Les modèles de langue pré-entraînés sont désormais indispensables pour obtenir des résultats à l’état-de-l’art dans de nombreuses tâches du TALN. Tirant avantage de l’énorme quantité de textes bruts disponibles, ils permettent d’extraire des représentations continues des mots, contextualisées au niveau de la phrase. L’efficacité de ces représentations pour résoudre plusieurs tâches de TALN a été démontrée récemment pour l’anglais. Dans cet article, nous présentons et partageons FlauBERT, un ensemble de modèles appris sur un corpus français hétérogène et de taille importante. Des modèles de complexité différente sont entraînés à l’aide du nouveau supercalculateur Jean Zay du CNRS. Nous évaluons nos modèles de langue sur diverses tâches en français (classification de textes, paraphrase, inférence en langage naturel, analyse syntaxique, désambiguïsation automatique) et montrons qu’ils surpassent souvent les autres approches sur le référentiel d’évaluation FLUE également présenté ici.
Language models have become a key step to achieve state-of-the art results in many different Natural Language Processing (NLP) tasks. Leveraging the huge amount of unlabeled texts nowadays available, they provide an efficient way to pre-train continuous word representations that can be fine-tuned for a downstream task, along with their contextualization at the sentence level. This has been widely demonstrated for English using contextualized representations (Dai and Le, 2015; Peters et al., 2018; Howard and Ruder, 2018; Radford et al., 2018; Devlin et al., 2019; Yang et al., 2019b). In this paper, we introduce and share FlauBERT, a model learned on a very large and heterogeneous French corpus. Models of different sizes are trained using the new CNRS (French National Centre for Scientific Research) Jean Zay supercomputer. We apply our French language models to diverse NLP tasks (text classification, paraphrasing, natural language inference, parsing, word sense disambiguation) and show that most of the time they outperform other pre-training approaches. Different versions of FlauBERT as well as a unified evaluation protocol for the downstream tasks, called FLUE (French Language Understanding Evaluation), are shared to the research community for further reproducible experiments in French NLP.
French, as many languages, lacks semantically annotated corpus data. Our aim is to provide the linguistic and NLP research communities with a gold standard sense-annotated corpus of French, using WordNet Unique Beginners as semantic tags, thus allowing for interoperability. In this paper, we report on the first phase of the project, which focused on the annotation of common nouns. The resulting dataset consists of more than 12,000 French noun occurrences which were annotated in double blind and adjudicated according to a carefully redefined set of supersenses. The resource is released online under a Creative Commons Licence.
Les schémas Winograd sont des problèmes de résolution d’anaphores conçus pour nécessiter un raisonnement sur des connaissances du monde. Par construction, ils sont insensibles à des statistiques simples (co-occurrences en corpus). Pourtant, aujourd’hui, les systèmes état de l’art pour l’anglais se basent sur des modèles de langue pour résoudre les schémas (Trinh & Le, 2018). Nous présentons dans cet article une étude visant à tester des modèles similaires sur les schémas en français. Cela nous conduit à revenir sur les métriques d’évaluation utilisées dans la communauté pour les schémas Winograd. Les performances que nous obtenons, surtout comparées à celles de Amsili & Seminck (2017b), suggèrent que l’approche par modèle de langue des schémas Winograd reste limitée, sans doute en partie à cause du fait que les modèles de langue encodent très difficilement le genre de raisonnement nécessaire à la résolution des schémas Winograd.
As opposed to word sense induction, word sense disambiguation (WSD) has the advantage of us-ing interpretable senses, but requires annotated data, which are quite rare for most languages except English (Miller et al. 1993; Fellbaum, 1998). In this paper, we investigate which strategy to adopt to achieve WSD for languages lacking data that was annotated specifically for the task, focusing on the particular case of verb disambiguation in French. We first study the usability of Eurosense (Bovi et al. 2017) , a multilingual corpus extracted from Europarl (Kohen, 2005) and automatically annotated with BabelNet (Navigli and Ponzetto, 2010) senses. Such a resource opened up the way to supervised and semi-supervised WSD for resourceless languages like French. While this perspective looked promising, our evaluation on French verbs was inconclusive and showed the annotated senses’ quality was not sufficient for supervised WSD on French verbs. Instead, we propose to use Wiktionary, a collaboratively edited, multilingual online dictionary, as a resource for WSD. Wiktionary provides both sense inventory and manually sense tagged examples which can be used to train supervised and semi-supervised WSD systems. Yet, because senses’ distribution differ in lexicographic examples found in Wiktionary with respect to natural text, we then focus on studying the impact on WSD of the training data size and senses’ distribution. Using state-of-the art semi-supervised systems, we report experiments of Wiktionary-based WSD for French verbs, evaluated on FrenchSemEval (FSE), a new dataset of French verbs manually annotated with wiktionary senses.