Mayuko Kimura


2022

pdf
Toward Building a Language Model for Understanding Temporal Commonsense
Mayuko Kimura | Lis Kanashiro Pereira | Ichiro Kobayashi
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing: Student Research Workshop

The ability to capture temporal commonsense relationships for time-related events expressed in text is a very important task in natural language understanding. On the other hand, pre-trained language models such as BERT, which have recently achieved great success in a wide range of natural language processing tasks, are still considered to have poor performance in temporal reasoning. In this paper, we focus on the development of language models for temporal commonsense inference over several pre-trained language models. Our model relies on multi-step fine-tuning using multiple corpora, and masked language modeling to predict masked temporal indicators that are crucial for temporal commonsense reasoning. We also experimented with multi-task learning and build a language model that can improve performance on multiple time-related tasks. In our experiments, multi-step fine-tuning using the general commonsense reading task as auxiliary task produced the best results. This result showed a significant improvement in accuracy over standard fine-tuning in the temporal commonsense inference task.

2021

pdf
Towards a Language Model for Temporal Commonsense Reasoning
Mayuko Kimura | Lis Kanashiro Pereira | Ichiro Kobayashi
Proceedings of the Student Research Workshop Associated with RANLP 2021

Temporal commonsense reasoning is a challenging task as it requires temporal knowledge usually not explicit in text. In this work, we propose an ensemble model for temporal commonsense reasoning. Our model relies on pre-trained contextual representations from transformer-based language models (i.e., BERT), and on a variety of training methods for enhancing model generalization: 1) multi-step fine-tuning using carefully selected auxiliary tasks and datasets, and 2) a specifically designed temporal masked language model task aimed to capture temporal commonsense knowledge. Our model greatly outperforms the standard fine-tuning approach and strong baselines on the MC-TACO dataset.