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Introduction

It is our great pleasure to present the Proceedings of the SIGDIAL 2010 Conference, the 11th Annual
Meeting of the Special Interest Group on Discourse and Dialogue. This is the second meeting since the
SIGDIAL meeting was elevated from a Workshop to a Conference.

We received a large number of submissions: 97 in total. The members of the Program Committee
did a superb job in reviewing the submitted papers, providing helpful comments and contributing to
discussions when required. We wish to thank all of them for their advice in selecting the accepted papers
and for helping to maintain the high quality of the resulting program. Many submissions received strong
recommendations from the Program Committee. In line with the SIGDIAL tradition, our aim has been
to create a balanced program that could accommodate as many favorably rated papers as possible. Out of
70 submitted long papers, 23 were accepted as full papers for plenary presentation and 20 were accepted
as short papers for poster presentations or demos. In addition, 15 out of the 27 submitted short papers
and demo descriptions were accepted.

This year, the review process has included a new initiative: a mentoring program designed to assist
authors of papers that contain innovative ideas to improve their quality regarding English language
usage or paper organization. Overall, 7 accepted papers participated in the mentoring program, which
was coordinated by Jason D. Williams. Our thanks go to the Program Committee members and others
who volunteered to serve as mentors, and especially those volunteers who were called upon to mentor.
Feedback from authors and mentors on the mentoring program has been very positive, and we hope that
mentoring will be included as part of the review process in future SIGDIAL conferences.

We are also grateful to two keynote speakers: Professor Hiroshi Ishiguro and Professor Marilyn
Walker for giving thought-provoking talks on the state-of-the-art in dialogue systems and human-robot
interaction research.

For the first time, this year a local organizing committee was formed. Our thanks go to its members who
worked very hard on the local arrangements such as deciding the venue, maintaining the conference web
site, handling registrations, managing the conference bank account, printing proceedings, and arranging
the conference lunches and dinner.

We would like to thank the ACL and Priscilla Rasmussen for handling the financial transactions. Thanks
also to the SIGDIAL board, in particular Tim Paek, Amanda Stent, and Kristiina Jokinen, for their advice
and support in all matters including finding industrial sponsors, budget planning, handling sponsorship,
and advertising the call for papers.

Finally, we thank all the authors of the papers in this volume, and all the conference participants for
making this event such a great opportunity for new research in dialogue and discourse.

Yasuhiro Katagiri and Mikio Nakano
General Co-Chairs

Raquel Fernandez and Oliver Lemon
Program Co-Chairs

Kazunori Komatani
Local Chair
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Towards I ncremental Speech Generation in Dialogue Systems

Gabrid Skantze Anna Hjalmarsson
Dept. of Speech Music and Hearing Dept. of Speech Music and Hearing
KTH, Stockholm, Sweden KTH, Stockholm, Sweden
gabri el @peech. kt h. se annah@peech. kt h. se

in a general dialogue system framework. This is
described in Section 2 and 3. The second purpose
We present a first step towards a model of Is 1o hevaluatet_ thef us\ex‘/glness foof Inc;'?mental
speech generation for incremental dialogue Speech generaton In a Vvizard-ol-Uz setling, us-
systems. The model allows a dialogue system N9 the proposed model. This is described in Sec-
to incrementally interpret spoken input, while  tion 4.
simultaneously planning, realising and self- R
monitoring the system response. The model 11 Motivation
has been implemented in a general dialogue A non-incremental dialogue system waits until
Eyster_n fr;lameworlé. Using t,rf‘_'s frarr|1.ewc')rk, wed the user has stopped speaking (using a silence
tea;‘:z d'r:g?ne;n\?\zgr d"f‘ofs_%?zc'sgt&pgp fg:;%gr?nng threshold to determine this) before starting to
it with a non-incremental version of the same ~ PfOC€SS the utteranc_e and then.produce a system
response. If processing takes time, for example

system. The results show that the incremental " )
version, while producing longer utterances, P€cause an external resource is being accessed,

has a shorter response time and is perceived this may result in a confusing response delay. An

Abstract

as more efficient by the users. incremental system may instead continuously
build a tentative plan of what to say as the user i
1 Introduction speaking. When it detects that the user’s utter-

o ) _ance has ended, it may start to asynchronously
Speakers in dialogue produce speech in a piecgsgjise this plan while processing continues, with

meal fashion and on-line as the dialogue proge possibility to revise the plan if needed.
gresses. When starting to speak, dialogue partici- There are many potential reasons for why dia-
pants typically do not have a complete plan ofogue systems may need additional time for
how to say something or even what to say. Yelyrocessing. For example, it has been assumed
they manage to rapidly integrate informationihat ASR processing has to be done in real-time,
from different sources in parallel and simultanei, order to avoid long and confusing response
ously plan and realize new dialogue contribuyelays. Yet, if we allow the system to start
tions. Moreover, interlocutors continuously Self'speaking before input is complete, we can allow
monlt(_)_r the actual proc_iuctlon processes in ordef,ore accurate (and time-consuming) ASR proc-
to faC|I|tat_e self-corrections _(Levelt, 1989). Con‘essing (for example by broadening the beam). In
trary to this, most spoken dialogue systems Useglis paper, we will explore incremental speech
silence threshold to determine when the user h%j%neration in a Wizard-of-oz setting. A common
stopped speaking. The user utterance is th&floplem in such settings is the time it takes for
processed by one module at a time, after which@e Wizard to interpret the users utterance
complete system utterance is produced and reging/or decide on the next system action, resulting
ised by a speech synthesizer. _ in unacceptable response delays (Fraser & Gil-
This paper has two purposes. First, t0 preseffert, 1991). Thus, it would be useful if the sys-
an initial step towards a model of speech genergam could start to speak as soon as the user has

tion that allows a dialogue system to incremenfinished speaking, based on the Wizard’s actions
tally interpret spoken input, while simultaneouslygq f5r.

planning, realising and self-monitoring the sys-
tem response. The model has been implemented
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1.2 Reated work with users, but the domain is limited to number

: .djctation.
Incremental speech generation has been studlgbcln this study, the focus is not on syntactic con-

from different perspectives. From a psycholin- . ; ]
guistic perspective, Levelt (1989) and other struction of utterances, but on how to build prac

have studied how speakers incrementally pr(j-ical incremental dialogue systems within limited

duce utterances whikelf-monitoring the output, domains that can handle revisions and produce

both overtly (listening to oneself speaking) andFenvincing, flexible and varied speech output in

covertly (mentally monitoring what is about to on-line interaction with users.
be said). As deviations from the desired output i
detected, the speaker may initiaddf-repairs. If
the item to be repaired has already been spoketihe proposed model has been implemented in
anovert repair is needed (for example by usinglindigo — a Java-based open source framework
an editing term, such as “sorry”). If not, the ut-for implementing and experimenting with incre-
terance plan may be altered to accommodate timeental dialogue systems (www.jindigo.net). We
repair, a so-calledovert repair. Central to the will here briefly describe this framework and the
concept of incremental speech generation is thamodel of incremental dialogue processing that it
the realization of overt speech can be initiateds based on.

before the speaker has a complete plan of what to _

say. An option for a speaker who does not know-1 ~ Incremental units

what to say (but wants to claim the floor) is toSchlangen & Skantze (2009) describes a general,
use hesitation phenomena suchfiéled pauses  abstract model of incremental dialogue process-
(*eh”) or cue phrases such as “let’s see”. ing, which Jindigo is based on. In this model, a

A dialogue system may not need to selfsystem consists of a network of processing mod-
monitor its output for the same reasons as huiles. Each module has a left buffer, a processor,
mans do. For example, there is no risk of articuand a right buffer, where the normal mode of
latory errors (with current speech synthesis techprocessing is to receive input from the left
nology). However, a dialogue system may utilizepuffer, process it, and provide output in the right
the same mechanisms of self-repair and hesitguffer, from where it is forwarded to the next
tion phenomena to simultaneously plan and reamodule’s left buffer. An example is shown in
ise the spoken output, as there is always a rigkigure 1. Modules exchange incremental units
for revision in the input to an incremental mod-(|Us), which are the smallest ‘chunks’ of infor-
ule (as described in Section 2.1). mation that can trigger connected modules into

There is also another aspect of self-monitoringiction (such as words, phrases, communicative
that is important for dialogue systems. In a sysacts, etc). IUs are typically part of larger units:
tem with modules operating asynchronously, théndividual words are parts of an utterance; con-
dialogue manager cannot know whether the incepts are part of the representation of an utter-
tended output is actually realized, as the usefnce meaning. This relation of being part of the
may interrupt the system. Also, the timing of thesame larger unit is recorded throusgme-level
synthesized speech is important, as the user méyks. In the example below, Whas a same-level
give feedback in the middle of a system uttertink to 1U; of type PREDECESSORmeaning that
ance. Thus, an incremental, asynchronous systetiey are linearly ordered. The information that
somehow needs to self-monitor its own output. was used in creating a given IU is linked to it via

From a syntactic perspective, Kempen &grounded-in links. In the example, WJ is
Hoenkamp (1987) and Kilger & Finkler (1995) grounded in IY and 1, while 1U, is grounded
have studied how to syntactically formulate senin |U,.

tences incrementally under time constraints.

2  TheJindigo framework

Dohsaka & Shimazu (1997) describes a systemnbouter processor right buffer

architecture for incremental speech generatio Moo A : roduee
However, there is no account for revision of th% ) I T O B e J
input (as discussed in Section 2.1) and there is : i A CE B

evaluation with users. Skantze & Schlangen™due4 rbufer processor  rightbufer
(2009) describe an incremental system that partlgigure 1: Two connected modules.
supports incremental output and that is evaluated
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Table 1: The right buffer of an ASR module, and up- ActionManager
date messages at different time-steps.

Word

Utterance
Segment

Interpreter

Contextualizer

Context

Figure 2: A typical Jindigo system architecture.

A challenge for incremental systems is to han
dlerevisions. For example, as the first part of therently best tentative hypothesis can be con-
word “forty” is recognised, the best hypothesisstructed. In Jindigo, all modules run as threads
might be “four”. As the speech recogniser re-within a single Java process, and therefore have
ceives more input, it might need to revise its preaccess to the same memory space.
vious output, which might cause a chain of revi- _ _
sions in all subsequent modules. To cope wit§-2 A typical architecture
this, modules have to be able to react to threg typical Jindigo system architecture is shown in
basic situations: that IUs aeeided to a buffer, Figure 2. The word buffer from the Recognizer
which triggers processing; that IUs that were ermodule is parsed by the Interpreter module
roneously hypothesized by an earlier module ar@hich tries to find an optimal sequence of top
revoked, which may trigger a revision of a mod- phrases and their semantic representations. These
ule’s own output; and that modules signal thaphrases are then interpreted in light of the cairren
they commit to an IU, that is, won't revoke it dialogue context by the Contextualizer module
anymore. and are packaged as Communicative Acts (CASs).

Jindigo implements an efficient model for As can be seen in Figure 2, the Contextualizer
communicating these updates. In this model, IUalso self-monitors Concepts from the system as
are associated with edges in a graph, as showntifey are spoken by the Vocalizer, which makes it
Table 1. The graph may be incrementallypossible to contextually interpret user responses
amended without actually removing edges ofto system utterances. This also makes it possible
vertices, even if revision occurs. At each timefor the system to know whether an intended ut-
step, a new update message is sent to the cagrance actually was produced, or if it was inter-
suming module. The update message containsrapted. The current context is sent to the Action
pair of pointers €, Al: (C) the vertex from which Manager, which generates a SpeechPlan that is

the currently committed hypothesis can be consent to the Vocalizer. This is described in detail
structed, andA) the vertex from which the cur- in the next section.

User System
VAD Utterance Utterance Other su | suU |SU| |SU |SU| suU | Vocalizer
Utterance ﬂ us us
Del Sel,
Segment 'y ey Speech i SS
H

Dela;
R Lofwlw ] [wfw Jw]  [w] w w]
\ S f
’\ ________________ SpeechPlan Action Manager
Interpreter =
P C Phrase
\#l | Concept Response | SS
! P To.””
Contextualizer | | | |‘«" SS
CA CA

Figure 3: Incremental Units at different levelspobcessing. Some groundedrelations are shown with doti
lines. W=Word, SS=SpeechSegment, SU=SpeechUnitGoAmmunicative Act.



3 Incremental speech generation SpeechSegment may also be decomposed into an
_ array ofSpeechunit’s, where eaclspeechuUnit
3.1 Incremental units of speech contains pointers to the audio rendering in the

In order for user and system utterances to be irfpeechSegment.
terpreted and produced incrementally, they neeg2
to be decomposed into smaller units of process-
ing (IUs). This decomposition is shown in FigureThe SpeechPlan does not need to be complete
3. Using a standard voice activity detectobefore the system starts to speak. An example of
(VAD) in the ASR, the user’s speech is chunkedhis is shown in Figure 4. As more words are
into Utterance-units. Theutterance bounda- recognised by the ASR, the Action Manager may
ries determine when the ASR hypothesis isidd moreSpeechSegment’s to the graph. Thus,
committed. However, for the system to be able tthe system may start to say “it costs” before it
respond quickly, the end silence threshold oknows which object is being talked about.
these Utterances are typically too long. Therefore
smaller units of the typ&tteranceSegment (D rov e @ @ @ 2o -G
(US) are detected, using a much shorter silence _— '
threshold of about 50ms. Such short silenc©<‘1f_h_i
i - P
thresholds allow the system to give very fast re el o)

P 4 ou can have it for
sponses (such as backchannels). Information o ee?

about US boundaries is sent directly from the-jgyre 4: The right buffer of an ASR (top) and the
ASR to the Vocalizer. As Figure 3 illustrates, thespeechpian that is incrementally produced (bottom).
grounded-in links can be followed to derive thevertex s1 is associated with wi, s3 with w3, etp- O
timing of IUs at different levels of processing. tional, non-committingspeechSegment’s are marked
The system output is also modelled using IUsvith dashed outline.

at different processing levels. The widest-
spanning IU on the output side is the
SpeechPlan. The rendering of @&peechPlan
will result in a sequence SpeechSegment’s,

Producing and consuming SpeechPlans

40 crowns

The speechPlan has a pointer called
finalvertex. When the Vocalizer reaches the
finalVertex, the SpeechPlan is completely

h h o : realised. Iffinalvertex is not set, it means that
where eachspeechSegment TEPIESENS & CON- yhe speachplan is not yet completely con-

tinuous audio rendering of speech, either as &ructed The SpeechSegment  property

synthesised string or a pre-recorded audio mec')ptional tells whether the segment needs to be

For example, the plan may be to say “okay, a refl jjiseq or if it could be skipped if the
doll, here is a nice doll", conS|st|_ng of three S€0 ¢inalvertex is in sight. This makes it possible
men(;[st' NOW’tthFe.reta[ﬁ tWOtre(;]UILemIents_gcljé.’tt W?O insert floor-keepingspeechSegment’s (such

need to meet. First, the output shouldvasied: as “eh”) in the graph, which are only realised if

tsheor?g:tiversh?ilrj:% r:gt tﬁges:r):]aéCtrlg thsfagﬁ rq’iseeded. The Vocalizer also keeps track of which
pons y . . q : ' %peechSegment’s it has realised before, so that it
we will see, the_output in an incremental s_ystengan look ahead in the graph and realise a more
must also bdlexible, as speech plans are incre- - iad output. EachpeechSegment may carry a
mentally produced and amended. In order to re: : : .
. X man represen n of th men
lieve the Action Manager of the burden of vary—Se antic representation of the segment (a

) . ) o .2 Concept). This is sent by the Vocalizer to the
ing the output and making time-critical adjust-c, o 4\alizer as soon as the segment has been
ments, we model thepeechPlan as a directed

raph, where each edge is associated with raealised_
Specd X The SpeechSegment properties selfDelay

SpeechSegment, as shown in Figure 4. Thus, the

Action Manager may asynchronously plan (a se nd otherDelay regulate the timing of the out-
) 9 y asynct y plar eSut (as illustrated in Figure 3). They specify the
of possible) responses, while the Vocalizer se-

number of milliseconds that should pass before

lects the_ rendgr_lng path in the graph and taketﬁe Vocalizer starts to play the segment, depend-
care of time-critical synchronization. To control.

) ing on the previous speaker. By setting the
the rendering, eaclspeechsegment has the .\ ... of 4 segment, the Action Manager
properties optional, committing, selfbelay .0 gojav the response depending on how cer-
tailgg Oﬁh;LDSetlgé 1oabse deosscsri'gleedf(')? ézeinrl?ﬁni? ain it is that it is appropriate to speak, for @xa

‘ . P L le by considering pitch and semantic complete-
system to interrupt and make self-repairs in th ess. (See Raux & Eskenazi (2008) for a study
middle of a SpeechSegment. Therefore, each '



on how such dynamic delays can be derived usieed to insert an editing term after it), while a
ing machine learning.) request or an assertion usually is. If (parts of) a
If the user starts to speak (i.e., a newcommitting segment has already been realised
UtteranceSegment is initiated) as the system is and it cannot be part of the new plan, an overt
speaking, the Vocalizer pauses (a&paechunit  repaired is made with the help of an editing term
boundary) and waits until it has received a newe.g., “sorry”). When comparing the history with
response from the Action Manager. The Actiorthe new graph, the Vocalizer searches the graph
Manager may then choose to generate a new rand tries to find a path so that it may avoid mak-
sponse or simply ignore the last input, in whiching an overt repair. For example if the graph in
case the Vocalizer continues from the point ofFigure 4 is replaced with a corresponding one
interruption. This may happen if, for example,that ends with “60 crowns”, and it has so far
theutteranceSegment was identified as a back- partly realised “it costs”, it may choose the cor-
channel, cough, or similar. responding path in the nespeechPlan, making

a covert repair.
3.3 Sdf-repairs P
As Figure 3 shows, @peechplan may be 4 A Wizard-of-Ozexperiment

grounded in a user CA (i.e., it is a response 1@ \yizard-of-Oz experiment was conducted to
this CA). ”.E th's. CA Is revoked, or '.f _t_he test the usefulness of the model outlined above.
SpeechPlan is revised, the Vocalizer may initial- A\l modules in the system were fully functional
ize a self-repair. T_he Vocaliz'er keeps a list @& th except for the ASR, since not enough data héd
SpeechSegment’s it has realised so far. If the poon collected to build language models. Thus,
SpeechPlan is revised when it has been partly; ctaqq of using ASR, the users’ speech was
realised, the Vocalizer compares the history with,5nscribed by a Wizard. As discussed in section
the new graph and chooses one of the differeqty 5 common problem is the time it takes for
repair strategies shown in Table 2. In the beshe \izard to transcribe incoming utterances,
case, it may smoothly switch to the new plany,g thys for the system to respond. Therefore,
without the user noticing it (covert repair). In s is an interesting test-case for our model. In
case of a L_Jnit repair_, the Vocglizer searches for &4er to let the system respond as soon as the
zero-crossing point in the audio segment, close tQser finished speaking, even if the Wizard hasn't
the boundary pointed out by thgeechunit. completed the transcription yet, a VAD is used.

The setting is shown in Figure 5 (compare with

covert | you [are | rient |~—»{ it [ s [bue || Figure 2). The Wizard may start to type as soon
segment as the user starts to speak and may alter whatever
repair [ vou Jare [ rignt |—#{they [are Jone || he has typed until the return key is pressed and
the hypothesis is committed. The word buffer is
ggg:;em Lyou [are] ”g_h_t___|____’_|__” |5 [ | ypdated in exactly the same manner as if it had

been the output of an ASR.

repair \\b: sorry :—->| you |are |wrong |—>| it | is | red |
1

covert |you |ar‘e| right |—>| it | is |b|ue| ‘*&.ﬁy Speech t\&%

unit

. *-.a N,
repair |you |are |wrong |—>| it | is | red | User Wizard
Utterance ]
OV'ert you |are| right I—T>| it | is |b|ue | Segment Word
unit | T
repair "l sorry Feol Speech A
"""" \* Vocalizer Interpreter
|you |are |wrong |—>| it | is | red |
Table 2: Different types of self-repairs. The shhde
boxes show whiclspeechunit’s have been realised, ActionManager Contextualizer

or are about to be realised, at the point of renisi i ) : _
Figure 5: The system architecture used in the Wlizar

The SpeechSegment property committing  of-Oz experiment.

tells whether it needs to be repaired if the For comparison. we also confiqured a non-
SpeechPlan is revised. For example, a filled . p ’ 9

GaR . . _jncremental version of the same system, where
pause such as “eh" is not committing (there is nér)1othing was sent from the Wizard until he com-



mitted by pressing the return key. Since we digpeech segments can be produced immediately
not have mature models for the Interpreter eithegfter the user has stopped speaking, allowing the
the Wizard was allowed to adapt the transcripWizard to exploit the additional time to tran-
tion of the utterances to match the models, whilscribe the rest of the utterance.
preserving the semantic content. The DEAL corpus was used to create utter-
_ ance initial speech segments for the experiment.
41 TheDEAL domain The motivation to use speech segments derived
The system that was used in the experiment wdgm human recordings was to make the system
a spoken dialogue system for second languag®und convincing in terms of both lexical choice
learners of Swedish under development at KTHand intonation. In particular, we wanted a reper-
called DEAL (Hjalmarsson et al., 2007). Thetoire of different types of filled pauses and feed-
scene of DEAL is set at a flea market where &ack expression such as “eh” and “mm” in order
talking agent is the owner of a shop selling usetp avoid a system that sounds monotone and re-
goods. The student is given a mission to buyetitive. First, a number of feedback expression
items at the flea market getting the best possiblguch as “ja’, “a”, “mm” (Eng: “yes”), filled
price from the shop-keeper. The shop-keeper cgpauses such as “eh”, “ehm” and expressions used
talk about the properties of goods for sale antp initiate different domain specific speech acts
negotiate about the price. The price can be rdfor example ‘it costs” and “let me see”) were
duced if the user points out a flaw of an objectgxtracted. The segments were re-synthesized
argues that something is too expensive, or offergsing Expros, a tool for experimentation with
lower bids. However, if the user is too persistenprosody in diphone voices (Gustafson & Edlund,
haggling, the agent gets frustrated and closes t2§08). Based on manual transcriptions and sound
shop. Then the user has failed to complete thées, Expros automatically extracts pitch, dura-
task. tion and intensity from the human voice and cre-

For the experiment, DEAL was re- ates a synthetic version using these parameters.
implemented using the Jindigo framework. Fig-In the speech plan, these canned segments were
ure 6 shows the GUI that was shown to the usermixed with generated text segments (for example

references to objects, prices, etc) that were syn-
EEE_ d ===  thesized and generated on-line with the same
h 0| diphone voice.

An example interaction with the incremental
version of the system is shown in Table 3. S.11
exemplifies a self-correction, where the system
| prepares to present another bid, but then realizes
that the user’s bid is too low to even consider. A
e video (with subtitles) showing an interaction
with one of the users can be seen at
http://www.youtube.com/watch?v=cQQmgltIMvs.

S.1 | [welcome] [how may | help you]
U.2 | | want to buy a doll

Figure 6: The user interface in DEAL. The object or] S.3 | [eh] [here is] [a doll]

the table is the one currently in focus. Example ob| U.4 | how muchisit?

jects are shown on the shelf. Current game scoreg g [eh] [it costs] [120 crowns]
money and bought objects are shown on the right. U.6 | that istoo expensive

4.2  Speech segmentsin DEAL how much is the teddy bear?
S.7 | [well] [you can have it for] [let’s see]

In a previous data collection of human-human
interaction in the DEAL domain (Hjalmarsson [40 crowns]

. 'l U.8 | | can giveyou 30 crowns

0 B

2008) it was noted that about 40% of the speakets g [you could have it for] [37 crowns]
turns were initiated with standardized lexical ex .

. : 1,U.10 | | can give you 10 crowns
pressions (cue phrases) or filled pauses. Su "E 11| flet's say] [or, | mean] [that is way 00
speech segments commit very little semantically ™ lttle] ylior, Y

to the rest of the utterance and are therefore very - .
useful as initiations of utterances, since suc able 3: An example DEAL dialogue (translated from
’ %WGdISh). Speech segments are marked in brackets.




4.3 Experimental setup whether it would take more or less time for the

. incremental version finish rances. Both
In order to compare the incremental and non\'/ecrseiones t?eceﬁédo thttao finalS inufjtte Zt Ctre12 sa?;[]e
incremental versions of the system, we con: P

ducted an experiment with 10 participants, ilme. On the one hand, the incremental version

male and 6 female. The participants were given Qitiates utterances with speech segments that

mission: to buy three items (with certain charac%ﬁgtglgtlg?ne i(;r igotizmrﬁg[:jﬁéngﬁr?félr?r; Zzufr’];;t
teristics) in DEAL at the best possible price from y 9

e shoprkeeper. The paricpanis were frtnel®" [0S0, e comete o o the

instructed to evaluate two different versions o eament before broducing the rest of the utter-
the system, System A and System B. HoweveP Y P 9 ST
dnce. Moreover, if an utterance is initiated and

they were not informed how the versions dif- e Wizard alters the input, the incremental ver-
fered. The participants were lead to believe that{.1 put,

they were interacting with a fully working dia- > o' needs to make a repair which takes addi-

logue system and were not aware of the Wizar(fonal time. On the other hand, it may also start

of-Oz set up. Each participant interacted with th 0 produce speech segments that are semantically

system four times, first two times with each ver-€/€vant, based on the incremental input, which
§1||OWS it to finish the utterance more quickly. As

sion of the system, after which a questionnair e fiqure shows. it turns out that the average
was completed. Then they interacted with th respo%se complétion time for the increment%l
two versions again, after which they filled out a ersion (1=5.02s, SD=1.54) is about 600ms

second questionnaire with the same question%.ster than the average for non-incremental ver-
The order of the versions was balanced betweef 9

sion M=5.66s, 9D=1.50), €(704)=5.56,

subjects. 8<O'001)'

The mid-experiment questionnaire was used t
collect the participants’ first opinions of the two
versions and to make them aware of what type ¢
characteristics they should consider when inter  >%

acting with the system the second time. Whel 400
filling out the second questionnaire, the partici- g |
S 3 minc
— non

6,00

pants were asked to base their ratings on the g
overall experience with the two system versions
Thus, the analysis of the results is based on tt 100
second questionnaire. In the questionnaires, the ., Il
were requested to rate which one of the two vel
sions was most prominent according to 8 differ-
ent dimensions: which version theyeferred; ~ Figure 7: The first two column pairs show the agera
which was moréuman-like, polite, efficient, and time from the fand of the user’s utterance to dtaet
intelligent; which gave daster response and bet- of the system’s response, and from the end of the
ter feedback: and with which version it was eas- user’s _utterance to t_hend of the system’s response.
ier to knoWhm to speak. All ratings were done Jﬂsrgﬁggf 'ﬁhﬁznﬂaﬁﬁm‘ﬂiﬂf average total syste
on a continuous horizontal line with System A on g '

the left end and System B on the right end. The !N general, subjects reported that the system
centre of the line was labelled with “no differ- worked very well. After the first interaction with

ence”. the two versions, the participants found it hard to
The participants were recorded during their inP0int out the difference, as they were focused on
teraction with the system, and all messages in t°Iving the task. The marks on the horizontal

2,00

start end length

system were logged. continuous lines on the questionnaire were
measured with a ruler based on their distance
44 Results from the midpoint (labelled with “no difference”)

Figure 7 shows the difference in response tim@nd normalized FO a scale from -1 to .1’ each ex-
between the two versions. As expected, the iff€Me representing one system version. A Wil-

cremental version started to speak more quickl§Px°n Signed Ranks Test was carried out, using
(M=0.58s, SD=1.20) than the non-incremental hese rankings as differences. The results are
version 6’/|=2-84.S =1.17), while producing shown in Table 4. As the table shows, the two

longer utterances. It was harder to anticipatdersions differed significantly in three dimen-
sions, all in favour of the incremental version.



Hence, the incremental version was rated a®z paradigm, and thereby for practical develop-
more polite, more efficient, and better at indicatiment of dialogue systems in general.

ing when to speak.
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SpeechSegment’s into consideration). Third, a schiangen, D., & Skantze, G. (2009). A general, ab-
lot of work could be done on the dynamic gen- stract model of incremental dialogue processing. In
eration ofspeechSegment’s, considering syntac-  Proceedings of EACL-09. Athens, Greece.
tic and pragmatic constraints, although thisSkantze, G., & Schlangen, D. (2009). Incremental
would require a speech synthesizer that was bet-dialogue processing in a micro-domain.Hroceed-
ter at convincingly produce conversational Ngsof EACL-09. Athens, Greece.
speech.
The experiment also shows that it is possible
to achieve fast turn-taking and convincing re-
sponses in a Wizard-of-Oz setting. We think that
this opens up new paossibilities for the Wizard-of-

5 Conclusions & Futurework
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Abstract

Incremental natural language understand-
ing is the task of assigning semantic rep-
resentations to successively larger prefixes
of utterances. We compare two types of
statistical models for this task: a) local
models, which predict a single class for
an input; and b), sequential models, which
align a sequence of classes to a sequence
of input tokens. We show that, with some
modifications, the first type of model can
be improved and made to approximate the
output of the second, even though the lat-
ter is more informative. We show on two
different data sets that both types of model
achieve comparable performance (signifi-
cantly better than a baseline), with the first
type requiring simpler training data. Re-
sults for the first type of model have been
reported in the literature; we show that for
our kind of data our more sophisticated
variant of the model performs better.

1 Introduction

Imagine being at a dinner, when your friend Bert
says “My friend, can you pass me the salt over
there, please?”. It is quite likely that you get the
idea that something is wanted of you fairly early
into the utterance, and understand what exactly it
is that is wanted even before the utterance is over.

This is possible only because you form an un-
derstanding of the meaning of the utterance even
before it is complete; an understanding which
you refine—and possibly revise—as the utterance
goes on. You understand the utterance incremen-
tally. This is something that is out of reach for
most current dialogue systems, which process ut-
terances non-incrementally, en bloc (cf. (Skantze
and Schlangen, 2009), inter alia).

Enabling incremental processing in dialogue
systems poses many challenges (Allen et al.,

2001; Schlangen and Skantze, 2009); we focus
here on the sub-problem of modelling incremental
understanding—a precondition for enabling truly
interactive behaviour. More specifically, we look
at statistical methods for learning mappings be-
tween (possibly partial) utterances and meaning
representations. We distinguish between two types
of understanding, which were sketched in the first
paragraph above: a) forming a partial understand-
ing, and b) predicting a complete understanding.

Recently, some results have been published on
b), predicting utterance meanings, (Sagae et al.,
2009; Schlangen et al., 2009). We investigate
here how well this predictive approach works in
two other domains, and how a simple extension of
techniques (ensembles of slot-specific classifiers
vs. one frame-specific one) can improve perfor-
mance. To our knowledge, task a), computing par-
tial meanings, has so far only been tackled with
symbolic methods (e.g., (Milward and Cooper,
1994; Aist et al., 2006; Atterer and Schlangen,
2009));' we present here some first results on ap-
proaching it with statistical models.

Plan of the paper: First, we discuss relevant pre-
vious work. We then define the task of incremental
natural language understanding and its two vari-
ants in more detail, also looking at how models
can be evaluated. Finally, we present and discuss
the results of our experiments, and close with a
conclusion and some discussion of future work.

2 Related Work

Statistical natural language understanding is an ac-
tive research area, and many sophisticated mod-
els for this task have recently been published, be
that generative models (e.g., in (He and Young,
2005)), which learn a joint distribution over in-

"We explicitly refer to computation of incremental inter-
pretations here; there is of course a large body of work on
statistical incremental parsing (e.g., (Stolcke, 1995; Roark,
2001)).
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(Mairesse et al., 2009)  94.50
(He and Young, 2005) 90.3
(Zettlemoyer and Collins, 2007)  95.9
(Meza et al., 2008)  91.56

Table 1: Recent published f-scores for non-
incremental statistical NLU, on the ATIS corpus

put, output and possibly hidden variables; or, more
recently, discriminative models (e.g., (Mairesse et
al., 2009)) that directly learn a mapping between
input and output. Much of this work uses the ATIS
corpus (Dahl et al., 1994) as data and hence is di-
rectly comparable. In Table 1, we list the results
achieved by this work; we will later situate our re-
sults relative to this.

That work, however, only looks at mappings be-
tween complete utterances and semantic represen-
tations, whereas we are interested in the process of
mapping semantic representations to successively
larger utterance fragments. More closely related
then is (Sagae et al., 2009; DeVault et al., 2009),
where a maximum entropy model is trained for
mapping utterance fragments to semantic frames.
(Sagae et al., 2009) make the observation that of-
ten the quality of the prediction does not increase
anymore towards the end of the utterance; that is,
the meaning of the utterance can be predicted be-
fore it is complete.

In (Schlangen et al., 2009), we presented a
model that predicts incrementally a specific as-
pect of the meaning of a certain type of utterance,
namely the intended referent of a referring expres-
sion; the similarity here is that the output is of the
same type regardless of whether the input utter-
ance is complete or not.

(DeVault et al., 2009) discuss how such ‘mind
reading’ can be used interactionally in a dialogue
system, e.g. for completing the user’s utterance
as an indication of the system’s grounding state.
While these are interesting uses, the approach is
somewhat limited by the fact that it is incremental
only on the input side, while the output does not
reflect how ‘complete’ (or not) the input is. We
will compare this kind of incremental processing
in the next section with one where the output is
incremental as well, and we will then present re-
sults from our own experiments with both kinds of
incrementality in statistical NLU.

3 Task, Evaluation, and Data Sets
3.1 The Task

We have said that the task of incremental natural
language understanding consists in the assignment
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of semantic representations to progressively more
complete prefixes of utterances. This description
can be specified along several aspects, and this
yields different versions of the task, appropriate
for different uses. One question is what the as-
signed representations are, the other is what ex-
actly they are assigned to. We investigate these
questions here abstractly, before we discuss the in-
stantiations in the next sections.

Let’s start by looking at the types of representa-
tions that are typically assigned to full utterances.
A type often used in dialogue systems is the frame,
an attribute value matrix. (The attributes are here
typically called slots.) These frames are normally
typed, that is, there are restrictions on which slots
can (and must) occur together in one frame. The
frames are normally assigned to the utterance as a
whole and not to individual words.

In an incremental setting, where the input
potentially consists of an incomplete utterance,
choosing this type of representation and style of
assignment turns the task into one of prediction of
the utterance meaning. What we want our model
to deliver is a guess of what the meaning of the ut-
terance is going to be, even if we have only seen
a prefix of the utterance so far; we will call this
“whole-frame output” below.”

Another popular representation of semantics in
applied systems uses semantic fags, i.e., markers
of semantic role that are attached to individual
parts of the utterance. Such a style of assignment
is inherently ‘more incremental’, as it provides a
way to assign meanings that represent only what
has indeed been said so far, and does not make as-
sumptions about what will be said. The semantic
representation of the prefix simply contains all and
only the tags assigned to the words in the prefix;
this will be called “aligned output” below. To our
knowledge, the potential of this type of represen-
tation (and the models that create them) for incre-
mental processing has not yet been explored; we
present our first results below.

Finally, there is a hybrid form of representation
and assignment. If we allow the output frames to
‘grow’ as more input comes in (hence possibly vi-
olating the typing of the frames as they are ex-
pected for full utterances), we get a form of rep-
resentation with a notion of ‘partial semantics’ (as

?In (Schlangen and Skantze, 2009), this type of incremen-
tal processing is called “input incremental”, as only the input
is incrementally enriched, while the output is always of the
same type (but may increase in quality).



only that is represented for which there is evidence
in what has already been seen), but without direct
association of parts of the representation and parts
of the utterance or utterance prefix.

3.2 Evaluation

Whole-Frame Output A straightforward met-
ric is Correctness, which can take the values 1
(output is exactly as expected) or 0 (output is not
exactly as expected). Processing a test corpus in
this way, we get one number for each utterance
prefix, and, averaging this number, one measure-
ment for the whole corpus.

This can give us a first indication of the gen-
eral quality of the model, but because it weighs
the results for prefixes of all lengths equally, it
cannot tell us much about how well the incremen-
tal processing worked. In actual applications, we
presumably do not expect the model to be correct
from the very first word on, but do expect it to get
better the longer the available utterance prefix be-
comes. To capture this, we define two more met-
rics: first occurrence (FO), as the position (relative
to the eventual length of the full utterance) where
the response was correct first; and final decision
(FD) as the position from which on the response
stayed correct (which consequently can only be
measured if indeed the response stays correct).?
The difference between FO and FD then tells us
something about the stability of hypotheses of the
model.

In some applications, we may indeed only be
able to do further processing with fully correct—
or at least correctly typed—frames; in which case
correctness and FO/FD on frames are appropriate
metrics. However, sometimes even frames that are
only partially correct can be of use, for example if
specific system reactions can be tied to individual
slots. To give us more insight about the quality of a
model in such cases, we need a metric that is finer-
grained than binary correctness. Following (Sagae
et al., 2009), we can conceptualise our task as one
of retrieval of slot/value pairs, and use precision
and recall (and, as their combination, f-score) as
metrics. As we will see, it will be informative to
plot the development of this score over the course
of processing the utterance.

For these kinds of evaluations, we need as a
gold standard only one annotation per utterance,

3These metrics of course can only be computed post-hoc,
as during processing we do not know how long the utterance
is going to be.
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namely the final frame.

Aligned Output As sequence alignments have
more structure—there is a linear order between the
tags, and there is exactly one tag per input token—
correctness is a more fine-grained, and hence more
informative, metric here; we define it as the pro-
portion of tags that are correct in a sequence. We
can also use precision and recall here, looking at
each position in the sequence individually: Has
the tag been recalled (true positive), or has some-
thing else been predicted instead (false negative,
and false positive)? Lastly, we can also recon-
struct frames from the tag sequences, where se-
quences of the same tag are interpreted as seg-
menting off the slot value. (And hence, what was
several points for being right or wrong, one for
each tag, becomes one, being either the correct
slot value or not. We will discuss these differences
when we show evaluations of aligned output.)

For this type of evaluation, we need gold-
standard information of the same kind, that is, we
need aligned tag sequences. This information is
potentially more costly to create than the one fi-
nal semantic representation needed for the whole-
frame setting.

Hybrid Output As we will see below, the hy-
brid form of output (‘growing’ frames) is pro-
duced by ensembles of local classifiers, with one
classifier for each possible slot. How this output
can be evaluated depends on what type of informa-
tion is available. If we only have the final frame,
we can calculate f-score (in the hope that preci-
sion will be better than for the whole-frame clas-
sifier, as such a classifier ensemble can focus on
predicting slots/value pairs for which there is di-
rect evidence); if we do have sequence informa-
tion, we can convert it to growing frames and eval-
uate against that.

3.3 The Data Sets

ATIS As our first dataset, we use the ATIS air
travel information data (Dahl et al., 1994), as pre-
processed by (Meza et al., 2008) and (He and
Young, 2005). That is, we have available for each
utterance a semantic frame as in (1), and also a
tag sequence that aligns semantic concepts (same
as the slot names) and words. One feature to note
here about the ATIS representations is that the slot
values / semantic atoms are just the words in the
utterance. That is, the word itself is its own se-
mantic representation, and no additional abstrac-



tion is performed. In this domain, this is likely un-
problematic, as there aren’t many different ways
(that are to be expected in this domain) to refer to
a given city or a day of the week, for example.

(D) “What flights are there arriving in Chicago after
11pm?”
GOAL = FLIGHT
TOLOC.CITY_NAME = Chicago
ARRIVE_TIME.TIME_RELATIVE = after

ARRIVE_TIME.TIME = 11pm

In our experiments, we use the ATIS training
set which contains 4481 utterances, between 1
and 46 words in length (average 11.46; sd 4.34).
The vocabulary consists of 897 distinct words.
There are 3159 distinct frames, 2594 (or 58% of
all frames) of which occur only once. Which of
the 96 possible slots occur in a given frame is
distributed very unevenly; there are some very
frequent slots (like FROMLOC.CITYNAME
or DEPART _DATE.DAY _NAME) and
some very rare or even unique ones (e.g.,
ARRIVE_DATE.TODAY RELATIVE, or
TIME_ZONE).

Pentomino The second corpus we use is of ut-
terances in a domain that we have used in much
previous work (e.g., (Schlangen et al., 2009;
Atterer and Schlangen, 2009; Fernandez and
Schlangen, 2007)), namely, instructions for ma-
nipulating puzzle pieces to form shapes. The par-
ticular version we use here was collected in a
Wizard-of-Oz study, where the goal was to instruct
the computer to pick up, delete, rotate or mirror
puzzle tiles on a rectangular board, and drop them
on another one. The user utterances were anno-
tated with semantic frames and also aligned with
tag sequences. We use here a frame representation
where the slot value is a part of the utterance (as
in ATIS), an example is shown in (2). (The cor-
pus is in German; the example is translated here
for presentation.) We show the full frame here,
with all possible slots; unused slots are filled with
“empty”. Note that this representation is some-
what less directly usable in this domain than for
ATIS; in a practical system, we’d need some fur-
ther module (rule-based or statistical) that maps
such partial strings to their denotations, as this
mapping is less obvious here than in the travel do-
main.

) “Pick up the W-shaped piece in the upper right cor-

L)

ner
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action = "pick up”

tile = the W-shaped piece
in the upper right corner”

field = empty

rotpar = empty

mirpar = empty

The corpus contains 1563 utterances, average
length 5.42 words (sd 2.35), with a vocabulary of
222 distinct words. There are 964 distinct frames,
with 775 unique frames.

In both datasets we use transcribed utterances
and not ASR output, and hence our results present
an upper bound on real-world performance.

4 Local Models: Support Vector Machines

In this section we report the results of our exper-
iments with local classifiers, i.e. models which,
given an input, predict one out of a set of classes as
an answer. Such models are very naturally suited
to the prediction task, where the semantics of the
full utterance is treated as its class, which is to be
predicted on the basis of what possibly is only a
prefix of that utterance. We will also look at a
simple modification, however, which enables such
models to do something that is closer to the task of
computing partial meanings.

4.1 Experimental Setup
For our experiments with local models, we used

the implementations of support vector machines
provided by the WEKA toolkit (Witten and Frank,
2005); as baseline we use a simple majority class
predictor.*

We used the standard WEKA tools to convert
the utterance strings into word vectors. Training
was always done with the full utterance, but test-
ing was done on prefixes of utterances; i.e., a sen-
tence with 5 words would be one instance in train-
ing, but in a testing fold it would contribute 5 in-
stances, one with one word, one with two words,
and so on.> Because of this special way of testing
the classifiers, and also because of the modifica-

*We tried other classifiers (C4.5, logistic regression, naive
Bayes) as well, and found comparable performance on a de-
velopment set. However, because of the high time costs
(some models needed > 40 hours for training and testing on
modern multi-CPU servers) we do not systematically com-
pare performance and instead focus on SVMs. In any case,
our interest here is not in comparing classification algorithms,
but rather in exploring approaches to the novel problem of
statistical incremental NLU.

30n a development set, we tried training on utterance pre-
fixes, but that degraded performance, presumably due to in-
crease in ambiguous training instances (same beginnings of
what ultimately are very different utterances).



tions described below, we had to provide our own
methods for cross-validation and evaluation. For
the larger ATIS data set, we used 10 folds in cross
validation, and for the Pentomino dataset 20 folds.

4.2 Results

To situate our results, we begin by looking at
the performance of the models that predict a full
frame, when given a full utterance; this is the
normal, “non-incremental” statistical NLU task.®

classf.  metric ATIS  Pento
maj correctness  1.07 1.79
3) maj f-score 3598 16.15
SVM correctness  16.21  38.77
SVM f-score 68.17 63.23

We see that the results for ATIS are considerably
lower than the state of the art in statistical NLU
(Table 1). This need not concern us too much
here, as we are mostly interested in the dynam-
ics of the incremental process, but it indicates that
there is room for improvement with more sophisti-
cated models and feature design. (We will discuss
an example of an improved model shortly.) We
also see a difference between the corpora reflected
in these results: being exactly right (good correct-
ness) seems to be harder on the ATIS corpus, while
being somewhat right (good f-score) seems to be
harder on the pento corpus; this is probably due to
the different sizes of the search space of possible
frame types (large for ATIS, small for pento).
What we are really interested in, however, is the
performance when given only a prefix of an ut-
terance, and how this develops over the course of
processing successively larger prefixes. We can
investigate this with Figure 1. First, look at the
solid lines. The black line shows the average f-
score at various prefix lengths (in 10% steps) for
the ATIS data, the grey line for the pento corpus.
We see that both lines show a relatively steady in-
cline, meaning that the f-score continues to im-
prove when more of the utterance is seen. This is
interesting to note, as both (DeVault et al., 2009)
and (Atterer et al., 2009) found that in their data,
all that is to be known can often be found some-
what before the end of the utterance. That this
does not work so well here is most likely due to
the difference in domain and the resulting utter-
ances. Utterances giving details about travel plans

SThe results for ATIS are based on half of the overall
ATIS data, as cross-validating the model on all data took pro-
hibitively long, presumably due to the large number of unique
frames / classes.
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Figure 1: F-Score by Length of Prefix

are likely to present many important details, and
some of them late into the utterance; cf. (1) above.
The data from (DeVault et al., 2009) seems to be
more conversational in nature, and, more impor-
tantly, presumable the expressible goals are less
closely related to each other and hence can be read
off of shorter prefixes.

As presented so far, the results are not very
helpful for practical applications of incremental
NLU. One thing one would like to know in a prac-
tical situation is how much the prediction of the
model can be trusted for a given partial utterance.
We would like to read this off graphs like those
in the Figure—but of course, normally we cannot
know what percentage of an utterance we have al-
ready seen! Can we trust this averaged curve if we
do not know what length the incoming utterance
will have?

To investigate this question, we have binned the
test utterances into three classes, according to their
length: “normal”, for utterances that are of aver-
age length + half a standard deviation, and “short”
for all that are shorter, and “long” for all that are
longer. The f-score curves for these classes are
shown with the non-solid lines in Figure 1. We
see that for ATIS there is not much variation com-
pared to averaging over all utterances, and more-
over, that the “normal” class very closely follows
the general curve. On the pento data, the model
seems to be comparably better for short utterances.

In a practical application, one could go with
the assumption that the incoming utterance is go-
ing to be of normal length, and use the “normal”



curve for guidance; or one could devise an ad-
ditional classifier that predicts the length-class of
the incoming utterance, or more generally predicts
whether a frame can already be trusted (DeVault et
al., 2009). We leave this for future work.

As we have seen, the models that treat the se-
mantic frame simply as a class label do not fare
particularly well. This is perhaps not that surpris-
ing; as discussed above, in our corpora there aren’t
that many utterances with exact the same frame.
Perhaps it would help to break up the task, and
train individual classifiers for each slot?’ This
idea can be illustrated with (2) above. There we al-
ready included “unused” slots in the frame; if we
now train classifiers for each slot, allowing them
to predict “empty” in cases where a slot is unused,
we can in theory reconstruct any frame from the
ensemble of classifiers. To cover the pento data,
the ensemble is small (there are 5 frames); it is
considerably larger for ATIS, where there are so
many distinct slots.

Again we begin by looking at the performance
for full utterances (i.c., at 100% utterance length),
but this time for constructing the frame from the
reply of the classifier ensemble:

classf. metric ATIS  Pento
maj correctness  0.16 0

4 maj f-score 33.18 20.24
SVM correctness  52.69  50.48
SVM f-score 86.79 73.15

We see that this approach leads to an impressive
improvement on the ATIS data (83.64 f-score in-
stead of 68.17), whereas the improvement on the
pento data is more modest (73.15 / 63.23).

Figure 2 shows the incremental development of
the f-scores for the reconstructed frame. We see
a similar shape in the curves; again a relatively
steady incline for ATIS and a more dramatic shape
for pento, and again some differences in behaviour
for the different length classes of utterances. How-
ever, by just looking at the reconstructed frame,
we are ignoring valuable information that the slot-
classifier approach gives us. In some applications,
we may already be able to do something useful
with partial information; e.g., in the ATIS domain,
we could look up an airport as soon as a FROM-
LOC becomes known. Hence, we’d want more
fine-grained information, not just about when we
can trust the whole frame, but rather about when

"A comparable approach is used for the non-incremental
case for example by (Mairesse et al., 2009).
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Figure 2: F-Score by Length of Prefix; Slot Clas-
sifiers

we can trust individual predicted slot values. (And
so we move from the prediction task to the partial
representations task.)

To explore this, we look at First Occurrence and
Final Decision for some selected slots in Table 2.
For some slots, the first occurrence (FO) of the
correct value comes fairly early into the utterance
(e.g., for the name of the airline it’s at ca. 60%,
for the departure city at ca. 63%, both with rela-
tively high standard deviation, though) while oth-
ers are found the first time rather late (goal city
at 81%). This conforms well with intuitions about
how such information would be presented in an ut-
terance (“I’d like to fly on Lufthansa from Berlin
to Tokyo”).

We also see that the predictions are fairly stable:
the number of cases where the slot value stays cor-
rect until the end is almost the same as that where
it is correct at least once (FD applicable vs. FO
apl), and the average position is almost the same.
In other words, the classifiers seem to go fairly
reliably from “empty” (no value) to the correct
value, and then seem to stay there. The overhead
of unnecessary edits (EO) is fairly low for all slots
shown in the table. (Ideally, EO is O, meaning that
there is no change except the one from “empty” to
correct value.) All this is good news, as it means
that a later module in a dialogue system can often
begin to work with the partial results as soon as
a slot-classifier makes a non-empty prediction. In
an actual application, how trustworthy the individ-
ual classifiers are would then be read off statistics



slot name avg FO stdDev
AIRLINE_NAME 0.5914  0.2690
DEPART_TIME.PERIOD_OF_DAY | 0.7878 0.2506
FLIGHT_DAYS 0.4279  0.2660
FROMLOC.CITY_-NAME 0.6345 0.1692
ROUND._TRIP 0.5366  0.2140
TOLOC.CITY_-NAME 0.8149  0.1860
frames 0.9745  0.0811

apl avgFD stdDev apl avgEO stdDev apl

506  0.5909 0.2698 501 0.5180 0.5843 527
530  0.7992 0.2476 507 0.2055 0.5558 579

37 04279 0.2660 37  0.0000 0.0000 37
3633 0.6368 0.1692 3554 0.1044 0.4526 3718
287 0.5366 0.2140 287 0.0104 0.1015 289
3462 0.8162 0.1856 3441 0.2348 0.5723 3628
2382 09765 0.0773 2361 0.7963 1.1936 4481

Table 2: FO/FD/EO for some selected slots; averaged over utterances of all lengths

like these, given a corpus from the domain.

To conclude this section, we have shown that
classifiers that predict a complete frame based on
utterance prefixes have a somewhat hard task here
(harder, it seems, than in the corpus used in (Sagae
et al., 2009), where they achieve an f-score of 87
on transcribed utterances), and the prediction re-
sults improve steadily throughout the whole utter-
ance, rather than reaching their best value before
its end. When the task is ‘spread’ over several
classifiers, with each one responsible for only one
slot, performance improves drastically, and also,
the results become much more ‘incremental’. We
now turn to models that by design are more incre-
mental in this sense.

5 Sequential Models: Conditional
Random Fields

5.1 Experimental Setup

We use Conditional Random Fields (Lafferty et

al., 2001) as our representative of the class of se-

quential models, as implemented in CRF++.8 We

use a simple template file that creates features

based on a left context of three words.

Even though sequential models have the poten-
tial to be truly incremental (in the sense that they
could produce a new output when fed a new in-
crement, rather than needing to process the whole
prefix again), CRF++ is targeted at tagging appli-
cations, and expects full sequences. We hence test
in the same way as the SVMs from the previous
section, by computing a new tag sequence for each
prefix. Training again is done only on full utter-
ances / tag sequences.

We compare the CRF results against two base-
lines. The simplest consists of just always choos-
ing the most frequent tag, which is “O” (for other,
marking material that does not contribute directly
to the relevant meaning of the utterance, such
as “please” in “I'd like to return on Monday,
please.”). The other baseline tags each word with

8http: //crfpp.sourceforge.net/
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ATIS Corr.  TagF-Score  Frame F-Score
CRF 9338 82.56 76.10
Maj 85.14 60.86 48.08
O 6343 00.31 00.31

Pento Corr. Tag F-Score  Frame F-Score
CRF 89.19 88.95 76.94
Maj 80.20 80.13 65.94
O 590 0.19 0.19

Table 3: Results of CRF models

its most frequent training data tag.

5.2 Results
We again begin by looking at the limiting case, the
results for full utterances (i.e., at the 100% mark).
Table 3 show three sets of results for each cor-
pus. Correctness looks at the proportion of tags
in a sequence that were correct. This measure is
driven up by correct recognition of the dummy
tag “0”; as we can see, this is quite frequently
correct in ATIS, which drives up the “always use
O”-baseline. Tag F-Score values the important
tags higher; we see here, though, that the majority
baseline (each word tagged with its most frequent
tag) is surprisingly good. It is solidly beaten for
the ATIS data, though. On the pento data, with
its much smaller tagset (5 as opposed to 95), this
baseline comes very high, but still the learner is
able to get some improvement. The last metric
evaluates reconstructed frames. It is stricter, be-
cause it offers less potential to be right (a sequence
of the same tag will be translated into one slot
value, turning several opportunities to be right into



only one).

The incremental dynamics looks quite different
here. Since the task is not one of prediction, we
do not expect to get better with more information;
rather, we start at an optimal point (when nothing
is said, nothing can be wrong), and hope that we
do not amass too many errors along the way. Fig-
ure 3 confirms this, showing that the classifier is
better able to keep the quality for the pento data
than for the ATIS data. Also, there is not much
variation depending on the length of the utterance.

6 Conclusions

We have shown how sequential and local statistical
models can be used for two variants of the incre-
mental NLU task: prediction, based on incomplete
information, and assignment of partial representa-
tions to partial input. We have shown that break-
ing up the prediction task by using an ensemble
of classifiers improves performance, and creates a
hybrid task that sits between prediction and incre-
mental interpretation.

While the objective quality as measured by our
metrics is quite good, what remains to be shown is
how such models can be integrated into a dialogue
system, and how what they offer can be turned into
improvements on interactivity. This is what we are
turning to next.
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Invited Talk

Dynamic Adaptation in Dialog Systems

Marilyn Walker

University of California, Santa Cruz

A hallmark of human robust intelligence is the ability to flexibly and dynami-
cally adapt behavior to the current situation. For dialog behavior, this entails adap-
tation to features of both the dialog partner (e.g., relationship, age, personality) and
the dialog situation (e.g., task context, asynchronous interaction, limited modalities
such as voice-only communication). We don’t completely understand how humans
do this, nor do we have the ability to produce such dynamically adaptable behavior
in human computer dialog interaction. In this talk I will discuss our recent work on
dynamic adaptation to the user, and present some experimental results showing that
it is possible to automatically generate both verbal and nonverbal system behaviors
that are perceived by the user as reliably expressing particular system personalities.
I will describe two of my current projects at UCSC that are integrating these ca-
pabilities into mobile dialogue systems: SpyFeet, a role playing augmented reality
game for encouraging girls to exercise, and Skipper, a dialogue system that gives
pedestrians directions in both urban and campus environments.
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Abstract

This paper proposes a novel approach
for predicting user satisfaction transitions
during a dialogue only from the ratings
given to entire dialogues, with the aim
of reducing the cost of creating refer-
ence ratings for utterances/dialogue-acts
that have been necessary in conventional
approaches. In our approach, we first
train hidden Markov models (HMMs) of
dialogue-act sequences associated with
each overall rating. Then, we combine
such rating-related HMMs into a single
HMM to decode a sequence of dialogue-
acts into state sequences representing to
which overall rating each dialogue-act is
most related, which leads to our rating pre-
dictions. Experimental results in two di-
alogue domains show that our approach
can make reasonable predictions; it signif-
icantly outperforms a baseline and nears
the upper bound of a supervised approach
in some evaluation criteria. We also
show that introducing states that represent
dialogue-act sequences that occur com-
monly in all ratings into an HMM signifi-
cantly improves prediction accuracy.

1 Introduction

In recent years, there has been intensive work
on the automatic evaluation of dialogues (Walker
et al., 1997; Moller et al., 2008). Automatic
evaluation makes it possible to predict the per-
formance of dialogue systems without the costly
process of performing surveys with human sub-
jects, leading to a rapid improvement cycle for
dialogue systems. It is also useful for detect-
ing problematic situations in an ongoing dialogue
(Walker et al., 2002; Herm et al., 2008; Kim,
2007). In these studies, the typical approach is
to train a prediction model, such as a regression
or classification model, using features represent-
ing the whole or a part of a dialogue together with
human reference labels (e.g., reference ratings).
However, creating such reference labels by hand

can be extremely costly when we want to predict
user satisfaction transitions during a dialogue be-
cause we need to create reference labels after each
utterance/dialogue-act in the training data (Engel-
brecht et al., 2009).

This paper proposes a novel approach for pre-
dicting user satisfaction transitions during a dia-
logue only from the dialogues with overall rat-
ings. The approach makes it possible to avoid
creating reference labels for utterances/dialogue-
acts and only requires a single reference label for
each dialogue. More specifically, we predict the
user satisfaction rating after each dialogue-act in a
dialogue only by using dialogues with dialogue-
level (overall) user satisfaction ratings as train-
ing data. Our basic approach is to train hid-
den Markov models (HMMs) of dialogue-act se-
quences associated with each overall rating and
combine such rating-related HMMs into a single
HMM. We use this combined HMM to decode a
sequence of dialogue-acts by the Viterbi algorithm
(Rabiner, 1990) into state sequences that indicate
from which rating-related HMM each dialogue-act
is most likely to have been generated, leading to
our rating predictions for the dialogue-acts. This
paper experimentally examines the validity of our
approach and explores several model topologies
for possible improvement.

In Section 2, we review related work on auto-
matic evaluation of dialogues. In Section 3, we
describe our approach in detail. In Section 4, we
describe the experiment we performed to verify
our approach and present the results. In Section
5, we summarize and mention future work.

2 Related Work

Regression models are typically utilized for eval-
uating the quality of an entire dialogue. Most fa-
mously, the PARADISE framework (Walker et al.,
1997) learns from data a linear regression model
that predicts dialogue-level user satisfaction from
various objective characteristics of a dialogue that
concern task success and dialogue costs. This
framework is widely used today and a number of
extensions have been proposed to improve the pre-
diction performance (Moller et al., 2008); how-
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ever, it is not aimed at predicting user satisfaction
transitions.

Classification models are widely employed to
detect problematic situations in an ongoing dia-
logue. Walker et al. (2002) developed the Prob-
lematic Dialogue Predictor for the “How May I
Help You” system (Gorin et al., 1997) to robustly
transfer problematic calls to human operators in
call routing tasks. They derive speech recogni-
tion, language understanding, and dialogue man-
agement features from the first few turns of a dia-
logue and apply a decision tree classifier to detect
problematic calls. For a similar task, Hirschberg
et al. (2004) and Herm et al. (2008) used prosodic
and emotional features. Kim (2007) recently pro-
posed an approach for online call quality monitor-
ing so that problematic calls can be transferred to
human operators as quickly as possible rather than
waiting for the first few turns.

N-grams and HMM-based approaches have also
been actively studied. Hara et al. (2010) proposed
predicting the most likely user satisfaction level of
a dialogue by using N-grams of dialogues for each
satisfaction level in the music navigation domain.
Isomura et al. (2009) used HMMs to evaluate the
naturalness of a dialogue in their interview system.
They trained HMMs that model dialogue-act se-
quences between human subjects and used them to
evaluate human-machine dialogues by the output
probabilities of the HMMs. Recently, there have
been approaches to predict user satisfaction tran-
sitions by evaluating the quality of individual ut-
terances in a dialogue. For example, Engelbrecht
et al. (2009) predicted user satisfaction ratings af-
ter each user utterance by HMMs trained from
utterance-level features and utterance-level refer-
ence ratings.

The problem with these approaches is that they
require a lot of training data, especially when we
want to predict the quality of smaller units such
as utterances. Our aim is to reduce such cost.
Our work is similar to Engelbrecht’s work (Engel-
brecht et al., 2009) in that we use HMMs to predict
user satisfaction transitions during a dialogue but
different in that we only use dialogue-level ratings
to model dialogue-act-level user satisfaction tran-
sitions.

3 Approach

We aim to predict user satisfaction transitions only
from dialogues with overall ratings. More for-
mally, given a dialogue d; of a set of dialogues
D (= {dy...dn}), we want to predict the user
satisfaction rating after each dialogue-act in d;,
namely, 7'(da(d;, 1)) ...7"(da(d;, m;)), using D
with their dialogue-level ratings r(dy) ...r(dy).
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Speaker HMM for Rating 1 Speaker HMM for Rating 2

1 :speaker:speakerz 3:speaker:speaker2

e

Figure 1: SHMMs connected ergodically. In the
figure, an oval marked with speakerl/speaker2
indicates a state that emits speakerl/speaker2’s
dialogue-acts.  Arrows denote transitions and
numbers before speakerl/speaker2 are state IDs.
Boxes group together the states related to a partic-
ular overall rating.

Here, da(d;, ) denotes the [-th dialogue-act in d;,
N the total number of dialogues, and m; the total
number of dialogue-acts in d;.

Our basic idea is to train HMMs representing
dialogue-act sequences of dialogues for each over-
all rating and combine these rating-related HMMs
into a single HMM that can assign ratings for
dialogue-acts by estimating from which HMM
each dialogue-act has most likely to have been
generated by the Viterbi decoding. We use HMMs
because they can deal with sequences that evolve
over time and have been successfully utilized to
model and evaluate dialogue-act sequences (Shi-
rai, 1996; Isomura et al., 2009; Engelbrecht et
al., 2009). The generative feature of an HMM is
also useful when we want to build a probabilis-
tic dialogue manager that produces the most likely
dialogue-act sequences (Hori et al., 2008) or that
aims to maximize a reward function in partially
observable Markov decision processes (Williams
and Young, 2007; Minami et al., 2009).

When there are K levels of user satisfaction as
overall ratings, we create K HMMs each of which
is trained using the dialogue-act sequences in dia-
logues Dy, C D, where Dy, = {Vd;, |r(d;) = k}.
We use the EM-algorithm to train HMMs. Here,
we assume that each HMM has two states, each
of which emits dialogue-acts of one of the con-
versational participants. This type of HMM is
called a speaker HMM (SHMM) and has been
successfully utilized to model two-party conversa-
tion (Meguro et al., 2009).

As an illustrative example, Fig. 1 shows two
SHMMs for ratings 1 and 2 that are connected
ergodically. We can simply use these connected
SHMMs (namely, states 1, 2, 3, and 4) to decode a
sequence of dialogue-acts into state sequences and
thereby obtain rating predictions. For example, if
the optimal state sequence obtained by the Viterbi
decoding is {4, 2, 1, 3, 2}, we can convert it into
ratings <2, 1, 1, 2, 1> using the ratings associated
with the states.
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Figure 2: SHMMs with an additional SHMM
trained from all dialogues.

Introducing Common States: The simple er-
godic model may not be sufficient for appropri-
ately assigning ratings to input dialogue-act se-
quences because it is often the case that there
are dialogue-act sequences, such as greetings and
question-answer pairs, that commonly occur in ev-
ery dialogue. If we forcefully assign a rating for
such dialogue-act sequences, it may result in de-
grading the prediction accuracy. Therefore, in
addition to the simple ergodic model, we intro-
duce another SHMM that represents dialogue-act
sequences of dialogues for all ratings (see Fig.
2). This additional SHMM models dialogue-act
sequences that occur commonly in all dialogues
and it can simply be trained using all dialogues.
Hence, we call the states in this SHMM common
states. When this SHMM is added to the ergodic
model, it may be possible to reduce the possibil-
ity of our having to forcefully assign inappropriate
scores to common dialogue-act sequences. In this
model, when the optimal state sequence is {1, 4,
5, 6, 2}, the predicted ratings become <1, 2, 0, 0,
1>. Here, we assume that the SHMM for all rat-
ings corresponds to rating 0, which is reasonable
because common dialogue-acts should not affect
ratings. The obtained ratings can also be inter-
preted as <1, 2, 2, 2, 1> when we assume that
the rating of a dialogue-act is taken over from the
previous turn.

Using Concatenated Training: We have so far
presented two model topologies, one with K
SHMMs connected ergodically and the other with
K + 1 SHMMs having an additional SHMM rep-
resenting all ratings. However, we still have a
problem; that is, we need to find optimal transi-
tion probabilities between the SHMMs of different
ratings. Our solution is to use concatenated train-
ing (Lee, 1989). The procedure for concatenated
training is illustrated in Fig. 3 and has the follow-
ing three steps.

step 1 Train an SHMM M, (M € M,1 <
k < K) using dialogues Dy, where Dy =

~ Trair@ - Trai@ C Y Train
ating W) | |Rating M @

Retrain Retrain Retrain
output common

{\ M1+o () [\, Mi+o/ AL ITA
JI DR D
sequences -
copy
l".\ ().Concatenate

Train

Transition probabilities

all Mk+o .
of Mo are redistributed

Split Mconcat into
between Mo and Mk

pairs again and
Wkw
[\ Mi+o /0 [\ Mi+o /)

Figure 3: Three steps to combine SHMMs using
concatenated training.

1...Mk become]
less likely to

9]

tep 3

If the fitting has
converged for

tep 2

:

{Vd;|r(d;) = k}, and an SHMM M using
all dialogues; i.e., D. Here, K means the
maximum level of user satisfaction and r(d;)
the rating assigned to d;.

step 2 Connect each M € M with a copy of
My using equal initial and transition proba-
bilities (we call this connected model My ()
and retrain Mjo with Vd; € Dy, where
T(dz) = k.

step 3 Merge all models My (1 < k < K) to
produce one concatenated HMM (M opcqt)-
Here, the output probabilities of the copies
of My are averaged over K when all models
are merged to create a combined model. If
the fitting of all Mo models has converged
against the training data, exit this procedure;
otherwise, go to step 2 by connecting a copy
of My and M, for all k. Here, the transi-
tion probabilities from M to M;(l # k) are
summed and equally distributed between the
copied Mj’s self-loop and transitions to the
states in M.

In concatenated training, the transition and out-
put probabilities can be optimized between M
and M}, meaning that the output probabilities
of dialogue-act sequences that are common and
also found in M} can be moved from M, to
Mj. This makes the distribution of M}, sharp (not
broad/uniform), making it likely to output only
the dialogue-acts specific to a rating k. As re-
gards My, its distribution of output probabilities
can also be sharpened for dialogue-acts that oc-
cur commonly in all ratings. This sharpening of
distributions is likely to be helpful in assigning



appropriate ratings to dialogue-act sequences. In
the next section, we experimentally examine how
these proposed HMMs perform in modeling and
predicting user satisfaction transitions in dialogue.

4 Experiment

To verify our approach, we first prepared dialogue
data. Then, we trained our HMMs and compared
them with a random baseline and an upper bound
that uses a supervised approach; that is, an HMM
is trained using reference labels on the dialogue-
act level.

4.1 Dialogue Data

We used dialogues in two domains; the animal
discussion (AD) domain and the attentive listen-
ing (AL) domain. All dialogues are in Japanese.
In both domains, the data we used were text dia-
logues. We did not use spoken dialogue data be-
cause we wanted to avoid particular problems of
voice, such as filled pauses and overlaps, although
we aim to deal with spoken dialogue in the future.

4.1.1 Animal Discussion

We used the dialogue data in the AD domain that
we previously collected (Higashinaka et al., 2008).
In this domain, the system and user talk about likes
and dislikes about animals via a text chat inter-
face. The data consist of 1000 dialogues between
a dialogue system and 50 human users. Each
user conversed with the system 20 times, includ-
ing two example dialogues at the beginning. All
user/system utterances have been annotated with
dialogue-acts. There are 29 dialogue-act types in-
cluding those related to self-disclosure, question,
response, and greetings. For example, a dialogue-
act DISC-P denotes one’s self-disclosure about a
proposition P. Here, P is either 1ike (X, A) or
dislike (X, A7) where X is a conversational par-
ticipant and A a certain animal. DISC-R denotes
one’s self-disclosure of a reason for a proposition.
See (Higashinaka et al., 2008) for the details of the
dialogue-acts.

For our experiment, we created two subsets of
the data. We first extracted 180 dialogues by
taking all 18 non-example dialogues for the ini-
tial ten users sorted by user ID (AD-SUB1; 4147
user dialogue-acts and 6628 system dialogue-
acts). Then, from AD-SUBI, we randomly ex-
tracted nine dialogues per user to form another
subset of 90 dialogues (AD-SUB2; 2050 user
dialogue-acts and 3290 system dialogue-acts). An
annotator, who was not one of the authors, la-
beled AD-SUB1 with dialogue-level user satis-
faction ratings and AD-SUB2 with utterance-level
ratings. More specifically, each dialogue/utterance
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Utterance (dialogue-acts) Sm CI Wi
SYS [ Do you like rabbits? (DA: Q-DISC-P) 6 6 6
USR | I like rabbits. They are cute.
(DA: DISC-P, DISC-R)
SYS |Indeed they are cute. (DA: REPEAT) 6 6 6
SYS | Tell me why you like rabbits. 6 5 6
(DA: Q-DISC-R-OTHER)
USR | I like them because they are small and
warm. (DA: DISC-P-R)
SYS | You like them because they are warm. | 7 5 7
(DA: REPEAT)
Overall rating for the dialogue| 7 5 6

Figure 4: Excerpt of a dialogue with utterance-
level user satisfaction ratings for smoothness
(Sm), closeness (Cl), and willingness (Wi) in the
AD domain. SYS and USR denote system and
user, respectively. The dialogue was translated by
the authors.

was given three different user satisfaction rat-
ings related to “Smoothness of the conversation”,
“Closeness perceived by the user towards the sys-
tem”, and “Willingness to continue the conversa-
tion”. The ratings ranged from 1 to 7, where 1
is the worst and 7 the best (see Fig. 4 for exam-
ples of utterance-level and overall ratings given by
the annotator for an excerpt of a dialogue). In a
manner similar to (Evanini et al., 2008), we used a
third-person’s user satisfaction rating for the sake
of consistency.

For utterance-level ratings, the annotator care-
fully read each utterance and gave ratings after
each system utterance according to how she would
have felt after receiving each system utterance if
she had been the user in the dialogue. To make
the situation more realistic, she was not allowed
to look down at the dialogue after the current ut-
terance. At the beginning of a dialogue, the rat-
ings always started from four (neutral). When the
annotator gave dialogue-level ratings, she looked
through the entire dialogue and rated its quality
(smoothness, closeness, and willingness) accord-
ing to how she would have felt after having had
the dialogue in question.

4.1.2 Attentive Listening

We collected human-human listening-oriented di-
alogues in a manner similar to (Meguro et al.,
2009). In this AL domain, a listener attentively
listens to the other in order to satisfy the speaker’s
desire to speak and to make himself/herself heard.
We collected such listening-oriented dialogues us-
ing a website where users taking the roles of lis-
teners and speakers were matched up to have con-
versations. There were ten listeners who always
stayed at the website and 37 speakers who could
talk to them anytime the listeners were available.
They were all paid for their participation. A con-
versation was done through a text-chat interface.



The use of facial and other non-linguistic expres-
sions were not allowed for analysis purposes. The
participants were instructed to end the conversa-
tion approximately after ten minutes. Within a
three-week period, each speaker was instructed to
have at least two conversations a day, resulting in
our collecting 1260 listening-oriented dialogues.

Two independent annotators labeled each utter-
ance with 40 dialogue-act types, including those
related to self-disclosure, question, internal argu-
ment, sympathy, and information giving. The
inter-annotator agreement was reasonable, with
0.57 in Cohen’s k. Although we cannot describe
the full details of our dialogue-acts for lack of
space, we have dialogue-acts DISC-EVAL-POS for
one’s self-disclosure of his/her positive evalua-
tion towards a certain entity, DISC-EXP for one’s
self-disclosure of his/her experience, and SELF-Q-
DESIRE for one’s internal argument about his/her
desire (e.g., “Have I ever wanted to go abroad?”).
We used the dialogue-act annotation of one of the
annotators in this work.

An annotator gave dialogue-level user satis-
faction ratings to all 1260 dialogues (AL-ALL;
31779 speaker dialogue-acts and 28681 listener
dialogue-acts). Then, we made a subset of the
data by randomly selecting ten dialogues for
each of the ten listeners to obtain 100 dialogues
(AL-SUBI; 2453 speaker dialogue-acts and 2197
listener dialogue-acts). Finally, the annotator
gave utterance-level ratings to AL-SUB1. The
utterance-level ratings were given only after lis-
teners’ utterances. The annotator gave three rat-
ings as in the AD domain; namely, smoothness,
closeness, and good listening. Instead of willing-
ness, we have a “good listener” criterion asking
for how good the annotator thinks the listener is
from the viewpoint of attentive listening; for ex-
ample, how well the listener is making it easy for
the speaker to speak. All ratings ranged from 1 to
7. See Fig. 5 for a sample dialogue in the AL do-
main with utterance-level and overall ratings given
by the annotator.

4.2 Training HMMs

From the dialogue data and their dialogue-level
ratings, we created our proposed HMMs. We had
five topology variations:

ergodic0: The simple ergodic model with no ad-
ditional SHMM for all ratings. See Fig.
1 for the topology. This HMM has 7
SHMMs connected ergodically with equal
initial/transition probabilities.

ergodicl: The simple ergodic model with an ad-
ditional SHMM for all ratings. See Fig. 2
for the topology. This HMM has 8 (7 +
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Utterance (dialogue-acts)

LIS [You know, in spring, Japanese food tastes de-
licious. (DA: DISC-EVAL-POS)

This time every year, I make a plan to go on
a healthy diet. But ... (DA: DISC-HABIT)
Uh-huh (DA: ACK)

The temperature goes up suddenly!

(DA: INFO)

It’s always too late! (DA: DISC-EVAL-NEG)
Clothing worn gets less and less while not be-
ing able to lose weight. (DA: DISC-FACT)
Well, people around me soon get used to my
body shape though. (DA: DISC-FACT)

SPK

LIS
SPK

SPK

LIS 6 6

SPK

Overall rating for the dialogue] 7 7 7

Figure 5: Excerpt of a dialogue with utterance-
level user satisfaction ratings for smoothness
(Sm), closeness (Cl), and good listener (GL) in the
AL domain. SPK and LIS denote speaker and lis-
tener, respectively. Both the speaker and listener
are human.

1) SHMMs connected ergodically with equal
initial/transition probabilities.

ergodic2: Same as ergodicl except that the num-
ber of common states is doubled so that com-
mon dialogue-act sequences can be more ac-
curately modeled. Note that without concate-
nated training, SHMMs for each rating may
also have sharp distributions for common se-
quences. One possible solution to avoid this
is to sharpen the distributions of common
states by increasing its number of states.

concatl: 8 (7 + 1) SHMMs combined using con-
catenated training. See Fig. 3 for the topol-
ogy.

concat2: Same as concatl except that the number
of common states is doubled.

[See Appendices A and B for the actual examples
of the obtained models]

4.2.1 Baseline and Upper Bound

We created the following baseline (random) and
upper bound (supervised) models for comparison:

random: This outputs ratings 1-7 at random.

supervised: This is an HMM trained in a man-
ner similar to (Engelbrecht et al., 2009). This
model is the same as ergodicO in topology but
different in that the initial, transition, and out-
put probabilities are trained in a supervised
manner using the dialogue-acts and dialogue-
act-level reference ratings in AD-SUB2 and
AL-SUBI1. Since we only have ratings for
system/listener utterances in the corpora, in
order to make training data, we assumed that
the ratings for dialogue-acts corresponding
to user/speaker utterances were the same as



those after the previous system/listener utter-
ances. This model simulates the ideal situ-
ation where we possess user satisfaction rat-
ings for all dialogue-acts in the data.

4.3 Evaluation Procedure

We performed a ten-fold cross validation. We first
separated utterance-level labeled data (i.e., AD-
SUB2 or AL-SUBI1) into 10 disjoint sets. Then,
for each set .S, we used dialogue-level labeled
data (i.e., AD-SUBI1 or AL-ALL) excluding S
for training HMMs. Here, ‘supervised’ only used
the utterance-level labeled data excluding S for
training. Then, we made the models (i.e., er-
godic0, ergodicl, ergodic2, concatl, concat2, ran-
dom and supervised) output rating sequences for
the dialogue-acts in .S and evaluated them with the
reference ratings in .S. We repeated this process
ten times to evaluate the overall performance.

Since utterance-level ratings are provided only
after system/listener utterances, we only evaluated
ratings after dialogue-acts corresponding to sys-
tem/listener utterances. When a system/listener
utterance contained multiple dialogue-acts, the
dialogue-acts were assumed to have the same rat-
ing as that utterance. When the output rating
sequences contain 0, which can be the case for
ergodic1-2 and concat1-2, the O is replaced by the
most previous non-zero rating. When 0 is found at
the beginning of a dialogue, it remained 0. Al-
though our reference ratings always started with
four (cf. Section 4.1.1), we did not use this in-
formation to fill initial zeros because we wanted
to evaluate the prediction accuracy when we do
not have any prior knowledge. Since some mod-
els may benefit from avoiding evaluating dialogue-
acts at the beginning because of these zeros, we
simply compared the rating sequences where all
models produced non-zero values. For exam-
ple, when we have three output rating sequences
<0,5,6,0,4>, <0,0,1,2,0>, and <1,2,3,4,5> for a
given dialogue-act sequence, the zeros that follow
non-zero values are first filled with their preceed-
ing values, and thereby we obtain <0,5,6,6,4>,
<0,0,1,2,2>, and <1,2,3,4,5>. Then, by cropping
the common non-zero span, we obtain <6,6,4>,
<1,2,2>, and <3,4,5>, and use these rating se-
quences for evaluation.

4.3.1 Evaluation Criteria

We used two kinds of evaluation criteria: one for
evaluating individual matches and the other for
evaluating distributions.

Evaluating Individual Matches: We used the
match rate and mean absolute error to evaluate the
matching of reference and hypothesis rating se-
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quences. They are derived by the equations shown
below. In the equations, R (= {R;...Rz}) and
H (= {H; ...Hp}) denote reference and hypoth-
esis rating sequences for a dialogue, respectively.
L is the length of R and H (Note that they have
the same length).

e Match Rate (MR)

MR(R, H) Zmatch Ri, Hy), (1)

where ‘match’ returns 1 or O depending on
whether a rating in R matches that in H.

e Mean Absolute Error (MAE)

Z|R H;|.

Evaluating Distributions: In generative mod-
els, it is important that the output distribution
matches that of the reference. Therefore, we ad-
ditionally use Kullback-Leibler divergence, match
rate per rating, and mean absolute error per rat-
ing. The Kullback-Leibler divergence evaluates
the shape of output distributions. The match rate
per rating and mean absolute error per rating eval-
uate how accurately each individual rating can
be predicted; namely, the accuracy for predict-
ing dialogue-acts with one rating is equally val-
ued with those for other ratings irrespective of the
distribution of ratings in the reference. It is im-
portant to use these metrics in the practical as well
as information theoretic sense because it is no use
predicting only easy-to-guess ratings; we should
be able to correctly predict rare but still important
cases. For example, rating 1 in human-human di-
alogue is quite rare; however, predicting it is very
important for detecting problematic situations in a
dialogue.

e Kullback-Leibler Divergence (KL)
K
P(H
— S P(H, 1) log( L")
r=1

P(R,r)
where K is the maximum user satisfaction rating
(i.e. 7 in this experiment), R and H denote the se-
quentially concatenated reference/hypothesis rat-
ing sequences of the entire dialogues, and P (x, r)
denotes the occurrence probability that a rating r
is found in an arbitrary rating sequence.

e Match Rate per rating (MR/r)

1 & '%f
MR/r(R,H):EZZE{Z‘ =7}
r=1

MAE(R, H) ()

), 3)

match(R;, H;)

1
ie{i|R;=r}

“4)



| | Criterion [[random  [ergodicO ergodicl ergodic2 concatl ~ concat2 [[supervised |

MR 0.142¢0e1 [0.111 0.111 0.157c0e1 0.153 0.199:0c1+|[0.275¢1c0e1e2r

MAE 1.988c0c1 [2.212 2212 1.980 1.936c0c1 1.870c0c1 [[1.420c1c2¢0e1e2r
Smoothness KL 0.287 0.699 0.699  0.562 0.280 0.369 0.162

MR/r 0.143 0.137 0.137  0.176 0.136 0.177 0.217

MAEr ]2.286 2414 2414 2152 2.301 2.206 1.782

MR 0.143 0.129  0.129  0.171cpe1 0.174 0.189.0c1 [[0.279c1c2¢0e102r

MAE 2.028 2066 2.066 1.964 1.798.0c1- 1.886 1431 1c2¢0e1e2r
Closeness KL 0.195 0449 0449  0.261 0.138 0.263 0.092

MR/r 0.143 0.156 0.I56  0.I70 0.155 0.164 0.231

MAE/r [2.283 2236 2236 2221 2.079 2.067 1.702

MR 0.143.0¢1[0.112 0.112  0.180c0e1 0.152 0.183c0c1 [[0.283c1c2¢0e102r

MAE 2.005 2,133 2.133 1.962 1.801c0c1- 1.882 1.403c1c2¢0e1e2r
Willingness KL 0.225 0568 0.568  0.507 0.238 0.255 0.125

MR/r 0.143 0.152 0.152  0.192 0.181 0.167 0.224

MAE/r 1]2.286 2258 2258  2.107 1.958 2.164 1.705

Table 1: The match rate (MR), mean absolute error (MAE), Kullback-Leibler divergence (KL), match
rate per rating (MR/r) and mean absolute error per rating (MAE/r) for our proposed HMMs, the random
baseline, and the upper bound (supervised) for the AD domain. ‘e0—e2’, ‘c1-c2’, and ‘r’ indicate the sta-
tistical significance (p<<0.01) over ergodicO-2, concat1-2, and random, respectively. Bold font indicates
the best value within each row (except for ‘supervised’).

where R; and H; denote ratings at i-th positions.

e Mean Absolute Error per rating (MAE/r)

LK {'% }|Ri_Hi|
et/ Ri=r
= cliR =)
)

4.4 Evaluation Results

Tables 1 and 2 show the evaluation results for the
AD and AL domains, respectively. The MR and
MAE values are averaged over all dialogues. To
compare the means of the MR and MAE, we per-
formed a non-parametric multiple comparison test
[Steel-Dwass test (Dwass, 1960)]. We did not per-
form a statistical test for other criteria because it
was difficult to perform sample-wise comparison
for distributions. Naturally, ‘supervised’ is the
best performing model for all criteria in both do-
mains. Therefore, we focus on how much our pro-
posed models differ from the baseline (random)
and the upper bound (supervised).

In the AD domain, we find that ergodicO and er-
godicl performed rather poorly and concatl and
concat2 performed fairly well, significantly out-
performing the random baseline. However, it is
also clear that we still need a great deal of im-
provement for our models to reach the level of
‘supervised’. A promising sign is that concat2
is not significantly different from ‘supervised’ in
smoothness. Here, ergodicO and ergodicl re-
turned the exact same results. This means that the
state transition paths did not go through the com-
mon states at all in ergodicl, suggesting that the
common states in ergodicl have very broad out-
put distributions and the optimal path could not
go through the common states, instead preferring
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other states having sharper distributions. How-
ever, this phenomenon was rightly avoided by in-
troducing more common states as seen in the re-
sults for ergodic2; nonetheless, as the results for
concatl and concat2 indicate, the transition prob-
abilities have to be trained appropriately to obtain
better results.

In the AL domain, although the tendency of
the evaluation results is the same as that for the
AD domain, concat? is clearly the best perform-
ing model. It outperformed other models in al-
most all cases except for “Good Listener” for
which concatl performed better. In fact, the MR/r
and MAE/r of concatl are quite close to those of
‘supervised’, suggesting the potential of our ap-
proach.

Overall, although we still need further improve-
ment in order for our models to be closer to the
upper bound, we showed that we can, to some ex-
tent, predict user satisfaction transitions in a dia-
logue only from overall ratings of dialogues using
our proposed HMMs. We also showed that model
topologies and learning methods can make signif-
icant differences. Especially, we found the intro-
duction of common states to be crucial in making
appropriate models for prediction. Since our mod-
els, especially concat2, significantly outperformed
the baseline, we believe that our approach can be
one of the viable options for automatically predict-
ing user satisfaction transitions when there exist
only overall rating data.

5 Summary and Future Work

We presented a novel approach for modeling user
satisfaction transitions only from dialogues with
overall ratings. The experimental results show that
it is possible to predict user satisfaction transi-



| [ Criterion [[random  JergodicO ergodicl ergodic2 concatl concat2 [supervised |

MR 0.143.0¢1¢2[0.069  0.069  0.13Tcpe1 0.173c0e1  0.243c1c0e1e2r [|0.439c1c2¢0e 162

MAE 1.868c0c12][2.519 2519 2433 1.687coc1e2r 1.594c0c1e2r  [[0.802c1c2e0e1e2r
Smoothness  FE 0.989 2253 27253 2319 0.851 0.753 0.087

MR/ 0.141 0.IT8 0.IT8  0.I56 0.161 0.167 0.231

MAEr [[2.289 23500 2300 2492 2.093 2.077 1.868

MR 0.143c0e1 [0.050  0.050  0.175c0e1 0.158c0e1 — 0.263c1c0e1c2r [[0.425¢1c2¢0e 1627

MAE 1.849:0c102[2357 2357 2316 1.778c0c1e2 1.562c0c1c2r  |[0-890c1c2e0e1e2r
Closeness KL 1.022 2137 20137 2220 1,155 0.909 0.109

MRt 0.143 0.090 0.090 0.122 0.117 0.159 0.237

MAE/r [2.281 2577 2577 2311 2.260 2.039 1.972

MR 0.143.0e1 0.075 0.075 0.145c0e1 0.199c0e1 0.206.0c1c2 0.422:1c2¢0e1e2r

MAE 1.890c0e162|2.237 2237 2150 1.634c0c1c2r 1.634c0c1c2r  [|0.852c1c2c00102r
Good Listener K& 0.945 1738 1738 1782 0.924 0.824 0.087

MR/t 0.143 0.2 0.I2T  0.184 0.224 0.200 0.227

MAE/r [2.284 2358 2358  2.236 1.911 2.083 1.769

Table 2:

tions to some extent by our approach and that in-
troducing common states and concatenated train-
ing can significantly improve prediction accuracy.
For improvement, we plan to explore new dialogic
features for emissions, different topologies, and
other optimization functions, such as discrimina-
tive ones. We also need to validate our approach
using dialogue-act recognition results instead of
hand-labeled dialogue-acts. We also want to ap-
ply our approach to sequence mining in dialogues
where we have categories instead of ratings for di-
alogues. It is also necessary to test whether our
HMMs can be generalized over different raters,
since user satisfaction ratings may differ greatly
among individuals. Although there remain such
issues, we believe we have presented a new di-
rection in automatic evaluation of dialogues and
the experimental results show that our approach is
promising.
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This HMM is the model obtained for one of the folds in the experiment. Square and oval states emit a lis-
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EVAL-POS in the rating score

7, indicating that it may be better to make speakers talk about positive evaluations to be a good listener.

tener’s dialogue-act and a speaker’s dialogue-act, respectively. We find DICS-EVAL

of one’s evaluation with a negative polarity) in the rating score 1 and DICS
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Abstract (Luo, 2005) without modifications. Yang et al.
(2008) use only th&1UC score. Bengtson & Roth

Commonly used coreference resolution  (2008) and Stoyanov et al. (2009) derive variants
evaluation metrics can only be applied to  from theB? algorithm (Bagga & Baldwin, 1998).
key mentions, i.e. already annotated men-  Rahman & Ng (2009) propose their own variants
tions. We here propose two variants of the  of B3 and CEAF. Unfortunately, some of the met-
B andCEAF coreference resolution eval-  rics’ descriptions are so concise that they leave too
uation algorithms which can be applied  much room for interpretation. Also, some of the
to coreference resolution systems dealing  metrics proposed are too lenient or are more sen-
with system mentions, i.e. automatically sitive to mention detection than to coreference res-
determined mentions. Our experiments  olution. Hence, though standard corpora are used,
show that our variants lead to intuitive and the results are not Comparab|e.
reliable results. This paper attempts to fill that desideratum by
analysing several variants of tB& and CEAF al-
gorithms. We propose two new variants, namely

The coreference resolution problem can be diBiys and CEAF,,,, and provide algorithmic de-
vided into two steps: (1) determiningentions, tails in Section 2. We describe two experiments in
i.e., whether an expression is referential andSection 3 showing theB?, , andCEAF,,, lead to
can take part in a coreferential re|ati0nship, andntUitive and reliable results. Implementations of
(2) deciding whether mentions are coreferent oBys andCEAF,,; are available open source along
not. Most recent research on coreference reswith extended examplés

olution simplifies the resolution task by provid- ) .

ing the system wittkey mentions, i.e. already an- 2 Coreference Evaluation Metrics

notat_ed mentions (Luo et al. - (2004), Denl_s &_We discuss the problems which arise when apply-
Baldrl_dge (2007).’ CUIOt'.[a etal. (2007), |_|"’1gh'gh'ing the most prevalent coreference resolution eval-
& }_<Ie_|n (2007), inter alia; see also the task de'uation metrics to end-to-end systems and propose
scription of the recent SemEval task on coref-our variants which overcome those problems. We

erence resolution &t t p: //_St el . ub. e_du/ provide detailed analyses of illustrative examples.
seneval 2010- cor ef ), or ignores an impor-

tant part of the problem by evaluating on key men-2.1 MUC

tions only (Ponzetto & Strube, 2006; Bengtson &The MUC score (Vilain et al., 1995) counts

Roth, 2008, inter alia). We follow here Stoyanovthe minimum number of links between mentions

Pft al. (20“09’ p.657)_ In arguing that such e\_/a_lua—to be inserted or deleted when mapping a sys-
tions are “an unrealistic surrogate for the original

, tem response to a gold standard key set. Al-
problem” and ask researchers to evaluate end-tQ: L . . .
. hough pairwise links capture the information
end coreference resolution systems.

. in a set, they cannot represent singleton en-
However, the evaluation of end-to-end coref- y P 9

) . . tIEIeS, i.e. entities, which are mentioned only

erence resolution systems has been inconsisten . .
N . .~ _once. Therefore, the MUC score is not suitable
making it impossible to compare the results. Nico-

lae & Nicolae (2006) evaluate using thdUC for the ACE datalfttp://waw. i tl. nist.
score (Vilain et al., 1995) and tgEAF algorithm *htt p: //www. h-its. org/ nl p/ downl oad

1 Introduction

Proceedings of SIGDIAL 2010: the 11th Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 28-36,
The University of Tokyo, September 24-25, 2010. (©2010 Association for Computational Linguistics
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gov/iad/ m g/t est s/ ace/ ), which includes - ?aeijlc}
singleton entities.in the kgys. Moreovgr, thg MUC  Ssteml ,egponse {abd
score does not give credit for separating singleton P R F
entities from other chains. This becomes problem-  B? 1.0 0.444 0615
atic in a realistic system setup, when mentions are B 0.556 0556 0.556
4 ’ B¢, 0.556 0.556 0.556
extracted automatically. B, 0.667 0556 0.606
s CEAF,,. 0.5 0.667 0.572
22 B Seenz @bg
TheB? algorithm (Bagga & Baldwin, 1998) over- response I{Da bdg - -
comes the shortcomings of the MUC score. In- gz 10 0444 0615
stead of looking at the linksB® computes preci- B, 0.375 0.556 0.448
sion and recall for all mentions in the document, B, 0.375 0.556 0.448
i i : B3 0.5 0.556 0.527
which are then combined to produce the final pre-  Bsus
. , CEAF,,, 0.4 0.667 0.500
cision and recall numbers for the entire output.
For each mention, thB? algorithm computes a Table 1: Problems o8}

precision and recall score using equations 1 and 2:

. N |Rm7‘, mel" : _ Precision-Recall
(B calculated as:
R, N Ko, '
Recall(m;) = # @) PTBS = %(% + %) =1.0

Recps = 3(3 + 3 +0) = 0.444

_ 1.0x0.444 -
FBS =2 X Y5044 — 0615

whereR,,, is the response chain (i.e. the system

output) which includes the mention;, and K,,,, B3, retains twinless system mentions. It assigns

is the key chain (manually annotated gold stand/|R,,| to a twinless system mention as its preci-

dard) withm;. The overall precision and recall are sion and similarlyl /| K, | to a twinless key men-

computed by averaging them over all mentions. tion as its recall. For the same example above, the
SinceB?’s calculations are based on mentions B2, precision, recall and F-score are given by:

singletons are taken into account. However, @ Prys =3(3+3 +3) = 0.556

problematic issue arises when system mentions Recps = 1(2+ 2+ 1) =0.556

have to be dealt withB> assumes the mentionsin ’“i 2 x 0:586x0:356 - () 556

ol 0.556+0.444
the key and in the response to be identical. Hence, . 3
B3 has to be extended to deal with system men- Tables 1, 2and 3illustrate the problems

3 : -
tions which are not in the key and key mentionsanCI By The rows labeledystem give the origi

not extracted by the system, so calladinless nal keygs agd systgm responses while the rows_la-

. beledBj, B;;; andB;, . show the performance gen
mentions (Stoyanov et al., 2009). a Y , .

erated by Stoyanov et al.’s variants and the one

2.2.1 ExistingB? variants we introduce in this papeB?,, (the row labeled
A few variants of thed3 algorithm for dealing with  CEAF .y is discussed in Subsection 2.3). .
system mentions have been introduced recently. In Table 1, there are two system outputs (i.e.
Stoyanov et al. (2009) suggest two variants of theédystem 1 and System 2). Mentionsd and e are
B? algorithm to deal with system mentior& and the twinless system mentions erroneously resolved

B3,2. For example, a key and a response are praandc a twinless key mention.System 1 is sup-

vided as below: posed to be slightly better with respect to preci-
Key:{abd sion, becaus&ystem 2 produces one more sSpu-
Response{a b d} rious resolution (i.e. for mentior ). However,

B} discards all twinless system mentions (i.e.Bj computes exactly the same numbers for both
mention d) and penalizes recall by settingsystems. Hence, there is no penalty for erroneous
recall,,, = 0 for all twinless key mentions (i.e. coreference relations i}, if the mentions do not
mention ¢). TheB] precision, recall and F-score appear in the key, e.g. putting mentiath®r e in
— . 5 s _ Set 1 does not count as precision errors. B

Our discussion 08; andB;;; is based on the analysis

of the source code available t t p: / / waw. cs. ut ah. 1S 100 lenient by only evaluating the correctly ex-
edu/ nl p/ reconcil e/ . tacted mentions.
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Setl Singletons Setl Singletons
ke abg ke ab
System 1 regponse %a b d}}i System 1 regponse }a b}d}
P R F P R F
B, 0.556  0.556 0.556 B, 0556 1.0 0.715
Bl 0.556  0.556 0.556 By, 0556 1.0 0.715
BZ,. 0.667  0.556 0.606 BZ,. 0556 1.0 0.715
CEAF,,, 0.5 0.667 0.572 CEAF,y 0.667 1.0 0.800
ke abg ke ab
System2 regponse %a b d}}: {c} System2 regponse }a b}d} {i} {j} {k}
P R F P R
B3, 0.667  0.556 0.606 BZ, 0778 1.0 0.875
B, 0.667  0.556 0.606 B ... 0556 1.0 0.715
BZ,. 0.667  0.556 0.606 B,s 0556 1.0 0.715
CEAF,; 0.5 0.667 0.572 CEAF,; 0.667 1.0 0.800
Table 2: Problems d83,, (1) Table 3: Problems d83,, (2)

B3, deals well with the problem illustrated in ~ We assume that Rahman & Ng apply a strategy
Table 1, the figures reported correspond to insimilar toB?,, after the removing step (this is not
tuition. However, B3, can output different re- clearin Rahman & Ng (2009)). While it avoids the
sults for identical coreference resolutions wherproblem with singleton twinless system mentions,
exposed to different mention taggers as shown iB?,,, still suffers from the problem dealing with
Tables 2 and 3.B?, manages to penalize erro- twinless key mentions, as illustrated in Table 2.
neous resolutions for twinless system mentions,
however, it ignores twinless key mentions when?-2-2 Bgys
measuring precision. In Table ystem1andSyss  We here propose a coreference resolution evalua-
tem 2 generate the same outputs, except that thion metric, B:;’ys, which deals with system men-
mention tagger irBystem 2 also extracts mention tions more adequately (see the rows Iab@éps
c. Intuitively, the same numbers are expected foin Tables 1, 2, 3, 4 and 5). We put all twinless key
both systems. HoweveB?,, gives a higher preci- mentions into the response as singletons which en-
sion toSystem 2, which results in a higher F-score. ablesB;”ys to penalize non-resolved coreferent key
r5‘nentions without penalizing non-resolved single-
ton key mentions, and also avoids the prob&p
andB?, , have as shown in Table 2. All twinless
system mentions which were deemed not coref-
erent (hence being singletons) are discarded. To
quite different results for precision and thus for F-(‘talCUIatEj‘Bgys precision, all twinless system men-

tions which were mistakenly resolved are put into

score. This is due to the cred§,, takes from un- he kev si h . luti :
resolved singleton twinless system mentions (i. the key since they are spurious resolutions (equiv-

mentioni, j, kin System 2). Since the metric is ex- alent to the assignment operationsgj),), which

pected to evaluate the end-to-end coreference sy§t3]0u'§I be penzllzeo]l_ b]}/ precision. | UQ"@H;
tem performance rather than the mention tagginfsys 0€s nqt ene It from unresolve twinless
quality, it is not satisfying to observe thag,'s ystem mentlons (i.e. the twmless' singleton sys-
numbers actually fluctuate when the system is extem ment|ons)._ Eor recall, the algo_nthm only goes
posed to different mention taggers. through thg orlglngl key sets, s_lmllar 87, and

_ B3, . Details are given in Algorithm 1.

Rahman & Ng (2009) apply another variant, de-  For example, a coreference resolution system

noted here aB?,,,. They remove only those twin- pas the following key and response:
less system mentions that are singletons before ap- Key:{abgd

plying the B? algorithm. So, a system would not  Response{abd} {ij}

be rewarded by the the spurious mentions whichg calculate the precision &,
are correctly identified as singletons during resoxpongse are altered to: Y
lution (as has been the case Wify,'s higher pre- Key, : {abd {d} {i} {j}

cision forSystem 2 as can be seen in Table 3). Responsg {abd} {ij} {c}

B3, retains all twinless system mentions, as ca
be seen in Table Bystem 2's mention tagger tags
more mentions (i.e. the mentiong andk), while
both System 1 and System 2 have identical coref-
erence resolution performance. StBf, outputs

the key and re-
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Algorithm 1 B3 The CEAF precision and recall are derived from

sYs

Input: key setstey, response sets:sponse the alignment which has the best total similarity
Output: precisionP, recall R and F-score” (denoted a®(g*)), shown in Equations 5 and 6.

1: Discard all the singleton twinless system mentions in

response; (I)<g*)

2: Put all the twinless annotated mentions inteponse; Precision = ————~~% (5)

3: if calculating precisiothen > ¢(Ri, Ry)

4: Merge all the remaining twinless system mentions

with key to form keyp; CI)(g*)

5. Useresponse to formresponse, Recall = ——F———~ (6)

6: Throughke%p andresponsep; i (K, K;)

;; endci‘?lcu'ateB precision?. If not specified otherwise, we apply Luajg (x, )

9: if calculating recalthen in the example illustrations. We denote the origi-
10:

Discard all the remaining twinless system mentions inngq| CEAF algorithm asCEAF

response to fromresponse,; o

11:  Usekey to form key, Detailed calculations are illustrated below:
12: ThroughkeyT andresponse,; Key:{abd
13:  CalculateB? recall R Response{a b d:
14: end if . .
15: Calculate F-scor& The CEAF iy ¢3(x, ) are given by:
¢3(K1,R1) =2 (Kl : {CLbC};Rl : {abd})
¢3(K1,K1) =3
So, the precision dB?,, is given by: @s(F, ) =3
. So theCEAF,,.;, evaluation numbers are:
Prps =g(3+5+3+35+5+1)=0611 . orig .
The modified key and response for recall are: TCEAForig = 3 = 0.66
ReCCEAFO,,,i = 3 = 0.667
Key, : {abc F e 9 x 0:667X0.667 _ () g7
Responsg {a b} {c} CEAForig = 2 X 066740.667 — -
The resulting recall 0B, is: 2.3.1 Problems ofCEAF,,;,
Recps = 3(3 + 3 + %) = 0.556 CEAF,,;; Was intended to deal with key mentions.
Thus the F-score number is calculated as: Its adaptation to system mentions has not been ad-
Fps =2 x Q8X055 - 559 dressed explicitly. AlthouglCEAF,,;, theoreti-
sYs . .

3 . (t:ally does not require to have the same number of
B2, . indicates more adequately the performance o . . o .
Y mentions in key and response, it still cannot be di-

end-to-end coreference resolution systems. It i?ectl aoplied to end-to-end svstems. because the
not easily tricked by different mention taggérs y app y '

entity alignments are based on mention mappings.
2.3 CEAF As can be seen from Table €EAF,,;, fails
to produce intuitive results for system mentions.

Luo (2005) criticizes theB? algorithm for using <em 2 outout ; tit
entities more than one time, becalBecomputes System 2 outputs one more spurious entity (con-
taining mention andj) thanSystem 1 does, how-

precision and recall of mentions by comparing en- hi NREAF . Sj
tities containing that mention. Hence Luo pro- Ever, achieves a sa orig PrECISION. SInce

poses th&€€EAF algorithm which aligns entities in LW'nI?:S syst(imbrrlentlotl;lf dotn(;':]have mappings in
key and respons€CEAF applies a similarity met- €y, they contribute hothing fo the mapping simi-

ric (which could be either mention based or entityla”ty' S0, resolution mistakes for system me_nfuon_s
are not calculated, and moreover, the precision is

based) for each pair of entities (i.e. a set of men- iv skewed by th b ¢ outout entit
tions) to measure the goodness of each possib astly skewed by the number of oulput entiies.
CEAF,,;, reports very low precision for system

alignment. The best mapping is used for calculat i lso St tal. (2009
ing CEAF precision, recall and F-measure. mentions (see also Stoyanov etal. ( )-

Luo proposes two entity based similarity met-2.3.2 ExistingCEAF variants
rics (Equation 3 and 4) for an entity pdik, R;)  Rahman & Ng (2009) briefly introduce their

originating from key,K;, and responses;. CEAF variant, which is denoted a€EAF,,,
¢3(Ki, R;) = |K; N Ry (3) here. They useb;(x,*), which results in equal
2K, M R| CEAF,.,.,, precision and recall figures when using
o4(Ki, Rj) = m (4) true mentions. Since Rahman & Ng'’s experiments
? J

using system mentions produce unequal precision
3Further example analyses can be found in Appendix A. and recall figures, we assume that, after removing
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Set 1 Set2  Singletons Set 1 Set 2 Set3  Singletons
key {abd key {abd
stem 1 s
&4 response| {a b} {c}{i} {i} System 1 response| {a b} {ij} {kl}  {c}
P R F P R F
C?I)EAFOTig 0.4 0.667  0.500 CEAF, & 0.286 0.667 0.400
Biys 1.0 0.556  0.715 Bj;‘ys 0.714 0.556 0.625
CEAF,,, 0.667 0.667  0.667 CEAF,y, 0.571 0.667 0.615
key {abd key {abcd
stem 2 ..
Y response| {a b} {iji}  {c} System 2 response| {a b} {ijkl} {c}
P R F P R F
CSEAForig 0.4 0.667  0.500 CEAF,.&n 0.286 0.667 0.400
BZ,. 0.8 0.556  0.656 B?,. 0571  0.556  0.563
CEAF s 0.6 0.667 0.632 CEAF,y, 0.429 0.667 0.522
Table 4: Problems o€EAF ;4 Table 5: Problems of CEAE.,,

twinless singleton system mentions, they do noffakingSystem 2 in Table 4 as an example, key and
put any twinless mentions into the other set. In thegesponse are altered for precision:

example in Table 5CEAF,.,, does not penalize Key, : {abd {i} {j}

adequately the incorrectly resolved entities con- Responsg {abd {ij} {c}

sisting of twinless sytem mentions. §fAF, ¢, So thegs(x, ) are as below, only listing the best
does not tell the difference betwe&stem 1 and mappings:

System 2. It can be concluded from the examples  ¢s(Ki1, R1) = 2 (K : {abc}; Ry : {abd})
that the same number of mentions in key and re- ¢3(f, R2) =1 (K : {i}; Rz : {ij})
. . ¢3(0, R3) =0 (R3 : {c})
sponse is needed for computing tBEAF score. ¢3(R1, R1) =3
¢3(R2, R2) = 2
2.3.3 CEAFsyS ¢3(Rs, R3) =1
We propose to adjusEEAF in the same way as he precision is thus give by:
we did for B}, resulting inCEAF,,,. We put Propar,,, = $511 = 0.6

all twinless key mentions into the response as sinThe key and response for recall are:
gletons. All singleton twinless system mentions Key, : {ab¢d

are discarded. For calculati@EAF ,,; precision, Response {a b} {c}

all twinless system mentions which were mistak-The resultingps (x, x) are:

enly resolved are put into the key. For computing  ¢3(K1, R1) = 2(K1 : {abc}; R1 : {ab})
CEAF,,, recall, only the original key sets are con- ~ #3(0; fi2) = 0(F2 : {c})

: : 3(K1, K1) =3
sidered. That waEAF ,,, deals adequately with i;g Rr. Rll)): 2
system mentions (see Algorithm 2 for details). ¢3(R2, R2) =1
_ The recall and F-score are thus calculated as:
Algorithm 2 CEAF Reccpar,,, = 2 = 0.667
Input: key setskey, response setssponse Fopar,,, =2 X Fe0080 — 0.632

Output: precisionP, recall R and F-score” .. . .
1: Discard all the singleton twinless system mentions in HOwever, one additional complication arises

response; with regard to the similarity metrics used by
2: Put all the twinless annotated mentions inteponse; CEAF. It turns out that onlye (* *) is suitable
3: if calculating precisiothen C ) 31 .
4: Merge all the remaining twinless system mentionsfor dealing with system mentions whilg; (x, x)
. Vuvith key to fortm i;:eyp; produces uninituitive results (see Table 6).

seresponse 10 Torm response H H H H
6 Form Mﬁpg* betweemeyi andiesponsep Ga(*, *_) comput_es a normalized similarity for
7. CalculateC’ EAF precisionP usingos(x, *) each entity pair using the summed number of men-
8 endif tions in the key and the responseEAF precision
9: if calculating recalthen _ L
10:  Discard all the remaining twinless system mentions inthen distributes that similarity evenly over the re-
response to formresponse,; sponse set. Spurious system entities, such as the

11:  Usekey to form key, one with mentioni andj in Table 6, are not pe-
12: Form Mapg* betweerkey, andresponse, . . L
13:  Calculate" EAF recall R usinges (x, %) nalized.¢s(x, =) calculates unnormalized similar-
14: end if ities. It compares the two systems in Table 6 ade-

15: Calculate F-scor& quately. Hence we use ondy (x, x) in CEAF .
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Setl Singletons M1 Sv2
System1 key {abdc training mentions 31,370 16,081
response| {a b} {c} {i} {i} twin mentions| 13,072 14,179
P R development mentions 8,045 -
a(x, %) 0.4 0.8 0.533 twin mentions| 3,371 —
@3 (*, %) 0.667 0.667 0.667 test mentions 8,387 4,956
ke abc twin mentions| 4,242 4,212
System2 regponse }a b} }{i it {c head coverage 79.3%  73.3%
P R E accuracy 57.3% 81.2%
Bk, * 0.489 0.8 0.607 .
¢§§*7 *g 06 0.667 0.632 Table 7: Mention Taggers on ACE2004 Data

Table 6: Problems a4 (x, *) ,
are shown in Table 7.

When normalizing the similarities by the num- 3.2  Artificial Setting
ber of entities or mentions in the key (for recall) For the artificial setting we report results on the
and the response (for precision), tREAF al-  development data using tt8M1 tagger. To illus-
gorithm considers all entities or mentions to betrate the stability of the evaluation metrics with
equally important. Henc€EAF tends to compute respect to different mention taggers, we reduce
quite low precision for system mentions whichthe number of twinless system mentions in inter-
does not represent the system performance adeals of 10%, while correct (non-twinless) ones are
quately. Here, we do not address this issue. kept untouched. The coreference resolution sys-
tem used is the BART (Versley et al., 2008) reim-
24 BLANC plementation of Soon et al. (2001). The results are
Recently, a new coreference resolution evaluaplotted in Figures 1 and 2.
tion algorithm,BLANC, has been introduced (Re-
casens & Hovy, 2010). This measure implements °*
theRand index (Rand, 1971) which has been orig-
inally developed to evaluate clustering methods.
The BLANC algorithm deals correctly with sin-
gleton entities and rewards correct entities accord
ing to the number of mentions. However, a ba-
sic assumption behinBLANC is, that the sum of
all coreferential and non-coreferential links is con- ;
stant for a given set of mentions. This implies that o}
BLANC assumes identical mentions in key and re-
sponse. Itis not clear how to ad@itANC to sys- ‘““1 0s 0s ot 02 o
tem mentions. We do not address this issue here. e e e e e e

T
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BCubedsys &
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. Figure 1: Artificial SettingB? Variants
3 Experiments g &

While Section 2 used toy examples to motivate our
metrics B3 andCEAF,,,, we here report results

sYs

on two larger experiments using ACE2004 data.

T

MUC ------
CEAFsys &

CEAForig --6--

075 | CEAFng —+— -

3.1 Data and Mention Taggers

We use the ACE2004 (Mitchell et al., 2004) En-
glish training data which we split into three sets
following Bengtson & Roth (2008): Train (268
docs), Dev (76), and Test (107). We use two in-¢ osg.-=
house mention taggers. The fir€@M1) imple-
ments a heuristic aiming at high recall. The second
(SM2) uses thel48 decision tree classifier (Wit-
ten & Frank, 2005). The number of detected men-
tions, head coverage, and accuracy on testing data Figure 2: Artificial SettingCEAF Variants

score for ACE04 Development Data

. . . .
1 0.8 0.6 0.4 0.2 0
Proportion of twinless system mentions used in the experiment
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MUC B, B}

R Pr F R Pr F |R Pr F
Soon(SM1) | 51.7 531  52.4 Soon(SM2) | 64.1 87.3 739 547 91.3 68.4
Soon (SM2) | 49.1 69.9 57.7 Bengtson 66.1 819 73.1|69.5 747 720

Table 8: Realistic SettingylUC Table 11: Realistic Setting

Omitting twinless system mentions from the lenient by ignoring all twinless mentions.
training data while keeping the number of cor- TheCEAF,,;, numbers in Table 10 llustrate the
rect mentions constant should improve the coreferig influence the system mentions have on preci-
ence resolution performance, because a more preion (e.g. the very low precision number f8von
cise coreference resolution model is obtained. A§SV1)). The big improvement foSoon (SM2) is
can be seen from Figures 1 and 2, MBC-score, largely due to the system mentions it uses, rather
B3, andCEAF,, follow this intuition. than to different coreference models.

B3 is almost constant. It does not take twinless Both B%&n andCEAF, ¢, show no serious prob-
mentions into account.B3,’s curve, also, has a lems in the experimental results. However, as dis-
lower slope in comparison to?B, and MUC (i.e. cussed before, they fail to penalize the spurious
B?,, computes similar numbers for worse models) entities with twinless system mentions adequately.
This shows that the33;, score can be tricked by .
using a high recall mention tagger, e.g. in cases-3-2 Experiment2
with the worse models (i.e. ones on the left side/We compare results of Bengtson & Roth’s (2008)
of the figures) which have much more twinlesssystem with ouiSoon (SM2) system. Bengtson &
system mentions. The origin@EAF algorithm, Roth’s embedded mention tagger aims at high pre-
CEAF,,4, is too sensitive to the input system cision, generating half of the mentio®1 gen-
mentions making it less reliabl€EAF;, is par-  erates (explicit statistics are not available to us).

allel to Bg’ys. Thus both of our metrics exhibitthe  Bengtson & Roth report &3 F-score for sys-
same intuition. tem mentions, which is very close to the one for

true mentions. TheiB3-variant does not impute
3.3 Realistic Setting errors of twinless mentions and is assumed to be
3.3.1 Experiment1 quite similar to theBj strategy.

. 3 5 o
For the realistic setting we compas#1 andSvi2 We integrate both thBj andB;,, variants into

as preprocessing components for the BART (VeriN€ir system and show results in Table 11 (we can-
sley et al., 2008) reimplementation of Soon et al N0t reportsignificance, because we do not have ac-
(2001). The coreference resolution system witfeess to results for single documents in Bengtson &
the SM2 tagger performs better, because a betteBOth s system). It can be seen that, when different

coreference model is achieved from system menvariants of evaluation metrics are applied, the per-

tions with higher accuracy. formance of the systems vary wildly.

TheMUC, B andCEAF,,; metrics have the ,  ~ 0o
same tendency when applied to systems with dif-
ferent mention taggers (Table 8, 9 and 10 and thén this paper, we address problems of commonly
bold numbers are higher with a p-value of 0.05,used evaluation metrics for coreference resolution
by a paired-t test). Since tHdUC scorer does and suggest two variants fé> andCEAF, called
not evaluate singleton entities, it produces too low? . and CEAF,,,. In contrast to the variants
numbers which are not informative any more. proposed by Stoyanov et al. (200 ,gys and

As shown in Table 9,B3, reports counter- CEAF,, are able to deal with end-to-end systems
intuitive results when a system is fed with systemwhich do not use any gold information. The num-
mentions generated by different mention taggersbers produced b;B;”ys andCEAF,,, are able to
B3, cannot be used to evaluate two different endindicate the resolution performance of a system
to-end coreference resolution systems, because tineore adequately, without being tricked easily by
mention tagger is likely to have bigger impact thantwisting preprocessing components. We believe
the coreference resolution systeB. fails to gen-  that the explicit description of evaluation metrics,
erate the right comparison too, because it is to@s given in this paper, is a precondition for the re-
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Bgys Bg Bgll Bg&n
R  Pr F |[R Pr F |[R Pr F |R Pr F
Soon (SM1) | 65.7 76.8 70.8/ 57.0 91.1 70.1| 65.1 858 74.0 65.1 78.7 71.2
Soon(SM2) | 64.1 87.3 73.9| 54.7 91.3 684 643 871 739 643 849 732

Table 9: Realistic Setting? Variants

CEAFSUS CEAForig CEAFT&n
R  Pr F |R Pr F |[R Pr F
Soon (SM1) | 66.4 61.2 63.7] 62.0 39.9 48.5| 62.1 59.8 60.9
Soon (SM2) | 67.4 65.2 66.3 | 60.0 56.6 58.2 | 60.0 66.2 62.9

Table 10: Realistic SettinGEAF Variants

liabe comparison of end-to-end coreference reso- Corpus. LDC2005T09, Philadelphia, Penn.: Linguistic

lution systems. _Data Consortium.
y Nicolae, Cristina & Gabriel Nicolae (2006). BestCut: A
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A B3 Example Output

sys

Here, we provide additional examples for analyzing the behaviﬁiﬁfwhere we systematically vary
system outputs. Since we propoﬁgs for dealing with end-to-end systems, we consider only examples
also containing twinless mentions. The systems in Table 12 and 14 generaterdiffwinless key
mentions while keeping the twinless system mentions untouched. In Table 1Bbatite number of
twinless system mentions changes through different responses anththemof twinless key mentions
is fixed.

In Table 12,B§ys recall goes up when more key mentions are resolved into the correct sétthA
precision stays the same, because there is no change in the number obtle®es resolutoins (i.e. the
spurious cluster with mentions i and j). For the examples in Tables 13 alﬁiy];;'gives worse precision
to the outputs with more spurious resolutions, and the same recall if the systsohserkey mentions in
the same way. Since the set of key mentions intersects with the set of twinkssigpentions in Table
14, we do not have an intuitive explanation for the decrease in precigionresponseto responsge
However, both the F-score and the recall still show the right tendency.

Set1 Set?2 B,
key {abcdé¢ P R F
response | {ab} {ij} | 0.857 0.280 0.422
response | {abc {ij} | 0.857 0.440 0.581
responsg | {abcd {ij} 10857 068 0.784
responsg | {abcdeg¢ {ij} | 0.857 1.0 0.923

Table 12: Analysis oB?,, 1

sys

Set1 Set 2 B2,s
key {abcdg P R F
response | {ab ¢} {ij} 0.857 0.440 0.581
response | {ab ¢} {ijk} 0.75 0.440 0.555
responsg | {abc {ijkl} 0.667 0.440 0.530
response | {abc {ijkIm} | 0.6 0.440 0.508

Table 13: Analysis oB?,, 2

sys

Set 1 B,
key {abcdé¢ P R F
response | {abij} 0.643 0.280 0.390

response | {abcij} 0.6 0.440 0.508
response | {abcdij 0.571 0.68 0.621
responsg | {abcdei} | 0551 1.0 0.711

Table 14: Analysis oB3 . 3

sys

Set 1 BZ,.
key {abcd¢g P R F
response | {abcij} 0.6 0.440 0.508
response | {abcijk} 0.5 0.440 0.468
responsg | {abcijkl} 0.429 0.440 0.434
response | {abcijkIm} [ 0.375 0.440 0.405

Table 15: Analysis oB? . 4

sys

36



Probabilistic Ontology Trees for Belief Tracking in Dialog Systems

Neville Mehta
Oregon State University

mehtane@eecs.oregonstate.edu

Deepak Ramachandran
Honda Research Institute

dramachandran@hra.com

Abstract

We introduce a novel approach for robust
belief tracking of user intention within
a spoken dialog system. The space of
user intentions is modeled by a proba-
bilistic extension of the underlying do-
main ontology called a probabilistic on-
tology tree (POT). POTs embody a prin-
cipled approach to leverage the dependen-
cies among domain concepts and incorpo-
rate corroborating or conflicting dialog ob-
servations in the form of interpreted user
utterances across dialog turns. We tailor
standard inference algorithms to the POT
framework to efficiently compute the user
intentions in terms of m-best most proba-
ble explanations. We empirically validate
the efficacy of our POT and compare it to
a hierarchical frame-based approach in ex-
periments with users of a tourism informa-
tion system.

1 Introduction

A central function of a spoken dialog system
(SDS) is to estimate the user’s intention based on
the utterances. The information gathered across
multiple turns needs to be combined and under-
stood in context after automatic speech recogni-
tion (ASR). Traditionally, this has been addressed
by dialog models and data structures such as forms
(Goddeau et al., 1996) and hierarchical task de-
composition (Rich and Sidner, 1998). To formal-
ize knowledge representation within the SDS and
enable the development of reusable software and
resources, researchers have investigated the or-
ganization of domain concepts using 1S-A/HAS-A
ontologies (van Zanten, 1998; Noh et al., 2003).
Because the SDS only has access to noisy ob-
servations of what the user really uttered due to
speech recognition and understanding errors, be-
lief tracking in speech understanding has received

Rakesh Gupta
Honda Research Institute

rgupta@hra.com

Antoine Raux
Honda Research Institute

araux@hra.com

Stefan Krawczyk
Stanford University

stefank@cs.stanford.edu

particular attention from proponents of probabilis-
tic approaches to dialog management (Bohus and
Rudnicky, 2006; Williams, 2006). The mecha-
nism for belief tracking often employs a Bayesian
network (BN) that represents the joint probabil-
ity space of concepts while leveraging conditional
independences among them (Paek and Horvitz,
2000). Designing a domain-specific BN requires
significant effort and expert knowledge that is not
always readily available. Additionally, real-world
systems typically yield large networks on which
inference is intractable without major assumptions
and approximations. A common workaround to
mitigate the intensive computation of the joint dis-
tribution over user intentions is to assume full con-
ditional independence between concepts which vi-
olates the ground truth in most domains (Bohus
and Rudnicky, 2006; Williams, 2006).

We propose a novel approach to belief track-
ing for an SDS that solves both the design and
tractability issues while making more realistic
conditional independence assumptions. We repre-
sent the space of user intentions via a probabilistic
ontology tree (POT) which is a tree-structured BN
whose structure is directly derived from the hier-
archical concept structure of the domain specified
via an IS-A/HAS-A ontology. The specialization
(1s-A) and composition (HAS-A) relationships be-
tween the domain concepts are intuitive and pro-
vide a systematic way of representing ontological
knowledge for a wide range of domains.

The remainder of the paper is structured as fol-
lows. We begin by describing the construction of
the POT given a domain ontology. We show how
a POT employs null semantics to represent con-
sistent user intentions based on the specialization
and composition constraints of the domain. We
then show how standard inference algorithms can
be tailored to exploit the characteristics of the POT
to efficiently infer the m-best list of probable ex-
planations of user intentions given the observa-

Proceedings of SIGDIAL 2010: the 11th Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 3746,
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tions. The POT and the associated inference al-
gorithm empower a dialog manager (DM) to ac-
count for uncertainty while avoiding the design
complexity, intractability issues, and other restric-
tive assumptions that characterize state-of-the-art
systems. The section on empirical evaluation de-
scribes experiments in a tourist information do-
main that compare the performance of the POT
system to a frame-based baseline system. The pa-
per concludes with a discussion of related work.

2 Problem Formulation

Let {X1,X2,...,Xn} be a set of N concepts.
Every concept X takes its value from its finite dis-
crete domain D(X;) which includes a special null
element for the cases where X is irrelevant. The
user intention space is defined as U = D(X;) x
D(X2) x -+ x D(Xy). At each dialog turn ¢,
the system makes a noisy observation o; about
the true user intention u € U. o; consists of
a set of slots. A slot is a tuple (v,d,c) where
v e {Xy,....,Xn}, d € D(v) is a value of v,
and c € R is the confidence score assigned to that
concept-value combination by the speech under-
standing (SU) system.

The goal of belief tracking is to maintain
Pr(Xi,...,Xnlo1,...,0¢), a distribution over
the N-dimensional space I/ conditioned on all the
observations made up to turn t. At each turn, the
belief is updated based on the new observations to
estimate the true, unobserved, user intention.

3 Probabilistic Ontology Trees

We model the space of the user intentions via a
POT. A POT is a tree-structured BN that extends
a domain ontology by specifying probability dis-
tributions over its possible instantiations based on
specializations and compositions.

3.1 Domain Ontology

To ensure that the corresponding POTs are tree-
structured, we consider a restricted class of do-
main ontologies over concepts.

Definition 1. A domain ontology is a labeled di-
rected acyclic graph. The set of vertices (corre-
sponding to the domain concepts) is partitioned
into {Vy}, Vs, and V¢, where Vy is the only root
node, Vg is the set of specialization nodes (re-
lated via 1S-A to their parents), and V¢ is the set
of composition nodes (related via HAS-A to their
parents). The set of edges satisfy the constraints
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Figure 1: The ontology for a sample domain where
Bi1s-A A,C1S-A A,D1s-A A, E1s-A B, F1S-A B,
C HAS-A G (essential), D HAS-A G (nonessential),
H 1s-A D, E HAS-A I (essential), J 1S-A G, and
K 15-A G. Specialization nodes are drawn single-
lined, composition nodes are drawn double-lined,
and the root node is drawn triple-lined. Special-
ization subtrees are marked by dashed ovals.

that a specialization node has exactly one parent
and a composition node may only have more than
one parent if they are all specialization nodes with
a common parent.

Specialization nodes represent refinements of
their parent concepts. Specializations of a con-
cept are disjoint, that is, for any particular instance
of the parent exactly one specialization is applica-
ble and the rest are inapplicable. For example, if
Dog 1S-A Animal and Cat 1S-A Animal, then Cat
is inapplicable when Dog is applicable, and vice
versa. Composition nodes represent attributes of
their parents and may be essential or nonessential,
e.g., Dog HAS-A Color (essential), Dog HAS-A
Tail (nonessential). These definitions correspond
with the standard semantics in the knowledge rep-
resentation community (Noh et al., 2003). An ex-
ample ontology is shown in Figure 1.

Definition 2. A specialization subtree (spec-tree)
in the ontology is a subtree consisting of a node
with its specialization children (if any).

3.2 POT Construction

We now describe how a POT may be constructed
from a domain ontology. The purpose of the POT
is to maintain a distribution of possible instanti-
ations of the ontology such that the ontological
structure is respected.



Given an ontology G, the corresponding POT is
a tree-structured BN defined as follows:

Variables. Let T be a spec-tree in G with root
R. Unless R is a (non-root) specialization node
with no specialization children, 7" is represented
in the POT by a variable X with the domain

{exists, null}, if Childreny(R) = @

D(X) = « Childreny(R), if R =V
Childreny (R) U {null}, otherwise.
Edges. Let POT variables X and Y correspond

to distinct spec-trees T'x and 7y in GG. There is a
directed edge from X to Y if and only if either
e A leaf of T'x is the root of Ty-.
e There is an edge from a leaf in T'x to the non-
specialization root of Ty .
e There is an edge from the non-specialization
root of T’y to that of Ty .

Conditional Probability Tables (CPTs). If X
(corresponding to spec-tree T’y) is the parent of Y
(corresponding to spec-tree Ty) in the POT, then
Y’s CPT is conditioned as follows:
e If 7y is rooted at one of the leaves of T,
then

Pr(Y =null| X =Y) =0
Pr(Y =nulll X #Y) =1

where Y is the domain value of X corre-
sponding to child Y.

If R is the root of T'x, and Ty has a compo-
sition root node that is attached only to nodes
in S C Childreny, (R), then

Pr(Y =nul| X =V) =1

for any domain value V of X corresponding
to anode V' € Childreny, (R) — S.

If the root of Ty is an essential composition
node attached to a leaf V' of T'x, then

Pr(Y = null| X = V) =0

where V is the domain value of X corre-
sponding to the leaf V.

We label a POT variable with that of the root of
the corresponding spec-tree for convenience. The
domain of a POT variable representing a spec-tree
comprises the specialization children (node names
in sanserif font) and the special value null; the null
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B/ C|D
0.4/0.35/0.25

null

i=]{=]j==

exists null
E 1 0
F| 0 1
nulll 0 1

Figure 2: The POT for the example domain. If a
node represents a spec-tree in the ontology, then it
is labeled by the root of the spec-tree; otherwise,
it is labeled with the name of the corresponding
ontology node. D(A) = {B, C, D}, D(B) = {E, F,
null}, D(D) = {H, null}, and Pr(A), Pr(B|A) and
Pr(D|A) represent some distributions over the re-
spective specializations. D(I) = {exists, null} and
D(G) = {J, K, null}. Note that a composition node
(G) can be shared between multiple specializa-
tions (C and D) in the ontology while the resulting
POT remains tree-structured.

value allows us to render any node (except the
root) inapplicable. Spec-trees comprising single
nodes have the domain value exists to switch be-
tween being applicable and inapplicable. The CPT
entries determine the joint probabilities over pos-
sible valid instantiations of the ontology and could
be based on expert knowledge or learned from
data. The conditions we impose on them (null se-
mantics) ensure that inconsistent instantiations of
the ontology have probability O in the POT. While
the ontology might have undirected cycles involv-
ing the children of spec-trees, the corresponding
POT is a tree because spec-trees in the ontology
collapse into single POT nodes. The POT for the
example domain is shown in Figure 2.

3.3 Tourist Information POT

For the empirical analysis, we designed a POT for
a tourist information system that informs the user
about places to shop, eat, get service, and displays
relevant information such as the distance to an in-
tended location. The user can also provide con-
versational commands such as stop, reset, undo,
etc. The full ontology for the tourist information
domain is shown in Figure 3 and the POT is in
Figure 4. In the POT, Action is the root node, with
D(Action) = {Venue, Command}, and D(Venue)
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Figure 3: The ontology for the tourist information domain. All the composition nodes have specializa-
tions of their own (such as Japanese and Greek for Cuisine), but have not been shown for the sake of

compactness.

= {Restaurant, Store, Service, null}. All the com-
position (or attribute) nodes such as Hours and
Rating are made children of Venue by construc-
tion. Since a Command is inapplicable when the
Action is a Venue, we have Pr(Command = null
| Action = Venue) = 1. The composition nodes
(Cuisine, Street, etc.) have specializations of their
own ({Japanese, Greek, ...}, {Castro, Elm, ...},
etc.), but are not shown for the sake of clarity.
Since Cuisine is an essential attribute of Restau-
rant, Pr(Cuisine = null | Venue = Restaurant) = 0;
moreover, Pr(Cuisine = null | Venue = Service) =
1 because Cuisine is not relevant for Service.

4 Inferring User Intention

We have seen how the POT provides the proba-
bilistic machinery to represent domain knowledge.
We now discuss how the POT structure can be
leveraged to infer user intention based on the slots
provided by the SU.

4.1 Soft Evidence

Every slot retrieved from the SU needs to be incor-
porated as observed evidence in the POT. We can
set the associated node within the POT directly to
its domain value as hard evidence when we know
these values with certainty. Instead, we employ
probabilistic observations to soften the evidence
entered into the POT. We assume that the confi-
dence score ¢ € [0,100] of a slot corresponds to
the degree of certainty in the observation. For an
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observed slot variable X, we create an observation
node X on the fly with the same domain as X and
make it a child of X. If x is the observed value for
slot X, then the CPT of X is constructed from the
slot’s confidence score as follows:

X =x
X # x

(|D(X)|~1)/100+1
[D(X)] ’

1—¢/100

[D(X)| >

Pr(X|X =x) = {

The probability values are generated by lin-
early interpolating between the uniform probabil-
ity value and 1 based on the confidence score. For
the remaining values,

Pr(X\X #x) = {1 — (DX = 1), )A( =X
g, X#X
where ¢ > 0. Since the confidence score gives an
indication of the probability for the observed value
of a slot but says nothing about the remaining val-
ues, the diagonal elements for the remaining val-
ues are near 1. We cannot make them exactly 1
because the observation node needs to coexist with
possibly conflicting observations in the POT.

If the user confirms the current POT hypothesis,
then observations corresponding to the current hy-
pothesis (with CPTs proportional to the score of
the confirmation) are added to the POT to enforce
the belief. If the user denies the current hypothe-
sis, then all observations corresponding to the cur-
rent hypothesis are removed from the POT.

'Tn our experiments, we use ¢ = 1077,



PriceRange

Japanese | Greek| null
Japanese| 0.6 02 0.2
Greek € 1-2e | €

null € € 12

Castro| EIm | null
Castro, 0.8 | 0.1 | 0.1
Elm € |1-2¢| €
null € € [1-2¢

Figure 4: The POT for the tourist information domain. Assuming that D(Cuisine) = {Japanese, Greek,
null} and D(Street) = {Castro, EIm, null}, the shaded observation nodes represent the soft evidence for
input slots (Cuisine, Japanese, 40) and (Street, Castro, 70).

The POT for the tourist information domain af-
ter getting two slots as input is shown in Figure 4.
The attached nodes are set to the observed slot val-
ues and the evidence propagates through the POT
as explained in the next section.

4.2 POT Inference

A probable explanation (PE) or hypothesis is an
assignment of values to the variables in the POT,
and the most probable explanation (MPE) within
the POT is the explanation that maximizes the
joint probability conditioned on the observed vari-
ables. The top m estimates of the user’s intentions
correspond to the m-best MPEs. The design of the
POT ensures that the m-best MPEs are all con-
sistent across specializations, that is, exactly one
specialization is applicable per node in any PE; all
inconsistent explanations have a probability of 0.

The m-best MPEs could be found naively us-
ing the Join-Tree algorithm to compute the joint
distribution over all variables and then use that to
find the top m explanations. The space required to
store the joint distribution alone is O(n”), where
N is the number of nodes and n the number of
values per node. Because the run time complex-
ity is at least as much as this, it is impractical for
any reasonably sized tree. However, we can get
a significant speedup for a fixed m by using the
properties of the POT.

Algorithm 1 uses a message-passing protocol,
similar to many in the graphical models litera-
ture (Koller and Friedman, 2009), to simulate a
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Algorithm 1 COMPUTE-PE
Input: POT 7" with root X, number of MPEs m, evidence E
Output: m MPEs for T’

: for X € T in reverse topological order do

Collect messages 1)y; from all children Y; of X

1x = COMPUTE-MPE-MESSAGE(X, m, {1y, })
end for
return top m elements of Pr(Xo|E)Yx, (-) without £

RAE A e

Algorithm 2 COMPUTE-MPE-MESSAGE

Input: POT node X, number of MPEs m, messages from
children %y,

Output: Message 1 x (-)

1: if X is a leaf node then

2 Yx(x) — 1,Ve € D(X)

3 return x

4: end if
5
6

: for x € D(X) do
L for 2= (g1, 2), - (s ) € (D) XX
Dy, ) : Pr(Yi=null|X =z,FE) <1} do
P (x, 2) — 1, [Pr(Yi = vil X =z, E)Yy; (vi, £3)]
end for
Yx (x) « top m elements of ¢’y ().
: end for
: return Yx

oY e

—_——

dynamic programming procedure across the lev-
els of the tree (see Figure 5). In Algorithm 2, an
MPE message is computed at each node X using
messages from the children, and sent to the par-
ent. The message from X is the function (or ta-
ble) ¢ x(x, Z) that represents the probabilities of
the top m explanations, Z, of the subtree rooted at
X for a particular value of X = z. At the root
node X, we try all values of zq to find the top m
MPEs for the entire tree. Note that in step 7, we



Figure 5: COMPUTE-MPE applied to the exam-
ple POT. (a) Inference starts with the messages be-
ing passed up from the leaves to the root A. Every
message ¥x is an m X n table that contains the
probabilities for the m-best MPEs of the subtree
rooted at X for all the n domain values of X. (b)
At the root, A is set to its first element B, and its
marginal Pr(A = B) is combined with the mes-
sage ¢p. The semantics of the POT ensures that
the other messages can be safely ignored because
those subtrees are known to be null with probabil-
ity 1. (c) A is set to C and only the essential at-
tribute G is non-null. (d) A is set to its final el-
ement D, and consequently both the node D and
the nonessential attribute G are non-null and their
messages are mutually independent.

need the marginal P(Y'|X, E) which can be ef-
ficiently computed by a parallel message-passing
method. Evidence nodes can only appear as leaves
because of our soft evidence representation, and
are encompassed by the base case. The algorithm
leverages the fact that the joint of any entire sub-
tree rooted at a node that is null with probability 1
can be safely assumed to be null with probability
1. The validity of Algorithm 1 is proven in Ap-
pendix A.

4.3 Complexity Analysis

At a POT node with at most n values and branch-
ing factor k, we do n maximizations over the prod-
uct space of k£ nm-sized lists. Thus, the time
complexity of Algorithm 1 on a POT with N
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nodes is O(N (nm)*) and the space complexity is
O(Nnmk). (Insertion sort maintains a sorted list
truncated at m elements to keep track of the top
m elements at any time.) However, the algorithm
is significantly faster on specialization nodes be-
cause only one child is applicable and needs to be
considered in the maximization (step 7). In the ex-
treme case of a specialization-only POT, the time
and space complexities both drop to O(Nmn).

A similar algorithm for incrementally finding
m-best MPEs in a general BN is given in Srinivas
and Nayak (1996). However, our approach has the
ability to leverage the null semantics in POTs re-
sulting in significant speedup as described above.
This is crucial because the run-time complexity of
enumerating MPEs is known to be P©’P-Complete
for a general BN (Kwisthout, 2008).

5 Empirical Evaluation

To test the effectiveness of our POT approach, we
compare it to a frame-based baseline system for
inferring user intentions.

The baseline system uses a hierarchical frame-
based approach. Each frame maps to a par-
ticular user intention, and the frames are filled
concurrently from the dialog observations. The
slots from a turn overwrite matching slots re-
ceived in previous turns. The baseline system uses
the same ontology as the POT to insure that it
only produces consistent hypotheses, e.g., it never
produces ”Venue=Service, Cuisine=Japanese” be-
cause Service does not have a Cuisine attribute.
When several hypotheses compete, the system se-
lects the one with the maximum allocated slots.
We implemented the POT engine based on the
Probabilistic Network Library (Intel, 2005). It
takes a POT specification as input, receives the
ASR slots, and returns its m-best MPEs.

Using a tourism information spoken dialog sys-
tem, we collected a corpus of 375 dialogs from
15 users with a total of 720 turns (details in
Appendix B). Evaluation is performed by run-
ning these collected dialogs in batch and pro-
viding the ASR slots of each turn to both the
baseline and POT belief-tracking systems.” Af-
ter each turn, both systems return their best hy-
pothesis of the overall user intention in the form
of a set of concept-value pairs. These hypothe-

2Speech recognition and understanding was performed
using the Nuance Speech Recognition System v8.5 running
manual and statistical grammars with robust interpretation.



System Precision | Recall | F1
Top hypothesis 0.84 0.81 0.83
Top 2 hypotheses 0.87 0.84 0.85

POT | Top 3 hypotheses 0.89 0.85 0.87
Top 4 hypotheses 0.91 0.86 0.89
Top 5 hypotheses 0.92 0.86 0.89

Baseline 0.84 0.79 0.81

Table 1: Precision/recall results comparing the
baseline system against the POT-based system on
the 25-scenario experiment. Results are averaged
over all 15 users.

-0.8 -0.6 -0.4 -0.2
Log-likelihood of top POT hypothesis

0

Figure 6: F1 score as a function of the log-
likelihood of the top hypothesis for the user’s goal.

ses are compared to the true user intention ex-
pressed so far in the dialog (e.g., if the user wants
a cheap restaurant but has not mentioned it yet,
PriceRange=Cheap is not considered part of the
ground truth). This offline approach allows us to
compare both versions on the same input.

Table 1 shows the precision/recall results for the
experiment based on comparing the set of true user
intention concepts to the inferred hypotheses of
the POT and baseline systems. The average word
error rate for all users is 29.6%. The POT sys-
tem shows a 2% improvement in recall and F1
over the baseline. Additionally, leveraging the m-
best hypotheses beyond just the top one could help
enhance performance or guide useful clarification
questions as shown by the improved performance
when using the top 2-5 hypotheses; we assume
an oracle for selecting the hypothesis with highest
F1 among the top m hypotheses. All of the CPTs
in the POT (besides the structural constraints) are
uniformly distributed. Thus, the performance of
the POT could be further improved by training the
CPTs on real data.
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To assess the quality of likelihood returned by
the POT as a belief confidence measure, we binned
dialog turns according to the log-likelihood of the
top hypothesis and then computed the F1 score of
each bin. Figure 6 shows that belief log-likelihood
is indeed a good predictor of the F1 score. This
information could be very useful to a dialog man-
ager to trigger confirmation or clarification ques-
tions for example.

6 Discussion

The definition and construction of POTSs provide a
principled and systematic way to construct proba-
bilistic models for an SDS. While any BN can be
used to model the space of user intentions, design-
ing an effective network is not an easy task for sys-
tem designers not well versed in graphical mod-
els. In previous belief tracking work, researchers
describe their networks with little indication on
how they arrived at the specific structure (Paek and
Horvitz, 2000; Thomson and Young, 2009). Prior
work on ontologies for SDSs (van Zanten, 1998;
Noh et al., 2003) as well as the prominence of
concept hierarchies in other areas such as object-
oriented programming and knowledge engineer-
ing make them a natural and intuitive way of repre-
senting SDS domains. The development of POTs
builds on past research on constructing BNs based
on ontological knowledge (Helsper and van der
Gaag, 2002; Pfeffer et al., 1999).

While most approaches to belief tracking in the
dialog systems community make a strict indepen-
dence assumption between concepts (Bohus and
Rudnicky, 2006; Williams, 2006), POTs model
the dependencies between concepts connected by
specialization and composition relationships while
remaining significantly more tractable than gen-
eral BNs and being very straightforward to de-
sign. The null semantics allow a POT to capture
disjoint values and the applicability of attributes
which are common aspects of concept ontologies.
Obviously, a POT cannot capture all types of con-
cept relationships since each concept can have
only one parent. However, this restriction allows
us to perform efficient exact computation of the
m-best MPEs which is a significant advantage.
Statistical Relational Learning approaches such as
Markov Logic Networks (Richardson and Domin-
gos, 2006) have been developed for more general
relational models than strict ontologies, but they
lack the parsimony and efficiency of POTs.



Thomson and Young (2009) describe an ap-
proach to dialog management based on a partially
observable Markov decision process (POMDP)
whose policy depends only on individual con-
cepts’ marginal distributions rather than on the
overall user intention. Because their system per-
forms belief tracking with a dynamic Bayesian
network (DBN) rather than a static BN, the ex-
act marginal computation is intractable and the au-
thors use loopy belief propagation to compute the
marginals. Even then, they indicate that the depen-
dencies of the subgoals must be limited to enable
tractability. In practice, all concepts are made in-
dependent except for the binary validity nodes that
deterministically govern the dependence between
nodes (similar to the null semantics of a POT).
Williams (2007) also represents the user goal as
a DBN for a POMDP-based DM. They perform
belief updating using particle filtering and approx-
imate the joint probability over the user intention
with the product of the concept marginals. This
could lead to inaccurate estimation for condition-
ally dependent concepts.

Among authors who have used m-best lists of
dialog states for dialog management, Higashinaka
et al. (2003) have shown empirically that main-
taining multiple state hypotheses facilitates shorter
dialogs. Their system scores each dialog state
using a linear combination of linguistic and dis-
course features, and this score is used by a hand-
crafted dialog policy. While illustrating the advan-
tages of m-best lists, this scoring approach lacks
theoretical justification and ability to include prior
knowledge that POTs inherit from BNs.

7 Conclusion

We have presented the POT framework for belief
tracking in an SDS. We have shown how a POT
can be constructed from the domain ontology and
provided an exact algorithm to infer the user’s in-
tention in real-time. POTs strike a balance be-
tween representing rich concept dependencies and
facilitating efficient tracking of the m-best user in-
tentions based on exact joint probabilities rather
than approximations such as concept marginals.
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A Analysis of the Inference Algorithm

Theorem 1. Algorithm I returns the top m MPEs
of the POT along with their joint probabilities.

Proof. We first prove this for the special case of
m = 1 to simplify notation. For the base case
of a node with no children, Algorithm 2 sim-
ply returns a message with all probabilities at
1 for all values of that node. Now, consider a
node X with children Y7,...,Y;. Let Desc(Y)
be the descendants of node Y. Since Algo-
rithm 2 given node X returns exactly one expla-

nation, z for each x € D(X), we will define
Yx(z) = ¥x(x,z). Now, to show that ¢ x (z) =
maXpese(x) Pr(Desc(X)|X =z, E), that is, Al-
gorithm 2 returns the top explanation of the entire
subtree rooted at X for every value in D(X), we
use structural induction on the tree.

max Pr(Desc(X)|X =z, E)
Desc(X)

= max
Y7,k Desc(Y7.x)

Pr(Yi.k, Desc(Y1:6)| X = 2, E)

= max
Y7,k ,Dese(Y7.x)

[[Pr(vilX = 2, E) Pr(Desc(Y:)|Y;, E)

i

= max
1y Desc(v;)
1

[Pr(mx — 2, E) Pr(Desc(Y;)|Yi, E)]
= Hmyzix [Pr(Yi|X =z, FE) Dggéa;,(i) Pr(Desc(Y3)|Ys, E)]
= H max [Pr(Yi|X =z, E)Yy, (yl)] {Inductive step}
= ¥x (2).

The proof for m > 1, where every maximization
returns a list of the top m elements, is similar. []

B Dialogs in the Tourist Information
Domain

Each user conducted 25 dialogs according to pre-
scribed scenarios for the tourist information do-
main. The order of scenarios was randomized for
each user. Sample scenarios:

1. Find a good and cheap Mexican restaurant in
Mountain View.

2. There is a medical emergency and you need
to get to the hospital. Find a route.

3. You need to find your favorite coffee fran-
chise. You have 10 minutes to get coffee.

4. Find a place to buy some fruits and vegeta-
bles.

5. Find a Chinese restaurant in Santa Clara with
good ambiance, and display travel distance.

45

6. Find an ATM on Castro Street in Mountain
View.

Figure 7 shows a typical interaction with the
system for the first scenario along with a possi-
ble hypothesis inferred by the system at every turn
of the dialog. Figure 8 shows an example where
the POT system is able to discard an incorrect ob-
servation about a restaurant based on the accumu-
lated belief about bookstores over multiple turns.
Figure 9 shows how the POT is able to leverage the
ontological structure to pick out higher-level con-
cepts with lower confidence scores over spurious
low-level concepts with higher confidence scores.



User Find a Mexican restaurant in Mountain View.
Hypothesis  [venue restaurant] [area mountain view] [cuisine italian]
{Note: Mexican is misrecognized as Italian. }

User No, Mexican.

Hypothesis  [venue restaurant] [area mountain view] [cuisine mexican]

User Show me ones with at least four star rating.

Hypothesis  [venue restaurant] [area mountain view] [cuisine mexican] [rating four star]

User I want a cheap place.

Hypothesis  [venue restaurant] [area mountain view] [cuisine mexican] [rating four star] [price cheap]
User Is there anything on Castro?

Hypothesis  [venue restaurant] [area mountain view] [street castro] [cuisine mexican] [rating four star] [price cheap]

Figure 7: A sample dialog in the tourism information domain showing the inferred hypothesis of the
user’s intention at every turn. The information response from the system’s back-end is based on its
current hypothesis.

User utterance Where is the bookstore?

ASR where is the bookstore

True hypothesis [action venue] [venue store] [sell book]

Baseline hypothesis [action venue] [venue store] [sell book]

POT hypothesis [action venue] [venue store] [sell book]

User utterance Store on Market Street.

ASR store on market street

True hypothesis [action venue] [venue store] [sell book] [street market]
Baseline hypothesis [action venue] [venue store] [sell book] [street market]
POT hypothesis [action venue] [venue store] [sell book] [street market]
User utterance In downtown.

ASR dennys

True hypothesis [action venue] [venue store] [sell book] [street market] [area downtown]
Baseline hypothesis [action venue] [venue restaurant] [brand dennys]
POT hypothesis [action venue] [venue store] [sell book] [street market]

Figure 8: A dialog showing the ASR input for the user’s utterance, and the corresponding true, baseline,
and POT hypotheses. The POT is able to correctly discard the inconsistent observation in the third turn
with the observations in previous turns.

User utterance Where should I go to buy Lego for my kid?

SU slots (Venue Store 38) (ServiceType GolfCourse 60)

True hypothesis [action venue] [venue store] [storetype toy]

Baseline hypothesis [action venue] [venue service] [servicetype golf course]
POT hypothesis [action venue] [venue store]

Figure 9: A single dialog turn showing the SU slots for the user’s utterance, and the corresponding
baseline, POT, and true hypotheses. Any system that looks at the individual confidence scores will base
its hypothesis on the (ServiceType GolfCourse 60) slot. Instead, the POT hypothesis is influenced by
(Venue Store 38) because its score in combination with the concept’s location in the POT makes it more
likely than the other slot.
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Abstract

Multimodal conversational dialogue sys-
tems consisting of numerous software
components create challenges for the un-
derlying software architecture and devel-
opment practices. Typically, such sys-
tems are built on separate, often pre-
existing components developed by dif-
ferent organizations and integrated in a
highly iterative way. The traditional dia-
logue system pipeline is not flexible
enough to address the needs of highly in-
teractive systems, which include parallel
processing of multimodal input and out-
put. We present an architectural solution
for a multimodal conversational social
dialogue system.

1 Introduction
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bined and experimented with during the iterative
development process.

The HWYD (‘How was your day?’) Compan-
ion system is a multimodal virtual companion
capable of affective social dialogue and for
which we have developed a custom novel archi-
tecture.The application features an ECA which
exhibits facial expressions and bodily move-
ments and gestures. The system is rendered on a
HD screen with the avatar being presented as
roughly life-size. The user converses with the
ECA using a wireless microphone. A demonstra-
tion video of the virtual companion in action is
available onling

The application is capable of long social con-
versations about events that take place during a
user's working day. The system monitors the
user’s emotional state on acoustic and linguistic
levels, generates affective spoken responses, and
attempts to positively influence the user’s emo-
tional state. The system allows for user initiative
it asks questions, makes comments and sugges-

Multimodal conversational dialogue applica-tiqng gives warnings, and offers advice.

tions with embodied conversational

agents

(ECas) are complex software systems consisting Communications framework
of multiple software components. They require

much of architectural solutions and developmenfhe HWYD Companion system architecture em-
approaches compared to traditional spoken digloys Inamode, a loosely coupled multi-hub

logue systems. These systems are mostly asseffamework which facilitates a loose, non-
bled from separate, often pre-existing compohierarchical connection between any number of
nents developed by different organizations. Fogomponents. Every component in the system is
such systems, the simple pipeline architecture gonnected to a repeating hub which broadcasts
not a viable choice. When multimodal systemgll messages sent to it to all connected compo-
are built, software architecture should be flexiblgnents. The hub and the components connected to
enough to enable the system to support natur8l form a single domain. Facilitators are used to
interaction with features such as continuous antprward messages between different domains
timely multimodal feedback and interruptions byaccording to filtering rules. During development,
both participants. Such features require paralleve have experimented with a number of Facilita-
processing components and flexible communicaors to create efficient and simple domains to
tion between the components. Furthermore, thevercome problems associated with single-hub
architecture should provide an open sandboxgystems. For example, multiple hubs allow the
where the components can be efficiently com-
! http://www.youtube.com/
watch?v=BmDMNguQUmMM

Proceedings of SIGDIAL 2010: the 11th Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 47-50,

The University of Tokyo, September 24-25, 2010. (©2010 Association for Computational Linguistics
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reduction of broadcast messages, which is farept the IM. The dotted arrows signal the devia-
example used in the audio processing pipelindions to this main path that are introduced by the

where a dedicated hub allows very rapid messa n D | |
broadcast (nearly 100 messages per second ~
exchanged) without compromising the stability

of the system by flooding the common plpellne

For communication between components,
lightweight communication protocol is used to <=

support components implemented in various 52
. Natural Language a2
programming languages. A common XML MeS-| generation(nic) L <---
sage “envelope” specifies the basic format of 4 g3
message headers as seen in Figure 1. 3 Vi DialogueAct
<message —g %’ ,I Tagger (DAT)
[Sender T TTTTTTC Segar TTTTTTTTTTOS Bl /
| id = “1234563862" 1 % Knowledge F
_________________________________ 7 g Base & UM
‘msg_type = "eca_interrupt_data”
i tur; = \\1211_ - 1 Dialogue Natural Language
! msg_cause = “interruption occured” : Panzect{Dh) pncerstanding{e0)
1 - . . .
\msg_sequence = "IM-DM-ECA" > 5 Figure 2:HWYD Companion main modules
___-fpayload> ______________________
r <ECAdata> data </ECAdata> L .
T T payleads T T TTTTTTTTTToooos interruption management and feedback loops.
</message> The system has an activity detector in the input
Figure 1. System message XML format subsystem that is active permanently and analy-

ses user input in real-time. If there is a detectio

Mandatory elements in the envelope (topof user input at the same time as the ECA is talk-
block) are necessary so other modules can idefhg, this module triggers a signal that is captured
tify the purpose of the message and its contentsy the IM. The IM, which tracks the activity of
upon a shallow inspection. These include thehe rest of the modules in the system, has a set of
sender component and a uniqueessage id. Ad-  heuristics that are examined each time this trig-
ditional envelope fields elements includeess gering signal is detected. If any heuristic
sage type, turn id, dialogue segment identifier, matches, the system decides there has been a
recipient identifier, and a list of message identi- proper user interruption and decides upon a se-
fiers corresponding to the previous messages fies of actions to recover from the interruption.
the current processing sequence.

For system-wide and persistent knowledget Module Processing Procedure
management, a central XML-database allows the ! . _ .
system to have inter-session and intra-session The first stage in the processing is the acoustic
‘memory’ of past events and dialogues. This daPTocessing. User speech is processed by the
tabase (KB) includes information such the usef\COUStic Analyzer, the Automatic Speech Rec-

and dialogue models, processing status of mo@Inizer, and the Acoustic Emotion Classifier
ules, and other system-wide information. simultaneously for maximum responsiveness.
The Acoustic Analyzer (AA) extracts low-

3  Data flow in the architecture level features (pitch, intensity and the probaypilit
that the input was from voiced speech) from the
To maximize the naturalness of the ECA'’s interacoustic signal at frequent time intervals (typi-
action, the system implements parallel processsally 10 milliseconds). Features are passed to the
ing paths. It also makes use of a special modul@coustic Turn-Taking Detector in larger buffers
the Interruption Manager (IM), to control (a few hundred milliseconds) together with time-
components in situations where regular processtamps. AA is implemented in TCL using Snack
ing procedure must be deviated from. In additoolkit (http://www.speech.kth.se/snack/).
tion, there are ‘long’ and ‘short’ processing se- The Acoustic Turn-Taking detector (ATT)
guences from user input to system output. Botix a Java module, which estimates when the user
‘loops’ operate simultaneously. The Main Dia-has finished a turn by comparing intensity pause
logue (‘long’) Loop, which is the normal proc- lengths and pitch information of user speech to
essing path, is indicated by the bold arrows ionfigurable empirical thresholds. ATT also de-
Fig. 2, and includes all system components exides whether the user has interrupted the system
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(‘barge-in’), while ignoring shorter backchannel- probability of a possible DA tag given the previ-
ling phrases (Crook et al. (2010)). Interruptionous ones. The Viterbi algorithm is used to find
messages are passed to the Interruption Manag#re most likely sequence of DA tags.

ATT receives a message from the ECA module The Natural Language Understanding
when the system starts or stops speaking. (NLU) component, implemented in Prolog, pro-

Dragon Naturally Speaking Automatic  duces a logical form representing the semantic
Speech Recognition (ASR)system is used to meaning of a user turn. The NLU consists of a
provide real-time large vocabulary speech recogaart-of-speech tagger, a Noun Phrase and Verb
nition. Per-user acoustic adaptation is used tG&roup chunker, a named-entity classification
improve recognition rates. ASR provides N-bestomponent (rule-based), and a set of pattern-
lists, confidence scores, and phrase hypothesesmatching rules which recognize major gram-

The Acoustic Emotion Classifier (AEC) matical relationships (subject, direct object, )etc.
component (EmoVoice (Vogt et al. (2008)) cate-The resulting shallow-parsed text is further proc-
gorizes segments of user speech into five vaessed using pattern-matching rules. These recog-
lence+arousal categories, also applying a confiize configurations of entity and relation relevant
dence score. The Interruption Manager monitorto the templates needed by the Dialogue Man-
the messages of the AEC to include emotionager, the EM, and the Affective Strategy Module.
related information into feedback loop messages TheDialogue Manager (DM), written in Java
sent to the ECA subsystem. This allows rapic&and Prolog, combines the SA and NLU results,
reactions to the user mood. decides on the system's next utterance and identi-

The Sentiment Analyzer (SA)labels ASR fies salient objects for the Affective Strategy
output strings with sentiment information atModule. The DM maintains an information state
word and sentence levels using valence categgentaining information about concepts under dis-
ries positive, neutral andnegative. The SA uses cussion, as well as the system's agenda of current
the AFFECTIS Sentiment Server, which is a geneonversational goals.
eral purpose .NET SOAP XML service for One of the main features of the HWYD Com-
analysis and scoring of author sentiment. panion is its ability to positively influence the

The Emotional Model (EM), written in Lisp, user's mood through itsAffective Strategy
fuses information from the AEC and SA. It Module (ASM). This module appraises the
stores a globally accessible emotional representaser’s situation, considering the events reported
tion of the user for other system modules tan the user turn and its (bi-modal) affective ele-
make use of. Affective fusion is rule-based, prements. From this appraisal, the ASM generates a
fers the SA’s valence information, and outputdong multi-utterance turn. Each utterance imple-
the same five valence+arousal categories as usatents communicative acts constitutive of the
in the AEC. The EM can also serve as a basis fatrategy. ASM generates influence operators
temporal integration (mood representation) asvhich are passed to the Natural Language Gen-
part of the affective content of the User Model. Iteration module. ASM output is triggered when
also combines the potentially different segmentathe system has learned enough about a particular
tions by the ASR and AEC. event to warrant affective influence. As input,

The User Model (UM) stores facts about the ASM takes information extraction templates de-
user as objects and associated attributes. The iseribing events, together with the emotional data
formation contained in the User Model is used bwattached. ASM is a Hierarchical Task Network
other system modules, in particular by DialogugHTN) Planner implemented in Lisp.

Manager and Affective Strategy Module. The Natural Language Generator (NLG),

The Dialogue Act Tagger and Segmenter written in Lisp, produces linguistic surface forms
(DAT), written in C under Linux, uses the ATT from influence operators produced by the ASM.
results to compile all ASR results correspondingrhese operators correspond to communicative
to each user turn. DAT then segments the conactions taking the form of performatives. NLG
bined results into semantic units and labels eaalises specific rhetorical structures and constructs
with a dialogue act (DA) tag (from a subset ofassociated with humour, and uses emotional TTS
SWBD-DAMSL (Jurafsky et al. (2001)). A Sto- expressions through specific lexical choice.
chastic Machine Learning model combining
Hidden Markov Model (HMM) and N-grams is
used in a manner analogous to Martinez-

Hinarejos et al. (2006). The N-grams yield the
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5 Multimodal ECA Control one processing path for its data. We have shown

) _ _ how this has enabled us to implement complex
Multimodal control of the ECA, which consists penavior such as interrupt and short loop han-

of a tightly-synchronized naturalistic avatar andyjing. We are currently expanding coverage and
affective Text-To-Speech (TTS)generation, is || carry out an evaluation with real users this
highly challenging from an architectural view- September.

point, since the coordinating component needs to
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Abstract

We describe work done at three sites on
designing conversational agents capable of
incremental processing. We focus on the
‘middleware’ layer in these systems, which
takes care of passing around and maintain-
ing incremental information between the
modules of such agents. All implementa-
tions are based on the abstract model of
incremental dialogue processing proposed
by Schlangen and Skantze (2009), and the
paper shows what different instantiations
of the model can look like given specific
requirements and application areas.

1 Introduction

Schlangen and Skantze (2009) recently proposed
an abstract model of incremental dialogue process-
ing. While this model introduces useful concepts
(briefly reviewed in the next section), it does not
talk about how to actually implement such sys-
tems. We report here work done at three different
sites on setting up conversational agents capable
of incremental processing, inspired by the abstract
model. More specifically, we discuss what may
be called the ‘middleware’ layer in such systems,
which takes care of passing around and maintaining
incremental information between the modules of
such agents. The three approaches illustrate a range
of choices available in the implementation of such
a middle layer. We will make our software avail-
able as development kits in the hope of fostering
further research on incremental systems.!

In the next section, we briefly review the abstract
model. We then describe the implementations cre-
ated at Uni Bielefeld (BF), KTH Stockholm (KTH)
and Uni Potsdam (UP). We close with a brief dis-
cussion of similarities and differences, and an out-
look on further work.

ILinks to the three packages described here can be found
athttp://purl.org/net/Middlewares-SIGdial2010.

2 The IU-Model of Incremental Processing
Schlangen and Skantze (2009) model incremental
systems as consisting of a network of processing
modules. Each module has a left buffer, a proces-
sor, and a right buffer, where the normal mode of
processing is to take input from the left buffer, pro-
cess it, and provide output in the right buffer, from
where it goes to the next module’s left buffer. (Top-
down, expectation-based processing would work
in the opposite direction.) Modules exchange incre-
mental units (IUs), which are the smallest ‘chunks’
of information that can trigger connected modules
into action. IUs typically are part of larger units;
e.g., individual words as parts of an utterance, or
frame elements as part of the representation of an
utterance meaning. This relation of being part of
the same larger unit is recorded through same level
links; the information that was used in creating a
given IU is linked to it via grounded in links. Mod-
ules have to be able to react to three basic situa-
tions: that IUs are added to a buffer, which triggers
processing; that IUs that were erroneously hypothe-
sised by an earlier module are revoked, which may
trigger a revision of a module’s own output; and
that modules signal that they commit to an IU, that
is, won’t revoke it anymore (or, respectively, expect
it to not be revoked anymore).

Implementations of this model then have to re-
alise the actual details of this information flow, and
must make available the basic module operations.

3 Sociable Agents Architecture

BF’s implementation is based on the ‘D-Bus’ mes-
sage bus system (Pennington et al., 2007), which
is used for remote procedure calls and the bi-
directional synchronisation of IUs, either locally
between processes or over the network. The bus sys-
tem provides proxies, which make the interface of
a local object accessible remotely without copying
data, thus ensuring that any access is guaranteed to
yield up-to-date information. D-Bus bindings exist
for most major programming languages, allowing
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for interoperability across various systems.

IUs exist as objects implementing a D-Bus in-
terface, and are made available to other modules
by publishing them on the bus. Modules are ob-
jects comprising a main thread and right and left
buffers for holding own IUs and foreign IU proxies,
respectively. Modules can co-exist in one process
as threads or occupy one process each—even dis-
tributed across a network.

A dedicated Relay D-Bus object on the network
is responsible for module administration and up-
date notifications. At connection time, modules
register with the relay, providing a list of IU cat-
egories and/or module names they are interested
in. Category interests create loose functional links
while module interests produce more static ones.
Whenever a module chooses to publish informa-
tion, it places a new IU in its right buffer, while
removal of an IU from the right buffer corresponds
to retraction. The relay is notified of such changes
and in turn invokes a notification callback in all
interested modules synchronising their left buffers
by immediately and transparently creating or re-
moving proxies of those IUs.

IUs consist of the fields described in the abstract
model, and an additional category field which the
relay can use to identify the set of interested mod-
ules to notify. They furthermore feature an optional
custom lifetime, on the expiration of which they
are automatically retracted.

Incremental changes to IUs are simply realised
by changing their attributes: regardless of their lo-
cation in either a right or left buffer, the same setter
functions apply (e.g., set_payload). These generate
relay-transported update messages which commu-
nicate the ID of the changed IU. Received update
messages concerning self-owned and remotely-
owned objects are discerned automatically to allow
for special treatment of own IUs. The complete
process is illustrated in Figure 1.

Current state and discussion. Our support for
bi-directional IU editing is an extension to the con-
cepts of the general model. It allows higher-level
modules with a better knowledge of context to re-
vise uncertain information offered by lower levels.
Information can flow both ways, bottom-up and
top-down, thus allowing for diagnostic and causal
networks linked through category interests.
Coming from the field of embodied conversa-
tional agents, and being especially interested in
modelling human-like communication, for exam-
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Figure 1: Data access on the IU proxies is transparently dele-
gated over the D-Bus; module A has published an IU. B and C
are registered in the corresponding interest set, thus receiving
a proxy of this IU in their left buffer. When B changes the IU,
A and C receive update notifications.

ple for on-line production of listener backchannel
feedback, we constantly have to take incremen-
tally changing uncertain input into account. Using
the presented framework consistently as a network
communication layer, we are currently modelling
an entire cognitive architecture for virtual agents,
based on the principle of incremental processing.

The decision for D-Bus as the transportation
layer has enabled us to quickly develop ver-
sions for Python, C++ and Java, and produced
straightforward-to-use libraries for the creation of
[U-exchanging modules: the simplest fully-fledged
module might only consist of a periodically in-
voked main loop callback function and any subset
of the four handlers for IU events (added, removed,
updated, committed).

4 Inpro Toolkit

The InproTK developed at UP offers flexibility on
how tightly or loosely modules are coupled in a
system. It provides mechanisms for sending IU up-
dates between processes via a messaging protocol
(we have used OAA [Cheyer and Martin, 2001], but
other communication layers could also be used) as
well as for using shared memory within one (Java)
process. InproTK follows an event-based model,
where modules create events, for which other mod-
ules can register as Listeners. Module networks are
configured via a system configuration file which
specifies which modules listen to which.

Modules push information to their right, hence
the interface for inter-module communication is
called PushBuffer. (At the moment, InproTK only
implements left-to-right IU flow.) The PushBuffer
interface defines a hypothesis-change method
which a module will call for all its listening mod-
ules. A hypothesis change is (redundantly) charac-
terised by passing both the complete current buffer
state (a list of IUs) as well as the delta between



the previous and the current state, leaving listen-
ing modules a choice of how to implement their
internal update.

Modules can be fully event-driven, only trig-
gered into action by being notified of a hypothesis
change, or they can run persistently, in order to cre-
ate endogenous events like time-outs. Event-driven
modules can run concurrently in separate threads or
can be called sequentially by a push buffer (which
may seem to run counter the spirit of incremental
processing, but can be advantageous for very quick
computations for which the overhead of creating
threads should be avoided).

IUs are typed objects, where the base class 1U
specifies the links (same-level, grounded-in) that
allow to create the IU network and handles the
assignment of unique IDs. The payload and addi-
tional properties of an IU are specified for the IU’s
type. A design principle here is to make all relevant
information available, while avoiding replication.
For instance, an IU holding a bit of semantic rep-
resentation can query which interval of input data
it is based on, where this information is retrieved
from the appropriate IUs by automatically follow-
ing the grounded-in links. IU networks ground out
in BaseData, which contains user-side input such
as speech from the microphone, derived ASR fea-
ture vectors, camera feeds from a webcam, derived
gaze information, etc., in several streams that can
be accessed based on their timing information.

Besides IU communication as described in the
abstract model, the toolkit also provides a separate
communication track along which signals, which
are any kind of information that is not seen as incre-
mental hypotheses about a larger whole but as infor-
mation about a single current event, can be passed
between modules. This communication track also
follows the observer/listener model, where proces-
sors define interfaces that listeners can implement.

Finally, InproTK also comes with an extensive
set of monitoring and profiling modules which can
be linked into the module network at any point and
allow to stream data to disk or to visualise it online
through a viewing tool (ANON 2009), as well as
different ways to simulate input (e.g., typed or read
from a file) for bulk testing.

Current state and discussion. InproTK is cur-
rently used in our development of an incremental
multimodal conversational system. It is usable in its
current state, but still evolves. We have built and in-
tegrated modules for various tasks (post-processing
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of ASR output, symbolic and statistical natural lan-
guage understanding [ANON 2009a,b,c]). The con-
figuration system and the availability of monitoring
and visualisation tools enables us to quickly test
different setups and compare different implementa-
tions of the same tasks.

S Jindigo

Jindigo is a Java-based framework for implement-
ing and experimenting with incremental dialogue
systems currently being developed at KTH. In
Jindigo, all modules run as separate threads within
a single Java process (although the modules them-
selves may of course communicate with external
processes). Similarly to InproTK, IUs are mod-
elled as typed objects. The modules in the system
are also typed objects, but buffers are not. Instead,
a buffer can be regarded as a set of IUs that are
connected by (typed) same-level links. Since all
modules have access to the same memory space,
they can follow the same-level links to examine
(and possibly alter) the buffer. Update messages
between modules are relayed based on a system
specification that defines which types of update
messages from a specific module go where. Since
the modules run asynchronously, update messages
do not directly invoke methods in other modules,
but are put on the input queues of the receiving
modules. The update messages are then processed
by each module in their own thread.

Jindigo implements a model for updating buffers
that is slightly different than the two previous ap-
proaches. In this approach, IUs are connected by
predecessor links, which gives each IU (words,
widest spanning phrases from the parser, commu-
nicative acts, etc), a position in a (chronologically)
ordered stream. Positional information is reified by
super-imposing a network of position nodes over
the IU network, with the IUs being associated with
edges in that network. These positional nodes then
give us names for certain update stages, and so
revisions can be efficiently encoded by reference
to these nodes. An example can make this clearer.
Figure 2 shows five update steps in the right buffer
of an incremental ASR module. By reference to po-
sitional nodes, we can communicate easily (a) what
the newest committed IU is (indicated in the figure
as a shaded node) and (b) what the newest non-
revoked or active IU is (i.e., the ‘right edge’ (RE);
indicated in the figure as a node with a dashed line).
So, the change between the state at time #; and #,
is signalled by RE taking on a different value. This



String Word buffer Update

message

ti: one [wl, w2]

t,: one five [wl, w3]

t;: one [wl, w2]

t4: one four five [wl, w5]

ts: [commit] [w5.w3]

Figure 2: The right buffer of an ASR module, and update
messages at different time-steps.

value (w3) has not been seen before, and so the
consuming module can infer that the network has
been extended; it can find out which IUs have been
added by going back from the new RE to the last
previously seen position (in this case, w2). At 3, a
retraction of a hypothesis is signalled by a return to
a previous state, w2. All consuming modules have
to do now is to return to an internal state linked
to this previous input state. Commitment is repre-
sented similarly through a pointer to the rightmost
committed node; in the figure, that is for example
w5 at 5.

Since information about whether an IU has been
revoked or committed is not stored in the IU it-
self, all IUs can (if desirable) be defined as im-
mutable objects. This way, the pitfalls of having
asynchronous processes altering and accessing the
state of the IUs may be avoided (while, however,
more new [Us have to be created, as compared to
altering old ones). Note also that this model sup-
ports parallel hypotheses as well, in which case the
positional network would turn into a lattice.

The framework supports different types of up-
date messages and buffers. For example, a parser
may incrementally send NPs to a reference reso-
Iution (RR) module that has access to a domain
model, in order to prune the chart. Thus, informa-
tion may go both left-to-right and right-to-left. In
the buffer between these modules, the order be-
tween the NPs that are to be annotated is not im-
portant and there is no point in revoking such IUs
(since they do not affect the RR module’s state).

Current state and discussion. Jindigo uses con-
cepts from (Skantze, 2007), but has been rebuilt
from ground up to support incrementality. A range
of modules for ASR, semantic interpretation, TTS,
monitoring, etc., have been implemented within
the framework, allowing us to do experiments
with complete systems interacting with users. We
are currently using the framework to implement a
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model of incremental speech production.

6 Discussion

The three implementations of the abstract [U model
presented above show that concrete requirements
and application areas result in different design de-
cisions and focal points.

While BF’s approach is loosely coupled and han-
dles exchange of IUs via shared objects and a me-
diating module, KTH’s implementation is rather
closely coupled and publishes IUs through a single
buffer that lies in shared memory. UP’s approach
is somewhat in between: it abstracts away from the
transportation layer and enables message passing-
based communication as well as shared memory
transparently through one interface.

The differences in the underlying module com-
munication infrastructure affect the way incremen-
tal IU updates are handled in the systems. In BF’s
framework modules holding an IU in one of their
buffers just get notified when one of the IU’s fields
changed. Conversely, KTH’s IUs are immutable
and new information always results in new IUs
being published and a change to the graph repre-
sentation of the buffer—but this allows an efficient
coupling of module states and cheap revoke op-
erations. Again, UP’s implementation lies in the
middle. Here both the whole new state and the delta
between the old and new buffer is communicated,
which leads to flexibility in how consumers can be
implemented, but also potentially to some commu-
nication overhead.

In future work, we will explore if further gener-
alisations can be extracted from the different im-
plementations presented here. For now, we hope
that the reference architectures presented here can
already be an inspiration for further work on incre-
mental conversational systems.
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Abstract

Two of the main corpora available for
training discourse relation classifiers are
the RST Discourse Treebank (RST-DT)
and the Penn Discourse Treebank (PDTB),
which are both based on the Wall Street
Journal corpus. Most recent work us-
ing discourse relation classifiers have em-
ployed fully-supervised methods on these
corpora. However, certain discourse rela-
tions have little labeled data, causing low
classification performance for their asso-
ciated classes. In this paper, we attempt
to tackle this problem by employing a
semi-supervised method for discourse re-
lation classification. The proposed method
is based on the analysis of feature co-
occurrences in unlabeled data. This in-
formation is then used as a basis to ex-
tend the feature vectors during training.
The proposed method is evaluated on both
RST-DT and PDTB, where it significantly
outperformed baseline classifiers. We be-
lieve that the proposed method is a first
step towards improving classification per-
formance, particularly for discourse rela-
tions lacking annotated data.

1 Introduction

The RST Discourse Treebank (RST-DT) (Carl-
son et al., 2001), based on the Rhetorical Struc-
ture Theory (RST) (Mann and Thompson, 1988)
framework, and the Penn Discourse Treebank
(PDTB) (Prasad et al., 2008), are two of the most
widely-used corpora for training discourse rela-
tion classifiers. They are both based on the Wall
Street Journal (WSJ) corpus, although there are
substantial differences in the relation taxonomy
used to annotate the corpus. These corpora have
been used in most of the recent work employ-
ing discourse relation classifiers, which are based

on fully-supervised machine learning approaches
(duVerle and Prendinger, 2009; Pitler et al., 2009;
Lin et al., 2009).

Still, when building a discourse relation clas-
sifier on either corpus, one is faced with the
same practical issue: Certain relations are very
prevalent, such as ELABORATION[N][S] (RST-
DT), with more than 4000 instances, whereas
other occur rarely, such as EVALUATION[N] [N]!
(RST-DT), with three instances, or COMPARI-
SON.PRAGMATIC CONCESSION (PDTB), with 12
instances. This lack of training data causes poor
classification performance on the classes associ-
ated to these relations.

In this paper, we try to tackle this problem by
using feature co-occurrence information, extracted
from unlabeled data, as a way to inform the classi-
fier when unseen features are found in test vectors.
The advantage of the method is that it relies solely
on unlabeled data, which is abundant, and cheap
to collect.

The contributions of this paper are the follow-
ing: First, we propose a semi-supervised method
that exploits the abundant, freely-available un-
labeled data, which is harvested for feature co-
occurrence information, and used as a basis to ex-
tend feature vectors to help classification for cases
where unknown features are found in test vec-
tors. Second, the proposed method is evaluated
on the RST-DT and PDTB corpus, where it signif-
icantly improves F-score when trained on moder-
ately small datasets. For instance, when trained on
a dataset with around 1000 instances, the proposed
method increases the macro-average F-score up to
30%, compared to a baseline classifier.

2 Related Work

Since the release in 2002 of the RST-DT corpus,
several fully-supervised discourse parsers have

"We use the notation [N] and [S] respectively to denote
the nucleus and satellite in a RST discourse relation.
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been built in the RST framework. In duVerle and
Prendinger (2009), a discourse parser based on
Support Vector Machines (SVM) (Vapnik, 1995)
is proposed. Shallow lexical, syntactic and struc-
tural features, including ‘dominance sets’ (Soricut
and Marcu, 2003) are used.

The unsupervised method of Marcu and Echi-
habi (2002) was the first to try to detect ‘implicit’
relations (i.e. relations not accompanied by a cue
phrase, such as ‘however’, ‘but’), using word pairs
extracted from two spans of text. Their method
attempts to capture the difference of polarity in
words.

Discourse relation classifiers have also been
trained using PDTB. Pitler et al. (2008) performed
a corpus study of the PDTB, and found that ‘ex-
plicit’ relations can be most of the times distin-
guished by their discourse connectives.

Lin et al. (2009) studied the problem of detect-
ing implicit relations in PDTB. Their relational
classifier is trained using features extracted from
dependency paths, contextual information, word
pairs and production rules in parse trees. For the
same task, Pitler et al. (2009) also use word pairs,
as well as several other types of features such as
verb classes, modality, context, and lexical fea-
tures.

In this paper, we are not aiming at defining
novel features for improving performance in RST
or PDTB relation classification. Instead we incor-
porate features that have already shown to be use-
ful for discourse relation learning and explore the
possibilities of using unlabeled data for this task.

3 Method

In this section, we describe a semi-supervised
method for relation classification, based on feature
vector extension. The extension process employs
feature co-occurrence information. Co-occurrence
information is useful in this context as, for in-
stance, we might know that the word pair (for,
when) is a good indicator of a TEMPORAL rela-
tion. Or, after analyzing a large body of unlabeled
data, we might also notice that this word pair co-
occurs often with the word ‘run-up’ placed at the
end of a span of text. Suppose now that we have to
classify a test instance containing the feature ‘run-
up’, but not the word pair (for, when). In this case,
by using the co-occurrence information, we know
that the instance has a chance of being a TEM-
PORAL relation. We first explain how to compute

56

a feature correlation matrix, using unlabeled data.
In a second section, we show how to extend fea-
ture vectors in order to include co-occurrence in-
formation. Finally, we describe the features used
in the discourse relation classifiers.

3.1 Feature Correlation Matrix

A training/test instance is represented using a d-
dimensional feature vector f = [fi,..., f4]T,
where f; € {0,1}. We define a feature correla-
tion matrix, C' such that the (i, 7)-th element of
C, C(; ;) € {0, 1} denotes the correlation between
the two features f; and f;. If both f; and f; appear
in a feature vector then we define them to be co-
occurring. The number of different feature vectors
in which f; and f; co-occur is used as a basis to
compute C(; ;y. Importantly, feature correlations
can be calculated using only unlabeled data.

It is noteworthy that feature correlation matri-
ces can be computed using any correlation mea-
sure. For the current task we use the y2-measure
(Plackett, 1983) as the preferred correlation mea-
sure because of its simplicity. We create the fea-
ture correlation matrix C, such that, for all pairs of

features (f;, ;).

Clij) = {

Here c is the critical value, which, for a confi-
dence level of 0.05 and one degree of freedom, can
be set to 3.84.

1if X?,j >c
0 otherwise

(D

3.2 Feature Vector Extension

Once the feature correlation matrix is computed
using unlabeled data as described in Section 3.1,
we can use it to extend a feature vector during
testing. One of the reasons explaining why a clas-
sifier might perform poorly on a test instance, is
that there are features in the test instance that were
not observed during training. Let us represent the
feature vector corresponding to a test instance z
by fx. Then, we use the feature correlation ma-
trix to find the set of correlated features F.(f;) of
a particular feature f; that occur in f.
Specifically, for a feature f; € fyx, F'(f;) con-
sists of features f;, where C; ;) = 1. We define
the extended feature vector £, of fy as the union of
all the features that appear in fx and F.(f,). Since
a discourse relation is defined between two spans
of short texts (elementary discourse units), which
are typically two clauses or sentences, a particu-
lar feature does not usually occur more than once



in a feature vector. Therefore, we introduced the
proposed method in the context of binary valued
features. However, the above mentioned discus-
sion can be naturally extended to cover real-valued
features.

3.3 Features

Figure 1 shows the parse tree for a sentence com-
posed of two discourse units, which serve as argu-
ments of a discourse relation we want to generate
a feature vector from. Lexical heads have been
calculated using the projection rules of Magerman
(1995), and indicated between brackets. For each
argument, surrounded by dots, is the minimal set
of sub-parse trees containing strictly all the words
of the argument.

We extract all possible lemmatized word pairs
from the two arguments. Next, we extract from
left and right argument separately, all production
rules from the sub-parse trees. Finally, we encode
in our features three nodes of the parse tree, which
capture the local context at the connection point
between the two arguments (Soricut and Marcu,
2003): The first node, which we call N,,, is the
highest ancestor of the first argument’s last word
w, and is such that N,,’s right-sibling is the an-
cestor of the second argument’s first word. N,,’s
right-sibling node is called N,.. Finally, we call NV,
the parent of V,, and NV,.. For each node, we en-
code in the feature vector its part-of-speech (POS)
and lexical head. For instance, in Figure 1, we
have N,, = S(comment), N, = SBAR(when), and
N, = VP(declined).

4 Experiments

It is worth noting that the proposed method is inde-
pendent of any particular classification algorithm.
As our goal is strictly to evaluate the relative ben-
efit of employing the proposed method, we se-
lect a logistic regression classifier, for its simplic-
ity. We used the multi-class logistic regression
(maximum entropy model) implemented in Clas-
sias (Okazaki, 2009). Regularization parameters
are set to their default value of one.

Unlabeled instances are created by selecting
texts of the WSJ, and segmenting them into ele-
mentary discourse units (EDUSs) using our sequen-
tial discourse segmenter (Hernault et al., 2010).
As there is no segmentation tool for the PDTB
framework, we assumed that feature correlation
information taken from EDUs created using a RST
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segmenter is also useful for extending feature vec-
tors of PDTB relations.

Since we are interested in measuring the over-
all performance of a discourse relation classifier
across all relation types, we use macro-averaged
F-score as the preferred evaluation metric for this
task. We train a multi-class logistic regression
model without extending the feature vectors as
a baseline method. This baseline is expected to
show the effect of using the proposed feature ex-
tension approach for the task of discourse relation
learning.

Experimental results on RST-DT and PDTB
datasets are depicted in Figures 2 and 3. We ob-
serve that the proposed feature extension method
outperforms the baseline for both RST-DT and
PDTB datasets for the full range of training dataset
sizes. However, the difference between the two
methods decreases as we increase the amount of
training data. Specifically, with 200 training in-
stances, for RST-DT, the baseline method has a
macro-averaged F-score of 0.079, whereas the the
proposed method has a macro-averaged F-score
of 0.159 (around 101% increase in F-score). For
1000 training instances, the F-score for RST-DT
increases by 29.2%, from 0.143 to 0.185, while
the F-score for PDTB increases by 27.9%, from
0.109 to 0.139. However, the difference between
the two methods diminishes beyond 10000 train-
ing instances.

Macro-average F-score

— Proposed method
- - Baseline RST-DT
0 5000 10000 15000 20000

Number of training instances

Figure 2: Macro-average F-score (RST-DT) as a
function of the number of training instances used.

5 Conclusion

We presented a semi-supervised method for im-
proving the performance of discourse relation
classifiers. The proposed method is based on
the analysis of co-occurrence information har-
vested from unlabeled data only. We evaluated
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Figure 3: Macro-average F-score (PDTB) as a
function of the number of training instances used.

the method on two of the most widely-used dis-
course corpora, RST-DT and PDTB. The method
performs significantly better than a baseline classi-
fier trained on the same features, especially when
the number of labeled instances used for training is
small. For instance, using 1000 training instances,
we observed an increase of nearly 30% in macro-
average F-score. This is an interesting perspective
for improving classification performance of rela-
tions with little training data. In the future, we
plan to improve the method by employing ranked
co-occurrences. This way, only the most relevant
correlated features can be selected during feature
vector extension. Finally, we plan to investigate
using larger amounts of unlabeled training data.
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Abstract

We report results on predicting the sense
of implicit discourse relations between ad-
jacent sentences in text. Our investigation
concentrates on the association between
discourse relations and properties of the
referring expressions that appear in the re-
lated sentences. The properties of inter-
est include coreference information, gram-
matical role, information status and syn-
tactic form of referring expressions. Pre-
dicting the sense of implicit discourse re-
lations based on these features is consid-
erably better than a random baseline and
several of the most discriminative features
conform with linguistic intuitions. How-
ever, these features do not perform as well
as lexical features traditionally used for
sense prediction.

1 Introduction

Coherent text is described in terms of discourse re-
lations such as “cause” and “contrast” between its
constituent clauses. It is also characterized by en-
tity coherence, where the connectedness of the text
is created by virtue of the mentioned entities and
the properties of referring expressions. We aim to
investigate the association between discourse rela-
tions and the way in which references to entities
are realized. In our work, we employ features re-
lated to entity realization to automatically identify
discourse relations in text.

We focus on implicit relations that hold be-
tween adjacent sentences in the absence of dis-
course connectives such as “because” or “but”.
Previous studies on this task have zeroed in on
lexical indicators of relation sense: dependencies
between words (Marcu and Echihabi, 2001; Blair-
Goldensohn et al., 2007) and the semantic orien-
tation of words (Pitler et al., 2009), or on general
syntactic regularities (Lin et al., 2009).

The role of entities has also been hypothesized
as important for this task and entity-related fea-
tures have been used alongside others (Corston-
Oliver, 1998; Sporleder and Lascarides, 2008).
Corpus studies and reading time experiments per-
formed by Wolf and Gibson (2006) have in fact
demonstrated that the type of discourse relation
linking two clauses influences the resolution of
pronouns in them. However, the predictive power
of entity-related features has not been studied in-
dependently of other factors. Further motivation
for studying this type of features comes from new
corpus evidence (Prasad et al., 2008), that about a
quarter of all adjacent sentences are linked purely
by entity coherence, solely because they talk about
the same entity. Entity-related features would be
expected to better separate out such relations.

We present the first comprehensive study of the
connection between entity features and discourse
relations. We show that there are notable differ-
ences in properties of referring expressions across
the different relations. Sense prediction can be
done with results better than random baseline us-
ing only entity realization information. Their per-
formance, however, is lower than a knowledge-
poor approach using only the words in the sen-
tences as features. The addition of entity features
to these basic word features is also not beneficial.

2 Data

We use 590 Wall Street Journal (WSJ) articles
with overlapping annotations for discourse, coref-
erence and syntax from three corpora.

The Penn Discourse Treebank (PDTB) (Prasad
et al., 2008) is the largest available resource of
discourse relation annotations. In the PDTB, im-
plicit relations are annotated between adjacent
sentences in the same paragraph. They are as-
signed senses from a hierarchy containing four top
level categories—Comparison, Contingency, Tem-
poral and Expansion.
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An example “Contingency” relation is shown
below. Here, the second sentence provides the
cause for the belief expressed in the first.

Ex 1. These rate indications aren’t directly comparable.
Lending practices vary widely by location.

Adjacent sentences can also become related
solely by talking about a common entity without
any of the above discourse relation links between
their propositions. Such pairs are annotated as En-
tity Relations (EntRels) in the PDTB, for example:

Ex 2. Rolls-Royce Motor Cars Inc. said it expects its U.S
sales to remain steady at about 1,200 cars in 1990. The luxury
auto maker last year sold 1,214 cars in the U.S.

We use the coreference annotations from the
Ontonotes corpus (version 2.9) (Hovy et al., 2006)
to compute our gold-standard entity features. The
WSJ portion of this corpus contains 590 articles.
Here, nominalizations and temporal expressions
are also annotated for coreference but we use the
links between noun phrases only. We expect these
features computed on the gold-standard annota-
tions to represent an upper bound on the perfor-
mance of entity features.

Finally, the Penn Treebank corpus (Marcus et
al., 1994) is used to obtain gold-standard parse and
grammatical role information.

Only adjacent sentences within the same para-
graph are used in our experiments.

3 Entity-related features

We associate each referring expression in a sen-
tence with a set of attributes as described below.
In Section 3.2, we detail how we combine these
attributes to compute features for a sentence pair.

3.1 Referring expression attributes

Grammatical role. In exploratory analysis of
Comparison relations, we often observed parallel
syntactic realizations for entities in the subject po-
sition of the two sentences:

Ex 3. {Longer maturities} g1 are thought to indicate de-
clining interest rates. {Shorter maturities} g2 are considered
a sign of rising rates because portfolio managers can capture
higher rates sooner.

So, for each noun phrase, we record whether
it is the subject of a main clause (msubj), subject
of other clauses in the sentence (esubj) or a noun
phrase not in subject position (other).

Given vs. New. When an entity is first intro-

duced in the text, it is considered a new entity.
Subsequent mentions of the same entity are given
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(Prince, 1992). New-given distinction could help
to identify some of the Expansion and Entity re-
lations. When a sentence elaborates on another, it
might contain a greater number of new entities.

We use the Ontonotes coreference annotations
to mark the information status for entities. For
an entity, if an antecedent is found in the previ-
ous sentences, it is marked as given, otherwise it
is a new entity.

Syntactic realization. In Entity relations, the sec-
ond sentence provides more information about a
specific entity in the first and a definite description
for this second mention seems likely. Also, given
the importance of named entities in news, entities
with proper names might be the ones frequently
described using Entity relations.

We use the part of speech (POS) tag associated
with the head of the noun phrase to assign one of
the following categories: pronoun, nominal, name
or expletive. When the head does not belong to
the above classes, we simply record its POS tag.
We also mark whether the noun phrase is a definite
description using the presence of the article ‘the’.

Modification. We expected modification proper-
ties to be most useful for predicting Comparison
relations. Also, named or new entities in Entity
relations are very likely to have post modification.

We record whether there are premodifiers or
postmodifiers in a given referring expression. In
the absence of pre- and postmodifiers, we indicate
bare head realization.

Topicalization. Preposed prepositional or ad-
verbial phrases before the subject of a sentence
indicate the topic under which the sentence is
framed. We observed that this property is frequent
in Comparison and Temporal relations. An exam-
ple Comparison is shown below.

Ex 4. {Under British rules}r1, Blue Arrow was able to
write off at once $1.15 billion in goodwill arising from the
purchase. {As a US-based company} 2, Blue Arrow would
have to amortize the good will over as many as 40 years, cre-
ating a continuing drag on reported earnings.

When the left sibling of a referring expression is
a topicalized phrase, we mark the fopic attribute.

Number. Using the POS tag of the head word, we
note whether the entity is singular or plural.
3.2 Features for classification

Next, for each sentence pair, we associate two sets
of features using the attributes described above.



Let S1 and S2 denote the two adjacent sentences
in a relation, where S1 occurs first in the text.

Sentence level. These features characterize S1
and S2 individually. For each sentence, we add a
feature for each of the attributes described above.
The value of the feature is the number of times that
attribute is observed in the sentence; i.e., the fea-
ture S7given would have a value of 3 if there are 3
given entities in the first sentence.

Sentence pair. These features capture the interac-
tions between the entities present in S1 and 52.

Firstly, for each pair of entities (a, b), such that
a appears in S1 and b appears in S2, we assign
one of the following classes: (i) SAME: a and b
are coreferent, (ii) RELATED: their head words are
identical, (iii) DIFFERENT: neither coreferent nor
related. The RELATED category was introduced to
capture the parallelism often present in Compari-
son relations. Even though the entities themselves
are not coreferent, they share the same head word
(i.e. longer maturities and shorter maturities).

For features, we use the combination of the
class ((i), (i) or (iii)) with the cross product of
the attributes for a and b. For example if a has
attributes {msubj, noun, ...} and b has attributes
{esubj, defdesc, ..} and a and b are corefer-
ent, we would increment the count for features—
{sameS1msubjS2esubj, sameSImsubjS2defdesc,
sameS1nounS2esubj, sameSInounS2defdesc ...}.

Our total set of features observed for instances
in the training data is about 2000.

We experimented with two variants of fea-
tures: one using coreference annotations from
the Ontonotes corpus (gold-standard) and an-
other based on approximate coreference informa-
tion where entities with identical head words are
marked as coreferent.

4 Experimental setup

We define five classification tasks which disam-
biguate if a specific PDTB relation holds between
adjacent sentences. In each task, we classify the
relation of interest (positive) versus a category
with a naturally occurring distribution of all of the
other relations (negative).

Sentence pairs from sections O to 22 of WSJ are
used as training data and we test on sections 23
and 24. Given the skewed distribution of positive
and negative examples for each task, we randomly
downsample the negative instances in the training
set to be equal to the positive examples. The sizes
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of training sets for the tasks are

Expansion vs other (4716)

Contingency vs other (2466)

Comparison vs other (1138)

Temporal vs other (474)

EntRel vs other (2378)

Half of these examples are positive and the
other negative in each case.

The test set contains 1002 sentence pairs:
Comp. (133), Cont. (230), Temp. (34), Expn.
(369), EntRel (229), NoRel! (7). We do not down-
sample our test set. Instead, we evaluate our pre-
dictions on the natural distribution present in the
data to get a realistic estimate of performance.

We train a linecar SVM classifier (LIBLIN-
EAR?) for each task.®> The optimum regulariza-
tion parameter was chosen using cross validation
on the training data.

5 Results

5.1 Feature analysis

We ranked the features (based on gold-standard
coreference information) in the training sets by
their information gain. We then checked which
attributes are common among the top five features
for different classification tasks.

As we had expected, the topicalization attribute
and RELATED entities frequently appear among
the top features for Comparison.

Features with the name attribute were highly
predictive of Entity relations as hypothesized.
However, while we had expected Entity relations
to have a high rate of coreference, we found coref-
erent mentions to be very indicative of Temporal
relations: all the top features involve the SAME at-
tribute. A post-analysis showed that close to 70%
of Temporal relations involve coreferent entities
compared to around 50% for the other classes.

The number of pronouns in the second sentence
was most characteristic of the Contingency rela-
tion. In the training set for Contingency task,
about 45% of sentences pairs belonging to Contin-
gency relation have a pronoun in the second sen-
tence. This is considerably larger than 32%, which
is the percentage of sentence pairs in the negative
examples with a pronoun in second sentence.

'PDTB relation for sentence pair when both entity and
discourse relations are absent, very rare about 1% of our data.

“http://www.csie.ntu.edu.tw/ cjlin/liblinear/

3SVMs with linear kernel gave the best performance. We
also experimented with SVMs with radial basis kernel, Naive
Bayes and MaxEnt classifiers.



5.2 Performance on sense prediction

The classification results (fscores) are shown in
Table 1. The random baseline (Base.) represents
the results if we predicted positive and negative re-
lations according to their proportion in the test set.

Entity features based on both gold-standard
(EntGS) and approximate coreference (EntApp)
outperform the random baseline for all the tasks.
The drop in performance without gold-standard
coreference information is strongly noticable only
for Expansion relations.

The best improvement from the baseline is seen
for predicting Contingency and Entity relations,
with around 15% absolute improvement in fscore
with both EntGS and EntApp features. The im-
provements for Comparisons and Expansions are
around 11% in the approximate case. Temporal
relations benefit least from these features. These
relations are rare, comprising 3% of the test set
and harder to isolate from other relations. Overall,
our results indicate that discourse relations and en-
tity realization have a strong association.

5.3 Comparison with lexical features

In the context of using entity features for sense
prediction, one would also like to test how these
linguistically rich features compare with simpler
knowledge-lean approaches used in prior work.

Specifically, we compare with word pairs, a
simple yet powerful set of features introduced by
Marcu and Echihabi (2001). These features are the
cross product of words in the first sentence with
those in the second.

We trained classifiers on the word pairs from the
sentences in the PDTB training sets. In Table 1,
we report the performance of word pairs (WP) as
well as their combination with gold-standard en-
tity features (WP+EntGS). Word pairs turn out as
stronger predictors for all discourse relations com-
pared to our entity features (except for Expansion
prediction with EntGS features). Further, no ben-
efits over word pair results are obtained by com-
bining entity realization information.

6 Conclusion

In this work, we used a task-based approach to
show that the two components of coherence—
discourse relations and entities—are related and
interact with each other. Coreference, givenness,
syntactic form and grammatical role of entities can
predict the implicit discourse relation between ad-
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Task | Base. EntGS EntApp | WP  WP+EntGS
Comp vs Oth. | 13.27 24.18 24.14 | 27.30 26.19
Cont vs Oth. 2295 37.57 38.16 | 38.17 38.99
Temp vs Oth. 3.39 7.58 5.61 | 11.09 10.04
Expn vs Oth. | 36.82 5242 47.82 | 48.54 49.06
Ent vs Oth. 22.85 38.03 36.73 | 38.48 38.14

Table 1: Fscore results

jacent sentences with results better than random
baseline. However, with respect to developing au-
tomatic discourse parsers, these entity features are
less likely to be useful. They do not outperform
or complement simpler lexical features. It would
be interesting to explore whether other aspects of
entity reference might be useful for this task, such
as bridging anaphora. But currently, annotations
and tools for these phenomena are not available.
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Abstract

This study investigates the use of Same — a
relation that connects the parts of a
discontinuous discourse segment — in the
Discourse Graphbank (Wolf et al., 2004). Our
analysis reveals systematic deviations from
the definition of the Same relation and a
substantial number of confusions between
Same and Elaboration relations. We discuss

some  methodological and  theoretical
implications of these findings.

1 Introduction

Coherence relations and their composition

(usually assumed to be strictly hierarchical, i.e.,
treelike) form the core of most corpus-linguistic
and computational work on discourse structure
(see Taboada & Mann 2006 for an overview). The
assumption that discourse structure can be
modeled as a tree has recently come under attack
e.g. in Wolf & Gibson (2003, 2006; henceforth
WG). Based on the Discourse Graphbank (Wolf
et al 2004; henceforth DG), a manually annotated
corpus of 135 newspaper and newswire texts,
WG claim that less constrained graph structures
are needed that allow for crossed dependencies
(i.e. structures in which discourse units ABCD
(not necessarily adjacent) have relations AC and
BD) and multiple-parent structures (where a unit
enters more than one coherence relation and is
thus dominated by more than one node).'

Among the 11 types of relations distinguished
in DG, the Elaboration relation, where two
asymmetrically related discourse units are
“centered around a common event of entity”’(Wolf

! The validity of this claim is contested in Egg & Redeker
(2010).

Gisela Redeker
University of Groningen,
Groningen, The Netherlands

g.redeker@rug.nl

et al 2003: 12), stands out by its heavy
involvement in these violations of tree structure
constraints. Elaboration relations are involved in
50.52% of all crossed dependency structures and
in 45.83% of multiple-parent structures. These
high percentages are in part due to the high
overall frequency of Elaboration relations
(37.97% of all relations), but clearly exceed that
base rate. Elsewhere, Elaboration relations, esp.
those where the elaborandum is an entity and not
a whole proposition, have been criticized as
belonging more to referential coherence than to
relational coherence (Knott el at 2001). In this
study, we show that WG’s (somewhat
idiosyncratic) definition of the FElaboration
relation seems to lead to confusion with the
'pseudo-relation' Same.

The  ‘pseudo-relation’  Same-Unit  was
introduced by Marcu (Carlson & Marcu 2001) to
deal with discontinuous discourse units in the
RST Discourse Treebank (Carlson, Marcu &
Okurowski 2002). Same-Unit (re)connects the
parts of a discourse unit that is disrupted by
embedded material. In the tree representation,
the intervening material is attached to one of the
constituent units of the Same-Unit relation
(Carlson & Marcu 2001:23-26). In DG, this
relation is called Same and accounts for 17.21%
of all relations; only Elaboration and Similarity
are more frequent’ As DG allows multiple
attachments, Same should be expected to be
regularly  associated with  multiple-parent
structures, and it is: the percentage of Same
relations is higher in multiple-parent structures
than overall, and the reduction of multiple-

? Note that a Same-Unit relation is not needed in ‘classic’
RST, where parenthetical segments are extracted and
placed after the segment within which they occur (Redeker
& Egg 2006).

Proceedings of SIGDIAL 2010: the 11th Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 63—66,
The University of Tokyo, September 24-25, 2010. (©2010 Association for Computational Linguistics

63



parent structures when Same relations are
removed from the DG is second only to
Elaboration (Wolf & Gibson 2003:280-282).

Our explorations of Same relations in DG
revealed a substantial number of cases that do not
seem to fit WG’s definition of this relation, most
notably confusions with Elaboration relations and
a surprising number of cases where there is no
intervening segment to be bridged by the Same
relation. In this paper, we will present these
findings and discuss some consequences for
discourse segmentation and the annotation of
coherence relations.

2 Same relations in DG

The DG coding manual (Wolf et al 2003:15)
stipulates as the only condition for a Same
relation that a discourse segment must have
“intervening material”’. The example in the
manual tacitly fits the much more restrictive
definition given in (Wolf & Gibson 2003:255)
and in (Wolf & Gibson 2006:28):

“A same relation holds if a subject NP is
separated from its predicate by an intervening
discourse segment”.

Among the 534 Same relations in DG,’ we
have identified 128 cases (23.98%) where this
definition does not seem to apply. Sixty-four of
these cases also do not satisfy the broader
definition in the coding manual (see 2.3).

2.1 Same or Elaboration?

In 35 cases, the Same relation is applied to
constructions that are elsewhere labeled
Elaborations. Consider the parallel examples (1)
and (2):
(1) [42]-[44] elab-1loc

[42] There, [43] she said,
[44] robots perform specific
tasks in “islands of
automation,” (Text 1)

(2) [32]-[34] same

[32] In the factory of the
future, [33] according to the
university's model, [34]
human chatter will be
replaced by the click-clack

of machines. (Text 1)

*We have arbitrarily chosen to use the data for annotator 1.
The two annotators agreed on segmentation and annotation
in 98% of the cases.
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In these examples, [42] and [32] each specify
a location for the state of affairs expressed in the
second constituent of the relation, [44] and [34]
respectively. Note that [32] is not a subject NP
and example (2) thus violates the restricted
variant of the Same relation definition.
Interestingly, examples (1) and (2) differ with
respect to the involvement in crossed
dependencies and multiple-parent structures. As
expected from an elaborating segment, [42] does
not participate in any other relations; the three
other relations [44] participates in do not include
[42]. By contrast, [32] is attached to the
intervening segment and in eight other relations
in which not [34] by itself, but the combined
segment [32]-[34] participates.

In other examples, a general difference
between these Same and Elaboration examples
lies in the attachment of the intervening
segment: in the Same cases, the intervening
segment might be attached to the preceding
discourse segment, and in the Elaboration cases
to the following segment.

The confusion between the symmetric Same
relation (both segments have in principle equal
status) and the asymmetric Elaboration relation
(combining an elaborandum with a less central
elaborating segment) might have been caused by
WG’s definition, which stipulates that the
segments be “centered around a common event
or entity” (Wolf et al 2003: 12) and thus does
not reflect the asymmetry of the Elaboration
relation.

2.2  Violations of definitional constraints

There are other cases, besides those discussed in
2.1, where the formal requirement of the
restrictive definition is not met. In 20 cases, the
Same relations joins coordinated or disjoint NP's
as in example (3):

) [13]— same
3] Mrs. Price's husband,
4] Everett Price, [15] 63,
6] and their daughters,
ext 2)

[16]

(3
[1
[1
[1
(T

In 12 cases, Same is used to relate a discourse
connective to its host clause as in (4):

(4) [4]1-[6] same

[4] However, [5] after two
meetings with the Soviets,
[6] a State Department
spokesman said that (Text 8)



Presumably the annotators were using the less
restrictive definition in the coding manual. This
explanation cannot account for the last category
of problematic cases we now turn to.

2.3  Spurious Same relations

We found 64 cases in DG where Same is assigned
to two adjacent discourse segments, thus violating
the essential criterion of “intervening material”.
Such ‘spurious’ Same relations occur with various
constructions including the following:

*  Complement clauses

(5) [61] The administration
should now state [62] that
(Text 123, wsj 0655)

¢ Infinitive clauses

(6) [79] Banco Exterior was
one of the last banks [80] to
create a brokerage house
(Text 122, wsj 0616)

¢ Conditional clauses

(7) [35] And important U.S.
lawmakers must decide at the
end of November [36] 1f the
Contras are to receive the
rest of the $49 million in
so-called humanitarian
assistance under a bipartisan
agreement (Text 123,

wsj 0655).

*  Gerund postmodifier phrases

(8) [2] Lawmakers haven’t
publicly raised the
possibility [3] of renewing
military aid to the Contras,
(Text 123, wsj 0655).

*  Temporal “as”-clauses

(9) [31] it came [32] as
Nicaragua is under special
international scrutiny in
anticipation of its planned

February elections. (Text
123, wsj 0655)
The 64 spurious Same relations are

concentrated in only 20 of the 135 texts. Fifty-one
of those cases occur in ten texts that were also
used in the RST Discourse Treebank. This gives
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us the interesting opportunity to compare the
DG and RST Treebank analyses for these 51
cases. As Table 1 shows, only two of them are
labeled Same-Unit in the RST Treebank, while
26 (51%) are Elaboration relations.

Relations | Frequencies Percent
Elaboration 26 51.0%
Attribution 13 255 %
Same-Unit 2 39%
Other 10 19.6 %
Total 51 100 %

Table 1: Spurious Same relations in DG and relations
assigned in the RST Treebank

It is instructive to look at the subtype of
Elaboration assigned to these cases, which most
commonly is the relation Elaboration-object-
attribute-e. It applies to clausal modifiers,
usually postmodifiers of a noun phrase, that
express an intrinsic quality of an object. Carlson
& Marcu (2001:55) illustrate this relation with
the following example:

(10) [Allied Capital is a
closed-end management
investment company] [that
will operate as a business
development concern.]

(wsj 0607)

The constructions with spurious Same
relations in DG thus often involve restrictive
modification, implying a very close tie between
the segments involved, possibly prompting the
annotators to as it were undo the segmentation.

3 Segmentation rules

Any annotation of discourse relations requires
rules for segmenting the text into elementary
discourse units. DG follows Carlson & Marcu
(2003) in assuming clauses, modifiers and
attributions as discourse segments (DSs), but
adds some “refinements” (Wolf et al., 2003:8)
that may be responsible for some of the
problematic cases discussed in section 2.* In
particular, two of the additional stipulations refer
to “elaborations”:

* A different account of the segmentation is given in (Wolf
& Gibson 2006), but the annotation in DG is presumably
based on the 2003 manual.



“Elaborations|[..] are separate DSs: [ Mr.
Jones, ][ spokesman for IBM, ] [ said...]”
(Wolf et al., 2003:8)

“Time-, space-, persona - or detail-
elaborations are treated as DSs” (Wolf et a.,
2003:9).

This might simply be an unfortunate
equivocation, but still is likely to confuse
annotators by confounding the segmentation and
relation annotation tasks.

4 Conclusions

Our analysis of the Same relation in DG has
shown systematic deviations from the definition
of this (pseudo-)relation and a substantial number
of confusions between Same and Elaboration,
both in cases where Same cannot apply, as there
is no intervening segment, and in cases where
both might apply, but parsimony would demand
to treat parallel cases equally. Some of the
problematic cases may have been caused by the
use of relational terminology (‘“‘elaboration”) in
two of the segmentation rules. The problems are
not just methodological, though, but may raise
questions about the conceptual status of
Elaboration relations.

The confusion of a bone fide coherence
relation with a purely technical construction that
serves to recombine the parts of an interrupted
segment must be worrisome. More specifically,
the comparison with the annotation in the RST
Discourse Treebank reveals that many of the
‘spurious’ Same relations in DG are analyzed as
Elaboration-object-attribute-e relations in the
RST Treebank. This is exactly the subcategory of
Elaboration relations that most clearly operate on
the level of entities instead of propositions, and
thus arguably might not be proper discourse
relations (Knott et al. 2001). This holds a fortiori
as Carlson & Marcu’s (2001) definition of the
Elaboration-object-attribute-e relation requires a
restrictive modifier construction. The increasing
availability of corpora annotated for discourse
structure will facilitate the further investigation of
these questions.
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Abstract

In this paper we motivate and describe
a dialogue manager which is able to in-
fer and negotiate causal implicatures. A
causal implicature is a type of Gricean re-
lation implicature, and the ability to infer
them is crucial in situated dialogue. Be-
cause situated dialogue interleaves conver-
sational acts and physical acts, the dia-
logue manager needs to have a grasp on
causal implicatures in order not only to de-
cide what physical acts to do next but also
to generate causally-aware clarifications.

1 Introduction

In conversation, an important part of the content
conveyed is not explicitly said, rather it is impli-
cated. However, Grice (1975)’s classic concept of
conversational implicature (CI) is far from fully
understood. Traditionally CIs have been classified
using the Gricean maxims: there are relation Cls
(also known as relevance CIs), quantity Cls, qual-
ity Cls and manner Cls. In formal pragmatics, the
most studied CIs are quantity Cls, probably be-
cause they are the ones most obviously amenable
to theoretical analysis; see (Geurts, in press) for
a survey of the state of the art. Far less studied
(and traditionally regarded as somewhat obscure)
are relation CIs. Obscure perhaps, but crucial: it
has been argued that they subsume all other types
of CIs (Wilson and Sperber, 2004). This paper is a
first step towards their formalization.

We shall analyze a kind of CI that we call causal
ClIs. Causal CIs are relation Cls as defined by
Grice (1975) where the crucial relation is task do-
main causality. Consider the following example:

Mary: The chest is locked, the crown is inside
Bill: Give me the crown
Bill causally implicated: Unlock the chest

Patrick Blackburn
INRIA Nancy Grand-Est
Equipe TALARIS
615, rue du Jardin Botanique
54602 Villers les Nancy, France
patrick.blackburn@loria.fr

In order to carry out the task action required by
Bill (to give him the crown) it is necessary to un-
lock the chest. Hence we say that Bill is implicat-
ing, by trading on the domain causal relations (af-
ter all, the contents of a chest are not accessible un-
less the chest is unlock) that Mary is to unlock the
chest. Now, once Mary has inferred the causal CI,
she may accept this inference silently or negotiate
it. Mary might decide to silently accept it because
she knows how to get the key; in this case we will
say that Mary constructed an internal bridge from
the current task situation (that is, the crown being
inside the locked chest) to the proposal made by
Bill (giving him the crown). If Mary decides she
has insufficient information to construct the inter-
nal bridge (maybe she has no key, or sees that the
lock is rusty) she may start a sub-dialogue that we
will call an external bridge; she might say, for ex-
ample: But how can I unlock the chest? The in-
ternal process of bridging is what in the literature
has been called accommodation (Lewis, 1979) or
bridging (Clark, 1975). The external processes of
bridging constitutes a large part of what we call
conversation.

This paper presents a dialogue system (called
Frolog) which infers and negotiates causal CIs in
the context of situated task-oriented dialogue; the
framework is intended as a proof-of-concept of the
ideas just sketched. We proceed as follows. In
Section 2, we motivate the study of causal CIs in
dialogue. In Section 3 we present Frolog’s dia-
logue manager which infers causal CIs in situated
dialogue. And in Section 4 we illustrate how the
negotiation (external bridging) of causal CIs incre-
mentally grounds a pragmatic goal proposed by
one of the dialogue participants. Section 5 con-
cludes the paper.

2 Causal implicatures and dialogue

The motivation for our work is both theoretical
and practical. On the theoretical side, we believe
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that it is crucial to explore CIs in the setting of
naturally occurring dialogues. Strangely enough
(after all, Grice did call them conversational im-
plicatures) this view appears to be novel, perhaps
even controversial. In the formal pragmatics lit-
erature, Cls are often simply viewed as inferences
drawn by a hearer on the basis of a speaker’s ut-
terance, contextual information, and the Gricean
maxims. We find this perspective too static. Cls
(especially relations Cls) are better viewed as in-
trinsically interactional inferences that arise from
the dynamics of conversation. As conversations
progress, speakers and hearers switch roles: mean-
ing are negotiated and inference becomes bidirec-
tional (Thomason et al., 2006). Moreover, even
within a single turn, hearers are not restricted to
simply drawing (or failing to draw) “the” CI: in
fact, choosing between internal and external bridg-
ing is better viewed as part of the process of nego-
tiating what the CI at stake actually is. We be-
lieve that interactive perspectives will be neces-
sary to extend the theory of ClIs beyond the rel-
atively narrow domain of quantity CIs. We also
believe that the dialog-centered approach we ad-
vocate may have practical consequences. In par-
ticular, modeling the external process of bridging
is a step towards having a pragmatically incremen-
tal dialogue manager in the spirit of that sketched
in (BuB and Schlangen, 2010).

This is a broad goal, in this paper we focus on
clausal implicatures. This restriction gives us an
empirical handle of CIs. It is not controversial that
(in non-conversational activities) the causal rela-
tions between acts define the expectations of the
interaction. But also in conversational activities
situated in a physical task causal relations guide
the interaction; we did an empirical study on such
a kind of corpus (Benotti, 2009) and we found that,
in this corpus, most Cls for which there is evidence
(because they are made explicit in a clarification
request) can be explained in terms of causal rela-
tions. For our empirical study, we annotated and
classified the clarification requests (CRs) that ap-
pear in the SCARE corpus (Stoia et al., 2008).

3 Inferring causal implicatures

In order to model the causal CIs that we observed
in the SCARE corpus, and to experiment with dif-
ferent strategies for negotiating these Cls, we de-
signed a system that mimics the instruction giving
setup of the SCARE corpus. In our setup, the DF
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is a dialogue system that we will call Frolog. The
human participant that plays the role of the DG we
will call “the player”.

In a nutshell, Frolog uses an off-the-shelf plan-
ner to compute causal implicatures. That is, it
uses classical planning (a well explored and com-
putationally efficient Al technique) to fill out the
micro-structure of discourse (the bridging infor-
mation required in the next step).! We do so us-
ing the planner BLACKBOX (Kautz and Selman,
1999). Like all classical planners, BLACKBOX
takes three inputs: the initial state, the goal, and
the available actions. The question of what these
three elements should be raises a number of issues.

In Frolog, two types of information are regis-
tered: complete and accurate information about
the game world in the world KB and a represen-
tation of the common ground in the inferaction
KB. Which of these should be used in the initial
state? In fact, we need both: we infer the actions
intended by the player using the information in the
interaction KB but we have to verify this sequence
of actions on the world KB to check if it can actu-
ally be executed.

Let us now define what the goal of the planning
problem should be. Frolog should act to make the
preconditions of the action true with one restric-
tion. The restriction is that it must be possible for
Frolog to manipulate these preconditions. How-
ever, we don’t need to worry about this restric-
tion because the planner should take care of which
propositions are manipulable by Frolog and which
are not, given the current state. So we can just de-
fine the goal as the conjunction of all the precon-
ditions of the command uttered by the player.

To complete the picture, the actions available to
the planner are all the actions in the game action
database. This means that we are assuming that
all the actions that can be executed, are mutually
known to Frolog and the player.

In order to be able to perform bridging to the
mutual information it must be mutually known
what the preconditions and the effects of the ac-
tions involved are. The assumption that the player
and Frolog know the exact specification of all the
actions that can be executed in the game world is

!"Thus the work reported here is very different from the
traditional work of (Perrault and Allen, 1980; Allen and
Allen, 1994): classic papers in the plan-based tradition use
plan recognition (a more computationally expensive task) to
interpret utterances by inserting them into the plan the macro-
structure (the global shape) of discourse.



a simplifying assumption. We make it because it
enables us to avoid deciding (and implementing)
how differing knowledge about actions get coordi-
nated; dealing with such issues simply too difficult
at present.

4 Negotiating with a dialogue system

In this section we present a worked out example of
how the solutions of the planning problems intro-
duced in the previous section can be used in order
to perform internal bridging and trigger external
bridging when appropriate.

In this example Frolog does not have enough
knowledge yet in order to infer the bridge.” This
is the case in instruction (37) in Figure 1. In this
instruction the player wants Frolog to open the
chest but Frolog does not know how to do this.
In the screen-shot in the right you can see state of
the interaction KB from turns (37) to (39). In this
model we can see that the player does not have
information about what fits into the chest, in or-
der to unlock it. This is why the planner is not
able to find a plan that achieves the precondition
(unlocked chestl) of the command “open the
chest” in instruction (37). The instruction in (39)
fails as well making the obstacle explicit. Utter-
ance (40) is an example of a CR caused by a re-
quired and unknown thematic relation filler (the
second most frequent CR in the SCARE corpus).

[=

T TS

Il el

Player(32): look at the chest
Frolog(33): the chest is closed and
locked and wooden

Player(34): look at Frolog

Frolog(35): Frolog is alive

Frolog(36): Frolog holds the sword, the worm
and the golden key

Player(37): open the chest
Frolog(38): Frolog can't do that!
the chest is not unlocked

Player(39): unlock the chest m————
Frolog(40): Frolog can't do that!
Frolog doesn't know what fits into the chest

Player(41): unlock the chest with the golden key
Frolog(42): [Frolog unlocks the chest]
Frolog(43): the chest is unlocked

Player(44): lock the chest with the key
Frolog(45): [Frolog locks the chest]
Frolog(46): the chest is locked

Player(47): open the chest
Frolog(48): Frolog can't do that!
the chest is not unlocked

Figure 1: External bridging in Frolog

Frolog’s behavior continues as expected until
turn (48) in which Frolog again is not able to
bridge the command open the chest. It is to be
expected that the fact that the golden key fits into

?For illustrations of other reasons that trigger negotiation
of ClIs see (Benotti, 2010).
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the chest is mutual knowledge by now but Frolog
is not reacting accordingly.

In order to overcome this issue there are two
options: (1) either we allow different sources to
update the mutual information loosing uniformity
in the update process or (2) we add actions that
manipulate this kind of information. Here we de-
scribe option (1) that turns out to be the proce-
dural version of “strict accommodation” (as de-
fined in (Beaver and Geurts, in press)), and when
generalized is of a piece with abduction (Hobbs,
1985). For an discussion of (2) we refer the reader
to (Benotti, 2010).

We could say that the intuition behind the strict
notion of accommodation is that when the speaker
utters a sentence, she is not only trying to achieve
the obvious effects of the utterance, but is also
communicating the ways in which she assumes the
world to be, and on which the success of the utter-
ance depends. Following this intuition it can be
argued that the intention behind the utterance “un-
lock the chest with the golden key” in turn (41) is
twofold. It is clear that the player wants to achieve
the effects of the action, that is, she wants to have
the chest unlocked. But the player also expects
Frolog to recognize the assumptions she is making
and on which the success of the utterance depends.
In particular, she expects Frolog to recognize that
she is assuming that the golden key fits into the
chest lock (this is why Frolog can coherently ask
why do you think that the golden key will fit?).

This means that, when an action is executed, the
interaction KB will be updated not only with the
effects of the action but also with its preconditions.
And those preconditions that were not in the inter-
action KB before will be verbalized as in turn (9)
in Figure 2.
Frolbat: Frolog can' a0 thatt

Frolog doesn't know
what fits-into the chest

i taction unlock
i rarguments
(agent ?w) (theme ?x) (inst ?y)
:precondition
(accessible ?x)
(locked ?x)
(fitsin ?y ?x)
(hold ?w ?y)
reffect
(not (locked ?x))
(unlocked ?x)

Player(3): look at you
Frolog(4): you are alive
Frolog(5): you hold a golden key

Player(6): unlock the chest

with the golden key

Frolog(7): [Frolog unlocks the chest
with the golden key]

Frolog(8): the chest is unlocked

Frolog(9): the key fits-into the chest

Player(10): lock the chest

Frolog(11): [Frolog locks the chest
with the golden key]

Frolog(12): the chest is locked

i :action open

:arguments

(agent ?w) (theme ?x)

:precondition
(accessible ?x)
(closed ?x)
(unlocked ?x)

reffect
(not(closed ?x))
(open ?x)

Player(13): look at the chest
Frolog(14): the chest is closed and
locked and wooden

Player(15): open the chest i
Frolog(16): [Frolog unlocks the chest with the golden key]
Frolog(17): the chest is unlocked i
Frolog(18): [Frolog opens the chest]
Frolog(19): the chest is open

Frolog(20): the chest hold a golden crown

Figure 2: External bridging becomes internal



The rest of the interaction (from turns (10)
to (15)) show that once the proposition (fitsin
keyl chestl) is added to the interaction KB the
action “open the chest” can be internally bridged
even when the chest is locked. Because the player
and Frolog mutually know which key fits into the
chest.

5 Discussion

Clearly, our inference framework is limited in
many ways. But we think we’ve made a small
step in the right direction. Dialogue systems are
reaching a development level in which they cannot
elude drawing inferences for much longer. This
paper is a step in this direction.

Causal implicatures are a kind of relation
implicature (historically Grice’s most obscure
and crucial implicature) whose inference—we’ve
argued—is essential in situated dialogue if our di-
alogue systems are not to violate the expectations
of the user. Causal relations have a direct impact
on the coherence structure of situated dialogues
such as those in the SCARE corpus; in the SCARE
corpus most pragmatic clarification requests make
explicit causal implicatures.

We need to have a grasp on causal impli-
catures in order for our dialogue systems not
only to decide what physical acts to do next—
internal bridging—but also to generate causally-
aware clarification requests—external bridging.
Of course the inference framework presented here
has many limitations that we discussed through-
out the paper and probably classical planning is
not the formalism that we will finally want to use
in our dialogue systems (at least not in its present
form). Our model is intended as a proof of con-
cept, and intentionally stays at a level of formal-
ization that is still simple enough so as not to loose
our intuitions. The two intuitions that we don’t
want to loose sight of are (1) utterances are to be
interpreted in a context and need to be connected
to this context (through some kind of relation, be-
ing causality one of the most important ones in
situated dialogue) in order to be grounded (2) the
process of connecting utterances to the context is
a joint process, it is a negotiation that involves de-
cisions of all the dialogue participants.

With the intuitions in place we plan to extend
this work mainly by porting the inference frame-
work into new domains.

There is lot to do yet, but we believe that the
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negotiation of causal implicatures is a step towards
an incremental dialogue manager.
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Abstract

Van der Sandt’s algorithm for handling
presupposition is based on a “presuppo-
sition as anaphora” paradigm and is ex-
pressed in the realm of Kamp’s DRT. In
recent years, we have proposed a type-
theoretic rebuilding of DRT that allows
Montague’s semantics to be combined
with discourse dynamics. Here we ex-
plore van der Sandt’s theory along the
line of this formal framework. It then re-
sults that presupposition handling may be
expressed in a purely Montagovian set-
ting, and that presupposition accommoda-
tion amounts to exception handling.

1 Introduction

Montague (1970) argued that there is no essen-
tial difference between natural and mathematical
languages. He developed a theory that assigns a
lambda-term for each lexical item, and the mean-
ing of a whole sentence could be obtained by com-
posing the lambda-terms via functional applica-
tion. However, his theory was limited to single
sentences. De Groote (2006) extends Montague’s
framework with a continuation-passing-style tech-
nique, developing a framework that is dynamic in
a sense reminiscent of Dynamic Predicate Logic
(Groenendijk and Stokhof, 1991).

While Montague’s semantics is based on
Church’s (1940) simple type theory and has only
two atomic types (¢, the type of individuals; and o,
the type of propositions), de Groote (2006) adds
an atomic type 7y representing the type of the envi-
ronment. For each lambda-term the continuation is
what is still to be processed, and its type is y — o.

Since anaphoric expressions are known to be
similar to presuppositional expressions (van der
Sandt, 1992), it is natural to ask whether our type-
theoretic framework can be extended to handle

Ekaterina Lebedeva
INRIA Nancy - Grand Est
UHP Nancy 1
ekaterina.lebedeva@loria. fr

presuppositions. The goal of this paper is to an-
swer this question positively, at least in the case of
presuppositions triggered by definite descriptions.
To achieve this goal v will not be defined simply
as a list of individuals, but as a list of individuals
together with their properties.

2 Background

Van der Sandt (1992) argues that presuppositions
and anaphors display similar behavior: they pri-
marily have to be bound to some antecedent pre-
viously introduced in the discourse. Therefore,
they can be treated by similar mechanisms. He
implements his ideas in DRT (Kamp and Reyle,
1993) in such a way that for each new sentence a
provisional DRS encoding possible anaphoric ele-
ments is constructed. This provisional DRS is then
merged with the main DRS, and the presupposi-
tional anaphors are resolved in accordance with
certain pragmatic constraints, so that presupposi-
tions can be accommodated when lacking a suit-
able antecedent.

Geurts (1999) proposes an improvement of van
der Sandt’s theory, called the binding theory, ac-
cording to which anaphora is a kind of presupposi-
tion. Therefore, presuppositions triggered by pro-
nouns and definite descriptions can also be accom-
modated: a referent is introduced with a poor de-
scriptive content and the descriptive content can be
enhanced as the discourse unfolds. Moreover, ac-
cording to the presuppositional version of the quo-
tation theory of names (Kneale, 1962), names (e.g.
John) are synonymous with definite noun phrases
of the form “the individual named John”. Hence,
presuppositions triggered by names and by defi-
nite descriptions can be handled similarly.

De Groote’s (2006) dynamic theory provides
some improvement over classical DRT. It allows
the representations of sentence and discourse to be
built from the lexical items in the spirit of Mon-
tague. It provides reference marker renaming for
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free and may be implemented using well estab-
lished techniques. We claim that Geurts’ binding
theory can be incorporated into this framework,
providing a fully compositional treatment of defi-
nite descriptions.

3 Presupposition in Dynamic Theory

We focus here on presuppositions triggered
by definite descriptions, particularly by proper
names, pronouns and possessive noun phrases.

3.1 Basic Principles

Imagine that somebody is about to tell a new story
and the first sentence of this story is (1).

6]

If the listener does not know John, he or she will
immediately imagine a person named “John” and
memorize it. In other words, the listener will ac-
commodate the presuppositional content triggered
by the proper name John in the following way:
he or she will create a slot in the environment,
which is some unit representing the knowledge
about John, and put there what was just learned
about John. Therefore, the listener will be able
to refer to the created slot representing John as the
discourse evolves. Moreover, the slot for John will
be different from other slots, i.e. it will have some
identity marker, which we call, following Kart-
tunen (1976), reference marker or simply refer-
ent. There is a direct analogy between memory
slots introduced above and Heim’s (1982; 1983)
file cards: they are both aimed to store what has
been learned about some individual.

Let j be the referent for John and assume that
sentence (1) is followed by sentence (2).

This story is about John.

2

Mary is a new individual in the discourse and
therefore Mary will be accommodated introducing
a reference marker m exactly as it happened for
John after the utterance of (1). The story is differ-
ent for John now. The listener already has a rep-
resentation standing for John in the environment,
and he or she just has to turn to the correspond-
ing slot (select the marker in the environment) and
update the slot with the new information that John
loves Mary (bind John from (2) to the referent j).

John loves Mary.

3.2 Proper Names

To encode, following Montague’s legacy, the ob-
servations discussed above as lambda-terms, we

72

first define a selection function sel as a function
taking two arguments: a property and an environ-
ment; and returning a reference marker:

3)

sel:(t—>0)—>y—>t

According to Montague, proper names can be
interpreted as type-raised individuals, thus the
lambda-term standing for John in Montague’s se-
mantics is (4), where j is a constant.

[John] = AP.Pj 4

In the dynamic interpretation, instead of the con-
stant j we would like to have a referent corre-
sponding to John. For this, we attempt to select
such a referent given a property of being named
John, as shown in (5).

[John]] = AP.P(sel(named “John”)) (@)

Whether the selection of the marker for John suc-
ceeds depends on the current environment. Hence,
instead of using Montague’s individuals (i.e. of
type ¢) directly, we use individuals parameterized
by the environment (i.e. having type (y — ¢)).

Noun phrases are regarded as having type (6),
which is analogous to the type for noun phrases
(7) given by Montague, i.e. a noun phrase is in-
terpreted by a lambda-term that accepts a prop-
erty and returns a proposition. The only differ-
ence is that now individuals are always parameter-
ized by an environment, and propositions are dy-
namic', i.e. they have type Q that is defined as
Y=y —=o0)—o.

[NPI=((y 2> Q) —>Q
NPl=

©)
)

— 0) —o0

3.3 Pronouns

Pronouns are also presupposition triggers. It can
be seen in the case of cataphora, such as, for ex-
ample, in sentence (8), where in the first part of
the sentence the pronoun /e introduces an individ-
ual. Since pronouns have poorer descriptive con-
tent than proper names and they have the type of
noun phrases (6), they are represented by lambda-
terms that are at most as complex as the terms
for proper names. The term for the pronoun e is
shown in (9), which expresses an attempt to select
a human individual having masculine gender.

When he woke up, Tom felt better. 8)

! Analogously, dynamic predicates take two additional ar-
guments (environment, of type y, and continuation, of type
(y — 0)) compared to Montague’s interpretation.



[he]l = AP.P(sel (Ax.human(x) A masculine(x))) ©)

If the sentence (8) is uttered in a discourse that
does not provide a suitable referent, the presuppo-
sition trigerred by he will be accommodated (as it
happened for John in (1) and for Mary in (2)). The
presuppositional anaphora trigerred by 7om in the
second part of the sentence could be successfully
bound to the introduced referent.

3.4 Possessives

Consider the sentence (10), where we have a pos-
sessive noun phrase John’s car triggering a pre-
supposition that there is a car owned by John.

John's car is red. (10)

The desired interpretation of John’s car is shown
in (11), which requires a search in the environment
for a referent having the property of being a car
possessed by John. The embedded presupposition
is encoded via a selection function (for the inner
presupposition triggered by John) embedded into
another selection function (for the outer presuppo-
sition related to car).

[John's car]] = (11)
AP.P(Ae.sel(Ax.carx A poss x sel(named “John’)e)e)

However, we would like to express John’s car
compositionally in terms of its constituents. To do
so, we define a term (12) taking two arguments -
a noun phrase standing for a possessor and a noun
standing for an object being possessed, and return-
ing a noun phrase in form of (11). A is a dynamic
conjunction having type (13) and defined in (14).

['sl = AYX.AP.P(SEL(Ax.((Xx) A Y([poss]x))))  (12)
A Qo Q- Q) (13)
A A B = dep.Ae(de.Beg) (14)

The term [poss] in (12) is a usual dynamic two-
arguments predicate, its lambda-term is shown in
(15). SEL is a higher-order selection function. It
has the same designation as (3), with the only dif-
ference that it functions on the level of dynamic
propositions. Thus, the type of SEL is (16) and it
is analogous to the type of sel spelled in (3). More-
over, SEL is defined via sel, and the corresponding
lambda-term is presented in (17).

[poss] = Axy.deg.poss(xe)(ye) A pe (15)
SEL: (y 20> ->y->G—-0) (16)
SEL = APe.sel(Ax.P(de.x)e(le.T))e (17)

[car]] = Ax.de¢.car(xe) A pe (18)

If we apply the term [’ s]] to the term (5) for John
and the term (18) for car, which is just a dynamic
unary predicate, we will get the desired result (11).

3.5 Implicit Referents

Sometimes an anaphora wants to be bound, even
though no referent was introduced explicitly, as in
(19). Already after the first sentence, a listener
will learn that John has a wife, i.e. introduce a
new referent. The presuppositional anaphora trig-
gerred by the possessive noun phrase his wife in
the second sentence will be bound to this referent.

John is married. His wife is beautiful. (19)

This case can be accounted with the lexical in-
terpretation in (20) for being married, which is
defined by a two-arguments relation is_married.
The first argument of the relation is the argument
x being passed to the lexical interpretation. The
second argument is an individual selected from the
environment given the property of being either the
wife or the husband of x.

[is_married] =
Ax.Aeg.is_married(xe)(sel(y.(wife(y, x) (20)
V husband(y, x)))e) A ¢e

3.6 Discourse Update

A discourse is updated by appending the next sen-
tence, as shown in equation (21). A sentence is
defined as a term having the type of a dynamic
proposition, i.e. its type is (22), while a discourse
is defined as a term having the type of a dynamic
proposition evaluated over the environment, i.e its
type is (23). A discourse D updated with a sen-
tence S results in a term having type (23), thus it
has one parameter ¢ of type (y — o). The body
must be a term, of type o, contributed by D. D it-
self is a term of type (23). Therefore, it must be
given a continuation as an argument constructed
with S and its continuation.

DOS = 1¢.D(le.Sed) @1
[S1=Q=y—>@r—0 -0 (22)

[Pl =(—o0)—o (23)

However, during the computation of

Ap.D(Ade.Sep) one of the selection functions
can raise an exception containing a message that
a referent having some property Q was not found
in the environment. The exception will be catched
and the property will be returned to the exception



handler. The handler will have to introduce a
referent having the property Q into the represen-
tation of the discourse, add this referent to the
environment, and call the update function passing
to it the amended interpretation of the discourse
and the sentence S as parameters. This can be
encoded using an exception handling mechanism
as shown in (24) for global accommodation. Note

that the definition of discourse update is recursive.
DOS =.1¢.D(le.Sed)

handle (fail Q) with

Ap.D(de.Ax.(Qx) A p((x, Ox) 2 e)) O S

(24)

The environment is defined as a list of pairs “ref-

erent X proposition” (25). The two-place list con-
structor :: appends a referent together with the
corresponding propositions into the environment,
therefore it has the type shown in (26).

list of (txo0) (25)

(26)

'y:
Di(Xo)-s>y—>y

The selection function sel can implement any
anaphora resolution algorithm, and hence our
framework is not confined to any of them.

Considering that the lambda-term for Mary is
similar to (5) and the lambda-term for the tran-
sitive verb love is (27), the interpretation for the
sentence (2) after beta-reductions will be (28).

[love]l = AYX. X(Ax.Y (dy.(Aegp.love(xe)(ye) A pe))) (27)
S, = [[lovelll[John]|[Mary] —>;
Aed.(love(sel(named “John”)e) (28)

(sel(named “Mary”)e)) A de

After the sentence (1), the lambda-term represent-

ing discourse will be (29).
Dy = A¢.Jy.(story y)A
dj.(named “John” j)A
about (y, ))A
¢((y, story y) :: (j,named “John”j))

(29)

After the sentence (2), the lambda-term Dy in (29)
will have to be updated with the term S, in (28)
as it is defined by the function (24). Since we
have a referent for John in the environment of Dy,
it will be successfuly selected and John from S;
will get bound to it. However, there will be a fail-
ure for Mary, particularly on the property (named
“Mary”) since there is no corresponding referent
in Dy yet. The failure will be handled by accom-
modating Mary and introducing the sentence S,
into the amended interpretation of the discourse,
which results in the term shown in (30).
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D, =Dy O S, = /l¢3y(st0ry y)/\
dj.(named “John” j)A
about (y, ))A
Jm.(named “Mary” j)A
love (j, m)A
¢((m,named “Mary”’m) ::
(y,story y) ::
(j, named “John”j))

(30)

4 Conclusions

We showed that de Groote’s (2006) dynamic
framework can be applied to presuppositions trig-
gered by definite descriptions, such as proper
names, possessive noun phrases and pronouns;
and that the exception handling mechanisms offer
a proper way of modeling the dynamics of presup-
position. Other presuppositional expressions, such
as, for example, factives and aspectual verbs, will
require more technicalities. Nevertheless, we be-
lieve that the approach can be extended to encom-
pass a general theory of presupposition and we in-
tend to address this in future work.
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Abstract

Temporal analysis of events is a central
problem in computational models of dis-
course. However, correctly recognizing
temporal aspects of events poses serious
challenges. This paper introduces a joint
modeling framework and feature set for
temporal analysis of events that utilizes
Markov Logic. The feature set includes
novel features derived from lexical on-
tologies. An evaluation suggests that in-
troducing lexical relation features im-
proves the overall accuracy of temporal
relation models.

1 Introduction

Reasoning about the temporal aspects of events
is a critical task in discourse understanding.
Temporal analysis techniques contribute to a
broad range of applications including question
answering and document summarization, but
temporal reasoning is complex. A recent series of
shared task evaluation challenges proposed a
framework with standardized sets of temporal
analysis tasks, including identifying the temporal
entities mentioned in text, such as events and
time expressions, as well as identifying the tem-
poral relations that hold between those temporal
entities (Pustejovsky and Verhagen, 2009).

Our previous work (Ha et al., 2010) addressed
modeling temporal relations between temporal
entities and proposed a supervised machine-
learning approach with Markov Logic (ML)
(Richardson and Domingos, 2006). As novel fea-
tures, we introduced two types of lexical rela-
tions derived from VerbOcean (Chklovski and
Pantel, 2004) and WordNet (Fellbaum, 1998). A

preliminary evaluation showed the effectiveness
of our approach. In this paper, we extend our
previous work and conduct a more rigorous
evaluation, focusing on the impact of joint opti-
mization of the features and the effectiveness of
the lexical relation features for modeling tempo-
ral relations.

2 Related Work

Recently, data-driven approaches to modeling
temporal relations for written text have been
gaining momentum. Boguraev and Ando (2005)
apply a semi-supervised learning technique to
recognize events and to infer temporal relations
between time expressions and their anchored
events. Mani et al. (2006) model temporal rela-
tions between events as well as between events
and time expressions using maximum entropy
classifiers. The participants of TempEval-1 in-
vestigate a variety of techniques for temporal
analysis of text (Verhagen et al., 2007).

While most data-driven techniques model
temporal relations as local pairwise classifiers,
this approach has the limitation that there is no
systematic mechanism to ensure global consis-
tencies among predicted temporal relations (e.g.,
if event 4 happens before event B and event B
happens before event C, then 4 should happen
before C). To avoid this drawback, a line of re-
search has explored techniques for the global
optimization of local classifier decisions. Cham-
bers and Jurafsky (2008) add global constraints
over local classifiers using Integer Linear Pro-
gramming. Yoshikawa et al. (2009) jointly model
related temporal classification tasks using ML.
These approaches are shown to improve the ac-
curacy of temporal relation models.

Our work is most closely related to Yoshikawa
et al. (2009) in that ML is used for joint model-
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ing of temporal relations. We extend their work
in three primary respects. First, we introduce
new lexical relation features. Second, our model
addresses a new task introduced in TempEval-2.
Third, we employ phrase-based syntactic features
(Bethard and Martin 2007) rather than depend-
ency-based syntactic features.

3 Data and Tasks

We use the TempEval-2 data for English for both
training and testing of our temporal relation
models. The data includes 162 news articles (to-
taling about 53,000 tokens) as the training set
and another 11 news articles as the test set. The
corpus is labeled with events, time expressions,
and temporal relations. Each labeled event and
time expression is further annotated with seman-
tic and syntactic attributes. Six types of temporal
relations are considered: before, after, overlap,
before-or-overlap, overlap-or-after, and vague.

Consider the following example from the
TempEval-2 data, marked up with a time expres-
sion #; and three events e;, e,, and e;, where ¢;
and e, are the main events of the first and the
second sentences, respectively, and e; is syntac-
tically dominated by e..

But a 1t
later,

[minute and a half
a pilot from a nearby
flight [calls]® in. Ah, we
just [saw]®® an [explosion]®’
up ahead of us here about
sixteen thousand feet or
something like that.

In the first sentence, ¢; and e; are linked by a
temporal relation overlap. Temporal relation af-
ter holds between the two consecutive main
events: e; occurs after e;. The main event e, of
the second sentence overlaps with e; which is
syntactically dominated by e.

In this paper, we focus on three subproblems
of the temporal relation identification task as de-
fined by TempEval-2: identifying temporal rela-
tions between (1) events and time expressions in
the same sentence (E7); (2) two main events in
consecutive sentences (MM); and (3) two events
in the same sentence when one syntactically
dominates another (MS), which is a new task in-
troduced in TempEval-2.

4 Features

Surface features include the word tokens and
stems of the words. In the TempEval-2 data, an
event always consists of a single word token, but
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time expressions often consist of multiple tokens.
We treat the entire string of words in a given
time expression as a single feature.

Semantic features are the semantic attributes
of individual events and time expressions de-
scribed in Section 3. In this work, we use the
gold-standard values for these features that were
manually assigned by human annotators in the
training and the test data.

Syntactic features include three features
adopted from Bethard and Martin (2007): gov-
prep, any prepositions governing the event or
time expression (e.g., for’ in ‘for ten years’);
gov-verb, the verb governing the event or time
expression; gov-verb-pos, the part-of-speech
(pos) tag of the governing verb. We also consider
the pos tag of the word in the event and the time
expression.

Lexical relations are the semantic relations be-
tween two events derived from VerbOcean
(Chklovski and Pantel, 2004) and WordNet
(Fellbaum, 1998). VerbOcean contains five types
of relations (similarity, strength, antonymy, en-
ablement, and happens-before) that commonly
occur between pairs of verbs. To overcome data
sparseness, we expanded the original VerbOcean
database by calculating symmetric and transitive
closures of key relations. With WordNet, a se-
mantic distance between the associated tokens of
each target event pair was computed.

5 Modeling Temporal Relations with
Markov Logic

ML is a statistical relational learning framework
that provides a template language for defining
Markov Logic Networks (MLNs). A MLN is a
set of weighted first-order clauses constituting a
Markov network in which each ground formula
represents a feature (Richardson and Domingos,
2006).

Our MLN consists of a set of formulae com-
bining two types of predicates: hidden and ob-
served. Hidden predicates are those that are not
directly observable during test time. A hidden
predicate is defined for each task: relEventTimex
(temporal relation between an event and a time
expression), relMainEvents (temporal relation
between two main events), and relMainSub
(temporal relation between a main and a domi-
nated event). Observed predicates are those that
can be fully observed during test time and repre-
sent each of the features described in Section 4.

The following is an example formula used in
our MLN:



eventTimex(d, e, t) A eventWord(d, e, w)
—s relEventTimex(d, e, t, r)

M

The predicate eventTimex(d, e, t) represents the
existence of a candidate pair of event e and time
expression ¢ in a document d. Given this candi-
date pair, formula (1) assigns weights to a tem-
poral relation » whenever it observes a word to-
ken w in the given event from the training data.
This formula is local because it considers only
one hidden predicate (relEventTimex).

In addition to local formulae, we also define a
set of global formulae to ensure consistency be-
tween local decisions:

relEventTimex(d, e,, t, r;) A relEventTimex(d,
ey t, 1)) — relMainSub(d, e, e;, r3) 2)

Formula (2) is global because it jointly concerns
more than one hidden predicate (re/EventTimex
and relMainSub) at the same time. This formula
ensures consistency between the predicted tem-
poral relations r,, r;, and r; given a main event
e, a syntactically dominated event e,, and a time
expression ¢ shared by both of these events. Two
additional global formulae (3) and (4) are simi-
larly defined to ensure consistency as below.

relMainSub(d, e;, e, r;) A relEventTimex(d,
ey t, 1)) — relEventTimex(d, e, t, 1) 3)

relMainSub(d, e;, e, r;) A relEventTimex(d,
ey t, r) — relEventTimex(d, e, t, ;) 4)

6 Evaluation

To evaluate the proposed approach, we built and
compared two models: one model (NoLex) used
all of the features described in Section 4 except
for the lexical relation features, and the other
model (Full) included the full set of features. The
features were generated using the Porter
Stemmer and WordNet Lemmatizer in NLTK
(Loper and Bird, 2002) and the Charniak Parser
(Charniak, 2000). The semantic distance between
two word tokens was computed using the path-
similarity metric provided by NLTK. All of the
models were constructed using Markov TheBeast
(Riedel, 2008)

The feature set was optimized for each task on
a held-out development data set consisting of
approximately 10% of the entire training set (Ta-
ble 1). Our previous work (Ha et al., 2010) ob-
served that a local optimization approach that
selects for each individual task (i.e., each hidden
predicate in the given MLN) in isolation from the
other tasks could harm the overall accuracy of a
joint model because of resulting inconsistencies

Feature Task
ET MM MS
Surface event-word N N N
Features event-stem N N N
timex-word N
timex-stem N
Semantic  |event-polarity N y \
Attributes | event-modal N N N
event-pos y N V*
event-tense \/ \/ \/
event-aspect \ \ V
event-class N N N
timex-type N
timex-value N
Syntactic  |pos \ y N
Features gov-prep N N v
gov-verb y N N
gov-verb-pos \ N N
Lexical verb-rel N N
Relations  |word-dist V
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Table 1: Features used to model each task. *The
feature is extracted only from the second event in
the pair being compared.

among individual tasks. In the new experiment
described in this section, features were selected
for each task to improve overall accuracy of the
joint model combining all three tasks, similar to
Yoshikawa et al. (2009).

Table 2 reports the resulting performance (£/
scores) of the models. To isolate the potential
effects of global constraints, we first compare the
accuracies of the Full and the NoLex model, av-
eraged from a ten-fold cross validation on the
training data before global constraints are added.
Full achieves relative 12% and 3% improve-
ments over NoLex for temporal relation between
events and time expressions (E7) and between
two main events (MM), respectively. The im-
provement for MM was statistically significant
(»<0.05) from a two-tailed paired ¢-test. Note
that the ET task itself does not use lexical rela-
tion features but still achieves an improved result
in Full over NoLex. This is an effect of joint
modeling. There is a slight degradation (relative
2%) in the accuracy for temporal relations be-
tween main and syntactically dominated events
(MS). Overall, Full achieves relative 5% im-
provement over NoLex. A similar trend of per-
formance improvement in Full over NoLex was
observed when the global formulae were added
to each model. The second column (Global Con-
straints) of Table 2 compares the two models
trained on the entire training set and tested on the
test set after the global formulae were added.
However, no statistical significance was found
on these improvements. Compared to the state-



of-the-art results achieved by the TempEval-2
participants, Full achieves the same or better re-
sults on all three addressed tasks.

7 Conclusions

Temporal relations can be modeled with Markov
Logic using a variety of features including lexi-
cal ontologies. Three tasks relating to the Tem-
pEval-2 data were addressed: predicting tempo-
ral relations between (1) events and time expres-
sions in the same sentence, (2) two main events
in consecutive sentences, and (3) two events in
the same sentence when one syntactically domi-
nates the other. An evaluation suggests that util-
izing lexical relation features within a joint mod-
eling framework using Markov Logic achieves
state-of-the-art performance.

The results suggest a promising direction for
future work. The proposed approach assumes
events and time expressions are already marked
in the data. To construct a fully automatic tempo-
ral relation identification system, the approach
needs to be extended to include models that rec-
ognize events and time expressions in text as
well as their semantic attributes. A data-driven
approach similar to the one described in this pa-
per may be feasible for this new modeling task. It
will entail exploring a variety of features to fur-
ther understand the complexity underlying the
problem of temporal analysis of events.
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Abstract

In this paper we present a reference model
based on Reference Domain Theory that
can work both in interpretation and gener-
ation. We introduce a formalization of key
concepts of RDT, the interpretation and
generation algorithms and show an exam-
ple of behavior in the dynamic, asymmetric
and multimodal GIVE environment.

1 Introduction

The reference task in a dialogue system is two-fold.
On the one hand the system has to interpret the
referring expressions (RE) produced by the user in
his utterances. On the other hand the system has
to generate the REs for the objects it aims to refer
to. We present in this paper a framework that con-
siders that reference interpretation and generation
are two sides of the same coin, hence avoiding any
potential misunderstanding arising from the two
modules discrepancies. Reference Domain Theory
(RDT) (Salmon-Alt and Romary, 2000; Salmon-
Alt and Romary, 2001) proposes to represent the
diversity of referring acts by the diversity of con-
straints they impose on their context of use. The
reversibility then lies in the possibility to express
these constraints independently of the considered
task.

In (Denis, 2010) we described the generation side
of RDT in the context of the GIVE-2 challenge
(Koller et al., 2010) which is an evaluation of in-
struction generation systems in a 3D magze. In this
paper we propose the interpretation counterpart
and show the required modeling to consider the
dynamic, asymmetric and multimodal context of
GIVE. We first present the reference model in sec-
tion 2 and 3, discuss the interpretation problems
in GIVE in section 4, detail an example in section
5 and present evaluation results in section 6.

2 Reference Domains

A rich contextual structure is required to give an
account for the different kinds of discrimination
we observe in REs such as semantic discrimina-
tion (e.g. “the blue button”), focus discrimination

(e.g. “this button”) and salience discrimination
(e.g. “this one”). We introduce here the struc-
ture of reference domain which is a local context
supporting these different discriminations.

We assume that Props is the set of unary predi-
cate names e.g. {blue,left,...}, Types is the set of
types of predicates e.g. {color, position, ...}, and
val is the function val : Types — 2F7°P% which maps
a type on the predicates names. Finally, E is the
set of all objects and V' the set of ground predicates
e.g. {blue(bl),...}.

A reference domain D is then a tuple

<GD7SD7UDa (Cy P7 F)>

where Gp C F is the set of objects of the do-
main, called the ground of the domain; Sp C Props
is the semantic description of the domain, satis-
fied by all elements of the ground; op € N is the
salience of the domain. And (¢, P, F) is a parti-
tion structure where ¢ € Types is a differentiation
criterion; P is the partition generated by c; and
F C P is the focus of P.

For instance, a domain composed of a blue but-
ton b; and a red button by, with a salience equal
to 3, where b; and by are differentiated using the
color, and where by is in focus, would be noted as:

D =({b1, b2}, {button}, 3,
(color, {{b1}, {b2}}, {{b1}}))

Finally we define a referential space (RS) as a
set of reference domains (RD) ordered by salience.

3 Referring

A RE impose some constraints on the context in
which it can be uttered, that is in which RD the
interpretation has to be made. The constraints are
represented as underspecified domains (UD), spec-
ifying the structure of the suitable RD in terms of
ground, salience or partition. The explicit defini-
tions of the UDs makes possible to share these def-
initions between the interpretation and the gener-
ation modules, hence allowing the implementation
of a type B reversible reference module (Klarner,
2005), that is a module in which both directions
share the same resources.

Proceedings of SIGDIAL 2010: the 11th Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 79-82,
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Expression U(N,t) matches D iff 3(c, P, F) € D;

this one F = {{t}} Amsd(D)

this N F={{t}} Ate NT

the N te NTA{t} e PAVXEP, X#{t}=>XNNT=0p

the other one F#0ANP\F ={{t}} ANmsd(D)

the other N F#OAP\F={{t}} NGp C NT

another one F#0A{t} € P\ FAmsd(D)

another N F#0A{ty e P\FAGp C N*

a N

te NI AteGp

Table 1: Underspecified domains for each type of
referring expression

3.1 Underspecified domains

The different types of UDs are presented in table 1.
Each UD is a parametric conjunction of constraints
on a RD, noted U(N,t), where ¢ is the intended
referent and N C Props is a semantic description.
N7 stands for the estension of N, and msd(D)
stands for most salient description, that is, there
is no more or equally salient domain than D in the
current RS with a different description. Each UD
is associated to a wording combining a determiner
and a wording of the semantic description, for in-
stance “the N” is a shortcut for a definite expres-
sion whose head noun and modifiers are provided
by the wording of N. Finally we say that an UD
matches a RD if all the constraints of the UD are
satisfied by the RD.

3.2 Referring processes

Interpretation and generation can now be defined
in terms of UD. The two processes are illustrated
in figure 1 and the algorithms are presented in fig-
ure 2.

The interpretation algorithm consists in finding
or creating a RD from the input UD, U(N,.) cre-
ated from the input RE type and description N.
The algorithm then iterates through the RS in
salience order, and through all the individuals ¢ of
the tested domain to retrieve the first one match-
ing U(N,t). If a matching domain D is found, a
restructuring operation is applied and the referent
t is focused in the partition of D. On the other
hand, if no domain is found, the UD is accommo-
dated, that is a new domain and a new referent sat-
isfying the constraints of U(N,t) are created. Ac-
cording to the task, this accommodation may not
be possible for all REs, but for sake of simplicity
we assume here this operation is always possible.

The generation side is the opposite, that is it
finds an UD from an input RD. It first selects a
RD containing the target referent to generate t,
assuming here that the most salient domain has to
be preferred. The description N used to instan-
tiate the UDs is composed of the description of
the domain and the description of the referent in
the partition (line 2). It then iterates through the
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interpretation

/\

referring Underspecified Existing referent
expression Domains Domains

generation

Figure 1: Reference processes

different UDs by Givenness order (Gundel et al.,
1993) and selects the first one that matches. A re-
structuring operation is applied and the found UD
is returned, eventually providing the RE.

The restructuring operation, detailed in (Denis,
2010), aims to restrict the current context by cre-
ating a new domain around the referent in the ref-
erential space or by increasing the salience of the
domain containg the referent. This operation helps
to perform focalization in restricted domains.

4 The complex context of GIVE

The dynamic, asymmetric and multimodal context
of GIVE requires additional mechanisms for inter-
pretation. Asymmetry causes the late visual con-
text integration, when the direction giver produces
a RE to objects not yet known by the direction
follower, that are only visually discovered later on.
Space prevents us to describe in details the late in-
tegration algorithm, but the idea is, given a new
physical object ¢, to scan existing domains of the
actual RS to check if £ can be merged semantically
with any previous object /. If this could be the
case, the integration leads to create two parallel
RS, one in which ¢ = ¢ (the fusion hypothesis)
and one in which ¢ # t' (the separation hypoth-
esis). If this cannot be the case, t is added as a
new object. Following (DeVault and Stone, 2007),
these alternative contexts can persist across time
and further referring expressions may reject one or
the other hypothesis as illustrated in section 5.

The second required mechanism is the proper
handling of the multimodal dynamic focus, that
is the combination of the linguistic focus result-
ing from RE, and the visual focus. It is possible
to have two referential spaces for the linguistic or
visual context as in (Kelleher et al., 2005; Byron
et al., 2005), or to have two foci in a partition.
We can also model interleaved focus, that is, only
one focus per domain but that dynamically corre-
sponds to the linguistic focus or the visual focus.
The idea is that after each RE, the referent receives
the focus as described in algorithm 1, but whenever
the visual context changes, the focus is updated to
the visible objects. Although interleaved focus pre-
vents anaphora while the visual context changes,
its complexity is enough for our setup.



Algorithm 1 interpret(U(N,.), RS)

1: for all domain D in RS by salience order do
2 for all t € Gp do

3 if U(N,t) matches D then

4: restructure(D, N, RS)

5 focus t in D

6 return ¢

7 end if

8: end for

9: end for

10: return accommodate(U(N,.), RS)

Algorithm 2 generate(t, RS)

D «— most salient domain containing ¢
N — Sp U {plp € val(c),p(t) e V}
for all U(N,t) sorted by Givenness do
if U(N,t) matches D then
restructure(D, N, RS)
return U(N,t)
end if
end for
return failure

Figure 2: Reference algorithms, relying on the same underspecified domains

5 Example

In this section we present the interpretation side
of some expressions we generated in the GIVE set-
ting (table 2). The detailed generation side of this
example can be found in (Denis, 2010). S is the
system that interprets the RE of U the user. The
situation is: S enters a room with two blue but-
tons by and by, none of them being visible when he
enters and U wants to refer to by.

state of S ‘ utterance of U

Push a blue button (b;)
see(bs)

see(by) Yeah! This one!

Table 2: Utterances produced by U

When S enters the room, U generates an indef-
inite RE “Push a blue button”. S first constructs
an indefinite UD “a N” with N = {blue, button}.
However, because there exists no RD at first, he
has to accommodate the UD, hence creating a new
domain D; containing a new linguistically focused
individual ¢:

Dy =({t}, {button, blue}, 1,
(id, {{£3 3, {{t3})

We assume that S moves and now sees the blue
button by without knowing yet if this is the in-
tended one. The integration of this new physical
object then leads to two hypothesis. In the fu-
ston hypothesis, by = ¢, and in the separation hy-
pothesis, by # t. In both cases, the visible button
is focused in the two versions of Dy, Dipys and
Disgp:

Dirus ={{t}, {button, blue}, 2,

(id, {{t}}, {{t}}))

Disep ={{t, b2}, {button, blue}, 2,

(id, {{t}, {b2}}, {{b2}1}))

Not this one! Look for the other one!
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However, U utters “Not this one!” rejecting then
the fusion hypothesis. To be able to consider the ef-
fects of this utterance, we have to take into account
the ellipsis. This can be done by assuming that U
is asserting properties of the target of his first RE,
that is, he is actually stating that “[t is] not this
one!”. The RE “this one” leads to the construction
of a demonstrative one-anaphora UD that matches
tin Dipys but bs in D1ggp. The following schema
shows the contradiction in the fusion hypothesis:

t is not this one
fusion t # t
separation ¢ # bo

Being contradictory, the fusion hypothesis is re-
jected and only Digpp is maintained. For the
readability of the presentation, Diggp is rewrit-
ten as D;y.

The interpretation of “Look for the other one!”
is straightforward. A definite alternative one-
anaphora UD is built, and both ¢ and b, are tested
in D but only ¢ is matched because it is unfocused
(see the definition of the alternative one-anaphora
in table 1).

Now S moves again and sees by. As for bs, the
integration of by in the referential space leads to
two alternative RS. The buttons by and b; cannot
be merged (we assume here that S can clearly see
they are two different buttons), thus the two alter-
native RS are whether by =t or by # t:

Dirus ={{t, b2}, {button, blue}, 3,

(id, {{t}, {b2}}, {{t}}))
DlSEP :<{t, bl, bg}, {button, blue}, 3,

(id, {{t}, {ba}, {b2}1}, {{b1}}))

Eventually S has to interpret “this one”. Like
previously, in order to take into account the effects
of this utterance, S has to resolve the ellipsis and
must consider “[¢ is] this one”. The RE “this one”
is resolved on ¢ in Dqpyg but on by in Diggp.



t
fusion t
separation t

s this one

This is now the separation hypothesis which is
inconsistent because we assumed that b; # ¢. This
RS is then ruled out, and only the fusion RS re-
mains.

6 Evaluation

Only the generation direction has been evaluated
in the GIVE challenge. The results (Koller et al.,
2010) show that the system embedding Reference
Domain Theory proves to rely on less instructions
than other systems (224) and proves to be the most
successful (47% of task success) while being the
fastest (344 seconds). We conjecture that the good
results of RDT can be explained by the low cogni-
tive load resulting from the use of demonstrative
NPs and one-anaphoras, but the role of the over-
all generation strategy has also to be taken into
account in these good results (Denis et al., 2010).

Although it would be very interesting, the in-
terpretation side has not yet been evaluated in
the GIVE setting, but only in the MEDIA cam-
paign (Bonneau Maynard et al., 2009) which is an
unimodal setting. The results show that the in-
terpretation side of RDT achieves a fair precision
in identification (75.2%) but a low recall (44.7%).
We assume that the low recall of the module is
caused by the cascade of errors, one error at the
start of a reference chain leading to several other
errors. Nonetheless, we estimate that error cascad-
ing would be less problematic in the GIVE setting
because of its dynamicity.

7 Conclusions

We presented a reference framework extending
(Salmon-Alt and Romary, 2001) in which interpre-
tation and generation can be defined in terms of the
constraints imposed by the referring expressions on
their context of use. The two modules sharing the
same library of constraints, the model is then said
reversible. However, because of the asymmetry and
dynamicity of our setup, the GIVE challenge, ad-
ditional mechanisms such as uncertainty have to
be modeled. In particular, we have to maintain
different interpretation contexts like (DeVault and
Stone, 2007) to take into account the ambiguity
arising from the late integration of the visual con-
text. It would be interesting now to explore deeper
our reversibility claim by evaluating the interaction
between the two reference algorithms in the GIVE
setting.
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Abstract

In this paper we present a framework for spoken rec-
ommendation systems. To provide reliable recom-
mendations to users, we incorporate a review summa-
rization technique which extracts informative opinion
summaries from grass-roots users’ reviews. The dia-
logue system then utilizes these review summaries to
support both quality-based opinion inquiry and fea-
ture-specific entity search. We propose a probabilistic
language generation approach to automatically creat-
ing recommendations in spoken natural language
from the text-based opinion summaries. A user study
in the restaurant domain shows that the proposed ap-
proaches can effectively generate reliable and helpful
recommendations in human-computer conversations.

1 Introduction

Spoken dialogue systems are presently available
for many purposes, such as flight reservations
(Seneff and Polifroni, 2000), telephone calls
routing (Gorin et al., 1997), and subway lookup
(Johnston et al., 2002). Recently, we have been
exploring a next generation of intelligent dia-
logue systems, which can behave like a human
agent and provide proactive assistance and selec-
tive recommendations (e.g., highly-rated restau-
rants or hotels) to users.

To enhance dialogue systems with intelligent
services, we have to let the system “grow” relia-
ble knowledge and intelligence. Luckily, there
has recently been an explosive growth in the
availability of public review sites (e.g., yelp.com,
tripadvisor.com, etc.) which make a perfect re-
source for gathering collective opinions. In this
paper, we will explore how to utilize summaries
of public reviews to automatically generate rec-
ommendation-type conversations in spoken dia-
logue systems. An example of a conversation

with our recommendation system is shown in
Figure 1.

U: Are there any American restaurants in Brighton?

S: There are 61 American restaurants in Brighton. All of
the rated restaurants have good or excellent ambiance.
Many are on Washington Street, Commonwealth Avenue
and Market Street.

U: Show me the ones that have nice ambiance.

S: | found 4 entries. Devlin's Restaurant and Bar is per-
fect for romantic date, Stockyard Restaurant has friendly
atmosphere, Tasca Tapas Restaurant has excellent ambi-
ance, and Wings Express has friendly vibes.

U: Which one has good martinis?

S: Devlin's Restaurant and Bar serves American food. It
has wonderful martinis, good wine, great fish. It is perfect
for romantic date. Great place.

Figure 1. A real conversation with our recom-
mendation dialogue system in the restaurant do-
main (‘U’ is the user and ‘S’ is the system).

2 Dialogue Management

In our previous work (Liu and Seneff, 2009; Liu
et al., 2010) we proposed an approach to extract-
ing representative phrases and creating aspect
ratings from public reviews. An example of an
enhanced database entry in the restaurant domain
is shown in Figure 2. Here, we use these “sum-
mary lists” (e.g., “:food”, “:atmosphere”) as well
as aspect ratings (e.g., “:food rating”) to address
two types of recommendation inquires: “feature-
specific” (e.g., asking for a restaurant that serves
good martinis or authentic seafood spaghetti),
and “quality-based” (e.g., looking for restaurants
with good food quality or nice ambiance).

{q restaurant
:name "devlin’s restaurant and bar"
:atmosphere (“romantic date" "elegant decor")
:place ("great place™)
:food ("wonderful martinis” "good wine" "great fish")
:atmosphere_rating "4.2"
:place_rating "4.2"
:food_rating "4.3"
:specialty ("martinis” "wine" "fish") }

Figure 2. A database entry in our system.
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The University of Tokyo, September 24-25, 2010. (©2010 Association for Computational Linguistics



2.1

To allow the system to identify feature-related
topics in users’ queries, we modify the context-
free grammar in our linguistic parser by includ-
ing feature-specific topics (e.g., nouns in the
summary lists) as a word class. When a feature-
specific query utterance is submitted by a user
(as exemplified in Figure 3), our linguistic parser
will generate a hierarchical structure for the ut-
terance, which encodes the syntactic and seman-
tic structure of the utterance and, especially,
identifies the feature-related topics. A feature-
specific key-value pair (e.g., “specialty: marti-
nis”) is then created from the hierarchical parsing
structure, with which the system can filter the
database and retrieve the entities that satisfy the
constraints.

Feature-specific Entity Search

Utterance “Avre there any restaurants in Brighton that
have good martinis?”
v
Key-value “topic: restaurant, city: Brighton,
pairs specialty: martinis”
¥ _
Database :specialty = “martinis” :city = “Brighton”
filters :entity_type = “restaurant”

Figure 3. Procedure of feature-specific search.

2.2

For quality-based questions, however, similar
keyword search is problematic, as the quality of
entities has variants of expressions. The assess-
ment of different degrees of sentiment in various
expressional words is very subjective, which
makes the quality-based search a hard problem.

To identify the strength of sentiment in quali-
ty-based queries, a promising solution is to map
textual expressions to scalable numerical scores.
In previous work (Liu and Seneff, 2009), we
proposed a method for calculating a sentiment
score for each opinion-expressing adjective or
adverb (e.g., ‘bad’: 1.5, ‘good’: 3.5, ‘great’: 4.0,
on a scale of 1 to 5). Here, we make use of these
sentiment scores and convert the original key-
value pair to numerical values (e.g., “great food”
- “food rating: 4.0” as exemplified in Figure
4). In this way, the sentiment expressions can be
easily converted to scalable numerical key-value
pairs, which will be used for filtering the data-
base by “aspect ratings” of entities. As exempli-
fied in Figure 4, all the entities in the required
range of aspect rating (i.e., “:food_rating = 4.0”)
can be retrieved (e.g., the entity in Figure 2 with
“food_rating = 4.3”).

Quality-based Entity Search
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Utterance “Show me some american restaurants with
great food”
Key-value “topic: restaurant, cuisine: american,
pairs property: food, quality: great”

Converted “topic: restaurant, cuisine: american,
K-v pairs food_rating: 4.0”

Database | :food_rating > “4.0” :cuisine = “american”
filters ‘entity_type = “restaurant”

Figure 4. Procedure of qualitative entity search.

3 Probabilistic Language Generation

After corresponding entities are retrieved from
the database based on the user’s query, the lan-
guage generation component will create recom-
mendations by expanding the summary lists of
the retrieved database entries into natural lan-
guage utterances.

Most spoken dialogue systems use predefined
templates to generate responses. However, man-
ually defining templates for each specific linguis-
tic pattern is tedious and non-scalable. For ex-
ample, given a restaurant with “nice jazz music,
best breakfast spot, great vibes”, three templates
have to be edited for three different topics (e.g.,
“<restaurant> plays <adjective> music”; “<res-
taurant> is <adjective> breakfast spot”; “<restau-
rant> has <adjective> vibes”). To avoid the hu-
man effort involved in the task, corpus-based
approaches (Oh and Rudnicky, 2000; Rambow et
al., 2001) have been developed for more efficient
language generation. In this paper, we propose a
corpus-based probabilistic approach which can
automatically learn the linguistic patterns (e.g.,
predicate-topic relationships) from a corpus and
generate natural sentences by probabilistically
selecting the best-matching pattern for each top-
ic.

The proposed approach consists of three stag-
es: 1) plant seed topics in the context-free gram-
mar; 2) identify semantic structures associated
with the seeds; 3) extract association pairs of lin-
guistic patterns and the seeds, and calculate the
probability of each association pair.

First, we extract all the nouns and noun
phrases that occur in the review summaries as the
seeds. As aforementioned, our context-free
grammar can parse each sentence into a hierar-
chical structure. We modify the grammar such
that, when parsing a sentence which contains one
of these seed topics, the parser can identify the
seed as an “active” topic (e.g., “vibes”, “jazz mu-
sic”, and “breakfast spot™).




The second stage is to automatically identify
all the linguistic patterns associated with each
seed. To do so, we use a large corpus as the re-
source pool and parse each sentence in the cor-
pus for linguistic analysis. We modify our parser
such that, in a preprocessing step, the predicate
and clause structures that are semantically related
to the seeds will be assigned with identifiable
tags. For example, if the subject or the comple-
ment of the clause (or the object of the predicate)
is an “active” topic (i.e., a seed), an “active” tag
will be automatically assigned to the clause (or
the predicate). In this way, when examining syn-
tactic hierarchy of each sentence in the corpus,
the system can encode all the linguistic patterns
of clauses or predicate-topic relationships associ-
ated with the seeds with “active” tags.

Based on these tags, association pairs of “ac-
tive” linguistic patterns and “active” topics can
be extracted automatically. For each seed topic,
we calculate the probability of its co-occurrence
with each of its associated patterns by:

count(patternj, seedy) (1)

pTOb (patternj |S€€dk) - Yicount(pattern;, seedy)
where seed;, is a seed topic, and pattern; is
every linguistic pattern associated with seedy.
The probability of pattern; for seed; is the
percentage of the co-occurrences of pattern;
and seed; among all the occurrences of seed,
in the corpus. This is similar to a bigram lan-
guage model. A major difference is that the lin-
guistic pattern is not necessarily the word adja-
cent to the seed. It can be a long distance from
the seed with strong semantic dependencies, and
it can be a semantic chunk of multiple words.
The long distance semantic relationships are cap-
tured by our linguistic parser and its hierarchical
encoding structure; thus, it is more reliable than
pure co-occurrence statistics or bigrams. Figure 5
shows some probabilities learned from a review
corpus. For example, “is” has the highest proba-
bility (0.57) among all the predicates that co-
occur with “breakfast spot”; while “have” is the
best-match for “jazz music”.

Association pair Constituent Prob.
“at” : “breakfast spot” PP 0.07
“is” : “breakfast spot” Clause 0.57
“for” : “breakfast spot” PP 0.14
“love” : “jazz music” VP 0.08
“have” : “jazz music” VP 0.23
“enjoy”: “jazz music” VP 0.08

Figure 5. Partial table of probabilities of associa-
tion pairs (VP: verb phrase; PP: preposition
phrase).

Given these probabilities, we can define pat-
tern selection algorithms (e.g., always select the
pattern with the highest probability for each top-
ic; or rotates among different patterns from high
to low probabilities), and generate response ut-
terances based on the selected patterns. The only
domain-dependent part of this approach is the
selection of the seeds. The other steps all depend
on generic linguistic structures and are domain-
independent. Thus, this probabilistic method can
be easily applied to generic domains for custom-
izing language generation.

4 Experiments

A web-based multimodal spoken dialogue sys-
tem, CityBrowser (Gruenstein and Seneff, 2007),
developed in our group, can provide users with
information about various landmarks such as the
address of a museum, or the opening hours of a
restaurant. To evaluate our proposed approaches,
we enhanced the system with a review-summary
database generated from a review corpus that we
harvested from a review publishing web site
(www.citysearch.com), which contains 137,569
reviews on 24,043 restaurants.

We utilize the platform of Amazon Mechani-
cal Turk (AMT) to conduct a series of user stud-
ies. To understand what types of queries the sys-
tem might potentially be handling, we first con-
ducted an AMT task by collecting restaurant in-
quiries from general users. Through this AMT
task, 250 sentences were collected and a set of
generic templates encoding the language patterns
of these sentences was carefully extracted. Then
10,000 sentences were automatically created
from these templates for language model training
for the speech recognizer.

To evaluate the quality of recommendations,
we presented the system to real users via custom-
ized AMT API (McGraw et al., 2010) and gave
each subject a set of assignments to fulfill. Each
assignment is a scenario of finding a particular
restaurant, as shown in Figure 6. The user can
talk to the system via a microphone and ask for
restaurant recommendations.

We also gave each user a gquestionnaire for a
subjective evaluation and asked them to rate the
system on different aspects. Through this AMT
task we collected 58 sessions containing 270 ut-
terances (4.6 utterances per session on average)
and 34 surveys. The length of the utterances var-
ies significantly, from “Thank you” to ‘“Restau-
rants along Brattle Street in Cambridge with nice



cocktails.” The average number of words per
utterance is 5.3.

Example: "What ltalian restaurants are there near ..."
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Figure 6. Interface of ourmsystem inan AMT as-
signment.

Among all the 58 sessions, 51 were success-
fully fulfilled, i.e., in 87.9% of the cases the sys-
tem provided helpful recommendations upon the
user’s request and the user was satisfied with the
recommendations. Among those seven failed
cases, one was due to loud background noise,
two were due to users’ operation errors (e.g.,
clicking “DONE” before finishing the scenario),
and four were due to recognition performance.

The user ratings in the 34 questionnaires are
shown in Figure 7. On a scale of 0 (the center) to
5 (the edge), the average rating is 3.6 on the eas-
iness of the system, 4.4 on the helpfulness of the
recommendations, and 4.1 on the naturalness of
the system response. These numbers indicate that
the system is very helpful at providing recom-
mendation upon users’ inquiries, and the re-
sponse from the system is present in a natural
way that people could easily understand.

e==g=== Ease of use

e=ll== Helpfulness

Naturalness

Figure 7. Users’ ratings from the questionnaires.

The lower rating of ease of use is partially due
to recognition errors. For example, a user asked
for “pancakes”, and the system recommended
“pizza places” to him. In some audio clips rec-
orded, the background noise is relatively high.
This may be due to the fact that some AMT
workers work from home, where it can be noisy.
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In this paper we present a framework for incor-
porating review summarization into spoken rec-
ommendation systems. We proposed a set of en-
tity search methods as well as a probabilistic lan-
guage generation approach to automatically cre-
ate natural recommendations in human-computer
conversations from review summaries. A user
study in the restaurant domain shows that the
proposed approaches can make the dialogue sys-
tem provide reliable recommendations and can
help general users effectively.

Future work will focus on: 1) improving the
system based on users’ feedback; and 2) apply-
ing the review-based approaches to dialogue sys-
tems in other domains.

Conclusions
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Abstract

This paper introduces a new dialogue man-
agement framework for goal-directed conver-
sations. A declarative specification defines the
domain-specific elements and guides the di-
alogue manager, which communicates with the
knowledge sources to complete the specified
goal. The user is viewed as another knowledge
source. The dialogue manager finds the next
action by a mixture of rule-based reasoning
and a simple statistical model. Implementation
in the flight-reservation domain demonstrates
that the framework enables the developer to
easily build a conversational dialogue system.

1 Introduction

Conversational systems can be classified into
two distinct classes: goal-directed and casual
chatting. For goal-directed systems, the system is
usually more “knowledgeable” than the user, and
it attempts to satisfy user-specified goals. The
system’s conversational strategies seek the most
efficient path to reach closure and end the con-
versation (Smith, Hipp, & Biermann, 1995).

An essential commonality among different
goal-directed applications is that, at the end of a
successful conversation, the system presents the
user with a “goal” entity, be it a flight itinerary, a
route path, or a shopping order. Different con-
versations result from different properties of the
goal entities and different constraints set by the
knowledge sources. The properties define the
necessary and/or relevant information, such as
flight numbers in the flight itinerary. Constraints
specify the means to obtain such information.
For examples fields “source”, “destination” and
“date” are required to search for a flight. Once
the properties and constraints are known, dialo-
gue rules can easily map to dialogue actions.

This paper introduces a dialogue management
framework for goal-directed conversation based

seneffl@csail.mit.edu

on entity and knowledge source specification.
The user is viewed as a collaborator with the di-
alogue manager, instead of a problem-raiser. The
dialogue manager follows a set of definitions and
constraints, and eventually realizes the goal enti-
ty. It also incorporates a simple statistical engine
to handle certain decisions.

2 Related Work

In recent years, statistical methods have gained
popularity in dialogue system research. Partially
Observable Markov decision processes have
been the focus of a number of papers (Levin,
Pieraccini, & Eckert, 1997; Scheffler & Young,
2001; Frampton & Lemon, 2006; Williams &
Young, 2007). These approaches turn the dialo-
gue interaction strategy into an optimization
problem. The dialogue manager selects actions
prescribed by the policy that maximizes the re-
ward function (Lemon & Pietquin, 2007). This
machine learning formulation of the problem
automates system development, thus freeing the
developers from hand-coded rules.

Other researchers have continued research on
rule-based frameworks, in part because they are
easier to control and maintain. One common ap-
proach is to allow developers to specify the tasks,
either using a conditioned sequential script (Zue,
et al., 2000; Seneff, 2002), or using a task hie-
rarchy (Hochberg, Kambhatla, & Roukos, 2002).
In (Bohus & Rudnicky, 2003)’s work, a tree of
dialogue agents, each of which handles different
dialogue actions, is specified to control the di-
alogue progress. The knowledge has also been
specified either by first order logic (Biihler &
Minker, 2005) or ontology information (Milward
& Beveridge, 2004).

3 Dialogue Manager

Figure 1 illustrates the architecture of the pro-
posed dialogue management framework. Com-
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munication with the dialogue manager (DM) is
via “E-forms” (Electronic forms), which consist
of language-independent key-value pairs. The
language understanding and language generation
components mediate between the DM and vari-
ous knowledge sources (KS), including the user,
to interpret the output from the KS and generate
input that the KS can understand. Each KS han-
dles one or more sub-domains. For example, a
date/time KS can resolve a date expression such
as “next Tuesday” to a unique date; a flight data-
base can provide flight information. The KSes
are provided by the developer. They can be local
(a library) or external (a separate executable).

Within this architecture, the user is viewed as
a special KS, who understands and speaks a nat-
ural language, so that the whole architecture is
completely DM-centered, as shown in Figure 1.
An external language understanding system
parses the original input into an E-form, and an
external language generation component con-
verts the output E-form into the desired natural
language. Each particular communication with
the user is analogous to other communications
with the various KSes. The user is always
ranked the lowest in the priority list of the KSes,
i.e., only when other knowledge sources cannot
provide the desired information does the DM try
to ask the user.

@al KS

External KS

Language Dialogue Language
Generation Manager Understanding]
T

Domain Specification|

Figure 1. System Framework.

For example, in the flight reservation system,
suppose the DM first tries to determine the
source airport. If there exists a KS that contains
this user’s home airport information, the DM will
adopt it. If no other KS can provide the informa-
tion, the DM asks the user for the departure city.

31

Our framework uses an entity-based declarative
domain specification. Instead of providing the
action sequence in the domain, the developer
provides the desired form of the goal entity, and
the relationships among all relevant entities.

Entity-Based Specification

The specification is decomposed into two parts.

The first part is the declaration of the knowledge
sources. Each KS may contain one or more sub-
domains, and an associated “nation” defines the
language processing parameters.
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The second part is the entity type definition.
For a particular domain, there is one goal entity
type, and an arbitrary number of other entity
types, e.g., two entity types are defined in the
flight reservation system: “itinerary” and “flight.”
The definition of an entity type consists of a set
of members, including their names, types and
knowledge domain. A logical expression states
the conditions under which the entity can be re-
garded as completed; e.g., a completed itinerary
must contain one or more flights. The entity de-
finition can also include optional elements such
as comparative/superlative modifiers or custo-
mized command-action and task-action map-
pings, described in more detail later.

The entity-based specification has an advan-
tage over an action-based specification in two
aspects. First, it is easier to define all the entities
in a dialogue domain than to list all the possible
actions, so the specification is more compact and
readable. Secondly, the completion condition and
the KS’s constraints capture the underlying mo-
tivation of the dialogue actions.

E-form in

nformation

Tasks

N

Most Task

Obsolete Tasks|

E-form out

Figure 2. The Main Loop of the DM.

3.2 Dialogue Execution

Similar to the Information-State-Update (Larsson
& Traum, 2000) idea, the DM maintains an in-
ternal state space with all up-to-date information
about the entities. It also keeps a task list tree
with a root task “complete goal.” In task execu-
tion, subtasks (child node) and/or subsequent
(right sibling node) tasks are issued. Each time
the left-most leaf task is executed, and when a
task is completed, the DM checks all tasks and
removes those that have been rendered obsolete.
Ten basic tasks are pre-defined in the DM,
including complete_entity, inquire_ks, and some
other tasks related to entity manipulation. A
complete_entity task evaluates the completion



conditions and issues appropriate tasks if they
are unmet. An inquire_ks task handles communi-
cation with the KSes, and issues subtasks if the
query does not satisfy the constraints. A default
action associated with each task can be replaced
by customized task-action mappings if needed.

Figure 2 shows the main loop of the DM. The
process loops until a “pause” is signaled, which
indicates to await the user’s spoken response. An
example will be given in Section 4.

3.3

To cope with situations that rules cannot handle
easily, the framework incorporates a simple sta-
tistical engine using a Space Vector Model. It is
designed only to support inference on specific
small problems, for example, to decide when to
ask the user for confirmation of a task. Models
are built for each of the inference problems. The
output label of a new data point is computed by
weighting the labels of all existing data by their
inverse distances to the new data point.

Equations (1) to (3) show the detailed math of
the computation, where x is the new data point
and d' is the j-th existing data point. « is a fading
coefficient which ranges from 0 and 1. §, a cor-
rection weight, has a higher value for data points
resulting from manual correction. J(-) is 1 when
the two inputs are equal and O otherwise. sim(x,
d) defines the similarity between the new data
point and the existing data point. Function dis(*)
indicates the distance for a particular dimension,
which is specified by the developer. The weight
for each dimension w; is proportional to the
count of distinct values of the particular dimen-
sion ¢(D;) and the mutual information between
the dimension and the output label.

fl)= argmaxz ajﬁjsim(x, dj) . 6(f(df),yi)

Vi >

J

Statistical Inference

1
) x+d
sim(x,d) = § /3w, - dis?(x;, d;)
s x=d

w; « c(D)H(D;, f (D))

4 Implementation in Flight Domain

The framework has been implemented in the
flight reservation domain. A grammar was used
to parse the user’s input, and a set of generation
rules was used to convert the DM’s output E-
form into natural language (Seneff, 2002). Two
local KSes are utilized: one resolves complex
date and time expressions, and one looks up air-
port/city codes. A local simulated flight DB will
be replaced by a real external one in the future.

(€]

@

3

&9

Figure 3 illustrates the logic of the flight res-
ervation domain. The database has two alterna-
tive sets of conjunctive constraints “destination
& source & date” and “flight# & date”. Two
entity types are defined. The itinerary entity type
contains a list of flights, a number of expected
flights and a price, with completion condition
“#flights > 0”. The flight entity type contains
members: flight number, date, source, destination,
etc., with completion condition “flight# & date”.

Table 1 illustrates dialogue planning. In the
execution of flight.complete_entity(), the DM
determines that it needs a flight number accord-
ing to the entity’s completion condition. Howev-
er, a destination is required to search the flight
DB. No other KS offers this information, so the
system turns to the user to ask for the destination.

The statistical engine currently supports infe-
rence for two problems: whether the execution of
a task requires the user’s confirmation, and
whether the pending list is in focus.

Several customized task actions were defined
for the domain. For example, after adding the
first flight, a customized task action will auto-
matically create a return flight with appropriate
source and destination, unless a one-way trip has
been indicated. The implementation of the cus-
tomized task actions required only about 550
lines of code.

User: I want a flight to Chicago
create itinerary
itinerary.complete_entity()
itinerary.add_entity(:flights)
create flight
flight.complete_entity()
flight.fill_attribute(flight#)
inquire_ks(flight_db, flight#)
flight.fill_attribute(destination)
inquire_ks(user, destination)
System: What city does the flight leave from?
Table 1. An example of the system's reasoning
process. Shaded lines denote statistical decisions.

5. Preliminary Evaluation

We conducted a preliminary evaluation with a
simulated flight database and a simulated user
model. The statistical inference model was
trained with 210 turns from 18 conversations. A
personality-based user simulator creates random
scenarios and simulates user utterances using a
probabilistic template-based method. In 50 con-
versations between the simulated user and the
DM, the average number of turns was 14.58,
with a high standard deviation of 8.2, due to the
variety of the scenario complexity and personali-
ties of the simulator users. Some simulated users
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Figure 3. Dialogue Logic for the Flight Booking Domain.

were intentionally designed to be very uncooper-
ative. The DM was able to handle these situa-
tions most of the time.

We examined all the simulated dialogues turn
by turn. For a total of 729 turns, the DM re-
sponded appropriately 92.2% of the time. One

third of the failed turns were due to parse failures.

Another third resulted from insufficient tutoring.
These situations were not well covered in the
tutoring phase, but can be easily fixed through a
few more manual corrections. The rest of the
errors came from various causes. Some were due
to defects in the simulator.

6 Conclusions and Future Work

We have introduced a framework for goal-based
dialogue planning. It treats the user as a know-
ledge source, so that the entire framework is
DM-centered. A declarative entity-based specifi-
cation encodes the domain logic simply and
clearly. Customized task actions handle any do-
main-dependent computations, which are kept at
a minimum. A simple statistical engine built into
the framework offers more flexibility.

In the future, we will integrate the dialogue
manager into a speech-enabled framework, and
build spoken dialogue systems for flight reserva-
tions and other domains of interest.
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Abstract

We describe an approach to improving
the naturalness of a social dialogue sys-
tem, Talkie, by adding disfluencies and
other content-independent enhancements
to synthesized conversations. We investi-
gated whether listeners perceive conversa-
tions with these improvements as natural
(i.e., human-like) as human-human con-
versations. We also assessed their ability
to correctly identify these conversations as
between humans or computers. We find
that these enhancements can improve the
perceived naturalness of conversations for
observers “overhearing” the dialogues.

1 Introduction

An enduring problem in spoken dialogue systems
research is how to make conversations between
humans and computers approach the naturalness
of human-human conversations. Although this
has been addressed in several goal-oriented dia-
logue systems (e.g., for tutoring, question answer-
ing, etc.), social dialogue systems (i.e., non-task-
oriented) have not significantly advanced beyond
so-called “chatbots”. Proper social dialogue sys-
tems (Bickmore and Cassell, 2004; Higuchi et
al., 2002) would be able to conduct open con-
versations, without being restricted to particular
domains. Such systems would find use in many
environments (e.g., human-robot interaction, en-
tertainment technology).

This paper presents an approach to improving a
social dialogue system capable of chatting about
the news by adding content-independent enhance-
ments to speech. We hypothesize that enhance-
ments such as explicit acknowledgments (e.g.,
right, so, well) and disfluencies can make human-
computer conversations sound indistinguishable
from those between two humans.

Enhancements to synthesized speech have been
found to influence perception of a synthetic
voice’s hesitation (Carlson et al., 2006) and per-
sonality (Nass and Lee, 2001). Andersson et
al. (2010) used machine learning techniques to
determine where to include conversational phe-
nomena to improve synthesized speech. Adell et
al. (2007) developed methods for inserting filled
pauses into synthesized speech that listeners found
more natural. In these studies, human judges com-
pared utterances in isolation with and without im-
provements. In our study, we focus on a holistic
evaluation of naturalness in dialogues and ask ob-
servers to directly assess the naturalness of con-
versations that they “overhear”.

2 The Talkie System

Talkie is a spoken dialogue system capable of hav-
ing open conversations about recent topics in the
news. This system was developed for a dialogue
systems course (Lim et al., 2009). Interaction
is intended to be unstructured and free-flowing,
much like social conversations. Talkie initiates a
conversation by mentioning a recent news head-
line and invites the user to comment on it.

The system uses a database of news topics and
human-written comments from the “most blogged
about articles” of the New York Times (NYT)!.
Comments are divided into single sentences to ap-
proximate the length of a spoken response. Given
a user’s utterance (e.g., keywords related to the
topic), Talkie responds with the comment that
most closely resembles that utterance. Talkie may
access any comment related to the topic under dis-
cussion (without repetition). The user may choose
to switch to a different topic at any time (at which
point Talkie will propose a different topic from its
set).

"http://www.nytimes.com/gst/mostblogged.html
Follow links to each article’s comment section.
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3 Study

We performed a study to determine if the per-
ceived naturalness of conversations could be im-
proved by using heuristic enhancements to speech
output. Participants “overheard” conversations
(similar to Walker et al. (2004)). Originally typed
interactions, the conversations were later synthe-
sized into speech using the Flite speech synthesis
engine (Black and Lenzo, 2001). For distinctive-
ness, conversations were between one male voice
(rms) and one female voice (slt). The voices were
generated using the CLUSTERGEN statistical para-
metric synthesizer (Black, 2006). All conversa-
tions began with the female voice.

3.1 Dialogue Content

We considered four different conversation types:
(I & 2) between a human and Talkie (human-
computer and computer-human depending on the
first speaker), (3) between two humans on a
topic in Talkie’s database (human-human), and
(4) between two instances of Talkie (computer-
computer). The human-computer and computer-
human conditions differed from each other by
one utterance; that is, one was a shifted version
of the other by one dialogue turn. The human-
computer conversations were collected from two
people (one native English speaker, one native
Portuguese speaker) interacting with Talkie on
separate occasions. For human-human conversa-
tions, Talkie proposed a topic for discussion. Each
conversation contained ten turns of dialogue. To
remove any potential effects from the start and end
content of the conversations, we selected the mid-
dle three turns for synthesis. Each conversation
type had five conversations, each about one of five
recent headlines (as of May 2010).

3.2 Heuristic Enhancements

We defined a set of rules that added phenomena
observed in human-human spoken conversations.
These included filled pauses, word repetitions, si-
lences, and explicit acknowledgments. Conversa-
tions in this study were enhanced manually by fol-
lowing the set of rules described in Figure 1; an
example is shown in Figure 2.

3.3 Participants and Task

Eighty participants were recruited from Ama-
zon’s Mechanical Turk? (MTurk) for this between-

“http://www.mturk.com
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Category I - Explicit Acknolwedgements

o inserted sparingly at the beginning of sentences
when grammatical (e.g., well, so, you know,
right).

Category II - Filled pauses / repetitions

e no more than three per dialogue

e no more than two in any one sentence

e placed repetitions in places where speaker may
have hesitation (e.g., after I think...”")
utterances may have a filled pause or a repetition
followed by a filled pause.

Category III - Silences

e added sparingly after filled pauses.

Figure 1: Heuristics used for adding enhance-
ments to synthesized dialogue.

subjects study. Only workers with a 95% HIT (hu-
man intelligence task) approval rating could par-
ticipate. There were three experimental dimen-
sions that we counterbalanced across participants:
the four conversation “types” described in Section
3.1, the order of the five topics, and the presence
or absence of heuristic enhancements to the syn-
thesized speech that participants heard. Each par-
ticipant listened to every topic such that exactly
five participants heard each condition.

Participants made two judgments per conversa-
tion: rating the “naturalness” of a conversation
based on a four-point Likert scale and ranking
the conversant identities (i.e., as two humans, two
computers, or a computer and a human) from most
to least confident. We used the non-parametric
Kruskal-Wallis one-way analysis of variance to
determine statistically significant differences in
naturalness responses across groups (naturalness
being the dependent measure).

4 Results

We analyzed two measures: (1) naturalness rat-
ings of conversations, and (2) frequencies from
highest-rank to lowest-rank of who the participant
believed to be the speakers in each conversation.
We found no statistically significant ordering ef-
fects or biases due to the topic of conversation.

4.1 Speaker Type Condition Results

Results for naturalness scores are summarized in
Figure 3. As expected, mean naturalness was
highest for the human-human condition and lowest
for the computer-computer condition. We found



h: I don’t see how this would be possible.

h: Exactly why should we be raising taxes on the rich?

Human-computer conversation (original, enhancements)

h: Well, that sounds ridiculous, you get taxed proportionally to your paycheck.
c: So, let them retire on social security payments, then you will see changes with <uh> with an overabundance of funds.

c: You know, you don’t have the money yet, and you have just increased your debt by 2.5 trillion dollars.

¢: With our current politics of division, I <umm> worry we have the will or determination to address these issues.

Figure 2: Example conversation with heuristic enhancements marked in bold.

3.0 2.7
25
2.5 23
1.9
2.0
15 :I
10 ' T T T
cc ch hc hh
Figure 3: Naturalness across the speaker type con-
dition.

no statistically significant difference in naturalness
ratings for the computer-human condition com-
pared to the human-computer condition (H(1) =
2.94; p = 0.09). Also, the computer-computer
condition was significantly different from all other
conditions, suggesting that conversation flow is an
important factor in determining the naturalness of
a conversation (H(3) =42.49, p < 0.05).

People rated conversations involving a com-
puter and a human similarly to human-human con-
versations (without enhancements). There were
no statistically significant differences between the
three conditions cc, ch, and hc (H(2) = 5.36, p =
0.06). However, a trend indicated that Ac natural-
ness ratings differed from those of the ch and hh
conditions. Conversations from the sc condition
had much lower (18%) mean naturalness ratings
compared to their ch counterparts, even though
they were nearly equivalent in content.

4.2 Heuristic Enhancements Results

There were significant differences in naturalness
ratings when heuristic enhancements were present
(HA) = 17.49, p < 0.05). Figure 4 shows that
the perceived naturalness was on average higher
with heuristic enhancements. Overall, mean natu-
ralness improved by 20%. This result agrees with
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findings from Andersson et al. (2010).

Computer-computer conversations had the
highest relative improvement (42%) in mean nat-
uralness. Naturalness ratings were significantly
different when comparing these conversations
with and without enhancements (H(1) = 11.77, p
< 0.05). Content-free conversational phenomena
appear to compensate for the lack of logical flow
in these conversations. According to Figure 5,
after enhancements people are no better than
chance at correctly determining the speakers in
a computer-computer conversation. Thus the
heuristic enhancements clearly affect naturalness
judgments.

Even the naturalness of conversations with good
logical flow can improve with heuristic adjust-
ments; there was a 26% relative improvement in
the mean naturalness of human-human conver-
sations. Participant ratings of naturalness were
again significantly different (H(1) = 12.45, p <
0.05). Note that these conversations were origi-
nally typed dialogue. As such, they did not capture
turn-taking properties present in conversational
speech. When enhanced with conversational phe-
nomena, they more closely resembled natural spo-
ken conversations. As shown in Figure 5, people
are more likely than chance to correctly identify
two humans as being the participants in the di-
alogue after these enhancements were applied to
speech.

Conversations with one computer and one hu-
man also benefited from heuristic enhancements.
Improvements in naturalness were marginal, how-
ever. Naturalness scores in the ic condition im-
proved by 16%, but this improvement was only
a trend (H(1) = 3.66, p = 0.06). Improvement
was negligible in the ch condition. Participants
selected the correct speakers in human-computer
dialogues no better than random. We note that
participants tended to avoid ranking conversations
as “human & computer” with confidence (i.e., the
highest rank). A significant majority (267 out of
400) of second-rank selections were “human &
computer.” Participants tended to order conditions
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Figure 4: Mean naturalness across enhancement
conditions.
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Figure 5: Percentage of participants’ selections of
members of the conversation that were correct.

from all human to all computer or vice-versa.

5 Conclusions

We have shown that content-independent heuris-
tics can be used to improve the perceived natural-
ness of conversations. Our conversations sampled
a variety of interactions using Talkie, a social di-
alogue system that converses about recent news
headlines. An experiment examined the factors
that could influence how external judges rate the
naturalness of these conversations.

We found that without enhancements, people
rated conversations involving a human and a com-
puter similarly to conversations involving two hu-
mans. Adding heuristic enhancements produced
different results, depending on the conversation
type: computer-computer and human-human con-
versations had the best gain in naturalness scores.
Though it remains to be seen if people are always
influenced by such enhancements, they are clearly
useful for improving the naturalness of human-
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computer dialogues.

Future work will involve developing methods to
automatically inject enhancements into the synthe-
sized speech output produced by Talkie, as well
as determining whether other types of systems can
benefit from these techniques.
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Abstract

The present study uses the dialogue paradigm
to explore route communication. It revolves
around the analysis of a corpus of route in-
structions produced in real-time interaction
with the follower. It explores the variation in
forming route instructions and the factors that
contribute in it. The results show that visual
co-presence influences the performance, con-
versation patterns and configuration of instruc-
tions. Most importantly, the results suggest an
analogy between the choices of instruction-
givers and the communicative actions of their
partners.

1.1  Spatial language in dialogue

The main question this paper attempts to ad-
dress is how people produce route instructions in
dialogue. The current zeitgeist in language re-
search and dialogue system development seems
to be the unified investigation of spatial language
and dialogue (Coventry et al., 2009). Indicative
of the growing prioritisation of dialogue in the
study of spatial language are the on-going re-
search efforts within the MapTask' project and
the GIVE challenge® .

1.2 A framework for the analysis of route
instructions

The study uses CORK (Communication of Route
Knowledge, (Allen 2000)), a framework which
provides a component-based analysis of route
instructions. The CORK taxonomy differentiates
between instructions that are directives (action
statements with verbs of movement) and descrip-
tive statements (with state-of-being verbs, like
“be” and “see”). Descriptives present a static pic-

" http://www.hcre.ed.ac.uk/maptask/
2 http://www.give-challenge.org/research/

ture of spatial relations and provide the follower
the opportunity to verify his position or reorient
himself. The taxonomy also considers elements
that provide specificity and distinguishing infor-
mation about environmental features, called de-
limiters. Within this framework, Allen (2000)
describes a set of principles pertaining to the
configuration of route descriptions. Namely,
people concentrate descriptives and delimiters on
points along the route that offer for uncertainty
(like crossroads). Moreover, the selection and
placement of these components depends on the
characteristics of the environment and the per-
ceived needs of the follower. Evidence from em-
pirical work supports the framework, reporting
that errors in navigation increased when the route
directions violated these principles. Nevertheless,
the applicability of the suggested principles has
only been tested in scenarios in which the direc-
tions were produced beforehand by either the
experimenters or a separate group of subjects.

1.3  The effect of visual information

Studies exploring the effect of visual information
on task-oriented interaction converge on that vis-
ual feedback leads to more efficient interactions
and influences the conversational patterns be-
tween participants (Clark and Krych, 2004; Ger-
gle et al., 2004; Koulouri and Lauria, 2009).
These phenomena are generally attributed to the
ease of establishing “common ground” when
visual feedback is available. However, to the au-
thors’ knowledge, most related studies have fo-
cused on high-level analysis of dialogue acts and
many aspects of how interlocutors adapt their
linguistic choices remain undefined.

1.4 Aims and hypotheses of study

The present study provides an empirical account
of route instructions, as they emerge in real-time
interaction with the follower. We offer the fol-
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lowing tentative hypotheses. Since visual co-
presence facilitates grounding of information, it
is expected to have a major effect on how route
instructions are configured. Next, putting addi-
tional emphasis on the inter-individual processes
involved in language use, this study aims to test
whether the linguistic options mobilised by the
instructor ultimately depend upon the contribu-
tions of the follower.

2 Methods

A study was designed to elicit natural route in-
structions in a restricted context. Pairs of partici-
pants collaborated in a navigation task, in a “Wi-
zard-of-Oz” set-up. The instructors provided in-
structions to navigate their partners to designated
locations in a simulated town, being under the
impression that they were interacting with a
software agent (robot). The study manipulated
two factors; i) availability of visual information
on follower’s actions and ii), follower’s interac-
tive capacity. With regard to the first factor, there
were two conditions in which the ability to moni-
tor the actions of the “robot” was either removed
or provided. The second factor also involved two
conditions. In the first condition, the followers
could interact using unconstrained language
(henceforth, “Free” condition). In the second
condition (henceforth, “Constrained” condition),
a set of predetermined responses available to the
followers aimed to coerce them towards more
“automated” contributions; for instance, “open-
ended” repairs such as “What?”, which provide
no specific information on the source of the
problem. However, the followers were still able
to be interactive if they wished so, by clicking
the relevant buttons to request clarification or
provide location information.

The study followed a between-subjects fac-
torial design. A total of 56 students were allo-
cated in the four conditions: Monitor-Free,
Monitor-Constrained, No Monitor-Free, No
Monitor-Constrained. The experimental proce-
dure is described in detail in (Koulouri and
Lauria, 2009).

2.1

The experiment relied on a custom-built sys-
tem which supported the interactive simulation
and enabled real-time direct text communication
between the pairs. The interfaces consisted of a
graphical display and a dialogue box.

The interface of the instructor displayed the
full map of the simulated town (Figure 1). On the
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upper right corner of the interface, there could be
a small “monitor”, in which the robot’s imme-
diate locality was displayed, but not the robot
itself. The presence of the monitor feature de-
pended on the experimental condition.

The followers’ interface displayed a fraction
of the map, the surroundings of the robot’s cur-
rent position. The robot was operated by the fol-
lower using the arrow keys on the keyboard. In
the “Free” conditions followers could freely type
messages. In the “Constrained” conditions, the
followers needed to use the buttons on the inter-
face (Figure 2).

Figure 1. The instructor’s interface in the Monitor
conditions. The monitor window on the upper right
corner was removed in No Monitor conditions.

L__I®

| | X i E—
T 7

Figure 2. The follower’s interface in the Constrained
conditions. In the Free conditions, there were no but-
tons and followers could freely type any message.

2.2 Data analysis

The analysis of the corpus of route instructions
followed the CORK framework (Allen, 2000).
Communicative statements were classified as
Directives or Descriptives. These communica-
tive statements could contain references to envi-
ronmental features. The types of environmental
features considered were: Locations (e.g., build-
ings or bridges), Pathways (e.g., streets), Choice
Points (e.g., junctions) and Destination. Last,
instructions can be composed of delimiters,
which fall into four categories:

1. Distance designations: e.g., “...until you
see a car park”.

2. Direction designations: e.g., “go left .
3. Relational terms: e.g., “on your left”,
4. Modifiers: e.g., “big red bridge”, “take

the first/second/last road”.



3 Results

The experiment yielded a large corpus of 160
dialogues, composed of 3,386 turns. 1,485 in-
structions were collected. First, the analysis con-
siders some common measures of efficiency.
Next, the results of the component analysis of
instructions are presented.

3.1 Efficiency of interaction

The number and length of turns and instructions
and time needed to complete each task are typi-
cally used as measures of the efficiency of inter-
action. Additionally, fewer execution and under-
standing failures are taken as indicators of supe-
rior performance.

Time, number of turns, words and instruc-
tions: The ANOVA performed on time per task
showed no reliable significant differences among
groups. On the other hand, significant effects
were observed with regard to all other dependent
variables. An interaction effect was revealed af-
ter analysis on numbers of turns (F(1, 24) =
3.993, p = .05). Pairs in the Monitor-Free condi-
tion required less turns to complete the task
compared to the other groups (column 1 of Table
1). It seems however that instructors in both
Monitor conditions were dominating the conver-
sational floor, having produced about 58% of the
turns, compared to instructors in the No Monitor
conditions (F(1, 24) = 5.303, p = .03). Neverthe-
less, it was not the case that instructors in Moni-
tor conditions were “wordier”. The number of
words was similar among all instructor groups.
The results indicated that the total number of
words required to complete a task was much
lower in Monitor conditions (F(1, 24) == 5.215,
p = 0.03) (see column 3 in Table 1). Next, in-
structors in Monitor conditions gave more in-
structions to guide the followers to the destina-
tion (F(1, 24) = 3.494, p = .07). However, these
instructions were considerably shorter compared
to the instructions provided by No Monitor in-
structors (F(1, 24) = 4.268, p = .05). All differ-
ences are amplified in the Monitor-Constrained
group, in which more turns and instructions were
needed but with fewer words and the “turn pos-
session” of the instructor was the highest among

the groups.
Con- |#Turns| %In- |#Word [#Words| #Instruc- | Miscom-
dition| per | struc- | sper per tions per | munica-
task | tor task [Instruc- task tion per
Turns tion task
M-F | 16.74 |57.12%| 87.33 | 4.70 9.08 1.14
M-C | 23.95 |58.86%| 65.02 | 3.01 11.73 2.05
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NM-F| 23.63 |52.28%|105.38| 5.29 8.58 1.20

NM-C| 20.15 |50.62%(100.35| 5.07 7.68 0.69

Table 1. Summary of Results (mean values).
Frequency of miscommunication: Miscom-
munication was calculated by considering two
measures: the number of execution errors and of
follower turns that were tagged as expressing
non-understanding. The ANOVA revealed an
interaction effect (F (1, 24) = 4.012, p = .05).
Striking differences were observed between the
Monitor-Constrained group and the rest; in par-
ticular, followers in this condition were twice or
three times more likely to fail to understand and
execute instructions (see last column in Table 1).

3.2

This section presents the results of the analysis
on inclusion of landmark references, types of
delimiters and communicative statements.

Landmark references: Instructors in both No
Monitor conditions preferred to produce instruc-
tions that were anchored on landmarks, especial-
ly on 3D locations such as buildings (28% of
instructions contained locations vs 14% in the
Monitor conditions, (F (1, 24) = 12.034, p =
.002)). On the other hand, Monitor instructors
opted for simple action prescriptions. Particular-
ly, 75% of the instructions in the Monitor-
Constrained condition omitted any kind of refer-
ence (compared to an average of 42% in the oth-
er conditions).

Delimiters: Category 2 delimiters that pro-
vided simple direction information were preva-
lent in Monitor conditions (F (1, 24) = 11.407, p
=.002). Further, an interaction effect was found
(F (1, 24) = 3.802, p = .01); the number of cate-
gory 2 delimiters almost doubles in the Monitor-
Constrained condition. On the contrary, the use
of category 1 delimiters, which provide informa-
tion on the boundary of the route is very limited
in the Monitor-Constrained condition (F (1, 24) =
5.350, p = .03). The third category of delimiters
includes terms that specify the relation between
traveller and an environmental feature (“on your
left”) or between environmental features. Again,
the difference arises in the Monitor-Constrained
condition, which included the lowest number of
category 3 delimiters (marginal effect, F (1, 24)
=3.392, p =.07). Finally, the analysis performed
on the frequency of category 4 delimiters did not
yield any significant effect.

Directive and descriptive communicative
statements: An interaction effect was revealed
with regard to the proportion of directives and

Component analysis of instructions



descriptives in the corpus (F (1, 24) = 3.830, p =
.06). The instructors in the Monitor-Constrained
condition produced less descriptives, which give
information about relations among features in the
environment and tap perceptual experience (“you
will see a bridge”). In particular, in the Monitor-
Constrained condition, 4.7% of instructions were
descriptives, whereas the proportion of descrip-
tives averaged 10% in all other conditions.

4 Discussion

The results resonate with previous research. The
actions of the followers served as an immediate,
accurate and effortless indicator of their current
state of understanding, making verbal feedback
redundant. Monitor instructors could readily con-
firm their assumptions about the information re-
quirements of followers and used linguistics
shortcuts and simpler instructions exactly at the
moment needed. On the other hand, in the No
Monitor condition, uncertainty about the position
and movement of the robot created the need for
elaborate and explicit instructions. The contribu-
tion of the present study lies on that it grounds
these observations on quantitative analysis, using
measures like words, turns and the relative fre-
quencies of certain types of instruction compo-
nents that vary in information value. Most impor-
tantly, it describes the specific ways in which
instructors configure their directions in the pres-
ence/absence of visual information.

The CORK framework predicts that route pro-
tocols which are rich in descriptives and rela-
tional terms are associated with more successful
navigation, compared to simple directional ones.
Our results partially meet this expectation, since
large numbers of execution errors and non-
understandings were only observed in the Moni-
tor-Constrained condition, whereas miscommu-
nication rates were similar across the other
groups. Indeed, this condition was found to gen-
erally differ from the rest. In particular, In the
Monitor-Constrained condition, the dialogues
were the shortest in terms of words. Instructors
produced many but short instructions. The com-
ponent-based analysis revealed that they em-
ployed overwhelmingly more action-based in-
structions without landmark references and de-
scriptives. Boundary information on the route,
frame of reference and spatial relations between
environmental features were typically omitted. In
both Constrained conditions, followers were ex-
pected to resort to a “mechanical” interaction, as
coerced by the presence of the predefined re-

sponses. Inspection of the dialogues revealed that
followers in the Monitor-Constrained condition
did so, given the precedence of visual feedback.
This was not the case with No Monitor-
Constrained followers who needed to verbally
ground information. Dialogue examples are pro-
vided in Table 2 below.

I: turn around I: Now keep going down the road until

I: go straight you see a car park

ahead F: 1 am in front of the car park

I: stop I: turn right and walk till the end,

I: turn left here | along the road you will see a gym on your
I: go ahead right

F: What? F: yes gym to my right side

I: Go straight I: good, keep going straight and

ahead you will see a factory on your left
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Table 2. Dialogue excerpts from the Monitor-
Constrained (column 1) and No Monitor-Constrained
(column 2) conditions.

Thus, we propose that the linguistic choices of
the followers “prime” the instructor’s own strat-
egies. In the Monitor-Constrained Condition,
followers were less interactive, and gave fewer
responses with lower information value. In har-
mony, their partners provided less elaborate in-
structions, which also lacked important informa-
tion and specificity.

In conclusion, the findings confirm our initial
hypotheses. Instructions are sensitive to condi-
tions of (visual) co-presence. Moreover, a direct
link was identified between the way in which
instructions and follower’s contributions are
formulated. Following this lead, we are now fo-
cusing on a fine-grained analysis of the utter-
ances of the follower.

References

Darren Gergle, Robert E. Kraut and Susan E. Fussell.
2004. Language Efficiency and Visual Technolo-
gy: Minimizing Collaborative Effort with Visual
Information. Journal of Language and Social Psy-
chology, 23(4):491-517. Sage Publications, CA.

Gary L. Allen. 2000. Principles and Practices for
Communicating Route Knowledge. Applied Cog.
Psychology.14(4):333-359.

Herbert H. Clark and Meredyth A. Krych. 2004.
Speaking While Monitoring Addressees for Under-
standing. J. of Memory and Language, 50:62-81.

Kenny Coventry, Thora Tenbrink and John Bateman,
2009. Spatial Language and Dialogue: Navigating
the Domain. In K. Coventry, T. Tenbrink, and J.
Bateman (Eds.) Spatial Language and Dialogue. 1-
8. Oxford University Press. Oxford, UK.

Theodora Koulouri and Stanislao Lauria. 2009. Ex-
ploring Miscommunication and Collaborative Be-
haviour in Human-Robot Interaction, SIGdial09.



The Impact of Dimensionality on Natural Language Route Directions
in Unconstrained Dialogue

Vivien Mast Jan Smeddinck

Anna Strotseva Thora Tenbrink

University of Bremen University of Bremen University of Bremen University of Bremen

Bremen, Germany

smeddinck
Qtzi.de

Bremen, Germany
viv@tzi.de

Abstract

In this paper we examine the influence of
dimensionality on natural language route
directions in dialogue. Specifically, we
show that giving route instructions in a
quasi-3d environment leads to experiential
descriptive accounts, as manifested by a
higher proportion of location descriptions,
lack of chunking, use of 1st person singular
personal pronouns, and more frequent use of
temporal and spatial deictic terms. 2d scen-
arios lead to informative instructions, as
manifested by a frequent use of motion ex-
pressions, chunking of route elements, and
use of mainly 2nd person singular personal
pronouns.

1 Introduction

In order to build artificial agents that are com-
petent in creating and understanding natural
language route directions in situated discourse,
it is necessary to explore how situatedness af-
fects the communication of humans about
routes. The current study aims at exploring in
which ways dimensionality influences the
choice of communicative strategies for route
directions in discourse.

Previous research about route directions
mostly deals with monologues or pretend dia-
logue (e.g. Rehrl et al., 2009; Klippel et al.,
2003), and concerns two-dimensional stimuli,
such as map-based tasks (Klippel et al., 2003;
Goschler et al., 2008).

The study presented here examines pairs of
participants collaborating on a route instruction
task in a naturalistic discourse setting under
two conditions: In the 2d condition, the in-
structor was shown a two-dimensional map
with the route drawn into it. In the 3d condition

Bremen, Germany
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Bremen, Germany
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however, the instructor navigated along a pre-
set route in Google Maps Street View.

2 Route Instruction Strategies

Route directions consist of procedures and de-
scriptions that combine to a step-by-step pre-
scription of the actions that are necessary for
executing the given course (Michon and Denis,
2001; Longacre, 1983). Since spatial linguistic
expressions reflect the mental model already
existing on the part of the instructor, the di-
mensions in which route instructors experience
an environment (2d or 3d) may have a system-
atic impact on the discourse strategies they use.
In the following we analyze a range of spatial
descriptions, focusing on aspects known to be
crucial for spatial interaction, such as descrip-
tions of locations and motion, the use of per-
spective expressions, chunking of route ele-
ments, and personal and spatiotemporal deixis.

2.1 Static and Dynamic Descriptions

Since route directions deal with a static envir-
onment in which a movement takes place, they
usually include a high proportion of dynamic
descriptions of actions (procedures in Michon
and Denis' (2001) terms), and additional static
information about the surroundings (descrip-
tions). In our analysis, we distinguished speak-
ers’ utterances as motion descriptions if they
described or requested the literal motion of an
entity. In contrast, an utterance was marked as
location if it described a static spatial relation,
for example the position of the speaker or an
object at a certain point in time.

2.2 Perspective Use

When describing routes, speakers either use
the route perspective, describing route ele-
ments or motions from the point of view of a
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person traveling along the route, or the survey
perspective, where the description is based on
cardinal directions, or directions as they are
defined by the map as a whole (Taylor and
Tversky, 1996). Previous research has indic-
ated that perspective choice can be influenced
by the specific situation, and by the coordina-
tion between speakers in natural discourse
(Pickering and Garrod, 2004; Watson et al.,
2006). In the present study, we test the hypo-
thesis that navigating a route in a 3d perspect-
ive makes it more difficult for the instructor to
use the survey perspective, leading to a prefer-
ence for the route perspective. Further we as-
sume that the follower will adapt to the in-
structor’s perspective choice in terms of lan-

guage use.

2.3  Chunking of Route Segments

In a study examining online route descriptions
to an imaginary follower based on a two-di-
mensional map, Klippel et al. (2003) found
that participants tended to chunk decision
points without directional change together. For
example, a speaker could say “turn right at the
second intersection” instead of “Go straight on,
and then turn right”. This occurred even when
the route was shown as a moving dot on the
map. In our study, we address the question
whether this also holds for instructors with a
three-dimensional view. We expected a fre-
quent usage of chunking in the 2d condition, in
which the participants have access to compre-
hensive structural information, as opposed to a
higher degree of separate references in the 3d
condition, in which participants experience the
environment incrementally.

3 Experiment

22 students (average age 25, 14 male and 8 fe-
male) volunteered to participate in the experi-
ment. They formed 11 pairs that each com-
pleted one test run and three permuted critical
trials. Instructor and follower were placed in
different rooms and interacted via telephone
software.

The four predetermined routes were identic-
al for all participants, and they differed mildly
in complexity, ranging from 9 to 14 decision
points. All routes were located in San Fran-
cisco and were specifically designed such that,
at most decision points, descriptions would be
unambiguous with respect to perspective use.
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In the 2d condition (5 pairs), instructors
were given a map that showed mostly street
names and major landmarks such as parks,
schools, restaurants, etc., as they appear in the
standard Google Maps map view. The route
consisted of a marked starting and end point,
and was signaled by a thick blue line with ar-
rows indicating the direction. In the 3d condi-
tion (6 pairs), instructors interacted directly
with Google Street View which had a photo-
graphic quasi-3d view and allowed them to ob-
serve the surroundings as if navigating on the
roads, seeing a vast amount of details of the
environment. Street names were clearly read-
able as an overlay on top of the photographic
imagery. The route was indicated by fat blue
arrows that the instructors could click on, in
order to move in the given direction.

In both conditions, the followers were asked
to draw the route on a map that only contained
the starting point. The task instruction was the
same for both conditions, priming for proced-
ural discourse yet ambiguous with respect to
perspective use: “Now you have to tell your
partner where you are going. Please do this by
giving instructions via the microphone.” (trans-
lated from German). In the 3d condition in-
structors were informed that the follower had a
different view of the same surroundings.

Taken together this setup differs from pre-
vious studies in that it features unconstrained
spoken dialogue and is set in a realistic use-
case with a three-dimensional setting.

4 Results

The participants in the 3d condition took signi-
ficantly longer (M = 125.61 utterances per tri-
al) to complete a task than the participants in
the 2d perspective (M = 46.40 utterances per
trial, #9) =4.781, p=0.001).

Figure 1 shows typical examples of the in-
structors’ language in the two conditions. In
the 2d condition, instructors as well as follow-
ers used survey perspective, as in line 2.2 in
Figure 1, significantly more frequently than in
the 3d condition (see Table 1). A Chi-square
test showed the following results for the in-
structors: ¥*(1)=200.14, p < 0.0001 and ¥*(1)=
91.25, p < 0.0001 for the followers'. It is not-
able that the followers in the 2d condition
showed a preference for survey perspective
(¥3(1) = 15.38; p < 0.0001), while in the 3d
' Mixed, conflated and unclear expressions were
excluded from the analysis.



condition they clearly favored route perspect-
ive, which was the perspective of the instruct-
or.

3d condition:

1.1 Yes... erm ...
now ... there is a
crossing again

1.2 Moraga Street
1.3 to the left

1.4 into Moraga
Street [...]

1.5 then there is a
crossing again

1.6 the twelfth

1.7 straight on over there
1.8 So Moraga further

*Moraga =1

9

: 4 #un:
ang WEL
any Uikl

ahy UL

Noriegs S

2d condition:

2.1 And then we go down that one up to Moraga
Street

2.2 And there we also go right into Moraga Street
2.3 We go through that one up to Eleventh

Avenue

Figure 1. Typical examples of instructors’ lan-
guage in the two conditions.

The instructors in the 3d condition used a
significantly higher proportion of location de-
scriptions than the instructors in the 2d condi-
tion (#6.5) = 4.500, p = 0.003). As Table 2
shows, the instructors in the 2d condition relied
mainly on motion descriptions (see Figure 1,
location descriptions in lines 1.1 and 1.5 as
well as motion descriptions in lines 2.1-2.3).

Perspective 3D 2D

CXPIESSIONS  Ynstructor Follower Instructor Follower

Route  98.93% 9333% 50.88% 21.57%
(370) (112 (87) (11)
Survey  1.07%  6.67%  49.12%  78.43%
) (®) (34) (40)
Totals 374 120 171 51

Table 1. Use of perspective expressions in 2d
and 3d conditions (absolute values in paren-
theses).

Chunking of route elements did not occur at
all in the 3d condition. In the 2d condition
there were 29 intersections that were skipped
through chunking, as shown in line 2.3 in Fig-
ure 1. This amounts to a mean of 1.9 chunked
intersections per route.

Instructors in the 2d condition strongly pre-
ferred 2nd person singular pronouns, whereas
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instructors in the 3d condition showed a prefer-
ence - though not as strong - for 1st person sin-
gular (see Figure 2). Instructors in the 3d con-
dition also used the German formal pronoun es
‘it” more frequently than those in the 2d condi-
tion. This preference is usually displayed in ut-
terances noting the presence of landmarks in
the surroundings (e.g. “Da gibt es eine Hal-

testelle.” — “There is a tram stop here.”).
Condition Location Motion
3D 36.81% 63.19%
2D 14.31% 85.69%

Table 2. Location and motion descriptions by
instructor (means per trial).

In the 3d condition, the participants used
temporal and spatial deictic terms more fre-
quently than in the 2d condition (jetzt ‘now’
3d: 7.3 occurrences per 100 utterances, 2d:
2.73. hier ‘here’ 3d: 2.21, 2d: 0.14).

35

30

05 ¢ ich

2 L1 wir
H du

15 es

10 1 sie

5 er

0

3D 2D

Figure 2. Relative frequency of personal pro-
nouns in the two conditions.

5 Discussion

Our comparison of route directions given while
perceiving an environment either as a 2d map
or in a 3d view revealed that dimensionality
has systematic consequences for discourse
strategies on various levels. Location descrip-
tions, route perspective expressions, st person
singular personal pronouns, impersonal es ‘it’,
as well as temporal and spatial deictic terms
occurred more frequently in the instructors’
discourse in the 3d condition than in the 2d
condition. Also, in the 3d condition, instructors
did not chunk route elements together. These
findings reflect the fact that the instructors



consistently chose a different discourse
strategy in this condition. Instead of producing
procedural step-by-step instructions, they gave
descriptions of the events happening to them
and accounts of their surroundings, whereas in-
structors in the 2d condition gave typical route
directions for their partner to follow.

There are three aspects that may be respons-
ible for the different discourse strategies. First,
it can be assumed that there is a habitual pref-
erence, due to the fact that people providing
route directions usually have a 2d representa-
tion available to them, or prior knowledge of
the relevant route, whereas someone navigat-
ing new surroundings would not normally be
expected to provide efficient procedural in-
structions. Second, the lack of structural in-
formation in the 3d condition makes it difficult
for instructors to describe the route from a sur-
vey perspective, or to deliver precise goal-ori-
ented instructions. Third, in the 3d condition,
progress for the instructor was slow - compar-
able to riding a bicycle along the route at mod-
erate speed - due to the technical properties of
Google Maps Street View This severed the ef-
fect of the inherent lack of structural informa-
tion, and most probably led the participants to
verbalize their progress more frequently than
necessary, in order to keep the conversation
flowing, instead of to waiting until they
reached a point where more efficient instruc-
tions would be possible. This factor is also re-
flected in the number of utterances per trial:
The higher number of utterances per trial in the
3d condition (see section 4) is at least partly a
result of the technical setup.

In the case of chunking, time does not seem
to be the only relevant factor. Klippel et al.
(2003) showed that in a 2d scenario in which
the route was only gradually revealed in the
form of a moving dot on a map, participants
still made use of chunking. It remains to be in-
vestigated whether the lack of chunking in the
present scenario occurred due to the differing
dimensionality, or resulted from the uncon-
strained real dialogue situation, in contrast to
the pretend-dialogue used in Klippel et al.
(2003).

Further research should differentiate the role
of time in the choice of strategy from the im-
pact of perspective. This requires experimental
setups that allow for the systematic variation of
the speed of the navigation, as well as for bet-
ter control of such factors as previous know-
ledge and information density on the route. It
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would also be necessary to examine two fur-
ther conditions (instructor: 3d, follower: 2d
and instructor: 2d, follower: 3d).
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Abstract

Older adults are a challenging user group
because their behaviour can be highly vari-
able. To the best of our knowledge, this
is the first study where dialogue strategies
are learned and evaluated with both sim-
ulated younger users and simulated older
users. The simulated users were derived
from a corpus of interactions with a strict
system-initiative spoken dialogue system
(SDS). Learning from simulated younger
users leads to a policy which is close to
one of the dialogue strategies of the under-
lying SDS, while the simulated older users
allow us to learn more flexible dialogue
strategies that accommodate mixed initia-
tive. We conclude that simulated users are
a useful technique for modelling the be-
haviour of new user groups.

1 Introduction

State-of-the-art statistical approaches to dia-
logue management (Frampton and Lemon, 2006;
Williams and Young, 2007) rely on having ade-
quate training data. Dialogue strategies are typ-
ically inferred from data using Reinforcement
Learning (RL), which requires on the order of
thousands of dialogues to achieve good perfor-
mance. Therefore, it is no longer feasible to rely
on data collected with real users. Instead, training
data is generated through interactions of the sys-
tem with simulated users (SUs) (Georgila et al.,
2006). In order to learn good policies, the be-
haviour of the SUs needs to cover the range of
variation seen in real users (Georgila et al., 2006;
Schatzmann et al., 2006). Furthermore, SUs are
critical for evaluating candidate dialogue policies.

To date, SUs have been used to learn dialogue
strategies for specific domains such as flight reser-
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Edinburgh, UK
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vation, restaurant recommendation, etc., and to
learn both how to collect information from the
user (Frampton and Lemon, 2006) as well as how
to present information to the user (Rieser and
Lemon, 2009; Janarthanam and Lemon, 2009).
In addition to covering different domains, SUs
should also be able to model relevant user at-
tributes (Schatzmann et al., 2006), such as coop-
erativeness vs. non-cooperativeness (Lopez-Cdzar
et al., 2006; Jung et al., 2009), or age (Georgila et
al., 2008). In this paper, we focus on user age.

As the proportion of older people in the popu-
lation increases, it becomes essential to make spo-
ken dialogue systems (SDS) easy to use for this
group of people. Only very few spoken dialogue
systems have been developed for older people (e.g.
Nursebot (Roy et al., 2000)), and we are aware of
no work on learning specific dialogue policies for
older people using SUs and RL.

Older people present special challenges for di-
alogue systems. While cognitive and perceptual
abilities generally decline with age, the spread of
ability in older people is far larger than in any
other segment of the population (Rabbitt and An-
derson, 2005). Older users may also use differ-
ent strategies for interacting with SDS. In our pre-
vious work on studying the interactions between
older and younger users and a simulated appoint-
ment scheduling SDS (Wolters et al., 2009b), we
found that some older users were very ‘“‘social”,
treating the system like a human, and failing to
adapt to the SDS’s system-initiative dialogue strat-
egy. A third of the older users, however, tended
to be more “factual”, using short commands and
conforming to the system’s dialogue strategy. In
that, they were very similar to the younger users
(Wolters et al., 2009b).

In previous work (Georgila et al., 2008), we
successfully built SUs for both older and younger
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adults from the corpus used by (Wolters et al.,
2009b) and documented in (Georgila et al., 2010).
When we evaluated the SUs using metrics such as
precision and recall (Georgila et al., 2006; Schatz-
mann et al., 2006), we found that SUs trained on
older users’ data can cover behaviour patterns typ-
ical of younger users, but not the opposite. The
behaviour of older people is too diverse to be cap-
tured by a SU trained on younger users’ data. This
result agrees with the findings of (Wolters et al.,
2009b; Georgila et al., 2010).

In this study, we take our work one step
further—we use the SUs developed in (Georgila
et al., 2008) to learn dialogue policies and evalu-
ate the resulting policies with data from both older
and younger users. Our work is important for two
reasons. First, to the best of our knowledge this
is the first time that people have used SUs and
RL to learn dialogue strategies for the increas-
ingly important population of older users. Sec-
ond, despite the fact that SUs are used for learn-
ing dialogue strategies it is not clear whether they
can learn policies that are appropriate for different
user populations. We show that SUs can be suc-
cessfully used to learn policies for older users that
are adapted to their specific patterns of behaviour,
even though these patterns are far more varied than
the behaviour patterns of younger users. This pro-
vides evidence for the validity of the user simula-
tion methodology for learning and evaluating dia-
logue strategies for different user populations.

The structure of the paper is as follows: In sec-
tion 2 we describe our data set, discuss the dif-
ferences between older and younger users as seen
in our corpus, and describe our user simulations.
In section 3, we present the results of our experi-
ments. Finally, in section 4 we present our conclu-
sions and propose future work.

2 The Corpus

In the original dialogue corpus, people were asked
to schedule health care appointments with 9 dif-
ferent simulated SDS in a Wizard-of-Oz setting.
The systems varied in the number of options pre-
sented at each stage of the dialogue (1, 2, 4),
and in the confirmation strategies used (explicit
confirmation, implicit confirmation, no confirma-
tion). System utterances were generated using
a simple template-based algorithm and synthe-
sised using a female Scottish English unit selec-
tion voice. The human Wizard took over the func-
tion of speech recognition (ASR), language under-
standing (NLU), and dialogue management com-
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ponents. No ASR or NLU errors were simulated,
because having to deal with ASR and/or NLU er-
rors in addition to task completion would have in-
creased cognitive load (Wolters et al., 2009a).

The system (Wizard) followed a strict policy
which resulted in dialogues with a fixed schema:
First, users arranged to see a specific health care
professional, then they arranged a specific half-
day, and finally, a specific half-hour time slot on
that half-day was agreed. Users were not allowed
to skip any stage of the dialogue. This design en-
sured that all users were presented with the rele-
vant number of options and the relevant confirma-
tion strategy at least three times per dialogue. In a
final step, the Wizard confirmed the appointment.

The full corpus consists of 447 dialogues; 3 di-
alogues were not recorded. A total of 50 partici-
pants were recruited, of which 26 were older, aged
between 50 and 85 years, and 24 were younger,
aged between 18 and 30 years. The older users
contributed 232 dialogues, the younger ones 215.
Older and younger users were matched for level
of education and gender. All dialogues were tran-
scribed orthographically and annotated with dia-
logue acts and dialogue context information. Us-
ing a unique mapping, we associate each dialogue
act with a (speech act, task) pair, where the speech
act is task independent and the task corresponds to
the slot in focus (health professional, half-day or
time slot). For example, (confirm_pos, hp) cor-
responds to positive explicit confirmation of the
health professional slot. For each dialogue, de-
tailed measures of dialogue quality were recorded:
objective task completion, perceived task comple-
tion, appointment recall, length (in turns), and ex-
tensive user satisfaction ratings. For a detailed dis-
cussion of the corpus, see (Georgila et al., 2010).

The choice of dialogue strategy did not affect
task completion and appointment recall, but had
significant effects on efficiency (Wolters et al.,
2009a). Task completion and appointment recall
were the same for older and younger users, but
older users took more turns to complete the task
(Wolters et al., 2009a). Clear differences between
the two user groups emerge when we look at in-
teraction patterns in more detail (Wolters et al.,
2009b; Georgila et al., 2010). Older people tend
to “ground” information (using repetitions) and
take the initiative more than younger people. In
our corpus it was very common that the older per-
son would provide information about the half-day
and the time slot of the appointment before hav-
ing been asked by the system. However, due to the



Experiment 1 | Experiment 2
slot filled +50 +50
appointment confirmed +200 +200
dialogue length -5 per turn -5 per turn
slot confirmed +100 not used
wrong order -500 not used

Table 1: Reward functions for the experiments.

strict policy of the Wizard, this information would
be ignored and the system would later ask for the
information that had already been provided.

In our SUs, each user utterance corresponds to a
user action described by a list of (speech act, task)
pairs. There are 31 distinct system actions and 389
distinct actions for older users. Younger people
used a subset of 125 of the older users’ actions.
Our SUs do not simulate ASR or NLU errors since
such errors were not simulated in the collection of
the corpus.

We built n-grams of system and user actions
with n varying from 2 to 5. Given a history of n-1
actions from system and user, the SU generates an
action based on a probability distribution learned
from the training data (Georgila et al., 2006). In
the present study, n was set to 3, which means that
each user action is predicted based on the previous
user action and the previous system action.

3 Learning Dialogue Strategies

We performed two experiments. In Experiment 1,
our goal was to learn the policy of the Wizard, i.e.
the strict system-initiative policy of requesting and
confirming information for each slot before mov-
ing to the next slot, in the following order: health
professional, half-day, time slot. In Experiment
2, our goal was to learn a more flexible policy that
could accommodate some degree of user initiative.

The reward functions for both experiments are
specified in Table 1; they are similar to the reward
functions used in the literature, e.g. (Frampton and
Lemon, 2006). Slots that have been filled success-
fully and confirmed appointments are rewarded,
while long dialogues are penalised. For Experi-
ment 1, policies were rewarded that filled slots in
the correct order and that confirmed each slot af-
ter it had been filled. A large penalty was imposed
when the policy deviated from the strict slot order
(health professional, half-day, time slot). For Ex-
periment 2, these constraints were removed. Slots
could be filled in any order. Confirmations were
not required because there was no speech act in
the corpus for confirming more than one slot at a
time.
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In both experiments we used the SARSA-) al-
gorithm (Sutton and Barto, 1998) for RL. 30,000
iterations were used for learning the final pol-
icy for each condition. For each experiment,
we learned two policies, Policy-Old, which was
based on simulated older users, and Policy-Young,
which was based on simulated younger users.
The resulting policies were then tested on simu-
lated older users (Test-Old) and simulated younger
users (Test-Young). To have comparable results
between Experiment 1 and Experiment 2, dur-
ing testing we score our policies using the reward
function of Experiment 2. The best possible score
is 190, i.e. the user fills all the slots in one turn
and then confirms the appointment. (Note that +50
points are given when a slot is only filled, not con-
firmed too.) For each test condition, we gener-
ated 10,000 simulated dialogues. Overall scores
for each combination of policy and SU were es-
tablished using 5-fold cross-validation.

Our results are summarised in Figure 1. While
average rewards were not affected by policy
type (ANOVA, F(1,68)=1, p=0.3) or training
data set (F'(1,185)=3, p=0.09), we found a very
strong interaction between policy type and data
set (F'(1,3098)=51, p=0.000). Learning with
simulated younger users yields better strict poli-
cies than learning with older users (Tukey’s Hon-
est Significant Difference Test, A=20, 95% CI
= [11, 30], p=0.000), while learning with simu-
lated older users yields better flexible policies than
learning with younger users (A=15, 95% CI =
[6,24], p=0.001). This is what we would expect
from our corpus analysis, since the interaction be-
haviour of older users is far more variable than that
of younger users (Wolters et al., 2009b; Georgila
et al., 2010).

The strict policy that was learned from sim-
ulated younger users was as follows, with only
slight variations: first request the type of health
professional, then implicitly confirm the health
professional and request the half-day slot, then im-
plicitly confirm the half-day slot and request the
time slot, and then confirm the appointment. The
strict policy learned from simulated older users
was similar, but less successful, because most
older users do not readily conform to the fixed
structure.

The flexible policy learned from simulated older
users takes into account initiative from the user
and does not always confirm. The score for the
flexible policy learned from simulated younger
users was relatively low, even though the resulting



Reward-Strict
Policy—Young

Reward-Strict
Policy-Old

r 190
r 180
r 170
r 160
r 150
r 140

Reward-Flex
Policy—Young

Reward-Flex
Policy-Old

Score

190
1801
170
160
150
140 1

Test-Old Test-Young Test-Old Test-Young

Figure 1: Mean scores for each combination of
reward function, training set, and test set (5-fold
cross-validation).

policy was very similar to the strict policy learned
from younger users (i.e. a sequence of informa-
tion requests and implicit confirmations), and even
though the behaviour of younger users is far more
predictable than the behaviour of older users. It
appears that the explicit penalty for violating the
order of slots is crucial for fully exploiting the pat-
terns in younger users’ behaviour.

4 Conclusions

We have shown that SUs can be used to learn ap-
propriate policies for older adults, even though
their interaction behaviour is more complex and
diverse than that of younger adults. Crucially, sim-
ulated older users allowed us to learn a more flex-
ible version of the strict system-initiative dialogue
strategies that were used for creating the original
corpus of interactions. These results are consis-
tent with previous analyses of the original corpus
(Wolters et al., 2009b; Georgila et al., 2010) and
support the validity of the user simulation method-
ology for learning and evaluating dialogue strate-
gies.

In our future work, we will experiment with
more complex SUs, e.g. linear feature combina-
tion models (Georgila et al., 2006), and see if they
can be used to learn similar policies. We also plan
to study the effect of training and testing with dif-
ferent user simulation techniques, such as n-grams
versus linear feature combination models.
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Abstract

Spoken dialogue management strategy op-
timization by means of Reinforcement
Learning (RL) is now part of the state of
the art. Yet, there is still a clear mis-
match between the complexity implied by
the required naturalness of dialogue sys-
tems and the inability of standard RL al-
gorithms to scale up. Another issue is the
sparsity of the data available for training in
the dialogue domain which can not ensure
convergence of most of RL algorithms.
In this paper, we propose to combine a
sample-efficient generalization framework
for RL with a feature selection algorithm
for the learning of an optimal spoken dia-
logue management strategy.

1 Introduction

Optimization of dialogue management strategies
by means of Reinforcement Learning (RL) (Sut-
ton and Barto, 1998) is now part of the state of
the art in the research area of Spoken Dialogue
Systems (SDS) (Levin and Pieraccini, 1998; Singh
et al., 1999; Pietquin and Dutoit, 2006; Williams
and Young, 2007). It consists in casting the dia-
logue management problem into the Markov Deci-
sion Processes (MDP) paradigm (Bellman, 1957)
and solving the associated optimization problem.
Yet, there is still a clear mismatch between the
complexity implied by the required naturalness of
the dialogue systems and the inability of standard
RL algorithms to scale up. Another issue is the
sparsity of the data available for training in the
dialogue domain because collecting and annotat-
ing data is very time consuming. Yet, RL algo-
rithms are very data demanding and low amounts
of data can not ensure convergence of most of
RL algorithms. This latter problem has been ex-
tensively studied in the recent years and is ad-
dressed by simulating new dialogues thanks to

a statistical model of human-machine interaction
(Pietquin, 2005) and user modeling (Eckert et al.,
1997; Pietquin and Dutoit, 2006; Schatzmann et
al., 2006). However, this results in a variability of
the learned strategy depending on the user model-
ing method (Schatzmann et al., 2005) and no com-
mon agreement exists on the best user model.

The former problem, that is dealing with com-
plex dialogue systems within the RL framework,
has received much less attention. Although some
works can be found in the SDS literature it is far
from taking advantage of the large amount of ma-
chine learning literature devoted to this problem.
In (Williams and Young, 2005), the authors reduce
the complexity of the problem (which is actually a
Partially Observable MDP) by automatically con-
densing the continuous state space in a so-called
summary space. This results in a clustering of the
state space in a discrete set of states on which stan-
dard RL algorithms are applied. In (Henderson et
al., 2008), the authors use a linear approximation
scheme and apply the SARSA()) algorithm (Sut-
ton and Barto, 1998) in a batch setting (from data
and not from interactions or simulations). This al-
gorithm was actually designed for online learning
and is known to converge very slowly. It there-
fore requires a lot of data and especially in large
state spaces. Moreover, the choice of the features
used for the linear approximation is particularly
simple since features are the state variables them-
selves. The approximated function can therefore
not be more complex than an hyper-plane in the
state variables space. This drawback is shared by
the approach of (Li et al., 2009) where a batch al-
gorithm (Least Square Policy Iteration or LSPI) is
combined to a pruning method to only keep the
most meaningful features. In addition the com-
plexity of LSPI is O(p?).

In the machine learning community, this issue
is actually addressed by function approximation
accompanied with dimensionality reduction. The
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data sparsity problem is also widely addressed in
this literature, and sample-efficiency is one main
trend of research in this field. In this paper, we
propose to combine a sample-efficient batch RL
algorithm (namely the Fitted Value Iteration (FVI)
algorithm) with a feature selection method in a
novel manner and to apply this original combi-
nation to the learning of an optimal spoken dia-
logue strategy. Although the algorithm uses a lin-
ear combination of features (or basis functions),
these features are much richer in their ability of
representing complex functions.

The ultimate goal of this research is to provide
a way of learning optimal dialogue policies for a
large set of situations from a small and fixed set of
annotated data in a tractable way.

The rest of this paper is structured as follows.
Section 2 gives a formal insight of MDP and
briefly reminds the casting of the dialogue prob-
lem into the MDP framework. Section 3.2 pro-
vides a description of approximate Dynamic Pro-
gramming along with LSPI and FVI algorithms.
Section 4 provides an overview on how LSPI and
FVI can be combined with a feature selection
scheme (which is employed to learn the represen-
tation of the ()-function from the dialogue corpus).
Our experimental set-up, results and a comparison
with state-of-the-art methods are presented in Sec-
tion 5. Eventually, Section 6 concludes.

2 Markov Decision Processes

The MDP (Puterman, 1994) framework is used
to describe and solve sequential decision mak-
ing problems or equivalently optimal control prob-
lems in the case of stochastic dynamic systems.
An MDP is formally a tuple {.S, A, P, R, v} where
S is the (finite) state space, A the (finite) action
space, P € P(S)%*4 the family of Markovian
transition probabilities', R € R¥*4*5 the reward
function and ~y the discounting factor (0 < v < 1).
According to this formalism, a system to be con-
trolled steps from state to state (s € S) according
to transition probabilities P as a consequence of
the controller’s actions (a € A). After each tran-
sition, the system generates an immediate reward
() according to its reward function R. How the
system is controlled is modeled with a so-called
policy = € A® mapping states to actions. The
quality of a policy is quantified by the so-called
value function which maps each state to the ex-

'Notation f € AP is equivalentto f : B — A
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pected discounted cumulative reward given that
the agent starts in this state and follows the policy
m V7(s) = E[>:207'ri|s0 = s,7]. An optimal
policy 7* maximizes this function for each state:
m* = argmax, V™. Suppose that we are given the
optimal value function V* (that is the value func-
tion associated to an optimal policy), deriving the
associated policy would require to know the transi-
tion probabilities P. Yet, this is usually unknown.
This is why the state-action value (or )-) function
is introduced. It adds a degree of freedom on the
choice of the first action:

Q"(s,a) = E[Y_~'rilso = s,a0 = a,7] (1)
i=0

The optimal policy is noted 7* and the related
Q-function Q*(s, a). An action-selection strategy
that is greedy according to this function (7 (s)
argmax, Q*(s, a)) provides an optimal policy.

2.1 Dialogue as an MDP

The casting of the spoken dialogue management
problem into the MDP framework (MDP-SDS)
comes from the equivalence of this problem to
a sequential decision making problem. Indeed,
the role of the dialogue manager (or the decision
maker) is to select and perform dialogue acts (ac-
tions in the MDP paradigm) when it reaches a
given dialogue turn (state in the MDP paradigm)
while interacting with a human user. There can
be several types of system dialogue acts. For
example, in the case of a restaurant information
system, possible acts are request(cuisine_type),
provide(address), confirm(price_range), close etc.
The dialogue state is usually represented effi-
ciently by the Information State paradigm (Lars-
son and Traum, 2000). In this paradigm, the di-
alogue state contains a compact representation of
the history of the dialogue in terms of system acts
and its subsequent user responses (user acts). It
summarizes the information exchanged between
the user and the system until the considered state
is reached.

A dialogue management strategy is thus a map-
ping between dialogue states and dialogue acts.
Still following the MDP’s definitions, the optimal
strategy is the one that maximizes some cumula-
tive function of rewards collected all along the in-
teraction. A common choice for the immediate
reward is the contribution of each action to user
satisfaction (Singh et al., 1999). This subjective



reward is usually approximated by a linear com-
bination of objective measures like dialogue dura-
tion, number of ASR errors, task completion efc.
(Walker et al., 1997).

3 Solving MDPs

3.1 Dynamic Programming

Dynamic programming (DP) (Bellman, 1957)
aims at computing the optimal policy 7* if the
transition probabilities and the reward function are
known.

First, the policy iteration algorithm computes
the optimal policy in an iterative way. The ini-
tial policy is arbitrary set to my. At iteration k, the
policy 71 is evaluated, that is the associated Q-
function Q™*-1(s, a) is computed. To do so, the
Markovian property of the transition probabilities
is used to rewrite Equation (1) as :

Qﬂ(sa a’) = Es’\s,a[R(sv a, S/> + 7@7{(3/7 71'(8/))]
= TﬂQﬂ—(s?a) (2)

This is the so-called Bellman evaluation equa-
tion and 7™ is the Bellman evaluation opera-
tor. 7™ is linear and therefore this defines a lin-
ear system that can be solved by standard meth-
ods or by an iterative method using the fact
that Q7 is the unique fixed-point of the Bell-
man evaluation operator (1™ being a contrac-
tion): QF = T™QTF ,, VQF lim_. QF =
Q™. Then the policy is improved, that is
7 is greedy respectively to Q™ -1: mp(s)
argmax,c 4 @™ -1(s,a).  Evaluation and im-
provement steps are iterated until convergence of
i, to m* (which can be demonstrated to happen in
a finite number of iterations when 7. = mr_1).

The value iteration algorithm aims at estimat-
ing directly the optimal state-action value function
@Q* which is the solution of the Bellman optimality
equation (or equivalently the unique fixed-point of
the Bellman optimality operator 7):

Q*(s,a) = Byl R(s,0,8") + ymax Q"(s', )]
=T"Q"(s,a) 3)

The T™* operator is not linear, therefore comput-
ing Q* via standard system-solving methods is not
possible. However, it can be shown that T™* is
also a contraction (Puterman, 1994). Therefore,
according to Banach fixed-point theorem, Q* can
be estimated using the following iterative way:

QG =TQfy, Y lim Qf =Q°

4)
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However, the convergence takes an infinite num-
ber of iterations. Practically speaking, iterations
are stopped when some criterion is met, classi-
cally a small difference between two iterations:
|Q — Q* ||| < & The estimated optimal pol-
icy (which is what we are ultimately interested in)
is greedy respectively to the estimated optimal Q-
function: 7*(s) = argmax,c 4 Q*(s, a).

3.2 Approximate Dynamic Programming

DP-based approaches have two drawbacks. First,
they assume the transition probabilities and the re-
ward function to be known. Practically, it is rarely
true and especially in the case of spoken dialogue
systems. Most often, only examples of dialogues
are available which are actually trajectories in the
state-action space. Second, it assumes that the Q-
function can be exactly represented. However, in
real world dialogue management problems, state
and action spaces are often too large (even contin-
uous) for such an assumption to hold. Approxi-
mate Dynamic Programming (ADP) aims at esti-
mating the optimal policy from trajectories when
the state space is too large for a tabular representa-
tion. It assumes that the Q-function can be approx-
imated by some parameterized function Qg (s, a).
In this paper, a linear approximation of the Q-
function will be assumed: Qy(s,a) = 07 ¢(s,a).
where 6 € RP is the parameter vector and ¢(s, a)
is the set of p basis functions. All functions ex-
pressed in this way define a so-called hypothesis
space H = {Qg|0 € RP}. Any function Q can be
projected onto this hypothesis space by the opera-
tor II defined as

TQ = argmin [|Q — Q4.
QoEH

6))

The goal of the ADP algorithms explained in the
subsequent sections is to compute the best set of
parameters 6 given the basis functions.

3.2.1 Least-Squares Policy Iteration

The least-squares policy iteration (LSPI) algo-
rithm has been introduced by Lagoudakis and Parr
(2003). The underlying idea is exactly the same
as for policy iteration: interleaving evaluation and
improvement steps. The improvement steps are
same as before, but the evaluation step should
learn an approximate representation of the Q-
function using samples. In LSPI, this is done using
the Least-Squares Temporal Differences (LSTD)
algorithm of Bradtke and Barto (1996).



LSTD aims at minimizing the distance between
the approximated ()-function Qg and the projec-
tion onto the hypothesis space of its image through
the Bellman evaluation operator HT“QQ: 0, =
argming.g, |Q¢ — IIT™Qp|/%. This can be in-
terpreted as trying to minimize the difference be-
tween the two sides of the Bellman equation (1)
(which should ideally be zero) in the hypothesis
space. Because of the approximation, this differ-
ence is most likely to be non-zero.

Practically, T™ is not known, but a set of
N transitions {(s;, a;j, 75, 8j)1<j<n} is available.
LSTD therefore solves the following optimiza-
tion problem: 6, = argmin, E;V: 1 CjN (0) where
CN(0) = (15 +7Qo, (s}, 7(s))) =vQa(s, a7))*.
Notice that 8, appears in both sides of the equa-
tion, which renders this problem difficult to solve.
However, thanks to the linear parametrization, it
admits an analytical solution, which defines the
LSTD algorithm:

N N
O = (D 6;807) "> iy (6)
j=1 J=1
with ¢; = ¢(sj,a;) and AT = ¢(s;,a;) —

76(s), 7(s})-

LSPI is initialized with a policy mg. Then, at
iteration k, the (Q-function of policy m;_1 is esti-
mated using LSTD, and 7y, is greedy respectively
to this estimated state-action value function. Itera-
tions are stopped when some stopping criterion is
met (e.g., small differences between consecutive
policies or associated )-functions).

3.2.2 Least-Squares Fitted Value Iteration

The Fitted Value Iteration (FVI) class of algo-
rithms (Bellman and Dreyfus, 1959; Gordon,
1995; Ernst et al., 2005) generalizes value iter-
ation to model-free and large state space prob-
lems. The T™ operator (eq. (3)) being a con-
traction, a straightforward idea would be to apply
it 1terat1vely to the approximation s1m11arly to eq.
4): ng = T*ng .- However, T*Q9 does not
necessarily lie in H, it should thus be projected
again onto the hypothesis space H. By consider-
ing the same projection operator 11 as before, this
leads to finding the parameter vector 0 satisfying:
Q‘9 = HT*Q(, The fitted-Q) algorithm (a spe-
cial case of FVI) assumes that the composed I17™
operator is a contraction and therefore admits an
unique fixed point, which is searched for through
the classic iterative scheme: ng = HT*ng,_l.

110

However, the model (transition probabilities and
the reward function) is usually not known, there-
fore a sampled Bellman optimality operator T*
is considered instead. For a transition sample
(8,aj,7j,8;), it is defined as: T*Q(sj,aj) =
7j + ymaxaea Q(s}, a). This defines the general
fitted-() algorithm (6 being chosen by the user):
ng = HT*ngil. Fitted-@ can then be special-
ized by choosing how T*QA(;FI is projected onto
the hypothesis space, that is the supervised learn-
ing algorithm that solves the projection problem
of eq. (5). The least squares algorithm is chosen

here.

The parametrization being linear, and a train-
ing base {(s;,a;,7;,8})1<j<n} being available,
the least-squares fitted-¢) (LSFQ for short) is de-
rived as follows (we note ¢(s;,a;) = ¢;):

N

> (T Qo

Jj=1

N
=0 id7)”
j=1

Qo(sj, a;))?

0, = argmin
6cRP

@)

1(5]'7aj) -

2

P

,a)))

(r; +7max Hk 1¢(

Equation (7) defines an iteration of the proposed
linear least-squares-based fitted-() algorithm. An
initial parameter vector 6y should be chosen, and
iterations are stopped when some criterion is met
(maximum number of iterations or small differ-
ence between two consecutive parameter vector
estimates). Assuming that there are M itera-
tions, the optimal policy is estimated as #*(s) =
argmax e 4 Qo,, (s, a).

4 Learning a sparse parametrization

LSPI and LSFQ (FVI) assume that the basis func-
tions are chosen beforehand. However, this is dif-
ficult and problem-dependent. Thus, we propose
to combine these algorithms with a scheme which
learns the representation from dialogue corpora.
Let’s place ourselves in a general context. We
want to learn a parametric representation for an
approximated function fy(z) 67 ¢(z) from
samples {z1,...,zn}. A classical choice is to
choose a kernel-based representation (Scholkopf
and Smola, 2001). Formally, a kernel K (z, ;)
is a continuous, positive and semi-definite func-
tion (e.g., Gaussian or polynomial kernels) cen-
tered on Z;. The feature vector ¢(z) is therefore
of the form: ¢(z) = (K (z,z1) K(z,%p)).
The question this section answers is the following:
given the training basis {z1, ..., zx} and a kernel



K, how to choose the number p of basis functions
and the associated kernel centers (Z1,...,2p)?

An important result about kernels is the Mer-
cer theorem, which states that for each kernel
K there exists a mapping ¢ z € Z —
©(z) € F such that Vz1,20 € Z, K(21,22) =
(p(21),¢(22)) (in short, K defines a dot prod-
uct in F). The space F is called the feature
space, and it can be of infinite dimension (e.g.,
Gaussian kernel), therefore ¢ cannot always be
explicitly built. Given this result and from the
bilinearity of the dot product, fy can be rewrit-
ten as follows: fy(z) = YP ,6,K(z2,%) =
(0(2), 2" 1 0;p(%)). Therefore, a kernel-based
parametrization corresponds to a linear approx-
imation in the feature space, the weight vector
being >F , 0;0(Z;). This is called the kernel
trick. Consequently, kernel centers (Z1,...,Z,)
should be chosen such that (¢(21), ..., ¢(Zp)) are
linearly independent in order to avoid using re-
dundant basis functions. Moreover, kernel cen-
ters should be chosen among the training samples.
To sum up, learning such a parametrization re-
duces to finding a dictionary D = (21,...,%,) €
{#1,...,2n}suchthat (¢(Z),..., (%)) are lin-
early independent and such that they span the
same subspace as (¢(z1),...,¢(2zn)). Engel et
al. (2004) provides a dictionary method to solve
this problem, briefly sketched here.

The training base is sequentially processed, and
the dictionary is initiated with the first sample:
D1 = {z1}. At iteration k, a dictionary Dj_1
computed from {z1, ..., zx_1 } is available and the
k™ sample z, is considered. If o(z;) is linearly
independent of ¢(Dy_1), then it is added to the
dictionary: Dy = Dy_1 U {2}. Otherwise, the
dictionary remains unchanged: Dj, = Dy_;. Lin-
ear dependency can be checked by solving the
following optimization problem (px_1 being the
size of Di_1): d argmin,, cper—1 ||p(25) —

Ph P wip(Z)||?. Thanks to the kernel trick (that
is the fact that (p(zx), p(2;)) = K(z, 2;)) and to
the bilinearity of the dot product, this optimization
problem can be solved analytically and without
computing explicitly . Formally, linear depen-
dency is satisfied if 6 = 0. However, an approxi-
mate linear dependency is allowed, and (2 ) will
be considered as linearly dependent of ¢(Dj,_1) if
0 < v, where v is the so-called sparsification fac-
tor. This allows controlling the trade-off between
quality of the representation and its sparsity. See
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Engel et al. (2004) for details as well as an efficient
implementation of this dictionary approach.

4.1 Resulting algorithms

We propose to combine LSPI and LSFQ with the
sparsification approach exposed in the previous
section: a kernel is chosen, the dictionary is com-
puted and then LSPI or LSFQ is applied using the
learnt basis functions. For LSPI, this scheme has
been proposed before by Xu et al. (2007) (with
the difference that they generate new trajectories
at each iteration whereas we use the same for all
iterations). The proposed sparse LSFQ algorithm
is a novel contribution of this paper.

We start with the sparse LSFQ algorithm. In or-
der to train the dictionary, the inputs are needed
(state-action couples in this case), but not the out-
puts (reward are not used). For LSFQ, the input
space remains the same over iterations, therefore
the dictionary can be computed in a preprocessing
step from {(s;, aj)1<j<n }. Notice that the matrix
(Zjvz 1 qugb?)_l remains also the same over itera-
tions, therefore it can be computed in a preprocess-
ing step too. The proposed sparse LSFQ algorithm
is summarized in appendix Algorithm 1.

For the sparse LSPI algorithm, things are
different.  This time, the inputs depend on
the iteration. More precisely, at iteration k,
the input is composed of state-action couples
(sj,a;) but also of transiting state-action cou-
ples (s}, mr-1(s})). Therefore the dictionary
has to be computed at each iteration from
{(sj,a5)1<j<n, (s} me-1(s}))1<j<n}. This de-
fines the parametrization which is considered for
the -function evaluation. The rest of the algo-
rithm is as for the classic LSPI and it is summa-
rized in appendix Algorithm 2.

Notice that sparse LSFQ has a lower computa-
tional complexity than the sparse LSPI. For sparse
LSFQ, dictionary and the matrix P~! are com-
puted in a preprocessing step, 