Mrinmaya Sachan


2023

pdf
A Causal Framework to Quantify the Robustness of Mathematical Reasoning with Language Models
Alessandro Stolfo | Zhijing Jin | Kumar Shridhar | Bernhard Schoelkopf | Mrinmaya Sachan
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We have recently witnessed a number of impressive results on hard mathematical reasoning problems with language models. At the same time, the robustness of these models has also been called into question; recent works have shown that models can rely on shallow patterns in the problem description when generating a solution.Building on the idea of behavioral testing, we propose a novel framework, which pins down the causal effect of various factors in the input, e.g., the surface form of the problem text, the operands, and math operators on the output solution.By grounding the behavioral analysis in a causal graph describing an intuitive reasoning process, we study the behavior of language models in terms of robustness and sensitivity to direct interventions in the input space. We apply our framework on a test bed of math word problems.Our analysis shows that robustness does not appear to continuously improve as a function of size, but the GPT-3 Davinci models (175B) achieve a dramatic improvement in both robustness and sensitivity compared to all other GPT variants.

pdf
Tokenization and the Noiseless Channel
Vilém Zouhar | Clara Meister | Juan Gastaldi | Li Du | Mrinmaya Sachan | Ryan Cotterell
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Subword tokenization is a key part of most NLP pipelines.However, little is known about why some tokenizer and hyperparameter combinations lead to improved downstream model performance over others. We propose that good tokenizers lead to efficient channel usage, where the channel is the means by which some input is conveyed to the model and efficiency can be quantified in information-theoretic terms as the ratio of the Shannon entropy to the maximum entropy of the subword distribution.Nevertheless, an optimal encoding according to Shannon entropy assigns extremely long codes to low-frequency subwords and very short codes to high-frequency subwords.Defining efficiency in terms of Rényi entropy, on the other hand, penalizes distributions with either very high or very low-frequency subwords.We posit that (1) extremely high-frequency subwords are problematic because their meaning is not distinct and (2) that low-frequency subwords may not appear frequently enough for their meaning to be learned properly; encodings that induce unigram distributions with either can harm model performance.In machine translation, we find that across multiple tokenizers, the Rényi entropy has a very strong correlation with BLEU: 0.82 in comparison to just -0.30 for compressed length.

pdf
When Does Aggregating Multiple Skills with Multi-Task Learning Work? A Case Study in Financial NLP
Jingwei Ni | Zhijing Jin | Qian Wang | Mrinmaya Sachan | Markus Leippold
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Multi-task learning (MTL) aims at achieving a better model by leveraging data and knowledge from multiple tasks. However, MTL does not always work – sometimes negative transfer occurs between tasks, especially when aggregating loosely related skills, leaving it an open question when MTL works. Previous studies show that MTL performance can be improved by algorithmic tricks. However, what tasks and skills should be included is less well explored. In this work, we conduct a case study in Financial NLP where multiple datasets exist for skills relevant to the domain, such as numeric reasoning and sentiment analysis. Due to the task difficulty and data scarcity in the Financial NLP domain, we explore when aggregating such diverse skills from multiple datasets with MTL can work. Our findings suggest that the key to MTL success lies in skill diversity, relatedness between tasks, and choice of aggregation size and shared capacity. Specifically, MTL works well when tasks are diverse but related, and when the size of the task aggregation and the shared capacity of the model are balanced to avoid overwhelming certain tasks.

pdf
Discourse-Centric Evaluation of Document-level Machine Translation with a New Densely Annotated Parallel Corpus of Novels
Yuchen Eleanor Jiang | Tianyu Liu | Shuming Ma | Dongdong Zhang | Mrinmaya Sachan | Ryan Cotterell
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Several recent papers claim to have achieved human parity at sentence-level machine translation (MT)—especially between high-resource language pairs. In response, the MT community has, in part, shifted its focus to document-level translation. Translating documents requires a deeper understanding of the structure and meaning of text, which is often captured by various kinds of discourse phenomena such as consistency, coherence, and cohesion. However, this renders conventional sentence-level MT evaluation benchmarks inadequate for evaluating the performance of context-aware MT systems. This paperpresents a new dataset with rich discourse annotations, built upon the large-scale parallel corpus BWB introduced in Jiang et al. (2022a). The new BWB annotation introduces four extra evaluation aspects, i.e., entity, terminology, coreference, and quotation, covering 15,095 entity mentions in both languages. Using these annotations, we systematically investigate the similarities and differences between the discourse structures of source and target languages, and the challenges they pose to MT. We discover that MT outputs differ fundamentally from human translations in terms of their latent discourse structures. This gives us a new perspective on the challenges and opportunities in document-level MT. We make our resource publicly available to spur future research in document-level MT and its generalization to other language translation tasks.

pdf
Adaptive and Personalized Exercise Generation for Online Language Learning
Peng Cui | Mrinmaya Sachan
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Adaptive learning aims to provide customized educational activities (e.g., exercises) to address individual learning needs. However, manual construction and delivery of such activities is a laborious process. Thus, in this paper, we study a novel task of adaptive and personalized exercise generation for online language learning. To this end, we combine a knowledge tracing model that estimates each student’s evolving knowledge states from their learning history and a controlled text generation model that generates exercise sentences based on the student’s current estimated knowledge state and instructor requirements of desired properties (e.g., domain knowledge and difficulty). We train and evaluate our model on real-world learner interaction data from Duolingo and demonstrate that LMs guided by student states can generate superior exercises. Then, we discuss the potential use of our model in educational applications using various simulations. These simulations show that our model can adapt to students’ individual abilities and can facilitate their learning efficiency by personalizing learning sequences.

pdf
XDailyDialog: A Multilingual Parallel Dialogue Corpus
Zeming Liu | Ping Nie | Jie Cai | Haifeng Wang | Zheng-Yu Niu | Peng Zhang | Mrinmaya Sachan | Kaiping Peng
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

High-quality datasets are significant to the development of dialogue models.However, most existing datasets for open-domain dialogue modeling are limited to a single language.The absence of multilingual open-domain dialog datasets not only limits the research on multilingual or cross-lingual transfer learning, but also hinders the development of robust open-domain dialog systems that can be deployed in other parts of the world.In this paper, we provide a multilingual parallel open-domain dialog dataset, XDailyDialog, to enable researchers to explore the challenging task of multilingual and cross-lingual open-domain dialog. XDailyDialog includes 13K dialogues aligned across 4 languages (52K dialogues and 410K utterances in total). We then propose a dialog generation model, kNN-Chat, which has a novel kNN-search mechanism to support unified response retrieval for monolingual, multilingual, and cross-lingual dialogue. Experiment results show the effectiveness of this framework. We will make XDailyDialog and kNN-Chat publicly available soon.

pdf
Poor Man’s Quality Estimation: Predicting Reference-Based MT Metrics Without the Reference
Vilém Zouhar | Shehzaad Dhuliawala | Wangchunshu Zhou | Nico Daheim | Tom Kocmi | Yuchen Eleanor Jiang | Mrinmaya Sachan
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Machine translation quality estimation (QE) predicts human judgements of a translation hypothesis without seeing the reference. State-of-the-art QE systems based on pretrained language models have been achieving remarkable correlations with human judgements yet they are computationally heavy and require human annotations, which are slow and expensive to create. To address these limitations, we define the problem of metric estimation (ME) where one predicts the automated metric scores also without the reference. We show that even without access to the reference, our model can estimate automated metrics (ρ = 60% for BLEU, ρ = 51% for other metrics) at the sentence-level. Because automated metrics correlate with human judgements, we can leverage the ME task for pre-training a QE model. For the QE task, we find that pre-training on TER is better (ρ = 23%) than training for scratch (ρ = 20%).

pdf
Opportunities and Challenges in Neural Dialog Tutoring
Jakub Macina | Nico Daheim | Lingzhi Wang | Tanmay Sinha | Manu Kapur | Iryna Gurevych | Mrinmaya Sachan
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Designing dialog tutors has been challenging as it involves modeling the diverse and complex pedagogical strategies employed by human tutors. Although there have been significant recent advances in neural conversational systems using large language models and growth in available dialog corpora, dialog tutoring has largely remained unaffected by these advances. In this paper, we rigorously analyze various generative language models on two dialog tutoring datasets for language learning using automatic and human evaluations to understand the new opportunities brought by these advances as well as the challenges we must overcome to build models that would be usable in real educational settings.We find that although current approaches can model tutoring in constrained learning scenarios when the number of concepts to be taught and possible teacher strategies are small, they perform poorly in less constrained scenarios.Our human quality evaluation shows that both models and ground-truth annotations exhibit low performance in terms of equitable tutoring, which measures learning opportunities for students and how engaging the dialog is.To understand the behavior of our models in a real tutoring setting, we conduct a user study using expert annotators and find a significantly large number of model reasoning errors in 45% of conversations. Finally, we connect our findings to outline future work.

pdf
Longtonotes: OntoNotes with Longer Coreference Chains
Kumar Shridhar | Nicholas Monath | Raghuveer Thirukovalluru | Alessandro Stolfo | Manzil Zaheer | Andrew McCallum | Mrinmaya Sachan
Findings of the Association for Computational Linguistics: EACL 2023

Ontonotes has served as the most important benchmark for coreference resolution. However, for ease of annotation, several long documents in Ontonotes were split into smaller parts.In this work, we build a corpus of coreference-annotated documents of significantly longer length than what is currently available.We do so by providing an accurate, manually-curated, merging of annotations from documents that were split into multiple parts in the original Ontonotes annotation process.The resulting corpus, which we call LongtoNotes contains documents in multiple genres of the English language with varying lengths, the longest of which are up to 8x the length of documents in Ontonotes, and 2x those in Litbank.We evaluate state-of-the-art neural coreference systems on this new corpus, analyze the relationships between model architectures/hyperparameters and document length on performance and efficiency of the models, and demonstrate areas of improvement in long-document coreference modelling revealed by our new corpus.

pdf
Strategize Before Teaching: A Conversational Tutoring System with Pedagogy Self-Distillation
Lingzhi Wang | Mrinmaya Sachan | Xingshan Zeng | Kam-Fai Wong
Findings of the Association for Computational Linguistics: EACL 2023

Conversational tutoring systems (CTSs) aim to help students master educational material with natural language interaction in the form of a dialog. CTSs have become a key pillar in educational data mining research. A key challenge in CTSs is to engage the student in the conversation while exposing them to a diverse set of teaching strategies, akin to a human teacher, thereby, helping them learn in the process. Different from previous work that generates responses given the strategies as input, we propose to jointly predict teaching strategies and generate tutor responses accordingly, which fits a more realistic application scenario. We benchmark several competitive models on three dialog tutoring datasets and propose a unified framework that combines teaching response generation and pedagogical strategy prediction, where a self-distillation mechanism is adopted to guide the teaching strategy learning and facilitate tutor response generation. Our experiments and analyses shed light on how teaching strategies affect dialog tutoring.

pdf
A Formal Perspective on Byte-Pair Encoding
Vilém Zouhar | Clara Meister | Juan Gastaldi | Li Du | Tim Vieira | Mrinmaya Sachan | Ryan Cotterell
Findings of the Association for Computational Linguistics: ACL 2023

Byte-Pair Encoding (BPE) is a popular algorithm used for tokenizing data in NLP, despite being devised initially as a compression method.BPE appears to be a greedy algorithm at face value, but the underlying optimization problem that BPE seeks to solve has not yet been laid down.We formalize BPE as a combinatorial optimization problem.Via submodular functions, we prove that the iterative greedy version is a 1/sigma*(1-e(-sigma))-approximation of an optimal merge sequence, where sigma is the total backward curvature with respect to the optimal merge sequence.Empirically the lower bound of the approximation is approx0.37.We provide a faster implementation of BPE which improves the runtime complexity from O(NM) to O(N log M), where N is the sequence length and M is the merge count.Finally, we optimize the brute-force algorithm for optimal BPE using memoization.

pdf
Distilling Reasoning Capabilities into Smaller Language Models
Kumar Shridhar | Alessandro Stolfo | Mrinmaya Sachan
Findings of the Association for Computational Linguistics: ACL 2023

Step-by-step reasoning approaches like chain of thought (CoT) have proved to be very effective in inducing reasoning capabilities in large language models. However, the success of the CoT approach is fundamentally tied to the model size, and billion parameter-scale models are often needed to get CoT to work. In this paper, we propose a knowledge distillation approach that leverages the step-by-step CoT reasoning capabilities of larger models and distills these abilities into smaller models. In this work, we propose an alternative reasoning scheme, Socratic CoT that learns a decomposition of the original problem into a sequence of subproblems and uses it to guide the intermediate reasoning steps. We use Socratic CoT to train a combination of two small distilled models: a problem decomposer and a subproblem solver.In practice, given a new problem, the two distilled models work in sync to decompose and solve complex problems.On multiple reasoning datasets (GSM8K, StrategyQA, and SVAMP), our proposed distillation strategies boosts the performance of smaller models over 70% compared to the baselines. Finally, we investigate when Socratic CoT is an effective alternative to CoT, demonstrating cases where a much smaller model (GPT-2 large) can outperform a 10X larger model (GPT-3 6B). Our code is available: https://github.com/kumar-shridhar/Distiiling-LM.

pdf
World Models for Math Story Problems
Andreas Opedal | Niklas Stoehr | Abulhair Saparov | Mrinmaya Sachan
Findings of the Association for Computational Linguistics: ACL 2023

Solving math story problems is a complex task for students and NLP models alike, requiring them to understand the world as described in the story and reason over it to compute an answer. Recent years have seen impressive performance on automatically solving these problems with large pre-trained language models and innovative techniques to prompt them. However, it remains unclear if these models possess accurate representations of mathematical concepts. This leads to lack of interpretability and trustworthiness which impedes their usefulness in various applications. In this paper, we consolidate previous work on categorizing and representing math story problems and develop MathWorld, which is a graph-based semantic formalism specific for the domain of math story problems. With MathWorld, we can assign world models to math story problems which represent the situations and actions introduced in the text and their mathematical relationships. We combine math story problems from several existing datasets and annotate a corpus of 1,019 problems and 3,204 logical forms with MathWorld. Using this data, we demonstrate the following use cases of MathWorld: (1) prompting language models with synthetically generated question-answer pairs to probe their reasoning and world modeling abilities, and (2) generating new problems by using the world models as a design space.

pdf
Membership Inference Attacks against Language Models via Neighbourhood Comparison
Justus Mattern | Fatemehsadat Mireshghallah | Zhijing Jin | Bernhard Schoelkopf | Mrinmaya Sachan | Taylor Berg-Kirkpatrick
Findings of the Association for Computational Linguistics: ACL 2023

Membership Inference attacks (MIAs) aim to predict whether a data sample was present in the training data of a machine learning model or not, and are widely used for assessing the privacy risks of language models. Most existing attacks rely on the observation that models tend toassign higher probabilities to their training samples than non-training points. However, simple thresholding of the model score in isolation tends to lead to high false-positive rates as it does not account for the intrinsic complexity of a sample. Recent work has demonstrated that reference-based attacks which compare model scores to those obtained from a reference model trained on similar data can substantially improve the performance of MIAs.However, in order to train reference models, attacks of this kind make the strong and arguably unrealistic assumption that an adversary has access to samples closely resembling the original training data. Therefore, we investigate their performance in more realistic scenarios and find that they are highly fragile in relation to the data distribution used to train reference models. To investigate whether this fragility provides a layer of safety, we propose and evaluate neighbourhood attacks, which compare model scores for a given sample to scores of synthetically generated neighbour texts and therefore eliminate the need for access to the training data distribution. We show that, in addition to being competitive with reference-based attacks that have perfect knowledge about the training data distribution, our attack clearly outperforms existing reference-free attacks as well as reference-based attacks with imperfect knowledge, which demonstrates the need for a reevaluation of the threat model of adversarial attacks.

2022

pdf bib
Proceedings of the Second Workshop on NLP for Positive Impact (NLP4PI)
Laura Biester | Dorottya Demszky | Zhijing Jin | Mrinmaya Sachan | Joel Tetreault | Steven Wilson | Lu Xiao | Jieyu Zhao
Proceedings of the Second Workshop on NLP for Positive Impact (NLP4PI)

pdf
Probing via Prompting
Jiaoda Li | Ryan Cotterell | Mrinmaya Sachan
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Probing is a popular approach to understand what linguistic information is contained in the representations of pre-trained language models. However, the mechanism of selecting the probe model has recently been subject to intense debate, as it is not clear if the probes are merely extracting information or modelling the linguistic property themselves. To address this challenge, this paper introduces a novel model-free approach to probing via prompting, which formulates probing as a prompting task. We conduct experiments on five probing tasks and show that PP is comparable or better at extracting information than diagnostic probes while learning much less on its own. We further combine the probing via prompting approach with pruning to analyze where the model stores the linguistic information in its architecture. Finally, we apply the probing via prompting approach to examine the usefulness of a linguistic property for pre-training by removing the heads that are essential to it and evaluating the resulting model’s performance on language modeling.

pdf
BlonDe: An Automatic Evaluation Metric for Document-level Machine Translation
Yuchen Jiang | Tianyu Liu | Shuming Ma | Dongdong Zhang | Jian Yang | Haoyang Huang | Rico Sennrich | Ryan Cotterell | Mrinmaya Sachan | Ming Zhou
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Standard automatic metrics, e.g. BLEU, are not reliable for document-level MT evaluation. They can neither distinguish document-level improvements in translation quality from sentence-level ones, nor identify the discourse phenomena that cause context-agnostic translations. This paper introduces a novel automatic metric BlonDe to widen the scope of automatic MT evaluation from sentence to document level. BlonDe takes discourse coherence into consideration by categorizing discourse-related spans and calculating the similarity-based F1 measure of categorized spans. We conduct extensive comparisons on a newly constructed dataset BWB. The experimental results show that BlonDe possesses better selectivity and interpretability at the document-level, and is more sensitive to document-level nuances. In a large-scale human study, BlonDe also achieves significantly higher Pearson’s r correlation with human judgments compared to previous metrics.

pdf
A Structured Span Selector
Tianyu Liu | Yuchen Jiang | Ryan Cotterell | Mrinmaya Sachan
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Many natural language processing tasks, e.g., coreference resolution and semantic role labeling, require selecting text spans and making decisions about them. A typical approach to such tasks is to score all possible spans and greedily select spans for task-specific downstream processing. This approach, however, does not incorporate any inductive bias about what sort of spans ought to be selected, e.g., that selected spans tend to be syntactic constituents. In this paper, we propose a novel grammar-based structured span selection model which learns to make use of the partial span-level annotation provided for such problems. Compared to previous approaches, our approach gets rid of the heuristic greedy span selection scheme, allowing us to model the downstream task on an optimal set of spans. We evaluate our model on two popular span prediction tasks: coreference resolution and semantic role labeling; and show improvements on both.

pdf
Original or Translated? A Causal Analysis of the Impact of Translationese on Machine Translation Performance
Jingwei Ni | Zhijing Jin | Markus Freitag | Mrinmaya Sachan | Bernhard Schölkopf
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Human-translated text displays distinct features from naturally written text in the same language. This phenomena, known as translationese, has been argued to confound the machine translation (MT) evaluation. Yet, we find that existing work on translationese neglects some important factors and the conclusions are mostly correlational but not causal. In this work, we collect CausalMT, a dataset where the MT training data are also labeled with the human translation directions. We inspect two critical factors, the train-test direction match (whether the human translation directions in the training and test sets are aligned), and data-model direction match (whether the model learns in the same direction as the human translation direction in the dataset). We show that these two factors have a large causal effect on the MT performance, in addition to the test-model direction mismatch highlighted by existing work on the impact of translationese. In light of our findings, we provide a set of suggestions for MT training and evaluation. Our code and data are at https://github.com/EdisonNi-hku/CausalMT

pdf
Calibration of Machine Reading Systems at Scale
Shehzaad Dhuliawala | Leonard Adolphs | Rajarshi Das | Mrinmaya Sachan
Findings of the Association for Computational Linguistics: ACL 2022

In typical machine learning systems, an estimate of the probability of the prediction is used to assess the system’s confidence in the prediction.This confidence measure is usually uncalibrated; i.e. the system’s confidence in the prediction does not match the true probability of the predicted output.In this paper, we present an investigation into calibrating open setting machine reading systemssuch as open-domain question answering and claim verification systems.We show that calibrating such complex systems which contain discrete retrieval and deep reading components is challenging and current calibration techniques fail to scale to these settings. We propose simple extensions to existing calibration approaches that allows us to adapt them to these settings.Our experimental results reveal that the approach works well, and can be useful to selectively predict answers when question answering systems are posed with unanswerable or out-of-the-training distribution questions.

pdf
Self-Supervised Contrastive Learning with Adversarial Perturbations for Defending Word Substitution-based Attacks
Zhao Meng | Yihan Dong | Mrinmaya Sachan | Roger Wattenhofer
Findings of the Association for Computational Linguistics: NAACL 2022

In this paper, we present an approach to improve the robustness of BERT language models against word substitution-based adversarial attacks by leveraging adversarial perturbations for self-supervised contrastive learning. We create a word-level adversarial attack generating hard positives on-the-fly as adversarial examples during contrastive learning. In contrast to previous works, our method improves model robustness without using any labeled data. Experimental results show that our method improves robustness of BERT against four different word substitution-based adversarial attacks, and combining our method with adversarial training gives higher robustness than adversarial training alone. As our method improves the robustness of BERT purely with unlabeled data, it opens up the possibility of using large text datasets to train robust language models against word substitution-based adversarial attacks.

pdf
Autoregressive Structured Prediction with Language Models
Tianyu Liu | Yuchen Eleanor Jiang | Nicholas Monath | Ryan Cotterell | Mrinmaya Sachan
Findings of the Association for Computational Linguistics: EMNLP 2022

Recent years have seen a paradigm shift in NLP towards using pretrained language models (PLM) for a wide range of tasks. However, there are many difficult design decisions to represent structures (e.g. tagged text, coreference chains) in a way such that they can be captured by PLMs. Prior work on structured prediction with PLMs typically flattens the structured output into a sequence, which limits the quality of structural information being learned and leads to inferior performance compared to classic discriminative models. In this work, we describe an approach to model structures as sequences of actions in an autoregressive manner with PLMs, allowing in-structure dependencies to be learned without any loss. Our approach achieves the new state-of-the-art on all the structured prediction tasks we looked at, namely, named entity recognition, end-to-end relation extraction, and coreference resolution.

pdf
What Has Been Enhanced in my Knowledge-Enhanced Language Model?
Yifan Hou | Guoji Fu | Mrinmaya Sachan
Findings of the Association for Computational Linguistics: EMNLP 2022

A number of knowledge integration (KI) methods have recently been proposed to incorporate external knowledge into pretrained language models (LMs). Even though knowledge-enhanced LMs (KELMs) outperform base LMs on knowledge-intensive tasks, the inner-workings of these KI methods are not well-understood. For instance, it is unclear which knowledge is effectively integrated into KELMs and which is not; and if such integration led to catastrophic forgetting of already learned knowledge. We show that existing model interpretation methods such as linear probes and prompts have some key limitations in answering these questions. Then, we revisit KI from an information-theoretic view and propose a new theoretically sound probe model called Graph Convolution Simulator (GCS) for KI interpretation. GCS is eventually quite simple – it uses graph attention on the corresponding knowledge graph for interpretation.We conduct various experiments to verify that GCS provides reasonable interpretation results for two well-known KELMs: ERNIE and K-Adapter. Our experiments reveal that only little knowledge is successfully integrated in these models, and simply increasing the size of the KI corpus may not lead to better KELMs.

pdf
Adapters for Enhanced Modeling of Multilingual Knowledge and Text
Yifan Hou | Wenxiang Jiao | Meizhen Liu | Carl Allen | Zhaopeng Tu | Mrinmaya Sachan
Findings of the Association for Computational Linguistics: EMNLP 2022

Large language models appear to learn facts from the large text corpora they are trained on. Such facts are encoded implicitly within their many parameters, making it difficult to verify or manipulate what knowledge has been learned. Language models have recently been extended to multilingual language models (MLLMs), enabling knowledge to be learned across hundreds of languages. Meanwhile, knowledge graphs contain facts in an explicit triple format, which require careful and costly curation and are only available in a few high-resource languages, restricting their research and application. To address these issues, we propose to enhance MLLMs with knowledge from multilingual knowledge graphs (MLKGs) so as to tackle language and knowledge graph tasks across many languages, including low-resource ones. Specifically, we introducea lightweight adapter set to enhance MLLMs with cross-lingual entity alignment and facts from MLKGs for many languages. Experiments on common benchmarks show that such enhancement benefits both MLLMs and MLKGs, achieving: (1) comparable or improved performance for knowledge graph completion and entity alignment relative to baselines, especially for low-resource languages (for which knowledge graphs are unavailable); and (2) improved MLLM performance on language understanding tasks that require multilingual factual knowledge; all while maintaining performance on other general language tasks.

pdf
Logical Fallacy Detection
Zhijing Jin | Abhinav Lalwani | Tejas Vaidhya | Xiaoyu Shen | Yiwen Ding | Zhiheng Lyu | Mrinmaya Sachan | Rada Mihalcea | Bernhard Schoelkopf
Findings of the Association for Computational Linguistics: EMNLP 2022

Reasoning is central to human intelligence. However, fallacious arguments are common, and some exacerbate problems such as spreading misinformation about climate change. In this paper, we propose the task of logical fallacy detection, and provide a new dataset (Logic) of logical fallacies generally found in text, together with an additional challenge set for detecting logical fallacies in climate change claims (LogicClimate). Detecting logical fallacies is a hard problem as the model must understand the underlying logical structure of the argument. We find that existing pretrained large language models perform poorly on this task. In contrast, we show that a simple structure-aware classifier outperforms the best language model by 5.46% F1 scores on Logic and 4.51% on LogicClimate. We encourage future work to explore this task since (a) it can serve as a new reasoning challenge for language models, and (b) it can have potential applications in tackling the spread of misinformation. Our dataset and code are available at https://github.com/causalNLP/logical-fallacy

pdf
A Simple Unsupervised Approach for Coreference Resolution using Rule-based Weak Supervision
Alessandro Stolfo | Chris Tanner | Vikram Gupta | Mrinmaya Sachan
Proceedings of the 11th Joint Conference on Lexical and Computational Semantics

Labeled data for the task of Coreference Resolution is a scarce resource, requiring significant human effort. While state-of-the-art coreference models rely on such data, we propose an approach that leverages an end-to-end neural model in settings where labeled data is unavailable. Specifically, using weak supervision, we transfer the linguistic knowledge encoded by Stanford?s rule-based coreference system to the end-to-end model, which jointly learns rich, contextualized span representations and coreference chains. Our experiments on the English OntoNotes corpus demonstrate that our approach effectively benefits from the noisy coreference supervision, producing an improvement over Stanford?s rule-based system (+3.7 F1) and outperforming the previous best unsupervised model (+0.9 F1). Additionally, we validate the efficacy of our method on two other datasets: PreCo and Litbank (+2.5 and +5 F1 on Stanford’s system, respectively).

pdf
Slangvolution: A Causal Analysis of Semantic Change and Frequency Dynamics in Slang
Daphna Keidar | Andreas Opedal | Zhijing Jin | Mrinmaya Sachan
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Languages are continuously undergoing changes, and the mechanisms that underlie these changes are still a matter of debate. In this work, we approach language evolution through the lens of causality in order to model not only how various distributional factors associate with language change, but how they causally affect it. In particular, we study slang, which is an informal language that is typically restricted to a specific group or social setting. We analyze the semantic change and frequency shift of slang words and compare them to those of standard, nonslang words. With causal discovery and causal inference techniques, we measure the effect that word type (slang/nonslang) has on both semantic change and frequency shift, as well as its relationship to frequency, polysemy and part of speech. Our analysis provides some new insights in the study of language change, e.g., we show that slang words undergo less semantic change but tend to have larger frequency shifts over time.

pdf
Automatic Generation of Socratic Subquestions for Teaching Math Word Problems
Kumar Shridhar | Jakub Macina | Mennatallah El-Assady | Tanmay Sinha | Manu Kapur | Mrinmaya Sachan
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Socratic questioning is an educational method that allows students to discover answers to complex problems by asking them a series of thoughtful questions. Generation of didactically sound questions is challenging, requiring understanding of the reasoning process involved in the problem. We hypothesize that such questioning strategy can not only enhance the human performance, but also assist the math word problem (MWP) solvers.In this work, we explore the ability of large language models (LMs) in generating sequential questions for guiding math word problem-solving. We propose various guided question generation schemes based on input conditioning and reinforcement learning.On both automatic and human quality evaluations, we find that LMs constrained with desirable question properties generate superior questions and improve the overall performance of a math word problem solver. We conduct a preliminary user study to examine the potential value of such question generation models in the education domain. Results suggest that the difficulty level of problems plays an important role in determining whether questioning improves or hinders human performance. We discuss the future of using such questioning strategies in education.

pdf
Differentially Private Language Models for Secure Data Sharing
Justus Mattern | Zhijing Jin | Benjamin Weggenmann | Bernhard Schoelkopf | Mrinmaya Sachan
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

To protect the privacy of individuals whose data is being shared, it is of high importance to develop methods allowing researchers and companies to release textual data while providing formal privacy guarantees to its originators. In the field of NLP, substantial efforts have been directed at building mechanisms following the framework of local differential privacy, thereby anonymizing individual text samples before releasing them. In practice, these approaches are often dissatisfying in terms of the quality of their output language due to the strong noise required for local differential privacy. In this paper, we approach the problem at hand using global differential privacy, particularly by training a generative language model in a differentially private manner and consequently sampling data from it. Using natural language prompts and a new prompt-mismatch loss, we are able to create highly accurate and fluent textual datasets taking on specific desired attributes such as sentiment or topic and resembling statistical properties of the training data. We perform thorough experiments indicating that our synthetic datasets do not leak information from our original data and are of high language quality and highly suitable for training models for further analysis on real-world data. Notably, we also demonstrate that training classifiers on private synthetic data outperforms directly training classifiers with DP-SGD.

pdf
Beyond prompting: Making Pre-trained Language Models Better Zero-shot Learners by Clustering Representations
Yu Fei | Zhao Meng | Ping Nie | Roger Wattenhofer | Mrinmaya Sachan
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Recent work has demonstrated that pre-trained language models (PLMs) are zero-shot learners. However, most existing zero-shot methods involve heavy human engineering or complicated self-training pipelines, hindering their application to new situations. In this work, we show that zero-shot text classification can be improved simply by clustering texts in the embedding spaces of PLMs. Specifically, we fit the unlabeled texts with a Bayesian Gaussian Mixture Model after initializing cluster positions and shapes using class names. Despite its simplicity, this approach achieves superior or comparable performance on both topic and sentiment classification datasets and outperforms prior works significantly on unbalanced datasets. We further explore the applicability of our clustering approach by evaluating it on 14 datasets with more diverse topics, text lengths, and numbers of classes. Our approach achieves an average of 20% absolute improvement over prompt-based zero-shot learning. Finally, we compare different PLM embedding spaces and find that texts are well-clustered by topics even if the PLM is not explicitly pre-trained to generate meaningful sentence embeddings. This work indicates that PLM embeddings can categorize texts without task-specific fine-tuning, thus providing a new way to analyze and utilize their knowledge and zero-shot learning ability.

2021

pdf
How Good Is NLP? A Sober Look at NLP Tasks through the Lens of Social Impact
Zhijing Jin | Geeticka Chauhan | Brian Tse | Mrinmaya Sachan | Rada Mihalcea
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf
Scaling Within Document Coreference to Long Texts
Raghuveer Thirukovalluru | Nicholas Monath | Kumar Shridhar | Manzil Zaheer | Mrinmaya Sachan | Andrew McCallum
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf
“Let Your Characters Tell Their Story”: A Dataset for Character-Centric Narrative Understanding
Faeze Brahman | Meng Huang | Oyvind Tafjord | Chao Zhao | Mrinmaya Sachan | Snigdha Chaturvedi
Findings of the Association for Computational Linguistics: EMNLP 2021

When reading a literary piece, readers often make inferences about various characters’ roles, personalities, relationships, intents, actions, etc. While humans can readily draw upon their past experiences to build such a character-centric view of the narrative, understanding characters in narratives can be a challenging task for machines. To encourage research in this field of character-centric narrative understanding, we present LiSCU – a new dataset of literary pieces and their summaries paired with descriptions of characters that appear in them. We also introduce two new tasks on LiSCU: Character Identification and Character Description Generation. Our experiments with several pre-trained language models adapted for these tasks demonstrate that there is a need for better models of narrative comprehension.

pdf
Causal Direction of Data Collection Matters: Implications of Causal and Anticausal Learning for NLP
Zhijing Jin | Julius von Kügelgen | Jingwei Ni | Tejas Vaidhya | Ayush Kaushal | Mrinmaya Sachan | Bernhard Schoelkopf
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

The principle of independent causal mechanisms (ICM) states that generative processes of real world data consist of independent modules which do not influence or inform each other. While this idea has led to fruitful developments in the field of causal inference, it is not widely-known in the NLP community. In this work, we argue that the causal direction of the data collection process bears nontrivial implications that can explain a number of published NLP findings, such as differences in semi-supervised learning (SSL) and domain adaptation (DA) performance across different settings. We categorize common NLP tasks according to their causal direction and empirically assay the validity of the ICM principle for text data using minimum description length. We conduct an extensive meta-analysis of over 100 published SSL and 30 DA studies, and find that the results are consistent with our expectations based on causal insights. This work presents the first attempt to analyze the ICM principle in NLP, and provides constructive suggestions for future modeling choices.

pdf
Bird’s Eye: Probing for Linguistic Graph Structures with a Simple Information-Theoretic Approach
Yifan Hou | Mrinmaya Sachan
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

NLP has a rich history of representing our prior understanding of language in the form of graphs. Recent work on analyzing contextualized text representations has focused on hand-designed probe models to understand how and to what extent do these representations encode a particular linguistic phenomenon. However, due to the inter-dependence of various phenomena and randomness of training probe models, detecting how these representations encode the rich information in these linguistic graphs remains a challenging problem. In this paper, we propose a new information-theoretic probe, Bird’s Eye, which is a fairly simple probe method for detecting if and how these representations encode the information in these linguistic graphs. Instead of using model performance, our probe takes an information-theoretic view of probing and estimates the mutual information between the linguistic graph embedded in a continuous space and the contextualized word representations. Furthermore, we also propose an approach to use our probe to investigate localized linguistic information in the linguistic graphs using perturbation analysis. We call this probing setup Worm’s Eye. Using these probes, we analyze the BERT models on its ability to encode a syntactic and a semantic graph structure, and find that these models encode to some degree both syntactic as well as semantic information; albeit syntactic information to a greater extent.

pdf
Efficient Text-based Reinforcement Learning by Jointly Leveraging State and Commonsense Graph Representations
Keerthiram Murugesan | Mattia Atzeni | Pavan Kapanipathi | Kartik Talamadupula | Mrinmaya Sachan | Murray Campbell
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Text-based games (TBGs) have emerged as useful benchmarks for evaluating progress at the intersection of grounded language understanding and reinforcement learning (RL). Recent work has proposed the use of external knowledge to improve the efficiency of RL agents for TBGs. In this paper, we posit that to act efficiently in TBGs, an agent must be able to track the state of the game while retrieving and using relevant commonsense knowledge. Thus, we propose an agent for TBGs that induces a graph representation of the game state and jointly grounds it with a graph of commonsense knowledge from ConceptNet. This combination is achieved through bidirectional knowledge graph attention between the two symbolic representations. We show that agents that incorporate commonsense into the game state graph outperform baseline agents.

pdf
Differentiable Subset Pruning of Transformer Heads
Jiaoda Li | Ryan Cotterell | Mrinmaya Sachan
Transactions of the Association for Computational Linguistics, Volume 9

Multi-head attention, a collection of several attention mechanisms that independently attend to different parts of the input, is the key ingredient in the Transformer. Recent work has shown, however, that a large proportion of the heads in a Transformer’s multi-head attention mechanism can be safely pruned away without significantly harming the performance of the model; such pruning leads to models that are noticeably smaller and faster in practice. Our work introduces a new head pruning technique that we term differentiable subset pruning. ntuitively, our method learns per- head importance variables and then enforces a user-specified hard constraint on the number of unpruned heads. he importance variables are learned via stochastic gradient descent. e conduct experiments on natural language inference and machine translation; we show that differentiable subset pruning performs comparably or better than previous works while offering precise control of the sparsity level.1

2020

pdf
Knowledge Graph Embedding Compression
Mrinmaya Sachan
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Knowledge graph (KG) representation learning techniques that learn continuous embeddings of entities and relations in the KG have become popular in many AI applications. With a large KG, the embeddings consume a large amount of storage and memory. This is problematic and prohibits the deployment of these techniques in many real world settings. Thus, we propose an approach that compresses the KG embedding layer by representing each entity in the KG as a vector of discrete codes and then composes the embeddings from these codes. The approach can be trained end-to-end with simple modifications to any existing KG embedding technique. We evaluate the approach on various standard KG embedding evaluations and show that it achieves 50-1000x compression of embeddings with a minor loss in performance. The compressed embeddings also retain the ability to perform various reasoning tasks such as KG inference.

2019

pdf bib
Discourse in Multimedia: A Case Study in Extracting Geometry Knowledge from Textbooks
Mrinmaya Sachan | Avinava Dubey | Eduard H. Hovy | Tom M. Mitchell | Dan Roth | Eric P. Xing
Computational Linguistics, Volume 45, Issue 4 - December 2019

To ensure readability, text is often written and presented with due formatting. These text formatting devices help the writer to effectively convey the narrative. At the same time, these help the readers pick up the structure of the discourse and comprehend the conveyed information. There have been a number of linguistic theories on discourse structure of text. However, these theories only consider unformatted text. Multimedia text contains rich formatting features that can be leveraged for various NLP tasks. In this article, we study some of these discourse features in multimedia text and what communicative function they fulfill in the context. As a case study, we use these features to harvest structured subject knowledge of geometry from textbooks. We conclude that the discourse and text layout features provide information that is complementary to lexical semantic information. Finally, we show that the harvested structured knowledge can be used to improve an existing solver for geometry problems, making it more accurate as well as more explainable.

2018

pdf
Self-Training for Jointly Learning to Ask and Answer Questions
Mrinmaya Sachan | Eric Xing
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

Building curious machines that can answer as well as ask questions is an important challenge for AI. The two tasks of question answering and question generation are usually tackled separately in the NLP literature. At the same time, both require significant amounts of supervised data which is hard to obtain in many domains. To alleviate these issues, we propose a self-training method for jointly learning to ask as well as answer questions, leveraging unlabeled text along with labeled question answer pairs for learning. We evaluate our approach on four benchmark datasets: SQUAD, MS MARCO, WikiQA and TrecQA, and show significant improvements over a number of established baselines on both question answering and question generation tasks. We also achieved new state-of-the-art results on two competitive answer sentence selection tasks: WikiQA and TrecQA.

pdf
Contextual Parameter Generation for Universal Neural Machine Translation
Emmanouil Antonios Platanios | Mrinmaya Sachan | Graham Neubig | Tom Mitchell
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

We propose a simple modification to existing neural machine translation (NMT) models that enables using a single universal model to translate between multiple languages while allowing for language specific parameterization, and that can also be used for domain adaptation. Our approach requires no changes to the model architecture of a standard NMT system, but instead introduces a new component, the contextual parameter generator (CPG), that generates the parameters of the system (e.g., weights in a neural network). This parameter generator accepts source and target language embeddings as input, and generates the parameters for the encoder and the decoder, respectively. The rest of the model remains unchanged and is shared across all languages. We show how this simple modification enables the system to use monolingual data for training and also perform zero-shot translation. We further show it is able to surpass state-of-the-art performance for both the IWSLT-15 and IWSLT-17 datasets and that the learned language embeddings are able to uncover interesting relationships between languages.


Standardized Tests as benchmarks for Artificial Intelligence
Mrinmaya Sachan | Minjoon Seo | Hannaneh Hajishirzi | Eric Xing
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: Tutorial Abstracts

Standardized tests have recently been proposed as replacements to the Turing test as a driver for progress in AI (Clark, 2015). These include tests on understanding passages and stories and answering questions about them (Richardson et al., 2013; Rajpurkar et al., 2016a, inter alia), science question answering (Schoenick et al., 2016, inter alia), algebra word problems (Kushman et al., 2014, inter alia), geometry problems (Seo et al., 2015; Sachan et al., 2016), visual question answering (Antol et al., 2015), etc. Many of these tests require sophisticated understanding of the world, aiming to push the boundaries of AI. For this tutorial, we broadly categorize these tests into two categories: open domain tests such as reading comprehensions and elementary school tests where the goal is to find the support for an answer from the student curriculum, and closed domain tests such as intermediate level math and science tests (algebra, geometry, Newtonian physics problems, etc.). Unlike open domain tests, closed domain tests require the system to have significant domain knowledge and reasoning capabilities. For example, geometry questions typically involve a number of geometry primitives (lines, quadrilaterals, circles, etc) and require students to use axioms and theorems of geometry (Pythagoras theorem, alternating angles, etc) to solve them. These closed domains often have a formal logical basis and the question can be mapped to a formal language by semantic parsing. The formal question representation can then provided as an input to an expert system to solve the question.

2017

pdf
From Textbooks to Knowledge: A Case Study in Harvesting Axiomatic Knowledge from Textbooks to Solve Geometry Problems
Mrinmaya Sachan | Kumar Dubey | Eric Xing
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Textbooks are rich sources of information. Harvesting structured knowledge from textbooks is a key challenge in many educational applications. As a case study, we present an approach for harvesting structured axiomatic knowledge from math textbooks. Our approach uses rich contextual and typographical features extracted from raw textbooks. It leverages the redundancy and shared ordering across multiple textbooks to further refine the harvested axioms. These axioms are then parsed into rules that are used to improve the state-of-the-art in solving geometry problems.

pdf
Learning to Solve Geometry Problems from Natural Language Demonstrations in Textbooks
Mrinmaya Sachan | Eric Xing
Proceedings of the 6th Joint Conference on Lexical and Computational Semantics (*SEM 2017)

Humans as well as animals are good at imitation. Inspired by this, the learning by demonstration view of machine learning learns to perform a task from detailed example demonstrations. In this paper, we introduce the task of question answering using natural language demonstrations where the question answering system is provided with detailed demonstrative solutions to questions in natural language. As a case study, we explore the task of learning to solve geometry problems using demonstrative solutions available in textbooks. We collect a new dataset of demonstrative geometry solutions from textbooks and explore approaches that learn to interpret these demonstrations as well as to use these interpretations to solve geometry problems. Our approaches show improvements over the best previously published system for solving geometry problems.

2016

pdf
Easy Questions First? A Case Study on Curriculum Learning for Question Answering
Mrinmaya Sachan | Eric Xing
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf
Learning Concept Taxonomies from Multi-modal Data
Hao Zhang | Zhiting Hu | Yuntian Deng | Mrinmaya Sachan | Zhicheng Yan | Eric Xing
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf
Science Question Answering using Instructional Materials
Mrinmaya Sachan | Kumar Dubey | Eric Xing
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

pdf
Machine Comprehension using Rich Semantic Representations
Mrinmaya Sachan | Eric Xing
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

2015

pdf
Learning Answer-Entailing Structures for Machine Comprehension
Mrinmaya Sachan | Kumar Dubey | Eric Xing | Matthew Richardson
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

2013

pdf
Identifying Metaphorical Word Use with Tree Kernels
Dirk Hovy | Shashank Srivastava | Sujay Kumar Jauhar | Mrinmaya Sachan | Kartik Goyal | Huying Li | Whitney Sanders | Eduard Hovy
Proceedings of the First Workshop on Metaphor in NLP

pdf
A Structured Distributional Semantic Model : Integrating Structure with Semantics
Kartik Goyal | Sujay Kumar Jauhar | Huiying Li | Mrinmaya Sachan | Shashank Srivastava | Eduard Hovy
Proceedings of the Workshop on Continuous Vector Space Models and their Compositionality

pdf
A Structured Distributional Semantic Model for Event Co-reference
Kartik Goyal | Sujay Kumar Jauhar | Huiying Li | Mrinmaya Sachan | Shashank Srivastava | Eduard Hovy
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

2011

pdf
Using Text Reviews for Product Entity Completion
Mrinmaya Sachan | Tanveer Faruquie | L. V. Subramaniam | Mukesh Mohania
Proceedings of 5th International Joint Conference on Natural Language Processing

Search
Co-authors