Yin Jou Huang


2023

pdf
Is a Knowledge-based Response Engaging?: An Analysis on Knowledge-Grounded Dialogue with Information Source Annotation
Takashi Kodama | Hirokazu Kiyomaru | Yin Jou Huang | Taro Okahisa | Sadao Kurohashi
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop)

Currently, most knowledge-grounded dialogue response generation models focus on reflecting given external knowledge. However, even when conveying external knowledge, humans integrate their own knowledge, experiences, and opinions with external knowledge to make their utterances engaging. In this study, we analyze such human behavior by annotating the utterances in an existing knowledge-grounded dialogue corpus. Each entity in the corpus is annotated with its information source, either derived from external knowledge (database-derived) or the speaker’s own knowledge, experiences, and opinions (speaker-derived). Our analysis shows that the presence of speaker-derived information in the utterance improves dialogue engagingness. We also confirm that responses generated by an existing model, which is trained to reflect the given knowledge, cannot include speaker-derived information in responses as often as humans do.

2022

pdf
Static and Dynamic Speaker Modeling based on Graph Neural Network for Emotion Recognition in Conversation
Prakhar Saxena | Yin Jou Huang | Sadao Kurohashi
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Student Research Workshop

Each person has a unique personality which affects how they feel and convey emotions. Hence, speaker modeling is important for the task of emotion recognition in conversation (ERC). In this paper, we propose a novel graph-based ERC model which considers both conversational context and speaker personality. We model the internal state of the speaker (personality) as Static and Dynamic speaker state, where the Dynamic speaker state is modeled with a graph neural network based encoder. Experiments on benchmark dataset shows the effectiveness of our model. Our model outperforms baseline and other graph-based methods. Analysis of results also show the importance of explicit speaker modeling.

pdf
Constructing a Culinary Interview Dialogue Corpus with Video Conferencing Tool
Taro Okahisa | Ribeka Tanaka | Takashi Kodama | Yin Jou Huang | Sadao Kurohashi
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Interview is an efficient way to elicit knowledge from experts of different domains. In this paper, we introduce CIDC, an interview dialogue corpus in the culinary domain in which interviewers play an active role to elicit culinary knowledge from the cooking expert. The corpus consists of 308 interview dialogues (each about 13 minutes in length), which add up to a total of 69,000 utterances. We use a video conferencing tool for data collection, which allows us to obtain the facial expressions of the interlocutors as well as the screen-sharing contents. To understand the impact of the interlocutors’ skill level, we divide the experts into “semi-professionals’” and “enthusiasts” and the interviewers into “skilled interviewers” and “unskilled interviewers.” For quantitative analysis, we report the statistics and the results of the post-interview questionnaire. We also conduct qualitative analysis on the collected interview dialogues and summarize the salient patterns of how interviewers elicit knowledge from the experts. The corpus serves the purpose to facilitate future research on the knowledge elicitation mechanism in interview dialogues.

2021

pdf
Extractive Summarization Considering Discourse and Coreference Relations based on Heterogeneous Graph
Yin Jou Huang | Sadao Kurohashi
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Modeling the relations between text spans in a document is a crucial yet challenging problem for extractive summarization. Various kinds of relations exist among text spans of different granularity, such as discourse relations between elementary discourse units and coreference relations between phrase mentions. In this paper, we propose a heterogeneous graph based model for extractive summarization that incorporates both discourse and coreference relations. The heterogeneous graph contains three types of nodes, each corresponds to text spans of different granularity. Experimental results on a benchmark summarization dataset verify the effectiveness of our proposed method.

2020

pdf bib
Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing: Student Research Workshop
Boaz Shmueli | Yin Jou Huang
Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing: Student Research Workshop

2019

pdf
Improving Event Coreference Resolution by Learning Argument Compatibility from Unlabeled Data
Yin Jou Huang | Jing Lu | Sadao Kurohashi | Vincent Ng
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Argument compatibility is a linguistic condition that is frequently incorporated into modern event coreference resolution systems. If two event mentions have incompatible arguments in any of the argument roles, they cannot be coreferent. On the other hand, if these mentions have compatible arguments, then this may be used as information towards deciding their coreferent status. One of the key challenges in leveraging argument compatibility lies in the paucity of labeled data. In this work, we propose a transfer learning framework for event coreference resolution that utilizes a large amount of unlabeled data to learn argument compatibility of event mentions. In addition, we adopt an interactive inference network based model to better capture the compatible and incompatible relations between the context words of event mentions. Our experiments on the KBP 2017 English dataset confirm the effectiveness of our model in learning argument compatibility, which in turn improves the performance of the overall event coreference model.

2017

pdf
Improving Shared Argument Identification in Japanese Event Knowledge Acquisition
Yin Jou Huang | Sadao Kurohashi
Proceedings of the Events and Stories in the News Workshop

Event knowledge represents the knowledge of causal and temporal relations between events. Shared arguments of event knowledge encode patterns of role shifting in successive events. A two-stage framework was proposed for the task of Japanese event knowledge acquisition, in which related event pairs are first extracted, and shared arguments are then identified to form the complete event knowledge. This paper focuses on the second stage of this framework, and proposes a method to improve the shared argument identification of related event pairs. We constructed a gold dataset for shared argument learning. By evaluating our system on this gold dataset, we found that our proposed model outperformed the baseline models by a large margin.