Modeling Semantic Relations Expressed by Prepositions

Vivek Srikumar, Dan Roth


Abstract
This paper introduces the problem of predicting semantic relations expressed by prepositions and develops statistical learning models for predicting the relations, their arguments and the semantic types of the arguments. We define an inventory of 32 relations, building on the word sense disambiguation task for prepositions and collapsing related senses across prepositions. Given a preposition in a sentence, our computational task to jointly model the preposition relation and its arguments along with their semantic types, as a way to support the relation prediction. The annotated data, however, only provides labels for the relation label, and not the arguments and types. We address this by presenting two models for preposition relation labeling. Our generalization of latent structure SVM gives close to 90% accuracy on relation labeling. Further, by jointly predicting the relation, arguments, and their types along with preposition sense, we show that we can not only improve the relation accuracy, but also significantly improve sense prediction accuracy.
Anthology ID:
Q13-1019
Volume:
Transactions of the Association for Computational Linguistics, Volume 1
Month:
Year:
2013
Address:
Cambridge, MA
Editors:
Dekang Lin, Michael Collins
Venue:
TACL
SIG:
Publisher:
MIT Press
Note:
Pages:
231–242
Language:
URL:
https://aclanthology.org/Q13-1019
DOI:
10.1162/tacl_a_00223
Bibkey:
Cite (ACL):
Vivek Srikumar and Dan Roth. 2013. Modeling Semantic Relations Expressed by Prepositions. Transactions of the Association for Computational Linguistics, 1:231–242.
Cite (Informal):
Modeling Semantic Relations Expressed by Prepositions (Srikumar & Roth, TACL 2013)
Copy Citation:
PDF:
https://preview.aclanthology.org/proper-vol2-ingestion/Q13-1019.pdf
Video:
 https://preview.aclanthology.org/proper-vol2-ingestion/Q13-1019.mp4