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Abstract
Document-level Event Argument Extraction (DEAE) aims to identify arguments and their specific roles from an
unstructured document. The advanced approaches on DEAE utilize prompt-based methods to guide pre-trained
language models (PLMs) in extracting arguments from input documents. They mainly concentrate on establishing
relations between triggers and entity mentions within documents, leaving two unresolved problems: a) independent
modeling of entity mentions; b) document-prompt isolation. To this end, we propose a semantic mention Graph
Augmented Model (GAM) to address these two problems in this paper. Firstly, GAM constructs a semantic mention
graph that captures relations within and between documents and prompts, encompassing co-existence, co-reference
and co-type relations. Furthermore, we introduce an ensembled graph transformer module to address mentions and
their three semantic relations effectively. Later, the graph-augmented encoder-decoder module incorporates the
relation-specific graph into the input embedding of PLMs and optimizes the encoder section with topology information,
enhancing the relations comprehensively. Extensive experiments on the RAMS and WikiEvents datasets demonstrate
the effectiveness of our approach, surpassing baseline methods and achieving a new state-of-the-art performance.

Keywords: document-level event argument extraction, semantic mention graph, ensembled graph trans-
former, graph-augmented PLMs

1. Introduction

Document-level Event Extraction (DEE) stands as
an essential technology in the construction of event
graphs (Xu et al., 2021) in the field of natural lan-
guage processing (NLP) (Hirschberg and Manning,
2015; Hedderich et al., 2021; Bojun and Yuan,
2023). Within the realm of DEE, Document-level
Event Argument Extraction (DEAE) plays a crucial
role in transforming unstructured text into a struc-
tured event representation, thereby enabling sup-
port for various downstream tasks like recommen-
dation systems (Roy and Dutta, 2022), dialogue
systems (Ni et al., 2023) and some reasoning ap-
plications (Wang et al., 2023a). DEAE strives to
extract all arguments from the entity mentions in
a document and assign them specific roles with a
given trigger word representing the event type. As
depicted in Fig. 1, the trigger word is set off and
the task is to extract arguments of the predefined
argument roles of the event type Conflict, e.g., at-
tacker and explosiveDevice. In recent researches,
significant strides have been made in DEAE thanks
to the success of pre-trained language models
(PLMs) and the prompt-tuning paradigm. An un-
filled prompt p is initialized by argument placehold-
ers based on the event ontology(Li et al., 2021). For
example, the prompt for Conflict type in Fig. 1 is
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“Attacker ⟨arg1⟩ exploded explosiveDevice ⟨arg2⟩
using instrument ⟨arg3⟩ to attack target ⟨arg4⟩ at
place ⟨arg5⟩”. We define argument placeholders
in the prompt as mask mentions, e.g., “attacker
⟨arg1⟩”. The advanced approaches on DEAE uti-
lize prompt-based methods to guide PLMs in ex-
tracting arguments from input documents. These
studies on DEAE (Lin et al., 2022a; Ma et al., 2022;
Zeng et al., 2022) consider using different prompts
to instruct PLMs, but there remains two unsolved
problems: a) independent modeling of entity men-
tions; b) document-prompt isolation.

On one hand, the relevance among entity men-
tions within the document is crucial but frequently
overlooked. These entity mentions share a clear
and significant connection that demands careful
consideration in DEAE. This relevance is univer-
sal and invaluable, enabling DEAE to grasp the
completeness of events and the correlation struc-
ture within documents. Taking co-reference rela-
tions as an example, arguments appear in various
forms across different sentences within the docu-
ment, creating co-reference instances. As shown
in Fig. 1, the entity mention Aaron Driver appears
multiple times in various forms of expressions (in
green), such as a Canadian man and Harun Ab-
durahman, conveying an identical semantic mean-
ing. The same phenomenon also exists in the co-
existence relation among entity mentions, wherein
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Figure 1: An illustration of DEAE including the rele-
vance among entity mentions with the same color
labeled in the document and the co-type relation
between the prompt and the document with the
same color labeled.

co-existence relations denote the presence of en-
tity mentions or masked mentions within the same
sentence. Surprisingly, previous studies (Du and
Cardie, 2020; Liu et al., 2021; Wei et al., 2021) often
overlook this aspect, obscuring this vital correlation.

On the other hand, the document-prompt isola-
tion is both valuable and underappreciated. Gen-
erally, arguments should only be extracted from
entity mentions of the same type in the appropriate
context. The co-type relation between documents
and prompts provides essential guidance for ac-
curately determining the positions of arguments.
In other words, the co-type relation refers to the
same type attributes between masked mentions
and entity mentions. As demonstrated in Fig. 1, the
argument role attacker in the prompt and the entity
mention Aaron Driver are of the same type, namely,
PERSON, indicating a co-type phenomenon. Previ-
ous studies (Lin et al., 2022a; Ma et al., 2022; Zeng
et al., 2022) ignore the document-prompt isolation
problem, neglecting the co-type relation between
documents and prompts when directly feeding them
into PLMs.

To this end, we propose a semantic mention
Graph Augmented Model (GAM) to alleviate the
above two problems in this paper. Within the se-
mantic mention graph, the semantics highlights
the internal meaning of mentions and models this
through the relations between mentions. To ad-
dress the independent modeling of entity mentions,
GAM considers the co-existence and co-reference
relations among entity mentions. For the document-
prompt isolation problem, the co-type relation be-
tween mask mentions and entity mentions are incor-
porated. Specifically, we first construct a semantic
mention graph module to model these three se-
mantic relations. It includes nodes representing
entity mentions and mask mentions, connected by

the aforementioned relations. For instance, nodes
like Aaron Driver and Harun Abdurahman are con-
nected by an edge labeled co-reference. Then,
the three types of relations are depicted in three
adjacent matrices, which are aggregated into a
fused attention bias. The node sequence and fused
attention bias are fed into the ensembled graph
transformer for encoding. Lastly, we integrate node
embeddings into initial embeddings as input and
employ the fused topology information as attention
bias to boost the PLMs. The main contributions of
our work are as follows:

• This research introduces a universal frame-
work GAM1, in which we construct a semantic
mention graph incorporating three types of re-
lations within and between the documents and
the prompts initially. It is the first work in simul-
taneously addressing the independent model-
ing of entity mentions and document-prompt
isolation as far as we know.

• We propose an ensembled graph transformer
module and a graph-augmented encoder-
decoder module to handle the three types of
relations. The former is utilized to handle the
mentions and their three semantic relations,
while the latter integrates the relation-specific
graph into the input embedding and optimizes
the encoder section with topology information
to enhance the performance of PLMs.

• Extensive experiments report that GAM
achieves the new state-of-the-art performance
on two benchmarks and further analysis vali-
dates the effectiveness of the different relations
in semantic mention graph construction mod-
ule, ensembled graph transformer module and
graph-augmented encoder-decoder module in
our model.

2. Related Works

In this section, we introduce the current researches
on DEAE, mainly consisting the sequence model
and graph model for event extraction.

2.1. DEAE Based on Sequence Model
From the early stages, semantic role labeling (SRL)
has been utilized for extracting event arguments
in various studies (Yang et al., 2018; Zheng et al.,
2019; Xu et al., 2021; Wang et al., 2023b). Some
studies initially identify entities within the document
and subsequently assign these entities specific ar-
gument roles. Lin et al. (2020) began by identifying

1The code for the framework and the ex-
perimental data are stored in the repository:
https://github.com/exoskeletonzj/gam.
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candidate entity mentions, followed by their assign-
ment of specific roles through multi-label classifica-
tion.

Later, certain studies have approached DEAE as
a question-answering (QA) task. Methods (Du and
Cardie, 2020; Liu et al., 2021) based on QA involve
querying arguments by answering questions prede-
fined through templates one by one, treating DEAE
as a machine reading comprehension task. Wei
et al. (2021) toke into account the implicit interac-
tions among roles by imposing constraints on each
other within the template. However, this method
tends to lead to error accumulation.

Alongside the emergence of sequence-to-
sequence models, specifically generative PLMs
like BART (Lewis et al., 2020) and T5 (Raffel et al.,
2020), generating all arguments in the sequence
of target event has become possible. Some stud-
ies (Li et al., 2021; Du et al., 2021; Lu et al., 2021)
employ sequence-to-sequence models to extract
arguments efficiently. Furthermore, accompanied
by sequence-to-sequence models, prompt-tuning
methods have also emerged. Recent works on
DEAE (Lin et al., 2022a; Ma et al., 2022; Zeng et al.,
2022) explore the utilization of various prompts to
guide PLMs in extracting arguments.

Up to now, these studies have proposed some
solutions to DEAE tasks at different levels, but they
rarely consider the entity mentions’ relevance di-
rectly. Under the latest paradigm of prompt-tuning
with generative PLMs, they have not considered
the explicit interaction between prompts and docu-
ments.

2.2. DEAE Based on Graph Model
Graph model is a crucial kind of methods in in-
formation extraction, particularly in recent years,
where it evaluates documents by constructing var-
ious graphs on DEAE tasks. Zheng et al. (2019)
first introduced an entity directed acyclic graph
to efficiently address DEE. Xu et al. (2021) im-
plemented cross-entity and cross-sentence infor-
mation exchange by constructing heterogeneous
graphs. Xu et al. (2022b) constructed abstract
meaning representation (Banarescu et al., 2013)
semantic graphs to manage long distance depen-
dencies between trigger and arguments across sen-
tences.

However, these methods based on graph model
simply transforms the document into graph struc-
tures and then utilize a classification model to
assign specific roles to entity mentions. This
paradigm make no use of PLMs and is inefficient
in extracting all arguments for a given event simul-
taneously.

Limiting the consideration to just the sequence
model or solely the graph model is incomplete. Our
research motivation lies in the organic fusion of

these two approaches, enabling our method to
harness the strengths of both the latest sequence
model and graph model.

3. Methodology

This section begins by introducing the task formula-
tion. We formulate DEAE task as a prompt-based
span extraction problem. Given an input instance(
X, t, e, R(e)

)
, where X = {x1, x2, ..., xn} denotes

the document, t ⊆ X denotes the trigger word, e
denotes the event type and R(e) denotes the set
of event-specific role types, we aim to extract a
set of spans A as the output. Each a(r) ∈ A is a
segmentation of X and represents an argument
corresponding to r ∈ R(e).

GAM leverages the relations among entity men-
tions and mask mentions to enhance PLMs for
event argument extraction. Our model, depicted
in Figure 2, comprises three key components: a)
semantic mention graph construction from the con-
text, consisting of co-existence, co-reference and
co-type relations; b) ensembled graph transformer
module for handling the dependencies and interac-
tions in the graph; c) graph-augmented encoder-
decoder module with PLMs for argument gener-
ation. Subsequent sections will outline our task
formulation and elaborate on each component in
detail.

3.1. Semantic Mention Graph
Construction

One crucial problem in extracting arguments from
the document is mitigating the relevance among
entity mentions, as well as the relevance between
entity mentions and mask mentions, by capturing
co-existence, co-reference and co-type informa-
tion. Therefore, we introduce a graph construction
module that adopts the semantic mention graph to
provide a robust semantic structure. This approach
facilitates interactions among entity mentions and
mask mentions, offering logical meanings of the
document from a linguistically-driven perspective
to enhance language understanding.

Primarily, as demonstrated in the section 1, GAM
generates an unfilled prompt p with argument place-
holders. GAM initially concatenates the document
X with corresponding prompt p respectively to form
the input sequences. In DEAE tasks, all extracted
arguments should originate from entity mentions
in the document. In the prompt-tuning paradigm,
the extracted arguments are ultimately filled with
placeholders, represented by mask mentions in
the prompt. Consequently, we treat all entity men-
tions mask mentions as nodes in the semantic
mention graph. In this module, GAM constructs
the semantic mention graph from three perspec-
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Figure 2: The architecture of GAM. The left part is an input example of the document and a corresponding
prompt. The graph construction module (a) constructs a semantic mention graph including co-existence,
co-reference and co-type relations from entity mentions and mask mentions. The ensembled graph
transformer module (b) handles the text features combined with three semantic relations. Finally, the
graph-augmented encoder-decoder module (c) is utilized to conduct the feature fusion and predict the
arguments.

tives by extracting three types of relations, includ-
ing co-existence relation within entity mentions
and mask mentions, co-reference relation between
entity mentions and the co-type relation between
mask mentions and entity mentions.

3.1.1. Co-existence Relation

In the co-existence relation, GAM focuses on men-
tions within the same sentence. Intuitively, entity
mentions in the same sentence represent all spe-
cific information and they are more likely to become
arguments for the same event. Mask mentions
also represent the same event. The aggregation of
the co-existence relation within the mask mentions
enables the subsequent sub-modules to better un-
derstand which argument roles are present in the
current event, thus better reflecting the complete
event ontology information in the graph. Therefore,
we construct the co-existence relation to enhance
the same sentence connection.

If nodes mi and mj are in the same sentence,
we establish a direct connection between men-
tions mi and mj . These connections confined
within a single sentence in the document or prompt.
This relation is reflected in the adjacent matrix
Mex ∈ RK×K of the co-existence relation, where
Mex[mi,mj ] = 1, where K is the total number of
the nodes, i.e., the sum of the entity mentions and
mask mentions.

Consider Fig. 1 for example, in the same sen-
tence, entity mentions a homemade bomb and
Aaron Driver have an edge connecting them. Sim-
ilarly, mask mentions attacker ⟨arg1⟩ and explo-
siveDevice ⟨arg2⟩ also share a direct connection
within the same sentence.

3.1.2. Co-reference Relation

The co-reference relation aims to make better use
of co-reference information between entity men-
tions. As introduced in the section 1, it is evident
that the co-reference commonly exists in the entire
document, showcasing a significant characteristic
of co-reference. Hence, we focus on constructing a
co-reference relation that captures co-reference re-
lations among entity mentions throughout the entire
document.

While, the number of the nodes K is the same as
the count of mentions with the co-existence relation.
Following the extraction of co-reference relation us-
ing the tool fastcoref (Otmazgin et al., 2022), we
establish direct connection between co-reference
entity mentions mk and ml. Notably, these con-
nections can occur within sentences or across sen-
tences in the document. Such linkage is repre-
sented in the adjacent matrix Mref ∈ RK×K of the
co-reference relation as Mref [mk,ml] = 1.

Note that in Fig. 1, the co-reference entity men-
tions Aaron Driver, a Canadian man, Harun Abdu-
rahman and the driver. There is a direct connection
between each of them respectively.

3.1.3. Co-type Relation

The co-type relation comprises entity mentions and
mask mentions, detailing the relation between the
two. Unlike previous methods, we consider the
explicit connection between entity mentions and
mask mentions in our approach.

A fundamental and logical assumption is that
each mask mention should be filled with the same
type of entity mentions. In other words, each mask
mention should be associated with the same type
of entity mentions. Consequently, we compose
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Figure 3: The illustration of graph transformer. The
inputs are the node sequence as well as the node
position and the outputs are omitted. The Co-ex,
Co-ref and Co-typ semantic mention relations are
fused as a attention bias.

the third relation to establish co-type connections
between mask mentions and entity mentions.

For consistency, the number of the nodes, de-
noted asK, aligns with the count in the previous two
relations. Directed connections can be established
between mask mention ms and entity mention mt

of the same type. These connections link entity
mentions in the document to mask mentions in the
prompt. These relations are represented in the ad-
jacent matrix Mtyp ∈ RK×K of the co-type relation,
where Mtyp[ms,mt] = 1.

As depicted in Fig. 1, the mask mentions attacker
⟨arg1⟩ and entity mention Aaron Driver share the
same type, GAM establishes a connection between
the two.

3.2. Ensembled Graph Transformer
Several studies (Zhang et al., 2020; Dwivedi and
Bresson, 2020) have highlighted drawbacks in
graph neural network, including the problem of
over-smoothing (Li et al., 2018). Consequently,
we have incorporated the individual approach of
graph transformer (Ying et al., 2021; Cai and Lam,
2020). Following the extraction of the three types of
relations, we utilize ensembled graph transformer
structures (Xu et al., 2022a) to handle them collec-
tively.

The merged graph transformer is visually repre-
sented in Fig. 3 for a concise overview. First of all,
We define text markers as ⟨tgr⟩ / ⟨/tgr⟩ and insert
them into the document X before and after the trig-
ger word, respectively. It is essential to obtain the
original feature embedding for each node. Given
the concatenated sequence of the ith document:

x̃i = [x1, x2, ..., ⟨tgr⟩ , xtgr, ⟨/tgr⟩ , ..., xn], (1)

where xj represents the jth token in the document,
and tgr denotes the index of the trigger word. The
document x̃i is then encapsulated, together with
a prompt template p, using a function denoted as
λ(·, ·):

Xp = λ(p, x̃i) = [CLS]p[SEP ]x̃i[SEP ], (2)

where [CLS] and [SEP ] serve as separators in
BART, Xp denotes the concatenated input se-
quence of prompt p and the document x̃i.

We utilize the BART model as the encoder for ob-
taining the token-level representation Vt ∈ RN×d

of Xp, where N is the token numbers of the input
sequence and d is the dimension of the hidden
state. Subsequently, we extract the order of entity
mentions and mask mentions from Vt. To obtain
the embedding of node mk with the length L, we av-
erage the token embedding constituting the node:

vk =
1

L

L∑
i=1

v
(k)
i . (3)

We integrate positional embedding and node em-
bedding to maintain the consistency of node order
within the document:

Vi = Vtoken + Position(Vtoken), (4)

where Vtoken = [v1;v2; ...;vK ] and Vtoken ∈
RK×d. The function Position(·) generates a d-
dimensional embedding for each node within the
input sequence.

This module revolves around multi-head atten-
tion mechanism. Firstly, to incorporate graph infor-
mation into the transformer architecture, we first ob-
tain the fused topology information M . Considering
the attention bias Mex, Mref and Mtyp ∈ RK×K ,
these three biases, although having the same di-
mension, may not contribute equally to the final
prediction. To aggregate them effectively, GAM
assigns proper hyper-parameters to balance their
influence. The representation of M is as follows:

M = αMex + βMref + (1− α− β)Mtyp. (5)

Hence, GAM employs the obtained matrix M as
attention bias to adjust the self attention formula:

Att(Q,K, V )
′
= softmax(

QKT

√
dk

+M) · V. (6)

where matrices Q,K, V ∈ RK×dk is the projec-
tion of Vi by projection matrices WQ,WK,WV ∈
Rd×dk .

To learn diverse feature representations and im-
prove the adaptability of the graph, we implement
multi-head attention mechanism with a specified
number of heads, denoted as MH:

MH(Q,K, V ) = [Head1; ...;HeadH ] ·WO, (7)
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DataSet Split Doc Event Argument
RAMS Train 3,194 7,394 17,026

Dev 399 924 2,188
Test 400 871 2,023

WikiEvents Train 206 3,241 4,542
Dev 20 345 428
Test 20 365 556

Table 1: Data statistics of RAMS and WikiEvents.

where WO ∈ R(H∗dk)×dk is the linear projection
matrix, Headi = Atti(Q,K, V )

′ .
To better capture the diversity and complexity of

the attention module, we fuse the last two hidden
layers as the updated node features:

Vmen = 0.5 ·V(L−1) + 0.5 ·V(L), (8)

where Vmen ∈ RK×d, and V(L−1), V(L) ∈ RK×d

denote the hidden states of the last two layers.

3.3. Graph-Augmented Encoder-Decoder
Model

As the previous methods on DEAE (Lin et al.,
2022a; Ma et al., 2022; Zeng et al., 2022) adopt,
we choose and expand pre-trained language model
BART as our encoder-decoder model.

We have obtained the token-level representa-
tion Vt and the updated mention node represen-
tation Vmen. To maintain dimension consistency,
we broadcast the feature of each node to all the
tokens it encompasses. The transformed features
are denoted as Vt, V

′

men ∈ RN×d.
To enhance the ability to perceive semantic men-

tions, we integrate node embedding into the initial
embedding. GAM then configures a proper weight
to balance these two features. The resulting fused
input embedding V is as follows:

V = LN(Vt + λ ·V
′

men), (9)

where LN(·) denotes the layer normalization oper-
ation. Then V as the input embedding is fed into
BART.

To further enhance the effectiveness, GAM in-
corporates a graph-augmented encoder section
of BART. GAM employs the fused topology infor-
mation M as attention bias, similar to the graph
transformer module. The representation of the self
attention formula is adjusted as Eq. 6.

For each instance, the graph-augmented BART
module can be employed to generate a completed
template, replacing the placeholder tokens with the
extracted arguments. The model parameter θ is
trained by minimizing the argument extraction loss,
which is the conditional probability computed over
all instances:

L = −
∑

logpθ
(y|X, t, p). (10)

4. Experiments

4.1. Datasets and baselines
We conduct comprehensive experiments on two
widely recognized DEAE benchmark datasets:
RAMS (Ebner et al., 2020) and WikiEvents (Li et al.,
2021), which have been extensively utilized in pre-
vious studies (Lin et al., 2022a; Ma et al., 2022;
Zeng et al., 2022). As shown in table 1, the RAMS
dataset comprises 3,993 paragraphs, annotated
with 139 event types and 65 argument roles. The
WikiEvents dataset consists of 246 documents, an-
notated with 50 event types and 59 argument roles.

We deem an argument span as correctly identi-
fied when its offsets align with any of the reference
arguments of the current event (i.e., Argument
Identification), and as correctly classified when its
role matches (i.e., Argument Classification). Fur-
thermore, we evaluate the argument extraction per-
formance using Head Match F1 and Coref Match
F1 metrics on the WikiEvents dataset, where Head
Match indicates alignment with the head of the
span, and Coref Match indicates an exact match of
the span with all co-reference spans. In the case of
the latter, full credit is assigned when the extracted
argument is coreferential with the gold-standard
argument.

We compare GAM with several state-of-the-
art models in two categories: (1) FEAE (Wei
et al., 2021), EEQA (Du and Cardie, 2020), BART-
Gen (Li et al., 2021), PAIE (Ma et al., 2022) on
RAMS dataset; (2) BERT-CRF (Shi and Lin, 2019),
ONEIE (Lin et al., 2020), BART-Gen (Li et al.,
2021), EA2E (Zeng et al., 2022) on WikiEvents
dataset. Among them, BERT-CRF is a seman-
tic role labeling method, ONEIE is a graph-based
method, FEAE and EEQA utilize QA patterns,
whereas BART-Gen, PAIE, and EA2E employ dif-
ferent prompts directly.

4.2. Implementation Details
GAM extends upon the BART-style encoder-
decoder transformer structure. Each model, includ-
ing baselines and GAM, is trained for 4 epochs with
a batch size of 4, utilizing NVIDIA-V100 with 32GB
DRAM. The model is optimized using the Adam op-
timizer with a learning rate of 3e-5, α = 0.3, β = 0.4
and λ = 0.015. These hyper-parameters are metic-
ulously selected through grid search, based on
model’s performance on the development set.2

2The learning rate is chosen in {3e-5, 5e-5}, α and β
is chosen from {0.1, 0.2, 0.3, 0.4, 0.6, 0.7, 0.8}, and λ is
chosen from {0.01, 0.015, 0.02, 0.03, 0.04, 0.05}.
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Model
Argument Identification Argument Classification

Head Match Coref Match Head Match Coref Match
P R F1 P R F1 P R F1 P R F1

BERT-CRF 72.66 53.82 61.84 74.58 55.24 63.47 61.87 45.83 52.65 63.79 47.25 54.29
ONEIE 68.16 56.66 61.88 70.09 58.26 63.63 63.46 52.75 57.61 65.17 54.17 59.17
BART-Gen 70.43 71.94 71.18 71.83 73.36 72.58 65.39 66.79 66.08 66.78 68.21 67.49
EA2E 76.51 72.82 74.62 77.69 73.95 75.77 70.35 66.96 68.61 71.47 68.03 69.7
GAM 79.05 72.97 75.89 80.36 74.08 77.09 73.47 67.07 70.12 74.59 68.96 71.66
GAM w/o co-ex 78.34 71.66 74.85 80.28 73.09 76.52 72.86 66.80 69.70 73.69 67.29 70.34
GAM w/o co-ref 75.63 70.24 72.84 76.07 70.72 73.30 69.85 64.05 66.82 70.53 64.74 67.51
GAM w/o co-typ 76.44 70.95 73.59 78.62 72.34 75.35 71.96 67.16 69.48 72.81 66.46 69.49
GAM w/o G.T. 78.46 70.52 74.28 79.45 71.4 75.21 71.34 64.12 67.54 72.33 65.01 68.48
GAM w/o N.E. 77.08 72.29 74.61 78.03 73.18 75.53 70.64 66.25 68.38 71.59 67.14 69.29
GAM w/o bias 76.85 70.16 73.35 77.82 71.05 74.28 70.23 64.12 67.04 71.21 65.01 67.97

Table 2: Overall performance on WikiEvents dataset. In the results, the best-performing model is
highlighted, and the second best is underlined. G.T.: graph transformer module. N.E.: node embedding
module. bias: attention bias for graph transformer and BART encoder module.

Model Argument Identification Argument Classification
FEAE 53.5 47.4
EEQA 48.7 46.7
BART-Gen 51.2 47.1
EEQA-BART 51.7 48.7
PAIE 55.6 53.0
GAM 56.83 54.20
GAM w/o co-ex 54.52 52.19
GAM w/o co-ref 52.86 50.65
GAM w/o co-typ 53.16 51.82
GAM w/o G.T. 54.24 53.02
GAM w/o N.E. 53.64 51.17
GAM w/o bias 53.94 52.45

Table 3: Overall performance on RAMS dataset.

4.3. Comparison Results

Tables 2 and 3 demonstrate the superior perfor-
mance of our proposed GAM compared to strong
baseline methods across various datasets and eval-
uation metrics. Specifically, on the WikiEvents
dataset, our model achieves a notable 1.32% im-
provement in absolute argument identification F1
and a 1.96% improvement in argument classifica-
tion F1. Similarly, on the RAMS dataset, GAM
exhibits the improvements with a 1.23% increase in
argument identification and 1.20% in argument clas-
sification F1 scores. These results underscore the
outstanding performance of our proposed method.

Furthermore, our graph-augmented encoder-
decoder model outperforms graph-based methods
and directly prompt-tuning encoder-decoder meth-
ods, including ONEIE and BART-Gen. From the
experimental results shown in Tables 2 and 3, we
can conclude that: (1) Compared to graph-based
methods, GAM can utilize rich information from the
graph to enhance the initial embedding and the
encoder part of encoder-decoder model. (2) Com-
pared to directly prompt-tuning encoder-decoder
methods, These results emphasize the effective-
ness of our semantic mention graphs in leveraging
the BART architecture, enhancing semantic inter-
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actions within documents, and bridging the gap
between documents and prompts.

4.4. Ablation Studies

In this section, we assess the effectiveness of our
primary components by systematically removing
each module one at a time. The components are
as following: (1) three types of relations. Here, we
analyze the gain brought by these relations by con-
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Figure 6: The illustration of an DEAE case. This case mainly showcases the construction of semantic
mention graph and compares the extraction results between BART-Gen and GAM.

sidering the removal of one of the three; (2) graph
transformer. We exclude the graph transformer,
thereby disregarding the updating of node repre-
sentation in the semantic mention graph; (3) node
embedding. We eliminate the node embedding
component from the input of the BART encoder-
decoder module, retaining only the initial embed-
ding; (4) attention bias. We withhold the attention
bias from both the graph transformer and the BART
encoder module.

The results of ablation studies are summarized
in Table 2 and Table 3. We can observe that all
of the three types of relations, graph transformer,
node embedding and attention bias modules can
help boost the performance of DEAE.

Regarding the module of the semantic mention
graph construction, we remove one of the three re-
lations at a time to observe the decrease it causes.
According to the ablation results, the co-reference
relation contributes the most among the three types
of relations, followed by co-type relation and co-
existence relation. It is evident that the co-reference
relation significantly reduces ambiguity, enhances
the accuracy of DEAE, and provides a more com-
prehensive, consistent, and precise semantic rep-
resentation. The decrease brought by the co-type
relation follows closely behind because, ideally, the
correctly extracted arguments should all come from
corresponding co-type entity mentions in the origi-
nal document.

Moreover, the absence of the graph transformer
module leads to a obvious drop in performance,
with F1 score decreasing by more than 2 points
on both RAMS and WikiEvents datasets. This
clearly emphasizes the crucial role of the graph
transformer in updating nodes. Similar patterns
are observed in other modules, underscoring the

effectiveness of each component in enhancing ar-
gument extraction. We are pleasantly surprised to
discover that withholding attention bias from both
the graph transformer and the BART encoder mod-
ule resulted in the largest decrease, excluding the
semantic mention graph construction module. This
is because, in the transformer architecture, the at-
tention mechanism tends to allocate more attention
to the emphasized parts.

In particular, Dropping out all of the above mod-
ules—essentially eliminating all components re-
lated to the graph—results in the variant model
regressing to BART-Gen. BART-Gen is a stan-
dard model that relies solely on prompts and PLMs.
Upon reviewing the results in Table 2 and Table
3, GAM outperforms BART-Gen by 4.17% on the
WikiEvents dataset and 5.5% on the RAMS dataset.
This comparison strongly emphasizes the signifi-
cant performance enhancement achieved by the
graph-enhanced model over BART.

4.5. Supplementary Analysis
Throughout the experiments, hyper-parameters are
employed in many places. Due to space con-
straints, we focus on analyzing one specific pa-
rameter—namely, the node embedding weight λ
used to consolidate the initial embedding fed into
BART. As shown in Eq. 9, Vt refers to the initial
embedding of the document, while V

′

men refers to
the updated node embedding, reflecting the GAM
model’s modeling of nodes in the semantic mention
graph, addressing the independent modeling of en-
tity mentions and document-prompt isolation. λ is
the balanced weight of V′

men, enhancing the input
of the graph-augmented encoder-decoder module.
The results corresponding to different values of λ
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are presented in Fig. 4 and Fig. 5.
The results demonstrate that the optimal perfor-

mance is achieved when λ is set to 0.015. A de-
crease in the hyper-parameter λ implies less con-
sideration of node features and underutilization of
semantic information. Conversely, as λ increases,
additional semantic information is incorporated into
the initial embedding. However, this might be detri-
mental to subsequent decoder stages because the
encoder-decoder architecture heavily depends on
the transmission of initial embedding within this
context.

5. Case Study

Fig. 6 presents a representative example from
the WikiEvents dataset, illustrating the process of
graph-augmented DEAE. Initially, the graph con-
struction module comprises nodes representing all
entity mentions and mask mentions, along with
edges depicting three semantic mention relations.
In this instance, nodes are represented as circles
in green and gray. GAM generates the seman-
tic mention graph based on these relations. The
connections efficiently capture the co-existence,
co-reference and co-type information within and
between the document and the prompt, highlight-
ing GAM’s interpretability capability.

Finally, GAM accurately extracts arguments cor-
responding to their respective roles using an un-
filled prompt p. As depicted in Fig. 6, the output of
BART-Gen differs from that of GAM. When com-
pared to the gold standard, BART-Gen incorrectly
identifies the argument role Giver due to its failure
in considering the three types of relations within and
between the document and the prompt. Conversely,
GAM accurately aligns with the gold standard.

While effective, GAM can inadvertently propa-
gate errors during graph construction. Furthermore,
a scenario might arise where an argument role
lacks a corresponding argument in the document.
In such cases, the co-type relation may still assign
edges of the same type of entity mention to these
mask mention nodes.

6. Conclusion

We propose an end-to-end framework named se-
mantic mention Graph Augmented Model to ad-
dress the independent modeling of entity men-
tions and the document-prompt isolation problems.
Firstly, GAM constructs a semantic mention graph
by creating three types of relations: co-existence,
co-reference and co-type relations within and be-
tween mask mentions and entity mentions. Sec-
ondly, The ensembled graph transformer module
is utilized to handle the mentions and their three
semantic relations. Lastly, the graph-augmented

encoder-decoder module integrates the relation-
specific graph into the input embedding and opti-
mize the encoder section with topology information
to enhance the performance of PLMs. Extensive
experiments report that GAM achieves the new
state-of-the-art performance on two benchmarks.

In the future, we plan to delve into DEAE
within the framework of Large Language Models
(LLM) (Xu et al., 2023). Due to the ambiguity (Liu
et al., 2023) and polysemy (Laba et al., 2023) inher-
ent in entity mentions within documents, LLM faces
limitations in DEAE. We aim to leverage the se-
mantic mention graph to provide guidance to LLM
in DEAE. Furthermore, we will strive to integrate
prior knowledge and employ logical reasoning (Lin
et al., 2022b, 2023) to enhance event extraction
with greater precision and interpretability.
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