The ultimate goal of dialog research is to develop systems that can be effectively used in interactive settings by real users. To this end, we introduced the Interactive Evaluation of Dialog Track at the 9th Dialog System Technology Challenge. This track consisted of two sub-tasks. The first sub-task involved building knowledge-grounded response generation models. The second sub-task aimed to extend dialog models beyond static datasets by assessing them in an interactive setting with real users. Our track challenges participants to develop strong response generation models and explore strategies that extend them to back-and-forth interactions with real users. The progression from static corpora to interactive evaluation introduces unique challenges and facilitates a more thorough assessment of open-domain dialog systems. This paper provides an overview of the track, including the methodology and results. Furthermore, it provides insights into how to best evaluate open-domain dialog models.
Instruction tuning is an emergent paradigm in NLP wherein natural language instructions are leveraged with language models to induce zero-shot performance on unseen tasks. Dialogue is an especially interesting area in which to explore instruction tuning because dialogue systems perform multiple kinds of tasks related to language (e.g., natural language understanding and generation, domain-specific interaction), yet instruction tuning has not been systematically explored for dialogue-related tasks. We introduce InstructDial, an instruction tuning framework for dialogue, which consists of a repository of 48 diverse dialogue tasks in a unified text-to-text format created from 59 openly available dialogue datasets. We explore cross-task generalization ability on models tuned on InstructDial across diverse dialogue tasks. Our analysis reveals that InstructDial enables good zero-shot performance on unseen datasets and tasks such as dialogue evaluation and intent detection, and even better performance in a few-shot setting. To ensure that models adhere to instructions, we introduce novel meta-tasks. We establish benchmark zero-shot and few-shot performance of models trained using the proposed framework on multiple dialogue tasks.
The DialPort project (http://dialport.org/), funded by the National Science Foundation (NSF), covers a group of tools and services that aim at fulfilling the needs of the dialog research community. Over the course of six years, several offerings have been created, including the DialPort Portal and DialCrowd. This paper describes these contributions, which will be demoed at SIGDIAL, including implementation, prior studies, corresponding discoveries, and the locations at which the tools will remain freely available to the community going forward.
To facilitate zero-shot generalization in task-oriented dialog, this paper proposes Language Models as Data (LAD). LAD is a paradigm for creating diverse and accurate synthetic data which conveys the necessary structural constraints and can be used to train a downstream neural dialog model. LAD leverages GPT-3 to induce linguistic diversity. LAD achieves significant performance gains in zero-shot settings on intent prediction (+15%), slot filling (+31.4 F-1) and next action prediction (+10 F-1). Furthermore, an interactive human evaluation shows that training with LAD is competitive with training on human dialogs.
Automatic evaluation metrics are a crucial component of dialog systems research. Standard language evaluation metrics are known to be ineffective for evaluating dialog. As such, recent research has proposed a number of novel, dialog-specific metrics that correlate better with human judgements. Due to the fast pace of research, many of these metrics have been assessed on different datasets and there has as yet been no time for a systematic comparison between them. To this end, this paper provides a comprehensive assessment of recently proposed dialog evaluation metrics on a number of datasets. In this paper, 23 different automatic evaluation metrics are evaluated on 10 different datasets. Furthermore, the metrics are assessed in different settings, to better qualify their respective strengths and weaknesses. This comprehensive assessment offers several takeaways pertaining to dialog evaluation metrics in general. It also suggests how to best assess evaluation metrics and indicates promising directions for future work.
A key challenge of dialog systems research is to effectively and efficiently adapt to new domains. A scalable paradigm for adaptation necessitates the development of generalizable models that perform well in few-shot settings. In this paper, we focus on the intent classification problem which aims to identify user intents given utterances addressed to the dialog system. We propose two approaches for improving the generalizability of utterance classification models: (1) observers and (2) example-driven training. Prior work has shown that BERT-like models tend to attribute a significant amount of attention to the [CLS] token, which we hypothesize results in diluted representations. Observers are tokens that are not attended to, and are an alternative to the [CLS] token as a semantic representation of utterances. Example-driven training learns to classify utterances by comparing to examples, thereby using the underlying encoder as a sentence similarity model. These methods are complementary; improving the representation through observers allows the example-driven model to better measure sentence similarities. When combined, the proposed methods attain state-of-the-art results on three intent prediction datasets (banking77, clinc150, hwu64) in both the full data and few-shot (10 examples per intent) settings. Furthermore, we demonstrate that the proposed approach can transfer to new intents and across datasets without any additional training.
In transfer learning, it is imperative to achieve strong alignment between a pre-trained model and a downstream task. Prior work has done this by proposing task-specific pre-training objectives, which sacrifices the inherent scalability of the transfer learning paradigm. We instead achieve strong alignment by simultaneously modifying both the pre-trained model and the formulation of the downstream task, which is more efficient and preserves the scalability of transfer learning. We present GenSF (Generative Slot Filling), which leverages a generative pre-trained open-domain dialog model for slot filling. GenSF (1) adapts the pre-trained model by incorporating inductive biases about the task and (2) adapts the downstream task by reformulating slot filling to better leverage the pre-trained model’s capabilities. GenSF achieves state-of-the-art results on two slot filling datasets with strong gains in few-shot and zero-shot settings. We achieve a 9 F1 score improvement in zero-shot slot filling. This highlights the value of strong alignment between the pre-trained model and the downstream task.
Developing mechanisms that flexibly adapt dialog systems to unseen tasks and domains is a major challenge in dialog research. Neural models implicitly memorize task-specific dialog policies from the training data. We posit that this implicit memorization has precluded zero-shot transfer learning. To this end, we leverage the schema-guided paradigm, wherein the task-specific dialog policy is explicitly provided to the model. We introduce the Schema Attention Model (SAM) and improved schema representations for the STAR corpus. SAM obtains significant improvement in zero-shot settings, with a +22 F1 score improvement over prior work. These results validate the feasibility of zero-shot generalizability in dialog. Ablation experiments are also presented to demonstrate the efficacy of SAM.
While neural models have been shown to exhibit strong performance on single-turn visual question answering (VQA) tasks, extending VQA to a multi-turn, conversational setting remains a challenge. One way to address this challenge is to augment existing strong neural VQA models with the mechanisms that allow them to retain information from previous dialog turns. One strong VQA model is the MAC network, which decomposes a task into a series of attention-based reasoning steps. However, since the MAC network is designed for single-turn question answering, it is not capable of referring to past dialog turns. More specifically, it struggles with tasks that require reasoning over the dialog history, particularly coreference resolution. We extend the MAC network architecture with Context-aware Attention and Memory (CAM), which attends over control states in past dialog turns to determine the necessary reasoning operations for the current question. MAC nets with CAM achieve up to 98.25% accuracy on the CLEVR-Dialog dataset, beating the existing state-of-the-art by 30% (absolute). Our error analysis indicates that with CAM, the model’s performance particularly improved on questions that required coreference resolution.
It is important to define meaningful and interpretable automatic evaluation metrics for open-domain dialog research. Standard language generation metrics have been shown to be ineffective for dialog. This paper introduces the FED metric (fine-grained evaluation of dialog), an automatic evaluation metric which uses DialoGPT, without any fine-tuning or supervision. It also introduces the FED dataset which is constructed by annotating a set of human-system and human-human conversations with eighteen fine-grained dialog qualities. The FED metric (1) does not rely on a ground-truth response, (2) does not require training data and (3) measures fine-grained dialog qualities at both the turn and whole dialog levels. FED attains moderate to strong correlation with human judgement at both levels.
The lack of meaningful automatic evaluation metrics for dialog has impeded open-domain dialog research. Standard language generation metrics have been shown to be ineffective for evaluating dialog models. To this end, this paper presents USR, an UnSupervised and Reference-free evaluation metric for dialog. USR is a reference-free metric that trains unsupervised models to measure several desirable qualities of dialog. USR is shown to strongly correlate with human judgment on both Topical-Chat (turn-level: 0.42, system-level: 1.0) and PersonaChat (turn-level: 0.48 and system-level: 1.0). USR additionally produces interpretable measures for several desirable properties of dialog.
This paper discusses the importance of uncovering uncertainty in end-to-end dialog tasks and presents our experimental results on uncertainty classification on the processed Ubuntu Dialog Corpus. We show that instead of retraining models for this specific purpose, we can capture the original retrieval model’s underlying confidence concerning the best prediction using trivial additional computation.
Neural models of dialog rely on generalized latent representations of language. This paper introduces a novel training procedure which explicitly learns multiple representations of language at several levels of granularity. The multi-granularity training algorithm modifies the mechanism by which negative candidate responses are sampled in order to control the granularity of learned latent representations. Strong performance gains are observed on the next utterance retrieval task using both the MultiWOZ dataset and the Ubuntu dialog corpus. Analysis significantly demonstrates that multiple granularities of representation are being learned, and that multi-granularity training facilitates better transfer to downstream tasks.
This paper examines various unsupervised pretraining objectives for learning dialog context representations. Two novel methods of pretraining dialog context encoders are proposed, and a total of four methods are examined. Each pretraining objective is fine-tuned and evaluated on a set of downstream dialog tasks using the MultiWoz dataset and strong performance improvement is observed. Further evaluation shows that our pretraining objectives result in not only better performance, but also better convergence, models that are less data hungry and have better domain generalizability.
Neural dialog models have exhibited strong performance, however their end-to-end nature lacks a representation of the explicit structure of dialog. This results in a loss of generalizability, controllability and a data-hungry nature. Conversely, more traditional dialog systems do have strong models of explicit structure. This paper introduces several approaches for explicitly incorporating structure into neural models of dialog. Structured Fusion Networks first learn neural dialog modules corresponding to the structured components of traditional dialog systems and then incorporate these modules in a higher-level generative model. Structured Fusion Networks obtain strong results on the MultiWOZ dataset, both with and without reinforcement learning. Structured Fusion Networks are shown to have several valuable properties, including better domain generalizability, improved performance in reduced data scenarios and robustness to divergence during reinforcement learning.
The aim of this paper is to mitigate the shortcomings of automatic evaluation of open-domain dialog systems through multi-reference evaluation. Existing metrics have been shown to correlate poorly with human judgement, particularly in open-domain dialog. One alternative is to collect human annotations for evaluation, which can be expensive and time consuming. To demonstrate the effectiveness of multi-reference evaluation, we augment the test set of DailyDialog with multiple references. A series of experiments show that the use of multiple references results in improved correlation between several automatic metrics and human judgement for both the quality and the diversity of system output.
Thread disentanglement is a precursor to any high-level analysis of multiparticipant chats. Existing research approaches the problem by calculating the likelihood of two messages belonging in the same thread. Our approach leverages a newly annotated dataset to identify reply relationships. Furthermore, we explore the usage of an RNN, along with large quantities of unlabeled data, to learn semantic relationships between messages. Our proposed pipeline, which utilizes a reply classifier and an RNN to generate a set of disentangled threads, is novel and performs well against previous work.