPOSE-OF, SETTING-OF, SUBJECT-OF and SUBFIELD-OF) and their inverses. Huhns
and Stephens (1989) are the first to propose an algebra for composing semantic primitives. Unlike ours,
their set of relations is not linguistically motivated; ten of them map to some sort of PART-WHOLE (e.g.
PIECE-OF, SUBREGION-OF).

7 Conclusions

In this paper, we have presented a model to compose semantic relations. The model is independent of
any particular set of relations and is able to obtain inference axioms. These axioms take as their input
two semantic relations and yield a previously ignored relation as conclusion.

The model is based on an extended definition of semantic relations, including restrictions on domains
and ranges and values for a set of semantic primitives. We have defined an algebra for composing
semantic primitives. This algebra is the key to automatically identify the resulting relation of composing
a pair of compatible relations and to form an axiom.

The proposed algorithm to compose semantic relations identifies eight inference axioms using Prop-
Bank relations. When instantiated in a subset of PropBank, these axioms add 2.26% of annotation in
relative terms with an accuracy of 0.54. We believe these results are worthwhile for a completely unsu-
pervised approach to obtain semantic relations. Adding a simple heuristic improves the accuracy to 0.86,
lowering the productivity in relative terms to 1.35%.

The model has limitations and is not always correct. First, relations are defined manually and mis-
takes could be made when assigning values to their primitives. Second, the algebra for composing
primitives is also manually defined.

We find the first problem easy to overcome. Whatever the set of relations one might use, we believe
thinking in terms of primitives helps to understand the nature of the relations and their differences. An
issue might be that the proposed set of primitives is not enough for a particular set, but more primitives
could be added to solve this eventuality.

A further issue with the algebra is the fact that primitives are composed orthogonally. This is a
simplification, but we have shown that this simplified algebra works.

Even though different sets of semantic relations may call for different ontologies to define domains
and ranges, and possibly an extended set of primitives, we believe the model presented in this paper is
applicable to any set. As far as we are concerned, this is a novel way to compose semantic relations in
the field of Computational Linguistics.
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Abstract

Abduction is a method for finding the best explanation for observations. Arguably
the most advanced approach to abduction, especially for natural language processing, is
weighted abduction, which uses logical formulas with costs to guide inference. But it
has no clear probabilistic semantics. In this paper we propose an approach that imple-
ments weighted abduction in Markov logic, which uses weighted first-order formulas to
represent probabilistic knowledge, pointing toward a sound probabilistic semantics for
weighted abduction. Application to a series of challenge problems shows the power and
coverage of our approach.

1 Introduction
Abduction is inference to the best explanation.1 Typically, one uses it to find the best hypothesis ex-
plaining a set of observations, e.g., in diagnosis and plan recognition. In natural language processing the
content of an utterance can be viewed as a set of observations, and the best explanation then constitutes
the interpretation of the utterance. Hobbs et al. [7] described a variety of abduction called “weighted
abduction” for interpreting natural language discourse. The key idea was that the best interpretation of
a text is the best explanation or proof of the logical form of the text, allowing for assumptions. What
counted as “best” was defined in terms of a cost function which favored proofs with the fewest number of
assumptions and the most salient and plausible axioms, and in which the pervasive redundancy implicit
in natural language discourse was exploited. It was argued in that paper that such interpretation problems
as coreference and syntactic ambiguity resolution, determining the specific meanings of vague predicates
and lexical ambiguity resolution, metonymy resolution, metaphor interpretation, and the recognition of
discourse structure could be seen to “fall out” of the best abductive proof.

Specifically, weighted abduction has the following features:

1. In a goal expression consisting of an existentially quantified conjunction of positive literals, each
literal is given a cost that represents the utility of proving that literal as opposed to assuming it.
That is, a low cost on a literal will make it more likely for it to be assumed, whereas a high cost
will result in a greater effort to find a proof.

1We are indebted to Jesse Davis, Parag Singla and Marc Sumner for discussions about this work. This research was
supported in part by the Defense Advanced Research Projects Agency (DARPA) Machine Reading Program under Air Force
Research Laboratory (AFRL) prime contract no. FA8750-09-C-0172, in part by the Office of Naval Research under contract
no. N00014-09-1-1029, and in part by the Army Research Office under grant W911NF-08-1-0242. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the view of
the DARPA, AFRL, ONR, ARO, or the US government.
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2. Costs are passed back across the implication in Horn clauses according to weights on the conjuncts
in the antecedents. Specifically, if a consequent costs $c and the weight on a conjunct in the
antecedent isv, then the cost on that conjunct will be $vc. Note that if the weights add up to less
than one, backchaining on the rule will be favored, as the cost of the antecedent will be less than
the cost of the consequent. If the weights add up to more than one, backchaining will be disfavored
unless a proof can be found for one or more of the conjuncts in the antecedent, thereby providing
partial evidence for the consequent.

3. Two literals can be factored or unified, where the result is given the minimum cost of the two,
providing no contradiction would result. This is a frequent mechanism for coreference resolution.
In practice, only a shallow or heuristic check for contradiction is done.

4. The lowest-cost proof is the best interpretation, or the best abductive proof of the goal expression.

However, there are two significant problems with weighted abduction as it was originally presented.
First, it required a large knowledge base of commonsense knowledge. This was not available when
weighted abduction was first described, but since that time there have been substantial efforts to build up
knowledge bases for various purposes, and at least two of these have been used with promising results
in an abductive setting—Extended WordNet [6] for question-answering and FrameNet [11] for textual
inference.

The second problem with weighted abduction was that the weights and costs did not have a prob-
abilistic semantics. This, for example, hampers automatic learning of weights from data or existing
resources. That is the issue we address in the present paper.

In the last decade and a half, a number of formalisms for adding uncertain reasoning to predicate logic
have been developed that are well-founded in probability theory. Among the most widely investigated
is Markov logic [14, 4]. In this paper we show how weighted abduction can be implemented in Markov
logic. This demonstrates that Markov logic networks can be used as a powerful mechanism for interpret-
ing natural language discourse, and at the same time provides weighted abduction with something like a
probabilistic semantics.

In Section 2 we briefly describe Markov logic and Markov logic networks. Section 3 then describes
how weighted abduction can be implemented in Markov logic. In Section 4 we describe experiments in
which fourteen published examples of the use of weighted abduction in natural language understanding
are implemented in Markov logic networks, with good results. Section 5 on current and future directions
briefly describes an ongoing experiment in which we are attempting to scale up to apply this procedure
to the textual inference problem with a knowledge base derived from FrameNet with tens of thousands
of axioms.

2 Markov Logic Networks and Related Work
Markov logic [14, 4] is a recently developed theoretically sound framework for combining first-order
logic and probabilistic graphical models. A traditional first-order knowledge base can be seen as a set of
hard constraints on the set of possible worlds: if a world violates even one formula, its probability is zero.
In order to soften these constraints, Markov logic attaches a weight to each first-order logic formula in
the knowledge base. Such a set of weighted first-order logic formulae is called aMarkov logic network
(MLN). A formula’s weight reflects how strong a constraint it imposes on the set of possible worlds: the
higher the weight, the lower the probability of a world that violates it; however, that probability need not
be zero. An MLN with all infinite weights reduces to a traditional first-order knowledge base with only
hard constraints.
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Formally, an MLNL is a set of formula–weight pairs(Fi, wi). Given a set of constants, it defines
a joint probability distribution over a set of boolean variablesX = (X1, X2...) corresponding to the
possible groundings (using the given constants) of the literals present in the first-order formulae:

P (X = x) = 1
Z exp(

∑
iwini(x))

whereni(x) is the number of true groundings ofFi in x andZ is a normalization term obtained by
summingP (X = x) over all values ofX.

Semantically, an MLN can be viewed as a set of templates for constructing Markov networks [12],
the undirected counterparts of Bayesian networks. An MLN and a set of constants produce a Markov
network in which each ground literal is a node and every pair of ground literals that appear together in
some grounding of some formula are connected by an edge. Different sets of constants produce different
Markov networks; however, there are certain regularities in their structure and parameters. For example,
all groundings of the same formula have the same weight.

Probabilistic inference for an MLN (such as finding the most probable truth assignment for a given
set of ground literals, or finding the probability that a particular formula holds) can be performed by
first producing the ground Markov network and then using well known inference techniques for Markov
networks, like Gibbs sampling. Given a knowledge base as a set of first-order logic formulae, and a
database of training examples each consisting of a set of true ground literals, it is also possible to learn
appropriate weights for the MLN formulae which maximize the probability of the training data. An open-
source software package for MLNs, called Alchemy2, is also available with many built-in algorithms
for performing inference and learning.

Much of the early work on abduction was done in a purely logical framework (e.g., [13, 3, 9, 10].
Typically the choice between alternative explanations is made on the basis of parsimony; the shortest
proofs with the fewest assumptions are favored. However, a significant limitation of these purely logical
approaches is that they are unable to reason under uncertainty or estimate the likelihood of alternative
explanations. A probabilistic form of abduction is needed in order to account for uncertainty in the
background knowledge and to handle noisy and incomplete observations.

In Bayesian networks [12] background knowledge with its uncertainties is encoded in a directed
graph. Then, given a set of observations, probabilistic inference over the graph structure is done to
compute the posterior probability of alternative explanations. However, Bayesian networks are based on
propositional logic and cannot handle structured representations, hence preventing their use in situations,
characteristic of natural language processing, that involve an unbounded number of entities with a variety
of relations between them.

In recent years there have been a number of proposals attempting to combine the probabilistic nature
of Bayesian networks with structured first-order representations. It is impossible here to review this liter-
ature here. A a good review of much of it can be found in [5], and in [14] there are detailed comparisonss
of various models to MLNs.

Charniak and Shimony [2] define a variant of weighted abduction, called “cost-based abduction” in
which weights are attached to terms rather than to rules or to antecedents in rules. Thus, the termPi

has the same cost whatever rule it is used in. The cost of an assignment to the variables in the domain
is the sum of the costs of the variables that are true in the assignment. Charniak and Shimony provide
a probabilistic semantics for their approach by showing how to construct a Bayesian network from a
domain such that a most probable explanation solution to the Bayes net corresponds to a lowest-cost
solution to the abduction problem. However, in natural language applications the utility of proving a
proposition can vary by context; weighted abduction accomodates this, whereas cost-based abduction
does not.2http://alchemy.cs.washington.edu
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3 Weighted Abduction and MLNs
Kate and Mooney [8] show how logical abduction can be implemented in Markov logic networks. They
use forward inference in MLNs to perform abduction by adding clauses with reverse implications. Uni-
versally quantified variables from the left hand side of rules are converted to existentially quantified
variables in the reversed clause. For example, suppose we have the following rule saying that mosquito
bites transmit malaria:

mosquito(x) ∧ infected(x,Malaria) ∧ bite(x, y) ⊃ infected(y,Malaria)

This would be translated into the soft rule
[w] infected(y,Malaria) ⊃ ∃x[mosquito(x) ∧ infected(x,Malaria) ∧ bite(x, y)]

Where there is more than one possible explanation, they include a closure axiom saying that one of the
explanations must hold. Since blood transfusions also cause malaria, they have the hard rule

infected(y,Malaria) ⊃
∃x[mosquito(x) ∧ infected(x,Malaria) ∧ bite(x, y)]
∨∃x[infected(x,Malaria) ∧ transfuse(Blood, x, y)].

Kate and Mooney also add a soft mutual exclusivity clause that states that no more than one of the
possible explanations is true.

In translating between weighted abduction and Markov logic, we need similarly to specify the axioms
in Markov logic that correspond to a Horn clause axiom in weighted abduction. In addition, we need to
describe the relation between the numbers in weighted abduction and the weights on the Markov logic
axioms. Hobbs et al. [7] give only broad, informal guidelines about how the numbers correspond to
probabilities. In this development, we elaborate on how the numbers can be defined more precisely
within these guidelines in a way that links with the weights in Markov logic, thereby pointing to a
probabilistic semantics for the weighted abduction numbers.

There are two sorts of numbers in weighted abduction—the weights on conjuncts in the antecedents
of Horn clause axioms, and the costs on conjuncts in goal expressions, which are existentially quantified
conjunctions of positive literals. We deal first with the weights, then with the costs.

The space of events over which probabilities are taken is the set of proof graphs constituting the best
interpretations of a set of texts in a corpus. Thus, by the probability ofp(x) given q(x), we mean the
probability thatp(x) will occur in a proof graph in whichq(x) occurs.

The translation from weighted abduction axioms to Markov logic axioms can be broken into two
steps. First we consider the “or” node case, determining the relative costs of axioms that have the same
consequent. Then we look at the “and” node case, determining how the weights should be distributed
across the conjuncts in the antecedent of a Horn clause, given the total weight for the antecedent.

Weights on Antecedents in Axioms.First consider a set of Horn clause axioms all with the same
consequent, where we collapse the antecedent into a single literal, and for simplicity allowx to stand for
all the universally quantified variables in the antecedent, and assume the consequent to have only those
variables. That is, we convert all axioms of the form

p1(x) ∧ . . . ⊃ q(x)

into axioms of the form
Ai(x) ⊃ q(x), wherep1(x) ∧ . . . ≡ Ai(x)

To convert this into Markov logic, we first introduce the hard constraint
Ai(x) ⊃ q(x).

In addition, given a goal of provingq(x), in weighted abduction we will want to backchain on at least
(and usually at most) one of these axioms or we will want simply to assumeq(x). Thus, we can introduce
another hard constraint with the disjunction of these antecedents as well as a literalAssumeQ(x) that
meansq(x) is assumed rather than proved.
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q(x) ⊃ A1(x) ∨ A2(x) ∨ . . . ∨ An(x) ∨ AssumeQ(x).

Then we need to introduce soft constraints to indicate that each of these disjuncts is a possible explana-
tion, or proof, ofq(x), with an associated probability, or weight.

[wi] q(x) ⊃ Ai(x), . . .
[w0] q(x) ⊃ AssumeQ(x)

The probability thatAssumeQ(x) is true is the conditional probabilityP0 that none of the antecedents
is true given thatq(x) is true.

P0 = P (¬[A1(x) ∨ A2(x) ∨ . . . ∨ An(x)] | q(x))
In weighted abduction, when the antecedent weight is greater than one, we prefer assuming the conse-
quent to assuming the antecedent. When the antecedent weight is less than one we prefer to assume the
antecedent. If the probability that an antecedentAi(x) is the explanation ofq(x) is greater thanP0, it
should be given a weighted abduction weightvi less than 1, making it more likely to be chosen.3 Cor-
respondingly, if it is less thanP0, it should be given a weightvi greater than 1, making it less likely
to be chosen. In general, the weighted abduction weights should be in reverse order of the conditional
probabilitiesPi thatAi(x) is the explanation ofq(x).

Pi = P (Ai(x) | q(x))
If we assign the weightsvi in weighted abduction to be

vi =
logPi
logP0

then this is consistent with informal guidelines in [7] on the meaning of these weights. We use the logs
of the probabilities rather than the probabilities themselves to moderate the effect of one axiom being
very much more probable than any of the others.

Kate and Mooney [8], in their translation of logical abduction into Markov logic, also include soft
constraints stipulating that the different possible explanationsAi(x) are normally mutually exclusive.
We do not do that here, but we get a kind of soft mutual exclusivity constraint by virtue of the axioms
below that levy a cost for any literal that is taken to be true. In general, more parimonious explanations
will be favored.

Nevertheless, in most cases a single explanation will suffice. When this is true, the probability of
Ai(x) holding whenq(x) holds is ewi

Z . Then a reasonable approximation for the relation between the
weighted abduction weightsvi and the Markov logic weightswi is

wi = −vilogP0

Weights on Conjuncts in Antecedents.Next consider how cost is spread across the conjuncts in the
antecedent of a Horn clause in weighted abduction. Here we useu’s to represent the weighted abduction
weights on the conjuncts.

p1(x)
u1 ∧ p2(x)u2 ∧ ... ≡ A(x)

Theu’s should somehow represent the semantic contribution of each conjunct to the conclusion. That is,
given that the conjunct is true, what is the probability that it is part of an explanation of the consequent?
Conjuncts with a higher such probability should be given higher weightsu; they play a more significant
role in explainingA(x).

Let Pi be the conditional probability of the consequent given theith conjunct in the antecedent.

Pi = P (A(x)|pi(x))
and letZ be a normalization factor.

Z =
∑n

i=1 Pi

3We usevi for these weighted abduction weights andwi for Markov logic weights.
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Let v be the weight of the entire antecedent as determined above.
Then it is consistent with the guidelines in [7] to define the weights on the conjuncts as follows:

ui =
vPi
Z

The weightsui will sum tov and each will correspond to the semantic contribution of its conjunct to the
consequent.

In Markov logic, weights apply only to axioms as a whole, not parts of axioms. Thus, the single
axiom above must be decomposed into one axiom for each conjunct and the dependencies must be
written as

[wi] pi(x) ⊃ A(x), . . .

The relation between the weighted abduction weightsui and the Markov logic weightswi can be
approximated by

ui =
ve−wi

Z

Costs on Goals.The other numbers in weighted abduction are the costs associated with the conjuncts
in the goal expression. In weighted abduction these costs function as utilities. Some parts of the goal
expression are more important to interpret correctly than others; we should try harder to prove these
parts, rather than simply assuming them. In language it is important to recognize the referential anchor
of an utterance in shared knowledge. Thus, those parts of a sentence most likely to provide this anchor
have the highest utility. If we simply assume them, we lose their connection with what is already known.
Those parts of a sentence most likely to be new information will have a lower cost, because we usually
would not be able to prove them in any case.

Consider the two sentences

The smart man is tall.
The tall man is smart.

The logical form for each of them will be

(∃x)[smart(x) ∧ tall(x) ∧man(x)]
In weighted abduction, an interpretation of the sentence is a proof of the logical form, allowing assump-
tions. In the first sentence we want to provesmart(x) to anchor the sentence referentially. Thentall(x)
is new information; it will have to be assumed. We will want to have a high cost onsmart(x) to force
the proof procedure to find this referential anchor. The cost ontall(x) will be low, to allow it to be
assumed without expending too much effort in trying to locate that fact in shared knowledge.

In the second sentence, the case is the reverse.
Let’s focus on the first sentence and assume we know that educated people are smart and big people

are tall, and furthermore that John is educated and Bill is big.

educated(x)1.2 ⊃ smart(x)
big(x)1.2 ⊃ tall(x)
educated(J), big(B)

In weighted abduction, the best interpretation will be that the smart man is John, because he is educated,
and we pay the cost for assuming he is tall. The interpretation we want to avoid is one that saysx is Bill;
he is tall because he is big, and we pay the cost of assuming he is smart. Weighted abduction with its
differential costs on conjuncts in the goal expression favors the first and disfavors the second.

In weighted abduction, only assumptions cost; literals that are proved cost nothing. When the above
axioms are translated into Markov logic, it would be natural to capture the differential costs by attaching a
negative weight tosmart(x) to model the cost associated with assuming it. However, this weight would
apply to any assignment in whichsmart(J) is true, regardless of whether it was assumed, derived from
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an assumed fact, or derived from a known fact. A potential solution might be to attach the negative weight
toAssumeSmart(x). But the first axiom above allows us to bypass the negative weight onsmart(x).
We can hypothesize thatx is Bill, pay a low cost onAssumeEducated(B), derivesmart(B), and get
the wrong assignment. Thus it is not enough to attach a negative weight to high-cost conjuncts in the
goal expression. This negative weight would have to be passed back through the whole knowledge base,
making the complexity of setting the weights at problem time in the MLN knowledge base equal to the
complexity of running the inference problem.

An alternative solution, which avoids this problem when the forward inferences are exact, is to use
a set of predicates that express knowing a fact without any assumptions. In the current example, we
would addKsmart(x) for knowing that an entity is smart. The facts asserted in the data base are now
Keducated(J) andKbig(B). For each hard axiom involving non-K predicates, we have a correspond-
ing axiom that expresses the relation between theK-predicates, and we have a soft axiom allowing us to
cross the border between theK predicates and their non-K counterparts.

Keducated(x) ⊃ Ksmart(x)., . . .
[w]Ksmart(x) ⊃ smart(x), . . .

Here the positive weightw attached is chosen to counteract the negative weight we would attach to
smart(x) to reflect the high cost of assuming it.

This removes the weight associated with assumingsmart(x) regardless of the inference path that
leads to knowingsmart(x) (KSmart(x))). Further, this translation takes linear time in the size of
the goal expression to compute, since we do not need to know the equivalent weighted abduction cost
assigned to the possible antecedents ofsmart(x).

If the initial facts do not includeKEducated(B) and insteadeducated(B) must be assumed, then
the negative weight associated withsmart(B) is still present. In this solution, there is no danger that
the inference process can by-pass the cost of assumingsmart(B), since it is attached to the required
predicate and can only be removed by inferringKSmart(B).

Finally, there is a tendency in Markov logic networks for assignments of high probability for proposi-
tions for which there is no evidence one way or the other. To suppress this, we associate a small negative
weight with every predicate. In practice, it has turned out that a weight of−1 effectively suppresses this
behavior.

4 Experimental Results
We have tested our approach on a set of fourteen challenge problems from [7] and subsequent papers,
designed to exercise the principal features of weighted abduction and show its utility for solving natural
language interpretation problems. The knowledge bases used for each of these problems are sparse,
consisting of only the axioms required for solving the problems plus a few distractors.

An example of a relatively simple problem is #5 in the table below, resolving “he” in the text

I saw my doctor last week. He told me to get more exercise.

where we are given a knowledge base that says a doctor is a person and a male person is a “he”. Solving
the problem requires assuming the doctor is male.

(∀x)[doctor(x)1.2 ⊃ person(x)]
(∀x)[male(x).6 ∧ person(x).6 ⊃ he(x)]

The logical form fragment to prove is(∃x)he(x), where we knowdoctor(D).
A problem of intermediate difficulty (#7) is resolving the three lexical ambiguities in the sentence

The plane taxied to the terminal.

61



where we are given a knowledge base saying that airplanes and wood smoothers are planes, planes
moving on the ground and people taking taxis are both described as “taxiing”, and computer terminals
and airport terminals are both terminals.

An example of a difficult problem is #12, finding the coherence relation, thereby resolving the pro-
noun “they”, between the sentences

The police prohibited the women from demonstrating. They feared violence.

The axioms specify relations between fearing, not wanting, and prohibiting, as well as the defeasible
transitivity of causality and the fact that a causal relation between sentences makes the discourse coher-
ent.

The weights in the axioms were mostly distributed evenly across the conjuncts in the antecedents and
summed to 1.2.

For each of these problems, we compare the performance of the method described here with a man-
ually constructed gold standard and also with a method based on Kate and Mooney’s (KM) approach.
In this method, weights were assigned to the reversed clauses based on the negative log of the sum of
weights in the original clause. This approach does not capture different weights for different antecedents
of the same rule, and so has less fidelity to weighted abduction than our approach. In each case, we used
Alchemy’s probabilistic inference to determine the most probable explanation (MPE) [12].

In some of the problems the system should make more than one assumption, so there are 22 assump-
tions in total over all 14 problems in the gold standard. Using our method, 18 of the assumptions were
found, while 15 were found using the KM method. Table 1 shows the number of correct assumptions
found and the running time for the two approaches for each problem. Our method in particular provides
good coverage, with a recall of over 80% of the assumptions made in the gold standard. It has a shorter
running time overall, approximately 5.3 seconds versus 8.7 seconds for the reversal method. This is
largely due to one problem in the test set, problem #9, where the running time for the KM method is
relatively high because the technique finds a less sparse network, leading to larger cliques. There were
two problems in the test set that neither approach could solve. One of these contains predicates that have
a large number of arguments, leading to large clique sizes.

5 Current and Future Directions
In other work [11] we are experimenting with using weighted abduction with a knowledge base with tens
of thousands of axioms derived from FrameNet for solving problems in recognizing textual entailment
(RTE2) from the Pascal dataset [1]. For a direct comparison between standard weighted abduction and
the Markov logic approach described here, we are also experimenting with using the latter on the same
task with the same knowledge base.

For each text-hypothesis pair, the sentences are parsed and a logical form is produced. The output for
the first sentence forms the specific knowledge the system has while the output for the second sentence
is used as the target to be explained. If the cost of the best explanation is below a threshold we take the
target sentence to be true given the initial information.

It is a major challenge to scale our approach to handle all the problems from the RTE2 development
and test sets. We are not yet able to address the most complex of these using inference in Markov logic
networks. However, we have devised a number of pre-processing steps to reduce the complexity of the
resultant network, which significantly increase the number of problems that are tractable.

The FrameNet knowledge base contains a large number of axioms with general coverage. For any
individual entailment problem, most of them are irrelevant and can be removed after a simple graphical
analysis. We are able to remove more irrelevant axioms and predicates with an iterative approach that in
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Our Method KM Method Gold
Problem score seconds score seconds standard

1 3 300 3 16 3
2 1 250 1 265 1
3 1 234 1 266 1
4 2 234 2 203 2
5 1 218 1 218 1
6 1 218 0 265 1
7 3 300 3 218 3
8 1 200 1 250 1
9 2 421 0 5000 2

10 1 2500 1 1500 3
11 0 0 1
12 0 0 1
13 1 250 1 250 1
14 1 219 1 219 1

Total 18 5344 15 8670 22

Table 1: Performance on each problem in our test set, comparing two encodings of weighted abduction
into Markov logic networks and a gold standard.

each iteration both drops axioms that are shown to be irrelevant and simplifies remaining axioms in such
a way as not to change the probability of entailment.

We also simplify predications by removing unnecessary arguments. The most natural way to convert
FrameNet frames to axioms is to treat a frame as a predicate whose arguments are the frame elements for
all of its roles. After converting to Markov logic, this results in rules having large numbers of existentially
quantified variables in the consequent. This can lead to a combinatorial explosion in the number of
possible ground rules. Many of the variables in the frame predicate are for general use and can be pruned
in the particular entailment. Our approach essentially creates abstractions of the original predicates that
preserve all the information that is relevant to the current problem but greatly reduces the number of
ground instances to consider.

Before implementing these pre-processing steps, only two or three problems could be run to com-
pletion on a Macbook Pro with 8 gigabytes of RAM. After making them, 28 of the initial 100 problems
could be run to completion.

Work on this effort continues.

6 Summary

Weighted abduction is a logical reasoning framework that has been successfully applied to solve a num-
ber of interesting and important problems in computational natural-language semantics ranging from
word sense disambiguation to coreference resolution. However, its method for representing and combin-
ing assumption costs to determine the most preferred explanation is ad hoc and without a firm theoretical
foundation. Markov Logic is a recently developed formalism for combining first-order logic with prob-
abilistic graphical models that has a well-defined formal semantics in terms of specifying a probability
distribution over possible worlds. This paper has presented a method for mapping weighted abduction
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to Markov logic, thereby providing a sound probabilistic semantics for the approach and also allowing
it to exploit the growing toolbox of inference and learning algorithms available for Markov logic. Com-
plementarily, it has also demonstrated how Markov logic can thereby be applied to help solve important
problems in computational semantics.
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bonfante@loria.fr

Bruno Guillaume
INRIA - LORIA

guillaum@loria.fr

Mathieu Morey
Nancy-Université - LORIA
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Abstract

Taking an asynchronous perspective on the syntax-semantics interface, we propose to use modu-
lar graph rewriting systems as the model of computation. We formally define them and demonstrate
their use with a set of modules which produce underspecified semantic representations from a syn-
tactic dependency graph. We experimentally validate this approach on a set of sentences. The results
open the way for the production of underspecified semantic dependency structures from corpora an-
notated with syntactic dependencies and, more generally, for a broader use of modular rewriting
systems for computational linguistics.

Introduction

The aim of our work is to produce a semantic representation of sentences on a large scale using a formal
and exact approach based on linguistic knowledge. In this perspective, the design of the syntax-semantics
interface is crucial.

Based on the compositionality principle, most models of the syntax-semantics interface use a syn-
chronous approach: the semantic representation of a sentence is built step by step in parallel with its
syntactic structure. According to the choice of the syntactic formalism, this approach is implemented in
different ways: in a Context-Free Grammars (CFG) style framework, every syntactic rule of a grammar
is associated with a semantic composition rule, as in the classical textbook by Heim and Kratzer (1998);
following the principles introduced by Montague, Categorial Grammars use an homomorphism from the
syntax to the semantics (Carpenter (1992)). HPSG integrates the semantic and syntactic representations
in feature structures which combine by unification (Copestake et al. (2005)). LFG follows a similar prin-
ciple (Dalrymple (2001)). In a synchronous approach, the syntax-semantics interface closely depends on
the grammatical formalism. Building such an interface can be very costly, especially if we aim at a large
coverage for the grammar.

In our work, we have chosen an asynchronous approach in the sense that we start from a given
syntactic analysis of a sentence to produce a semantic representation. With respect to the synchronous
approach, a drawback is that the reaction of the semantics on the syntax is delayed. On the other hand,
the computation of the semantics is made relatively independent from the syntactic formalism. The only
constraint is the shape of the output of the syntactic analysis.

In the formalisms mentioned above, the syntactic structure most often takes the form of a phrase
structure, but the choice of constituency for the syntax makes the relationship with the semantics more
complicated. We have chosen dependency graphs, because syntactic dependencies are closely related
to predicate-argument relations. Moreover, they can be enriched with relations derived from the syntax,
which are usually ignored, such as the arguments of infinitives or the anaphora determined by the syntax.
One may observe that our syntactic representation of sentences involves plain graphs and not trees.
Indeed, these relations can give rise to multiple governors and dependency cycles. On the semantic side,
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we have also chosen graphs, which are widely used in different formalisms and theories, such as DMRS
(Copestake (2009)) or MTT (Mel’čuk (1988)) .

The principles being fixed, our problem was then to choose a model of computation well suited
to transforming syntactic graphs into semantic graphs. The λ-calculus, which is widely used in formal
semantics, is not a good candidate because it is appropriate for computing on trees but not on graphs. Our
choice naturally went to graph rewriting. Graph rewriting is barely used in computational linguistics;
it could be due to the difficulty to manage large sets of rules. Among the pioneers in the use of graph
rewriting, we mention Hyvönen (1984); Bohnet and Wanner (2001); Crouch (2005); Jijkoun and de Rijke
(2007); Bédaride and Gardent (2009); Chaumartin and Kahane (2010).

A graph rewriting system is defined as a set of graph rewrite rules and a computation is a sequence
of rewrite rule applications to a given graph. The application of a rule is triggered via a mechanism of
pattern matching, hence a sub-graph is isolated from its context and the result is a local modification of
the input. This allows a linguistic phenomenon to be easily isolated for applying a transformation.

Since each step of computation is fired by some local conditions in the whole graph, it is well known
that one has no grip on the sequence of rewriting steps. The more rules, the more interaction between
rules, and the consistency of the whole rule system becomes difficult to maintain. This bothers our
ambition of a large coverage for the grammar. To solve this problem, we propose to organize rules in
modules. A module is a set of rules that is linguistically consistent and represents a particular step of
the transformation. For instance, in our proposal, there is a module transforming the syntactic arguments
of verbs, predicative nouns and adjectives into their semantic arguments. Another module resolves the
anaphoric links which are internal to the sentence and determined by the syntax.

From a computational point of view, the grouping of a small number of rules inside a module allows
some optimizations in their application, thus leading to efficiency. For instance, the confluence of rewrit-
ing is a critical feature — one computes only one normal form, not all of them — for the performance
of the program. Since the underlying relation from syntax to semantics is not functional but relational,
the system cannot be globally confluent. Then, it is particularly interesting to isolate subsets of conflu-
ent rules. Second point, with a small number of rules, one gets much more control on their output. In
particular, it is possible to automatically infer some invariant properties of graphs along the computation
within a particular module. Thus, it simplifies the writing of the rules for the next modules. It is also
possible to plan a strategy in the global evaluation process.

It is well known that syntactic parsers produce outputs in various formats. As a by-product of our
approach, we show that the choice of the input format (that is the syntax) seems to be of low importance
overall. Indeed, as far as two formats contain the same linguistic information with different representa-
tions, a system of rewrite rules can be designed to transform any graph from one format to another as a
preliminary step. The same remark holds for the output formats.

To illustrate our proposal, we have chosen the Paris7 TreeBank (hereafter P7TB) dependency format
defined by Candito et al. (2010) as the syntactic input format and the Dependency MRS format (hereafter
DMRS) defined by Copestake (2009) as the semantic output format. We chose those two formats because
the information they represent, if it is not complete, is relatively consensual and because both draw on
large scale experiments: statistical dependency parsing for French1 on the one hand and the DELPH-IN
project2 on the other hand.

Actually, in our experiments, since we do not have an appropriate corpus annotated according to the
P7TB standard, we used our syntactic parser LEOPAR3 whose outputs differ from this standard and we
designed a rewriting system to go from one format to the other.

The paper is organized as follows. In section 1, we define our graph rewriting calculus, the β-calculus.
In Section 2, we describe the particular rewriting system that is used to transform graphs from the syn-
tactic P7TB format into the DMRS semantic format. In Section 3, we present experimental results on a
test suite of sentences.

1http://alpage.inria.fr/statgram/frdep/fr_stat_dep_parsing.html
2http://www.delph-in.net/
3http://leopar.loria.fr

66



1 The β-calculus, a graph rewriting calculus

Term rewriting and tree rewriting can be defined in a straightforward and canonical way. Graph rewriting
is much more problematic and there is unfortunately no canonical definition of a graph rewriting system.
Graph rewriting can be defined through a categorical approach like SPO or DPO (Rozenberg (1997)).
But, in practice, it is much easier to use a more operational view of rewriting where modification of
the graph (the “right-hand side” of a rule) is defined by means of a set of commands; the control of the
way rules are applied (the “left hand-side”) still uses pattern matching as this is done in traditional graph
rewriting.

In this context, a rule is a pair of a pattern and a sequence of commands. We give below the formal
materials about graphs, patterns, matchings and commands. We illustrate the section with examples of
rules and of rewriting.

1.1 Graph definition

In the following, we suppose given a finite set L of edge labels corresponding to the kind of dependencies
used to describe sentences. They may correspond to syntax or to semantics. For instance, we use
L = {SUJ, OBJ, ARG1, ANT, . . .}.

To decorate vertices, we use the standard notion of feature structures. Let N be a finite set of
feature names and A be a finite set of atomic feature values. In our example, N = {cat,mood, . . .} and
A = {passive, v, n, . . .}. A feature is a pair made of a feature name and a set of atomic values. The
feature (cat, {v, aux}) means that the feature name cat is associated to either the value v or aux. In the
sequel, we use the notation cat = v|aux for this feature. Two features f = v and f ′ = v′ are compatible
whenever f = f ′ and v ∩ v′ 6= ∅.

A feature structure is a finite set of features such that each feature name occurs at most once. F de-
notes the set of feature structures. Two feature structures are compatible if their respective features with
the same name are pairwise compatible.

A graph G is then defined by a 6-tuple (V, fs, E , lab, σ, τ) with:

• a finite set V of vertices;

• a labelling function fs from V to F ;

• a finite set E of edges;

• a labelling function lab from E to L;

• two functions σ and τ from E to V which give the source and the target of each edge.

Moreover, we require that two edges between the same couple of nodes cannot have the same label.

1.2 Patterns and matchings

Formally, a pattern is a graph and a matching φ of a pattern P = (V ′, fs′, E ′, lab′, σ′, τ ′) into a graph
G = (V, fs, E , lab, σ, τ) is an injective graph morphism from P to G. More precisely, φ is a couple of
injective functions: φV from V ′ to V and φE from E ′ to E which:

• respects vertex labelling: fs(φV(v)) and fs′(v) are compatible;

• respects edge labelling: lab(φE(e)) = lab′(e);

• respects edge sources: σ(φE(e)) = φV(σ′(e));

• respects edge targets: τ(φE(e)) = φV(τ ′(e)).
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1.3 Commands

Commands are low-level operations on graphs that are used to describe the rewriting of the graph within
a rule application. In the description below, we suppose to be given a pattern matching φ : P → G. We
describe here the set of commands which we used in our experiment so far. Naturally, this set could be
extended.

• del edge(α, β, `) removes the edge labelled ` between α and β. More formally, we suppose that
α ∈ VP , β ∈ VP andP contains an edge e fromα to β with label ` ∈ L. Then, del edge(α, β, `)(G)
is the graph G without the edge φ(e). In the following, we give only the intuitive definition of the
command: thanks to injectivity of the matching φ, we implicitly forget the distinction between x
and φ(x).

• add edge(α, β, `) adds an edge labelled ` between α and β. Such an edge is supposed not to exist
in G.

• shift edge(α, β) modifies all edges that are incident to α: each edge starting from α is moved to
start from β; similarly each edge ending on α is moved to end on β;

• del node(α) removes the α node in G. If G contains edges starting from α or ending on α, they
are silently removed.

• add node(β) adds a new node with identifier β (a fresh name).

• add feat(α, f = v) adds the feature f = v to the node α. If α already contains a feature name f ,
it is replaced by the new one.

• copy feat(α, β, f) copies the value of the feature named f from the node α to the node β. If α
does not contain a feature named f , nothing is done. If β already contains a feature named f , it is
replaced by the new value.

Note that commands define a partial function on graphs: the action add edge(α, β, `) is undefined
on a graph which already contains an edge labelled ` from α to β.

The action of a sequence of commands is the composition of actions of each command. Sequences
of commands are supposed to be consistent with the pattern:

• del edge always refers to an edge described in the pattern and not previously modified by a
del edge or a shift edge command;

• each command refers only to identifiers defined either in the pattern or in a previous add node;

• no command refers to a node previously deleted by a del node command.

Finally, we define a rewrite rule to be a pair of a pattern and a consistent sequence of commands.
A first example of a rule is given below with the pattern on the left and the sequence of commands

on the right. This rule called INIT PASSIVE is used to remove the node corresponding to the auxiliary
of the passive construction and to modify the features accordingly.

INIT PASSIVE

α

cat = v
voice = active

β

cat = v
voice = unk

AUX PASS

c1 = copy feat(α, β,mood)
c2 = copy feat(α, β, tense)
c3 = add feat(β, voice = passive)

c4 = del edge(β, α, AUX PASS)
c5 = shift edge(α, β)
c6 = del node(α)

Our second example (PASSIVE ATS) illustrates the add node command. It is used in a passive
construction where the semantic subject of the verb is not realized syntactically.
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PASSIVE ATS

α

cat = v
voice = passive

β γ

SUJ ATS c1 = del edge(α, β, SUJ)
c2 = add edge(α, β, OBJ)
c3 = del edge(α, γ, ATS)
c4 = add edge(α, γ, ATO)

c5 = add feat(α, voice = active)
c6 = add node(δ)
c7 = add edge(α, SUJ, δ)

1.4 Rewriting

We consider a graph G and a rewrite rule r = (P, [c1, . . . , ck]). We say that G′ is obtained from G by a
rewrite step with the r rule (written G −→r G′) if there is a matching morphism φ : P → G and G′ is
obtained from G by applying the composition of commands ck ◦ . . . ◦ c1.

Let us now illustrate two rewrite steps with the rules above. Consider the first graph below which is
a syntactic dependency structure for the French sentence “Marie est considérée comme brillante” [Mary
is considered as bright]. The second graph is obtained by application of the INIT PASSIVE rewrite rule
and the last one with the PASSIVE ATS rewrite rule.

Marie

cat = np
lemma = MARIE

est

cat = v
lemma = ÊTRE

voice = active
tense = present

considérée

cat = v
lemma = CONSIDÉRER

voice = unk

comme

cat = prep
lemma = COMME

brillante

cat = adj
lemma = BRILLANT

SUJ

AUX PASS ATS OBJ

Marie

cat = np
lemma = MARIE

est considérée

cat = v
lemma = CONSIDÉRER

voice = passive
tense = present

comme

cat = prep
lemma = COMME

brillante

cat = adj
lemma = BRILLANT

SUJ ATS OBJ

ε Marie

cat = np
lemma = MARIE

est considérée

cat = v
lemma = CONSIDÉRER

voice = active
tense = present

comme

cat = prep
lemma = COMME

brillante

cat = adj
lemma = BRILLANT

SUJ

OBJ ATO OBJ

1.5 Modules and normal forms

A module contains a set of rewrite rules but, in order to have a finer control on the output of these
modules, it is useful to declare some forbidden patterns. Hence a module is defined by a set R of rules
and a set P of forbidden patterns.

For a given moduleM = (R,P), we say that G′ is anM-normal form of the graph G if there is a
sequence of rewriting steps with rules of R from G to G′: G −→r1 G1 −→r2 G2 . . . −→rk G′, if no rule
ofR can be applied to G′ and no pattern of P matches in G′.

In our experiment, forbidden patterns are often used to control the subset of edges allowed in normal
forms. For instance, the NORMAL module contains the forbidden pattern: AUX PASS . Hence, we
can then safely suppose that no graph contains any AUX PASS edge afterward.

2 From syntactic dependency graphs to semantic graphs

Linguistic theories diverge on many issues including the exact definition of the linguistic levels and
the relationships between them. Our aim here is not to commit to any linguistic theory but rather to
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demonstrate that graph rewriting is an adequate and realistic computational framework for the syntax-
semantics interface. Consequently, our approach is bound to neither the (syntactic and semantic) formats
we have chosen nor the transformation modules we have designed; both are mainly meant to exemplify
our proposal.

2.1 Representational formats

Our syntactic and semantic formats both rely on the notion of linguistic dependency. The syntactic
format is an enrichment of the one which was designed to annotate the French Treebank (Abeillé and
Barrier (2004)) with surface syntactic dependencies (Candito et al. (2010)). The enrichment is twofold:

• if they are present in the sentence, the deep arguments of infinitives and participles (from participial
subordinate clauses) are marked with the usual labels of syntactic functions,

• the anaphora relations that are predictable from the syntax (i.e. the antecedents of relative, reflexive
and repeated pronouns) are marked with a special label ANT.

This additional information can already be provided by many syntactic parsers and is particularly inter-
esting to compute semantics.

The semantic format is Dependency Minimal Recursion Semantics (DMRS) which was introduced by
Copestake (2009) as a compact and easily readable equivalent to Robust Minimal Recursion Semantics
(RMRS), which was defined by Copestake (2007). This underspecified semantic formalism was designed
for large scale experiments without committing to fine-grained semantic choices. DMRS graphs contain
the predicate-argument relations, the restriction of generalized quantifiers and the mode of combination
between predicates. Predicate-argument relations are labelled ARGi, where i is an integer following a
fixed order of obliqueness SUJ, OBJ, ATS, ATO, A-OBJ, DE-OBJ. . . . Naturally, the lexicon must be consistent
with this ordering. The restrictions of generalized quantifiers are labelled RSTR ; their bodies are not
overtly expressed but can be retrieved from the graph. There are three ways of combining predicates:

• EQ when two predicates are elements of a same conjunction;

• H when a predicate is in the scope of another predicate; it is not necessarily one of its arguments
because quantifiers may occur between them;

• NEQ for all other cases.

2.2 Modular rewriting system

Graph rewriting allows to proceed step by step to the transformation of a syntactic graph into a semantic
one, by associating a rewrite rule to each linguistic rule. While the effect of every rule is local, grouping
rules in modules allows a better control on the global effect of all rules.

We do not have the space here to propose a system of rules that covers the whole French grammar.
We however propose six modules which cover a significative part of this grammar (cleft clauses, coor-
dination, enumeration, comparatives and ellipses are left aside but they can be handled by other rewrite
modules):

• NORMAL handles the regular syntactic transformations involving predicates: it computes tense
and transforms all redistributions of arguments (passive and middle voices, impersonal construc-
tions and the combination of them) to the active canonical form. This reduces the number of rules
required to produce the predicate-argument relations in the ARG module below.

• PREP removes affixes, prepositions and complementizers.

• ARG transforms the verbal, nominal and adjectival predicative phrases into predicate-argument
relations.
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• DET translates the determiner dependencies (denoted DET) to generalized quantifiers.

• MOD interprets the various modifier dependencies (denoted MOD), according to their specificity:
adjectives, adverbs, adjunct prepositional phrases, participial clauses, relative clauses, adjunct
clauses.

• ANA interprets all anaphoric relations that are determined by the syntax (denoted ANT).

Modules provide an easy way to control the order in which rules are fired. In order to properly set up the
rules in modules, we first have to fix the global ordering of the modules. Some ordering constraints are
evident: for instance, NORMAL must precede PREP, which must precede ARG. The rules we present in
the following are based on the order NORMAL, PREP, ARG, DET, MOD, ANA.

2.2.1 Normalization of syntactic dependencies

The NORMAL module has two effects: it merges tense and voice auxiliaries with their past participle
and brings all the argument redistributions back to the canonical active form. This module accounts
for the passive and middle voices and the impersonal construction for verbs that are not essentially
impersonal. The combination of the two voices with the impersonal construction is naturally expressed
by the composition of the corresponding rewrite rules. The two rules given in section 1.4 are part of this
module. The first rule (INIT PASSIVE) merges the past participle of the verb with its passive auxiliary.
The auxiliary brings its mood and tense to the verb, which is marked as being passive. The second rule
(PASSIVE ATS) transforms a passive verb with a subject and an attribute of the subject into its active
equivalent with a semantically undetermined subject, an object (which corresponds to the subject of the
passive form) and an attribute of the object (which corresponds to the attribute of the subject of the
passive form).

2.2.2 Erasure of affixes, prepositions and complementizers

The PREP module removes affixes, prepositions and complementizers. For example, the rule given here
merges prepositions with the attribute of the object that they introduce. The value of the preposition is
kept to compute the semantics.

PREP ATO

α

voice = active

β

cat = prep
prep = ∗

γ

ATO OBJ
c1 = copy feat(β, γ, prep)
c2 = del edge(β, γ, OBJ)
c3 = shift edge(β, γ)
c4 = del node(β)

2.2.3 From lexical predicative phrases to semantic predicates

The ARG module transforms the syntactic arguments of a predicative word (a verb, a common noun or
an adjective) into its semantic arguments. Following DMRS, the predicate-argument relations are not
labelled with thematic roles but only numbered. The numbering reflects the syntactic obliqueness.

ARG OBJ

α β

cat = n|np|pro

OBJ

c1 = del edge(α, β, OBJ)
c2 = add edge(α, β, ARG2)
c3 = add edge(α, β, NEQ)

2.2.4 From determiners to generalized quantifiers

DET reverts the determiner dependencies (labelled DET) from common nouns to determiners into depen-
dencies of type RSTR from the corresponding generalized quantifier to the nominal predicate which is
the core of their restriction.
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DET

α

cat = det

β

cat = n

DET

c1 = del edge(β, α, DET)
c2 = add edge(α, β, RSTR)
c3 = add edge(α, β, H)

2.2.5 Interpretation of different kinds of modification

MOD deals with the modifier dependencies (labelled MOD, MOD REL and MOD LOC), providing rules
for the different kinds of modifiers. Adjectives and adverbs are translated as predicates whose first
argument is the modified entity. The modifier and modified entities are in a conjunction (EQ), except
for scopal adverbs which take scope (H) over the modified predicate. Because only lexical information
enables to differentiate scopal from non-scopal adverbs, we consider all adverbs to be systematically
ambiguous at the moment. Adjunct prepositional phrases (resp. clauses) have a similar rule except that
their corresponding predicate is the translation of the preposition (resp. complementizer), which has
two arguments: the modified entity and the noun (resp. verb) which heads the phrase (resp. clause).
Participial and relative clauses exhibit a relation labelled EQ or NEQ between the head of the clause and
the antecedent, depending on the restrictive or appositive type of the clause.

2.2.6 Resolution of syntactic anaphora

ANA deals with dependencies of type ANT and merges their source and their target. We apply them to
reflexive, relative and repeated pronouns.

3 Experiments

For the experimentation, we are interested in a test suite which is at the same time small enough to be
manually validated and large enough to cover a rich variety of linguistic phenomena. As said earlier, we
use the P7 surface dependency format as input, so the first attempt at building a test suite is to consider
examples in the guide which describes the format. By nature, an annotation guide tries to cover a large
range of phenomena with a small set of examples.

The latest version4 of this guide (Candito et al. (2010)) contains 186 linguistic examples. In our cur-
rent implementation of the semantic constructions, we leave out clefts, coordinations and comparatives.
We also leave out a small set of exotic sentences for which we are not able to give a sensible syntactic
structure. Finally, our experiment runs on 116 French sentences. Syntactic structures following P7 spec-
ifications are obtained with some graph rewriting on the output of our parser. Each syntactic structure
was manually checked and corrected when needed. Then, graph rewriting with the modules described in
the previous section is performed.

For all of these sentences, we produce at least one normal form. Even if DMRS is underspecified, our
system can output several semantic representations for one syntactic structure (for instance, for appositive
and restrictive relative clauses). We sometimes overgenerate because we do not use lexical information
like the difference between scopal and non-scopal adverbs.

The result for three sentences is given below and the full set is available on a web page 5.

4version 1.1, january 2010
5http://leopar.loria.fr/doku.php?id=iwcs2011
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[012] “Le français se parle de moins en moins dans les conférences.” [The French language is less and
less spoken in conferences.]

le
cat=det

français
cat=n

se
cat=pro

parle
cat=v

mood=ind
tense=pres
voice=unk

de moins en moins
cat=adv

dans
cat=prep
prep=loc

les
cat=det

conférences
cat=n

DET AFF_MOYEN MOD DET

SUJ MOD_LOC OBJ

/le/
cat=det

/français/
cat=n

H RSTR

/parle/
cat=v

mood=ind
tense=pres

voice=active

ARG2 NEQ

//

ARG1 NEQ

/de moins en moins/
cat=adv

ARG1 EQ

/dans/
cat=prep
prep=loc

EQ ARG1

/conférences/
cat=n

NEQ ARG2

/les/
cat=det

H RSTR

[057] “J’encourage Marie à venir.” [I invite Mary to come.]

je
cat=pro

encourage
cat=v

mood=ind
tense=pres
voice=unk

Marie
cat=np

à
cat=prep
prep=à

venir
cat=v

mood=inf
voice=unk

SUJ OBJ OBJ

A-OBJ

SUJ

/je/
cat=pro

/encourage/
cat=v

mood=ind
tense=pres
voice=active

ARG1 NEQ

/Marie/
cat=np

ARG2 NEQ

/venir/
cat=v

mood=inf
prep=à

voice=active

ARG3 EQ

ARG1 NEQ

[106] “La série dont Pierre connaı̂t la fin” [The story Peter knows the end of]

la
cat=det

série
cat=n

dont
cat=pro

Pierre
cat=np

connaît
cat=v

mood=ind
tense=pres
voice=unk

la
cat=det

fin
cat=n

DET ANT SUJ DET

OBJMOD_REL

DE-OBJ

/la/
cat=det

/série/
cat=n

RSTR H

/Pierre/
cat=np

/connaît/
cat=v

mood=ind
tense=pres

voice=active

EQ

NEQ ARG1

/fin/
cat=n

NEQ ARG2

/la/
cat=det

RSTR H

ARG1 NEQ
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Conclusion

In this paper, we have shown the relevance of modular graph rewriting to compute semantic representa-
tions from graph-shaped syntactic structures. The positive results of our experiments on a test suite of
varied sentences make us confident that the method can apply to large corpora.

The particular modular graph rewriting system presented in the paper was merely here to illustrate
the method, which can be used for other input and output formats. There is another aspect to the flexi-
bility of the method: we may start from the same system of rules and enrich it with new rules to get a
finer semantic analysis — if DMRS is considered as providing a minimal analysis — or integrate lexi-
cal information. The method allows the semantic ambiguity to remain unsolved within underspecified
representations or to be solved with a rule system aiming at computing models of underspecified rep-
resentations. Moreover, we believe that its flexibility makes graph rewriting a convenient framework to
deal with idiomatic expressions.
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Abstract

In three experiments, we investigated the computational complexity of German reciprocal sen-

tences with different quantificational antecedents. Building upon the tractable cognition thesis (van

Rooij, 2008) and its application to the verification of quantifiers (Szymanik, 2010) we predicted

complexity differences among these sentences. Reciprocals with all-antecedents are expected to

preferably receive a strong interpretation (Dalrymple et al., 1998), but reciprocals with proportional

or numerical quantifier antecedents should be interpreted weakly. Experiment 1, where participants

completed pictures according to their preferred interpretation, provides evidence for these predic-

tions. Experiment 2 was a picture verification task. The results show that the strong interpretation

was in fact possible for tractable all but one-reciprocals, but not for exactly n. The last experiment

manipulated monotonicity of the quantifier antecedents.

Formal semantics hasn’t paid much attention to issues of computational complexity when the mean-

ing of an expression is derived. However, when it comes to semantic processing in humans (and com-

puters) with limited processing resources, computational tractability becomes one of the most important

constraints a cognitively realistic semantics must face. Two consequences come to mind immediately.

If there is a choice between algorithms, we should choose tractable ones over intractable ones. And

secondly, meanings which cannot be effectively computed shouldn’t be posited for natural language

expressions. In this paper we present three psycholinguistic experiments investigating the latter aspect.

Following traditions in computer science, a number of cognitive scientists have defined computa-

tional tractability as polynomial-time-computability (for an overview see van Rooij, 2008) leading to the

P-Cognition Hypothesis (PCH): cognitive capacities are limited to those functions that can be computed

in polynomial time. These functions are input-output functions in the sense of Marr (1982)’s first level.

One objection against the PCH is that computational complexity is defined in terms of limit behavior as

the input increases. In practice, however, the input may be rather small. van Rooij (2008) points out

that the input size can be parametrized turning a problem that is intractable for a large input size into a

tractable one for small inputs. We manipulated the input size in an experiment to test this more refined

version of the PCH.

An interesting test case for the PCH are quantified sentences containing reciprocal expressions of the

form Q of the As R each other. Consider (1-a) – (1-c).
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(1) a. Most of the dots are connected to each other.

b. Four of the dots are connected to each other.

c. All dots are connected to each other.

It has been commonly observed that such sentences are highly ambiguous (see eg. Dalrymple et al.,

1998). For instance, under its logically strongest interpretation (1-a) is true iff given n dots there is a

subset of more than n
2 dots which are pairwise connected. But there are weaker readings of reciprocity,

too, i.e. connectedness by a path (a continuous path runs through Q of the dots) or – even weaker – Q

of the dots are interconnected, but no path has to connect them all. Following Dalrymple et al. (1998)

we call these reciprocal meanings strong, intermediate, and weak, respectively. As for verification, Szy-

manik (2010) has shown that the various meanings assigned to reciprocals with quantified antecedents

differ drastically in their computational complexity. In particular, the strong meanings of reciprocal sen-

tences with proportional and counting1 quantifiers in their antecedents are intractable, i.e. the verification

problem for those readings is NP-complete. This is due to the combinatorial explosion in identifying the

relevant completely-connected subsets for these two types of quantifiers (cf. CLIQUE problem, see

Garey and Johnson (1979, problem GT19)) which does not emerge with all. However, intermediate and

weak interpretations are PTIME computable. For example, going through all the elements in the model,

thereby listing all the paths, and then evaluating the paths against the quantifier in the antecedent solves

the problem in ploynomial time. The PCH thus allows us to derive the following predictions. A strong

interpretation should be impossible for sentences (1-a) and (1-b), but possible for the tractable sentence

(1-c). Therefore, Szymanik (2010) suggests that if the processor initially tries to establish a strong in-

terpretation, there should be a change in the meanings of sentences (1-a) and (1-b) to one of the weaker

interpretations.

In an attempt to explain variations in the literal meaning of the reciprocal expressions Dalrymple

et al. (1998) proposed the Strong Meaning Hypothesis (SMH). According to the SMH, the reading asso-

ciated with the reciprocal is the strongest available reading which is consistent with the properties of the

reciprocal relation and the relevant information supplied by the context. Consider (2-a) to (2-c).

(2) a. All members of parliament refer to each other indirectly.

b. All Boston pitchers sat alongside each other.

c. All pirates were staring at each other in surprise.

The interpretation of reciprocity differs among those sentences. Sentence (2-a) implies that each par-

liament member refers to each of the other parliament members indirectly. In other words, the strong

interpretation seems to be the most natural reading. This is different in (2-b) and (2-c) which receive

intermediate and weak interpretations, respectively. Here the predicates sit alongside and stare at ar-

guably constrain the meaning. Observations like these lend intuitive support to the SMH. Kerem et al.

(2010) modified the SMH and provided experimental evidence that comprehenders are biased towards

1It is natural to assume that people have one quantifier concept Exactly k, for every natural number k, rather than the infinite

set of concepts Exactly 1, Exactly 2, and so on. Mathematically, we can account for this idea by introducing the counting

quantifier C=A saying that the number of elements satisfying some property is equal to the cardinality of the set A. The idea

here is that determiners like Exactly k express a relation between the number of elements satisfying a certain property and the

cardinality of some prototypical set A (see Szymanik (2010) for more discussion).
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the most typical interpretation of the reciprocal relation. Thus, the reciprocal relation seems to constrain

the meaning. Neither the original SMH nor Kerem et al. (2010)’s account leads us to expect that the three

quantifiers in (1-a) – (1-c) should differ with respect to how they constrain reciprocal meanings. With

‘neutral’ predicates like to be connected by lines the SMH predicts an overall preference for the strong

interpretation in all three sentences. A property that should matter, though, is the monotonicity of the

quantificational antecedent. Since monotone decreasing quantifiers have the exact opposite entailment

pattern as increasing ones, the SMH leads us to expect that preferences should be reversed in monotone

decreasing quantificational antecedents.

We tested the PCH and the SMH in three experiments. In the first we surveyed the default interpre-

tation of reciprocal sentences with quantificational antecedents like (1-a) – (1-c) by having participants

complete dot pictures. The second experiment tested the availability of strong and intermediate inter-

pretations in a picture verification task using clearly disambiguated pictures where, in addition, the input

size was manipulated. The last experiment compared upward increasing and decreasing quantifiers.

Experiment 1: what is the preferred interpretation?

According to the SMH, sentences like (3-a) are preferably interpreted with their strong meaning in (3-b).

(3) a. All/Most/Four of the dots are connected to each other.

b. ∃X ⊆ DOTS[Q(DOTS,X) ∧ ∀x, y ∈ X(x �= y → connect(x, y))],

where Q is ALL, MOST or FOUR.

The PCH, on the other hand, predicts differences between the three quantifiers. While the strong meaning

of reciprocal all can be checked in polynomial time, verifying the strong interpretation of reciprocal most

and reciprocal four is NP-hard2. By contrast, the weaker readings are computable in polynomial time

for all three types of quantifiers. It is thus expected that the choice of Q should affect the preference

for strong vs. intermediate/weak interpretations. Bringing the SMH and the PCH together we get the

following predictions: reciprocal all should receive a strong reading, but reciprocal most/four should

receive an intermediate or weak one.

Method

These predictions were tested in a paper-and-pencil questionnaire. 23 German native speakers (mean

age 24.3 years; 10 female) received a series of sentences, each paired with a picture of unconnected dots.

Their task was to connect the dots in such a way that the resulting picture matched their interpretation of

the sentence. We tested German sentences in the following three conditions (all vs. most vs. four).

(4) Alle
All

/
/

Die
The

meisten
most

/
/

Vier
Four

Punkte
dots

sind
are

miteinander
with-one-other

verbunden.
connected.

All / Most / Four dots are connected with each other.

All-sentences were always paired with a picture consisting of four dots, whereas most and four had pic-

tures with seven dots. Each participant completed five pictures for each quantifier. For this purpose, we

2See footnote 1.
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drew 15 pictures with randomly distributed dots. In addition, we included 48 filler sentences. Half of

them clearly required a complete (sub)graph, just like the experimental sentences in their strong interpre-

tation. The other half were only consistent with a path. We constructed four pseudorandomized orders,

making sure that two adjacent items were separated by at least two fillers and each condition was as often

preceded by a complete graph filler as it was by a path filler. The latter was done to prevent participants

from being biased towards either strong or intermediate interpretations in any of the conditions.

The completed pictures were labeled with respect to the chosen interpretation taking both truth con-

ditions and scalar implicatures into account3. A picture was judged to show a strong meaning if the truth

conditions in (3-b) were met and no implicatures of Q were violated. It was classified as intermediate if

a (sub)graph of appropriate size was connected by a continuous path, but there was no complete graph

connecting these nodes. Finally, a picture was labeled weak if Q nodes all had some connections, but

there was no path connecting them all. Since we didn’t find any weak readings, we will just consider the

strong and intermediate readings in the analysis. Cases that did not correspond to any of these readings

were coded as mistakes. Here is an example:

(5) Most of the dots are connected to each other.

Since the strong meaning of (5) requires at least four dots to form a complete subgraph, (5) is clearly

false in this reading. The intermediate or weak reading is ruled out pragmatically, since all dots are con-

nected by a continuous path. We checked whether participants obeyed pragmatic principles by analyzing

sentences in the condition with four. In this condition participants (except for six cases) never connected

more than four dots suggesting that they paid attention to implicatures.

Results

The proportions of strong meanings in the three conditions were analyzed using logit mixed effects

model analyses (see eg. Jäger (2009)) with quantifier as a fixed effect and participants and items as

random effects. We computed three pairwise comparisons: all vs. most, all vs. four and most vs. four.

In all of these analyses, we only included the correct pictures.

Participants chose strong meanings in the all-condition 47.0% of the time, 22.9% in the most-

condition and 17.4% in the four-condition. The logit mixed effects model analyses revealed a significant

difference between all and most (estimate = −1.82; z = −3.99; p < .01) and between all and four

(estimate = −3.16; z = −5.51; p < .01), but only a marginally significant difference between four

and most (estimate = .80; z = 1.65; p = .10).

The error rates differed between conditions. Participants did not make a single mistake in the all-

condition. In the four-condition 94.8% of the answers were correct. In the most-condition the proportion

of correct pictures dropped down to 83.5%. Two pairwise comparisons using Fisher’s exact test revealed

3Implicatures were only an issue in the four- and the most-conditions, but not in the all-condition.
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a significant difference between all and four (p < .05) and a significant difference between four and most

(p < .01).

Discussion

The results provide evidence against the SMH. Participants overwhelmingly drew pictures which do not

satisfy a strong reading. In the all condition our data provide evidence for a real ambiguity between

the strong and the intermediate interpretation. This is unexpected under the SMH; if the predicate to be

connected is neutral, a strong interpretation should be favored. For the quantifiers most and four, the

results provide even stronger evidence against the SMH. In these two conditions intermediate readings

were clearly preferred over strong ones which were hardly, if at all, available.

The PCH, on the other hand, receives initial support by our findings, in particular by the observed

difference in the proportion of strong interpretations between reciprocal all, reciprocal most and recip-

rocal four. The error rates provide further support for the PCH. Most and four led to more errors than

all did. This can be accounted for if we assume that participants sometimes tried to compute a strong

interpretation but due to the complexity of the task failed to do so. To clarify whether this explanation

is on the right track we clearly need real-time data on the interpretation process. This has to be left to

future research. Another open question is whether the strong readings of reciprocal most and reciprocal

four are just dispreferred or completely unavailable. This cannot be decided on the basis of the current

experiment. What is needed instead is a task which allows us to determine whether a particular reading

is possible or not.

Experiment 2: which readings are available?

The second experiment employed a picture verification task using clearly disambiguating pictures for

strong vs. intermediate readings. Unfortunately, the quantifiers we used in the last experiment are all

upward monotone in their right argument and therefore their strong interpretation implies the interme-

diate reading. Hence, even if the diagrams supporting the strong reading were judged to be true, we

still wouldn’t know which interpretation subjects had in mind. Luckily, in sentences that contain non-

monotone quantifiers neither reading entails the other. We therefore chose the quantifiers all but one,

most and exactly n in (6). All but one and exactly four are clearly non-monotone. For most, if we take

the implicature most, but not all into account, it is possible to construct strong pictures in a way that the

other readings are ruled out pragmatically. Crucially, the strong reading of all but one is still PTIME

computable, although it is more complex than all. For instance, for verifying a model of size n, only the

n subsets of size n − 1 have to be considered. By contrast, verifying the strong meaning of (6-b,c) is

intractable.

(6) a. Alle
All

Punkte
dots

bis
except

auf
for

einen
one

sind
are

miteinander
with-one-another

verbunden.
connected.

b. Die
The

meisten
most

Punkte
dots

sind
are

miteinander
with-one-another

verbunden.
connected.
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(a) intermediate (b) strong (c) wrong (d) ambiguous

(e) intermediate (f) strong (g) wrong (h) ambiguous

Figure 1: Diagrams used in Exp. 2

c. Genau
Exactly

drei
three

Punkte
dots

sind
are

miteinander
with-one-another

verbunden.
connected.

We paired these sentences with diagrams disambiguating towards the intermediate or strong reading.

Sample diagrams are depicted in Figure 1(a) and 1(b). For strong pictures, the PCH predicts lower ac-

ceptance rates for (6-b,c) than for (6-a). In order to find out whether the strong readings of (6-b,c) are

dispreferred or completely unavailable we also paired them with false control diagrams (see Figure1(c)).

The wrong pictures differed from the strong ones in that a single line was removed from the completely

connected subset. If the strong reading is available for these two sentences at all, we expect more positive

judgments following a strong diagram than following a false control. Furthermore, we included ambigu-

ous diagrams as an upper bound for the intermediate pictures (cf. Figure 1(d)). If the strong meaning

should conflict with an intermediate picture, we would expect more positive responses following an

ambiguous diagram than following an intermediate diagram.

Secondly, as mentioned in the introduction we wanted to investigate whether availability of the strong

reading in sentences with counting or proportional quantifiers depends on the size of the model. The

strong meaning of (6-b,c) may be easy to verify in small universes, but not in larger ones. To test this

possibility we manipulated the number of dots. Small models always contained four dots and large

models six dots. We chose small models only consisting of four dots because this is the smallest number

for which the strong meaning can be distinguished from the intermediate interpretation, so we could be

sure that the task would be doable at all4. For the more complex six-dot pictures we presented sentences

with exactly five instead of exactly three. Example diagrams are given in Figure 15. In total, this yielded

24 conditions according to a 3 (quantifier) × 4 (picture type) × 2 (size) factorial design.

4We had the intuitive impression that pictures with ten dots were already far too complex to be evaluated by naive informants.
5The wrong pictures with six dots were slightly different for most. In these diagrams, all dots were connected by lines, but

there was no subset containing four or more elements forming a complete graph.
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Figure 2: Mean judgments in Exp. 2 (low = pictures with 4 dots; high = pictures with 6 dots)

Method

Each participant provided three judgments per condition yielding a total of 72 experimental trials. We

added 54 filler trials (20 false/34 true) and the 12 monotonicity trials from Experiment 3.

36 German native speakers (mean age 26.9 years; 23 female) read reciprocal quantified sentences

on a computer screen in a self-paced fashion. When they finished reading the sentence, it disappeared

from the screen and a dot picture was presented for which a truth value judgment had to be provided

within a time limit of 10s6. Participants received feedback about how fast they had responded. This was

done to trigger the first interpretation they had in mind. We collected judgments and judgment times,

but because of space limitations will only report the former. The experiment started with a practice

session of 10 trials, followed by the experiment with 138 trials in an individually randomized order. An

experimental session lasted approximately 15 minutes.

Results

Two kinds of analyses were conducted on the proportion of ‘true’ judgments. The upper bound analyses

concerned the default status of the intermediate interpretation by comparing intermediate picture con-

ditions with ambiguous conditions. Lower bound analyses aimed at clarifying the status of the strong

interpretation by comparing strong picture conditions with wrong conditions. The mean judgments of

both analyses are presented in Figure 2.

Upper bound analysis: A logit mixed effects model analysis including quantifier, reading (am-

biguous vs. intermediate), complexity and their interactions as fixed effects and participants and items

as random effects only revealed a significant main effect of reading (estimate = −2.37; z = −2.88;

p < .01). This main effect was due to an across-the-board preference (7.3% on average) of ambiguous

pictures to pictures disambiguating towards an intermediate interpretation.

Lower bound analyses: We computed a logit mixed effects model analysis including quantifier,

truth (strong vs. wrong), complexity and their interactions as fixed effects and participants and items as

random effects. The only reliable effect was the fixed effect of quantifier (estimate = 3.31; z = 8.10;

p < .01). The effect of truth was marginal (estimate = 0.72; z = 1.77; p = .07). As it turned

6Participants were very fast. On average they spent 2.5s reading the sentence and 1.8s to provide a judgment.
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out, a simpler model taking into account only these two main effects and the random effects accounted

for the data with a comparable fit. This was revealed by a comparison of the log-likelihood of the

saturated and the simpler model (χ2
(8) = 12.36; p = .14). Thus, complexity had no significant influence

on the judgments. The simple model revealed a significant main effect of truth (estimate = 0.67;

z = 4.08; p < .01) which was due to 7.9% more ‘true’ judgments on average in the strong conditions

than in the wrong conditions. The main effect of quantifier was also significant (most vs. all/exactly:

estimate = 3.21; z = 15.10; p < .01). This was due to more than 60% acceptance for all most

conditions but much lower acceptance for the other two quantifiers.

We analyzed the data by computing separate logit mixed effect models with fixed effects of truth,

complexity and their interaction for all three quantifiers and simplified the models when a fixed effect

failed to contribute to model fit. The best model for all but one contained only the fixed effect of truth

which was reliable (estimate = 1.04; z = 3.47; p < .01), but neither complexity nor the interaction

enhanced model fit (χ2
(2) = 1.04; p = .60). Thus, independently of complexity strong pictures were more

often accepted than wrong pictures. The same held for most (fixed effect of truth: estimate = 0.98;

z = 2.71; p < .01). Exactly n was different in that the fixed effect of truth and the interaction didn’t

matter (χ2
(2) = 2.68; p = .26), but complexity was significant (estimate = −0.97; z = −2.96; p < .01).

This effect was due to more errors in complex pictures than in simpler ones.

Discussion

Overall, the intermediate reading was overwhelmingly preferred to the strong one. However, both the

upper bound and the lower bound analyses provide evidence that the strong reading is available to some

degree. Both analyses revealed a significant effect of picture type. Intermediate diagrams were less

often accepted than the ambiguous diagrams. Moreover, strong diagrams were more often accepted than

false ones. Focussing on all but one and exactly n with respect to the difference between the strong

and wrong conditions the pattern looks as predicted by the PCH. The strong reading was possible for

tractable all but one reciprocals but less so for intractable exactly n reciprocals. With most, the picture

looks different. Even though verification of its strong meaning should be intractable, there was a reliable

difference between the strong and wrong conditions. Thus, participants seemed to sometimes choose

strong readings. An intractable problem can of course be innocuous under certain circumstances, for

instance, when the input size is sufficiently small. The lack of effects of the number of dots manipulation

points in this direction. Perhaps even the ‘complex’ conditions with six dots presented a relatively easy

task. This brings us to a parametrized version of the PCH. A hard verification problem may be easy if we

include parameters like the size and arrangement of the model. Although far from conclusive, we take

our results as pointing in this direction.

Surprisingly, most was accepted quite often in the strong and the allegedly wrong conditions. The

high acceptance rates in the latter indicate that participants were canceling the implicature of most and

interpreting it as the upward monotone more than half. This also explains the high acceptance of the

strong most conditions which were, without implicature, consistent with an intermediate interpretation.
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Experiment 3: monotone increasing vs. decreasing antecedents

So far, we have been investigating reciprocal sentences with the upward monotone quantifiers all, most,

four (Exp. 1) and the non-monotone quantifiers all but one and exactly n (Exp. 2). As it looks, only

all licenses a strong interpretation easily. This finding may follow from the monotonicity plus impli-

catures. According to Dalrymple et al. (1998)’s SMH strong readings are preferred in sentences with

upward monotone quantificational antecedents. For downward monotone quantifiers, on the other hand,

intermediate readings should be preferred to strong readings. The reverse preferences are triggered by

opposite entailment patterns. In the present experiment we compared upward monotone more than n

with downward monotone antecedents fewer than n+2.

We paired diagrams like Figure 1(f) vs. Figure 1(e) with the two sentences in (7) according to a 2

(monotonicity) × 2 (truth) factorial design. The diagrams of the first type were identical to the strong pic-

tures of the last experiment. With monotone increasing quantifiers they were ambiguous between strong

and intermediate interpretations while in the monotone decreasing cases they disambiguated towards a

strong interpretation. The second type of pictures disambiguated towards weak readings in monotone

increasing quantifiers, but were ambiguous for monotone decreasing quantificational antecedents. On

the basis of the first two experiments we expected high acceptance of both picture types with monotone

increasing quantifiers, but much lower acceptance rates for (7-b) with strong than with ambiguous pic-

tures. We constructed six items and collected three judgments from each participant in each condition.

The experiment was run together with Experiment 2 using the same method.

(7) a. Mehr
More

als
than

vier
four

Punkte
dots

sind
are

miteinander
with-one-another

verbunden.
connected.

b. Weniger
Fewer

als
than

sechs
six

Punkte
dots

sind
are

miteinander
with-one-another

verbunden.
connected.

Results and Discussion

As expected, upward monotone antecedents were accepted in both picture types (ambiguous 98.1%;

intermediate 92.5%). A logit mixed effect model analysis revealed no significant difference between

the picture types (estimate = 1.53; z = 1.60; p = .11). This was completely different in sentences

with monotone decreasing antecedents where strong pictures were only accepted in 13.0% of all trials

while ambiguous pictures were accepted 92.6% of the time. This asymmetric distribution provides clear

evidence that the predicate be connected to each other induced a bias towards the intermediate reading.

Thus, although intended to be neutral we apparently chose a predicate that is far from optimal.

Conclusions

We have presented evidence that the kind of quantificational antecedent influences the amount of ambigu-

ity displayed by reciprocal sentences. For example, in Exp. 1 only all reciprocals were fully ambiguous.

Furthermore, comparing tractable reciprocals with antecedents all and all but one to intractable recipro-

cals with n and exactly n we found support for the predictions of the PCH. In reciprocals with all and all
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but one strong readings were possible whereas exactly n blocked a strong interpretation. As for most the

results are somewhat mixed. In Exp. 1 the strong reading was hardly available, but Exp. 2 showed that

although dispreferred it is nevertheless possible.

At first sight, our findings provide evidence against the SMH. Strong interpretations were not the

default in Exp. 1 and for the monotone increasing quantifiers in Exp. 3 weak interpretations were just as

acceptable as the ambiguous pictures. However, contrary to our initial assumptions be connected doesn’t

seem to be neutral but seems to bias towards an intermediate interpretation. This may have to do with

the transitivity of the relation. If two dots are only indirectly connected, it seems impossible to say that

they are not connected, yet possible to say they are not directly connected. A next step, therefore, will

be to apply the design of Exp. 2 to other predicates like to know someone, a relation that is clearly not

transitive.

Another route to pursue is increasing the size of the models. A particularly strong test for the PCH

would be to increase the model size up to a point where the acceptance rate for the strong reading of

proportional quantifiers drops to the level of wrong pictures and see whether tractable antecedents still

exhibit their strong interpretation. Exp. 2 was a first step in that direction but the size of the models was

obviously still too small.

To conclude, we hope to have shown that relatively innocent looking reciprocal sentences with quan-

tificational antecedents are an interesting test case for considerations of tractability in verification. More

generally, within this domain research can be applied to a number of different constructions (for instance,

branching quantifiers), so claims about computational complexity can be validated extending the test case

investigated in the present study.
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Abstract 
 

The VerbNet lexical resource classifies English verbs based on semantic and syntactic 

regularities and has been used for numerous NLP tasks, most notably, semantic role 

labeling. Since, in addition to thematic roles, it also provides semantic predicates, it can 

serve as a foundation for further inferencing. Many verbs belong to multiple VerbNet 

classes, with each class membership corresponding roughly to a different sense of the verb. 

A VerbNet token classifier is essential for current applications using the resource and could 

provide the basis for a deep semantic parsing system, one that made full use of VerbNet’s 

extensive syntactic and semantic information.  We describe our VerbNet classifier, which 
uses rich syntactic and semantic features to label verb instances with their appropriate 

VerbNet class. It achieves an accuracy of 88.67% with multiclass verbs, which is a 49% 

error reduction over the most frequent class baseline. 

 

1 Introduction 

 

Rich verb representations are central to deep semantic parsing, requiring the identification of not only 
a verb’s meaning but also how it connects the participants in the sentence. Disambiguating verbs 

using a lexicon that has already been enriched with syntactic and semantic information, rather than a 

more traditional lexicon, can bring end systems a step closer to accurate knowledge representation and 
reasoning. One such lexical resource, VerbNet, groups verbs into classes based on commonalities in 

their semantic and syntactic behavior. It is widely used for a number of semantic processing tasks, 

including semantic role labeling (Swier and Stevenson, 2004), the creation of conceptual graphs 

(Hensman and Dunion, 2004), and the creation of semantic parse trees (Shi and Mihalcea, 2005). In 

addition, the detailed semantic predicates associated with each VerbNet class have the potential to 

contribute to text-specific semantic representations and, thereby, to inferencing tasks. However, 
application of VerbNet’s semantic and syntactic information to specific text requires first identifying 

the appropriate VerbNet class of each verb token, a task very similar to word sense disambiguation.  

 
Studies that have made use of VerbNet have dealt with the issue of multiclass verbs in different ways. 

When deciding on the class for a particular token of a verb in text, Zapirain et al. (2008) simply 

assigned the most frequent class for the verb rather than attempt to disambiguate. Their data consisted 
of any sentences in the Semlink corpus (Loper et al., 2007) in which the thematic roles mapped 

completely between PropBank and VerbNet, which resulted in a corpus that contained about 56% of 

the original.  For the data in their study, the most frequent class label was accurate 97% of the time. 

Multiclass verbs throughout the entire Semlink corpus, however, have a most frequent class baseline 

of 73.8%.  

 

Other systems seem to have set aside the problem of multiclass verbs. For example, Bobrow et al. 

(2007) describe using VerbNet’s semantic predicates in PARC’s question-answering system to derive 

pre- and post-conditions of events, such as the change of location of entities. For a verb like leave, the 
system attempts to use the semantic predicates provided by the VerbNet Leave-51.2 class: 

 

MOTIO�(DURING(E), THEME)LOCATIO�(START(E), THEME, SOURCE) 
�OT(LOCATIO�(END(E), THEME, SOURCE))DIRECTIO�(DURING(E), FROM, THEME, SOURCE) 
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to show that an entity was located in one place before the event and was in another location after the 

event. However, leave has multiple usages, not all of them involving physical change of location.  

 

Table 1 shows its VerbNet classes and their semantic predicates. The PARC system would need to 
identify only those instances in their data where leave has the change of location meaning. 

 
VerbNet class Example VerbNet semantics 

Escape-51.1 The students left. MOTIO�(DURING(E), THEME) 

DIRECTIO�(DURING(E), PREP_DIR, THEME) 

Leave-51.2 Elvis has left the building. MOTIO�(DURING(E), THEME) 

LOCATIO�(START(E), THEME, SOURCE) 

�OT(LOCATIO�(END(E), THEME, SOURCE)) 

DIRECTIO�(DURING(E), FROM, THEME, SOURCE) 

Resign-10.11 He left Microsoft in 2008. CAUSE(AGENT, E) LOCATIO�(START(E), SOURCE) 

�OT(LOCATIO�(END(E), SOURCE)) 

Fulfilling-13.1.4 He left the tenant with his business 

card. 
HAS_POSSESSIO�(START(E), AGENT, THEME) 

HAS_POSSESSIO�(END(E), RECIPIENT, THEME) 

TRA�SFER(DURING(E), THEME) CAUSE(AGENT, E) 

 

Future_having-

13.3 

He left Sam his stamp collection.  HAS_POSSESSIO�(START(E), AGENT, THEME) 

FUTURE_POSSESSIO�(END(E), RECIPIENT, THEME) 

CAUSE(AGENT, E) 

Keep-15.2 She left the papers in her desk PREP(DURING(E), THEME, LOCATION) 

CAUSE(AGENT, E) 

 
Table 1: VerbNet classes and semantic predicates for the verb leave 

 

Zaenen et al. (2008, p. 387) explain that the problem of automatically selecting only those instances 

that fit the desired class remains to be solved, especially in terms of dividing metaphorical from literal 

tokens of a verb: “We ignore the problem of metaphorical extensions for the relevant verbs. 

Resources other than VerbNet will need to be exploited to insure that these non-physical 

interpretations are excluded.”Although they do not state which ones are the relevant verbs, for many 
verbs this problem could be alleviated by disambiguating the class assignment for a specific verb 

instance. To continue our example, leave has six VerbNet classes: Escape, Fulfilling, Future_having, 

Keep, Leave and Resign. Only the Leave class and the Resign class have the start location and end 

location information they are looking for, and, for the Resign class, the change of location is 

metaphorical. Therefore, the Leave class is the only class for this verb that suits their purposes. 

Classifying instances with the appropriate VerbNet class would enable them to apply the Location 

predicate to only those instances that are relevant. For the Semlink corpus, applying a most frequent 

class heuristic for leave would result in only 59% accuracy. This is only one example of how an 

accurate, automatic VerbNet classifier would be useful.  
 

2 Related Work 

We know of only two previous efforts to create a VerbNet class disambiguator for verb tokens, those 

of Girju et al. (2005) and Abend et al. (2008). Girju et al. used a supervised machine learning 

methodology, with features from the words within three positions of the verb. These features included 

lemma, part of speech tag, phrase type from a syntactic chunker and named entity information. First, 

however, they faced the problem of creating a training set tagged with VerbNet class labels. They 

automatically constructed one by mapping from PropBank roleset labels to VerbNet classes, choosing 

to label only those verb instances in which the PropBank roleset mapped to only one VerbNet class. 

This methodology resulted in a set of target verbs in which 96% belonged to only one VerbNet class. 
The high most-frequent-class baseline of 96.5% reflects the predominance of monosemous verbs and 
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explains the low level of improvement over it: only 2%. Because our classifier uses only multiclass 

verbs and a gold standard corpus with VerbNet class labels, it is not comparable to the Girju classifier. 

 

The disambiguator developed by Abend et al. (2008) supports a much closer comparison. They also 

approach the task as a supervised machine learning problem, training and testing on the Semlink 
corpus. Polysemous verbs account for 58% of their data, and they report results for all verbs and for 

just polysemous verbs. The Semlink corpus has annotated the verbs in the Wall Street Journal corpus 

with VerbNet classes. They selected instances that had been labeled with a VerbNet class, 
disregarding those verb instances that had been labeled as having no appropriate VerbNet class. Their 

system achieved 96.4% accuracy, which was a 2.9% increase over the 93.7% baseline. The high 

baseline can also be attributed to the large number of monosemous verbs in their data. Considering 

only the polysemous verbs and the model using an automatic parser, the scenario most closely 

resembling our experimental setup, the most frequent class baseline was 88.6% and the system 

accuracy was 91.9%, which represents an error reduction of 28.95%.  

 

The results of the Abend et al. study suggest that automatic disambiguation of VerbNet classes is a 

reasonable line of research, and a possible method for verb sense disambiguation. The classifier relies 

on lexical and syntactic features, such as part of speech and heads of phrases. The classifier we 
describe is similar in several ways, although it adds several unique syntactic and semantic features 

and trains and tests only on multiclass verbs. The following sections will include comparisons of 

features and results where appropriate. 

 

3 Method 

To achieve verb token classification with VerbNet classes, we use a supervised machine learning 

approach.  Using a corpus annotated with VerbNet class labels, we create a feature vector for each 
verb instance. A learning algorithm is then applied to generate a classifier.  The following sections 

describe the data, the features and the experimental setup.  

3.1 The Data 
 

The training and test data are drawn from the Semlink corpus (Loper et al., 2007), which consists of 

the Penn Treebank portions of the Wall Street Journal corpus. A combination of automatic and 

manual techniques was used to label each verb instance with the appropriate VerbNet class. The 
resulting corpus is the largest repository of VerbNet token classification available. The corpus 

contains 113K verb instances, 97K of which are verbs represented in at least one VerbNet class (i.e., 

86%). Semlink includes 495 verbs that have instances labeled with more than one class (including 
verbs labeled with a single VerbNet class and None). We have trained and tested with all of these 

verbs that have 10 or more instances, resulting in a set of 344 verbs. The average number of classes 

for these verbs is 2.7, and the average number of instances was 133. All instances in the corpus for 
each verb were used, which created a dataset of 45,584 instances. 

3.2 Features 
 

We use a wide variety of features, including lexical, syntactic and semantic features, all derived 

automatically. Previous work has focused on lexical and syntactic features possibly because of the 
strong association of a VerbNet class to its syntactic alternations. However, a verb’s membership in 

different classes also depends on its meaning, making the inclusion of semantic features a possible 

benefit. As mentioned earlier, multiple class memberships usually correlate with different senses of 

the verb, making VerbNet class disambiguation much like verb sense disambiguation. For this reason, 

we thought it was appropriate to treat the task as a verb sense disambiguation task. Some of the 

features are fairly standard ones used for general word sense disambiguation, but we have added some 

rich syntactic and semantic features that have proven useful for sense disambiguation of verbs.  All 
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features, which were previously also shown to be useful for WSD (Dligach and Palmer, 2008) are 

summarized in Table 2 and explained more fully in the sections that follow. 

 
Lexical All open class words from target sentence and the surrounding sentences 

 The two words preceding the target and their POS tags 

 The two words following the target and their POS tags 

Syntactic The path through the parse tree from the target verb to its arguments  

 Whether the target has a subj or obj and their head words and POS. 

 Whether the target has a subordinate clause 

 Whether the target has a PP adjunct 

 The subcategorization frame 

 The verb’s voice (active or passive) 

Semantic Named-entity tags of the target’s arguments 

 WN hypernyms of the target’s arguments 

 WN synonyms of the target’s arguments 

 Dynamic Dependency Neighbors (DDNs) 

 

Table 2: Classifier features 

 

3.2.1 Lexical features 

The lexical features include all open class words drawn from the target sentence and the sentence 

directly before and the sentence directly after it. In addition, we use a feature that pairs each of the 
two words before and the two words after the target verb with their respective part of speech tag. 

3.2.2 Syntactic features 

The syntactic features are drawn from syntactic parses automatically created with the Bikel Parser 

(Bikel, 2004). These features focus on the type of patterns that often distinguish one verb sense from 

another and that help delineate VerbNet classes. These include whether the target verb is in an active 

or passive form, whether it has a subject, an object, a subordinate clause, or a prepositional phrase 

adjunct. For each of these dependent items, the head word and its part of speech are included as 
features.  

 

We also implement several unusual syntactic features that seem particularly well suited for VerbNet 

class disambiguation.  The first is the path through the parse tree from the target verb to the verb’s 

arguments, and the second is the sentence’s subcategorization frame, as used in semantic role 

labeling. Because syntactic alternations, or patterns of subcategorization frames, play a large role in 

the organization of VerbNet classes, we expect these final two features to be particularly useful. 

3.2.3 Semantic features 

Our use of semantic features is motivated by the work of Patrick Hanks (1996), who proposed that 

sense distinctions in verbs often rely on the membership of the verb's arguments in narrowly defined 

verb-specific semantic classes that he called lexical sets. A lexical set could consist, for example, of 

such nouns as fist, finger, hand,  etc. (but not all body-parts); its members, when used as objects of 

shake, form instances of the communicative act sense of shake. This view corroborates our motivation 

that states the necessity of capturing the semantics of the verb's arguments and semantic similarities 

among them. 

 
To illustrate with an example from our data, the verb fix falls into two VerbNet classes: (1) Preparing-

26.3, (e.g., He fixed lunch for the team; My mom fixed me a peanut butter and bacon sandwich) and 

(2) Price-54.4, with the sense of “establish” (e.g., They fixed the interest rate at 3%; The lawyers fixed 
the terms of the agreement at their last meeting). These two senses can be distinguished largely on the 

basis of the objects lunch, sandwich, rate and terms, the first two indicating the Preparing-26.3 class 
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and the latter two indicating the Price-54.4 class. Not surprisingly, semantic features drawn from a 

target verb’s arguments have been shown to improve verb sense disambiguation above and beyond 

lexical and syntactic features (Dligach and Palmer, 2008).  

 

Another study that reinforces a similar idea was reported by Federici et. al. (1999). They describe 

their SENSE system that relies on inter-contextual analogies between tagged and untagged instances 

of a word to infer that word's sense. For example, if a verb's sense is preserved when used with two 

different objects, it is often possible to conclude by analogy that the sense of another verb is also 

preserved when it is used with the same two objects. 
 

In word sense disambiguation, the existing approaches to extracting semantic features are often based 

on obtaining lexical knowledge about the target verb's arguments from electronic dictionaries such as 

WordNet (Fellbaum, 1998). WordNet synonyms and hypernyms are often used as semantic features 

(Dang, 2002; Dligach, 2008). Named entity tags, another source of lexical knowledge, can be 

obtained from the output of a named-entity tagger such as IdentiFinder (Bikel, 1999).  
 

Four types of semantic features are used, all derived from the arguments of the target verb: (1) named 

entity tags for all of the arguments of the target verb, extracted using IdentiFinder; (2) synonyms of 

the arguments as listed in their synonym sets in WordNet; (3) hypernyms of the arguments, also taken 

from WordNet; and (4) dynamic dependency neighbors (Dligach and Palmer, 2008), which connect 

objects of the verb based on the type of verbs they frequently occur with in object position. In this 

paper we utilized object-based DDNs to capture the semantics of the target verb's object. Elsewhere 

(citation below) we also experimented with subject-based DDNs in the context of verb sense 

disambiguation. We discovered that subject-based DDNs do not improve the performance over and 
above object-based DDNs. For these experiments the DDNs were calculated from the verbs’ and 

objects’ occurrence in the English Gigaword corpus, parsed with the dependency MaltParser (Nivre, 

2007). 
 

This last feature finds similarities between objects that can be missed by the other three, as can be 

seen in Table 3. The similarity in the first two objects, price and terms, is captured by the WordNet 
synset. The third object, rate, can be grouped with these via its WordNet hypernym. The fourth 

object, however, has none of these features in common with the others. Even moving up the WN 

hypernym hierarchy, number does not connect to the others until the very general category of Abstract 

Entity. However, objects with very different hypernyms or named entity tags may still be common 

objects of the same verbs. Objects grouped in this way can often help identify the particular sense of a 

verb (Dligach and Palmer, 2008). Comparing lists of the top 50 verbs that each object occurs with 

shows a great deal of overlap and notably draws the noun number into a group with the other three. 

 
Object  NE 

tag 

WN synset WN hypernyms Sample DDNs 

price n/a price, terms, 

damage 

cost raise, bring, increase, put, reduce, cut, have, 

offer, set 

terms n/a price, terms, 

damage 

cost reduce, cut, have, offer, set 

rate n/a charge per unit cost raise, bring, increase, put, reduce, cut, have, 

offer, set 

number n/a figure amount raise, bring, increase, put, reduce, cut, have, 

offer, set 

 
Table 3: Semantic features for one sense of the verb fix 
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3.3 Experimental Setup 
 

Like all supervised word sense disambiguation, each verb required the training and testing of its own 

classifier. We classified using support vector machines (Chang and Lin, 2001). Accuracy and error 

rates were computed with 5-fold cross validation. Baselines were established for each target verb type 

by calculating the accuracy that would be achieved if all instances of a verb were labeled with its most 

frequent VerbNet class. The average baseline for our verb set was 77.78%. 
 

4 Results 

The average accuracy of the system with the target verbs was 88.67%, which represents an error 

reduction of 49% over the baseline of 77.78%. The closest comparison to the Abend et al. classifier is 

to their results based on only polysemous verbs and using features drawn from an automatic parser. In 

this scenario, their classifier had an accuracy of 91.9%, with an error reduction of 28.95% over their 

baseline of 88.6%.   
 

In order to assess the contribution of the features we use to the performance of the classifier, we 

developed several different models composed of various combinations of our features.  In addition we 

created a dedicated test set using 30% of the Semlink corpus so that each model would be evaluated 

on identical training and test sets, assuring consistent comparisons. Using this test set, the overall 

performance of our classifier (the model with all features) was 84.64%. This result is somewhat lower 

than the classifier accuracy using 5-fold cross-validation described above, possibly because of the 

smaller amount of training data used for this method. Compared to the most frequent class baseline, 

this figure still represents an error reduction of 31%. 
 

Lexical features are generally the most standard in supervised WSD systems and seem to contribute 

the most to the accuracy. Therefore, we used a model containing only the lexical features as our most 
stripped-down model. This model had an accuracy of 83.07%.  The second model added syntactic 

features to that, and achieved an accuracy of 84.44%. Adding semantic features brought the accuracy 

to 84.65%. We were particularly interested in assessing the contribution of the DDN feature, given 
that it can be generated automatically and requires no manually built lexical resource.  For that reason, 

we also created a model with all the features but the DDN and a model with all the features but the 

non-DDN semantic features, which resulted in accuracies of 84.12% and 84.89% respectively, 

validating the efficacy of the DDN feature. See Table 4 for a summary of these results, along with 

error reduction figures. 

 
Model Baseline (%) Accuracy (%) Error Reduction (%) 

Lexical features only 77.78 83.07 23.81 

Lexical + syntactic 77.78 84.44 29.97 

Lexical + semantic 77.78 83.75 26.87 

All but DDN 77.78 84.12 28.53 

Lexical + syntactic + DD� 77.78 84.89 32.00 

All features 77.78 84.65 30.92 

 

Table 4: Accuracy and error reduction of models using various features 

5 Discussion 

The accuracy of our VerbNet classifier approaches 90%, the level that several researchers have 

indicated is needed for useful WSD (Sanderson, 2000; Ide and Wilks, 2006).  Using VerbNet classes 

as sense distinctions makes available sets of semantic predicates that can be used for deeper analysis.  

WSD is not an end in itself; it is only useful in so far as it improves more complex applications.  By 

substituting VerbNet classification for verb sense disambiguation, we would gain both a coarse-

grained sense of the verb and direct mappings to VerbNet’s class-specific syntactic and semantic 
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information.  With the goal of improving future VerbNet classifiers, we discuss several pertinent 

issues in the following sections. 

5.1 Contributions of the Features 
 

The difference between the model with only lexical features and that with both lexical and syntactic 

features was statistically significant (p=.0005)
1
, suggesting that our syntactic features were a notable 

improvement to the model. Given the strong basis of VerbNet classes on syntactic alternations, we 

expected that syntactic features focused on argument structure would improve the system, and this 

comparison supports that hypothesis. 

The semantic features showed a more complex pattern. A model with lexical and semantic features 
achieved an accuracy of 83.75%. Compared to the accuracy of the lexical-only model, this was a 

significant improvement (p=.0182), although less strongly so than the syntactic features. Interestingly, 

when the lexical+syntactic model (no semantic features) was compared to one with lexical, syntactic 

and semantic features, the difference in accuracy was not significant (p=.6982), suggesting that the 

small improvement we saw with the semantic features was only replicating some of the information 

the system was gaining from the syntactic features. 

When the semantic features were tested separately, however, we found that the DDN feature 

substantially improved the system, while the other semantic features did not help the system.  A 

model with all the features but the DDN feature showed no significant improvement over the 
lexical+syntactic model. This suggests that the named entity, WordNet synset, and WordNet 

hypernym features added nothing to the model.  In a head-to-head comparison between the model 

with all features but the DDN and one with lexical, syntactic, and only DDNs, we found that the DDN 

feature significantly improved the system (p<.05). With an error reduction of 32%, the lexical + 

syntactic + DDN model performed the best of all those we tested.  

These results suggest that the system could be streamlined by removing the named entity tag, 
WordNet synset, and WordNet hypernym features and leaving the DDNs as the only semantic 

features.  This would reduce the system’s dependence on other resources with no loss of accuracy.  In 

addition, the DDN feature is created dynamically, and can be done with any corpus, increasing the 
portability of this system to new domains. 

5.2 Semlink Annotation 
 

A couple of matters came to light during a close examination of some of the Semlink annotation in 

our dataset.  First, for some of the verbs, the mapping from PropBank to VerbNet that was the basis of 
the semiautomatic labeling inappropriately mapped some VerbNet classes.  For example, the verb fix 

belongs to the Preparing class, which primarily describes events of food preparation.  The thematic 

roles and semantic predicates for this class indicate the creation of some entity, such as He fixed me a 

sandwich. This class was used in the Semlink data to label such instances, but also to label instances 

of fix as a repair event, such as We had to fix his car, a usage that is currently not covered by any 

VerbNet class.   Accuracy for this verb was still high at 89%, possibly because the feature patterns 

were still consistent when these instances were labeled with the Preparing class.   

 

The consequences of inappropriate labeling in this case are mixed.  If thematic roles were assigned 
based on this label, they would likely still be correct.  Both senses of fix call for an Agent and a 

Patient.  The subject in “We had to fix his car” would be correctly labeled as an Agent and the object 

would be correctly labeled as a Patient.  For semantic role labeling, this sort of error should have little 
negative effect. Any inferences based on the semantic predicates, however, would be misleading.  In a 

Repair event, such as We had to fix his car no new entity is created, but the Preparing class label 

would incorrectly imply that the car is a newly created entity. It is not clear whether such 

                                                      
1 All tests of statistical significance in this section were performed using the Wilcoxon signed rank test. 
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inappropriate mapping is an isolated problem or not. In section 7 we discuss some methods for 

assessing the existing annotation and for efficiently augmenting it. 

 

5.3 Metaphorical Interpretations 
 

A more common issue concerns the extension of VerbNet classes to metaphorical or figurative usages 

of a verb. Although some classes include metaphorical usages of the member verbs, such as the 

Amalgamate-22.2 class, others restrict the uses to literal events. For example, the Bump-18.4 class 

describes events of contact between a Theme and a Location, such as The grocery cart hit the wall. 

The class restricts both the Theme and Location to [+concrete] arguments. A natural extension of this 
sense of hit would apply to abstract arguments and metaphorical events of contact, such as The Bank 

of England was hit hard by the financial slump. This usage of hit would not strictly fit the Bump-18.4 

class because the financial slump (the Theme) is not a concrete entity and the Bank of England would 
not qualify as a concrete location, at least as it is used in this sentence. There is currently no VerbNet 

class, however, that would accommodate this usage of hit. 

 
For several verbs in our set, including hit and pay, class labels were applied to metaphorical sense 

extensions.  It is unclear whether this affected the accuracy of the classifier; for these two examples, 

the accuracy for hit was 75%, whereas for pay, it was 97%.   More importantly, in terms of applying 

the labeled data to further semantic processing, metaphorical extensions should have little detrimental 

effect.  Any thematic roles assigned based on the class label would be correct, although the semantic 

restrictions on the roles (e.g., +concrete) would not.  The semantic predicates would also be correct, as 

long as they were interpreted metaphorically as well. 

 

6 Conclusion 

The VerbNet class disambiguator we present in this paper achieves 89% accuracy with polysemous 

verbs, which is a 49% error reduction over the most frequent class baseline. Given that most 

applications that currently use verb mappings to VerbNet classes rely on a most-frequent-class 

heuristic (or hand-selected data), this classifier should improve the functioning of these applications.  

 

In addition, we have demonstrated that VerbNet class disambiguation often corresponds to coarse-

grained verb sense disambiguation. However, unlike sense disambiguation with more traditional 
lexicons, VerbNet class disambiguation would not only help disambiguate the senses of verbs in 

context, it would automatically connect that context to detailed information about likely thematic 

roles, semantic representations, and related verbs. In combination with a syntactic parse of the 
sentence, knowing the appropriate VerbNet class could help select a semantic representation of the 

events in the sentence. By choosing VerbNet as a sense inventory, the next steps in complex 

knowledge representation and reasoning tasks could be facilitated. 
 

7 Future Work 

Some additional steps can be taken to improve the usefulness of VerbNet class labeling. The coverage 

of verbs and verb senses could be improved, both in the Semlink corpus and in VerbNet itself: 25% of 
the verb tokens in the Semlink corpus have no VerbNet class label. However, Semlink is based on 

version 2.1 of VerbNet. The current version, 3.1, incorporates over 700 new verb senses, many of 

which introduce very common verbs, such as seem, involve, and own. Updating the corpus with 
annotations for these new verbs and verb senses would improve coverage. A more long-term goal is to 

annotate data from other types of corpora than the WSJ, which would likely improve any VerbNet 

classifier’s portability to new domains. 

 

We plan to increase VerbNet annotation in the Semlink corpus using methods that take advantage of 

existing mappings between PropBank and VerbNet and efficient manual annotation (Dligach, 2010).  
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SemLink expansion can be accomplished in two ways. First, more data can be labeled using some 

form of active learning (Settles, 2009) (e.g., batch mode uncertainty sampling). Once more annotated 

data has been acquired, it may be a good idea to double annotate all or parts of the data, leading to a 

more error-free labeled corpus. Various error detection techniques can be used to reduce the amount 

of the second round of annotation (Dligach, 2010). These methods can also be used to judge the 
reliability of the semiautomatic annotation that has already been done, which should indicate how 

widespread mislabeling is (such as with the verb fix, see section 5.2). 

 
The question of metaphorical extensions in the VerbNet annotation is currently being addressed by 

the VerbNet team. Plans are underway to enhance VerbNet classes with metaphorical information, 

where appropriate. These enhancements will indicate any changes in thematic role restrictions with a 

metaphoric usage, and any changes necessary for a semantic predicate to be interpreted correctly. 

 

Given the success of the DDN feature, we would like to see if expanding its contribution would 

further enhance our classifier.  Currently, the DDN feature is only calculated for objects of the verb, 

but the feature could be encoded for the subject of the verb as well. 

 

We see this classifier as an important step toward using VerbNet for deep semantic analysis. We have 
shown that verbs in multiple VerbNet classes can be disambiguated with close to 90% accuracy. 

Another related task, semantic role labeling, has made great strides lately (Palmer, Gildea and Xue, 

2010). Using the output from both these tasks should enable us to identify the specific VerbNet frame 

and semantic predicate for the sentence.  For example, VerbNet class disambiguation and semantic 

role labeling would identify the sentence “He left Sam his stamp collection” as 

 

Agent V(class:Future-having-13.3)Recipient Theme 

 

Only one frame in the Future-having-13.3 class has that pattern: the NP V NP-dative NP frame.  Its 
semantic predicates are 

 

HAS_POSSESSIO�(START(E), AGENT, THEME) 
FUTURE_POSSESSIO�(END(E), RECIPIENT, THEME) 

CAUSE(AGENT, E) 

 
Given the argument labels from the semantic role labeling, it is straightforward to map from the 

original sentence to the semantic representation: 

 

HAS_POSSESSIO�(START(E), HE, THE STAMP COLLECTION) 

FUTURE_POSSESSIO�(END(E), SAM, THE STAMP COLLECTION) 

CAUSE(HE, E) 

 

Recent work in coreference resolution (Haghighi and Klein, 2009) and implicit argument resolution 

(Gerber and Chai, 2010) suggest how this representation could be enriched by identifying the referent 
of he from the surrounding text.  All of these pieces of the semantic puzzle have the potential to fit 

together into a richer and deeper semantic representation of text. To further this goal, we intend to 

develop our classifier for all of the verbs in VerbNet and release the system to the public, along with 
an expanded version of the Semlink corpus.  
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Abstract

Entailment pairs are sentence pairs of a premise and a hypothesis, where the premise textually
entails the hypothesis. Such sentence pairs are important for the development of Textual Entailment
systems. In this paper, we take a closer look at a prominent strategy for their automatic acquisition
from newspaper corpora, pairing first sentences of articles with their titles. We propose a simple
logistic regression model that incorporates and extends this heuristic and investigate its robustness
across three languages and three domains. We manage to identify two predictors which predict
entailment pairs with a fairly high accuracy across all languages. However, we find that robustness
across domains within a language is more difficult to achieve.

1 Introduction

Semantic processing has become a major focus of attention in NLP. However, different applications
such as Question Answering, Information Extraction and Machine Translation often adopt very different,
task-specific semantic processing strategies. Textual entailment (TE) was introduced by Dagan et al.
(2006) as a “meta-task” that can subsume a large part of the semantic processing requirements of such
applications by providing a generic concept of inference that corresponds to “common sense” reasoning
patterns. Textual Entailment is defined as a relation between two natural language utterances (a Premise
P and a Hypothesis H) that holds if “a human reading P would infer that H is most likely true”. See,
e.g., the ACL “challenge paper” by Sammons et al. (2010) for further details.

The successive TE workshops that have taken place yearly since 2005 have produced annotation for
English which amount to a total of several thousand entailing Premise-Hypothesis sentence pairs, which
we will call entailment pairs:

(1) P: Swedish bond yields end 21 basis points higher.
H: Swedish bond yields rose further.

From the machine learning perspective assumed by many approaches to TE, this is a very small number
of examples, given the complex nature of entailment. Given the problems of manual annotation, therefore,
Burger and Ferro (2005) proposed to take advantage of the structural properties of a particular type of
discourse – namely newspaper articles – to automatically harvest entailment pairs. They proposed to pair
the title of each article with its first sentence, interpreting the first sentence as Premise and the title as
Hypothesis. Their results were mixed, with an average of 50% actual entailment pairs among all pairs
constructed in this manner. SVMs which identified “entailment-friendly” documents based on their bags
of words lead to an accuracy of 77%. Building on the same general idea, Hickl et al. (2006) applied a
simple unsupervised filter which removes all entailment pair candidates that “did not share an entity (or
an NP)”. They report an accuracy of 91.8% on a manually evaluated sample – considerably better Burger
and Ferro. The article however does not mention the size of the original corpus, and whether “entity” is to
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be understood as named entity, so it is difficult to assess what its recall is, and whether it presupposes a
high-quality NER system.

In this paper, we model the task using a logistic regression model that allows us to synchronously
analyse the data and predict entailment pairs, and focus on the question of how well these results generalize
across domains and languages, for many of which no entailment pairs are available at all. We make three
main contributions: (a), we define an annotation scheme based on semantic and discourse phenomena that
can break entailment and annotate two datasets with it; (b), we idenfiy two robust properties of sentence
pairs that correlate strongly with entailment and which are robust enough to support high-precision
entailment pair extraction; (c), we find that cross-domain differences are actually larger than cross-lingual
differences, even for languages as different as German and Hindi.

Plan of the paper. Section 2 defines our annotation scheme. In Section 3, we sketch the logistic
regression framework we use for analysis, and motivate our choice of predictors. Sections 4 and 5 present
the two experiments on language and domain comparisons, respectively. We conclude in Section 6.

2 A fine-grained annotation scheme for entailment pairs

The motivation of our annotation scheme is to better understand why entailment breaks down between
titles and first sentences of newswire articles. We subdivide the general no entailment category of earlier
studies according to an inventory of reasons for non-entailment that we collected from an informal
inspection of some dozen articles from an English-language newspaper. Additionally, we separate out
sentences that are ill-formed in the sense of not forming one proposition.

2.1 Subtypes of non-entailment

No-par (Partial entailment). The Premise entails the Hypothesis almost, but not completely, in one of
two ways: (a), The Hypothesis is a conjunction and the Premise entails just one conjunct; or (b),
Premise and Hypothesis share the main event, but the Premise is missing an argument or adjunct
that forms part of the Hypothesis. Presumably, in our setting, such information is provided by the
other sentences in the article than the first one. In Ex. (1), if P and H were switched, this would be
the case for the size of the rise.

No-pre (Presupposition): The Premise uses a construction which can only be understood with informa-
tion from the Hypothesis, typically a definite description or an adjunct. This category arises because
the title stands before the first sentence and is available as context. In the following example, the
Premise NP “des Verbandes” can only be resolved through the mention of “VDA” (the German car
manufacturer’s association) in the Hypothesis.

(2) P: Herzog
Herzog

wird
will

in
in

dem
the

vierköpfigen
four-head

Führungsgremium
management board

des
of the

Verbands
association

für
for

die
the

Teile-
parts

und
and

Zubehörindustrie
accessory business

zuständig
resposible

sein.
be.

H: Martin
Martin

Herzog
Herzog

wird
becomes

VDA-Geschäftsführer.
VDA manager.

No-con (Contradiction): Direct contradiction of Premise and Hypothesis.

(3) P: Wie
How

die
the

innere
biological

Uhr
clock

[...]
[...]

funktioniert,
works,

ist
is

noch
still

weitgehend
mostly

unbekannt.
unknown.

H: Licht
Light

stellt
regulates

die
the

innere
biological

Uhr.
clock.
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No-emb (Embedding): The Premise uses an embedding that breaks entailment (e.g., modal adverbials or
non-factural embedding verb). In the following pair, the proposition in the Hypothesis is embedded
under “expect”.

(4) P: An Arkansas gambling amendment [...] is expected to be submitted to the state Supreme
Court Monday for a rehearing, a court official said.
H: Arkansas gaming petition goes before court again Monday

No-oth (Other): All other negative examples where Premise and Hypothesis are well-formed, and which
could not be assigned to a more specific category, are included under this tag. In this sense, “Other”
is a catch-all category. Often, Premise and Hypothesis, taken in isolation, are simply unrelated:

(5) P: Victor the Parrot kept shrieking "Voda, Voda" – "Water, Water".
H: Thirsty jaguar procures water for Bulgarian zoo.

2.2 Ill-formed sentence pairs

Err (Error): These cases arise due to errors in sentence boundary detection: Premise or Hypothesis may
be cut off in the middle of the sentence.

Ill (Ill-formed): Often, the titles are not single grammatical sentences and can therefore not be interpreted
sensibly as the Hypothesis of an entailment pair. They can be incomplete proposition such as NPs
or PPs (“Beautiful house situated in woods”), or, frequently, combinations of multiple sentences
(“RESEARCH ALERT - Mexico upped, Chile cut.”).

3 Modeling entailment with logistic regression

We will model the entailment annotation labels on candidate sentence pairs using a logistic regression
model. From a machine learning point of view, logistic regression models can be seen as a rather simple
statistical classifier which can be used to acquire new entailment pairs. From a linguistic point of view,
they can be used to explain the phenomena in the data, see e.g., Bresnan et al. (2007).

Formally, logistic regression models assume that datapoints consist of a set of predictors x and a
binary response variable y. They have the form

p(y = 1) =
1

1 + e−z
with z =

∑

i

βixi (1)

where p is the probability of a datapoint x, βi is the coefficient assigned to the linguistically motivated
factor xi. Model estimation sets the parameters β so that the likelihood of the observed data is maximized.

From the linguistics perspective, we are most interested in analysing the importance of the different
predictors: for each predictor xi, the comparison of the estimated value of its coefficient βi can be
compared to its estimated standard error, and it is possible to test the hypothesis that βi = 0, i.e., the
predictor does not significantly contribute to the model. Furthermore, the absolute value of βi can be
interpreted as the log odds – that is, as the change in the probability of the response variable being positive
depending on xi being positive.

eβi =
P (y = 1|x = 1, . . . )/P (y = 0|x = 1, . . . )

P (y = 1|x = 0, . . . )/P (y = 0|x = 0, . . . )
(2)

The fact that z is just a linear combination of predictor weights encodes the assumption that the log odds
combine linearly among factors.

From the natural language processing perspective, we would like to create predictions for new
observations. Note, however, that simply assessing the significance of predictors on some dataset, as
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provided by the logistic regression model, corresponds to an evaluation of the model on the training set,
which is prone to the problem of overfitting. We will therefore in our experiments always apply the models
acquired from one dataset on another to see how well they generalize.

3.1 Choice of Predictors

Next, we need a set of plausible predictors that we can plug into the logistic regression framework. These
predictors should ideally be language-independent. We analyse the categories of our annotation, as an
inventory of phenomena that break entailment, to motivate a small set of robust predictors.

Following early work on textual entailment, we use word overlap as a strong indicator of entail-
ment (Monz and de Rijke, 2001). Our weighted overlap predictor uses the well-known tf/idf weighting
scheme to compute the overlap between P and H (Manning et al., 2008):

weightedOverlap(T,H,D) =

∑
w∈T∩H tf-idf(w,D)∑
w∈H tf-idf(w,D)

(3)

where we treat each article as a separate document and the whole corpus as document collection D. We
expect that No-oth pairs have generally the lowest weighted overlap, followed by No-par pairs, while Yes
pairs have the highest weighted overlap. We also use a categorical version of this observation in the form
of our strict noun match predictor. This predictor is similar in spirit to the proposal by Hickl et al. (2006)
mentioned in Section 1. The boolean strict noun match predictor is true if all Hypothesis nouns are present
in the Premise, and is therefore a predictor that is geared at precision rather than recall. A third predictor
that was motivated by the No-par and No-oth categories was the number of words in the article: No-oth
sentence pairs often come from long articles, where the first sentence provides merely an introduction. For
this predictor, log num words, we count the total number of words in the article and logarithmize it.1 The
remaining subcategories of No were more difficult to model. No-pre pairs should be identifiable by testing
whether the Premise contains a definite description that cannot be accommodated, a difficult problem
that seems to require world knowledge. Similarly, the recognition of contradictions, as is required to find
No-con pairs, is very difficult in itself (de Marneffe et al., 2008). Finally, No-emb requires the detection
of a counterfactual context in the Premise. Since we do not currently see robust, language-independent
ways of modelling these phenomena, we do not include specific predictors to address them.

The situation is similar with regard to the Err category. While it might be possible to detect incomplete
sentences with the help of a parser, this again involves substantial knowledge about the language. The Ill
category, however, appears easier to target: at least cases of Hypotheses consisting of multiple phrases
case be detected easily by checking for sentence end markers in the middle of the Hypothesis (full stop,
colon, dash). We call this predictor punctuation.

4 Experiment 1: Analysis by Language

4.1 Data sources and preparation

This experiment performs a cross-lingual comparison of three newswire corpora. We use English, German,
and Hindi. All three belong to the Indo-European language family, but English and German are more
closely related.

For English and German, we used the Reuters RCV2 Multilingual Corpus2. RCV2 contains over
487,000 news stories in 13 different languages. Almost all news stories cover the business and politics
domains. The corpus marks the title of each article; we used the sentence splitter provided by Treetag-
ger (Schmid, 1995) to extract the first sentences. Our Hindi corpus is extracted from the text collection
of South Asian languages prepared by the EMILLE project (Xiao et al., 2004)3. We use the Hindi

1This makes the coefficiently easier to interpret. The predictive difference is minimal.
2http://trec.nist.gov/data/reuters/reuters.html
3http://www.elda.org/catalogue/en/text/W0037.html
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No. of sentence pairs English German Hindi
Original 473,874 (100%) 112,259 (100%) 20,209 (100%)
Filtered 264.711 (55.8%) 50.039 (44.5%) 10.475 (51.8%)

Table 1: Pair extraction statistics

Corpus err ill no-con no-emb no-oth no-par no-pre yes
English Reuters 3.5 2.9 0 0.2 3.7 7.4 0 82.3
German Reuters 2.1 11.0 0.4 0.2 4.3 2.1 0.2 79.7
Hindi Emille 1.1 2.5 0 0.3 14.7 5.7 0 75.7

Table 2: Exp.1: Distribution of annotation categories (in percent)

monolingual data, which was crawled from Webdunia,4 an Indian daily online newspaper. The articles
are predominantly political, with a focus on Indo-Pakistani and Indo-US affairs. We identify sentence
boudaries with the Hindi sentence marker (‘|’), which is used exclusively for this purpose.

We preprocessed the data by extracting the title and the first sentence, treating the first sentence as
Premise and the title as Hypothesis. We applied a filter to remove pairs where the chance of entailment
was impossible or very small. Specifically, our filter keeps only sentence pairs that (a) share at least one
noun and where (b) both sentences include at least one verb and are not questions. Table 1 shows the
corpus sizes before and after filtering. Note that the percentage of selected sentences across the languages
are all in the 45%-55% range. This filter could presumably be improved by requiring a shared named
entity, but since language-independent NER is still an open research issue, we did not follow up on this
avenue. We randomly sampled 1,000 of the remaining sentence pairs per language for manual annotation.

4.2 Distribution of annotation categories

First, we compared the frequencies of the annotation categories defined in Section 3.1. The results are
shown in Table 2. We find our simple preprocessing filter results in an accuracy of between 75 and 82%.
This is still considerably below the results of Hickl et al., who report 92% accuracy on their English data.5

Even though the overall percentage of “yes” cases is quite similar among languages, the details of the
distribution differ. One fairly surprising observation was the fairly large number of ill-formed sentence
pairs. As described in Section 2, this category comprises cases where the Hypothesis (i.e., a title) is not a
grammatical sentence. Further analysis of the category shows that the common patterns are participle
constructions (Ex. (6)) and combinations of multiple statements (Ex. (7)). The participle construction is
particularly prominent in German.

(6) Glencoe Electric, Minn., rated single-A by Moody’s.

(7) Wieder
Again

Kämpfe
fights

in
in

Südlibanon
Southern Lebanon

-
-

Israeli
Israeli

getötet.
killed.

The “no”-categories make up a total of 11.3% (English), 6.6% (German), and 20.7% (Hindi). The “other”
and “partial” categories clearly dominate. This is to be expected, in particular the high number of partial
entailments. The “other” category mostly consists of cases where the title summarizes the whole article,
but the first sentence provides only a gentle introduction to the topic:

(8) P: One automotive industry analyst has dubbed it the ‘Lincoln Town Truck’.
H: Ford hopes Navigator will lure young buyers to Lincoln.

As regards the high ratio of “no-other” cases in the Hindi corpus, we found a high number of instances
where the title states the gist of the article too differently from the first sentence to preserve entailment:

4http://www.webdunia.com
5We attribute the difference to the filtering scheme which is difficult to reconstruct from Hickl et al. (2006).
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Predictor German sig English sig Hindi sig
weighted overlap -0.77 ** -2.30 *** -3.35 ***
log num words -0.05 – -0.03 – -0.17 –
punctuation -1.04 *** -0.43 ** -0.35 **
strict noun match -0.12 – -0.19 – -0.38 **

Table 3: Exp. 1: Predictors in the logreg model (*: p<0.05; **: p<0.01; ***: p<0.001)

(9) P: aAj BF Eþ\s�s XAynA kF lokEþytA km nhF\ h� I h{ .
Even today, Princess Diana’s popularity has not decreased.

H: Eþ\s�s XAynA k� p/ aOr kAX
 nFlAm ho\g� .
Bidding on Princess Diana’s letter and cards would take place.

The remaining error categories (embedding, presupposition, contradiction) were, disappointingly, almost
absent. Another sizable category is formed by errors, though. We find the highest percentage for English,
where our sentence splitter misinterpreted full stops in abbreviations as sentence boundaries.

4.3 Modelling the data

We estimated logistic regression models on each dataset, using the predictors from Section 3.1. Consider-
ing the eventual goal of extracting entailment pairs, we use the decision yes vs. everything else as our
response variable. The analysis was performed with R, using the rms6 and ROCR7 packages.

Analysis of predictors. The coefficients for the predictors and their significances are shown in Table 3.
There is considerable parallelism between the languages. In all three languages, weighted overlap between
H and P is a significant predictor: high overlap indicates entailment, and vice versa. Its effect size is large
as well: Perfect overlap increases the probability of entailment for German by a factor of e0.77 = 2.16, for
English by 10, and for Hindi even by 28. Similarly, the punctuation predictor comes out as a significant
negative effect for all three languages, presumably by identifying ill-formed sentence pairs. In contrast,
the length of the article (log num words) is not a significant predictor. This is a surprising result, given
our hypothesis that long articles often involve an “introduction” which reduces the chance for entailment
between the title and the first sentence. The explanation is that the two predictors, log num words and
weighted overlap, are highly significantly correlated in all three corpora. Since weighted overlap is the
predictive of the two, the model discards article length.

Finally, strict noun match, which requires that all nouns match between H and P, is assigned a
positive coefficient for each language, but only reaches significance for Hindi. This is the only genuine
cross-lingual difference: In our Hindi corpus, the titles are copied more verbatim from the text than for
English and German (median weighted overlap: Hindi 0.76, English 0.72, German 0.69). Consequently,
in English and German the filter discards too many entailment instances. For all three languages, though,
the coefficient is small – for Hindi, where it is largest, it increases the odds by a factor of e0.39 ≈ 1.4.

Evaluation. We trained models on the three corpora, using only the two predictors that contributed
significantly in all languages (weighted overlap and punctuation), in order to avoid overfitting on the
individual datasets.8 We applied each model to each dataset. How such models should be evaluated
depends on the intended purpose of the classification. We assume that it is fairly easy to obtain large
corpora of newspaper text, which makes precision an issue rather than recall. The logistic regression
classifier assigns a probability to each datapoint, so we can trade off recall and precision. We fix recall at
a reasonable value (30%) and compare precision values.

6http://biostat.mc.vanderbilt.edu/twiki/bin/view/Main/Design
7http://rocr.bioinf.mpi-sb.mpg.de/
8Subsequent analysis of “full” models (with all features) showed that they did not generally improve over two-feature models.
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PPPPPPPPPData
Models

German model English model Hindi model

German data 91.6 88.8 88.8
English data 93.2 94.3 94.6
Hindi data 98.7 98.7 99.1

Table 4: Exp. 1: Precision for the class “yes” (entailment) at 30% Recall

Our expectation is that each model will perform best on its own corpus (since this is basically the
training data), and worse on the other languages. The size of the drop for the other languages reflects the
differences between the corpora as well as the degree of overfitting models show to their training data.

The actual results are shown in Table 4.3. The precision is fairly high, generally over 90%, and well
above the baseline percentage of entailment pairs. The German data is modelled best by the German
model, with the two other models performing 3 percent worse. The situation is similar, although less
pronounced, on Hindi data, where the Hindi-trained model is 0.4% better than the two other models. For
English, the Hindi model even outperforms the English model by 0.3%9, which in turn works about 1%
better than the German model. In sum, the logistic regression models can be applied very well across
languages, with little loss in precision. The German data with its high ratio of ill-formed headlines (cf.
Table 2) is most difficult to model. Hindi is simplest, due to the tendency of title and first sentence to be
almost identical (cf. the large weight for the overlap predictor).

5 Experiment 2: Analysis by Domain of German corpora

5.1 Data

This experiment compares three German corpora from different newspapers to study the impact of domain
differences: Reuters, “Stuttgarter Zeitung”, and “Die Zeit”. These corpora differ in domain and in style.
The Reuters corpus was already described in Section 4.1. “Stuttgarter Zeitung” (StuttZ) is a daily regional
newspaper which covers international business and politics like Reuters, but does not draw its material
completely from large news agencies and gives more importance to regional and local events. Its style is
therefore less consistent. Our corpus covers some 80,000 sentences of text from StuttZ. The third corpus
comprises over 4 million sentences of text from “Die Zeit”, a major German national weekly. The text is
predominantly from the 2000s, plus selected articles from the 1940s through 1990s. “Die Zeit” focuses on
op-ed pieces and general discussions of political and social issues. It also covers arts and science, which
the two other newspapers rarely do.

5.2 Distribution of annotation categories

We extracted and annotated entailment pair candidates in the same manner as before (cf. Section 4.1).
The new breakdown of annotation categories in Table (10) shows, in comparison to the cross-lingual
results in Table 2, a higher incidence of errors, which we attribute to formatting problems of these corpora.
Compared to the German Reuters corpus we considered in Exp. 1, StuttZ and Die Zeit contain considerably
fewer entailment pairs, most notably Die Zeit, where the percentage of entailment pairs is just 21.6% in
our sample, compared to 82.3% for Reuters. Notably, there are almost no cases where the first sentence
represents a partial entailment; in contrast, for more than one third of the examples (33.9%), there is no
entailment relation between the title and the first sentence. This seems to be a domain-dependent, or even
stylistic, effect: in “Die Zeit”, titles are often designed solely as “bait” to interest readers in the article:

(10) P: Sat.1
Sat.1

sah
watched

[...]
[...]

Doris
Doris

dabei zu ,
,
wie
how

sie
she

[...]
[...]

Auto fahren
to drive

lernte.
learned.

9The English model outperforms the Hindi model at higher recall levels, though.
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Corpus err ill no-con no-emb no-oth no-par no-pre yes
Reuters 3.5 2.9 0 0.2 3.7 7.4 0 82.3
StuttZ 6.2 3.6 0.5 2.8 12.4 3.0 0.6 70.7
Die Zeit 2.3 39.0 0.5 1.8 33.9 0.9 0.0 21.6

Table 5: Exp. 2: Distribution of annotation categories on German corpora (in percent)

Predictor Reuters sig StuttZ sig Die Zeit sig
weighted overlap -0.77 ** -1.82 *** -2.60 ***
log num words -0.05 – -0.24 – -0.20 –
punctuation -1.04 *** -0.01 – -1.21 ***
strict noun match -0.12 – -0.20 – -0.01 –

Table 6: Exp. 2: Predictors in the logreg model (*: p<0.05; **: p<0.01; ***: p<0.001)

PPPPPPPPPData
Models

Reuters StuttZ Die Zeit

Reuters 91.6 85.4 91.6
StuttZ 83.0 83.0 82.6
Die Zeit 45.2 45.2 46.7

Table 7: Exp. 2: Precision for the class “yes” at 30% recall

H: Doris,
Doris,

es
it

ist
is

grün!
green!

Other titles are just noun or verb phrases, which accounts for the large number (39%) of ill-formed pairs.

5.3 Modelling the data

Predictors and evaluation. The predictors of the logistic regression models for the three German
corpora are shown in Table 6. The picture is strikingly similar to the results of Exp. 1 (Table 3): weighted
overlap and punctuation are highly significant predictors for all three corpora (except punctuation, which
is insignificant for StuttZ); even the effect sizes are roughly similar. Again, neither sentence length
nor strict noun match are significant. This indicates that the predictors we have identified work fairly
robustly. Unfortunately, this does not imply that they always work well. Table 6 shows the precision of
the predictors in Exp. 2, again at 30% Recall. Here, the difference to Exp. 1 (Table 4.3) is striking. First,
overfitting of the predictors is worse across domains, with losses of 5% on Reuters and Die Zeit when they
are classified with models trained on other corpora even though use just two generic features. Second, and
more seriously, it is much more difficult to extract entailment pairs from the Stuttgarter Zeitung corpus
and, especially, the Die Zeit corpus. For the latter, we can obtain a precision of at most 46.7%, compared
to >90% in Exp. 1.

We interpret this result as evidence that domain adaptation may be an even greater challenge than
multilinguality in the acquisition of entailment pairs. More specifically, our impression is that the heuristic
of pairing title and first sentence works fairly well for a particular segment of newswire text, but not
otherwise. This segment consists of factual, “no-nonsense” articles provided by large news agencies such
as Reuters, which tend to be simple in their discourse structure and have an informative title. In domains
where articles become longer, and the intent to entertain becomes more pertinent (as for Die Zeit), the
heuristic fails very frequently. Note that the weighted overlap predictor cannot recover all negative cases.
Example (10) is a case in point: one of the two informative words in H, “Doris” and “grün”, is in fact in P.

Domain specificity. The fact that it is difficult to extract entailment pairs from some corpora is serious
exactly because, according to our intuition, the “easier” news agency corpora (like Reuters) are domain-
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Corpus D( · | deWac) words w with highest P (w)/Q(w)

Reuters 0.98 Händler (trader), Börse (exchange), Prozent (per cent), erklärte (stated)
StuttZ 0.93 DM (German Mark), Prozent (per cent), Millionen (millions), Geschäfts-

jahr (fiscal year), Milliarden (billions)
Die Zeit 0.64 heißt (means), weiß (knows), läßt (leaves/lets)

Table 8: Exp. 2: Domain specificity (KL distance from deWac); typical content words

specific. We quantify this intuition with an approach by Ciaramita and Baroni (2006), who propose
to model the representativeness of web-crawled corpora as the KL divergence between their Laplace-
smoothed unigram distribution P and that of a reference corpus, Q (w ∈W are vocabulary words):

D(P,Q) =
∑

w∈W
P (w) log

P (w)

Q(w)
(4)

We use the deWac German web corpus (Baroni et al., 2009) as reference, making the idealizing assumption
that it is representative for the German language. We interpret a large distance from deWac as domain
specificity. The results in Table 8 bear out our hypothesis: Die Zeit is less domain specific than StuttZ,
which in turn is less specific than Reuters. The table also lists the content words (nouns/verbs) that are
most typical for each corpus, i.e., which have the highest value of P (w)/Q(w). The lists bolster the
interpretation that Reuters and StuttZ concentrate on the economical domain, while the typical terms of
Die Zeit show an argumentative style, but no obvious domain bias. In sum, domain specificity is inversely
correlated with the difficulty of extracting entailment pairs: from a representativity standpoint, we should
draw entailment pairs from Die Zeit.

6 Conclusion

In this paper, we have discussed the robustness of extracting entailment pairs from the title and first
sentence of newspaper articles. We have proposed a logistic regression model and have analysed its
performance on two datasets that we have created: a cross-lingual one a cross-domain one. Our cross-
lingual experiment shows a positive result: despite differences in the distribution of annotation categories
across domains and languages, the predictors of all logistic regression models look remarkably similar. In
particular, we have found two predictors which are correlated significantly with entailment across (almost)
all languages and domains. These are (a), a tf/idf measure of word overlap between the title and the first
sentence; and (b), the presence of punctuation indicating that the title is not a single grammatical sentence.
These predictors extract entailment pairs from newswire text at a precision of > 90%, at a recall of 30%,
and represent a simple, cross-lingually robust method for entailment pair acquisition.

The cross-domain experiment, however, forces us to qualify this positive result. On two other German
corpora from different newspapers, we see a substantial degradation of the model’s performance. It may
seem surprising that cross-domain robustness is a larger problem than cross-lingual robustness. Our
interpretation is that the limiting factor is the degree to which the underlying assumption, namely that
first sentence entails the title, is true. If the assumption is true only for a minority of sentences, our
predictors cannot save the day. This assumption holds well in the Reuters corpora, but less so for the
other newspapers. Unfortunately, we also found that the Reuters corpora are at the same time thematically
constrained, and therefore only of limited use for extracting a representative corpus of entailment pairs. A
second problem is that the addition of features we considered beyond the two mentioned above threatens
to degrade the classifier due to overfitting, at least across domains.

Given these limitation of the present headline-based approach, other approaches that are more
generally applicable may need to be explored. Entailment pairs have for example been extracted from
Wikipedia (Bos et al., 2009). Another direction is to build on methods to extract paraphrases from
comparable corpora (Barzilay and Lee, 2003), and extend them to capture asymmetrical pairs, where
entailment holds in one, but not the other, direction.
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Abstract

First-order logic provides a powerful and flexible mechanism for representing natural language
semantics. However, it is an open question of how best to integrate it with uncertain, probabilistic
knowledge, for example regarding word meaning. This paper describes the first steps of an approach
to recasting first-order semantics into the probabilistic models that are part of Statistical Relational
AI. Specifically, we show how Discourse Representation Structures can be combined with distribu-
tional models for word meaning inside a Markov Logic Network and used to successfully perform
inferences that take advantage of logical concepts such as factivity as well as probabilistic informa-
tion on word meaning in context.

1 Introduction

Logic-based representations of natural language meaning have a long history. Representing the meaning
of language in a first-order logical form is appealing because it provides a powerful and flexible way to
express even complex propositions. However, systems built solely using first-order logical forms tend
to be very brittle as they have no way of integrating uncertain knowledge. They, therefore, tend to have
high precision at the cost of low recall (Bos and Markert, 2005).

Recent advances in computational linguistics have yielded robust methods that use weighted or prob-
abilistic models. For example, distributional models of word meaning have been used successfully to
judge paraphrase appropriateness. This has been done by representing the word meaning in context as
a point in a high-dimensional semantics space (Erk and Padó, 2008; Thater et al., 2010; Erk and Padó,
2010). However, these models typically handle only individual phenomena instead of providing a mean-
ing representation for complete sentences. It is a long-standing open question how best to integrate the
weighted or probabilistic information coming from such modules with logic-based representations in a
way that allows for reasoning over both. See, for example, Hobbs et al. (1993).

The goal of this work is to combine logic-based meaning representations with probabilities in a
single unified framework. This will allow us to obtain the best of both situations: we will have the
full expressivity of first-order logic and be able to reason with probabilities. We believe that this will
allow for a more complete and robust approach to natural language understanding. In order to perform
logical inference with probabilities, we draw from the large and active body of work related to Statistical
Relational AI (Getoor and Taskar, 2007). Specifically, we make use of Markov Logic Networks (MLNs)
(Richardson and Domingos, 2006) which employ weighted graphical models to represent first-order
logical formulas. MLNs are appropriate for our approach because they provide an elegant method of
assigning weights to first-order logical rules, combining a diverse set of inference rules, and performing
inference in a probabilistic way.

While this is a large and complex task, this paper proposes a series of first steps toward our goal.
In this paper, we focus on three natural language phenomena and their interaction: implicativity and
factivity, word meaning, and coreference. Our framework parses natural language into a logical form,
adds rule weights computed by external NLP modules, and performs inferences using an MLN. Our
end-to-end approach integrates multiple existing tools. We use Boxer (Bos et al., 2004) to parse natural
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language into a logical form. We use Alchemy (Kok et al., 2005) for MLN inference. Finally, we use the
exemplar-based distributional model of Erk and Padó (2010) to produce rule weights.

2 Background

Logic-based semantics. Boxer (Bos et al., 2004) is a software package for wide-coverage semantic anal-
ysis that provides semantic representations in the form of Discourse Representation Structures (Kamp
and Reyle, 1993). It builds on the C&C CCG parser (Clark and Curran, 2004). Bos and Markert (2005)
describe a system for Recognizing Textual Entailment (RTE) that uses Boxer to convert both the premise
and hypothesis of an RTE pair into first-order logical semantic representations and then uses a theorem
prover to check for logical entailment.

Distributional models for lexical meaning. Distributional models describe the meaning of a word
through the context in which it appears (Landauer and Dumais, 1997; Lund and Burgess, 1996), where
contexts can be documents, other words, or snippets of syntactic structure. Distributional models are able
to predict semantic similarity between words based on distributional similarity and they can be learned
in an unsupervised fashion. Recently distributional models have been used to predict the applicability
of paraphrases in context (Mitchell and Lapata, 2008; Erk and Padó, 2008; Thater et al., 2010; Erk and
Padó, 2010). For example, in “The wine left a stain”, “result in” is a better paraphrase for “leave” than is
“entrust”, while the opposite is true in “He left the children with the nurse”. Usually, the distributional
representation for a word mixes all its usages (senses). For the paraphrase appropriateness task, these
representations are then reweighted, extended, or filtered to focus on contextually appropriate usages.

Markov Logic. An MLN consists of a set of weighted first-order clauses. It provides a way of softening
first-order logic by making situations in which not all clauses are satisfied less likely but not impossible
(Richardson and Domingos, 2006). More formally, letX be the set of all propositions describing a world
(i.e. the set of all ground atoms), F be the set of all clauses in the MLN, wi be the weight associated
with clause fi ∈ F , Gfi be the set of all possible groundings of clause fi, and Z be the normalization
constant. Then the probability of a particular truth assignment x to the variables in X is defined as:

P (X = x) =
1

Z exp


∑

fi∈F
wi

∑

g∈Gfi

g(x)


 =

1

Z exp


∑

fi∈F
wini(x)


 (1)

where g(x) is 1 if g is satisfied and 0 otherwise, and ni(x) =
∑

g∈Gfi
g(x) is the number of groundings

of fi that are satisfied given the current truth assignment to the variables in X . This means that the
probability of a truth assignment rises exponentially with the number of groundings that are satisfied.

Markov Logic has been used previously in other NLP application (e.g. Poon and Domingos (2009)).
However, this paper marks the first attempt at representing deep logical semantics in an MLN.

While it is possible learn rule weights in an MLN directly from training data, our approach at this time
focuses on incorporating weights computed by external knowledge sources. Weights for word meaning
rules are computed from the distributional model of lexical meaning and then injected into the MLN.
Rules governing implicativity and coreference are given infinite weight (hard constraints).

3 Evaluation and phenomena

Textual entailment offers a good framework for testing whether a system performs correct analyses and
thus draws the right inferences from a given text. For example, to test whether a system correctly handles
implicative verbs, one can use the premise p along with the hypothesis h in (1) below. If the system
analyses the two sentences correctly, it should infer that h holds. While the most prominent forum using
textual entailment is the Recognizing Textual Entailment (RTE) challenge (Dagan et al., 2005), the RTE
datasets do not test the phenomena in which we are interested. For example, in order to evaluate our
system’s ability to determine word meaning in context, the RTE pair would have to specifically test word
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sense confusion by having a word’s context in the hypothesis be different from the context of the premise.
However, this simply does not occur in the RTE corpora. In order to properly test our phenomena, we
construct hand-tailored premises and hypotheses based on real-world texts.

In this paper, we focus on three natural language phenomena and their interaction: implicativity and
factivity, word meaning, and coreference. The first phenomenon, implicativity and factivity, is concerned
with analyzing the truth conditions of nested propositions. For example, in the premise of the entailment
pair shown in example (1), “arrange that” falls under the scope of “forget to” and “fail” is under the scope
of “arrange that”. Correctly recognizing nested propositions is necessary for preventing false inferences
such as the one in example (2).

(1) p: Ed did not forget to arrange that Dave fail1
h: Dave failed

(2) p: The mayor hoped to build a new stadium2

h*: The mayor built a new stadium

For the second phenomenon, word meaning, we address paraphrasing and hypernymy. For example,
in (3) “covering” is a good paraphrase for “sweeping” while “brushing” is not.

(3) p: A stadium craze is sweeping the country
h1: A stadium craze is covering the country
h2*: A stadium craze is brushing the country

The third phenomenon is coreference, as illustrated in (4). For this example, to correctly judge the
hypothesis as entailed, it is necessary to recognize that “he” corefers with “Christopher” and “the new
ballpark” corefers with “a replacement for Candlestick Park”.

(4) p: George Christopher has been a critic of the plan to build a replacement for Candlestick Park.
As a result, he won’t endorse the new ballpark.

h: Christopher won’t endorse a replacement for Candlestick Park.

Some natural language phenomena are most naturally treated as categorial, while others are more
naturally treated using weights or probabilities. In this paper, we treat implicativity and coreference as
categorial phenomena, while using a probabilistic approach to word meaning.

4 Transforming natural language text to logical form

In transforming natural language text to logical form, we build on the software package Boxer (Bos et al.,
2004). We chose to use Boxer for two main reasons. First, Boxer is a wide-coverage system that can deal
with arbitrary text. Second, the DRSs that Boxer produces are close to the standard first-order logical
forms that are required for use by the MLN software package Alchemy. Our system transforms Boxer
output into a format that Alchemy can read and augments it with additional information.

To demonstrate our transformation procedure, consider again the premise of example (1). When
given to Boxer, the sentence produces the output given in Figure 1a. We then transform this output to the
format given in Figure 1b.

Flat structure. In Boxer output, nested propositional statements are represented as nested sub-DRS
structures. For example, in the premise of (1), the verbs “forget to” and “arrange that” both introduce
nested propositions, as is shown in Figure 1a where DRS x3 (the “arranging that”) is the theme of “forget
to” and DRS x5 (the “failing”) is the theme of “arrange that”.

In order to write logical rules about the truth conditions of nested propositions, the structure has to
be flattened. However, it is clearly not sufficient to just conjoin all propositions at the top level. Such an
approach, applied to example (2), would yield (hope(x1) ∧ theme(x1, x2) ∧ build(x2) ∧ . . .), leading
to the wrong inference that the stadium was built. Instead, we add a new argument to each predicate that

1Examples (1) and (16) and Figure 2 are based on examples by MacCartney and Manning (2009)
2Examples (2), (3), (4), and (18) are modified versions of sentences from document wsj 0126 from the Penn Treebank

107



x0 x1

named(x0,ed,per)
named(x1,dave,per)

¬

x2 x3

forget(x2)
event(x2)
agent(x2,x0)
theme(x2,x3)

x3:
x4 x5

arrange(x4)
event(x4)
agent(x4,x0)
theme(x4,x5)

x5:
x6

fail(x6)
event(x6)
agent(x6,x1)

(a) Output from Boxer

transforms to−−−−−−−→

named(l0, ne per ed d s0 w0, z0)
named(l0, ne per dave d s0 w7, z1)
not(l0, l1)
pred(l1, v forget d s0 w3, e2)
event(l1, e2)
rel(l1, agent, e2, z0)
rel(l1, theme, e2, l2)
prop(l1, l2)
pred(l2, v arrange d s0 w5, e4)
event(l2, e4)
rel(l2, agent, e4, z0)
rel(l2, theme, e4, l3)
prop(l2, l3)
pred(l3, v fail d s0 w8, e6)
event(l3, e6)
rel(l3, agent, e6, z1)

(b) Canonical form

Figure 1: Converting the premise of (1) from Boxer output to MLN input

names the DRS in which the predicate originally occurred. Assigning the label l1 to the DRS containing
the predicate forget, we add l1 as the first argument to the atom pred(l1, v forget d s0 w3, e2).3 Having
flattened the structure, we need to re-introduce the information about relations between DRSs. For this
we use predicates not, imp, and or whose arguments are DRS labels. For example, not(l0, l1) states that
l1 is inside l0 and negated. Additionally, an atom prop(l0, l1) indicates that DRS l0 has a subordinate
DRS labeled l1.

One important consequence of our flat structure is that the truth conditions of our representation no
longer coincide with the truth conditions of the underlying DRS being represented. For example, we do
not directly express the fact that the “forgetting” is actually negated, since the negation is only expressed
as a relation between DRS labels. To access the information encoded in relations between DRS labels, we
add predicates that capture the truth conditions of the underlying DRS. We use the predicates true(label)
and false(label) that state whether the DRS referenced by label is true or false. We also add rules that
govern how the predicates for logical operators interact with these truth values. For example, the rules in
(5) state that if a DRS is true, then any negated subordinate must be false and vice versa.

∀ p n.[not(p, n)→ (true(p)↔ false(n)) ∧ (false(p)↔ true(n))] (5)

Injecting additional information into the logical form. We want to augment Boxer output with addi-
tional information, for example gold coreference annotation for sentences that we subsequently analyze
with Boxer. In order to do so, we need to be able to tie predicates in the Boxer output back to words in
the original sentence. Fortunately, the optional “Prolog” output format from Boxer provides the sentence
and word indices from the original sentence. When parsing the Boxer output, we extract these indices
and concatenate them to the word lemma to specific the exact occurrence of the lemma that is under
discussion. For example, the atom pred(l1, v forget d s0 w3, e2) indicates that event e2 refers to the
lemma “forget” that appears in the 0th sentence of discourse d at word index 3.

Atomic formulas. We represent the words from the sentence as arguments instead of predicates in order
to simplify the set of inference rules we need to specify. Because our flattened structure requires that
the inference mechanism be reimplemented as a set of logical rules, it is desirable for us to be able to
write general rules that govern the interaction of atoms. With the representation we have chosen, we
can quantify over all predicates or all relations. For example, the rule in (6) states that a predicate is
accessible if it is found in an out-scoping DRS.

3The extension to the word, such as d s0 w3 for “forget”, is an index providing the location of the original word that
triggered this atom; this is addressed in more detail shortly.
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signature example
managed to +/- he managed to escape � he escaped

he did not manage to escape � he did not escape
refused to -/o he refused to fight � he did not fight

he did not refuse to fight 2 {he fought, he did not fight}

Figure 2: Implication Signatures

∀ l1 l2.[outscopes(l1, l2)→ ∀ p x.[pred(l1, p, x)→ pred(l2, p, x)]] (6)

We use three different predicate symbols to distinguish three types of atomic concepts: predicates,
named entities, and relations. Predicates and named entities represent words that appear in the text.
For example, named(l0, ne per ed d s0 w0, z0) indicates that variable z0 is a person named “Ed” while
pred(l1, v forget d s0 w3, e2) says that e2 is a “forgetting to” event. Relations capture the relationships
between words. For example, rel(l1, agent, e2, z0) indicates that z0, “Ed”, is the “agent” of the “forgetting
to” event e2.

5 Handling the phenomena

Implicatives and factives

Nairn et al. (2006) presented an approach to the treatment of inferences involving implicatives and fac-
tives. Their approach identifies an “implication signature” for every implicative or factive verb that
determines the truth conditions for the verb’s nested proposition, whether in a positive or negative en-
vironment. Implication signatures take the form “x/y” where x represents the implicativity in the the
positive environment and y represents the implicativity in the negative environment. Both x and y have
three possible values: “+” for positive entailment, meaning the nested proposition is entailed, “-” for
negative entailment, meaning the negation of the proposition is entailed, and “o” for “null” entailment,
meaning that neither the proposition nor its negation is entailed. Figure 2 gives concrete examples.

We use these implication signatures to automatically generate rules that license specific entailments
in the MLN. Since “forget to” has implication signature “-/+”, we generate the two rules in (7).
(7) (a) ∀ l1 l2 e.[(pred(l1, “forget”, e) ∧ true(l1) ∧ rel(l1, “theme”, e, l2) ∧ prop(l1, l2))→ false(l2)]]

4

(b) ∀ l1 l2 e.[(pred(l1, “forget”, e) ∧ false(l1) ∧ rel(l1, “theme”, e, l2) ∧ prop(l1, l2))→ true(l2)]

To understand these rules, consider (7a). The rule says that if the atom for the verb “forget to” appears
in a DRS that has been determined to be true, then the DRS representing any “theme” proposition of that
verb should be considered false. Likewise, (7b) says that if the occurrence of “forget to” appears in a
DRS determined to be false, then the theme DRS should be considered true.

Note that when the implication signature indicates a “null” entailment, no rule is generated for that
case. This prevents the MLN from licensing entailments related directly to the nested proposition, but
still allows for entailments that include the factive verb. So he wanted to fly entails neither he flew nor he
did not fly, but it does still license he wanted to fly.

Ambiguity in word meaning

In order for our system to be able to make correct natural language inference, it must be able to handle
paraphrasing and deal with hypernymy. For example, in order to license the entailment pair in (8), the
system must recognize that “owns” is a valid paraphrase for “has”, and that “car” is a hypernym of
“convertible”.

(8) p: Ed has a convertible
h: Ed owns a car

4Occurrence-indexing on the predicate “forget” has been left out for brevity.
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In this section we discuss our probabilistic approach to paraphrasing. In the next section we discuss
how this approach is extended to cover hypernymy. A central problem to solve in the context of para-
phrases is that they are context-dependent. Consider again example (3) and its two hypotheses. The first
hypothesis replaces the word “sweeping” with a paraphrase that is valid in the given context, while the
second uses an incorrect paraphrase.

To incorporate paraphrasing information into our system, we first generate rules stating all paraphrase
relationships that may possibly apply to a given predicate/hypothesis pair, using WordNet (Miller, 2009)
as a resource. Then we associate those rules with weights to signal contextual adequacy. For any two
occurrence-indexed words w1, w2 occurring anywhere in the premise or hypothesis, we check whether
they co-occur in a WordNet synset. If w1, w2 have a common synset, we generate rules of the form
∀ l x.[pred(l, w1, x) ↔ pred(l, w2, x)] to connect them. For named entities, we perform a similar
routine: for each pair of matching named entities found in the premise and hypothesis, we generate a
rule ∀ l x.[named(l, w1, x)↔ named(l, w2, x)].

We then use the distributional model of Erk and Padó (2010) to compute paraphrase appropriateness.
In the case of (3) this means measuring the cosine similarity between the vectors for “sweep” and “cover”
(and between “sweep” and “brush”) in the sentential context of the premise. MLN formula weights are
expected to be log-odds (i.e., log(P/(1−P )) for some probability P ), so we rank all possible paraphrases
of a given word w by their cosine similarity to w and then give them probabilities that decrease by
rank according to a Zipfian distribution. So, the kth closest paraphrase by cosine similarity will have
probability Pk given by (9):

Pk ∼ 1/k (9)

The generated rules are given in (10) with the actual weights calculated for example (3). Note that
the valid paraphrase “cover” is given a higher weight than the incorrect paraphrase “brush”, which allows
the MLN inference procedure to judge h1 as a more likely entailment than h2.5 This same result would
not be achieved if we did not take context into consideration because, without context, “brush” is a more
likely paraphrase of “sweep” than “cover”.

(10) (a) -2.602 ∀ l x.[pred(l, “v sweep p s0 w4”, x)↔ pred(l, “v cover h s0 w4”, x)]

(b) -3.842 ∀ l x.[pred(l, “v sweep p s0 w4”, x)↔ pred(l, “v brush h s0 w4”, x)]

Since Alchemy outputs a probability of entailment and not a binary judgment, it is necessary to
specify a probability threshold indicating entailment. An appropriate threshold between ”entailment”
and ”non-entailment” will be one that separates the probability of an inference with the valid rule from
the probability of an inference with the invalid rule. While we plan to automatically induce a threshold
in the future, our current implementation uses a value set manually.

Hypernymy

Like paraphrasehood, hypernymy is context-dependent: In “A bat flew out of the cave”, “animal” is
an appropriate hypernym for “bat”, but “artifact” is not. So we again use distributional similarity to
determine contextual appropriateness. However, we do not directly compute cosine similarities between
a word and its potential hypernym. We can hardly assume “baseball bat” and “artifact” to occur in similar
distributional contexts. So instead of checking for similarity of “bat” and “artifact” in a given context, we
check “bat” and “club”. That is, we pick a synonym or close hypernym of the word in question (“bat”)
that is also a WordNet hyponym of the hypernym to check (“artifact”).

A second problem to take into account is the interaction of hypernymy and polarity. While (8) is a
valid pair, (11) is not, because “have a convertible” is under negation. So, we create weighted rules of
the form hypernym(w, h), along with inference rules to guide their interaction with polarity. We create

5Because weights are calculated according to the equation log(P/(1 − P )), any paraphrase that has a probability of less
than 0.5 will have a negative weight. Since most paraphrases will have probabilities less than 0.5, most will yield negative
rule weights. However, the inferences are still handled properly in the MLN because the inference is dependent on the relative
weights.
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these rules for all pairs of words w, h in premise and hypothesis such that h is a hypernym of w, again
using WordNet to determine potential hypernymy.

(11) p: Ed does not have a convertible
h: Ed does not own a car

Our inference rules governing the interaction of hypernymy and polarity are given in (12). The rule
in (12a) states that in a positive environment, the hyponym entails the hypernym while the rule in (12b)
states that in a negative environment, the opposite is true: the hypernym entails the hyponym.

(12) (a) ∀ l p1 p2 x.[(hypernym(p1, p2) ∧ true(l) ∧ pred(l, p1, x))→ pred(l, p2, x)]]

(b) ∀ l p1 p2 x.[(hypernym(p1, p2) ∧ false(l) ∧ pred(l, p2, x))→ pred(l, p1, x)]]

Making use of coreference information

As a test case for incorporating additional resources into Boxer’s logical form, we used the coreference
data in OntoNotes (Hovy et al., 2006). However, the same mechanism would allow us to transfer in-
formation into Boxer output from arbitrary additional NLP tools such as automatic coreference analysis
tools or semantic role labelers. Our system uses coreference information into two distinct ways.

The first way we make use of coreference data is to copy atoms describing a particular variable
to those variables that corefer. Consider again example (4) which has a two-sentence premise. This
inference requires recognizing that the “he” in the second sentence of the premise refers to “George
Christopher” from the first sentence. Boxer alone is unable to make this connection, but if we receive
this information as input, either from gold-labeled data or a third-party coreference tool, we are able to
incorporate it. Since Boxer is able to identify the index of the word that generated a particular predicate,
we can tie each predicate to any related coreference chains. Then, for each atom on the chain, we can
inject copies of all of the coreferring atoms, replacing the variables to match. For example, the word
“he” generates an atom pred(l0, male, z5)6 and “Christopher” generates atom named(l0, christopher, x0).
So, we can create a new atom by taking the atom for “christopher” and replacing the label and variable
with that of the atom for “he”, generating named(l0, christopher, x5).

As a more complex example, the coreference information will inform us that “the new ballpark”
corefers with “a replacement for Candlestick Park”. However, our system is currently unable to handle
this coreference correctly at this time because, unlike the previous example, the expression “a replace-
ment for Candlestick Park” results in a complex three-atom conjunct with two separate variables: pred(l2,
replacement, x6), rel(l2, for, x6, x7), and named(l2, candlestick park, x7). Now, unifying with the atom
for “a ballpark”, pred(l0, ballpark, x3), is not as simple as replacing the variable because there are two
variables to choose from. Note that it would not be correct to replace both variables since this would
result in a unification of “ballpark” with “candlestick park” which is wrong. Instead we must determine
that x6 should be the one to unify with x3 while x7 is replaced with a fresh variable. The way that we can
accomplish this is to look at the dependency parse of the sentence that is produced by the C&C parser is
a precursor to running Boxer. By looking up both “replacement” and “Candlestick Park” in the parse, we
can determine that “replacement” is the head of the phrase, and thus is the atom whose variable should
be unified. So, we would create new atoms, pred(l0, replacement, x3), rel(l0, for, x3, z0), and named(l0,
candlestick park, z0), where z0 is a fresh variable.

The second way that we make use of coreference information is to extend the sentential contexts
used for calculating the appropriateness of paraphrases in the distributional model. In the simplest case,
the sentential context of a word would simply be the other words in the sentence. However, consider the
context of the word “lost” in the second sentence of (13).

(13) p1: In [the final game of the season]1, [the team]2 held on to their lead until overtime
p2: But despite that, [they]2 eventually lost [it all]1

6Atoms simplified for brevity
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Here we would like to disambiguate “lost”, but its immediate context, words like “despite” and
“eventually”, gives no indication as to its correct sense. Our procedure extends the context of the sentence
by incorporating all of the words from all of the phrases that corefer with a word in the immediate
context. Since coreference chains 1 and 2 have words in p2, the context of “lost” ends up including
“final”, “game”, “season”, and “team” which give a strong indication of the sense of “lost”. Note that
using coreference data is stronger than simply expanding the window because coreferences can cover
arbitrarily long distances.

6 Evaluation

As a preliminary evaluation of our system, we constructed a set of demonstrative examples to test our
ability to handle the previously discussed phenomena and their interactions and ran each example with
both a theorem prover and Alchemy. Note that when running an example in the theorem prover, weights
are not possible, so any rule that would be weighted in an MLN is simply treated as a “hard clause”
following Bos and Markert (2005).

Checking the logical form. We constructed a list of 72 simple examples that exhaustively cover cases
of implicativity (positive, negative, null entailments in both positive and negative environments), hyper-
nymy, quantification, and the interaction between implicativity and hypernymy. The purpose of these
simple tests is to ensure that our flattened logical form and truth condition rules correctly maintain the
semantics of the underlying DRSs. Examples are given in (14).

(14) (a) The mayor did not manage to build a stadium 2 The mayor built a stadium
(b) Fido is a dog and every dog walks � A dog walks

Examples in previous sections. Examples (1), (2), (3), (8), and (11) all come out as expected. Each
of these examples demonstrates one of the phenomena in isolation. However, example (4) returns “not
entailed”, the incorrect answer. As discussed previously, this failure is a result of our system’s inabil-
ity to correctly incorporate the complex coreferring expression “a replacement for Candlestick Park”.
However, the system is able to correctly incorporate the coreference of “he” in the second sentence to
“Christopher” in the first.

Implicativity and word sense. For example (15), “fail to” is a negatively entailing implicative in a
positive environment. So, p correctly entails hgood in both the theorem prover and Alchemy. However,
the theorem prover incorrectly licenses the entailment of hbad while Alchemy does not. The probabilistic
approach performs better in this situation because the categorial approach does not distinguish between
a good paraphrase and a bad one. This example also demonstrates the advantage of using a context-
sensitive distributional model to calculate the probabilities of paraphrases because “reward” is an a priori
better paraphrase than “observe” according to WordNet since it appears in a higher ranked synset.

(15) p: The U.S. is watching closely as South Korea fails to honor U.S. patents7

hgood: South Korea does not observe U.S. patents
hbad: South Korea does not reward U.S. patents

Implicativity and hypernymy. MacCartney and Manning (2009) extended the work by Nairn et al.
(2006) in order to correctly treat inference involving monotonicity and exclusion. Our approaches to
implicatives and factivity and hyper/hyponymy combine naturally to address these issues because of the
structure of our logical representations and rules. For example, no additional work is required to license
the entailments in (16).

(16) (a) John refused to dance � John didn’t tango
(b) John did not forget to tango � John danced

7Example (15) is adapted from Penn Treebank document wsj 0020 while (17) is adapted from document wsj 2358
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Example (17) demonstrates how our system combines categorial implicativity with a probabilistic
approach to hypernymy. The verb “anticipate that” is positively entailing in the negative environment.
The verb “moderate” can mean “chair” as in “chair a discussion” or “curb” as in “curb spending”. Since
“restrain” is a hypernym of “curb”, it receives a weight based on the applicability of the word “curb” in
the context. Similarly, “talk” receives a weight based on its hyponym “chair”. Since our model predicts
“curb” to be a more probable paraphrase of “moderate” in this context than “chair” (even though the
priors according to WordNet are reversed), the system is able to infer hgood while rejecting hbad.

(17) p: He did not anticipate that inflation would moderate this year
hgood: Inflation restrained this year
hbad: Inflation talked this year

Word sense, coreference, and hypernymy. Example (18) demonstrates the interaction between para-
phrase, hypernymy, and coreference incorporated into a single entailment. The relevant coreference
chains are marked explicitly in the example. The correct inference relies on recognizing that “he” in the
hypothesis refers to “Joe Robbie” and “it” to “coliseum”, which is a hyponym of “stadium”. Further,
our model recognizes that “sizable” is a better paraphrase for “healthy” than “intelligent” even though
WordNet has the reverse order.

(18) p: [Joe Robbie]53 couldn’t persuade the mayor , so [he]53 built [[his]53 own coliseum]54.
[He]53 has used [it]54 to turn a healthy profit.8

hgood: Joe Robbie used a stadium to turn a sizable profit
hbad−1: Joe Robbie used a stadium to turn an intelligent profit
hbad−2: The mayor used a stadium to turn a healthy profit

7 Future work

The next step is to execute a full-scale evaluation of our approach using more varied phenomena and
naturally occurring sentences. However, the memory requirements of Alchemy are a limitation that
prevents us from currently executing larger and more complex examples. The problem arises because
Alchemy considers every possible grounding of every atom, even when a more focused subset of atoms
and inference rules would suffice. There is on-going work to modify Alchemy so that only the required
groundings are incorporated into the network, reducing the size of the model and thus making it possible
to handle more complex inferences. We will be able to begin using this new version of Alchemy very
soon and our task will provide an excellent test case for the modification.

Since Alchemy outputs a probability of entailment, it is necessary to fix a threshold that separates
entailment from nonentailment. We plan to use machine learning techniques to compute an appropriate
threshold automatically from a calibration dataset such as a corpus of valid and invalid paraphrases.

8 Conclusion

In this paper, we have introduced a system that implements a first step towards integrating logical seman-
tic representations with probabilistic weights using methods from Statistical Relational AI, particularly
Markov Logic. We have focused on three phenomena and their interaction: implicatives, coreference,
and word meaning. Taking implicatives and coreference as categorial and word meaning as probabilis-
tic, we have used a distributional model to generate paraphrase appropriateness ratings, which we then
transformed into weights on first order formulas. The resulting MLN approach is able to correctly solve
a number of difficult textual entailment problems that require handling complex combinations of these
important semantic phenomena.

8Only relevent coreferences have been marked
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Abstract

This paper presents a novel approach to semantic role annotation implementing an entailment-
based view of the concept of semantic role. I propose to represent arguments of predicates with
grammatically relevant primitive properties entailed by the semantics of predicates. Such meaning
components generalise over a range of semantic relations which humans tend to express systemati-
cally through language. In a preliminary study, I show that we can model linguistic knowledge at a
general, principled syntax-semantics interface by incorporating a layer of skeletal, entailment-based
representation of word meaning in large-scale corpus annotation.

1 Introduction

Large-scale lexical semantic resources that provide relational information about words have recently re-
ceived much focus in the field of Natural Language Processing (NLP). In particular, data-driven models
for lexical semantics require the creation of broad-coverage, hand-annotated corpora with predicate-
argument information, i.e. rich information about words expressing a semantic relation having argument
slots filled by the interpretations of their grammatical complements. Corpora combining semantic and
syntactic annotations constitute the backbone for the development of probabilistic models that automat-
ically identify the semantic relationships, or semantic roles, conveyed by sentential constituents (Gildea
and Jurafsky, 2002). That is, given an input sentence and a target predicator the system labels constituents
with general roles like Agent, Patient, Theme, etc., or more specific roles, as in (1).

(1) [Cognizer I] admired [Evaluee him] [Degree greatly] [Reason for his bravery and his cheerfulness].1

The task of automatic semantic role labelling (or shallow semantic parsing) is a first step towards text
understanding and has found use in a variety of NLP applications including information extraction (Sur-
deanu et al., 2003), machine translation (Boas, 2002), question answering (Narayanan and Harabagiu,
2004), summarisation (Melli et al., 2005), recognition of textual entailment relations (Burchardt and
Frank, 2006), etc.

Corpora with semantic role labels additionally lend themselves to extraction of linguistic knowledge
at the syntax-semantics interface. The range of semantic and syntactic combinatorial properties (va-
lences) of each word in each of its senses is documented in terms of annotated corpus attestations. For
instance, the valence pattern for the use of admire in (1) is shown in (2).

(2) Cognizer: Noun Phrase (NP), Subject
Evaluee: Noun Phrase (NP), Object
Degree: Adverbial Dependent
Reason: Prepositional Dependent

1This annotated example is from the FrameNet lexicon (discussed in the next section). In all examples throughout the paper,
predicators are marked in italics.

115



This data enables the quantitative study of various linguistic phenomena and the investigation of the
relationship between the distinct linguistic layers comprised by predicate-argument analysis. Further-
more, the formulation of generalisations over predicate-specific annotations can capture how predicates
relate in terms of both semantic and syntactic features. Such syntax-semantics mappings (so-called link-
ing generalisations) encode regularities concerning the associations of semantic roles with grammatical
functions and are essential for a linguistic knowledge base for NLP applications.

This paper addresses the problem of generalising over the valences of individual predicators and pro-
poses an abstract semantic basis for the representation of participant roles. The definition of semantic
notions at an appropriate level of abstraction is the prerequisite for the formulation of a general, princi-
pled syntax-semantics interface. This is in accordance with a somewhat intuitive conception of semantic
roles as classificatory notions encoding semantic similarities across different types of events or situations
in the world. In effect, all conceptions of semantic roles as opposed to predicate-specific roles, such
as admirer-admired, posit some sort of semantic classification of arguments across predicators while
indicating an acknowledgment that the syntax-semantics interface (referred to with the term linking) is
not completely arbitrary. Put differently, semantic roles constitute a level of representation suitable for
capturing semantic generalisations which humans tend to express systematically through language.

The structure of the paper is organised as follows. Section 2 looks at conceptions of semantic roles
in state-of-the-art approaches to semantic annotation indicating problems or complications related to the
question of whether or how these roles can support generalisations across predicates. Section 3 calls
attention to the theoretical underpinnings of the notion of semantic role and introduces an annotation
schema which departs from the traditional view of semantic roles as atomic, undecomposable categories.
Following the insight of Dowty’s (1991) theory of Proto-Roles, I will propose analytical representations
of verbal arguments based on semantically well-founded, grammatically relevant meaning components
entailed by the semantics of predicates (Proto-Role entailments). Finally, section 4 presents a study in
which lexical entailments are marked in a corpus in accordance with the proposed schema. General
syntax-semantics mappings are extracted from the annotated data and are formalised in abstract classes
which readily encode generalisations concerning linking to syntactic form.

2 Corpora with Semantic Roles and Related Work

Semantically annotated corpora currently available for English implement two distinct approaches to the
prickly notion of semantic role. The Proposition Bank (PropBank) (Kingsbury et al., 2002) is a one
million word corpus in which predicate-argument relations are hand-annotated for every occurrence of
every verb in the Wall Street Journal part of the Penn Treebank (Marcus et al., 1994). Verb senses are
distinguished informally on the basis of semantic as well as syntactic criteria. The semantic arguments
of a verb are numbered sequentially. PropBank uses a common set of role labels (Arg0 up to Arg5) for
all predicators, but these labels are defined on a per-verb basis, i.e. they have verb-specific meanings.
Example PropBank annotations:

(3) a. [Arg0 John] broke [Arg1 the window] [Arg2 with a rock].
b. [Arg0 John] broke [Arg1 the window] [Arg3 into a million pieces].
c. [Arg1 The window] broke [Arg3 into a million pieces].

(4) [Arg0 Blue-chip consumer stocks] provided [Arg1 a lift] [Arg2 to the industrial average].

(5) In addition, [Arg0 the bank] has an option to buy [Arg1 a 30% stake in BIP] [Arg2 from Societe
Generale] [ArgM−TMP after Jan.1, 1990] [Arg3 at 1,015 francs a share].2

As illustrated in (3), argument labels are consistent across alternate syntactic patterns of a given pred-
icator in a given sense. However, PropBank refrains from formalising the semantics of the role labels
and does not ensure their coherence across verbs. This is particularly clear with higher numbered labels,

2ArgM-TMP indicates a temporal adjunct modifier.
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which correspond to distinct types of participants: Arg2 marks an Instrument for break (3), a Benefactive
for provide (4), and a Source for buy (5). Lower-numbered labels denote various roles as well, but they
are less arbitrary across verbs: Arg0 corresponds to traditional Agents, Experiencers, certain types of
Theme, etc. which surface as subjects of transitive verbs and a class of intransitives called unergatives;
Arg1, on the other hand, is assigned to objects of transitive verbs and subjects of unaccusatives and is the
equivalent of traditional Patients, Themes, etc.

While the PropBank corpus enables empirical insight into a variety of linguistic phenomena (e.g.
variations in the grammatical expression of arguments) providing useful frequency information for the
uses of predicators, it does not lend itself to extraction of a principled linguistic knowledge base with
semantic generalisations across predicates. Inasmuch as no consistent mapping is ensured between a
label and a semantic role, the argument labels result seriously overloaded across verbs. This explains why
role recognition models have particularly poor performance in assigning the labels Arg2-Arg5. In fact, an
attempt is currently made to map PropBank argument labels to semantically coherent roles specified by
VerbNet (Kipper et al., 2000) (i.e. a broad-coverage verb lexicon based on Levin’s (1993) classification
of English verbs according to shared meaning and behaviour). Even though VerbNet specifies a small list
of abstract roles (23 in total) which are intended to support generalisations, these roles are not defined as
global primitives, but are meaningful only within verb classes. Because mappings of labels to semantic
roles with class-specific interpretations would lead to very sparse data, argument labels are subdivided
into groupings of VerbNet roles. The latter are created manually on the basis of analysis of argument
use.3 The subdivided (more coherent) PropBank labels perform better for semantic role labelling (Loper
et al., 2007).

A different paradigm for semantic role annotation is put forth by FrameNet. The Berkeley FrameNet
project (Baker et al., 1998) is creating an online lexical database containing semantic descriptions of
words based on Fillmore’s (1985) theory of frame semantics. The basic unit of analysis is the semantic
frame, i.e. a schematic representation of a stereotypical scene or situation. Each frame is associated
with a set of predicates (including verbs, nouns, and adjectives) and a set of semantic roles (called Frame
Elements, FEs) encoding the participants and props in the designated scene. FrameNet includes manually
annotated example sentences from the British National Corpus incorporating additional layers of phrase
structure and grammatical function annotation. It also includes two small corpora of full-text annotation
intended to facilitate statistical analysis of frame-semantic structures. Currently it contains more than 960
frames covering more than 11,600 lexical items exemplified in more than 150,000 annotated sentences.
The Judgment frame evoked by admire in (1) is shown in Table 3.

Frame: JUDGMENT
Definition A Cognizer makes a judgment about an Evaluee. The judgment may

be positive (e.g. respect) or negative (e.g. condemn) and this infor-
mation is recorded in the semantic types Positive and Negative on the
Lexical Units of this frame. There may be a specific Reason for the
Cognizer’s judgment, or there may be a capacity or Role in which the
Evaluee is judged.

FEs Cognizer: [The boss] appreciates you for your diligence.
Evaluee: The boss appreciates [you] for your diligence.
Expressor: She viewed him with an appreciative [gaze].
Reason: I admire you [for your intellect].

Predicates accolade.n, accuse.v, admiration.n, admire.v, admiring.a, applaud.v,
appreciate.v, appreciation.n, appreciative.a, approbation.n, approv-
ing.a, blame.n, blame.v, boo.v, ...

Table 1: The Judgment frame
3This endeavour is part of the SemLink project which aims at developing computationally explicit connections between

lexical semantic resources (PropBank, VerbNet, FrameNet, WordNet). The idea is to combine the advantages of these resources
and overcome their limitations by bridging the complementary lexical information they offer. In a related vein, the LIRICS
(i.e. Linguistic Infrastructure for Interoperable Resources and Systems) project has recently evaluated several approaches for
semantic role annotation (PropBank, VerbNet, FrameNet, among others) aiming to propose ISO ratified standards for semantic
representation that will enable the exchange and reuse of (multilingual) language resources (Petukhova and Bunt, 2008).
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FrameNet avoids the difficulties of attempting to pin down a small set of general roles. Instead Frame
Elements are defined locally, i.e. in terms of frames. Frames are situated in semantic space by means
of directed (asymmetric) relations. Each frame-to-frame relation associates a less dependent or more
general frame (Super frame) with a more dependent or less general one (Sub frame). The hierarchical
organisation of frames along with FE identities or analogs across frames are intended to enable the for-
mulation of generalisations concerning the combinatorial properties (valences) of predicates. In practice,
however, the frame hierarchy turns out to be somewhat complicated. Inheritance (i.e. the strongest se-
mantic relation and the most plausible to propagate valence information across frames) is conditioned on
complex sets of semantic components underlying frame definitions, ranging from FE membership and
relations to other frames to relationships among FEs and Semantic Types on frames and FEs.4 This kind
of frame dependence based on fine-grained semantic or ontological distinctions is doomed to miss argu-
ment structure commonalities in predicates evoking frames that are related at a more abstract, essentially
structural semantic level. Section 4 includes a concrete example of the complications in generalising
valence information across FrameNet frames.

Researchers working in the FrameNet paradigm have proposed different approaches for abstract-
ing over the properties of individual predicators and increasing the size of training data for semantic
role labelling systems. Gildea and Jurafsky (2002) attempt to generalise the behaviour of semantically
related predicates experimenting with a small set of abstract semantic roles mapped to FrameNet roles.
Frank (2004) discusses the potential of applying various generalisation ‘filters’ to corpus-induced syntax-
semantics mappings for abstraction of a general linguistic knowledge base. The generalisations proposed
by Frank are intended to apply within frames but not across frames. Baldewein et al. (2004) have trained
semantic role classifiers re-using training instances of roles that are similar to the target role. As sim-
ilarity measures, they use the FrameNet hierarchy, peripheral roles of FrameNet and clusters of roles
constructed automatically. Matsubayashi et al. (2009) also explore various machine learning features for
generalising semantic roles in FrameNet, namely role hierarchy, human-understandable descriptors of
Frame Elements, Semantic Types of filler phrases, and mappings of FrameNet roles to roles of VerbNet.
The experimental result of the role classification using these generalisation features shows significant
improvements in the system. This is due to the fact that role generalisations can form a remedy for the
severe problem of sparse data which is inherent in lexical semantic corpus annotation. Data sparseness,
i.e. the insufficient coverage of the range of predicate senses and constructions within sensible sizes of
manually annotated data, is a bottleneck both for acquisition of linguistic knowledge for the semantic
lexicon and for automated techniques for semantic role assignment.

3 An Abstract Semantic Basis for the Representation of Participant Roles

From the presentation of different annotation projects it becomes evident that semantic role annotation
is a complicated task whose product is deeply influenced by its initial design philosophy and underlying
criteria.5 Among these criteria the notion of semantic role itself is central. PropBank uses general
role labels that lack semantic coherence. VerbNet and FrameNet, on the other hand, specify coherent
roles at a more fine-grained level (i.e. roles with class-specific or frame-specific interpretations). In this
section, I consider the linguistic contours of the concept of semantic role proposing an annotation schema
based upon theoretically well-founded role concepts which meet the requirements of both generality and
coherence. This schema is intended at enabling the formulation of a general syntax-semantics interface
suitable for modelling the relations of predicates in terms of combinatorial features.

Espousing and extending Dowty’s (1991) Proto-Role hypothesis, I propose to associate arguments of
predicates with properties entailed by the semantics of predicates.6 Mappings of entailments to syntactic

4Semantic Types encode information that is not representable in terms of frames and FE hierarchies, e.g. basic typing
of fillers of FEs referring to some (external) ontological classification, descriptions of aspects of semantic variation between
lexical units such as the Positive and Negative types in the Judgment frame above, etc.

5This point is discussed in detail by Ellsworth et al., 2004.
6The term entailment is used in the standard logical sense according to which one formula entails another if in every possible
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constituents can be many-to-one. That is, an argument can be marked with one or more properties
necessarily entailed by the meaning of the predicator.7 Prepositional complements are also marked with
verbal entailments to which prepositions may contribute more specific content. In this paper, I will make
no attempt to formalise the content added by prepositions; prepositional semantics is represented solely
in terms of the common entailment basis it shares with verbal meaning.

Each Proto-Role entailment indicates a grammatically pervasive concept, i.e. a property having direct
effect on the grammatical behaviour of predicates. It is defined in terms of an abstract semantic relation
underlying the lexical meaning of the predicate. Five such relations are identified in terms of which
entailment-based representations are specified: Notion, Causation, Motion, Possession, Conditioning.
Note that contrary to mere ontological labels, entailment-based representations encode structural char-
acterisations of the semantics of arguments. Consider, for instance, the sentence in (1), repeated here as
(6):

(6) [Cognizer I] admired [Evaluee him] [Reason for his bravery and his cheerfulness].

A structural representation of the meaning of this construction will explicitly encode the relationships
between each of the arguments of admire, i.e. between the NP I and the NP him, between the NP him
and the PP for his bravery and his cheerfulness, and between the NP I and the PP for his bravery and
his cheerfulness. By contrast, the FrameNet roles shown above do not model the fact that the semantic
content of an Evaluee requires a Cognizer, or that a Reason requires both a Cognizer and an Evaluee.
The view that the semantic properties underlying lexical meaning are relational in nature (i.e. they are
not to be conceived entirely independently of one another) has been advocated by several researchers,
among others Wechsler (1995), Pinker (1989), Jackendoff (1990), and Davis (2001), on whose work I
build.

In the rest of this section, I define a set of recurring entailments which underlie the semantics of a
range of verbs displaying various syntactic patterns. Note that this set can be extended on the basis of
additional primitive meaning components of the sort described above, covering the semantics of broad
verb classes.

(7) [Conceiver The other two] pondered [Conceived over this morsel] as they tramped along behind
him.8

(8) [Conceiver,Intentional They] tested [Conceived the software] [Conceived bsoa for similar errors].

(9) [Conceiver,Intentional The government] had reneged [Conceived on promises to give them land].

(10) [Conceiver He] likes stereotyping [Conceived people] [Conceived bsoa by appearance].

(11) [Conceiver The jury] has found out [Conceived the truth] [Conceived bsoa about the suspect].

(12) [Conceiver The court] categorised [Conceived,Entity the issue] [Conceived,Property as a collateral
question].

situation (in every model) in which the first is true, the second is also true. For linguistic predicates, in particular, an entailment
(or lexical entailment) is an analytic implication following from the meaning of the predicate in question.

7The presence of ‘necessarily’ in this sentence is somewhat redundant, in that its meaning is incorporated by the notion
of entailment. I insist, however, on emphasising it to indicate that semantic properties that are accidentally associated with
the meaning of a particular use of a verb will not be annotated. Dowty points out that entailments of the predicate must be
distinguished from what follows from any one sentence as a whole (e.g. entailments that may arise from NP meanings) (Dowty,
1991:572, footnote 16). For example, in the sentence Mary slapped John, assuming that John is a human entity, it follows
from the meaning of the sentence that John will perceive something as a result of the action of slapping. But this ‘entailment’
is not intrinsically tied to the meaning of slap, because the sentences Mary slapped the table or Mary slapped the corpse are
also felicitous. That is, sentience of the direct object is not an essential component of the semantics of slap, in the way it is
for a verb like awaken. The sentences Mary awakened the table and Mary awakened the corpse are clearly anomalous. True
entailments of predicators (which are the ones that will be annotated) must be detectable in every possible environment in
which the predicator is used.

8The examples used to illustrate the proposed schema are from the British National Corpus. Some of them are slightly
modified for reasons of conciseness.
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(13) [Conceiver Opposition members] accuse [Conceived,Entity the council] [Conceived,Property of acting
purely ideologically].

The predicates in (7)-(13) are represented in terms of a Notion relation. That is, they involve a
Conceiver who is entailed to have a notion or perception of a Conceived participant (while the reverse
entailment does not necessarily go through).9 In situation types in which a Conceiver is entailed to
have a notion of more than one participant, Conceived arguments are distinguished on the basis of their
salience in the overall semantics of the predicate. For instance, test (8) intuitively lexicalises a dyadic re-
lation between a Conceiver (tester) and a Conceived (tested) entity. A sought entity denoted by a for-PP
is represented as part of a secondary Notion relation situated at the background of the primary (testing)
relation. Conceived entities that are peripheral to the essential relation lexicalised by the predicate are as-
sociated with a more specific property termed Conceived background state of affairs (Conceived bsoa).
These arguments receive less focus in the meaning of the predicate, in a sense that they are not absolutely
necessary to understand the predicate’s meaning. The representation of test (8), stereotype (10), and find
out (11) in terms of two Notion relations, one of which is treated as more salient, reifies the concept
of relative significance of Proto-Role properties in the verbal semantics. This concept is related to the
weighting of entailments in the overall semantics of a verb, which plays a critical role in determining the
syntactic patterns in which the verb appears (i.e. the grammatical realisations of its arguments).10

The verbs in (8) and (9) involve an additional entailment of Intentionality. This is used to mark
entities characterised by conscious choice, decision, or control over the course of inherently intentional
actions. Intentional participants necessarily have a notion/perception of some event participant(s). The
annotations in (12) and (13) include the Entity and Property tags which are intended to distinguish
Conceived arguments in terms of a predicative relation assigned in the Conceiver’s mental model. The
Property label corresponds to a representation of the form P(x) denoting a property P which is predicated
of some object x.

The entailments of Notion are not applicable in the semantics of the predicates in (14)-(15) below.
These verbs refer to situations with affected participants and are described in terms of an abstract relation
of Causation. In the denoted events, a Causer is entailed to affect some entity (the Causee) either phys-
ically or mentally. Causally affected participants sometimes undergo radical changes in their (physical
or mental) state, which are identified in terms of a readily observable transition from a source to a final
(result) state, as shown in (15).

(14) [Causer Diet] influences [Causee disease].

(15) [Causer The sun] has changed [Causee,Change of state her hair color] [Source state from red]
[End state to blue].

Verbs as in (16)-(17) are represented in terms of a Motion relation involving a Moving entity (i.e.
an object entailed to change location) and Stationary reference frame. Locations at the start, end, or
intermediate points of the stationary frame are tagged with the labels Path source, Path goal, and Path,
respectively.

(16) [Moving The car] passed [Stationary the railway station].

(17) [Moving The river] flowed silently [Path through the forest].

Finally, verbs such as own, possess, acquire, lack, etc. are treated in terms of a Possession relation
involving a Possessor and an entity entailed to be Possessed (18).

9The Notion relation, as defined by Wechsler (1995), essentially reconstructs the entailment of sentience, which was pro-
posed by Dowty (1991).

10Arguments identified as conceived bsoas have many of the syntactic properties of so-called semantic adjuncts. However,
I refrain from invoking an argument versus adjunct division, in that it is known to involve serious theoretical pitfalls. Instead
I classify conceived participants on the basis of the concept of importance of entailments, which lies exactly at the syntax-
semantics interface. This concept is defined in terms of the lexicalised event rather than the real-world event that traditional
analyses of adjuncthood appeal to.
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(18) [Possessor This house] lacks [Possessed a guest room].

Verbs of caused Motion (19) or caused Possession (20) are represented in terms of both Causation and
Motion/Possession, i.e. as meaning ‘cause to move’ (set to motion) or ’cause to possess’. This analysis
posits a main (causal) event and a caused sub-event. The entailments associated with the latter are marked
in square brackets.

(19) [Causer Lucie] threw [Causee,[Moving] him] [[Path source] from the parapet of a bridge] [[Path goal]

into deep water].

(20) [Causer He] handed [[Possessed] the letter] [[Possessor] to Weir], who nodded.

Proto-Role entailments are defined in terms of inherently asymmetric semantic relations involving
fixed role positions. Each of these relations (with the exception of Motion) can be thought of as instance
of a more general relation entailing that properties of an entity β are dependent on an entity α. For
example, a conceived entity in a Notion relation depends on the existence of a conceiver (it is taken to be
within the scope of the conceiver’s beliefs). An affected or possessed object in a causation or possession
relation depends on the existence of some causer or possessor, respectively. I refer to this relation as
Conditioning relation and associate it with appropriate Proto-Role properties capturing the semantics of
a broad range of verbs for which none of the entailments specified so far seems to hold. These verbs
conform to the basic transitivity pattern that motivated Dowty’s Proto-Role hypothesis. Below are some
characteristic examples:

(21) [Condition This game] demands [Conditioned great skill].

(22) [Condition Code 1425] bans [Conditioned large trucks in tunnels].

(23) [Condition The adjective ‘beautiful’] denotes [Conditioned a quality which can be found in many
different objects].

(24) [Condition Diversity] characterises [Conditioned the sociolinguistics domain].

A Conditioning relation encodes the asymmetries in such predicators in terms of the underlying
entailment that the properties of a participant α impose a condition on properties of a participant β.
In each of the sentences above we can conclude something about the object participant (e.g. that it is
necessary, illegal, or linguistically expressed) on the basis of the subject referent (i.e. the characteristics
of the game, the regulations specified by the code, the usage of the adjective ‘beautiful’). By contrast,
no property of the subject referent is necessarily conditioned on the object: the semantics of ban, for
example, does not allow us to characterise code 1425 as fair/unfair, severe/lax, complete/incomplete,
new/old, etc. on the basis of the object NP ‘large trucks in tunnels’; similarly, we cannot infer the precise
meaning of the word ‘beautiful’ or whether it is a verb or a noun or an adjective on the basis of the
content of the NP ‘a quality which can be found in many different objects’. A more precise definition
of the Conditioning relation could state that the intrinsic (i.e. invariable) properties of a participant α
determine or condition some non-intrinsic (i.e. variable or event-dependent) property of a participant β
while the converse entailment does not go through. In (24), for example, the sociolinguistics domain
is associated with a property of being diverse whereas the intrinsic properties of the domain have no
significance for the definition of ‘diversity’ or what this notion may characterise.

4 Formulation of a General Syntax-Semantics Interface

A preliminary study has been carried out mapping state-of-the-art semantic role annotations to lexical
entailment representations. In particular, a portion of the FrameNet corpora has been annotated with
Proto-Role properties by a single annotator. The study focuses on a set of English verbs selected from
250 random FrameNet frames. For each verb in these frames, collections of example annotated sentences
as well as sentences from the FrameNet full-text annotation corpora (where available) were extracted.
More than 900 lexical units were considered in ∼20K sentences. Proto-Role entailments were annotated
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on top of FrameNet’s syntactic annotations in accordance with the schema sketched out above. The
annotations were produced semi-automatically following a three-stage procedure: (i) mapping Frame
Elements (FEs) to entailments at a frame level (ii) automatically adding this information to the data
in a new annotation layer, (iii) manually correcting the novel annotations by examining the argument
structures of individual predicators for finer semantic distinctions.

From the newly annotated data mappings of entailments to grammatical categories were acquired.
The syntactic realisations of Proto-Role properties were found to readily generalise over combinatorial
features of verbs pertaining to various FrameNet frames. Valence information can be formally rendered
in entailment-based classes called Lexicalisation Types (L-Types) abstracting away from the semantics
of predicators. L-Types are defined on the basis of grammatically relevant meaning components and
encode linking generalisations cutting across FrameNet frames.

For instance, predicates such as believe and desire (evoking the frames Religious Belief and Desir-
ing, respectively) involve arguments that are equivalent in terms of entailments, as illustrated in (25)-(26)
below. Hence they are categorised in the Notion L-Type shown in Table 2. Table 2 includes the corre-
spondences between combinations of entailments and FrameNet Frame Elements.

Notion L-Type Religious belief Desiring
Conceiver Believer Experiencer
Conceived, (Entity) Element Focal participant
Conceived bsoa, Property Role Role of focal participant

Table 2: Mappings between Notion L-Type and FrameNet frames

(25) If [Conceiver he] believes [Conceived,Entity in Jesus] [Conceived bsoa,Property as his Saviour], he
can be baptised.

(26) [Conceiver He] wanted [Conceived,Entity Smith] [Conceived bsoa,Property as the new producer].

In a similar fashion, operate, research, and ratify can be grouped together in a L-Type based on the
underlying property of Intentionality. Examples (27)-(28) show that these verbs share common valence
patterns despite the differences in the definition of the frames they evoke (Using, Research and Rati-
fication): Role and Purpose are core Frame Elements in the Using frame, while Purpose is peripheral
in Research and Ratification. Research and Ratification have no Role FE (but this kind of argument is
clearly present in the constructions exemplified in (28b-c).

Intentionality L-Type Using Research Ratification
Conceiver, Intentional Agent Researcher Ratifier
Conceived, (Entity) Instrument Question Proposal
Conceived bsoa, Property Role
Conceived bsoa, Intention Purpose Purpose Purpose

Table 3: Mappings between Intentionality L-Type and FrameNet frames

(27) a. [Conceiver,Intentional We] operate [Conceived a menu] [Conceived bsoa,Intention to get the best
out of rations].

b. [Conceiver,Intentional We] research [Conceived this fungus] [Conceived bsoa,Intention to fight
aliments in tobacco and tomato fields].

c. [Conceiver,Intentional They] had to ratify [Conceived the amendments] [Conceived bsoa,Intention

to be readmitted to the Union].

(28) a. There has been a long debate as to whether [Conceived,Entity the Severn Mill] was operated
[Conceived bsoa,Property as a tide mill].

b. [Conceived,Entity Thin films] are being researched [Conceived bsoa,Property as a potential medium
for integrated optical circuits].
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c. [Conceived,Entity Such agreements] may be ratified [Conceived bsoa,Property as being in the
public interest].

In the same Intentionality L-Type we also categorise verbs such as carry out and visit evoking the
frames Intentionally act and Visiting. It is important to note that despite the argument structure sim-
ilarities of these predicators, it is not possible to establish an identity link between the Act FE of the
Intentionally act frame and the Entity FE of Visiting in terms of the frame hierarchy, because the FEs
are associated with different Semantic Types in the corresponding frame definitions, i.e. Act is of type
State of affairs whereas Entity is of type Physical object. The examples (29)-(30) illustrate the common
use of these verbs in the transitive construction. The (a) sentences show the FE annotation while the (b)
sentences show the annotated entailments.

(29) a. [Agent They] had carried out [Act 113 uranium conversion experiments].
b. [Conceiver,Intentional They] had carried out [Conceived 113 uranium conversion experiments].

(30) a. [Agent You] have to visit [Entity your parents] every once in a while.
b. [Conceiver,Intentional You] have to visit [Conceived your parents] every once in a while.

Predicates grouped together in L-Types have some but not necessarily all their grammatical prop-
erties in common. This is in accordance with the fact that L-Types are essentially semantically-driven
modelling recurring, abstract features in the semantics of predicators while disregarding ephemeral prop-
erties as well as lexical idiosyncrasies.11 In addition to the set of entailments discussed in the previous
section, L-Types may also incorporate more fine-grained properties that are clearly relevant to linking.
For instance, verbs lexicalising a Desiring situation were found with prepositional complements intro-
duced by for, after, to, towards, of, or over (e.g. long for, hanker after, aspire to, pine over, etc.), but
not on, upon, at, or about (like other Notion verbs, such as ponder, muse, think, etc.). Inasmuch as a
Desiring relation is identified as a recurring concept systematically associated with a particular gram-
matical relation (e.g. a for-PP), it can be represented in a separate L-Type inheriting from the Notion
L-Type presented previously.12 An initial classification like the one exemplified above captures general
conditions which determine possible associations between the semantics of predicators and grammati-
cal relations realising their arguments (e.g. the fact that a conceived entity can only surface in subject
position in a passive sentence). It can be extended and refined on the basis of more specific semantic re-
lations. Moreover, L-Types can be organised in hierarchical structures. They can form the upper portion
of a principled hierarchy of classes encoding successively broader levels of generalisations concerning
argument linking.

This study indicated that a small number of Lexicalisation Types abstracts over a wide range of
FrameNet frames.13 More precisely, in the annotated dataset 48 L-Types were identified based on various
combinations of entailments: 9 Notion Types, 7 Intentionality Types, 10 Causation Types, 7 Commu-
nication (Caused Notion) Types, 7 Motion (including Caused Motion) Types, 7 Possession (including
Caused Possession) Types, and 1 Conditioning Type. These Types readily abstract over associations of
semantic properties and grammatical functions attested in over 200 FrameNet frames.14 In the FrameNet
paradigm, L-Types can be modelled as non-lexicalised frames specifying syntactic mapping constraints.

11L-Types crucially differ from verb classes in VerbNet, which are based on a rigorous commitment to syntax. This commit-
ment yields fine-grained distinctions that very often split semantically coherent classes. In fact, L-Types abstract over VerbNet
classes encoding broader levels of linking generalisations.

12For-PPs are indeed associated with a desiderative sense with a wide range of verbs in various argument positions: ‘He
desperately hunted for a new job ’. ‘They searched the ground for traces’. ‘John ran for cover when it started to rain’.

13Note that inasmuch as L-Types abstract over both VerbNet classes and FrameNet frames, they can also be useful for
combining the two resources.

14About 30 frames contained predicates for which none of our entailments seemed to hold. Most of these verbs (e.g. re-
semble, adjoin, concern, fit, suit, etc.) involve what Dowty (1991) called perspective-dependent semantic roles traditionally
described with labels such as Figure and Ground. The lexicalisation patterns of these verbs have been shown to depend on prag-
matic or discourse factors rather than intrinsic semantic properties. Such predicates display great variability in their argument
realisation options and are outside the scope of this study.
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Mappings between FrameNet frames and L-Types can be stated by means of a separate relation in ad-
dition to the frame relations currently specified by FrameNet. A relation generalising the combinatorial
properties of lexical items across frames would simplify the picture of the frame hierarchy, in that it
would essentially decouple purely lexical semantic information (encoded by existing frame-to-frame re-
lations) from information pertaining exactly to the interface of syntax and semantics. In future work, our
intention is to test whether the proposed semantic role schema and the attested L-Types can be useful for
dealing with the sparse data problem and increasing the performance of semantic role labelling systems.

References
[1] Baker, Collin F., Charles J. Fillmore, and John B. Lowe. 1998. The Berkeley FrameNet project. In Proceedings of the COLING-ACL.

Montreal, Canada.
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Abstract

Coecke, Sadrzadeh, and Clark [3] developed a compositional model of meaning for distributional
semantics, in which each word in a sentence has a meaning vector and the distributional meaning of the
sentence is a function of the tensor products of the word vectors. Abstractly speaking, this function is the
morphism corresponding to the grammatical structure of the sentence in the category of finite dimensional
vector spaces. In this paper, we provide a concrete method for implementing this linear meaning map,
by constructing a corpus-based vector space for the type of sentence. Our construction method is based
on structured vector spaces whereby meaning vectors of all sentences, regardless of their grammatical
structure, live in the same vector space. Our proposed sentence space is the tensor product of two noun
spaces, in which the basis vectors are pairs of words each augmented with a grammatical role. This
enables us to compare meanings of sentences by simply taking the inner product of their vectors.

1 Background

Coecke, Sadrzadeh, and Clark [3] develop a mathematical framework for a compositional distributional
model of meaning, based on the intuition that syntactic analysis guides the semantic vector composition.
The setting consists of two parts: a formalism for a type-logical syntax and a formalism for vector space
semantics. Each word is assigned a grammatical type and a meaning vector in the space corresponding to
its type. The meaning of a sentence is obtained by applying the function corresponding to the grammatical
structure of the sentence to the tensor product of the meanings of the words in the sentence. Based on the
type-logic used, some words will have atomic types and some compound function types. The compound
types live in a tensor space where the vectors are weighted sums (i.e. superpositions) of the pairs of bases
from each space. Compound types are “applied” to their arguments by taking inner products, in a similar
manner to how predicates are applied to their arguments in Montague semantics.

For the type-logic we use Lambek’s Pregroup grammars [7]. The use of pregoups is not essential, but
leads to a more elegant formalism, given its proximity to the categorical structure of vector spaces (see [3]).
A Pregroup is a partially ordered monoid where each element has a right and left cancelling element, referred
to as an adjoint. It can be seen as the algebraic counterpart of the cancellation calculus of Harris [6]. The
operational difference between a Pregroup and Lambek’s Syntactic Calculus is that, in the latter, the monoid
multiplication of the algebra (used to model juxtaposition of the types of the words) has a right and a left
adjoint, whereas in the pregroup it is the elements themselves which have adjoints. The adjoint types are
used to denote functions, e.g. that of a transitive verb with a subject and object as input and a sentence as
output. In the Pregroup setting, these function types are still denoted by adjoints, but this time the adjoints
of the elements themselves.

As an example, consider the sentence “dogs chase cats”. We assign the type n (for noun phrase) to “dog”
and “cat”, and nrsnl to “chase”, where nr and nl are the right and left adjoints of n and s is the type of a
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(declarative) sentence. The type nrsnl expresses the fact that the verb is a predicate that takes two arguments
of type n as input, on its right and left, and outputs the type s of a sentence. The parsing of the sentence is
the following reduction:

n(nrsnl)n ≤ 1s1 = s

This parse is based on the cancellation of n and nr, and also nl and n; i.e. nnr ≤ 1 and nln ≤ 1 for 1
the unit of juxtaposition. The reduction expresses the fact that the juxtapositions of the types of the words
reduce to the type of a sentence.

On the semantic side, we assign the vector space N to the type n, and the tensor space N ⊗S⊗N to the
type nrsnl. Very briefly, and in order to introduce some notation, recall that the tensor space A⊗B has as a
basis the cartesian product of a basis of A with a basis of B. Recall also that any vector can be expressed as
a weighted sum of basis vectors; e.g. if (−→v1 , . . . ,−→vn) is a basis of A then any vector −→a ∈ A can be written as
−→a =

∑
iCi
−→vi where each Ci ∈ R is a weighting factor. Now for (−→v1 , . . . ,−→vn) a basis of A and (

−→
v′1 , . . . ,

−→
v′n)

a basis of B, a vector −→c in the tensor space A⊗B can be expressed as follows:
∑

ij

Cij (
−→vi ⊗

−→
v′j )

where the tensor of basis vectors −→vi ⊗
−→
v′j stands for their pair (−→vi ,

−→
v′j ). In general −→c is not separable into

the tensor of two vectors, except for the case when −→c is not entangled. For non-entangled vectors we can
write −→c = −→a ⊗−→b for −→a =

∑
iCi
−→vi and

−→
b =

∑
j C
′
j

−→
v′j ; hence the weighting factor of −→c can be obtained

by simply multiplying the weights of its tensored counterparts, i.e. Cij = Ci × C ′j . In the entangled case
these weights cannot be determined as such and range over all the possibilities. We take advantage of this
fact to encode meanings of verbs, and in general all words that have compound types and are interpreted as
predicates, relations, or functions. For a brief discussion see the last paragraph of this section. Finally, we
use the Dirac notation to denote the dot or inner product of two vectors 〈−→a | −→b 〉 ∈ R defined by

∑
iCi×C ′i.

Returning to our example, for the meanings of nouns we have
−−→
dogs,−→cats ∈ N , and for the meanings of

verbs we have
−−−→
chase ∈ N ⊗ S ⊗N , i.e. the following superposition:

∑

ijk

Cijk (
−→ni ⊗−→sj ⊗−→nk)

Here −→ni and −→nk are basis vectors of N and −→sj is a basis vector of S. From the categorical translation method
presented in [3] and the grammatical reduction n(nrsnl)n ≤ s, we obtain the following linear map as the
categorical morphism corresponding to the reduction:

εN ⊗ 1s ⊗ εN : N ⊗ (N ⊗ S ⊗N)⊗N → S

Using this map, the meaning of the sentence is computed as follows:
−−−−−−−−−−→
dogs chase cats = (εN ⊗ 1s ⊗ εN )

(−−→
dogs⊗−−−→chase⊗−→cats

)

= (εN ⊗ 1s ⊗ εN )


−−→dogs⊗


∑

ijk

Cijk(
−→ni ⊗−→sj ⊗−→nk)


⊗−→cats




=
∑

ijk

Cijk〈
−−→
dogs | −→ni〉−→sj 〈−→nk | −→cats〉

The key features of this operation are, first, that the inner-products reduce dimensionality by ‘consuming’
tensored vectors and by virtue of the following component function:

εN : N ⊗N → R :: −→a ⊗−→b 7→ 〈−→a | −→b 〉
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Thus the tensored word vectors
−−→
dogs ⊗ −−−→chase ⊗ −→cats are mapped into a sentence space S which is common

to all sentences regardless of their grammatical structure or complexity. Second, note that the tensor product−−→
dogs⊗−−−→chase⊗−→cats does not need to be calculated, since all that is required for computation of the sentence
vector are the noun vectors and the Cijk weights for the verb. Note also that the inner product operations
are simply picking out basis vectors in the noun space, an operation that can be performed in constant
time. Hence this formalism avoids two problems faced by approaches in the vein of [9, 2], which use
the tensor product as a composition operation: first, that the sentence meaning space is high dimensional
and grammatically different sentences have representations with different dimensionalities, preventing them
from being compared directly using inner products; and second, that the space complexity of the tensored
representation grows exponentially with the length and grammatical complexity of the sentence. In constrast,
the model we propose does not require the tensored vectors being combined to be represented explicitly.

Note that we have taken the vector of the transitive verb, e.g.
−−−→
chase, to be an entangled vector in the

tensor space N ⊗ S ⊗N . But why can this not be a separable vector, in which case the meaning of the verb
would be as follows:

−−−→
chase =

∑

i

Ci
−→ni ⊗

∑

j

C ′j
−→sj ⊗

∑

k

C ′′k
−→nk

The meaning of the sentence would then become σ1σ2
∑

j C
′
j
−→sj for σ1 =

∑
iCi〈
−−→
dogs | −→ni〉 and σ2 =∑

k C
′′
k 〈
−→cats | −→nk〉. The problem is that this meaning only depends on the meaning of the verb and is

independent of the meanings of the subject and object, whereas the meaning from the entangled case,
i.e. σ1σ2

∑
ijk Cijk

−→sj , depends on the meanings of subject and object as well as the verb.

2 From Truth-Theoretic to Corpus-based Meaning

The model presented above is compositional and distributional, but still abstract. To make it concrete, N and
S have to be constructed by providing a method for determining the Cijk weightings. Coecke, Sadrzadeh,
and Clark [3] show how a truth-theoretic meaning can be derived in the compositional framework. For
example, assume that N is spanned by all animals and S is the two-dimensional space spanned by −→true and−−→
false. We use the weighting factor to define a model-theoretic meaning for the verb as follows:

Cijk
−→sj =

{−→true chase(−→ni ,−→nk) = true ,
−−→
false o.w.

The definition of our meaning map ensures that this value propagates to the meaning of the whole sentence.
So chase(

−−→
dogs,

−−→
cats) becomes true whenever “dogs chase cats” is true and false otherwise. This is exactly

how meaning is computed in the model-theoretic view on semantics. One way to generalise this truth-
theoretic meaning is to assume that chase(−→ni ,−→nk) has degrees of truth, for instance by defining chase as a
combination of run and catch, such as:

chase =
2

3
run+

1

3
catch

Again, the meaning map ensures that these degrees propagate to the meaning of the whole sentence. For a
worked out example see [3]. But neither of these examples provide a distributional sentence meaning.

Here we take a first step towards a corpus-based distributional model, by attempting to recover a meaning
for a sentence based on the meanings of the words derived from a corpus. But crucially this meaning goes
beyond just composing the meanings of words using a vector operator, such as tensor product, summation
or multiplication [8]. Our computation of sentence meaning treats some vectors as functions and others as
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function arguments, according to how the words in the sentence are typed, and uses the syntactic structure
as a guide to determine how the functions are applied to their arguments. The intuition behind this approach
is that syntactic analysis guides semantic vector composition.

The contribution of this paper is to introduce some concrete constructions for a compositional distri-
butional model of meaning. These constructions demonstrate how the mathematical model of [3] can be
implemented in a concrete setting which introduces a richer, not necessarily truth-theoretic, notion of natural
language semantics which is closer to the ideas underlying standard distributional models of word meaning.
We leave full evaluation to future work, in order to determine whether the following method in conjunction
with word vectors built from large corpora leads to improved results on language processing tasks, such as
computing sentence similarity and paraphrase evaluation.

Nouns and Transitive Verbs. We take N to be a structured vector space, as in [4, 5]. The bases of N are
annotated by ‘properties’ obtained by combining dependency relations with nouns, verbs and adjectives. For
example, basis vectors might be associated with properties such as “arg-fluffy”, denoting the argument of
the adjective fluffy, “subj-chase” denoting the subject of the verb chase, “obj-buy” denoting the object of the
verb buy, and so on. We construct the vector for a noun by counting how many times in the corpus a word
has been the argument of ‘fluffy’, the subject of ‘chase’, the object of ‘buy’, and so on.

The framework in [3] offers no guidance as to what the sentence space should consist of. Here we take
the sentence space S to be N ⊗ N , so its bases are of the form −→sj = (−→ni ,−→nk). The intuition is that, for a
transitive verb, the meaning of a sentence is determined by the meaning of the verb together with its subject
and object.1 The verb vectors Cijk(

−→ni ,−→nk) are built by counting how many times a word that is ni (e.g. has
the property of being fluffy) has been subject of the verb and a word that is nk (e.g. has the property that it’s
bought) has been its object, where the counts are moderated by the extent to which the subject and object
exemplify each property (e.g. how fluffy the subject is). To give a rough paraphrase of the intuition behind
this approach, the meaning of “dog chases cat” is given by: the extent to which a dog is fluffy and a cat is
something that is bought (for the N ⊗N property pair “arg-fluffy” and “obj-buy”), and the extent to which
fluffy things chase things that are bought (accounting for the meaning of the verb for this particular property
pair); plus the extent to which a dog is something that runs and a cat is something that is cute (for the N ⊗N
pair “subj-run” and “arg-cute”), and the extent to which things that run chase things that are cute (accounting
for the meaning of the verb for this particular property pair); and so on for all noun property pairs.

Adjective Phrases. Adjectives are dealt with in a similar way. We give them the syntactic type nnl and
build their vectors in N ⊗N . The syntactic reduction nnln→ n associated with applying an adjective to a
noun gives us the map 1N ⊗ εN by which we semantically compose an adjective with a noun, as follows:

−−−−→
red fox = (1N ⊗ εN )(

−→
red⊗−→fox) =

∑

ij

Cij
−→ni〈−→nj |

−→
fox〉

We can view the Cij counts as determining what sorts of properties the arguments of a particular adjective
typically have (e.g. arg-red, arg-colourful for the adjective “red”).

Prepositional Phrases. We assign the type nrn to the whole prepositional phrase (when it modifies a noun),
for example to “in the forest” in the sentence “dogs chase cats in the forest”. The pregroup parsing is as
follows:

n(nrsnl)n(nrn) ≤ 1snl1n ≤ snln ≤ s1 = s

The vector space corresponding to the prepositional phrase will thus be the tensor space N ⊗ N and the
categorification of the parse will be the composition of two morphisms: (1S⊗εlN )◦(εrN⊗1S⊗1N⊗εrN⊗1N ).

1Intransitive and ditransitive verbs are interpreted in an analagous fashion; see §4.
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The substitution specific to the prepositional phrase happens when computing the vector for “cats in the
forest” as follows:

−−−−−−−−−−−−→
cats in the forest = (εrN ⊗ 1N )

(−→cats⊗−−−−−−−−→in the forest
)

= (εrN ⊗ 1N )

(
−→cats⊗

∑

lw

Clw
−→nl ⊗−→nk

)

=
∑

lw

Clw〈−→cats | −→nl〉−→nw

Here we set the weights Clw in a similar manner to the cases of adjective phrases and verbs with the counts
determining what sorts of properties the noun modified by the prepositional phrase has, e.g. the number of
times something that has attribute nl has been in the forest.

Adverbs. We assign the type srs to the adverb, for example to “quickly” in the sentence “Dogs chase cats
quickly”. The pregroup parsing is as follows:

n(nrsnl)n(srs) ≤ 1s1srs = ssrs ≤ 1s = s

Its categorification will be a composition of two morphisms (εrS ⊗ 1S) ◦ (εrN ⊗ 1S ⊗ εlN ⊗ 1S ⊗ 1S). The
substitution specific to the adverb happens after computing the meaning of the sentence without it, i.e. that
of “Dogs chase cats”, and is as follows:

−−−−−−−−−−−−−−−−−→
Dogs chase cats quickly = (εrS ⊗ 1S) ◦ (εrN ⊗ 1S ⊗ εlN ⊗ 1S ⊗ 1S)

(−−→
Dogs⊗−−−→chase⊗−→cats⊗−−−−→quickly

)

= (εrS ⊗ 1S)


∑

ijk

Cijk〈
−−→
dogs | −→ni〉−→sj 〈−→nk | −→cats〉 ⊗ −−−−→quickly




= (εrS ⊗ 1S)


∑

ijk

Cijk〈
−−→
dogs | −→ni〉−→sj 〈−→nk | −→cats〉 ⊗

∑

lw

Clw
−→sl ⊗−→sw




=
∑

lw

Clw

〈∑

ijk

Cijk〈
−−→
dogs | −→ni〉−→sj 〈−→nk | −→cats〉 | −→sl

〉
−→sk

The Clw weights are defined in a similar manner to the above cases, i.e. according to the properties the
adverb has, e.g. which verbs it has modified. Note that now the basis vectors −→sl and −→sw are themselves pairs
of basis vectors from the noun space, (−→ni ,−→nj). Hence, Clw(

−→ni ,−→nj) can be set only for the case when l = i
and w = j; these counts determine what sorts of properties the verbs that happen quickly have (or more
specifically what properties the subjects and objects of such verbs have). By taking the whole sentence into
account in the interpretation of the adverb, we are in a better position to semantically distinguish between
the meaning of adverbs such as “slowly” and “quickly”, for instance in terms of the properties that the verb’s
subjects have. For example, it is possible that elephants are more likely to be the subject of a verb which is
happening slowly, e.g. run slowly, and cheetahs are more likely to be the subject of a verb which is happening
quickly.

3 Concrete Computations

In this section we first describe how to obtain the relevant counts from a parsed corpus, and then give some
similarity calculations for some example sentence pairs.
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Let Cl be the set of grammatical relations (GRs) for sentence sl in the corpus. Define verbs(Cl) to be
the function which returns all instances of verbs in Cl, and subj (and similarly obj ) to be the function which
returns the subject of an instance Vinstance of a verb V , for a particular set of GRs for a sentence:

subj(Vinstance) =

{
noun if Vinstance is a verb with subject noun
εn o.w.

where εn is the empty string. We express Cijk for a verb V as follows:

Cijk =

{∑
l

∑
v∈verbs(Cl) δ(v, V )〈−−−−−→subj(v) | −→ni〉〈

−−−−→
obj(v) | −→nk〉 if −→sj = (−→ni ,−→nk)

0 o.w.

where δ(v, V ) = 1 if v = V and 0 otherwise. Thus we construct Cijk for verb V only for cases where
the subject property ni and the object property nk are paired in the basis −→sj . This is done by counting the
number of times the subject of V has property ni and the object of V has property nk, then multiplying them,
as prescribed by the inner products (which simply pick out the properties ni and nk from the noun vectors
for the subjects and objects).

The procedure for calculating the verb vectors, based on the formulation above, is as follows:

1. For each GR in a sentence, if the relation is subject and the head is a verb, then find the complementary
GR with object as a relation and the same head verb. If none, set the object to εn.

2. Retrieve the noun vectors
−−−−→
subject,

−−−→
object for the subject dependent and object dependent from previ-

ously constructed noun vectors.

3. For each (ni, nk) ∈ basis(N)× basis(N) compute the inner-product of −→ni with
−−−−→
subject and −→nk with−−−→

object (which involves simply picking out the relevant basis vectors from the noun vectors). Multiply
the inner-products and add this to Cijk for the verb, with j such that −→sj = (−→ni ,−→nk).

The procedure for other grammatical types is similar, based on the definitions of C weights for the semantics
of these types.

We now give a number of example calculations. We first manually define the distributions for nouns,
which in practice would be obtained from a corpus:

bankers cats dogs stock kittens
1. arg-fluffy 0 7 3 0 2
2. arg-ferocious 4 1 6 0 0
3. obj-buys 0 4 2 7 0
4. arg-shrewd 6 3 1 0 1
5. arg-valuable 0 1 2 8 0

We aim to make these counts match our intuitions, in that bankers are shrewd and a little ferocious but not
furry, cats are furry but not typically valuable, and so on.

We also define the distributions for the transitive verbs ‘chase’, ‘pursue’ and ‘sell’, again manually
specified according to our intuitions about how these verbs are used. Since in the formalism proposed above,
Cijk = 0 if −→sj 6= (−→ni ,−→nk), we can simplify the weight matrices for transitive verbs to two dimensional Cik

matrices as shown below, where Cik corresponds to the number of times the verb has a subject with attribute
ni and an object with attribute nk. For example, the matrix below encodes the fact that something ferocious
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(i = 2) chases something fluffy (k = 1) seven times in the hypothetical corpus from which we might have
obtained these distributions.

Cchase =




1 0 0 0 0
7 1 2 3 1
0 0 0 0 0
2 0 1 0 1
1 0 0 0 0




Cpursue =




0 0 0 0 0
4 2 2 2 4
0 0 0 0 0
3 0 2 0 1
0 0 0 0 0




Csell =




0 0 0 0 0
0 0 3 0 4
0 0 0 0 0
0 0 5 0 8
0 0 1 0 1




These matrices can be used to perform sentence comparisons:

〈−−−−−−−−−−→dogs chase cats | −−−−−−−−−−−−−→dogs pursue kittens〉 =

=

〈
∑

ijk

Cchase
ijk 〈

−−→
dogs | −→ni〉−→sj 〈−→nk | −→cats〉



∣∣∣∣∣∣


∑

ijk

C
pursue
ijk 〈−−→dogs | −→ni〉−→sj 〈−→nk |

−−−−→
kittens〉



〉

=
∑

ijk

Cchase
ijk C

pursue
ijk 〈−−→dogs | −→ni〉〈

−−→
dogs | −→ni〉〈−→nk | −→cats〉〈−→nk |

−−−−→
kittens〉

The raw number obtained from the above calculation is 14844. Normalising it by the product of the length
of both sentence vectors gives the cosine value of 0.979.

Consider now the sentence comparison 〈−−−−−−−−−−→dogs chase cats | −−−−−−−−−−→cats chase dogs〉. The sentences in this pair
contain the same words but the different word orders give the sentences very different meanings. The raw
number calculated from this inner product is 7341, and its normalised cosine measure is 0.656, which demon-
strates the sharp drop in similarity obtained from changing sentence structure. We expect some similarity
since there is some non-trivial overlap between the properties identifying cats and those identifying dogs
(namely those salient to the act of chasing).

Our final example for transitive sentences is 〈−−−−−−−−−−→dogs chase cats | −−−−−−−−−−−→bankers sell stock〉, as two sentences that
diverge in meaning completely. The raw number for this inner product is 6024, and its cosine measure is
0.042, demonstrating the very low semantic similarity between these two sentences.

Next we consider some examples involving adjective-noun modification. The Cij counts for an adjective
A are obtained in a similar manner to transitive or intransitive verbs:

Cij =

{∑
l

∑
a∈adjs(Cl) δ(a,A)〈

−−−−−−→
arg-of(a) | −→ni〉 if −→ni = −→nj

0 o.w.

where adjs(Cl) returns all instances of adjectives in Cl; δ(a,A) = 1 if a = A and 0 otherwise; and
arg-of(a) = noun if a is an adjective with argument noun, and εn otherwise.

As before, we stipulate the Cij matrices by hand (and we eliminate all cases where i 6= j since Cij = 0
by definition in such cases):

Cfluffy = [9 3 4 2 2] Cshrewd = [0 3 1 9 1] Cvaluable = [3 0 8 1 8]

We compute vectors for “fluffy dog” and “shrewd banker” as follows:
−−−−−−→
fluffy dog = (3 · 9)−−−−−−→arg-fluffy + (6 · 3)−−−−−−−−→arg-ferocious + (2 · 4)−−−−−→obj-buys + (5 · 2)−−−−−−−→arg-shrewd + (2 · 2)−−−−−−−−→arg-valuable

−−−−−−−−−−→
shrewd banker = (0 · 0)−−−−−−→arg-fluffy + (4 · 3)−−−−−−−−→arg-ferocious + (0 · 0)−−−−−→obj-buys + (6 · 9)−−−−−−−→arg-shrewd + (0 · 1)−−−−−−−−→arg-valuable

Vectors for
−−−−−−→
fluffy cat and

−−−−−−−−−→
valuable stock are computed similarly. We obtain the following similarity mea-

sures:

cosine(
−−−−−−→
fluffy dog,

−−−−−−−−−−→
shrewd banker) = 0.389 cosine(

−−−−−−→
fluffy cat,

−−−−−−−−−→
valuable stock) = 0.184
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These calculations carry over to sentences which contain the adjective-noun pairings compositionally and
we obtain an even lower similarity measure between sentences:

cosine(
−−−−−−−−−−−−−−−−−−−→
fluffy dogs chase fluffy cats,

−−−−−−−−−−−−−−−−−−−−−−−−→
shrewd bankers sell valuable stock) = 0.016

To summarise, our example vectors provide us with the following similarity measures:

Sentence 1 Sentence 2 Degree of similarity
dogs chase cats dogs pursue kittens 0.979
dogs chase cats cats chase dogs 0.656
dogs chase cats bankers sell stock 0.042
fluffy dogs chase fluffy cats shrewd bankers sell valuable stock 0.016

4 Different Grammatical Structures

So far we have only presented the treatment of sentences with transitive verbs. For sentences with intransitive
verbs, the sentence space suffices to be just N . To compare the meaning of a transitive sentence with an
intransitive one, we embed the meaning of the latter from N into the former N ⊗ N , by taking −→εn (the
‘object’ of an intransitive verb) to be

∑
i
−→ni , i.e. the superposition of all basis vectors of N .

Following the method for the transitive verb, we calculate Cijk for an instransitive verb V and basis pair
−→sj = (−→ni ,−→nk) as follows, where l ranges over the sentences in the corpus:

∑

l

∑

v∈verbs(Cl)
δ(v, V )〈−−−−−→subj(v) | −→ni〉〈

−−−−→
obj(v) | −→nk〉 =

∑

l

∑

v∈verbs(Cl)
δ(v, V )〈−−−−−→subj(v) | −→ni〉〈−→εn | −→nk〉

and 〈−→εn | −→ni〉 = 1 for any basis vector ni.
We can now compare the meanings of transitive and intransitive sentences by taking the inner product of

their meanings (despite the different arities of the verbs) and then normalising it by vector length to obtain
the cosine measure. For example:

〈−−−−−−−−−−→dogs chase cats | −−−−−−−→dogs chase〉 =
〈
∑

ijk

Cijk〈
−−→
dogs | −→ni〉−→sj 〈−→nk | −−→cats 〉



∣∣∣∣∣∣


∑

ijk

C ′ijk〈
−−→
dogs | −→ni〉−→sj



〉

=
∑

ijk

CijkC
′
ijk〈
−−→
dogs | −→ni〉〈

−−→
dogs | −→ni〉〈−→nk | −→cats〉

The raw number for the inner product is 14092 and its normalised cosine measure is 0.961, indicating high
similarity (but some difference) between a sentence with a transitive verb and one where the subject remains
the same, but the verb is used intransitively.

Comparing sentences containing nouns modified by adjectives to sentences with unmodified nouns is straight-
forward:

〈−−−−−−−−−−−−−−−−−−−→fluffy dogs chase fluffy cats | −−−−−−−−−−→dogs chase cats〉 =

∑

ij

C
fluffy
i C

fluffy
j Cchase

ij Cchase
ij 〈−−→dogs | −→ni〉2〈−→nj | −−→cats〉2 = 2437005
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From the above we obtain the following similarity measure:

cosine(
−−−−−−−−−−−−−−−−−−−→
fluffy dogs chase fluffy cats,

−−−−−−−−−−→
dogs chase cats) = 0.971

For sentences with ditransitive verbs, the sentence space changes to N ⊗ N ⊗ N , on the basis of the verb
needing two objects; hence its grammatical type changes to nrsnlnl. The transitive and intransitive verbs
are embedded in this larger space in a similar manner to that described above; hence comparison of their
meanings becomes possible.

5 Ambiguous Words

The two different meanings of a word can be distinguished by the different properties that they have. These
properties are reflected in the corpus, by the different contexts in which the words appear. Consider the
following example from [4]: the verb “catch” has two different meanings, “grab” and “contract”. They are
reflected in the two sentences “catch a ball” and “catch a disease”. The compositional feature of our meaning
computation enables us to realise the different properties of the context words via the grammatical roles they
take in the corpus. For instance, the word ‘ball’ occurs as argument of ‘round’, and so has a high weight
for the base ‘arg-round’, whereas the word ‘disease’ has a high weight for the base ‘arg-contagious’ and as
‘mod-of-heart’. We extend our example corpus from previously to reflect these differences as follows:

ball disease
1. arg-fluffy 1 0
2. arg-ferocious 0 0
3. obj-buys 5 0
4. arg-shrewd 0 0
5. arg-valuable 1 0
6. arg-round 8 0
7. arg-contagious 0 7
8. mod-of-heart 0 6

In a similar way, we build a matrix for the verb ‘catch’ as follows:

Ccatch =




3 2 3 3 3 8 6 2
3 2 3 0 1 4 7 4
2 4 7 1 1 6 2 2
3 1 2 0 0 3 6 2
1 1 1 0 0 2 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




The last three rows are zero because we have assumed that the words that can take these roles are mostly
objects and hence cannot catch anything. Given these values, we compute the similarity measure between
the two sentences “dogs catch a ball” and “dogs catch a disease” as follows:

〈−−−−−−−−−−−→dogs catch a ball | −−−−−−−−−−−−−→dogs catch a disease〉 = 0

In an idealised case like this where there is very little (or no) overlap between the properties of the objects
associated with one sense of “catch” (e.g. a disease), and those properties of the objects associated with an-
other sense (e.g. a ball), disambiguation is perfect in that there is no similarity between the resulting phrases.
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In practice, in richer vector spaces, we would expect even diseases and balls to share some properties. How-
ever, as long as those shared properties are not those typically held by the object of catch, and as long as the
usages of catch play to distinctive properties of diseases and balls, disambiguation will occur by the same
mechanism as the idealised case above, and we can expect low similarity measures between such sentences.

6 Related Work

Mitchell and Lapata introduce and evaluate a multiplicative model for vector composition [8]. The particular
concrete construction of this paper differs from that of [8] in that our framework subsumes truth-theoretic
as well as corpus-based meaning, and our meaning construction relies on and is guided by the grammatical
structure of the sentence. The approach of [4] is more in the spirit of ours, in that extra information about
syntax is used to compose meaning. Similar to us, they use a structured vector space to integrate lexical
information with selectional preferences. Finally, Baroni and Zamparelli model adjective-noun combinations
by treating an adjective as a function from noun space to noun space, represented using a matrix, as we do
in this paper [1].
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Abstract

This article introduces and evaluates an approach to semantic compositionality in computational lin-
guistics based on the combination of Distributional Semantics and supervised Machine Learning. In
brief, distributional semantic spaces containing representations for complex constructions such as
Adjective-Noun and Verb-Noun pairs, as well as for their constituent parts, are built. These repre-
sentations are then used as feature vectors in a supervised learning model using multivariate multiple
regression. In particular, the distributional semantic representations of the constituents are used to
predict those of the complex structures. This approach outperforms the rivals in a series of experi-
ments with Adjective-Noun pairs extracted from the BNC. In a second experimental setting based on
Verb-Noun pairs, a comparatively much lower performance was obtained by all the models; however,
the proposed approach gives the best results in combination with a Random Indexing semantic space.

1 Introduction

Probably the most important missing ingredient from the current NLP state-of-the-art is the ability to
compute the meaning of complex structures, i.e. semantically compositional structures. In this pa-
per, I propose a methodological approach and a series of experiments designed to teach computers the
ability to compute the compositionality of (relatively simple) complex linguistic structures. This work
uses a combination of Distributional Semantics and Machine Learning techniques. The starting data in
the experiments reported below are multidimensional vectorial semantic representations extracted from
electronic corpora. This work extends the basic methodology presented in Guevara (2010) with new data
collection techniques, improved evaluation metrics and new case studies.

Compositionality is probably one of the defining properties of human language and, perhaps, a nearly
uncontroversial notion among linguists. One of the best-known formulations of compositionality is:

(1) The Principle of Compositionality:
The meaning of a complex expression is a function of the meaning of its parts and of the syntactic
rules by which they are combined. (Partee, ter Meulen and Wall, 1990: 318)

The Principle of Compositionality is a standard notion in many different fields of research, notably in
logic, in philosophy of language, in linguistics and in computer science; this intrinsic multi-disciplinarity
makes tracing back its recent history somewhat difficult.

The recent years have witnessed an ever-increasing interest in techniques that enable computers to
automatically extract semantic information from linguistic corpora. In this paper I will refer to this
new field in general as Distributional Semantics. Distributional Semantics, in short, extracts spatial
representations of meaning from electronic corpora by using distributional (i.e. statistical) patterns of
word usage. The main hypothesis in Distributional Semantics is the so-called distributional hypothesis of
meaning, expressing the fact that “words that occur in the same contexts tend to have similar meanings”
(Pantel, 2005). The distributional hypothesis of meaning is ascribed to Zellig Harris, who proposed a
general distributional methodology for linguistics.

Since representations in Distributional Semantics are spatial in nature (e.g. vectors representing
points in a multidimensional space), differences in meaning are captured through differences in location:
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in the multidimensional space, two semantically (i.e. distributionally) similar words are closer than two
words that are dissimilar. See Sahlgren (2006) and Turney and Pantel (2010) for detailed overviews of
the methodology and applications of Distributional Semantics.

2 Compositionality in distributional semantics: state-of-the-art

I stressed above that computers are still not able to deal with the compositionality of meaning. However
basically true, this statement should be qualified somewhat. Previous work in the field has produced a
small number of operations to approximate the composition of vectorial representations of word mean-
ing. In particular, given two independent vectors v1 and v2, the semantically compositional result v3 is
modelled by one of the following four basic operations: vector addition, vector pointwise-multiplication,
tensor product or linear regression.

In the literature on Information Retrieval, vector addition is the standard approach to model the
composed meaning of a group of words (or a document) as the sum of their vectors (see, among many
others, Widdows, 2004: ch. 5). More schematically:

(2) Vector addition: v1i + v2i = v3i
Given two independent vectors v1 and v2, the compositional meaning of v3 consists of the sum
of the corresponding components of the original vectors.

Mitchell and Lapata (2008) introduce a whole family of models of compositionality based on vector
addition and pointwise-multiplication (and a weighted combination of both), evaluated on a sentence
similarity task inspired by Kintsch (2001). While the additive model captures the compositionality of
meaning by considering all available components, multiplicative models only operate on a subset of
them, i.e. non-zero components. They claim that when we pointwise-multiply the vectors representing
two words, we obtain an output that captures their composition; actually, this operation is keeping in
the output only the components which had corresponding non-zero values: whether this operation has
any relation with semantics is still unclear. However, in their experiments, Mitchell and Lapata prove
that the pointwise-multiplicative model and the weighted combination of the additive and the multiplica-
tive models perform equally well. Of these, only the simple multiplicative model will be tested in the
experiments I present in the following section.

(3) Vector pointwise multiplication: v1i × v2i = v3i
Each corresponding pair of components of v1 and v2 is multiplied to obtain the corresponding
component of v3.

Widdows (2008) proposes to apply a number of more complex vector operations imported from
quantum mechanics to model composition in semantic spaces, in particular tensor product and the related
operation of convolution product. Widdows (2008) obtains results indicating that both the tensor product
and the convolution product perform better than the simple additive model in two small experiments
(relation extraction and phrasal composition). Giesbrecht (2009) presents a more complex task, singling
out non-compositional multiword expressions. Her results clearly show that tensor product outperforms
vector addition, multiplication and convolution.

(4) Tensor product: v1⊗v2 = v3
where v3 is a matrix whose ij-th entry is equal to v1i × v2j

However, since the tensor product (also called outer product) of two vectors produces a result with higher
dimensionality (a matrix), it cannot be directly compared against the other methods, which instead gener-
ate compositional representations in the same original space. In the experiments reported in the following
section, we will use the circular convolution composition method (Plate, 1991): in brief, circular convo-
lution is a mathematical operation that effectively compresses the tensor product of two vectors onto the
original space, thus allowing us to compare its outcome with that of the other methods here reviewed.
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(5) Circular convolution: v1⊗v2 = v3

where v3 =
n−1∑

j=0 v1j v2i−j

It is interesting to note that a great deal of attention has recently been devoted to the tensor product
as the basic operation for modelling compositionality, even at the sentential level (e.g. Grefenstette et
al. 2010), through a combination of mathematical operations and symbolic models of logic (inspired by
Clark and Pulman, 2007). Although extremely motivating and thought provoking, these proposals have
not been tested on empirical grounds yet.

A common thread ties all the approaches briefly outlined above: all information that is present in
the systems is conveyed by the vectors v1 and v2, e.g. the independent word representations, while
completely disregarding v3 (the composed vector). Furthermore, all of these approaches are based on
the application of a single geometric operation on the independent vectors v1 and v2. It seems highly
unlikely that just one geometric operation could reliably represent all the semantic transformations in-
troduced by all syntactic relations in every language.

Guevara (2010) and Baroni and Zamparelli (2010) introduce a different approach to model semantic
compositionality in distributional spaces by extracting context vectors from the corpus also for the com-
posed vector v3. For example, Guevara collects vector representations for nice and house, but also for the
observed pair nice_house. With these data, a model of Adjective-Noun (AN) compositionality is built by
using a supervised machine learning approach: multivariate multiple linear regression analysis by partial
least squares. This method is able to learn the transformation function that best approximates v3 on the
basis of both v1 and v2. Baroni and Zamparelli (2010) use a slightly different methodology: assuming
that each adjective is a linear transformation function (i.e. the function to be learnt by the algorithm),
they model AN compositionality by approximating v3 only on the basis of v2 (the noun) but running a
different regression analysis for each adjective in their data.

The approach proposed by Guevara (2010) is really only an extension of the full additive model of
Mitchell and Lapata (2008), the only difference being that adopting a supervised learning methodology
ensures that the weight parameters in the function are estimated optimally by linear regression. In the
following section, I present a new series of experiments that refine, extend and improve this approach to
model the compositionality of adjacent AN and VN pairs by linear regression.

(6) Compositionality by regression: Av1 +Bv2 = v3
where A and B are weight matrices estimated by the supervised learning algorithm using multi-
variate multiple linear regression.

3 Compositionality by regression

Let us reconsider the highly underspecified definition of the Principle of Compositionality. Let us start by
setting the syntactic relation that we want to focus on for the purposes of this study: following Guevara
(2010) and Baroni and Zamparelli (2010), I model the semantic composition of adjacent Adjective-Noun
pairs expressing attributive modification of a nominal head. In a second analogous experiment, I also
model the syntactic relation between adjacent Verb-Noun expressing object selection by the verbal head.

The complex expression and its parts are, respectively, adjacent Adjective-Noun and Verb-Noun1

pairs and their corresponding constituents (respectively, adjectives and nouns, verbs and nouns) extracted
from the British National Corpus. Furthermore, the meaning of both complex expressions and their
constituents is assumed to be the multidimensional context vectors obtained by building semantic spaces.

What remains to be done, therefore, is to model the function combining meanings of the constituent
parts to yield the meaning of the resulting complex expression. This is precisely the main assumption
made in this article. Since we are dealing with multidimensional vector representations of meaning,
we suggest that compositionality can be interpreted as a linear transformation function mapping two

1Actually, the extracted Verb-Noun pairs are not always strictly adjacent, an optional determiner was allowed to occur
between verb and noun. Thus, phrases such as "raise money" and "visit a client" were both included.
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independent vectors in a multidimensional space into a composed vector in the same space. Moreover,
considering that each component in the independent vectors v1 and v2 is a candidate predictor, and that
each component in the composed vector v3 is a dependent variable, it is proposed to formulate composi-
tionality of meaning in Distributional Semantics as a problem of multivariate multiple regression. Such
a formulation allows us to model compositionality by applying well-known standard machine learning
techniques such as the Multilayer Perceptron or Support Vector Machines.

However, since word sequences in corpora tend to have low frequency distributions (usually lower
than the frequency of their constituents) and very sparse vectorial representations, it is very difficult to
build datasets where the number of observations (the size of the dataset) is greater than the number of
variables considered (the dimensions of the vector in the dataset). This issue is known as the curse
of dimensionality, and specific mathematical techniques have been developed to deal with it. In our
experiments, we use one such regression technique, Partial Least Squares.

3.1 Partial least squares regression

Partial Least Squares Regression (PLS) is a multivariate regression technique that has been designed
specifically to treat cases where the curse of dimensionality is a serious issue. PLS has been successfully
applied in a wide range of different scientific fields such as spectroscopy, chemistry, brain imaging and
marketing (Mevik and Wehrens, 2007).

PLS predicts the output matrix Y from information found in both the input matrix X and in Y. It
does so by looking for a set of latent variables in the data that perform a simultaneous decomposition of
both matrices while trying to explain as much as possible of the covariance between X and Y. Next, PLS
carries out regression using the decomposition of X to predict Y. Thus, PLS performs the prediction by
extracting the latent variables with the best predictive power. PLS is a robust regression technique that
is particularly efficient in situations with a high number of predictors and few observations (Abdi, 2007,
Hastie et al., 2009). Standard linear regression will fail in such cases.

3.2 Experimental setup

3.2.1 Corpus and construction of the dataset

Using a lemmatised and POS tagged version of the BNC, a list of adjacent AN pair candidates was
extracted with simple regex-based queries targeting sequences composed of [Det/Art–A–N] (i.e. pairs
expressing attributive modification of a nominal head like ‘that little house’). In order to ensure the
computational attainability of the successive steps, the candidate list was filtered by frequency (> 400)
obtaining 1,367 different AN pairs.

A new version of the BNC was then prepared to represent the selected AN lemma pairs as a single to-
ken; for example, while in the original BNC the phrase [nice houses] consists in two separate POS-tagged
lemmas, nice_AJ and house_NN, in the processed corpus it appears as a single entry nice_AJ_house_NN).
The corpus was also processed by stop-word removal (very high frequency items, mainly functional mor-
phemes). The re-tokenization process of the BNC enables us to extract independent context vectors for
each AN pair in our list (v3) and their corresponding constituents (A and N, respectively v1 and v2),
while ensuring that the extracted vectors do not contain overlapping information.

The same preprocessing steps were carried out to extract VN pair candidates. Sequences composed of
[V-(Det/Art)–N] with an optional determiner were targeted and filtered by frequency (> 400), resulting
in a first list of 545 VN pairs. This list contained a large amount of noise due to lemmatisation and
POS-tagging problems (e.g. housing association), and it also contained many very frequent lexicalized
items (e.g. thank goodness). The list was manually cleaned, resulting in 193 different VN pairs.

3.2.2 Building semantic spaces and composition models

For each syntactic relation (AN and VN), two different semantic spaces were built with the S-Space
package (Jurgen and Stevens, 2010): a Hyperspace Analogue to Language space (HAL, Burgess and
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Lund, 1997) and a Random Indexing space (RI, Sahlgren, 2006). The spaces were built using the same
vocabulary, the 23,222 elements in the corpus with a frequency ≥ 100 (comprising both individual
lemmas and all the selected AN pairs) and the same contextual window of 5 words to the left and to the
right of the target (either a word or a AN/VN pair).

HAL is a co-occurrence based semantic space that corresponds very closely to the well-known term-
by-term matrix collection method. However, given the size of our vocabulary, the resulting matrix is
extremely large (23,222 × 23,222). HAL reduces the dimensionality of the space by computing the
variances of the row and column vectors for each word, and discarding the elements with lowest variance.
The dimensionality of this space was reduced to the 500 most informative dimensions, thus ending with
a size of 23,222 × 500. The vectors in this space were normalised before the successive steps.

RI avoids the problem of dimensionality of semantic spaces by applying a different strategy to collect
the context vectors. Each word in the corpus is assigned an initial unique and randomly generated index
vector of a fixed size. As the algorithm scans the corpus one token at a time, the vector of the target
word is incrementally updated by combining it with the index vector of the context. In order to keep
the comparability of the built spaces, the RI space was built with 500-dimensional index vectors, thus
obtaining a space of 23,222 × 500 dimensions. The vectors in this space were also normalised.

With the AN/VN pair vectors and their corresponding constituents (respectively v3, v1 and v2), four
different models of compositionality were built from each semantic space (HAL and RI) in each of the
considered syntactic relations:

• an additive model (ADD) v1i + v2i = v3i
• a simple multiplicative model (MUL) v1i × v2i = v3i
• a circular convolution model (CON) v1 ⊗ v2 = v3

• a partial least squares regression model (PLS) Av1 +Bv2 = v3

In addition, two baseline models were introduced in the evaluation process. The baseline models were
built by simply extracting the context vectors for the constituents in each pair from each space (A and N,
V and N, respectively v1 and v2).

Of all the considered models, only PLS requires a stage of parameter estimation, i.e. training. In
order to accomplish this, the data were randomly divided into a training set (1,000 AN pairs – 73%) and
a test set (the remaining 367 AN pairs – 27%). In the much smaller VN dataset, the training set was built
with 133 pairs (69%) and the test set with 60 pairs (31%). These parameters for the regression models
were estimated by performing a 10-fold cross-validation in the training phase. All the models were built
and evaluated using the R statistical computing environment and simple Python scripts. In particular,
the regression analysis was carried out with the pls package (Mevik and Wehrens, 2007). After various
preliminary trials, the PLS model’s predictions were computed by using the first 50 latent variables.

3.3 Evaluation

The evaluation of models of compositionality is still a very uncertain and problematic issue. Previous
work has relied mainly on “external” tasks such as rating sentence similarity or detection idioms. These
evaluation strategies are “external” in the sense that each compared model produces a set of predictions
which are then used in order to reproduce human annotation of datasets that do not have a representation
in the semantic space under consideration. For example, Mitchell and Lapata (2008) use their models to
approximate the human ratings in their sentence similarity dataset. Giesbrecht (2009) also uses human
annotated data (manually classified collocations, compositional and non-compositional) in her evaluation
task. However, any evaluation task requiring hand-annotated datasets will have a considerable cost in
resource building. At present time, there are no suitable datasets in the public domain.

I propose instead to take a radically different point of view, developing “internal” evaluation tasks
that try to measure how well the proposed models approximate the distributional patterns of corpus-
extracted composed vectors. That is to say, I want to compare the predicted output of every model (i.e. a
predicted context vector for v3) with the real observation of v3 that was collected from the corpus. The
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following subsections present a few experimental evaluation methods based on neighbour analysis and
on the Euclidean measure of distance.

The evaluation strategies here presented rests on the sensible assumption that if a model of AN
compositionality is reliable, its predicted output for any AN pair, e.g. weird_banana, should be in prin-
ciple usable as a substitute for the corresponding corpus-attested AN vector. Moreover, if such a model
performs acceptably, it could even be used predict the compositionality of unattested candidates like
shadowy_banana: this kind of operations is the key to attaining human-like semantic performance.

3.3.1 Correlation analysis between modelled predictions and observations

Let us start the comparative evaluation of the modelled predictions by considering the results of a series
of Mantel correlation tests. First, distance matrices were computed for the observations in the test sets
and then the same was done for each of the prediction models. Then, each of the models’ distance
matrices was compared against the distance matrix of the observations trying to determine their degree
of correlation. The null hypothesis in each Mantel test is that the distance matrices being compared are
unrelated. The aim of this task is similar to the evaluation method used by Mitchell and Lapata (2008):
we try to find out which model has the strongest correlation with the original data, with the difference
that in our case no “external” human ratings are used.

HAL RI
Model Correlation Simul. p-value Correlation Simul. p-value
PLS 0.5438081 0.001 0.4341146 0.001
ADD 0.5344057 0.001 0.3223733 0.001
MUL 0.3297359 0.001 0.1811038 0.002
CON -0.05557023 0.956 -0.02584655 0.727

Table 1: Adjective-Noun pairs. Mantel tests of correlation (max. correlation = 1)

Considering the results for the AN dataset in Table 1, with the PLS and ADD models we can reject
the null hypothesis that the two matrices (distance matrix between the observed AN pairs and distance
matrix between each model’s predictions) are unrelated with p-value = 0.001 in both the semantic spaces
(HAL and RI). MUL also allows the null hypothesis to be rejected, but with a lower correlation (and with
a greater p-value = 0.002 in RI). Having obtained the highest observed correlation in both settings, the
PLS model is highly positively associated with the observed data. Also ADD and MUL have produced
predictions that are positively correlated with the observed AN vectors. CON is not correlated with
the original data. In other words, PLS and ADD seem to be much better that the remaining models in
reproducing unseen AN pairs; overall, however, PLS produces the closest approximation of the corpus-
based test set. Finally, although both semantic spaces (HAL and RI) produce the same ordering among
the models, it seems that the predictions using the HAL space are relatively closer to the observed data.

HAL RI
Model Correlation Simul. p-value Correlation Simul. p-value
PLS 0.2186435 0.003 0.1113741 0.116
ADD 0.4094653 0.001 0.1290508 0.124
MUL 0.1375934 0.042 -0.08865458 0.8
CON 0.05153776 0.174 -0.08186146 0.807

Table 2: Verb-Noun pairs. Mantel tests of correlation (max. correlation = 1)

Turning to the VN dataset, the obtained results are much less promising (see Table 2). As a general
observation, the correlations between each of the models and the observations are very low, except for
ADD in the HAL semantic space. In addition, ADD obtains the best correlation also in the RI space.
PLS comes in second place. Given that PLS is based on the estimation of parameters from training data,
its low performance can be attributed to the size of dataset (only 133 VN examples used for training). On
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the contrary, ADD, MUL and CON do not have this excuse and their extremely low performance must
be due to other factors. Finally, it is very clear that HAL produces better correlations for all the models.

3.3.2 Observation-based neighbour analysis

For this and for the remaining evaluation protocols, a preliminary step was taken. Since our intention is
to base the evaluation on the analysis of nearest neighbours, we extracted an identical subset of the built
semantic spaces (HAL and RI, which originally had a vocabulary of 23,222 items) in order to compute a
distance matrix of a manageable size.

In the Adjective-Noun dataset, the extracted subset comprises vectors for all the observed AN vectors
in both the training and test sets (1,367 items), all the corresponding predictions, the NOUN- and ADJ-
baseline models, the 2,500 most frequent nouns (not included in the baseline) and the 2,500 most frequent
adjectives (not included in the baseline). The distance matrix for the selected sub-space was then created
by using the Euclidean measure of distance, resulting in a 8,666 × 8,666 matrix.

The Verb-Noun dataset was treated in the same way, extracting vectors for all the VN observations,
the corresponding predictions from each model, the VERB- and NOUN-baseline models and the 1,000
most frequent nouns and verbs in the space (not overlapping with the baselines); this resulted in a 2,420
× 2,420 distance matrix.

Following Guevara’s (2010) neighbour analysis, for each observed AN pair in the test datasets, the
list of n-top neighbours were extracted from the distance matrix (n=10 and n=20). Then, the resulting
neighbour lists were analysed to see if any of the modelled predictions was to be found in the n-top list.
The ADJ- and NOUN-baselines were introduced in the evaluation to further compare the appropriateness
of each model. Below we only report the results obtained with n=20, but very similar results were
obtained in the 10-top neighbour setting.

As can be observed from Table 3, in the HAL space, PLS obtains the highest score, followed by the
NOUN-baseline at a short distance and then by the ADJ-baseline at a greater distance. The performance
of the remaining models is negligible. A different situation can be seen for the RI space, where the
winner is the NOUN-baseline followed by PLS and ADJ.

HAL RI
Model Predictions found Predictions found
ADD 0 0
CON 0 0
MUL 3 0
PLS 152 112
ADJ 32 53
NOUN 123 144

Table 3: AN pairs. Observation-based neighbour analysis (max. score = 367)

It is interesting to see that PLS is actually competing against the NOUN-baseline alone, being the rival
models almost insensible to the evaluation task. This same pattern will be seen in the other evaluation
tasks. Furthermore, the score differences obtained by PLS and the NOUN-baseline are significant (HAL
p-value = 0.03275, RI p-value = 0.01635, 2-sample test for equality of proportions).

The VN dataset gave much poorer results, once more. In fact, it is almost pointless to comment
anything except that only MUL was able to rank its predictions in top-20 neighbours six times (only in
the HAL space) and that PLS managed to do the same 9 times (only in the RI space). The maximum
score in this setting was 60.

3.3.3 Prediction-based neighbour analysis

Building on the previous neighbour analysis, a new task was set up by changing the starting point for
neighbour extraction. In this case, for each modelled AN pair in the test dataset in each composition
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model, the list of n-top neighbours were extracted from the distance matrix (n=10 and n=20). Then, the
resulting neighbour lists were analysed to see if the originally observed corresponding AN pair was to
be found in the n-top list. The same procedure was used with the VN dataset.

Below we only report the results obtained with n=20, but very similar results were obtained in the
10-top neighbour setting. This task at first did not seem to be particularly difficult, but the obtained
results were very poor.

HAL RI
Model Predictions found Predictions found
ADD 2 0
CON 0 0
MUL 0 0
PLS 32 25
ADJ 6 2
NOUN 26 16

Table 4: AN pairs. Prediction-based neighbour analysis (max. score = 367)

The winner in this experiment was PLS, once again followed by the NOUN-baseline. However, the score
differences obtained by PLS and the NOUN-baseline are not significant (HAL p-value = 0.4939, RI p-
value = 0.1985, 2-sample test for equality of proportions). The main observation to be made is that the
obtained scores are surprisingly low if compared with the previous evaluation task. The reason for this
difference is to be found in the homogeneity and specialization that characterizes each of the models’
neighbour sets: each model produces predictions that are relatively very close to each other. This has the
consequence that the nearest neighbour lists for each model’s predictions are, by and large, populated
by items generated in the same model, as shown in Table 5. In conclusion, although PLS obtained the
highest score in this task, we cannot be sure that it performed better than the NOUN-baseline. In any
case, the remaining composition models did not reach the performance of PLS.

Model Same-model items
ADD 3626 (98,8 %)
CON 3670 (100 %)
MUL 3670 (100 %)
PLS 2767 (75,4 %)
NOUN 1524 (41,5 %)
ADJ 1382 (36,1 %)

Table 5: AN pairs. Same-model neighbours in each models’ top-10 list of neighbours extracted from
HAL semantic space (total items in each list = 3670)

The VN dataset once again did not produce interesting results. As a brief note, ADD won in the
HAL space (but managing to score only two observations in its predictions’ top-20 neighbours) while
PLS won in the RI space as before, scoring 5 observations in its predictions’ top-20 neighbours (max.
score 60).

3.3.4 Gold-standard comparison of shared neighbours

Our previous evaluation methods targeted the distance between predictions and observations, i.e. the
ability of each model to reproduce unseen AN/VN pairs. Changing perspective, it would be desirable to
test if the models’ predictions show a similar distributional behaviour with respect to the corresponding
observed vector and to other words in the semantic space.

To test this idea, the n-top neighbour-lists (n=10 and n=20) for the observed AN/VN pairs were
extracted and taken to be the gold-standard. Then, each prediction’s n-top list of neighbours was analysed
looking for shared neighbours with respect to the corresponding gold-standard list. Each time a shared
neighbour was found, 1 point was awarded to the model.
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Table 6 summarises the results obtained with n=20 (similar figures obtained with n=10) in the AN
dataset. Although by a small margin, the winner in this task is PLS. Even if the obtained scores are
still rather low (in the best cases, about 17% of all the available points were obtained), this experiment
represents a significant improvement over Guevara’s (2010) reported results, which reached only about
10% of the maximum score. Here again the same ordering of models can be observed: after PLS we find
the NOUN- and ADJ-baselines, leaving the performance of the remaining models at a extremely modest
level. Additionally, the score differences obtained by PLS and the NOUN-baseline are highly significant
(HAL p-value = 2.363e-08, RI p-value = 0.0003983, 2-sample test for equality of proportions).

HAL RI
Model Shared neighbours Shared neighbours
ADD 28 0
CON 0 0
MUL 5 0
PLS 1299 1267
ADJ 259 534
NOU 1050 1108
Total shared: 2641 2909

Table 6: AN pairs. Gold-standard comparison of shared neighbours (max. score = 7340)

Table 7 summarises the results obtained in the VN dataset, which show a considerable improvement
over the preceding evaluation methods. Here we have to clear winners, ADD in the HAL space and PLS
in the RI space. Interestingly, although the numbers are still on the low side, ADD obtained 8.6% of
the total points, with shared neighbours for 35 out of 60 VN pairs; PLS obtained 21% of the total, with
shared neighbours for 40 out of 60 VN pairs. In particular this last score is (21%) is the highest one ever
obtained with gold-standard comparison of shared neighbours (also considering Guevara’s 2010 results).

HAL RI
Model Shared neighbours Shared neighbours
ADD 103 0
CON 0 0
MUL 31 0
PLS 0 253
VERB 0 0
NOUN 0 0
Total shared: 134 253

Table 7: VN pairs. Gold-standard comparison of shared neighbours (max. score = 1200)

4 Conclusions

This paper proposes an improved framework to model the compositionality of meaning in Distributional
Semantics. The method, Partial Least Squares Regression, is well known in other data-intensive fields of
research, but to our knowledge had never been put to work in computational semantics.

PLS outperformed all the competing models in the reported experiments with AN pairs. In particular,
the PLS model generates compositional predictions that are closer to the observed composed vectors than
those of its rivals. This is an extremely promising result, indicating that it is possible to generalize linear
transformation functions beyond single lexical items in Distributional Semantics’ spaces.

It is remarkable that PLS did not actually have to compete against any of the previously proposed
approaches to compositionality, but only against the NOUN- and ADJ-baselines, and in particular against
the former. This fact is expected from a theoretical point of view: since the Noun is the head of the AN
pair, it is likely that the complex expression and its head share much of their distributional properties.
PLS nearly always outperformed the NOUN-baseline, but only by small margins, which indicates that
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there is a still plenty of space for improvement. Our experiments also show that AN compositionality by
regression performs nearly equally well in semantic spaces of very different nature (HAL and RI).

The second dataset used in this paper contained VN pairs. Generally, this dataset did not produce
good results with any of the considered approaches to model compositionality. This rather negative result
may be due to its relatively smaller size, but this excuse may only be applied to PLS, the only model that
relies on parameter estimation. Surprisingly, though, the gold-standard comparison of shared neighbours
gave much better results, with ADD performing well in the HAL space and PLS performing very well
in the RI space. Even if the VN dataset did not produce excellent results, it highlights some interesting
issues. First, not all syntactic relations may be equally "easy" to model. Second, different evaluation
methods may favor competing approaches. Finally, some approaches may be particularly successful
with a specific distributional space architecture (like PLS and RI, and ADD and HAL).

This work has intentionally left the data as raw as possible, in order to keep the noise present in
the models at a realistic level. The combination of Machine Learning and Distributional Semantics here
advocated suggests a very promising perspective: transformation functions corresponding to different
syntactic relations could be learned from suitably processed corpora and then combined to model larger,
more complex structures, probably also recursive phenomena. It remains to prove if this approach is able
to model the symbolic, logic-inspired kind of compositionality that is common in Formal Semantics; be-
ing inherently based on functional items, it is at present time very difficult and computationally intensive
to attain, but hopefully this will change in the near future.
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Abstract
We present the first approach to learning the durations of events without annotated training data,

employing web query patterns to infer duration distributions. For example, we learn that “war”
lasts years or decades, while “look” lasts seconds or minutes. Learning aspectual information is an
important goal for computational semantics and duration information may help enable rich document
understanding. We first describe and improve a supervised baseline that relies on event duration
annotations. We then show how web queries for linguistic patterns can help learn the duration of
events without labeled data, producing fine-grained duration judgments that surpass the supervised
system. We evaluate on the TimeBank duration corpus, and also investigate how an event’s participants
(arguments) effect its duration using a corpus collected through Amazon’s Mechanical Turk. We make
available a new database of events and their duration distributions for use in research involving the
temporal and aspectual properties of events.

1 Introduction

Bridging the gap between lexical knowledge and world knowledge is crucial for achieving natural language
understanding. For example, knowing whether a nominal is a person or organization and whether a person
is male or female substantially improves coreference resolution, even when such knowledge is gathered
through noisy unsupervised approaches (Bergsma, 2005; Haghighi and Klein, 2009). However, existing
algorithms and resources for such semantic knowledge have focused primarily on static properties of
nominals (e.g. gender or entity type), not dynamic properties of verbs and events.

This paper shows how to learn one such property: the typical duration of events. Since an event’s
duration is highly dependent on context, our algorithm models this aspectual property as a distribution
over durations rather than a single mean duration. For example, a “war” typically lasts years, sometimes
months, but almost never seconds, while “look” typically lasts seconds or minutes, but rarely years or
decades. Our approach uses web queries to model an event’s typical distribution in the real world.

Learning such rich aspectual properties of events is an important area for computational semantics,
and should enrich applications like event coreference (e.g., Chen and Ji, 2009) in much the same way
that gender has benefited nominal coreference systems. Event durations are also key to building event
timelines and other deeper temporal understandings of a text (Verhagen et al., 2007; Pustejovsky and
Verhagen, 2009).

The contributions of this work are:

• Demonstrating how to acquire event duration distributions by querying the web with patterns.
• Showing that a system that predicts event durations based only on our web count distributions can

outperform a supervised system that requires manually annotated training data.
• Making available an event duration lexicon with duration distributions for common English events.

We first review previous work and describe our re-implementation and augmentation of the latest
supervised system for predicting event durations. Next, we present our approach to learning event
distributions based on web counts. We then evaluate both of these models on an existing annotated corpus
of event durations and make comparisons to durations we collected using Amazon’s Mechanical Turk.
Finally, we present a generated database of event durations.
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2 Previous Work

Early work on extracting event properties focused on linguistic aspect, for example, automatically
distinguishing culminated events that have an end point from non-culminated events that do not (Siegel
and McKeown, 2000). The more fine-grained task of predicting the duration of events was first proposed
by Pan et al. (2006), who annotated each event in a small section of the TimeBank (Pustejovsky et al.,
2003) with duration lower and upper bounds. They then trained support vector machines on their annotated
corpus for two prediction tasks: less-than-a-day vs. more-than-a-day, and bins like seconds, minutes,
hours, etc. Their models used features like bags of words, heads of syntactic subjects and objects, and
WordNet hypernyms of the events. This work provides a valuable resource in its annotated corpus and is
also a good baseline. We replicate their work and also add new features as described below.

Our approach to the duration problem is inspired by the standard use of web patterns for the acquisition
of relational lexical knowledge. Hearst (1998) first observed that a phrase like “. . . algae, such as
Gelidium. . . ” indicates that “Gelidium” is a type of “algae”, and so hypernym-hyponym relations can
be identified by querying a text collection with patterns like “such <noun> as <noun>” and “<noun> ,

including <noun>”. A wide variety of pattern-based work followed, including the application of the idea
in VerbOcean to acquire aspects and temporal structure such as happens-before, using patterns like “to

<verb> and then <verb>” (Chklovski and Pantel, 2004).
More recent work has learned nominal gender and animacy by matching patterns like “<noun> *

himself” and “<noun> and her” to a corpus of Web n-grams (Bergsma, 2005; Ji and Lin, 2009). Phrases like
“John Joseph”, which were observed often with masculine pronouns and never with feminine or neuter
pronouns, can thus have their gender identified as masculine. Ji and Lin found that such web-counts can
predict person names as well as a fully supervised named entity recognition system.

Our goal, then, is to integrate these two strands in the literature, applying pattern/web approaches to
the task of estimating event durations. One difference from previous work is the distributional nature of
the extracted knowledge. In the time domain, unlike in most previous relation-extraction domains, there is
rarely a single correct answer: “war” may last months, years or decades, though years is the most likely.
Our goal is thus to produce a distribution over durations rather than a single mean duration.

3 Duration Prediction Tasks

In both our supervised and unsupervised models, we consider two types of event duration predictions: a
coarse-grained task in which we only want to know whether the event lasts more or less than a day, and a
fine-grained task in which we want to know whether the event lasts seconds, minutes, hours, days, weeks,
months or years. These two duration prediction tasks were originally suggested by Pan et al. (2006), based
on their annotation of a subset of newspaper articles in the Timebank corpus (Pustejovsky et al., 2003).
Events were annotated with a minimum and maximum duration like the following:
• 5 minutes – 1 hour: A Brooklyn woman who was watching her clothes dry in a laundromat.
• 1 week – 3 months: Eileen Collins will be named commander of the Space Shuttle mission.
• 3 days – 2 months: President Clinton says he is committed to a possible strike against Iraq. . .

Pan et al. suggested the coarse-grained binary classification task because they found that the mean event
durations from their annotations were distributed bimodally across the corpus, roughly split into short
events (less than a day) and long events (more than a day). The fine-grained classification task provides
additional information beyond this simple two way distinction.

For both tasks, we must convert the minimum/maximum duration annotations into single labels. We
follow Pan et al. (2006) and take the arithmetic mean of the minimum and maximum durations in seconds.
For example, in the first event above, 5 minutes would be converted into 300 seconds, 1 hour would be
converted into 3600 seconds, the resulting mean would be 1950 seconds, and therefore this event would
be labeled less-than-a-day for the coarse-grained task, and minutes for the fine-grained task. These labels
can then be used directly to train and evaluate our models.
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4 Supervised Approach

Before describing our query-based approach, we describe our baseline, a replication and extension of the
supervised system from Pan et al. (2006). We first briefly describe their features, which are shared across
the coarse and fine-grained tasks, and then suggest new features.

4.1 Pan et. al. Features

The Pan et al. (2006) system included the following features which we also replicate:
Event Properties: The event token, lemma and part of speech (POS) tag.
Bag of Words: The n tokens to the left and right of the event word. However, because Pan et al.

found that n = 0 performed best, we omit this feature.
Subject and Object: The head word of the syntactic subject and object of the event, along with their

lemmas and POS tags. Subjects and objects provide important context. For example, “saw Europe” lasts
for weeks or months while “saw the goal” lasts only seconds.

Hypernyms: WordNet hypernyms for the event, its subject and its object. Starting from the first
synset of each lemma, three hypernyms were extracted from the WordNet hierarchy. Hypernyms can help
cluster similar events together. For example, the event plan had three hypernym ancestors as features:
idea, content and cognition.

4.2 New Features

We present results for our implementation of the Pan et al. (2006) system in Section 8. However, we also
implemented additional features.

Event Attributes: Timebank annotates individual events with four attributes: the event word’s tense
(past, present, future, none), aspect (e.g., progressive), modality (e.g., could, would, can, etc.), and event
class (occurrence, aspectual, state, etc.). We use each of these as a feature in our classifier. The aspect and
tense of the event, in particular, are well known indicators of the temporal shape of events (Vendler, 1976).

Named Entity Classes: Pan et al. found the subject and object of the events to be useful features,
helping to identify the particular sense of the event. We used a named entity recognizer to add more
information about the subjects and objects, labeling them as persons, organizations, locations, or other.

Typed Dependencies: We coded aspects of the subcategorization frame of a predicate, such as
transitivity, or the presence of prepositional objects or adverbial modifiers, by adding a binary feature
for each typed dependency1 seen with a verb or noun. We experimented with including the head of the
argument itself, but results were best when only the dependency type was included.

Reporting Verbs: Many of the events in Timebank are reporting verbs (say, report, reply, etc.). We
used a list of reporting verbs to identify these events with a binary feature.

4.3 Classifier

Both the Pan et al. feature set and our extended feature set were used to train supervised classifiers for the
two event duration prediction tasks. We experimented with naive bayes, logistic regression, maximum
entropy and support vector machine classifiers, but as discussed in Section 8, the maximum entropy model
performed best in cross-validations on the training data.

5 Unsupervised Approach

While supervised learning is effective for many NLP tasks, it is sensitive to the amount of available
training data. Unfortunately, the training data for event durations is very small, consisting of only 58 news
articles (Pan et al., 2006), and labeling further data is quite expensive. This motivates our desire to find an

1We parsed the documents into typed dependencies with the Stanford Parser (Klein and Manning, 2003).
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approach that does not rely on labeled data, but instead utilizes the large amounts of text available on the
Web to search for duration-specific patterns. This section describes our web-based approach to learning
event durations.

5.1 Web Query Patterns

Temporal properties of events are often described explicitly in language-specific constructions which can
help us infer an event’s duration. Consider the following two sentences from our corpus:
• Many spend hours surfing the Internet.
• The answer is coming up in a few minutes.

These sentences explicitly describe the duration of the events. In the first, the dominating clause spend
hours tells us how long surfing the Internet lasts (hours, not seconds), and in the second, the preposition
attachment serves a similar role. These examples are very rare in the corpus, but as can be seen, are
extremely informative when present. We developed several such informative patterns, and searched the
Web to find instances of them being used with our target events.

For each pattern described below, we use Yahoo! to search for the patterns occurring with our events.
We collect the total hit counts and use them as indicators of duration. The Yahoo! search API returns two
numbers for a query: totalhits and deephits. The former excludes duplicate pages and limits the number
of documents per domain while the latter includes all duplicates. We take the sum of these two numbers
as our count (this worked better than either of the two individually on the training data and provides
a balance between the benefits of each estimate) and normalize the results as described in Section 5.2.
Queries are submitted as complete phrases with quotation marks, so the results only include exact phrase
matches. This greatly reduces the number of hits, but results in more precise distributions.

5.1.1 Coarse-Grained Patterns

The coarse grained task is a binary decision: less than a day or more than a day. We can model this
task directly by looking for constructions that can only be used with events that take less than a day.
The adverb yesterday fills this role nicely; an event modified by yesterday strongly implies that it took
place within a single day’s time. For example, ‘shares closed at $18 yesterday’ implies that the closing
happened in less than a day. We thus consider the following two query patterns:

• <eventpast> yesterday
• <eventpastp> yesterday

where <eventpast> is the past tense (preterite) form of the event (e.g., ran), and <eventpastp> is the past
progressive form of the event (e.g., was running).

5.1.2 Fine-Grained Patterns

For the fine-grained task, we need patterns that can identify when an event falls into any of the various
buckets: seconds, minutes, hours, etc. Thus, our fine-grained patterns are parameterized both by the event
and by the bucket of interest. We use the following patterns inspired in part by Dowty (1979):

1. <eventpast> for * <bucket>
2. <eventpastp> for * <bucket>
3. spent * <bucket> <eventger>

where <eventpast> and <eventpastp> are defined as above, <eventger> is the gerund form of the event (e.g.,
running), and the wildcard ‘*’ can match any single token2.

The following three patterns ultimately did not improve the system’s performance on the training data:
4. <eventpast> in * <bucket>
5. takes * <bucket> to <event>
6. <eventpast> last <bucket>

Pattern 4 returned a lot of hits, but had low precision as it picked up many non-durative expressions.
Pattern 5 was very precise but typically returned few hits, and pattern 6 worked for, e.g., last week, but did
not work for shorter durations. All reported systems use patterns 1-3 and do not include 4-6.

2We experimented with varying numbers of wildcards but found little difference in performance on the training data.
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(a) “was saying for <bucket>”
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(b) “for <bucket>”
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(c) (a) counts divided by (b) counts

Figure 1: Normalizing the distribution for the pattern “was saying for <bucket>”.

We also tried adding subjects and/or objects to the patterns when they were present for an event.
However, we found that the benefit of the extra context was outweighed by the significantly fewer hits that
resulted. We implemented several backoff approaches that removed the subject and object from the query,
however, the counts from these backoff approaches were less reliable than just using the base event.

5.2 Predicting Durations from Patterns

To predict the duration of an event from the above patterns, we first insert the event into each pattern
template and query the web to see how often the filled template occurs. These counts form a distribution
over each of the bins of interest, e.g., in the fine-grained task we have counts for seconds, minutes, hours,
etc. We discard pattern distributions with very low total counts, and normalize the remaining pattern
distributions based on the frequency with which the pattern occurs in general. Finally, we uniformly
merge the distributions from all patterns, and use the resulting distribution to select a duration label for
the event. The following sections detail this process.

5.2.1 Coarse-Grained Prediction

For the coarse-grained task of less than a day vs. more than a day, we collect counts using the two
yesterday patterns described above. We then normalize these counts by the count of the event’s occurrence
in general. For example, given the event run, we query for “ran yesterday” and divide by the count of
“ran”. This gives us the probability of seeing yesterday given that we saw ran. We average the probabilities
from the two yesterday patterns, and classify an event as lasting less than a day if its average probability
exceeds a threshold t. We optimized t to our training set (t = .002). This basically says that if an event
occurs with yesterday more than 0.2% of the time, we will assume that the event lasts less than a day.

5.2.2 Fine-Grained Prediction

As with the coarse-grained task, our fine-grained approach begins by collecting counts using the three
fine-grained patterns discussed above. Since each fine-grained pattern has both an <event> and a <bucket>

slot to be filled, for a single event and a single pattern, we end up making 8 queries to cover each of the 8
buckets: seconds, minutes, hours, days, weeks, months, years and decades. After these queries, we have a
pattern-specific distribution of counts over the various buckets, a coarse measure of the types of durations
that might be appropriate to this event. Figure 1(a) shows an example of such a distribution.

As can be seen in Figure 1(a), this initial distribution can be skewed in various ways – in this case,
years is given far too much mass. This is because in addition to the single event interpretation of words
like “saying”, there are iterative or habitual interpretations (Moens and Steedman, 1988; Frawley, 1992).
Iterative events occur repeatedly over a period of time, e.g., “he’s been saying for years that. . . ” The two
interpretations are apparent in the raw distributions of smile and run in Figure 2. The large peak at years
for run shows that it is common to say someone “was running for years.” Conversely, it is less common to
say someone “was smiling for years,” so the distribution for smile is less biased towards years.
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Figure 2: Two double peaked distributions.

Coverage of Fine-Grained Query Patterns
Number of Patterns Total Events Precision

At least one 1359 (81.7%) 57.3
At least two 1142 (68.6%) 58.6

All three 428 (25.7%) 65.7

Figure 3: The number of events that match n fine-
grained patterns and the pattern precision on these
events. The training set consists of 1664 events.

While the problem of distinguishing single events from iterative events is out of the scope of this paper
(though an interesting avenue for future research), we can partially address the problem by recognizing
that some buckets are simply more frequent in text than others. For example, Figure 1(b) shows that it is
by far more common to see “for <bucket>” filled with years than with any other duration unit. Thus, for
each bucket, we divide the counts collected with the event patterns by the counts we get for the pattern
without the event3. Essentially, this gives us for each bucket the probability of the event given that bucket.
Figure 1(c) shows that the resulting normalized distribution fits our intution of how long “saying” should
last much better than the raw counts: seconds and minutes have much more of the mass now.

After normalizing an event’s counts for each pattern, we combine the distributions from the three
different patterns if their hit counts pass certain confidence thresholds. The total hit count for each pattern
must exceed a minimum threshold tmin = 100 and not exceed a maximum threshold tmax = 100, 000
(both thresholds were optimized on the training data). The former avoids building distributions from a
sparse number of hits, and the latter avoids classifying generic and polysemous events like ‘to make’ that
return a large number of hits. We found such events to produce generic distributions that do not help in
classification. If all three patterns pass our confidence thresholds, we merge the pattern distributions by
summing them bucket-wise together and renormalizing the resulting distribution to sum to 1. Merging the
patterns mitigates the noise from any single pattern.

To predict the event’s duration, we then select the bucket with the highest smoothed score:

score(bi) = bi−1 + bi + bi+1

where bi is a duration bucket and 0 < i < 9. We define b0 = b9 = 0. In other words, the score of the
minute bucket is the sum of three buckets: second, minute and hour. This parallels the smoothing of the
evaluation metric introduced by (Pan et al., 2006) which we also adopt for evaluation in Section 7.

In the case that fewer than three of our patterns matched, we backoff to the majority class (months for
fine-grained, and more-than-a-day for coarse-grained). We experimented with only requiring one or two
patterns to match, but found the best results on training when requiring all three. Figure 3 shows the large
jump in precision when all three are required. The evaluation is discussed in Section 7.

5.2.3 Coarse-Grained Prediction via Fine-Grained Prediction

We can also use the distributions collected from the fine-grained task to predict coarse-grained labels. We
use the above approach and return less than a day if the selected fine-grained bucket was seconds, minutes
or hours, and more than a day otherwise. We also tried summing over the duration buckets: p(seconds) +
p(minutes) + p(hours) for less than day and p(days) + p(weeks) + p(months) + p(years) + p(decades) for
more than a day, but the simpler approach outperformed these summations in training.

3We also explored normalizing not by the global distribution on the Web, but by the average of the distributions of all the
events in our dataset. However, on the training data, using the global distribution performed better.
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6 Datasets

6.1 Timebank Duration

As described in Section 3, Pan et al. (2006) labeled 58 documents with event durations. We follow their
method of isolating the 10 WSJ articles as a separate test set which we call TestWSJ (147 events). For
the remaining 48 documents, they split the 2132 event instances into a Train and Test set with 1705 and
427 events respectively. Their split was conducted over the bag of events, so their train and test sets may
include events that came from the same document. Their particular split was unavailable.

We instead use a document-split that divides the two sets into bins of documents. Each document’s
entire set of events is assigned to either the training set or the test set, so we do not mix events across
sets. Since documents often repeat mentions of events, this split is more conservative by not mixing test
mentions with the training set. Train, Test, and TestWSJ contain 1664 events (714 unique verbs), 471 events
(274 unique), and 147 events (84 unique) respectively. For each base verb, we created queries as described
in Section 5.1.2. The train/test split is available at http://cs.stanford.edu/people/agusev/durations/.

6.2 Mechanical Turk Dataset

We also collected event durations from Amazon’s Mechanical Turk (MTurk), an online marketplace from
Amazon where requesters can find workers to solve Human Intelligence Tasks (HITs) for small amounts
of money. Prior work has shown that human judgments from MTurk can often be as reliable as trained
annotators (Snow et al., 2008) or subjects in controlled lab studies (Munro et al., 2010), particularly when
judgments are aggregated over many MTurk workers (“Turkers”). Our motivation for using Turkers is to
better analyze system errors. For example, if we give humans an event in isolation (no sentence context),
how well can they guess the durations assigned by the Pan et. al. annotators? This measures how big the
gap is between a system that looks only at the event, and a system that integrates all available context.

To collect event durations from MTurk, we presented Turkers with an event from the TimeBank (a
superset of the events annotated by Pan et al. (2006)) and asked them to decide whether the event was most
likely to take seconds, minutes, hours, days, weeks, months, years or decades. We had events annotated
in two different contexts: in isolation, where only the event itself was given (e.g., “allocated”), and in
subject-object context, where a minimal phrase including the event and its subject and object was given
(e.g., “the mayor allocated funds”). In both types of tasks, we asked 10 Turkers to label each event,
and they were paid $0.0025 for each annotation ($0.05 for a block of 20 events). To filter out obvious
spammers, we added a test item randomly to each block, e.g., adding the event “minutes” and rejecting
work from Turkers who labeled this anything other than the duration minutes.

The resulting annotations give duration distributions for each of our events. For example, when
presented the event “remodeling”, 1 Turker responded with days, 6 with weeks, 2 with months and 1
with years. These annotations suggest that we generally expect “remodeling” to take weeks, but it may
sometimes take more or less. To produce a single fine-grained label from these distributions, we take the
duration bin with the largest number of Turker annotations, e.g. for “remodeling”, we would produce the
label weeks. To produce a single coarse-grained label, we use the label less-than-a-day if the fine-grained
label was seconds, minutes or hours and more-than-a-day otherwise.

7 Experiment Setup

As discussed in Section 3, we convert the minimum and maximum duration annotations into labels by
converting each to seconds using ISO standards and calculating the arithmetic mean. If the mean is
≤ 86400 seconds, it is considered less-than-a-day for the coarse-grained task. The fine-grained buckets
are similarly calculated, e.g., X is labeled days if 86400 < X ≤ 604800. The Pan et al. (2006) evaluation
does not include a decades bucket, but our system still uses “decades” in its queries.

We optimized all parameters of both the supervised and unsupervised systems on the training set, only
running on test after selecting our best performing model. We compare to the majority class as a baseline,
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Coarse-Grained
Test TestWSJ

Supervised, Pan 73.3 73.5
Supervised, all 73.0 74.8

Fine-Grained
Test TestWSJ

Supervised, Pan 62.2 61.9
Supervised, all 62.4 66.0

Figure 4: Accuracies of the supervised maximum entropy classifiers with two different feature sets.

Coarse-Grained
Test TestWSJ

Majority class 62.4 57.1
Supervised, all 73.0* 74.8*
Web counts, yesterday 70.7* 74.8*
Web counts, buckets 72.4* 73.5*

Fine-Grained
Test TestWSJ

Majority class 59.2 52.4
Supervised, all 62.4 66.0†
Web counts, buckets 66.5* 68.7*

Figure 5: System accuracy compared against supervised and majority class. * indicates statistical
significance (McNemar’s Test, two-tailed) against majority class at the p < 0.01 level, † at p < 0.05

tagging all events as more-than-a-day in the coarse-grained task and months in the fine-grained task.
To evaluate our models, we use simple accuracy on the coarse-grained task, and approximate agreement

matching as in Pan et al. (2006) on the fine-grained task. In this approximate agreement, a guess is
considered correct if it chooses either the gold label or its immediate neighbor (e.g., hours is correct if
minutes, hours or days is the gold class). Pan et al. use this approach since human labeling agreement is
low (44.4%) on the exact agreement fine-grained task.

8 Results

Figure 4 compares the performance of our two supervised models; the reimplementation of Pan et al.
(2006) (Supervised, Pan), and our improved model with new features (Supervised, all). The new model
performs similarily to the Pan model on the in-domain Test set, but better on the out-of-domain financial
news articles in the TestWSJ test. On the latter, the new model improves over Pan et al. by 1.3% absolute
on the coarse-grained task, and by 4.1% absolute on the fine-grained task. We report results from the
maximum entropy model as it slightly outperformed the naive bayes and support vector machine models4.

We compare these supervised results against our web-based unsupervised systems in Figure 5. For the
coarse-grained task, we have two web count systems described in Section 5: one based on the yesterday
patterns (Web counts, yesterday), and one based on first gathering the fine-grained bucket counts and
then converting those to coarse-grained labels (Web counts, buckets). Generally, these models perform
within 1-2% of the supervised model on the coarse-grained task, though the yesterday-based classifier
exactly matches the supervised system’s performance on the TestWSJ data. The supervised system’s
higher results are not statistically significant against our web-based systems.

For the fine-grained task, Figure 5 compares our web counts algorithm based on duration distributions
(Section 5) to the baseline and supervised systems. Our web counts approach outperforms the best
supervised system by 4.1% absolute on the Test set and by 2.7% absolute on the out-of-domain TestWSJ.

To get an idea of how much the subject/object context could help predict event duration if integrated
perfectly, we evaluated the Mechanical Turk annotations against the Pan et. al. annotated dataset using
approximate agreement as described in Section 7. Figure 6 gives the performance of the Turkers given
two types of context: just the event itself (Event only), and the event plus its subject and/or object (Event
and args). Turkers performed below the majority class baseline when given only the event, but generally
above the baseline when given the subject and object, improving up to 20% over the event-only condition.

Figure 7 shows examples of events with different learned durations.
4This differs from Pan et al. who found support vector machines to be the best classifier.
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Mechanical Turk Accuracy
Coarse Fine

Test WSJ Test WSJ
Majority class 62.4 57.1 59.2 52.4
Event only 52.0 49.4 42.1 43.8
Event and args 65.0 70.1 56.7 59.9

Figure 6: Accuracy of Mechanical Turkers
against Pan et. al. annotations.

Learned Examples
talk to tourism leaders minutes
driving hours
shut down the supply route days
travel weeks
the downturn across Asia months
build a museum years

Figure 7: Examples of web query durations.

9 Discussion

Our novel approach to learning event durations showed 4.1% and 2.7% absolute gains over a state-of-the-
art supervised classifier. Although the gain is not statistically significant, these results nonetheless suggest
that we are learning as much about event durations from the web counts as we are currently able to learn
with our improvements to Pan et al.’s (2006) supervised system. This is encouraging because it indicates
that we may not need extensive manual annotations to acquire event durations. Further, our final query
system achieves these results with only the event word, and without considering the subject, object or
other types of context.

Despite the fact that we saw little gains in performance when including subjects and objects in our
query patterns, the Mechanical Turk evaluation suggests that more information may still be gleaned from
the additional context. Giving Turkers the subject and object improved their label accuracy by 10-20%
absolute. This suggests that finding a way to include subjects and objects in the web queries, for example
by using thesauri to generate related queries, is a valuable line of research for future work.

Finally, these MTurk experiments suggest that classifying events for duration out of context is a
difficult task. Pan et al. (2006) reported 0.88 annotator agreement on the coarse-grained task when given
the entire document context. Out of context, given just the event word, our Turkers only achieved 52%
and 49% accuracy. Not surprisingly, the task is more difficult without the document. Our system, however,
was also only given the event word, but it was able achieve over 70% in accuracy. This suggests that rich
language understanding is often needed to correctly label an event for duration, but in the absence of such
understanding, modeling the duration by web counts appears to be a practical and useful alternative.

10 A Database of Event Durations

Given the strong performance of our model on duration classification, we are releasing a database of
events and their normalized duration distributions, as predicted by our bucket-based fine-grained model.
We extracted the 1000 most frequent verbs from a newspaper corpus (the NYT portion of Gigaword
Graff (2002)) with the 10 most frequent grammatical objects of each verb. These 10, 000 events and their
duration distributions are available at http://cs.stanford.edu/people/agusev/durations/.
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Abstract

This paper proposes a framework for representing cross-lingual/interlingual lexical semantic cor-
respondences that are expected to be recovered through a series of on-demand/on-the-fly invocations
of a lexical semantic matching process. One of the central notions of the proposed framework is a
pseudo synset, which is introduced to represent a cross-lingual/multilingual lexical concept, jointly
denoted by word senses in more than one language. Another important ingredient of the proposed
framework is a framework forsemantifying bilingual lexical resource entries. This is a necessary
substep when associating and representing corresponding lexical concepts in different languages
by using bilingual lexical resources. Based on these devices, this paper further discusses possible
extensions to the ISO standard lexical markup framework (LMF). These extensions would enable re-
covered correspondences to be organized as a dynamicsecondary language resource, while keeping
the existing primary language resources intact.

1 Introduction

As the world goes more global, the demand for multilingual lexical semantic resources has increased. A
central approach to realize such a multilingual resource has been nicely demonstrated by the EuroWord-
Net (Vossen 2004) and the succeeding it, Global WordNet Grid project1. In these projects, the goal is to
build a worldwide grid of wordnets by means of interlingual pivots. While we may assume that the grid is
static and stable in its nature,dynamic lexical resources(Calzolari 2008) are possible, provided a variety
of language resources are wrapped as Web services2 and are accessible on a service infrastructure. For
example, a virtuallycombined lexicon3 can be evolutionarily realized by opportunistically associating
semantically corresponding entries in the relevant lexical resources.

However, existing frameworks for modeling and representing lexical resources are not applicable
to this new type of lexical resource in their current configurations. For example, while the ISO lexical
markup framework (LMF)4 provides useful constructs to represent a range of lexicons, it still concen-
trates on modeling one lexical resource at a time, and does not provide effective devices to integrate
different types of lexical resources into a single combined resource. This has motivated us to develop
a framework for representing cross-lingual/interlingual lexical semantic correspondences that may be
recovered through a series of on-demand/on-the-fly invocations of a lexical semantic matching process
that underlies combined lexicon access services.

The central concept of the framework is the notion ofpseudo synset, which is introduced to repre-
sent a cross-lingual/multilingual lexical concept, jointly denoted by words in more than one language.
As the name implies, it inherits and extends the constituting principle of wordnets: a lexical concept is

1http://www.globalwordnet.org/gwa/gwa grid.htm
2We use the termservicizeto mean the wrapping of a static language resource as a dynamic Web service, which provides a

standardized application program interface (API).
3Hartmann(2005) discusses a range ofhybrid dictionaries, which includes, for example,monolingual cum interlingual

dictionary.
4Standardized as ISO 24613:2008.
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defined as a set of synonymous word senses. Another component of the proposed framework is a frame-
work for semantifyingbilingual lexical resource entries, which is a necessary substep for associating and
representing corresponding lexical concepts in different languages by using bilingual lexical resources.

This paper starts with a motivating example and a look at how to represent the abovementioned com-
ponents in the example. This paper then discusses possible extensions to the ISO LMF, which would
enable recovered cross-lingual/interlingual correspondences to be organized as adynamiclanguage re-
source. This dynamic resource issecondary, because it is created on top of the existingprimary language
resources. Here it should be noted that this secondary language resource can be enriched and expanded,
graduallyevolvingin a collaborative Web service environment.

2 A Motivating Example and Representations

Figure 1 shows our motivating example, depicting five direct cross-lingual lexical semantic correspon-
dences: a Japanese wordkawacan be translated into eitherriver or streamin English;river is associated
with either ofrivi èreor fleuvein French, depending on where the river flows into;streamis associated
only with rivi ère in French.

kawa(川) river rivière
fleuve

Japanese English French
stream

Figure 1: Motivating Example.

Situations similar to this one would be brought about, for example, by invoking a lexical access
service on a Web-based linguistic service infrastructure. More specifically, think of a dictionary service
that implements a virtually combined dictionary. One user of this service might like to find the meaning
of the Japanese wordkawa(by consulting a Japanese lexical semantic resource) and then want to know
the equivalents in English (by consulting a bilingual dictionary); another user may want to look for
French counterparts ofriver. To fulfill these requirements, a computational lexical semantic matching
process behind the dictionary service should be invoked in an on-demand and on-the-fly manner, if the
relevant cross-lingual semantic correspondences are unknown to it. These invocations of the matching
process can induce possible indirect lexical semantic correspondences: for example, betweenkawaand
rivi ère, via river.

2.1 Problems with a Possible LMF Representation

The LMF NLP multilingual notation extension(Francopoulo et al. 2009) is devised to model and repre-
sent lexical semantic correspondences across languages. We can use this device to model and represent
the situation in the motivating example, as shown in Fig. 2, which makes use of theSense Axis
construct. Actually, this figure has been created from a figure presented in (Francopoulo et al. 2009) by
adding the following: a JapaneseSense node associated withkawa; an EnglishSense node associated
with stream; and aSense Axis node that links the JapaneseSense node to the two EnglishSense
nodes. Although this configuration seems to be natural, several questions may arise, including:

• How can we represent an indirect correspondence that could be dynamically derived or inferred
from a combination of direct correspondences? For example, should the derivable indirect corre-
spondence betweenkawaandfleuvealso be represented by adding theSense Axis andSense
Axis Relation constructs? Or should we introduce anotherSense Axis node, which, as
an interlingual pivot, aggregates all the corresponding senses?
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:Senseid=“ja.kawa .1” :Senseid=“en.river.1” :Senseid=“fr.rivière.1”

:Senseid=“fr.fleuve.1”:Sense Axisid=“SA.1”

:Sense Axisid=“SA.2”
:Sense Axis Relationlabel=“more general”

same as the Fig.4 in (Francopoulo et al. 2009):Sense Axisid=“SA.3”

:Senseid=“en.stream.1”
Figure 2: Straightforward LMF Representation of the Motivating Example.

• How and where should the details of a matching process be encoded? This is particularly crucial
for a dynamic resource, so that the potential user is able to assess the reliability of the resource.

• Is the introduction of theSense Axis Relation instance with the label ”more general” nec-
essary or adequate? The LMF specification states that aSense Axis Relation instance
should be introduced if the correspondence is not direct (partially equivalent). However, in our
scenario, it is reasonable to expect that the lexical semantic relation betweenrivi èreandfleuvehas
already been encoded somewhere in an existing French lexical semantic resource. This suggests
that the introduction of theSense Axis Relation might be redundant.

2.2 Proposed Representation: Overview

Figure 3 shows the conceptual overview of the proposed representation for the motivating example in
consideration of these questions. In this representation, we have eight nodes, each depicted by a shaded
round rectangle node. Each of these nodes is classified as across-lingual pseudo synset(CP Synset )
node (marked by a number) or amultilingual pseudo synset(MPSynset ) node (marked by a Greek let-
ter). While the former represents a directed cross-lingual correspondence between two senses, the latter
shows a set of multilingual word senses that may share an intersectional concept across the languages.
For example, theCP Synset node labeled ”1” represents a concept denoted by senses ofkawaand
stream, along with the depicted direction. The node markedα indicates a concept jointly denoted by the
multilingual sense set:{kawa, stream, rivi ère}.

kawa river rivièrefleuvestream

γ
53 4

α
1

jwn ewn fwn

β
2

Figure 3: Conceptual Overview of the Proposed Representation for the Motivating Example.

Given the previously mentioned use case scenario, we presuppose that two types of lexical resources
already exist, and that they are made accessible by appropriate Web service interfaces:

• Three WordNet-type monolingual lexical semantic resources for Japanese (jwn ), English (ewn)
and French (fwn ) are assumed. We assume that they are modeled and represented using the LMF
NLP semantics extension.
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• Although not explicitly depicted in this figure, two bilingual lexical resources for Japanese-to-
English (j-to-e ) and English-to-French (e-to-f ) are assumed. They are assumed to be mod-
eled and represented by employing the LMF machine readable dictionary (MRD) extension. How-
ever these resources would be augmented externally by the semantification mechanism described
in the next section.

As we will see later in this paper, derived correspondences between/among the existing lexical re-
source elements should be organized as a kind of secondary language resource in order to be reused.

3 Semantifying Bilingual Lexical Resource Entries

The semantification of a bilingual lexical resource entry is a necessary substep when associating possibly
corresponding lexical concepts in different languages. In principle, the source language (SL) expression
(entry word) is first associated with a sense in an SL lexical semantic resource. Then, we seek a possible
corresponding sense for the target language (TL) expression (translation equivalent) in a TL lexical
semantic resource. This process enriches the bilingual lexical resource by grounding it in the lexical
semantic resources in the SL and TL.

3.1 Necessity of Semantification

Bilingual dictionaries provide lexical items in one language with counterparts in another language that
are similar in meaning and usage. However, although this definition is fairly straightforward, bilingual
dictionaries do exhibit problems that need to be addressed, mainly owing to differences in concept for-
mation in different languages (Svensén 2009). Although the idea of using bilingual lexical resources
to integrate semantic resources is not new, as demonstrated by Daudé (1999) or Chen (2002), bilingual
dictionaries, in general, have attracted less attention than monolingual dictionaries. As pointed out by
Fontenelle (1997), this may, in part, be owing to their less structured machine-readable data format,
making it harder for a researcher to mine useful information from bilingual resources. However, a stan-
dardized modeling framework such as the ISO LMF can enable more bilingual lexical resources to be
disseminated in a well-structured format. The LMF introduces the MRD extension to provide a meta-
model to represent monolingual/bilingual dictionaries that are primarily compiled for human use.

Lexical EntryLemma
FormWord Form Sense

Equivalent Context
Text Representation

Definition
1..*

0..* 0..*
0..* 0..*

Subject Field0..* 0..*

Figure 4: LMF MRD Class Model.

Figure 4 provides an overview of the LMF MRD extension in a UML diagram. It shows that the
translation equivalents in the TL for an entry word in the SL are represented by usingEquivalent
nodes, each of which is associated with aSense node of theLexical Entry node. The figure
also shows that a translation equivalent is represented by an instance ofText Representation
class, which basically carries a text string that may be annotated with linguistic data categories. This
simple and somewhat unstructured configuration is reasonable and can be acceptable, given the fact
that most bilingual resources are structurally messy. However, the configuration may be insufficient if
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we are to exploit a bilingual dictionary as a kind of semantic resource and leverage it as a bridge to
associate potentially corresponding lexical concepts in different languages. This motivated us to develop
a framework to semantify bilingual lexical resources.

3.2 Framework of Semantification

Figure 5 shows the process of semantification. It is noteworthy that before the semantification, the
bilingual lexical entry is represented according to the definition in the LMF MRD extension.

“river” “rivière”
“fleuve(river that flows into the sea)”

EquivalentSenseLexical Entry
river.*

river “rivière”river.ewn.1{river.ewn.1}
ewn Closed: {river.ewn.1}Open: {rivière.*}

CP_SynsetSL_Sense_Grounding
semantificatione-to-f

Synset e-to-f Closed: {river.ewn.1}Open: {fleuve.*}TL_addition: “flows into the sea”
Figure 5: Example of Semantification of a Bilingual Dictionary Entry.

The semantification is as follows:

1. We first performSL sense groundingto associate theSense node in the bilingual lexical resource
e-to-f with a Sense node in the SL lexical semantic resourceewn. To accomplish this, a
computational lexical semantic matching process first looks for possibly correspondingSense
nodes inewn. This process5, is never decisive, even if it makes full use of the information, such
as the entry word itself, a gloss description, or additional semantic markers, provided in the lexical
resources. Therefore, a human judgment is then necessary to choose among the candidates and
establish a correspondence. Once the correspondence has been established, the formerly under-
specified word senseriver. * in e-to-f is disambiguated asriver.ewn.1 . Hereewn.1 is
an identifier6 of theSense node inewn. At the same time, these twoSense nodes are interlinked
by anSL Sense Grounding node, as shown in the Fig. 5.

2. TwoCP Synset nodes are then created. For example, the cross-lingual pseudo synset{river.ewn.1,
rivi ère. * } is associated with the upperCP Synset node, indicating that the intersection of
these two senses denotes a multilingual lexical concept across individual languages. However,
note that the senserivi ère. * indicates that it is not yet grounded to a French lexical seman-
tic resource, and so theCP synset node is still underspecified. In the figure, the set marked
Closedrepresents the set of grounded senses, whereas the set markedOpen denotes the still un-
derspecified senses. These two sets together define the current status of the multilingual pseudo
synset. It should be noted that theSense node in thee-to-f dictionary is associated with two
CP Synset nodes. This is different from the original LMF specification, in which aSense node
can only be associated with oneSynset node. It does not matter, however, as the associations
are accomplished only externally, thereby keeping the existing LMF-modeled resource intact.

3. The additional description of the second translation equivalent ”fleuve,” which is a ”river that
flows into the sea,” is encoded as the value of theTL addition feature and is stored in the

5We are now developing the process, which basically relies on textual overlap (Banerjee and Pedersen 2003).
6A rigorous specification has not yet been determined.

159



CP synset node. As discussed in the next subsection, additional descriptions in a bilingual
lexical resource offer useful information to fill the semantic gap between an entry word and the
translation equivalents. This information includes semantic restrictions on the translation equiv-
alents, as well as collocational or phrasal equivalents that detail the semantic range of an entry
word. However, to extract the information from an additional description, we need to analyze the
presented translation equivalent appropriately. This process would be highly resource-dependent,
owning to lack of a standardized presentation format. Nevertheless, a technique to extract differ-
entia (O’hara and Wiebe 2004) can be applied, as some of the translation equivalents are given in
the so-calledgenus-differentiaexpression pattern.

4. Although it is not depicted in Fig. 5, if necessary, two underspecified TL senses, will eventu-
ally be grounded to the correspondingSense nodes in a French lexical semantic resource. This
sub-process is calledTL sense groundingand is organized in a similar way to that of SL sense
grounding, requiring a computational lexical semantic matching process with human intervention.
However it may be a more difficult process, because, in general, translation equivalents provided
in a bilingual resource are not well structured and tend to lack rich semantic descriptions.

3.3 Dealing with Partial Equivalences

The method used for creating aCP Synset node should consider the nature of the translation equiva-
lents given in a variety of bilingual resources. Translation equivalence can be classified into full equiv-
alence, partial equivalence or zero equivalence (Svensén 2009). He points out that this classification is
rough, but important, in the sense that it may determine the way in which a translation equivalent is
presented. Among these, partial equivalence is the most noteworthy, becauseequivalent differentiation
has to be implemented in the dictionary description in some way, and the relevant information should
be extracted and encoded in the computational representation. The cases of partial equivalence can be
further divided intoconvergence(neutralization) or divergence.

The English-to-French correspondences in the motivating example can be classified as an instance
of divergence. Another example of divergence is presented by the Japanese wordshujin, which, in
English, corresponds tohost or hostess, depending on the gender of the person7. This example can
be represented in a similar way to Fig. 5: aCP synset node for{shujin.jwn.1, host. * },
with TL addition ”male”, and anotherCP synset for {shujin.jwn.1, hostess. * }, with
TL addition ”female.” These examples show that in cases of divergence, an SL sense is divided into
a set of finer-grained concepts. Generally, a divergence instance is signalled by the additional description
that specifies the sense or semantic range of a translation equivalent.

“ani” “(older) brother”ani.jwn.1
j-to-e

“otouto” “(younger) brother”otouto.jwn.1{ani.jwn.1} {otouto.jwn.1}
jwn

Closed: {ani.jwn.1}Open: {brother.*}SL_addition: “older”
Closed: {otouto.jwn.1}Open: {brother.*}SL_addition: “younger”

Figure 6: Sample Representation of Conversion-type Partial Equivalence.

Convergence can be illustrated by the example schematized in Figure 6, in which the Japanese word
ani (elder brother) andotouto(younger brother) are jointly associated with the English wordbrother, in
the sense ofblood brother . Contrary to the divergence cases, a convergence instance may be indi-
cated by a phrasal translation equivalent that preserves, or tries to convey, the finer-grained SL meaning.

7Actually, the EDR bilingual dictionary (http://www2.nict.go.jp/r/r312/EDR/ ) presents: ”⟨⟨male⟩⟩ host”
and ”⟨⟨female⟩⟩ hostess,” respectively.
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To encode the semantic restriction to the entry word in the SL, we introduce theSL addition feature,
as shown in Fig. 6. It should be noted that the two underspecifiedCP synset nodes would eventually
be grounded to the sameSense node in an English semantic resource and hence disambiguated and
converged.

4 Modeling Cross-lingual/Interlingual Correspondences for Reuse

4.1 Overall Picture

Figure 7 shows almost the entire representation of the motivating example, providing more detail than the
brief sketch shown in Fig. 3. Note that the numberedCP Synset nodes are placed at logically identical
positions to those in Fig. 3. In Fig. 7, we introduce instances of the classTL Sense Grounding
(shaded diamonds): aTL Sense Grounding node is created when the open translation equivalent
of an MPSynset node is closed by being grounded to aSynset node in the TL lexical semantic
resource. With this grounding, together with theSL Sense grounding , an entry in a bilingual lexical
resource works as a bridge from an SL lexical concept to the corresponding TL lexical concept via the
MPSynset node.

river “rivière”river.ewn.1
“fleuve (river that flows into the sea)”
e-to-f {fleuve.fwn.1, …}

fwn{rivière.fwn.1, …}TL_Sense_Grounding

Closed: {river.ewn.1, fleuve.fwn.1}TL_addition: “flows into the sea”
4
5

Closed: {river.ewn.1, rivière.fwn.1}

stream “rivière”stream.ewn.1 3 Closed: {stream.ewn.1, rivière.fwn.1}

{river.ewn.1}
ewn {stream.ewn.1, …}

{kawa.jwn.1,}
jwn

Closed: {kawa.jwn.1, stream.ewn.1}
“stream”

“river”
Closed: {kawa.jwn.1, river.ewn.1}

1
川.jwn.1川 2

j-to-e
Figure 7: Proposed Representation of the Motivating Example.

γβα
1 2 3 4 5

Closed: {kawa.jwn.1, stream.ewn.1,rivière.fwn.1} Closed: {kawa.jwn.1, river.ewn.1,rivière.fwn.1} Closed: {kawa.jwn.1, river.ewn.1,fleuve.fwn.1}

Figure 8: Resulted Lattice-like Structure.

To avoid an unnecessarily complicated diagram, Fig. 8 shows an extra part of the configuration shown
in Fig. 7. In this figure, threeMPSynset nodes (indicated by Greek letters) are introduced, and linked
to the associatedCP Synset nodes. At the time of writing this paper, the underlying computational
process for deriving the indirect correspondences was still under investigation. However, it is however
obvious that the process has to properly filter out inappropriate transitivities to avoid the semantic drift
across languages. Again, this would need human intervention, but this may require that the person has
competence for all the relevant languages. Therefore an effective machinery to assist him/her to make
judgments will be necessary.

Incremental creation of theMPSynset nodes gradually forms a lattice-like multilingual concept
structure. This suggests that our proposed framework is similar to SIMuLLDA (Janssen 2004), which
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applies formal concept analysis (FCA) to derive a concept lattice with the words and formal concepts.
However, our framework is clearly different in the sense that we propose an LMF-based representa-
tion framework, while considering an incremental formulation of a distributed network structure, as
discussed.

4.2 Specifications of the Proposed Constructs

All in all, we have proposed four classes in this paper:CP Synset , MPSynset , SL Sense Grounding ,
andTL Sense Grounding . These classes, which could extend the current ISO LMF, are specified as
follows.

• A CP Synset node is initiated when a lexical entry in a bilingual lexical resource is activated.

• An MPSynset node is introduced whenCP Synset /MPSynset nodes are combined to define
a multilingual pseudo synset.

• An instance node of theSL Sense Grounding class associates aSense node of an existing
bilingual lexical resource entry with the correspondingSynset node in an SL lexical semantic
resource. In the original LMF,Sense -to-Synset association is direct and does not require an
intermediate node. However, the insertion of anSL Sense Grounding node is necessary to
record the detail of the lexical semantic matching process.

• An instance node of theTL Sense Grounding class associates the translation equivalent of a
bilingual lexical resource entry with the corresponding TLSynset node, closing the formerly
open translation equivalent.

Central to our framework is theCP Synset andMPSynset classes, which are similar to the LMF
Synset class in the sense that an instance of these classes represents a set of synonymous senses.
However, theCP Synset andMPSynset classes differ from the LMFSynset class, because an
instance node of the classes gathers synonymous senses across the languages. The LMFSense Axis
class is another LMF construct that has something in common with theMPSynset class is. However,
we strongly expect that with theMPSynset class, multilingual correspondences will be incrementally
recovered and established, while also pointing to theSense nodes in bilingual lexical resources.

4.3 Toward Reusing Recovered Correspondences

Recovered and established cross-lingual/interlingual correspondences should be made persistent some-
where on the Web-based linguistic service infrastructure, so that they can be reused. In other words, these
correspondences should be converted into a sort of secondary language resource. Just like theSense
Axis class in the original LMF, instances of theCP Synset andMPSynset classes can be aggre-
gated in an instance of theLexical Resource . In this way, theLexical Resource instance can
indirectly associate the involvedLexicon instances, which are existing primary resources.

However, to make this scenario work, the following issues have to be addressed.

• All the nodes and links external to the existing language resources have to be properly stored
somewhere in the infrastructure and made retrievable. This means that standardized Web APIs
that enable the search and retrieval of the storage have to be provided.

• At the same time, relevant elements of the existing language resources, such asSynset nodes
or Sense nodes, have to be indexed and be retrievable externally. Assigning global identifiers
(URIs) to the elements may be a feasible way to do this. This may also facilitate the servicization
of language resources as exemplified in (Savas et al. 2010).
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5 Related Work

This paper discusses a framework for representing a global and distributed lexical semantic network,
while presupposing an environment in which a number of lexical resources have been Web-servicized.
Given such an environment, (Calzolari 2008) has pointed out the possibility of creating new resources
on the basis of existing resources, and some work in this direction has been published, such as Soria et
al. (2009) and Savas et al. (2010). This line of work is expected to improve further and increase, as
Web-based linguistic service infrastructures evolve and gain popularity.

Obviously, another related area of research is lexicon modeling. Although the ISO LMF will un-
doubtedly be used as a solid and shared framework, requirements to its revisions/extensions continue
to emerge. Among them, Maks et al. (2008) pointed out that LMF should more explicitly represent
language-dependent usage and contrasts, and they proposes a model that compromises between the MRD
extension and the multilingual extension. This solution might be reasonable, if we are to represent an
existing bilingual dictionary precisely. Nevertheless, the solution may not be sufficient to model and
represent an evolving distributed lexical semantic network, which is a prerequisite for this paper. The
problem raised up by Maks et al. (2008) is closely related to the issue posed by Trippel (2010), in
which he states:LMF provides the container for combining such resources of different types, but does
not merge them into one formalism. Given this motivation, he presented a formal lexicon model called
Lexicon Graph, arguing that the lossless combination of lexical resources could be accomplished.

6 Conclusions

Presupposing a highly servicized language resources environment, this paper proposed a representation
framework for cross-lingual/interlingual lexical semantic correspondences that would be recovered in-
crementally on a Web-based linguistic service infrastructure. The main contribution of this paper is
twofold: (1) the notion ofpseudo synset, which is introduced to represent pseudo lexical concepts shared
by more than one language; (2) the framework forsemantifying bilingual lexical resources, which allows
bilingual lexical resources to be used as a bridge to associate lexical concepts in different languages.
This paper also discussed how the recovered correspondences can be organized as a dynamicsecondary
language resource, while examining a set of possible extensions to the ISO LMF.

For future work, several items need to be pursued. First we have to extend the representation frame-
work to appropriately accommodate verb and adjective concepts, in which more complicated relation-
ships among linguistic elements have to be organized. Second, we plan to work further on the seman-
tification of bilingual lexical resources. In particular, we intend to devise a formalism and mechanism
to represent multi-word lexical entries and complicated translation equivalents. Multi-word expressions
are more frequently observed in bilingual resources compared to monolingual resources; they are useful
to describe the lexical semantic gaps between the languages. Last but not least, we intend to implement
prototype services around some existing lexical resources. To do this, along with the basic semantic
matching processes, we have to establish an effective workflow that involves human assessors to approve
the recovered cross-lingual correspondences and the inferred multilingual correspondences. In this re-
gard, the notion of asense pooland the verification process proposed by Yu et al. (2007) should be highly
relevant as a reference.
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Abstract

This paper argues that all subject noun phrases can be given a quantified formalisation in terms
of the intersection between their denotation set and the denotation set of their verbal predicate. The
majority of subject noun phrases, however, are only implicitely quantified and the task of retrieving
the most plausible quantifier for a given NP is non-trivial. We propose a formalisation which captures
the underspecification of the quantifier in subject NPs and we show that this formalisation is widely
applicable, including in statements involving kinds. We then present a baseline for a quantification
resolution system using syntactic features as basis for classification. Although the syntactic baseline
provides a respectable 78% precision, our error analysis shows that obtaining true performance on
the task requires information beyond syntax.

1 Quantification resolution

Most subject noun phrases in English are not explicitly quantified. Still, humans are able to give them
quantificational interpretations in context:

1. Cats are mammals = All cats...

2. Cats have four legs = Most cats...

3. Cats were sleeping by the fire = Some cats...

4. The beans spilt out of the bag = Most/All of the beans...

5. Water was dripping through the ceiling = Some water...

We refer to this process as quantification resolution, that is, the process of giving an implicitely quan-
tified NP a formalisation which expresses a unique set relation appropriate to the semantics of the utter-
ance. For instance, the most plausible resolution of 1 can be expressed as:

6. All cats are mammals.

|φ ∩ ψ| = |φ| where φ is the set of all cats and ψ the set of all mammals.

Resolving the quantification value of NPs is important for many NLP tasks, in particular for infer-
ence. We would like to be able to automatically perform the type of interpretations shown in 1 to 5.
It will allow us to draw conclusions such as If (all) cats are mammals and Tom is a cat, then Tom is a
mammal and If (some) cats are in my garden, then (some) animals are in my garden.1

The task of quantification resolution involves finding a semantic representation that goes beyond what
is directly obtainable from a sentence’s syntactic composition. We can write the(x, cat’(x), sleep’(x))
as we would write some(x, cat’(x), sleep’(x))2, but while the quantification semantics of some can be

1The type of entailment relying on word substitution is dependent on quantification: (All) cats are mammals doesn’t imply
that (All) animals are mammals.

2We use here a generalised quantifier notation were the first argument of the quantifier is the bound variable.
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fully defined (given a singular NP, we are talking of one entity only), that of the cannot: in a singu-
lar NP introduced by the, the referent can either be a single entity or a plurality with various possible
quantificational interpretations (cf The cat is sleeping vs The cat is a mammal).

This paper is an attempt to provide a formal semantics for implicitely quantified NPs which a) sup-
ports the type of inferences required by NLP, b) has good empirical coverage (beyond ‘standard’ lin-
guistic examples), c) lends itself to evaluation by human annotation and d) can be derived automatically.
We draw on work in formal linguistics, but by formulating the problem as quantification resolution,
we obtain an account which is more tractable from an NLP perspective. We also present preliminary
experiments that automate quantification resolution using a syntax-driven classifier.

2 Under(specified) quantification

The phenomenon of ambiguous quantification overlaps with genericity. Generic NPs have tradition-
ally been described as referring to kinds (Krifka et al., 1995) and one of their most frequent syntactic
expressions is the bare plural, although they occur in definite and indefinite singulars too, as well as
bare singulars. There are many views on the semantics of generics (e.g. Carlson, 1995; Pelletier and
Asher, 1997; Heyer, 1990; Leslie, 2008) but one of them is that they quantify (Cohen, 1996), although,
puzzlingly enough, not always with the same quantifier:

7. Dogs are in my garden = Some dogs...

8. Frenchmen eat horsemeat = Some/Relatively-many Frenchmen... (For the relatively many reading,
see Cohen, 2001.)

9. Cars have four wheels = Most cars...

This behaviour has so far prevented linguists from agreeing on a single formalisation for all generics.
Note that relegating the various readings to a matter of pragmatics, formalising all bare plurals using an
existential, is no solution as we are then unable to explain the semantic difference between, for instance,
Mosquitoes carry malaria and Some mosquitoes carry malaria. The only accepted assumption is that
an operator GEN exists, which acts as a silent quantifier over the restrictor (subject) and matrix (verbal
predicate) of the generic statement.

In this paper, we take an approach which sidesteps some of the intractable problems associated with
the literature on generics and which also extends to definite plurals, as discussed below. Instead of
talking of ambiguous quantification, we will talk of underspecified quantification, or underquantifi-
cation. By this, we mean that the bare plural, rather than exhibiting a silent, GEN quantifier, simply
features a placeholder in the logical form which must be filled with the appropriate quantifier (e.g.,
uq(x, cat’(x), sleep’(x)), where uq is the placeholder quantifier). This account caters for the facts that
so-called generics can so easily be quantified via traditional quantifiers, that GEN is silent in all known
languages, and it explains also why it is the bare form which has the highest productivity, and can denote
a range of quantified entities, from existentials to universals. Using the underquantification hypothesis,
we can paraphrase any generic of the form ‘X does Y’ as ‘there is a set of things X, a certain number of
which do Y’ (note the partitive construction).

We now turn to definite plurals which have traditionally been thought to be outside of the genericity
phenomenon and associated with universals (e.g., Lyons, 1999). Definite plurals do exhibit a range of
quantificational behaviour and thus we argue that they should be studied as underquantified forms too.
Consider the following, from Dowty (1987):

10. At the end of the press conference, the reporters asked the president questions.

Dowty remarks that it is not necessary that all reporters ask questions for the sentence to be true. In fact,
it is only necessary that some of them did. Dowty says: “The question of how many members of the
group referent of a definite NP must have the distributive property is in part lexically determined and in
part determined by the context, and only rarely is every member required to have these properties.”

Following the existential reading, we can write:
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11. some(x, reporter’(x), askQuestion’(x))

The problem is that for Dowty, the NP refers to a ‘group’, i.e., to the reporters as a whole, and not to
specific reporters. We don’t want to say ‘there is a small set of reporters, each of which asked a question’;
we want to say ‘there is a large set of reporters – all those present at the press conference – and some
of them asked a question’, i.e., we want to use a partitive construction. We follow Brogaard’s (2007)
account of definite plurals as partitive constructions, where she examines the following:

12. The students asked questions.

Brogaard argues that, given X , the denotation of the students, a subset Y of X is selected via the quan-
tifier some and that the verbal predicate applies (distributively) to Y . A similar account can be given
of (10): there is a set of reporters, and a certain number of elements in that set (some reporters) asked
questions — which is our desired reading. Note that all definite plurals can have this interpretation (e.g.,
possessives and demonstratives also).

We will next argue that the partitive construct observed in definite plurals can be generally applied to
subject NPs and we will propose a single formalisation for all underquantified statements.

3 Formalisation

3.1 Link’s notation (1983)

In what follows, we briefly define each item of notation used in this work, as taken from Link (1983).
We illustrate the main points via examples over a closed world W containing three cats (Kitty, Sylvester
and Bagpuss).

The background assumption for our formalisation is that, following Link, plurals can be represented
as lattices. The star sign ∗ generates all individual sums of members of the extension of predicate P . So
if P is cat′, the extension of ∗P is a join-semilattice representing all possible sums of cats in the world
under consideration. The join-semilattice of cats in world W is shown in Fig 1.

Figure 1: Join-semilattice of all cats in world W

The sign σ is the sum operator. σxPx represents the sum, or supremum, of all objects that are ∗P .
σ∗xPx represents the proper sum of Ps, that is, the supremum of all objects that are proper plural
predicates of P . The sum includes (non-plural) individuals such asK or S while the proper sum doesn’t.
In worlds where there is more than one object in the extension of ∗P , σxPx = σ∗xPx: e.g., in Fig 1,
the sum of all cats is the same as the proper sum of all cats, i.e., the set {K,S,B}. (Compare this with a
world where there is only one cat, say Kitty: then σxPx = {K} while σ∗xPx = ∅).

The product sign
∏

expresses an individual-part relation. The · sign in combination with
∏

indi-
cates atomic part. Following Chierchia (1998), we assume the same underlying lattice for both mass
terms and count nouns, so we use the

∏
and · operators for formalising quantification over mass entities.

3.2 Collective and distributive predicates

Some predicates are collective: they refer to a group as a whole and not to its instances (13). Other
predicates are always distributive (14):
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13. Antelopes gather near water holes (*Andy the antelope gathers near water holes.)

14. Three soldiers were asleep (Tom was asleep, Bill was asleep, Cornelia was asleep.)

Most verbal phrases, though, are ‘mixed predicates’ that accept both readings:

15. Three soldiers stole wine from the canteen.

(Tom, Bill and Cornelia went together to the canteen to steal wine or Tom, Bill and Cornelia each
stole wine from the canteen.)

Collective predicates can be a source of confusion when trying to directly apply quantification to an
ambiguously quantified NP:

16. (*Some/Most/All) Americans elect a new president every five years.

Quantifying 16 seems initially impossible in shallow form: we cannot write all(x,american′(x),electPres′(x))
as it seems to imply distributivity. However, we refer to the reporter example (10) and the latent partitive
construct that we suggested existed in that (distributive) sentence. By similarity, we can say that there
is a set X of Americans able to vote, and a subset Y of those — which in this case is selected by the
quantifier all and is therefore equal to X — collectively elects the president.

3.3 Formalising the partitive construct

Following Link (1998) for the formalisation of collective and distributive predicates, we can write, for
10 and 16:

17. X = σ∗x reporterAtPressConference′(x) ∧ ∃Y [Y
∏
X ∧ ∀z[z ·∏Y →askques′(z)]]

18. X = σ∗xvotingAmerican′(x) ∧ ∃Y [Y
∏
X∧electPresident′(Y )]3

For the collective case, we just apply the verbal predicate collectively.
We can then add the quantifier resolution. We assume a three-fold partitioning of the quantificational

space, corresponding to the natural language quantifiers some, most and all (in addition to one, for the
description of singular, unique entities). The corresponding set relations are:

19. if some(φ, ψ) then 0 < |φ ∩ ψ|
20. if most(φ, ψ) then |φ− ψ| ≤ |φ ∩ ψ|
21. if all(φ, ψ) then |φ− ψ| = 0

These set relations can be expressed in terms of the sets involved in the partitive construction: in 16,
ifX is the set of all Americans able to vote, Y the subset ofX selected by the quantifier, and Z the set of
all things that elect the president, then Y actually represents the intersection X ∩ Z. We can thus write:

22. X = σ∗x reporterAtPressConference′(x)∧ ∃Y [Y
∏
X ∧ ∀z[z ·∏Y →askques′(z)]∧ (0 < |Y |)]

23. X = σ∗x votingAmerican′(x) ∧ ∃Y [Y
∏
X∧electPresident′(Y ) ∧ (|X − Y | = 0)]

The same principle applies to mass nouns. We show below a distributive example.

24. Water was dripping through the ceiling.

X = σ∗x water′(x) ∧ ∃Y [Y
∏
X ∧ ∀z[z ·∏Y →dripThroughCeiling′(z)] ∧ (0 < |Y |)]

We thus write the underspecified quantifier as:

25. X = σ∗x P ′(x) ∧ ∃Y [Y
∏
X ∧Q(Y )] ∧ quantConstraint(X,Y )]

where the quantConstraint ensures the correct cardinality of Y for various quantifiers and the predicateQ
applies distributively or collectively depending on the semantics of the sentence. X and Y respectively
denote the Nbar and NP referents in the quantified paraphrase of the statement.

3Note that in the two examples, we have restricted X to the relevant set of entities. We will not investigate here how this
particular reference resolution takes place.
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4 Kinds

In order to argue that our formalisation is applicable to all subject noun phrases, we must briefly come
back to the case of generics which, in some linguistic accounts, are not seen as quantified (Carlson,
1977).4 According to those accounts, the subject NP in sentences such as The cat is a mammal (the
kind) can be regarded as an entity similar to proper nouns. The generic reading of the sentence then
takes a straightforward subject/predicate formalisation of the type mammal’(cat’). The main argument
in favour of such a representation is the existence of sentences where the verbal predicate seems to only
be applicable to a species rather than to its instances:

26. The dodo is extinct.

Such cases, we claim, do not preclude quantification. We use the accounts of Chierchia (1998) and
Krifka (2004), where a kind is defined as a function that returns the greatest element of the extension of
the property relevant to that kind: Kind(X) = σ∗x X ′(x). This gives us the following for 26:

27. X = σ∗x dodo′(x) ∧ ∃Y [Y
∏
X ∧ extinct′(Y ) ∧ (|Y −X| = 0)]

We stress however that we do not deny the validity of representations that involve a simple sub-
ject/predicate structure. It should be clear that the sentence The cat is a mammal has an interpretation
where the species ‘cat’ is attributed the property of being a mammal. What we argue is simply that the
meaning of the sentence also includes a quantificational aspect. We want, after all, to be able to make
natural inferences about individual cats: if the cat is a mammal then Tom the cat is a mammal. We believe
that both quantification and a subject/predicate formalisation are necessary to fully render the semantics
of such sentences. We will also argue in Section 7 that for the purposes of computational linguistics, it
is actually desirable to formalise the quantificational aspect separately, as part of the full semantics.

We should also note that the genericity phenomenon is usually seen as encompassing habitual con-
structions (Krifka et al., 1995). Our quantificational account of kinds will not necessarily be applicable
to quantification of events and we do not wish to make any claims with regard to habituality in this paper.
For completeness, we will however point out that, following Chierchia (1995) on indefinites, we see
quantification adverbs as able to bind, and therefore quantify over individuals: according to this view,
the most felicitous reading of Mosquitoes sometimes carry malaria is Some mosquitoes carry malaria,
formalisable with 25.

5 Automatic quantification: first attempts

To our knowledge, no attempt at the automatic specification of quantification has been made before. In
consequence, we start our investigation with the simplest possible type of machine learning algorithm,
using as determining features the direct syntactic context of the statement to be quantified. The general
idea of such a system is that grammatical information such as the number of a subject noun phrase and
the tense of its verbal predicate may be statistically related to its classification.

5.1 Gold standard

We built a gold standard by re-using and expanding the quantification annotations we produced in Herbe-
lot and Copestake (2010). This small corpus, which contains randomly extracted Wikipedia5 sentences,
provides 300 instances of triply annotated subject noun phrases. The categories used for annotation are
the natural language quantifiers ONE, SOME, MOST, ALL and the label QUANT (for noun phrases of the
type some cats, most turtles or more than 37 unicorns which, being explicitly quantified, do not enter our
underquantification account and must be marked with a separate label). In order to convert the multiple

4A more comprehensive discussion can be found in Herbelot (2010).
5http://www.wikipedia.org/
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annotations to a gold standard, we used majority opinion when it was available and negotiation in cases
of complete disagreement. There were only 14 cases where a majority opinion cannot be obtained.

The main issue with the resulting gold standard is its relatively small size. The 300 data points it
provides are clearly insufficient for machine learning, but the annotation process is time-consuming and
we do not have the resources to set up a large-scale annotation effort. As a trade-off, the first author
of this paper annotated a further 300 noun phrases, thus doubling the size of the gold standard. As a
precaution, we ran the classifier presented later in this section over the original gold standard and over
the new annotations; no substantial difference in performance between the two runs was found.

Table 1 shows the class distribution of our five quantification labels over the 600 instances of the
extended gold standard.

Class Number of instances Percentage of corpus
ONE 367 61%

SOME 53 9%
MOST 34 6%
ALL 102 17%

QUANT 44 7%

Table 1: Class distribution over 600 instances

We note, first, that the number of explicitly quantified noun phrases amounts to only 7% of the an-
notation set. This shows that the resolution of underquantification has potentially high value for NLP
systems. Next, we remark that 61% of all instances simply denote a single entity, leaving 32% to under-
quantified plurals — 189 instances. This imbalance is problematic for the machine learning task that we
set out to achieve. First, it means that the training data available for SOME, MOST and ALL annotations
is comparably sparse. Secondly, it implies that the baseline for our future classifier is relatively high:
assuming a most frequent class baseline, we must beat 61% precision.

5.2 Quantifying with syntax

Most of the remarks that can be found in the literature on the relation between syntax and quantification
have been written with respect to the generic versus non-generic distinction. Although we have moved
away from the terminology on genericity, the two following examples show the potential promises —
and hurdles — of using syntax to induce quantification annotations.

• Noun phrases which act as subjects of simple past tense verbs are usually non-generic: A cow says
‘moo’ / A cow said ‘moo’ (Gelman, 2004). However, the so-called ‘historic past’ is an exception
to this rule: The woolly mammoth roamed the earth many years ago.

• The combination of a bare plural and present tense is a prototypical indication of genericity: Tigers
are massive (Cimpian and Markman, 2008). But news headlines behave differently: Cambridge
students steal cow.

We informally investigate the distribution of various grammatical constructions with respect to quan-
tification, as obtained from our gold standard. Although some constructions give a clear majority to one
or another label, that majority is not always overwhelming. For instance, consistently annotating bare
plurals followed by a past tense as SOME would result in a precision of only 54%. It is therefore unclear
how accurate a classifier based only on syntax can be. (Note that the quantification phenomenon is un-
derstood to be semantically complex and that syntax is only one of many features used in the annotation
guidelines produced in Herbelot and Copestake, 2010.)
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5.3 Features

We give the system article and number information for the noun phrase to be quantified, as well as the
tense of the verbal predicate following it. In order to cater for proper nouns, we also indicate whether the
head of the noun phrase is capitalised or not. Article, number and capitalisation information is similarly
provided for the object of the verb. All features are automatically extracted from the Robust Minimal
Recursion Semantics (RMRS, Copestake, 2004) representation of the sentence in which the noun phrase
appears (obtained via a RASP parse, Briscoe et al., 2006). The following shows an example of a feature
line for a particular noun phrase (the sentence in which the noun phrase appears is also given):

ORIGINAL: [His early blues influences] included artists such as Robert
Johnson, Bukka White, Skip James and Sleepy John Estes.

FEATURES: past,possessive,plural,nocap,bare,plural,nocap

Note that articles belonging to the same class are labelled according to that class: all possessive
articles, for instance, are simply marked as ‘possessive’. This is the same for demonstrative articles.

5.4 Experiments and results

The aim of this work is not only to produce an automatic quantification system, but also, if possible,
to learn about the linguistic phenomena surrounding the underspecification of quantification. Because
of this, we choose a tree-based classifier which has the advantage of letting us see the rules that are
created by the system and thereby may allow us to make some linguistic observations with regard to the
cooccurrence of certain quantification classes with certain grammatical constructions. We use an off-the-
shelf implementation of the C4.5 classifier (Quinlan, 1993) included in the Weka data mining software.6

We perform a 6-fold cross-validation on the gold standard and report class precision, recall and F-score.

Class Precision Recall F-score
ONE 86% (362/422) 99% (362/367) 92%

SOME 60% (25/42) 47% (25/53) 53%
MOST 33% (2/6) 6% (2/34) 10%
ALL 53% (57/108) 56% (57/102) 54%

QUANT 100% (22/22) 50% (22/44) 67%

Table 2: Class precision and recall for the quantification task

The C4.5 classifier gives 78% overall precision to the quantification task. Tables 2 shows per class
results for the three tasks. The figures in brackets indicate the number of true positives for a particular
class, followed by the total number of instances annotated by the system as instances of that class. The
classifier performs extremely well with the ONE class, reaching 92% F-score. Already quantified noun
phrases yield perfect precision and mediocre recall, as might be expected since we do not provide the
system with a list of quantifiers. The system performs less well with the labels SOME, MOST and ALL.

In order to understand the distribution of errors, we perform a detailed analysis on the first fold of
our data. Out of 100 instances, the classifier assigns 25 to an incorrect class. The majority of those
errors (44%) are due to the fact that the classifier labels all singulars as ONE, missing out on generic
interpretations and in particular on the plural reading of mass terms: out of 11 errors, 5 are linked to
a bare singular). The next most frequent type of error, covering another 16% of incorrectly classified
instances, comes from already quantified noun phrases being labelled as another class. These errors
affect the recall of the QUANT class and the precision of the SOME, MOST and ALL labels in particular
(most of those errors occur in plural noun phrases). The coarseness of the rules is again to blame for
the remaining errors: looking at the decision tree produced by the classifier, we observe that all bare

6http://www.cs.waikato.ac.nz/ml/weka/
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plurals followed by a present tense, as well as all definite plurals, are labelled as universals, while all
bare plurals followed by a past tense are labelled as SOME. This accounts for a further 7 errors. The last
three incorrect assignments are due to a dubious capitalisation rule.

5.5 Correspondence with linguistics

We observe that most definite plurals (including demonstratives and possessives) are classified as either
MOST or ALL. This fits the linguistic notion of a definite as being essentially universal (Lyons, 1999) but
also misses out on the correct quantification of statements such as 10.

We note also that non-capitalised bare plurals followed by a present tense are similarly classed as
ALL. This echoes the observation that the combination of bare plural and present is a typical manifes-
tation of genericity (if one understands genericity as a quantification phenomenon close to universality).
When followed by past or perfect tenses, an existential quantification with SOME is however preferred.

One of the puzzles opened by the classifier’s decision trees is the use of the direct object feature to
distinguish between MOST and ALL in the case of some definite plurals. Given Sentences 28 and 29, our
classifier would label the first one as ALL and the second one as MOST.

28. My cats like the armchair. ALL

29. My cats like the armchairs. MOST

At first glance, the rule seems to be a mere statistical effect of our data. We will however remark
that statements like 29 are reserved a special section in Link (1998), where they are introduced as ‘rela-
tional plural sentences’. One of Link’s claims is that those sentences warrant four collective/distributive
combinations — as opposed to two only in the case where the object is an individual. So we can say in
Sentence 29 that a collective of cats likes a collective of armchairs, or that this collective of cats likes
each armchair individually, etc. This proliferation of interpretations makes uncertainties more likely with
regard to who likes what, and to the quantification of the subject and object.

For now, we will simply conclude that, although a simple syntax-based classifier is able to classify
certain constructs with high precision, other constructs are beyond its capabilities. Further, it is difficult
to see how improvements can be made to the current classification without venturing outside of the
grammatical context. For instance, it seems practically impossible to improve on the high-precision rule
specifying that every singular noun phrase should be classified as ONE. Due to space constraints, we
will not report any further experiments in this paper. However, preliminary investigations into the use of
lexical similarity to resolve quantification ambiguity can be found in Herbelot (2010).

6 Previous work

The general framework of this proposal is an underspecification account close to that described in Pinkal
(1996) or Egg (2010). Computational approaches to underspecified quantification have so far focused
on the genericity phenomenon. Leaving aside the question of annotation, which is treated in Herbelot
and Copestake (2010), research on genericity can be classified within two strands: theoretical research
on defeasible reasoning and extraction of common sense knowledge. Attempts to model defeasible
reasoning were made in the 1980s with, for instance, the developments of default logic (Reiter, 1980)
and non-monotonic logic (McDermott and Doyle, 1982). With information extraction as aim, Suh et al.
(2006) attempt to retrieve ‘common sense’ statements from Wikipedia. They posit that common sense
is contained in generic sentences. Their system, however, makes simplifying assumptions with regard to
syntax: in particular, all bare plurals (and bare plurals only) are considered generic. In general, common
sense extraction systems tend to restrict the data they mine to avoid the problem of identifying genericity
(e.g., Voelker et al., 2007).
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7 Conclusion, with some remarks on semantics

We have shown in this paper that subject noun phrases that are not explicitly quantified could be rep-
resented in an underspecified form. We have also argued that this formalisation is applicable to all
constructs, including so-called generics. We have introduced a syntax-based classifier for quantification
resolution and discussed the limits of an approach relying on compositional information only.

We acknowledge that our quantificational account of noun phrases, and especially of generics, does
not satisfy the common requirement that a formalisation be a full description of the semantic particu-
larities of a linguistic phenomenon. We think, however, that this requirement has led to over-restrictive
approaches. One of the debates surrounding generics, for instance, relates to whether they should be
given a ‘rules and regulations’ or an inductivist truth condition (Carlson, 1995). Our view is that it would
be a mistake to exclude either interpretation. Burton-Roberts’ (1977) A gentleman opens doors for ladies
clearly has normative force and without doubt, also allows the hearer to make their own conclusions with
regard to the intersection between the set of all gentlemen and the set of people opening doors for ladies.

Our view of semantics is that it is a layered system and that specifying the quantification semantics
of a noun phrase does not mean providing the full semantics of that noun phrase. It may be argued that
the ideal semantics of generics should be unified and integrate all possible aspects of meaning. But such
a theory is yet to be developed for genericity and, from a computational point of view, may not even
be desirable: a modular representation of meaning allows us to only formalise the aspects that we are
interested in for a particular task, leaving the rest out.

The approach presented here can be said to implement the idea of ‘slacker’ semantics (Copestake,
2009) in that a) our experiments try to derive a specification from compositional information only and
b) we only attempt to specify one aspect of the meaning of noun phrases (quantification), leaving other
aspects unspecified. In the future, we would like to take away some of the slack in a) by using lexical
semantics in the specification of quantification. In order to do this, a much larger corpus should be
created for the training and testing of the system, and this will be our next task.
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Abstract

We present the results of several machine learning tasks that exploit explicit spatial language
to classify rhetorical relations and the spatial information of narrative events. Three corpora are
annotated with figure and ground (granularity) relationships, mereotopologically classified verbs
and prepositions, and frames of reference. For rhetorical relations, Naı̈ve Bayesian models achieve
84.90% and 57.87% accuracy in classifying NARRATION and BACKGROUND / ELABORATION re-
lations respectively (16% and 23% above baseline). For the spatial information of narrative events,
K* models achieve 55.68% average accuracy (12% above baseline) for all spatial information types.
This result is boosted to 71.85% (28% above baseline) when inertial spatial reference and text se-
quence information are considered. Overall, spatial information is shown to be central to narrative
discourse structure and prediction tasks.

1 Introduction

Clauses in discourse are related to one another in a number of semantic and pragmatic ways. Some of the
most prominent are temporal relations that hold among the times of events and states described (Partee,
1984; Pustejovsky et al., 2003) and the rhetorical relations that hold between a pair of clauses (Mann
and Thompson, 1987; Asher and Lascarides, 2003). For example, (1) illustrates the NARRATION relation
which obtains between (1a-b) and between (1b-c).

(1) a. Klose was sitting with his teammates.
b. He walked to the sidelines.
c. Then he entered the game.

Because of the temporal properties of NARRATION (Asher and Lascarides 2003, p. 462), the event
described in (1a) is taken to precede that described in (1b) and (1b)’s event to precede (1c)’s. As Asher
and Lascarides show, there is a close tie between the rhetorical structure of a discourse and its temporal
structure. In (2), for example, the fact that the clauses are related by ELABORATION entails that the
temporal relation between (2a) and (2b) is inclusion.

(2) a. Klose scored a goal.
b. He headed the ball into the upper corner.

We observe that the spatial relations among the locations of the events described in these discourses
are also highly determined by the rhetorical relations between the clauses used to describe them. In
the NARRATION-related discourse (1), there is a spatial progression: Klose is located relative to his
teammates (1a), he then moves from the bench to the sidelines (1b), and then he moves from the sidelines
into the game (1c). In the ELABORATION-related discourse (2), there is no such progression.

In this paper, we investigate the degree to which the spatial structure of discourse and its rhetorical
structure are co-determined. Using supervised machine learning techniques (Witten and Frank, 2002),
we evaluate two hypotheses: (a) spatial information encoded in adjacent clauses is highly predictive of
the rhetorical relations that hold between them and (b) spatial information is highly predictable based on
associated spatial information within narrative event clauses. To do this, we build a corpus of narrative
texts which are annotated both for spatial information (figure and ground (granularity) relationships,
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mereotopologically classified verbs and prepositions, and frames of reference) and rhetorical relations (a
binary NARRATION vs. ELABORATION/BACKGROUND distinction discussed in Section 3.2). This corpus
is then used to train two types of classifiers - one type that classifies the rhetorical relations holding
between clauses on the basis of spatial information, and another type that classifies spatial relationships
within clauses where the NARRATION relation holds. The results support both hypotheses and indicate
the centrality of spatial information to narrative discourse structure and associated classification tasks.

2 Background and Related Research

2.1 Rhetorical Relations

Rhetorical relations describe the role that one clause plays with respect to another in a text and contributes
to a text’s coherence (Hobbs, 1985). As such, these relations are pragmatic features of a text. In NLP
generally, classifying rhetorical relations has been an important area of research (Marcu, 2000; Sporleder
and Lascarides, 2005) and has been shown to be useful for tasks such as text summarization (Marcu,
1998). The inventory of rhetorical relations in Segmented Discourse Representation Theory (SDRT)
(Asher and Lascarides, 2003) is widely used in these applications. This inventory includes the following
relations, illustrated by example: NARRATION: Klose got up. He entered the game. ELABORATION:
Klose pushed the Serbian midfielder. He knew him from school. BACKGROUND: Klose entered the game.
The pitch was very wet. EXPLANATION: Klose received a red card. He pushed the Serbian midfielder.
CONSEQUENCE: If Klose received a red card, then he pushed the Serbian midfielder. RESULT: Klose
pushed the Serbian midfielder. He received a red card. ALTERNATION: Klose received a red card or he
received a yellow card. CONTINUATION: Klose received a red card. Ronaldo received a yellow card.

In previous work, rhetorical relations have been predicted based on a range of features including
discourse connectives, relation location, clause length, part-of-speech, content and function words, and
syntactic features (Marcu and Echihabi, 2002; Lapata and Lascarides, 2004). These systems have a wide
range of average accuracies for all relations sought to be predicted - e.g. 33.96% (Marcu and Echihabi,
2002) to 70.70% (Lapata and Lascarides, 2004) - and individual relations - e.g. RESULT - 16.21% and
EXPLANATION - 75.39% (Marcu and Echihabi, 2002) and CONTRAST - 43.64% and CONTINUATION -
83.35% (Sporleder and Lascarides, 2005). Our focus is on the NARRATION, BACKGROUND and ELAB-
ORATION relations, which account for over 90% of the discourses in our corpus.

2.2 Spatial Language and Discourse

Spatial language has been discussed in a number of NLP contexts. For example, linking natural language
with physical locations via semantic mark-up (e.g. SpatialML (MITRE, 2009)); spatial description and
wayfinding tasks (e.g. Anderson et al., 1991); and dialogue systems (e.g. Coventry et al., 2009), just
to name a very few. Perspectives on spatial language are similarly varied in terms of their focus and
theoretical background (e.g. cognitive, semantic and syntactic); however, common threads do emerge.
First, all physical spatial references are reducible to figure and ground relationships (Talmy, 2000). In
English, these are triggered by a deictic verb or adverb (e.g. went, here) (3a); a spatial preposition (e.g.
in, at) (3b); a particle verb (e.g. put on, got out) (3c); or a motion verb (e.g. drive, follow) (3d).

(3) a. [Ronaldo]figure is [here]ground.
b. [Ronaldo]figure is in [the park]ground.
c. [Ronaldo]figure rolled over [Ø]ground.
d. [Ronaldo]figure ran to [the park]ground.

Second, figure and ground relationships qualitatively vary by the type of verb and preposition cre-
ating the relationship. These differences can be modeled in mereotopology, which defines spatial re-
lationships in terms of regions and connections (e.g. RCC-8 (Randell et al., 1992)). We follow Asher
and Sablayrolles (1995) who classify prepositions based on the position (Position - at, Initial Direction
- from, Medial Position - through, Final Position - to) and contact (Inner - in, Contact - against, Outer
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- along, and Outer-Most - beyond) of two regions (figure and ground). For verbs, Muller (2002) pro-
poses six mereotopological classes: Reach, Leave, Internal, External, Hit, and Cross. Pustejovsky and
Moszkowicz (2008) mapped Muller’s classes to FrameNet and VerbNet and propose ten general classes
of motion (Move, Move-External, Move-Internal, Leave, Reach, Detach, Hit, Follow, Deviate, Stay).

Third, figure and ground relationships vary by the perspective used to describe the relationship.
For this discussion, perspective takes two forms, granularity of spatial description (following Montello
(1993)) and frames of reference (following Levinson (1996)). Granularity refers to the level of detail
in a given spatial description. Montello (1993, p. 315) indicates four spatial granularities based on the
cognitive organization of spatial knowledge (summarized in (4)).

(4) a. Ronaldo jumped on the ball.
b. Ronaldo is in the corner.
c. Ronaldo is running around the field.
d. Ronaldo is in Cape Town.

(4a) is a Figural granularity which describes space smaller than the human body. (4b) is a Vista gran-
ularity which describes space from a single point of view. (4c) is an Environmental granularity which
describes space larger than the body with multiple (scanning) point(s) of view. (4d) is a Geographic
granularity which describes space even larger than the body and is learned by symbolic representation.

Frames of reference provide different ways of describing the same spatial relationships. For example,
given a static scene of Ronaldo sitting on a bench next to his coach, each utterance in (5) would be an
accurate spatial description.

(5) a. Deictic: Ronaldo is there.
b. Contiguity: Ronaldo is on the bench.
c. Named Location: Ronaldo is at the sideline.
d. Relative: Ronaldo is in front of me.
e. Intrinsic: Ronaldo is behind his coach.
f. Absolute: Ronaldo is north of his coach.

(5a-c) are non-coordinated as they relate just the figure and ground. Coordinated information, relating
the figure to an additional entity within the ground, occurs in (5d-f). Frames of reference apply to both
static and dynamic relationships (Levinson, 1996, p. 360).

In terms of attending to spatial information in discourse, Herman (2001) argues that spatial informa-
tion patterns in narrative discourse carve out spatially defined domains that group narrative actions. In
particular, the emergence and change in different types of spatial reference to physical location (discourse
cues) create maps of the narrative actions. These discourse cues include figure, ground and path (motion)
relationships (3); frames of reference (5); and deictic shifts - here vs. there. Herman’s demonstration is
based on ghost story narratives that are rich in spatial reference.

Howald (2010) showed in a corpus of serial killer first person narratives, also rich in spatial reference,
that these spatial narrative domains, in the form of abstract Pre-Crime, Crime and Post-Crime events,
were predicted to a 90% accuracy from three spatial features (figure, ground, and spatial verb) and
discourse sequence. Overall, research by Herman (2001) and Howald (2010) demonstrates some level
of dependency between spatial information and discourse structure. The present research addresses the
specific question of whether there is a systematic relationship between spatial information and temporal
information via rhetorical relations and the spatial architecture of narrative events.

3 Data and Annotation

3.1 Data

Three corpora of narrative discourse were annotated with rhetorical and spatial information. These cor-
pora were then used to train and test machine learning systems. Summarized in Table 1, the three dif-
ferent narrative corpora selected for analysis were: (1) narratives from serial criminals (CRI) - oral and
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written confession statements and guilty pleas; (2) American National Corpus Charlotte Narrative and
Conversation Collection (Ide and Suderman, 2007) (ANC) - oral narratives in conversations collected in
a sociolinguistic interview format; and (3) The Degree Confluence Project (DEG) - this project, which
seeks to map all possible latitude-longitude intersections on Earth, requires that participants who visit
these intersections provide written narratives of the visit for inclusion on the project’s website.

Table 1: Relation and Spatial Clause Distribution

Corpus ANC (n=20) DEG (n=20) CRI (n=20) Total (N=60)
Total Clauses 588 611 1,710 2,909

Spatial Clauses 260 354 932 1,546
Average 44.21 57.93 54.50 53.14

Total Rhetorical 568 591 1,690 2,848
Spatial Rhetorical 259 345 929 1,533

Average 45.59 58.37 55.00 53.82

20 narratives from each corpus were selected. There was a total of 2,909 (independent) clauses with
1,546 of those clauses containing spatial information - spatial clauses (53.14% on average). There was a
total of 2,848 relations with 1,533 of those relations where both clauses contained spatial information -
spatial rhetorical (53.82% on average).

3.2 Spatial Information and Rhetorical Relation Annotation

We developed a coding scheme for spatial information that consolidates the insights on spatial langauge
discussed in Section 2.2.

• FIGURE is an indication of grammatical person or a non-person entity (1 = I, my; 2 = you, your;
3 = he, she, it, his, her; 4 = we, our; 5 = you, your; 6 = they, their; NP = the purse, a bench, three
cars);

• VERB is one of the four mereotopological classes - a consolidation of Pustejovsky and Moszkow-
icz’s (2008) ten classifications (State = was, stay, was sitting; Move = run, go, jump; Outside =
follow, pass, track; Hit = attach, detach, strike);

• PREPOSITION is one of four mereotopological classes based on Asher and Sablayrolles (1995)
(Positional = in, on; Initial = from ; Medial = through; Final = to);

• GROUND is one of four granularities (Figural, Environmental, Vista, Geographic) (see (4)
above);

• FRAME is one of six frames of reference (Deictic, Contiguity, Named Location, Relative, In-
trinsic, Absolute) (see (5) above).

The three corpora were annotated by one of the authors. Annotation occurred one narrative at a
time and any information from that narrative could be used to resolve rhetorical relations and spatial
information. A reference sheet including several examples of each coding element was available to
the annotator. The annotation happened in two phases. First, each pair of clauses was annotated with
an SDRT relation. Second, each clause that contained a physical figure and ground relationship was
identified. The figure, ground, preposition and verb were annotated with a Figure, Verb, Preposition,
Ground, and Frame. We illustrate with (6) where the NARRATION relation obtains between (6a-b).

(6) a. Kaka kicked the ball into the goal.
b. Then he ran to the left side of the bench.
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The spatial annotation of (6a) is: FIGURE = NP, the ball; VERB = Hit (H), kicked; PREPOSITION =
Final (F), into; GROUND = Environmental (E), the goal; and FRAME = Contiguity (C). The spatial
annotation of (6b) is: FIGURE = 3, he; VERB = Move (M), ran; PREPOSITION = Final (F), to the left
side of; GROUND = Environmental (E), the bench; and FRAME = Intrinsic (INT). The distribution of
spatial rhetorical relations is summarized in Table 2.

Table 2: Spatial Rhetorical Relation Distribution per Corpus

Relation ANC DEG CRI Total
NARRATION 133 124 654 911

BACKGROUND 74 87 238 399
ELABORATION 34 63 17 114

CONTINUATION 14 27 10 51
RESULT 3 22 0 25

EXPLANATION 0 16 1 17
ALTERNATION 0 0 9 9

CONSEQUENCE 1 6 0 7
Total 259 345 929 1,533

An additional individual was queried for inter-rater reliability against the author annotation. The rater
was given roughly one-third of the data (10 narratives (4 ANC, 4 DEG, 2 CRI) accounting for 510 spatial
clause pairs), the same example sheet used by the author, and as much time as needed to complete the
task. Average agreement and Cohen’s kappa statistics (Cohen, 1960) were computed between the inter-
rater and the author for the spatial annotations and NARRATION, BACKGROUND, and ELABORATION

codings. Individually, BACKGROUND and ELABORATION have low interannotator agreement (κ = 32.92
and 54.20 respectively), but these two relations were often confused (26% of BACKGROUND relations
coded as ELABORATION and 12% of ELABORATION relations coded as BACKGROUND). As illustrated
in (7-8), both BACKGROUND and ELABORATION add information to the surrounding state of affairs.

(7) a. Klose entered the game.
b. The pitch was very wet.

(8) a. Klose pushed the Serbian midfielder.
b. He knew him from school.

As evidenced by the annotation confusions, the difference between these relations is difficult to distin-
guish and the distinction made by Asher and Lascarides (2003) is subtle - BACKGROUND’s temporal
consequence is one of overlap and ELABORATION, a subordinating relation, is one of part-of. However
collapsing these relations resulted in a fairly reliably distinguished category. Average agreement and
kappa statistics are summarized in Table 3.

Table 3: Agreement and Kappa Statistics for Relation and Spatial Codings

Coding Agreement (%) Kappa (κ)
All Rhetorical Relations 71.97 60.27

NARRATION 86.32 74.36
BACKGROUND / ELABORATION 73.40 62.20

Figure 94.91 89.92
Verb 90.90 81.80

Preposition 78.35 56.70
Granularity 87.87 75.74

Frame 69.38 38.76
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For rhetorical relations, the average agreement and kappa statistic are consistent with previously re-
ported performances (e.g. Agreement = 71.25 / κ = 61.00 (Sporleder and Lascarides, 2005)). We have
not been able to find previously reported performance accuracies for NARRATION, ELABORATION and
BACKGROUND relations specifically. However, κ statistics from 60.00 to 75.00 and above are considered
acceptable (e.g. Landis and Koch, 1977). For the spatial codings, the average agreements are relatively
high with Preposition and Frame falling lowest. There is no basis for direct comparison of these num-
bers to other research as the coding scheme is novel.

4 Machine Learning Experiments

We constructed two machine learning tasks to exploit the annotated spatial information to determine what
contributions the information is making to narrative structure. The first task evaluates the prediction of
NARRATION and BACKGROUND/ ELABORATION relations based on pairs of spatial clauses. The second
task evaluates the prediction of spatial information types, based on the other spatial information types in
that clause, in individual clauses where the NARRATION relation holds.

4.1 Rhetorical Relation Prediction

4.1.1 Methods and Results

Task 1 builds a 2-way classifier for the NARRATION and BACKGROUND/ ELABORATION relations.
Clause pairs were coded as vectors (n = 1,424) - for example, the vector for (6) is NP3, HM, FF,
EE, CINT. These vectors were used to train and test (10-fold cross-validation) a number of classifiers.
The Naı̈ve Bayes classifier performed the best. Results are reported in Table 4.

Table 4: Naı̈ve Bayes Classification Accuracy and F-Measures for Task 1

NARRATION Accuracy (% / baseline) Precision Recall F-Score
ANC 63.29 / 58 .676 .633 .654
DEG 75.71 / 61 .803 .757 .779
CRI 90.12 / 73 .822 .901 .860

TOTAL 84.90 / 68 .808 .841 .824
BACK/ ELAB Accuracy (% / baseline) Precision Recall F-Score

ANC 57.89 / 41 .532 .579 .555
DEG 70.11 / 38 .642 .701 .670
CRI 45.63 / 26 .624 .456 .527

TOTAL 57.87 / 35 .622 .567 .593

For all corpora combined, the majority class (”baseline”) for NARRATION is 68% and 26% for BACK-
GROUND / ELABORATION; the classifier performs 16% and 22% above baseline respectively. The differ-
ence between the NARRATION and BACKGROUND / ELABORATION relations and baselines is statistically
significant for each corpus and all corpora combined - ANC: χ2 = 25.64, d.f. = 1, p ≤ .001; DEG: χ2 =
33.86, d.f. = 1, p ≤ .001; CRI: χ2 = 22.69, d.f. = 1, p ≤ .001; and TOTAL:χ2 = 34.09, d.f. = 1, p ≤ .001.

4.1.2 Discussion

Again, we have not been able to find reported results for a direct comparison of NARRATION and BACK-
GROUND/ ELABORATION. However, the 84.90% and 57.87% (at 16% and 22% over baseline) perfor-
mance of our Naı̈ve Bayesian model is consistent with results reported in similar tasks. For example,
Marcu and Echihabi (2002) report an average accuracy of 33.96% (5-way classifier) and 49.70% (6-way
classifier) based on training with very large data sets. Sporleder and Lascarides (2005) report a 57.55%
average accuracy, based on training with large data sets, which is 20% over Marcu and Echihabi’s 5-way
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classifier and almost 40% over a random 20% baseline. Lapata and Lascarides (2004) report an average
accuracy of 70.70% for inferring temporal relations based on training.

We ran an additional set of experiments to determine the relative contribution of spatial features to
predict NARRATION and BACKGROUND / ELABORATION relations. As shown in Table 5, Figure and
Verb outperform Ground, Preposition and Frame in accuracy. Figure performs at a 71% average
accuracy (85% for NARRATION and 40% for BACKGROUND/ ELABORATION) and Verb performs at a
74% average accuracy (84% for NARRATION and 54% for BACKGROUND/ ELABORATION). Figure and
Verb appear to be most discriminating. Note that we are not suggesting that subject and verb generally
are similarly discriminatory - Figure and Verb in this task are overtly spatial. Despite the performance
of Figure and Verb, different subsets of spatial information worked better (we ran all permutations of
spatial features - the top five are listed in Table 5). However, the difference in performance is negligible.
For example, the best subset of Figure, Verb and Ground (85% and 58%) only performed 1% above
NARRATION and BACKGROUND/ ELABORATION prediction based on all five features combined.

Table 5: Single and Combined Spatial Feature Performance

Feature NARRATION BACK/ ELAB Features NARRATION BACK/ ELAB

Figure (F) 85.58 40.33 FVG 85.24 58.33
Verb (V) 84.59 54.97 VGP 84.34 58.33

Prepostion (P) 97.34 1.00 FVGR 86.33 56.45
Ground (G) 97.33 1.00 FV 86.56 56.90
Frame (R) 98.02 2.00 VG 85.37 57.33

These results tell us several things about the relationship between spatial information and rhetorical
structure as it applies to narrative discourse. First, spatial information predicts rhetorical structure as
good as non-spatial types of linguistic information reported in other investigations and with many fewer
features. For example, Sporleder and Lascarides (2005) rely on 72 different features falling into nine
classes whereas we rely on 14 features in five classes. This suggests that spatial information is not only
central to rhetorical stucture, like temporal components, but central to the task of prediction. Second,
while the type of spatial information that predicts rhetorical structure is based on the primary figure and
ground relationship, it is the qualitative semantic variations within these elements that is providing the
discrimination. It is the organization of spatial relationships - (Verb and Preposition) and the perspective
provided by the narrator (Figure, Ground and Frame) combined - rather than any individual elements.

4.2 Spatial Information Prediction

4.2.1 Methods and Results

Task 2 is a series of five experiments. Each experiment builds a classifier for each type of spatial infor-
mation: a 6-way classifier for Frame; a 5-way classifier for Figure (Figure types 2 and 5 did not occur
in our corpus); and 4-way classifiers for Ground, Preposition and Verb. Single clauses that contribute
to the NARRATION relation were coded as vectors (n = 911) - for example, the single vectors for (6a)
and (6b) are NP, H, F, E, C and 3, M, F, E, INT. These vectors were used to train and test (10-fold
cross-validation) a number of classifiers to predict one of the five spatial features given the remaining
four. The K* classifier performed the best. Results are reported in Table 6. For all corpora combined, the
K* classifier performs above baseline for all spatial information (Figure = 9%, Verb = 17%, Preposition
= 9%, Ground = 19%, Frame = 8%) (χ2 = 20.95, d.f. = 4, p ≤ .001).

4.2.2 Discussion

Even though the accuracies of predicting spatial information are significantly above baseline, we sought
ways to boost performance by considering implicit spatial information. For those clauses without explicit
spatial information, we extended the annotation of the previous clause’s coding based on the inertia of
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Table 6: K* Classification Accuracy and F-Measures for Task 2

Spatial Information Accuracy (% / baseline) Precision Recall F-Score
Figure 47.97 / 38 .464 .480 .428
Verb 67.32 / 50 .635 .673 .640

Preposition 53.69 / 46 .492 .537 .499
Ground 53.59 / 34 .530 .536 .519
Frame 55.67 / 47 .507 .557 .511

narrative texts. Rapaport, et al. (1994) discuss the temporal inertia of narrative texts - time moves forward
through narrative events. In the absence of updating, information is maintained. We suggest that inertia
applies to spatial information as well. For example, given the clauses - John entered the room. He sat
down. - we make the assumption that John sat down in the room that he entered. We illustrate with (9).

(9) a. Kaka kicked the ball into the goal.
NP, H, F, E, C, .33

b. The goaltender yelled in frustration.
NP, H, F, E, C, .66

c. Then Kaka ran to the left side of the bench.
3, M, F, E, INT, 1

No explicit spatial information exists in (9b). We took the coding from the explicit spatial information
in (9a) and maintained it for (9b). New explicit spatial information occurs in (9c) and the coding is
updated. Further, we included explicit sequence information as a measure of a given clause’s proportional
position within the text (.33, .66 and 1). In the absence of overt temporal specification (occuring in only
10% of the clauses in our corpus), the sequence information, a textual feature, parallels the temporal
progression (and inertia) of narrative events. This added 560 additional vectors (n = 1,471). The K*
classifier still performed the best. The results are summarized in Table 7.

Table 7: K* Classification Accuracy and F-Measures for Task 2 Boosted Vectors

SPATIAL INERTIA Accuracy (% / baseline) Precision Recall F-Score
Figure 51.73 / 41 .509 .517 .473
Verb 70.22 / 48 .673 .700 .679

Preposition 57.30 / 47 .571 .573 .540
Ground 62.61 / 35 .636 .626 .611
Frame 59.82 / 44 .574 .598 .564

SPATIAL INERTIA + SEQUENCE Accuracy (% / baseline) Precision Recall F-Score
Figure 70.56 / 41 .702 .706 .699
Verb 79.33 / 48 .789 .793 .790

Preposition 67.91 / 47 .676 .679 .674
Ground 72.39 / 35 .721 .724 .721
Frame 69.06 / 44 .678 .691 .681

Inclusion of the spatial inertia values improves performance of the K* classifier in all cases (χ2 =
40.59, d.f. = 4, p ≤ .001). Inclusion of sequence information improves performance even further (χ2

= 102.36, d.f. = 4, p ≤ .001). Note that, despite the increase in performance, sequencing information
alone does not do as well, indicating that spatial information still plays a discriminatory role. Using
sequence information alone as a baseline (Figure = 47%, Verb = 52%, Preposition = 47%, Ground =
44%, Frame = 48%;), the normalized performance values above sequence baseline become Figure =
23%, Verb = 27%, Preposition = 28%, Ground = 20%, and Frame = 21%.

The ability to predict spatial features appears to be dependent both on a patterned distribution of
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the per-clause spatial information (increased by spatial inertia) and on the textual feature of sequence
(temporal inertia). This seems to hold despite the specific subject matter or spatial characteristics of a
given narrative. Considering the complete spatiotemporal picture for narrative clauses yields the best
prediction results and suggests that the spatial information structure of narrative discourse represents
some type of organization akin to what Herman (2001) and Howald (2010) have evaluated in spatially-
rich narratives. Based on the tasks presented here, this organization appears to be fundamental and
relative to formal temporally-informed discourse structure.

5 Conclusion

Exploration of the spatial dimension in narrative discourse provides interesting and robust possibilities
for computational discourse analysis. We have described two machine learning tasks which exploit
spatial linguistic features. In addition to improving on existing prediction systems, both tasks empirically
demonstrate that, when available, certain types of spatial information are predictors of the rhetorical
structure of narrative discourse and the spatial information of narrative event sequences. Based on these
results, we indicate that spatial structure is related to temporal structure in narrative discourse.

The coding scheme proposed here models complex and interrelated properties of spatial relationships
and perspectives and should be generalizeable to other non-narrative discourses. Future research will fo-
cus on different discourse corpora to determine how spatial information is related to rhetorical structure.
Additional future research will also focus on automation of the annotation process. The ambiguity of
spatial language makes automatic extraction of spatial features infeasible at the current state of the art.
Fortunately, average agreement and kappa statistics for coding of the spatial information and rhetorical
relations are within acceptable ranges. The annotated spatial features are semantically deep and useful
for not only computational discourse systems, but tasks that involve the semantic modeling of spatial
relations and spatial reasoning.
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Abstract

Measures of similarity have traditionally focused on computing the semantic relatedness between
pairs of words and texts. In this paper, we construct an evaluation framework to quantify cross-modal
semantic relationships that exist between arbitrary pairsof words and images. We study the effec-
tiveness of a corpus-based approach to automatically derive the semantic relatedness between words
and images, and perform empirical evaluations by measuringits correlation with human annotators.

1 Introduction

Traditionally, a large body of research in natural languageprocessing has focused on formalizing word
meanings. Several resources developed to date (e.g., WordNet (Miller, 1995)) have enabled a systematic
encoding of the semantics of words and exemplify their usagein different linguistic frameworks. As a
result of this formalization, computing semantic relatedness between words has been possible and has
been used in applications such as information extraction and retrieval, query reformulation, word sense
disambiguation, plagiarism detection and textual entailment.

In contrast, while research has shown that the human cognitive system is sensitive to visual informa-
tion and incorporating a dual linguistic-and-pictorial representation of information can actually enhance
knowledge acquisition (Potter and Faulconer, 1975), themeaningof an image in isolation is not well-
defined and it is mostly task-specific. A given image, for instance, may be simultaneously labeled by a
set of words using an automatic image annotation algorithm,or classified under a different set of seman-
tic tags in the image classification task, or simply draw its meaning from a few representative regions
following image segmentation performed in an object localization framework.

Given that word meanings can be acquired and disambiguated using dictionaries, we can perhaps
express the meaning of an image in terms of the words that can be suitably used to describe it. Specif-
ically, we are interested to bridge thesemantic gap(Smeulders et al., 2000) between words and images
by exploring ways to harvest the information extracted fromvisual data in a general framework. While a
large body of work has focused on measuring the semantic similarity of words (e.g., (Miller and Charles,
1998)), or the similarity between images based on image content (e.g., (Goldberger et al., 2003)), very
few researchers have considered the measure of semantic relatedness1 between words and images.

But, how exactly is an image related to a given word? In reality, quantification of such a cross-
modal semantic relation is impossible without supplying itwith a proper definition. Our work seeks to
address this challenge by constructing a standard evaluation framework to derive a semantic relatedness
metric for arbitrary pairs of words and images. In our work, we explore methods to build a representa-
tion model consisting of a joint semantic space of images andwords by combining techniques widely
adopted in computer vision and natural language processing, and we evaluate the hypothesis that we can
automatically derive a semantic relatedness score using this joint semantic space.

Importantly, we acknowledge that it is significantly harderto decode the semantics of an image, as its
interpretation relies on a subjective and perceptual understanding of its visual components (Biederman,

1In our paper, we are concerned with semanticrelatedness, which is a more general concept than semanticsimilarity.
Similarity is concerned with entities related by virtues oftheir likeness, e.g.,bank-trust company, but dissimilar entities may
also be related, e.g.,hot-cold. A full treatment of the topic can be found in Budanitsky and Hirst (2005).
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1987). Despite this challenge, we believe this is a worthy research direction, as many important problems
can benefit from the association of image content in relationto word meanings, such as automatic image
annotation, image retrieval and classification (e.g., (Leong et al., 2010)) as well as tasks in the domains
of of text-to-image synthesis, image harvesting and augmentative and alternative communication.

2 Related Work

Despite the large amount of work in computing semantic relatedness between words or similarity be-
tween images, there are only a few studies in the literature that associate the meaning of words and
pictures in a joint semantic space. The work most similar to ours was done by Westerveld (2000), who
employed LSA to combine textual words with simple visual features extracted from news images using
colors and textures. Although it was concluded that such a joint textual-visual representation model was
promising for image retrieval, no intensive evaluation wasperformed on datasets on a large scale, or
datasets other than the news domain. Similarly, Hare et al. (2008) compared different methods such as
LSA and probabilistic LSA to construct joint semantic spaces in order to study their effects on automatic
image annotation and semantic image retrieval, but their evaluation was restricted exclusively to the
Corel dataset, which is somewhat idealistic and not reflective of the challenges presented by real-world,
noisy images.

Another related line of work by Barnard and Forsyth (2001) used a generative hierarchical model
to learn the associative semantics of words and images for improving information retrieval tasks. Their
approach was supervised and evaluated again only on the Corel dataset.

More recently, Feng and Lapata (2010) showed that it is possible to combine visual representations
of word meanings into a joint bimodal representation constructed by using latent topics. While their
work focused on unifying meanings from visual and textual data via supervised techniques, no effort
was made to compare the semantic relatedness between arbitrary pairs of word and image.

3 Bag of Visual Codewords

Inspired by the bag-of-words approach employed in information retrieval, the “bag of visual codewords”
is a similar technique used mainly for scene classification (Yang et al., 2007). Starting with an image
collection, visual features are first extracted as data points from each image, characterizing its appear-
ance. By projecting data points from all the images into a common space and grouping them into a large
number of clusters such that similar data points are assigned to the same cluster, we can treat each cluster
as a “visual codeword” and express every image in the collection as a “bag of visual codewords”. This
representation enables the application of methods used in text retrieval to tasks in image processing and
computer vision.

Typically, the type of visual features selected can beglobal– suitable for representation in all images,
or local – specific to a given image type and task requirement. Global features are often described using a
continuous feature space, such as color histogram in three different color spaces (RGB, HSV and LAB),
or textures using Gabor and Haar wavelets (Makadia et al., 2008). In comparison, local features such as
key points (Fei-Fei and Perona, 2005) are often distinct across different objects or scenes. Regardless of
the features used, visual codeword generation involves thefollowing three important phases.

1. Feature Detection: The image is divided into partitions of varying degrees of granularity from
which features can be extracted and represented. Typically, we can employ normalized cuts to
divide an image into irregular regions, or apply uniform segmentation to break it into smaller
but fixed grids, or simply locate information-rich local patches on the image using interest point
detectors.

2. Feature Description: A descriptor is selected to represent the features that arebeing extracted
from the image. Typically, feature descriptors (global or local) are represented as numerical vec-
tors, with each vector describing the feature extracted in each region. This way, an image is
represented by a set of vectors from its constituent regions.
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Figure 1: An illustration of the process of generating “Bag of Visual Codewords”

3. Visual Codeword Generation: Clustering methods are applied to group vectors into clusters,
where the center of each cluster is defined as a visual codeword, and the entire collection of clusters
defines the visual vocabulary for that image collection. Each image region or patch abstracted in
feature detection is now represented by the visual codewordmapped from its corresponding feature
vector.

The process of visual codeword generation is illustrated inFigure 1. Fei-Fei and Perona (2005) has
shown that, unlike most previous work on object or scene classification that focused on adopting global
features, local features are in fact extremely powerful cues. In our work, we use the Scale-Invariant
Feature Transform (SIFT) introduced by Lowe (2004) to describe distinctive local features of an image
in the feature description phase. SIFT descriptors are selected for their invariance to image scale, rotation,
differences in 3D viewpoints, addition of noise, and changein illumination. They are also robust across
affine distortions.

4 Semantic Vector Models

The underlying idea behind semantic vector models is that concepts can be represented as points in a
mathematical space, and this representation is learned from a collection of documents such that concepts
related in their meanings are near to one another in that space. In the past, semantic vector models
have been widely adopted by natural language processing researchers for tasks ranging from information
retrieval and lexical acquisition, to word sense disambiguation and document segmentation. Several
variants have been proposed, including the original vectorspace model (Salton et al., 1997) and the
Latent Semantic Analysis (Landauer and Dumais, 1997). Generally, vector models are attractive because
they can be constructed using unsupervised methods of distributional corpus analysis and assume little
language-specific requirements as long as texts can be reliably tokenized. Furthermore, various studies
(Kanerva, 1998) have shown that by using collaborative, distributive memory units to represent semantic
vectors, a closer correspondence to human cognition can be achieved.

While vector-space models typically require nontrivial algebraic machinery, reducing dimensions is
often key to uncover the hidden (latent) features of the terms distribution in the corpus, and to circumvent
the sparseness issue. There are a number of methods that havebeen developed to reduce dimensions –
see e.g., Widdows and Ferraro (2008) for an overview. Here, we briefly describe one commonly used
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technique, namely the Latent Semantic Analysis (LSA), noted for its effectiveness in previous works for
reducing dimensions.

In LSA, term co-occurrences in a corpus are captured by meansof a dimensionality reduction op-
erated by aSingular Value Decomposition (SVD) on the term-by-document matrixT representing the
corpus. SVD is a well-known operation in linear algebra, which can be applied to any rectangular matrix
in order to find correlations among its rows and columns. SVD decomposes the term-by-document ma-
trix T into three matricesT = UΣkVT whereΣk is the diagonalk × k matrix containing the singulark
values ofT, σ1 ≥ σ2 ≥ ... ≥ σk andU andV are column-orthogonal matrices. When the three matrices
are multiplied together the original term-by-document matrix is re-composed. Typically we can choose
k′ � k obtaining the approximationT ' UΣk′VT .

5 Semantic Relatedness between Words and Images

Although the bag of visual codewords has been extensively used in image classification and retrieval
tasks, and vector-space models are well explored in naturallanguage processing, there has been little
connection between the two streams of research. Specifically, to our knowledge, there is no research work
that combines the two techniques to model multimodal meaning relatedness. Since we are exploring new
grounds, it is important to clarify what we mean by computingthe semantic relatedness between a word
and an image, and how the nature of this task impacts our hypothesis. The assumptions below are
necessary to validate our findings:

1. Computing semantic relatedness between a word and an image involves comparing the concepts
invoked by the word and the salient objects in the image as well as their interaction. This goes
beyond simply identifying the presence or absence of specific objects indicated by a given word.
For instance, we expect a degree of relatedness between an image showing a soccer ball and the
word “jersey,” since both invoke concepts like{sports, soccer, teamwork} and so on.

2. The semantics of an image is dependent on the focus, size and position of distinct objects identi-
fied through image segmentation. During labeling, we expectthis segmentation to be performed
implicitly by the annotators. Although it is possible to focus one’s attention on specific objects via
bounding boxes, we are interested to harvest the meaning of an image using a holistic approach.

3. In the case of measuring the relatedness of a word that has multiple senses with a given image,
humans are naturally inclined to choose the sense that provides the highest relatedness inside the
pair. For example, an image of a river bank expectedly calls upon the “river bank” sense of the
word “bank” (and not “financial bank” or other alternative word senses).

4. A degree of semantic relatedness can exist between any arbitrary word and image, on a scale
ranging from being totally unrelated to perfectly synonymous with each other. This is trivially
true, as the same property holds when measuring similarity between words and texts.

Next, we evaluate our hypothesis that we can measure the relatedness between a word and an image
empirically, using a parallel corpus of words and images as our dataset.

5.1 ImageNet

We use the ImageNet database (Deng et al., 2009), which is a large-scale ontology of images devel-
oped for advancing content-based image search algorithms,and serving as a benchmarking standard for
various image processing and computer vision tasks. ImageNet exploits the hierarchical structure of
WordNet by attaching relevant images to each synonym set (known as “synset”), hence providing picto-
rial illustrations of the concept associated with the synset. On average, each synset contains 500-1000
images that are carefully audited through a stringent quality control mechanism.

Compared to other image databases with keyword annotations, we believe that ImageNet is suitable
for evaluating our hypothesis for three reasons. First, by leveraging on reliable keyword annotations in
WordNet (i.e., words in the synset and their gloss naturallyserve as annotations for the corresponding
images), we can effectively circumvent the propagation of errors caused by unreliable annotations, and
consequently hope to reach more conclusive results for thisstudy. Second, unlike other image databases,
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ImageNet consists of millions of images, and it is a growing resource with more images added on a
regular basis. This aligns with our long-term goal of building a large-scale joint semantic space of images
and words. Finally, third, although we can search for relevant images using keywords in ImageNet,2

there is currently no method to query it in the reverse direction. Given a test image, we must search
through millions of images in the database to find the most similar image and its corresponding synset.
A joint semantic model can hopefully augment this shortcoming by allowing queries to be made in both
directions. Figure 2 shows an example of a synset and the corresponding images in ImageNet.

(a)

(b)
Joint Semantic Space of Words and Images

Synsets 167
Images 230,864
Words 1144

Nouns 783
Verbs 140
Adjectives 221

Image:Words ratio 202:1

Figure 2: (a) A subset of images associated with a node in ImageNet. The WordNet synset illustrated
here is{Dog, domestic dog, Canis familiaris} with the gloss:A member of the genus Canis (probably
descended from the common wolf) that has been domesticated by man since prehistoric times; occurs in
many breeds; “the dog barked all night”(b) A table showing statistical information on our joint semantic
space model

5.2 Dataset

For our experiments, we randomly select 167 synsets3 from ImageNet, covering a wide range of concepts
such as plants, mammals, fish, tools, vehicles etc. We perform a simple pre-processing step using Tree
Tagger (Schmid, 1994) and extract only the nouns. Multiwords are explicitly recognized as collocations
or named entities in the synset. Not considering part-of-speech distinctions, the vocabulary for synset
words is 352. The vocabulary for gloss words is 777. The shared vocabulary between them is 251.

There are a total of 230,864 images associated with the 167 synsets, with an average of 1383 images
per synset. We randomly select an image for each synset, thusobtaining a set of 167 test images in
total. The technique explained in Section 3 is used to generate visual codewords for each image in this
dataset.4 Each image is first pre-processed to have a maximum side length of 300 pixels. Next, SIFT
descriptors are obtained by densely sampling the image on 20x20 overlapping patches spaced 10 pixels
apart. K-means clustering is applied on a random subset of 10million SIFT descriptors to derive a visual
vocabulary of 1,000 codewords. Each descriptor is then quantized into a visual codeword by assigning it
to the nearest cluster.

To create the gold-standard relatedness annotation, for each test image, six nouns are randomly se-
lected from its associated synset and gloss words, and six other nouns are again randomly selected from
the shared vocabulary words.5 In all, we have 167 x 12 = 2004 word-image pairs as our test dataset. Sim-
ilar to previous word similarity evaluations (Miller and Charles, 1998), we ask human annotators to rate
each pair on a scale of 0 to 10 to indicate their degree of semantic relatedness using the evaluation frame-
work outlined below, with 0 being totally unrelated and 10 being perfectly synonymous with each other.
To ensure quality ratings, for each word-image pair we used 15 annotators from Amazon Mechanical

2http://www.image-net.org/
3Not all synsets in ImageNet are annotated with images. We obtain our dataset from the Spring 2010 version of ImageNet

built around Wordnet 3.0.
4For our experiments, we obtained the visual codewords computed a priori from ImageNet. Test images are not used to

construct the model
512 data points are generally considered sufficient for reliable correlation measures (Vania Kovic, p.c.).
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Synset {sunflower, helianthus} Synset {oxygen-mask} Synset {submarine , pigboat ,
sub , U-boat}

Gloss any plant of the genus
Helianthus having large flower
heads with dark disk florets and
showy yellow rays

Gloss a breathing device that
is placed over the mouth and
nose; supplies oxygen from an
attached storage tank

Gloss a submersible warship
usually armed with torpedoes

Relatedness Scores Relatedness Scores Relatedness Scores
color (5.13) dog (0.53) basketball (0.20) central (1.53) africa (0.80) brass (1.73)
floret (6.53) flower (9.67) device (5.47) family (0.80) door (1.67) good (2.40)
freshwater (2.40) hair (1.00) iron-tree (0.47) mouth (5.13) pacific (2.40) pigboat (6.47)
garden (6.60) head (3.80) oxygen-mask (7.73) tank (4.47) sub (8.20) submarine (9.67)
plant (8.47) ray (3.67) storage (3.07) supply (5.20) tail (0.93) torpedo (7.60)
sunflower (9.80) reed (2.27) nose (6.20) time (1.13) u-boat (7.47) warship (8.73)

Table 1: A sample of test images with their synset words and glosses : The number in parenthesis rep-
resents the numerical association of the word with the image(0-10). Human annotations reveal different
degree of semantic relatedness between the image and words in the synset or gloss.

Turk.6 Finally, the average of all 15 annotations for each word-image pair is taken as its gold-standard
relatedness score7. Note that only the pairs of images and words are provided to the annotators, and not
their synsets and gloss definitions.

The set of standard criteria underlying the cross-modal similarity evaluation framework shown here
is inspired by the semantic relations defined in Wordnet. These criteria were provided to the human
annotators, to help them decide whether a word and an image are related to each other.

1. Instance of itself: Does the image contain an entity that is represented by the word itself (e.g. an
image of “Obama” vs the word “Obama”) ?

2. Member-of Relation: Does the image contain an entity that is a member of the classsuggested
by the word or vice versa (e.g. an image of an “apple” vs the word “fruits”) ?

3. Part-of Relation: Does the image contain an entity that is a part of a larger entity represented by
the word or vice versa (e.g. an image of a “tree” vs the word “forest”) ?

4. Semantically Related: Do both the word and the image suggest concepts that are related (e.g. an
image of troops at war vs the word “peace”) ?

5. Semantically Close: Do both the word and the image suggest concepts that are not only related
but also close in meaning? (e.g. an image of troops at war vs the word “gun”) ?

Criterion (1) basically tests for synonym relation. Criteria (2) and (3) are modeled after the hyponym-
hypernym and meronym-holonym relations in WordNet, which are prevalent among nouns. Note that
none of the criteria is preemptive over the others. Rather, we provide these criteria as guidelines in
a subjectiveevaluation framework, similar to the word semantic similarity task in Miller and Charles
(1998). Importantly, criterion (4) models dissimilar but related concepts, or any other relation that indi-
cates frequent association, while criterion (5) serves to provide additional distinction for pairs of words
and images on a higher level of relatedness toward similarity. In Table 1, we show sample images from
our test dataset, along with the annotations provided by thehuman annotators.

6We only allowed annotators with an approval rating of 97% or higher. Here, we expect some variance in the degree of
relatedness between the candidate words and images, hence annotations marked with all 10s or 0s are discarded due to lackof
distinctions in similarity relatedness

7Annotation guidelines and dataset can be downloaded at http://lit.csci.unt.edu/index.php/Downloads
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5.3 Experiments

Following Erk and McCarthy (2009), who argued that word meanings are graded over their senses, we
believe that the meaning of an image is not limited to a set of “best fitting” tags, but rather it exists as
a distribution over arbitrary words with varying degrees ofassociation. Specifically, the focus of our
experiments is to investigate the correlation between automatic measures of such relatedness scores with
respect to human judgments.

To construct the joint semantic space of words and images, weuse the SVD described in Section 4
to reduce the number of dimensions. To build each model, we use the 167 synsets from ImageNet and
their associated images (minus the held out test data), hence accounting for 167 latent dimensions. We
first represent the synsets as a collection of documents D, each document containing visual codewords
used to describe their associated images as well as textual words extracted from their gloss and synset
words. Thus, computing a cross-modal relatedness distanceamounts to comparing the cosine similarity
of vectors representing an image to the vector representinga word in the term-document vector space.
Note that, unlike textual words, an image is represented by multiple visual codewords. Prior to computing
the actual cosine distance, we perform a weighted addition of vectors representing each visual codeword
for that image.

To illustrate, consider a single document di, representing the synset “snail,” which consists of{cw0,
cw555, cw23, cw124, cw876, snail, freshwater, mollusk, spiral, shell}, where cwX represents a particular
visual codeword indexed from 0-9998, and the textual words are nouns extracted from the associated
synset and gloss. Given a test imageI, it can be expressed as a bag of visual codewords{cw1 , ... , cwk}.
We first represent each visual codeword inI as a vector of length|D| using term-frequency inverse-
document-frequency (tf idf ) weighting, e.g., cwk=<0.4*d1, 0.2*d2, ... , 0.9*dm>, where m=167, and
perform an addition ofk such vectors to form a final vector vi. To measure the semantic relatedness
between imageI and a wordw, e.g., “snail,” we simply compute the cosine similarity between vi and
vw, where vw is also a vector of length|D| calculated usingtf idf .

This paper seeks answers to the following questions. First,what is the relation between the discrim-
inability of the visual codewords and their ability to capture semantic relatedness between a word and an
image, as compared to the gold-standard annotation by humans? Second, given the unbalanced dataset
of images and words, can we use a relatively small number of visual codewords to derive such semantic
relatedness measures reliably? Third, what is the efficiency of an unsupervised vector semantic model in
measuring such relatedness, and is it applicable to large datasets?

Analogous to text-retrieval methods, we measure the discriminability of the visual codewords using
two weighting factors. The first isterm-frequency (tf), which measures the number of times a codeword
appears in all images for a particular synset, while the second, image-term-frequency (itf), captures the
number of images using the codeword in a synset. For the two weighting schemes, we apply normal-
ization by using the total number of codewords for a synset (for tf weighting) and the total number of
images in a synset (foritf weighting).

We are interested to quantify the relatedness for pairs of words and images under two scenarios. By
ranking the 12 words associated with an image in reverse order of their relatedness to the image, we
can determine the ability of our models to identify the most related words for a given image (image-
centered). In the second scenario, we measure the relatedness of words and images regardless of the
synset they belong to, thus evaluating the ability of our methods to capture the relatedness between any
word and any image. This allows us to capture the correlationin an (arbitrary-image) scenario. For the
evaluations, we use the Spearman’s Rank correlation.

To place our results in perspective, we implemented two baselines and an upper bound for each of
the two scenarios above. TheRandombaseline randomly assigns ratings to each word-image pair on the
same 0 to 10 scale, and then measures the correlation to the human gold-standard. TheVector-Based (VB)
method is a stronger baseline aimed to study the correlationperformance in the absence of dimensionality
reduction. As an upper bound, theInter-Human-Agreement (IHA)measures the correlation of the rating
by each annotator against the average of the ratings of the rest of the annotators, averaged over the 167
synsets (for the image-centered scenario) and over the 2004word-image pairs (for the arbitrary-image
scenario).

8For simplicity, we only show the top 5 visual codewords
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Spearman’s Rank Coefficient (image-centered)
Top K codewords 100 200 300 400 500 600 700 800 900 1000
LSA tf 0.228 0.325 0.273 0.242 0.185 0.181 0.107 0.043 -0.018 0.000
LSA tf (norm) 0.233 0.339 0.293 0.254 0.202 0.180 0.124 0.047 -0.012 0.000
LSA tf*itf 0.268 0.317 0.256 0.248 0.219 0.166 0.081 -0.004 -0.037 0.000
LSA tf*itf (norm) 0.252 0.327 0.257 0.246 0.211 0.153 0.097 0.002 -0.042 0.000
VB tf 0.243 0.168 0.101 0.055 -0.021 -0.084 -0.157 -0.210 -0.236 -0.332
VB tf (norm) 0.240 0.181 0.110 0.062 -0.010 -0.082 -0.152 -0.204 -0.235 -0.332
VB tf*itf 0.262 0.181 0.107 0.065 -0.019 -0.081 -0.156 -0.211 -0.241 -0.332
VB tf*itf (norm) 0.257 0.180 0.116 0.068 -0.014 -0.079 -0.150 -0.250 -0.237 -0.332
Random 0.001 0.018 0.016 -0.008 0.008 0.005 -0.001 0.014 -0.035 0.012
IHA 0.687

Spearman’s Rank Coefficient (arbitrary-image)
Top K codewords 100 200 300 400 500 600 700 800 900 1000
LSA tf 0.236 0.341 0.291 0.249 0.208 0.183 0.106 0.033-0.039 0.000
LSA tf (norm) 0.230 0.353 0.301 0.271 0.220 0.186 0.115 0.032 -0.029 0.000
LSA tf*itf 0.291 0.332 0.289 0.262 0.235 0.172 0.092 0.008 -0.041 0.000
LSA tf*itf (norm) 0.277 0.345 0.292 0.269 0.234 0.164 0.098 0.015 -0.046 0.000
VB tf 0.272 0.195 0.119 0.059 -0.012 -0.088 -0.164 -0.218 -0.240 -0.339
VB tf (norm) 0.277 0.207 0.130 0.069 -0.003 -0.083 -0.160 -0.215 -0.242 -0.339
VB tf*itf 0.287 0.206 0.127 0.062 -0.008 -0.085 -0.161 -0.214 -0.241 -0.339
VB tf*itf (norm) 0.286 0.212 0.132 0.071 -0.005 -0.081 -0.158 -0.214 -0.241 -0.339
Random -0.024 -0.014 0.015 -0.015 -0.004 -0.014 0.024 -0.009 -0.007 0.007
IHA 0.764

Table 2: Correlation of automatically generated scores with human annotations on cross-modal semantic
relatedness, as performed on the ImageNet test dataset of 2004 pairs of word and image. Correlation
figures scoring the highest within a weighting scheme are marked in bold, while those scoring the highest
across weighting schemes and within a visual vocabulary size are underlined.

6 Discussion

Our experimental results are shown in Table 2. A somewhat surprising observation is the consistency of
correlation figures between the two scenarios. In both scenarios, a representative set of 200 visual code-
words is sufficient to consistently score the highest correlation ratings across the 8 weighting schemes.
Intuitively, based on the experimental results, automatically choosing the top 10% or 20% of the visual
codewords seems to suffice and gives optimal correlation figures, but requires further justification. Con-
versely, the relatively simple weighting scheme usingtf (normalized)produces the highest correlation in
six visual codeword sizes (K=200,300,400,700,800,900) for the image-centered scenario, as well as in
another six visual codeword sizes (K=200,300,400,600,700,900) for the arbitrary-image scenario. Un-
like stopwords in text retrieval accounting for most of the highesttf scores, visual codewords weighted
by the same schemetf and a similartf (normalized)scheme seem to be the most discriminative. The
correlation for including the entire visual vocabulary set(1000) produces identical results for all vector-
based and LSA weighting schemes, as images across synsets are now encoded by the same set of visual
codewords without discrimination between them.

Dimensionality reduction using SVD gains an advantage overthe vector-based method for both sce-
narios, with the highest correlation rating in LSA (200 visual codeword,tf(norm)) achieving 0.077 points
better than the corresponding highest correlation in Vector-based (100 visual codeword,tf*itf ) for the
image-centered scenario, representing a 29.3% improvement. Similarly, in the arbitrary-image scenario,
the increase in correlation from 0.287 (VBtf*itf at 100 visual codeword) to 0.353 (LSAtf(norm) at
200 visual codeword) underlines a gain of approximately 23.0%. Overall, the arbitrary-image scenario
also scores consistently higher than the image-centered scenario under similar experimental conditions.
For instance, for the top 200 visual words, the same weighting schemes produce consistently lower
correlation figures for the image-centered scenario. This is also true for the Inter-Human-Agreement
score, which is higher in the arbitrary-image scenario (0.764) compared to the image-centered scenario
(0.687). Note that for all the experiments, the semantic relatedness scores generated from the semantic
vector space are significantly more correlated with the human gold-standard than the random baselines.
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(a) (b)

Figure 3: (a) Correlation performance, and (b) Classification accuracy, as more data is added to construct
the semantic space model.

To investigate the effectiveness of the model when scaling up to large datasets, we employ the best
combination of weighting scheme and vocabulary size shown in Table 2, i.e., a visual vocabulary size
of 200 andtf (normalized)weighting for LSA, and vocabulary size of 100 andtf*itf weighting for the
vector-based model, and incrementally construct models ranging from 167 synsets to 800 synsets (all
randomly selected from ImageNet). We then measure the correlation of relatedness scores generated
using the same test dataset with respect to human annotations. The dataset was randomly selected to in-
crease by approximately five times, from a total of 230,864 images with 878 words to a total of 1,014,528
images with 3887 words. Furthermore, for each unseen test image taken from SynsetSi and the associ-
ated 12 candidate words, we evaluate the ability of the modelto identify which of the candidate words
actually appear in the gloss or the synset ofSi, in a task we term as word classification. Here, the top
six words are predictably classified as those appearing inSi while the last six are classified as outside
of Si , after all 12 words are ranked in reverse order of their relatedness to the test image. We measure
the accuracy of the word classification task usingTP+TN

2004 , whereTP is the number of words correctly
classified as synset or gloss words, andTN is the number of words correctly classified as outside of
synset or gloss, both summed over the 2004 pairs of words and images.

As shown in Figure 3, when a small number of synsets (33) was added to the original semantic space,
correlation with human ratings increased steeply to around0.45 and higher for LSA in both scenarios,
while the vector-based method suffers a slight decrease in correlation ratings from 0.262 to 0.251 (image-
centered) and from 0.287 to 0.278 (arbitrary-image). As more images and words are added, correlation
for the vector-based model continues to decrease markedly.Comparatively, LSA is less sensitive to data
scaling, as correlation figures for both scenarios decreases slightly but stays within a 0.40 to 0.45 range.
Additionally, we infer that LSA is consistently more effective than the vector-based model in the words
classification task (as also seen in Figure 3). Even with moredata added to the semantic space, word
classification accuracy stays consistently at 0.7 for LSA, while it drops to 0.535 for the vector-based
model at a synset size of 800.

7 Conclusion

In this paper, we provided a proof of concept in quantifying the semantic relatedness between words and
images through the use of visual codewords and textual wordsin constructing a joint semantic vector
space. Our experiments showed that the relatedness scores have a positive correlation to human gold-
standards, as measured using a standard evaluation framework.

We believe many aspects of this work can be explored further.For instance, other visual codeword
attributes, such as pixel coordinates, can be employed in a structured vector space along with the existing
model for improving vector similarity measures. To improvetextual words coverage, a potentially effec-
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tive way would be to create mappings from WordNet synsets to Wikipedia entries, where the concepts
represented by the synsets are discussed in detail. We also plan to study the applicability of the joint
semantic representation model to tasks such as automatic image annotation and image classification.
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Abstract

We describe the methodology for constructing axioms defining event-related words, anchored
in core theories of change of state and causality. We first derive from WordNet senses a smaller
set of abstract, general “supersenses”. We encode axioms for these, and we test them on textual
entailment pairs. We look at two specific examples in detail to illustrate both the power of the
method and the holes in the knowledge base that it exposes. Then we address the problem of holes
more systematically, asking, for example, what kinds of “pairwise interactions” are possible for core
theory predicates likechange andcause .1

1 Introduction

From the sentence

Russia is blocking oil from entering Ukraine.

we would like to be able to conclude

Oil can not be delivered to Ukraine.

But doing this requires fairly complex inference, because the words “block”, “enter”, “can”, “not” and
“deliver” carve up the world in different ways. Our approach is to define words such as these by means
of axioms that link with underlying core theories2 explicating such very basic concepts as change of
state and causality. Given the logical form of sentences like these two, we apply these axioms to express
the meaning of the sentences in more fundamental predicates, and do a certain amount of defeasible
reasoning in the core theories to determine that the second follows from the first.

More generally, we are engaged in an enterprise we call “deep lexical semantics” (Hobbs, 2008), in
which we develop various core theories of fundamental commonsense phenomena and define English
word senses by means of axioms using predicates explicated in these theories. Among the core theories
are cognition, microsociology, and the structure of events. The last of these is the focus of this paper. We
use textual entailment pairs like the above to test out subsets of related axioms. This process enforces a

1This research was supported in part by the Defense Advanced Research Projects Agency (DARPA) Machine Reading
Program under Air Force Research Laboratory (AFRL) prime contract no. FA8750-09-C-0172, and in part by the Office of
Naval Research under contract no. N00014-09-1-1029.. Any opinions, findings, and conclusion or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the view of the DARPA, AFRL, ONR, or the US
government.

2http://www.isi.edu/ hobbs/csk.html .
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uniformity in the way axioms are constructed, and also exposes missing inferences in the core theories.
The latter is a major issue in this paper.

In Section 2 we describe three aspects of the framework we are working in—the logical form we
use, abductive interpretation and defeasibility, and the core theories of change of state and causality. In
Section 3 we describe the methodology we use for constructing axioms, deriving from WordNet senses
a smaller set of abstract, general “supersenses”, encoding axioms for these, and testing them on textual
entailment pairs. In Section 4 we look at two specific examples to illustrate both the power of the method
and the holes in the knowledge base that it exposes. In Section 5 we address the problem of holes more
systematically, specifically asking, for example, what kinds of “pairwise interactions” are possible for
core theory predicates likechange andcause .

2 Framework

We use a logical notation in which states and events (eventualities) are reified. Specifically, if the ex-
pression(p x) says thatp is true ofx , then(p’ e x) says thate is the eventuality ofp being true
of x . Eventualitye may exist in the real world (Rexist ), in which case(p x) holds, or it may only
exist in some modal context, in which case that is expressed simply as another property of the possible
individuale. (In this paper we use a subset of Common Logic3 for the syntax of our notation.)

The logical form of a sentence is a flat conjunction of existentially quantified postive literals, with
about one literal per morpheme. (For example, logical words like “not” and “or” are treated as expressing
predications about possible eventualities.) We have developed software4 to translate Penn TreeBank-style
trees (as well as other syntactic formalisms) into this notation. The underlying core theories are expressed
as axioms in this notation (Hobbs, 1985).

The interpretation of a text is taken to be the lowest-cost abductive proof of the logical form of
the text, given the knowledge base. That is, to interpret a text we prove the logical form, allowing for
assumptions at cost, and pick the lowest-cost proof. Factors involved in computing costs include, besides
the number of assumptions, the salience of axioms, the plausibility of axioms expressing defeasible
knowledge, and consiliance or the degree to which the pervasive implicit redundancy of natural language
texts is exploited. We have demonstrated that many interpretation problems are solved as a by-product
of finding the lowest-cost proof. This method has been implemented in an abductive theorem-prover
called Mini-Tacitus5 that has been used in a number of applications (Hobbs et al., 1993; Mulkar et al.,
2007), and is used in the textual entailment problems described here. We are also working toward a
probabilistic semantics for the cost of proofs (Blythe et al., 2011). Abductive interpretation accounts for
script-like understanding of text—a script predicate provides the most economical interpretation (Hobbs
et al., 1993)—but also enables interpretation of novel texts.

Most commonsense knowledge is defeasible, i.e., it can be defeated. This is represented in our
framework by having a unique “et cetera” proposition in the antecedent of Horn clauses that cannot be
proved but can be assumed at a cost corresponding to the likeliehood that the conclusion is true. For
example, the axiom

(forall (x) (if (and (bird x)(etc-i x))(fly x)))

would say that ifx is a bird and other unspecified conditions hold,(etc-i) , thenx flies. No other
axioms enable proving(etc-i x) , but it can be assumed, and hence participate in the lowest cost

3http://common-logic.org/ .
4http://www.rutumulkar.com/download/NL-Pipeline/NL-Pipeline.php .
5http://rutumulkar.com/download/TACITUS/tacitus.php .
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proof. The indexi is unique to this axiom. In this paper rather than invent new indices for each axiom, we
will use the abbreviation(etc) to indicate the defeasibility of the rule. (This approach to defeasibility
is similar to circumscription (McCarthy, 1980).)

We have articulated a number of core theories6. The two most relevant to this paper are the theory
of change of state and the theory of causality. The predication(change’ e e1 e2) says thate is
a change of state whose initial state ise1 and whose final state ise2 . The chief properties ofchange
are that there is some entity whose state is undergoing change, thatchange is defeasibly transitive,
thate1 ande2 cannot be the same unless there has been an intermediate state that is different, and that
change is consistent with thebefore relation from our core theory of time. Since many lexical items
focus only on the initial or the final state of a change, we introduce for convenience the predications
(changeFrom’ e e1) and(changeTo’ e e2) , defined in terms ofchange .

The chief distinction in our core theory of causality is between the notions ofcausalComplex and
cause . A causal complex includes all the states and events that have to happen or hold in order for the
effect to happen. A cause is that contextually relevant element of the causal complex that is somehow
central to the effect, whether because it is an action the agent performs, because it is not normally true,
or for some other reason. Most of our knowledge about causality is expressed in terms of the predicate
cause , rather than in terms of causal complexes, because we rarely if ever know the complete causal
complex. Typically planning, explanation, and the interpretation of texts (though not diagnosis) involves
reasoning aboutcause . Among the principal properties ofcause are that it is defeasibly transitive,
that events defeasibly have causes, and thatcause is consistent withbefore .

We also have a core theory of time, and the times of states and events can be represented as temporal
properties of the reified eventualities. The theory of time has an essential function in axioms for words
explicitly referencing time, such as “schedule” and “delay”. But for most of the words we are explicating
in this effort, we base our approach to the dynamic aspects of the world on the cognitively more basic
theory of change of state. For example, the word “enter” is axiomatized as a change of state from being
outside to being inside, and the fact that being outside comesbeforebeing inside follows from the axiom
relating the predicateschange andbefore .

We find that reifying states and events as eventualities and treating them as first-class individuals is
preferable to employing the event calculus (Gruninger and Menzel, 2010; Mueller, 2006) which makes a
sharp distinction between the two, because language makes no distinction in where they can appear and
we can give them a uniform treatment.

3 Methodology

Our methodology consists of three steps.

1. Analyzing the structure of a word’s WordNet senses.

2. Writing axioms for the most general senses

3. Testing the axioms on textual entailment pairs.

Our focus in this paper is on words involving the concepts of change of state and causality, or event
words, such as “block”, “delay”, “deliver”, “destroy”, “enter”, “escape”, “give”, “hit”, “manage”, and
“provide”. For each word, we analyze the structure of its WordNet senses. Typically, there will be pairs
that differ only in, for example, constraints on their arguments or in that one is inchoative and the other

6http://www.isi.edu/ hobbs/csk.html .
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causative. This analysis generally leads to a radial structure indicating how one sense leads by incre-
ments, logically and perhaps chronologically, to another word sense (Lakoff, 1987). The analysis also
leads us to posit “supersenses” that cover two or more WordNet senses. (Frequently, these supersenses
correspond to senses in FrameNet (Baker et al., 2003) or VerbNet (Kipper et al., 2006), which tend to be
coarser grained; sometimes the desired senses are in WordNet itself.)

For example, for the verb “enter”, three WordNet senses involve a change into a state:

V2: become a participant
V4: play a part in
V9: set out on an enterprise

Call this supersense S1. Two other senses add a causal role to this:

V5: make a record of
V8: put or introduce into something

Two more senses specialize supersense S1 by restricting the target state to be in a physical location:

V1: come or go into
V6: come on stage

One other sense specializes S1 by restricting the target state to be membership in a group.

V3: register formally as a participant or member

Knowing this radial structure of the senses helps enforce uniformity in the construction of the axioms. If
the senses are close, their axioms should be almost the same.

We are currently only constructing axioms for the most general or abstract senses or supersenses.
In this way, although we are missing some of the implications of the more specialized senses, we are
capturing the most basic topological structure in the meanings of the words. Moreover, the specialized
senses usually tap into some specialized domain that needs to be axiomatized before the axioms for these
senses can be written.

In constructing the axioms in the event domain, we are very much informed by the long tradition of
work on lexical decomposition in linguistics (e.g., Gruber, 1965; Jackendoff, 1972). Our work differs
from this in that our decompositions are done as logical inferences and not as tree transformations as in
the earliest linguistic work, they are not obligatory but only inferences that may or may not be part of the
lowest-cost abductive proof, and the “primitives” into which we decompose the words are explicated in
theories that enable reasoning about the concepts.

Figure 1 shows the radial structure of the senses for the word “enter”, together with the axioms that
characterize each sense. A link between two word senses means an incremental change in the axiom for
one gives the axiom for the other. For example, the axiom forenter-S2 says that ifx1 entersx2 in
x3 , thenx1 causes a change to the eventualityi1 in which x2 is in x3 ; and the expanded axiom for
enter-S1.1 states that ifx1 entersx2 , then there is a change to a statee1 in which x1 is in x2 . So
enter-S2 andenter-S1.1 are closely related and thus linked together.

Abstraction is a special incremental change where one sense S1.1 specializes another sense S1 ei-
ther by adding more predicates to or specializing some of the predicates in S1’s axiom. We represent
abstractions via arrows pointing from the subsenses to the supersenses. In Figure 1,enter-S1.1 and
enter-S1.2 both specializeenter-S1 . The predicateenter-S1.1 adds an extra predicate de-
scribinge1 as anin eventuality andenter-S1.2 specializese1 to membership inx2 , wherex2 is a
group.
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Figure 1: Senses of and axioms for the verb “enter”

The supersenses capture the basic topology of the senses they subsume. The extra information that
the subsenses convey are typically the types and properties of the arguments, such as being a place or a
process, or qualities of the causing event, such as being sudden or forceful.

For each set of inferentially related words we construct textual entailment pairs, where the hypothesis
(H) intuitively follows from text (T), and use these for testing and evaluation. The person writing the
axioms does not know what the pairs are, and the person constructing the pairs does not know what the
axioms look like.

The ideal test then is whether given a knowledge base K consisting of all the axioms, H cannot be
proven from K alone, but H can be proven from the union of K and the best intepretation of T. This is
often too stringent a condition, since H may contain irrelevant material that doesn’t follow from T, so an
alternative is to determine whether the lowest cost abductive proof of H given K plus T is substantially
lower than the lowest cost abductive proof of H given K alone, where “substantially lower” is defined by
a threshold that can be trained (Ovchinnikova et al., 2011).

4 Two Examples

Here we work through two examples to illustrate how textual entailment problems are handled in our
framework. In these examples, given a text T and a hypothesis H, we ask if H can be proven from T,
perhaps with a small number of low-cost assumptions.

Because the examples we deal with involve a great deal of embedding, we need to use the primed
predicates, keeping the eventuality arguments explicit.

We also assume in these examples that lexical disambiguation has been done correctly. With more
context, lexical disambiguation should fall out of the best interpretation, but it is unreasonable to ex-
pect that in these short examples. In practice we run the examples both with disambiguated and with
nondisambiguated predicates.

In these examples we do not show the costs, although they are used by our system.
The first example is the pair

T: Russia is blocking oil from entering Ukraine.
H: Oil cannot be delivered to Ukraine.
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The relevant part of the logical form of the text is

(and (block-V3’ b1 x1 e1)(enter-S2’ e1 o1 u1))

That is, there is a blocking eventb1 in which Russiax1 blocks eventualitye1 from occurring, ande1 is
the eventuality of oilo1 entering Ukraineu1 . The-V3 onblock indicates that it is the third WordNet
sense of the verb “block” and the-S2 suffix on enter indicates that it is the second supersense of
“enter”.

The relevant part of the logical form of the hypothesis is

(and (not’ n2 c2) (can-S1’ c2 x2 d2) (deliver-S2’ d2 x2 o2 u2))

That is,n2 is the eventuality thatc2 is not the case, wherec2 is somex2 ’s being able to dod2 , where
d2 is x2 ’s delivering oilo2 to Ukraineu2 . Note that we don’t know yet that the oil and Ukraine in the
two sentences are coreferential.

The axiom relating the third verb sense of “block” to the underlying core theories is

AX4: (forall (c1 x1 e1)
(if (block-V3’ c1 x1 e1)

(exist (n1 p1)
(and (cause’ c1 x1 n1)(not’ n1 p1)(possible’ p1 e1)))))

This rule says that forx1 to block some eventualitye1 is for x1 to causee1 not to be possible. (In this
example, for expositional simplicity, we have allowed the eventualityc1 of blocking be the same as the
eventuality of causing, where properly they should be closely related but not identical.)

The other axioms needed in this example are

AX1: (forall (c1 e1)
(if (and (possible’ c1 e1)(etc))

(exist (x1)(can-S1’ c1 x1 e1))))

AX2: (forall (d1 x1 c1 r1 x2 x3)
(if (and (cause’ d1 x1 c1)(changeTo’ c1 r1)(rel’ r1 x2 x3)

(deliver-S2’ d1 x1 x2 x3))))

AX3: (forall (c1 x1 x2)
(if (enter-S2’ c1 x1 x2)

(exist (i1)(and changeTo’ c1 i1)(in’ i1 x1 x2))))

AX1 says that defeasibly, if an eventualitye1 is possible, then someone can do it. AX2 says that ifx1
causes a change to a situationr1 in which x2 in in some relation tox3 , then in a very general sense
(S2), x1 has deliveredx2 to x3 . AX3 says that ifc1 is the eventuality ofx1 enteringx2 , thenc1 is
the change into a statei1 in whichx1 is in x2 .

Starting with the logical form of H as the initial interpretation and applying axioms AX1 and AX2,
we get interpretation H1:

H1: (and (not’ n2 c2) (possible’ c2 d2) (cause’ d2 x2 c1)
(changeTo’ c1 r1)(rel’ r1 o2 u2))

At this point we are stuck in our effort to back-chain to T. An axiom is missing, namely, one that says
that “in” is a relation between two entities.

AX5: (forall (r x1 x2) (if (in’ r1 x1 x2)(rel’ r1 x1 x2)))

Using AX5, we can back-chain from H1 and derive interpretation H2:

H2: (and (not’ n2 c2)(possible’ c2 d2)(cause’ d2 x2 c1)
(changeTo’ c1 r1)(in’ r1 o2 u2))

We can then further back-chain with AX3 to interpretation H3:
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H3: (and (not’ n2 c2)(possible’ c2 d2)(cause’ d2 x2 c1)
(enter-S2’ c1 o2 u2))

Again, we need a missing axiom, AX6, to get closer to the logical form of T:

AX6: (forall (p e1)
(if (and (possible’ p,e1)(etc))

(exist (c x1) (and (possible’ p c)(cause’ c x1 e1)))))

That is, if something is possible, it is possible for something to cause it. Using this axiom, we can derive

H4: (and (not’ n2 c2)(possible’ c2 c1)(enter-S2’ c1 o2 u2))

The final missing axiom, AX7, says that ifx1 causes eventualityc2 not to occur, thenc2 doesn’t occur.

AX7: (forall (n x1 n1 c2)
(if (and (cause’ n x1 n1)(not’ n1 c2))( not’ n c2)))

Using this we derive interpretation H5.

H5: (and (cause’ n2 x3 n)(not’ n c2)(possible’ c2 c1)(enter-S2’ c1 o2 u2))

We can now apply the rule for “block”, identifyingb1 andn2 , x1 andx3 , e1 andc1 , o1 ando2 , and
u1 andu2 , yielding H6 and establishing the entailment relation between H and T.

H6: (and (block-V3’ n2 x3 c1)(enter-S2’ c1 o2 u2))

Our second example is the text-hypothesis pair

T: The plane managed to escape the attack.
H: The plane was not captured.

The relevant parts of the logical forms of T and H are as follows:

T: (and (manage-V1’ m1 p1 e1)(escape-S1’ e1 p1 a1))

H: (and (not’ n2 c2)(capture-S1’ c2 x2 p2))

The axioms relating these words to the core theories are as follows:

AX1: (forall (cp c x2 n chf a y1 x3 y0 x2)
(if (and (changeTo’ cp c)(cause’ c x2 n)(not’ n chf)

(changeFrom’ chf a)(at’ a y1 x3)(arg’ y0 x2))
(capture’ cp y0 y1)))

AX2: (forall (es x0 x1)
(if (escape’ es x0 x1)

(exist (ch a)
(and (cause’ es x0 ch)(changeFrom’ ch a)(at’ a x0 x1)))))

AX3: (forall (m y0 e1)
(if (manage’ m y0 e1) (Rexist (m e1))))
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The first says that a change to a situation in whichx2 is causingy1 not to change location is a capturing
by somey0 of y1 . The second says that escaping implies causing a change from being at a location.
The third says that if you manage to doe1 , thene1 occurs.

Using these axioms, we would like to establish the entailment relation from T to H. However, in
order for this reasoning to go through, we need several more axioms—saying that if an eventuality does
not hold, there has been no change to that eventuality, and nothing has caused it to occur; that double
negation cancels out; and that if something is caused, it occurs.

It may seem at first blush that any new text-hypothesis pair will reveal new axioms that must be
encoded, and that therefore it is hopeless ever to achieve completeness in the theories. But a closer
examination reveals that the missing axioms all involve relations among the most fundamental predicates,
like cause , change , not , andpossible . These are axioms that should be a part of the core theories
of change and causality. They are not a random collection of facts, any one of which may turn out to
be necessary for any given example. Rather we can investigate the possibilities systematically. That
investigation is what we describe in the following section.

5 Relations among Fundamental Predicates

For completeness in the core theories, we need to look at pairs of fundamental predicates and ask what re-
lations hold between them, what their composition yields, and for each such axiom whether it is defeasi-
ble or indefeasible. The predicates we consider arepossible , Rexist , not , cause , changeFrom ,
andchangeTo .

The first type of axiom formulates the relationship between two predicates. For example, the rule
relatingcause andRexist is

(forall (x e) (if (cause x e)(Rexist e)))

That is, if something is caused, then it actually occurs. Other rules of this type are as follows:

(forall (x e) (if (Rexist e)(possible e)))

(forall (e) (if (and (Rexist e)(etc))(exist (x)(cause x e))))

(forall (e2)
(if (changeTo e2)

(exist (e1)(and (changeFrom e1)(not’ e1 e2)))))

(forall (e1)
(if (changeFrom e1)

(exist (e2)(and (changeTo e2)(not’ e2 e1)))))

(forall (e) (if (changeTo e)(Rexist e)))

(forall (e) (if (changeFrom e)(not e)))

(forall (e) (if (and (Rexist e)(etc))(changeTo e)))

That is, if something occurs, it is possible and, defeasibly, something causes it. If there is a change to
some state obtaining, then there is a change from its not obtaining, and vice versa. If there is a change
to something, then it obtains, and if there is a change from something, then it no longer obtains. If some
state obtains, then defeasibly there was a change from something else to that state obtaining.

The second type of axiom involves the composition of predicates, and gives us rules of the form
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(forall (e1 e2 x) (if (and (p’ e1 e2)(q’ e2 x)) (r’ e1 x)))

That is, whenp is applied toq, what relationr do we get?
Figure 2 shows the axioms encoding these compositions. The rows correspond to the(p’ e1

e2) ’s and the columns correspond to the(q’ e2 x) ’s, and the cell contains the consequents(r’ e1
x) . If the rule is defeasible, the cell indicates that by adding(etc) to the antecedent. The consequents
in italics are derivable from other rules.

Figure 2: Axioms expressing compositions of fundamental predicates

For example, in thepossible -possible cell, the rule says that if it is possible that something
is possible, then it is possible. To take a more complex example, thechangeFrom -cause cell says
that if there is a change from some entity causing (or maintaining) a state, then defeasibly there will be a
change from that state. So if a glass is released, it will fall.

We have also looked at axioms whose pattern is the converse of those in Figure 2. For example, if
something does not hold, then it was not caused. Many of the axioms used in the examples are of this
sort.

6 Conclusion

If we are ever to have sophisticated natural language understanding, our systems will have to be able to
draw inferences like the ones illustrated here, and therefore they will need axioms of this complexity or
something equivalent. Because of their complexity, we cannot expect to be able to acquire the axioms
automatically by statistical methods. But that does not mean the situation is bleak. We have shown in
this paper that there is a systematic methodology for developing axioms characterizing the meanings of
words in a way that enforces uniformity and for elaborating the core theories these axioms are anchored
in. Doing this for several thousand of the most common words in English would produce a huge gain in
the inferential power of our systems, as illustrated by the textual entailment examples in this paper, and
would be an enterprise no greater in scope than the manual construction of other widely used resources
such as WordNet and FrameNet.
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Abstract

We propose a method to automatically align WordNet synsets and Wikipedia articles to obtain a sense
inventory of higher coverage and quality. For each WordNet synset, we first extract a set of Wikipedia
articles as alignment candidates; in a second step, we determine which article (if any) is a valid
alignment, i.e. is about the same sense or concept. In this paper, we go significantly beyond state-
of-the-art word overlap approaches, and apply a threshold-based Personalized PageRank method for
the disambiguation step. We show that WordNet synsets can be aligned to Wikipedia articles with a
performance of up to 0.78 F1-Measure based on a comprehensive, well-balanced reference dataset
consisting of 1,815 manually annotated sense alignment candidates. The fully-aligned resource as
well as the reference dataset is publicly available.1

1 Introduction

Lexical semantic resources often used as sense inventories are a prerequisite in automatic processing of
human language. In the last few years, there has been a rise in research aligning different resources to
overcome the knowledge acquisition bottleneck and coverage problems pertinent to any single resource.
In this paper, we address the task of aligning WordNet noun synsets and Wikipedia articles to obtain a
sense inventory of higher coverage and quality. WordNet, a lexical database for English, is extensively
used in the NLP community and is a de-facto standard resource in many NLP tasks, especially in current
WSD research (Fellbaum, 1998). WordNet’s manually defined comprehensive taxonomy motivates many
researchers to utilize it. However, as WordNet is maintained by only a small group of experts, it is hard to
cope with neologisms, named entities, or rare usages on a large scale (Agirre and Edmonds, 2006; Meyer
and Gurevych, 2010). In order to compensate for WordNet’s lack of coverage, Wikipedia has turned
out to be a valuable resource in the NLP community. Wikipedia has the advantage of being constantly
updated by thousands of voluntary contributors. It is multilingual and freely available containing a
tremendous amount of encyclopedic knowledge enriched with hyperlink information.
In the past, researchers have explored the alignment of Wikipedia categories and WordNet synsets (e.g.,
Toral et al. (2008); Ponzetto and Navigli (2009)). However, using the categories instead of the articles
causes three limitations: First, the number of Wikipedia categories (about 0.5 million in the English
edition) is much smaller compared to the number of articles (about 3.35 million). Secondly, the category
system in Wikipedia is not structured consistently (Ponzetto and Navigli, 2009). And finally, disregarding
the article level neglects the huge amount of textual content provided by the articles.
Therefore, attempts to align WordNet synsets and Wikipedia articles (instead of categories) have been
recently made. This has three major benefits. First of all, as WordNet and Wikipedia were found to
be partly complementary on the word sense level, an aligned resource would increase the coverage of

1http://www.ukp.tu-darmstadt.de/data/sense-alignment

205



senses (Wolf and Gurevych, 2010). Second, word senses contained in both resources can then be rep-
resented by relational information from WordNet and encyclopedic information from Wikipedia in a
multilingual manner yielding an enriched knowledge representation. And finally, the third major benefit
of the alignment is the ability to automatically acquire sense-tagged corpora in a mono- and multilin-
gual fashion. For each WordNet synset, the text of the aligned Wikipedia article (or all sentences or
paragraphs in Wikipedia that contain a link to the article) can be automatically extracted similar to the
approach proposed by Mihalcea (2007). Automatically generated sense-tagged corpora can be used to,
e.g., counter the bottleneck of supervised WSD methods that rely on such sense-tagged text collections,
which are rare. Further, due to the cross-lingual links in Wikipedia, also corpora in different languages
can be constructed easily.
Our contribution to this paper is two-fold. First, we propose a novel two-step approach to align WordNet
synsets and Wikipedia articles. We model the task as a word sense disambiguation problem applying
the Personalized PageRank algorithm proposed by Agirre and Soroa (2009) as it is state-of-the-art in
WSD and combine it with a word overlap measure, which increases the overall performance. Second,
we generate and introduce a well-balanced reference dataset for evaluation consisting of 1,815 manually
annotated sense alignment candidates. WordNet synsets and their corresponding Wikipedia article can-
didates are sampled along their distinctive properties such as synset size, domain, or the location in the
WordNet taxonomy. An evaluation on this dataset let us generalize the performance to a full alignment
between WordNet and Wikipedia, which is publicly available for further research activities.

2 Related work

The alignment of WordNet and Wikipedia has been an active area of research for several years with the
goal of creating an enriched ontology. One of the first attempts proposed a new resource YAGO inte-
grating WordNet and Wikipedia consisting of more than 1 million entities and 5 million facts (Suchanek
et al., 2007). The set of entities contains all WordNet synsets and Wikipedia articles with titles that are
not represented as terms in WordNet. Thus, they ignore ambiguous entities, e.g., the British rock band
Queen is not covered as the term queen is already contained in WordNet.
Other approaches automatically align WordNet with the categories of Wikipedia instead of the articles.
Toral et al. (2008) enrich WordNet with named entities mined from Wikipedia. Therefore, the noun
is-a hierarchy of WordNet is mapped to the Wikipedia categories determining the overlap of articles
belonging to the category and the instances for each of the senses of a polysemous word in WordNet.
Ponzetto and Navigli (2009) applied a knowledge-rich method which maximizes the structural over-
lap between the WordNet taxonomy and the category graph extracted from Wikipedia. Based on the
mapping information, the taxonomy automatically generated from the Wikipedia category graph is re-
structured to enhance the quality. Toral et al. (2009) disambiguate WordNet noun synsets and Wikipedia
categories using multiple text similarity measures similar to our approach. A Wikipedia category is
thereby represented by its main article or an article, which has the same title string as the category. Wu
and Weld (2008) integrate the Wikipedia’s infobox information with WordNet to build a rich ontology
using statistical-relational learning.
Ruiz-Casado et al. (2005) proposed a method to align WordNet synsets and Wikipedia articles (instead
of categories). They align articles of the Simple English Wikipedia to their most similar WordNet synsets
depending on the vector-based similarity of the synset’s gloss and the article text. Recently, Ponzetto and
Navigli (2010) presented a method based on a conditional probability p(s|w) of selecting the WordNet
sense s given the Wikipedia article w, whereas the conditional probability relies on a normalized word
overlap measure of the textual sense representation. Both approaches, however, have the following
two major drawbacks: first, the algorithms are modeled such that they always assume a counterpart in
WordNet for a given Wikipedia article, which does not hold for the English Wikipedia (see Section 4).
Second, the algorithms always assign the most likely WordNet synset to a Wikipedia article, not allowing
multiple alignments. However, due to the different sense granularities in WordNet and Wikipedia, some
Wikipedia articles might be assigned to more than one WordNet synset. Based on these observations,
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there is a need for a better approach yielding none, one, or more than one alignment for a given synset or
article. We will describe a novel idea to tackle this in the next section.

3 Methodology

Automatic sense alignment aims to match senses of different resources that have the same meaning.2 In
general, one sense is given and the task is to find a correspondent within another resource, in case one ex-
ists. Thereby, automatic sense alignment meets two subgoals. At first, all potential alignment candidate
senses for a given sense have to be extracted. Secondly, these extracted candidates have to be scored to
select the sense(s) that match in meaning. For example, given the WordNet synsetwn =<schooner: sail-
ing vessel used in former times> and the two Wikipedia alignment candidate articles wp1 =<Schooner:
A schooner is a type of sailing vessel ...> and wp2 =<Schooner (glass): A schooner is a type of glass
used for ...>; the article wp1 should be aligned with the synset wn, while the second should not be
aligned. The recall of the extraction step can highly influence the performance of the whole alignment
process. If a sense is not extracted in the first step, it cannot be selected in the alignment step either.
In Section 3.1, we state how we extract Wikipedia alignment candidate articles for a given synset. In the
subsequent Section 3.2, we describe how we determine the article that is aligned to the synset (if any at
all). As almost all Wikipedia articles refer to nouns, we focus on this part-of-speech.

3.1 Candidate extraction

In order to extract Wikipedia articles for a given WordNet synset, we follow the procedure introduced by
Wolf and Gurevych (2010). We shortly summarize this method here: Let wn be a WordNet synset with
a set of synonyms {s1, · · · , sn} of size n. For each synonym s ∈ wn, we extract all Wikipedia articles
wp ∈WPwn that match one of the following constraints:

a) the article title matches s, e.g., the article Window is retrieved for the synonym term Window,
b) the article title is of the form s (description tag), e.g., Window (computing),
c) the article has a redirect that matches s or is of the form s (description tag), e.g., Chaff (counter-

measure) has a redirect Window (codename) and, thus, is retrieved for the synonym term Window,
d) the article is linked in a hyperlink, in which the link anchor text matches s, e.g., the article

Bandwagon effect is retrieved for the term bandwagon, as there exist a hyperlink of the form
[[Bandwagon effect|bandwagon]]. Only hyperlinks that occur in at least 3 different articles are
taken into account in order to reduce noise.

3.2 Candidate alignment

Given the set of Wikipedia candidatesWPwn extracted for synsetwn, we have to classify each Wikipedia
article wp ∈ WPwn as being a valid alignment or not with respect to wn. Therefore, we first calculate
similarities between synset–article pairs of a given training set. In a second step, we learn a threshold
corresponding to the minimum similarity a sense pair should have to be aligned. This threshold is then
used to fully align WordNet and Wikipedia.

Sense similarity. The basis of our new approach for sense alignment is the PageRank algorithm (Brin
and Page, 1998) relying on a lexical-semantic knowledge base, which is modeled as a graph G =
(V,E). As knowledge base we use WordNet 3.0 extended with manually disambiguated glosses from
the “Princeton Annotated Gloss Corpus”3. The vertices v ∈ V represent the synsets; the edges (undi-
rected and unweighted) represent semantic relations between synsets, such as hyponym and hypernym
relations.

2We do not differentiate between the terms sense and concept in this paper as they both refer to the same ‘artifact’ and
only differ in representation. Concepts in WordNet are described by the entire synset, e.g. the synset <design, plan>. Senses,
however, are words tagged with a sense number, e.g. design N #2, which means the word check as a noun in its second sense.

3http://wordnet.princeton.edu/glosstag.shtml
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Figure 1: Schematic illustration of the basic ppr (left) and direct pprd (right) approach.

The PageRank algorithm ranks the vertices in a graph according to their importance within the set. Let
M be a (n × n) transition probability matrix, where Mji =

1
outdegreei

, if there exist a link from vertex i
to vertex j. Then, the PageRank vector pr over the graph G is equivalent to resolve:

pr = cMpr + (1− c)v , (1)

whereas c is a damping factor between 0 and 1, and v is an n-dimensional vector whose elements are 1
n .

An element of the PageRank vector denotes the probability for the corresponding vertex that a jumper,
randomly following the edges in the graph, ends at that vertex, i.e. the importance of that vertex.
Now, vector v can be personalized by assigning stronger initial probabilities to certain vertices in the
graph. This personalized version of the PageRank algorithm (Agirre and Soroa, 2009) is used in our
approach in two different ways (see Figure 1):
In the basic version ppr , we represent both, Wikipedia articles and WordNet synsets as bag-of-words
(abbreviated as b in the following). The textual representation is tokenized and lemmatized using the
TreeTagger (Schmid, 1994); standard stopword removal is applied. For a given synset–article pair, we
calculate two Personalized PageRank vectors. For each Personalized PageRank vector, we initialize
vector v depending on the terms occurring in b:

vi =

{
1
m

if a synonymous word of synseti in WordNet occurs in b
0 else ,

(2)

wherem is the number of synsets with a synonymous word occurring in b. For example, given the Word-
Net synset <payment, defrayal, defrayment: the act of paying money> with its bag-of-words (payment,
defrayal, defrayment, act, paying, money), we assign each synset, i.e. vertex in the graph, a weight, for
which at least one of its synonymous words occurs in the bag-of-words. Then, the PageRank vector is a
semantic representation over all WordNet synsets for the given bag-of-words.
In the direct version ppr d, the WordNet synset is directly represented in v by assigning a weight of 1
to the corresponding vector element. It induces that the WordNet synset is already disambiguated and
thus, motivates the use of the Personalized PageRank algorithm on the WordNet graph. Only for the
Wikipedia article, the vector v is built up according to Eq. 2.
Given two Personalized PageRank vectors pprwn and pprwp for the WordNet synset wn and the
Wikipedia article wp, we calculate their similarity using the χ2 measure.4

simppr(wn,wp) = 1− χ2(pprwn, pprwp) = 1−
∑

i

(pprwni − pprwpi)
2

pprwni + pprwpi

(3)

4This vector distance measure has shown the best overall performance compared to the cosine and euclidean distance in our
experiments.
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Learning classifier. Based on the similarity, the sense pair has to be classified as alignment (class 1)
or non-alignment (class 0) formally defined as:

c(wn,wp) =

{
1 if sim(wn,wp) > t

0 else ,
(4)

where sim(wn,wp) is the similarity of a WordNet synset and a Wikipedia article, and t is a real valued
threshold. We apply 10-fold cross-validation to determine the threshold. We measure the performance of
classification by means of F1-Measure (see Section 5) and iteratively search (from 0 to 1 in 0.001 steps)
for a threshold that maximizes the performance on the training fold. A threshold-based classification
scheme induces that a WordNet synset can be aligned to none, one, or more than one Wikipedia article,
which is the main potential of our approach compared to existing methods. However, in the scope of this
paper, we assign at most one Wikipedia article (if any) to a WordNet synset (the one with the highest
similarity above the threshold) as this yields the best performance (see Section 5).

Word overlap measure. For comparison, we also applied the standard cosine word overlap similarity
measure cos used in existing sense alignment approaches (e.g., Ruiz-Casado et al. (2005)). We deter-
mine the similarity of the bag-of-words vectors of the WordNet synset and Wikipedia article calculating
the cosine between them. According to Eq. 4 we also learn a classifier based on the cosine similarity.

Combination of the classifiers’ output. Finally, we experiment with a heuristic, classifying only those
synset–article pairs as alignment, for which the Personalized PageRank-based classifier and the cosine-
based classifier, i.e. cppr and ccos, or cpprd and ccos, return an alignment to further increase the precision.

Baselines. We implemented two different baselines. The baseline rand randomly selects a Wikipedia
article from the extracted candidate set for each synset. The baseline mfs (most frequent sense) assigns
always the most frequently linked Wikipedia article of the candidate set defined as the article with the
highest number of incoming links. For example, for the synset wn =<tree: a tall perennial woody plant
having a main trunk [...]> suppose we extract the two Wikipedia articles, namely wp1 =<Tree: A tree
is a perennial woody plant.> and wp2 =<Tree (data structure)>. In this case, the sense wp1 is aligned
to the synset wn as it has 4,339 inlinks, about 4,000 more than the article wp2. Both, the rand and mfs
baseline always return a one-to-one alignment.

4 Well-balanced reference dataset

Publicly available evaluation datasets as provided by Fernando and Stevenson (2010) and Wolf and
Gurevych (2010), are either quite small or follow a different annotation scheme. Others consist of ran-
domly sampled synsets, which do not properly represent the distribution of synsets in WordNet following
specific properties. For example, the dataset used in (Ponzetto and Navigli, 2010) consists of only 2 sense
pairs, whose lemmas are monosemous in WordNet and Wikipedia (e.g. the lemma specifier corresponds
to one synset in WordNet and one article in Wikipedia). As this property holds for one-third of all Word-
Net noun synsets, it is crucial for the choice of the alignment method and thus, should be represented in
the evaluation dataset adequately. Therefore, our goal in this paper is to compile a well-balanced dataset
to cover different domains and properties.
Synsets can be characterized with respect to their so-called assigned Unique Beginner, their synset size,
and their location within the WordNet taxonomy. The Unique Beginners group synsets in semantically
related fields (Fellbaum, 1998) such as entity (subsuming animals, persons, plants, artifacts, body and
food related synsets), abstraction, psychological features, shapes, states, and locations. The synset size
refers to the number of synonymous word senses in the synset. A synset can further be characterized
by its location within the WordNet taxonomy defined as the shortest path between the given synset and
the synset entity, which is the root element of all noun synsets. In addition, we distinguish between
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Property # synsets in WordNet # sampled synsets # manually aligned synsets

Synset size =1 42,054 160 110
> 1 40,061 160 111

Path length to root
0-5 8,586 60 33

6-10 67,082 200 143
11-16 6,447 60 45

Unique Beginner Entity 47,330 160 118
Non-Entity 34,785 160 103

# extracted WP candidates =1 23,991 160 108
> 1 46,569 160 113

Total # 82,115 320 221

Table 1: Sampling by properties and # manual alignments

Annotator A B C majority
# non-alignments 1,586 1,571 1,605 1,588
# alignments 229 244 210 227

Table 2: Annotations per class

A–B A–C B–C
AO .9697 .9741 .9724
κ .8663 .8782 .8742

Table 3: Inter-annotator agreement

synsets for which more than one Wikipedia candidate article is returned. In summary, for example, the
synset<article, clause: a separate section of a legal document> has a synset size of 2, is assigned to the
Unique Beginner communication, has a shortest path to the root element of length 6, and has 5 extracted
Wikipedia candidate articles.
Based on these distinctive properties, we sampled 320 noun synsets yielding 1,815 sense pairs to be
annotated, i.e. 5.7 Wikipedia articles per synset on average. The exact proportion of synsets with respect
to their properties is detailed in Table 1 in the first four columns.
The manual sense alignment is performed by three human annotators. The annotators were provided
sense alignment candidate pairs, each consisting of a WordNet synset and a Wikipedia article. The anno-
tation task was to label each sense pair either as alignment or not. Table 2 outlines the class distribution
for three annotators and the majority decision.
The most sense alignment candidates were annotated as non-alignments; only between 210 and 244
sense pairs were considered as alignments (extracted for 320 WordNet synsets). To assess the reliability
of the annotators’ decision, we computed the pairwise observed inter-annotator agreement AO and the
chance-corrected agreement κ (Artstein and Poesio, 2008)5. The agreement values are shown in Table 3.
The average observed agreement AO is 0.9721, while the multi-κ is 0.8727 indicating high reliability.
The final dataset was compiled by means of a majority decision. Given 1,815 sense alignment candidate
pairs, 1,588 were annotated as non-alignments, while 227 were annotated as alignments. 215 synsets
were aligned with one article, while 6 synsets were aligned with two articles. Interesting to note is that the
aligned samples are uniformly distributed among the different sampling dimensions as shown in Table 1
(right column). It demonstrates that WordNet synsets of different properties are contained in Wikipedia.
On the other side, 99 synsets, i.e. approx. 1/3 of the sampled synsets, could not be aligned. Most of
them are not contained in Wikipedia at all, e.g. the synset <dream (someone or something wonderful)>
or <outside, exterior (the region that is outside of something)>. Others are not explicitly encoded on
the article level such as the synset <quatercentennial, quatercentenary (the 400th anniversary (or the
celebration of it))>, which is part of the more general Wikipedia article <Anniversary>.

5 Experiments

In our experiments, we represent a WordNet synset either by itself (in the direct version pprd ) or by
its set of synonymous word senses and its gloss and examples (in the basic version ppr ). Optionally,
we include hyponym and hypernym synsets to extend the sense representation of a synset: (SYN): the

5Note: “As the class distribution is highly skewed, the test for reliability in such cases is the ability to agree on the rare
categories [. . . ]” (Artstein and Poesio, 2008). This, in fact, is the category/class, in which we are most interested in.

210



WordNet Wikipedia cos pprd pprd + cos ppr ppr + cos
F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc

SYN P+T .691 .907 .719 .921 .726 .923 .707 .914 .727 .927
+HYPO P+T .694 .908 .701 .916 .716 .931 .700 .912 .718 .926
+HYPER P+T .726 .921 .708 .918 .737 .935 .756 .928 .774 .940
+HYP2 P+T .725 .927 .713 .920 .720 .937 .741 .923 .756 .940
SYN P+T+R .684 .907 .721 .921 .738 .936 .707 .913 .725 .926
+HYPO P+T+R .689 .910 .711 .918 .729 .936 .698 .910 .721 .927
+HYPER P+T+R .719 .917 .724 .928 .748 .937 .762 .938 .755 .940
+HYP2 P+T+R .727 .920 .729 .929 .739 .937 .747 .932 .761 .940
SYN P+T+C .698 .909 .754 .930 .756 .937 .726 .918 .743 .931
+HYPO P+T+C .702 .910 .739 .927 .747 .938 .722 .917 .740 .930
+HYPER P+T+C .738 .925 .752 .931 .765 .943 .765 .935 .781 .945
+HYP2 P+T+C .732 .923 .739 .928 .757 .942 .746 .930 .769 .942
SYN P+T+R+C .699 .912 .736 .926 .752 .939 .719 .916 .734 .929
+HYPO P+T+R+C .695 .911 .736 .926 .735 .936 .711 .914 .727 .928
+HYPER P+T+R+C .718 .917 .744 .930 .758 .940 .776 .940 .772 .943
+HYP2 P+T+R+C .724 .918 .751 .932 .756 .939 .762 .936 .769 .942
rand – .527 .857
mfs – .534 .860

Table 4: Results for the automatic alignment

given synset; (HYPER): all hypernym synsets of the given synset; (HYPO): all hyponym synsets of the
given synset; (HYP2): all hypernym and hyponym synsets of the given synset.
A Wikipedia article is represented by either its first paragraph6 as it usually contains a compact descrip-
tion of the article or its whole article text. The article title and additional assigned information such as
categories or redirects can also be taken into account: (P): first paragraph of Wikipedia article (with a
minimum length of 200 characters7); (TXT): the whole article text; (T): article title; (C): all categories
assigned to the article; (R): all redirects assigned to the article.
Table 4 lists the performance of our approach for different experimental settings.8 We evaluate our
approach in terms of F1-Measure (F1 =

2∗P∗R
P+R ), where P is the precision andR the recall. The precision

P determines the ratio of correct alignments to all alignments assigned by the algorithm. The recall R
identifies the number of correct alignments to the total number of correct alignments in the gold standard.
Further, we provide an accuracy measure Acc, which denotes the percentage of the correctly identified
alignments and non-alignments.

Similarity measure. Overall, the Personalized PageRank approach outperforms the cosine similar-
ity. cos achieves an F1-Measure of 0.738, while pprd reaches 0.754 and ppr even 0.776, which is a
performance gain of 2.1% and 5.1%, respectively. This, in fact, strengthens our motivation to employ se-
mantic relatedness based approaches instead of a simple word overlap approach. For example, the synset
<Johannesburg> and its corresponding Wikipedia article is not aligned based on the cosine approach as
only three terms overlap. However, the ppr and pprd approach classify the synset–article pair as align-
ment as there exists semantic relatedness between “large economy” and “commercial center” occurring
in the textual sense representations.
The performance differences between pprd and ppr correlate with the synset representation. On the one
hand, utilizing the SYN representation, pprd outperforms the ppr approach. This shows the effect of
disambiguating the WordNet synset beforehand. On the other hand, when presenting the synset together
with its hypernym or both, hypernyms and hyponyms, ppr yields the best performance. This might
be due to the fact that a Wikipedia article often contains more general terms, i.e. hypernym concepts,
especially within the first paragraph of a Wikipedia article.
All combinations yield higher performance compared to the stand-alone classifiers. For example, for
the setting SYN+HYPER and P+T+C, cos yields 0.738, ppr 0.765, and the combination of both 0.781

6Extracted with JWPL (Zesch et al., 2008) and some additional post-processing steps.
7We have not optimized this value for this task.
8As all experimental settings, in which the Wikipedia article was represented with its first paragraph instead of the whole

article text, yield higher performance, we report only these numbers here.
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Measure A B C
cos .688 .692 .676
pprd .711 .711 .690

pprd + cos .724 . 714 .716
ppr .737 .718 .716

ppr + cos .740 .730 .728

Table 5: Agreement (κ) between automatic and human annotators

automatic
alignment non-alignment

manual
alignment 178 49

non-alignment 51 1,537

Table 6: Confusion matrix (Setting: ppr + cos , SYN+HYPER, P+T+C)

performance, which is an improvement of 5.8% and 2.1% compared to the cos and ppr approach,
respectively. The performance gain originates from higher precision.

Sense representation. All similarity measures yield better performance representing the WordNet
synset together with their hypernym synsets regardless of the representation of the Wikipedia article.
As stated before, this might be due to the fact that Wikipedia articles often contain hypernym concepts
in their textual representation. Further, each synset has exactly one direct hypernym concept, while the
number of hyponym concepts is not limited. This can cause a very noisy description of a synset, not
focusing on the textual representation of the actual sense. When representing the Wikipedia sense, the
categories always boost the performance, while redirects are not helpful and can yield even a performance
drop. The reason might be that redirects contain much noisy information, e.g. spelling variations.

Baselines. The rand and the mfs baselines achieve an F1-Measure of 0.527 and 0.534, respectively.
They always assign a sense even only 221 of 320 synsets can be aligned to Wikipedia. If we only
consider the 221 synsets for which an alignment exist, the mfs baseline achieves an F1-Measure of 0.76,
i.e. for 146 out of 221 synsets the aligned Wikipedia article is the most frequent sense as we defined it in
Section 3.2.

Upper bound. The human annotators show a pairwise agreement κ between 0.866 and 0.878, which
serves as an upper bound for this task. For each measure and its best performing experimental setting as
listed in Table 4, we calculate the agreement with the annotators’ alignments (see Table 5). The combined
approach ppr + cos achieves the highest agreement values κ, between 0.728 and 0.740. These values
show that the automatic annotation is fairly reliable.

5.1 Error analysis

We manually analyzed the alignments generated by the best performing experimental setup (ppr + cos,
SYN+HYPER, P+T+C). For synsets corresponding to more than one extracted Wikipedia candidate, the
average number of Wikipedia candidates is around 10, which, indeed, makes the alignment step very
challenging for some synsets. For example, for the synset <mission, military mission (an operation
that is assigned by a higher headquarters)> 30 Wikipedia candidates were extracted in total, whereas
only the article with the title <Military operation> was aligned manually. 10 out of the 30 are articles
about space flight missions and Christian missionary. Most of the remaining 19 refer to city names, song
titles, and other named entities. Our approach returns the highest similarity for the article <Military
operation>, which demonstrates that the alignment works well in this example.
As listed in Table 6, the best performing experimental setup correctly aligned 178 of the 227 manual
alignments. The remaining 49 manual alignments were not assigned. Instead, 51 additional sense can-
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didate pairs were incorrectly considered as alignment. It is noticeable that the errors are almost equally
distributed among the distinctive properties a synset can have as defined in Section 4. We could not
observe that a specific synset property causes the majority of errors.
Most of the 51 false positives are due to highly related sense alignment candidates, e.g. (cottonseed, cot-
tonseed oil), (electroretinogram, electroretrinography), or (insulin shock, insulin shock therapy). These
sense alignment candidates have either the same stem but different suffixes or one part is a holonym or
meronym of the other part. This knowledge can be used to apply additional post-processing steps to
boost the performance. Further, even if they are non-aligned manually as they do not describe the same
sense, the concepts are highly related, and thus, the alignment might be useful in specific tasks.
Most of the 49 manual alignments that could not be aligned automatically are due to the differences how
senses are defined in WordNet and Wikipedia. For example, the WordNet synset <payment, defrayal,
defrayment: the act of paying money> and the manually aligned Wikipedia article<Payment: A payment
is the transfer of wealth from one party (such as person or company) to another ...> could not be aligned
automatically. In this example, the textual similarity or relatedness is not sufficient to classify them as a
valid alignment. This fact shows that other types of knowledge should be additionally integrated in the
alignment approach, such as structural or taxonomic knowledge.

6 Conclusions

We have presented a novel two-step approach to automatically align English Wikipedia articles and
WordNet synsets. We have shown that a threshold-based method models the task properly yielding
none, one, or more than one alignment of a Wikipedia article for a given WordNet synset. This is dif-
ferent to previous sense alignment approaches. Further, we have shown that it is important to employ
semantic relatedness measuring the similarity of textual sense representations. Our approach to the auto-
matic alignment shows an encouraging performance of 0.78 F1-Measure and 94.5% accuracy based on a
comprehensive, well-balanced reference dataset consisting of 1,815 manually annotated sense alignment
candidates.
We have created a fully-aligned resource with our best performing setting (ppr + cos , SYN+HYPER,
P+T+C, threshold: 0.439 for ppr , 0.048 for cos ), in which two-thirds of all WordNet noun synsets are
aligned with one article from the English Wikipedia. On the one hand, this fact supports our assumption
and overall motivation that both resources are partly complementary at the sense level (one-third of all
noun synsets are not in Wikipedia). On the other hand, for the two-thirds of WordNet noun synsets, the
alignment yields relational information from WordNet and encyclopedic information from Wikipedia.
We believe that this new resource and the enhanced knowledge therein can boost the performance of
various NLP systems that previously had to rely on a single resource only. We already started research
on integrating the aligned resource in WSD and semantic relatedness tasks. The fully-aligned resource
as well as the reference dataset are publicly available at http://www.ukp.tu-darmstadt.de/
data/sense-alignment for further research activities.
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Abstract

In the Recognizing Textual Entailment (RTE) task, sentence pairs are classified into one of three se-
mantic relations: ENTAILMENT, CONTRADICTION or UNKNOWN. While we find some sentence pairs
hold full entailments or contradictions, there are a number of pairs that partially entail or contradict one
another depending on a specific situation. These partial contradiction sentence pairs contain useful infor-
mation for opinion mining and other such tasks, but it is difficult for Internet users to access this knowledge
because current frameworks do not differentiate between full contradictions and partial contradictions. In
this paper, under current approaches to semantic relation recognition, we define a new semantic relation
known as CONFINEMENT in order to recognize this useful information. This information is classified as
either CONTRADICTION or ENTAILMENT. We provide a series of semantic templates to recognize CON-
FINEMENT relations in Web texts, and then implement a system for recognizing CONFINEMENT between
sentence pairs. We show that our proposed system can obtains a F-score of 61% for recognizing CON-
FINEMENT in Japanese-language Web texts, and it outperforms a baseline which does not use a manually
compiled list of lexico-syntactic patterns to instantiate the semantic templates.

1 Introduction
On the Internet, there are various kinds of documents, and they often include conflicting opinions or

differing information on a single topic. Collecting and organizing this diverse information is an important
part of multi-document summarization.

When searching with a particular query on the Internet, we want information that tells us what other
people think about the query: e.g. do they believe it is true or not; what are the necessary conditions
for it to apply. For example, consider the hypothetical search results for the query given in (1). You get
opinion (2a), which supports the query, and opinion (2b) which opposes it.
(1) Xylitol is effective at preventing tooth decay.

(2) a. Xylitol can prevent tooth decay.
b. Xylitol is not effective at all at preventing tooth decay.

A major task in the Recognizing Textual Entailment (RTE) Challenge (Giampiccolo et al. (2007)) is
classifying the semantic relation between a Text and a Hypothesis into ENTAILMENT, CONTRADICTION,
or UNKNOWN. Murakami et al. (2009) report on the STATEMENT MAP project, the goal of which is
to help Internet users evaluate the credibility of information sources by analyzing supporting evidence
from a variety of viewpoints on their topics of interest and presenting them to users together with the
supporting evidence in a way that makes it clear how they are related. A variety of techniques have been
successfully employed in the RTE Challenge in order to recognize instances of textual entailment.

∗Current afflication: Rakuten Institute of Technology
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However, as far as we know, there have been no studies on recognizing sentences which specify condi-
tions under which a query applies, despite the fact that these relations are useful information for Internet
users. Such useful sentences are plentiful on the Web. Consider the following examples of CONTRA-
DICTION and ENTAILMENT.

(3) a. Xylitol can not prevent tooth decay if it not at least 50%.
b. The effect of Xylitol on preventing tooth decay is limited.

In example (3a), the necessary condition to prevent tooth decay by Xylitol is “it contains at least fifty
percent Xylitol”. That condition is expressed by the phrase in bold in (3a). This sentence informs users
that if they want to prevent tooth decay, the products they use must contain a certain amount of Xylitol to
be effective. In example (3b), we obtain information on uncertainty of Xylitol’s tooth decay prevention
effectiveness from the phrase “is limited”. It tells that Xylitol is not necessarily effective at preventing
tooth decay, and thus it is not completely in agreement with or contradiction to the original sentence (1).

It is important to recognize the semantic relation shown in (3) because it provides more specific infor-
mation about the query or specifies the conditions under which the statement holds or does not. This is
valuable information for Internet users and needs to be distinguished from fully contradicting or agreeing
opinions.

We call this semantic relation CONFINEMENT because it confines the situation under which a query
applies. In this paper, we give a language independent definition of the CONFINEMENT relation in pred-
icate logic and provide a framework for detecting the relation through a series of semantic templates that
take logical and semantic features as input. We implement a system that detects CONFINEMENT rela-
tions between sentence pairs in Japanese by instantiating the semantic templates using rules and a list of
lexico-semantic patterns. Finally, we conduct empirical evaluation of recognition of the CONFINEMENT

relation between queries and sentences in Japanese-language Web texts.

2 Related Work
In RTE research, only three types of relations are defined: ENTAILMENT, CONTRADICTION, and

UNKNOWN. RTE is an important task and has been the target of much research (Szpektor et al. (2007);
Sammons et al. (2009)). However, none of the previous research has introduced relations corresponding
to CONFINEMENT.

Cross-document Structure Theory (CST, Radev (2000)) is another approach to recognizing semantic
relations between sentences. CST is an extended rhetorical structure analysis based on Rhetorical Struc-
ture Theory (RST). It attempts to describe the semantic relations between two or more sentences from
different source documents that are related to the same topic. It defines 18 kinds of semantic relations
between sentences. Etoh and Okumura (2005) constructed a Japanese Cross-document Relation Corpus
and defined 14 kinds of semantic relations. It is difficult to consider CONFINEMENT relations in the
CST categorical semantic relations because it focuses on comparing sentences in terms of equivalence
and difference between sentences. At first glance, CONFINEMENT may seem to be defined in terms of
difference between sentences, but this approach does not capture the idea of restriction on a sentence’s
applicability. Thus, it is beyond the scope of CST.

In the field of linguistics, Nakagawa and Mori (1995) discussed restrictions as represented in the
four Japanese subordinate clause patterns. Abe (1996) researched the role of quantifiers in quantitative
restrictions and the role of “だけ (only).” There is much other researches on expressions representing
“confinement” in a sentence in linguistics. These expressions are useful in order to recognize phrases
which contradict each other. However, as far as we know, there is no research on the relation of CON-
FINEMENT between two sentences in the linguistics literature. The absence of related research makes
defining and recognizing CONFINEMENT a very challenging task.

3 The CONFINEMENT Relation
We present the definition of the CONFINEMENT relation and describe its differences from ENTAIL-

MENT and CONTRADICTION. In essence, a pair of sentences is in the CONFINEMENT relation if either
the premise or consequent of the second sentence has a certain condition or restriction, and without such
condition or restriction the pair is equivalent to either ENTAILMENT or CONTRADICTION.
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Consider an example of CONFINEMENT setence pair: (2a) and (3a). The statement “it (Xylitol) is not at
least 50%” is a condition of the statement “Xylitol can not prevent tooth decay.” It is a CONTRADICTION

if the conditional statement is satisfied. Because the truth value of the whole statement depends on
various conditions to be satisfied, it is important to properly define a framework to define them.

3.1 A Logical Definition of CONFINEMENT
We present a definition of CONFINEMENT in predicate logic. We define CONFINEMENT as a semantic

relation between two sentences, where the first sentence corresponds to RTE’s Hypothesis, or the user
Query, and the second sentence corresponds to RTE’s Text that has some semantic relation with the
Query, which we want to identify.

Here we consider sentence pairs where the Query matches the logical pattern ∀x(P (x) → C(x)),
where we call P (x) the Premise and C(x) the Consequence. There are many ways of representing
sentences as logical expressions, and we think that the logical pattern (∀(P (x) → C(x))) can cover a
variety of queries. For example, the sentence “Xylitol is effective at preventing tooth decay.” can be
represented as ∀x(isXylitol(x) → effectiveAtPreventingToothDecay(x)). Consider the case where one
sentence contains only a Consequence. This case can be regarded as a special case of the above formula.
We write such a sentence as ∀x(T → C(x)) showing that the Premise is always True.

In this paper, we limit discussion of the CONFINEMENT relation to the Query matching to the above
logical pattern. Recognizing CONFINEMENT between the Text and the Query having more complex
semantic patterns is an area of future work. Here, we split the definition of CONFINEMENT into subtypes
according to: (i) conditions to satisfy in addition to the Premise, and (ii) limitations on the degree of the
Consequence.

Premise side Additional conditions for achieving the Consequence
Explicit constraint

Some conditional sentences use an expression correspoinding to logical “only if,” which explicitly
means two way conditions as the following formula.

∀x((P (x) ∧ AdditionalCondition(x) → C(x)) (1)

∧(P (x) ∧ ¬AdditionalCondition(x) → ¬C(x)))

For example, S1 in Table 1, “Xylitol is effective at preventing cavities only when it is 100%”,
explicitly specify that Xylitol is effective if it is 100% and is not effective if it is not 100%. So,
we assume the form of the above formula for this type of statement.

Implicit constraint
This type of sentence specifies an additional condition on the Premise and is represented by the
following formula. The Premise needs to be satisfied for the consequence to be achieved.

∀x((P (x) ∧ AdditionalCondition(x) → C(x)) (2)
Example S5 in Table 1 says “Xylitol is effective at preventing tooth decay if it is 100%”, which
is assumed by Formula (2). S5 does not contain an expression such as “only (だけ)”, which
explicitly specifies that C(x) does not hold when an additional condition is not satisfied. One may
understand that it implicitly means “Xylitol is not effective at preventing tooth decay if it is not
100%,” but S5 does not structly require this.

Consequence side Constraints on the degree of achieving the Consequence
There are sentences in partial entailment or contradiction where the degree of achieving of the Con-
sequence is limited. To represent these limitations on the Consequence side, we define a CONFINE-
MENT relation where the degrees of the Consequence are limited as in Example (3b). We define the
following formula to represent these limitations on the Consequence side.

∀x((P (x) → Cr(x)) (3)
Cr(x) represents C(x) with additional restriction. For example, S3 in Table 1 says that Xylitol is
somewhat effective at preventing tooth decay, which means that there are cases in which Xylitol can
not prevent tooth decay. In the case of S3, Cr(x) is “is a bit effective”. This type of CONFINE-
MENT provides valuable information about Xylitol’s limited ability to promote dental hygiene in S3.
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All CONFINEMENTs on the Consequence side are of type EXPLICIT CONFINEMENT, because they
explicitly mean that a part of the Consequence is achieved but no other parts are achieved.

3.2 Semantic Templates
We propose a series of semantic templates to classify sentence pairs into one of the CONFINEMENT

relation subtypes we define. The semantic templates take a set of features as input and use their values
to categorize the sentence pair. In Section 4, we evaluate the coverage of the semantic templates by
classifying a small set of sentence pairs using manually set feature values. In Section 6, we provide
more realistic evaluation by using a proposed system to set the feature values automatically and classify
sentence pairs as ENTAILMENT / CONTRADICTION, or CONFINEMENT.

We assume that each sentence consists of a Premise and Consequence, and that each sentence pair
which has a CONFINEMENT relation contains at least one additional condition or one additional limitation
as defined in Section 3.1.

We know that there are a variety of expressions that indicate the presence of a CONFINEMENT relation.
For example, both “Only 100% pure Xylitol is effective at preventing tooth decay.” and “Xylitol is not
effective at preventing tooth decay unless it is 100% pure.” are CONFINEMENTs of “Xylitol is effective
at preventing tooth decay.” Since it is impossible to handle all possible expressions that indicate CON-
FINEMENT, we focus on covering as many as possible with three features: (1) the type of constraint, (2)
the type of Premise, and (3) the type of Consequence. The features are defined in more detail below.

IF-Constraint This feature indicates the type of logical constraint in the Text sentence. Its values can
be “IF,” “ONLY-IF.”

Premise This feature indicates the type of Premise in the Text sentence. The value “P+A” or “notP+A”
means there is an Additional Condition on the Premise. The value “P” or “notP” means there is just
a Premise. “not” represents the Premise have a negation.

Consequence This feature indicates the type of Consequence. Its possible values are “C” (just a Conse-
quence), “notC” (negated Consequence), “Cr” or “notCr” (certain partial Consequence).

Semantic templates consist of a tuple of four feature values and a mapping to the confinement type they
indicate. A full list of templates is given in Table 1. In the templates, a wildcard asterisk “*” indicates
that any feature value can match in that slot of the template. The abbreviations ENT, CONT and CONF

stand for ENTAILMENT, CONFINEMENT and CONFINEMENT respectively.
Semantic templates are applied in turn from top pattern by determining the value of each feature and

looking up the corresponding relation type in Table 1. We give a classification examples below. The user
query is sentence S0. Sentences S1 are Web texts.

Query : S0. Xylitol is effective at preventing tooth decay.
Text [ONLY-IF P(x) ∧ AC(x) then C(x) ]: S1. Xylitol is effective at preventing tooth decay when you

take it every day without fail.

In Example, IF-Constraint is “ONLY-IF”, Premise is “P+A”, and the type of Consequence is “C”.
This instance has an additional condition and the Consequence matches the Query, so it is identified as
an EXPLICIT CONFINEMENT.

4 Verifying Semantic Templates

In this section, we verify the effectiveness of semantic templates in recognizing CONFINEMENT rela-
tions by testing them on real-world data in Japanese. To directly evaluate the quality of the templates,
we construct a small data set of sentence pairs and manually annotate them with the correct values for
each of the features defined in Section 3.2.

4.1 Data
We constructed the Development set and the Open-test set of sample Japanese user queries and Inter-

net text pairs following the methodology of Murakami et al. (2009). However, Murakami et al. (2009)
annotated Query-Text pairs with coarse-grained AGREEMENT and CONFLICT relations that subsume the
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Table 1: Semantic templates for recognizing CONFINEMENT
Semantic features Relation Number of Number of Example

IF-constraint Premise Consequence positive negative S0:キシリトールは虫歯予防に効果がある.
example example Xylitol is effective at preventing tooth decay.

ONLY-IF P+A * EXPLICIT 8 0 S1:キシリトールは 100%の時にだけ虫歯予防に効果があります.
CONF Xylitol is effective at preventing tooth decay only when it is 100%.

ONLY-IF notP+A * EXPLICIT 0 0 S2:キシリトールは 50%未満でない時にしか虫歯予防に効果がありません.
CONF Xylitol is effective at preventing tooth decay only when it is not under 50%.

* * Cr EXPLICIT 11 0 S3:キシリトールは虫歯予防に僅かに効果があります.
CONF Xylitol is a bit effective at preventing tooth decay.

* * notCr EXPLICIT 12 0 S4:キシリトールは虫歯予防にほとんど効果がありません.
CONF Xylitol is not almost of effective at preventing tooth decay.

IF P+A * IMPLICT 62 0 S5:キシリトールは 100%ならば虫歯予防に効果があります.
CONF Xylitol is effective at preventing tooth decay if it is 100%.

IF notP+A * IMPLICIT 1 0 S6:キシリトールは 100%でないならば虫歯予防に効果がありません.
CONF Xylitol is not effective at preventing tooth decay if it is not 100%

IF P C ENT 279 0 S7:キシリトールを食べると虫歯予防に効果があります.
Xylitol is effective at preventing tooth decay if it is eaten.

IF notP C CONT 0 0 S8:キシリトールを食べないと虫歯予防に効果があります.
Xylitol is effective at preventing tooth decay if it is not eaten.

IF P notC CONT 13 0 S9:キシリトールを食べると虫歯予防に効果がありません.
Xylitol is not effective at preventing tooth decay if it is eaten.

IF notP notC ENT 0 0 S10:キシリトールを食べないと虫歯予防に効果がありせん.
Xylitol is not effective at preventing tooth decay if it is not eaten.

ONLY-IF P C ENT 3 0 S11:キシリトールを食べたときだけ虫歯予防に効果があります.
Xylitol is effective at preventing tooth decay only when it is eaten.

ONLY-IF notP C CONT 0 0 S12:キシリトールを食べなかったときだけ虫歯予防に効果があります.
Xylitol is effective at preventing tooth decay only when it is not eaten.

ONLY-IF P notC CONT 0 0 S13:キシリトールを食べたときだけ虫歯予防に効果がありせん.
Xylitol is effective at preventing tooth decay only when it is eaten.

ONLY-IF notP notC ENT 0 0 S14:キシリトールを食べなかったときだけ虫歯予防に効果がありせん.
Xylitol is not effective at preventing tooth decay only when it is not eaten.

Table 2: Data set (Counts of sentences out of parenthesis and statements in parentheses)
Entailment Contradiction Confinement All

Development 258 (282) 8 (13) 79 (94) 345 (389)
Open-test 230 170 200 600

RTE relations of ENTAILMENT and CONTRADICTION. As our task is to discriminate between CON-
FINEMENT and RTE relations, we annotate each sentence pair or each statement1 pair with one of the
following relations instead: ENTAILMENT, CONTRADICTION, or CONFINEMENT. In the case of CON-
FINEMENT, we annotate Query-Text pairs which are not full ENTAILMENT or CONTRADICTION but
these Text partially agrees and disagrees with the Query. Annotations were checked by two native speak-
ers of Japanese, and any sentence pair where annotation agreement is not reached was discarded. Table
2 shows that how many sentences or statements are in each data set. Annotated statements counts are
written in parentheses. We use the Development set for evaluation of verifying semantic templates and
develop list of lexical and syntactic patterns for semantic features extraction, and the Open-test set for
evaluation in Section 6.

4.2 Verification Result
After the data was prepared, we annotated it with the correct feature values for use with the semantic

templates. This was done by manually checking for words or phrases in the sentences that indicated one
of the features in Table 1. Once the features were set, we used them to classify each sentence pair.

We give the numbers of instances that we could confirm for each pattern in the sixth column of Table
1 and the numbers of negative instances in the seventh column, which satisfy semantic template but does
not agree Relation values in the fifth column. As a result we find that there were no statement pairs that
could not be successfully classified. We grasp CONFINEMENT relation with semantic templates for the
most part. This verification data does not cover all combinations of patterns in our semantic templates, so
we can not rule out the possibility of existence of an exception that cannot be classified by the semantic
templates. However, we find these results to be an encouraging indication of the usefulness of semantic
templates. Here are some example classifications found in the verification data.

Coordinate clauses Combining multiple of IMPLICIT CONFINEMENTs results in an EXPLICIT CON-
FINEMENT relation
(4)S0. ステロイドは副作用がある.

Steroid has side-effects.
S1. ステロイドの副作用はステロイド剤を長期に使用した場合におこることが多いですが短

1Murakami et al. define a “statement” as the smallest unit that can convey a complete thought or viewpoint. In practice, this
can be a sentence or something smaller such as a clause.
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期間の使用では副作用の心配はありません.
Long-term use of steroid causes side-effects, but there is no need to worry about side-effects
in short-term usage.

In Example (4), S1 is an EXPLICIT CONFINEMENT for S0. This is derived from the combination of
CONFINEMENT of the two coordinate clauses of S1: the former phrase “Long-term use of steroid causes
side-effects” of S1 is an IMPLICIT CONFINEMENT for S0 by our semantic templates and the latter phrase
is an IMPLICIT CONFINEMENT for S0.

Additional information for whole Query Combining of a CONTRADICTION and an IMPLICIT CON-
FINEMENT result in an EXPLICIT CONFINEMENT

(5)S0. キシリトールは虫歯予防に効果的だ.
Xylitol is effective at preventing tooth decay.

S1. 虫歯予防はキシリトールだけで済むわけではなく,基本的には規則正しい食生活とキシリ
トールを毎食後とることで虫歯の予防ができます.
Tooth decay can not be prevented with Xylitol alone, but it can be fundamentally prevented
with an appropriate diet and by taking Xylitol after every meal.

The first clause before the comma in S1 of Example (5) corresponds to the entire sentence of S0. The
second clause after the comma helps us recognize that it is a CONFINEMENT relation. This instance
is also a combination of semantic templates, so we need to recognize negation of each statement and
adversative conjunction but we do not need to add new features to Table 1.

5 Proposed System
We propose a system which uses semantic templates for recognizing CONFINEMENT consists of six

steps: (I) linguistic analysis, (II) structural alignment, (III) Premise and Consequence identification,
(IV) semantic feature extraction, (V) adversative conjunction identification, and (VI) semantic template
application. Figure 1 shows the work flow of the system. This system takes as input corresponding to S0

and S1, and return a semantic relation.

5.1 I. Linguistic Analysis
In linguistic analysis, we conduct word segmentation, POS tagging, dependency parsing, and extended

modality analysis. This linguistic analysis acts as the basis for alignment and semantic feature extrac-
tion. For syntactic analysis, we identify words and POS tags with the Japanese morphological analyser
Mecab2, and we use the Japanese dependency parser CaboCha (Kudo and Matsumoto (2002)) to pro-
duce dependency trees. We also conduct extended modality analysis using the resources provided by
Matsuyoshi et al. (2010).

5.2 II. Structural Alignment
To identify the consequence of S0 in S1, we use Structural Alignment (Mizuno et al. (2010)). In Struc-

tural Alignment, dependency parent-child links are aligned across sentences using a variety of resources
to ensure semantic relatedness.

5.3 III. Premise and Consequence identification
In this step, we identify the Premise and the Consequence in S1. When a sentence pair satisfies all

items is satisfying, we can identify a focused chunk as the Consequence in S1:
1. A chunk’s modality in S0 is assertion, this chunk is the Consequence in S0

2. A chunk in S1 align with the Consequence in S0

We identify the Premise in S1 when a sentence pair satisfies first, and either second or third item of
the following conditions:
1. A case particle of chunks in S0 is either “が (agent marker)” or “は (topic marker)” and these chunks

are children of the Consequence in S0’s dependency tree
2. The subject in S0 aligns with the subject of S1

3. All of the dependants of the expression “には (to, for)” have alignments in S0 dependency tree

2http://chasen.org/taku/ software/mecab/.
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Figure 1: An overview of a proposal system to recognize CONFINEMENT

5.4 IV. Semantic Feature Extraction
We extract features for the semantic templates using a list of lexical and syntactic patterns. These

patterns were manually compiled using the development data set introduced in Section 4. Features for
the semantic templates are then automatically extracted by applying these patterns to input sentence
pairs. The following overviews our extraction approach for each feature.
5.4.1 IF-Constraint Feature Extraction

Using CaboCha, we manually constructed lists of words and their POS that are indicators of the
semantic condition under which a Premise occurs. We extract as features any words in the input sentences
that appear in the list with the corresponding POS. The “IF” lexical type lists conjunctions that are the
results of a conditional chunk or noun phrases that indicate a case or situation. The “ONLY-IF” lexical
type is used to represent the most constraining situations. The following is our list of expressions.
? IF: 場合 (in case),時/とき/と (when),ば/なら/たら (if),で (with)
? ONLY-IF: 限り/かぎり (for this time), だけ/しか/こそ (only), 初めて (for the first time), には (to,

for)
5.4.2 Premise Feature Extraction

We treat the words or phrases which are extracted from the constraint as conditions, and need to decide
whether a given condition is the Premise or an additional condition for the Premise. The Premise is set
to “P” when first step and either the second or third step of the following conditions are satisfied, and it
is set to “P+A” otherwise:
1. ? The condition have children in the S1’s dependency tree or the condition’s children are not aligned

to chunks in S0

2. ? The condition’s parent in S0’s dependency tree has any chunk with a child aligned with the Conse-
quence in S0, or the condition’s parent is not aligned with chunks in S0

3. ? The condition’s parent does not have any expression with the meaning of “use” in the S0’s depen-
dency tree

When these step are satisfied and negation exists in conditional chunks, Premise is set to “notP+A,” if
these step are not satisfied, Premise is set to “notP.” In the third step, we identify expressions with the
meaning of “use” with our lexical list. For example 使う (use), 食べる (eat), 摂取 (take) and so on. If
the condition’s parent has words in our lexical list, we identify that “Xylitol” and “eating Xylitol” and
“using Xylitol” are equivalent.
5.4.3 Consequence Feature Extraction

This feature is used to indicate the semantic relationship between Consequences of the sentences pair.
Sentences with Consequences that share a certain amount of similarity in polarity and syntax are judged
to have ENTAILMENT, otherwise they are in CONTRADICTION. In order to be judged as ENTAILMENT,
the following conditions must all be true:

1. The modality of the Consequences must be identical.
2. The polarity of the Consequences must be identical as indicated by the resources in (Sumida et al.

(2008))
3. The Premises of both sentences must align with each other
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4. ? The sentences must not contain expressions that limit range or degree such as “ほとんど (almost)”
or “程度 (degree)”

When all item are satisfied, the Consequence is set to “C”, otherwise it is set to “notC.” We identify
whether the consequence has expressions which limit the degree or not. The Consequence is set to “Cr”
or “notCr” when the following all conditions is satisfied:
1. Any of the children of the Consequence align with a chunk in S0’s dependency tree.
2. ? There are expressions limiting the degree of the Consequence or the siblings in S1’s dependency

tree
When this two steps are satisfied and the all four steps to judge whether sentence pairs is ENTAILMENT

or not are not satisfied, Consequence is set to “notCr.”

5.5 V. Adversative Conjunction Identification
We manually compiled a list of target expressions including conjunctions such as “が (but).” When a

S1 chunk containing an adversative conjunction that aligns with the Premise of S0 or the S0’s Premise
depends on S1 chunk containing an adversative conjunction, we set each feature set in a chunk before an
adversative conjunction and after an adversative conjunction to semantic templates.

5.6 VI. Semantic Template Application
We apply semantic feature extracted in Step IV to semantic templates. If S1 matches multiple semantic

templates with an adversative conjunction from Step V, we combine the semantic templates. We get a
relation for a sentence pair in this step.

5.7 Example of Semantic Features Extraction
Feature extraction is illustrated in greater detail in the examples S0 which is the query and S1 in

Table 1. First, we identify words represented IF-Constraint is “ONLY-IF”: “時 (when)” is in S1 and the
conditional chunk has a word “だけ (only).” Next, we evaluate each the type of Premise of each chunk to
determine if it is a premise or an additional condition. The subject word “Xylitol” align between S0 and
S1, and the conditional chunk’s sibling in dependency tree of S1 is a chunk which has the subject. And
the conditional chunk have a child which is not aligned any chunk in S0, it is “100%の (100%).” And the
conditional chunk has no negations. So, Premise is set to “P+A.” Finally, we check if the consequences
to the conditions are aligned to the verbs and nouns indicating consequences in S0: “prevent” and “is
effective” are aligned, the modality and polarity of the Consequence are identical, these depended on by
the condition, and the Consequence has no expressions which limited range or degree. Consequence is
set to “C.” We set the semantic template features and get a result which the sentences relation is EXPLICIT

CONFINEMENT. Ideally patterns for setting semantic feature for semantic templates should be learned
automatically, but this remains an area of future work. Nonetheless, our current experiment gives a good
measure of the effectiveness of semantic templates in recognizing CONFINEMENT relations.

6 Evaluation
In Section 4, we verified that the semantic templates defined in Section 3.2 can successfully classify

semantic relations as CONFINEMENT given the correct feature values. In this Section, we present the
results of an experiment in a more realistic setting by using semantic templates together with the features
automatically extracted as described with our proposed system in Section 5 to determine whether or not
a sentence pair has a CONFINEMENT relation.

6.1 Setting up Evaluation
While more research on recognizing ENTAILMENT or CONTRADICTION between sentences pairs is

necessary, it is important to recognize new relations that cannot be analysed in existing frameworks in
order to provide Internet users with the information they need. Thus, We assume that unrelated sentence
pairs will be discarded before classification, in this experiment we focus only on the recognition of
CONFINEMENT relations. So our goal in this experiment is to classify between CONFINEMENT and NOT

CONFINEMENT. We will evaluate determining whether CONFINEMENT sentence pairs are Explicit or
Implicit in future. In our experiment, we used a gold data for structural alignment to evaluate semantic
feature extraction.
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Table 3: Results of recognizing confinement relations with our proposal system
Recall Precision F-Score

proposed system 0.65(129/200) 0.57(129/225) 0.61
baseline system 0.96(192/200) 0.34(192/562) 0.50

Table 4: Instances of incorrect classification
S0 S1

A イソフラボンで健康を回復できる. イソフラボンの健康への効果に期待しすぎての過剰摂取は禁物です.
False A person can regain their health with isoflavon. Excess intake of isoflavon to boost its health effects is prohibited.

Negative B キシリトールは虫歯予防に効果がある. 歯を磨く・規則正しい食生活を送る等がきちんと行われている上でキシリトールを用いることが虫歯
予防に効果的となるのです.

Xylitol has effects on preventing tooth decay. The use of xylitol is effective at preventing tooth decay when done while eating properly and brushing one’s
teeth regularly.

C キシリトールは虫歯を予防することができる. キシリトールを口にしていれば、虫歯を予防できると考えるのは大きな間違いです.
Xylitol can prevent tooth decay. It is a big mistake to think that one can prevent tooth decay if they put Xylitol in 　 their mouth.

False D ステロイドで病気は改善できる. アトピー性皮膚炎は、ステロイドの使用を止めれば完治する.
Positive Steroids can cure illnesses. Atrophic dermatitis will heal completely if steroid use is stopped.

E ステロイドは副作用が懸念される. ステロイドの副作用は、どのくらいの量でどのくらいの期間使い続ければ現れるかは人それぞれです.
Side effects are a worry for steroids. The amount of steroids or period of time that causes side effects differs from person to person.

6.2 Baseline System

We developed a baseline system that does not use our manually-compiled lexico-syntactic patterns
in order to act as a point of comparison for the proposed system in evaluating their contribution to
CONFINEMENT recognition.

The baseline system consists of performing all of the steps from of our proposed system that do not
rely on manually compiled lexico-syntactic patterns. Step relying on these resources are marked with a
? in Section 5 and are skipped in the baseline. Essentially, we conduct Steps I, II, and III, the parts of
Step IV that can be done without manually-compiled patterns, and, finally, Step VI.

In Step IV, we determine if there are any limitations on the Consequence in the Consequence Feature
subset, but we do not judge whether the Consequence is ENTAILMENT or CONTRADICTION in the
baseline system.

6.3 Result and Error Analysis

The results are given in Table 3. We find that our system has much higher precision than the baseline,
improving by over 20%. In our system, the list of semantic patterns is effective at recognizing CON-
FINEMENT. On the other hand recall has gone down compared to the baseline. The baseline judged that
almost sentences are CONFINEMENT, so the list of semantic patterns employed in our rule-based system
is useful at eliminating false positives. Table 4 shows some instances of incorrect classification. Each
instance is a pair (S0, S1).

Example A-S1 means “Excess intake of isoflavon can not boost one’s health” and “excess intake” is
an additional condition for A-S1. In this case “excess” is a lexical specifier of the specific condition and
is indicated by the particle “は”. The particle “は (topic marker)” is not currently used as a feature in the
semantic templates since it is very noisy, so this instance can not be detected. We need to expand our
method of acquiring semantic patterns to better handle such cases.

The additional condition phrase in Example B-S1 modifies “The use of Xylitol” instead of “is effective
at preventing tooth decay”, preventing us from properly recognizing the limiting condition in this case.
We need to conduct deeper scopal analysis to determine when the modifier of an embedded chunk should
be considered as an additional condition.

Example C-S1 is an instance where the system fails to recognize that “put in their mouth” is an expres-
sion meaning “use” since our lists of lexical words for features did not have it. We should increase our
ability to recognize synonyms of “to use” by automatically mining data for paraphrases or approaching
it as a machine learning task in order to handle examples like C-S1. On the other hands “if steroid use
is stopped” in example D-S1 is the premise which should indicate an IF condition and Negation exists,
however we can not recognize it correctly since the phrase lacks negation. We will make a list of words
and phrases that are antonyms of “use” in order to recognize such instances.

The condition in example E-S1 is about how side-effects appear, and not a condition for the other
sentence example E-S0. This instance requires detailed semantic analysis and cannot be solved with
alignment-based approaches. It represents a very difficult class of problems.
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7 Conclusion
On the Web, much of the information and opinions we encounter indicates the conditions or limitations

under which a statement is true. This information is important to Internet users who are interested in
determining the validity of a query of interest, but such information cannot be represented under the
prevalent RTE framework containing only ENTAILMENT and CONTRADICTION.

In this paper, we provided a logical definition of the CONFINEMENT relation and showed how it
could be used to represent important information that is omitted under an RTE framework. We also
proposed a set of semantic templates that use set of features extracted from sentences pairs to recognize
CONFINEMENT relations between two sentences. Preliminary investigations showed that given correct
feature input, semantic templates could effectively recognize CONFINEMENT relations.

In addition, we presented empirical evaluation of the effectiveness of semantic templates and
automatically-extracted features at recognizing CONFINEMENT between user queries and Web text pairs,
and conducted error analysis of the results. Currently, our system does not deal with unknown instances
well since it extracts features for semantic template using manually constructed lexical patterns. In fu-
ture work, we will learn features for the semantic templates directly from data to better handle unknown
instances.
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Abstract

This paper presents a discourse processing framework based on weighted abduction. We elabo-
rate on ideas described in Hobbs et al. (1993) and implement the abductive inference procedure in a
system called Mini-TACITUS. Particular attention is paid to constructing a large and reliable knowl-
edge base for supporting inferences. For this purpose we exploit such lexical-semantic resources as
WordNet and FrameNet. We test the proposed procedure and the obtained knowledge base on the
Recognizing Textual Entailment task using the data sets from the RTE-2 challenge for evaluation. In
addition, we provide an evaluation of the semantic role labeling produced by the system taking the
Frame-Annotated Corpus for Textual Entailment as a gold standard.

1 Introduction

In this paper, we elaborate on a semantic processing framework based on a mode of inference called
abduction, or inference to the best explanation. In logics, abduction is a kind of inference which arrives
at an explanatory hypothesis given an observation. Hobbs et al. (1993) describe how abductive reasoning
can be applied to the discourse processing problem viewing the process of interpreting sentences in
discourse as the process of providing the best explanation of why the sentence would be true. In this
framework, interpreting a sentence means 1) proving its logical form, 2) merging redundancies where
possible, and 3) making assumptions where necessary. As the reader will see later in this paper, abductive
reasoning as a discourse processing technique helps to solve many pragmatic problems such as reference
resolution, the interpretation of noun compounds, the resolution of some kinds of syntactic, and semantic
ambiguity as a by-product. We adopt this approach. Specifically, we use a system we have built called
Mini-TACITUS1 (Mulkar et al., 2007) that provides the expressivity of logical inference but also allows
probabilistic, fuzzy, or defeasible inference and includes measures of the “goodness” of abductive proofs
and hence of interpretations of texts and other situations.

The success of a discourse processing system based on inferences heavily depends on a knowledge
base. The main contribution of this paper is in showing how a large and reliable knowledge base can be
obtained by exploiting existing lexical semantic resources and can be successfully applied to reasoning
tasks on a large scale. In particular, we experiment with axioms extracted from WordNet, see Fellbaum
(1998), and FrameNet, see Ruppenhofer et al. (2006). In axiomatizing FrameNet we rely on the study
described in Ovchinnikova et al. (2010).

We evaluate our inference system and the obtained knowledge base in recognizing textual entailment
(RTE). As the reader will see in the following sections, inferences carried out by Mini-TACITUS are
fairly general and not tuned for a particular application. We decided to test our approach on RTE because
this is a well-defined task that captures major semantic inference needs across many natural language

1http://www.rutumulkar.com/download/TACITUS/tacitus.php
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processing applications, such as question answering, information retrieval, information extraction, and
document summarization. For evaluation, we have chosen the RTE-2 data set (Bar-Haim et al., 2006),
because besides providing text-hypothesis pairs and a gold standard this data set has been annotated with
FrameNet frame and role labels (Burchardt and Pennacchiotti, 2008) which gives us the possibility of
evaluating our frame and role labeling based on the axioms extracted from FrameNet.

2 NL Pipeline and Abductive Reasoning

Our natural language pipeline produces interpretations of texts given the appropriate knowledge base. A
text is first input to the English Slot Grammar (ESG) parser (McCord, 1990, 2010). For each segment,
the parse produced by ESG is a dependency tree that shows both surface and deep structure. The deep
structure is exhibited via a word sense predication for each node, with logical arguments. These logical
predications form a good start on a logical form (LF) for the whole segment. An add-on to ESG converts
the parse tree into a LF in the style of Hobbs (1985). The LF is a conjunction of predications, which have
generalized entity arguments that can be used for showing relationships among the predications. These
LFs are used by the downstream components.

The interpretation of the text is carried out by an inference system called Mini-TACITUS using
weighted abduction as described in detail in Hobbs et al. (1993). Mini-TACITUS tries to prove the logical
form of the text, allowing assumptions where necessary. Where the system is able to prove parts of the
LF, it is anchoring it in what is already known from the overall discourse or from a knowledge base.
Where assumptions are necessary, it is gaining new information. Obviously, there are many possible
proofs in this procedure. A cost function on proofs enables the system to chose the “best” (the cheapest)
interpretation. The key factors involved in assigning a cost are the following: 1) proofs with fewer
assumptions are favored, 2) short proofs are favored over long ones, 3) plausible axioms are favored over
less plausible axioms, and 4) proofs are favored that exploit the inherent implicit redundancy in text.

Let us illustrate the procedure with a simple example. Suppose that we want to construct the best
interpretation of the sentence John composed a sonata. As a by-product, the procedure will disambiguate
between two readings of compose, namely between the “form” reading instantiated for example in the
sentence Three representatives composed a committee, and the “create art” meaning instantiated in the
given sentence. After being processed by the parser, the sentence will be assigned the following logical
form where the numbers (20) after every proposition correspond to the default costs of these proposi-
tions.2 The total cost of this logical form is equal to 60.

John(x1):20 & compose(e1,x1,x2):20 & sonata(x2):20

Suppose our knowledge base contains the following axioms:
1) form(e0,x1,x2):90 → compose(e0,x1,x2)
2) create art(e0,x1,x2):50 & art piece(x2):40 → compose(e0,x1,x2)
3) art piece(x1):90 → sonata(x1)

Unlike deductive axioms, abductive axioms should be read “right to left”. Thus, the propositions on
the right hand side (compose, sonata) correspond to an input, whereas the left hand side propositions
will be assumed given the input. The number assigned to each proposition on the left hand side shows
what percentage of the total input cost the assumption of this proposition will cost.3 For example, if the
proposition compose costs 20 then the assumption of form will cost 18.

Two interpretations can be constructed for the given logical form. The first one is the result of the
application of axioms 1 and 3. Note that the costs of the backchained propositions (compose, sonata) are

2The actual value of the default costs of the input propositions does not matter, because, as the reader will see in this section,
the axiom weights which affect the costs of the resulting interpretations are given as percentages of the input proposition costs.
The only heuristic we use here concerns setting all costs of the input propositions to be equal (all propositions cost 20 in the
discussed example). This heuristic needs a further investigation to be approved or modified.

3The axiom weights in the given example are arbitrary.
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set to 0, because their costs are now carried by the newly introduces assumptions (form, art piece). The
total cost of the first interpretation I1 is equal to 56.

I1: John(x1):20 & compose(e1,x1,x2):0 & sonata(x2):0 & form(e1,x1,x2):18 & art piece(x2):18

The second interpretation is constructed in two steps. First, axioms 2 and 3 are applied as follows.

I21: John(x1):20 & compose(e1,x1,x2):0 & sonata(x2):0 &
create art(e1,x1,x2):10 & art piece(x2):8 & art piece(x2):18

The total cost of I21 is equal to 56. This interpretation is redundant, because it contains the propo-
sition art piece twice. The procedure will merge propositions with the same predicate, setting the cor-
responding arguments of these propositions to be equal and assigning the minimum of the costs to the
result of merging. The idea behind such mergings is that if an assumption has already been made then
there is no need to make it again. The final form of the second interpretation I22 with the cost of 38
is as follows. The “create art” meaning of compose has been brought forward because of the implicit
redundancy in the sentence which facilitated the disambiguation.

I22: John(x1):20 & compose(e1,x1,x2):0 & sonata(x2):0 & create art(e1,x1,x2):10 &
art piece(x2):8

Thus, on each reasoning step the procedure 1) applies axioms to propositions with non-zero costs
and 2) merges propositions with the same predicate, assigning the lowest cost to the result of merging.
Reasoning terminates when no more axioms can be applied.4 The procedure favors the cheapest inter-
pretations. Among them, the shortest proofs are favored, i.e. if two interpretations have the same cost
then the one which has been constructed with fewer axiom application steps is considered to be “better”.

It is easy to see that changing weights of axioms can crucially influence the reasoning process. Axiom
weights can help to propagate more frequent and reliable inferences and to distinguish between “real”
abduction and deduction. For example, an axiom backchaining from dog to animal should in the general
case have a weight below 100, because it is cheap to assume that there is an animal if there is a dog; it is
a reliable deduction. On the contrary, assuming dog given animal should have a weight above 100.

In order to avoid undesirable mergings, we introduce non-merge constraints. For example, in the
sentence John reads a book and Bill reads a book the two read propositions should not be merged
because they refer to different actions. This is ensured by the following non-merge constraint: if not all
arguments of two propositions (which are not nouns) with the same predicate can be merged, then these
propositions cannot be merged. The constraint implies that in the sentence above two read propositions
cannot be merged, because John being the first argument of the first read cannot be merged with Bill.5

This constraint is a heuristic; it corresponds to the intuition that it is unlikely that the same noun refers to
different objects in a short discourse, while for other parts of speech it is possible. An additional corpus
study is needed in order to prove or disprove it.

The described procedure provides solutions to a whole range of natural language pragmatics prob-
lems, such as resolving ambiguity, discovering implicit relations in nouns compounds, prepositional
phrases, or discourse structure. Moreover, this account of interpretation solves the problem of where to
stop drawing inferences, which could easily be unlimited in number; an inference is appropriate if it is
part of the lowest-cost proof of the logical form.

Adapting Mini-TACITUS to a Large-Scale Knowledge Base
Mini-TACITUS (Mulkar et al., 2007) began as a simple backchaining theorem-prover intended to be a
more transparent version of the original TACITUS system, which was based on Stickel’s PTTP system
(Stickel, 1988). Originally, Mini-TACITUS was not designed for treating large amounts of data. A clear
and clean reasoning procedure rather than efficiency was in the focus of its developers. In order to make
the system work with the large-scale knowledge base, we had to perform several optimization steps and
add a couple of new features.

4In practice, we use the depth parameter d and do not allow an inference chain with more that d steps.
5Recall that only propositions with the same predicate can be merged, therefore John and Bill cannot be merged.
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For avoiding the reasoning complexity problem, we have introduced two parameters. The time pa-
rameter t is used to restrict the processing time. After the processing time exceeds t the reasoning
terminates and the best interpretation so far is output. The time parameter ensures that an interpretation
will be always returned by the procedure even if reasoning could not be completed in a reasonable time.
The depth parameter d restricts the depth of the inference chain. Suppose that a proposition p occurring
in the input has been backchained and a proposition p′ has been introduced as a result. Then, p′ will be
backchained and so on. The number of such iterations cannot exceed d. The depth parameter reduces
the number of reasoning steps.

Since Mini-TACITUS processing time increases exponentially with the input size (sentence length
and number of axioms), making such a large set of axioms work was an additional issue. For speeding
up reasoning it was necessary to reduce both the number of the input propositions and the number of
axioms. In order to reduce the number of axioms, a two-step reduction of the axiom set is performed.
First, only the axioms which could be evoked by the input propositions or as a result of backchaining
from the input are selected for each reasoning task. Second, the axioms which could never lead to any
merging are filtered out. Concerning the input propositions, those which could never be merged with the
others (even after backchaining) are excluded from the reasoning process.

3 Knowledge Base

As described in the previous section, the Mini-TACITUS inferences are based on a knowledge base (KB)
consisting of a set of axioms. In order to obtain a reliable KB with a sufficient coverage we have exploited
existing lexical-semantic resources.

First, we have extracted axioms from WordNet (Fellbaum, 1998), version 3.0, which has already
proved itself to be useful in knowledge-intensive NLP applications. The central entity in WordNet is
called a synset. Synsets correspond to word senses, so that every lexeme can participate in several
synsets. For every word sense, WordNet indicates the frequency of this particular word sense in the
WordNet annotated corpora. We have used the lexeme-synset mapping for generating axioms, with the
corresponding frequencies of word senses converted into the axiom weights. For example, in the axioms
below, the verb compose is mapped to its sense 2 in WordNet which participates in synset-X.

compose-2(e1,x1,x2):80 → compose(e1,x1,x2)
synset-X(e0,e1):100 → compose-2(e1,x1,x2)

Moreover, we have converted the following WordNet relations defined on synsets into axioms: hy-
pernymy, instantiation, entailment, similarity, meronymy. Hypernymy and instantiation relations pre-
suppose that the related synsets refer to the same entity (the first axiom below), whereas other types of
relations relate synsets referring to different entities (the second axiom below). All axioms based on
WordNet relations have the weights equal to 100.

synset-1(e0,e1):100 → synset-2(e0,e1)
synset-1(e0,e1):100 → synset-2(e2,e3)

WordNet also provides morphosemantic relations which relate verbs and nouns, e.g., buy-buyer.
WordNet distinguishes between 14 types of such relations.We use relation types in order to define the
direction of the entailment and map the arguments. For example, the “agent” relation (buy-buyer) stands
for a bi-directional entailment such that the noun is the first (agentive) argument of the verb:

buy-1(e0,x1,x2):100 → buyer-1(x1)
buyer-1(x1):100 → buy-1(e0,x1,x2)

Additionally, we have exploited the WordNet synset definitions. In WordNet the definitions are given
in natural language form. We have used the extended WordNet resource6 which provides logical forms
for the definition in WordNet version 2.0. We have adapted logical forms from extended WordNet to our

6http://xwn.hlt.utdallas.edu/
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representation format and converted them into axioms; for example the following axiom represents the
meaning of the synset containing such lexemes as horseback. These axioms have the total weight of 100.

on(e2,e1,x2):25 & back(e3,x2):25 & of (e4,x2,x1):25 & horse(e5,x1):25 → synset-X(e0,x0)

The second resource which we have used as a source of axioms is FrameNet, release 1.5, see Rup-
penhofer et al. (2006). FrameNet has a shorter history in NLP applications than WordNet, but lately more
and more researchers have been demonstrating its potential to improve the quality of question answering
(Shen and Lapata, 2007) and recognizing textual entailment (Burchardt et al., 2009). The lexical mean-
ing of predicates in FrameNet is represented in terms of frames which describe prototypical situations
spoken about in natural language. Every frame contains a set of roles corresponding to the participants of
the described situation. Predicates with similar semantics are assigned to the same frame; e.g. both give
and hand over refer to the GIVING frame. For most of the lexical elements FrameNet provides syntactic
patterns showing the surface realization of these lexical elements and their arguments. Syntactic patterns
also contain information about their frequency in the FrameNet annotated corpora. We have used the
patterns and the frequencies for deriving axioms such as for example the following.

GIVING(e1,x1,x2,x3):70 & DONOR(e1,x1):0 & RECIPIENT(e1,x2):0 & THEME(e1,x3):0 →
give(e1,x1,x3) & to(e2,e1,x2)

HIRING(e1,x1,x3):90 & EMPLOYER(e1,x1) & EMPLOYEE(e1,x3) →
give(e1,x1,x2,x3):10 & job(x2)

The first pattern above corresponds to the phrases like John gave a book to Mary and the second –
less frequent – to phrases like John gave Mary a job. It is interesting to note that application of such
axioms provides a solution to the problem of semantic role labeling as a by-product. As in the statis-
tical approaches, more frequent patterns will be favored. Moreover, patterns helping to detect implicit
redundancy will be brought forward.

FrameNet also introduces semantic relations defined on frames such as inheritance, causation or
precedence; for example the GIVING and GETTING frames are connected with the causation relation.
Roles of the connected frames are also linked, e.g. DONOR in GIVING is linked with SOURCE in GETTING.
Frame relations have no formal semantics in FrameNet. In order to generate corresponding axioms, we
have used the previous work on axiomatizing frame relations and extracting new relations from corpora
(Ovchinnikova et al., 2010). Weights of the axioms derived from frame relations depend on corpus-based
similarity of the lexical items assigned to the corresponding frames. An example of an axiomatized
relation is given below.7

GIVING(e0,x1,x2,x3):120 & DONOR(e0,x1):0 & RECIPIENT(e0,x2):0 & THEME(e0,x3):0 &
causes(e0,e1):0 → GETTING(e1,x2,x3,x1) & SOURCE(e1,x1) & RECIPIENT(e1,x2) & THEME(e1,x3)

Both WordNet and FrameNet are manually created resources which ensures a relatively high quality
of the resulting axioms as well as the possibility of exploiting the linguistic information provided for
structuring the axioms. Although manual creation of resources is a very time-consuming task, WordNet
and FrameNet, being long-term projects, have an extensive coverage of English vocabulary. The cover-
age of WordNet is currently larger than that of FrameNet (155 000 vs. 12 000 lexemes). However, the
fact that FrameNet introduces complex argument structures (roles) for frames and provides mappings of
these structures makes FrameNet especially valuable for reasoning.

The complete list of axioms we have extracted from these resources is given in table 1.

4 Recognizing Textual Entailment

As the reader can see from the previous sections, the discourse processing procedure we have presented
is fairly general and not tuned for any particular type of inferences. We have evaluated the procedure and

7The “causes” predicate is supposed to be linked to an underlying causation theory, see for example
http://www.isi.edu/∼hobbs/bgt-cause.text. However, in the described experimental settings we have left the abstract theories
out and evaluated only the axioms extracted from the lexical-semantic resources.
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Table 1: Statistics for extracted axioms

Axiom type Source Numb. of axioms
Lexeme-synset mappings WN 3.0 422,000
Lexeme-synset mappings WN 2.0 406,000
Synset relations WN 3.0 141,000
Derivational relations WN 3.0 (annotated) 35,000
Synset definitions WN 2.0 (parsed, annotated) 120,500
Lexeme-frame mappings FN 1.5 50,000
Frame relations FN 1.5 + corpora 6,000

the KB derived from WordNet and FrameNet on the Recognizing Textual Entailment (RTE) task, which
is a generic task that seems to capture major semantic inference needs across many natural language
processing applications. In this task, the system is given a text and a hypothesis and must decide whether
the hypothesis is entailed by the text plus commonsense knowledge.

Our approach is to interpret both the text and the hypothesis using Mini-TACITUS, and then see
whether adding information derived from the text to the knowledge base will reduce the cost of the best
abductive proof of the hypothesis as compared to using the original knowledge base only. If the cost
reduction exceeds a threshold determined from a training set, then we predict entailment.

A simple example would be the text John gave a book to Mary and the hypothesis Mary got a book.
Our pipeline constructs the following logical forms for these two sentences.

T: John(x1):20 & give(e1,x1,x2):20 & book(x3):20 & to(e2,e1,x3):20 & Mary(x3):20
H: Mary(x1):20 & get(e1,x1,x2):20 & book(x2):20

These logical forms constitute the Mini-TACITUS input. Mini-TACITUS applies the axioms from
the knowledge base to the input logical forms in order to reduce the overall cost of the interpretations.
Suppose that we have three FrameNet axioms in our knowledge base. The first one maps give to to the
GIVING frame, the second one maps get to GETTING and the third one relates GIVING and GETTING with
the causation relation. The first two axioms have the weights of 90 and the third 120. As a result of the
application of the axioms the following best interpretations will be constructed for T and H.

I(T): John(x1):20 & give(e1,x1,x2):0 & book(x3):20 & to(e2,e1,x3):0 & Mary(x3):20 &
GIVING(e0,x1,x2,x3):18

I(H): Mary(x1):20 & get(e1,x1,x2):0 & book(x2):20 & GETTING(e0,x1,x2):18

The total cost of the best interpretation for H is equal to 58. Now the best interpretation of T will
be added to H with the zero costs (as if T has been totally proven) and we will try to prove H once
again. First of all, merging of the propositions with the same names will result in reducing costs of the
propositions Mary and book to 0, because they occur in T:

I(T+H): John(x1):0 & give(e1,x1,x2):0 & book(x3):0 & to(e2,e1,x3):0 & Mary(x3):0 &
GIVING(e0,x1,x2,x3):0 & get(e1,x1,x2):0 & GETTING(e0,x1,x2):18

The only proposition left to be proved is GETTING. Using the GETTING-GIVING relation as described
in the previous section, this proposition can be backchained on to GIVING which will merge with GIVING

coming from the T sentence. H appears to be proven completely with respect to T; the total cost of its
best interpretation given T is equal to 0. Thus, using knowledge from T helped to reduce the cost of the
best interpretation of H from 58 to 0.

The approach presented does not have any special account for logical connectors such as if, not, or
etc. Given a text If A then B and a hypothesis A and B our procedure will most likely predict entailment.
At the moment our RTE procedure mainly accounts for the informational content of texts, being able to
detect the “aboutness” overlap of T and H. In our framework, a fuller treatment of the logical structure
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of the natural language would presuppose a more complicated strategy of merging redundancies.

5 Evaluation Results

We have evaluated our procedure on the RTE-2 dataset 8, see Bar-Haim et al. (2006) . The RTE-2
dataset contains the development and the test set, both including 800 text-hypothesis pairs. Each dataset
consists of four subsets, which correspond to typical success and failure settings in different applications:
information extraction (IE), information retrieval (IR), question answering (QA), and summarization
(SUM). In total, 200 pairs were collected for each application in each dataset.

As a baseline we have processed the datasets with an empty knowledge base. Then we have done 2
runs, first, using axioms extracted from WordNet 3.0 plus FrameNet, and, second, using axioms extracted
from the WordNet 2.0 definitions. In both runs the depth parameter was set to 3. The development
set was used to train the threshold as described in the previous section.9 Table 2 contains results of
our experiments.10 Accuracy was calculated as the percentage of pairs correctly judged. The results
suggest that the proposed method seems to be promising as compared to the other systems evaluated
on the same task. Our best run gives 63% accuracy. Two systems participating the RTE-2 Challenge
had 73% and 75% accuracy, two systems achieved 62% and 63%, while most of the systems achieved
55%-61%, cf. Bar-Haim et al. (2006). For our best run (WN 3.0 + FN), we present the accuracy data
for each application separately (table 2). The distribution of the performance of Mini-TACITUS on the
four datasets corresponds to the average performance of systems participating in RTE-2 as reported by
Garoufi (2007). The most challenging task in RTE-2 appeared to be IE. QA and IR follow, and finally,
SUM was titled the “easiest” task, with a performance significantly higher than that of any other task.11

It is worth noting that the performance of Mini-TACITUS increases with the increasing time of pro-
cessing. This is not surprising. We use the time parameter t for restricting the processing time. The
smaller t is, the fewer chances Mini-TACITUS has for applying all relevant axioms. The experiments
carried out suggest that optimizing the system computationally could lead to producing significantly bet-
ter results. Tracing the reasoning process, we found out that given a long sentence and a short processing
time Mini-TACITUS had time to construct only a few interpretations, and the real best interpretation was
not always among them.

The lower performance of the system using the KB based on axioms extracted from extended Word-
Net can be easily explained. At the moment we define non-merge constraints (see section 2) for the input
propositions only. The axioms extracted from the synset definitions introduce a lot of new lexemes into
the logical form, since these axioms define words with the help of other words rather than abstract con-
cepts. These new lexemes, especially those which are frequent in English, result in undesired mergings
(e.g., mergings of frequent prepositions), since no non-merge constraints are defined for them. In order
to fix this problem, we will need to implement dynamic non-merge constraints which will be added on
the fly if a new lexeme is introduced during reasoning. The WN 3.0 + FN axiom set does not fall into
this problem, because these axioms operate on frames and synsets rather than on lexemes.

In addition, for the run using axioms derived from FrameNet, we have evaluated how well we do
in assigning frames and frame roles. For Mini-TACITUS, semantic role labeling is a by-product of
constructing the best interpretation. But since this task is considered to be important as such in the NLP
community, we provide an additional evaluation for it. As a gold standard we have used the Frame-
Annotated Corpus for Textual Entailment, FATE, see Burchardt and Pennacchiotti (2008). This corpus
provides frame and semantic role label annotations for the RTE-2 challenge test set.12 It is important to

8http://pascallin.ecs.soton.ac.uk/Challenges/RTE2/
9Interpretation costs were normalized to the number of propositions in the input.

10“Time” stands for the value of the time parameter – processing time per sentence, in minutes; “Numb. of ax.” stands for
the average number of axioms per sentence.

11In order to get a better understanding of which parts of our KB are useful for computing entailment and for which types of
entailment, in future, we are planning to use the detailed annotation of the RTE-2 dataset describing the source of the entailment
which was produced by Garoufi (2007). We would like to thank one of our reviewers for giving us this idea.

12FATE was annotated with the FrameNet 1.3 labels, while we have been using 1.5 version for extracting axioms. However,
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Table 2: Evaluation results for the RTE-2 test set

KB Accuracy Time Numb. of ax.
T H

No KB 57% 1 0 0
WN 3.0 + FN 62% 20 533 237
WN 3.0 + FN 63% 30 533 237
Ext. WN 2.0 60% 20 3700 1720
Ext. WN 2.0 61% 30 3700 1720

Task Accuracy
SUM 75%

IR 64%
QA 62%
IE 50%

Table 3: Evaluation of frames/roles labeling towards FATE

System Frame match
Recall

Role match
Precision Recall

Shalmaneser 0.55 0.54 0.37
Shalmaneser + Detour 0.85 0.52 0.36
Mini-TACITUS 0.65 0.55 0.30

note that FATE annotates only those frames which are relevant for computing entailment. Since Mini-
TACITUS makes all possible frame assignments for a sentence, we provide only the recall measure for
the frame match and leave the precision out.

The FATE corpus was also used as a gold standard for evaluating the Shalmaneser system (Erk and
Pado, 2006) which is a state-of-the-art system for assigning FrameNet frames and roles. In table 2 we
replicate results for Shalmaneser alone and Shalmaneser boosted with the WordNet Detour to FrameNet
(Burchardt et al., 2005). The WN-FN Detour extended the frame labels assigned by Shalmaneser with
the labels related via the FrameNet hierarchy or by the WordNet inheritance relation, cf. Burchardt et al.
(2009). In frame matching, the number of frame labels in the gold standard annotation that can also be
found in the system annotation (recall) was counted. Role matching was evaluated only on the frames
that are correctly annotated by the system. The number of role labels in the gold standard annotation
that can also be found in the system annotation (recall) as well as the number of role labels found by
the system which also occur in the gold standard (precision) were counted.13 Table 3 shows that given
FrameNet axioms, the performance of Mini-TACITUS on semantic role labeling is compatible with those
of the system specially designed to solve this task.

6 Conclusion and Future Work

This paper presents a discourse processing framework underlying the abductive reasoner called Mini-
TACITUS. We have shown that interpreting texts using weighted abduction helps solve pragmatic prob-
lems in discourse processing as a by-product. In this paper, particular attention was paid to the construc-
tion of a large and reliable knowledge base populated with axioms extracted from such lexical-semantic
resources as WordNet and FrameNet. The reasoning procedure as well as the knowledge base were eval-
uated in the Recognizing Textual Entailment task. The data for evaluation were taken from the RTE-2
Challenge. First, we have evaluated the accuracy of the entailment prediction. Second, we have eval-

in the new FN version the number of frames and roles increases and there is no message about removed frames in the General
Release Notes R1.5, see http://framenet.icsi.berkeley.edu. Therefore we suppose that most of the frames and roles used for the
FATE annotation are still present in FN 1.5.

13We do not compare filler matching, because the FATE syntactic annotation follows different standards as the one produced
by the ESG parser, which makes aligning fillers non-trivial.
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uated frame and role labeling using the Frame-Annotated Corpora for Textual Entailment as the gold
standard. In both tasks our system showed performance compatible with those of the state-of-the art
systems. Since the inference procedure and the axiom set are general and not tuned for a particular task,
we consider the results of our experiments to be promising concerning possible manifold applications of
Mini-TACITUS.

The experiments we have carried out have shown that there is still a lot of space for improving the
procedure. First, for successful application of Mini-TACITUS on a large scale the system needs to be
computationally optimized. In its current state, Mini-TACITUS requires too much time for producing
satisfactory results. As our experiments suggest (cf. table 2), speeding up reasoning may lead to signif-
icant improvements in the system performance. Since Mini-TACITUS was not originally designed for
large-scale processing, its implementation is in many aspects not effective enough. We hope to improve
it by changing the data structure and re-implementing some of the main algorithms.

Second, in the future we plan to elaborate our treatment of natural language expressions standing for
logical connectors such as implication if, negation not, disjunction or and others. Quantifiers such as
all, each, some also require a special treatment. This advance is needed in order to achieve more precise
entailment inferences, which are at the moment based in our approach on the core information content
(“aboutness”) of texts. Concerning the heuristic non-merge constraints preventing undesired mergings
as well as the heuristic for assigning default costs (see section 2), in the future we would like to perform
a corpus study for evaluating and possibly changing these heuristics.

Another future direction concerns the enlargement of the knowledge base. Hand-crafted lexical-
semantic resources such as WordNet and FrameNet provide both an extensive lexical coverage and a
high-value semantic labeling. However, such resources still lack certain features essential for captur-
ing some of the knowledge required for linguistic inferences. First of all, manually created resources
are static; updating them with new information is a slow and time-consuming process. By contrast,
commonsense knowledge and the lexicon undergo daily updates. In order to accommodate dynamic
knowledge, we plan to make use of the distributional similarities of words in a large Web-corpus such
as for example Wikipedia. Many researchers working on RTE have already been using word similarity
for computing similarity between texts and hypotheses, e.g., Mehdad et al. (2010). In our approach, we
plan to incorporate word similarities into the reasoning procedure making them affect proposition costs
so that propositions implied by the context (similar to other words in the context) will become cheaper
to prove. This extension might give us a performance improvement in RTE, because it will help to relate
those propositions from H for which there are no appropriate axioms in the KB to propositions in T.

Lexical-semantic resources as knowledge sources for reasoning have another shortcoming: They
imply too little structure. WordNet and FrameNet enable some argument mappings of related synsets or
frames, but they cannot provide a more detailed concept axiomatization. We are engaged in two types of
efforts to obtain more structured knowledge. The first effort is the manual encoding of abstract theories
explicating concepts that pervade natural language discourse, such as causality, change of state, and
scales, and the manual encoding of axioms linking lexical items to these theories. A selection of the core
theories can be found at http://www.isi.edu/ hobbs/csk.html. The second effort concerns making use of
the existing ontologies. The recent progress of the Semantic Web technologies has stimulated extensive
development of the domain-specific ontologies as well as development of inference machines specially
designed to reason with these ontologies.14 In practice, domain-specific ontologies usually represent
detailed and structured knowledge about particular domains (e.g. geography, medicine etc.). We intend
to make Mini-TACITUS able to use this knowledge through querying an externally stored ontology with
the help of an existing reasoner. This extension will give us a possibility to access elaborated domain-
specific knowledge which might be crucial for interpretation of domain-specific texts.

We believe that implementation of the mentioned improvements and extensions will make Mini-
TACITUS a powerful reasoning system equipped with enough knowledge to solve manifold NLP tasks on
a large scale. In our view, the experiments with the axioms extracted from the lexical-semantic resources
presented in this paper show the potential of weighted abduction for natural language reasoning and open

14www.w3.org/2001/sw/,http://www.cs.man.ac.uk/ sattler/reasoners.html
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new ways for its application.
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Abstract

This paper presents a machine learning-based approach to the incremental understanding of dia-
logue utterances, with a focus on the recognition of their communicative functions. A token-based
approach combining the use of local classifiers, which exploit local utterance features, and global
classifiers which use the outputs of local classifiers applied to previous and subsequent tokens, is
shown to result in excellent dialogue act recognition scores for unsegmented spoken dialogue. This
can be seen as a significant step forward towards the development of fully incremental, on-line meth-
ods for computing the meaning of utterances in spoken dialogue.

1 Introduction

When reading a sentence in a text, a human language understander obviously does not wait trying to
understand what he is reading until he has come to the end of the sentence. Similarly for participants
in a spoken conversation. There is overwhelming psycholinguistic evidence that human understanders
construct syntactic, semantic, and pragmatic hypotheses on the fly, while receiving the written or spoken
input. Dialogue phenomena such as backchannelling (providing feedback while someone else is speak-
ing), the completion of a partner utterance, and requests for clarification that overlap the utterance of the
main speaker, illustrate this. Evidence from the analysis of nonverbal behaviour in multimodal dialogue
lends further support to the claim that human understanding works incrementally, as input is being re-
ceived. Dialogue participants start to perform certain body movements and facial expressions that are
perceived and interpreted by others as dialogue acts (such as head nods, smiles, frowns) while another
participant is speaking, see e.g. Petukhova and Bunt (2009). As another kind of evidence, eye-tracking
experiments by Tanenhaus et al. (1995), Sedivy et al. (1999) and Sedivy (2003) showed that definite
descriptions are resolved incrementally when the referent is visually accessible.

Traditional models of language understanding for dialogue systems, by contrast, are pipelined, mod-
ular, and operate on complete utterances. Typically, such a system has an automatic speech recognition
module, a language understanding module responsible for syntactic and semantic analysis, an interpre-
tation manager, a dialogue manager, a natural language generation module, and a module for speech
synthesis. The output of each module is the input for another. The language understanding module typ-
ically performs the following tasks: (1) segmentation: identification of relevant segments in the input,
such as sentences;(2) lexical analysis: lexical lookup, possibly supported by morphological processing,
and by additional resources such as WordNet, VerbNet, or lexical ontologies; (3) parsing: construction
of syntactic interpretations; (4) semantic analysis: computation of propositional, referential, or action-
related content; and (5) pragmatic analysis: determination of speaker intentions.

Of these tasks, lexical analysis, being concerned with local information at word level, can be done
for each word as soon as it has been recognized, and is naturally performed as an incremental part
of utterance processing, but syntactic, semantic and pragmatic analysis are traditionally performed on
complete utterances. Tomita’s pioneering work in left-to-right syntactic parsing has shown that incre-
mental parsing can be much more efficient and of equal quality as the parsing of complete utterances
(Tomita (1986)). Computational approaches to incremental semantic and pragmatic interpretation have
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been less successful (see e.g. Haddock (1989); Milward and Cooper (2009)), but work in computational
semantics on the design of underspecified representation formalisms has shown that such formalisms,
developed originally for the underspecified representation of quantifier scopes, can also be applied in
situations where incomplete input information is available (see e.g. Bos (2002); Bunt (2007), Hobbs
(1985), Pinkal (1999)) and as such hold a promise for incremental semantic interpretation.

Pragmatic interpretation, in particular the recognition of a speaker’s intentions in incoming dialogue
utterances, is another major aspect of language understanding for dialogue systems. Computational
modelling of dialogue behaviour in terms of dialogue acts aims to capture speaker intentions in the com-
municative functions of dialogue acts, and offers an effective integration with semantic content analysis
through the information state update approach (Poesio and Traum (1998)). In this approach, a dialogue
act is viewed as having as its main components a communicative function and a semantic content, where
the semantic content is the referential, propositional, or action-related information that the dialogue act
addresses, and the communicative function defines how an understander’s information state is to be up-
dated with that information.

Evaluation of a non-incremental dialogue system and its incremental counterpart reported in Aist
et al. (2007) showed that the latter is faster overall than the former due to the incorporation of pragmatic
information in early stages of the understanding process. Since users formulate utterances incrementally,
partial utterances may be available for a substantial amount of time and may be interpreted by the system.
An incremental interpretation strategy may allow the system to respond more quickly, by minimizing the
delay between the time the user finishes and the time the utterance is interpreted DeVault and Stone
(2003).

This suggests that a dialogue system performance may benefit from reliable partial processing of
input. This paper is concerned with the automatic recognition of dialogue acts based on partially available
input and shows that in order to arrive at the best output prediction two different classification strategies
are needed: (1) local classification that is based on features observed in dialogue behaviour and that can
be extracted from the annotated data; and (2) global classification that takes the locally predicted context
into account.

This paper is structured as follows. In Section 2 we will outline performed experiments describing
the data, tagset, features, algorithms and evaluation metrics that have been used. Section 3 reports on the
experimental results, applying a variety of machine learning techniques and feature selection algorithms,
to assess the automatic recognition and classification of dialogue acts using simultaneous incremental
segmentation and dialogue act classification. In Section 4 we discuss strategies in management and
correction of the output of local classifies. Section 5 concludes.

2 Incremental understanding experiments

2.1 Related work

Nakano et al. (Nakano et al. (1999)) proposed a method for the incremental understanding of utterances
whose boundaries are not known. The Incremental Sentence Sequence Search (ISSS) algorithm finds
plausible boundaries of utterances, called significant utterances (SUs), which can be a full sentence or a
subsentential phrase, such as a noun phrase or a verb phrase. Any phrase that can change the belief state
is defined as a SU. In this sense an SU corresponds more or less with what we call a ‘functional segment’,
which is defined as a minimal stretch of behaviour that has a communicative function (see Bunt et al.
(2010)). ISSS maintains multiple possible belief states, and updates these each time a word hypothesis
is input. The ISSS approach does not deal with the multifunctionality of segments, however, and does
not allow segments to overlap.

Lendvai and Geertzen (Lendvai and Geertzen (2007)) proposed token-based dialogue act segmenta-
tion and classification, which was worked out in more detail in Geertzen (2009). This approach takes
dialogue data that is not segmented into syntactic or semantic units, but operates on the transcribed speech
as a stream of words and other vocal signs (e.g. laughs), including disfluent elements (e.g. abandoned
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Dimension Frequency General-purpose function Frequency
Task 31.8 PropositionalQuestion 5.8
Auto-Feedback 20.5 Set Question 2.3
Allo-Feedback 0.7 Check Question 3.3
Turn Management 50.2 Propositional Answer 9.8
Social Obligation Management 0.5 Set Answer 3.9
Discourse Structuring 2.8 Inform 11.7
Own Communication Management 10.3 InformRhetorical 21.9
Time Management 26.7 Instruct 0.3
Partner Communication Management 0.3 Suggest 10.1
Contact Management 0.1 Request 5.6

Table 1: Distribution of functional tags across dimensions and general-purpose functions for the AMI corpus (in
%).

or interrupted words). Segmentation and classification of dialogue acts are performed simultaneously in
one step. Geertzen (2009) reports on classifier performance on this task for the DIAMOND data1 using
DIT++ labels. The success scores in terms of F-scores range from 47.7 to 81.7. It was shown that per-
forming segmentation and classification together results in better segmentation, but affects the dialogue
act classification negatively.

The incremental dialogue act recognition system proposed here takes the token-based approach for
building classifiers for the recognition (segmentation and classification) of multiple dialogue acts for each
input token, and adopts the ISSS idea for information-state updates based on partial input interpretation.

2.2 Tagset

The data selected for the experiments was annotated with the DIT++ tagset Release 42. The DIT tax-
onomy distinguishes 10 dimensions, addressing information about: the domain or task (Task), feedback
on communicative behaviour of the speaker (Auto-feedback) or other interlocutors (Allo-feedback), man-
aging difficulties in the speaker’s contributions (Own-Communication Management) or those of other
interlocutors (Partner Communication Management), the speaker’s need for time to continue the di-
alogue (Time Management), establishing and maintaining contact (Contact Management), about who
should have the next turn (Turn Management), the way the speaker is planning to structure the dialogue,
introducing, changing or closing a topic (Dialogue Structuring), and conditions that trigger dialogue acts
by social convention (Social Obligations Management), see Table 1.

For each dimension, at most one communicative function can be assigned, which is either a function
that can occur in this dimension alone (a dimension-specific (DS) function) or a function that can occur in
any dimension (a general-purpose (GP) function). Dialogue acts with a DS communicative function are
always concerned with a particular type of information, such as a Turn Grabbing act, which is concerned
with the allocation of the speaker role, or a Stalling act, which is concerned with the timing of utterance
production. GP functions, by contrast, are not specifically related to any dimension in particular, e.g.
one can ask a question about any type of semantic content, provide an answer about any type of content,
or request the performance of any type of action (such as Could you please close the door or Could you
please repeat that). These communicative functions include Question, Answer, Request, Offer, Inform,
and many other familiar core speech acts.

The tagset used in these studies contains 38 dimension-specific functions and 44 general-purpose
functions. A tag consists either of a pair consisting of a communicative function (CF ) and the addressed
dimension (D).

1For more information see Geertzen,J., Girard,Y., and Morante,R. 2004. The DIAMOND project. Poster at the 8th Work-
shop on the Semantics and Pragmatics of Dialogue (CATALOG 2004).

2For more information about the tagset and the dimensions that are identified, please visit:http://dit.uvt.nl/ or see
Bunt (2009).
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Speaker Token Task Auto-F. Allo-F. TurnM. TimeM. ContactM. DS OCM PCM SOM

B it B;inf O O O O O O O O O
B has I:inf O O O O O O O O O
B to I:inf O O O O O O O O O
B look I:inf O O O O O O O O O
B you O O B:check O O O O O O O
B know O O E:check O O O O O O O
B cool I:inf O O O O O O O O O
D mmhmm O BE:positive O O O O O O O O
B and I:inf O O BE:t keep O O O O O O
B gimmicky E:inf O O O O O O O O O

Figure 1: Segment boundaries and dialogue act label encoding in different dimensions.

2.3 Features and data encoding

In the recognition experiments we used data from the AMI meeting corpus3. For training we used three
annotated AMI meetings that contain 17,335 tokens forming 3,897 functional segments. The distribution
of functional tags across dimensions is given in Table 1.

Features extracted from the data considered here relate to dialogue history: functional tags of the
10 previous turns; timing: token duration and floor-transfer offset4 computed in milliseconds; prosody:
minimum, maximum, mean, and standard deviation for pitch (F0 in Hz), energy (RMS), voicing (fraction
of locally unvoiced frames and number of voice breaks) and speaking rate (number of syllables per
second)5; and lexical information: token occurrence, bi- and trigram of those tokens. In total, 1,668
features are used for the AMI data.

To be able to identify segment boundaries, we assign to each token its communicative function label
and indicate whether a token starts a segment (B), is inside a segment (I), ends a segment (E), is out-
side a segment (O), or forms a functional segment on its own (BE). Thus, the class labels consist of a
segmentation prefix (IBOE) and a communicative function label, see example in Figure 1.

2.4 Classifiers and evaluation metrics

A wide variety of machine-learning techniques has been used for NLP tasks with various instantiations of
feature sets and target class encodings. For dialogue processing, it is still an open issue which techniques
are the most suitable for which task. We used two different types of classifiers to test their performance
on our dialogue data: a probabilistic one and a rule inducer.

As a probabilistic classifier we used Bayes Nets. This classifier estimates probabilities rather than
produce predictions, which is often more useful because this allows us to rank predictions. Bayes Nets
estimate the conditional probability distribution on the values of the class attributes given the values of
the other attributes.

As a rule induction algorithm we chose Ripper (Cohen (1995)). The advantage of a rule inducer is
that the regularities discovered in the data are represented as human-readable rules.

The results of all experiments were obtained using 10-fold cross-validation.7 As a baseline it is
common practice to use the majority class tag, but for our data sets such a baseline is not very useful
because of the relatively low frequencies of the tags in some dimensions. Instead, we use a baseline

3The A
¯

ugmented M
¯

ulti-party I
¯
nteraction meeting corpus consists of multimodal task-oriented human-human multi-party

dialogues in English, for more information visit (http://www.amiproject.org/
4Difference between the time that a turn starts and the moment the previous turn ends.
5These features were computed using the PRAAT tool6. We examined both raw and normalized versions of these features.

Speaker-normalized features were obtained by computing z-scores (z = (X-mean)/standard deviation) for the feature, where
mean and standard deviation were calculated from all functional segments produced by the same speaker in the dialogues. We
also used normalizations by first speaker turn and by previous speaker turn.

7In order to reduce the effect of imbalances in the data, it is partitioned ten times. Each time a different 10% of the data is
used as test set and the remaining 90% as training set. The procedure is repeated ten times so that in the end, every instance has
been used exactly once for testing and the scores are averaged. The cross-validation was stratified, i.e. the 10 folds contained
approximately the same proportions of instances with relevant tags as in the entire dataset.
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that is based on a single feature, namely, the tag of the previous dialogue utterance (see Lendvai et al.
(2003))).

Several metrics have been proposed for the evaluation of a classifier’s performance: error metrics
and performance metrics. The word-based error rate metric, introduced in Ang et al. (2005), measures
the percentage of words that were placed in a segment perfectly identical to that in the reference. The
dialogue act based metric (DER) was proposed in Zimmermann et al. (2005). In this metric a word is
considered to be correctly classified if and only if it has been assigned the correct dialogue act type and
it lies in exactly the same segment as the corresponding word of the reference. We will use the combined
DERsc error metric to evaluate joint segmentation (s) and classification (c):

DERsc =
Tokens with wrong boundaries and/or function class

total number of tokens
× 100

To assess the quality of classification results, the standard F-score metric is used, which represents
the balance between precision and recall.

3 Classification results

Dialogue utterances are often multifunctional, having a function in more than one dimension (see e.g.
Bunt (2010)). This makes dialogue act recognition a complex task. Splitting up the output structure may
make the task more manageable; for instance, a popular strategy is to split a multi-class learning task
into several binary learning tasks. Sometimes, however, learning of multiple classes allows a learning
algorithm to exploit the interactions among classes. We will combine these two strategies. We have built
in total 64 classifiers for dialogue act recognition for the AMI data. Some of the tasks were defined as
binary ones, e.g. the dimension recognition task, others are multi-class learning tasks.

We first trained classifiers to recognize the boundaries of a segment and its communicative functions
(joint multi-class learning task) per dimension, see Table 2.

BL BayesNet Ripper
Dimensions F1 DERsc F1 DERsc F1 DERsc

Task 32.7 51.2 52.1 48.7 66.7 42.6
Auto-Feedback 43.2 84.4 62.7 33.9 60.1 45.6
Allo-Feedback 70.2 59.5 73.7 35.1 71.3 49.1
Turn Management:initial 34.2 95.2 57.0 58.4 54.3 81.3
Turn Management:close 33.3 92.7 54.2 46.9 49.3 87.3
Time Management 43.7 96.5 64.5 46.1 61.4 53.1
Discourse Structuring 41.2 35.1 72.7 19.9 50.2 30.9
Contact Management 59.9 53.2 71.4 49.9 83.3 37.2
Own Communication Management 36.5 87.9 68.3 51.3 58.3 76.8
Partner Communication Management 49.5 59.0 58.5 45.5 51.4 58.7
Social Obligation Management 34.5 47.5 86.5 35.9 83.3 44.3

Table 2: Overview of F-scores and DERsc for the baseline (BL) and the classifiers for joint segmentation and
classification for each DIT++ dimension, for the data of the AMI corpus.

The results show that both classifiers outperform the baseline by a broad margin. The Bayes Nets
classifier marginally outperforms the Ripper rule inducer, but shows no significant differences in overall
performance. Though the results obtained are quite encouraging, the performance on the joint segmen-
tation and classification task does not outperforms the two-step segmentation and classification task re-
ported in Geertzen et al. (2007). There is a drop in F-scores compared to the results reported by Geertzen
et al. (2007), which is explained by the fact that recall was quite low. This means that the classifiers
missed a lot of relevant cases. Looking more closely at the predictions made by the classifiers, we no-
ticed that beginnings and endings of many segments were not found. For example, the beginnings of Set
Questions are identified with perfect precision (100%), but about 60% of the segment beginnings were
not found. The reason that the classifiers still show a reasonable performance is that most tokens occur
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inside segments and are better classified, e.g. the inside-tokens of Set Questions are classified with high
precision (83%) and reasonably high recall scores (76%). Still, this is rather worrying, since the correct
identification of, in particular, the start of a relevant segment is crucial for future decisions. These obser-
vations led us to the conclusion that the search space and the number of initially generated hypotheses
for classifiers should be reduced, and we split the classification task in such a way that a classifier needs
to learn one particular type of communicative function.

We trained a classifier for each general-purpose and dimension-specific function defined in the
DIT++ taxonomy, and observed that this has the effect that the various classifiers perform significantly
better. These functions were learned (1) in isolation; (2) as semantically related functions together, e.g.
all information-seeking functions (all types of questions) or all information-providing functions (all an-
swers and all informs). Both the recognition of communicative functions and that of segment boundaries
improves significantly. Table 3 gives an overview of the overall performance (best obtained scores) of
the trained classifiers after splitting the learning task.

BL BayesNet Ripper
Classification task F1 DERsc F1 DERsc F1 DERsc

General-purpose functions
Propositional Questions 47.0 39.1 94.9 3.9 75.8 23.5
Check Questions 43.8 56.4 68.5 19.6 61.3 33.1
Set Questions 44.8 52.1 74.1 18.6 76.3 17.7
Inform 45.8 39.9 79.8 18.7 66.5 30.5
Inform Rhetorical 37.2 38.9 69.1 13.4 68.7 23.9
Agreement 41.3 79.1 72.1 12.6 71.6 60.2
Propositional Answer 32.0 77.8 66.8 26.1 52.2 53.8
Set Answer 44.3 54.2 77.5 13.2 57.3 44.1
Suggest 45.8 38.4 65.6 17.3 48.8 35.6
Request 45.8 49.3 75.8 14.5 50.3 36.9
Instruct 46.3 49.3 60.5 14.5 46.3 36.9
Dimension-specific functions
Auto-Feedback 57.1 23.5 78.8 13.2 66.7 15.5
Allo-Feedback 89.3 4.4 95.1 2.9 94.3 3.9
Turn Management:initial 24.8 21.9 72.8 7.4 46.3 10.7
Turn Management:close 30.7 64.9 62.0 22.5 54.7 39.6
Time management 68.3 32.3 82.4 13.7 92.8 11.4
Discourse Structuring 40.7 13.6 72.6 2.5 74.5 1.7
Contact Management 21.4 48.6 89.2 5.7 92.3 3.6
Own Communication Management 26.7 48.6 78.0 11.6 68.1 20.0
Partner Communication Management 33.4 18.2 77.8 8.5 88.9 6.5
Social Obligation Management 60.0 18.7 88.9 8.3 90.1 5.5

Table 3: Overview of F-scores and DERsc for the baseline (BL) and the classifiers upon joint segmentation
and classification task for each DIT++ communicative function or cluster of functions. (Best scores indicated by
numbers in bold face.)

Segments having a general-purpose functions may address any of the ten DIT dimensions. The task
of dimension recognition can be approached in two ways. One approach is to learn segment boundaries,
communicative function label and dimension in one step (e.g. the class label B:task;inform). This task is
very complicated, however. First, it leads to data which are high dimensional and sparse, which will have
a negative influence on the performance of the trained classifiers. Second, in many cases the dimension
can be recognized reliably only with some delay; for the first few segment tokens it is often impossible
to say what the segment is about. For example:

(1) 1. What do you think who we’re aiming this at?
2. What do you think we are doing next?
3. What do you think Craig?

The three Set Questions in (1) start with exactly the same words, but they address different dimensions:
Question 1 is about the Task (in AMI - the design the television remote control); Question 2 serves the
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purpose of Discourse Structuring; and Question 3 elicits feedback.
Another approach is to first recognize segment boundaries and communicative function, and define

dimension recognition as a separate classification task.

Tokens SetQuestion Task Auto-F. TurnM. Complex label (BIOE:D;CF)
label p label p label p label p label p

what B:setQ 0.85 O 0.71 O 1 O 0.68 O 0.933
you I:setQ 1 task 0.985 O 1 B:give 0.64 O 0.869
guys I:setQ 1 task 0.998 O 1 E:give 0.66 O 0.937
have I:setQ 1 task 0.997 O 1 O 1 I:task;setQ 0.989
already I:setQ 1 task 0.996 O 1 O 0.99 I:task;setQ 0.903
received I:setQ 1 task 0.987 O 1 O 1 I:task;setQ 0.813
um O 0.93 O 0.89 O 1 BE:keep 0.99 O 0.982
in I:setQ 1 task 0.826 O 1 O 0.89 I:task;setQ 0.875
your I:setQ 1 task 0.996 O 1 O 0.99 I:task;setQ 0.948
mails E:setQ 0.99 task 0.987 O 1 O 1 E:task;setQ 0.948

Figure 2: Predictions with indication of confidence scores (highest p class probability selected) for each token
assigned by five trained classifiers simultaneously.

We tested both strategies. The F-scores for the joint learning of complex class labels range from
23.0 (DERsc = 68.3) to 45.3 (DERsc = 63.8). For dimension recognition as a separate learning task
the F-scores are significantly higher, ranging from 70.6 to 97.7. The scores for joint segmentation and
function recognition in the latter case are those listed in Table 3. Figure 2 gives an example of predictions
made by five classifiers for the input what you guys have already received um in your mails.

4 Managing local classifiers

4.1 Global classification and global search

As shown in the previous section, given a certain input we obtain all possible output predictions (hypothe-
ses) from local classifiers. Some predictions are false, but once a local classifier has made a decision it
is never revisited. It is therefore important to base the decision on dialogue act labels not only on local
features of the input, but to take other parts of the output into account as well. For example, the partial
output predicted so far, i.e. the history of previous predictions, may be taken as features for the next
classification step, and helps to discover and correct errors. This is known as ‘recurrent sliding window
strategy’ (see Dietterich (2002)) when the true values of previous predictions are used as features. This
approach suffers from the label bias problem, however, when a classifier overestimates the importance
of certain features, and moreover does not apply in a realistic situation, since the true values of previous
predictions are not available to a classifier in real time. A solution proposed by Van den Bosch (1997) is
to apply adaptive training using the predicted output of previous steps as features.

We trained higher-level classifiers (often referred to as ‘global’) that have, along with features ex-
tracted locally from the input data as described above, the partial output predicted so far from all local
classifiers. We used five previously predicted class labels, assuming that long distance dependencies
may be important, and taking into account that the average length of a functional segment in our data
is 4.4 tokens. Table 4 gives an overview of the results of applying these global classifiers. We see that
the global classifiers make more accurate predictions than the local classifiers, showing an improvement
of about 10% on average. The classifiers still make some incorrect predictions, because the decision
is sometimes based on incorrect previous predictions. An optimized global search strategy may lead to
further improvements of these results.

A strategy to optimize the use of output hypotheses, is to perform a global search in the output space
looking for best predictions. Our classifiers do not just predict the most likely class for an instance,
but also generate a distribution of output classes. Class distributions can be seen as confidence scores
of all predictions that led to a certain state. Our confidence models are constructed based on token
level information given the dialogue left-context (i.e. dialogue history, wording of the previous and
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Classification task BayesNet Ripper
F1 DERsc F1 DERsc

Task 65.3 14.9 79.1 21.8
Auto-Feedback 72.9 8.1 77.8 7.2
Allo-Feedback 67.7 10.9 74.2 9.5
Turn Management:initial 72.2 11.5 69.5 11.4
Turn Management:close 82.7 5.0 83.0 4.9
Time Management 70.0 3.0 73.5 2.1
Discourse Structuring 72.3 4.9 63.7 3.6
Contact Management 79.1 4.5 84.3 4.6
Own Communication Management 66.0 2.4 68.3 2.3
Partner Communication Management 63.2 7.8 59.5 11.4
Social Obligation Management 88.4 0.9 81.6 1.7

Table 4: Overview of F-scores and DERsc of the global classifiers for the AMI data based on added previous
predictions of local classifiers.

currently produced functional segment). This is particular useful for dialogue act recognition because
the recognition of intentions should be based on the system’s understanding of discourse and not just on
the interpretation of an isolated utterance. Searching the (partial) output space for the best predictions
is not always the best strategy, however, since the highest-ranking predictions are not always correct
in a given context. A possible solution to this is to postpone the prediction until some (or all) future
predictions have been made for the rest of the segment. For training, the classifier then uses not only
previous predictions as additional features, but also some or all future predictions of local classifiers (till
the end of the current segment or to the beginning of the next segment, depending on what is recognized).
This forces the classifier to not immediately select the highest-ranking predictions, but to also consider
lower-ranking predictions that could be better in the context of the rest of the sequence.

Classification task BayesNet Ripper
F1 DERsc F1 DERsc

Task 82.6 9.5 86.1 8.3
Auto-Feedback 81.9 1.9 95.1 0.6
Allo-Feedback 96.3 0.6 95.7 0.5
Turn Management:initial 85.7 1.5 81.5 1.6
Turn Management:close 90.9 3.8 91.2 3.6
Time management 90.4 2.4 93.4 1.7
Discourse Structuring 82.1 1.7 78.3 1.8
Contact Management 87.9 1.2 94.3 0.6
Own Communication Management 78.4 2.2 81.6 2.0
Partner Communication Management 71.8 2.4 70.0 4.6
Social Obligation Management 98.6 0.4 98.6 0.5

Table 5: Overview of F-scores and DERsc of global classifiers for the AMI data per DIT++ dimension.

The results show the importance of optimal global classification for finding the best output prediction.
We performed similar experiments on the English MapTask data8 and obtained comparable results,

where F-scores on the global classification task range from 66.7 for Partner Communication Management
and Discourse Structuring to 79.7 for Task and 91.2 for Allo-Feedback. For the MapTask corpus the
performance of human annotators on segmentation and classification has been assessed; standard kappa
scores reported in Bunt et al. (2007) range between 0.92 and 1.00, indicating near perfect agreement
between two expert annotators9.

8For more information about the MapTask corpus see http://www.hcrc.ed.ac.uk/maptask/
9Note, however, that a slightly simplified version of the DIT++ tagset has been used here, called the LIRICS tagset, in

which the five DIT levels of processing in the Auto- and Allo-Feedback dimensions were collapsed into one.
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5 Conclusions and future research

The incremental construction of input interpretation hypotheses is useful in a language understanding
system, since it has the effect that the understanding of a relevant input segment is already nearly ready
when the last token of the segment is received; when a dialogue act is viewed semantically as a recipe for
updating an information state, this means that the specification of the update operation is almost ready at
that moment, thus allowing an instantaneous response from the system. It may even happen that the con-
fidence score of a partially processed input segment is that high, that the system may decide to go forward
and update its information state without waiting until the end of the segment, and prepare or produce a
response based on that update. Of course, full incremental understanding of dialogue utterances includes
not only the recognition of communicative functions, but also that of semantic content. However, many
dialogue acts have no or only marginal semantic content, such as turn-taking acts, backchannels (m-hm)
and other feedback acts (okay), time management acts (Just a moment), apologies and thankings and
other social obligation management acts, and in general dialogue acts with a dimension-specific func-
tion; for these acts the proposed strategy can work well without semantic content analysis, and will
increase the system’s interactivity significantly. Moreover, given that the average length of a functional
segment in our data is no more than 4.4 tokens, the semantic content of such a segment tends not to be
very complex, and its construction therefore does not seem to require very sophisticated computational
semantic methods, applied either in an incremental fashion (see e.g. Aist et al. (2007) and DeVault and
Stone (2003)) or to a complete segment.

Interactivity is however not the sole motivation for incremental interpretation. The integration of
pragmatic information obtained from the dialogue act recognition module, as proposed here, at early
processing stage can be beneficially used by the incremental semantic parser (but also syntactic parser
module). For instance, information about the communicative function of the incoming segment at early
processing stage can defuse a number of ambiguous interpretations, e.g. used for the resolution of
many anaphoric expressions. A challenge for future work is to integrate the incremental recognition of
communicative functions with incremental syntactic and semantic parsing, and to exploit the interaction
of syntactic, semantic and pragmatic hypotheses in order to understand incoming dialogue segments
incrementally in an optimally efficient manner.
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Abstract

We use data from a virtual world game for automated learning of words and grammatical con-
structions and their meanings. The language data are an integral part of the social interaction in the
game and consist of chat dialogue, which is only constrained by the cultural context, as set by the
nature of the provided virtual environment. Building on previous work, where we extracted a vocab-
ulary for concrete objects in the game by making use of the non-linguistic context, we now target
NP/DP grammar, in particular determiners. We assume that we have captured the meanings of a set
of determiners if we can predict which determiner will be used in a particular context. To this end we
train a classifier that predicts the choice of a determiner on the basis of features from the linguistic
and non-linguistic context.

1 Introduction

Determiners are among those words whose meanings are hardest to define in a dictionary. In NLP,
determiners are often considered ‘stop words’ that are not relevant for understanding the content of a
document and should be removed before any interesting processing is done. On the other hand, it has
been shown that children are sensitive to determiner choice already at a very early age, using these
function words in figuring out what content nouns are intended to refer to. Meanings of determiners have
been argued to include important pragmatic and discourse-related functions.

We have a corpus of dialogue that is grounded in a virtual environment. This means that in our data
there is a relation between what people are saying and what they are doing, providing cues as to what
they mean by the words and constructions they use. We have chosen to use a virtual world environment
to collect data in, rather than a real world environment, because relatively rich virtual worlds are by now
available that are able to provide an interesting level of grounding, whereas making sense of real world
scenes using computer vision is still very challenging. In addition, this choice allows us to conveniently
collect data online1.

Although there exists a rich body of computational linguistics research on learning from corpus data,
these corpora usually consist of text only. Only recently corpora that include non-linguistic context have
started to be collected and used for grounded learning of semantics (Chen et al., 2010; Frank et al.,
2009; Fleischman and Roy, 2005; Gorniak and Roy, 2005). This kind of work offers new and insightful
perspectives on learning meanings of natural language words and constructions, based on the idea that
our own knowledge of natural language meanings is grounded in action and perception (Roy, 2005), and
that language is a complex adaptive system which evolves in a community through grounded interaction
(e.g. Steels, 2003). So far the language in virtually grounded datasets has often been restricted to either
descriptions or directives, so utterances can be paired fairly directly with the actions they describe. The
interaction in our data is much freer. That means that it is more representative for the data that human
learners get, and that our methods can be applied to a wider variety of data, possibly also to datasets

1Von Ahn and Dabbish (2004) were among the first to realize the potential of collecting human knowledge data online, in a
game setup, collecting a large image-labeling corpus.
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that have not been collected specifically for this purpose. A related project is KomParse (Klüwer et al.,
2010). Piantadosi et al. (2008) developed a Bayesian model that learns compositional semantic meanings
of different kinds of words, including quantifiers, but from completely artificial data.

Our research focuses on learning from data, rather than through interaction, though the latter may be
possible in a later stage of the project. An example of a virtual world project where language is learned
through interaction is ‘Wubble World’ (Hewlett et al., 2007). In the Give Challenge (Byron et al., 2009)
a virtual world setup is used to evaluate natural language generation systems.

In previous work we have extracted words and multi-word expressions that refer to a range of objects
that are prominent in our virtual environment (Reckman et al., 2010). Now we investigate if aspects
of determiner meaning can be learned from this dataset. The extracted knowledge of nouns makes
the learning of determiners possible. We study what factors contribute to the choice of the determiner
and how they relate to each other, by training a decision tree classifier using these factors as features.
The decision tree provides insight in which features are actually used, in which order, and to which
effect. The accuracy of the resulting classifier on a test set should give us an impression of how well
we understand the use of the different determiners. Although one may argue that this study is about use
rather than about meaning, we take it that meaning can only be learned through use, and it is meaning
that we are ultimately interested in. One of the overarching questions we are concerned with is what
knowledge about language and how it works is needed to extract knowledge about constructions and their
meanings from grounded data. Practically, a computational understanding of determiners will contribute
to determining the reference of referential expressions, particularly in situated dialogue, and to generating
felicitous referential expressions (cf. Belz et al., 2010).

We first introduce our dataset. Then we discuss the automated extraction of determiners. Subse-
quently, we motivate the features we use, present our classifier experiments, and discuss the results.

2 Data: The Restaurant Game

Orkin and Roy (2007) showed in The Restaurant Game project that current computer game technology
allows for simulating a restaurant at a high level-of-detail, and exploiting the game-play experiences
of thousands of players to capture a wider coverage of knowledge than what could be handcrafted by
a team of researchers. The restaurant theme was inspired by the idea of Schank and Abelson (1977),
who argued that the understanding of language requires the representation of common ground for ev-
eryday scenarios. The goal is automating characters with learned behavior and dialogue. The ongoing
Restaurant Game project has provided a rich dataset for linguistic and AI research. In an online two-
player game humans are anonymously paired to play the roles of customers and waitresses in a virtual
restaurant (http://theRestaurantGame.net). Players can chat with open-ended typed text, move around
the 3D environment, and manipulate 47 types of interactive objects through a point-and-click interface
(see figure 1). Every object provides the same interaction options: pick up, put down, give, inspect, sit
on, eat, and touch, but objects respond to these actions in different ways. The chef and bartender are
hard-coded to produce food items based on keywords in chat text. A game takes about 10-15 minutes to
play. Everything players say and do is logged in time-coded text files on our servers. Although player
interactions vary greatly, we have demonstrated that enough people do engage in common behavior that
it is possible for an automatic system to learn statistical models of typical behavior and language that
correlate highly with human judgment of typicality (Orkin and Roy, 2007).

Over 10.000 games have been collected. The dialogue is grounded in two (partially overlapping)
ways. Not only is there a simulated physical environment with objects that can be manipulated in various
ways, but also social patterns of recurring events provide an anchor for making sense of the dialogue.
Previous research results include a first implementation of a planner that drives AI characters playing the
game (Orkin and Roy, 2009).

The intuition is that a human student of English starting from scratch (but with some common sense
knowledge about restaurants), could learn quite a bit of English from studying the Restaurant Game
episodes; possibly enough to play the game. We try to computationally simulate such a learning process.
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Figure 1: Screen-shots from The Restaurant Game, from left to right: third-person perspective, waitress’s
perspective with dialogue, menu for interacting with objects.

3 Extracting nouns

Previously, we extracted a vocabulary of referring expressions for a set of concrete objects, based on
which words and phrases have the highest relative frequency in the contexts in which the objects are
used (see figure 2). We extracted words and phrases that can refer to the food and drink items on the
restaurant’s menu, the menu, and the bill, and some other items. These expressions represent the core
nominal phrases in the game. We will use these expressions as a starting point to extract determiners
and nominal modifiers. We restrict ourselves to the ordered food and drink items, the menu and the bill,
expecting that these show a somewhat uniform and interesting behavior, as they are the objects that can
appear and disappear during the course of a game.

food type referring expressions

SOUP

‘soup’
‘vegetable soup’
’soup du jour’
’soup de jour’

SALAD ‘salad’
’cobb salad’

SPAGHETTI
‘spaghetti’
’spaghetti marinara’

FILET
‘steak’ ‘filet’
’filet mignon’

SALMON
‘salmon’
’grilled salmon’

LOBSTER ‘lobster’
’lobster thermador’

CHEESECAKE

‘cheesecake’
‘cheese’ ‘cake’
’cherry cheesecake’
’cheese cake’

PIE
‘pie’
’berry pie’

TART ‘tart’
’nectarine tart’

drink type referring expressions
WATER ‘water’
TEA ‘tea’
COFFEE ‘coffee’
BEER ‘beer’

REDWINE ‘red’ ’wine’
’red wine’

WHITEWINE ‘white’
’white wine’

item type referring expressions
MENU ‘menu’

BILL ‘bill’
’check’

Figure 2: Extracted referring expressions for relevant items.

The referring expressions for these object types have been extracted in an unsupervised manner
making use of the relative frequency of words and phrases in the context of the objects being used.
Words, bigrams and trigrams were validated against each other with the use of one threshold. For more
detail see (Reckman et al., 2010).

4 Extracting determiners

Extracting determiners totally unsupervised is a non-trivial task. Attempts to use the existing fully un-
supervised grammar induction algorithm ADIOS (Solan et al., 2005) did not give us the results we were
hoping for. Instead, we decided to make use of the knowledge of nouns that we already have and target
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determiners directly, rather than having to induce a full grammar. In future work we will look into using
alternative grammar induction systems, for a wider range of learning tasks.

We first narrowed down our search space by collecting words that are positively associated with
the position directly to the left of the nominal expression above a high recall, low precision threshold
(phi=0.01)2. This should favor determiners and other nominal modifiers over, for example, verbs.

We expect determiners to appear with a wider range of different nouns than adjectival modifiers do.
Especially in this restricted domain, adjectives are more likely to be restricted to specific object types.
We consider pre-nominal terms that are general enough to appear with more than 5 different objects (out
of 17) to be determiner candidates. We also check that our candidates can be preceded by an utterance
boundary.

The word the is most strongly associated with the relevant position, combines with most different
nouns, and can occur as only element between a boundary and a noun. We therefore assume that at
least the is a determiner. We order the other candidates according to their similarity to the, measured
as the cosine distance in a vector-space, with their two words to the left and to the right as dimensions.
We accept words as determiners in order of similarity to the, starting with the most similar word, after
checking that they are in complementary distribution with all of the already accepted words, i.e. that the
word does not occur adjacent to any of those. This gives us the following determiners: the, my, your,
some, a, another, our, one, ur, two, 2.3

We can then identify adjectival modifiers by looking at what occurs between determiners and nouns.
By checking what else these modifiers can be preceded by (that is also in complementary distribution
with known determiners), we can do another round of determiner search, and that lets us add any to
our list. As nouns can also be immediately preceded by an utterance boundary, we establish that the
determiner position is not obligatorily filled.

Of course this is not a complete set of determiners, but they appear to be the most prominent ones in
the game. Real quantifiers are relatively rare and that is to be expected, given the setting. Perhaps more
surprisingly, this and that are not associated with the left-of-noun position. It turns out that they are not
used very frequently as determiners in the game, and much more as pronouns. In future work we will
extract pronouns, by looking for single words that have a distribution that is similar to the distribution of
full noun phrases with a determiner.

In the process of extracting determiners, we also extract adjectives and modifiers such as glass of.
With little extra effort we can build a vocabulary of these as well, including information as to which
nouns they are associated with. Their meanings, however, are in most cases not sufficiently grounded in
the game to be understood. We may in a more advanced stage of the project be able to figure out that the
adjective free makes the item less likely to appear on the bill, but the meaning of hot will always remain
unclear, as temperature is not modeled in the game. Finding words associated with the position to the left
of specific nouns can also help us further improve our vocabulary of referring expressions, for example
by identifying veg and veggie as alternatives for vegetable in vegetable soup4.

We took a shortcut by directly targeting the position left of the noun. This involves language-specific
knowledge about English. To make this method applicable to different languages and only use very
general knowledge at the start, we would first have to find out what the position of the determiner is.
This may be to the right of the noun or affixed to it. Not all languages have articles, but we can expect
determiners like my, your, another etc. to occur either adjacent to5, or morphologically expressed on the
noun6. In previous work we have shown how a construction for coordination can be extracted (Reckman

2The phi-score is a chi-square based association metric. Manning and Schütze (2000) argue that such metrics are suitable
to quantify collocational effects. We also used it in extracting the referring expressions.

3For the experiments we replace ur by your, and 2 by two. We assume this could in principle be done automatically, although
especially in the latter case this is not trivial.

4We do already have a list of spelling variants for all the terms, but veg and veggie were too different from the canonical
form to get through the edit-distance filter

5Obviously we do not catch floating quantifiers this way. We might catch their non-floating counterparts and then discover
that they occur in other positions as well.

6Several unsupervised morphological analyzers have been developed, which should in principle be run in an early stage of
learning. For English however, the only interesting morphology at play here is plural formation.
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et al., 2010). Coordination, to our knowledge, occurs in all languages and this is probably a feature of
general human cognition, so it makes sense to assume it exists in a language and look for it in the data. It
can then be used as a probe on structure. Categories that are grammatically intimately connected to nouns
are more likely to be repeated in a coordination involving two nouns. If we look at our English data, for
example, we see that a lot more material tends to occur between and and the second noun-conjunct, than
between the first noun-conjunct and and, which suggests that things that are grammatically close to the
noun occur to the left of it.

5 Features

In this section we motivate the features we will use. To capture the full meaning of determiners, we
would probably have to model the mental states of the players. However, what we aim at here is a
preliminary understanding of determiners as a step towards the understanding of full sentences, and the
resolution of NP reference and co-reference, which would be prerequisites for any serious modeling of
mental states. So we are interested in what can be learned from directly observable features. The features
are theoretically motivated, and reflect the nature of the referent, whether the referent has been mentioned
before, whether the referent is present, and who the speaker and addressee are.

The first feature is object type. There are 17 different objects that we take into account: BEER,
BILL, CHEESECAKE, COFFEE, FILET, LOBSTER, MENU, PIE, REDWINE, SALAD, SALMON, SOUP,
SPAGHETTI, TART, TEA, WATER, and WHITEWINE. We expect this feature to matter, because in a
restaurant situation one usually orders ‘the spaghetti’, but ‘a beer’. This may be to some extent dependent
on what is on the menu, but not completely. Regardless of what is on the menu, ordering ‘the Heineken’
seems to be more unusual than ordering ‘the Merlot’. This may mean that our data is not entirely
representative of the general case, because of our restaurant setting. However, it cannot be excluded that
similar effects play a role in other settings, too. There is of course the effect of mass versus count nouns,
too, but this may be a bit masked, because of unit expressions like glass of. We chose to not include
these unit expressions as a feature, because the decision to use such modifiers can be considered part of
the decision on which determiner to use. So using the modifier as a feature, would be giving away part
of the solution to the determiner-choice problem.

The second feature captures the notion of discourse-old versus discourse-new. We distinguish be-
tween cases where an object of a particular type is mentioned for the first time, and where it has already
been mentioned before. In the latter case, we take it that the discourse referent has already been intro-
duced. The expected effect is that first mentions tend to be indefinite.7 This is only an approximation,
because sometimes a second object of the same type is introduced and we do not resolve the reference
of our instances.

The third and fourth features incorporate present versus future presence of the object, plus the posi-
tion of the utterance with respect to the central action involving the object. We keep track of the previous
and following action in which the object is involved. Actions of interest are restricted to the appearance
of the object and and its central action: ‘eating’ for food and drink items, ‘looking at’ for the menu, and
‘paying’ for the bill. Being involved in such an action also implies presence. Other intervening actions
are ignored. The features are ‘preceding action’ and ‘following action’, and the values are ‘appearance’,
‘main action’, and ‘none’. We expect indefinites before appearance, when the object is not yet present.
Note that these features rely entirely on non-linguistic context.

The fifth and sixth features identify speaker and addressee. The speaker can be the customer or the
waitress. For the addressee the relevant distinction is whether the staff (chef and bartender) are addressed
or not. We expect a tendency of the waitress using your when talking to the customer, and of the customer
using my more often. We expect more indefinites or absence of a determiner when the staff is spoken to.
These features are central to dialogue, and may reveal differences between the roles.

7This is a typical feature for languages that have articles, and may be expressed through other means in other languages.
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6 Experiments

We use the decision tree classifier from the Natural Language ToolKit for Python (Loper and Bird, 2002)
and train and test it through 10-fold cross-validation on 74304 noun phrases from 5000 games, 23776 of
which actually have determiners. The noun phrases used all contain nouns that can refer to the selected
objects, though we cannot guarantee that they were intended to do so in all cases. In fact, we have seen
examples where this is clearly not the case, and for example filet, which normally refers to the FILET

object, is used in the context of salmon. This means that there is a level of noise in our data.
The instances where the determiner is absent are very dominant, and this part of the data is necessarily

noisy, because of rare determiners that we’ve missed8, and possibly rather heterogeneous, as there are
many reasons why people may choose to not type a determiner in chat. Therefore we focus on the
experiments where we have excluded these cases, as the results are more interesting. We will refer to
the data that excludes instances with no determiner as the restricted dataset. When instances with no
determiner are included, we will talk about the full dataset.

6.1 Baselines

In the experiments we compare the results of using the features to two different baselines. The simplest
baseline is to always choose the most frequent determiner. For the instances that have overt determiners,
the most frequent one is the. Always choosing the gives us a mean accuracy of 0.364. If we include
the instances with no overt determiners, that gives us a much higher baseline of 0.680, when the no
determiner option is always chosen. We call this the simple baseline.

The second baseline is the result of using only the object feature, and forms the basis of our experi-
ments. We call this the object-only baseline. On the restricted dataset the resulting classifier assigns the
determiner a to the objects BEER, COFFEE, PIE, REDWINE, SALAD, TEA, WATER, and WHITEWINE,
and the determiner the to BILL, CHEESECAKE, FILET, LOBSTER, MENU, SALMON, SOUP, SPAGHETTI,
and TART. This yields a mean accuracy of 0.520, which is a considerable improvement over the sim-
ple baseline that is relevant for this part of the data. If we look at the confusion matrix in figure 3 that
summarizes the results of all 10 object-only runs we see that the objects’ preferences for definite versus
indefinite determiners are also visible in the way instances with determiners other than the and a are
misclassified. Instances with definite determiners are more often classified as the, and indefinites as a.

a another any my one our some the two your
a <4984> . . . . . . 2912 . .

another 608 <.> . . . . . 76 . .
any 56 . <.> . . . . 24 . .
my 238 . . <.> . . . 742 . .
one 354 . . . <.> . . 241 . .
our 28 . . . . <.> . 178 . .

some 1109 . . . . . <.> 438 . .
the 1270 . . . . . . <7383> . .

two 191 . . . . . . 58 <.> .
your 805 . . . . . . 2075 . <.>

Figure 3: Confusion matrix for the object-only baseline.

On the full dataset, the classifier assigns the to instances of BILL and MENU and no determiner
to everything else, reflecting the count/mass distinction, and resulting in a mean accuracy of 0.707.
This is also a statistically significant improvement over its baseline, but much less spectacular. The
definite/indefinite distinction that we saw with the restricted dataset, does not really emerge here.

8It is also hard to reliably recognize misspelled determiners as determiners tend to be very short words.
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6.2 Adding the other features

In the core experiments of this paper we always use the object feature as a basis and measure the effect of
adding the other features, separately and in combination. All differences reported are significant, unless
stated otherwise. The table in figure 5 at the end of the section summarizes the results.

If we add the feature of whether the item has been mentioned before or not, we get more indefi-
nites, as was to be expected. On the restricted dataset, the MENU, PIE, and TART objects get a if not
mentioned previously, and the otherwise. The mean accuracy is 0.527, which is a statistically significant
improvement over the object-only baseline (the improvement is consistent over all 10 runs), but it seems
rather small, nevertheless. (Using the discourse feature without the object feature gives a score of 0.377.)
Adding information as to whether the customer has seen the menu does not make any difference. On the
full dataset the discourse feature matters only for MENU, which gets a if not previously mentioned. The
mean accuracy is 0.709.

If, instead, we add the action features we get a somewhat more substantial improvement for the
restricted dataset; a mean accuracy of 0.561. We also get a wider range of determiners: your tends to be
chosen after appearing and before eating, another after eating, and a between no action and appearing.
The order in which the following and preceding action features are applied by the classifier differs per
object. (The action features without the object feature give a mean accuracy score of 0.427.) For the full
dataset the mean accuracy is 0.714, again a consistent, but marginal improvement. However, a, the and
your are the only determiners used, in addition to the no determiner option.

Adding the speaker and addressee features to the object feature base gives the classifier a better grip
on your. More indefinites are used when the staff is addressed, your when the customer is spoken to.
However, my is still not picked up. The speaker and addressee features are used in both orders. The mean
accuracy is 0.540, which is better than with the discourse feature, but worse than with the action features.
(The speaker and addressee features without the object feature give a mean accuracy score of 0.424.) In
the case of the full dataset, the new features are barely used, and there is no consistent improvement over
the different runs. The mean accuracy is 0.711.

If we combine the action features and speaker/addressee features on top of the object feature basis,
we see a substantial improvement again for the restricted dataset. The mean accuracy is 0.592. Finally,
we get some cases of my being correctly classified, and also your is correctly classified significantly
more often than in the previous experiments. The object feature always comes first in the decision tree.
For the other features, all relative orders are attested. Adding the ‘previously-mentioned’ feature to
this combination (see also figure 4) improves this result a little bit more, to a mean accuracy of 0.594,
although we can expect the information contained in it to have a large overlap with the information in
other features, for example, items mentioned for the first time will typically not have appeared yet.

a another any my one our some the two your
a <5732> 163 1 11 20 . 70 1773 1 125

another 175 <350> . 2 . . 48 70 . 39
any 44 4 <.> . . . 2 29 . 1
my 154 19 . <9> . . 20 765 . 13
one 437 20 . 2 <16> . 4 70 . 46
our 29 1 . . . <.> 1 161 . 14

some 881 48 . 6 3 . <114> 421 . 74
the 1332 74 . 33 8 . 34 <6131> . 1040

two 191 10 . 2 . . 1 45 <.> .
your 218 88 . . . . 20 781 . <1773>

(row = reference; col = test)

Figure 4: Confusion matrix for the object, action, speaker/addressee and discourse features combined.
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6.3 Linguistic context and dialogue acts

It will be part of future research to distinguish the different dialogue acts that the nominal phrases that
we studied can be part of. Identifying the ‘task’ that an expression is part of may have a similar effect.
Tasks of the type ‘customer gets seated’, ‘waitress serves food’, ‘customer eats meal’, etc. are annotated
for supervised learning, and may consist of several actions and utterances (Orkin et al., 2010).

To give an indication that the dialogue act that an expression is part of may be informative as to the
correct choice of the determiner, we have done an extra experiment, where we have used the word before
and the word after the DP as features. This gives a tremendous amount of feature values, which are not
very insightful, due to the lack of generalization, and are a near guarantee for over-fitting. However,
it does yield an improvement over using the object-only baseline. Moreover, the preceding word and
following word features are now applied before the object feature. The mean accuracy in this experiment
was 0.562, which is comparable to the experiment with object and action features. At the same time we
get a wider range of determiners than we have had before, including some correctly classified instances
of our. On the full dataset we even get a higher accuracy score than in any of the other experiments:
0.769, also with a much wider range of determiners. We suspect that this local linguistic context gives
quite good cues as to whether the expression is part of a proper sentence or not, and that in the former
case an overt determiner is much more likely9. The results of all experiments are summarized in figure 5.

restricted full
simple baseline 0.364 0.680
object-only baseline 0.520 0.707
object + discourse 0.527 0.709
object + action 0.561 0.714
object + speaker 0.540 0.711
object + action + speaker 0.592 0.721
object + action + speaker + discourse 0.594 0.721
object + surrounding words 0.562 0.769

Figure 5: Summary of the testing results.

7 Discussion

Maybe the most surprising outcome is that the object type turns out to be the main factor in choosing
the determiner in this virtual restaurant setting. It would beinteresting to see this reproduced on the
data of two new games that are currently being developed, with novel scenarios, locations and objects.
At the same time, it is a strength of our approach, that we can simulate a specific setting and capture
its ideosyncrasies, learning domain-specific aspects of language, and hopefully eventually learn what
generalizes across different scenarios.

For the restricted dataset we see that, consistently, indefinites are mostly misclassified as a, and
definites mostly as the. If we evaluate only for definiteness, we get a mean accuracy of 0.800 for the case
with all features combined. We could distinguish these two classes of determiners on the basis of the
similarity of each determiner to the two dominant types. It is, however, the object feature that seems to
be mainly responsible for the gain in definiteness accuracy with respect to the simple baseline.

It is unsurprising that we haven’t learned much about one and two, except that they pattern with
indefinites, as we haven’t included features that have to do with the number of objects. There actually
are more numerals that appear in the game, but did not make it into our list of determiners, because
they did not occur with enough different objects. In the general case, we are doubtful that numerals are
sufficiently grounded in this game for their exact meanings to be learned. It may however be possible to
learn a one-two-many kind of distinction. This would also involve looking into plural morphology, and
remains for future research.

9We have observed that in several games people tend to just sum up food items, without embedding them in a sentence.
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We also haven’t learned anything about our, except that it patterns with definites. It is not quite clear
what kind of features would be relevant to our in this setting.

For the possessive pronouns your and my we have learned that one tends to be linked to the waitress
as a speaker (and the customer as addressee) and the other to the customer. It will be challenging to reach
an understanding that goes deeper than this10. The range of interactions in the game may be too limited
to learn the meanings of all determiners in their full generality.

While we have treated a and another as different determiners, we have included cases of some more
under some. It may be worthwhile to include some more (and perhaps any more and one more as well) as
a separate determiner. However, our best classifier so far still cannot distinguish between a and another
very well.

The experiments with linguistic context suggest that dialogue act may make for an additional, pow-
erful, albeit indirect, feature. The fact that it helps to know when the main action involving the object
took place, rather than just its appearance, may also be taken to point in the same direction, as people
tend to say different kinds of things about an object before and after the main action.

Using a classifier seems to be a reasonable way of testing how well we understand determiners, as
long as our features provide insight. Although there is still a lot of room for improvement, there is likely
to be a ceiling effect at some point, because sometimes more than one option is felicitous. We also have
to keep in mind that chat is likely to be more variable than normal written or spoken language.

8 Conclusion

We have carried out an exploratory series of experiments, to see if meanings of determiners, a very
abstract linguistic category, could be learned from virtually grounded dialogue data. We have trained a
classifier on a set of theoretically motivated features, and used the testing phase to evaluate how well
these features predict the choice of the determiner.

Altogether, the results are encouraging. If we exclude instances with no determiner we reach an
accuracy of 0.594 over a baseline of 0.364. The features that identify the dialogue participants and
surrounding actions, including appearance, play an important role in this result, even though the object
type remains the main factor. A clear dichotomy between definite and indefinite determiners emerges.
The results for the complete dataset are a bit messier, and need more work.

In future work we will identify utterance types, or dialogue acts, that also rely on surrounding actions
and on the speaker and addressee. We will also look into resolving reference and co-reference.
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1 Pre - Introduction

Before starting, I would like to ask reader’s opinion about the truth/falsity of certain NL statements. The
statements are about figures depicting dots connected to stars. In the figures, we distinguish between dots
and stars that are connected, i.e. such that every dot is connected with at least one star and every star is
connected with at least one dot, and dots and stars that aretotally connected, i.e. such that every dot is
connected to every star. For instance, in (1), the dotsd1, d2, andd3 are connected with the starss1, s2,
ands3 (on the left) whiled4 andd5 aretotally connected withs4, s5, ands6 (on the right).

(1) d1d2d3 d4d5s1s2s3 s4s5s6
given these premises, is it true that in the next figureLess than half of the dots are totally connected with
exactly three stars? (do not read below before answering)

(2) d3 s4s5d1d2 s1s2s3 d4d5d6
I do think that the answer is yes. The same answer has been given by several friends/colleagues that were
asked to judge the example. In fact, the figure does contain two dots d1 and d2, which are less than half
of all the dots in the figure, and they are both connected with three same stars s1, s2, and s3.
Now, is it true in (3) thatFew dots are totally connected with few stars?

(3) d3 s3s4d1d2 s1s2 d4d5 d6 s5s7d7d8 s6 s8s9d9
It is somehow harder to provide an answer to this second question. At firstsight, it seems the sentence is
false, or at least ‘strange’: no English speaker would ever utter that sentence in that context, whatever he
wants to describe.

We are ready now to explore the proposals that aimed at formally defining the truth conditions of
sentences as the two ones above. In the literature, most logical approaches to the problem state that the
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two sentences are both false in contexts (2) and (3). In (Robaldo, 2009a), drawing from (Sher, 1997), I
proposed a new alternative where they are both evaluated as true. It seems then that neither proposals
is completely satisfatory. The present paper proposes a “pragmatic” revision of (Robaldo, 2009a) that
achieves – what are claimed to be – the proper truth values of such sentences.

2 Introduction

In the Pre-Introduction, it has been asked to judge the truth values of two NL sentences according to their
‘Scopeless interpretation’, termed in (Robaldo, 2009a) as ‘Independent Set (IS) reading’. In constrast, in
a linear reading one of the sets may vary on the entities in the other one. An example isEach boy ate two
apples, whose preferred reading is a linear reading whereEachoutscopesTwo, i.e. where each boy ate
two differentapples. Four kinds of IS readings have been identified in the literature, from (Scha, 1981).

(4) a. Branching Quantifier readings, e.g. Two students of mine have seen three drug-
dealers in front of the school. (Robaldo, 2009a)

b. Collective readings, e.g.Three boys made a chair yesterday. (Nakanishi, 2007)

c. Cumulative readings, e.g.Three boys invited four girls. (Landman, 2000)

d. Cover readings, e.g.Twenty children ate ten pizzas. (Kratzer, 2007)

The preferred reading of (4.a) is the one where there are exactly two1 students and exacly three drug-
dealers and each of the students saw each of the drug-dealers. Note that these are the truth values
assigned to (1)-(3) when dots and stars are asked to betotally connected. (4.b) may be true in case
three boys cooperated in the construction of a single chair. In the preferred reading of (4.c), there are
three boys and four girls such that each of the boys invited at least one girl, and each of the girls was
invited by at least one boy. These are the truth values assigned to (1) when dots and stars are asked to
be connected, possibly not totally. Finally, (4.d) allows for any sharing often pizzas between twenty
children. In Cumulative readings, the single actions are carried out byatomic2 individuals only, while in
(4.d) it is likely that the pizzas are shared among subgroups of children. For instance,Three children ate
five pizzasis satisfied by the following extension ofate′ (‘⊕’ is the standard sum operator (Link, 1983)):

(5) ‖ate′‖M ≡ {〈c1⊕c2⊕c3, p1⊕p2〉, 〈c2⊕c3, p3⊕p4〉, 〈c3, p5〉}

In (5), childrenc1, c2, andc3 (cut into slices and) share pizzasp1 andp2, c2 andc3 (cut into slices and)
sharep3 andp4, andc3 also ate pizzap5 on his own.

Branching Quantifier readings have been the more controversial (cf. (Beghelli et al., 1997) and
(Gierasimczuk and Szymanik, 2009)). Many authors claim that those readings are always subcases of
Cumulative readings, and they often co-occur with certain adverbs (May, 1989), (Schein, 1993). In fact,
in the Pre-Introduction, in order to force such a reading on (1)-(3), itwas necessary to add the adverb
totally to the verbconnected. Collective and Cumulative readings have been largely studied; see (Scha,
1981), (Link, 1983), (Beck and Sauerland, 2000), and (Ben-Aviand Winter, 2003).

However, the focus here is on Cover readings. This paper assumes – following (van der Does, 1993),
(van der Does and Verkuyl, 1996), (Schwarzschild, 1996), (Kratzer, 2007) – that they aretheIS readings,
of which the three kinds exemplified in (4.a-c) are merely special cases. The name “Cover readings”
comes from the fact that their truth values are traditionally captured in terms ofCovers. A Cover is a
mathematical structure defined with respect to one or more sets. With respectto two setsS1 andS2, a
CoverCov is formally defined as:

1In (4.a-d) “two/three/ten/etc.” are interpreted as “exactlytwo/three/ten/etc.” as in (Scha, 1981). That is actually a pragmatic
implicature, as noted in (Landman, 2000), pp.224-238.

2In line with (Landman, 2000), pp.129, and (Beck and Sauerland, 2000), def.(3), that explicitly define Cumulative readings
as statements among atomic individuals only.
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(6) A CoverCov is a subset ofCov1 × Cov2, whereCov1 ⊆ ℘(S1) andCov2 ⊆ ℘(S2) s.t.

a. ∀s1 ∈ S1, ∃cov1 ∈ Cov1 s.t. s1 ∈ cov1, and∀s2 ∈ S2, ∃cov2 ∈ Cov2 s.t. s2 ∈ cov2.

b. ∀cov1 ∈ Cov1, ∃cov2 ∈ Cov2 s.t. 〈cov1, cov2〉 ∈ Cov.

c. ∀cov2 ∈ Cov2, ∃cov1 ∈ Cov1 s.t. 〈cov1, cov2〉 ∈ Cov.

Covers may be denoted by 2-order variables called “Cover variables”.We may then define a meta-
predicateCover that, taken a Cover variableC and two unary predicatesP1 andP2, asserts that the
extension of the former is a Cover of the extensions of the latter:

(7) Cover(C, P1, P2) ⇔
∀X1X2 [C(X1, X2)→∀x1x2 [((x1 ⊂ X1) ∧ (x2 ⊂ X2))→(P1(x1) ∧ P2(x2))]] ∧
∀x1 [ P1(x1) → ∃X1X2 [ (x1 ⊂ X1) ∧ C(X1, X2) ] ] ∧
∀x2 [ P2(x2) → ∃X1X2 [ (x2 ⊂ X2) ∧ C(X1, X2) ] ]

Thus, it is possible to decouple the quantifications from the predications. This is done by introducing
two relational variables whose extensions include theatomic individuals involved. Another relational
variable that covers them describes how the actions are actually done. For instance, in (5), in order to
evaluate as true the variant of (4.d), we may introduce three variablesP1, P2, andC such that:

‖P1‖M = {c1, c2, c3} ‖P2‖M = {p1, p2, p3, p4, p5}
‖C‖M = { 〈c1⊕c2⊕c3, p1⊕p2〉, 〈c2⊕c3, p3⊕p4〉, 〈c3, p5〉 }

The above extensions ofP1, P2, andC satisfyCover(C, P1, P2).
Among the Cover approaches mentioned above, an interesting one is (Schwarzschild, 1996).

Schwarzschild discusses numerous NL sentences where the identificationof Covers appears to be prag-
matically determined, rather than existentially quantified. In other words, in the formulae the value of
the Cover variables ought to be provided by an assignmentg. One of the examples mostly discussed in
(Schwarzschild, 1996) is:

(8) a. The cows and the pigs were separated.

b. The cows and the pigs were separatedaccording to color.

The preferred reading of (8.a) is the one where the cows were separated from the pigs. However, that
is actually an implicature that may be rewritten as in (8.b), where the separation isnot done by race.
Examples like (8) are used by (Schwarzschild, 1996) in order to argue against the existence of groups
and the overgeneration of readings, extensively advocated by (Landman, 2000). Schwarzschild claims
that the NP in (8.a) must correspond to a unary predicate whose extensionis the set ofindividual cows
and pigs, while the precise separation is described by a contextually-dependent Cover variable. Similarly,
in (4.c) the Cumulative interpretation is preferred as in real contexts invitations are usually thought as
actions among pairs of persons. But it may be the case that two or more boyscollectivelyinvited two
or more girls. On the other hand, in (4.a) the fact that each student saw each drug-dealer seems to be
favoured by the low value of the numerals. If the sentence wereAlmost all of my students have seen
several drug-dealers in front of the school, the preferred reading appears to be Cumulative.

The next section illustrates a final component needed to build whole formulaefor representing Cover
readings. This is the requirement of Maximal participancy of the witness sets, e.g. the Maximal partic-
ipancy ofP1 andP2’s extension in the formula representing the meaning of the variant of (4.d).It will
be also shown that there are two possible ways to maximize the witness sets:Locally andGlobally. The
former predicts that both examples in (2) and (3) are true, while the latter predicts that they are both false.
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3 The Maximality requirement

The previous section showed that, for representing IS readings, it is necessary to reify the witness sets
into relational variables asP1 andP2. Separately, the elements of these sets are combined as described
by the Cover variables, in order to assert the predicates on the correctpairs of (possibly plural) individu-
als. Conversely, it is not possible to represent an IS reading by nestingquantifiers into the scope of other
quantifiers, as it is done in the standard Generalized Quantifier (GQ) approach (Keenan and Westerståhl,
1997), because the set of entities quantified by the narrow-scope quantifier would vary on each entity
quantified by the wide-scope one.
As argued by (van Benthem, 1986), (Kadmon, 1987), (Sher, 1990),(Sher, 1997), (Spaan, 1996), (Steed-
man, 2007), (Robaldo, 2009a), and (Robaldo, 2009b) the relational variables must, however, beMaxi-
mizedin order to achieve the proper truth values with any quantifier, regardlessto its monotonicity. To
see why, let us consider sentences in (9), taken from (Robaldo, 2009a), that involve a single quantifier.

(9) a. At least two men walk.

b. At most two men walk.

c. Exactly two men walk.

In terms of reified relational variables, it seems that the meaning of (9.a-c) may represented via (10.a-c),
where≥2, ≤2, and=2 are, respectively, an M↑, an M↓, and a non-M Generalized Quantifier.

(10) a. ∃P [ ≥2x(man’(x), P (x)) ∧∀x[P (x)→walk’(x)] ]

b. ∃P [ ≤2x(man’(x), P (x)) ∧∀x[P (x)→walk’(x)] ]

c. ∃P [ =2x(man’(x), P (x)) ∧∀x[P (x)→walk’(x)] ]

Only (10.a) correctly yields the truth values of the corresponding sentence. To see why, consider a
model in which three men walk. In such a model, (10.a) is true, while (10.b-c) are false. Conversely,
all formulae in (10) evaluate to true, as all of them allow to chooseP such that‖P‖M is a set of two
walking men. Therefore, we cannot allow a free choice ofP . Instead,P must denote the Maximal set of
individuals satisfying the predicates, i.e. the Maximal set of walking men, in (10). This is achieved by
changing (10.b-c) to (11.a-b) respectively.

(11) a. ∃P [ ≤2x(man’(x), P (x)) ∧ ∀x[P (x)→walk’(x)] ∧
∀′

P [(∀x[P (x)→P ′(x)] ∧ ∀x[P ′(x)→walk’(x)])→∀x[P ′(x)→P (x)] ] ]

b. ∃P [ =2x(man’(x), P (x)) ∧ ∀x[P (x)→walk’(x)] ∧
∀′

P [(∀x[P (x)→P ′(x)] ∧ ∀x[P ′(x)→walk’(x)])→∀x[P ′(x)→P (x)] ] ]

The clauses∀′
P [ . . . ] in the second rows are Maximality Conditions asserting the non-existence ofa

supersetP ′ of P that also satisfies the predication. There is a single choice forP in (11.a-b): it must
denote the set ofall walking men. Note that, for the sake of uniformity, the Maximality condition may
be added in (10.a) as well: in case of M↑ quantifiers, it does not affect the truth values.

3.1 Local Maximalization

Let me term the kind of Maximalization done in (11) asLocal Maximalization. The Maximality con-
ditions in (11) require the non-existence of a set‖P ′‖M of walkersthat includes‖P‖M . In (Robaldo,
2009a) and (Robaldo, 2009b), I proposed a logical framework for representing Branching Quantifier
based on Local Maximalization. For instance, in (Robaldo, 2009a), thetwo witness sets of students and
drug-dealers in (4.a) are respectively reified into two variablesP1 andP2, and the Maximality condi-
tion requires the non-existence of aCartesian Product‖P ′

1‖M × ‖P ′
2‖M , that also satisfies the main

predication andthat includes‖P1‖M × ‖P2‖M :
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(12) ∃P1P2[
=2x(stud’(x), P1(x)) ∧ =3x(drugD’(y), P2(y)) ∧
∀xy[(P1(x) ∧ P2(y))→ saw’(x, y)] ∧
∀P ′

1P ′
2
[ ( ∀xy[(P1(x) ∧ P2(y))→(P ′

1(x) ∧ P ′
2(y))]∧

∀xy[(P
′
1(x) ∧ P ′

2(y))→ saw’(x, y)] )→
∀xy[(P

′
1(x) ∧ P ′

2(y))→(P1(x) ∧ P2(y))] ] ]

In order to extend (Robaldo, 2009a) to Cover readings, which are assumed to be the most general cases
of IS readings, we cannot simply require the inclusion of‖P1‖M×‖P2‖M into the main predicate’s
extension. Rather, we require the inclusion therein of a pragmatically-determined Cover‖C‖M,g of
‖P1‖M and‖P2‖M . Furthermore, the (local) Maximality condition must require the non-existenceof
a superset of either‖P1‖M or ‖P2‖M whose corresponding Cover is a superset of‖C‖M,g that is also
included in the main predicate’s extension. Thus, (4.d) is represented as3:

(13) ∃P1P2[
=20x(child’(x), P1(x)) ∧ =10y(pizza’(y), P2(y)) ∧
Cover(C, P1, P2) ∧ ∀xy[C(x, y)→ ate’(x, y)] ∧

∀P ′
1
[(∀x[P1(x)→P ′

1(x)] ∧ ∃C′ [Cover(C ′, P ′
1, P2) ∧ ∀xy[C(x, y)→C ′(x, y)] ∧

∀xy[C
′(x, y)→ate’(x, y)]])→∀x[P ′

1(x)→P1(x)] ] ] ∧
∀P ′

2
[(∀y[P2(y)→P ′

2(y)] ∧ ∃C′ [Cover(C ′, P1, P
′
2) ∧ ∀xy[C(x, y)→C ′(x, y)] ∧

∀xy[C
′(x, y)→ate’(x, y)]])→∀y[P

′
2(y)→P2(y)] ] ] ]

Note that there are two Maximality conditions:∀P ′
1
[ . . . ] and∀P ′

2
[ . . . ]. In fact, contrary to what is

done with Cartesian Products, in Cover readingsP1 andP2 must be Maximized independently, as it is
no longer required thateverymember of the former is related witheverymember of the latter. Note
also that the inner Cover variableC ′ is existentially quantified. Of course, it would make no sense to
pragmatically interpret it as it is done withC.

3.2 Global Maximalization

The other kind of Maximalization of the witness sets, termed here as ‘Global Maximalization’ has been
advocated by (Schein, 1993), and formalized in most formal theories of Cumulativity, e.g. (Landman,
2000), (Hackl, 2000), and (Ben-Avi and Winter, 2003). With respect to IS readings involving two witness
sets‖P1‖M and‖P2‖M , Global Maximalization requires the non-existence of other two witness sets that
also satisfy the predication butthat do not necessarily include‖P1‖M and ‖P2‖M . For instance, the
event-based logic defined by (Landman, 2000) represents the Cumulative reading of (4.c) as:

(14) ∃e∈∗INVITE: ∃x∈∗BOY: |x|=3 ∧∗Ag(e)=x ∧ ∃y∈∗GIRL: |y|=4 ∧∗Th(e)=y ∧
|∗Ag(

⋃{e ∈INVITE: Ag( e)∈BOY ∧ Th(e)∈GIRL })| = 3 ∧
|∗Th(

⋃{e ∈INVITE: Ag( e)∈BOY ∧ Th(e)∈GIRL })| = 4

Formula in (14) asserts the existence of a plural evente whose Agent is a plural individual made up of
three boys and whose Theme is a plural individual made up of four girls. The two final conjuncts, in
boldface, are Maximality conditionsasserted on pragmatic grounds(see footnote 1 above). Takenex as
the plural sum of all inviting events having a boy as agent and a girl as theme, i.e.

ex=
⋃{e ∈INVITE: Ag(e)∈BOY ∧ Th(e)∈GIRL}

the cardinality of its agent∗Ag(ex) is exactly three while the one of its theme∗Th(ex) is exactly four.
Therefore, Landman’s Maximality conditions in (14) do not refer to the sameevents and actors quantified
in the first row. Rather, they require that the number of the boys who inviteda girl in the whole modelis
exactly three and the number of girls who were invited by a boyin the whole modelis exactly four.

3Without going down into further details, I simply stipulate that the GQs used in thearticle are Conservative (Barwise and
Cooper, 1981), (Keenan and Stavi, 1986). In other words, for every quantifierQx, we require‖P B

x ‖M ⊆ ‖P R
x ‖M .
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4 Local Maximalization VS Global Maximalization

We are ready now to compare the two kinds of Maximalization. Global Maximalization appears to be
more problematic than Local one. Since Branching Quantifier readings arespecial cases of Cumulative
readings, and it has been discussed above that many authors, e.g. (Beghelli et al., 1997), argue that this
is even a good reason to avoid an explicit representation of them, sentence(15.a) entails (15.b).

(15) a. Less than half of the dots are totally connected with exactly three stars.

b. Less than half of the dots are connected with exactly three stars.

Nevertheless, Global Maximalization predicts that (15.b) is false in figure (2). The number of all dots
in the model connected to a star is six, while the number of all stars in the model connected to a dot
is five, not exactly three. On the contrary, once the witness sets have been identified as in (16), Local
Maximalization predicts (15.b) as true, in that no other star is connected to a dot occurring in‖P1‖M ,
and no other dot is connected to a staroccurring in‖P2‖M .

(16) d3 s4s5d1d2 s1s2s3 d4d5d6kP1kM kP2kM
Another scenario where Global Maximalization predicts presumably wrong truth values, with respect to
formula (14) and sentence (4.c), is shown in (17):

(17) g1g3g2b3b1b2 g4g5b4
In (17), the Cumulative readings of all (18.a-c) appear to be true provided that numeralsN are still
interpreted as exactly-N .

(18) a. Three boys invited four girls.

b. One boy invited one girl.

c. Four boys invited five girls.

Global Maximalization states that only (18.c) is true in (17). Local Maximalizationevaluates all (18.a-c)
as true; the witness sets are obviously identified.

Landman does not discuss the evaluation of his formulae in contexts like (17). This is done instead
by (Ferreira, 2007) and (Brasoveanu, 2009). However, the latter do not provide strong linguistic moti-
vations: they simply claim that (18.a-b) are false in (17), as the present paper claims they are not. A
comparison between Local and Global Maximalization is found in (Schein, 1993), even if no formaliza-
tion is presented. (Schein, 1993),§12, reasonably argues, contra (Sher, 1997), that (19.a-b) are false in
contexts like (20) (or (3)), while (19.c) is true. Local Maximalization predicts all (19.a-c) as true.

(19) a. Few dots are totally connected with few stars.

b. Exactly two dots are totally connected with exactly two stars.

c. At least two dots are totally connected with at least two stars.
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(20) d1 d3s1s2 s3d2 d4 d6s4 s5s6d5 d7 s7s8d8
From these observations, Schein concludes that (Sher, 1997)’s Local Maximalization, which is defined
for any kind of quantifier, with any monotonicity, is incorrect. A proper semantics for NL quantification
should instead stipulate twodifferentsemantics depending on the monotonicity: one for M↑ quantifiers,
e.g. At least two, and one for M↓ quantifiers, e.g.Few, and non-M quantifiers, e.g.Exactly two. The
truth conditions of the former should be defined in terms of Local Maximalization, while those of the
latter in terms of Global Maximalization.

While I accept the truth values attested by Schein for sentences (19.a-c) in(20), I do not share his
conclusions. On the one hand, there are several cases, particularly mixed cases, that are quite hard to
reconcile in Schein’s view. An example is the sentence evaluated in (2), which include a M↓ quantifier
(Less than half) and a non-M one (Exactly three). Global Maximalization, contrary to Local Maximal-
ization, evaluates the sentence as false in (2), as pointed out above. Also(21.a), which includes an M↓
quantifier and an M↑ one (More than half), and sentence (21.b), which is not a mixed case as it includes
two M↓ quantifiers, seems to be true in (2), contra Schein’s predictions.

(21) a. Less than half of the dots are connected with more than half of the stars.

b. Less than half of the dots are connected with less than five stars.

On the other hand, all sentences in (19.a-c) seems to be true in (22), while inSchein’s view they should
have the same truth values they have in (20).

(22) d6 s5s6d1d2 s1s2 d7d8
d3d4d5 s3s4s7s8

These considerations lead to conclude that the oddity of sentences (19) incontexts (20) or (3) does not
depend on the monotonicity of the quantifiers involved.
The present paper suggests instead that such an oddity stems from Pragmatics. No English speaker would
ever utter those sentences in those contexts, as they would not be informative enough, and so they would
violate a Gricean Maxim. From the examples above, it seems that sentences involving non-M↑ quanti-
fiers sound odd in contexts where more pairs of witness sets are available.For instance, the reader gets
confused when he tries to evaluate (19.a) in (20), as multiple pairs of (witness) sets of dots and stars are
available, i.e.〈{d1, d2}, {s1, s2}〉, 〈{d3, d4}, {s3, s4}〉, etc., and he does not have enough information
to prefer one of them upon the others. This does not arises in (3) or (22), where the witness sets are
immediatly and uncontroversially identified.
The multiple availability of witness sets does not seem to confuse the reader for sentences involving M↑
quantifiers, perhaps because they are simpler to interpret (cf. (Geurtsand van der Silk, 2005)). How-
ever, several cognitive experimental results showed that many other factors besides monotonicity, e.g.
expressivity/computability, fuzzyness, the fact that quantifiers are cardinal rather than proportional, etc.,
may affect the accuracy and reaction time of the interpretation of IS readings (cf. (Sanford and Paterson,
1994), (Bott and Rad́o, 2009), (Musolino, 2009), and (Szymanik and Zajenkowski, 2009)).
As it is clear to understand, however, extra-linguistic factors seem the ones that mainly affect the inter-
pretation of quantifiers. For instance, in (17), if the boysb1, b2, b3 are friends who decided to go to a
party with some girls, andb4 wants to go there with his girlfriend (g5) only, the witness sets are most
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likely identified for (18.a-b) rather than for (18.c), as the two groups of persons are not related.
Conversely, if the four boys belong to the same group of friends hangingout together, the identification
of the witness sets most likely fails in (18.a-b). That is probably the assumptiondone by (Ferreira, 2007)
and (Brasoveanu, 2009) for claiming that sentences like (18.a-b) are false in contexts like (17). Analo-
gously, in the children-pizza example in (4.d), the arrangement of the children among the tables of the
pizzeria, their mutual friendship, and so on, may affect the identification ofthe witness sets. Similar
discussions may be found in (Fintel, 1994) and (Winter, 2000).

Of course, an exhaustive study of all factors involved in the pragmatic identification of the witness
sets goes much beyond the goal of the present paper. The aim of this paper is to argue that, once witness
sets are identified, Local Maximalization applies to them. In order to formally obtain this result, a final
modification of the formulae is needed: it is necessary to pragmatically interpret the relational variables
denoting the witness sets, besides those denoting the Covers. Formula (13)is then revised as in (23).

(23) =20x(child’(x), P1(x)) ∧ =10y(pizza’(y), P2(y)) ∧
Cover(C, P1, P2) ∧ ∀xy[C(x, y))→ ate’(x, y)] ∧
∀P ′

1
[(∀x[P1(x)→P ′

1(x)] ∧ ∃C′ [Cover(C ′, P ′
1, P2) ∧ ∀xy[C(x, y)→C ′(x, y)] ∧

∀xy[C
′(x, y)→ate’(x, y)]])→∀x[P ′

1(x)→P1(x)] ] ] ∧
∀P ′

2
[(∀y[P2(y)→P ′

2(y)] ∧ ∃C′ [Cover(C ′, P1, P
′
2) ∧ ∀xy[C(x, y)→C ′(x, y)] ∧

∀xy[C
′(x, y)→ate’(x, y)]])→∀y[P

′
2(y)→P2(y)] ] ]

The only difference between (23) and (13) is that the value ofP1 andP2 is provided by an assignmentg,
as it is done for the Cover variableC. g must obey to all (extra-)linguistic pragmatic constraints briefly
listed above. The reader could start thinking that, in the new version of the formulae, we may avoid
Maximality conditions, either Local or Global. In fact, Maximalization could be simply implemented
as a constraint on the assignment functiong. In other words, we could simply imposeg to select only
Maximal witness sets. Ifg is unable to do so, the intepretation fails as in the cases discussed above.
Such a solution has been actually proposed in (Steedman, 2007) and (Brasoveanu, 2009). Conversely,
in (Robaldo, 2009b) I explained that we do need to explicitly represent theMaximality conditions. In
other words, those are not only seen as necessary conditions neededto determine if a sentence is true or
false in a certain context. Rather, in (Robaldo, 2009b), it is extensively argued that they are part of the
knowledge needed to draw the appropriate inferences from the sentences’ meaning.

5 Conclusions

This paper compared the two kind of Maximalization proposed in the literature for handling the proper
truth values of Independent Set readings. They have been termed as Local and Global Maximalization.
The former requires the non-existence of any tuple of supersets of the witness sets that also satisfy the
predication. The latter requires the witness sets to be the only tuple of sets thatsatisfy the predication.
The present paper argues in favour of Local Maximalization, and claims that the motivations that led to
the definition of Global Maximalitation, and its incorporation within most current formal approaches to
NL quantification, do not appear to be justified enough. These claims are supported by showing that, for
many NL sentences, Global Maximalization predicts counter-intuitive truth conditions.
Also several examples are hard to reconcile in a logical framework basedon Local Maximalization. It
seems, however, that the oddity of such examples depends upon pragmaticgrounds.

Based on these assumptions, the solution presented here still adopts LocalMaximalization, but ad-
vocates a pragmatic interpretation of all relational variables. Drawing from(Schwarzschild, 1996), the
present paper evolves the formulae in (Robaldo, 2009a) and (Robaldo, 2009b), making them able to
handle Cover readings, which are assumed to be the more general casesof Independent Set readings.

In the resulting formulae, the witness sets are firstly pragmatically identified, asit is done with Cover
variables, then they are locally Maximized. In other words, Pragmatics is responsible for identifying
both the (atomic) individuals involved, and the way they sub-combine to carryout the singular actions.
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The result is able to predict the suitable truth values of Cover readings in allexamples considered, and
seems to mirror the correct interplay between the Semantics and the Pragmatics of NL quantifiers.
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Abstract

We consider the problem of distinguishing polysemous from homonymous nouns. This distinction
is often taken for granted, but is seldom operationalized in the shape of an empirical model. We
present a first step towards such a model, based on WordNet augmented with ontological classes
provided by CoreLex. This model provides a polysemy index for each noun which (a), accurately
distinguishes between polysemy and homonymy; (b), supports the analysis that polysemy can be
grounded in the frequency of the meaning shifts shown by nouns; and (c), improves a regression
model that predicts when the “one-sense-per-discourse” hypothesis fails.

1 Introduction

Linguistic studies of word meaning generally divide ambiguity into homonymy and polysemy. Homony-
mous words exhibit idiosyncratic variation, with essentially unrelated senses, e.g. bank as FINANCIAL

INSTITUTION versus as NATURAL OBJECT. In polysemy, meanwhile, sense variation is systematic,
i.e., appears for whole sets of words. E.g., lamb, chicken and salmon have ANIMAL and FOOD senses.

It is exactly this systematicity that represents a challenge for lexical semantics. While homonymy is
assumed to be encoded in the lexicon for each lemma, there is a substantial body of work on dealing with
general polysemy patterns (cf. Nunberg and Zaenen (1992); Copestake and Briscoe (1995); Pustejovsky
(1995); Nunberg (1995)). This work is predominantly theoretical in nature. Examples of questions
addressed are the conditions under which polysemy arises, the representation of polysemy in the semantic
lexicon, disambiguation mechanisms in the syntax-semantics interface, and subcategories of polysemy.

The distinction between polysemy and homonymy also has important potential ramifications for
computational linguistics, in particular for Word Sense Disambiguation (WSD). Notably, Ide and Wilks
(2006) argue that WSD should focus on modeling homonymous sense distinctions, which are easy to
make and provide most benefit. Another case in point is the one-sense-per-discourse hypothesis (Gale
et al., 1992), which claims that within a discourse, instances of a word will strongly tend towards realizing
the same sense. This hypothesis seems to apply primarily to homonyms, as pointed out by Krovetz (1998).

Unfortunately, the distinction between polysemy and homonymy is still very much an unsolved
question. The discussion in the theoretical literature focuses mostly on clear-cut examples and avoids
the broader issue. Work on WSD, and in computational linguistics more generally, almost exclusively
builds on the WordNet (Fellbaum, 1998) word sense inventory, which lists an unstructured set of senses
for each word and does not indicate in which way these senses are semantically related. Diachronic
linguistics proposes etymological criteria; however, these are neither undisputed nor easy to operationalize.
Consequently, there are currently no broad-coverage lexicons that indicate the polysemy status of words,
nor even, to our knowledge, precise, automatizable criteria.

Our goal in this paper is to take a first step towards an automatic polysemy classification. Our approach
is based on the aforementioned intuition that meaning variation is systematic in polysemy, but not in
homonymy. This approach is described in Section 2. We assess systematicity by mapping WordNet senses
onto basic types, a set of 39 ontological categories defined by the CoreLex resource (Buitelaar, 1998),
and looking at the prevalence of pairs of basic types (such as {FINANCIAL INSTITUTION, NATURAL
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OBJECT} above) across the lexicon. We evaluate this model on two tasks. In Section 3, we apply the
measure to the classification of a set of typical polysemy and homonymy lemmas, mostly drawn from the
literature. In Section 4, we apply it to the one-sense-per-discourse hypothesis and show that polysemous
words tend to violate this hypothesis more than homonyms. Section 5 concludes.

2 Modeling Polysemy

Our goal is to take the first steps towards an empirical model of polysemy, that is, a computational model
which makes predictions for – in principle – arbitrary words on the basis of their semantic behavior.

The basis of our approach mirrors the focus of much linguistic work on polysemy, namely the fact
that polysemy is systematic: There is a whole set of words which show the same variation between two
(or more) ontological categories, cf. the “universal grinder” (Copestake and Briscoe, 1995). There are
different ways of grounding this notion of systematicity empirically. An obvious choice would be to use a
corpus. However, this would introduce a number of problems. First, while corpora provide frequency
information, the role of frequency with respect to systematicity is unclear: should acceptable but rare
senses play a role, or not? We side with the theoretical literature in assuming that they do. Another
problem with corpora is the actual observation of sense variation. Few sense-tagged corpora exist, and
those that do are typically small. Interpreting context variation in untagged corpora, on the other hand,
corresponds to unsupervised WSD, a serious research problem in itself – see, e.g., Navigli (2009).

We therefore decided to adopt a knowledge-based approach that uses the structure of the WordNet
ontology to calculate how systematically the senses of a word vary. The resulting model sets all senses of
a word on equal footing. It is thus vulnerable to shortcomings in the architecture of WordNet, but this
danger is alleviated in practice by our use of a “coarsened” version of WordNet (see below).

2.1 WordNet, CoreLex and Basic Types

WordNet provides only a flat list of senses for each word. This list does not indicate the nature of the
sense variation among the senses. However, building on the generative lexicon theory by Pustejovsky
(1995), Buitelaar (1998) has developed the “CoreLex” resource. It defines a set of 39 so-called basic
types which correspond to coarse-grained ontological categories. Each basic type is linked to one or more
WordNet anchor nodes, which define a complete mapping between WordNet synsets and basic types by
dominance.1 Table 1 shows the set of basic types and their main anchors; Table 2 shows example lemmas
for some basic types.

Ambiguous lemmas are often associated with two or more basic types. CoreLex therefore further
assigns each lemma to what Buitelaar calls a polysemy class, the set of all basic types its synsets belong to;
a class with multiple representatives is considered systematic. These classes subsume both idiosyncratic
and systematic patterns, and thus, despite their name, provide no clue about the nature of the ambiguity.

CoreLex makes it possible to represent the meaning of a lemma not through a set of synsets, but instead
in terms of a set of basic types. This constitutes an important step forward. Our working hypothesis is that
these basic types approximate the ontological categories that are used in the literature on polysemy to
define polysemy patterns. That is, we can define a meaning shift to mean that a lemma possesses one sense
in one basic type, while another sense belongs to another basic type. Naturally, this correspondence is not
perfect: systematic polysemy did not play a role in the design of the WordNet ontology. Nevertheless,
there is a fairly good approximation that allows us to recover many prominent polysemy patterns. Table 3
shows three polysemy patterns characterized in terms of basic types. The first class was already mentioned
before. The second class contains a subset of “transparent nouns” which can denote a container or a
quantity. The last class contains words which describe a place or a group of people.

1Note that not all of CoreLex anchor nodes are disjoint; therefore a given WordNet synset may be dominated by two CoreLex
anchor nodes. We assign each synset to the basic type corresponding to the most specific dominating anchor node.
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BT WordNet anchor BT WordNet anchor BT WordNet anchor
abs ABSTRACTION loc LOCATION pho PHYSICAL OBJECT

act ACTION log GEOGRAPHICAL AREA plt PLANT

agt AGENT mea MEASURE pos POSSESSION

anm ANIMAL mic MICROORGANISM pro PROCESS

art ARTIFACT nat NATURAL OBJECT prt PART

atr ATTRIBUTE phm PHENOMENON psy PSYCHOLOGICAL FEATURE

cel CELL frm FORM qud DEFINITE QUANTITY

chm CHEMICAL ELEMENT grb BIOLOGICAL GROUP qui INDEFINITE QUANTITY

com COMMUNICATION grp GROUP rel RELATION

con CONSEQUENCE grs SOCIAL GROUP spc SPACE

ent ENTITY hum PERSON sta STATE

evt EVENT lfr LIVING THING sub SUBSTANCE

fod FOOD lme LINEAR MEASURE tme TIME

Table 1: The 39 CoreLex basic types (BTs) and their WordNet anchor nodes

Basic type WordNet anchor Examples
agt AGENT driver, menace, power, proxy, . . .
grs SOCIAL GROUP city, government, people, state, . . .
pho PHENOMENON life, pressure, trade, work, . . .
pos POSSESSION figure, land, money, right, . . .
qui INDEFINITE QUANTITY bit, glass, lot, step, . . .
rel RELATION function, part, position, series, . . .

Table 2: Basic types with example words

Pattern (Basic types) Examples
ANIMAL, FOOD fowl, hare, lobster, octopus, snail, . . .
ARTIFACT, INDEFINITE QUANTITY bottle, jug, keg, spoon, tub, . . .
ARTIFACT, SOCIAL GROUP academy, embassy, headquarters, . . .

Table 3: Examples of polysemous meaning variation patterns

2.2 Polysemy as Systematicity

Given the intuitions developed in the previous section, we define a basic ambiguity as a pair of basic
types, both of which are associated with a given lemma. The variation spectrum of a word is then the set
of all its basic ambiguities. For example, bottle would have the variation spectrum {{art qui} } (cf.
Table 3); the word course with the three basic types act, art, grs would have the variation spectrum
{{act art}; {act grs}; {art grs} }.

There are 39 basic types and thus 39 · 38/2 = 741 possible basic ambiguities. In practice, only 663
basic ambiguities are attested in WordNet. We can quantify each basic ambiguity by the number of words
that exhibit it. For the moment, we simply interpret frequency as systematicity.2 Thus, we interpret the
high-frequency (systematic) basic ambiguities as polysemous, and low-frequency (idiosyncratic) basic
ambiguities as homonymous. Table 4 shows the most frequent basic ambiguities, all of which apply to
several hundred lemmas and can safely be interpreted as polysemous. At the other end, 56 of the 663
basic ambiguities are singletons, i.e. are attested by only a single lemma.

In a second step, we extend this classification from basic ambiguities to lemmas. The intuition is again
fairly straightforward: A word whose basic ambiguities are systematic will be perceived as polysemous,
and as homonymous otherwise. This is clearly an oversimplification, both practically, since we depend
on WordNet/CoreLex having made the correct design decisions in defining the ontology and the basic
types; as well as conceptually, since not all polysemy patterns will presumably show the same degree of
systematicity. Nevertheless, we believe that basic types provide an informative level of abstraction, and
that our model is in principle even able to account for conventionalized metaphor, to the extent that the
corresponding senses are encoded in WordNet.

2Note that this is strictly a type-based notion of frequency: corpus (token) frequencies do not enter into our model.
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Basic ambiguity Examples
{act com} construction, consultation, draft, estimation, refusal, . . .
{act art} press, review, staging, tackle, . . .
{com hum} egyptian, esquimau, kazakh, mojave, thai, . . .
{act sta} domination, excitement, failure, marriage, matrimony, . . .
{art hum} dip, driver, mouth, pawn, watch, wing, . . .

Table 4: Top five basic ambiguities with example lemmas

Noun Basic types Noun Basic types
chicken anm fod evt hum lamb anm fod hum
salmon anm fod atr nat duck anm fod art qud

Table 5: Words exhibiting the “grinding” (animal – food) pattern

The exact manner in which the systematicity of the individual basic ambiguities of one lemma are
combined is not a priori clear. We have chosen the following method. Let P be a basic ambiguity, P(w)
the variation spectrum of a lemmaw, and freq(P ) the number of WordNet lemmas with basic ambiguity P .
We define the set of polysemous basic ambiguities PN as the N -most frequent bins of basic ambiguities:
PN = {[P1], ..., [PN ]}, where [Pi] = {Pj | freq(Pi) = freq(Pj)} and freq(Pk) > freq(Pl) for k < l.
We call non-polysemous basic ambiguities idiosyncratic. The polysemy index of a lemma w, πN (w), is:

πN (w) =
| PN ∩P(w)|

| P(w)| (1)

πN simply measures the ratio of w’s basic ambiguities which are polysemous, i.e., high-frequency basic
ambiguities. πN ranges between 0 and 1, and can be interpreted analogously to the intuition that we
have developed on the level of basic ambiguities: high values of π (close to 1) mean that the majority
of a lemma’s basic ambiguities are polysemous, and therefore the lemma is perceived as polysemous.
In contrast, low values of π (close to 0) mean that the lemma’s basic ambiguities are predominantly
idiosyncratic, and thus the lemma counts as homonymous. Again, note that we consider basic ambiguities
at the type level, and that corpus frequency does not enter into the model.

This model of polysemy relies crucially on the distinction between systematic and idiosyncratic basic
ambiguities, and therefore in turn on the parameter N . N corresponds to the sharp cutoff that our model
assumes. At the N -th most frequent basic ambiguity, polysemy turns into homonymy. Since frequency
is our only criterion, we have to lump together all basic ambiguities with the same frequency into 135
bins. If we set N = 0, none of the bins count as polysemous, so π0(w) = 0 for all w – all lemmas are
homonymous. In the other extreme, we can set N to 135, the total number of frequency bins, which
makes all basic ambiguities polysemous, and thus all lemmas: π135(w) = 1 for all w. The optimization
of N will be discussed in Section 3.

2.3 Gradience between Homonymy and Polysemy

We assign each lemma a polysemy index between 0 and 1. We thus abandon the dichotomy that is usually
made in the literature between two distinct categories of polysemy and homonymy. Instead, we consider
polysemy and homonymy the two end points on a gradient, where words in the middle show elements of
both. This type of behavior can be seen even for prototypical examples of either category, such as the
homonym bank, which shows a variation between SOCIAL GROUP and ARTIFACT:

(1) a. The bill would force banks [...] to report such property. (grs)
b. The coin bank was empty. (art)

Note that this is the same basic ambiguity that is often cited as a typical example of polysemous sense
variation, for example for words like newspaper.

On the other hand, many lemmas which are presumably polysemous show rather unsystematic basic
ambiguities. Table 5 shows four lemmas which are instances of the meaning variation between ANIMAL
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Homonymous nouns ball, bank, board, chapter, china, degree, fall, fame, plane, plant, pole, post, present, rest,
score, sentence, spring, staff, stage, table, term, tie, tip, tongue

Polysemous nouns bottle, chicken, church, classification, construction, cup, development, fish, glass, improve-
ment, increase, instruction, judgment, lamb, management, newspaper, painting, paper, picture,
pool, school, state, story, university

Table 6: Experimental items for the two classes hom and poly

(anm) and FOOD (fod), a popular example of a regular and productive sense extension. Yet each of the
nouns exhibits additional basic types. The noun chicken also has the highly idiosyncratic meaning of a
person who lacks confidence. A lamb can mean a gullible person, salmon is the name of a color and a
river, and a duck a score in the game of cricket. There is thus an obvious unsystematic variety in the words’
sense variations – a single word can show both homonymic as well as polysemous sense alternation.

3 Evaluating the Polysemy Model

To identify an optimal cutoff value N for our polysemy index, we use a simple supervised approach: we
optimize the quality with which our polysemy index models a small, manually created dataset. More
specifically, we created a two-class, 48-word dataset with 24 homonymous nouns (class hom) and 24
polysemous nouns (class poly) drawn from the literature. The dataset is shown in Table 6.

We now rank these items according to πN for different values of N and observe the ability of πN
to distinguish the two classes. We measure this ability with the Mann-Whitney U test, a nonparametric
counterpart of the t-test.3 In our case, the U statistic is defined as

U(N) =

m∑

i=1

n∑

j=1

1(πN (homi) < πN (polyi))

where 1 is the function function that returns the truth value of its argument (1 for “true”). Informally,
U(N) counts the number of correctly ranked pairs of a homonymous and a polysemous noun.

The maximum for U is the number of item pairs from the classes (24 ·24 = 576). A score of U = 576
would mean that every πN -value of a homonym is smaller than every polysemous value. U = 0 means
that there are no homonyms with smaller π-scores. So U can be directly interpreted as the quality of
separation between the two classes. The null hypothesis of this test is that the ranking is essentially
random, i.e., half the rankings are correct4. We can reject the null hypothesis if U is significantly larger.

Figure 1(a) shows the U -statistic for all values of N (between 0 and 135). The left end shows the
quality of separation (i.e. U ) for few basic ambiguities (i.e. small N ) which is very small. As soon as we
start considering the most frequent basic ambiguities as systematic and thus as evidence for polysemy,
hom and poly become much more distinct. We see a clear global maximum of U for N = 81 (U = 436.5).
This U value is highly significant at p < 0.005, which means that even on our fairly small dataset, we can
reject the null hypothesis that the ranking is random. π81 indeed separates the classes with high confidence:
436.5 of 576 or roughly 75% of all pairwise rankings in the dataset are correct. For N > 81, performance
degrades again: apparently these settings include too many basic ambiguities in the “systematic” category,
and homonymous words start to be misclassified as polysemous.

The separation between the two classes is visualized in the box-and-whiskers plot in Figure 1(b). We
find that more than 75% of the polysemous words have π81 > .6. The median value for poly is 1, thus
for more than half of the class π81 = 1, which can be seen in Figure 2(b) as well. This is a very positive
result, since our hope is that highly polysemous words get high scores. Figure 2(a) shows that homonyms
are concentrated in the mid-range while exhibiting a small number of π81-values at both extremes.

We take the fact that there is indeed an N which clearly maximizes U as a very positive result that
validates our choice of introducing a sharp cutoff between polysemous and idiosyncratic basic ambiguities.

3The advantage of U over t is that t assumes comparable variance in the two samples, which we cannot guarantee.
4Provided that, like in this case, the classes are of equal size.
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Figure 1: Separation of the hom and poly classes in our dataset

These 81 frequency bins contain roughly 20% of the most frequent basic ambiguities. This corresponds to
the assumption that basic ambiguities are polysemous if they occur with a minimum of about 50 lemmas.

If we look more closely at those polysemous words that obtain low scores (school, glass and cup),
we observe that they also show idiosyncratic variation as discussed in Section 2.3. In the case of school,
we have the senses schooltime of type tme and group of fish of type grb which one would not expect to
alternate regularly with grs and art, the rest of its variation spectrum. The word glass has the unusual
type agt due to its use as a slang term for crystal methamphetamine. Finally, cup is unique in that means
both an indefinite quantity as well as the definite measurement equal to half a pint. Only 10 other words
have this variation in WordNet, including such words as million and billion, which are often used to
describe an indefinite but large number.

On the other hand, those homonyms that have a high score (e.g. tie, staff and china) have somewhat
unexpected regularities due to obscure senses. Both tie and staff are terms used in musical notation. This
leads to basic ambiguities with the com type, something that is very common. Finally, the obviously
unrelated senses for china, China and porcelain, are less idiosyncratic when abstracted to their types, log
and art, respectively. There are 117 words that can mean a location as well as an artifact, (e.g. fireguard,
bath, resort, front, . . . ) which are clearly polysemous in that the location is where the artifact is located.

In conclusion, those examples which are most grossly miscategorized by π81 contain unexpected
sense variations, a number of which have been ignored in previous studies.
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4 The One-Sense-Per-Discourse Hypothesis

The second evaluation that we propose for our polysemy index concerns a broader question on word
sense, namely the so-called one-sense-per-discourse (1spd) hypothesis. This hypothesis was introduced
by Gale et al. (1992) and claims that “[...] if a word such as sentence appears two or more times in
a well-written discourse, it is extremely likely that they will all share the same sense”. The authors
verified their hypothesis on a small experiment with encouraging results (only 4% of discourses broke
the hypothesis). Indeed, if this hypothesis were unreservedly true, then it would represent a very strong
global constraint that could serve to improve word sense disambiguation – and in fact, a follow-up paper
by Yarowsky (1995) exploited the hypothesis for this benefit.

Unfortunately, it seems that 1spd does not apply universally. At the time (1992), WordNet had
not yet emerged as a widely used sense inventory, and the sense labels used by Gale et al. were fairly
coarse-grained ones, motivated by translation pairs (e.g., English duty translated as French droit (tax)
vs. devoir (obligation)), which correspond mostly to homonymous sense distinctions.5 Current WSD, in
contrast, uses the much more fine-grained WordNet sense inventory which conflates homonymous and
polysemous sense distinctions. Now, 1spd seems intuitively plausible for homonyms, where the senses
describe different entities that are unlikely to occur in the same discourse (or if they do, different words
will be used). However, the situation is different for polysemous words: In a discourse about a party, bottle
might felicitously occur both as an object and a measure word. A study by Krovetz (1998) confirmed this
intuition on two sense-tagged corpora, where he found 33% of discourses to break 1spd. He suggests that
knowledge about polysemy classes can be useful as global biases for WSD.

In this section, we analyze the sense-tagged SemCor corpus in terms of the basic type-based framework
of polysemy that we have developed in Section 2 both qualitatively and quantitatively to demonstrate that
basic types, and our polysemy index π, help us better understand the 1spd hypothesis.

4.1 Analysis by Basic Types and One-Basic-Type-Per-Discourse

The first step in our analysis looks specifically at the basic types and basic ambiguities we observe in
discourses that break 1spd. Our study reanalyses SemCor, a subset of the Brown corpus annotated ex-
haustively with WordNet senses (Fellbaum, 1998). SemCor contains a total of 186 discourses, paragraphs
of between 645 and 1023 words. These 186 discourses, in combination with 1088 nouns, give rise to
7520 lemma-discourse pairs, that is, cases where a sense-tagged lemma occurs more than once within a
discourse.6 These 7520 lemma-discourse pairs form the basis of our analysis. We started by looking at
the relative frequency of 1spd. We found that the hypothesis holds for 69% of the lemma-discourse pairs,
but not for the remaining 31%. This is a good match with Krovetz’ findings, and indicates that there are
many discourses where there lemmas are used in different senses.

In accordance with our approach to modeling meaning variation at the level of basic types, we
implemented a “coarsened” version of 1spd, namely one-basic-type-per-discourse (1btpd). This hypothesis
is parallel to the original, claiming that it is extremely likely that all words in a discourse share the
same basic type. As we have argued before, the basic-type level is a fairly good approximation to the
most important ontological categories, while smoothing over some of the most fine-grained (and most
troublesome) sense distinctions in WordNet. In this vein, 1btpd should get rid of “spurious” ambiguity,
but preserve meaningful ambiguity, be it homonymous or polysemous. In fact, the basic type with most
of these “within-basic-type” ambiguities is PSYCHOLOGICAL FEATURE, which contains many subtle
distinctions such as the following senses of perception:

a. a way of conceiving something b. the process of perceiving
c. knowledge gained by perceiving d. becoming aware of something via the senses

Such distinctions are collapsed in 1btpd. In consequence, we expect a noticeable, but limited, reduction in
5Note that Gale et al. use the term “polysemy” synonymously with “ambiguous”.
6We exclude cases where a lemma occurs once in a discourse, since 1spd holds trivially.
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Basic ambiguity most common breaking words freq(P breaks 1btpd) freq(P ) N

{com psy} evidence, sense, literature, meaning, style, . . . 89 365 13
{act psy} study, education, pattern, attention, process, . . . 88 588 7
{psy sta} need, feeling, difficulty, hope, fact, . . . 79 338 14
{act atr} role, look, influence, assistance, interest, . . . 79 491 9
{act art} church, way, case, thing, design, . . . 67 753 2
{act sta} operation, interest, trouble, employment, absence, . . . 60 615 4
{act com} thing, art, production, music, literature, . . . 59 755 1
{atr sta} life, level, desire, area, unity, . . . 58 594 6

Table 7: Most frequent basic ambiguities that break the 1btpd hypothesis in SemCor

the cases that break the hypothesis. Indeed, 1btpd holds for 76% of all lemma-discourse pairs, i.e., for 7%
more than 1spd. For the remainder of this analysis, we will test the 1btpd hypothesis instead of 1spd.

The basic type level also provides a good basis to analyze the lemma-discourse pairs where the
hypothesis breaks down. Table 7 shows the basic ambiguities that break the hypothesis in SemCor most
often. The WordNet frequencies are high throughout, which means that these basic ambiguities are poly-
semous according to our framework. It is noticeable that the two basic types PSYCHOLOGICAL FEATURE

and ACTION participate in almost all of these basic ambiguities. This observation can be explained
straightforwardly through polysemous sense extension as sketched above: Actions are associated, among
other things, with attributes, states, and communications, and discussion of an action in a discourse can
fairly effortlessly switch to these other basic types. A very similar situation applies to psychological
features, which are also associated with many of the other categories. In sum, we find that the data bears
out our hypothesis: almost all of the most frequent cases of several-basic-types-per-discourse clearly
correspond to basic ambiguities that we have classified as polysemous rather than homonymous.

4.2 Analysis by Regression Modeling

This section complements the qualitative analysis of the previous section with a quantitative analysis
which predicts specifically for which lemma-discourse pairs 1btpd breaks down. To do so, we fit a logit
mixed effects model (Breslow and Clayton, 1993) to the SemCor data. Logit mixed effects models can
be seen as a generalization of logistic regression models. They explain a binary response variable y in
terms of a set of fixed effects x, but also include a set of random effects x′. Fixed effects correspond to
“ordinary” predictors as in traditional logistic regression, while random effects account for correlations in
the data introduced by groups (such as items or subjects) without ascribing these random effects the same
causal power as fixed effects – see, e.g., Jaeger (2008) for details.

The contribution of each factor is modelled by a coefficient β, and their sum is interpreted as the
logit-transformed probability of a positive outcome for the response variable:

p(y = 1) =
1

1 + e−z
with z =

∑
βixi +

∑
β′jx

′
j (2)

Model estimation is usually performed using numeric approximations. The coefficients β′ of the random
effects are drawn from a multivariate normal distribution, centered around 0, which ensures that the
majority of random effects are ascribed very small coefficients.

From a linguistic perspective, a desirable property of regression models is that they describe the
importance of the different effects. First of all, each coefficient can be tested for significant difference
to zero, which indicates whether the corresponding effect contributes significantly to modeling the data.
Furthermore, the absolute value of each βi can be interpreted as the log odds – that is, as the (logarithmized)
change in the probability of the response variable being positive depending on xi being positive.

In our experiment, each datapoint corresponds to one of the 7520 lemma-discourse pair from SemCor
(cf. Section 4.1). The response variable is binary: whether 1btpd holds for the lemma-discourse pair or
not. We include in the model five predictors which we expect to affect the response variable: three fixed
effects and two random ones. The first fixed effect is the ambiguity of the lemma as measured by the
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Predictor Coefficient Odds (95% confidence interval) Significance
Number of basic types -0.50 0.61 (0.59–0.63) ***
Log length of discourse (words) -0.60 1.83 (1.14–2.93) –
Polysemy index (π81) -0.91 0.40 (0.35–0.46) ***

Table 8: Logit mixed effects model for the response variable “one-basic-type-per-discourse (1btpd) holds”
(SemCor; random effects: discourse and lemma; significances: –: p > 0.05; ***: p < 0.001)

number of its basic types, i.e. the size of its variation spectrum. We expect that the more ambiguous a
noun, the smaller the chance for 1btpd. We expect the same effect for the (logarithmized) length of the
discourse in words: longer discourses run a higher risk for violating the hypothesis. Our third fixed effect
is the polysemy index π81, for which we also expect a negative effect. The two random effects are the
identity of the discourse and the noun. Both of these can influence the outcome, but should not be used as
full explanatory variables.

We build the model in the R statistical environment, using the lme47 package. The main results are
shown in Table 8. We find that the number of basic types has a highly significant negative effect on the
1btpd hypothesis (p < 0.001) . Each additional basic type lowers the odds for the hypothesis by a factor
of e−0.50 ≈ 0.61. The confidence interval is small; the effect is very consistent. This was to be expected –
it would have been highly suspicious if we had not found this basic frequency effect. Our expectations are
not met for the discourse length predictor, though. We expected a negative coefficient, but find a positive
one. The size of the confidence interval shows the effect to be insignificant. Thus, we have to assume that
there is no significant relationship between the length of the discourse and the 1btpd hypothesis. Note
that this outcome might result from the limited variation of discourse lengths in SemCor: recall that no
discourse contains less than 645 or more than 1023 words.

However, we find a second highly significant negative effect (p < 0.001) in our polysemy index π81.
With a coefficient of -0.91, this means that a word with a polysemy index of 1 is only 40% as likely
to preserve 1btpd than a word with a polysemy index of 0. The confidence interval is larger than for
the number of basic types, but still fairly small. To bolster this finding, we estimated a second mixed
effects model which was identical to the first one but did not contain π81 as predictor. We tested the
difference between the models with a likelihood ratio test and found that the model that includes π81 is
highly preferred (p < 0.0001;D = −2∆LL = 40; df = 1).

These findings establish that our polysemy index π can indeed serve a purpose beyond the direct
modeling of polysemy vs. homonymy, namely to explain the distribution of word senses in discourse
better than obvious predictors like the overall ambiguity of the word and the length of the discourse can.
This further validates the polysemy index as a contribution to the study of the behavior of word senses.

5 Conclusion

In this paper, we have approached the problem of distinguishing empirically two different kinds of
word sense ambiguity, namely homonymy and polysemy. To avoid sparse data problems inherent in
corpus work on sense distributions, our framework is based on WordNet, augmented with the ontological
categories provided by the CoreLex lexicon. We first classify the basic ambiguities (i.e., the pairs of
ontological categories) shown by a lemma as either polysemous or homonymous, and then assign the ratio
of polysemous basic ambiguities to each word as its polysemy index.

We have evaluated this framework on two tasks. The first was distinguishing polysemous from
homonymous lemmas on the basis of their polysemy index, where it gets 76% of all pairwise rankings
correct. We also used this task to identify an optimal value for the threshold between polysemous and
homonymous basic ambiguities. We located it at around 20% of all basic ambiguities (113 of 663 in
the top 81 frequency bins), which apparently corresponds to human intuitions. The second task was
an analysis of the one-sense-per-discourse heuristic, which showed that this hypothesis breaks down

7http://cran.r-project.org/web/packages/lme4/index.html
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frequently in the face of polysemy, and that the polysemy index can be used within a regression model to
predict the instances within a discourse where this happens.

It may seem strange that our continuous index assumes a gradient between homonymy and polysemy.
Our analyses indicate that on the level of actual examples, the two classes are indeed not separated by a
clear boundary: many words contain basic ambiguities of either type. Nevertheless, even in the linguistic
literature, words are often considered as either polysemous or homonymous. Our interpretation of this
contradiction is that some basic types (or some basic ambiguities) are more prominent than others. The
present study has ignored this level, modeling the polysemy index simply on the ratio of polysemous
patterns without any weighting. In future work, we will investigate human judgments of polysemy vs.
homonymy more closely, and assess other correlates of these judgments (e.g., corpus counts).

A second area of future work is more practical. The logistic regression incorporating our polysemous
index predicts, for each lemma-discourse pair, the probability that the one-sense-per-discourse hypothesis
is violated. We will use this information as a global prior on an “all-words” WSD task, where all
occurrences of a word in a discourse need to be disambiguated. Finally, Stokoe (2005) demonstrates
the chances for improvement in information retrieval systems if we can reliably distinguish between
homonymous and polysemous senses of a word.
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Abstract

WordNet is extensively used as a major lexical resource in NLP. However, its quality is far from
perfect, and this alters the results of applications using it. We propose here to complement previous
efforts for “cleaning up” the top-level of its taxonomy with semi-automatic methods based on the
detection of errors at the lower levels. The methods we propose test the coherence of two sources of
knowledge, exploiting ontological principles and semantic constraints.

1 Introduction

WordNet (Princeton WordNet (Fellbaum, 1998), henceforth WN) is a lexical resource widely used in
a host of applications in which language or linguistic concepts play a role. For instance, it is a cen-
tral resource for the quantification of semantic relatedness (Budanitsky and Hirst, 2006), in turn often
exploited in applications. The quality of this resource therefore is very important for NLP as a whole,
and beyond, in several AI applications. Neel and Garzon (2010) show that the quality of a knowledge
resource like WN affects the performance in recognizing textual entailment (RTE) and word-sense dis-
ambiguation (WSD) tasks. They observe that the new version of WN induced improvements in recent
RTE challenges, but conclude that WN currently is not rich enough to resolve such a task. What is more,
its quality may be too low to even be useful at all. Bentivogli et al. (2009) discuss the results1 of 20
“ablation tests” on systems submitted to the main RTE-5 task in which WN (alone) was ablated: 11 of
these tests demonstrated that the use of this resource has a positive impact (up to 4%) on the performance
of the systems but 9 showed a negative (up to 2% improvement when ablated) or null impact.

In the area of automatic recognition of part-whole relations, Girju and Badulescu (2006) proposed
a learning method relying on WN’s taxonomy. Analyzing the classification rules obtained, we could
see that WN taxonomical errors lead to absurd rules, which can explain wrong recognition results. For
instance, the authors obtain pairs such as ⟨shape, physical phenomenon⟩ and ⟨atmospheric phenomenon,
communication⟩ as positive constraints for part-whole recognition, while sentences like a curved shape
is part of the electromagnetic radiation or rain is part of this document would make no sense.

Some semantic problems of WN are well-known: confusion between concepts and individuals (in
principle solved since WN 2.1), heterogeneous levels of generality, inappropriate use of multiple in-
heritance, confounding and missing senses, and unclear glosses (Kaplan and Schubert, 2001; Gangemi
et al., 2003; Clark et al., 2006). Nevertheless, the number of applications where WN is used as an on-
tology has been increasing. In fact, apart from the synonymy relation on which synsets are defined, the
hyponymy/hypernymy relation is WN’s semantic relation most exploited in applications; it generates
WN’s taxonomy, which can be seen as a lightweight ontology, something it was never designed for,
though. Several works tried to address these shortcomings. Gangemi et al. (2003) proposed a manual
restructuring through the alignment of WN’s taxonomy and the foundational ontology DOLCE2, but this
restructuring just focused on the upper levels of the taxonomy. Applying formal ontology principles

1http://www.aclweb.org/aclwiki/index.php?title=RTE5_-_Ablation_Tests
2See (Masolo et al., 2003) and http://www.loa-cnr.it/DOLCE.html
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(Guarino, 1998) and the OntoClean methodology (Guarino and Welty, 2004) have also been suggested
for manually “cleaning up” the whole resource. This however is extremely demanding, because the
philosophical principles involved require a deep analysis of each concept, and as a result, is unlikely to
be achieved in a near future. Clark et al. (2006) also gave some general suggestions as design criteria for
a new WN-like knowledge base and recommended that WN should be cleaned up to make it logically
correct, but did not provide any practical method for doing so. Two other more extensive works rely
on manual interventions, either the mapping of each synset in WN to a particular concept in the SUMO
ontology (Pease and Fellbaum, 2009), or the tagging of each synset in WN with “features” from the
Top Concept Ontology (Alvez et al., 2008) to substitute or contrast the original WN taxonomy. Such
approaches are clearly very costly, as each synset needs to be examined. In addition, the ontological
value of these additional resources themselves remains to be proven. The method used in (Alvez et al.,
2008) has though helped pointing out a large number of errors in WN 1.6.

Our purpose in this paper is to show that automatic methods to spot errors, especially in the lower
levels of WN’s taxonomy, can be developed. Spotting errors can then efficiently direct the manual
correction task. Such methods could be used to complement a manual top-level restructuring and could
be seen as an alternative to fully manual approaches, which are very demanding and in principle require
validation between experts. Here, we explore methods based on internal coherence checks within WN,
or on checking the coherence between WN and annotated corpora such as those of Semeval-2007 Task 4
(Girju et al., 2007).

The paper is structured as follows: Section 2 presents the data used and the methodology; Section 3
discusses the results; Section 4 concludes, exploring how the method could be extended and applied.

2 Methodology

To spot errors in WN, our basic idea is to contrast two sources of knowledge and automatically check their
coherence. Here, we contrast part-whole data with WN taxonomy structure, on the basis of constraints
stemming from the semantics of the part-whole relations and ontological principles. The part-whole data
used is taken either from the meronymy/holonymy relations of WN or from available annotated corpora.

An incoherence between two sources of knowledge may be caused by an error in either one (or both).
Contrasting part-whole data with the taxonomy will indeed help detecting errors in the taxonomy —the
most numerous— but errors are also found in the part-whole data itself (see Section 3.3).

2.1 Extracting the Dataset

We started extracting WN taxonomy from the hypernym relations in the current version of WN (3.0), a
network of 117,798 nouns grouped in 82,155 synsets. We also extracted WN meronymy relations, i.e.,
22,187 synset pairs, split into 12,293 “member”, 9,097 “part” and 797 “substance”, to constitute the first
part-whole dataset. In order to replicate our methodology, we also extracted 89 part-whole relation word
pairs annotated with WN senses from the SemEval-2007 Task 4 datasets (Girju et al., 2007). We kept the
positive examples from the training and test datasets,3 excluding redundant pairs, and correcting a couple
of errors. This data is also annotated with the meronymy sub-relations inspired from the classification of
Winston et al. (1987), but five subtypes instead of WN’s three, although “member-collection” can safely
be assumed to correspond to WN’s “member” meronymy. We will call this sub-relation Member, be it
from WN or from SemEval.

We also tried to get similar datasets from the SemEval-2010 Task 8 but, not being annotated with
WN senses, they are useless for our purposes. Figure 1 illustrates a WN-extracted meronymy pair from
our corpus4, encoded in our own xml format. Synsets are presented with the standard WN sense keys for
each word, the recommended reference for stability from one WN release to another.5

3http://nlp.cs.swarthmore.edu/semeval/tasks/task04/data.shtml
4Available at http://www.loa-cnr.it/corpus/corpus.tar.gz
5A sense key combines a lemma field and several codes like the synset type and the lexicographer id. See http://
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<pair relationOrder=“(e1, e2)” comment=“meronym part” source=“WordNet-3.0”>

<e1 synset=“head%1:06:04” isInstance=“No”>

<hypernym>

{obverse%1:06:00}. . . {surface%1:06:00}. . . {artifact%1:03:00 }. . . {physical object%1:03:00}{entity%1:03:00}
</hypernym>

</e1>

<e2 synset=“coin%1:21:02” isInstance=“No”>

<hypernym>

. . . {metal money%1:21:00}{currency%1:21:00}. . . {quantity%1:03:00}{abstract entity%1:03:00}{entity%1:03:00}
</hypernym>

</e2>

</pair>

Figure 1: Example pair from the annotated dataset

2.2 The Tests

2.2.1 Ontological constraints

The semantics of the part-whole relation on which the meronymy/holonymy relations are founded in-
volves ontological constraints: in short, the part and the whole should be of a similar nature. Studies
in Mereology show that part-whole relations occur on all sub-domains of reality, concrete or abstract
(Simons, 1987; Casati and Varzi, 1999). As a few cognitively oriented works explicitly state, the part
and the whole should nevertheless belong to the same subdomain (Masolo et al., 2003; Vieu and Aur-
nague, 2007). Other work, e.g., the influential (Winston et al., 1987), more or less implicitly exploit this
homogeneity constraint. Our tests examine and compare the nature of the part and the whole in attested
examples of meronymy, looking for incoherences. Here we use only a few basic ontological distinctions,
namely, the distinction between:

• endurants (ED) or physical entities (like a dog, a table, a cave, smoke),
• perdurants (PD) or eventualities (like a lecture, a sleep, a downpour), and
• abstract entities (AB — like a number, the content of a text, or a time).

These are only three of the four topmost distinctions in DOLCE (Masolo et al., 2003), that is, we actually
group qualities (Q, the fourth top-level category) into abstract entities here.

Tests 1–3 are directly aimed at detecting ontological heterogeneity in meronymy pairs that mix the
three categories ED, PD and AB, as just explained. The tests are queries on our corpus to extract and
count meronymy pairs (pairs of synsets of the form ⟨e1,e2⟩ where e1 is the part and e2 is the whole)
that involve an ontological heterogeneity. Test 1 focuses on pairs mixing endurants and abstract entities
(pairs of type ⟨ED,AB⟩ or ⟨AB,ED⟩), Test 2 on endurants and perdurants (⟨ED,PD⟩ or ⟨PD,ED⟩) and Test
3 on perdurants and abstract entities (⟨PD,AB⟩ or ⟨AB,PD⟩).

However, WN 3.0’s top-level is not as simple as DOLCE’s, so to recover the three basic categories
we had to group several classes from different WN branches. In particular perdurants are found both
under physical entity%1:03:00 (process%1:03:00) and under abstraction%1:03:00 (event%1:03:00 and
state%1:03:00). The map we first established was then as follows:

• ED = physical entity%1:03:00 \ process%1:03:00;
• PD = process%1:03:00 ∪ event%1:03:00 ∪ state%1:03:00;
• AB = abstraction%1:03:00 \ (event%1:03:00 ∪ state%1:03:00).

Since all groups in WordNet are under abstraction%1:03:00 irrespective of the nature of the members,
it was obvious from the start that most “member” meronymy pairs would be caught by Tests 1 or 3. This
is the reason why groups were actually removed from AB so the final map posited:

• AB = abstraction%1:03:00 \ (event%1:03:00 ∪ state%1:03:00 ∪ group%1:03:00).

wordnet.princeton.edu/wordnet/documentation/
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2.2.2 Semantic constraints

Two more tests were designed to check basic semantic constraints involved in meronymy relations.
Test 0 is related to the problem of confusion between classes and individuals evoked above and

checks for meronymy pairs between an individual and a class. Meronymy in WN applies to pairs of
classes and to pairs of individuals, but mixed pairs are also found, either between a class and an individual
or between an individual and a class. The semantics of WN meronymy is not precisely described in
Fellbaum (1998), but observing the data, the following appears to fit the semantics of “is a meronym of”
between two classes A and B: the disjunction of the formulas “for all/most instances a of A, there is an
instance b of B such that P (a, b)” and “for all/most instances b of B, there is an instance a of A such that
P (a, b)”, where P is the individual-level part-whole relation. On this basis, a meronymy between a class
A and an individual b would simply mean: “for all/most instances a of A, P (a, b)”, while a meronymy
between an individual a and a class B would mean: “for all/most instances b of B, P (a, b)”. The former
can make sense, cf. ⟨sura%1:10:00, koran%1:10:00⟩ (all suras are part of the Koran). However, the latter
would imply that all (most) instances of the class would share a same part, i.e., they would overlap. That
the instances of a given class all overlap is of course not logically impossible, but it is highly unlikely for
lexical classes. The purpose of Test 0 is to check for such cases, expected to reveal confusion between
individuals and classes, that is, errors remaining after the introduction of the distinction in WN 2.1.6

Test 4 is dedicated to the large number of Member pairs in WN and SemEval data, somehow disre-
garded by the removal of groups from AB above. The semantics of this special case of meronymy clearly
indicates that the whole denotes some kind of group, e.g., a collection or an organization, and that the part
is a member of this group (Winston et al., 1987; Vieu and Aurnague, 2007). Group concepts in WN are
hyponyms of group%1:03:00. A last coherence check, done by Test 4, thus extracts the Member pairs in
which the whole is not considered a group because it is not an hyponym (or instance) of group%1:03:00.

3 Results, Analysis and Discussion

Table 1: Number of pairs extracted by the tests
Error Category Test WordNet SemEval

0 349 1.57% 0 0%
Semantic

4 550 4.47% 7 7.87%

1 163 1.62% 2 2.78%
Ontological

2 45 0.45% 2 2.78%
3 108 1.07% 0 0%

The number of pairs extracted by our queries are summarized on Table1. The error rates are quite
low, ranging from 0 to 7.87% depending on the data set of meronymy pairs (WN or SemEval). The
highest error rate is provided by Test 4: 550 (4.47%) of the 12,293 WN Member pairs and 7 (7.87%)
of 19 Member pairs in SemEval dataset were identified as semantic errors because the whole is not a
group in WN taxonomy. Test 0 has the lowest rate, just 349 (1.57%) of 22,187 WN meronymy pairs
are suspected of confusing classes and individuals. More important than the error rate is that the tests
achieved maximal precision. After manual inspection of all the suspect pairs extracted, it turns out all the
pairs indeed suffered from some sort of error or another. Of course, the few tests proposed here cannot
aim at spotting all the taxonomy errors in WN, i.e., recall surely is low, but their precision is a proof of
the effectiveness of the method proposed, which can be extended by further tests to uncover more errors.

For Tests 1–3, since the three categories ED, PD and AB are large and diverse, the analysis of the
errors started with looking for regularities among the taxonomic chains of hypernyms of the synsets in

6Another, very simple and superficial test could be to check synsets for names with capital letters. This of course doesn’t
rely on ontological knowledge.
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the pairs. In particular, we looked for taxonomic generalizations of sets of pairs to divide the results in
meaningful small sets. These sets were manually examined in order to check the intended meaning of the
meronymy relations and determine the possible problems, either in the taxonomy or in the meronymy;
for this we used all the information provided by WordNet as synset, synonymy, taxonomy, and glosses.
For Tests 0 and 4, similar regularities could be observed. Several regularities denote a few systematic
errors relatively easily solved using standard ontological analysis, described in the Sections 3.1–3.5.

3.1 Confusion between class and group

Several individual collections e.g., new testament%1:10:00 , organizations e.g., palestine liberation
organization%1:14:00, and genera e.g., genus australopithecus%1:05:00 are considered as classes in
WN instead of groups (errors extracted with Test 0). The first example, new testament%1:10:00, is
glossed as “the collection of books ...”, but is not considered as an instance of group, it is a subclass of
document%1:10:00.7 The latter two are seen as subclasses instead of instances of group; this would
mean that all instances of palestine liberation organization%1:14:00 (whatever these could be) and
all instances of genus australopithecus%1:05:00 (which makes more sense) actually are groups. But
if there are instances of the genus Australopithecus at all, these are individual hominids, not groups.
In fact, the hesitation of the lexicographer is visible here, since lucy%1:05:00 is both a Member of
genus australopithecus%1:05:00 and an instance of australopithecus afarensis%1:05:00, a subclass of
hominid%1:05:00 (not of group). To show further the confusion here, australopithecus afarensis%1:05:
00 itself also is a Member of genus australopithecus%1:05:00, which, with the semantics of Member
between classes, would mean that instances of australopithecus afarensis%1:05:00 are members of in-
stances of genus australopithecus%1:05:00, which is clearly not adequate.

Despite this confusion, dealing with collections, organizations and groups as individuals poses no
real problem. The Member meronymy is adequately used elsewhere in WN to relate individuals (e.g.,
balthazar%1:18:00, an instance of sage%1:18:00, is a Member of magi%1:14:00, an instance of col-
lection%1:14:00). Dealing with biological genera is arguably more complex, as one can see them both
as classes whose instances are the individual organisms, and as individuals which are instances of the
class genus%1:14:00. A first-order solution to this dilemma, which applies more generally to socially
defined concepts, proposes to consider concepts (and genera) as individuals, and to introduce another
sort of instance relation for them (Masolo et al., 2004). Beyond genera, related problems occur with the
classification of biological orders, divisions, phylums, and families, most of which are correctly consid-
ered as groups (e.g., chordata%1:05:00), except for a few, pointed out by Test 4 (e.g., amniota%1:05:00,
arenaviridae%1:05:00). All these though should be group individuals, not group classes as now in WN.

3.2 Confusion between class and individual which is a specific instance of the class

Test 0 also points at a few errors where a class is confused with a specific instance of this class.
This error corresponds to a missing sense of the word, used with a specific sense. Examples include
the individual-class pairs ⟨great divide%1:15:00, continental divide%1:15:00⟩,8 ⟨saturn%1:17:00, so-
lar system%1:17:00⟩, ⟨renaissance%1:28:00, history%1:28:00⟩, in which the continental divide at stake
is not any one but that of North America, the solar system, ours, and the history, the history of mankind.
Sometimes the gloss itself makes it clear that the lexicographer wanted to do two things at a time; cf. for
continental divide%1:15:00: “the watershed of a continent (especially the watershed of North America
formed by a series of mountain ridges extending from Alaska to Mexico)”.

7This particular error doesn’t show again with Test 4 because the meronyms of new testament%1:10:00 are “part”
meronyms, not Member meronyms.

8WN has chosen a restrictive sense for the Great Divide, making it a proper part of the Continental Divide. In other
interpretations these two names are synonyms.
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3.3 Confusion between meronymy and other relations

The meronymy relation itself can be wrong, that is, it is confused with other relations, especially “is lo-
cated in” ⟨balkan wars%1:04:00, balkan peninsula%1:15:00⟩ (Test 2), ⟨nessie%1:18:00, loch ness%1:
17:00⟩ (Test 1); “participates in” ⟨feminist%1:18:00, feminist movement%1:04:00⟩, ⟨air%1:27:00,
wind%1:19:00⟩ (Test 2); “is a quality of” ⟨personality%1:07:00, person%1:03:00⟩, ⟨regulation time%
1:28:00, athletic game%1:04:00⟩ (Test 3); or still other dependence relations such as in ⟨operating
system%1:10:00, platform%1:06:03⟩ (Test 1). Diseases and other conditions regularly give rise to a
confusion with “participates in” or its inverse, as with ⟨cancer cell%1:08:00, malignancy%1:26:00⟩,
⟨knock-knee%1:26:00, leg%1:08:01⟩, and ⟨acardia%1:26:00, monster%1:05:00⟩ (Test 2).

3.4 Confusion between property (AB) and an entity (ED or PD) having that property

A regular confusion occurs between an entity and a property of that entity, for instance a shape, a quantity
or measure, or a location. Similarly, confusions occur between a relation and an ED or PD being an
argument of that relation. Examples are extracted mostly with Tests 1 and 3, but a few examples are also
found with Tests 2 and 4, when several problems co-occurred. Such confusions lead to wrong taxonomic
positions: coin%1:21:02, haymow%1:23:00 and tear%1:08:01 are attached under quantity%1:03:00
(AB), while the intuition as well as the glosses make it clear that a coin is a flat metal piece and a
haymow a mass of hay, that is, concrete physical entities under ED; similarly, corolla%1:20:00 and
mothball%1:06:00 are attached under shape%1:03:00 (AB), while there are clearly ED.

Regularities group together some cases, e.g., many hyponyms of helping%1:13:00 (drumstick, fillet,
sangria...) are spotted because helping%1:13:00 is under small indefinite quantity%1:23:00 (AB). It
turns out that small indefinite quantity%1:23:00 and its direct hypernym indefinite quantity%1:23:00
cover more physical entities of a certain quantity rather than quantities themselves. The tests reveal
similar errors at higher levels in the hierarchy: possession%1:03:00 “anything owned or possessed” is
attached under relation%1:03:00 “an abstraction belonging to or characteristic of two entities or parts
together” (AB), that is, the object possessed is confused with the relation of possession. Test 1 points at
this error 16 times (e.g., credit card%1:21:00 and hacienda%1:21:00, clearly not abstracts, are spotted
this way). Another important mid-level error of this kind is that part%1:24:00, while glossed “something
determined in relation to something that includes it”, is attached under relation%1:03:00 (AB) as well.
As a result, all its hyponyms, for instance, news item%1:10:00, and notably, substance%1:03:00 “the
real physical matter of which a person or thing consists” and all its hyponyms (e.g., dust%1:27:00,
beverage%1:13:00) are considered abstract entities.9

3.5 Confusion between two senses of a word

All the tests yield errors denoting missing senses of some words in WN. Test 4 shows that Member is
systematically used between a national of a country and that individual country, e.g. ⟨ethiopian%1:18:00,
ethiopia%1:15:00⟩, thus referring to the sense of country as “people of that nation”. But while the word
country has both the “location” and the “people” senses (among others) in WN, individual countries do
not have multiple senses and are all instances of country%1:15:00, the “location” sense.

Similarly, hyponyms of natural phenomenon%1:19:00 (PD) are often confused with the object (ED)
involved, i.e., the participant to the process, revealing missing senses (examples extracted with Test 2).
Precipitation has (among others) two senses, precipitation%1:23:00 “the quantity of water falling to
earth” (a quantity, AB), and precipitation%1:19:00 “the falling to earth of any form of water” (a natural
phenomenon, PD). The actual water fallen (ED), is missing, as revealed by the pair ⟨ice crystal%1:19:00,
precipitation%1:19:00⟩ (from Test 2).

Other errors of this kind are more sporadic, as with ⟨golf hole%1:06:00, golf course%1:06:00⟩ (golf
hole has only a “playing period” sense, its “location” sense is missing, from Test 1), and ⟨coma%1:17:00,

9substance%1:03:00 acquires though a physical entity character through multiple inheritance, since it also has matter and
physical entity as hypernyms. It not not obvious why multiple inheritance has been used here.
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comet%1:17:00⟩ (coma has only a “process” sense, its “physical entity” sense is missing, from Test 2).

3.6 Polysemy in WordNet

The last two types of error, 3.4 and 3.5, point at polysemy issues, as well as the few cases of 3.2. There
are two strategies to address polysemy in WN. The main one is the distinction of several synsets for the
different senses of a word, but there is also the use of multiple inheritance that gives several facets to a
single synset. The literature on WN doesn’t make it clear why and when to use multiple inheritance rather
than multiple synsets, and it appears that lexicographers have not been methodical is its use. Some cases
of “dot objects” (Pustejovsky, 1995) have been accounted this way. For instance, letter%1:10:00 inherits
both its abstract content from its hypernym text%1:10:00 (AB) and its physical aspect from its hypernym
document%1:06:00 (ED). However, the polysemy of book, the classical similar case, is not accounted for
in this way: book%1:10:00 only is ED. And while document has two separate senses, document%1:10:00
(AB) and document%1:06:00 (ED), there is no separate abstract sense for book. Test 1 points at this
problem with the pair ⟨book of psalms%1:10:01, book of common prayer%1:10:00⟩, where the part is
a sub-class (rather than an instance, but this is an additional problem pointed by Test 0) of book%1:10:00
(ED), while the whole is an instance of sacred text%1:10:00, a communication%1:03:00 (AB).

As far as polysemy standardly accounted with multiple senses goes, our tests point at a need for a
more principled use there as well. In particular, the polysemy accounted for at a given level is often
not reproduced at lower levels, as just observed for document and book. We also have seen above that
the polysemy of the word country is not “inherited” by individual countries. Similarly the polysemy
of precipitation has no repercussion on that of rain, which has a sense rain%1:19:00 under precipita-
tion%1:19:00, and none under precipitation%1:23:00 (on the other hand, the material sense of rain,
rain%1:27:00 “drops of fresh water that fall”, an ED, lacks for precipitation).

A few pairs extracted with Test 4 show the hesitation of the lexicographer between the classifica-
tion of a collection as a group, and a classification that accounts for the nature of the collection ele-
ments. For instance constellation%1:17:00 and archipelago%1:17:00 have members but are ED, while
galaxy%1:14:00 is a group. This could be properly addressed by splitting the group category, erro-
neously situated among abstract entities anyway, into different group categories (e.g., one for each of
ED, PD and AB), or exploit multiple inheritance if compatible with its regimentation.

3.7 Difficult ontological issues

Although all the pairs retrieved by our tests point at (one or several) errors, in a few cases, these are not
solved easily. In particular, difficult ontological issues are faced with fictional entities. WN classifies
most of these under psychological feature%1:03:00 (AB). However, these fictional entities often show
very similar properties to those of concrete entities. As a result, some of them are classified as ED or
PD, e.g., acheron%1:17:00 is an instance of river%1:17:00 (ED), while being somehow recognized as
fictional since it is a meronym of hades%1:09:00, a subclass (here again, not an instance, an additional
problem) of psychological feature%1:03:00 (AB), something pointed out by Test 1. Others have concrete
parts, e.g. we find the pair ⟨wing%1:05:00, angel%1:18:00⟩ among the cases of ⟨ED,AB⟩, i.e. Test 1
results. Angel wings (and feathers, etc.) are of course of a different nature than bird wings, and hellish
rivers are not real rivers, but how to distinguish them without duplicating most concrete concepts under
psychological feature%1:03:00 (AB) is unclear.10

Another regular anomaly is found with roles and relations, e.g., with pairs like ⟨customer%1:18:00,
business relation%1:24:00⟩, an ⟨ED,AB⟩ case (Test 1). A straightforward analysis saying that meronymy
has been confused with participation (cf. 3.3) would overlook the fact that the customer role is defined
by the business relation itself, i.e., that the dependence is even tighter. Since currently in WN, cus-
tomer%1:18:00 simply is a sub-class of person%1:03:00 (ED), in any case the classical issues related to

10Although the ontological nature of fictional entities is discussed in metaphysics (see, e.g., (Thomasson, 1999)), how to deal
with their “concrete” aspects is not a central issue.
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the representation of roles are not addressed, and a more general solution should be looked for, perhaps
along the lines of (Masolo et al., 2004).

3.8 Small errors

Finally, our tests identify a few isolated WN errors, which can be seen as small slips, such as for in-
stance a wrong sense selected in the meronymy, e.g., ⟨seat%1:06:01, seating area%1:06:00⟩ where
seat%1:15:01 (the area, not the chair) should have been selected,11 or a wrong taxonomical attachment,
that is, a wrong sense selected for an hypernym, e.g., infrastructure%1:06:01 is an hyponym of struc-
ture%1:07:00, a property, instead of structure%1:06:00, an artifact (from the pair ⟨infrastructure%1:06:
01, system%1:06:00⟩ extracted with Test 1).

3.9 Types of solutions

As can be observed, tests do not all point at a unique type of problem, nor suggest a unique type of
solution. Basically, there are five kinds of formal issues underlying the types of errors analyzed above,
each calling for different modifications of WN:

• a synset is considered as a class but should be an individual (3.1): need to change its direct hyper-
nym link into an instance-of link, possibly changing as well the attachment point in the taxonomy;

• a synset is not attached to the right place in the taxonomy (3.4, 3.8): need to move it in the
taxonomy;

• a synset mixes two senses (3.2, 3.5): need to introduce a missing sense, either attached elsewhere
in the taxonomy or as instance of the synset at hand;

• the meronymy relation is confused with another one (3.3): need to remove it (or change it for
another sort of relation when this is introduced in WN);

• the meronomy relation is established between the wrong synsets (3.8): need to change one of the
two synsets related by another sense of a same word.

In some cases, the problems should be addressed through more general cures, at a higher level in the
taxonomy (3.4) or by imposing more systematic modeling choices (3.6, 3.7).

4 Looking forward

We showed in this paper that automatic methods can be developed to spot errors in WN, especially in
the hyperonymy relations in the lower levels of the taxonomy. The query system based on ontological
principles and semantic constraints we proposed was very effective, as all the items retrieved did point
to one or more errors. With such generic tests though, a manual analysis of the extracted examples by
lexicographers, domain or ontological experts is necessary to decide on how the error should be solved.
However, this same analysis showed many regularities pointing at standard ontological errors, which
suggested that the tests can be much refined to limit the variety of issues caught by a single test and that
simple repair guidelines can be written.

This work can therefore be developed in several directions. On the one hand, the same tests can be
exploited further by expanding the meronymy datasets, for instance if some annotated corpus similar
to the SemEval2007 datasets becomes available. The range of tests can be extended as well. For in-
stance, one can make further coherence tests exploiting meronymy data, refining or complementing the
Tests 0–4 presented here. The class of abstract entities AB groups a variety of concepts, so incompatible
combinations of subclasses are certainly present in ⟨AB,AB⟩ pairs (e.g., across relation%1:03:00, psycho-
logical feature%1:03:00, or measure%1:03:00), suggesting new tests. Without considering to remove
groups from abstract entities, cases of incoherence involving groups could also be addressed by checking

11This is extracted with Test 1, because an additional problem appears with seating area%1:06:00 (or rather with its direct
hypernym room%1:23:00), which is under spatial relation%1:07:00 (AB) rather than area and location (ED). This shows that
the error in the meronomy relation would in principle require finer-grained tests to be found.
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the compatibility of the ontological categories of their members. Among the class of physical entities
ED, we disregarded the presence of location entities, so new tests could also examine incompatible com-
binations of subclasses of ED. Finally, we could check whether the “substance” meronym relation indeed
involves substances, in a similar way as Test 4 for groups. Additional tests can be considered using other
knowledge sources than meronymy data. Within WN, we could exploit the semantics of tagged glosses
(cf. Princeton WordNet Gloss Corpus) in order to check the coherence with the taxonomy. And since
WN is more than a network of nouns, others relations can be exploited, for instance between nouns and
verbs. Similarly, SemEval datasets deal with other relations than the one exploited here: from other sub-
types of meronymy (e.g., “place-area”), to any of the semantic relations analyzed in the literature (e.g.,
“instrument-agency”). In particular, relations involving thematic roles are quite easily associated with
ontological constraints and so can constitute the basis for further tests.

On the other hand, methods aiming at improving the quality of WN can be concretely built on the
basis of these tests. A semi-automatic tool for “cleaning-up” WN could be fully developed, which could
contribute to the next, improved, version of WN. The analysis of regular errors made in WN could simply
lead to guidelines to help lexicographers avoid classical ontological mistakes. Such guidelines could be
used for the extension of Princeton WN, e.g., for new domains. They could be used also during the cre-
ation of new WordNets for other languages, suggesting at the same time to abandon the common practice
of simply importing the taxonomy of Princeton WN, importing also its errors. These two ideas could
be combined in creating a tool to assist the development of WordNets by automatically checking errors
and pointing out them in the development phase. This could well complement the TMEO methodology,
based on ontological distinctions, used during the creation of the Sensocomune computational lexicon
(Oltramari et al., 2010).
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The past year has witnessed a surge of interest in the issue of compositional semantics: modelling the 
meaning of complex phrases. To date, distributional approaches have successfully dealt only with the 
meaning  of  individual  words  in  context.  Recent  attempts  to  address  the  more  general  case  of 
compositional meaning have tended to focus either on mathematical models, which have yet  to be 
demonstrated useful in a linguistic setting, or on syntactically-motivated approaches which do not yet 
permit  application to  unconstrained text.  We present  a purely distributional  compositional  model, 
based  on  the  simple  addition  of  expectation  vectors.  Expectation  vectors  (Washtell,  2010)  are 
particularly appealing from a compositional standpoint as they are naturally sensitive to word-order 
alterations whilst being insensitive to the substitution of distributionally similar words. We explore the 
properties of these and two baseline models using datasets based upon human judgements of phrasal 
similarity.  Whilst  far  from solving the  problem of  compositionality,  our  findings raise interesting 
questions and provide some useful ideas and benchmarks for those tackling this very current problem.

1. Introduction and motivation
 

The distributional hypothesis has enjoyed great success over the past decade in the field of empirical 
lexical  semantics,  with distributional  models  performing competitively in tasks which would once 
have been considered the province of knowledge-driven systems. Many of these successes have been 
based upon geometric/vector representations and have dealt with the classification of individual words 
in generalised or specific contexts, in which the unstructured content of those contexts has proven 
sufficient to enable useful inferences regarding the semantics of the word in question. Such purely 
distributional  models  of  semantics  are  particularly attractive  from a cognitive  perspective  as  they 
presuppose little language-specific knowledge, and thus can also be construed as models of language 
acquisition1. This also represents a practical benefit for applications-oriented research as such models 
can be applied to various languages and registers with little modification.

However if distributional models, or indeed semantic models in general, are to describe language 
adequately  and  continue  their  success,  then  the  issue  of  compositional  meaning  remains  to  be 
addressed  (Pustejovsky,  1995).  Baroni  (2010)  observes  that  a  “long  tradition  of  scholars 
unsympathetic to statistical  [i.e.  distributional] approaches to language have argued that they are 
doomed to fail because they cannot capture compositionality”. As limits are being reached regarding 
what can be accomplished with existing (i.e. non-compositional) models, and the growing volume of 
un-annotated  digital  content  continues  to  motivate  a  search  for  ever  more  sophisticated  ways  of 
making sense of it, the importance of Baroni’s scholars’ challenge is beginning to become acutely felt 
in the research community. 2010 saw the introduction of the ESSLLI workshop on Compositionality 
and Distributional Semantic Models (DistComp), conceived specifically to address this problem. At 
the same time, over half of the papers at the ACL 2010 workshop on Geometrical Models of Natural 
Language Semantics (GEMS’10) dealt explicitly with the issue of compositionality (in contrast with 
just a single paper the previous year). 

In this paper we present a purely distributional vector model of semantic compositionality. The 
model  is  based  on  work  inspired  by  principles  in  semiotics  (Washtell,  2010),  a  field  which 
traditionally has philosophical and sociolinguistic leanings. However, the main idea exploited – that of 
the central role of expectation in meaning – has begun to receive attention elsewhere in the lexical 

1 In reality nearly all present models incorporate some language or task specific knowledge; the most pervasive is 
the need to define what constitutes a lexical unit (token), without which distributional analysis is problematic. 
The fact that distributional regularities can be observed on many scales suggest that this is an uneasy solution.
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semantics  literature  (Erk  &  Padó,  2008,  2009;  Yuret,  2007,  2010)  and  has  support  in  both 
psycholinguistics and information theory (Attneave, 1959; Brouwer et al, 2010; Mitchell et al, 2010).

2. Background
 

Frege’s principle of compositionality asserts that the meaning of a complex expression is determined 
by the meanings of its parts and the way in which those parts are combined. This seems somewhat at 
odds with the distributional hypothesis; whereas the latter links the meaning of an utterance to its 
external  context,  the  former  focuses  on  the  internal;  together  these  create  an  apparently  circular 
delegation of responsibility concerning the residence of meaning2. In empirical lexical semantics, it is 
the distributional hypothesis which has received the most attention. This accords with the fact that 
most attempts to model meaning have focused on atomic units (i.e. words or lemmas), this either being 
seen as a necessary step towards conquering compositional meaning, or having provided sufficient 
gains in its own right to distract from what is generally considered a harder problem.

Perhaps one of the simplest geometric model of phrase meaning found in the literature is the bag-
of-vectors (more generally the “bag-of-words”) in which a vector model of word meaning is elevated 
to  the  phrase  or  document  level  by  summing  (or  alternatively  performing  component-wise 
multiplication3)  of  word  vectors  (Schütze,  1998).  This  has  the  advantage  that  it  is  immediately 
applicable to any model in which word meaning can be expressed as a vector. The principle limitation 
of course is that this takes no account of word order. Therefore, while it has proven effective in the 
context  of  document  retrieval  and  coarse-grained  classification  tasks,  it  is  generally  considered 
insufficient for fine-grained semantic tasks such as lexical entailment and question answering in which 
structure tends to play a dominant role. One major line of investigation therefore has been into vector 
models which are capable of encoding word order information. Vector representations, despite their 
convenience, seem to present something of a hurdle in this respect. One obvious approach is to use a 
non-commutative vector operator, such as the tensor product (Smolensky, 1990). Alas, as the product 
of two tensors results in a tensor of higher order (e.g. a matrix from a vector), the dimensionality of the 
representation increases exponentially with each term added. This obviously presents a problem for 
the meaningful comparison of phrases of different lengths, not to mention scalability.

Circular convolution has been proposed as a non-commutative vector operator which does not 
suffer from the problem of dimensionality explosion (Plate, 1995; Jones & Mewhort, 2007). Sahlgren 
et al (2008) describe an alternative vector-based approach to combining words-in-context with word-
order information which does not focus on a specific operator. Rather, a vector for a given word is 
“contextualized” by merging  it  with  permuted  forms  of  the  vectors  representing  its  neighbouring 
words. After this, simple vector addition is used4. The number of times a vector is permuted depends 
on its distance from the word of interest. Owing to this explicit dependence on word positions, the 
method is only proposed as a way of comparing individual words in context, not arbitrary passages 
(i.e. such that context words are imbued with meaningful positions relative to the headword slot). Both 
convolution  and  permutation  seem like  somewhat  heavy-handed  ways  of  encoding  structure  for 
semantic  applications:  while  structures  having  similar  words  at  identical  positions  may  be 
compositionally similar under these approaches (depending on how those words’ vectors are formed), 
structures having similar or even identical words at slightly different positions will not be, as any 
similarities will  have been obfuscated by the permutation or convolution process. Convolutions in 
particular were designed to operate upon periodic functions and time-series data; the manner in which 
they discard information in a linguistic context  seems rather arbitrary.  Unsurprisingly,  Mitchell  & 
Lapata (2010) find compositional models built upon convolution to perform very poorly.

Rudolph & Giesbrecht  (2010) have proposed square matrices as an alternative to vectors for 
building compositional models. Standard matrix multiplication is both non-commutative and will take 

2 Some citations of Frege’s principle bring the distributional and compositional hypotheses into even starker 
conflict, observing that the meaning of a part is the contribution it makes to the phrase to which it belongs.
3 In vectors comprising positive non-zero elements, these operators are equivalent: adding components such as 
PMI which incorporates a log function, is equivalent to multiplying them in the absence of the log. The preferred 
function is therefore dependent upon the nature of the vector components (see Mitchell & Lapata, 2010).
4 Although Sahlgren  et al’s model is not cast in terms of operators, it can be thought of as involving a non-
commutative operator which entails a permutation and an addition, so making it comparable to a convolution.
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two square matrices and produce another matrix of the same dimensions. The authors show that such a 
matrix representation is able to subsume various existing vector models (e.g. circular convolution) by 
varying the manner in which vectors are encoded into matrices. Nonetheless, it is not yet clear how 
this approach can be used to transcend the existing limitations of these models.

Specifically,  while the various approaches described attempt  to address the issue of differing 
linguistic forms requiring different representations, it  is not clear how any of them might  usefully 
capture structural  synonymy,  in which markedly different  forms  have very similar  meanings  (e.g. 
[noun1][passive verb] [noun2] versus [noun2][active verb][noun1]), or differentiate either case from 
those in which word order is relatively unimportant (e.g. “they researched it thoroughly” versus “they 
thoroughly researched it”).  Also, while going to lengths to compose words in a way that is non-
commutative,  these  methods  largely  assume  associativity.  While  in  some  cases  this  may  seem 
inconsequential: dogs (chase cats) ≈ (dogs chase) cats. In other, especially less compositional (more 
lexicalised) cases, it seems unsatisfactory:  (new york) skyline ≠ new (york skyline). Arguably what is 
needed are models which contend intelligently with varying degrees of compositionality. This would 
seem to favour something more sophisticated than can be captured by a mathematical operator.

The limitations of  mathematical  approaches to  “compositionalising” distributional  models  are 
perhaps one reason why many researchers have eschewed a purely distributional approach in favour of 
more  linguistically  informed  models,  incorporating notions  of  word or  relationship  type (Padó & 
Lapata, 2007; Clark et al 2008). A full review of these is beyond the scope of this paper, suffice to say 
that some of these models have demonstrated promise under restricted experimental conditions. Of 
particular relevance to us are the approaches taken by Erk & Padó (2008, 2009) and Thater  et al 
(2010) in which a component word is represented by combining a vector describing its type with one 
describing the selectional preferences (or expectations) of one of its dependent terms, in parsed text. In 
this way, words provide context for each other, and the two newly contextualized words define the 
meaning  of  the  whole:  an  idea  known  as  co-compositionality (Putsejovsky,  1995;  Baroni,  2010; 
Gamallo  et al,  2004). Gayral  et al (2000) argue that this type of compositionality alone (see also 
Kintsch & Mangalath, 2010) is insufficient, and that compositional meaning is dependent on features 
which go beyond immediate  arguments.  Erk & Padó acknowledge that  the generalisation of their 
approach to multi-word contexts is an open problem.  Baroni (2010) speculates that some form of 
“recursive”  compositionality  to  this  end  ought  to  be  achievable,  providing  that  the  principles 
governing when and how words influence each other’s meaning can be resolved.

3. Expectation vectors
 

Expectation Vectors were introduced by Washtell (2010) as an intuitive way of modelling the meaning 
of a word-in-context.  An expectation vector for any context or word-in-context can be formed by 
applying a predictive language model to that context and generating a distribution over word types in 
the  lexicon  which  reflects  the  likelihood  of  each  word  occurring  in  the  headword-slot.  This 
distribution can then be treated as a vector,  and similarity comparisons  performed using standard 
wordspace techniques. The attraction of these vectors lies in perhaps three key features. The first is the 
intuitive way in which word meaning is modelled: not in terms of a set of context features, but rather 
the set of words which can be substituted in a given context. It is reasoned that abstracting away from 
context features in this manner allows for similarity metrics which more directly capture phenomena 
such as polysemy and synonymy.  Secondly,  this separation allows for the leveraging of arbitrarily 
sophisticated language models, such as are able to capture complex interdependencies between words 
in use and incorporate broader contextual information without the need to complicate the resultant 
vector space. Thirdly, this can result in markedly denser vectors than using surface features directly. 
Washtell (2010) and Yuret (2007, 2010) both found approaches based on expectation to perform well 
in word sense disambiguation tasks, hypothesizing that data-density plays a key role in this setting.

Another, as yet unexplored, advantage of methods based on expectation is that they seem to lend 
themselves particularly well to modelling compositional meaning. It is this benefit which is the focus 
of the present work. The key observation is that, providing a non-trivial language model is employed, 
expectation vectors are naturally word-order dependent. Thus, unlike previously proposed approaches 
such as that of Sahlgren (2008), which hinge upon the post-hoc manipulation or contextualization of 
word-type vectors, a word-instance and its context are much more fundamentally intertwined.
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In this work we compute a compositional vector for an arbitrary fragment of text by generating an 
expectation vector e for every word position in that text (using the remaining words as context in each 
case)  and  then  simply  summing.  For  generating  expectations,  we  take  the  approach  described  in 
Washtell  (2010),  in  which  a  structural  similarity  metric  compares  the  candidate  context  c to  the 
context of every word position o in a large corpus O:

 

 

Where Oj represents the set of contexts for word type j in the corpus, and k is a specific instance of j. 
The maximum similarity score across all instances of a word type in the corpus therefore forms that 
word type’s corresponding vector component. In this way the similarity metric constitutes a general 
language model and, along with a raw corpus, a specific language model. This is a computationally 
expensive  approach.  Washtell  (2010)  presents  a  cumbersome  similarity  metric  based  on  distance 
ratios. Here we take a simpler and more efficient approach. First, we form context vectors by summing 
the negative exponents of each word type’s occurrence positions relative to the context head. That is to 
say that in the context “the cat sat on the _”, the will have a value of b-1 + b-5, on will have a value of 
b-2, and so on, with the base b constituting a distance falloff parameter. Similarity is then computed by 
simply taking the square of the dot product of the two vectors. When  b>1, this product will never 
exceed a constant value, irrespective of the context size, thus avoiding the need for normalization. As 
well as giving an intuitive measure of similarity (effectively computing a “structural” correlation), this 
approach has the advantage that similarities can be calculated incrementally as we pass through the 
corpus. The complexity of calculating an expectation vector is therefore more-or-less linear with the 
size of the corpus, irrespective of the size of the supplied context. Further optimizations can be made if 
we observe that, for b>=2, matching a single pair of words at a given distance from the head always 
results in a greater similarity than matching any number of words further away.

For the evaluations performed herein we use the British National Corpus and a value of b=2. This 
was found to generate subjectively coherent and cohesive text when recursively extending a context by 
selecting one of its higher-ranking expectations: a promising trait for the generation of meaningful 
expectation vectors. The remaining details differentiating our approach from that in Washtell (2010) 
lie in the handling of the vector components. First, the vectors are normalized so that their components 
sum  to  one,  giving  a  pseudo-probabilistic  distribution.  We  then  divide  each  component  by  its 
respective word type’s prior probability (i.e. its frequency in the corpus) to give a set of probability 
ratios.  Practically  speaking  these  steps  prevent  function  words,  and  vague  expectations  which 
comprise many equally likely words, from routinely dominating our compositional vectors.

4. Evaluation
 

Distributional wordspace models are often evaluated on their ability to capture meaning by comparing 
the  predictions  of  their  similarity metrics  with datasets  encapsulating human  judgements  of  word 
similarity. Achananuparp et al (2008) and Mitchell & Lapata (2010) have extended this philosophy to 
evaluating a variety of phrasal similarity measures. The former rely on human-annotated paraphrase 
and entailment datasets. Arguably these datasets concern themselves with a much narrower notion of 
similarity than do word-oriented studies: that of a kind of logical or truth-conditional equivalence. 
This binary concept does not sit particularly well with vector models, in which meaning is considered 
to occupying a continuum. Nor does it allow for, say, analogous meanings, or statements of fact re-
expressed as questions or opinions. As we cannot say a priori that any particular type of relationship 
plays a dominant role in human intuitions of meaning, it seems unreasonable to exclude any from our 
investigations; from a application-oriented perspective, if  we can first  establish  what it  is that our 
compositional approaches capture, then we will be better placed to pursue specific types of meaning.

Mitchell & Lapata (2010) build a dataset from the ground up which is arguably better suited to 
this  task  (hereafter  the  “M&L dataset”),  using  phrases  extracted  from the  BNC with  the  aid  of 
heuristics conceived to capture a range and variety of semantic similarities. We adopt their dataset 
here, as we believe it provides a sound starting point for evaluating compositional models. We then go 
on to describe a complementary evaluation in which we attempt to address some of the weaknesses 
inherent in the M&L dataset in order to provide a more holistic picture. We compare three similarity 
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measures across these evaluations:  our proposed expectation-oriented approach and two baselines, 
each outlined below. In keeping with our purely distributional  interests,  no language-specific pre-
processing steps such as lemmatisation, POS-tagging or parsing were used with any of the measures in 
either of the evaluations.

Bigram overlap (BIGRAM) is simply the total number of character bigrams that two phrases have 
in common,  normalized by the total  number of  bigrams they collectively possess (i.e.  the Jaccard 
coefficient). Identical strings achieve a similarity score of 1, with less similar strings having scores 
that  tend  towards  zero.  The  main  advantages  of  this  approach  in  the  settings  herein  is  that  it  is 
forgiving of small changes in word or clause order, and in the inflected forms of words, which in many 
cases may not significantly affect meaning. By the same token however, it is insensitive to significant 
shifts in meaning which can sometimes be induced in this way (for example,  by the swapping of 
subject and object). The other main disadvantage of the character bigram model is that, being a simple 
string  similarity measure,  it  is  fundamentally incapable  of  acknowledging similarities  in  meaning 
between completely different forms (i.e. synonymy).

Bag-of-vectors (VECTORBAG) entails summing co-occurrence vectors for the component words 
of a phrase, where those vectors are derived from a large corpus containing examples of the words in 
context. Summed vectors are then compared using cosine similarity,  which ignores the vector size 
(effectively factoring  out  phrase  length),  focusing  instead  on  the  relative  balance  of  components 
present. This is comparable to the higher-order approaches taken by Schütze (1998) and Landauer & 
Dumais  (1997).  Note  however  that  we  use  a  distance-based  association  measure  co-dispesion to 
construct word vectors (Washtell & Markert, 2010). As well as avoiding the thorny issue of window-
size  and  arguably  providing  a  better  exploitation  of  the  data  in  general,  this  provides  a  more 
meaningful  baseline  for  our  expectation model  which uses a distance-based language model.  The 
principle  advantage  of  working  with  co-occurrence  vectors  is  that  distributionally  similar  words 
become comparable by virtue of their vectors being similar. As word-type vectors are the centroids of 
all occurrences in a corpus, senses are conflated, so synonymy is not modelled particularly cleanly, 
and polysemy arguably not  at  all.  However  the  thinking is  that  when combined  in  a  phrase,  the 
common semantic components of the words dominate, with incidental senses being relegated to some 
acceptable level of noise. The major disadvantage with such a “bagged” approach is that word order is 
entirely discarded; whereas under the bigram model switching subject and object would at least incur a 
small penalty, here the two resultant phrases appear entirely equivalent.

As with VECTORBAG, in compositional expectation (COMPEXP) phrase vectors are formed by 
summing the vectors of their component words, and then compared using cosine similarity. Rather 
than the component vectors being based upon word-types however, we use expectation vectors (see 
section 3) which are unique to the phrasal context in which each word occurs.

4.1. Evaluation 1: Simple Phrase Similarity
 

Our first  method of evaluation is  against  the M&L phrase similarity dataset  (see section 4).  This 
consists of around 200 short phrase pairs rated by human subjects on a scale of 1-7 for their semantic 
similarity. Each phrase is comprised of two words in the form verb-object, noun-noun, or adjective-
noun, extracted from the BNC. The authors applied quite sophisticated heuristics based on phrase 
frequency and WordNet word similarity (Lesk, 1986) in an attempt to produce a set which exhibits an 
even spread of subjective similarities, from near-synonymy to near-total unrelatedness. Their analysis 
of human ratings confirmed that they were reasonably successful in this.

Table 1 shows the performance of the models upon the M&L dataset, in terms of Spearman’s 
rank correlation. Two additional columns are included for reference: the inter-annotator agreement 
reported by M&L (which in this experiment serves as an upper-bound), calculated using leave-one-out 
sampling, and the results from the best-performing model reported by M&L for each phrase class. 
Our additive distance-based model performs fairly competitively on this task, and is superior to all 
methods on verb-object combinations. Interestingly, compositional expectation fairs relatively poorly, 
turning in a respectable performance only for noun-noun combinations and performing particularly 
poorly  on  verb-object  combinations.  This  last  observation  is  at  odds  with  the  surprisingly  good 
performance on verb sense disambiguation previously observed using expectation vectors (Washtell, 
2010), leading us to speculate whether this was rather a symptom of the distance-based approach used 
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in that work (although it should be noted that there are many confounding differences separating the 
tasks and models in these works). Unsurprisingly, the bigram measure performs very poorly across the 
board. When interpreting these figures it is worth bearing in mind that, differences in our approaches 
to composition aside, unlike Mitchell & Lapata we are operating on unlemmatized data.

Human M&L BEST (various) BIGRAM VECTORBAG COMPEXP
ADJ-NOUN 0.52 0.46 (multiplicative) 0.2 0.27 0.28
NOUN-NOUN 0.49 0.49 (multiplicative) -0.11 0.47 0.41
VERB-OBJ 0.55 0.41 (“dilated” LDA) 0.11 0.45 0.2
 

Table 1: Spearman’s rank correlation between human and computational similarity ratings for M&L dataset.

While the form of the M&L dataset makes it suitable for use as a Gold Standard, it does come with 
certain limitations. Most notably, the phrases comprise only two words. While this is a logical starting 
point  for  assessing  compositional  models,  it  gives  little  scope  for  testing  the  ability  to  capture 
structural aspects of composition (as M&L anyway restrict phrase pairs to identically structured phrase 
types,  this  point  is  all  but  moot).  Related  to  this  is  the  fact  that  while  the  heuristics  applied  in 
generating the M&L dataset attempt to generate superficially different yet synonymous phrases (e.g 
“reduce amount”, “cut cost”), there are very few cases of polysemy or superficial similarity (e.g. 
“stout Russian”, “Russian stout” or “arresting music”, “arresting criminals”) which is an important 
confounding  issue  for  compositional  models.  In  the  next  section  we  outline  a  complementary 
evaluation approach with which we attempt to address some of these issues. 

4.2. Evaluation 2: Unconstrained Phrase Similarity
 

A restricted register  of  about  300 noun,  verb and adjective  lemmas  was selected with the  aid of 
Wordnet and BNC frequency information. Sentences were then automatically selected from the BNC 
with the constraint that each sentence was at least 3 words in length and a certain minimum proportion 
of its lemmas belonged to the restricted register. This minimum proportion was tweaked such that the 
entire  BNC  generated  approximately  1000  qualifying  sentences.  The  aim  was  to  produce  a 
manageably sized collection of real-world phrases wherein a range of similarities and similarity types 
(both semantic and superficial) existed between a proportion of the phrases. In selecting the register, 
the purpose was therefore to find a compact  set  of  words which exhibited both a high degree of 
ambiguity  (polysemy)  and  interchangeability  (synonymy).  Because  words  satisfying  the  former 
requirement tend to be very frequent (e.g. the auxiliary verbs), while those satisfying the latter tend to 
be very rare, this task was difficult. An additional complication was that the types of phrase selected 
from the corpus were found to be highly sensitive to the specific words in the register, with certain 
words  resulting  in  a  disproportionate  contingent  of  highly  synonymous  idiomatic  phrases  being 
selected (“let’s take the following”, “consider the following”, “look at the following” etc), which was 
considered undesirable. In the end a lot of judgement was exercised in selecting the register.

For each phrase in the dataset, the two most similar candidate phrases also in the dataset were 
identified according to each of our three similarity measures. An additional two candidate phrases 
were selected at random to act as a control. This resulted in at most eight candidate sentences for each 
source sentence,  and less where different methods selected the same phrases. Agreement between 
BIGRAM and VECTORBAG was 19.7% (which is both surprising and reassuring, considering the 
size of the dataset and how different these approaches are). Agreement between these and the novel 
COMPEXP method  was  markedly  less,  at  12.7% and 9.1% respectively.  Agreement  between the 
random control and each of the methods was in keeping with chance (<0.4%). To aid annotation, 
further steps were taken to reduce the size of the dataset and increase the proportion of subjectively 
similar phrases expressed. For each method, the top candidate phrase attributed to each source phrase 
was ranked amongst those attributed to all source phrases (according to the actual similarity score 
attributed). The source phrases were then ordered according to the minimum of these ranks, and the 
lower 50% were discarded. This resulted in a set of 500 source sentences to which at least one of the 
methods  had attributed  a  candidate  sentence with relatively high confidence.  Agreement  between 
methods after this step was 28.6%, 18.6% and 13.9% respectively (a uniform 50% increase).
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English-speaking subjects were invited to participate in an annotation process via a website. Upon 
visiting the site subjects were presented with a source sentence, and its set of “similar” candidate 
sentences as chosen by the four approaches, presented in a random order. In cases where methods had 
agreed,  fewer  than  eight  sentences  were  displayed  (i.e.  there  were  no  visible  repetitions).  The 
annotators were asked to identify the two candidate sentences which were “most similar in meaning” 
to the source sentence, and to award an explicit first and second place accordingly. Upon completing a 
question,  participants  progressed onto another  selected at  random from those having received the 
fewest annotations so far. Participants were required to identify two sentences in every case, no matter 
how relevant they thought their meanings were in absolute terms, but were free to cease answering 
questions at any point. No knowledge of the methods used to generate or select the sentences, or of the 
purpose of the study, was made available to the annotators.

Approximately 90 mostly native English speakers participated in the annotation process.  The 
number  of  questions  answered by each annotator  followed a  roughly geometric  distribution,  with 
maximum, median and minimum of 266, 8 and 1 respectively. The median time taken to answer each 
question was 24 seconds. Average Kappa for random pairs of responses was 0.25 for annotators’ first 
choices  alone,  and  0.39  when  first  and  second  choices  are  treated  equally.  As  we  are  gathering 
psycholinguistic  data,  and  not  developing  a  gold  standard  for  a  supposed  underlying  objective 
classification,  such moderate  levels  of  agreement  are  not  problematic.  What  is  important  for  our 
purposes is that, given the number of annotators involved, the observed levels of agreement are highly 
significant. The distribution of agreement levels was more-or-less uniform, with a slight dip in the 
mid-range. Interestingly there was negligible correlation between inter-annotator agreement and the 
average time taken to answer each question, indicating that seemingly “hard” questions did not take 
appreciably longer to answer than “easier” questions.

Table 2 presents a summary the agreement between each of the phrasal similarity methods and 
the votes of the human annotators. Results are separated into annotators’ first choices only, and their 
combined first and second choices. The figures in parentheses are the raw percentage of votes awarded 
to each method. As there was some corroboration between the methods themselves, these total more 
than 100% across methods.  The figures outside of  the parentheses are agreements  expressed as a 
proportion of chance, taking any such corroboration into account. There was only slight variation in 
the relative balance of scores when stratified according to annotator agreement: the random control 
unsurprisingly showed an increase at the lowest agreement levels, with BIGRAM and VECTORBAG 
increasing slightly with agreement, and COMPEXP peaking in the midrange.

BIGRAM VECTORBAG COMPEXP RANDOM
1st choices only 3.14 (47%) 3.29 (49%) 2.29 (35%) 0.60 (8%)

All votes 2.87 (43%) 3.03 (45%) 2.21 (33%) 0.74 (11%)
 

Table 2: Agreement between computational phrasal similarity measures and human annotations

Despite its ignorance of word order and context, the most successful method in this experiment is the 
bag of  vectors.  Arguably more  remarkable  is  the  success  of  the  relatively naïve string similarity 
measure. The fact that these methods also show a surprisingly high degree of agreement with each 
other (28.6%), suggests that a fair proportion of the phrase similarities present in our dataset can be 
adequately identified simply by the word forms that comprise them, without recourse to distributional 
information. Our compositional expectation model  is less successful overall,  though still  receiving 
several times as many votes as the random control. The fact that its agreement with the two baselines 
is comparatively low would suggest that it is identifying a different kind of similarity. Given that the 
mechanisms of compositional expectation are least understood, some kind of qualitative analysis may 
provide useful insight. To this end, tables 3 and 4 show a selection of 10 phrases deemed most similar 
by the COMPEXP model,  that were unanimously awarded first  place by the human annotators or 
unanimously rejected respectively. Rejected phrases are only shown for cases where there was a clear 
favourite phrase which had been selected by one of the competing models (also shown). The examples 
were hand-picked for illustrative purposes from qualifying lists of two to three times the size.

The phrase pairs in table 3 can be broadly categorized in terms of their structural and semantic 
similarities. While one can observe cases of phrases which have near-synonymous meanings in spite 
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of markedly different wording or structure (B, D, F, G, I, J), there also seem to exist pairs which have 
essentially equivalent structures, yet are somewhat more loosely related in meaning (A, C, E, H). Note 
that this is a very informal analysis and a lot of overlap between these classes can be acknowledged.

Source phrase Selected phrase
A She moved cautiously into the room She looked slowly around the room
B She’s an exceptionally nice woman She’s really a nice person
C It was a desperately lonely time It was a really bad time
D Of course I take it seriously I took it terribly seriously
E He went into the sitting room He entered the throne room
F I left the room I ran back out of the room
G He held desperately onto her arm He held her tightly
H She hurried towards the white van She ran straight out of the house
I I’d hardly made a sound I could manage only a whisper
J He made his reasons absolutely clear He certainly made his point
 

Table 3: Phrases uniquely selected by compositional expectation model and unanimously selected by annotators.

Source phrase Rejected phrase Most strongly selected phrase
A Good, good, good Sweet and beautiful and good Good good good
B It was a really good night It makes a good story I thought it was really good
C He moved slowly along the beach He moved vaguely around the room He moved slowly and quietly
D It was peaceful by the river It was dark in the room They even took to the river
E The event went smoothly and pleasantly The house was dark and quiet It was a good time really
F They took it very badly Obviously they’d lost it My family took it badly
G He really should have won it He took it personally It’s good we won
H I take the left I ran back out of the room Take a big left turn
I He’s made a good marriage He’s probably making a mistake He made a good world
J Isobel moved restlessly around the room Gaily moved it nearer the counter She looked slowly around the room
 

Table 4: Phrases uniquely selected by compositional expectation model, but unanimously rejected by annotators.

Compared to table 3, those phrases in table 4 which exhibit similar structure relate more loosely in 
their subject matter (C, D, E, J);  nonetheless, parts-of-speech and aspects of semantic category do 
seem to be largely preserved (dark-peaceful, room-river-beach, in-by, along-around slowly-vaguely,  
Isobel-Gaily) resulting in some cases in what might better be described as analogy than synonymy.  
Where phrases do deviate in structure, their similarities are much less prescriptive; in many cases they 
seem to imply an almost rhetorical relationship (B, F, G, I).

These observations seem to indicate that compositional expectation is capable of capturing both 
structural and semantic aspects of similarity, with a leaning towards the former. With some notable 
exceptions (E), the phrases chosen by the competing methods - and preferred by the annotators - tend 
to exhibit  a more literal or topical relationship with the source phrase (in keeping with how these 
methods are formulated). We should point out though that while the qualitative observations made 
here do seem to hold in some measure across the dataset, it is very difficult - and necessarily left to 
future work - to objectify them; it remains possible that the some of the patterns identified are due to 
chance and the limited set of phrases comprising our dataset.

5. Discussion
 

We  have  presented  a  novel  approach  to  purely  distributional  semantic  composition,  called 
compositional expectation. By employing a language model and representing phrase constituents in 
terms of the expectations evoked in their stead, it is possible to represent phrase meaning in a way that 
is sensitive to word order without recourse to problematic vector operations. While there is evidence to 
suggest that this approach is able to usefully capture compositional meaning in certain cases – and in a 
manner that is complementary to more naive methods - its overall performance as measured against 
the two human-annotated datasets in this study suggests a lot of room for improvement. At present it is 
unclear to what extent this is  a  reflection of limitations of these datasets  (whether either of  them 
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accurately models the problem), deficiencies in the specific formulation of our model (the language 
model employed, the vector handling etc), or fundamental shortcomings of this approach to capturing 
semantic similarity.

A qualitative analysis  seems to suggest that compositional expectation is capable of capturing 
some  quite  complex  structural  similarities,  as  well  as  broad  semantic  correspondences  between 
dissimilarly structured phrases. While some capacity to encode structure was presupposed owing to 
the strong dependence of expectation vectors upon the context in which words appear, it does not 
obviously follow that similar-meaning but structurally-unlike phrases should have comparable vectors. 
Our vectors are simply calculated on a token-by-token basis, without  consideration of any hierarchical 
structure present - a generally assumed requirement of compositional models (Padó & Lapata, 2007; 
Mitchell  & Lapata, 2010). While we can speculate that the expectations generated at the terminal 
positions of synonymous phrases (and therefore sub-phrases) ought to be similar, it is hard to imagine 
that the strong internal expectations within idiomatic expressions, say, are anything but obstructive to 
compositional meaning. Perhaps we will find that, as with Schütze’s (1998) second-order vectors, the 
information associated with the most pertinent interpretation tends to dominate the sum. If this is so 
then the fact that simple vector addition is both associative and commutative - and therefore agnostic 
of any structure present - may actually play an important role in these models. Given this commutative 
operator, there would seem to be no means of determining retrospectively to which constituents of a 
phrase any portion of a compositional vector belongs; this would appear to be a fundamental limitation 
with  respect  to  the  encoding  of  structure.  However,  we  can  speculate  that  in  practice  the 
overwhelming  contingent  of  possible  factorizations  will  tend  to  be  syntactically  or  semantically 
implausible. The most plausible interpretations may therefore tend to be those formed by the original 
word vectors, or very similar ones. Because under an expectation model,  jumbling the word order 
tends to result in different component vectors, most ordered interpretations of such factorizations will 
also tend to be implausible (unless perhaps they actually constitute a valid paraphrase). As this kind of 
plausibility is information which the language user has, it need not be encoded.

Such lines of thought suggest another problem which needs to be addressed if any of the models 
considered herein are to be claimed as cognitively plausible takes on compositional meaning: the re-
encoding of vector representations into natural language. This would seem to be a straightforward but 
computationally hard search problem, analogous to that which lies at the heart of machine translation: 
simultaneously maximizing the plausibility and the faithfulness of a linguistic realisation. Indeed, this 
might be the acid-test for any proposed compositional representation of meaning. If such “language-
meaning  codecs” are  attainable,  then it  would pave the  way for  a  host  of  applications  that  work 
natively with meaning, and could revolutionize the way search engines, dialogue agents and machine 
translation systems are engineered.
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Abstract

Distributed models of semantics assume that word meanings can be discovered from “the com-

pany they keep.” Many such approaches learn semantics from large corpora, with each document

considered to be unstructured bags of words, ignoring syntax and compositionality within a docu-

ment. In contrast, this paper proposes a structured vectorial semantic framework, in which semantic

vectors are defined and composed in syntactic context. As such, syntax and semantics are fully

interactive; composition of semantic vectors necessarily produces a hypothetical syntactic parse.

Evaluations show that using relationally-clustered headwords as a semantic space in this framework

improves on a syntax-only model in perplexity and parsing accuracy.

1 Introduction

Distributed semantic representations like Latent Semantic Analysis (Deerwester et al., 1990), probabilis-

tic LSA (Hofmann, 2001), Latent Dirichlet Allocation (Blei et al., 2003), or relational clustering (Taskar

et al., 2001) have garnered widespread interest because of their ability to quantitatively capture ‘gist’

semantic content.

Two modeling assumptions underlie most of these models. First, the typical assumption is that words

in the same document are an unstructured bag of words. This means that word order and syntactic struc-

ture are ignored in the resulting vectorial representations of meaning, and the only relevant relationship

between words is the ‘same-document’ relationship. Second, these semantic models are not composi-

tional in and of themselves. They require some external process to aggregate the meaning representations

of words to form phrasal or sentential meaning; at best, they can jointly represent whole strings of words

without the internal relationships.

This paper introduces structured vectorial semantics (SVS) as a principled response to these weak-

nesses of vector space models. In this framework, the syntax–semantics interface is fully interactive:

semantic vectors exist in syntactic context, and any composition of semantic vectors necessarily pro-

duces a hypothetical syntactic parse. Since semantic information is used in syntactic disambiguation

(MacDonald et al., 1994), we would expect practical improvements in parsing accuracy by accounting

for the interactive interpretation process.

Others have incorporated syntactic information with vector-space semantics, challenging the bag-

of-words assumption. Syntax and semantics may be jointly generated with Bayesian methods (Griffiths

et al., 2005); syntactic structure may be coupled to the basis elements of a semantic space (Padó and

Lapata, 2007); clustered semantics may be used as a pre-processing step (Koo et al., 2008); or, semantics

may be learned in some defined syntactic context (Lin, 1998). These techniques are interactive, but

their semantic models are not syntactically compositional (Frege, 1892). SVS is a generative model of

sentences that uses a variant of the last strategy to incorporate syntax at preterminal tree nodes, but is

inherently compositional.

Mitchell and Lapata (2008) provide a general framework for semantic vector composition:

p = f(u,v,R,K) (1)
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where u and v are the vectors to be composed, R is syntactic context, K is a semantic knowledge base,

and p is a resulting composed vector (or tensor). In this initial work of theirs, they leave out any notion

of syntactic context, focusing on additive and multiplicative vector composition (with some variations):

Add: p[i] = u[i] + v[i] Mult: p[i] = u[i] ⋅ v[i] (2)

Since the structured vectorial semantics proposed here may be viewed within this framework, our dis-

cussion will begin from their definition in Section 2.1.

Erk and Padó’s (2008) model also fits inside Mitchell and Lapata’s framework, and like SVS, it in-

cludes syntactic context. Their semantic vectors use syntactic information as relations between multiple

vectors in arriving at a final meaning representation. The emphasis, however, is on selectional prefer-

ences of individual words; resulting representations are similar to word-sense disambiguation output,

and do not construct phrase-level meaning from word meaning. Mitchell and Lapata’s more recent work

(2009) combines syntactic parses with distributional semantics; but the underlying compositional model

requires (as other existing models would) an interpolation of the vector composition results with a sepa-

rate parser. It is thus not fully interactive.

Though the proposed structured vectorial semantics may be defined within Equation 1, the end output

necessarily includes not only a semantic vector, but a full parse hypothesis. This slightly shifts the focus

from the semantically-centered Equation 1 to an accounting of meaning that is necessarily interactive

(between syntax and semantics); vector composition and parsing are then twin lenses by which the pro-

cess may be viewed. Thus, unlike previous models, a unique phrasal vectorial semantic representation

is composed during decoding.

Due to the novelty of phrasal vector semantics and lack of existing evaluative measures, we have

chosen to report results on the well-understood dual problem of parsing. The structured vectorial seman-

tic framework subsumes variants of several common parsing algorithms, two of which will be discussed:

lexicalized parsing (Charniak, 1996; Collins, 1997, etc.) and relational clustering (akin to latent annota-

tions (Matsuzaki et al., 2005; Petrov et al., 2006; Gesmundo et al., 2009)). Because previous work has

shown that linguistically-motivated syntactic state-splitting already improves parses (Klein and Manning,

2003), syntactic states are split as thoroughly as possible into subcategorization classes (e.g., transitive

and intransitive verbs). This pessimistically isolates the contribution of semantics on parsing accuracy —

it will only show parsing gains where semantic information does not overlap with distributional syntactic

information. Evaluations show that interactively considering semantic information with syntax has the

predicted positive impact on parsing accuracy over syntax alone; it also lowers per-word perplexity.

The remainder of this paper is organized as follows: Section 2 describes SVS as both vector compo-

sition and parsing; Section 3 shows how relational-clustering SVS subsumes PCFG-LAs; and Section 4

evaluates modeling assumptions and empirical performance.

2 Structured Vectorial Semantics

2.1 Vector Composition

We begin with some notation. This paper will use boldfaced uppercase letters to indicate matrices

(e.g., L), boldfaced lowercase letters to indicate vectors (e.g., e), and no boldface to indicate any single-

valued variable (e.g. i). Indices of vectors and matrices will be associated with semantic concepts

(e.g., i1, i2, . . .); variables over those indices are single-value (scalar) variables (e.g., i); the contents

of vectors and matrices can be accessed by index (e.g., e[i1] for a constant, e[i] for a variable). We will

also define an operation d(⋅), which lists the elements of a column vector on the diagonal of a diagonal

matrix, i.e., d(e)[i, i]=e[i]. Often, these variables will technically be functions with arguments written

in parentheses, producing vectors or matrices (e.g., L(l) produces a matrix based on the value of l).
As Mitchell and Lapata (2008) did, let us temporarily suspend discussion on what semantics populate

our vectors for now. We can rewrite their equation (Equation 1) in SVS notation by following several

conventions. All semantic vectors have a fixed dimensionality and are denoted e; source vectors and the
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Figure 1: a) Syntax and semantics on a tree during decoding. Semantic vectors e are subscripted with the

node’s address. Relations l and syntactic categories c are constants for the example. b) Example vectors

and matrices needed for the composition of a vector at address 0 (Section 2.2.1).

target vector are differentiated by subscript; instead of context variables R and K we will use M and L:

eγ = f(eα,eβ,M,L) (3)

Syntactic context is in the form of grammar rules M that are aware of semantic concepts; semantic

knowledge is in the form of labeled dependency relationships between semantic concepts, L. Both of

these are present and explicitly modeled as matrices in SVS’s canonical form of vector composition:

eγ =M ⋅ d(Lγ×α ⋅ eα) ⋅ d(Lγ×β ⋅ eβ) ⋅ 1 (4)

Here, M is a diagonal matrix that encapsulates probabilistic syntactic information, where the syntactic

probabilities depend on the semantic concept being considered. The L matrices are linear transformations

that capture how semantically relevant source vectors are to the resulting vector (e.g., Lγ×α defines the

the relevance of eα to eγ), with the intuition that two 1D vectors are under consideration and require

a 2D matrix to relate them. 1 is a vector of ones — this takes a diagonal matrix and returns a column

vector corresponding to the diagonal elements.

Of note in this definition of f(⋅) is the presence of matrices that operate on distributed semantic

vectors. While it is widely understood that matrices can represent transformations, relatively few have

used matrices to represent the distributed, dynamic nature of meaning composition (see Rudolph and

Giesbrecht (2010) for a counterexample).

2.2 Syntax–Semantics Interface

This section aims to more thoroughly define the way in which the syntax and semantics interact during

structured vectorial semantic composition. SVS will specify this interface such that the composition of

semantic vectors is probabilistically consistent and subsumes parsing under various frameworks. Parsing

has at times added semantic annotations that unwittingly carry some semantic value: headwords (Collins,

1997) are one-word concepts that subsume the words below them; latent annotations (Matsuzaki et al.,

2005) are clustered concepts that touch on both syntactic and semantic information at a node. Of course,

other annotations (Ge and Mooney, 2005) carry more explicit forms of semantics. In this light, semantic

concepts (vector indices i) and relation labels (matrix arguments l) may also be seen as annotations on

grammar trees.

Let us introduce notation to make the connection with parsing and syntax explicit. This paper will

denote syntactic categories as c and string yields as x. The location of these variables in phrase structure

will be identified using subscripts that describe the path from the root to the constituent.1 Paths consist

of left and/or right branches (indicated by ‘0’s and ‘1’s, respectively, as in Figure 1a). Variables α, β,

and ι stand for whole paths; γ is the path of a composed vector; and ǫ is the empty path at the root. The

yield xγ is the observed (sub)string that eventually results from the progeny of cγ . Multiple trees τγ can

be constructed at γ by stringing together grammar rules that are consistent with observed text.

1For simplicity, trees are assumed to be compiled into strictly binary-branching form.
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2.2.1 Lexicalized Parsing

To illustrate the definitions and operations presented in this section, we start with the concrete ‘semantic’

space of headwords (i.e., bilexical parsing) before moving on to a formal definition. Our example here

corresponds to the best parse of the first two words in Figure 1a. In this example domain, assume that

the semantic space of concept headwords is {ipulled, ithe, iunk}, abbreviated as {ip, it, iu} where the last

concept is a constant for infrequently-observed words. This semantic space becomes the indices of

semantic vectors; complete vectors e at each node of Figure 1a are shown in Figure 1b.

The tree in Figure 1a contains complete concept vectors e at each node, with corresponding indices

i. Values in these vectors (see Figure 1b) are probabilities, indicating the likelihood that a particular

concept summarizes the meaning below a node. For example, consider e00: it produces the yield below

address 00 (‘the’) with probability 1, and iu may also produce ‘the’ with probability 0.1.

Not shown on the tree are the matrices in Figure 1b. In the parametrized matrix

M(lMOD∶NP→ lMOD∶DT lID∶NN), each diagonal element corresponds to the hypothesized grammar rule’s

probability, given a headword. Similarly, the matrix L0×00(lMOD) is parametrized by the semantic context

lMOD — here, lMOD represents a generalized ‘modifier’ semantic role. For the semantic concept ip at ad-

dress 0, the left-child modifier (address 00) could be semantic concept it with probability 0.2, or concept

iu with probability 0.8. Finally, by adding an identity matrix for L0×01(lID) (a ‘head’ semantic role) to

the quantities in Figure 1b, we would have all the components to construct the vector at address 0:

e0 =
⎡⎢⎢⎢⎢⎢⎣
.2 0 0
0 .1 0
0 0 .4

⎤⎥⎥⎥⎥⎥⎦´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
M

⋅d⎛⎝
⎡⎢⎢⎢⎢⎢⎣
0 .2 .8
0 0 1
.1 .4 .5

⎤⎥⎥⎥⎥⎥⎦´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
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⎡⎢⎢⎢⎢⎢⎣
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1
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⎤⎥⎥⎥⎥⎥⎦±
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⎞⎠ ⋅ d⎛⎝
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1 0 0
0 1 0
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⎤⎥⎥⎥⎥⎥⎦´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
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⎡⎢⎢⎢⎢⎢⎣
0
0
1

⎤⎥⎥⎥⎥⎥⎦°
e01

⎞⎠ ⋅
⎡⎢⎢⎢⎢⎢⎣
1
1
1

⎤⎥⎥⎥⎥⎥⎦°
1

=

i u
i t

i p

truth⎡⎢⎢⎢⎢⎢⎣
0
0

0.036

⎤⎥⎥⎥⎥⎥⎦´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
e0

Since the vector was constructed in syntactic and semantic context, the tree structure shown (including

semantic relationships l) is implied by the context.

2.2.2 Probabilities in vectors and matrices

Formally defining the probabilities in Figure 1, SVS populates vectors and matrices by means of 5

probability models (models are denoted by θ), along with the process of composition:

Syntactic model M(lcγ→ lcα lcβ)[iγ , iγ] =PθM
(lciγ → lcα lcβ)

Semantic model Lγ×ι(lι)[iγ , iι] =PθL
(iι ∣ iγ , lι)

Preterminal model eγ[iγ] =PθP-Vit(G)
(xγ ∣ lciγ), for preterm γ (5)

Root const. model aT
ǫ [iǫ] =PπGǫ(lciǫ)

Any const. model aT
γ[iγ] =PπG

(lciγ)
These probabilities are encapsulated into vectors and matrices using a convention: column indices of

vectors or matrices represent conditioned semantic variables, row indices represent modeled variables.

As an example, from Figure 1b, elements of L0×00(lMOD) represent the probability PθL
(i00 ∣ i0, l00).

Thus, the conditioned variable i00 is shown in the figure as column indices, and the modeled i0 as

row indices. This convention applies to the M matrix as well. Recall that M is a diagonal matrix

— its rows and columns model the same variable. Thus, we could rewrite PθM
(lciγ → lcα lcβ) as

PθM
(lciγ → lcα lcβ, iγ) to make a consistent probabilistic interpretation.

We have intentionally left out the probabilistic definition of normal (non-preterminal) nonterminals

PθVit(G)
, and the rationale for aT vectors. These are both best understood in the dual problem of parsing.

2.2.3 Vector Composition for Parsing

The vector composition of Equation 4 can be rewritten with all arguments and syntactic information as:

eγ =M(lcγ → lcα lcβ) ⋅ d(Lγ×α(lα) ⋅ eα) ⋅ d(Lγ×β(lβ) ⋅ eβ) ⋅ 1 (4′)
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a compact representation that masks the underlying consistent probability operations. This section will

expand the vector composition equation to show its equivalence to standard statistical parsing methods.

Let us say that eγ[iγ] = P(xγ ∣ lciγ), the probability of giving a particular yield given the present

distributed semantics. Recall that in matrix multiplication, there is a summation over the inner dimen-

sions of the multiplied objects; replacing matrices and vectors with their probabilistic interpretations and

summing in the appropriate places, each element of eγ is then:

eγ[iγ] = PθM
(lciγ → lcα lcβ) ⋅∑

iα

PθL
(iα ∣ iγ , lα) ⋅ PθVit(G)

(xα ∣ lciα)⋅∑
iβ

PθL
(iβ ∣ iγ , lβ) ⋅ PθVit(G)

(xβ ∣ lciβ) (6)

This can be loosely considered the multiplication of the syntax (θM term), left-child semantics (first

sum), and right-child semantics (second sum). The only summations are between L and e, since all other

multiplications are between diagonal matrices (similar to pointwise multiplication).

We can simplify this probability expression by grouping θM and θL into a grammar rule

PθG
(lciγ→ lciα lciβ)def= PθM

(lciγ→ lcα lcβ) ⋅ PθL
(iα ∣ iγ , lα) ⋅ PθL

(iβ ∣ iγ , lβ), since they deal with every-

thing except the yield of the two child nodes. The summations are then pushed to the front:

eγ[iγ] = ∑
iα,iβ

PθG
(lciγ → lciα lciβ)⋅PθVit(G)

(xα ∣ lciα) ⋅ PθVit(G)
(xβ ∣ lciβ) (7)

Thus, we have a standard chart-parsing probability P(xγ ∣ lciγ)— with distributed semantic concepts —

in each vector element.

The use of grammar rules necessarily builds a hypothetical subtree τγ . In a typical CKY algorithm,

the tree corresponding to the highest probability would be chosen; however, we have not defined how to

make this choice for vectorial semantics.

We will choose the best tree with probability 1.0, so we define a deterministic Viterbi probability

over candidate vectors (not concepts) and context variables:

PθVit(G)
(xγ ∣ lceγ)def= J eγ = argmax

lceι

(aT
ι eι ⋅ PπG

(lcaT
ι ) ⋅ PθVit(G)

(x ∣ lceι))K (8)

where J⋅K is an indicator function such that JφK=1 if φ is true, 0 otherwise. Intuitively, the process is as

follows: we construct the vector eι at a node, according to Eqn. 4′; we then weight this vector against

prior knowledge about the context aT
ι ; the best vector in context will be chosen (the argmax). Also, the

vector at a node comes with assumptions of what structure produced it. Thus, the last two terms in the

parentheses are deterministic models ensuring that the best subtree τι is indeed the one generated.

Determining the root constituent of the Viterbi tree is the same process as choosing any other Viterbi

constituent, except that prior contextual knowledge gets its own probability model in aT
ǫ . As before,

the most likely tree τ̂ǫ is the tree that maximizes the probability at the root, and can be constructed

recursively from the best child trees. Importantly, τ̂ǫ has an associated, sentential semantic vector which

may be construed as the composed semantic information for the whole parsed sentence. Similar phrasal

semantic vectors can be obtained anywhere on the parse chart.

These equations complete the linear algebraic definition of structured vectorial semantics.

3 SVS with Relational Clusters

3.1 Inducing Relational Clusters

Unlike many vector space models that are based on the frequencies of terms in documents, we may

consider frequencies of terms that occur in similar semantic relations (e.g., head lID or modifier lMOD).

Reducing the dimensionality of terms in a term–context matrix will result in relationally-clustered con-

cepts. From a parsing perspective, this amounts to latent annotations (Matsuzaki et al., 2005) in l-context.
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Let us re-notate the headword-lexicalized version of SVS (the example in Section 2.2.1) using h
for headword semantics, and reserve i for relationally-clustered concepts. Treebank trees can be deter-

ministically annotated with headwords h and relations l by using head rules (Magerman, 1995). The 5

SVS models θM, θL, θP-Vit(G), πGǫ, and πG can thus be obtained by counting instances and normalizing.

Empirical probabilities of this kind are denoted with a tilde, whereas estimated models have a hat.

Concepts i in a distributed semantic representation, however, cannot be found from annotated trees

(see example concepts in Figure 2). Therefore, we use Expectation Maximization (EM) in a variant of

the inside-outside algorithm (Baker, 1979) to learn distributed-concept behavior. In the M-step, the data-

informed result of the E-step is used to update the estimates of θM, θL, and θH (where θH is a generlization

of θP-Vit(G) to any nonterminal). These updated estimates are then plugged back in to the next E-step. The

two steps continually alternate until convergence or a maximum number of iterations.

E-step:

P̂(iγ , iα, iβ ∣ lcγ , lcα, lcβ) = P̂θOut
(lciγ , lchǫ−lchγ) ⋅ P̂θIns

(lchγ ∣ lciγ)
P̂(lchǫ) (9)

E(lciγ ,lciα,lciβ) = P̂(iγ ,iα,iβ ∣lcγ ,lcα,lcβ) ⋅P̃(lcγ ,lcα,lcβ)
M-step:

P̂θM
(lciγ � lcα, lcβ) = ∑iα,iβ E(lciγ , lciα, lciβ)∑lciα,lciβ E(lciγ , lciα, lciβ)
P̂θL
(iα ∣ iγ ; lα) = ∑lcγ ,cα,lciβ E(lciγ , lciα, lciβ)∑lcγ ,ciα,lciβ E(lciγ , lciα, lciβ) (10)

P̂θH
(hγ ∣ lciγ) = E(lciγ ,−,−)∑hγ

E(lciγ ,−,−)
Inside probabilities can be recursively calculated on training trees from the bottom up. These are

simply probability sums of all subsumed subtrees (Viterbi probabilities with sums instead of maxes).

Outside probabilities can also be recursively calculated from training trees, here from parent proba-

bilities. For a left child (the right-child case is similar):

P̂θOut
(lciα, lchǫ−lchα) =P̂θOut

(lciγ , lchǫ−lchγ) ⋅ P̂θM
(lciγ � lcα, lcβ)⋅∑iβ

P̂θL
(iβ ∣ iγ , lβ) ⋅ P̂θIns

(lchβ ∣ lciβ) ⋅ P̂θL
(iα ∣ iγ , lα) (11)

Since outside probabilities signify everything but what is subsumed by the node, they carry a comple-

mentary set of information to inside probabilities. Thus, inside and outside probabilities together are a

natural way to produce parent and child clustered concepts.

3.2 Relational Semantic Clusters in Parsing

Section 2.2.2 listed the five probability models necessary for SVS. To define SVS with relational clusters,

the estimates in Equation 10 can be used for θM and θL.

The preterminal model is based on θH, but it also includes some backoff for words that have not been

used as headwords. The other two models also fall out nicely from the algorithm, though they are not

explicitly estimated in EM. The prior probability at the root is just the base case for outside probabilities:

P̂πGǫ(lciǫ)def= P̂θOut
(lciǫ, lchǫ−lchǫ) (12)

Prior probabilities at non-root constituents are estimated from the empirically-weighted joint probability.

P̂πG
(lciγ)def= ∑

lciα,lciβ

P̃(lciγ , lciα, lciβ) (13)

With these models, a relationally-clustered SVS parser is now defined.
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Cluster i1
‘announcement’

unk 0.362

was 0.173

reported 0.097

posted 0.036

earned 0.029

filed 0.024

were 0.022

had 0.020

told 0.013

approved 0.013

Cluster i5
‘change in value’

rose 0.137

fell 0.124

unk 0.116

gained 0.063

dropped 0.051

attributed 0.051

jumped 0.046

added 0.041

lost 0.039

advanced 0.022

Cluster i7
‘change possession’

unk 0.381

had 0.065

was 0.062

took 0.036

bought 0.027

completed 0.025

received 0.024

were 0.023

got 0.018

made 0.018

acquired 0.016

Figure 2: Example θH clusters from 1,000 head-

words clustered into 10 referents, after 10 EM itera-

tions, for transitive past-tense verbs (VBD-argNP).
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Figure 3: Speed of relationally-clustered SVS

parsers, with and without vectorization.

4 Evaluation

Sections 02–21 of the Wall Street Journal (WSJ) corpus were used as training data; Section 23 was

used as test data with reported parsing results on sentences greater than length 40. Punctuation was

left in for all reported evaluations. Trees were binarized, and syntactic states were thoroughly split into

subcategorization classes. As previously discussed, unlike tests on state-of-the-art automatically state-

splitting parsers, this isolates the contribution of semantics. The baseline 83.57 F-measure is comparable

to Klein and Manning (2003) before the inclusion of head annotations.

Subsequently, each branch was annotated with a head relation lID or a modifier relation lMOD ac-

cording to a binarized version of headword percolation rules (Magerman, 1995; Collins, 1997), and the

headword was propagated up from its head constituent. The most frequent headwords (e.g., h1, . . . , h50)

were stored, and the rest were assigned a constant, ‘unk’ headword category.

From counts on the binary rules of these annotated trees, the θM, θL, θP-Vit(G), πGǫ, and πG proba-

bilities for headword-lexicalization SVS were obtained. Modifier relations lMOD were deterministically

augmented with their syntactic context; both c and l symbols appearing fewer than 10 times in the whole

corpus were assigned ‘unknown’ categories.

These lexicalized models served as a baseline, but the augmented trees from which they were derived

were also inputs to the EM algorithm in Section 3.1. Each parameter in the model or training algorithm

was examined, with ∣I ∣ ={1,5,10,15,20} clusters, random initialization from reproducible seeds, and a

varying numbers of EM iterations.

The implemented parser had few adjustments from a plain CKY parser other than these vectors. No

approximate inference was used, with no beam for candidate parses and no re-ranking.

4.1 Interpretable relational clusters

Figure 2 shows example clusters for one of the headword models used, where EM clustered 1,000 head-

words into 10 concepts in 10 iterations. The lists are parts of the P̂θH
(hγ ∣ lciγ) model. As such, each of

the 10 clusters will only produce headwords in light of some syntactic constituent. The figure shows how

distributed concepts produce headwords for transitive past-tense verbs. Note that the probability distri-

butions for different headwords are quite uneven, again confirming that some clusters are more specific,

and others are more general.

Each cluster has been given a heading of its approximate meaning — i5, for example, mostly picks

verbs that are ‘change in value’ events. With 10 clusters, we might not expect such fine-grained clusters,

since pLSA-related approaches typically use several hundred for such tasks. The syntactic context of

transitive (and therefore state-split) past-tense verbs allows for much finer-grained distinctions, which

are then predominantly semantic in nature.
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a)
Sec. 23, length < 40 wds LR LP F

syntax-only baseline: 83.32 83.83 83.57

headword-lex. 10hw: 83.10 83.61 83.35

headword-lex. 50hw: 83.09 83.40 83.24

rel’n clust. 50hw�10 clust: 83.67 84.13 83.90

b)
Sec. 23, length < 40 wds LR LP F

baseline�1 clust 83.34 83.90 83.62

1000 hw�5 clust, avg 83.85 84.23 84.04

1000 hw�10 clust, avg 84.04 84.40 84.21

1000 hw�15 clust, avg 84.15 84.38 84.26

1000 hw�20 clust, avg 84.21 84.42 84.31

Table 1: a) Unsmoothed lexicalized CKY parsers versus 10 semantic clusters. Evaluations were run

with EM trained to 10 iterations. b) Average dependence of parsing performance on number of semantic

clusters. Averages are taken over different random seeds, with EM running 4 or 10 iterations.

4.2 Engineering considerations

We should note that relationally-clustered SVS is feasible with respect to random initialization and speed.

Four relationally-clustered SVS models (with 500 headwords clustered into 5 concepts) were trained,

each having a different random initialization. We found that the parsing F-score had a mean of 83.98

and a standard deviation of 0.21 across different initializations of the model. This indicates that though

there are significant difference between the models, they still outperform models without SVS (see next

section).

Also, it may seem slow to consider the set of semantic concepts and relations alongside syntax, at

least with respect to normal parsing. The definition of SVS in terms of vectors actually mitigates this

effect on WSJ Section 23, according to Figure 3. Since SVS is probabilistically consistent, the parser

could be defined without vectors, but this would have the ‘non-vectorized’ speed curve. The contiguous

storage and access of information in the ‘vectorized’ version leads to an efficient implementation.

4.3 Comparison to Lexicalization

One important comparison to draw here is between the effectiveness of semantic clusters versus

headword-lexicalization. For fair head-to-head comparison on WSJ Section 23, both models were vector-

ized and included no smoothing or backoff. Neither relational clusters nor lexicalization were optimized

with backoff or smoothing.

Table 1a shows precision, recall, and F-score for lexicalized models and for clustered semantic mod-

els. First, note that the 10-cluster model (in bold) improves on a syntax-only parser (top line), showing

that the semantic model is contributing useful information to the parsing task.

Next, compare the 50-headword, 10-cluster model (in bold) to the line above it. It is natural to

compare this model to the headword-lexicalized model with 50 headwords, since the same information

from the trees is available to both models. The relationally-clustered model outperforms the headword-

lexicalized model, showing that clustering the headwords actually improves their usefulness, despite the

fact that fewer referents are used in the actual vectors.

It is also interesting, then, to compare this 50-headword, 10-cluster model to a headword-lexicalized

model with 10 headwords. In this case, the possible size of the grammar is equal. Again, the relationally-

clustered model outperforms plain lexicalization. This indicates that the 10 clustered referents are much

more meaningful than 10 headword referents for the disambiguating of syntax.

4.4 Effect of Number of clusters

The final experiment on relational-clustering SVS was to determine whether performance would vary

with the number of clusters. Table 1b compares average performance (over different random initializa-

tions) for numbers of clusters from 1 (a syntax-equivalent case) to 20.

First, it should be noted that all of the relationally clustered models improved on the baseline. Ran-

dom initializations did not vary enough for these models to do worse than syntax alone. For each vec-

tor/domain size, in fact, the gains over syntax-only are substantial.
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In addition, the table shows that average performance increases with the number of clusters. This

loosely positive slope means that EM is still finding useful parts of the semantic space to explore and

cluster, so that the clusters remain meaningful. However, the increase in performance with number of

clusters is likely to eventually plateau.

Maximum-accuracy models were also evaluated, since each model is a full-fledged parser. The best

20-referent model obtained an F score of 84.60%, beating the syntactic baseline by almost a full absolute

point. Thus, finding relationally-clustered semantic output also contributes to some significant parsing

benefit.

4.5 Perplexity

Finally, per-word perplexities were calculated for a syntactic model and for a 5-concept relationally-

clustered model. Specific to this evaluation, following Mitchell and Lapata (2009), only the top 20,000

words in WSJ Sections 02-21 were kept in training or test sentences, and the rest replaced with ‘unk’;

numbers were replaced with ‘num.’

Sec. 23, ‘unk’+‘num’ Perplexity

syntax only baseline 428.94

rel’n clust. 1khw→005e 371.76

Table 2: Model fit as measured by perplexity.

Table 2 shows that adding semantic information greatly reduces perplexity. Since as much syntactic

information as possible (such as argument structure) has been pre-annotated onto trees, the isolated

contribution of interactive semantics improves on a syntax-only model model.

5 Conclusion

This paper has introduced a structured vectorial semantic (SVS) framework in which vector composition

and syntactic parsing are a single, interactive process. The framework thus fully integrates distributional

semantics with traditional syntactic models of language.

Two standard parsing techniques were defined within SVS and evaluated: headword-lexicalization

SVS (bilexical parsing) and relational-clustering SVS (latent annotations). It was found that relationally-

clustered SVS outperformed the simpler lexicalized model and syntax-only models, and that additional

clusters had a mildly positive effect. Additionally, perplexity results showed that the integration of

distributed semantics in relationally-clustered SVS improved the model over a non-interactive baseline.

It is hoped that this flexible framework will enable new generations of interactive interpretation

models that deal with the syntax–semantics interface in a plausible manner.

References

Baker, J. (1979). Trainable grammars for speech recognition. In D. Klatt and J. Wolf (Eds.), Speech

Communication Papers for the 97th Meeting of the Acoustical Society of America, pp. 547–550.

Blei, D. M., A. Y. Ng, and M. I. Jordan (2003). Latent dirichlet allocation. Journal of Machine Learning

Research 3, 993–1022.

Charniak, E. (1996). Tree-bank grammars. In Proceedings of the National Conference on Artificial

Intelligence, pp. 1031–1036.

Collins, M. (1997). Three generative, lexicalised models for statistical parsing. In Proceedings of the

35th Annual Meeting of the Association for Computational Linguistics (ACL ’97).

303



Deerwester, S., S. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman (1990). Indexing by latent

semantic analysis. Journal of the American Society for Information Science 41(6), 391–407.
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Abstract

This paper reports on an exploratory investigation as to whether classes of Urdu N-V com-
plex predicates can be identified on the basis syntactic patterns and lexical choices associated
with the N-V complex predicates. Working with data from a POSannotated corpus, we show
that choices with respect to the number of arguments, case marking on subjects and which
light verbs are felicitous with which nouns depend heavily on the semantics of the noun in
the N-V complex predicate. This initial work represents an important step towards identi-
fying semantic criteria relevant for complex predicate formation. Identifying the semantic
criteria and being able to systematically code them in turn represents a first step towards
building up a lexical resource for nouns as part of developing natural language processing
tools for the underresourced South Asian language Urdu.

1 Introduction

Urdu is an Indo-Aryan South Asian language spoken primarilyin Pakistan and India. It is structurally al-
most identical to Hindi and together Urdu and Hindi consitute the third-most spoken language (Graddol,
2004). At the same time, Urdu/Hindi is a severely underresourced language. We are currently engaged
in building a broad-coverage, robust computational ParGram grammar for Urdu (Butt and King, 2007;
Butt et al., 2009) and one of the major bottlenecks for development is the lack of lexical resources, which
are needed, for example, for the development of a verb lexicon with subcategorization frames or lists of
argument taking nouns and verbs.

Urdu actually has only about 700 simple verbs (Humayoun, 2006), so the task of finding the range
of possible subcategorization frames could be done mostly manually in a reasonable amount of time.
However, as is characteristic of South Asian languages in general, Urdu employs wide variety of different
types of complex predicates (Butt, 1995; Mohanan, 1994) to express its full range of verbal predication.
The complex predicates can be V-V, Adj-V, PP-V or N-V combinations. In this paper, we focus on the
highly productive N-V complex predicates in order to try to identify: 1) possible constraints on the range
of combinatory possibilities; 2) possible systematic semantic groupings/classes of the nouns involved.

The paper is organized as follows. In section 2 we first describe the basic phenomenon. In section 3
we describe the corpus-based study we performed to see if we can identify systematic semantic classes
for nouns. The results are presented in section 4 and the paper is concluded by section 5.
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2 Combinatory Possibilities for N-V Complex Predicates

Urdu makes use of only about 700 simple verbs. The bulk of verbal predication in Urdu is effected by
complex predicates of various types. The complex predicates are highly productive and different types
can be stacked on top of one another (Butt and Ramchand, 2005), so capturing their use computationally
in a systematic, generalizable and efficient manner is a challenge. One cannot just trawl a corpus to
extract and then list various possibilities as there are potentially infinitely many combinations (though
one can choose to list the 100 or so most frequently occurringones, as done in the Hindi WordNet, for
example; Bhattacharyya 2010).

In this paper, we focus on the combinatorial possibilities in N-V complex predicates. In N-V complex
predicates the noun contains the main predicational content. The verb, usually referred to as thelight
verb, dictates the case marking of the subject, determines agreement patterns, carries information about
tense/aspect and adds information about agentivity vs. experiencer subjects and makes some further
subtle semantic contributions. We illustrate the basics ofthe construction with respect to the nounyad
‘memory’ and the light verbskar ‘do’ and ho ‘be’. Other light verbs may be used as well, but these are
two of the most basic ones.

(1) a. nadya=ne kahani yad k-i
Nadya.F.Sg=Erg story.F.Sg.Nom memory do-Perf.F.Sg
‘Nadya remembered a/the story.’ (lit.: ‘Nadya did memory ofthe story.’)

b. nadya=ko kahani yad hE
Nadya.F.Sg=Dat story.F.Sg.Nom memory be.Pres.3.Sg
‘Nadya remembers/knows a/the story.’ (lit.: ‘Memory of thestory is at Nadya.’)

c. nadya=ko kahani yad hu-i
Nadya.F.Sg=Dat story.F.Sg.Nom memory be.Part-Perf.F.Sg
‘Nadya came to remember a/the story.’ (lit.: ‘Memory of the story became to be at Nadya.’)

In all of the examples in (1), it is evident that the noun and the verb form a single predicational
element. The objectkahani ‘story’ is thematically licensed by the nounyad ‘memory’, but it is not
realized as a genitive, as would be typical for arguments of nouns (and as in the English translations).
Rather,kahani ‘story’ functions as the syntactic object of the joint predication (see Mohanan 1994 for
details on the argument structure and agreement patterns).

In (1a) the nounyad ‘memory’ is combined with the light verbkar ‘do’. In this case the subject must
be ergative and overall reading is one of an agentive, deliberate remembering. In (1b), in contrast, Nadya
is already taken to be in the state of remembering the story. The difference between (1b) and (1c) is one
of eventive vs. stative, so that in (1b), Nadya is already taken to be in the state of remembering the story
(and not actively entering a state of remembering the story). In (1c) the light verb is the participial form
of ho ‘be’ and essentially means ‘become’.

A superficial look at Urdu patterns shows that not all nouns are as versatile asyad ‘memory’. That
is, certain nouns are only compatible with a subset of the potentially available light verbs. What has not
so far been explored, however, is what the semantic constraints on N-V complex predicate formation
are. In order to achieve a first understanding of the relevantpatterns, we follow Levin (1993)’s classic
assumption that semantic predicational classes can be identified on the basis of a study of the syntactic
contexts the predicates occur in (cf. also Schulte im Walde 2009). Our main aim is therefore to identify
semantic classes of nouns on the basis of their syntactic patterns with respect to complex predicates.
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3 Corpus Study

According to the best of our knowledge there is no systematicinventory of which types of nouns are
allowed to combine with which types of light verbs in Urdu, though the basic problem has been recog-
nized for Hindi by Hwang et al. (2010), who are developing annotation guidelines for complex predicate
constructions. We used a small Part-of-Speech (POS) taggedcorpus to extract a number of N-V complex
predicates and then used native speaker judgements to further manually explore their ability to appear
with each of the light verbskar ‘do’, ho ‘be’, hu- ‘become’.1 The manual exploration was necessary due
to a data sparseness problem, since the available tagged corpora for Urdu are of a limited size.

3.1 Corpus

We used an Urdu POS tagged corpus compiled by the Center for Research in Urdu Language Processing
(CRULP) in Lahore, Pakistan (available at http://www.crulp.org/software/lingresources/UrduNepali-
EnglishParallelCorpus.htm). The corpus consists of 100 000 words from the English Penn Treebank
that have been (manually) translated into Urdu. The corpus consists of three files and the tag-set contains
a specialized POS tag called VBL for the light verbs that are used in N-V complex predicates.

3.2 Method

We manually collected N-V complex predicates starting fromthe beginning of each of the corpus files.
Given that we were interested in conducting an initial feasibility study, we stopped going through the files
once we had collected 45 distinct nouns that appeared in N-V complex predicates containing the light
verbskar ‘do’, ho ‘be’ hu- ‘become’. We compiled a full set of combinatorial (im)possibilities of these
45 nouns with the three light verbs by taking the instances identified in the corpora and supplementing
the “missing cells”, so to speak, via native speaker judgements as to whether the combination is possible.

An analysis of the resulting patterns did allow an identification of several distinct semantically coher-
ent classes. Pertinent semantic factors appear to be stative vs. eventive nouns, agentivity vs. experiencer
verbs (psych predications) and the licensing of a dative recipient.

4 Results

4.1 Class A: Full Range

4 out of 45 nouns allowed the full range of patterns shown in (1). The complex predicates these nouns
appear in are psych verbs and include the nounsyad ‘memory’ andyAqin ‘belief’.

4.2 Class B: Exclusion of Dative Subjects

The bulk of the nouns, namely 38 out of the 45, allow an agentive (ergative) subject, but this subject does
not alternate with a dative subject, as shown in (2).

(2) a. bılal=ne mAkan tAmir ki-ya
Bilal.M.Sg=Erg house.M.Sg.Nom construction.F.Sg do-Perf.M.Sg
‘Bilal built a/the house.’

1Further common light verbs arede ‘give’ and a ‘come’. These light verbs have a more complex distribution and so we
chose to concentrate initially on just three basic and very common light verbs. Further light verbs could be investigated in an
extension of this work.
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b. *bılal=ko mAkan tAmir hE/hu-a
Bilal.M.Sg=Dat house.M.Sg.Nom construction.F.Sg be.Pres.3.Sg/be.Part-Perf.M.Sg
‘Bilal built a/the house.’

The nouns here are eventive nouns which presuppose an agent.As such, a non-agentive dative subject
N-V complex predicate cannot be formed with this version of the noun. As shown in (3), grammatical
combinations of these nouns with the light verbhu- ‘become’ do exist — this has an intransitivizing
effect. Semantically, these are resultative state readings that are straightforwardly related to (2).

(3) mAkan tAmir hu-a/*hE
house.M.Sg.Nom construction.F.Sg be.Part-Perf.M.Sg
‘A/The house was/*is built.’

One noun in our set patterns essentially as shown in (2) and (3) with the difference that the noun
licenses a dative recipient rather than a direct object (which can be marked as nominative or accusative,
depending on the definiteness of the object in a well-known pattern of object alternation). In (3) the
nominative object of (2a) is realized as a nominative subject. Similarly, as shown in (4), a dative object
in a complex predicate withkar ‘do’ is realized as a dative subject when the light verb ishu- ‘become’.
Other nouns in Urdu which display this pattern are:ıSara ‘signal’, xAbAr ‘news’ andınkar ‘refusal’.

(4) a. nadya=ne bılal=ko ıSara ki-ya
Nadya.F.Sg=Erg Bilal.M.Sg=Dat signal.M.Sg do-Perf.M.Sg
‘Nadya signaled Bilal.’

b. bılal=ko ıSara hu-a
Bilal.M.Sg=Dat signal.M.Sg be.Part-Perf.M.Sg
‘Bilal was signaled.’ (lit.: A signal came to be at Bilal.’)

4.3 Class C: Exclusion of Light Verb hu- ‘become’

Another class (2 nouns in our set) allows for combinations with the light verbskar ‘do’ and ho ‘be’, but
not with hu- ‘become’, as illustrated in (5) for the nounıntızar ‘wait’. Other nouns like this aretAslim
‘acceptance’ andbArdaSt ’tolerance’. Presumably thehu- ‘become’ does not work with these nouns
because the subject is too agentive to be felicitous as the undergoer of a ‘become’ predication.

(5) a. bılal=ne nadya=ka ıntızar ki-ya
Bilal.M.Sg=Erg Nadya.F.Sg=Gen.M.Sg wait.M.Sg do-Perf.M.Sg
‘Bilal waited for Nadya.’

b. bılal=ko nadya=ka ıntızar hE/*hu-a
Bilal.M.Sg=Dat Nadya.F.Sg=Gen.M.Sg wait.M.Sg be.Pres.3.Sg
‘Bilal is waiting/*waited for Nadya.’

5 Discussion and Conclusions

Our corpus study showed that one can identify at least 3 different classes of nouns with one class con-
sisting of at least two subclasses (Class B). The identification of classes was based on an investigation of
their syntactic distribution in N-V complex predicates with respect to the light verbskar ‘do’, hu- ‘be-
come’ andhE ‘be’. A follow up study could include an extension of the set of light verbs. Another follow
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up study could look at the N-V complex predicates in relationto another set of light verbs which occur
with V-V complex predicates. The N-V complex predicate is predicationally equivalent to a simple verb
and as such can further combine with light verbs. Initial investigations have shown that the semantics
of the noun governs the choice of this further light verb, so that the phenomenon of complex predicate
stacking could provide further clues as to a semantic basis for the classification of Urdu nouns.2

The semantic factors identified so far include the eventive vs. statitivity of the nouns, the agentivity
vs. experience of the action and whether the noun licenses a dative recipient. The first identification of
noun classes in terms of systematic syntactic and semantic differences achieved in this paper represents
a step towards overcoming the lack of lexical resources for natural language processing of Urdu.
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Abstract

In this paper we describe DISCUSS, a dialogue move taxonomy layered over semantic represen-
tations. We designed this scheme to enable development of computational models of tutorial dia-
logues and to provide an intermediate representation suitable for question and tutorial act generation.
As such, DISCUSS captures semantic and pragmatic elements across four dimensions: Dialogue Act,
Rhetorical Form, Predicate Type, Semantic Roles. Together these dimensions provide a summary of
an utterance’s propositional content and how it may change the underlying information state of the
conversation. This taxonomy builds on previous work in both general dialogue act taxonomies as
well as work in tutorial act and tutorial question categorization. The types and values found within
our taxonomy are based on preliminary observations and on-going annotation from our corpus of
multimodal tutorial dialogues for elementary school science education.

1 Introduction

Past successes with conversational Intelligent Tutoring Systems (ITS) (Graesser et al., 2001), have helped
to demonstrate the efficacy of computer-led, tutorial dialogue. However, ITS will not reach their full
potential until they can overcome current limitations in spoken dialogue technologies. Producing systems
capable of leading open-ended, Socratic-style tutorials will likely require more sophisticated models to
automate analysis and generation of dialogue. A well defined tutorial dialogue annotation scheme can
serve as a stepping stone towards these goals. Such a scheme should account for differences in tutoring
style and question scaffolding techniques and should capture the subtle distinctions between different
question types. To do this, requires a representation that connects a turn’s communicative and rhetorical
functions to its underlying semantic content.

While efforts such as DAMSL (Core and Allen, 1997) and DIT++ (Bunt, 2009) have helped to make
dialogue act annotation more uniform and applicable to a wider audience, and while tutoring-specific
initiatives (Tsovaltzi and Karagjosova, 2004; Buckley and Wolska, 2008) have helped to bring dialogue
acts to tutorial dialogue, the move granularity in these schemas is too coarse to capture the differences
in tutorial questioning styles exhibited in our corpus of Socratic-style tutorial dialogues. Conversely,
question type categories (Graesser and Person, 1994; Nielsen et al., 2008) have been designed with
education in mind, but they largely ignore how the student and tutor may work together to construct
meaning. The DISCOUNT scheme’s (Pilkington, 1999) combination of dialogue acts and rhetorical
functions enabled it to better capture tutoring moves, but its omission of shallow semantics prevents it
from capturing how content influences behavior.

Our long-term goals of automatic dialogue characterization, tutorial move prediction and question
generation led us to design our own dialogue representation called DISCUSS (Dialogue Scheme for
Unifying Speech and Semantics). Design of this dialogue move taxonomy was based on preliminary
observations from our corpus of tutorial dialogues, and was influenced by the aforementioned research.
We hope that undertaking this ambitious endeavor to capture not only a turn’s pragmatic interpretation,
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but also its rhetorical and semantic functions will enable us to better model the complexity of open-ended,
tutorial dialogue.

The remainder of the this paper is organized as follows. In the next section we describe our tutorial
dialogue setting and our data. Section 3 discusses the organization of the DISCUSS annotation scheme.
Section 4 briefly explains the current status of our annotation. Lastly section 5 outlines our future plans
and conclusions.

2 Tutorial Dialogue Setting and Data

My Science Tutor (MyST) (Ward et al., 2010) is a conversational virtual tutor designed to improve
science learning and understanding for students in grades 3-5. Students using MyST investigate and
discuss science through natural spoken dialogues and multimedia interactions with a virtual tutor named
Marni. The MyST dialogue design and tutoring style is based on a pedagogy called Questioning the
Author (QtA) (Beck et al., 1996), wherein the teacher facilitates discovery by challenging students with
open-ended questions and by directly keying in on ideas expressed in the student’s language.

To gather data for MyST system coverage and dialogue analysis, we ran Wizard-of-Oz (WoZ) exper-
iments that allowed a human tutor to be inserted into the interaction loop. Project tutors trained in QtA
served as Wizards and were responsible for accepting and overriding system actions. Over the past three
years we have accumulated over five-hundred, 15-minute WoZ sessions across four modules Magnetism
and Electricity, Measurement, Variables, and Water, each with 16 lessons. Student speech from these
sessions was professionally transcribed at the word level.

3 The DISCUSS Annotation Scheme

The Dialogue Scheme for Unifying Speech and Semantics (DISCUSS) is a multifaceted dialogue move
taxonomy intended to capture both the pragmatic and semantic interpretations of an utterance. A DIS-
CUSS move is a tuple composed of values from four dimensions: Dialogue Act, Rhetorical Form, Pred-
icate Type, and Semantic Roles. Together these dimensions convey the communicative action, surface
form, and meaning of an utterance independent of the original utterance text.

We designed DISCUSS to serve as an intermediate representation that will enable future work in
dialogue session characterization, dialogue strategy optimization, and automatic question generation. To
facilitate these goals, we have endeavored to create a taxonomy that is both descriptive and curriculum-
independent while allowing for expansion as necessary. A complete listing of all the DISCUSS moves
and dimensions can be found in our forthcoming technical report.

In the following subsection we will describe the different DISCUSS move categories. Descriptions
of the Semantic Role and Predicate Type are found in the subsection about semantic dimensions, while
discussion about the dialogue act and rhetorical form has been placed in the pragmatic dimensions
subsection. Throughout the rest of this paper we denote DISCUSS tuples using the following notation:
Dialogue Act/Rhetorical Form/Predicate Type 〈Semantic Role〉.

3.1 Move Categories

DISCUSS moves are dictated by the dialogue act dimension and may belong to one of three broad cate-
gories: Dialogue Control, Information Exchange, and Attention Management. Dialogue Control moves
are largely concerned with maintaining and enabling the flow of information. This includes dialogue
acts such as Acknowledge, Open, Close, Repeat, and RequestRepeat. The Information Exchange moves
relay content (often lesson-specific) between speakers using moves such as Assert, Ask, Answer, Mark,
Revoice. For tutorial dialogue the bulk of student-tutor interactions reside in this category. Lastly, At-
tention Management moves indicate how a speaker exercises initiative over other speakers or topics.
Dialogue acts found in the attention category are Focus, Defer, Elicit, and Direct.
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3.2 Semantic Dimensions

The semantic dimensions define the objects, events, properties and relations contained within an utter-
ance. The semantic roles at the lowest level of the DISCUSS hierarchy directly capture the propositional
entities. Predicate Types summarize the interactions between all of the semantic roles found within an
utterance.

Semantic Roles: The MyST system models a lesson’s key concepts as propositions which are real-
ized as semantic frames. For MyST natural language understanding, these frames serve as the top-level
nodes for a manually written semantic grammar used by the Phoenix parser (Ward, 1994). Two example
concepts/frames and Phoenix parses are shown below. Although these semantic frames form the basis
of MyST dialogues, for DISCUSS annotation we sought a more domain-independent representation that
would generalize across a wide range of subjects. We began with VerbNet (Schuler, 2005) for defining
our set of semantic roles because of its intuitive balance between descriptiveness and portability. While
we used a majority of the labels as is, we found that the definition of some roles needed to be modified
or extended to properly cover our set of concepts. For example, many concepts that express proportion-
ality relationships can not be easily represented using predicate argument structure, and are more easily
decomposed into cause and effect roles. We also added the catch-all keyword label to reflect terms that
may relate to the proposition, but are not part of the core representation.

For our annotation project, rather than manually tagging all of the utterances with VerbNet labels, we
created a mapping layer between the Phoenix frame roles and the VerbNet roles. The table below shows
two frames along with their role mappings. We envision that in future projects, the hand-tuned semantic
grammars could be replaced with a statistically trained semantic role labeler.

Frame: BatteryFunction Frame: MagnetsAttract
Description: The DCell is the source of elec-

tricity.
Description: Magnets attract to certain ob-

jects.
〈Instrument〉: [Battery] 〈Instrument〉: [Magnet]
〈Predicate〉: [Source] 〈Predicate〉: [Attract]
〈Theme〉: [Electricity] 〈Theme〉: [Object]

Predicate Type: Simply knowing an utterance’s propositional content is insufficient for inferring
what was stated. Consider the two exchanges shown in the table below. The mixture of semantic roles
in both students’ responses are identical. Additionally, we can not differentiate between the exchanges
based solely on dialogue act or rhetorical form. We need additional information to know the first scenario
seeks to elicit discussion about observations while the second scenario focuses on procedures. One can
also imagine such information would be useful for identifying communication breakdowns. For example,
responding with a description of a procedure to a request about a process may indicate that the student
did not understand the question or that the student is unwilling or unable to address the question.

T12: Tell me about what’s going on here in this picture.
Ask/Describe/Observation

S13: The wires connect the battery and the light bulb and then then light bulb lights up.
Answer/Describe/Observation
〈Instrument〉.wires 〈Predicate〉.connect 〈Theme1〉.battery 〈Theme2〉.light bulb 〈Effect〉.bulb
lights up

T7: Tell me about how you got the bulb to light up.
Ask/Describe/Procedure

S8: To make the light go we connected the wires to the battery and the bulb.
Answer/Describe/Procedure
〈Effect〉.light go 〈Predicate〉.connected 〈Instrument〉.wires 〈Theme1〉.battery 〈Theme2〉.bulb

To address this need, we created the Predicate Type based partly on the rhetorical predicates used in
the DISCOUNT (Pilkington, 1999) scheme. While DISCOUNT included discourse relations in the set
of predicate types, we restrict predicate types to those that encapsulate or summarize the collection of
semantic roles in an utterance. Example predicate types include procedure, observation and purpose. A
complete list of predicate types can be found in our forthcoming technical report.
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3.3 Pragmatic Dimensions

The pragmatic dimensions are composed of the dialogue act dimension and the rhetorical form dimen-
sion. The dialogue act expresses the communicative function of a move and is the most general dimen-
sion in DISCUSS. The rhetorical form expresses attributes of the utterance’s surface realization and can
be thought of as refining the intent of the coarser dialogue act.

Dialogue Act: The dialogue act dimension is the top-level dimension in DISCUSS with the values
of all other dimensions depending on the value of this dimension. Like with the majority of dialogue
act taxonomies, DISCUSS dialogue acts have a grounding in speech act theory with a focus on what
action the utterance performs. While most of the dialogue acts in the Dialogue Control and Informa-
tion Exchange move categories have direct corollaries to those found in other taxonomies like DIT++ or
DAMSL, we needed to supplement them with two frequently used Questioning the Author discussion
moves: marking and revoicing. In marking, the tutor highlights parts of the student’s language to em-
phasize important points and to steer the conversation towards key concepts. Revoicing serves a similar
purpose, but instead of highlighting, the tutor rephrases student speech to clarify ideas they may have
been struggling with. Examples of these acts are shown below.

S5: that when you stick a magnet to a rusty nail and then you stick it to a paper clip it sticks
Answer/Describe/Process

T6: I think I heard you say something about magnets sticking or attracting. Tell me more about that.
Mark/None/None, Ask/Elaborate/Process

S33: well when you scrub the the paperclip to the magnet the paperclip is starting to be a magnet
Answer/Describe/Process

T34: very good, so if the magnet gets close to the paperclip it picks it up
Feedback/Positive/None, Revoice/None/None

Dialogue acts in the Attention Management move category also reflect many of the actions regularly
seen in tutorial dialogue. Focus and Defer acts are often used to move to or away from lesson-specific
topics. In our corpus Direct is typically used to give instructions related to the multimedia (e.g. “Click
on the box” or ”Look at this animation.”).

Rhetorical Form: The DISCUSS Rhetorical Form dimension provides another mechanism for dif-
ferentiating between utterances with identical semantic content. While the dialogue act dimension is
useful for providing an utterance’s pragmatic interpretation and for determining what sequences are li-
censed, by itself it provides no indication of how a speaker is advancing the topic under discussion.
Additional information is needed to create an utterance’s surface form. Consider the two transactions
in the table below. The semantic parses in both scenarios would be identical, however the tutor’s ques-
tions and the resulting student response serve very different functions. In the first, the tutor is asking
for a description and in the second, identification. Selection of the DISCUSS rhetorical forms found in
the Information Exchange move category were inspired by the sixteen top-level tags used in Rhetori-
cal Structure Theory (RST) (Mann and Thompson, 1988). While RST uses a rhetorical relation to link
clauses and to show the development of an argument, DISCUSS uses the rhetorical form to refine the
dialogue act. A sequence of dialogue acts paired with rhetorical forms can show progressions in the
dialogue and tutoring process such as a shift from open-ended to directed questioning.

T1: Can you tell which one is the battery? T1: Can you describe what is going on with the battery?
Ask/Describe/Visual Ask/Identify/None

S2: The battery is putting out electricity. S2: The battery is the one putting out the electricity.
Answer/Describe/Process Answer/Identify/None

4 Annotation Status

We are still in the early stages of this ambitious annotation project. We currently have approximately
60 transcripts singly-annotated with DISCUSS moves. Each of these transcripts represents roughly 15
minutes of conversation and 50 turns on average. The DISCUSS taxonomy is a work in progress. Though
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we have created the tags for each dimension based on a wide body of prior research and on preliminary
studies of our transcripts, we expect that future analysis of our annotation reliability and consistency will
likely lead us to add, modify, and combine tags. We anticipate that DISCUSS’s multidimensional nature
will likely raise issues for inter-annotator reliability, and the ability to add multiple tags per turn will
further complicate the process of evaluating agreement.

5 Future Work and Conclusions

We plan to use our corpus of DISCUSS annotated tutorial dialogues to build dialogue models for a variety
of applications including assessment of tutorial quality and dialogue move prediction. This annotation
will allow us to investigate what features of tutorial dialogue correlate with increased learning gains and
what types of questions encourage greater student interaction. Data-driven dialogue characterization will
also allow us to explore how tutorial tactics vary across domains and tutors. We envision this work as an
important first step towards automatic question generation.

In this paper we introduced the DISCUSS dialogue move taxonomy. This scheme overlays dialogue
act and rhetorical annotation over semantic representations. We believe this combination of pragmatic
interpretations and semantic representations provide an intermediate representation rich enough to an-
alyze the interactions in a complex task-oriented domain like tutorial dialogue. Furthermore, we think
DISCUSS moves can succinctly summarize the actions of a speaker’s turn, while still providing suffi-
cient information for natural language generation of dialogue moves.
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Abstract

Semantic change has mostly been studied by historical linguists and typically at the scale of centuries.
Here we study semantic change at a finer-grained level, the decade, making use of recent newspaper cor-
pora. We detect semantic change candidates by observing context shifts which can be triggered by topic
salience or may be independent from it. To discriminate these phenomena with accuracy, we combine
variation filters with a series of indices which enable building a coherent and flexible semantic change
detection model. The indices include widely adaptable tools such as frequency counts, co-occurrence
patterns and networks, ranks, as well as model-specific items such as a variability and cohesion mea-
sure and graphical representations. The research uses ACOM, a co-occurrence based geometrical model,
which is an extension of the Semantic Atlas. Compared to other models of semantic representation, it
allows for extremely detailed analysis and provides insight as to how connotational drift processes unfold.

1 Introduction
Semantic change has long been analyzed and theorized upon in historical linguistics. Its abstract and

ungraspable nature made its detection a difficult task for computational semantics, despite the many tools
available from various models of lexical treatment. Most extant theories are based on manual analysis of
century long semantic drifts. From these works we inherit various typologies and repertories of causes
of change (e.g., Bloomfield (1933)). However these types of analyses may not be suited to the large scale
production of text in our societies. Not only has the quantity of produced text rocketed but its diffusion
and speed of transmission has radically increased. In this context, recent studies have yielded promising
results, showing that computational models of semantics can deal with assessed semantic change exam-
ples as well as detect candidates in corpora. Among them, some include topic salience as an index and
others do not, as they rather try to quantify semantic change with reliable measures. In an era of infor-
mation overflow, topic change takes on a new linguistic value, as it may be responsible for extremely
quick paced semantic change, which can be ephemeral or become fixed. Topic salience might as well
be a sociologically induced or press phenomenon with no semantic impact at all. However when both
topic salience and connotational drift take place, a semantic phenomenon may be at stake. Our analysis
is anchored in this process. We shall briefly introduce other approaches, explain our methods and the
structure of our detection prototype (in progress) as well as give preliminary results before concluding
with a discussion.

2 Measuring semantic change : previous work
To measure semantic change, one has to evaluate the semantics of a lexical item at a given point. To

do so, semantic similarity measures in vector spaces or geometrical spaces may be used to compare the
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item with its own occurrences at later points. This method has been applied in Sagi et al. (2009), where
semantic density was calculated as the average angle between vectors in a semantic space. The variabil-
ity of that density was observed for the same lexical item at different points in time. Density measures
were applied to a series of acknowledged semantic change cases, in the Project Gutenberg Corpus, a
historical corpus of English organized by documents. Results mostly include broadening and narrowing
cases. The same method yielded results on the difference between nominal and verbal types of change,
showing that verbs were more likely to change than nouns (Sagi (2010)).
Cook and Stevenson (2010) also used assessed cases from the historical linguistics literature. They
detected changes in the semantic orientation of words (or polarity shifts) namely amelioration and pejo-
ration. They then applied this methodology to detect possible un-assessed candidates. They used three
English corpora as corpus slices, covering approximately a four century time-span.
Volatility has also been assessed by Holz and Teresniak (2010), who adapted a measure from economet-
rics to quantify semantic change in a time sliced corpus. The volatility measure relied on the computation
of the rank series for every co-occurent term and on the coefficient of variation of all co-occurrent terms
(Holz and Teresniak (2010)). The method was applied to search words in modern corpora in German and
English (the Wortschatz and the New York Times). The strong point of this measure is that it is indepen-
dent from word frequency, however it does not provide detailed analysis about the underlying semantic
processes.

3 Methods
Of the three cited works, our approach is closer to that of Holz and Teresniak (2010) in that both

their work and ours are conducted on very recent corpora. We are currently conducting short diachrony
detection, analysis and representation on a modern press corpus in French (the newspapers Le Monde,
1997-2007). We use the ACOM model (Ji et al. (2003)) an extension of the Semantic Atlas Model (Ploux
et al. (2010)) that uses factor analysis to provide geometrical representations of word co-occurrence in
corpus (both models are freely available on http://dico.isc.cnrs.fr/eng/index.html).
The model relies on cliques, which are organized subsets of co-occurrent words, from which clustering
can be made. To extract co-occurrent words, we apply ACOM on a time-sliced corpus. For each slice
t, a word-association table is constructed using all headwords (see Ploux et al. (2010) for a complete
methodological description). Each headword W i

t (1≤i≤N , where N is the total number of types in the
corpus slice) has children (cjs) that are arranged in descending order of co-occurrence with W i

t
1:

W i
t : c1; c2; . . . ; cn

We apply two factors to filter this table: α where 0≤α≤1 to eliminate the rarely co-occurring children
of W i

n :

W i
t : c1; c2; . . . ; ck

where k = nα and n is the original number of children ofW i
t , and β where β(0≤ β ≤1) to cut off rarely

co-occurring of children of cj :

(cmj : g1; g2; . . . ; gl(1≤j≤k; l = mβ))

On the basis of that table, cliques are calculated. The notion of clique is taken from graph theory (on
graph therory see for ex. Golumbic (2004)). Mathematically, cliques are maximum connected sub-
graphs. In our case, the nodes are contexonyms. Then, correspondence factor analysis is applied (Ben-
zécri (1980)) and the χ2 distance is calculated between pairs of cliques to obtain a multidimensional
space. A hierarchical clustering algorithm clusters cliques in thematic sets at several degrees of detail.
Clusters show broad topic shifts whereas the cliques show fine-grained sub-organisation. Therefore the
model allows for very detailed analysis as well as topical analysis. It also provides a graphic visualization
for the semantics of a word. With the time-sliced corpus, we may extract maps for each subpart of the

1Children with co-occurrences under a 10,000th of the global frequency of the headword W i
t are removed to reduce noise.
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corpus and compare the spaces generated for the same word at different points in time, to complete the
analysis.

3.1 Structure of the detection prototype
Currently our model is structured as follows: the corpus is transformed into a time-sliced ACOM

database, with word frequencies and co-occurence frequencies. We apply an adjustable standard de-
viation filter to extract significant frequency and co-occurrence frequency variations as well as co-
occurrence network variations. (The co-occurrence window is adjustable to the sentence, paragraph
or other window sizes). If we only detect frequency variation, there is a suspicion that the headword
might undergo context variation later, but it could also be an ephemeral press or fashion phenomenon
with no semantic impact. However if we detect both significant frequency variations and co-occurrence
variations, there is a higher chance that the context variations are a reflection of semantic variation. At
this stage we apply indices based on rank variation, clique analysis and clique-term variation analysis
(described in Boussidan et al. (2010)) as well as manual analysis to determine the nature of the change.
The next step to verify that the item has undergone semantic change is its stabilization over time. This
detection path highlights short diachronic change. We may also detect significant co-occurence varia-
tions with no significant headword frequency variation, in which case we may apply directly the indices
to check whether the context shifts reveal an anchored meaning shift. If the indices highlight a meaning
shift, the former is necessarily much more subtle than the short diachronic change that we detected pre-
viously. It might be the reflection of a longer term process of which the trigger might not be contained
in the given corpus.

4 Preliminary results
4.1 Testing examples

To conceive a detection model, we first conducted experiments using attested examples or using
words that we selected after manually observing that a shift was taking place. By testing these examples,
we could extract data about how the model would render them so as to use it to create detection indices
and parameters. Among these was the French word malbouffe (literally "bad grub" or "junk food"), a
neology selected from a previously established list of new dictionary entries (Martinez (2009)). The
corpus showed how the different spellings of the words alternated before yielding the current one. Anal-
ysis of the co-occurrence networks showed that one of the most important co-occurrent words, Bové, the
name of a French political actor, had almost the same co-occurrence network as malbouffe. From this
observation and after comparing definitions and previous contexts of use, we could infer that this person
gave the word malbouffe its new meaning, by superimposing political values on it, on top of its dietetic
values. Co-occurrence networks therefore allowed us to analyse the process of meaning shift. The full
analysis of this example may be found in Boussidan et al. (2009).
We also tested a more subtle connotational drift with the word mondialisation ("globalization"), which
undergoes clear contextual change in the corpus. The word first appeared in contexts defined by the
political, economical and intellectual positions it brings about, with strong co-occurrents such as défi
(“challenge”), progrès (“progress") or menace (“threat”). It then drifted into a complete network of
words related to one single French political movement of anti-globalization in 2001. Therefore the use
of mondialisation gained a new connotation, whereas its synonym globalisation ("globalization") re-
mained quite neutral politically. The analysis of this example revealed that some terms were used as
pivots, providing linkage between the existing cliques and the new ones. Pivots therefore provided a
good tool to observe meaning re-organisation. The full analysis of this example may be found in Boussi-
dan et al. (2010) and the corresponding dynamic representation on http://dico.isc.cnrs.fr/
en/diachro.html.

4.2 Semantic change detection
On the basis of these preliminary examples, we designed a semantic change detection prototype.

Testing examples brought to light the difficulty of discriminating press-related topic salience with no

317



semantic impact from topic salience with a semantic impact. Detection is conducted in three stages. The
first stage relies on frequency variation to extract topic variations of context in the corpus. For instance
by setting the filter to retain words for which the coefficient of variation2 is higher than 0.5, we obtain a
list of words that may be classified into three loose semantic sets and a fourth set grouping all indepen-
dent items. These semantic sets include words related to:

• war, terrorism and violence

• technology

• illness

By adjusting the settings we mayalso include more subtle topic variations if needed or conversely, looser
ones. The second stage involves co-occurrence variation so as to extract the changes in semantic networks
and thus in connation, for a lexical item. For instance, we detected that the word logiciel ("software")
underwent a frequency co-occurrence peak with libre ("free") in January 2001. The expression logiciel
libre stands for "freeware" and has been renamed gratuiciel or graticiel (a blending of gratuit, "free"
with logiciel, "software") in Quebec. We therefore detect a new compositional expression that coins a
French equivalent to the word freeware used until then.

Another example of connotational drift is the word navigation ("navigation") which is only attested
in the TLFI3 and the Dictionnaire Historique de la Langue Française (Rey et al. (1998)), under the mean-
ing relating to transport, firstly on seas and rivers and then via plane or spaceship. However, between
1997 and 2001 the word takes on a new major meaning in internet search, meaning "browsing". This is
aparent when looking at the co-occurrence patterns of navigation with words related to technology and
comparing them with co-occurrences of words related to transport. The technology words show peaks
between 1997 and 2001 and then lower frequencies until 2007, whereas the transport words show stable
use all the way through the corpus. The new use of navigation, however is almost obsolete now in spoken
speech -or at least it has gone out of fashion- but the semantics of navigation have clearly integrated an
additional domain and broadened. A simple search of French results on Google provides 5,500,000 doc-
uments for navigation internet, among which are a lot of recent ones. However the meaning to search the
internet grew from the name of a specific web navigator: the Netscape Navigator which was widespread
in the 1990s but is no longer supported nowadays.

Both previous stages provide us with candidates to semantic change. The last stage is the stabilization
of a connotational drift, whether it is a broadening, a narrowing, a domain shift or other. We are currently
working on this last index. We often find that when a word undergoes semantic change, it goes through
a phase of onomasiological competition in which other possible candidates may in turn become the new
bearers of certain meanings. For navigation for instance, the word surf was a competitor, however both
words now sound obsolete. It may be that none of them wins the competition, in which case the concept
has become so deeply anchored in language and society that it does not need naming any more.

5 Discussion and Future Work
Since semantic phenomena, whether synchronic or diachronic, are very much corpus specific, it is

difficult to conceive of a large scale universal detection method for them. However, tools may be built
to be highly flexible in order to allow users to adjust settings to adapt to the corpus they deal with. This
flexibility may encompass genre and stylistic variations when working with the same language as well
as adaptation to a completely different language. We are considering global evaluations of the corpora’s
stylistics to avoid the detection of corpus specfic phenomena instead of broader language phenomena.

2The coefficient of variation is the ratio of the standard deviation to the mean
3http://atilf.atilf.fr/tlf.htm
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Ideally the model should also be able to deal with timescale differences.The precise adjustment of these
settings is part of our future research avenues along with incorporating an index for stabilization. This
last filter is particularly difficult to create when dealing with ongoing phenomena. We may sometimes
need to wait a few years to be able to establish whether a semantic change has stabilized.
To summarize, we are currently developing a filtering tool to extract candidates to semantic change on
the basis of topic salience variation in corpus and co-occurrence network variation. Our approach shed
light on the emergence of these phenomena at a very detailed level. Preliminary results showed that the
tool was succesful at extracting those candidates; however it is not yet advanced enough to discriminate
between context changes that affect a word without semantic impact and those that do have a semantic
impact. This aspect constitutes our current research perspective.
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Abstract

In the Textual Entailment community, a shared effort towards a deeper understanding of the core
phenomena involved in textual inference is recently arose. To analyse how the common intuition
that decomposing TE would allow a better comprehension of the problem from both a linguistic
and a computational viewpoint, we propose a definition for strong component-based TE, where each
component is in itself a complete TE system, able to address a TE task on a specific phenomenon
in isolation. We review the literature according to our definition, trying to position relevant work as
more or less close to our idea of strong component-based TE. Several dimensions of the problem are
discussed: i) the implementation of system components to address specific inference types, ii) the
analysis of the phenomena relevant to component-based TE, and iii) the development of evaluation
methodologies to assess TE systems capabilities to address single phenomena in a pair.

1 Introduction

The Recognizing Textual Entailment (RTE) task (Dagan et al. (2009)) aims at capturing a broad range
of inferences that are relevant for several Natural Language Processing applications, and consists of
deciding, given two text fragments, whether the meaning of one text (the hypothesis H) is entailed, i.e.
can be inferred, from another text (the text T).

Although several approaches to face this task have been experimented, and progresses in TE tech-
nologies have been shown in RTE evaluation campaigns, a renewed interest is rising in the TE community
towards a deeper and better understanding of the core phenomena involved in textual inference. In line
with this direction, we are convinced that crucial progress may derive from a focus on decomposing the
complexity of the TE task into basic phenomena and on their combination. This belief demonstrated
to be shared by the RTE community, and a number of recently published works (e.g. Sammons et al.
(2010), Bentivogli et al. (2010)) agree that incremental advances in local entailment phenomena are
needed to make significant progress in the main task, which is perceived as omnicomprehensive and not
fully understood yet. According to this premise, the aim of this work is to systematize and delve into the
work done so far in component-based TE, focusing on the aspects that contribute to highlight a common
framework and to define a clear research direction that deserves further investigation.

Basing on the original definition of TE, that allows to fomulate textual inferences in an application
independent way and to take advantage of available datasets for training provided in the RTE evaluation
campaigns, we intend to analyse how the common intuition of decomposing TE would allow a better
comprehension of the problem from both a linguistic and a computational viewpoint. Aspects related to
meaning compositionality, which are absent in the original proposal, could potentially be introduced into
TE and may bring new light into textual inference.

In this direction, we propose a definition for “strong” component-based TE, where each component
is in itself a complete TE system, able to address a TE task on a specific phenomenon in isolation.
Then, we review the literature in the TE field according to our definition, trying to position relevant
work as more or less close to our idea of strong component-based TE. We have analysed and carried
out research on several dimensions of the problem, including: i) the definition and implementation of
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system components able to address specific inference types (Section 2); ii) the analysis of the phenomena
relevant to component-based TE (Section 3); iii) the development of methodologies for the analysis of
component-based TE systems, providing a number of qualitative indicators to assess the capabilities that
systems have to address single phenomena in a pair and to combine them (Section 4).

2 Component-based TE framework

We define a component-based TE architecture as a set of clearly identifiable TE modules that can be
singly used on specific entailment sub-problems and can be then combined to produce a global entailment
judgement. Each component receives a certain example pair as input, and outputs an entailment judgment
concerning the inference type it is built to address. In other words, each component is in turn a TE
system, that performs the same task focusing only on a certain sub-aspect of entailment. According
to our proposal the following requirements need to be fulfilled in component-based TE architecture: i)
each compenent must provide a 3-way judgment (i.e. entailment, contradiction, unknown) on a specific
aspect underlying entailment, where the unknown judgement might be interpreted as the absence of the
phenomenon in the TE pair; ii) in a component-based architecure, the same inference type (e.g. temporal,
spatial inferences) can not be covered by more than one component; this is because in the combination
phase we do not want that the same phenomen is counted more than one time.

No specific constraints are defined with respect to how such components should be implemented,
i.e. they can be either a set of classifiers or rule-based modules. In addition, linguistic processing and
annotation of the input data (e.g. parsing, NER, semantic role labeling) can be required by a component
according to the phenomenon it considers. An algorithm is then applied to judge the entailment relation
between T and H with respect to that specific aspect. Unlike similarity algorithms, with whom algorithms
performing entailment are often associated in the literature, the latter are characterized by the fact that
the relation on which they are asked to judge is directional. According to such definition, the nature
of the TE task is not modified, since each sub-task independently performed by the system components
keeps on being an entailment task. Suitable composition mechanisms should then be applied to combine
the output of each single module to obtain a global judgment for a pair.

The definition presented above provides a strong interpretation of the compositional framework for
TE, that can be described as a continuum that tends towards systems developed combining identifiable
and separable components addressing specific inference types. A number of works in the literature can
be placed along this continuum, according to how much they get closer to this interpretation.

Systems addressing TE exploiting machine learning techniques with a variety of features, including
lexical-syntactic and semantic features (e.g. Kozareva and Montoyo (2006), Zanzotto et al. (2007)) tend
towards the opposite extreme of this framework, since even if linguistic features are used, they bring
information about a specific aspect relevant to the inference task but they do not provide an independent
judgment on it. These systems are not modular, and it is difficult to assess the contribution of a cer-
tain feature in providing the correct overall judgment for a pair. A step closer towards the direction of
component-based TE is done by Bar-Haim et al. (2008), that model semantic inference as application
of entailment rules specifying the generation of entailed sentences from a source sentence. Such rules
capture semantic knowledge about linguistic phenomena (e.g. paraphrases, synonyms), and are applied
in a transformation-based framework. Even if these rules are clearly identifiable, their application per se
does not provide any judgment about an existing entailment relation between T and H.

A component-based system has been developed by Wang and Neumann (2008), based on three spe-
cialized RTE-modules: (i) to tackle temporal expressions; (ii) to deal with other types of NEs; (iii) to deal
with cases with two arguments for each event. Besides these precision-oriented modules, two robust but
less accurate backup strategies are considered, to deal with not yet covered cases. In the final stage, the
results of all specialized and backup modules are joint together, applying a weighted voting mechanism.

Getting closer to the definition of component-based TE presented at the beginning of this Section, in
Magnini and Cabrio (2009) we propose a framework for the definition and combination of specialized
entailment engines, each of which able to deal with a certain aspect of language variability. A distance-
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based framework is assumed, where the distance d between T and H is inversely proportional to the
entailment relation in the pair. We assume an edit distance approach (Kouylekov and Magnini (2005)),
where d is estimated as the sum of the costs of the edit operations (i.e. insertion, deletion, substitution),
which are necessary to transform T into H. Issues underlying the combination of the specialized entail-
ment engines are discussed, i.e. the order of application and the combination of individual results in
order to produce a global result.

3 Linguistic analysis and resources for component-based TE

The idea underlying component-based TE is that each component should independently solve the en-
tailment relation on a specific phenomenon relevant to inference, and then the judgments provided by
all the modules are combined to obtain an overall judgment for a pair. Our definition abstracts from the
different theories underlying the categorization of linguistic phenomena, so a straightforward relation
between TE component and linguistic phenomena cannot be defined a priori. Some work has already
been done in investigating in depth sub-aspects of entailment, and in developing ad hoc resources to
assess the impact of systems components created to address specific inference types. Earlier works in the
field (e.g. Vanderwende et al. (2005), Clark et al. (2007)) carried out partial analysis of the data sets in
order to evaluate how many entailment examples could be accurately predicted relying only on lexical,
syntactic or world knowledge. Bar-Haim et al. (2005) defined two intermediate models of textual entail-
ment, corresponding to lexical and lexical-syntactic levels of representation, and a sample from RTE-1
data set was annotated according to each model.

A step further, other RTE groups have developed focused data sets with the aim of investigating
and experimenting on specific phenomena underlying language variability. For instance, to evaluate a
contradiction detection module Marneffe et al. (2008) created a corpus where contradictions arise from
negation, by adding negative markers to the RTE-2 test data. Kirk (2009) describes his work of building
an inference corpus for spatial inference about motion, while Akhmatova and Dras (2009) experiment
current approaches on hypernymy acquisition to improve entailment classification.

The first systematic work of annotation of TE data sets is done by Garoufi (2007), that propose a
scheme for manual annotation of textual entailment data sets (ARTE). The aim is to highlight a wide
variety of entailment phenomena in the data, in relation to three levels, i.e. Alignment, Context and
Coreference. 23 different features are extracted for positive entailment annotation, while for the negative
pairs a more basic scheme is conceived. The ARTE scheme has been applied to the complete positive
entailment RTE-2 Test Set (400 pairs), and to a random 25% portion of the negative entailment Test Set.

More recently, in Bentivogli et al. (2010) we present a methodology for the creation of specialized
TE data sets, made of monothematic T-H pairs, i.e. pairs in which a certain phenomenon relevant to the
entailment relation is highlighted and isolated (Magnini and Cabrio (2009)). Such monothematic pairs
are created basing on the phenomena that are actually present in the RTE pairs, so that the distribution of
the linguistic phenomena involved in the entailment relation emerges. A number of steps are carried out
manually, starting from a T-H pair taken from one of the RTE data sets, and decomposing it in a number of
monothematic pairs T-Hi, where T is the original text and Hi are the hypotheses created for each linguistic
phenomenon relevant for judging the entailment relation in T-H. Phenomena are grouped using both fine-
grained and broader categories (e.g. lexical, syntactic, lexical-syntactic, discourse and reasoning). After
applying the proposed methodology, all the monothematic pairs T-Hi relative to the same phenomenon i
are grouped together, resulting in several data sets specialized for phenomenon i. Unlike previous work
of analysis of RTE data, the result of this study is a resource that allows evaluation of TE systems on
specific phenomena relevant to inference, both when isolated and when interacting with the others (the
annotation of RTE data with the linguistic phenomena underlying the entailment/contradiction relations
in the pairs is also provided). A pilot study has been carried out on 90 pairs from RTE-5 data set.1

Highlighting the need of resources for solving textual inference problems in the context of RTE,
Sammons et al. (2010) challenge the NLP community to contribute to a joint, long term effort in this

1The resulting data sets are freely available at http://hlt.fbk.eu/en/Technology/TE_Specialized_Data
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direction, making progress both in the analysis of relevant linguistic phenomena and their interaction, and
developing resources and approaches that allow more detailed assessment of RTE systems. The authors
propose a linguistically-motivated analysis of entailment data based on a step-wise procedure to resolve
entailment decision, by first identifying parts of T that match parts of H, and then identifying connecting
structure. Their inherent assumption is that the meanings of T and H could be represented as sets of
n-ary relations, where relations could be connected to other relations (i.e. could take other relations as
arguments). The authors carried out a feasibility study applying the procedure to 210 examples from
RTE-5, marking for each example the entailment phenomena that are required for the inference.

4 Evaluation in component-based TE

The evaluation measure adopted in the RTE challenges is accuracy, i.e. the percentage of pairs correctly
judged by a TE system. In the last RTE-5 and RTE-6 campaigns, participating groups were asked to
run ablation tests, to evaluate the contribution of publicly available knowledge resources to the systems’
performances. Such ablation tests consist of removing one module at a time from a system, and rerunning
the system on the test set with the other modules, except the one tested. The results obtained were not
satisfactory, since the impact of a certain resource on system performances is really dependent on how it
is used by the system. In some cases, resources like WordNet demonstrated to be very useful, while for
other systems their contribution is limited or even damaging, as observed also in Sammons et al. (2010).

To provide a more detailed evaluation of the capabilities of a TE system to address specific infer-
ence types, in Cabrio and Magnini (2010) we propose a methodology for a qualitative evaluation of TE
systems, that takes advantage of the decomposition of T-H pairs into monothematic pairs (described in
Section 3). The assumption is that the more a system is able to correctly solve the linguistic phenomena
underlying the entailment relation separately, the more the system should be able to correctly judge more
complex pairs, in which different phenomena are present and interact in a complex way. According to
such assumption, the higher the accuracy of a system on the monothematic pairs and the compositional
strategy, the better its performances on the original RTE pairs. The precision a system gains on single
phenomena should be maintained over the general data set, thanks to suitable mechanisms of meaning
combination. A number of quantitative and qualitative indicators about strength and weaknesses of TE
systems result from the application of this methodology. Comparing the qualitative analysis obtained
for two TE systems, the authors show that several systems’ behaviors can be explained in terms of the
correlation between the accuracy on monothematic pairs and the accuracy on the corresponding original
pairs. In a component based framework, such analysis would allow a separate evaluation of TE modules,
focusing on their ability to correctly address the inference types they are built to deal with.

5 Conclusions

This paper provides a definition for strong component-based TE framework, exploiting the common
intuition that decomposing the complexity of TE would allow a better comprehension of the problem
from both a linguistic and a computational viewpoint. We have reviewed the literature according to
our definition, trying to position relevant works as more or less close to our idea of strong component-
based TE. We hope that the analysis of the different dimensions of the problem we provided may bring
interesting elements for future research works. In this direction, we propose a research program in
which for different applications (e.g. domain, genre) specific TE component-based architectures could
be optimized, i.e. composed by modules that meet the requirements of that specific genre/domain.
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Abstract

The question of how to compose meaning in distributional representations of meaning has re-
cently been recognised as a central issue in computational linguistics. In this paper we describe
three general and powerful tools that can be used to describe composition in distributional seman-
tics: quotient algebras, learning of finite dimensional algebras, and the construction of algebras from
semigroups.

1 Introduction

Vector based representations of meaning have wide application in natural language processing. While
these techniques work well at the word level, for longer strings, data becomes extremely sparse. The
question of how the principle of compositionality might apply for such representations has thus been
recognised as an important one (Widdows, 2008; Clark et al., 2008).

Context-theoretic semantics (Clarke, 2007) is a framework for composing meanings in vector based
semantics, in which the composition of the meaning of strings is described by a multiplication on a real
vector space A that is bilinear with respect to the addition of the vector space, i.e.

x(y + z) = xy + xz (x+ y)z = xz + yz (αx)(βy) = αβxy

where x, y, z ∈ A and α, β ∈ R. It is assumed that the multiplication is associative, but not commutative.
The resulting structure is an associative algebra over a field — or simply an algebra when there is no
ambiguity. Clarke (2007) gives a mathematical model of meaning as context, and shows that under this
model, the meaning of natural language expressions can be described by an algebra. The framework
is also applied to models of textual entailment, and logical and ontological representations of natural
language meaning.

In this paper, we identify three general techniques for constructing algebras.

• Using quotient algebras to impose relations on a free algebra, as described in (Clarke et al., 2010).

• Defining finite-dimensional algebras using matrices. Any finite-dimensional algebra can be de-
scribed in this way; we have investigated the possibility of learning such algebras using least
squares regression.

• Constructing algebras from a semigroup to give it vector space properties. We sketch a possible
method of using this technique, identified by Clarke (2007), to endow logical semantics with a
vector space nature.

This paper presents a preliminary consideration of these general techniques, and our goal is simply to
show that they are worthy of further exploration.
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apple 1.0 0.26 0.24 0.52 0.13 0.12 0.33 0.086 0.080

big apple 1.0 0.33 0.13 0.52 0.17 0.086 0.33 0.11

red apple 1.0 0.12 0.17 0.52 0.080 0.11 0.33

city 1.0 0.26 0.24 0.0 0.0 0.0

big city 1.0 0.33 0.0 0.0 0.0

red city 1.0 0.0 0.0 0.0

book 1.0 0.26 0.24

big book 1.0 0.33

red book 1.0

Figure 1: Cosine similarity values between phrases

see red apple see big city
buy apple visit big apple
read big book modernise city
throw old small red book see modern city
buy large new book

Figure 2: The corpus used to compute the vectors
that formed the generating set for the ideal.

2 Quotient Algebras

One commonly used bilinear multiplication operator on vector spaces is the tensor product (denoted ⊗),
whose use as a method of combining meaning was first proposed by Smolensky (1990), and has been
considered more recently by Clark and Pulman (2007) and Widdows (2008), who also looked at the
direct sum (which Widdows calls the direct product, denoted ⊕).

The tensor algebra on a vector space V (where V is a space of context features) is defined as:

T (V ) = R⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕ · · ·

Any element of T (V ) can be described as a sum of components with each in a different tensor power
of V . Multiplication is defined as the tensor product on these components, and extended linearly to the
whole of T (V ).

Previous work has not made full use of the tensor product space; only tensor products are used,
not sums of tensor products, giving us the equivalent of the product states of quantum mechanics. Our
approach imposes relations on the vectors of the tensor product space that causes some product states
to become equivalent to entangled states, containing sums of tensor products of different degrees. This
allows strings of different lengths to share components. We achieve this by constructing a quotient
algebra.

An ideal I of an algebra A is a sub-vector space of A such that xa ∈ I and ax ∈ I for all a ∈ A
and all x ∈ I . An ideal introduces a congruence ≡ on A defined by x ≡ y if and only if x− y ∈ I . For
any set of elements Λ ⊆ A there is a unique minimal ideal IΛ containing all elements of Λ; this is called
the ideal generated by Λ. The quotient algebra A/I is the set of all equivalence classes defined by this
congruence. Multiplication is defined on A/I by the multiplication on A, since ≡ is a congruence.

Elements that are congruent with respect to the ideal have equivalence classes that are equal in the
quotient algebra. The construction is thus a way of imposing relations between vector elements: we
simply choose a set of pairs that we wish to be equal, and put their difference in the generating set Λ.

Clarke et al. (2010), showed how an inner product can be computed for elements of the quotient
algebra by taking the quotient of a finite dimensional subspace of the ideal and how a treebank could be
used to identify suitable elements to put into the generating set for the ideal in such a way that strings of
different lengths become comparable. Figure 1 shows similarities between adjective phrases computed
using vectors derived from the corpus in figure 2. The construction allows many properties of the tensor
product to carry over into the quotient algebra, for example the similarity of red book to red apple is the
same as the similarity of book to apple, as we would expect from the tensor product. Unlike the tensor
product, strings of different length are comparable, so for example, the similarity of apple to red apple
is non-zero. The benefit of using quotient algebras for compositional distributional semantics lies in
this ability to extend the favourable properties of the tensor product by imposing linguistically plausible
relations between vectors.
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3 Learning Finite-dimensional Algebras

Quotient algebras are useful constructions when we have a small number of relations which we wish
to impose on the tensor algebra. In highly lexicalised grammars, the number of relations we wish to
impose may become so large that the ideal generates the whole vector space, and is thus useless, since
the resulting quotient space will be trivial. An alternative to this is to restrict the space of exploration to
finite-dimensional algebras. In this case, we can explore the space of possible products in relation to the
set of relations we wish to hold; in other words, we can view this as an optimisation problem in which
we want to find the best possible product given the required relations.

We apply this to the situation where we obtain a vector x̂ for each individual word and pair of
words in sequence. We then find the product that best fits these observed vectors. Given a set W =
{w1, w2 . . . wm} of words, we want to define a product � to minimise the difference between ŵi � ŵj

and ŵiwj , for 1 ≤ i, j ≤ m. Specifically, we can define this as minimising
∑

i,j

‖ŵiwj − ŵi � ŵj‖

If word vectors have n dimensions, then � is defined by an n3 dimensional vector, which we denote frst
for 1 ≤ r, s, t ≤ n, where (er � es)t = frst and e is the vector with 1 in every component, and vt is the
tth component of v.

We can view this as a linear model:

(ŵiwj)t = εijt +
n∑

r,s=1

(ŵi)r(ŵj)sfrst

where we have m2 statistical units to learn n2 parameters relating to the tth component of the vector
space. Since these parameters are independent for each value of t, each set of n2 parameters can be learnt
in parallel. We are currently exploring ways of learning these parameters. The form of the equation
above suggests the use of least squares, and we have performed some experiments using this method
using a corpus extracted from the ukWaC corpus (Ferraresi et al., 2008). We extracted a list of verb
adjective∗noun sequences, and used latent semantic analysis (Deerwester et al., 1990) to generate n-
dimensional vectors for the 160 most common adjectives and nouns, and pairs of these adjectives and
nouns. Our initial results indicate that the learnt parameters tend to get very large when using least
squares to find the parameters, leading to poor results; we plan to investigate other methods such as
linear optimisation.

Guevara (2010) proposed a related method of learning composition which used linear regression to
learn how components compose. His model is however much more restrictive than ours in that the value
of a component in the product depends only on that same component in the composed vectors, whereas
in our model, the value of the component can depend on all components in the composed vectors.

Baroni and Zamparelli (2010) took a similar approach, in which adjectives are modelled as matrices
acting on the space of nouns, and the matrices are learnt using least squares regression. The algebra
products we propose learning are more general than matrix products; in addition we do not need to
distinguish between words which are represented as matrices and words which are represented as vectors.

4 Constructing Algebras from Semigroups

Whilst the previous two techniques we have discussed are very general, and allow corpus data to be easily
incorporated into the composition definition, our implementations are currently a long way from being
able to represent the complexities of natural language semantics that is currently possible with logical
semantics. This has become the standard method of representing natural language meaning, originating
in the work of Montague (1973), however there is currently no way to incorporate statistical features of
meaning that are described by the distributional hypothesis of Harris (1968).
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Term Context vector
fish (0, 0, 1)
big (1, 2, 0)

Figure 3: Example context vectors for terms.

ni = (N , λx nouni(x))

ai = (N /N , λpλy adji(y) ∧ p.y)

Figure 4: Equations describing syntax and semantics
of adjectives and nouns.

In related work, Clark et al. (2008) described a method of composing meanings which they noted
was a generalisation of Montague semantics. However, their version of Montague semantics assumed a
particular model, and thus effectively mapped sentences to truth values. This omits much of the power
of Montague semantics in which sentences are mapped to logical forms which then provide restrictions
on the set of allowable models, allowing, for example, entailments to be computed between sentences.

We will sketch a method by which Montague semantics can be described within the context-theoretic
framework. We follow a standard method of representing logic in language, but instead of representing
words using logic, we represent an individual dimension of meaning of a word by a logical form — we
call this dimension a “aspect”. The general scheme is to represent aspects as elements of a semigroup,
from which we form an algebra. Words are then represented as weighted sums over individual aspects.

We define a set S of all aspects as the set of pairs (s, σ), where s is the syntactic type of an aspect
(for example in the Lambek calculus) and σ is the semantics of the aspect (for example described in
the lambda calculus). We can extend S by defining a product on such pairs reducing each element to a
normal form. This defines a semigroup: the Lambek calculus can be described in terms of a residuated
lattice, which is a partially ordered semigroup (Lambek, 1958), and the lambda calculus is equivalent to a
Cartesian closed category under β-equivalence (Lambek, 1985), which can be considered as a semigroup
with additional structure.

Given any semigroup S we can construct an algebra L1(S) of real-valued functions on S which are
finite under the L1 norm with multiplication defined by convolution:

(u · v)(x) =
∑

y,z∈S:yz=x

u(y)v(z).

For example, suppose we have context vectors for the terms big and fish as described in Figure
3. We represent the syntax and semantics of adjectives and nouns by elements ai and ni respectively
of a semigroup S (Figure 4), where we assume equivalence under β-reduction is accounted for. The
predicates adji and nounj correspond to aspects, in this case each dimension i of the three dimensions
in the context vectors has a corresponding adji and nouni. We may then represent the vectors for these
terms as elements of the algebra b̂ig = a1 + 2a2 and fîsh = n3, where we equate an element u of the
semigroup with the function in the algebra L1(S) which maps u to 1 and every other element to zero.
Then b̂ig fîsh = a1n3 + 2a2n3, where

ainj = (N,λx(nounj(x) ∧ adji(x))).

Note that the elements ai form a commutative, idempotent subsemigroup of S, so they have a semilattice
structure. In order for this structure to carry over to the vector structure in the algebra, we would need
a more sophisticated construction, such as a C∗ enveloping algebra; we leave the investigation of this
possibility to further work.

5 Discussion

We have presented our initial investigations into the application of three powerful methods of construct-
ing algebras to representing natural language semantics. Each of these approaches has potential use in
representing meaning; here we have only touched the surface of what is possible with each technique. We
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hope that with further work, these methods will lead to a true synthesis between logical and distributional
approaches to natural language semantics.
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Abstract

Question classifiers are used within Question Answering to predict the expected answer type
for a given question. This paper describes the first steps towards applying a similar methodology to
identifying question classes in dialogue contexts, beginning with a study of questions drawn from the
Enron email corpus. Human-annotated data is used as a gold standard for assessing the output from
an existing, open-source question classifier (QA-SYS). Problem areas are identified and potential
solutions discussed.

1 Introduction and Motivation

In information retrieval, question classification is an important first stage of the question answering task.
A question classification module typically takes a question as input and returns the class of answer which
is anticipated. In an IR context, this enables candidate answers to be identified within a set of documents,
and further methods can then be applied to find the most likely candidate.

The present work is motivated by a desire to identify questions and their answers in the context of
written dialogue such as email, with the goal of improving inbox management and search. Reconstruc-
tion of meaning in a single email may often be impossible without reference to earlier messages in the
thread, and automated systems are not yet equipped to deal with this distribution of meaning, as text
mining techniques developed from document-based corpora such as newswire do not translate naturally
into the dialogue-based world of email. Take the following hypothetical exchange:

From: john@example.com To: jane@example.com
Jane,
Can you let me know the name of your lawyer? Thanks.
John

From: jane@example.com To: john@example.com
Ally McBeal.
-- Jane

This is an extreme example, but it serves to illustrate the “separate document problem” in email
processing. Context is critical to pragmatic analysis, but with email and related media the context (and
consequently, a single piece of information) may be spread across more than one document. In this case
the second message in isolation gives no information concerning “Ally McBeal” as we do not have any
context to put her in. However, by considering the question and answer pair together, we can discover
that she is a lawyer (or, at the very least, that Jane believes or claims that to be the case; a philosophical
distinction best left aside for the time being).

It is anticipated that questions in a dialogue context will exhibit a somewhat different range of types
to typical IR questions, but that some will indeed be seeking the kind of factual information for which
QA classifiers are currently designed. If this subset of fact-seeking questions can be reliably identified

∗The author would like to thank GCHQ for supporting this research.
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by an automated process, then existing question classifiers could be used to identify the expected answer
type. Candidate answers could then be sought within the text of replies to the message in which the
question is asked.

This paper briefly describes the gold standard data (Section 2), compares human annotation to the
output of Ng & Kan’s (2010) QA-SYS question classifier (Section 3), and proposes some future direc-
tions for research (Section 4).

2 The Data

In order to investigate question types in email, a suitable set of questions was required. To this end
questions were automatically extracted from CMU’s deduplicated copy of the Enron corpus (Klimt &
Yang 2004). Of the 39,530 unique question strings identified in Enron outboxes, a random sample of
1147 were manually examined and annotated with the expected question type.

A number of taxonomies have been proposed for classifying answer types, of which Li & Roth’s
(2002) two-tier hierarchy is a reasonably comprehensive and widely-adopted example. Their coarse
classes are Abbreviation (ABBR), Description (DESC), Entity (ENTY), Human (HUM), Location (LOC),
and Numeric (NUM), and they then define a set of 50 subclasses. Table 1 shows how Li & Roth’s taxon-
omy was mapped to the category labels adopted for the current work.

Cotterill 2010 Li & Roth 2002 %
Person(s) HUM{individual,title} 2.53
Group or Organisation HUM{group} 0.17

Descriptive text
HUM{description}

11.51
DESC{manner, definition, description}

Reason DESC{reason} 1.57
Date or Time NUM{date, period} 3.57
Numeric NUM{weight, volume/size, ordinal, percentage, count, speed,

money, temperature, distance, other}
1.92

Phone NUM{code}1 0.40
URL 0.17
Email 0.17
Place LOC{country, state, city, mountain, other} 0.96
Animal ENTY{animal} 0.00
Physical Object ENTY{instrument, plant, body part, vehicle, food, product,

substance}
0.30

Concept ENTY{language, religion, letter, color, creative/artwork, dis-
ease/medical, currency}

0.40

Event or Activity ENTY{event, sport, technique/method} 0.87

Other
ENTY{symbol, term, word, other}

0.00
ABBR{abbreviation, expression}

Yes/No 41.33
Action Request 8.98
Rhetorical 5.23
Multiple 3.23
Non-Question 16.74

Table 1: The new dialogue taxonomy, with mappings to Li & Roth where applicable, and percentage
distribution in the Enron sample

1Phone number is actually a subset of the NUM:code category, but it accounts for all instances in the Enron sample.
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“Are you guys still thinking of maybe joining us skiing?” Yes/No
“Did you know Moller was going to be on TV or were you just
channel surfing?”

Multiple choice

“Do you stock those wheels and tires or would I have to order
them?”
“Will it ever end???” Rhetorical
“Would you please handle this?”

Action Request
“Also, could you check for reservations at the Georgian hotel in
Santa Monica?”

Table 2: Examples of questions in dialogue-specific categories

A number of extra categories were added to account for the nature of the data, as identified by
preliminary experiments. Examples of questions falling into some of the new categories are presented in
Table 2.

It is important to observe that a massive 75.5% of questions in the Enron sample do not fall into any
of the categories defined by Li & Roth. Assuming that this is a fair representation of the distribution
across the Enron corpus (if not email as a whole) then we are clearly justified in stating that some further
work will be required before question classification can be meaningfully applied to the email task.

The most common category is Yes/No, giving a “most common class” baseline of 41.3%. That is
to say, a classification system which classified every question as a Yes/No question would expect to see
accuracy in this region, and any results must be considered in this context.

The most common of the IR-derived categories is Description, representing 11.51% of questions
overall, or 46.2% of those falling into IR categories. This compares to 26.6% reported across the equiv-
alent categories in Li & Roth’s analysis of TREC questions.

Full details of the Enron question dataset will be published in due course.

3 Performance of QA-SYS

QANUS (Ng & Kan 2010) is an open-source question answering framework which uses the Li & Roth
categories in its question classification module. The framework is designed to be extensible, which
makes it a good candidate for further work. However, the results presented in this section deal only with
the output of the QA-SYS default question processing module as supplied with QANUS v26Jan2010.
The question classification component of QA-SYS is an instance of the Stanford classifier, a supervised
learning module trained on a dataset of information retrieval questions.

Ng & Kan do not report their question classification accuracy, providing figures only for the “factoid
accuracy” of the end-to-end question answering system, which makes it difficult to compare their results
to the present study. However Huang, Thint & Cellikyilmaz (2009) publish results for a maximum
entropy classifier trained on similar IR data, reporting an encouragingly high accuracy of 89.0%.

QA-SYS question classification was used to provide an automatic classification for each of the ques-
tions extracted from the Enron dataset. In order to assess the performance of the system, the results were
compared to the hand-annotated examples.

QA-SYS output agreed with human annotation in only 13.4% of cases overall – much lower than the
“most common class” baseline defined above. However, this figure is artificially low as QA-SYS supplies
a result in all circumstances, without any associated level of confidence. The system will therefore
provide an incorrect result in cases where it does not have an appropriate category (even when faced with
a nonsense string).

This may be acceptable behaviour within information retrieval, particularly for participating in com-
petitions when there is a high expectation of the question falling into one of Li & Roth’s categories, but
for dialogue questions it produces a number of undesirable effects. Any competent end-to-end system
would need (at a minimum) to filter out nonsense strings, and direct questions to appropriate classifiers
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“Remind me when your wedding date is?” NUM:date DateTime
“Also, who is following up on the VA license?” HUM:ind Person
“What is our strategy/plan in agricultural commodities training?” DESC:desc Description

Table 3: Examples of questions correctly classified

Category Recall Precision F-measure
Description 62.8 28.6 39.3
DateTime 53.7 28.6 37.3
Numeric 40.9 15.5 22.5
Reason 61.1 10.2 17.5
Person 65.5 6.7 12.2
Place 45.5 5.2 9.3
Event 10.0 2.9 4.6

Table 4: Recall and precision by category

based on language (therefore removing the need to attempt an intelligent classification of texts in multi-
ple languages). Considering the proportion of questions in our sample which fell into the new categories
of our extended taxonomy, the framework should also be extended to include a number of classifiers to
handle these data types specifically.

We are therefore justified in considering what might happen if a pre-classifier fed to QA-SYS only
those questions which it may stand some chance of categorising correctly. Including only those questions
falling into categories on which QA-SYS has been trained, output agrees with human annotation in 55.0%
of cases. Table 3 presents a small number of examples where the QA-SYS annotation agreed with human
assessment.

It may also be instructive to consider the recall and precision on a per-category basis, as there is a
strong variation between the success rates for different QA-SYS categories. Table 4 gives the figures for
those classes with at least 10 examples in the current dataset, and which QA-SYS claims to address.

This shows that some categories with the highest recall (e.g. Person, Reason) suffer from low pre-
cision, but examination of the full confusion matrix shows that the incorrect categorisation is largely
accounted for by the categories for which QA-SYS is not trained (particularly Yes/No questions). If
reliable classifiers could be trained to filter out these question types at an earlier stage, the validity of
QA-SYS results would be significantly improved.

However, there are some features of QA-SYS question classification which cannot be resolved by
simply adding additional categories to the classifier framework.

Most notably, the system exhibits a high degree of case sensitivity. For example, the two strings
“What do you think?” and “what do you think?” are both present in the Enron corpus. To a human eye
the lack of capitalisation is unlikely to affect the meaning, but QA-SYS categorises these two sentences
differently: the former as DESC:desc, the latter as ENTY:term.

A further example of case-sensitivity is found in the response of QA-SYS to questions written en-
tirely in uppercase. Of the eleven examples in the dataset which contain only uppercase letters, all are
classified as ABBR:exp. The ‘uppercase’ feature seems to overwhelm any other considerations (such
as question word) which may be present. For instance “WHAT?” is classified as ABBR:exp, whereas
“What?” and “what?” are (correctly) classified as DESC:desc.

Certain words also have a significant impact on the classification, regardless of the syntax of the
question. For example, a question containing the word ‘percent’ is likely to be classified as NUM:perc,
a question containing the word ‘week’ is likely to be classified as NUM:date, and a question containing
the word ‘state’ is likely to be classifed as some subtype of LOCATION.

Other lexical effects were surprising by their absence. For instance, of 111 questions (in the entire
Enron question-set) beginning “What time. . . ” only eleven are classified as requiring the NUM:date
response.
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“How many kids are in the class and who is the instructor?” NUM:count
“do you want to get together on friday or saturday and where?” LOC:other
“How (and when) do you plan to get there?” DESC:manner

Table 5: Examples of compound questions

Another small but important set of questions, which are barely represented in the current dataset, are
compound questions. These are cases, such as the examples in Table 5, in which more than one answer
is expected. In all of these examples, the category generated by QA-SYS can hardly be called incorrect,
however it is not the whole story. Presently QA-SYS does not allow for multiple answer types. This is
worthy of further study.

4 Future Work

The present work should be extended using a larger dataset to train additional classifiers for the answer
types which are beyond the scope of IR classifiers such as QA-SYS. A larger dataset will also enable
further analysis, for example to identify any common features of questions which prove particularly
hard to categorise. Specific work to identify further examples in the very small categories (including a
representative sample of compound questions) would also be beneficial.

The next step is to extend the QANUS framework with additional classifiers trained on Enron data,
and this work should be thoroughly tested to ensure it is not over-fitted to Enron. There is a wealth of
public dialogue data on the web, available from textual media such as web forums and Twitter, which
may be reasonably expected to have some characteristics in common with email and which could be used
for testing the classifiers.

Recent work on email has considered the task of highlighting messages within an inbox which require
action (e.g Bennett & Carbonell 2005, achieving 81.7% accuracy). This is an interesting result for us
as the set of actions intersects with the set of questions: some questions have the pragmatic force of an
action request. It would be interesting to examine the size of this intersection.
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Abstract
The paper presents an ongoing research that aims at OWL ontology authoring and verbalization

using a deterministic controlled natural language (CNL) that would be as natural and intuitive as
possible. Moreover, we focus on a multilingual CNL interface to OWL by considering both highly
analytical and highly synthetic languages (namely, English and Latvian). We propose a flexible two-
level translation approach that is enabled by the Grammatical Framework and that has allowed us to
develop a more natural, but still predictable multilingual CNL on top of the widely used Attempto
Controlled English (its subset for OWL, ACE-OWL). This has also allowed us to exploit the readily
available ACE parser and verbalizer not only for the modified and extended version of ACE-OWL,
but also for the corresponding controlled Latvian.

1 Introduction
Several notations are widely used to make the formal OWL ontologies more intelligible for both domain
experts and knowledge engineers. They can be divided in several groups: graphical notations, like UML
and its profiles (Barzdins et al., 2010), controlled natural languages (CNL), like Attempto Controlled
English or ACE (Kaljurand and Fuchs, 2007), and human-readable formal syntaxes, like the Manchester
OWL Syntax (Horridge et al., 2006). The latter kind of notation explicitly follows the underlying formal-
ism and therefore requires substantial training to obtain acceptable reading and writing skills. CNL, in
contrast, provides the most informal and intuitive means for knowledge representation and has been suc-
cessfully used in ontology authoring, where involvement of domain experts is crucial (Dimitrova et al.,
2008). Graphical notations are in between and provide a complementary view, unveiling the high-level
structure of the ontology in a more comprehensible way. In this paper we focus on untrained domain ex-
perts and end-users, and, thus, on CNL that has to be as natural and grammatical as possible. Moreover,
we focus on multilingual ontology verbalization to facilitate ontology localization and reuse.

Note that CNL has to ensure deterministic interpretation of its statements, and bidirectional mapping
to OWL, so that the CNL user could easily predict or grasp the precise meaning of the specification that
is being written or read, and so that the roundtrip from OWL to CNL and back would not introduce any
semantic changes in the ontology (if the user has not made changes in the verbalization). In addition to
the highly restricted syntactic subset of full natural language, this is typically achieved by a small set of
interpretation rules and a monosemous (domain-specific) lexicon.

The state of the art CNLs for OWL (Schwitter et al., 2008) are based on English — a highly analytical
language (strict word order, simple morphology, systematic use of determiners) that facilitates the rather
straightforward translation of CNL sentences into their semantic representation (axioms in description
logic). Regardless of the chosen notation, English is often used also as a meta-language for naming the
logical symbols (class and property names) at the ontology level.

Angelov and Ranta (2010) have recently shown that the Grammatical Framework (GF), a formalism
and a resource grammar library that provide means for developing parallel grammars, is a convenient
framework for rapid implementation of multilingual CNLs. Such seamless cross-translation capability
allows easy reuse of the tools developed for existing CNLs — in this way we will reuse the ACE to OWL
and OWL to ACE translators.

335



However, in the case of highly synthetic languages (like Slavic and Baltic) that have rich morphology
and relatively free word order, the bidirectional translation to English (i.e., ACE or some other CNL) is
not straightforward, especially if we are dealing with statements that represent not only axioms1 but also
rules. For rules (such as SWRL), anaphoric noun phrases (NP) are frequently used: in English they
are marked by the definite article, while in Baltic and in most of the Slavic languages such markers are
generally not explicitly used and are not encoded even in noun endings. Thus, one of the central problems
during the semantically precise translation is how to distinguish between axioms and rules, and how to
convey, which information is new (potential antecedents) and which is already given (anaphors).

In this paper we primarily consider Latvian — a member of the Baltic language group. In Section 2
we briefly describe its design and coverage. In Section 3 we illustrate the proposed two-level approach
that is used to translate controlled Latvian to (and from) OWL via ACE as an interlingua2. We show
that this approach allows also for flexible and independent development of an extended and/or modified
(adjusted) controlled English interface at the end-user side, if compared to ACE, especially its subset for
OWL (ACE-OWL). We conclude the paper with a brief discussion on the current results and future tasks.

2 Grammar
The information structure of a sentence indicates what we are talking about (the topic) and what we
are saying about it (the focus) (Hajicova, 2008). In (controlled) English, changes in the information
structure typically are reflected by the use of different syntactic constructions, for instance, by using the
passive voice instead of the active voice. In Latvian, this is typically reflected by a different word order,
for instance, by changing a subject-verb-object (SVO) sentence into OVS or SOV sentence. Thus, in
languages like Latvian the word order is syntactically (rather) free, but semantically bound.

Although the topic and focus parts of a sentence, in general, are not reflected by systematic (determin-
istic) changes in the word order, it has been shown (Gruzitis, 2010) that, in the case of controlled Latvian,
the information structure of a sentence can be systematically and reliably conveyed by relying on simpli-
fied analysis of the topic-focus articulation (TFA), i.e., on simple word order patterns: if the object comes
after the verb (the neutral word order) it belongs to the focus part of the sentence (new information), but
if it precedes the verb — to the topic part (given information). As the initial evaluation shows (Gruzi-
tis et al., 2010), the “correct” word order is both intuitively satisfiable by a native speaker and enables
the automatic detection of anaphoric NPs in controlled Baltic languages (Latvian and Lithuanian). The
simplified TFA method can be adjusted also to controlled Slavic languages.

It should be noted that in Latvian it could be theoretically possible to impose the mandatory use
of artificial determiners, by using, for example, indefinite and demonstrative pronouns, however, such
“articles” would be unnatural in most cases. Lack of articles is even more apparent in Lithuanian, which,
in contrast to Latvian, has no historic influence from the comparatively analytical German.

The survey by Gruzitis et al. (2010) confirmed other important aspects as well that should be ad-
dressed, in order to make controlled Latvian more natural and intuitive:

• Due to the rich morphology, there are various alternatives and certain reductions possible in the
syntactic realization of a sentence, while preserving both the information structure and the abstract
syntax tree (in terms of GF), e.g., making of complex attributes instead of relative clauses may lead
to more concise and intelligible sentences3.

• Explicit determiners (“articles”) in certain cases are preferred: an indefinite pronoun (“a”) improves
the reading of a singular SVO sentence, if the object is not restricted by a relative clause, but a
demonstrative pronoun (“the”) helps in complex rule statements (in addition to the word order).

• Sentences in the plural are often preferred over their counterparts in the singular.
1In this paper we consider only TBox axioms.
2Note that any other CNL could be used instead of ACE. We have chosen ACE because of its easily available infrastructure

(open source tools and web services) and the active developer community (see http://attempto.ifi.uzh.ch).
3Such transformations can be applied to a limited extent also in English (e.g., “animal that eats an animal” can be expressed

as “animal-eating animal”).
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• Limitations of the OWL expressivity (SVO triples only, no time dimension etc.) to some extent
can be lessened on the surface level of the CNL (while preserving the deterministic interpretation),
e.g., by using (where appropriate) non-SVO constructions, like adverbial modifiers of place instead
of direct objects, and nouns (roles) instead of verbs (actions), and by using the present perfect tense
instead of the simple tense (to express a past event that has present consequences).

Therefore, in addition to a grammar that generates the best possible (default) verbalization patterns
(taking into account the information structure), we have developed a parallel grammar that allows for
completely optional use of determiners and accepts the various syntactic alternatives and extensions4.
We have also developed a parallel prototype grammar for controlled English that is based on the full
ACE5 with some improvements: we have extended support for the present perfect tense (e.g., by allow-
ing phrases like “has done something”), and we have taken a pattern from the Sydney OWL Syntax
(Schwitter et al., 2008) to provide an alternative way for expressing inverse nominalized properties (e.g.,
“everything has something as a part” instead of “everything has-part something” or “for everything its
part is something”). It should be mentioned that in the highly inflective controlled Latvian both direct
and inverse nominalized properties are verbalized in a more flexible and uniform way.

To achieve a full compliance with the Latvian counterpart, the controlled English grammar has to
be further extended with respect to non-SVO sentences (clauses): although adverbial modifiers of place
(prepositional constructions) are allowed in the full ACE (e.g., “someone lives in something”), there is no
support for inverse use of a property in such cases, i.e., it is neither allowed to start a relative clause with
the relative pronoun “where”, nor to change the fixed word order (like in “something is a place where
someone lives in”). Again, in controlled Latvian the support for the various relative clauses is ensured in
a uniform way.

3 Implementation
The possible steps of our approach that can be performed during the roundtrip from CNL to OWL and
vice versa are illustrated in Figure 1. LavDefSg is a grammar that defines the default verbalization pat-
terns using Latvian singular sentences, LavDefPl is its counterpart for plural sentences, and LavVar is an
extended combination of both, extensively allowing for free variations (at both the syntactic and lexical
level). LavVar is used for robust, still predictable parsing (in the ontology authoring direction), while
one of the default grammars (depending on the choice of the end-user) — for paraphrasing LavVar sen-
tences and for verbalizing existing ontologies. EngDef implements the ACE-based English grammar, and
EngVar provides few lexical and syntactic alternatives. Finally, AceOwl implements the chosen inter-
lingua, i.e., accepts/generates sentences that are generated/accepted by the ACE-OWL verbalizer/parser.
All these grammars are implemented in GF and are related by a common abstract syntax. Note that
translation (reduction) to/from AceOwl is an internal step of which the end-user is not aware.

LavVar!

LavDefSg!

LavDefPl!

EngDef!

AceOwl! OWL!

EngVar!

ACE2OWL parser!

OWL2ACE verbalizer!

GF 

Figure 1: The overall data flow of the automatic translation process among controlled Latvian, English, and OWL.
Existing tools are exploited for the transition to/from OWL, using ACE-OWL as an interchange format (covered
by the AceOwl grammar). Other transitions are ensured by the parallel GF grammars.

4An online demo is available at http://eksperimenti.ailab.lv/cnl/. Support for plural sentences is being developed.
5The full ACE supports prepositional phrases, adjectives and other constructions that are not allowed in ACE-OWL.
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Table 1: A sample wildlife ontology, automatically verbalized in controlled English (by EngDef) and Latvian (by
LavDefSg). Underlined are properties that are expressed by nouns (roles) instead of verbs (explicit predicates).

1 Everything that eats something is an animal. Tas, kas kaut ko ēd, ir dzīvnieks.
2 Every carnivore is an animal that eats an animal.

Every animal that eats an animal is a carnivore.
Ikviens plēsējs ir dzīvnieks, kas ēd kādu
dzīvnieku. Ikviens dzīvnieks, kas ēd kādu
dzīvnieku ir plēsējs.

3 Every herbivore is an animal that eats nothing but
things that are a plant or that are a part of nothing but
plants.

Ikviens zālēdājs ir dzīvnieks, kas ēd tikai kaut ko,
kas ir augs vai kas ir tikai auga daļa.

4 Every giraffe is a herbivore. Ikviena žirafe ir zālēdājs.
5 Everything that is eaten by a giraffe is a leaf. Tas, ko ēd kāda žirafe, ir lapa.
6 Everything that has a leaf as a part is a branch. Tas, kura daļa ir kāda lapa, ir zars.
7 Every tasty plant is a nourishment of a carnivore. Ikviens garšīgs augs ir kāda plēsēja barība.
8 No animal is a plant. Neviens dzīvnieks nav augs.
9 If X eats Y then Y is a nourishment of X. Ja X-s ēd Y-u, tad Y-s ir X-a barība.

For a demonstration we use a sample African wildlife ontology that is verbalized in Table 1.
During the translation from Table 1 to ACE-OWL (Table 2), all non-SVO statements are reduced

to artificial SVO statements (e.g., “lives in something” to “lives-in something”, “part of something”
to “part-of something”), and all terms are normalized into fixed forms that are conveyed as is to the
ontology6. The result, in general, is ungrammatical (from the linguistic perspective), but we do not
try to make it more grammatical where possible (e.g., the past participle form could be used in the 5th
statement) — we use it only as a technical interchange format that normally is not visible to the end-user.
However, it is a good illustration that explicitly unveils the nature and limitations of OWL.

Note that certain conversions are done at the end-user level (while paraphrasing from Var to Def)
and are further reflected in OWL. For instance, the present perfect tense can be converted to the simple
tense (e.g., “has done something” to “does something”) or vice versa, if such alternatives are listed in
the domain lexicon (individually for each language and property).
Table 2: An automatically generated ACE-OWL text, translated from Table 1 (by the AceOwl grammar), or ver-
balized from the original OWL ontology (by the ACE verbalizer). The prefixes that indicate the POS categories,
although accepted by the ACE parser, are used here only for the sake of clarity. The semantic interpretation is
acquired by the ACE parser and is given in parallel (in the Manchester notation).

1 Everything that v:eats something is an n:animal. ObjectProperty: eats Domain: animal
2 Every n:carnivore is an n:animal that v:eats an

n:animal. Every n:animal that v:eats an n:animal is a
n:carnivore.

Class: carnivore EquivalentTo: animal
and (eats some animal)

3 Every n:herbivore is an n:animal that v:eats nothing
but things that are a n:plant or that v:part-of nothing
but n:plant.

Class: herbivore SubClassOf: animal
and (eats only (plant or (part-of only
plant)))

4 Every n:giraffe is a n:herbivore. Class: giraffe SubClassOf: herbivore
5 Everything that is v:eats by a n:giraffe is a n:leaf. Class: inverse (eats) some giraffe

SubClassOf: leaf
6 Everything that is v:part-of by a n:leaf is a n:branch. Class: inverse (part-of) some leaf

SubClassOf: branch
7 Every n:tasty-plant v:nourishment-of a n:carnivore. Class: tasty-plant SubClassOf:

nourishment-of some carnivore
8 No n:animal is a n:plant. Class: animal DisjointWith: plant
9 If X v:eats Y then Y v:nourishment-of X. ObjectProperty: eats InverseOf:

nourishment-of

6This is achieved by passing an auto-generated user lexicon to the ACE parser, where all wordforms of each lexical entry
are equivalent to that used for the logical symbol.
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4 Discussion
The two-level translation approach has allowed us to develop a rather sophisticated multilingual CNL
on top of the rather restricted ACE-OWL (in terms of naturalness). Of course, ACE-OWL itself can be
developed to be equally natural, but the benefit of our approach is that it allows for more flexible, rapid7

and independent extensions and adjustments to what users consider the most natural verbalization. The
proposed approach enables not only a multilingual, but also a multi-dialect interface to OWL: different
CNLs can be mixed together or used in parallel, and the interlingua can be relatively easily changed. It
should be reminded that our goal is to ensure a predictable interpretation, therefore we could change the
interlingua to CPL-Lite, for instance, but not to CPL, which is non-deterministic (Clark et al., 2010). Also
note that GF not only enables the precise cross-grammar translation8, but also facilitates the application
of more flexible and linguistically less restrictive naming conventions at the OWL level.

One might ask why we use an interlingua at all, rather than proceed by translation to and from OWL
directly in GF (by providing yet another concrete grammar for the Functional-Style Syntax or some other
formal notation of OWL). Indeed, verbalization of existing ontologies could be done in this way, but a
problem arises in the reverse direction — form CNL to OWL: the current implementation of GF does not
provide support for dealing with anaphors9. Thus, by solving the interpretation issues via an interlingua,
we get the ontology verbalization functionality for free.

One might also argue that the dependence on a handcrafted domain lexicon is a significant disad-
vantage. This is the price for flexibility, multilinguality, naturalness and precision. Although it would
be possible to generate the English lexicon from a linguistically motivated ontology, the problem is how
to acquire the precise translation equivalents. In the case of ontology authoring, common word lexicons
could be reused, but, again, the alignment issue arises and specific multi-word units are often used.

In this paper we have considered only terminological (TBox) axioms and rules. It would be interesting
to see to what extent the deterministic TFA method can be adjusted for assertional (ABox) statements.
However, for populating an ontology with facts (individuals), some other kind of an interface (e.g., GUI
forms or tables) could be more appropriate.
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Abstract

In this paper, we describe the Baseball Announcers’ Language Linked with General Annotation of
Meaningful Events (BALLGAME) project – a text corpus for research in computional semantics.
We collected pitch-by-pitch event data for a sample of baseball games and used this data to build an
annotated corpus composed of transcripts of radio broadcasts of these games. Our annotation links
text from the broadcast to events in a formal representation of the semantics of the baseball game. We
describe our corpus model, the annotation tool used to create the corpus, and conclude by discussing
applications of this corpus in semantics research and natural language processing.

1 Introduction

The use of large annotated corpora and treebanks has led to many fruitful research programs in compu-
tational linguistics. At the time of this writing, Marcus et al. (1993), which introduces the University of
Pennsylvania Treebank,1 has been cited by over 3000 subsequent papers.2 Such treebanks are invaluable
for the training and testing of large-scale syntactic parsers and numerous other applications in the field
of Computational Syntax.

Unfortunately for the field of Computational Semantics, there are few corresponding annotated cor-
pora or treebanks representing the formalized meaning of natural language sentences, mainly because
there is very little agreement on what such a representation of meaning would look like for arbitrary
text. To overcome this obstacle, several recent studies have turned to the arena of sports, pairing natural
language with game statistics in several domains, including RoboCup soccer (Liang et al., 2009; Chen
et al., 2010), soccer (Theune and Klabbers, 1998; Saggion et al., 2003), American football (Barzilay and
Lapata, 2005; Liang et al., 2009), and baseball (Fleischman, 2007).

We have adapted this approach in the creation of a semantics-oriented corpus, using the domain of
major-league baseball. The information state of a baseball game can be represented with a small number
of variables, such as who is on which base, who is batting, who is playing each position, and the current
score and inning. There is even a standard way of representing updates to this information state.3 This
makes baseball a logical stepping stone to a fuller representation of the world. We also chose baseball
for this corpus because of the volume of data available, in the form of both natural language descriptions
of events and language-independent game statistics. Most of professional baseball’s thousands of games
per year have at least two television broadcasts (home and away) and at least two radio broadcasts, often
in multiple languages. The scorecard statistics for each game are also kept and made available on the
internet, along with complete ordered lists of in-game events. These resources, coupled with a high-
coverage syntactic parser, allow one to link natural language utterances with representations of their
syntax and semantics.

1http://www.cis.upenn.edu/˜treebank/
2http://scholar.google.com/scholar?cites=7124559111460341353
3See example scorecards at http://swingleydev.com/baseball/tutorial.php.
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2 Corpus Design

The basic design of the BALLGAME corpus is a mapping between spans of text and events in a baseball
game. The raw text comes from the transcribed speech of announcers broadcasting the radio play-by-
play of a professional baseball game. This text is chunked into spans, and these spans are then labeled
according to the following scheme:

• Event is the label given to a span that describes an event in our representation of the game for the
first time. (Examples of events are simultaneous descriptions of pitches, plays, and stolen bases.)

• Recap is the label given to a span that correlates with prior events in the game. (Examples of recaps
are when the announcer states the current score or strike count, or summarizes the current batter’s
previous at-bats.)

• Banter is the label given to a span that does not relate to an event in the game. The majority of
spans are labeled as banter. (Examples of banters are “color” commentary, any discussion of the
day’s news, other baseball games, advertisements, etc.)

The term “span” has no linguistic significance, although spans often turn out to be sentences or clauses.
Each span from the text that is labeled as an event is linked to one or more events in the model of the
game as shown in Figure 1. Not every event is linked to a span of text, since some events go unmentioned
by the announcers.

Figure 1: Illustration of a portion of the corpus: event spans of the text (on the left) are associated with
events from a standardized description of the ballgame (on the right).

We model each game as a time-ordered sequence of baseball events, designed so that the state of the
game at any given point, while not explicitly represented, can be computed given the events from the
start of the game up to that point. We use a simple event model inspired by the comprehensive scoring
system developed by Retrosheet,4 but modified to match our needs and data resources. For example,
most baseball scoring systems are at-bat-based, but this system is too coarse-grained for our purposes.
Therefore, we use a system in which the fundamental event type is the pitch. Every baseball action from
the start of the pitcher’s motion until the end of the play (a hit or an out) is categorized as a PITCH event.
Several other event types exist to accommodate other plays (e.g. balks, pick-offs), non-play actions (e.g.
coaching visits to the mound, rain delays), and procedural activities (e.g. ejections, player substitutions).

In addition to a category, each event has multiple attribute values. The possible attributes depend on
the category. A PITCH event, for example, has attributes describing the type, speed, and location of the
pitch as well as whether it results in a ball, strike, play, etc. If the result is a play, then there are additional

4http://www.retrosheet.org
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attributes describing the fielders involved in the defensive play. On the other hand, a PICKOFF event has
different attributes, describing which base the ball was thrown to, whether it resulted in an out, etc.

dealsCC curveballa low

advmodnsubj dobj det
<PLAYER pos='pitcher' team='home' firstname='CC' ...>

<PITCH type='curve' zone='12' result='ball' ...>

Events:

...

Figure 2: Example of a dependency parsed transcript line and corresponding events.

In the future, we plan to add syntactic parse information for each span such as that generated using
the Stanford Parser (De Marneffe et al., 2006). Using an explicit syntactic representation, like the one
illustrated in figure 2, it will be possible to label more detailed correlations between the text and the
meaning. Even without explicit annotation, statistical learning methods could be used to infer, e.g., that
the word “curveball” in the sentence in figure 2 correlates with the semantic attribute type=‘curve’,
or that the word “CC” correlates with a specific PLAYER entity. While the annotations in the corpus
exist only at the sentence or phrase level, this type of further processing could push the annotation down
to the word level, facilitating the study of lexical semantics and semantic transformations of syntactic
structures.

3 Corpus Creation

Student transcribers use a custom-created transcription and annotation tool, illustrated in Figure 3, to add
data to the corpus. They listen to and transcribe the radio broadcast, while simultaneously chunking the
text into spans as described above. Each span is labeled banter, event, or recap, and, if the span describes
an event, the student selects the corresponding event(s) from the event column.

Annotators have access to a style guide to encourage consistency. This guide sets out two main prin-
ciples: first, the transcript of an inning, taken as a whole, should be read like a well-edited, consistently
formatted document; and second, all and only the events explicitly mentioned by the radio announcers
should be linked to events in the game model.

Although spans are displayed as separate lines in the transcription tool, in order to maintain this
first style principle, we ask the students to imagine that all spans of the transcript are pasted together in
sequence to form a normal transcript of the game. Thus, they are asked not to put ellipses or dashes at
the end of spans nor to capitalize the beginnings of spans that do not begin sentences. Also included in
this principle is a standardized formatting style for baseball statistics, such as strike counts, scores, and
batting averages, so that, for instance, “the count is two and oh” is transcribed “the count is 2-0”.

The second principle set out in the annotation style guide is meant to ensure that the events linked to
a particular utterance are as close as possible to the “meaning” of that utterance. Integral to this process
is consistently distinguishing the categories of event, recap and banter. Since recap and banter spans do
not relate to events in the model, it is important to keep them separate from the event spans to get the
most accurate data. Even given the descriptions of these categories from section 2, ambiguous cases still
do arise on occasion. For instance, one common difficulty is distinguishing event from recap when an
announcer discusses a play immediately after it happens. In such cases, in keeping with our annotation
principle, we use the rule of thumb that only new information is annotated as event; old information is
recap. We also adopt the rule that only game events that are explicitly stated by the announcer should
be linked to spans; for example, if the announcer merely states the name of the batter (e.g. “Cust takes a
first-pitch strike”) in the process of describing the first pitch of his at-bat, then this should not reference
the ATBAT event that indicates the arrival of a new batter at the plate. On the other hand, an explicit
mention (e.g. “Here’s Cust.”) should.

In the final steps of the annotation process, each transcript is reviewed and corrected by a second
annotator to reduce errors and further promote consistency across annotators.
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Figure 3: Screen shot of online annotation tool.

4 Potential Applications

Since this corpus links natural language utterances with complete semantic representations which fully
describe the state of the baseball game, it has a number of applications for research in computational
semantics. While the domain is limited, and the “meaning” of a baseball game does not approach the
complexity of the possible “meanings” in the real world, nevertheless this corpus should be a useful
resource both for developing NLP tools and for studying theories of language and meaning.

One application domain for this type of data is natural language generation and understanding, and
much prior work connecting sports commentaries to statistics or events falls into this domain. One
related generation task is to generate textual summaries of complete games: Theune and Klabbers (1998)
generated spoken Dutch summaries of soccer matches, and Barzilay and Lapata (2005) investigate the
relationship between textual NFL recaps and the box scores of the games. More similar to our project
is the RoboCup announcer system of Chen et al. (2010), which produces play-by-play commentary (in
English and Korean) of simulated RoboCup soccer matches. Our corpus could certainly be used to train
systems that predict the event structure given the text of the commentary, or vice-versa.

In the domain of information extraction, our corpus could be used to train systems to infer repre-
sentations of meaning from texts. In many domains, the same word or phrase can appear in a variety
of different contexts with different ramifications. For example, the phrase “home run” in a baseball
commentary may mean that a home run has just occurred, or it may refer to a home run in a previous
game, or a player’s home-run totals for the season, etc.. Fleischman (2007), using a collection of video
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broadcasts of baseball games, combines natural language processing with artificial vision technology to
resolve when events like home runs actually occur, in order to facilitate retrieval of relevant video clips.
Using our corpus, one could design a system to perform the same task based purely on the textual data,
perhaps to extend this same task to radio broadcasts as well as television broadcasts. Given the corpus
labels of event, recap, and banter, a classifier could be built to identify only the event regions, and an
extraction system could identify the relevant semantic features (e.g. player names, types of events).

While generation and understanding are tasks most applicable to this corpus, we hope researchers
will find additional innovative uses of the corpus. For example, given that we plan to incorporate a num-
ber of baseball games with commentary both in English and Spanish, there is a potential connection to
machine translation, particularly approaches that utilize comparable (rather than parallel) corpora. In our
corpus, the comparable sections (i.e. the event-labeled regions) are explicitly aligned with one another,
which is not usually the case in comparable corpora. Also, the corpus could prove useful for research on
formal semantics, despite the fact the meaning representation is not particularly rich compared to modern
semantic theory, and the jargon and speech styles are very specific to the domain of baseball sportscasts.

5 Conclusion

We have presented an overview of the BALLGAME annotated corpus for research in computational
semantics, as well as a description of our procedure for annotation and the specialized annotation tool
we developed for this purpose. To date, the corpus contains sixteen three- to four-hour-long major
league baseball radio broadcasts, transcribed and annotated as described above. This represents 237,100
transcribed words in 13,382 spans (6,511 banter; 3,994 event; 2,877 recap). Work is ongoing, and the
goal is to complete fifty games by the end of the year. We believe this corpus, by pairing natural language
text with formalized representations of meaning, will prove useful for many types of NLP research.
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Abstract
In this paper we present some features of an architecture for the translation (Italian – Italian Sign
Language) that performs syntactic analysis, semantic interpretation and generation. Such architec-
ture relies on an ontology that has been used to encode the domain of weather forecasts as well as
information on language as part of the world knowledge. We present some general issues of the
ontological semantic interpretation and discuss the analysis of ordinal numbers.

1 Introduction

In this paper we describe some features of a system designed to translate from Italian into Italian Sign
Language (henceforth LIS). The system is being developed within the ATLAS project.1 This architec-
ture applies a hard computational linguistic approach: knowledge-based restricted interlingua (Hutchins
and Somer, 1992). We perform a deep linguistic processing in each phase of the translation, i.e (1)
syntactic analysis of the Italian input sentence, (2) semantic interpretation and (3) LIS generation.2 The
main motivation to adopt this ambitious architecture is that Italian and LIS are very different languages.
Moreover, LIS is a poorly studied language, so no large corpus is available and statistical techniques are
hardly conceivable. We reduce our ambitions by restricting ourselves to the weather forecasts application
domain.

In this paper we describe some major issues of the semantic interpretation and illustrate a case study
on ordinal numbers. Our semantic interpretation is based on a syntactic analysis that is a dependency tree
(Hudson, 1984; Lesmo, 2007). Each word in the sentence is associated with a node of the syntactic tree.
Nodes are linked via labeled arcs that specify the syntactic role of the dependents with respect to their
head (the parent node). A key point in semantic interpretation is that the syntax-semantics interface used
in the analysis is based on an ontology. The knowledge in the ontology concerns an application domain,
i.e. weather forecasts, as well as more general information about the world: the latter information is used
to compute the sentence meaning. Indeed, the sentence meaning consists of a complex fragment of the
ontology: predicate-argument structures and semantic roles are contained in this fragment and could be
extracted by translating this fragment into usual First Order Logic predicates.3

The idea to use the ontological paradigm to represent world knowledge as well as sentence meaning
is similar to the work by Nirenburg and Raskin (2004) and Buitelaar et al. (2009), but in contrast to these
approaches (1) we use a syntactic parser to account for syntactic analysis; and (2) we use a recursive
semantic interpretation function similar to Cimiano (2009).

2 The Ontology

The ontological knowledge base is a formal (partial) description of the domain of application. It is for-
mal, since its primitives are formally defined, and it is partial, since it does not include all axioms that
provide details about the relationships between the involved concepts. The top level of the domain ontol-
ogy is illustrated in Fig. 1.4 The classes most relevant to weather forecasts are ££meteo-status-situation ,

1http://www.atlas.polito.it/
2LIS, as all the signed languages do not have a natural writing form. In order to apply linguistic tools designed for written

languages, in our project we developed “AEW-LIS”, an artificial written form for LIS.
3However, similar to other approach (among others Bunt et al. (2007); White (2006)), our ontological meaning representa-

tion is totally unscoped.
4Some conventions have been adopted for ontology names: concepts (classes) have a ££prefix; instances have a £prefix; and

relations and relation instances have a & prefix.
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The root of the hierarchy (££entity) is the direct superclass of: 

- ££meteo-status-situation. This is the most relevant subclass in the present context, since it refers to the 

possible weather situations that are described in the news. It is shown in fig.8. It may concern the status of 

the seas, a generic weather status (in particular, if it is stable or not) or possible atmospheric events (e.g. 

rain or clouds). 

- ££geographic-area: any weather situation holds in a specific place; in particular, the relevant places are 

geographic areas. A geographic area can be an Italian region, a group of regions, a sea, or may be 

identified by specifying a cardinal direction (North, South, …).  

- ££time-interval:any weather situation holds in a specific temporal interval. This could last one or more 

days or a part of a day. Currently, we do not handle dates (e.g. “on May 3 it will rain”), but only deictic 

terms (as today and tomorrow). Expression as “in the evening” are interpreted anaphorically, i.e. on the 

basis of the current context: if the context is referring to “today”, then it is interpreted as “today evening”, 

for “tomorrow” as “tomorrow evening”, etc.  

Figure 1: The top ontology used for the weather forecast domain. Dashed triangles represent collapsed regions of
the hierarchy.

££geographic-area , ££description , ££geographic-part-selection-criterium .
££meteo-status-situation It is the most relevant class in the present setting, since it refers to the possi-
ble weather situations, thus providing a starting point –in principle– to every weather forecast. It may
concern the sea status, a generic weather status (either stable or not) or possible atmospheric events such
as snow, rain or clouds.
££geographic-area and ££time-interval Any weather situation holds in a specific place; in particular,
the relevant places are geographic areas. A ££geographic-area can be an Italian region, a group of re-
gions, a sea, or may be identified by specifying a cardinal direction (North, South, . . . ). Yet, any weather
situation holds in a specific temporal interval. Such time interval could last one or more days or a part of
a day. Expression as “in the evening” are interpreted anaphorically, i.e. on the basis of current context: if
the context is referring to “today”, then it is interpreted as “today evening”, for “tomorrow” as “tomorrow
evening”, etc..
££description The actual situation and its description are kept separated. For instance, if today is Octo-
ber 28, then “today” is a ££deictic-description of a particular instance (or occurrence) of a ££day. “April
28, 2010” is another description (absolute) of the same instance. Particular relevance have the deictic de-
scriptions since most temporal descriptions (today, tomorrow, but also the weekday names, as Monday,
Tuesday, . . . ) are deictic in nature.
££geogr-part-selection-criterium In descriptions, a particular instance (or group of instances) can be
identified by a general class term (e.g. area) and a descriptor (e.g. northern). This concept refers to the
parts of the reality that can act as descriptors. For instance, the cardinal direction can be such a criterium
for geographic parts, while a date is not.

The last relevant portion of the ontology concerns relations. Although the ontology has no axioms,
class concepts are connected through relevant relations. In turn, relations constitute the basic steps to
form paths (more later on). All relations in the ontology are binary, so that the representation of relations
of arity greater than 2 requires that they be reified.

3 Semantic Interpretation

One chief assumption in our work is that words meaning can be expressed in terms of ontology nodes,
and the meaning of the sentence is a complex path on the ontology that we call ontological restriction.
We define the meaning interpretation function MO, that computes the the ontological restriction of a
sentence starting from the its dependency analysis and on the basis of an ontology O.

Given a sentence S and the corresponding syntactic analysis expressed as a dependency tree depTree(S),
the meaning of S is computed by applying the meaning interpretation function to the root of the tree, that
is MO(root(depTree(S))). In procedural terms, the meaning for a sentence is computed in two steps:
(i) we annotate each word of the input sentence with the corresponding lexical meaning; (ii) we build the
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giorno [££day]

ultimo [££last] mese [££month]

adjc+ordin-rmod rmod

Figure 2: The dependency analysis of ultimo giorno del mese (last day of the month) enriched with lexical meaning.

actual ontological representation in a quasi-compositional way, by merging paths found in the ontology
in a single representation which is a subgraph of the ontology itself. These two steps can be formalized
as a meaning interpretation function M defined as:

MO(n) :=

{
LMO(n) if n is a leaf
∪̇k

i=1(CPO(LMO(n),MO(di))) otherwise

where n is the node of a dependency tree and d1, d2, . . . , dk are its dependents. LMO(w) is a function
that extracts the lexical meaning of a word w accessing the dictionary: that is, a class or an individual
on the ontology O. CPO(y, z) is a function that returns the shortest path on O that connects y to z.
The search for connections relies on the rationale that the shortest path between any two ontology nodes
represents the stronger semantic connection between them. In most cases the distance between two
concepts is the number of the nodes among them, but in some cases a number of constraints needs to
be satisfied too (see the example on ordinal construction). Finally, the operator ∪̇ is used to denote a
particular merge operator, similar to Cimiano (2009). As a general strategy, shortest paths are composed
with the union operation, but each CPO(y, z) conveys a peculiar set of ontological constraints: the merge
operator takes all such constraints to build the overall complex ontological representation. In particular, a
number of semantic clashes can arise from the union operation: we use a number of heuristics to resolve
these clashes. For sake of simplicity (and space) in this definition we do not describe the heuristics
used in the ambiguity resolution. However, three distinct types of ambiguity exist: (1) lexical ambiguity,
i.e. a word can have more than one lexical meaning; (2) shortest path ambiguity, i.e. two nodes can
be connected by two equal-length paths; (3) merge ambiguity, i.e. two fragments of ontology can be
merged in different manners. Whilst lexical ambiguity has not a great impact due to the limited domain
(and could be addressed by standard word sense disambiguation techniques), handling shortest path and
merge ambiguities needs heuristics expressed as constraints that rely on general world knowledge.

A particular case of ontological constraints in merge ambiguity is present in the interpretation of
ordinal numbers, so further details on the merge operator can be found in Section 4.

4 A case study: the ordinal numbers

In order to translate from Italian into LIS, we need to cope with a number of semantic phenomena
appearing in the particular domain chosen as pilot study, i.e. weather forecast. One of the most frequent
constructions are ordinal numbers. Consider the simple phrase l’ultimo giorno del mese (the last day
of the month). The (simplified) dependency structure corresponding to this phrase is depicted in Fig. 2:
the head word giorno (day) has two modifying dependents, ultimo (last) and mese (month). Since the
interpretation relies heavily on the access to the ontology, we first describe the portion of the ontology
used for the interpretation and then we illustrate the application of the function M to the given example.

The relevant fragment of the ontology is organized as shown in Fig. 3, that has been split in two parts.
The upper part –labeled TEMPORAL PARTS– describes the reified ££part-of relation and its temporally
specialized subclasses. The lower part –labeled ORDINALS– is constituted by some classes that account
just for ordinal numbers. In the TEMPORAL PARTS region of the Fig. we find the ££temporal-part-of
(reified) sub-relation, which, in turn, subsumes ££day-month-part-of . This specifies that days are parts of
months, so that day of the month can be interpreted as the day which is part of the month. The ££part-of
relation has two roles: we use the term role to refer to the binary relation associated with a participant
in a reified relation. These roles are “value-restricted” as &day-in-daymonth and &month-in-daymonth
respectively, for what concerns ££day-month-part-of . The most relevant class in the ORDINALS part
of Fig. 3 is the class ££ordinal-description . It is the domain of three roles, 1) &ord-described-item , 2)
&references-sequence and 3) &ordinal-desc-selector . The range of the first relation &ord-described-item
is the item whose position in the sequence is specified by the ordinal, that is a ££sequenceable-entity.
The range of the second relation &reference-sequence is the sequence inside which the position makes
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Figure 3: The fragment of the ontology accounting for ordinals.

sense, that is an ££entity-sequence . The range of the third relation &ordinal-desc-selector is item that
specifies the position, that is a ££ordinal-selector . In the example, £last is an instance of ££ordinal-
selector . Of course, any (true) ordinal (first, second, thirtythird) can fill that role. The two portions of
the ontology are connected by two arcs. The first arc specifies that a ££time-interval is a subclass of
££sequenceable-entity (so that one can say the fourth minute, the first year, and so on). The second arc
specifies that ££month is subclass of ££day-sequence , which in turn is subclass of ££entity-sequence .
As a consequence it can play the role (can be the range) of the &reference-sequence .

We now describe how the meaning interpretation function is applied on the considered example. It
consists of three steps: 1. we compute the connection path between the concepts ££day and £last ; 2. we
compute the connection path between ££day and ££month ; 3. we merge the connection paths previously
computed. In details:
1. By computing CP(££day, £last) we obtain the connection path in Fig 4-a. Note that this ontological
restriction contains the concept ££ordinal-selector .
2. By computing CP(££day, ££month) we obtain the connection path in Fig 4-b. In this case the shortest
path is not actually the “shortest” one, i.e. the presence of the preposition del (of ) constraints the value
returned by CP . Moreover, this ontological restriction contains the concept ££day-month-part-of , which
is a sub-concept of ££part-of .
3. The last step consists of the application of the meaning composition function to CP(££day, £last) and
CP(££day, ££month). The ££ordinal-description concept is detected in the first ontological restriction;
moreover ££day is recognized as (subclass of) a possible filler for ££ordinal-description . At this point
we need establishing how ££day fits as the smaller part of a &part-of relation. We scan the remain-
ing ontological restriction(s) looking for a bigger part involved in a &part-of relation or in any of its
sub-relations. The resulting representation (Fig. 4-c) is built by assuming that the larger entity (here
££month , since &month-in-daymonth restricts &part-bigger) is the reference sequence for the ordering.
So, the direct ££day-month-part-of of the second ontological restriction is replaced by a path passing
through ££ordinal-description . In such final ontological restriction ££day is the &ord-described-item
and ££month is the &reference-sequence .

5 Conclusions and future work

In this paper we illustrated the analysis component of a knowledge-based restricted interlingua architec-
ture for the translation from Italian into LIS. The structure produced by the semantic interpretation of the
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Figure 4: The ontology fragment computed by the semantic interpretation function.

source sentence is a complex ontology fragment obtained by the application of the function MO. As case
study we showed how this function uses the ontology O to interpret the ordinal numbers. The decision
to use an ontology fragment as semantic representation is motivated by theoretical assumptions and has
some practical appeals. From a theoretical point of view, we represent language semantics as part of the
world knowledge in ontologies (Buitelaar et al., 2009; Galanis and Androutsopoulos, 2007; Nirenburg
and Raskin, 2004). From an applicative point of view the ontology restriction produced by the semantic
interpretation is used (in logical form) as input of the OpenCCG tool, in the generation component of the
translation architecture (White, 2006). As a consequence, similar to Nirenburg and Raskin (2004), we
use ontologies in all components of our architecture (cf. Galanis and Androutsopoulos (2007); Sun and
Mellish (2007)).

We have currently implemented the main features of the MO and the ontology is being developed.
Our working hypothesis is that the weather forecast sub-language is characterized by plain and short
sentences and this guarantees scalability of our approach. In the next future we plan to broaden the
coverage of linguistic phenomena, so to unify ordinals, superlative and comparative adjective analyses.5
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Abstract

In this paper we summarize existing work on the recently introduced task of processing the scope
of negation and modality cues; we analyse the scope model that existing systems can process, which
is mainly the model reflected in the annotations of the biomedical corpus on which the systems have
been trained; and we point out aspects of the scope finding task that would be different based on
observations from a corpus from a different domain and nature.

1 Introduction

Negation and modality are complex aspects of the semantics of language. Modality was introduced
by Jespersen (1924), who distinguishes between two categories of mood that later have been named
as deontic modality and epistemic modality. Lyons (1996) describes epistemic modality as concerned
with matters of knowledge and belief, “the speaker’s opinion or attitude towards the proposition that the
sentence expresses or the situation that the proposition describes”. Palmer (1986) defines it as expressing
the speaker’s degree of commitment to the truth of a proposition. Polarity is a discrete category that can
take two values: positive and negative. Positive polarity is used by speakers to put information as a fact
in the world, whereas negative polarity is used to put information as a counterfact, a fact that does not
hold in the world. Negation is a linguistic resource used to express negative polarity.

Although the treatment of these topics in computational linguistics is relatively new compared to
other areas like machine translation, parsing or semantic role labeling, incorporating information about
modality and polarity has been shown to be useful for a number of applications, such as biomedical
text processing (Di Marco and Mercer, 2005; Chapman et al., 2001), opinion mining and sentiment
analysis (Wilson et al., 2005), recognizing textual entailment (Snow et al., 2006), and automatic style
checking (Ganter and Strube, 2009). In general, the treatment of modality and negation is very relevant
for computational applications that process factuality (Saurı́, 2008). For example, information extraction
systems may be confronted with fragments of texts like the one presented in (1)1, which contains two
negation cues2 (not, un-) and one speculation cue (likely) that affect the factuality of the events being
expressed:

(1) The atovaquone/proguanil combination has not been widely used yet in West Africa so it is unlikely that the patient
was initially infected with an atovaquone-resistant strain.

So far two main tasks have been addressed within the natural language processing (NLP) community:
(i) the detection of various forms of polarity and modality and (ii) the identification of the scope of
negation and modality cues. In this paper we reflect on the achievements of the recently introduced
scope finding task (Section 2), we analyse the scope model that existing systems can process (Section 3),
and we point out aspects of the scope finding task that would be different based on observations from a
corpus from a different domain (Section 4).

1Example to be found in http://www.biomedcentral.com/content/pdf/1475-2875-1-1.pdf [last consulted 8-10-2010]
2A cue is the lexical marker that expresses negation or modality.
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2 Achievements in scope processing

In the last years, several corpora have been annotated with information related to modality and polarity,
which have made it possible to develop machine learning systems. Annotation has been performed at
different levels: word (Hassan and Radev, 2010), expression (Baker et al., 2010; Toprak et al., 2010),
sentence (Medlock and Briscoe, 2007), event (Saurı́ and Pustejovsky, 2009), discourse relation (Prasad
et al., 2006), text (Amancio et al., 2010), and scope of negation and modality cues (Vincze et al., 2008).
Thanks to the existence of the BioScope corpus, the scope processing task was recently introduced. Bio-
Scope is a freely available resource, that consists of three parts of medical and biological texts annotated
with negation and hedge cues and their scope.

The scope processing task is concerned with determining at a sentence level which tokens are affected
by modality and negation cues. It was first modelled as a classification problem by Morante et al. (2008).
Later on several systems have been trained on the same corpus (Morante and Daelemans, 2009; Özgür
and Radev, 2009; Agarwal and Yu, 2010; Li et al., 2010). Councill et al. (2010) process scopes of
negation cues in a different corpus of product reviews, but this corpus is not publicly available.

The CoNLL Shared Task 2010 on Learning to detect hedges and their scope in natural language
text (Farkas et al., 2010) boosted research on the topic. It consisted of identifying sentences containing
uncertainty and recognizing speculative text spans inside sentences. Participating systems would, for
example, produce the tagged sentence in (2)3, in which propose, suggest and possible are identified as
hedge cues and their scope is marked in agreement with the gold standard.

(2) We [propose propose that the existence of the alternative alignments, specific to distinct groups of genes, [suggest
suggests presence of different synchronization modes between the two organisms and [possible possible functional
decoupling of particular physiological gene networks in the course of evolution possible]suggest]propose] .

The best system (Morante et al., 2010) for hedge scope finding in the CoNLL ST 2010 scores 57.32
F-score. Although the results are lower than the scores obtained in other well established tasks (i.e.
semantic role labeling, dependency parsing), we can say that setting the first step towards automatic scope
processing is an achievement. However, it can be useful to revise the characteristics of the scopes that
the systems learn to process, not from a technical machine learning perspective, but from the linguistic
annotation perspective, since the annotation model that systems learn determines the quality of the system
output and the knowledge that can be inferred from the scopes.

3 Scope model based on the BioScope corpus

Most existing scope labelers have been trained on the BioScope corpus. Thus, the model of scope that
these systems learn is determined by the characteristics of scope as they have been annotated in BioScope.
Additionally, the systems have been trained for a specific domain, biomedical texts, but it might be the
case that negation and speculation cues require different annotation specifications for texts from other
domains. In this section we analyze the characteristics of the scope model in the BioScope corpus based
on the guidelines (BioScope, 2008) and we propose some changes for further annotation work that we
are carrying out. We mark in italics the statements from the BioScope guidelines and we comment on
them.

− The scope is always a continuous sequence of tokens and the cue is included in the scope. Although
most scopes in the corpus are continuous, examples such as (3), in which sentence adverbs do not belong
to the scope, suggest that the scopes should be annotated as discontinuous if necessary:

(3) [not The number of glucocorticoid receptors per cell (Ro) and the binding affinity (Kd) for dexamethasone werenot] ,
however, [notnot significantly different not]

− Scopes can be determined on the basis of syntax and they extend to the biggest unit possible. If
necessary, complements and adjuncts are included in the scope. It would be useful to furhter specify
how different syntactic constructions (coordination, subordination, etc.) should be annotated.

3In the examples below, cues will be marked in bold and their scope between brackets.
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− The scope of negative auxiliaries, adjectives and adverbs usually starts with the cue and ends at the
end of the phrase, clause or sentence. In (4) the scope extends to the right of not. In our view, the scope
should include the subject because the subject contributes to the meaning of the event being negated. If,
as Lyons (1996) suggest, we paraphrase the negative connective in (4) with the formula it is not the case
that, we obtain (5), where the subject is under the scope of the formula.

(4) Once again, the Disorder module does [not not contribute positively to the prediction not]

(5) Once again, it is not the case that the Disorder module does contribute positively to the prediction

− Passive voice changes the scope of the cue because the object of the active construction is the subject
of the passive construction. According to the BioScope guidelines, the scope of not in 6 and 7 would
be annotated differently. As indicated above, we consider that the subject of the active sentence is also
under the scope of the negation, so in our view both sentences should be analyzed equally.

(6) [not Levels of RNA coding for the receptor were not modulated by exposure to high levels of ligand not]

(7) Exposure to high levels of ligand does [not not modulate levels of RNA coding for the receptor not]

− Negative conjunctions generally scope over the syntactic unit whose members it coordinates. However,
if the complex negative keyword occurs within the subject of the sentence, its scope is extended to the
whole sentence. (8) is the example provided in the guidelines, but paraphrasing the sentence with the it
is not the case formula as in (9) shows that the subject should also be included in the scope.

(8) In contrast, sodium salicylate (1 mM) inhibited [neither−norneither adhesion nor expression of these adhesion
molecules neither−nor]

(9) In contrast, it is not the case that sodium salicylate (1 mM) inhibits either adhesion or expression of these adhesion
molecules

− Prepositions scope over the following (noun) phrase. (10) is the example provided in the guidelines,
where without scopes over a noun phrase. Nevertheless, without can be followed by a verb phrase, as in
(11). In this case, one could argue that the logical subject of the verb should be included in the scope of
the preposition, since the negation can be paraphrased as in (12).

(10) [without Mildly hyperinflated lungs without focal opacity without]

(11) [without CD28 costimulation without] augments IL-2 secretion of activated lamina propria T cells by increasing
mRNA stability [without without enhancing IL-2 gene transactivation without]

(12) It is not the case that CD28 costimulation enhances IL-2 gene transactivation

Possible improvements in the BioScope annotation model are pointed out in Vincze (2010), namely
the treatment of elliptic constructions, and discontinuous and intersecting scopes. An additional im-
provement would be to annotate affixal negation. We consider that (13) is equivalent to (14) and should
receive the same analysis, since they can be paraphrased as in (15):

(13) Actually, [un tRNASec and tRNAPyl have unusual secondary structures 515 un]

(14) Actually, [not tRNASec and tRNAPyl do not have usual secondary structures 515 not]

(15) Actually, it is not the case that tRNASec and tRNAPyl have usual secondary structures 515

4 Annotating scopes in a different domain

The existing scope labelers have been trained on biomedical texts. However, it is reasonable to expect
that texts from other domains contain different phenomena that would affect the systems performance.
We are currently analysing negations and their scopes in a complete different corpus, The Hound of the
Baskervilles (HB) by Conan Doyle. This corpus has been annotated with coreference and semantic roles
for the SemEval Task Linking Events and Their Participants in Discourse (Ruppenhofer et al., 2010), and
will be further annotated with negation and modality cues. Phenomena in this corpus show that whereas
the scope of cues can be determined in a similar way as it is determined in biomedical texts, identifying
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negation cues in certain contexts, which is the first part of the scope finding task, is not only a matter of
lexical lookup:

− Not all negative affixes are negation cues. For example the affix un- in unspoken does not negate its
root morpheme. Unspoken does not mean ‘not spoken’, but ‘understood without the need for words’.
Consequently, in (16) unspoken is not a negation cue.

(16) All my unspoken instincts, my vague suspicions, suddenly took shape and centred upon the naturalist

− Fixed expressions like could not help in the sentence below do not negate the modified event.

(17) Why about Sir Henry in particular? I could not help asking

− Negation words in tag questions do not have a negation function, but a pragmatic function, since the
speaker seeks confirmation from the addressee. A similar case are negation words in dialogue checks
like don’t you think in (19).

(18) You have been inside the house, have you not, Watson?

(19) Don’t you think, Watson, that you are away from your charge rather long?

− Negation words in exclamative particles do not have a negation function. In (20), don’t tell me does
not express a negated event. This is a multiword construction used to express surprise.

(20) ”Don’t tell me that it is our friend Sir Henry!”

− Some modality cues, such as no doubt, contain false negation cues. In (21) no doubt is a fixed
expression that expresses certainty, no event is negated. It is an expression that acts at the discourse level
conveying information about the attitude of the speaker towards his statement.

(21) Partly it came no doubt from his own masterful nature, which loved to dominate and surprise those who were around
him

− The context influences the effect of the negation cue. The volitive verb wish in (22) and the conditional
construction in (23) cancel the negative effect of not.

(22) Your mission to-day has justified itself, and yet I could almost wish that you had not left his side

(23) In fact, if you had not gone to-day it is exceedingly probable that I should have gone to-morrow

5 Conclusions and future work

In this paper we have briefly presented the achievements in processing the scope of negation and modality
cues. There are currently several systems that can process scopes in biomedical texts, however there is a
lack of annotated resources, since there is only one publicly available corpus. We have also pointed out
that the quality of the systems output depends not only on the technical aspects of the systems, but also
on the linguistic model contained in the annotations. Based on annotation work on a literary corpus, we
have pointed out some difficulties that existing systems could face in detecting cues.

We are currently annotating texts by Conan Doyle with negation cues and their scopes. For defining
the guidelines we take the model of the BioScope corpus as a starting point and we include modifica-
tions based on the observations made above. The annotated corpus and the guidelines will be publicly
available.

Apart from annotating more data, further work will focus on computing the factuality of statements
based on the scopes of negation and modality cues and other contextual features, and studying the inter-
action between negation and modality.
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Farkas, R., V. Vincze, G. Szarvas, G. Móra, and J. Csirik (Eds.) (2010, July). Proc. of the Fourteenth Conference on Computa-
tional Natural Language Learning. Uppsala, Sweden: ACL.

Ganter, V. and M. Strube (2009). Finding hedges by chasing weasels: Hedge detection using wikipedia tags and shallow
linguistic features. In Proc. of the ACL-IJCNLP 2009 Conference Short Papers, Suntec, Singapore, pp. 173–176.

Hassan, A. and D. Radev (2010, July). Identifying text polarity using random walks. In Proc. of the 48th Annual Meeting of
the ACL, Uppsala, Sweden, pp. 395–403. ACL.

Jespersen, O. (1924). The philosophy of grammar. London: Allen and Unwin.
Li, J., Q. Zhu, and G. Zhou (2010). A unified framework for scope learning via simplified shallow semantic parsing. In Proc.

of EMNLP 2010.
Lyons, J. (1996). Semantics. Cambridge: CUP.
Medlock, B. and T. Briscoe (2007). Weakly supervised learning for hedge classification in scientific literature. In Proc. of ACL

2007, pp. 992–999.
Morante, R. and W. Daelemans (2009). Learning the scope of hedge cues in biomedical texts. In Proc. of BioNLP 2009,

Boulder, Colorado, pp. 28–36.
Morante, R., A. Liekens, and W. Daelemans (2008). Learning the scope of negation in biomedical texts. In Proc. of the EMNLP

2008, Honolulu, Hawaii, pp. 715–724.
Morante, R., V. Van Asch, and W. Daelemans (2010, July). Memory-based resolution of in-sentence scopes of hedge cues. In

Proc. of the Fourteenth Conference on Computational Natural Language Learning, Uppsala, Sweden, pp. 40–47. ACL.
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Abstract

In the effort of building a verb lexicon classifying the most used verbs in Arabic and providing in-
formation about their syntax and semantics (Mousser, 2010), the problem of classes over-generation
arises because of the overt morphology of Arabic, which codes not only agreement and inflection
relations but also semantic information related to thematic arity or other semantic information like
”intensity”, ”pretension”, etc. The hierarchical structure of verb classes and the inheritance relation
between their subparts expels derived verbs from the main class, although they share most of its
properties. In this article we present a way to adapt the verb class approach to a language with a
productive (verb) morphology by introducing sibling classes.

1 Introduction
Class based approach to lexical semantics such as presented in Levin (1993) provides a straightforward
way of describing a large number of verbs in a compact and generalized way. The main assumption is
the correlation between the syntactic behaviour of verbs as reflected in diathesis alternations and their se-
mantic properties. Verbs which participate in the same set of diathesis alternations are assumed to share
the same meaning facets. Verbs like abate, acidify, dry, crystallize, etc. share a meaning component
and are grouped into a class (change-of-state), since they participate in the causative/incoative alterna-
tion, the middle alternation, the instrument subject alternation and the resultative alternation (Levin,
1993). Class based lexica have turned out to be usefull lexical resources such as the English VerbNet
(Kipper Schuler, 2005), which provides information about thematic roles, syntactic and semantic struc-
ture of 5879 English verbs. Trying to use the same approach to classify verbs of a morphologically
rich language like Arabic, the researcher is faced with difficulties because many alternations require
morphological operations to express meaning aspects, especially those related to thematic roles.

(1) Causative/Incoative Alternation in Arabic
a. naśśafa saliymun ālmalābisa.

dry-CAUS-PRF Salim-SUBJ-NOM DEF-cloth-PL-OBJ-ACC.
‘Salim dried the clothes.’

b. naśafati ālmalābisu.
dry-PRF-PL DEF-cloth-PL-SUBJ-NOM
‘The colthes dried.’

In example (1) the causative/incoative alternation is realized through an overt morphological change on
the head of the sentence (reduplication of the second root consonant in (1a)), in such a way that the verb
changes to a new entry, which according to the hierarchical organisation of the class and especially to the
inheritance relation between its subparts, cannot longer be kept into the original class. Transporting the
new verb entry into a new class risks to loose its connection to the original class, which is an undesired
effect, since it does not necessarily reflect the natural organisation of the lexicon of Arabic.
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2 Arabic VerbNet and Class Structure
Arabic VerbNet1 is a large coverage verb lexicon exploiting Levin’s classes (Levin, 1993) and the basic
development procedure of Kipper Schuler (2005). The current version has 202 classes populating 4707
verbs and 834 frames. Every class is a hierarchical structure providing syntactic and semantic informa-
tion about verbs and percolating them to subclasses. In the top level of each class there are verb entries
represented as tuples. Each tuple contains the verb itself, its root form, the deverbal form and the par-
ticiple. At the same level thematic roles and their restrictions are encoded. The important information
about the class resides in the frames reflecting alternations where the verbs can appear. Every frame
is represented as an example sentence, a syntactic structure and a semantic structure containing seman-
tic predicates and their arguments and temporal information in a way similar to Moens and Steedman
(1988). Every class can have subclasses for cases where members deviate from the prototypical verb in
some non central points. A subclass recursively reflects the same structure as the main class and can
(therefore) itself have subclasses. A subclass inherits all properties of the main class and is placed in
such a way that the members in the top level are closed for the information it adds. This fact hinders
putting derived verbs participating in alternations into the main class or in one of the subclasses.

3 Sibling Classes
Introducing sibling classes is a way to resolve the problem arising from the discrepancy between two
derivationally related morphological verb forms which participate in the same set of alternations and
therefore share the same semantic meaning. Tables 1 and 2 show two sibling classes and their alternations
sets. The incoative alternation introduces a morphological change in the verbs. This fact blocks the
derived verbs from entering in any inheritance relation to the base verbs according to the hierarchical
structure of the class they belong to. Consequently, a sibling class (Table 2) is created to populate the
verbs resulting from alternations requiring morphological changes.

4 Automatic Extension of Arabic VerbNet via Sibling Classes
4.1 Morphological Verb Analyser
In order to generate derived verb forms a Java based morphological analyser was implemented as part
of a system in order to generating sibling classes automatically (Sibling class generator SCG). This
provides an analyse of the morphological composition of the input verbs. The program is based on
regular expressions and identifies the following features:
• Verb root: This corresponds to an abstract form of 2–4 consonants carrying a basic semantic

meaning of the verb. Thus, ktb is the abstract root of the verb kataba ‘to write’ but also of other
derivationally related words such as Iinkataba ‘INC-write’, takaAtaba, ‘RECIP-write’ ‘to corre-
spond’.
• Verb pattern: This corresponds to the verb pattern in the classical Arabic grammar and is repre-

sented by a canonical verb form faEala2 where the letters f, E and l correspond respectively to the
first, the second and the third root consonant of the input verb. Thus, the pattern of a verb such as
Iinokataba will be IinofaEala, where f, E and l correspond to k, t, b which are the root consonants
of the verb.

Table 3 shows the produced morphological analysis of the verbs kataba ‘to write’, Iinokataba ‘INC-
write’ and takaAtaba ‘to correspond’. The extracted features are then used in combination with semantic
information of verb classes to generate morpho-semantic derivational forms of verbs and later semanti-
cally derived verb classes (sibling classes) as explained in the next sections.

4.2 Identifying Expandable Verb Classes
The input of SCG are the basic verb classes produced in the first stadium of the lexicon building
(Mousser, 2010). In order to define which classes are good candidates to be expanded according to

1http://ling.uni-konstanz.de/pages/home/mousser/files/Arabic_VerbNet.php
2Pattern are transliterated using Buckwalter’s style. All other Arabic examples are transliterated using Lagally
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Table 1: The change of state class in Arabic. The causative use.

Class: Change of State
Members: ↪as. rana ‘modernize’, h

˘
as. h

˘
as. a ‘privatize’, ↪awolama ‘globalize’, ↪arraba ‘arabize’, etc.

Roles and Restrictions: Agent [+int control] Patient Instrument
Descriptions Examples Syntax Semantics
Basic Intransitive naśśafa saliym malābisahu. (Salim

dried his clothes)
V Agent Patient cause(Agent, E), state(result(E), End-

state, Patient)
NP-PP naśśafa saliym malaābisahu biālbuh

˘
aā-

r. (Salim dried his clothes with the
vapour)

V Agent Patient {bi}
Instrument

cause(Agent, E), state(result(E), End-
state, Patient), use(during(E), Agent,
Instrument)

Instrument
Subject

naśśafa ālbuh
˘

aāru ālmalābisa. (The
vapour dried the clothes.)

V Instrument Patient use(during(E), ?Agent, Instrument),
state(result(E), Endstate, Patient)

Subclass

Table 2: The change of state sibling class in Arabic. The incoative use.

Sibling Class: Change of State
Members: ta↪as. rana ‘INC-modernize’, tah

˘
as. h

˘
as. a ‘INC-privatize’, ta↪awolama ‘INC-globalize’,

ta↪arraba ‘INC-arabize’, etc.
Roles and Restrictions: Agent [+int control] Patient Instrument
Descriptions Examples Syntax Semantics
V NP.patient naśafati ālmalābisahu. (The clothes

dried)
V Patient state(result(E), Endstate, Patient)

PP naśafati ālmalābisahu biālbuh
˘

aār.
(The clothes dried with the vapour.)

V Patient Instrument use(during(E), ?Agent, Instrument),
state(result(E), Endstate, Patient)

Subclass

causativity criteria, thematic role information and semantic predicates of class frames are detected.
Classes of verbs with the thematic role agent and compositional semantics containing the causative pred-
icate CAUSE are selected as in the case of change-of-state classes. Additionally, inherently uncausative
verb classes involving a change of state are identified according to whether they possess a patient theme
occupying the subject position and accordingly whether their compositional semantics include the change
of state predicate STATE.

4.3 Generating Sibling Classes
Generating sibling classes requires generating the appropriate morphological verb forms, new lists of
thematic roles and new frames with new syntactic descriptions and new predicate semantics reflecting
the derived meaning of the verbs (See Tables 1 and 2).
4.3.1 Generating New Verb Forms
Verbs of the new sibling classes are generated from morphological forms of the base verbs using the
following information:

a. The semantic morphological operation required for the input class (causativization, reciprocaliza-
tion or decausativization).

b. The morphological properties of the input verbs such as root, pattern and segmental material.
c. Rewrite rules defining for each input verb pattern the appropriate derivative form to express the

target semantic meaning.
The generation of derived verbs reveals itself to be the reverse of the morphological analysis, as it consists
of replacing the consonants f, E and l of the relevant output pattern with the root consonants of the input
verb. Thus, the change-of-state verb fah. h. ama ‘to carbonize’ with the root fh. m and the pattern faEãla
will produce the derived verb tafah. h. ama ‘INC-carbonize’ according to the decausativization rule 2 in
the Table 4 and by replacing the output pattern consonants f, E and l respectively with the root consonants
f , h. and m.
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Table 3: Morphological information

Verb Root Pattern Segments
kataba ktb faEala a a a
Iinokataba ktb IinofaEala Iino a a a
takaAtaba ktb taFaAEala ta aA a a

Table 4: Rewrite rules for decausativization

Input pattern Output pattern
faEala =⇒ IinofaEala
faEãla =⇒ tafaEãla
faAEala =⇒ tafaAEala
faEolana =⇒ tafaEolana
fawoEala =⇒ tafawoEala

4.3.2 Generating New Lists of Thematic Roles
Building sibling classes is not only a morphological process but also a semantic one with repercussions
on the thematic arity of the concerned class. Thus, the simple reciprocal alternation found with social
interaction and communication verbs adds a new theme role actor which can be used interchangeably
with the two symmetrical themes actor1 and actor2. Other operations delete thematic roles in the new
class. Thus decausativization deletes the thematic role agent from the list of roles.
4.3.3 Generating New Argument Structures
Adapting thematic structures of the new sibling classes has an influence on their argument structures.
Thus, adding a new thematic role while causativizing a verb class is reflected in the syntactic level by
adding a new argument with its appropriate restrictions. For instance, the introduction of the theme actor
in the simple reciprocal alternation of interaction verbs imposes an additional restriction [+dual/+plural]
on the subject at the syntactic level, whereas the object is omitted from the argument structure of the
concerned frame. Additionally, the mapping between thematic roles and grammatical arguments is the
subject of change. Thus, change-of-state verbs and other causative verbs are reflexivized by assigning
a agent role to the patient in the causative reading. At the syntactic level this operation is reflected by
omitting the subject and promoting the object to the subject position.
4.3.4 Generating New Semantic Descriptions
For sibling classes to reflect the meaning variations introduced by the new morphological material, the
semantic description of input classes has to be modified by adding or omitting appropriate semantic
predicates. Thus, causativization introduces the predicate CAUSE to the semantic description of the
class, whereas decausativization is reflected by omitting the same predicate and its argument which
corresponds mostly to the agent of the concerned frame. In the case of a simple reciprocal alternation the
presence of one (plural) actor is reflected by introducing two presupposed (implicit) actor roles: actor i
and actor j in the main semantic description of the verb as shown in (2) in contrast to explicit actor roles
in (3).

(2) Implicit symmetrical actor roles
social interaction(during(E), Actori, Actorj)

(3) Explicit symmetrical actor roles
social interaction(during(E), Actor1, Actor2)

4.3.5 Generating New Frames
We generate new frames (alternations) on the basis of frames of the base (input) classes. Since operations
like decausativization affect only the thematic arity of the class, alternations which are not related to
causativity are reproduced in the new classes. For instance, the frame for the instrumental alternation
of the causative verb class is reproduced by adapting the thematic structure to the incoative use. Thus,
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the frame alternation of (4a) will produce the frame alternation (4b), since the instrumental alternation in
Arabic can be found with causative verbs as well as with uncausative verbs.

(4)
a. naśśafa saliymun ālmalābisa. biālbuh

˘
aāri

dry-CAUS-PRF Salim-SUBJ-NOM DEF-cloth-PL-OBJ-ACC with-DEF-vapor.
‘Salim dried the clothes with the vapor.’

b. naśifati ālmalābisu. biālbuh
˘

aāri
dry-PRF DEF-cloth-PL-SUBJ-NOM with-DEF-vapor.
‘The clothes was dried with the vapor.’

5 Results and Discussion
We run SCG on the current version of Arabic VerbNet. The program was able to identify 89 expandable
classes with 3005 verbs and 368 frames, 60 of them populate causative and 29 uncausative verbs. For
each class one sibling class was generated with a total of 3360 verbs and 368 frames. The high number
of generated verbs is due to the fact that some verbs have more than one way to express the causative or
the inchoative. After checking the quality of the produced classes, we count 71% accuracy in identifying
the patterns of the verbs and 82% in generating their derived forms. After manually adjusting the new
sibling classes (deleting unsuitable verb forms and adding the correct ones, adding frame examples, etc.),
we noted that Arabic VerbNet counts now 291 classes populating 7937 verbs and 1202 frames, which
represents an expansion rate of 44%. Noteworthy, not all verbs formed by the root-pattern system exist
synchronically. We observed that inside the same sibling class one verb can be widely found in different
Arabic corpora whereas another verb of the same sibling class is not attested in the same corpora. For
instance, the verb nabah. a ‘to bark’ of the class animal sounds has a causative form anbah. a ‘cause to
bark’, but for the most members of the same class the causative form are not attested to be used in the
“real world”. However, they are potential lexicon entries and native Arabic speakers will most likely
recognize their meaning without being exposed to them before. Additionally, given the fact that human
lexica are brittle and incomplete, the scope of Levin’s class approach (Levin, 1993) can be expanded to
explain the derivational behaviour of verbs: Verbs which belong to the same class and share the same
syntactic and semantic properties are likely to share the same derivational behaviour, especially when
this behaviour is related to the general semantic properties of the class.

6 Conclusion
We presented a way to classify verbs of a language with a productive (verb) morphology like Arabic. Ad-
ditionally to the traditional classes with a rigid hierarchical structure and a top-down inheritance relation,
sibling classes were introduced to classify those verbs which engage in morohological operations during
diathesis alternations. Sibling classes are autonomous classes which maintain relations to the class they
are issued from consequently reflecting the natural connection between parents element in the lexicon.
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Abstract
This paper discusses the phenomenon of granularity in natural language1. By ‘granularity’ we

mean the level of detail of description of an event or object. Humans can seamlessly shift their gran-
ularity perspective while reading or understanding a text. To emulate this mechanism, we describe
a set of features that identify the levels of granularity in text, and empirically verify this feature set
using a human annotation study for granularity identification. This theory is the foundation for any
system that can learn the (global) behavior of event descriptions from (local) behavior descriptions.
This is the first research initiative, to our knowledge, for identifying granularity shifts in natural
language descriptions.

1 Introduction

Granularity is the concept of breaking down an event into smaller parts or granules such that each indi-
vidual granule plays a part in the higher level event. For example, the activity of driving to the grocery
store involves some fine-grained events like opening the car door, starting the engine, planning the route,
and driving to the destination. Each of these may in turn be decomposed further into finer levels of
granularity. For instance, planning the route might involve entering an address into GPS and following
directions. The phenomenon of granularity is observed in various domains, including scientific literature,
game reports, and political descriptions. In scientific literature, the process of photosynthesis on closer
examination is made up of smaller individual fine-grained processes such as the light dependent reaction
and the light independent reaction.

Granularity is not a new concept. It has been studied actively in various disciplines. In philosophy, Bit-
tner and Smith (2001) have worked on formalizing granularity and part-hood relations. In information
retrieval, Lau et al. (2009) have used granularity concepts to extract relevant detail of information result-
ing from a given search query. In theoretical computer science and ontology development, Keet (2008)
has worked on formalizing the concept of entity granularity and hierarchy and applied it biological sci-
ences. In natural language processing, Mani (1998) has worked on applying concepts of granularity to
polysemy and Hobbs (1985) has worked on using granularity for decomposing complex theories into
simple theories.

Although all of the above work emphasizes the importance of granularity relations for language un-
derstanding and formalization, none of it has attempted to observe whether granularity structures exist in
natural language texts, explored whether granularity structures can be identified and extracted automati-
cally, or tried to analyze how harvesting granularity relations can possibly help with other NLP problems.
This paper focuses on two items: First, we present a model of granularity as it exists in natural language
(Section 2); and second, we present an annotation study which we conducted to verify the proposed
model of granularity in natural language (Section 3).

1This research was supported by the Defense Advanced Research Projects Agency (DARPA) Machine Reading Program
under Air Force Research Laboratory (AFRL) prime contract no. FA8750-09-C-0172. Any opinions, findings, and conclusion
or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the view of the DARPA,
AFRL, ONR, or the US government.
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(a) (b)

Figure 1: 1(a): Granularity in Natural Language Descriptions; 1(b): Instantiating Natural Language to
the Granularity model

2 Modeling Granularity in Natural Language Texts

Humans can easily shift through various levels of granularity in understanding text. However, for auto-
mated granularity identification and extraction, it is necessary to explicitly recognize the identifiers that
indicate a shift in granularity. Figure 1(a) illustrates our theory of granularity. A granularity structure
exists only if at least two levels of information are present in text, such that the events at the coarse gran-
ularity can be decomposed into the events at the fine granularity, and the events at the fine granularity
combine together to form at least one segment of the event at the coarse granularity. In Figure 1(a),
Gc represents the phrase or sentence with coarse granularity information and Gf represents a phrase
or sentence with fine granularity information. Three types of relations can exist between the objects at
coarse and fine granularity: part-whole relationships between entities, part-whole relationships between
events, and causal relationships between the fine and coarse granularities. These relations signal a shift
in granularity. Instantiating text phrases into this model will expose granularities of text. For example,
consider the following sentence:

The San Francisco 49ers moved ahead 7–3 11 minutes into the game when William Floyd scored a two-yard
touchdown run.

The event of the player scoring a touchdown (the second clause of the sentence) is a decomposition
of the event of the team moving forward in the game (the first clause), and thus a finer granularity rep-
resentation of the San Francisco 49ers moving ahead in the game. When instantiated in our model of
granularity (Figure 1(a)), the graphical representation is shown in Figure 1(b).

Having described the overall model of granularity, we now elaborate on the components of the gran-
ularity model, namely part-whole relations and causal relations.

2.1 Part-Whole Relations

Two types of part-whole relations are present: meronymic and mereologic. Mereology (for more details
read Keet (2008)) is a partial ordering relation that is reflexive, transitive, and antisymmetric. According
to the concept of mereology, if x, y and z are three entities, then: x is a part of x; if x is part of y and y is
part of z then x is part of z; and if x is part of y then y cannot be part of x. However, various types of part-
whole relations that occur in natural language, such as member of, do not satisfy the transitivity relation,
in which case they will be mereologic but not meronymic: they might be ontologically accurate but
not linguistically correct. For instance, if John’s arm is part of John, and John is a member of a football
team, the transitivity relation that John’s arm is part of a football team, is not a valid meronymic relation.
Another instance which is mereologic but not meronymic is the following: A cup is made of steel, and
steel is made of molecules. Therefore a cup is made of molecules. The concept of mereology does not
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reflect the way part of is used in natural language, and so mereology cannot be used for linguistic based
research.
One of the early works on part-whole relations in natural language (meronymy) Winston et al. (1987)
was later refined in their empirical experiments Chaffin et al. (1988). Winston et al. discuss meronymic
relations and a taxonomy for representing them. They introduce six types of part-whole relationships:
(i) Component-Integral (e.g., pedal is a component of the integral bike), (ii) Member-Collection (e.g.,
a ship is a member of the collection, a fleet), (ii) Portion-Mass (e.g., a slice is a portion of the mass, a
pie), (iv) Stuff-Object (e.g., steel is one of the ingredients/stuff of the object car), (v) Feature-Activity
(e.g., paying is one of the features of the whole activity of shopping), (vi) Place-Area (e.g., Everglades
is a place within the area of Florida). The definition and classification in Winston et al. (1987) for
part-whole relations is very relevant for language based analysis of part-whole relations. For granularity
identification in our work, the Feature-Activity type relation is used as the part-whole relation for events,
and the rest are part-whole relations for entities.

2.2 Causal Relations

Girju and Moldovan (2002) provide a broad compilation of causality research ranging from philosophy,
planning in AI, commonsense reasoning, and computational linguistics. Causation in computational
linguistics is the only form of causality that is relevant for granularity identification and extraction. The
following are the categories of causal constructs relevant for granularity identification and extraction:

• Causal Connectives: These are usually prepositional (such as because of, thanks to, due to), adver-
bial (such as for this reason, the result that), or clause links (such as because, since, for).

• Causation Verbs: These usually have a causal relation integrated with the verb. For example, kill,
melt (represent a causal link with the resulting situation), poison, hang, clean (represent a causal
link with the a part of the causing event)

• Conditionals: Girju and Moldovan (2002) describe conditionals as complex linguistic structures
typically of the form If S1 then S2. These structures represent causation, temporal relations, among
other relations, and are very complex structures in language.

3 Evaluation of the Granularity Model in Natural Language

We conducted an evaluation study to judge the “goodness” of the granularity model proposed. In
this study the annotators were asked to annotate granularity relations between two given paragraphs.
Paragraph-based analysis was preferred to event-word-based analysis because people reason much more
easily with paragraph descriptions than with individual event mentions 2. The annotation set consisted of
paragraph pairs from three domains: travel articles (confluence.org), Timebank annotated data Pan et al.
(2006), and Wikipedia articles on games. We selected a total of 37 articles: 10 articles about travel, 10
about games, and 17 from Timebank. Both paragraphs of a given question were selected from the same
article and referred to the same overall concept.

3.1 Annotation Task

The articles were uploaded to Mechanical Turk and were annotated by non-expert annotators (regular
Turkers). The entire set of 37 articles was annotated by 5 people. The annotators were given a pair
of paragraphs and were asked four questions about the relations between them: (i) Is one paragraph a
subevent of the other paragraph?, (ii) Did one paragraph cause the other paragraph?, (iii) Is one paragraph
less detailed and the other paragraph more detailed?, (iv) Did one paragraph happen after the other para-
graph? They were then presented with the comments of other annotators, and asked whether they agreed

2This was deduced as a result of an earlier annotation study for granularity identification using individual words as events.
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(a) (b)

Figure 2: 2(a) shows the Inter-Annotator agreement for 37 articles and 2(b) shows the Pairwise Kappa
Agreement for 37 articles and 5 annotators

with any of the other annotations or explanations. The annotators were asked to provide a justification of
their choices.

3.2 Results

The Kappa statistic (Cohen (1960)) is the standard for measuring inter-annotator agreement: k =
(p(a)−p(e))
(1−p(e)) , where p(a) is the observed agreement and p(e) is the chance agreement between annota-

tors. More refined than simple Percentage Agreement, Kappa corrects for chance agreements.

In our study, two annotators were considered to be in agreement if they agreed with questions (i)
Subevents, (iii) More or less detail and (iv) Sequence. Unfortunately question (ii) Causality, as pro-
vided to the annotators, could not be taken into account for agreement measurement as individuals had
different conceptualizations of causality, and a crisp definition of causality was not provided to them.
For instance, consider the following two paragraphs:

1: I wanted to visit the confluence point located in the extreme southwest of Hunan Province.
2: To get to the confluence, I caught the Hong Kong-to-Shanghai intercity train on Friday afternoon.
Analysis: Some annotators annotated para2 causes para1, providing the explanation that the goal para1 could
be achieved due to the events of para2. Others annotated para1 causes para2, providing the justification that the
events of para2 only exist to fulfill the original goal para1. We are interested in the first type of causality, i.e.,
causality which explains how a given event happens. All the annotators agreed that a sub-event explains how an
event happens, or a sub-event causes an event. We counted this in lieu of our causality question (ii).

Figure 2(a) shows the overall agreement of the five annotators on the 37 articles and Figure 2(b) shows
the pairwise Kappa agreement for the five annotators. All the annotators agreed in 33/37 cases (23 article
pairs were annotated as having a granularity shift, 10 articles were annotated as having no granularity
shift). The average pairwise Kappa was 0.85. If the newspaper articles were removed, the overall agree-
ment was 100% for all the annotators. High agreement implied good quality of the annotation guidelines,
and provided evidence that people shift through various levels of granularity while reading and under-
standing text.

3.3 Analysis of the Causes of Disagreement

Where disagreements occurred, different interpretations of the same text were observed to be a major
cause. All these disagreements were limited to the newspaper articles. For instance, consider the follow-
ing:
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1: Some 1,500 ethnic Albanians marched Sunday in downtown Istanbul, burning Serbian flags.
2: The police barred the crowd from reaching the Yugoslavian consulate in downtown Istanbul, but allowed them
to demonstrate on nearby streets.
Positive Granularity Shift: Some annotators commented that “demonstrations” happen as a part of a “march”.
So, para2 is a sub-event of para1.
Negative Granularity Shift: Other annotators felt that para2 happened after para1, and so there was no granular-
ity shift.

Overall, we can observe that although disagreement arises due to individual and unique interpretations
of text, people agree based on the discriminating features provided to them (part-whole relations and
causality) when identifying granularity shifts. This shows that part-whole relations and causality provide
a good set of features for identifying granularity shifts.

4 Conclusion and Future Work

In this paper we present the phenomenon of granularity as it occurs in natural language texts. We validate
our model of granularity with the help of an annotation study. We are currently developing a system for
automatic granularity extraction. We will compare its performance with state of the art techniques for
answering causality-style questions to empirically evaluate the significance of granularity structures for
automated Question Answering.
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Abstract

This paper describes recent work on the DynDial project∗ towards incremental semantic inter-
pretation in dialogue. We outline our domain-general grammar-based approach, using a variant of
Dynamic Syntax integrated with Type Theory with Records anda Davidsonian event-based seman-
tics. We describe a Java-based implementation of the parser, used within the Jindigo framework to
produce an incremental dialogue system capable of handlinginherently incremental phenomena such
as split utterances, adjuncts, and mid-sentence clarification requests or backchannels.

1 Introduction
Many dialogue phenomena seem to motivate an incremental view of language processing: for example,
a participant’s ability to change hearer/speaker role mid-sentence to produce or interpret backchannels,
or complete or continue an utterance (see e.g. Yngve, 1970; Lerner, 2004, amongst many others). Much
recent research in dialogue systems has pursued this line, resulting in frameworks for incremental di-
alogue processing (Schlangen and Skantze, 2009) and systems capable of mid-utterance backchannels
(Skantze and Schlangen, 2009) or utterance completions (DeVault et al.,2009; Buß et al., 2010).

However, to date there has been little focus on semantics, with the systems produced either operating
in domains in which semantic representation is not required (Skantze and Schlangen, 2009), or using
variants of domain-specific canned lexical or phrasal matching (Buß et al., 2010). Our intention is to
extend this work to finer-grained and more domain-general notions of grammar and semantics, by using
an incremental grammatical framework, Dynamic Syntax (DS, Kempson et al., 2001) together with the
structured semantic representation provided by Type Theory with Records (TTR, see e.g. Cooper, 2005).

(a)

A: I want to go to . . .

B: Uh-huh

A: . . . Paris by train.
(b)

A: I want to go to Paris . . .

B: Uh-huh

A: . . . by train.
(c)

A: I want to go to Paris.

B: OK. When do you . . .

A: By train.

Figure 1: Examples of motivating incremental dialogue phenomena

One aim is to deal with split utterances, both when the antecedent is inherentlyincomplete (see Fig-
ure 1(a)) and potentially complete (even if not intended as such – Figure 1(b)). This involves producing
representations which are as complete as possible – i.e contain all structuraland semantic information
so far conveyed – on a word-by-word basis, so that in the event of aninterruption or a hesitation, the
system can act accordingly (by producing backchannels or contentful responses as above); but that can
be further incremented in the event of a continuation by the user.

Importantly, this ability should be available not only when an initial contribution is intended and/or
treated as incomplete (as in Figure 1(b)), but also when it is in fact complete,but is still subsequently
extended (Figure 1(c)). Treating A’s two utterances as distinct, with separate semantic representations,
must require high-level processes of ellipsis reconstruction to interpretthe final fragment – for example,
treating it as the answer to an implicit question raised by A’s initial sentence (Fernández et al., 2004). If,

∗The authors were supported by the Dynamics of Conversational Dialogue project (DynDial – ESRC-RES-062-23-0962).
We thank Shalom Lappin, Tim Fernando, Yo Sato, our project colleaguesand the anonymous reviewers for helpful comments.
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instead, we can treat such fragments as continuations which merely add directly to the existing represen-
tation, the task is made easier and the relevance of the two utterances to each other becomes explicit.

2 Dynamic Syntax (DS) and Type Theory with Records (TTR)
Our approach is a grammar-based one, as our interest is in using domain-general techniques that are
capable of fine-grained semantic representation. Dynamic Syntax (DS) provides an inherently incre-
mental grammatical framework which dispenses with an independent level ofsyntax, instead expressing
grammaticality via constraints on the word-by-word monotonic growth of semanticstructures. In DS’s
original form, these structures are trees with nodes corresponding to terms in the lambda calculus; nodes
are decorated with labels expressing their semantic type and formula, and beta-reduction determines the
type and formula at a mother node from those at its daughters (Figure 2(a)). Trees can bepartial, with
nodes decorated with requirements for future development; lexical actions(corresponding to words) and
computational actions (general capabilities) are defined as operations ontrees which satisfy and/or add
requirements; and grammaticality of a word sequence is then defined as satisfaction of all requirements
(treecompleteness) via the application of its associated actions – see Kempson et al. (2001) fordetails.

Previous work in DS has shown how this allows a treatment of split utterancesand non-sentential
fragments (e.g. clarifications) as extensions of the semantic trees so far constructed, either directly or via
the addition of “linked” trees (Purver and Kempson, 2004; Gargett et al.,2009).

(a) Ty(t),
arrive(john)

Ty(e),
john

Ty(e → t),
λx.arrive(x)

(b)
[

x=john : e
p=arrive(x) : t

]

[
x=john : e

] λr :
[

x : e
]

[
x=r.x : e
p=arrive(x) : t

]

(c)




e=now : es
x=john : e
p=arrive(e,x) : t




[
x=john : e

]
λr :

[
x : e

]



e=now : es
x=r.x : e
p=arrive(e,x) : t




Figure 2: A simple DS tree for“john arrives” : (a) original DS, (b) DS+TTR, (c) event-based

2.1 Extensions

More recent work in DS has started to explore the use of TTR to extend the formalism, replacing the
atomic semantic type and FOL formula node labels with more complexrecord types, and thus providing
a more structured semantic representation. Purver et al. (2010) providea sketch of one way to achieve
this and explain how it can be used to incorporate pragmatic information such as participant reference
and illocutionary force. As shown in Figure 2(b) above, we use a slightly different variant here: node
record types are sequences of typed labels (e.g.[x : e] for a labelx of type e), with semantic content
expressed by use ofmanifesttypes (e.g.[x=john : e] wherejohn is a singleton subtype ofe).

We further adopt an event-based semantics along Davidsonian lines (Davidson, 1980). As shown
in Figure 2(c), we include an event term (of typees) in the representation: this allows tense and aspect
to be expressed (although Figure 2(c) shows only a simplified version using the current timenow).
It also permits a straightforward analysis of optional adjuncts as extensionsof an existing semantic
representation; extensions which predicate over the event term alreadyin the representation. Adding
fields to a record type results in a more fully specified record type which is stilla subtype of the original:




e=now : es

x=john : e
p=arrive(e,x) : t


 7→




e=now : es

x=john : e
p=arrive(e,x) : t

p′
=today(e) : t




“john arrives” 7→ “john arrives today”

Figure 3: Optional adjuncts as leading to TTR subtypes
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3 Implementation
The resulting framework has been implemented in Java, following the formal details of DS as per (Kemp-
son et al., 2001; Cann et al., 2005,inter alia). This implementation, DyLan,1 includes a parser and gener-
ator for English, which take as input a set of computational actions, a lexicon and a set of lexical actions
(instructions for partial tree update); these are specified separately in text files in the IF-THEN-ELSE
procedural (meta-)language of DS, allowing any pre-written grammar to beloaded. Widening or chang-
ing its coverage, i.e. extending the system with new analyses of various linguistic phenomena, thus do
not involve modification or extension of the Java program, but only the lexicon and action specifications.
The current coverage includes a small lexicon, but a broad range of structures: complementation, relative
clauses, adjuncts, tense, pronominal and ellipsis construal, all in interaction with quantification.

3.1 The parsing process

Given a sequence of words(w1, w2, ..., wn), the parser starts from theaxiom treeT0 (a requirement
to construct a complete tree of typet), and applies the corresponding lexical actions(a1, a2, . . . , an),
optionally interspersing general computational actions (which can apply whenever their preconditions
are met). More precisely: we define the parser state at stepi as a set of partial treesSi. Beginning with
the singleton axiom stateS0 = {T0}, for each wordwi:

1. Apply all lexical actionsai corresponding towi to each partial tree inSi−1. For each application
that succeeds (i.e. the tree satisfies the action preconditions), add resulting (partial) tree toSi.

2. For each tree inSi, apply all possible sequences of computational actions and add the resultto Si.

If at any stage the stateSi is empty, the parse has failed and the string is deemed ungrammatical. If the
final stateSn contains a complete tree (all requirements satisfied), the string is grammatical and its root
node will provide the full sentence semantics; partial trees provide only partial semantic specifications.2

3.2 Graph representations

Sato (2010) shows how this procedure can be modelled as adirected acyclic graph, rooted atT0, with
individual partial trees as nodes, connected by edges representing single actions. While Sato uses this to
model the search process, we exploit it (in a slightly modified form) to represent the linguisticcontext
available during the parse – important in DS for ellipsis and pronominal construal. Details are given in
(Cann et al., 2007; Gargett et al., 2009), but three general mechanismsare available: 1) copying formulae
from sometree in context (used for e.g. anaphora and strict VP ellipsis); 2) rerunningactionsin context
(for e.g. sloppy VP-ellipsis and fragment corrections); and 3) directly extending/augmenting the current
tree (used for most fragment types in (Fernández, 2006)). For any partial tree, then, the context available
to the parser must include not only the tree itself, but the sequence of actions and previous partial trees
which have gone into its construction. The parse graph (which we call thetreegraph) provides exactly
this information, via the shortest path back to the root from the current node.

However, we can also take a coarser-grained view via a graph which weterm thestategraph; here,
nodes are statesSi and edges the sets of action sequences connecting them. This subsumes thetree graph,
with state nodes containing possibly many tree-graph nodes; and here, nodes have multiple outgoing
edges only when multiple word hypotheses are present. This corresponds directly to the input word graph
(often called a wordlattice) available from a speech recognizer, allowing close integration in a dialogue
system – see below. We also see this as a suitable structure with which to begin tomodel phenomena
such as hesitation and self-repair: as edges are linear action sequences, intended to correspond to the
time-linear psycholinguistic processing steps involved, such phenomena maybe analysed as building
further edges from suitable departure points earlier in the graph.3

1DyLan is short forDynamics ofLanguage. Available fromhttp://dylan.sourceforge.net/.
2Note that only a subset of possible computational actions can apply to any given tree; together with a set of heuristics on

possible application order, and the merging of identical trees produced by different sequences, this helps reduce complexity.
3There are similarities to chart parsing here: the tree graph edges spanning a state graph edge could be seen as corresponding

to chart edges spanning a substring, with the tree nodes in the stateSi as the agenda. However, the lack of a notion of syntactic
constituency means no direct equivalent for the active/passive edgedistinction; a detailed comparison is still to be carried out.
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4 Dialogue System
The DyLan parser has now been integrated into a working dialogue systemby implementation as an
Interpreter module in the Java-based incremental dialogue framework Jindigo (Skantzeand Hjal-
marsson, 2010). Jindigo follows Schlangen and Skantze (2009)’s abstract architecture specification and
is specifically designed to handle units smaller than fully sentential utterances;one of its specific imple-
mentations is a travel agent system, and our module integrates semantic interpretation into this.

As set out by Schlangen and Skantze (2009)’s specification, ourInterpreter’s essential compo-
nents are aleft buffer(LB), processorandright buffer(RB). Incremental units(IUs) of various types are
posted from the RB of one module to the LB of another; for our module, the LB-IUs are ASR word hy-
potheses, and after processing, domain-level concept frames are posted as RB-IUs for further processing
by a downstream dialogue manager. The input IUs are provided as updates to a word lattice, and new
edges are passed to the DyLan parser which produces a state graph asdescribed above in 3.1 and 3.2:
new nodes are new possible parse states, with new edges the sets of DS actions which have created them.
These state nodes are then used to create Jindigo domain concept frames by matching against the TTR
record types available (see below), and these are posted to the RB as updates to the state graph (lattice
updatesin Jindigo’s terminology).

Crucial in Schlangen and Skantze (2009)’s model is the notion ofcommitment: IUs are hypotheses
which can be revoked at any time until they arecommittedby the module which produces them. Our
module hypothesizes both parse states and associated domain concepts (although only the latter are
outputs); these are committed when their originating word hypotheses are committed (by ASR) and a
type-complete subtree is available; other strategies are possible and are being investigated.

4.1 Mapping TTR record types to domain concepts incrementally

Our Interpreter module matches TTR record types to domain concept frames via a simple XML
matching specification; TTR fields map to particular concepts in the domain depending on their se-
mantic type (e.g.go events map toTrip concepts, and the entity of manifest typeparis maps to the
City[paris] concept). As the tree and parse state graphs are maintained, incremental sub-sentential
extensions can produce TTR subtypes and lead to enrichment of the associated domain concept.

User: I want to go to Paris . . .




e=ǫ,e17,P resentState : es

e1=ǫ,e19,FutureAccomp : es

x1=Paris : e
p2=to(e1,x1) : t

x=speaker : e
p1=go(e1,x) : t

p∗=want(e,x,p1) : t




Trip(to : City[paris])

User: . . . from London




e=ǫ,e17,P resentState : es

e1=ǫ,e19,FutureAccomp : es

x1=Paris : e
p2=to(e1,x1) : t

x2=London : e
p3=from(e1,x2) : t

x=speaker : e
p1=go(e1,x) : t

p∗=want(e,x,p1) : t




Trip(from : City[london],
to : City[paris])

Figure 4: Incremental construction of a TTR record type overtwo turns

Figure 4 illustrates this process for a user continuation; the initial user utterance is parsed to produce
a TTR record type, with a corresponding domain concept – a valid incremental unit to post in the RB.
The subsequent user continuation“from London” extends the parser state graph, producing a new TTR
subtype (in this case via the DS apparatus of an adjoininglinked tree (Cann et al., 2005)), and a more
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fully specified concept (with a further argument slot filled) as output.
System behaviour between these two user contributions will depend on the committed status of the

input, and perhaps some independent prosody-based judgement of whether a turn is finished (Skantze
and Schlangen, 2009). An uncommitted input might be responded to with a backchannel (Yngve, 1970);
commitment might lead to the system beginning processing and starting to respondmore substantively.
However, in either case, the maintenance of the parse state graph allows theuser continuation to be
treated as extending a parse tree, subtyping the TTR record type, and finally mapping to a fully satisfied
domain concept frame that can be committed.

5 Conclusions
We have implemented an extension of the Dynamic Syntax framework, integratedwith Type Theory with
Records, which provides structured semantic representations suitable for use in a dialogue system, and
which does so incrementally, producing well-defined partial representations on a word-by-word basis.
This has been integrated into a working Jindigo dialogue system, capable of incremental behaviour such
as mid-sentence backchannels and utterance continuations, which will be demonstrated at the conference.
The coverage of the parser is currently limited, but work is in progress to widen it; the possibility of using
grammar induction to learn lexical actions from real corpora is also being considered for future projects.
We are also actively pursuing possbilities for tighter integration of TTR and DS, with the aim of unifying
syntactic and semantic incremental construction.
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Ferńandez, R., J. Ginzburg, H. Gregory, and S. Lappin (2004). SHARDS: Fragment resolution in dialogue. In

H. Bunt and R. Muskens (Eds.),Computing Meaning, Volume 3. Kluwer Academic Publishers. To appear.
Gargett, A., E. Gregoromichelaki, R. Kempson, M. Purver, and Y. Sato (2009). Grammar resources for modelling

dialogue dynamically.Cognitive Neurodynamics 3(4), 347–363.
Kempson, R., W. Meyer-Viol, and D. Gabbay (2001).Dynamic Syntax: The Flow of Language Understanding.

Blackwell.
Lerner, G. H. (2004). Collaborative turn sequences. InConversation analysis: Studies from the first generation,

pp. 225–256. John Benjamins.
Purver, M., E. Gregoromichelaki, W. Meyer-Viol, and R. Cann(2010). Splitting the ‘I’s and crossing the ‘You’s:

Context, speech acts and grammar. InAspects of Semantics and Pragmatics of Dialogue. SemDial 2010, 14th
Workshop on the Semantics and Pragmatics of Dialogue.

Purver, M. and R. Kempson (2004). Incremental context-based generation for dialogue. InProceedings of the 3rd
International Conference on Natural Language Generation (INLG04).

Sato, Y. (2010). Local ambiguity, search strategies and parsing in Dynamic Syntax. In E. Gregoromichelaki,
R. Kempson, and C. Howes (Eds.),The Dynamics of Lexical Interfaces. CSLI. to appear.

Schlangen, D. and G. Skantze (2009). A general, abstract model of incremental dialogue processing. InProceed-
ings of the 12th Conference of the European Chapter of the ACL(EACL 2009).

Skantze, G. and A. Hjalmarsson (2010). Towards incrementalspeech generation in dialogue systems. InProceed-
ings of the SIGDIAL 2010 Conference.

Skantze, G. and D. Schlangen (2009). Incremental dialogue processing in a micro-domain. InProceedings of the
12th Conference of the European Chapter of the ACL (EACL 2009).

Yngve, V. H. (1970). On getting a word in edgewise. InPapers from the 6th regional meeting of the Chicago
Linguistic Society.

369



Extracting Contextual Evaluativity

Kevin Reschke
University of California, Santa Cruz

kreschke@ucsc.edu

Pranav Anand
University of California, Santa Cruz

panand@ucsc.edu

Abstract
Recent work on evaluativity or sentiment in the language sciences has focused on the contri-

butions that lexical items provide. In this paper, we discuss contextual evaluativity, stance that is
inferred from lexical meaning and pragmatic environments. Focusing on assessor-grounding claims
like We liked him because he so clearly disliked Margaret Thatcher, we build a corpus and construct a
system employing compositional principles of evaluativity calculation to derive that we dislikes Mar-
garet Thatcher. The resulting system has an F-score of 0.90 on our dataset, outperforming reasonable
baselines, and indicating the viability of inferencing in the evaluative domain.

1 Contextual Evaluativity

A central aim of contemporary research on sentiment or evaluative language is the extraction of eval-
uative triples: 〈evaluator, target, evaluation〉. To date, both formal (e.g., Martin and White 2005, Potts
2005) and computational approaches (e.g., Pang and Lee 2008) have focused on how such triples are
lexically encoded (e.g., the negative affect of scoundrel or dislike). While lexical properties are a key
source of evaluative information, word-based considerations alone can miss pragmatic inferences result-
ing from context. (1), for example, communicates that the referent of we bears not only positive stance
towards the referent of him, but also negative stance towards Margaret Thatcher:

(1) We liked him because he so clearly disliked Margaret Thatcher.
LEXICAL EVALUATIVITY: 〈we, him, +〉; 〈he, M.T., -〉
CONTEXTUAL EVALUATIVITY: 〈we, M.T., -〉

This paper argues for a compositional approach to contextual evaluativity similar to the compositional
methods adopted for lexical evaluativity in Moilanen and Pulman (2007) and Nasukawa and Yi (2003).
At the the heart of the approach is the treatment of verbal predicates (dislike in (1)) as evaluativity
functors which relate argument/entity-level evaluativity to event-level evaluativity.

As discussed in §2, the utitlity of such a model surfaces in cases where the event-level evaluativity
is known from context, and thus new information about the contextual evaluativity of the event partic-
ipants (e.g. Margaret Thatcher) can be inferred. Consequently, the empirical focus of this paper is on
structures like (1), where the second clause provides grounds for the sentiment encoded in the first, and
hence has a predictable event-level evaluation from the first clause’s evaluator. In §3 we describe the
collection and annotation of a corpus of such assessment-grounding configurations from large-scale web
data. This annotated corpus serves as a test bed for experimental evaluation of various implementations
of the proposed compositional approach. The results of these experiments (§4) strongly support a com-
positional approach to contextual evaluativity inference. A simple compositional algorithm based on
a small, manually created evaluativity functor lexicon demonstrated significantly better precision than
non-compositional baselines. Moreover, a method for automatically expanding coverage to novel predi-
cates based on similarity with the manually created lexicon is shown to increase recall dramatically with
modest reduction in precision.

2 A Framework For Inferring Contextual Polarity

Evaluativity is concerned with determining private states (e.g., judgment or emotion) that a particular
evaluator bears towards a target entity, event, or proposition. This may be represented as a three place
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Table 1: Evaluativity functors for verbs of having, withholding, disliking, and liking

x y Ehave Elack Ewthhld Edprv Espr Edislike Elike

+ + + - - - # - +
+ - - + + # + + -
- + - + + + # - +
- - + - - # - + -

x have/lack y a withhold/deprive/spare x of y x dislike/like y

relation, R ⊆ De×Dα×DE , where α is of variable type and E is the type of evaluative stance, assumed
here to be binary. Lexical approaches to evaluativity (see Pang and Lee 2008 for a review) have focused
on those relations that are determinable from word-internal meaning alone. For example, describing
an event e as coddling gives rise to two triples: 〈AGENT(e), PATIENT(e),+〉 and 〈SPEAKER, e,−〉.1
These lexical inferences then become part of the feature set for classifying phrasal stance (e.g., the
author’s overall evaluativity in a sentence). A contrasting line of research (Moilanen and Pulman 2007,
Nasukawa and Yi 2003) analyzes phrasal stance as a compositional product of the polarities toward event
participants. For example, the evaluative polarity of the speaker toward the event in (2a) is positively
correlated with the polarity toward the subject, and negatively so in (2b).

(2) a. My {ally, enemy} was deprived shelter.
b. My {ally, enemy} was spared a dangerous mission.

Compositional proposals rely on mapping each n-ary predicate P an n-ary evaluativity functor EP :
DEn → DE . Anand and Reschke (2011) argue that evaluativity functors largely group into classes,
depending on whether the predicates in question entail final states of possession and/or affectedness. For
example, the functors for predicates of withholding, including deprive and spare, are partial cases of the
functor for lack (partiality reflects lexical idiosyncracies about e.g., deprivation and positive objects), as
shown in Table 1.

While compositional systems are designed to compute phrasal stances bottom-up, their calculi straight-
forwardly allow inference to participant polarities as well, assuming knowledge of the event polarity and
all but one participant. Consider the sentence He disliked Margaret Thatcher. By the evaluativity con-
ditions in Table 1, Edislike is positive iff the evaluator has negative evaluation of Thatcher. Thus, given
knowledge of the event polarity, we can infer the evaluator’s stance with respect to Thatcher. In (1), this
information is provided by the preceding assessing clause (+, from Elike ). As the second clause serves
as grounds for the assessment in the first clause, the event described in the second clause is predictably
also assessed as + by the evaluator we. In our experiments we exploited this construction in particular,
but the general procedure does not require it (thus, for example, evaluative adverbs such as fortunately
and regrettably could provide an additional construction type). This procedure is sketched for (1) below:

(3) We likedelike him because he so clearly dislikededislike Margaret Thatcher.
LEXICAL EVALUATIVITY: 〈we, him, +〉; 〈he, M.T., -〉
PRAGMATIC INFERENCE: 〈we, edislike, +〉 (edislike justifies 〈we, him, +〉)
COMPOSITIONAL INFERENCE: Edislike(+, y) = + iff y = +
therefore, y is regarded as +, or 〈we, M.T., -〉

Note that for this application, we may simplify the compositional picture and treat functors as either
preservers or reversers of the polarity of the object of interest, as is done in Moilanen and Pulman (2007)
and Nasukawa and Yi (2003): preservers (such as verbs of liking) match the object polarity with the
event polarity, and reverses negate it.

When the assessing clause evaluator is not affiliated with the speaker, this procedure can produce
markedly different results from lexical markers (which often show speaker evaluativity). Thus, in (4),
the speaker’s assessment of Obama’s cuts (indicated by the lexical much-needed) stands in sharp contrast
with NASA’s (determined by inference):

1Here, we simplify regarding potential evaluators outside of the speaker.
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(4) NASA got angry at Obama because he imposed some much-needed cuts.
LEXICAL EVALUATIVITY: 〈NASA, Obama, -〉; 〈SPEAKER, some much needed cuts, +〉
CONTEXTUAL EVALUATIVITY: 〈NASA, some much needed cuts, -〉

The assessment-grounding configuration in (1) and (4) is highly productive. Behaviorally, implicit
causality predicates (including predicates of assessment, as well as praise and scolding) are frequently
understood by experimental subjects as describing an event involving the assessment target, especially
when followed by because (Garvey and Carmazza, 1974; Koornneef and van Berkum, 2006). In addition,
Somasundaran and Weibe (2009) exploited a similar construction to gather reasons for people’s product
assessments from online reviews. These together suggest that such constructions could be simultaneously
high-precision sources for evaluativity inference and easily obtainable from large corpora.

3 Data Gathering and Annotation

We developed a corpus of assessment-grounding excerpts from documents across the web to evaluate
the potential of the framework in §2. 73 positive and 120 negative assessment predicates (like, adore,
hate, loathe, etc.) were selected from the MPQA subjectivity lexicon (Wilson et al., 2005). These were
expanded accross inflectional variants to produce 826 assessment templates, half with explicit because,
half without (e.g. terrified by X because he). These templates were filled with personal pronouns and
the names of 26 prominent political figures and issued as websearch queries to the Yahoo! Search
API.2 A total of 440,000 webdocument results were downloaded and processed using an 1152 core Sun
Microsystems blade cluster. The relevant sentences from each document were extracted, and those under
80 characters in length were parsed using the Stanford Dependency Parser.3

This produced 60,000 parsed assessment-grounding sentences, 6,000 of which (excluding duplicates)
passed the additional criterion that the grounding clause should contain a verb with a direct object. This
restriction ensured that each item in our corpus had a target for contextual polarity inference. An addi-
tional 3,300 cases were excluded because the target in the grounding clause shared possible coreference
with the experiencer (subject) of the assessment clause. We avoided these coreferring cases because,
from the perspective of a potential application, inferences about an experiencer’s stance towards himself
are less valuable than inferences about his stance towards others. Finally, the list was manually short-
ened to include only those sentences marked as assessment-grounding configurations according to two
annotators (κ = 0.82); the classification task of whether this pragmatic connection occurs is beyond the
scope of this paper. 57% of the data was removed in this pass, 14% from tokens with because and 43%
from tokens without. Implicit causality verbs not followed by because have been shown experimentally
to give rise to a much weaker preference for justification (Au, 1986), and this is confirmed in our corpus
search. The result of this procedure was a final corpus size of 1,160.

The corpus was annotated for inferred contextual polarity. One of the authors and another annotator
coded sentences for evaluator stance toward the object (+,-, unknown); agreement was high: κ = 0.90.
The 48 unresolved cases were adjudicated by a third annotator. 27 cases were uniformly judged un-
known, involving predicates of change, disclosure (reveal, expose), and understanding (know). These
were removed from the corpus, leaving 1,133 sentences for training and testing.

4 System and Experimental Results

Restricting ourselves to the assessment-grounding configuration discussed above, we treat contextual
polarity inference as a binary classification problem with two inputs: the INPUT EVENT event-level
polarity (derived from the assessment clause) and the main verb of the grounding clause (henceforth
FUNCTOR VERB). The goal of the classifier is to correctly predict the polarity of the target NP (direct
object to the functor verb) given these inputs.

2http://developer.yahoo.com/search/
3http://nlp.stanford.edu/software/lex-parser.shtml
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Table 2: Examples of verbs marked as
preserver/reverser and their sources

EXAMPLE CLASS SOURCE

reward preserver MPQA subj. lex.
hamper reverser MPQA subj. lex.
tutor preserver (benefit) FrameNet
batter reverser (injury) FrameNet

Table 3: Performance of systems and baselines
for contextual evaluativity classification

SYSTEM PREC. RECALL F-SCORE

B-Functor 0.39 0.24 0.30
B-Input 0.69 1.0 0.82
B-MLE 0.75 1.0 0.86

SYS 0.88 0.57 0.69
SYS-MPQA 0.88 0.24 0.38
SYS-Frame 0.89 0.41 0.56
SYS+Maj 0.82 1.0 0.90
SYS+Sim 0.84 0.97 0.90

As mentioned in §2, we may categorize the functor verbs in our lexicon into preservers and reversers.
Two sources populate our lexicon. First, positively subjective verbs from the MPQA subjectivity lexicon
were marked as preservers and negatively subjective verbs were marked as reversers (1249 verbs total).
For example, Edislike is a reverser. Second, 487 verbs were culled from FrameNet (Ruppenhofer et al.,
2005) based on their membership in six entailment classes: verbs of injury, destruction, lacking, benefit,
creation, and having. Class membership was determined by identifying 124 FrameNet frames aligning
with one or more classes, then manually selecting from these frames verbs whose class membership
was unambiguous. Verbs of benefit, creation, and having were marked as preservers. Verbs of injury,
destruction, and lacking were marked as reversers (Table 2). Our system (SYS) classifies objects in
context as follows: If the functor verb is a preserver, the target NP is assigned the same polarity as the
input event polarity. If the functor verb is a reverser, the target NP is assigned the opposite of the input
event polarity. This procedure is modulated by the presence of negation, as detected by a neg relation in
the dependency parse. Under negation, a preserver acts like a reverser, and vice versa.

We tested the performance of this system (SYS) on our annotated corpus against three baselines.
The first baseline (B-Functor) attempts to determine the importance of the input event to the calculation.
It thus ignores the preceding context, and attempts to classify the target object from the functor verb
directly, based on the verb’s polarity in the MPQA subjectivity lexicon. It has poor precision and recall,4

reflecting both the importance of the assessment context for object polarity and the fact that the functor
verbs are often not lexically sentiment bearing (e.g., predicates of possession). The second baseline
(B-Input), conversely, ignores the functor verb and uses the input event polarity as listed in the MPQA
lexicon (modulo negation) for object classification. The purpose of this baseline is to approximate a
classifier that predicts target polarity solely from the global/contextual polarity of the preceding clause.
This has sharply increased precision, indicating contextual information’s importance. The third baseline
(B-MLE) picked the majority object class (+), and had the highest precision, indicating the general bias
in our corpus for positive objects. Table 3 shows the performance (precision vs. recall) of our system
compared to the three baselines. Its precision is significantly higher, but its F-score is limited by the lower
coverage of our manually constructed lexicon. SYS-MPQA and SYS-Frame show the performance of
the system when the functor lexicon is limited to the MPQA and Framenet predicates, respectively. Both
are high precision sources of functor prediction, and pick out somewhat distinct predicates (given the
recall gain of combining them). SYS+Maj and SYS+Sim are attempts to handle the low recall of SYS
caused by functor verbs in the test data which aren’t in the system’s lexicon. SYS+Maj simply assigns
these out-of-vocabulary verbs to the majority class: preservers. SYS+Sim classifies out-of-vocabulary
verbs as preservers or reversers based on their relative similarity to the known preservers and reversers
selected from FrameNet – an unknown verb is categorized as a preserver if its average similarity to
preservers is greater than its average similarity to reversers. Similarity was determined according to the
Jiang-Conrath distance measure (Jiang and Conrath, 1997), which based on links in WordNet (Fellbaum,
1998). (Note: this process cannot occur for words not found in WordNet – e.g. misspellings – hence the

4Low recall occurs when items are left unclassified due to out-of-vocabulary functor verbs. Low precision occurs when a +
item is classified as – or vice versa.
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less than perfect recall). These two systems outperform all baselines, but have indistinguishable F-scores
(if misspellings are excluded, SYS+Sim has a Recall of 0.99 and F-score of 0.91).

Most of the precision errors incurred by our systems were syntactic: incorrect parsing, incorrect
extraction of the object, or faulty negation handling (e.g., negative quantifiers or verbs). 26% of errors
are due to word-sense disambiguation. The verbs spoil and own each have positive and negative uses
(own can mean defeat), but only one sense was registered in the lexicon, leading to errors. The lion’s
share of these errors (22%) were due to the use of hate and similar expressions to convey jealousy (e.g.
I was mad at him because he had both Boardwalk and Park Place). In these scenarios, although the
assessment is negative, the event-level polarity of the grounding clause event type is positive (because it
is desired), a fact which our current system cannot handle. One way forward would be to apply WSD
techniques to distinguish jealous from non-jealous uses of predicates of dislike.

5 Conclusion

We have described a system for the extraction of what we termed contextual evaluativity – evaluations
of objects that arise from the understanding of pragmatic inferences. This system, once we incorporate
procedures to automatically infer evaluativity functor class, significantly outperforms reasonable base-
lines on a corpus of assessor-grounding extracts from web documents. The system operates by running
a compositional approach to phrasal evaluativity in reverse, and is thus an instance of the potential com-
putational value of such treatments of evaluativity.
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Abstract

The MultiModal Interface Language formalism (MMIL) has been selected as the High Level
Semantic (HLS) formalism for annotating the French MEDIA dialogue corpus. This corpus is com-
posed of human-machine dialogues in the domain of hotel reservation and tourist information. Utter-
ances in dialogues have been previously annotated with a concept-value flat semantics for studying
and evaluating spoken language understanding modules in dialogue systems. We are now interested
in investigating the use of more complex representations to improve the understanding capability.
The MMIL intermediate language is a high level semantic formalism that bears relevant linguistic
information, from syntax up to discourse. This representation should increase the expressivity of
the current annotation though at the expense of the annotation process complexity. In this paper we
present our first attempt in defining the annotation guidelines for the HLS annotation of the MEDIA
corpus and its effect on the annotation process itself, revealed by annotators’ disagreements due to
the different levels of hierarchy and the granularity of the features defined in MMIL.

1 Introduction

MMIL is an ontology-oriented representation language that has been used in several natural language
processing (NLP) applications, Denis et al. (2010). It permits the integration of divergent resources in
distributed systems as well as the representation of various levels of linguistic analysis. In this work we
are particularly interested in exploring the representation of these linguistic levels for analyzing utter-
ances in the context of human-machine interactions. To be able to evaluate the representation on a large
set of data the French MEDIA dialogue corpus is used, Bonneau-Maynard et al. (2005). The MEDIA
corpus collects about 70 hours of spontaneous speech in the task of hotel room reservation and tourist
information. It has been created using a Wizard-of-Oz technique, as a consequence, the utterances are
made of many disfluencies, hesitations, false starts, truncations or fillers words (e.g., euh or ben). Thus,
the syntactic analysis is relevant for keeping valuable information for further processing (e.g., reference
resolution). The semantics describe fine grained predicates, arguments and features based on the domain
knowledge. Similarly, the possibility of link references for pragmatic analysis and the representation of
the illocutionary force of utterances are relevant to improve the understanding in NLP applications. We
selected MMIL for the semantic annotation because it supports the representation of all these features.

Although these features enrich the semantic annotation of utterances in the corpus, they also increase
the complexity of the annotation and compromise the agreement between annotators. The possibility
of representing different instantiations in MMIL has been the main cause of disagreement between an-
notators. On the one hand, linguists tend to annotate the surface form of the utterance. On the other

∗This work is supported by the French Agence Nationale de la Recherche (ANR) and is part of the Project PORT-MEDIA
(www.port-media.org).
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hand, application designers are more biased towards its canonical representation by keeping relevant
task oriented actions and features. The trade-off between these two lines of representation is significant
for building appropriately the annotation guidelines for the semantic annotation. The annotation would
keep the most valuable information in a multilevel representation for enhancing the understanding ca-
pability of NLP applications. In this paper we introduce briefly MMIL and we describe the annotation
methodology and the inter-annotation agreement.

2 The High Level Representation

MMIL permits the representation of communicative actions that are represented as components. A com-
ponent is a structure that gathers the communicative event and its propositional content. Components
are made up of two main types of entities: events, which are entities anchored in the time dimension,
and participants, which are entities not bounded by time. Entities are linked together by relations and
are described by sets of features (i.e. pairs of attribute-value), Denis et al. (2010). Every component
has a unique communicative event with the illocutionary force represented by means of the dialogueAct
feature. The propositional content is represented as a main event with its arguments, which can be either
events or participants, linked to the communicative event by a relation propContent. In this represen-
tation, predicates are usually represented as events and predicate arguments are usually represented as
participants. Relations between participants and events usually describe the thematic roles.

French: "/1euh vous venez de dire que précédemment qu’ il n’ a y avait plus de chambres disponibles à ces dates et maintenant
vous en avez/2 donc je voulais juste m’ assurer qu’ au Novotel vous avez bien une chambre double euh pour un couple avec un
enfant avec une baignoire dans la chambre euh il me il me faut un Parc Ãă proximité et euh cent dix euros maximum la nuit
est-ce-que vous pouvez vérifier"
English:"/1um you just said earlier that there are not more rooms available on these dates and now there are/2 so I just
wanted to be sure that you have at the Novotel a double room for uh a couple with one child with a bath in the room uh I
need a park nearby and uh hundred and ten euros up at night is that you can check"

Figure 1: Example of a complex utterance of the MEDIA Corpus.

Speak

Inform

Comprendre
(Understand)

negative

Coordination

adversative

State

State

negative

PériodeDe
Temps
(Time)

demonstrat.

Chambre
(Room)

disponible

propContent

patient

member

member
patient

aPériodeRéservation

Speak

RequestAck

State

Chambre
(Room)

indefinite

Hotel

Couple

location.
Relative
proche
(near)

parc

(park)

Enfant

(Child)

Prix
(Price)

inferieur
(lower)

110

euros

propContent

patient

aBénéficiaires

attribute

aLocalisation

aPrix

Figure 2: HLS as an abstraction of the meaning of the French utterance shown in Figure 1. Left: this component expresses the inform
of a misunderstanding of the first segment (“/1" in Figure 1). Right: this component is a request acknowledgment, representing the second
segment(“/2" in Figure 1). Note that events are exemplify by square boxes while participants are exemplify by ellipses.
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Let us focus on the MMIL representation for a typical utterance of the MEDIA corpus, given in
Figure 1. In this utterance the user first announces an inconsistency, then asks for clarification. Thus,
two MMIL components with different communicative actions, inform and request acknowledgment, have
been used, as shown in Figure 2. The component on the left has a main event that describes the misun-
derstanding expressed in the first segment1 of the utterance. It is represented by the ontological concept
“Understand" and by the syntactic feature polarity with the negative value. It also contains a coordinated
entity mirroring an adversative coordination between two events, state. The event state represents the
status of something, therefore the negated state event can be understood as “there are not more rooms
available on these dates" while the positive state represents “now there are". The participants symbolize
the arguments “rooms" and “dates" respectively. The component on the right expresses the clarification
request of the second segment. It verifies the status of the hotel with the specific constraints.

3 The Annotation Methodology

In the process of defining the annotation guidelines, we elaborated a specification document that de-
scribes the representation of dialogue acts, events and exemplifies the high-level semantics. Moreover, it
delves into the methodology that might be applied for the automatic and manual annotation. Afterwards,
a linguist expert and a project designer were in charge of defining the annotation guidelines. For this
purpose, they annotated manually a subset of utterances which were supposed to be representative of
the most complex aspects of the HLS annotation, in terms of their semantic constituents. 330 utterances
were selected. They are all directly related to the reservation task (first two rows in Figure 4) and mostly
occurred in the first 3 turns of the dialogues when the user is describing his goal, defined as an overall
objective along with a set of constraints. Hereafter, we present the preliminary evaluation of the experts’
agreement on these utterances.

The annotation process has been supported by an annotation tool: ATool. It accesses two knowledge-
bases, one for the MMIL formalism and the other for the MEDIA domain. The latter is adapted from
the MEDIA evaluation campaign, Bonneau-Maynard et al. (2006). ATool permits annotators to navi-
gate through utterances, while displaying the MMIL representation. Annotators can design the MMIL
components graphs, define the MMIL entities by associating features, values and segment. ATool will
suggest the possible features and values for the MMIL formalism and for the domain according to the
knowledge-bases ensuring the integrity of the constructed MMIL components in the annotation.

The MEDIA corpus is rich in expressions that evoke several communicative actions. Figure 4 shows
a few examples. For the purpose of the task, we are interested in the underlying meaning of sentences,
thus politeness and indirectness are discarded from the HLS representation. For this reason, in requests
the speaker is the patient, while the hearer is the agent (see Figure 4). Because when translating the
utterance into its deep instantiation, the speaker will benefit from the execution of the action, while the
hearer has the obligation to perform the action. All the expressions in the corpus that bear the seman-
tics of “command for a reservation" (e.g., je veux réserver, je souhaite réserver, je voudrais faire une
réservation, j’aimerais faire une réservation, all equivalent to I would like to reserve), have been normal-
ized with the deep component shown in Figure 3, exemplifying unequivocally the user’s desire to request
for a reservation. The possible arguments and roles have been detailed in the domain knowledge-base.
As a consequence the knowledge-base defines relations between hotels, rooms, customers, prices, equip-
ments, services, locations and dates. Besides, the grammatical relations and features, such as coordina-
tion, have been defined in the MMIL knowledge-base. Coordination is indicated with the “coordtype"
feature and it is used in cases of conjunction (je veux une chambre simple et deux chambres double, I
want a single room and two double bedrooms), disjunction (Paris ou en proche banlieue, in Paris or
suburbs) or adversation (en ville mais pas trop loin de la mer, in the city but not too far from the sea).

For annotating events we can find the main verb in the utterance and represent it as the main event
in MMIL by following a domain-specific classification of verbs, from which Figure 4 shows some
equivalences among dialogue acts and verbs. For each participant or event, several features can be

1Segments are sequence of words that are depicted as “/i", where i is the number of the segment.
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Speak

Request

Reserver

je arg0 argi

propContent

patient[0]

patient[1] patient[n]

Figure 3: Canonical representation of a booking request in
MEDIA.

D. Act EvType Examples Semantic Roles

Request Reserver réserver [la chambre] aObjetRéservé

réserver [pour le
troisième
week-end de novembre
une nuit]

aPériodeRéservation

[á Clermont-Ferrand] aLocalisation
[pour quatre chambres
doubles]

aObjetRéservé

Inform Inform [j’] ai des informations
supplémentaires

agent

Request Inform [j’] aurais aimÃl’ avoir
exactement [les dates]

patient[0],
patient[1]

Request State [Il] est [Ãă combien] patient, aPrix

Request Repeter pouvez-[vous] répéter agent

Inform Repeter [je] vais me répéter agent

Accept oui

Reject non

Figure 4: Some of the observed dialogue acts and main
events with their arguments in the corpus.

added. The most important of them are “object type" (for participants) or “event type" (for events),
which specify their ontological concepts. They may be réserver (reserve), hôtel (hotel), chambre (room),
périodedetemps (time), ville (city), person, adulte (adult), enfant (child), localisationnommée (places),
among others. There are more specific features, for instance, the journey dates, hotel features (e.g.,
name, standing, services, etc). Some of these features have predefined values, such as the gender of an
object (either masculine or feminine). On the other side, features such as cardinality, have not predefined
values, in that case, the annotator has to manually indicate the correct value.

Obviously, the annotation task difficulty increases with the utterance’s complexity. The representa-
tion is rather tedious to define in elliptical utterances, such as multiple reservations, in which implicit
and explicit information must be taken under consideration. Furthermore, the MMIL formalism does
not support the association of discontinuous segments to entities, generating some imprecisions in the
HLS annotation. For instance, in je voudrais une chambre pour deux personnes euh simple (I would
like a room for two people uh simple),“une chambre" (a room) and “simple" should be linked to an
unique participant, having as object type (“Room") and as type of room “simple". However, given that
the speaker has not mentioned “simple"right after “chambre", there is a new element imbricated between
them: “pour deux personnes". As a result, the annotator must integrate the subsegment ‘pour deux per-
sonnes" in the “Room" participant. Even though this subsegment is also associated to the “Personne"
participant.

4 Results

When analyzing the sample of 330 utterances that were annotated, we found a perfect agreement be-
tween annotators in the detection of dialogue-acts, main events, as well as main arguments. In constrast,
when measuring fine-grained features inside components we found eight types of disagreement, namely
conjunctions, disjunctions, creation of participant for simple features, groups of features inside entities,
features of entities, values of features, relation names and relation among entities. The most frequent
cases concern the first two, which refer to coordination: conjunctions (20%) and disjunctions (5%). The
inter-annotator agreement for the coordinate entities was computed, obtaining the kappa measure, Car-
letta (1996), of 0.25 for conjunctions and 0.15 for disjunctions, meaning a fair and slight agreement
respectively. Although the other cases were less frequent, the inter-annotator agreement was even lower,
indicating no agreement.

In spite of the disagreement, when measuring the global similarity between the MMIL components
created by both annotators we found a high score of 98%. This metric measures the graph similarity
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by computing the similarity between entities and relations, including the fine-grained features inside
entities. The speech-act, main-event and main arguments are in compliance with the specifications in
both annotations.

Case Annotator 1 Annotator 2

Conjunctions 68 56

Disjunctions 18 10

Part. for simple feats. 11 0

Grouping feats. 0 2

Case Discrepancy

Features 4

Features’ values 5

Name of relations. 5

Relation among entities. 2

Figure 5: Left: the Table displays the number of utterances by annotator for the listed cases. Annotator 1, is the liguist expert, Annotator 2
is the project designer. Right: fhe Table shows the number of utterances with a completely discrepant annotation: different features for same
entities, different values for same features, different relation between same entities and entities related differently in a component.

These issues show that the disagreement cases were less frequent. So far, annotators have not being
so rigourous when segmenting the text inside features. Therefore, segmentation needs to be checked in
both annotations. After this experiment, we are defining the final certified annotation and deriving the
annotation guidelines formally.

5 Discussion

Defining the annotation guidelines for high level semantic representation is controversial. The multiple
features that can be represented in the selected MMIL formalism, as well as the multiple instantiations
offer different possibilities for representing the same utterance. In general representing spoken utterances
is cumbersome, because of the linguist phenomena present in spontaneous speech. As a consequence,
annotators have to deal not only with the explicit, but also with the implicit information, and in some
cases the representations might be subjective. For these reasons, we defined the standard for the annota-
tion, and based on it, we carried out an annotation experiment on a sample of 330 complex utterances,
directly related to the reservation task; involving two annotator profiles i.e., a linguist and a project
designer. Afterwards, we measured the similarity between the annotated MMIL components and the
inter-annotation agreement obtaining a 98% of similarity and only eight major cases of disagreement,
coordination discrepancy being the most frequent. Right now, we are refining the final annotation guide-
lines based on these results. This first experiment analyzes the most complex and numerous utterances
in the corpus covering reservation requests and affirmations. Subsequently, misunderstanding, questions
and clarifications will be analyzed following the same methodology. As a result, we will be able to
reduce the disagreement between annotators in order to produce the annotation of the whole MEDIA
corpus, which will be made freely available to the research community.
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Abstract
WordsEye is a system for automatically converting natural language text into 3D scenes repre-

senting the meaning of that text. At the core of WordsEye is the Scenario-Based Lexical Knowledge
Resource (SBLR), a unified knowledge base and representational system for expressing lexical and
real-world knowledge needed to depict scenes from text. To enrich a portion of the SBLR, we need to
fill out some contextual information about its objects, including information about their typical parts,
typical locations and typical objects located near them. This paper explores our proposed method-
ology to achieve this goal. First we try to collect some semantic information by using Amazon’s
Mechanical Turk (AMT). Then, we manually filter and classify the collected data and finally, we
compare the manual results with the output of some automatic filtration techniques which use several
WordNet similarity and corpus association measures.

1 Introduction

WordsEye (Coyne and Sproat, 2001), (Coyne et al., 2010) is a system for automatically converting natural
language text into 3D scenes representing the meaning of that text. A version of WordsEye has been
tested online (www.wordseye.com) with several thousand real-world users. The system works by first
parsing each input sentence into a dependency structure. These dependency structures are then processed
to resolve anaphora and other coreferences. The lexical items and dependency links are then converted
to semantic nodes and roles drawing on lexical valence patterns and other information in the Scenario-
Based Lexical Knowledge Resource (SBLR) (Coyne et al., 2010). The resulting semantic relations are
then converted to a final set of graphical constraints representing the position, orientation, size, color,
texture, and poses of objects in the scene. Finally, the scene is composed from these constraints and
rendered in OpenGL (http://www.opengl.org).

The SBLR is the core of the text-to-scene conversion mechanism. It is a unified knowledge base and
representational system for expressing lexical and real-world knowledge needed to depict scenes from
text. The SBLR will ultimately include information on the semantic categories of words; the semantic
relations between predicates (verbs, nouns, adjectives, and prepositions) and their arguments; the types
of arguments different predicates typically take; additional contextual knowledge about the visual scenes
various events and activities occur in; and the relationship between this linguistic information and the 3D
objects in our objects library.

To enrich a portion of the SBLR we need to fill out some contextual information about several
hundred objects in WordsEye’s database, including information about their typical parts, typical location
and typical objects nearby them. Such information can in principle be extracted from online corpora
(e.g. Sproat (2001)), but such data is invariably noisy and requires hand editing. Furthermore, precisely
because much of the information is common sense it is rarely explicitly stated in text. Ontologies of
common sense information such as Cyc are effectively useless for extracting such information.

This paper explores our proposed methodology to achieve this goal. First we try to collect some
semantic information by Amazon’s Mechanical Turk (AMT). Then, we manually filter and classify the
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collected data and finally, we compare the manual results with the output of some automatic filtration
techniques which use WN similarity and corpus association measures.

2 Data collection from Amazon’s Mechanical Turk

Amazon’s Mechanical Turk is an online marketplace that provides a way to pay people small amounts
of money to perform tasks that are simple for humans but difficult for computers. Examples of these
Human Intelligence Tasks (HITs) range from labeling images to moderating blog comments to providing
feedback on the relevance of results for a search query. The highly accurate, cheap and efficient results
of several NLP tasks (Callison-Burch and Dredze, 2010) have encouraged us to explore using AMT.

We designed three separate tasks to collect information about typical nearby objects, typical location
and typical parts of the objects of our library. For task 1, we asked the workers to name 10 common
objects that they might typically find around or near a given object. For task 2, we asked the workers to
name 10 locations in which they might typically find a given object and in task 3, we asked the workers
to list 10 parts of a given object. Given that some objects might not consist of 10 parts, (i.e, they are
very simple objects), we wanted the worker to name as many parts as possible. We collected 17,200
responses from the AMT tasks and paid $106.90 overall for completion of the three tasks. Table 1 shows
a summary of the AMT tasks, payments, and completion time.

Task TW UI AA RPA EHR ACT
Objects 342 6850 2´ $0.05 $1.54 5
Locations 342 6850 2´ $0.05 $1.26 5
Parts 245 3500 1´ $0.07 $2.29 5

TW: Number of Target Words; UI: Number of User Inputs; AA: Average Time Per Assignment;
RPA: Reward Per Assignment; EHR: Effective Hourly Rate; ACT: Approximate Completion Days

Table 1: Summary of AMT tasks, payments and the completion time

The data that we collected in this step was in raw format. The next step was filtering out undesirable
data entered by the workers and mapping it into entities and relations contained within the SBLR.

3 Manual filtering and classifying the data

Data collected from AMT tasks was manually filtered via removal of undesirable target item-response
item pairs and classified via definition of the relations between the remaining target item-response item
pairs. Response items given in their plural form were lemmatized to the singular form of the word.
A total of 34 relations were defined within the Amazon Mechanical Turk data. Defining relations was
completed manually and determined by pragmatic cues about the relationship held between the target
item-response item pair. Restricting AMT workers to those within the United States ensured that actions
or items which might differ in their typically found location by cultural or geographical context were
restricted to the location(s) generally agreed upon by English speakers within the United States.

Generic, widely applicable relations were used in the general case for all sets of Mechanical Turk data
(e.g. the containment relation containing.r was used for generic instances of containment; the next-to.r
relation was used for target item-response item pairs for which the orientation of the items with respect to
one another was not a defining characteristic of their relationship). Finer distinctions were made within
these generic relations, e.g. habitat.r and residence.r within the overarching containment relation, which
specified that the relation held between two items was that of habitat or residence, respectively. More
semantically explicit relations were used for target item-response item pairs that tended to occur in more
specific relations. Specific relations of this type included those spatial relations from the following target
item-response item-relation triples:

javelin - dirt - embedded-in.r
binoculars - case - true-containing.r
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Another subsection of relations included functional relations such as those within the following
triples:

harmonica - hand - human-grip.r
earmuffs - head - wearing.r

Relation labels for meronymic (part-whole) relations were based off of already defined part-whole
classifications (Priss, 1996).

3.1 Data and results for each AMT task

Target item-response item pairs were usually rejected for misinterpretation of the potentially ambiguous
target item (e.g. misinterpreting mobile as a cell phone rather than as a decorative hanging structure,
prompting mobile - ear as an object-nearby object pair). Target item-response item pairs were also dis-
carded if the interpretation of the target item, though viable, was not contained within the SBLR library.
This was especially prevalent in instances where the target item was a plant or animal (e.g. crawfish)
that could be interpreted as either a live plant/animal or as food. With the exception of mushroom, the
SBLR does not contain the edible interpretation of these nouns; in the object-nearby object task, target
item-response item pairs such as crawfish - plate were discarded.

In the object-location task, the most common relation labels were derivatives of the generic spatial
containment relation. The containing.r relation accounted for 38.01% of all labeled target-response pairs;
habitat.r accounted for 11.02%, and on-surface.r accounted for 10.6%.

In the part-whole task, AMT workers provided responses that were predominantly labeled by part-
whole relations. When AMT responses were not relevant for part-whole relations, they tended to fall
under the generic containment relation. The object-part.r relation accounted for 79.12% of all labeled
target-response pairs; stuff-object.r accounted for 16.33%, and containing.r accounted for 1.48%.

As with the part-whole task, responses in the nearby objects task that were not relevant for the next-
to.r relation usually fell under the generic spatial containment relation. In the object-nearby object task,
the next-to.r relation was the most frequently utilized relation label, accounting for 75.66% of all target-
response pairs labeled. The on-surface.r relation was the second most common relation, with 5.69%,
and containing.r accounted for 4.44% of all labeled target-response pairs

4 Automatic filtering undesirable data

Manual processing of the data is a time-consuming and expensive approach. As a result, we are inves-
tigating different automatic techniques to filter out the undesirable responses from AMT, using current
manually annotated data as a gold standard for evaluation of automatic approaches.

4.1 WordNet Similarity measures

In the first approach, we computed some lexical similarity scores for the target and the response items
based on the following WN similarity measures. (It should be noted that not all of the target and responses
were present in WN. For such words, we used their nearest hypernyms).

WN Path Distance Similarity between each target word and each received response for that target
word. This score denotes how similar two word senses are, based on the shortest path that connects
the senses in the is-a (hypernym/hypnoym) taxonomy. We selected the maximum similarity score of
different senses of the target and the respond words.

Resnik Similarity between each target word and each of the received responses for that target word.
This score denotes how similar the two word senses are, based on the Information Content (IC) of the
Least Common Subsumer (most specific ancestor node) (Resnik, 1999).

The Average Pairwise Similarity Score which is computed based on WN path distance similarity
score. If we assumeW1,W2...Wn to be n responses for target word T; and Sij to be the WN path distance
similarity between Wi and Wj , then the average pairwise similarity score for Wi will be Si1+Si2+...+Sin

n .
This will provide us the average similarity of each response (i.e Wi) with the other responses (i.e. Wj
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so that i6= j). In this way we will reward the responses that are more semantically related to each other
(regardless of their similarity to the target word).

The WN Matrix Similarity which is a bag of words similarity matrix based on WN path distance
similarities. For target word T we have the following similarity matrix:

1 + S12 + ...+ S1n

S21 + 1 + ...+ S2n
...
Sn1 + Sn2 + ...+ Snn

In this matrix row i is the similarity vector of Wi represented as ~Vi = [Si1 + Si2 + ...+ Sin]. We
use cosine similarity to calculate the similarity measure of two words. So, the similarity measure of
Wi and Wj is the cosine of ~Vi and ~Vj and is computed by CSij = cos(θ) =

Vi.Vj

||Vi||.||Vj || . Then the WN

matrix similarity score of Wi will be CSi1+CSi2+...+CSin
n . The more two words are semantically related

to similar set of words, the higher cosine similarity they will have. If a word is related to many different
words in the set, it will obtain higher WN matrix similarity score.

4.2 Corpus association measures

The next approach for filtering the raw data was finding association measures of target-response pairs
using Google’s 1-trillion 5-gram web corpus (LDC2006T13), by counting the frequency of each target
and response word in unigram and bigram portions of the corpus and then the number of times the two
words co-occur within a +/- 4-word window in the 5-gram portion of the corpus. We also computed the
sentential co-occurrences of each target-response pair (i.e. the number of sentences in which the target
or the response words appear and the number of sentences in which both words occur together) on the
English Gigaword corpus (LDC2007T07) which is a 1 billion word corpus of articles marked up from
English press texts (mainly the New York Times). Based on these counts, we used log-likelihood and
log-odds ratio (Dunning, 1993) to compute the association between the two words.

4.3 Discussion and evaluation of automatic filtaration techniques

The collected responses of each AMT task were ranked separately by each of the above similarity and
association measures. We classify the ranked responses into “keep” (higher-scoring) and “reject” (lower-
scoring) classes by defining a specific threshold for each list. Then we evaluated the accuracy of each
filtration approach by computing their precision and recall on correct “keep” items (see table 2). In this
table the baseline score shows the accuracy of the responses of each AMT task before using automatic
filtration techniques. It should be added that collecting data by using AMT is rather cheap and fast, so
we are more interested in higher precision (achieving highly accurate data) than higher recall. Lower
recall means we lose some data, which is not too expensive to collect.

Baseline Log-likelihood Log-odds WN Path Dist sim Resnik sim WN Pairwise sim WN Matrix sim
Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec

LOC 0.5527 1.0 0.7832 0.6690 0.7851 0.6684 0.5624 0.9724 0.5674 0.9784 0.6115 0.3657 0.4832 1.0
PAR 0.7887 1.0 0.7921 0.4523 0.8321 0.5022 0.8073 1.0 0.8234 1.0 0.9045 0.2859 0.9010 0.2516
OBJ 0.8934 1.0 0.9015 1.0 0.9286 0.9144 0.9123 1.0 0.9185 1.0 0.9855 0.3215 0.8925 1.0

Table 2: The accuracy of automatic filtering approaches

As can be seen in table 2, within the object-location data set, we gained the best precision (0.7832) by
using log-odds with relatively high recall (0.6690). Target-response pairs that were approved or rejected
contrary to automatic predictions were due primarily to the specificity of the response location.

In the part-whole task, the best precision (0.9010) was achieved by using WN matrix similarities
but again we lost a noticeable portion of data (recall= 0.2516). Rejected target-response pairs from the
higher-scoring part-whole set were often due to responses that named attributes, rather than parts, of
the target item (e.g. croissant - flaky). Many responses were too general (e.g, gong - material). Many
target-response pairs would have fallen under the next-to.r relation rather than any of the meronymic

383



relations. The majority of the approved target-response pairs from the lower-scoring part-whole set were
due to obvious, “common sense responses that would usually be inferred rather than explicitly stated,
particularly body parts (e.g, bunny - brain).

The baseline accuracy of the nearby objects task is quite high (precision=0.8934, recall=1.0), and
we gain the best precision by using WN average pairwise similarity (0.9855) by removing lower-scoring
part of AMT responses (recall=0.3215). The high precision in all automatic techniques is due primarily
to the fact that the open-ended nature of the task resulted in a large number of target-response pairs that,
while not pertinent to the next-to.r relation, could be labeled by other relations. Again, the open-ended
nature of the nearby objects task resulted in the lowest percentage of rejected high-scoring pairs.

5 Conclusions

In this paper, we investigated the use Amazon’s Mechanical Turk for collecting semantic information for
a portion of our lexical knowledge resource. Manual evaluation of the AMT responses (baseline results
in table 2) confirms that we can collect highly accurate data in a cheap and efficient way by using AMT.
The accuracy of automatic filtration techniques sounds promising as we were able to filter out some
undesirable data, most of the time without loosing so much of collected responses.

Overall, we have shown a method which is very good in collecting semantic information and some
other methods which are very good at filtering out word pairs that are undesirable in this particular context
(i.e locations, nearby object and parts of our object library). This approach seems to have the potential
to be extended for more contexts. For the future work, we are planning to apply this methodology to
collect semantic information about action verbs, such as information about the locations of the action,
the participants, their relation to each other, the background objects and so on.

References

Callison-Burch, C. and M. Dredze (2010). Creating speech and language data with amazon’s mechanical
turk. In Proceedings of the NAACL HLT 2010 Workshop on Creating Speech and Language Data with
Amazon’s Mechanical Turk, Los Angeles, CA, USA, pp. 1–12.

Coyne, B., O. Rambow, J. Hirschberg, and R. Sproat (2010). Frame semantics in text-to-scene gen-
eration. In R. Setchi, I. Jordanov, R. Howlett, and L. Jain (Eds.), Knowledge-Based and Intelligent
Information and Engineering Systems, Volume 6279 of Lecture Notes in Computer Science, pp. 375–
384. Springer Berlin / Heidelberg.

Coyne, B. and R. Sproat (2001). Wordseye: An automatic text-to-scene conversion system. In Proceed-
ings of the 28th annual conference on Computer graphics and interactive techniques, Los Angeles,
CA, USA, pp. 487– 496.

Coyne, B., R. Sproat, and J. Hirschberg (2010). Spatial relations in text-to-scene conversion. In Compu-
tational Models of Spatial Language Interpretation, Workshop at Spatial Cognition 2010, Mt. Hood,
OR, USA, pp. 9–16.

Dunning, T. E. (1993). Accurate methods for the statistics of surprise and coincidence. Computational
Linguistics 19(1), 61–74.

Priss, U. (1996). Classification of meronymy by methods of relational concept analysis. In Online
proceedings of the 1996 Midwest Artificial Intelligence Conference, Bloomington, IN, USA.

Resnik, P. (1999). Semantic similarity in a taxonomy: An information-based measure and its application
to problems of ambiguity in natural language. Journal of Artificial Intelligence Research, 95–130.

Sproat, R. (2001). Inferring the environment in a text-to-scene conversion system. In Proceedings of The
First International Conference on Knowledge Capture, Victoria, BC, Canada, pp. 147–154.

384



Edge dependent pathway scoring for calculating
semantic similarity in ConceptNet

Steve Spagnola
Cornell University

sps34@cs.cornell.edu

Carl Lagoze
Cornell University

lagoze@cs.cornell.edu

Abstract

Most techniques that calculate the relatedness between two concepts use a semantic network, such
as Wikipedia, WordNet, or ConceptNet, to find the shortest intermediate pathway between two nodes.
These techniques assume that a low number of edges on the shortest pathway indicates conceptual
similarity. Although this technique has proven valid in conforming to psychological data, we test the
usefulness of additional pathway variables in ConceptNet, such as edge type and user-rated score.
Our results show strong evidence for the application of additional pathway variables in calculating
semantic similarity.

1 ConceptNet Pathways

ConceptNet 3 is one of the largest commonsense semantic networks in existence, relying on its users to
make conceptual assertions and collectively vote on the legitimacy of other users’ assertions. Concept-
Net is valuable as a semantic resource because it suggests transitive inference between ideas, enabling
dissimilar concepts to share a semantic, indirect relationship. Unlike Wikipedia and WordNet, the edges
in ConceptNet contain additional semantic information between two concepts. Each edge is assigned a
relation type (such as ”Is A” or ”Located At”) and a score that correlates to how well ConceptNet users
believe in the validity of the relation [Havasi and Alonso (2007)]. Previous work on calculating semantic
relatedness between two concepts ignores these extra edge features, using only the inverse of number
of edges on a short path [Rada and Blettner (1989); Wubben and A. (2009)]. Instead of only looking
for the shortest pathway from one concept to another we assess all pathways in measuring the semantic
similarity of an association. A simple example is shown in Figure 1: two nodes (cat and dog) with two
pathways containing varying intermediary nodes and edge types.

Figure 1: Transitive links between nodes in ConceptNet may occur through a variety of pathways, some
being more appropriate than others.
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Each possible pathway from one concept to another contains a set of edges, where each edge has a
predefined edge type and validity score. Hence, in addition to edge count, we can use the sum of edge
scores within a pathway as an additional feature. It may be the case that some pathways have a low num-
ber of edges (implying a high relatedness metric by inverse edge count), yet only contain poorly scoring
edges that are incorrect or noisy inferences, yielding low aggregate score. In such cases the simple use
of edge count may lead to false ”low confidence” inferences, which our technique avoids.

In addition to edge score, we also use the 27 predefined edge types in the network to calculate con-
ditional edge type transition probability. We use these edge types to calculate the overall distribution of
the 27 edge types as the independent probability of encountering a given edge type on the initial edge
traversal within a pathway. Furthermore, we also calculate the conditional probabilities of changing edge
types along any given pathway. For example, given that we traverse an ”Is A” edge to a concept X, the
probability of traversing another ”Is A” edge from concept X is .13, whereas the probability of changing
to a ”Has A” relation is only .05, as shown in Figure 2. These transition probabilities are calculated for
all sequential edge pairs within the entire graph, constructing the following Markov Model.

Figure 2: Learned edge transition probabilities (only 2 of 27 edge types shown).

We believe that the inclusion of these two additional variables helps identify edges that not only have
a high consensus with respect to the individual triple, but also are contextually appropriate relative to the
prior edge traversed. Hence, we are combining the specific attributes of edges with the characteristics of
the larger, overall network, edge transition probabilities to assess pathways.

2 Pathway Scoring

We now have two properties for each edge on a given pathway of N nodes: score and transition prob-
ability. Using these, we can compose three vectors that can describe any given pathway: SCORES,
TRANSITIONS, and EDGES (see equations 1, 2, and 3 respectively).

SCORES = [ 3
√
EdgeScore1,2,

3
√
EdgeScore2,3, ...,

3
√
EdgeScoreN−1,N ] (1)

SCORES is a vector of size N-1 with the cube root of each edge score in each cell. In initial testing,
we found that using the cube root of user ranked scores was necessary to prevent high scoring edges from
overshadowing lower scoring edges. We believe that this particular normalization technique is unique to
the score distribution of ConceptNet 3, but that the general technique is expandable to other networks
based on score distributions.

TRANSITIONS = [P (Edge1,2), P (Edge2,3|Edge1,2), ..., P (EdgeN,N−1|EdgeN−1,N−2)] (2)

TRANSITIONS is another vector of size N-1 containing the conditional probabilities of observing
each edge type within each cell. The first cell in the vector is just the independent probability of encoun-
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tering the first edge, whereas every cell beyond that calculates the conditional probability of encountering
the edge type based on the prior edge type.

EDGES = [N − 1] (3)

EDGES is a vector of size 1 that simply contains N-1 as its value, or the number of edges in the
pathway.

After associating these three vectors with all possible pathways from one concept to another, we
now introduce a scoring function for each pathway. The function assigns each possible pathway a score,
and the pathway with the highest score is used as the ”shortest” semantic pathway from one concept to
another. Hence, if a given concept has several pathways to another given concept, we select the pathway
with the maximum score and use this score as the similarity metric. We use the maximum score as a
metric to follow similar work in the field rather than experimenting with average or minimum pathway
strength. Note, that because ConceptNet is directed, the similarity metric between concepts corresponds
to a specific direction.

PathScore =
< SCORES, TRANSITIONS >

||EDGES||2 (4)

The scoring function shown in equation 4 is the inner product of SCORES and TRANSITIONS divided
by the EDGES, or number of edges, squared. This approach introduces the SCORES and TRANSI-
TIONS values into the traditional inverse edge-count function. We use the inner product to obtain an
interaction effect between scores and transitions, where each edge has its score multiplied by its transi-
tion probability before being summed. Hence, the inner product will reward edges with both high scores
and high transition probabilities as the product grows higher. Our intuition is that this interaction effect
will be useful for finding relevant pathways because it ensures that the edges traversed have a high social
confidence score, and are ordered in an edge-type sequence that agrees with the overall structure of the
network.

We define our function in terms of vectors so we can easily test the effect of ignoring certain features by
substituting vectors with all 1s instead of the actual values. For example, to disable the use of the transi-
tion probabilities in scoring, we simply set all values in the TRANSITIONS vector to 1. This approach
allows us to test all combinations of pathway features to determine which ones are useful, and whether
or not an interaction effect exists between scores and transitions.

3 Experiments

We tested all possible combinations of enabling or disabling our three pathway feature vectors in com-
puting pathway scores. To measure how well a scoring function performs, we followed Wubben’s ap-
proach of comparing ConceptNet shortest path conceptual relatedness to the Finkelstein-353 psycholog-
ical dataset [Finkelstein and Ruppin (2002)]. This dataset contains 353 word pairs, each with a similarity
score from 0 to 10 based on psychological free word association between two words. Because Concept-
Net does not contain nodes for all words used in the Finkelstein-353, we ignored word pairs that could
not be found in ConceptNet. Wubben calculated the correlation between the word pair rankings in the
Finkelstein-353 and ConceptNet similarity (using simple edge count as pathway cost) to obtain a Pear-
son’s correlation of .47 [Wubben and A. (2009)]. Studies using Wikipedia are able to obtain even higher
correlations than .47, however we find this work incomparable to our study due to the wider coverage
and different structure of Wikipedia [Strube and Ponzetto (2006)].
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Our experimental design differs from that of Wubben’s on two fronts. Wubben used bidirectional path-
ways, whereas our work only focuses on directed pathways for each pair in the dataset, ranking the
directed pathways from word A to word B in the Finkelstein-353. We chose this approach because psy-
chological subjects were presented with word A first, followed by word B, in which we assume that
subjects were more prone to make the directed connections. Furthermore, because we are not using a
simple edge-counting algorithm, we were not able to efficiently examine all of ConceptNet due to com-
putational limitations. Instead, we ran several cases in which we examine all pathways between concepts
in the Finkelstein set within ConceptNet, subject to a maximum number of pathway nodes. For example,
if we only allow a maximum of three pathway nodes, then we only analyze the set of found pathways
containing up to three nodes. If a pathway is not found between two concepts within a three node path-
way, but we know that the concept exists in ConceptNet, then we set the score equal to 0. We were able
to reach a maximum of six pathway nodes before calculations became infeasible.

4 Results

Our experiments were designed to test the usefulness for pathway score and transition probabilities, as
well as an interaction effect between the two features, in addition to inverse edge-count. Hence, we aim
to prove that using all three vectors in Equation 4 will outperform the traditional approach of only using
EDGES. We tested these cases, in addition to all other feature usage combinations, on allowed maximum
pathway lengths up to six, hoping to see how allowed pathway length additionally affects our scoring
function’s usefulness.

Our results from Table 1 show a significant performance gain when using all three vectors in tandem,
as opposed to just the number of edges. Furthermore, our results were able to outperform Wubben’s
results of .47. We also see that the performance gains over the naive edge-only approach increase with
the maximum allowed number of nodes in the pathway.

Although we are able to show improvements over edge-only scoring, we replicate previous results that
demonstrate that using the inverse of edge length is both necessary and sufficient to obtain acceptable
results [Wubben and A. (2009)]. Results become unusable for rows (S), (T), and (ST) beyond a pathway
length of 3 when pathway length (E) is not considered. Furthermore, edge only scoring (E) is sufficient
by itself to obtain acceptable results, outperforming all other cases aside from (EST).

The most important finding is that if we only add scores or transition probabilities to edge count scoring
in cases (ES) and (ET), then performance declines from using only edge counts (E). This suggests that
edge scores and transition probabilities are noisy features when considered in isolation. It is only when
they are combined, in conjunction with edge count (EST) that we see performance gains, confirming our
proposed interaction effect.

5 Discussion

Our results suggest that the interaction effect between edge score and edge type transitioning is useful
for improving conceptual similarity calculations in ConceptNet. Our scoring formula provides a strong
reward for edges that contain a high user rated score and edge transition probability. We believe that
these properties produce stronger results because isolated edge scores are contextualized based on their
relative sequence of edge-types within a pathway. For example, a path traversal across an ”is A” edge and
then to a ”has A” edge may not be meaningful if the network as a whole does not contextually support
this edge type transition pattern.

For future studies, we would like to extend our experiments beyond pathways of length 6 and see if
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Maximum Pathway Length 2 3 4 5 6
Edge (E) .285 .391 .414 .416 416
Score (S) .280 .347 .079 -.166 -.120
Transition (T) .281 .357 .041 -.268 -.097
Edge & Score (ES) .280 .383 .400 .400 .401
Edge & Transition (ET) .281 .399 .387 .407 .414
Score & Transition (ST) .275 .363 .070 -.223 -.093
Edge & Score & Transition (EST) .275 .416 .473 .496 .507
(EST) Absolute Improvement over (E) -.010 .025 .059 .080 .091
(EST) Relative Improvement over (E) -3.51% 6.39% 14.25% 19.23% 21.88%

Table 1: Results: Pearson’s correlation for varying formulas and improvement over the traditional edge-
only approach. Row labels indicate which feature vectors were activated for the experiment.

performance will begin sinking or will flatten after a given number of allowed nodes. Furthermore, we
believe that deeper analysis of ConceptNet is warranted. We noticed that there are many noisy relation-
ships that are illogical at first glance. However, deeper analysis shows that these noisy assertions are often
the result of word stemming (such as shortening ”building” to ”build”), and word sense disambiguation
issues. In future work, we would like to revert to the pure lexical assertions within ConceptNet to remove
the stemming from the words, preserving the full meaning of the intended relations. We believe that a
lexical parser would be able to detect plurals and address stemming issues better than the approach used
in ConceptNet. Furthermore, we believe that word sense ambiguity adds noise to the network, and that
our results could improve if ambiguous nodes were split into their corresponding senses.

Despite the noise present in ConceptNet, we believe that our approach demonstrates a strong improve-
ment over traditional semantic similarity computations. We hope that future work may resolve the noise
and ambiguity issues present in ConceptNet, in which our methodology may provide even stronger re-
sults in accurately calculating semantic similarity.
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Abstract

We introduce a novel approach to measuring semantic relatedness of terms based on an auto-
matically generated, large-scale semantic network. We present promising first results that indicate
potential competitiveness with approaches based on manually created resources.

1 Introduction

The quantification of semantic similarity and relatedness of terms is an important problem of lexical
semantics. Its applications include word sense disambiguation, text summarization and information re-
trieval (Budanitsky and Hirst, 2006). Most approaches to measuring semantic relatedness fall into one
of two categories. They either look at distributional properties based on corpora (Finkelstein et al., 2002;
Agirre et al., 2009) or make use of pre-existing knowledge resources such as WordNet or Roget’s The-
saurus (Hughes and Ramage, 2007; Jarmasz, 2003). The latter approaches achieve good results, but they
are inherently restricted in coverage and domain adaptation due to their reliance on costly manual acqui-
sition of the resource. In addition, those methods that are based on hierarchical, taxonomically structured
resources are generally better suited for measuring semantic similarity than relatedness (Budanitsky and
Hirst, 2006). In this paper, we introduce a novel technique that measures semantic relatedness based on
an automatically generated semantic network. Terms are compared by the similarity of their contexts
in the semantic network. We present our promising initial results of this work in progress, which indi-
cate the potential to compete with resource-based approaches while performing well on both, semantic
similarity and relatedness.

2 Similarity and Relatedness from semantic networks

In our approach to measuring semantic relatedness, we first automatically build a large semantic network
from text and then measure the similarity of two terms by the similarity of the local networks around
their corresponding nodes. The semantic network serves as a structured representation of the occurring
concepts, relations and attributes in the text. It is built by translating every sentence in the text into a
network fragment based on semantic analysis and then merging these networks into a large network by
mapping all occurrences of the same term into one node. Figure 1(a) contains a sample text snippet
and the network derived from it. In this way, concepts are connected across sentences and documents,
resulting in a high-level view of the information contained.

Our underlying assumption for measuring semantic relatedness is that semantically related nodes are
connected to a similar set of nodes. In other words, we consider the context of a node in the network
as a representation of its meaning. In contrast to standard approaches which look only at a type of
context directly found in the text, e.g. words that occur within a certain window from the target word,
our network-based context takes into account indirect connections between concepts. For example, in
the text underlying the network in Fig. 2, dissertation and module rarely co-occurred in a sentence, but
the network shows a strong connection over student as well as over credit and work.
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2.1 The Network Structure

We build the network incrementally by parsing every sentence, translating it into a small network frag-
ment and then mapping that fragment onto the main network generated from all previous sentences. Our
translation of sentences from text to network is based on the one used in the ASKNet system (Harrington
and Clark, 2007). It makes use of two NLP tools, the Clark and Curran parser (Clark and Curran, 2004)
and the semantic analysis tool Boxer (Bos et al., 2004), both of which are part of the C&C Toolkit1.
The parser is based on Combinatory Categorial Grammar (CCG) and has been trained on 40,000 man-
ually annotated sentences of the WSJ. It is both robust and efficient. Boxer is designed to convert the
CCG parsed text into a logical representation based on Discourse Representation Theory (DRT). This
intermediate logical form representation presents an abstraction from syntactic details to semantic core
information. For example, the syntactical forms progress of student and student’s progress have the same
Boxer representation as well as the student who attends the lecture and the student attending the lecture.
In addition, Boxer provides some elementary co-reference resolution.

The translation from the Boxer output into a network is straightforward and an example is given
in Figure 1(b). The network structure distinguishes between object nodes (rectangular), relational nodes
(diamonds) and attributes (rounded rectangles) and different types of links such as subject or object links.

Students select modules from the published list and write a dissertation. Modules usually provide 15 credits
each, but 30 credits are awarded for the dissertation. The student must discuss the topic of the final
dissertation with their appointed tutor.

Figure 1: (a) Sample text snippet and according network representation. (b) Example of translation from
text to network over Boxer semantic analysis

The large unified network is then built by merging every occurrence of a concept (e.g. object node)
into one node, thus accumulating the information on this concept. In the second example (Figure ??), the
lecture node would be merged with occurrences of lecture in other sentences. Figure 2 gives a subset of a
network generated from a few paragraphs taken from Oxford Student Handbooks. Multiple occurrences
of the same relation between two object nodes are drawn as overlapping.

2.2 The Vector Space Model

We measure the semantic relatedness of two concepts by measuring the similarity of the surroundings of
their corresponding nodes in the network. Semantically related terms are then expected to be connected
to a similar set of nodes. We retrieve the network context of a specific node and determine the level

1http://svn.ask.it.usyd.edu.au/trac/candc
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Figure 2: Subgraph displaying selected concepts and relations from sample network.

of significance of each node in the context using spreading activation2. The target node is given an
initial activation of ax = 10∗numberOfLinks(x) and is fired so that the activation spreads over its out-
and ingoing links to the surrounding nodes. They in turn fire if their received activation level exceeds a
certain threshold. The activation attenuates by a constant factor in every step and a stable state is reached
when no node in the network can fire anymore. In this way, the context nodes receive different levels of
activation reflecting their significance.

We derive a vector representation ~v(x) of the network context of x including only object nodes and
their activation levels. The entries are

vi(x) = actx,ax(ni) ni ∈ {n ∈ nodes | type(n) = object node}

The semantic relatedness of two target words is then measured by the cosine similarity of their context
vectors.

sim rel(x, y) = cos(~v(x), ~v(y)) =
~v(x) · ~v(y)
‖~v(x)‖ ‖~v(y)‖

As spreading activation takes several factors into account, such as number of paths, length of paths,
level of density and number of connections, this method leverages the full interconnected structure of the
network.

3 Evaluation

We evaluate our approach on the WordSimilarity-353 (Finkelstein et al., 2002) test collection, which is
a commonly used gold standard for the semantic relatedness task. It provides average human judgments
scores of the degree of relatedness for 353 word pairs. The collection contains classically similar word

2The spreading activation algorithm is based on Harrington (2010)
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Approach Spearman
(Strube and Ponzetto, 2006) Wikipedia 0.19-0.48
(Jarmasz, 2003) Roget’s 0.55
(Hughes and Ramage, 2007) WordNet 0.55
(Agirre et al., 2009) WordNet 0.56
(Finkelstein et al., 2002) Web corpus, LSA 0.56
(Harrington, 2010) Sem. Network 0.62
(Agirre et al., 2009) WordNet+gloss 0.66
(Agirre et al., 2009) Web corpus 0.66
(Gabrilovich and Markovitch, 2007) Wikipedia 0.75
Network (all pairs) 0.38
Network (>100 freq: 293 pairs) 0.46
Network (>300 freq: 227 pairs) 0.50

Similarity Relatedness
all pairs 0.19 0.36

(100 pairs) (250 pairs)
>300 freq 0.50 0.52

(60 pairs) (171 pairs)

Table 1: (a) Spearman ranking correlation coefficient results for our approach and comparison with
previous approaches. (b) Separate results for similarity and relatedness subset.

pairs such as street - avenue and topically related pairs such as hotel - reservation. However, no distinc-
tion was made while judging and the instruction was to rate the general degree of semantic relatedness.

As a corpus we chose the British National Corpus (BNC)3. It is one of the largest standardized
English corpora and contains approximately 5.9 million sentences. Choosing this text collection enables
us to build a general purpose network that is not specifically created for the considered work pairs and
ensures a realistic overall connectedness of the network as well as a broad coverage. In this paper we
created a network from 2 million sentences of the BNC. It contains 27.5 million nodes out of which
635.000 are object nodes and the rest are relation and attribute nodes. The building time including
parsing was approximately 4 days.

Following the common practice in related work, we compared our scores to the human judgements
using the Spearman rank-order correlation coefficient. The results can be found in Table 1(a) with a
comparison to previous results on the WordSimilarity-353 collection.

Our first result over all word pairs is relatively low compared to the currently best performing sys-
tems. However, we noticed that many poorly rated word pairs contained at least one word with low
frequency. Excluding these considerably improved the result to 0.50. On this reduced set of word pairs
our scores are in the region of approaches which make use of the Wikipedia category network, the Word-
Net taxonomic relations or Roget’s thesaurus. This is a promising result as it indicates that our approach
based on automatically generated networks has the potential of competing with those using manually
created resources if we increase the corpus size.

While our results are not competitive with the best corpus based methods, we can note that our
current corpus is an order of magnitude smaller - 2 million sentences versus 1 million full Wikipedia
articles (Gabrilovich and Markovitch, 2007) or 215MB versus 1.6 Terabyte (Agirre et al., 2009). The
extent to which corpus size influences our results is subject to further research.

We also evaluated our scores separately on the semantically similar versus the semantically related
subsets of WordSim-353 following Agirre et al. (2009) (Table 1(b)). Taking the same low-frequency cut
as above, we can see that our approach performs equally well on both sets. This is remarkable as different
methods tend to be more appropriate to calculate either one or the other (Agirre et al., 2009). In particular,
WordNet based measures are well known to be better suited to measure similarity than relatedness due
to its hierarchical, taxonomic structure (Budanitsky and Hirst, 2006). The fact that our system achieves
equal results on the subset indicates that it matches human judgement of semantic relatedness beyond
specific types of relations. This could be due to the associative structure of the network.

4 Related Work

Our approach is closely related to Harrington (2010) as our networks are built in a similar fashion and we
also use spreading activation to measure semantic relatedness. In their approach, semantic relatedness

3http://www.natcorp.ox.ac.uk/
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of two terms a and b is measured by the activation b receives when a is fired. The core difference of this
measurement to ours is that it is path-based while ours is context based. In addition, the corpus used was
retrieved specifically for the word pairs in question while ours is a general-purpose corpus.

In addition, our approach is related to work that uses personalized PageRank or Random Walks on
WordNet (Agirre et al., 2009; Hughes and Ramage, 2007). Similar the spreading activation method
presented here, personalized PageRank and Random Walks are used to provide a relevance distribution
of nodes surrounding the target word to its meaning. In contrast to the approaches based on resources,
our network is automatically built and therefore does not rely on costly, manual creation. In addition,
compared to WordNet based measures, our method is potentially not biased towards relatedness due to
similarity.

5 Conclusion and Outlook

We presented a novel approach to measuring semantic relatedness which first builds a large-scale se-
mantic network and then determines the relatedness of nodes by the similarity of their surrounding local
network. Our preliminary results of this ongoing work are promising and are in the region of several
WordNet and Wikipedia link structure approaches. As future work, there are several ways of improve-
ment we are going to investigate. Firstly, the results in Section 3 show the crucial influence of corpus
size and occurrence frequency on the performance of our system. We will be experimenting with larger
general networks (e.g. the whole BNC) as well as integration of retrieved documents for the low fre-
quency terms. Secondly, the parameters and specific settings for the spreading activation algorithm need
to be tuned. For example, the amount of initial activation of the target node determines the size of the
context considered. Thirdly, we will investigate different vector representation variants. In particular, we
can achieve a more fine-grained representation by also considering relation nodes in addition to object
nodes. We believe that with these improvements our automatic semantic network approach will be able
to compete with techniques based on manually created resources.
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Abstract

We propose a biomedical event extraction system, HVS-BioEvent, which employs the hidden
vector state (HVS) model for semantic parsing. Biomedical events extraction needs to deal with
complex events consisting of embedded or hierarchical relations among proteins, events, and their
textual triggers. In HVS-BioEvent, we further propose novel machine learning approaches for event
trigger word identification, and for biomedical events extraction from the HVS parse results. Our
proposed system achieves an F-score of 49.57% on the corpus used in the BioNLP’09 shared task,
which is only two points lower than the best performing system by UTurku. Nevertheless, HVS-
BioEvent outperforms UTurku on the extraction of complex event types. The results suggest that the
HVS model with the hierarchical hidden state structure is indeed more suitable for complex event
extraction since it can naturally model embedded structural context in sentences.

1 Introduction
In the past few years, there has been a surge of interests in utilizing text mining techniques to pro-
vide in-depth bio-related information services. With an increasing number of publications reporting on
protein-protein interactions (PPIs), much effort has been made in extracting information from biomedical
articles using natural language processing (NLP) techniques. Several shared tasks, such as LLL [7] and
BioCreative [4], have been arranged for the BioNLP community to compare different methodologies for
biomedical information extraction.

Comparing to LLL and BioCreative which primarily focus on a simple representation of relations of
bio-molecules, i.e. protein-protein interaction, the BioNLP’09 Shared Task [5] involves the recognition
of bio-molecular events in scientific abstracts, such as gene expression, transcription, protein catabolism,
localization and binding, plus (positive or negative) regulation of proteins. The task concerns the detailed
behavior of bio-molecules, and can be used to support the development of biomedical-related databases.
In the BioNLP’09 shared task evaluation, the system constructed by UTurku [2] achieved an F-score of
51.95% on the core task, the best results among all the participants.

In this paper, we describe a system, called HVS-BioEvent, which employs the hidden vector state
model (HVS) to automatically extract biomedical events from biomedical literature. The HVS model has
been successfully employed to extract PPIs [9]. However, it is not straightforward to extend the usage
of the HVS model for biomedical events extraction. There are two main challenges. First, comparing
to the trigger words used for PPIs which are often expressed as single words or at most two words, the
trigger words for biomedical event are more complex. For example, controlled at transcriptional and
post-transcriptional levels, spanning over 6 words, is considered as the trigger word for the regulation
event. In addition, the same word can be the trigger word for different types of biomedical events in
different context. Second, biomedical events consist of both simple events and complex events. While
simple events are more similar to PPIs which only involve binary or pairwise relations, complex events
involve both n-ary (n > 2) and nested relations. For example, a regulation event may take another
event as its theme or cause which represents a structurally more complex relation. Being able to handle
both simple and complex events thus poses a huge challenge to the development of our HVS-BioEvent
system.

The rest of the paper is organized as follows. Section 2 presents the overall process of the HVS-
BioEvent system, which consists of three steps, trigger words identification, semantic parsing based on
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the HVS model, and biomedical events extraction from the HVS parse results. Experimental results are
discussed in section 3. Finally, section 4 concludes the paper.

2 Biomedical Event Extraction
We perform biomedical event extraction with the following steps. At the beginning, abstracts are re-
trieved from MEDLINE and split into sentences. Protein names, gene names, trigger words for biomed-
ical events are then identified. After that, each sentence is parsed by the HVS semantic parser. Finally,
biomedical events are extracted from the HVS parse results using a hybrid method based on rules and
machine learning. All these steps process one sentence at a time. Since 95% of all annotated events
are fully annotated within a single sentence, this does not incur a large performance penalty but greatly
reduces the size and complexity of the problem. The remainder of the section will discuss each of the
steps in details.

2.1 Event Trigger Words Identification
Event trigger words are crucial to biomedical events extraction. In our system, we employ two ap-
proaches for event trigger words identification, one is a hybrid approach using both rules and a dictio-
nary, the other treats trigger words identification as a sequence labeling problem and uses a Maximum
Entropy Markov Model (MEMM) to detect trigger words.

For the hybrid approach using both rules and a dictionary, firstly, we constructed a trigger dictionary
from the original GENIA event corpus [6] by extracting the annotated trigger words. These trigger words
were subsequently lemmatized and stemmed. However, the wide variety of potential lexicalized triggers
for an event means that lots of triggers lack discriminative power relative to individual event types. For
example, in certain context, through is the trigger word for the binding event type and are is the trigger
word for localization. Such words are too common and cause potential ambiguities and therefore lead to
many false positive events extracted. We could perform disambiguation by counting the co-occurrence
of a event trigger and a particular event type from the training data and discard those event triggers whose
co-occurrence counts are lower than certain threshold for that event type. After this filtering stage, still,
there might be cases where one trigger might representing multiple event types, we thus define a set of
rules to further process the trigger words matched from the constructed dictionary.

In the second approach, we treat trigger words identification as a sequence labeling problem and train
a first-order MEMM model [8] from the BioNLP’09 shared task training data. As in typical named entity
recognition tasks, the training data are converted into BIO format where ‘B’ refers to the word which is
the beginning word of an event trigger, ‘I’ indicates the rest of the words (if the trigger contains more
than one words) and ‘O’ refers to the other words which are not event triggers. The features used in the
MEMM model was extracted from the surface string and the part-of-speech information of the words
corresponding to (or adjacent to) the target BIO tags.

2.2 Semantic Parsing using the HVS Model
The Hidden Vector State (HVS) model [3] is a discrete Hidden Markov Model (HMM) in which each
HMM state represents the state of a push-down automaton with a finite stack size. State transitions
are factored into separate stack pop and push operations constrained to give a tractable search space.
The sequence of HVS stack states corresponding to the given parse tree is illustrated in Figure 1. The
result is a model which is complex enough to capture hierarchical structure but which can be trained
automatically from only lightly annotated data.

In the HVS-based semantic parser, conventional grammar rules are replaced by three probability
tables. Let each state at time t be denoted by a vector of Dt semantic concept labels (tags) ct =
[ct[1], ct[2], ..ct[Dt]] where ct[1] is the preterminal concept label and ct[Dt] is the root concept label
(SS in Figure 3). Given a word sequence W , concept vector sequence C and a sequence of stack pop
operations N , the joint probability of P (W,C, N) can be decomposed as

P (W,C, N) =
T∏

t=1

P (nt|ct−1)P (ct[1]|ct[2 · · ·Dt])P (wt|ct) (1)
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Figure 1: Example of a parse tree and its vector state equivalent.

where nt is the vector stack shift operation and takes values in the range 0, · · · , Dt−1, and ct[1] = cwt is
the new pre-terminal semantic label assigned to word wt at word position t.

Thus, the HVS model consists of three types of probabilistic move, each move being determined by a
discrete probability table: (1) popping semantic labels off the stack - P (n|c); (2) pushing a pre-terminal
semantic label onto the stack - P (c[1]|c[2 · · ·D]); (3) generating the next word - P (w|c). Each of these
tables are estimated in training using an EM algorithm and then used to compute parse trees at run-time
using Viterbi decoding. In training, each word string W is marked with the set of semantic concepts
C that it contains. For example, the sentence IFN-alpha enhanced tyrosine phosphorylation of STAT1
contains the semantic concept/value pairs as shown in Figure 1. Its corresponding abstract semantic
annotation is:
Positive regulation(Site(Phosphorylation(protein)))
where brackets denote the hierarchical relations among semantic concepts1. For each word wk of a
training sentence W , EM training uses the forward-backward algorithm to compute the probability of
the model being in stack state c when wk is processed. Without any constraints, the set of possible stack
states would be intractably large. However, in the HVS model this problem can be avoided by pruning
out all states which are inconsistent with the semantic concepts associated with W . The details of how
this is done are given in [3].

For the sentences in the BioNLP’09 shared task, only event information is provided. However, the
abstract semantic annotation as shown above is required for training the HVS model. We propose Algo-
rithm 1 to automatically convert the annotated event information into the abstract semantic annotations.
An example of how the abstract annotations are generated is given as follows.
Sentence: According to current models the inhibitory capacity of I(kappa)B(alpha) would be mediated
through the retention of Rel/NF-kappaB proteins in the cytosol.
Corresponding Events: E1 Negative regulation: inhibitory capacity Theme: I(kappa)B(alpha)

E2 Positive regulation: mediated Theme: E1
Candidate annotation generation (Steps 1-4 of Algorithm 1):
Negative regulation(Protein) Negative regulation(Protein(Positive regulation))
Abstract annotation pruning (Steps 5-14 of Algorithm 1):
Negative regulation(Protein(Positive regulation))

2.3 Biomedical Events Extraction From HVS Parse Results
Based on HVS parse results, it seems straightforward to extract the event information. However, after
detailed investigation, we found that sentences having the same semantic tags might contain different
events information. For example, the two sentences shown in Table 1 have the same semantic parsing
results but with different event information.

This problem can be solved by classification. For the semantic tags which can represent multiple
event information, we considered each event information as a class and employed hidden Markov support
vector machines (HM-SVMs) [1] for disambiguation among possible events. The features used in HM-
SVMs are extracted from surface strings and part-of-speech information of the words corresponding to
(or adjacent to) trigger words.

1We omit SS and SE here which denote sentence start and end.
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Algorithm 1 Abstract semantic annotation generation.
Input: A sentence W =< w1, w2, · · · , wn >, and its event information Ev =< e1, e2, · · · , em >
Output: Abstract semantic annotation A

1: for each event ei =<Event type:Trigger words Theme:Protein name ...> do
2: Sort the Trigger words, Protein name, and other arguments based on their positions in W and get

a sorted list t1, t2, ..., tk
3: Generate an annotation as t1(t2(..tk)), add it into the annotation list A
4: end for
5: for each annotation ai ∈ A do
6: if ai contains another event then
7: Replace the event with its corresponding annotation am
8: end if
9: end for

10: for each annotation ai ∈ A do
11: if ai is a subset of another annotation in A then
12: Remove ai from the annotation list A
13: end if
14: end for
15: Reorder annotations in A based on their positions in W

Sentence We concluded that CTCF expression and activity is con-
trolled at transcriptional and post-transcriptional levels

CONCLUSION: IL-5 synthesis by human helper T cells
is regulated at the transcriptional level

Parse
results

SS+Protein(CTCF) SS+Protein+Gene Expression(expression)
SS+Protein+Gene Expression+Regulation( controlled...levels)

SS+Protein(IL-5) SS+Protein+Gene Expression(synthesis)
SS+Protein+Gene Expression+Regulation( regulated)

Events E1 Gene expression:expression Theme: CTCF E1 Gene expression: synthesis Theme: IL-5
E2 Regulation: controlled...levels Theme: E1 E2 Regulation: regulated Theme: E1
E3 Regulation: controlled...levels Theme: CTCF

Table 1: An example of the same semantic parse results denoting different event information

3 Results and Discussion
Experiments have been conducted on the training data of the BioNLP’09 shared task which consists of
800 abstracts. After cleaning up the sentences which do not contain biomedical events information, 2893
sentences were kept. We split the 2893 sentences randomly into the training set and the test set at the
ratio of 9:1 and conducted the experiments ten times with different training and test data each round.

Method Recall (%) Precision (%) F-score (%)
Trigger Word Identification
Dictionary+Rules 46.31 53.34 49.57
MEMM 45.43 40.91 42.99
Event Extraction from HVS Parse Results
No classification 43.57 52.85 47.77
With Classification 46.31 53.34 49.57

Table 2: Experimental results based on 10 fold cross-validation.

Table 2 shows the performance evaluated using the approximate recursive matching method adopted
from the BioNLP’09 share task evaluation mode. To evaluate the performance impact of trigger word
identification, we also report the overall performance of the system using the two approaches we pro-
posed, dictionary+rules and MEMM. The results show that the hybrid approach combining a trigger
dictionary and rules gives better performance than MEMM which only achieved a F-score around 43%.
For biomedical event extraction from HVS parse results, employing the classification method presented
in Section 2.3 improves the overall performance from 47.77% to 49.57%.

The best performance that HVS-BioEvent achieved is an F-score of 49.57%, which is only two points
lower than UTurku, the best performing system in the BioNLP’09 share task. It should be noted that our
results are based on 10-fold cross validation on the BioNLP’09 shared task training data only since we
don’t have the access to the BioNLP’09 test set while the results generated by UTurku were evaluated
on the BioNLP’09 test set. Although a direct comparison is not possible, we could still speculate that
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Simple Events Complex Events
Event Class HVS-BioEvent UTurku Event Class HVS-BioEvent UTurku
localization 61.40 61.65 binding 49.90 44.41
gene expression 72.44 73.90 regulation 36.57 30.52
transcription 68.30 50.23 negative regulation 40.61 38.99
protein catabolism 70.27 52.17
phosphorylation 56.52 77.58

Table 3: Per-class performance comparison in F-score (%) between HVS-BioEvent and UTurku.

HVS-BioEvent is comparable to the best performing system in the BioNLP’09 shared task.
The results on the five event types involving only a single theme argument are shown in Table 3

as Simple Events. For the complex events such as “binding”, “regulation” and “negative regulation”
events, the results are shown in Table 3 as Complex Events. We notice that HVS-BioEvent outperforms
UTurku on the extraction of the complex event types, with the performance gain ranging between 2%
and 7%. The results suggest that the HVS model with the hierarchical hidden state structure is indeed
more suitable for complex event extraction since it could naturally model embedded structural context in
sentences.

4 Conclusions
In this paper, we have presented HVS-BioEvent which uses the HVS model to automatically extract
biomedical events from text. The system is able to offer comparable performance compared with the
best performing system in the BioNLP’09 shared task. Moreover, it outperforms the existing systems
on complex events extraction which shows the ability of the HVS model in capturing embedded and
hierarchical relations among named entities. In future work we will explore incorporating arbitrary
lexical features into the HVS model training in order to further improve the extraction accuracy.
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