Wei Zou


2023

pdf
Local Interpretation of Transformer Based on Linear Decomposition
Sen Yang | Shujian Huang | Wei Zou | Jianbing Zhang | Xinyu Dai | Jiajun Chen
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In recent years, deep neural networks (DNNs) have achieved state-of-the-art performance on a wide range of tasks. However, limitations in interpretability have hindered their applications in the real world. This work proposes to interpret neural networks by linear decomposition and finds that the ReLU-activated Transformer can be considered as a linear model on a single input. We further leverage the linearity of the model and propose a linear decomposition of the model output to generate local explanations. Our evaluation of sentiment classification and machine translation shows that our method achieves competitive performance in efficiency and fidelity of explanation. In addition, we demonstrate the potential of our approach in applications with examples of error analysis on multiple tasks.

2020

pdf
A Reinforced Generation of Adversarial Examples for Neural Machine Translation
Wei Zou | Shujian Huang | Jun Xie | Xinyu Dai | Jiajun Chen
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Neural machine translation systems tend to fail on less decent inputs despite its significant efficacy, which may significantly harm the credibility of these systems—fathoming how and when neural-based systems fail in such cases is critical for industrial maintenance. Instead of collecting and analyzing bad cases using limited handcrafted error features, here we investigate this issue by generating adversarial examples via a new paradigm based on reinforcement learning. Our paradigm could expose pitfalls for a given performance metric, e.g., BLEU, and could target any given neural machine translation architecture. We conduct experiments of adversarial attacks on two mainstream neural machine translation architectures, RNN-search, and Transformer. The results show that our method efficiently produces stable attacks with meaning-preserving adversarial examples. We also present a qualitative and quantitative analysis for the preference pattern of the attack, demonstrating its capability of pitfall exposure.