Sugyeong Eo


2023

pdf
PEEP-Talk: A Situational Dialogue-based Chatbot for English Education
Seugnjun Lee | Yoonna Jang | Chanjun Park | Jungseob Lee | Jaehyung Seo | Hyeonseok Moon | Sugyeong Eo | Seounghoon Lee | Bernardo Yahya | Heuiseok Lim
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)

English is acknowledged worldwide as a mode of communication. However, due to the absence of realistic practicing scenarios, students learning English as a foreign language (EFL) typically have limited chances to converse and share feedback with others. In this paper, we propose PEEP-Talk, a real-world situational dialogue-based chatbot designed for English education. It also naturally switches to a new topic or situation in response to out-of-topic utterances, which are common among English beginners. Furthermore, PEEP-Talk provides feedback score on conversation and grammar error correction. We performed automatic and user evaluations to validate performance and education efficiency of our system. The results show that PEEP-Talk generates appropriate responses in various real-life situations while providing accurate feedback to learners. Moreover, we demonstrate a positive impact on English-speaking, grammar, and English learning anxiety, implying that PEEP-Talk can lower the barrier to learning natural conversation in effective ways.

pdf
Towards Diverse and Effective Question-Answer Pair Generation from Children Storybooks
Sugyeong Eo | Hyeonseok Moon | Jinsung Kim | Yuna Hur | Jeongwook Kim | SongEun Lee | Changwoo Chun | Sungsoo Park | Heuiseok Lim
Findings of the Association for Computational Linguistics: ACL 2023

Recent advances in QA pair generation (QAG) have raised interest in applying this technique to the educational field. However, the diversity of QA types remains a challenge despite its contributions to comprehensive learning and assessment of children. In this paper, we propose a QAG framework that enhances QA type diversity by producing different interrogative sentences and implicit/explicit answers. Our framework comprises a QFS-based answer generator, an iterative QA generator, and a relevancy-aware ranker. The two generators aim to expand the number of candidates while covering various types. The ranker trained on the in-context negative samples clarifies the top-N outputs based on the ranking score. Extensive evaluations and detailed analyses demonstrate that our approach outperforms previous state-of-the-art results by significant margins, achieving improved diversity and quality. Our task-oriented processes are consistent with real-world demand, which highlights our system’s high applicability.

2022

pdf
QUAK: A Synthetic Quality Estimation Dataset for Korean-English Neural Machine Translation
Sugyeong Eo | Chanjun Park | Hyeonseok Moon | Jaehyung Seo | Gyeongmin Kim | Jungseob Lee | Heuiseok Lim
Proceedings of the 29th International Conference on Computational Linguistics

With the recent advance in neural machine translation demonstrating its importance, research on quality estimation (QE) has been steadily progressing. QE aims to automatically predict the quality of machine translation (MT) output without reference sentences. Despite its high utility in the real world, there remain several limitations concerning manual QE data creation: inevitably incurred non-trivial costs due to the need for translation experts, and issues with data scaling and language expansion. To tackle these limitations, we present QUAK, a Korean-English synthetic QE dataset generated in a fully automatic manner. This consists of three sub-QUAK datasets QUAK-M, QUAK-P, and QUAK-H, produced through three strategies that are relatively free from language constraints. Since each strategy requires no human effort, which facilitates scalability, we scale our data up to 1.58M for QUAK-P, H and 6.58M for QUAK-M. As an experiment, we quantitatively analyze word-level QE results in various ways while performing statistical analysis. Moreover, we show that datasets scaled in an efficient way also contribute to performance improvements by observing meaningful performance gains in QUAK-M, P when adding data up to 1.58M.

pdf
KU X Upstage’s Submission for the WMT22 Quality Estimation: Critical Error Detection Shared Task
Sugyeong Eo | Chanjun Park | Hyeonseok Moon | Jaehyung Seo | Heuiseok Lim
Proceedings of the Seventh Conference on Machine Translation (WMT)

This paper presents KU X Upstage’s submission to the quality estimation (QE): critical error detection (CED) shared task in WMT22. We leverage the XLM-RoBERTa large model without utilizing any additional parallel data. To the best of our knowledge, we apply prompt-based fine-tuning to the QE task for the first time. To maximize the model’s language understanding capability, we reformulate the CED task to be similar to the masked language model objective, which is a pre-training strategy of the language model. We design intuitive templates and label words, and include auxiliary descriptions such as demonstration or Google Translate results in the input sequence. We further improve the performance through the template ensemble, and as a result of the shared task, our approach achieve the best performance for both English-German and Portuguese-English language pairs in an unconstrained setting.

pdf bib
Focus on FoCus: Is FoCus focused on Context, Knowledge and Persona?
SeungYoon Lee | Jungseob Lee | Chanjun Park | Sugyeong Eo | Hyeonseok Moon | Jaehyung Seo | Jeongbae Park | Heuiseok Lim
Proceedings of the 1st Workshop on Customized Chat Grounding Persona and Knowledge

Rather than continuing the conversation based on personalized or implicit information, the existing conversation system generates dialogue by focusing only on the superficial content. To solve this problem, FoCus was recently released. FoCus is a persona-knowledge grounded dialogue generation dataset that leverages Wikipedia’s knowledge and personal persona, focusing on the landmarks provided by Google, enabling user-centered conversation. However, a closer empirical study is needed since research in the field is still in its early stages. Therefore, we fling two research questions about FoCus. “Is the FoCus whether for conversation or question answering?” to identify the structural problems of the dataset. “Does the FoCus model do real knowledge blending?” to closely demonstrate that the model acquires actual knowledge. As a result of the experiment, we present that the FoCus model could not correctly blend the knowledge according to the input dialogue and that the dataset design is unsuitable for the multi-turn conversation.

pdf
A Dog Is Passing Over The Jet? A Text-Generation Dataset for Korean Commonsense Reasoning and Evaluation
Jaehyung Seo | Seounghoon Lee | Chanjun Park | Yoonna Jang | Hyeonseok Moon | Sugyeong Eo | Seonmin Koo | Heuiseok Lim
Findings of the Association for Computational Linguistics: NAACL 2022

Recent natural language understanding (NLU) research on the Korean language has been vigorously maturing with the advancements of pretrained language models and datasets. However, Korean pretrained language models still struggle to generate a short sentence with a given condition based on compositionality and commonsense reasoning (i.e., generative commonsense reasoning). The two major challenges are inadequate data resources to develop generative commonsense reasoning regarding Korean linguistic features and to evaluate language models which are necessary for natural language generation (NLG). To solve these problems, we propose a text-generation dataset for Korean generative commonsense reasoning and language model evaluation. In this work, a semi-automatic dataset construction approach filters out contents inexplicable to commonsense, ascertains quality, and reduces the cost of building the dataset. We also present an in-depth analysis of the generation results of language models with various evaluation metrics along with human-annotated scores. The whole dataset is publicly available at (https://aihub.or.kr/opendata/korea-university).

pdf
Priming Ancient Korean Neural Machine Translation
Chanjun Park | Seolhwa Lee | Jaehyung Seo | Hyeonseok Moon | Sugyeong Eo | Heuiseok Lim
Proceedings of the Thirteenth Language Resources and Evaluation Conference

In recent years, there has been an increasing need for the restoration and translation of historical languages. In this study, we attempt to translate historical records in ancient Korean language based on neural machine translation (NMT). Inspired by priming, a cognitive science theory that two different stimuli influence each other, we propose novel priming ancient-Korean NMT (AKNMT) using bilingual subword embedding initialization with structural property awareness in the ancient documents. Finally, we obtain state-of-the-art results in the AKNMT task. To the best of our knowledge, we confirm the possibility of developing a human-centric model that incorporates the concepts of cognitive science and analyzes the result from the perspective of interference and cognitive dissonance theory for the first time.

pdf
Empirical Analysis of Noising Scheme based Synthetic Data Generation for Automatic Post-editing
Hyeonseok Moon | Chanjun Park | Seolhwa Lee | Jaehyung Seo | Jungseob Lee | Sugyeong Eo | Heuiseok Lim
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Automatic post-editing (APE) refers to a research field that aims to automatically correct errors included in the translation sentences derived by the machine translation system. This study has several limitations, considering the data acquisition, because there is no official dataset for most language pairs. Moreover, the amount of data is restricted even for language pairs in which official data has been released, such as WMT. To solve this problem and promote universal APE research regardless of APE data existence, this study proposes a method for automatically generating APE data based on a noising scheme from a parallel corpus. Particularly, we propose a human mimicking errors-based noising scheme that considers a practical correction process at the human level. We propose a precise inspection to attain high performance, and we derived the optimal noising schemes that show substantial effectiveness. Through these, we also demonstrate that depending on the type of noise, the noising scheme-based APE data generation may lead to inferior performance. In addition, we propose a dynamic noise injection strategy that enables the acquisition of a robust error correction capability and demonstrated its effectiveness by comparative analysis. This study enables obtaining a high performance APE model without human-generated data and can promote universal APE research for all language pairs targeting English.

2021

pdf bib
Dealing with the Paradox of Quality Estimation
Sugyeong Eo | Chanjun Park | Hyeonseok Moon | Jaehyung Seo | Heuiseok Lim
Proceedings of the 4th Workshop on Technologies for MT of Low Resource Languages (LoResMT2021)

In quality estimation (QE), the quality of translation can be predicted by referencing the source sentence and the machine translation (MT) output without access to the reference sentence. However, there exists a paradox in that constructing a dataset for creating a QE model requires non-trivial human labor and time, and it may even requires additional effort compared to the cost of constructing a parallel corpus. In this study, to address this paradox and utilize the various applications of QE, even in low-resource languages (LRLs), we propose a method for automatically constructing a pseudo-QE dataset without using human labor. We perform a comparative analysis on the pseudo-QE dataset using multilingual pre-trained language models. As we generate the pseudo dataset, we conduct experiments using various external machine translators as test sets to verify the accuracy of the results objectively. Also, the experimental results show that multilingual BART demonstrates the best performance, and we confirm the applicability of QE in LRLs using pseudo-QE dataset construction methods.

pdf
BTS: Back TranScription for Speech-to-Text Post-Processor using Text-to-Speech-to-Text
Chanjun Park | Jaehyung Seo | Seolhwa Lee | Chanhee Lee | Hyeonseok Moon | Sugyeong Eo | Heuiseok Lim
Proceedings of the 8th Workshop on Asian Translation (WAT2021)

With the growing popularity of smart speakers, such as Amazon Alexa, speech is becoming one of the most important modes of human-computer interaction. Automatic speech recognition (ASR) is arguably the most critical component of such systems, as errors in speech recognition propagate to the downstream components and drastically degrade the user experience. A simple and effective way to improve the speech recognition accuracy is to apply automatic post-processor to the recognition result. However, training a post-processor requires parallel corpora created by human annotators, which are expensive and not scalable. To alleviate this problem, we propose Back TranScription (BTS), a denoising-based method that can create such corpora without human labor. Using a raw corpus, BTS corrupts the text using Text-to-Speech (TTS) and Speech-to-Text (STT) systems. Then, a post-processing model can be trained to reconstruct the original text given the corrupted input. Quantitative and qualitative evaluations show that a post-processor trained using our approach is highly effective in fixing non-trivial speech recognition errors such as mishandling foreign words. We present the generated parallel corpus and post-processing platform to make our results publicly available.

pdf
Should we find another model?: Improving Neural Machine Translation Performance with ONE-Piece Tokenization Method without Model Modification
Chanjun Park | Sugyeong Eo | Hyeonseok Moon | Heuiseok Lim
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Industry Papers

Most of the recent Natural Language Processing(NLP) studies are based on the Pretrain-Finetuning Approach (PFA), but in small and medium-sized enterprises or companies with insufficient hardware there are many limitations to servicing NLP application software using such technology due to slow speed and insufficient memory. The latest PFA technologies require large amounts of data, especially for low-resource languages, making them much more difficult to work with. We propose a new tokenization method, ONE-Piece, to address this limitation that combines the morphology-considered subword tokenization method and the vocabulary method used after probing for an existing method that has not been carefully considered before. Our proposed method can also be used without modifying the model structure. We experiment by applying ONE-Piece to Korean, a morphologically-rich and low-resource language. We derive an optimal subword tokenization result for Korean-English machine translation by conducting a case study that combines the subword tokenization method, morphological segmentation, and vocabulary method. Through comparative experiments with all the tokenization methods currently used in NLP research, ONE-Piece achieves performance comparable to the current Korean-English machine translation state-of-the-art model.