Xiaomeng Jin


2023

pdf
Toward Consistent and Informative Event-Event Temporal Relation Extraction
Xiaomeng Jin | Haoyang Wen | Xinya Du | Heng Ji
Proceedings of the First Workshop on Matching From Unstructured and Structured Data (MATCHING 2023)

Event-event temporal relation extraction aims to extract the temporal order between a pair of event mentions, which is usually used to construct temporal event graphs. However, event graphs generated by existing methods are usually globally inconsistent (event graphs containing cycles), semantically irrelevant (two unrelated events having temporal links), and context unaware (neglecting neighborhood information of an event node). In this paper, we propose a novel event-event temporal relation extraction method to address these limitations. Our model combines a pretrained language model and a graph neural network to output event embeddings, which captures the contextual information of event graphs. Moreover, to achieve global consistency and semantic relevance, (1) event temporal order should be in accordance with the norm of their embeddings, and (2) two events have temporal relation only if their embeddings are close enough. Experimental results on a real-world event dataset demonstrate that our method achieves state-of-the-art performance and generates high-quality event graphs.

2022

pdf
Event Schema Induction with Double Graph Autoencoders
Xiaomeng Jin | Manling Li | Heng Ji
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Event schema depicts the typical structure of complex events, serving as a scaffolding to effectively analyze, predict, and possibly intervene in the ongoing events. To induce event schemas from historical events, previous work uses an event-by-event scheme, ignoring the global structure of the entire schema graph. We propose a new event schema induction framework using double graph autoencoders, which captures the global dependencies among nodes in event graphs. Specifically, we first extract the event skeleton from an event graph and design a variational directed acyclic graph (DAG) autoencoder to learn its global structure. Then we further fill in the event arguments for the skeleton, and use another Graph Convolutional Network (GCN) based autoencoder to reconstruct entity-entity relations as well as to detect coreferential entities. By performing this two-stage induction decomposition, the model can avoid reconstructing the entire graph in one step, allowing it to focus on learning global structures between events. Experimental results on three event graph datasets demonstrate that our method achieves state-of-the-art performance and induces high-quality event schemas with global consistency.

pdf
RESIN-11: Schema-guided Event Prediction for 11 Newsworthy Scenarios
Xinya Du | Zixuan Zhang | Sha Li | Pengfei Yu | Hongwei Wang | Tuan Lai | Xudong Lin | Ziqi Wang | Iris Liu | Ben Zhou | Haoyang Wen | Manling Li | Darryl Hannan | Jie Lei | Hyounghun Kim | Rotem Dror | Haoyu Wang | Michael Regan | Qi Zeng | Qing Lyu | Charles Yu | Carl Edwards | Xiaomeng Jin | Yizhu Jiao | Ghazaleh Kazeminejad | Zhenhailong Wang | Chris Callison-Burch | Mohit Bansal | Carl Vondrick | Jiawei Han | Dan Roth | Shih-Fu Chang | Martha Palmer | Heng Ji
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: System Demonstrations

We introduce RESIN-11, a new schema-guided event extraction&prediction framework that can be applied to a large variety of newsworthy scenarios. The framework consists of two parts: (1) an open-domain end-to-end multimedia multilingual information extraction system with weak-supervision and zero-shot learningbased techniques. (2) schema matching and schema-guided event prediction based on our curated schema library. We build a demo website based on our dockerized system and schema library publicly available for installation (https://github.com/RESIN-KAIROS/RESIN-11). We also include a video demonstrating the system.