Shu Wu


2023

pdf
Counterfactual Debiasing for Fact Verification
Weizhi Xu | Qiang Liu | Shu Wu | Liang Wang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Fact verification aims to automatically judge the veracity of a claim according to several pieces of evidence. Due to the manual construction of datasets, spurious correlations between claim patterns and its veracity (i.e., biases) inevitably exist. Recent studies show that models usually learn such biases instead of understanding the semantic relationship between the claim and evidence. Existing debiasing works can be roughly divided into data-augmentation-based and weight-regularization-based pipeline, where the former is inflexible and the latter relies on the uncertain output on the training stage. Unlike previous works, we propose a novel method from a counterfactual view, namely CLEVER, which is augmentation-free and mitigates biases on the inference stage. Specifically, we train a claim-evidence fusion model and a claim-only model independently. Then, we obtain the final prediction via subtracting output of the claim-only model from output of the claim-evidence fusion model, which counteracts biases in two outputs so that the unbiased part is highlighted. Comprehensive experiments on several datasets have demonstrated the effectiveness of CLEVER.

pdf
Learning Latent Relations for Temporal Knowledge Graph Reasoning
Mengqi Zhang | Yuwei Xia | Qiang Liu | Shu Wu | Liang Wang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Temporal Knowledge Graph (TKG) reasoning aims to predict future facts based on historical data. However, due to the limitations in construction tools and data sources, many important associations between entities may be omitted in TKG. We refer to these missing associations as latent relations. Most existing methods have some drawbacks in explicitly capturing intra-time latent relations between co-occurring entities and inter-time latent relations between entities that appear at different times. To tackle these problems, we propose a novel Latent relations Learning method for TKG reasoning, namely L2TKG. Specifically, we first utilize a Structural Encoder (SE) to obtain representations of entities at each timestamp. We then design a Latent Relations Learning (LRL) module to mine and exploit the intra- and inter-time latent relations. Finally, we extract the temporal representations from the output of SE and LRL for entity prediction. Extensive experiments on four datasets demonstrate the effectiveness of L2TKG.

2022

pdf
MetaTKG: Learning Evolutionary Meta-Knowledge for Temporal Knowledge Graph Reasoning
Yuwei Xia | Mengqi Zhang | Qiang Liu | Shu Wu | Xiao-Yu Zhang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Reasoning over Temporal Knowledge Graphs (TKGs) aims to predict future facts based on given history. One of the key challenges for prediction is to learn the evolution of facts. Most existing works focus on exploring evolutionary information in history to obtain effective temporal embeddings for entities and relations, but they ignore the variation in evolution patterns of facts, which makes them struggle to adapt to future data with different evolution patterns. Moreover, new entities continue to emerge along with the evolution of facts over time. Since existing models highly rely on historical information to learn embeddings for entities, they perform poorly on such entities with little historical information. To tackle these issues, we propose a novel Temporal Meta-learning framework for TKG reasoning, MetaTKG for brevity. Specifically, our method regards TKG prediction as many temporal meta-tasks, and utilizes the designed Temporal Meta-learner to learn evolutionary meta-knowledge from these meta-tasks. The proposed method aims to guide the backbones to learn to adapt quickly to future data and deal with entities with little historical information by the learned meta-knowledge. Specially, in temporal meta-learner, we design a Gating Integration module to adaptively establish temporal correlations between meta-tasks. Extensive experiments on four widely-used datasets and three backbones demonstrate that our method can greatly improve the performance.

2020

pdf
Every Document Owns Its Structure: Inductive Text Classification via Graph Neural Networks
Yufeng Zhang | Xueli Yu | Zeyu Cui | Shu Wu | Zhongzhen Wen | Liang Wang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Text classification is fundamental in natural language processing (NLP) and Graph Neural Networks (GNN) are recently applied in this task. However, the existing graph-based works can neither capture the contextual word relationships within each document nor fulfil the inductive learning of new words. Therefore in this work, to overcome such problems, we propose TextING for inductive text classification via GNN. We first build individual graphs for each document and then use GNN to learn the fine-grained word representations based on their local structure, which can also effectively produce embeddings for unseen words in the new document. Finally, the word nodes are aggregated as the document embedding. Extensive experiments on four benchmark datasets show that our method outperforms state-of-the-art text classification methods.