William Domingues


2022

pdf bib
Findings of the VarDial Evaluation Campaign 2022
Noëmi Aepli | Antonios Anastasopoulos | Adrian-Gabriel Chifu | William Domingues | Fahim Faisal | Mihaela Gaman | Radu Tudor Ionescu | Yves Scherrer
Proceedings of the Ninth Workshop on NLP for Similar Languages, Varieties and Dialects

This report presents the results of the shared tasks organized as part of the VarDial Evaluation Campaign 2022. The campaign is part of the ninth workshop on Natural Language Processing (NLP) for Similar Languages, Varieties and Dialects (VarDial), co-located with COLING 2022. Three separate shared tasks were included this year: Identification of Languages and Dialects of Italy (ITDI), French Cross-Domain Dialect Identification (FDI), and Dialectal Extractive Question Answering (DialQA). All three tasks were organized for the first time this year.

2020

pdf
DeepNLPF: A Framework for Integrating Third Party NLP Tools
Francisco Rodrigues | Rinaldo Lima | William Domingues | Robson Fidalgo | Adrian Chifu | Bernard Espinasse | Sébastien Fournier
Proceedings of the Twelfth Language Resources and Evaluation Conference

Natural Language Processing (NLP) of textual data is usually broken down into a sequence of several subtasks, where the output of one the subtasks becomes the input to the following one, which constitutes an NLP pipeline. Many third-party NLP tools are currently available, each performing distinct NLP subtasks. However, it is difficult to integrate several NLP toolkits into a pipeline due to many problems, including different input/output representations or formats, distinct programming languages, and tokenization issues. This paper presents DeepNLPF, a framework that enables easy integration of third-party NLP tools, allowing the user to preprocess natural language texts at lexical, syntactic, and semantic levels. The proposed framework also provides an API for complete pipeline customization including the definition of input/output formats, integration plugin management, transparent ultiprocessing execution strategies, corpus-level statistics, and database persistence. Furthermore, the DeepNLPF user-friendly GUI allows its use even by a non-expert NLP user. We conducted runtime performance analysis showing that DeepNLPF not only easily integrates existent NLP toolkits but also reduces significant runtime processing compared to executing the same NLP pipeline in a sequential manner.